p .

”ﬁ remote sensin

Special Issue Reprint

Advancing Positioning,
Navigation, and Timing y |
(PNT) Service Using Satellite
Navigation Technology

I
St JL'

Edited by
Ke Su, Liangliang Yuan, Yulong Ge, Amir Allahvirdi-Zadeh and Guo Chen

mdpi.com/journal/remotesensing

WVI\DPI

F



Advancing Positioning, Navigation,
and Timing (PNT) Service Using
Satellite Navigation Technology






Advancing Positioning, Navigation,
and Timing (PNT) Service Using
Satellite Navigation Technology

Guest Editors

Ke Su

Liangliang Yuan
Yulong Ge

Amir Allahvirdi-Zadeh
Guo Chen

F
rM\D\Py Basel o Beijing ® Wuhan e Barcelona e Belgrade ¢ Novi Sad e Cluj ¢ Manchester
/



Guest Editors

Ke Su

School of Space Information
Space Engineering University
Beijing

China

Amir Allahvirdi-Zadeh
School of Earth and Planetary
Sciences

Curtin University

Perth

Australia

Editorial Office

MDPI AG
Grosspeteranlage 5
4052 Basel, Switzerland

Liangliang Yuan

Shanghai Astronomical
Observatory

Chinese Academy of Sciences
Shanghai

China

Guo Chen

GNSS Research Center
Wuhan University
Wuhan

China

Yulong Ge

School of Marine Science and
Engineering

Nanjing Normal University
Nanjing

China

This is a reprint of the Special Issue, published open access by the journal Remote Sensing (ISSN
2072-4292), freely accessible at: https:/ /www.mdpi.com/journal/remotesensing/special_issues/
KK817ZF9WS5.

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-6390-7 (Hbk)
ISBN 978-3-7258-6391-4 (PDF)
https://doi.org/10.3390/books978-3-7258-6391-4

Cover image courtesy of Ke Su

© 2026 by the authors. Articles in this book are Open Access and distributed under the Creative
Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms
and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https:/ /creativecommons.org/licenses/by-nc-nd /4.0/).



Contents

Aboutthe Editors . . . . . . . . . . . vii

Ke Su, Liangliang Yuan, Yulong Ge, Amir Allahvirdi-Zadeh and Guo Chen

Advancing Positioning, Navigation, and Timing (PNT) Service Using Satellite Navigation
Technology

Reprinted from: Remote Sens. 2025, 17, 3909, https:/ /doi.org/10.3390/rs17233909 . . . . . . . .. 1

Guoqiang Jiao, Ke Su, Min Fan, Yuze Yang and Huaquan Hu

BDS-3/GNSS Undifferenced Pseudorange and Phase Time-Variant Mixed OSB Considering the
Receiver Time-Variant Biases and Its Benefit on Multi-Frequency PPP

Reprinted from: Remote Sens. 2024, 16, 4433, https:/ /doi.org/10.3390/rs16234433 . . . . . . . .. 8

Yuan Tao, Chao Liu, Runfa Tong, Xingwang Zhao, Yong Feng and Jian Wang

Multipath Mitigation in Single-Frequency Multi-GNSS Tightly Combined Positioning via a
Modified Multipath Hemispherical Map Method

Reprinted from: Remote Sens. 2024, 16, 4679, https:/ /doi.org/10.3390/rs16244679 . . . . . . . .. 30

Lewen Zhao and Wei Zhai

Assessment of PPP Using BDS PPP-B2b Products with Short-Time-Span Observations and
Backward Smoothing Method

Reprinted from: Remote Sens. 2025, 17, 25, https:/ /doi.org/10.3390/rs17010025 . . . . ... . .. 49

Zhaohao Chen, Yixu Liu, Shangguo Liu, Shengli Wang and Lei Yang

An Improved Fading Factor-Based Adaptive Robust Filtering Algorithm for SINS/GNSS
Integration with Dynamic Disturbance Suppression

Reprinted from: Remote Sens. 2025, 17, 1449, https:/ /doi.org/10.3390/rs17081449 . . . . . . . .. 68

Lingyu Deng, Yikang Yang, Jiangang Ma, Tao Wu, Xingyou Qian and Hengnian Li

Breaking the Cyclic Prefix Barrier: Zero-Padding Correlation Enables Centimeter-Accurate LEO
Navigation via 5G NR Signals

Reprinted from: Remote Sens. 2025, 17, 2116, https:/ /doi.org/10.3390/rs17132116 . . . . . . . .. 93

Kun Wu, Weijin Qin, Daqian Lv, Wenjun Wu, Pei Wei and Xuhai Yang
Robust and Adaptive Ambiguity Resolution Strategy in Continuous Time and Frequency Transfer
Reprinted from: Remote Sens. 2025, 17, 2878, https:/ /doi.org/10.3390/rs17162878 . . . . . . . .. 124

Yanning Zheng, Yongfu Sun, Yubin Zhou, Shengli Wang and Yixu Liu

Variance Component Estimation (VCE)-Based Adaptive Stochastic Modeling for Enhanced
Convergence and Robustness in GNSS Precise Point Positioning (PPP)

Reprinted from: Remote Sens. 2025, 17, 3071, https:/ /doi.org/10.3390/rs17173071 . . . . . . . .. 145

Caoming Fan, Zheng Yao, Jinling Wang and Mingquan Lu
Cascaded Ambiguity Resolution for Pseudolite System-Augmented GNSS PPP
Reprinted from: Remote Sens. 2025, 17, 3149, https:/ /doi.org/10.3390/rs17183149 . . . . . . . .. 170

Yinhong Lv, Zhijun Meng, Guangming Wang, Mingkai Liu and Enqi Yan
Review of Research on Satellite Clock Bias Prediction Models in GNSS
Reprinted from: Remote Sens. 2025, 17, 3177, https:/ /doi.org/10.3390/rs17183177 . . . . . . . .. 188






About the Editors

Ke Su

Ke Su is currently working at the Space Engineering University, China. He has been researching
BDS/GNSS satellite navigation technologies and applications. He received a PhD degree from
Shanghai Astronomical Observatory, Chinese Academy of Sciences, China. He is a member of the IAG
prediction of ionospheric state and dynamics workgroup. He has published over 40 papers, among
which more than 20 are SCI papers as the first or corresponding author, with a total citation count
exceeding 600 and an H-index of 15. He has been appointed as a Young Editorial Board Member
for Satellite Navigation and the Journal of Projectiles, Rockets, Missiles and Guidance, as well as a Guest
Editorial Board Member of Remote Sensing. He has been a reviewer of more than 20 international
journals, including IEEE Transactions on Geoscience and Remote Sensing, Journal of Geodesy, and GPS
solutions, and so on. He has been awarded the national scholarship for doctoral students and master’s
degree candidate, the scholarship for the president of the CAS, the young excellent paper award at
the international summit on BDS mass applications, and the young excellent paper award and the

excellent oral presentation award at the China Satellite Navigation Conference.

Liangliang Yuan

Liangliang Yuan is an Associate Researcher at the Shanghai Astronomical Observatory, Chinese
Academy of Sciences, China. His research focuses on ionospheric data assimilation and upper
atmospheric coupling. He has led and contributed to over 10 research projects funded by prominent
institutions, including the European Space Agency (ESA), the German Aerospace Center, the National
Natural Science Foundation of China, and the Shanghai Science and Technology Commission. He
has published more than 20 journal and conference papers. Additionally, he has been selected for
prestigious talent programs such as the Shanghai Baiyulan Young Talent Program and the Pujiang

Talent Program.

Yulong Ge

Yulong Ge is an Associate Professor at the School of Marine Science and Engineering, Nanjing
Normal University, China. He holds several notable appointments, including Deputy Director of
Science and Technology for Jiangsu Province, High-level Innovative and Entrepreneurial Talent
(Double Innovation Doctor) of Jiangsu Province, and Committee Member of the Jiangsu BeiDou
Satellite Navigation Standardization Technical Committee. He also serves as a Youth Editorial
Board Member for Satellite Navigation. His research focuses on “BeiDou+" intelligent high-precision
positioning and timing, marine surveying and mapping, and the development of intelligent equipment.
Over the past five years, he has led or participated in more than 10 national, provincial, and local
projects. As a first author or corresponding author, he has published over 20 SCI papers in journals
including Satellite Navigation, GPS Solutions, and Measurement, and has co-authored more than 30

additional SCI papers.

Amir Allahvirdi-Zadeh
Amir Allahvirdi-Zadeh is a lecturer at the School of Earth and Planetary Sciences at Curtin

University, Australia. His research focuses on the precise orbit determination of small satellites for

space missions (Earth and beyond) and emerging LEO-PNT systems.

vii



Guo Chen
Guo Chen is an Associate Researcher at the GNSS Research Center of Wuhan University. He is

a key member of the International GNSS Service (IGS) Wuhan Combination Center (WCC) and has
long been dedicated to research on BeiDou/GNSS product combination, performance evaluation, and

precise positioning.

viii



o Z
".1 remote sensing ﬂw\p\py

Editorial
Advancing Positioning, Navigation, and Timing (PNT) Service
Using Satellite Navigation Technology

Ke Su "?*, Liangliang Yuan 3, Yulong Ge #, Amir Allahvirdi-Zadeh > and Guo Chen °

School of Space Information, Space Engineering University, Beijing 101416, China

2 Key Laboratory of Smart Earth, Beijing 100094, China

Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China;

llyuan@shao.ac.cn

School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China;

geyulong@njnu.edu.cn

5 School of Earth and Planetary Sciences, Curtin University, Perth, WA 6845, Australia;
amir.allahvirdizadeh@curtin.edu.au

6 GNSS Research Center, Wuhan University, Wuhan 430079, China; guo_chen@whu.edu.cn

*  Correspondence: sukel7@mails.ucas.ac.cn

1. Introduction

As a pivotal spatiotemporal infrastructure in the modern information society, satellite
navigation provides global users with high-precision, all-weather, and round-the-clock
Positioning, Navigation, and Timing (PNT) services. It constitutes an indispensable spa-
tial infrastructure for today’s national economic development and defense construction.
Satellite navigation systems have found widespread applications across various sectors,
including transportation, surveying and mapping, geographical information, meteorology,
land and resources surveys, precision agriculture, and seismology, permeating every facet
of the national economy.

Currently, four Global Navigation Satellite Systems (GNSSs) have fully completed
their satellite constellation deployments, while two regional navigation satellite systems
(RNSSs) and several satellite-based augmentation systems have also been largely estab-
lished, with other satellite navigation systems are under planning. The discipline of satellite
navigation emerged from the interdisciplinary convergence of geometry, electromagnetism,
mechanics, and geodesy. With the expansion of its application domains and an increase in
its significance, it has evolved into a relatively independent discipline. Looking ahead, the
emergence of perception methods based on new physical principles is expected to give rise
to new disciplines.

PNT serves as crucial foundational information for economic development and na-
tional defense advancement, as well as vital supporting information for the development of
an intelligent society. PNT has permeated every aspect of our lives, from daily commuting
to national security, and from scientific research to engineering applications, underscor-
ing its indispensable status and role. With the increasing complexity of spatiotemporal
measurement methods, PNT technology has gradually demonstrated a trend of multi-
disciplinary integration. In particular, with the emergence of satellite navigation being
a colossal and complex system, the interdisciplinary characteristics of the PNT field have
become even more pronounced. However, relying solely on any single PNT technology
cannot meet the PNT needs of arbitrary users in any scenario. It is imperative to con-
struct a PNT infrastructure network that provides full-domain coverage and integrates
multiple physical principle-based information sources, forming a PNT application and
service system characterized by multi-source data fusion and complementary advantages

Remote Sens. 2025, 17, 3909 https://doi.org/10.3390/rs17233909
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of multiple technologies. This not only represents an inevitable trend in the development
of the international PNT system but also serves as the necessary path to promote PNT
applications and enhance PNT service performance.

Currently, integrated PNT addresses the issue of PNT information sources, resilient
PNT focuses on the optimal combination of PNT information sources, and micro-PNT
tackles the challenges of miniaturization and low power consumption in PNT terminals.
For the vast number of PNT users, having PNT infrastructure and resilient guidelines is
not sufficient. It is also essential to address the issue of intelligent applications.

The Special Issue is dedicated to exploring the wide-ranging PNT technologies based
on satellite navigation. We invite original research articles and reviews that delve into
various aspects including, but not limited to, constellations, signals, orbit determination,
PNT theory, algorithms, models, and their applications in engineering and Earth sciences,
as well as multi-sensor integration. Topics of interest for this Special Issue include, but
are not limited to, integrated PNT, resilient PNT, micro PNT, secure PNT, GNSS Precise
Point Positioning (PPP) and PPP-Real-Time Kinematic (PPP-RTK), GNSS timing, GNSS
orbiting determination and modeling, GNSS atmospheric sensing, GNSS ionosphere and
space weather, integrated navigation and smart applications, satellite navigation counter-
measure, future Low Earth Orbit (LEO) PNT, and broadband PNT constellations using
signal of opportunity.

The Special Issue received a total of 38 submissions and ultimately published 9 re-
search papers, all of which have undergone a rigorous review process. The objective of
this Editorial is to provide an overview of the contributions from the studies in this Special
Issue. Section 2 summarizes the individual articles hosted in the Special Issue in alpha-
betical order based on the publication time and article type, and Section 3 outlines some
concluding remarks.

2. Overview of Contributions

Jiao et al. (Contribution 1) introduced a novel undifferenced model integrated with
satellite clock offsets, which further transforms the inter-frequency clock bias (IFCB) into
time-variant mixed observable-specific signal biases (OSBs) for both code and phase mea-
surements. This innovation addresses the limitations inherent in traditional approaches
while streamlining the bias correction process for multi-frequency PPP. The proposed
model not only enhances the accuracy of mixed OSBs but also eliminates the adverse
effects of receiver-dependent time-varying biases on satellite-based mixed OSB estima-
tion. Quantitative evaluations demonstrate significant improvements, where the standard
deviation (STD) and root mean square (RMS) of original OSBs are reduced by 7.5-60.9%
and 9.4-66.1%, respectively, while those of epoch-differenced (ED) OSBs are improved
by 50.0-87.5% and 60.0-88.9% for STD and RMS. Furthermore, PPP solutions utilizing
the new mixed OSBs outperform those relying on conventional IFCB products. The find-
ings validate the reliability, practicality, and efficacy of the proposed time-variant mixed
OSB framework and the undifferenced model with integrated satellite clock offsets for
multi-frequency PPP applications.

Tao et al. (Contribution 2) proposed a modified Multipath Hemispherical Map (MHM)
approach to mitigate the multipath for single-frequency multi-GNSS tightly combined
positioning. The method partitions the hemispherical space into a 36 x 9 grid with
10° x 10° angular resolution, then utilizes elevation and azimuth angles as search pa-
rameters to determine the multipath correction value from the nearest grid point. To
enhance computational efficiency without compromising accuracy, a k-dimensional tree
structure is implemented for rapid nearest-neighbor searches. Experimental results demon-
strate that the modified MHM improves mean positioning accuracy by 10.20%, 10.77%, and
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9.29% for Global Positioning System (GPS), BeiDou Navigation Satellite System (BDS), and
Galileo single-difference residuals, respectively, compared to conventional advanced side-
real filtering-based corrections. Precision enhancements reach 32.82%, 40.65%, and 31.97%
in the east, north, and up components, respectively. The modified MHM exhibits superior
performance and more consistent error mitigation across different satellite systems.

Zhao and Wei (Contribution 3) conducted a performance assessment of short-duration
PPP using PPP-B2b correction products and introduced a backward smoothing technique to
improve positioning accuracy during the initial convergence phase. The analysis revealed
that the orbit and clock precision of BDS PPP-B2b products outperform those of GPS, with
BDS achieving radial, along-track, and cross-track orbit accuracies of 0.059 m, 0.178 m,
and 0.186 m, respectively, and clock synchronization accuracy within 0.13 ns. For hourly
static PPP solutions, 50% of test sessions reached horizontal and vertical accuracy of
0.5 m and 0.1 m after convergence times of 4.5 min and 25 min, respectively. However,
7.07% to 23.79% of sessions failed to achieve 0.1 m accuracy due to insufficient GPS and
BDS correction availability at specific stations. Simulated kinematic PPP required an
additional 1-4 min to attain comparable accuracy to static PPP. The implementation of
backward smoothing significantly enhanced positioning precision, achieving north, east,
and up direction accuracies of 0.024 m, 0.046 m, and 0.053 m, respectively. In vehicle-
based applications, forward PPP attained horizontal accuracy better than 0.5 m within
4 min, though errors could exceed 1.5 m and 3.0 m for east and up components during
convergence. With smoothing applied, horizontal accuracy improved to better than 0.2 m,
while vertical accuracy reached sub-0.3 m levels.

Chen et al. (Contribution 4) introduced an adaptive robust filtering algorithm fea-
turing an optimized fading factor to address the divergence issues of traditional Kalman
filters under severe heave motion and anomalous observation conditions. A multi-source
information fusion framework was developed by integrating four key indicators, includ-
ing satellite Positioning Dilution Of Precision (PDOP), solution quality metric (Q-value),
effective satellite observation count (Satnum), and residual vector analysis. A dynamic
weight adjustment mechanism was designed to enable real-time optimization of the fading
factor, while a dual robust mechanism was constructed through the synergistic integra-
tion of robust estimation theory and adaptive filtering, employing a sequential update
strategy. During the measurement update phase, observation weights were dynamically
adjusted based on innovation covariance, and a fading memory factor was introduced in
the time update phase to mitigate model error accumulation. Experimental evaluations
demonstrated significant accuracy improvements compared to conventional Extended
Kalman Filter (EKF), Sage-Husa adaptive filtering, and basic robust filtering approaches.
In high-maneuver vehicle scenarios, three-dimensional positioning accuracy increased by
47.12%, 35.26%, and 9.58%, respectively, while shipborne heave motion scenarios showed
corresponding improvements of 19.44%, 10.47%, and 8.28%. These findings provide an
effective anti-interference solution for navigation systems operating in highly dynamic and
complex environments.

Deng et al. (Contribution 5) proposed an orthogonal frequency division multiplexing
(OFDM)-based LEO navigation system and conducted a detailed performance analysis.
Leveraging 5G New Radio (NR) as the satellite transmission signal, the study identified NR
signal components suitable for navigation services while introducing a novel zero-padding
correlation (ZPC) receiver design. This ZPC technique effectively eliminates cyclic prefix
(CP) and inter-carrier interference (ICI), significantly enhancing signal tracking precision.
The power spectral density (PSD) of the NR navigation signal was mathematically de-
rived, followed by a comprehensive evaluation of tracking accuracy under varying NR
configurations, including bandwidth, spectral allocation, and signal composition param-
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eters. An extended Kalman filter (EKF) was implemented to integrate pseudorange and
pseudorange rate measurements for real-time positioning solutions. Simulation results
revealed substantial improvements over conventional receivers, with ranging precision
enhanced by 80% and positioning accuracy improved by 88.3%. The proposed ZPC receiver
demonstrated centimeter-level navigation capabilities. This research provides a systematic
analysis of LEO NR system navigation performance and offers valuable insights for the
design of future LEO-based PNT architectures.

Wu et al. (Contribution 6) introduced a robust approach that leverages narrow-lane
ambiguity resolution to compensate for receiver clock discontinuities, coupled with an
adaptive sliding-window weighting strategy that optimally utilizes multi-epoch observa-
tional data. The methodology effectively addresses day-boundary jumps by implementing
dynamic thresholding for error detection and minimizing the impact of incorrect ambi-
guity fixing. Experimental evaluations demonstrated that at an averaging interval of
76,800 s, the frequency stability for GPS, Galileo, and BDS integer precise point positioning
(IPPP) solutions reached 4.838 x 10~16,4.707 x 1076, and 5.403 x 10~'°, respectively. For
zero-baseline time transfer applications, GPS IPPP achieved stability at the 10717 level,
outperforming optical fiber time transfer in long-term differential comparisons. Across
both short- and long-baseline scenarios, IPPP consistently surpassed conventional PPP float
solutions and International GNSS Service (IGS) final products. Specifically, at a 307,200 s
averaging interval, IPPP improved average frequency stability by approximately 29.3%
relative to PPP and 32.6% compared to IGS final products.

Zheng et al. (Contribution 7) conducted a thorough evaluation of the Adaptive
Stochastic Model (ASM) and its effect on PPP. The study first detailed the implemen-
tation of ASM using Variance Component Estimation (VCE) techniques. Experimental
results revealed that ASM effectively captures varying observation conditions through
dynamically estimated variance components, thereby enhancing both PPP float and fixed
solutions particularly when predefined stochastic models prove insufficient. The approach
also improved cycle-slip detection performance by tightening the stochastic constraints,
reducing the missed detection rate from 19% to 8%. Furthermore, ASM accelerated both
direct reconvergence and re-initialization processes following data interruptions, with
reconvergence times shortened by 18% and re-initialization times by 55%, respectively.

Fan et al. (Contribution 8) introduced a tightly coupled integration model combining
Pseudolite System (PLS) and GNSS at the observation level, where ambiguity resolution
strategy plays a critical role in augmentation performance. The study proposes a novel
ambiguity resolution approach that leverages the rapid convergence characteristics of PLS
by independently fixing PLS ambiguities first, followed by cascading resolution of GNSS
wide-lane and L1 ambiguities. The fixed ambiguities are subsequently incorporated as
constraints in the filtering process to enhance solution robustness. Experimental eval-
uations demonstrated significant improvements in ambiguity fixing rates, particularly
for short-duration augmentation scenarios, where the proposed method outperformed
conventional approaches.

Lv et al. (Contribution 9) developed comprehensive modeling frameworks for both
traditional and Artificial Intelligence (AI) approaches in GNSS PNT. The study systemati-
cally reviewed classical mathematical models, including polynomial, gray, Kalman filter,
and time series methods, alongside Al-based techniques such as machine learning (ML),
multilayer perceptron (MLP), recurrent neural networks (RNNs), and Transformer archi-
tectures. The technical attributes, practical applications, and inherent limitations of each
model type were analyzed in depth. While Al-based models exhibited superior adapt-
ability and performance in complex environments compared to classical methods, they
demanded larger training datasets and significant computational resources. The research
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concluded with a comparative summary of strengths, weaknesses, and future development
trajectories, providing actionable insights for advancing real-time, high-precision GNSS
PNT solutions.

3. Concluding Remarks

The papers included in this Special Issue collectively demonstrate that field of PNT
technology encompasses multiple disciplines and involves complex technical challenges.
The advancement of PNT technology necessitates proactive integration with cutting-edge
technologies such as big data and Al It also requires research into multi-technology fusion
development models and active exploration of PNT sensing technologies based on novel
physical principles. Some studies in this Special Issue have proposed improvements to
PNT technologies from the perspective of technical algorithms, while others have focused
on enhancements through the adoption of novel technologies.

Based on the insights from this Special Issue, multiple promising avenues for future
research become apparent as follows:

1. Research on challenges in spatiotemporal reference framework construction under
strong interference conditions. The research primarily focuses on the anti-jamming
capabilities of navigation systems, addressing adaptability issues in satellite constella-
tions, signal architectures, and receiver performance, as well as the applicability of
navigation systems under complex operational conditions [1,2].

2. Research on integrated PNT system technologies. Key research areas include deep-
space PNT technologies, design and deployment of Lagrangian constellations, LEO-
augmented PNT solutions, integrated navigation combining network communication
technologies with GNSS, hybrid navigation approaches integrating inertial, celestial,
gravimetric and magnetic, and terrain-matching navigation, along with underwater
PNT systems [3-5].

3. Research on resilient PNT theories and methodologies. The research encompasses
resilient integration techniques for multi-source PNT information, development of
resilient functional and stochastic models for PNT data under complex environments,
and establishment of fusion criteria, models, and algorithms for multi-source PNT
information resilience [6-8].

4. Key theories and technologies for intelligent PNT service systems. Research priorities
include PNT intelligent perception theories and sensor technologies, intelligent fusion
of multi-source PNT information, and service architecture development for intelligent
PNT systems adapted to diverse environmental conditions [9,10].

It is evident that PNT technology research remains in its nascent stage, with substantial
efforts still required in satellite navigation-based PNT studies to enhance the continuity,
availability, robustness, and reliability of PNT services.
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Abstract: The legacy Global Navigation Satellite System (GNSS) satellite clock offsets obtained
by the dual-frequency undifferenced (UD) ionospheric-free (IF) model absorb the code and phase
time-variant hardware delays, which leads to the inconsistency of the precise satellite clock esti-
mated by different frequencies. The dissimilarity of the satellite clock offsets generated by different
frequencies is called the inter-frequency clock bias (IFCB). Estimates of the IFCB typically employ
epoch-differenced (ED) geometry-free ionosphere-free (GFIF) observations from global networks.
However, this method has certain theoretical flaws by ignoring the receiver time-variant biases. We
proposed a new undifferenced model coupled with satellite clock offsets, and further converted the
IFCB into the code and phase time-variant mixed observable-specific signal bias (OSB) to overcome
the defects of the traditional model and simplify the bias correction process of multi-frequency precise
point positioning (PPP). The new model not only improves the mixed OSB performance, but also
avoids the negative impact of the receiver time-variant biases on the satellite mixed OSB estimation.
The STD and RMS of the original OSB can be improved by 7.5-60.9% and 9.4-66.1%, and that of
ED OSB (it can reflect noise levels) can be improved by 50.0-87.5% and 60.0-88.9%, respectively.
Similarly, the corresponding PPP performance for using new mixed OSB is better than that of using
the traditional IFCB products. Thus, the proposed pseudorange and phase time-variant mixed OSB
concept and the new undifferenced model coupled with satellite clock offsets are reliable, applicable,
and effective in multi-frequency PPP.

Keywords: inter-frequency clock bias (IFCB); observable-specific signal bias (OSB); epoch-differenced
(ED); undifferenced; multi-frequency precise point positioning

1. Introduction

With GNSS modernization and development, the traditional GPS-only dual-frequency
model is gradually transitioning to multi-GNSS (GPS, BDS, GLONASS, Galileo, and re-
gional system) and multi-frequency tendencies. The GPS Block IIF satellites can transmit
L1, L2, and L5 signals [1]. The global BeiDou navigation satellite system (BDS-3) satellites
can broadcast the B1C, B2a, B2b, and B2 (B2a + B2b) signals as well as the legacy B1I and
B3I signals [2]. Similarly, the new GLONASS satellites have begun to transmit code division
multiple access (CDMA) Gla, G2a, and G3 signal and frequency division multiple access
(FDMA) G1 and G2 signals [3]. Galileo can transmit E1, E5a, E5b, E5, and E6 signals [4].
The multi-frequency observations can be beneficial in precise point positioning (PPP), cycle
slip detection, precise clock offset estimation (PCE), and so on [5-7].
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Normally, the legacy precise satellite clock offsets released by GNSS analysis centers
(ACs) are generated by a dual-frequency ionosphere-free (IF) combination model [8]. For
example, the recommended basic frequency pair for GPS, Galileo, and BDS are L1/L2,
E1/E5a, and B11/B3l signals [1,9,10]. Due to the characteristics of multi-frequency multi-
channel GNSS signals, there is an inter-frequency bias between different frequencies, and
there is an intra-frequency deviation between different channels of the same frequency. The
code and phase time-variant hardware delay will be absorbed into satellite clock offsets,
which leads to the inconsistency of the precise satellite clock offsets estimated by different
frequencies [11]. This inconsistency is known as the inter-frequency clock bias (IFCB) [1].
The IFCB can be divided into code IFCB (CIFCB) and phase IFCB (PIFCB) [12]. The CIFCB
is a linear combination of code hardware delays, and it is also called the differential code
bias (DCB) or pseudorange observable-specific signal bias (OSB) [13]. The DCB is usually
determined by the carrier-to-code leveling (CCL) method [14,15]. Most International
GNSS Service (IGS) and International GNSS Monitoring and Assessment System (iGMAS)
ACs such as Centre for Orbit Determination in Europe (CODE), Deutsches Zentrum fiir
Luft- und Raumfahrt (DLR), Chinses Academy of Sciences (CAS), WhuHan University
(WHU), and Shanghai Astronomical Observatory (SHA) use the CCL method to obtain
DCB [16-19]. The PIFCB is a linear combination of phase time-variant hardware delays,
which is usually generated by epoch-differenced (ED) geometry-free (GF) ionosphere-free
(IF) linear combination (GFIF) [12]. At present, IGS and iGMAS ACs have not yet officially
released IFCB, and the OSB files obtained from GNSS AC mainly release pseudorange
and phase OSB [3,20]. Nevertheless, many references have conducted research on it. Pan,
et al. [21] used the ED GFIF model to obtain GPS L5 PIFCB, and researched characteristics
to model and predict it [22]. Similarly, Gong, et al. [23] used the ED GFIF model to generate
the PIFCB and analyzed its periodic characteristics to develop the corresponding prediction
model. Su, et al. [24] converted the PIFCB obtained by the above method into carrier-
phase OSB, which greatly simplified the complexity of the client algorithm. Although
this method has high computational efficiency, it has certain theoretical flaws. However,
the correct method assumes that the PIFCB of the same satellite at different receivers has
good consistency and the receiver PIFCB can be combined into satellite PIFCB. Actually,
receiver hardware delays are greatly affected by the ground environment variation [25]. If
the receiver hardware delays change, it will have a negative impact on the satellite PIFCB
estimation. The IFCB can also be calculated by estimating the satellite clock offset for all
frequencies. Guo and Geng [26] provided the GPS L1/L2 and L5-only types of satellite
clock products for the triple-frequency PPP. Jiao, et al. [27] established a multi-frequency
precise satellite clock offset estimation model to obtain clock offsets and the corresponding
IFCB. Fan, et al. [28] first modeled the IFCB and then brought the model coefficients into
the undifferenced model to obtain the corresponding IFCB model coefficients, which can
improve IFCB estimation accuracy. Geng, et al. [29] merged IFCB into phase OSB at the
third frequency, which simplifies the PPPAR process. But, it is not very convenient for
multi-frequency float PPP. However, these methods require the estimation of the ambiguity
parameters for the basic frequency as well as the third frequency. The ambiguity parameters
will increase with the increase in observations, and its corresponding computational burden
is enlarged [30]. Therefore, it is very meaningful to develop an IFCB estimation method
with high computational efficiency and accuracy.

With this background, we developed the new undifferenced IFCB estimation model
considering the receiver time-variant biases, and further converted it into code and phase
time-variant mixed OSB to improve multi-frequency PPP (MFPPP) performance. The new
model avoids the negative impact of receiver time-variant biases on the satellite mixed OSB,
and it has good accuracy and low noise. First, the mathematical methods of the traditional
ED GFIF-phase time-variant OSB model and new undifferenced mixed OSB model coupled
with satellite clock offsets and an analysis of their characteristics are presented in detail.
Then, the processing datasets and the corresponding processing strategies are presented.
Naturally, the experimental analysis about the advantages of the new undifferenced mixed
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OSB model and its benefits on MFPPP are introduced in the following section. Finally, the
conclusions are summarized.

2. Methods

This section begins with the GNSS pseudorange and phase observation models. The
traditional epoch-differenced phase-only GFIF OSB estimation model and the new undif-
ferenced models coupled with satellite clock offsets are developed in detail. The IFCB is
converted to OSB type for simplifying the client calculation.

2.1. General Observation Models and OSB Concept

The GNSS original observation equations with the time-variant parts of pseudorange
and phase hardware delays can be written as follows [31]:

pr;(8) = 0y (t) +dty(t) — dt*(£) + byj — b5 + by, j(£) — b5 () + T (8) + I7 () + €p, ()
;i (t) = py(t) +dt(t) — dt*(t) + B,;j — B + By j(t) — Bi(t) + T3 () — I} ;(£) + Ny + €9, (#)

where pi,j(t) and ¢7 j(t) are the pseudorange and phase observations on frequency
j in units of meter, respectively; p3(t) is the geometrical range from satellite s to receiver
r at epoch t; dt,(t) and dt*(t) denote the original receiver and satellite clock offsets; and
by; and b]? represent the receiver and satellite time-invariant uncalibrated code delays
(UCDs), while byj(t) and b;(t) represent the corresponding time-variant parts; similarly,
B, ; and BJS- depict the time-invariant uncalibrated phase delays (UPDs) and Br,]-(t) and
B]S- (t) are the time-dependent parts; T; (t) depicts the slant tropospheric delay; I7 j(t) is the
slant ionospheric delay; N; ; denotes the integer ambiguity; and ¢, () and ¢4, (t) are the
pseudorange and phase observation noises containing multipath and unmodeled errors.

The IGS and iGMAS ACs typically employ dual-frequency undifferenced IF combina-
tion observations to generate satellite clock offsets [31,32]:

{ Pi,zpij(t) = Pi(t) + dtr,IF,-,-(t) - dtﬁpij(t) + Trs(t) +EP1FZ.j (t) @)

(Pi,ll—"l-]—(t) =pp(t) + dtr,IFi,-(t) - dt?pi]-(t) + T3 (1) + Ni,ll—"ij + 54715-]- ()

with
dtr/IPij (t> = dty(t) + br,IPj]‘ + BV,IFI‘]' (t)
dtjp (1) = dt*(t) + by, + B (f) 5
Epy,, (1) = Epiry () + by 1k (£) = b, () — By 1k (£) + Big (f)

N _ NS s s
Ny g, = Ny, + Brir; — B, by,1r,; + bIFi/

] -
2 -f?
where <')IF,-,- =ajj- (:);+Bij- (.)]., wij = fizf—lf,-z' Bij = fiz—]ff' IF;j denotes the dual-frequency

IF-combined operation; i and j are the IGS/iGMAS recommended frequency, where GPS is
L1/L2, BDS is B11/B3l, and Galileo is E1/E5a; dt,, i (t) and dtjipij (t) denote receiver and

satellite IF-combined clock offsets; and EPIF{]’ (t) and W‘; IF; are the recombined pseudorange

observation noises and IF ambiguity, respectively. The satellite clock offsets published by
IGS and iGMAS ACs will absorb the UCD, time-variant UPD, and reference clock, which
can be written as follows [11]:

where dt; E; (t) is the actual estimated clock offsets and dt,f is the reference clock.

10
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The satellite clock offsets absorbed with the hardware delays make the measurement
inconsistent at the specific frequency. The satellite clock offsets for the specific frequency
can be expressed as follows:

dE; (1) = dtsfpij(t) + 0p; + 0, (1) + dbyey = dtSiFij(t) + 83, (1) + by

7S
di;(t) = dtj, (1) + Op; + 09, (1) + dbyey = diy, (1) + 53y, (1) + dbyeg ®)
dti(t) - dt?Fij(t) + 0py + 0 (£) + dtref = dt?pij(t) + 5%}((1‘) + dtref

where df; (), df; (t), and df;.(t) denote the satellite clock offsets for the basic ith, jth, and
the third kth frequency signals. Jp, and 6, denote the pseudorange OSB for the baisc
frequency signals; 6, denotes the pseudorange OSB for the third frequency signal; and, in
analogy, dy,(t), 8, (t), and &y, () are carrier-phase time-variant OSB for the basic and the
third frequency. Normally, the definition of satellite IFCB is the bias between the satellite
clock offsets for the different frequency, which usually contains CIFCB (also known as DCB
or pseudorange OSB) and PIFCB (also known as the phase time-variant OSB). The 6, and
d¢, (t) can be combined into the mixed IFCB with OSB type &}, (t).

Generally, the pseudorange OSB is usually determined by the CCL method. However,
the phase time-variant OSB for the basic frequency cannot be calculated by the methods of
obtaining pseudorange OSB. As shown in (2), it will be absorbed into the other parameters
such as clock offsets and residuals. As for the dual-frequency PPP, the phase time-variant
OSB for the basic frequency will not have any negative impact. Because this bias is
recombined into other parameters, the server algorithms for satellite clock offsets and the
client PPP algorithms are strictly self-consistent. Hence, the carrier-phase time-variant OSB
values at the basic frequency signals can be set to zero. The carrier-phase time-variant OSB
values at the basic and the third frequency signals can be written as follows.

t)
(1)
O, (1) = aij - (1= pic/ ) - Bi (t) = Bij - (e — 1) - B3 (t) — By (t)

baseline frequency

G (1) =0
5 (1) =0

(6)

Equation (6) indicates that the carrier-phase time-variant OSB at different frequencies,
and y; and yj denote the frequency-dependent multiplier factor.

2.2. Traditional GFIF Phase Time-Variant OSB Model

The phase time-variant OSB is commonly generated by the ED GFIF model. The GFIF
combination between the third and the basic frequency can be written as follows [33]:

¢§,GFIFijk(t) = ¢§,IF,-k(t) - be,lpij(t) = ‘57,4>1Fl-k (t) - (%m,.k (£) + Ni/GFIFijk )

where Ni,c FIF denotes the differential IF-phase ambiguity. If there is no cycle slip, and
the epoch difference strategy can be used to eliminate ambiguity, which can be written
as follows:

Dby gy, (£ —1) — A‘Srsmpik (£t =1) = ¢ 6rir, () = 7 6rrp, (= 1) 8

where Ady g, (t,t—1)and A(S;IF‘k (t,t — 1) denote the differential IF PIFCB.

Because the PIFCB of the same satellite at different stations has good consistency, the
receiver PIFCB can be combined into satellite PIFCB [33], which reads as follows:

Aé?/‘PIFik (t’t - 1) = ()bi,GFIFllk(t) - (P;GFIFIJk(t - 1) (9)

where ASS

v (t,t — 1) denotes the corresponding IFCB for the paired receiver and satellite.
/PIF

11
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Assuming that satellite s can be tracked by m common viewing stations in the observa-
tional network at epoch t and ¢t — 1, the epoch-differenced PIFCB is expressed as follows:

Y (A8 (bt-1)-wi(ti-1)
Aé;’[p (Lt=1)= r:]{ Iiik }
* L [wi(ti-1)] (10)

o f sin(Elei(tt— 1)), EleS(t,t — 1) < 40°
wp(tt=1) = { 1,EleS(t,t — 1) > 40°

where Elej(t,t — 1) represents the average elevation at epoch t and t — 1. The PIFCB can be
accumulated through epoch-differenced values, as shown below:

t
Spur, () =8 (o) + 3. A%, (L—1) (11)
tZto-‘rl
with
Opir, (1) = Big, () — Bip, (1) (12)

where tj is the initial epoch time and the initial undifferenced PIFCB, 52’”’1( (tp), is usually

set to zero. Ay (t,t — 1) is the ED IFCB between epoch t and t — 1. 5, (#) can be accu-
ik ik

mulated by the A(Sj,mk (t,t — 1) from the initial epoch time. The 53)% (t) is the IF-combined

PIFCB, which is difficult to be corrected in the complex PPP models such as non-basic fre-
quency PPP, undifferenced PPP, MFPPP, and so on. According to the SINEX_BIAS Version
1.0 [34], the bias in the form of OSB type can better adapt to multi-frequency observations
and the complex PPP algorithms. Combining (6) and (12), the IF-combined PIFCB can be
transformed into the phase time-variant OSB, which can be expressed as follows.

5 () = By’ + 0y, (1) (13)

The phase time-variant OSB for basic and third frequency can generated by using
Equations (6) and (13).

2.3. Undifferenced Mixed OSB Model Coupled with Satellite Clock Offsets

Through the comprehensive analysis of the above calculation process, it can be found
that the ED GFIF model has three major flaws. The first is that it neglects the receiver
PIFCB. It assumes that the PIFCB of the same satellite at different receivers has good
consistency and the receiver PIFCB can be combined into satellite PIFCB. The second is
that it neglects the relationship between two adjacent epochs because it obtains PIFCB by
averaging and accumulating. The third and most important is the MFPPP need to correct
both pseudorange OSB and PIFCB, which makes the client algorithms more complex. For
traditional methods, two bias corrections are required to achieve MFPPP, which makes the
client algorithms more complex. To avoid the above defects, the undifferenced pseudorange
and phase time-variant mixed OSB model coupled with satellite clock offsets can be
expressed as follows:

{ pi,IFik(t) = Pi(t) + dtr,IFik(t) - dtﬁ[;pv(t) - 5?5,((0 + Tf(t) +§PlFik (t) (14)
o

0% 15, (1) = P5(8) + by 15, () — dES . (£) = 85 () + T3(E) + Ny, + gy, (1)

1

where 07, (t) is the satellite pseudorange and phase time-variant mixed IFCB.
The IGS legacy clocks are fixed throughout the undifferenced mixed OSB model; hence,
we further rewrite (14) by introducing (4) as follows:

(t)

P 15, ()& B3, (£) = p3(8) + i, (1 "
s
(t) + Trs(t) + Nr,IFik + €¢1Fik (t)

— i,
ik
7 15, (1) + dt?Fi]-(t) = p;(t) + dby g, (t) — Ojp,

12
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where dﬁpﬁ (t) is IGS legacy clock offsets and dt, rr, (t) is the recombined receiver clock
offsets, which absorb the reference clock dt,.¢. Obviously, there is a rank-deficient problem
between dt, ir, (t) and &} r, (t)- To avoid the negative impact of receiver hardware delay on
the satellite IFCB estimation, the zero-mean condition (ZMC) for a constellation is used to
separate the receiver and satellite IFCB.

Naturally, there are two technical routes to obtain satellite IFCB according to whether
it is with or without pseudorange OSB correction for basic frequency. If the basic frequency
observations are corrected by pseudorange OSB, the third satellite IFCB will not contain
satellite pseudorange OSB, which can be expressed as follows.

(ﬁwmk(t) = Bix - (by — b]) + Bip, () — B?Fij(t) = (SZIFik + (5‘7’1F1k (t) (16)

The IF-combined mixed IFCB &3, = (t) can be further converted into OSB type, which

ik
is expressed as follows.

pi = Bij - (b? - bf)

— S _ 1S
pp = % (bi b;

) }basic frequency pair
83y, (1) = by — bf (17)

If the basic frequency observations are not corrected by pseudorange OSB, the esti-
mated mixed IFCB will absorb satellite pseudorange OSB. Hence, the mixed IFCB for the
third frequency can be given as follows.

leFik (t) = ?Fik - b?F,] + B?F,k(t) - B?Flj(t) - 55}’7[1-"”( + é(S’PIFik (t) (18)

The mixed IFCB 63, . (t) can be further converted into OSB type, which is expressed
ik

as follows.

basic frequency pair

Og (8) = i (1= i/ i) - bF — P - (= 1) - b = b (19)
T (1 —pxe/ i) - Bf(t) — ,31‘]‘ (g —1)- B]S-(t) — BZ(t)
= Op, + ¢, (t) = ,517(1 '5?5,((”

Equation (19) indicates that the OSB for the third frequency is composed of the time-
invariant UCD and time-variant UPD, which differs from Equation (17) in including and
excluding pseudorange OSB for basic frequency.

In summary, the traditional IFCB model is based on three assumptions: (1) the PIFCB
of the same satellite at different stations has good consistency and the receiver PIFCB
can be combined into satellite PIFCB; (2) pseudorange and phase IFCB are determined
by CCL and ED GFIF models, respectively; (3) the PIFCB is determined by averaging
multiple GNSS tracking stations. These assumptions also reflect some defects. If the time-
varying phase delays of different GNSS receivers are inconsistent, it will have a negative
impact on the satellite PIFCB estimation. It is undeniable that traditional methods are more
efficient than undifferenced models in terms of computational efficiency because they do
not require the calculation of ambiguity. However, the new method only has one set of
ambiguity parameters, so the computational efficiency is still very high. In addition, the
pseudorange OSB is required for basic frequency observations, and both pseudorange OSB
and phase time-variant OSB corrections are required for the third frequency observation in
MEFPPP. Obviously, this way is too complicated. In addition, the ACs such as CODE, DLR,
CAS, WHU, and SHA basically use CCL to generate satellite pseudorange OSB products.

13
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This will lead to the poor self-consistency of those biases. The new method can avoid
complex bias correction. We do not need to make pseudorange OSB corrections for the basic
frequency observations. We only need to make the pseudorange and phase time-variant
mixed OSB corrections for the third frequency observation, which significantly optimizes
the terminal positioning algorithm. The method of (19) is used to obtain the mixed OSB.

3. Experiment Setup

Approximately, the 130 stations collected from IGS MGEX for the period day of year
(DQOY) from 001 to 030, 2021, are used to obtain GPS, BDS-3, and Galileo satellite mixed
OSB. The distribution of the selected GNSS stations for OSB estimation can be found in
Figure 1.

The traditional phase time-variant ED OSB model is relatively simple. It can be calcu-
lated according to Equations (8)—(14), and its description will not be repeated again [33].
The undifferenced mixed OSB estimation processing strategies are illustrated in Table 1.
The GPS L1/L2, BDS-3 B11/B3I, and Galileo E1/E5a are treated as the basic frequency,
while GPS L5, BDS-3 B1C and B2a, and Galileo E5, E5b, and E6 are used to estimate satellite
IFCB. The satellite orbits and clock offsets are fixed to the WHU final products, and the
station coordinates are fixed to IGS weekly SINEX-file coordinates [3,35]. The ZMC method
for a constellation is used to eliminate rank deficiency between receiver and satellite IFCB.
As for tropospheric delay, the dry parts are corrected by the modified Hopfield model
based on the Global Pressure and Temperature 3 (GPT3) and Vienna Mapping Functions 3
(VMF3) models, while the wet parts are estimated by setting the parameter based on the
wet part of VME3 [36,37]. The Phase Center Offset (PCO) and Phase Center Variations
(PCVs) for GPS, BDS-3, and Galileo multi-frequency observations are corrected using the
IGS antenna file (igs14.atx). In the bidirectional Kalman filter (forward and backward) of
IFCB processing, the ambiguities are estimated as float constants, the ZWD is estimated
as a random walk process, and the receiver clock is estimated as white noise. To avoid
gross errors, and retain the IFCB’s original characteristics, the satellite IFCB is estimated as
a random walk process and the receiver IFCB is estimated as white noise. In the forward
Kalman Filter of PPP processing, the processing strategy is basically the same as that of
mixed OSB estimation. For more details for PPP processing strategies, please refer to [5,38].

Table 1. Data processing strategy for undifferenced mixed OSB estimation.

Items

Strategies

Basic frequency pair
Estimated frequency
Elevation cutoff
Weighting
Filter type
Satellite orbit and clock offsets
Receiver coordinate
Satellite IFCB
Reference IFCB
Receiver clock offsets

Tropospheric delay

Ionospheric delay
Satellite and receiver antenna
Phase windup effect
Relativistic effect
Earth rotation
Tide effect
Ambiguity
DCB

GPS L1/12, BDS-3 B11/B3I, Galileo E1/E5a
GPS L5, BDS-3 B1C/B2a, Galileo E5b/E5/E6
7 degrees
Elevation weight [sin(elevation)]
Bidirectional Kalman filter (forward + backward)
Fixed to WHU MGEX final precise products
Fixed to IGS SINEX-file coordinates
Estimated as random walk (10* m2/s) [5]
Zero-mean condition
Estimated as white noise
Dry part: modified Hopfield model
Wet part: estimated as random walk (1072 m2/s)
Eliminated first order by IF observations
IGS MGEX values (igs14.atx)
Corrected [39]
Corrected [40]
Corrected [40]
Solid earth, pole, and ocean tide [40]
Estimated as float
Parameter recombination
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Figure 1. Distribution of the selected GNSS tracking stations for satellite mixed OSB estimation.

4. Results

This section presents the result of the OSB obtained from the ED GFIF model and the
new undifferenced model coupled with satellite clock offsets. First, the mixed OSB service
system framework is introduced based on the above theoretical analysis. Then, two OSB
solving methods are compared in terms of their characteristics and MFPPP performances.

4.1. Pseudorange and Phase Time-Variant Mixed OSB Service System

We established the multi-GNSS pseudorange and phase time-variant mixed OSB ser-
vice system based on the above theoretical discussions. Figure 2 illustrates the flowchart of
the mixed OSB service system. First, the data download module automatically downloads
GNSS observations, precise orbits, and clock offsets from IGS MGEX and iGMAS. The IGS
MGEX observation values and the precise orbit clock products of the WHU IGS and iGMAS
analysis center are downloaded to generate the mixed OSB in this manuscript. If the precise
orbit and clock offsets are missing, the ED GFIF methods are used as a backup algorithm
for obtaining the phase-only time-variant IFCB. The phase-only time-variant IFCB can be
transformed into OSB type. Typically, MFPPP requires both phase-only time-variant IFCB
and DCB corrections [24,41]. We synthesize the additional DCB products and phase-only
time-variant OSB into the mixed OSB on the server side, which can simultaneously correct
both pseudorange and phase observations. This way, it can reduce the complexity of client
algorithms. If the precise orbit and clock offsets are not missing, the new undifferenced
IFCB model coupled with satellite clock offsets methods is used to generate the mixed
IFCB. Furthermore, this IFCB can be transformed into OSB. The client only needs to correct
this bias to achieve MFPPP. Note that, unless otherwise specified, the mixed OSB in the
following text refers to the pseudorange and phase time-variant mixed OSB.

..............................................................
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Figure 2. Multi-GNSS pseudorange and phase time-variant mixed OSB service system.
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4.2. Characteristics of the Mixed OSB

The mixed OSB obtained from Figure 2 contains pseudorange and phase time-variant
OSB. The zero-mean constraint of satellite mixed OSB obtained from the two schemes
may not be consistent, which introduces systematic errors in comparing the results. In
order to better illustrate the satellite mixed OSB situation for two schemes, it is necessary
to convert all the mixed OSB to the same reference datum. To simplify the description,
Scheme 1 and Scheme 2 represent the mixed OSB obtained from the ED GFIF model and
undifferenced model, respectively.

To analyze the characteristics at each frequency, Figures 3-5 show the time series of
the mixed OSB for GPS L5, BDS-3 B1C, B2a, and Galileo E5b, E5, and E6 signals on DOY
011 in 2021. The time resolution is 30 s. Figure 6 shows the corresponding mixed OSB
amplitudes, in which x-axes depict the PRN of each satellite (for clarity and simplicity,
specific numbers are not labeled). It is not difficult to find that the OSB for GPS BLOCK-
IIF and BDS-3 signals have obvious amplitudes, while the GPS BLOCK-IIA, BLOCK-IIR,
and Galileo OSB amplitudes are relatively small. The amplitude of GPS BLOCK-IIF L5
OSB is in the decimeter range, while the amplitude of BDS-2 B2I and BDS-3 B1C and
B2a OSB is in the centimeter range. The OSB for Galileo E5b, Galileo E5, and Galileo
E6 is around 1~2 cm. The OSB for BDS-3 B1C and BDS-3 B2a is around 1~3 cm. We
all know that the accuracy of phase observation values is about 0.3 cm, so the IFCB
correction should be considered in PPP. By comparing the OSB of Scheme 1 and Scheme
2, it can be seen that the trend of their changes is basically the same. The results further
proved that the new undifferenced method is reasonable. But, undeniably, there are some
differences in some satellites between the two schemes, especially G18, G23, C44, C45,
and C46. There are four reasons for this phenomenon: (1) Scheme 1 assumes that the
phase time-variant OSB of the same satellite at different stations has good consistency
and the receiver phase time-variant OSB can be combined into satellite phase time-variant
OSB. As for Scheme 2, the zero-mean condition for all satellites is introduced to separate
the receiver and satellite OSB, which avoids the negative of the receiver on satellite OSB
estimation. (2) Due to the use of ZMC in Scheme 2, all OSBs obtained from Scheme 2 will
absorb the datum for a satellite constellation, while Scheme 1 will not. In other words, the
OSBs obtained from Scheme 2 are similar to estimating satellite clock offsets, which will
absorb the OSB for the reference satellite. Therefore, there are differences between the two
schemes. (3) The number of BDS-3 C44/C45/C46 observations is relatively small, which
affects the estimation accuracy [5]. (4) From a theoretical analysis of the formula, some
parameters of the undifferenced model have certain correlations. The undifferenced model
requires satellite orbit, satellite clock offsets, PCO, and PCV to achieve the estimation of
OSB. Inevitably, the accuracy of these products will affect the estimation of undifferenced
OSB. Therefore, the results with the new method suffer from irrational systematic errors.
However, the undifferenced OSB model has better coupling with orbit and clock errors.
The corresponding self-consistency between the satellite products is stronger, which will
be beneficial for PPP.

Those systematic errors introduced by precise products can be eliminated through the
ED method. Therefore, the ED method can reflect the noise level. To further compare the
advantages and disadvantages of the two schemes, Figures 7-9 depict the corresponding
mixed ED OSB for GPS L5, BDS-3 B1C, B2a, and Galileo E5b, E5, and E6 signals. It is not
hard to observe that the ED OSB of Scheme 2 is better than that of Scheme 1 in terms of
stability and accuracy. The noise of Scheme 1 is significantly higher than that of Scheme 2.
To more objectively illustrate the performance of Schemes 1 and 2, Table 2 illustrates the
statistical results and improvement of Scheme 2 in January 2021. The STD improvement of
the undifferenced OSB is 7.5, 68.4, 38.6, 13.3, 60.9, and 22.2%, and the RMS can be improved
by 9.4, 66.1, 34.8, 11.8, 56.5, and 20.7% with respect to GPS L5, BDS-3 B1C, B2a, and Galileo
E5b, E5, and E6 signals. Moreover, the STD improvement of the ED OSB is 60.0, 80.0, 87.5,
75.0, 50.0, and 75.0%, and the RMS can be improved by 60.0, 83.3, 88.9, 75.0, 66.7, and
80.0%C. There are significant differences in improvement rates among different satellite
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systems or frequencies. There are two main reasons: (1) the undifferenced mixed OSB for
different satellite systems are frequencies that have different scales, and (2) the number of
observations for different signals is different, so there are differences in the improvement.
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Figure 3. GPS L5 mixed OSB on DOY 011, 2021.
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Figure 4. The BDS-3 B1C and B2a mixed OSB on DOY 011, 2021.
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Figure 5. The Galileo E5b, E5, and E6 mixed OSB on DOY 011, 2021.

Overall, these discoveries illustrate that the stability and accuracy of the new undiffer-
enced OSB estimation algorithm compared to the ED IFCB algorithm.

18



Remote Sens. 2024, 16, 4433

” e
[ E31 g g
. =1
[ E26 | » &
i E25 f
3 E24 |
. 2 =
Lo i
[~ o E18 | ©
¥ F -
L o) e
L @ @ E13fQ @
A = e
I © T ®
- EO09 [
L @ © Eos | ©
i EO7 [
EO05 [
EO04 [
EO03 [
EO02 [
_ _ EO1 [ |
(o] < N (2] a9} N

G32/[
G30[
G27}
G26/
G25[
G24 |
G23[
G18[
G14}
G10[
G09[
Go8 |
G06 [
Go4
GO3}
Go1[

GPS L5

BDS-3 B2a

N
(=]

[plpigigizizigiy
=NNNNNN
wo=NwhO

Galileo E5

1

AN [s¢) < o ©
—

™

E36
E33
E31
E30
E27
E26
E25
E24
E21
E19
E18
E15
E14
E13

E11
E09

EQ7
EO5

EO03
E02
EO1

[wo] wuB__QEd. [wo] qu__QEe. [wo] wv:u__aEd.

C46 |

C45 |
C4a |
C43 [
C42 [
ca1 [
C40

C39 [
C38 |
C37 |
C36 |
C35 |
C34 |
C33 [
C32 [
€30

C29 [
C28 |
C27 |

E36
E33
E31
E30
E27
E26
E25
E24
E21
E19
E18
E15
E14
E13
E12
E11
E09
EO08
EQ7
EO05
E04
EO03
E02
EO1

[wo] spnyjdwy  [wo] %3__0_,_2 [wo] %3__0_&4.
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DOY 011, 2021.

Notably, it can be found that there is a systematic periodic bias in the OSB obtained
from Scheme 1 at BDS B2a and Galileo E6 signals from Figures 4 and 5. Some of the literature
suggests that this systematic periodic bias is related to the number of available observations
at the GNSS tracking station. Due to the small number of MGEX stations capable of tracking
BDS-3 B2a and Galileo E6 signals, the accuracy and reliability of the estimated OSB are
poor [24]. The OSB estimation is affected by the receiver antenna environment and receiver
and antenna quality, which results in periodic errors [1]. Unfortunately, these explanations
cannot explain this systematic error at the BDS B2a and Galileo E6 signals. However, it
can be found that the mixed OSB value obtained from Scheme 2 does not have significant
periodic bias. By comparing the two algorithms, it can be seen that the epoch-differenced
algorithm is based on the assumption that the IFCB of the same satellite at different stations
has good consistency and the receiver phase time-variant OSB can be combined into satellite
phase time-variant OSB. However, it is necessary to separate the satellite and receiver phase
time-variant OSB in the new algorithm. To confirm that this small periodic bias is caused
by some receiver phase time-variant OSB, Figure 10 shows the receiver OSB for all receiver
types in the observation network. It can be seen that the JAVAD TRE-3 receiver OSB
for BDS-3 B2a and Galileo E6 exhibits significant periodic variations; the OSB of other
receivers is relatively stable and does not have significant deviations. Figure 11 further
depicts the receiver OSB for multiple stations with the JAVAD TRE-3 receiver. This is just
more evidence for the theory that JAVAD TRE-3 receiver hardware delay exhibits periodic
variations at the BDS-3 B2a and Galileo E6 signals. Scheme 1 ignores the receiver phase
time-variant OSB, which negatively impacts the estimation of the satellite OSB. On the
contrary, the new undifferenced method uses zero-mean constraints to separate the satellite
and receiver OSB, which effectively solves this problem.
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Figure 9. Daily satellite pseudorange and phase time-variant mixed OSB for Galileo E5b, E5, and E6
signals on DOY 011, 2021.
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Table 2. Statistical results and improvement of epoch-differenced and undifferenced OSB for GPS L5,
BDS-3 B1C, B2a, and Galileo E5b, E5, and E6 signals in January 2021.

GPS BDS-3 Galileo
Type (Unit: mm)
L5 B1C B2a E5b E5 E6
STD Scheme 1 18.6 5.7 8.8 1.5 2.3 2.7
UD OSB Scheme 2 17.2 1.8 5.4 1.3 0.9 2.1
Improvement 7.5% 68.4% 38.6% 13.3% 60.9% 22.2%
RMS Scheme 1 20.3 5.9 9.2 1.7 2.3 2.9
UD OSB Scheme 2 18.4 2.0 6.0 1.5 1.0 2.3
Improvement 9.4% 66.1% 34.8% 11.8% 56.5% 20.7%
STD Scheme 1 0.5 0.5 0.8 0.4 0.2 0.4
ED OSB Scheme 2 0.2 0.1 0.1 0.1 0.1 0.1
Improvement 60.0% 80.0% 87.5% 75.0% 50.0% 75.0%
RMS Scheme 1 0.5 0.6 0.9 0.4 0.3 0.5
ED OSB Scheme 2 0.2 0.1 0.1 0.1 0.1 0.1
Improvement 60.0% 83.3% 88.9% 75.0% 66.7% 80.0%
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Figure 10. Daily receiver pseudorange and phase time-variant mixed OSB for GPS L5, BDS-3 B1C
and B2a, and Galileo E5b, E5, and E6 signals on DOY 011, 2021.
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Figure 11. Daily JAVAD TRE-3 receiver pseudorange and phase time-variant mixed OSB at BDS-3
B2a and Galileo E6 signals on DOY 011, 2021.
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4.3. The Advantages of the Mixed OSB in MFPPP

To evaluate the benefits of the mixed OSB on MFPPP, we carried out GPSL1 + L2 +
L5, BDS-3 B1I + B3I + B2a, BDS-3 B1I + B3I + B1C + B2a, and Galileo E1 + E5a + E5b +
E5 + E6 multi-frequency PPP. First, the PPP results and phase residuals were given. Then,
the statistical PPP results of all GNSS stations were statistically analyzed in positioning
accuracy and initial convergence time.

The observation data for 100 selected stations in a month are used to evaluate GPS,
BDS-3, and Galileo MFPPP performance. It is worth noting that the PPP solutions without
OSB are the result of only correcting the DCB. Figure 12 depicts the positioning error of
the GPS, BDS-3, and Galileo MFPPP. It can be clearly found that GPS, BDS-3, and Galileo
MEFPPP can be improved in positioning accuracy and convergence time by correcting the
satellite pseudorange and phase time-variant mixed OSB. Furthermore, the OSB estimated
by Scheme 2 is superior to that of Scheme 1 in stability, accuracy, and noise level, and its
PPP performance is relatively more stable and better than that of Scheme 1 in positioning
accuracy and initial convergence.
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Figure 12. Positioning error of the GPS L1 + L2 + L5, BDS-3 B1I + B3I + B2a, BDS-3 B1I + B3I + B1C +
B2a, and Galileo E1 + E5a + E5b + E5 + E6 multi-frequency PPP models on DOY 011, 2021.
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Figure 13 illustrates the GPS, BDS-3, and Galileo MFPPP phase residuals, where
different colors identify different satellites. The carrier-phase residuals are analyzed for
the 24 h result. Significant systematic errors exist in the GPS, BDS-3, and Galileo MFPPP
results without OSB correction. The RMS values of the carrier-phase residuals are obviously
reduced with OSB corrections.
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Figure 13. Phase residuals of the GPS L1 + L2 + L5, BDS-3 B1I + B3I + B2a, BDS-3 B1I + B3I + B1C +
B2a, and Galileo E1 + E5a + E5b + E5 + E6 multi-frequency PPP on DOY 011, 2021.
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Figure 14 depicts the boxplot of the convergence time for GPS L1 + L2 + L5, BDS-
3 B1I + B3I + B2a, BDS-3 B1I + B3I + B1C + B2a, and Galileo E1 + E5a + E5b + E5 +
E6 multi-frequency PPP. Moreover, Figure 15 indicates the corresponding boxplot of the
positioning accuracy in the north, east, and up components. The corresponding median
and mean values are also depicted in the figures. The convergence epoch is defined as the
3D positioning errors kept within 10 cm from the current epoch to the next 20 epochs. The
multi-frequency PPP positioning performance in the convergence time and positioning
accuracy is significantly improved with the mixed OSB correction. Specifically, the PPP
performance of Scheme 2 is superior to Scheme 1 due to the low noise and high accuracy of
OSB obtained from Scheme 2. For instance, the GPS L1 + L2 + L5 PPP mean convergence
time is reduced from 29.40 min to 24.20 min and then to 20.30 min, the BDS-3 B1I + B3I
+ B2a PPP mean convergence time is reduced from 34.7 min to 30.50 min and then to
27.30 min, the BDS-3 B1I + B3I + B1C + B2a PPP mean convergence time is reduced from
29.5 min to 25.50 min and then to 21.40 min, and the Galileo E1 + E5a + E5b + E5 + E6
PPP mean convergence time is reduced from 20.90 min to 17.50 min and then to 12.30 min,
respectively. The GPS L1 + L2 + L5 PPP positioning accuracy is improved from (0.78, 0.95,
1.53) cm to (0.61, 0.75, 1.30) cm and then to (0.54, 0.60, 1.11) cm in the north, east, and
up components. The BDS-3 B1I + B3I + B2a triple-frequency PPP positioning accuracy is
improved from (0.83, 1.03, 1.93) cm to (0.75, 0.88, 1.55) cm and then to (0.61, 0.70, 1.31) cm
in the north, east, and up components. The BDS-3 B1I + B3I + B1C + B2a PPP positioning
accuracy is improved from (0.68 0.94, 1.33) cm to (0.51, 0.70, 1.20) cm and then to (0.44, 0.60,
1.10) cm in the north, east, and up components. The Galileo E1 + E5a + E5b + E5 + E6 PPP
positioning accuracy is improved from (0.53 0.93, 1.21) cm to (0.43, 0.68, 1.11) cm and then
to (0.38, 0.60, 1.01) cm in the north, east, and up components.

In summary, the new undifferenced mixed OSB model coupled with satellite clock
offsets avoids the negative impact of the receiver time-variant biases on the satellite OSB
estimation. At the same time, the noise of the mixed OSB obtained from the new method is
lower, and the new method combines the pseudorange and phase time-varying OSB, which
greatly simplifies the client bias correction and can be better applied to multi-frequency

PPP applications.
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Figure 14. Boxplot of the convergence time for GPS L1 + L2 + L5, BDS-3 B1I + B3I + B2a, BDS-3 B1I +
B3I + B1C + B2a, and Galileo E1 + E5a + E5b + E5 + E6 multi-frequency PPP models.
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Figure 15. Boxplot of the positioning accuracy for GPS L1 + L2 + L5, BDS-3 B1I + B3I + B2a, BDS-3
B1I + B3I + B1C + B2a, and Galileo E1 + E5a + E5b + E5 + E6 multi-frequency PPP models.

5. Conclusions

The inconsistency of the precise satellite clock estimated by different frequencies is
defined as the IFCB. Unfortunately, the traditional phase time-variant OSB model has high
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noise and low accuracy and is affected by the receiver time-variant biases. The multi-
frequency PPP needs to correct both pseudorange OSB and phase time-variant mixed
OSB, which makes the client algorithms more complex. For traditional methods, two bias
corrections are required to achieve multi-frequency PPP, which makes the client algorithms
more complex. To overcome those flaws and simplify the bias correction process of multi-
frequency PPP, the definition of pseudorange and carrier-phase time-variant mixed OSB
and a new undifferenced model coupled with satellite clock offsets are presented.

The new undifferenced mixed OSB model coupled with satellite clock offsets avoids
the negative impact of the receiver time-variant biases on the satellite mixed OSB estima-
tion. For instance, the JAVAD TRE-3 receiver OSB for BDS-3 B2a and Galileo E6 exhibits
significant periodic variations, which lead to periodic bias in satellite mixed OSB for the
ED GFIF model. The STD improvement of the undifferenced OSB is 7.5-60.9%, and the
RMS can be improved by 9.4-66.1%. Similarly, the STD improvement of the ED OSB can be
improved by 50.0-87.5%, and the RMS can be improved by 60.0-88.9%. Hence, the new
undifferenced mixed OSB with characteristics of low noise level and high accuracy is more
suitable for MFPPP.

With the mixed OSB correction, the GPS and BDS-3 MFPPP performance is obviously
improved. With the undifferenced mixed OSB correction, the mean convergence time
of GPS, BDS-3, and Galileo PPP can be reduced by several minutes, and the positioning
accuracy can be improved by 11.5-20.0% for GPS L1 + L2 + L5 from (0.61, 0.75, 1.30) cm to
(0.54, 0.60, 1.11) cm, 15.5-20.5% for BDS-3 B1I + B3I + B2a from (0.75, 0.88, 1.55) cm to (0.61,
0.70, 1.31) cm, 8.3-14.2% for BDS-3 B1I + B3I + B1C + B2a from (0.51, 0.70, 1.20) cm to (0.44,
0.60, 1.10) cm, and 9.0-11.7% for Galileo E1 + E5a + E5b + E5 + E6 from (0.43, 0.68, 1.11) cm
to (0.38, 0.60, 1.01) cm compared with the traditional IFCB, respectively.

The GNSS pseudorange and phase time-variant mixed OSB concept and the new
undifferenced model coupled with satellite clock offsets demonstrate that it is reasonable
and beneficial for the GNSS field.
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Abstract: Multipath is a source of error that limits the Global Navigation Satellite System (GNSS)
positioning precision in short baselines. The tightly combined model between systems increases
the number of observations and enhances the strength of the mathematical model owing to the
continuous improvement in GNSS. Multipath mitigation of the multi-GNSS tightly combined model
can improve the positioning precision in complex environments. Interoperability of the multipath
hemispherical map (MHM) models of different systems can enhance the performance of the MHM
model due to the small multipath differences in single overlapping frequencies. The adoption of
advanced sidereal filtering (ASF) to model the multipath for each satellite brings computational
challenges owing to the characteristics of the multi-constellation heterogeneity of different systems;
the balance efficiency and precision become the key issues affecting the performance of the MHM
model owing to the sparse characteristics of the satellite distribution. Therefore, we propose a
modified MHM method to mitigate the multipath for single-frequency multi-GNSS tightly combined
positioning. The method divides the hemispherical map into 36 x 9 grids at 10° x 10° resolution
and then searches with the elevation angle and azimuth angle as independent variables to obtain the
multipath value of the nearest point. We used the k-d tree to improve the search efficiency without
affecting precision. Experiments show that the proposed method improves the mean precision over
ASF by 10.20%, 10.77%, and 9.29% for GPS, BDS, and Galileo satellite single-difference residuals,
respectively. The precision improvements of the modified MHM in the E, N, and U directions were
32.82%, 40.65%, and 31.97%, respectively. The modified MHM exhibits greater performance and
behaves more consistently.

Keywords: multi-GNSS; tightly combined model; multipath mitigation; MHM; ASF

1. Introduction

The Global Navigation Satellite System (GNSS) double-difference technique can
quickly provide precise position information and achieve mm or even higher precision
on a global level after the carrier phase ambiguities are fixed [1,2]. Therefore, the double-
difference technique is widely applied in fields such as deformation monitoring [3-6]. Most
of the errors can be mitigated in a short baseline using the double-difference technique,
including the satellite clock error, receiver clock error, tropospheric delay, and ionospheric
delay [7-9]. However, multipaths that depend on the station observation environment
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cannot be eliminated using existing methods, including differential techniques and param-
eterization [10]. Therefore, several researchers have proposed site selection, and hardware-
and software-based methods for mitigating multipaths.

Firstly, site selection reduces the impact of multipath effects, mainly by choosing open
environments, but it cannot avoid the limitations of objective conditions [11]. Secondly,
hardware-based multipath suppression techniques are mainly performed by improving
the “narrow correlator” [12] of the receiver or using a multipath suppression antenna [13];
however, these methods cannot eliminate multipaths and the instruments are costly [14].
Finally, for software-based methods that exploit the spatio-temporal repeatability of multi-
path effects in static environments, sidereal filtering (SF) and a multipath hemispherical
map (MHM) can be implemented to generate multipath mitigation models for real-time
GNSS data processing [15].

Genrich and Bock (2006) proposed SF to mitigate a multipath based on the constant en-
vironment of the station and the repeatability of GPS satellites [13]. The wavelet decomposi-
tion technique was applied to extract a carrier-phase multipath from GPS double-difference
observation residuals. Advanced sidereal filtering (ASF) uses each satellite repeat period
instead of the mean repeat period to effectively mitigate multipaths [16]. The orbital repeat
period shift time method was used to calculate the repeat period of satellites, which has
the advantages of simple calculation and better orbital real-time performance [17]. Zhong
et al. (2010) and Ye et al. (2015) used the “zero mean” assumption and the ASF method
to effectively mitigate a multipath [9,18]. However, calculating the repeat period for each
satellite undoubtedly increases the complexity of multipath mitigation in the case of large
differences in repeat periods. In addition, the operational period of each satellite changes
slowly over time, reducing the real-time effect of mitigating multipaths [19].

Therefore, lookup table methods, including MPS (multipath stacking) and MHM,
effectively mitigate the multipath by calculating the mean of the multipath in a higher-
resolution discrete grid based on the fact that the multipath depends only on the orbital
positions in the sky when the environment of the main multipath is kept constant [15,20].
However, an excessively high resolution causes insufficient multipath mitigation in part of
the grid, and an excessively low resolution causes a high-frequency multipath in the grid
to be difficult to mitigate because of the sparse distribution characteristics of satellite orbits.
The multipath hemispherical model based on trend surface analysis (T-MHM) fits the
multipath in the grid through a linear regression model, which was effectively mitigated
for both high-frequency and low-frequency multipaths [21,22], but there was a pathological
problem with the regression equations solving in some of the grids [11]. Tian et al. (2023)
used the least squares method to mitigate the multipath and improve the positioning
precision by utilizing the spatial autocorrelation characteristic of the multipath [4]. The
resolution of the grid limits the mitigation effect of the multipath with different frequencies
using MHM and its extensions [23], or it is difficult to fit a complex nonlinear multipath
model using a certain established function model; the multipath also consumes a large
amount of computer memory during the modeling process, which leads to insufficient
processing efficiency. Ren et al. (2023) proposed an MHM model with geographic cut-
off elevation constraints that mask unsatisfactory signals while reducing low-frequency
multipaths, which helps GNSS deformation monitoring in complex environments [24]. Pan
et al. (2024) used multipath modeling as a regression task to fit multipaths in the spatial
domain using a machine learning approach, demonstrating that machine learning-based
multipath mitigation methods are effective and easy to use [25].

With the rapid development of multi-frequency multi-constellation GNSS, more than
130 GNSS satellites are available. The latest generation of GNSS satellites has three or
more frequencies. It is expected that receivers developed by manufacturers will primarily
support two signal frequencies: 1575.42 MHz and 1176.45 MHz since the major systems
have overlapping frequency signals (except GLONASS), increasing the compatibility of
GNSS positioning. The overlapping frequencies between BDS-3/GPS/Galileo increase the
probability of a tight combination of the three systems [26]. The tightly combined model
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adds additional observations and improves the strength of the model by utilizing a single-
reference satellite to process observations from all the system satellites involved [27,28]. In
addition, the increasing number and frequency of satellites not only increases the number of
GNSS observations but also reduces the effect of the multipath on positioning precision [14].
Therefore, in dense vegetation and tall building environments where observation satellites
are obscured, the application of the tightly combined model [29] and multipath mitigation
have important significance. Geng et al. (2024) established an interoperable MHM mitigat-
ing multipath using the overlap frequency signals of GPS, Galileo, and BDS-3, showing
that the interoperable GPS/Galileo/BDs-3 MHM is able to improve the spatial resolution,
modeling efficiency, and correction performance [30]. The carrier phase residuals based
on GPS, BDS-3, and Galileo overlapping frequency show a strong correlation at the same
spatial position. Lu et al. (2023) proposed that the multipath joint modeling and correction
method can improve the positioning performance more than the independent modeling
and correction [31].

Taking into account the above multiple factors, we extracted the multipath from the
single-frequency multi-system tightly combined double-difference observation equations
and established an MHM model with the station as the center and elevation and azimuth as
the axes. We then divided the hemispherical map into 36 x 9 grids at 10° x 10° resolution.
The elevation and azimuth angles of the satellites were input into the model and the
K-nearest neighbor (KNN) algorithm was utilized to search for the nearest points and
obtain the values of the corresponding multipaths. Previous KNN search algorithms have
low search efficiency, and in this study, we used the k-d tree to improve search efficiency.
The k-d tree was proposed by Jon Louis Bentley in 1975 [32]. It is a tree data structure
(binary tree) used in multidimensional space to solve the problem of data organization and
search in high-dimensional space, which can significantly speed up the search operations in
multidimensional space, especially when the data volume is large, such as nearest neighbor
search, range search, and point queries.

The rest of this paper is organized as follows. Section 2 describes the principles of
the tightly combined model and the orbital repeat period of multi-GNSS satellites. The
proposed method for multipath mitigation is described in Section 3. Section 4 verifies the
performance of the proposed method through experiments. Finally, Section 5 summarizes
the study.

2. Principle
2.1. GPS/Galileo/BDS Tightly Combined Model and Multipath Extraction

The selection method of the reference satellite is used as the basic condition to dis-
tinguish between loosely and tightly combined models in the process of establishing
multi-GNSS double-difference observation equations. Selecting reference satellites sep-
arately in each system is a loosely combined model, and selecting a common reference
satellite in all systems is a tightly combined model.

The difference between the reference satellites and the other satellites in the system
eliminates most of the systematic errors, but each double difference in the system con-
sumes the observations of the three reference satellites in the GPS/Galileo/BDS-3 loosely
combined model.

Early experiments on GPS/Galileo have demonstrated that there is differential inter-
system bias (DISB) when different types of receivers observe L1/E2 and L5/Eb5a signals
at both ends of the baseline [28], and the existence of DISB is mainly caused by hard-
ware delays associated with different receivers and satellite signals of different systems.
In this regard, the DISB must be estimated and corrected for GPS/Galileo/BDS tightly
combined observations using different receiver types. The GPS/Galileo/BDS tightly com-
bined double-difference model that considers DISB can be obtained by choosing a GPS
satellite as a reference satellite between the GPS/Galileo/BDS systems. Table 1 lists the
GPS/Galileo/BDS system signal frequencies and wavelengths.
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Table 1. Frequency and wavelength of GPS/Galileo/BDS signals.

GNSS Systems Frequency Band Frequency (MHz) Wavelength (cm)
GPS/Galileo/BDS-3 L1/E1/B1C 1575.42 19.03
GPS L2 1227.60 24.42
GPS/Galileo/BDS-3 L5/E5a/B2a 1176.45 25.48
Galileo/BDS-3 E5b/B2b 1207.14 24.83

When the receiver type is different, the DISB of the GPS/Galileo/BDS-3 tightly com-
bined mode is more stable and can be corrected in advance using estimation. When using
overlapping frequency data from GPS/Galileo/BDS-3 of the same type of receiver for the
tightly combined mode, the DISB is close to 0 [26]. Therefore, the GPS/Galileo/BDS-3
tightly combined double-difference model without DISB can be obtained by selecting a
GPS satellite as the common reference satellite in GPS/Galileo/BDS-3:

T
‘P;ilc,z‘sc = szzcsc + /\liNkfiSG +eg

P e e )
P =+ ANGE gt

R = Py e
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where ¢ is the carrier phase observation, P is the pseudo-range observation, p is the
geometric distance between the satellite and GNSS receiver, A is the frequency wavelength,
N is ambiguity, e and ¢ are the observation noise of the pseudo-range and carrier phase,
1 indicates that one GPS satellite is used as a common reference satellite, sg, g5, and bc
are GPS, Galileo, and BDS non-reference satellites. The GNSS receivers k and [ receive the
pseudo-range and carrier phase observations of the s satellites of the GPS, g satellites of the
Galileo, and b satellites of the BDS, at the overlap frequency i(i = 1,2,..., f).

The double-difference technique eliminates most of the systematic errors, includ-
ing orbital error, receiver clock error, and satellite clock error, and the tropospheric and
ionospheric delays are ignored in short baseline positioning. Therefore, the carrier phase
double-difference residuals are mainly multipath and noise, and the double-difference resid-
uals for each satellite need to be extracted from the observation equations to mitigate the
multipath. The double-difference equation is linearized to obtain the following equation:

V=Ax+By—L (2)

where x is the unknown baseline vector; y is the integer ambiguity; A and B are the design
matrices of the unknown baseline vector and integer ambiguity; L is the carrier phase
constant term; V is the double-difference residuals.

2.2. Orbital Repeat Period of Multi-GNSS Satellites

The motion of the satellite relative to the station is repeatability; therefore, the repeata-
bility of the multipath effect depends on the orbital motion of the satellite. The repeat
period of the multipath is essentially the same as that of the satellite relative to the station.
Therefore, SF and its extension methods rely on the time delay of the satellite.

We analyze the orbital repeat period of multi-GNSS by calculating the amount of
time delay for different satellite orbital repeats from the broadcast ephemeris in 2022. The
angular velocity n of the satellite can be obtained at each ephemeris broadcasting moment
based on the orbital radius and angular velocity correction provided in the ephemeris:

n:\/ﬁ/a%—i—nc 3)
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where a is the orbital half-length axis of the different satellites, yt is the gravitational constant
of Earth for the different satellites, and 7. is the mean angular velocity correction. The
orbital repeat period of different system satellites was calculated as following:

t=RxT,—0OXx2m-n (4)

where T, is the rotational period of the Earth, which is calculated to be 86,164.0996 s through
the mean solar time, R and O are integers prime to each other, R is the rotation cycle of
the Earth, and O is the number of orbits accomplished in one orbital repeat period of the
satellite. R and O for different constellations of satellites are listed in Table 2.

Table 2. Values of R and O for different constellations of satellites. R means the rotation cycle of the
Earth; O means the number of orbits accomplished in one orbital repeat period of the satellite.

Satellites R (Cycle) O (Cycle)
GPS 1 2
BDS GEO/IGSO 1 1
BDS MEO 7 13
Galileo 10 7

In a stable environment, the multipath is only related to the geometric relationship
between the receiver, the reflection source, and the satellite position. Therefore, it is
necessary to consider the satellite’s operating period and calculate the satellite’s sub-
satellite point. Due to the heterogeneous characteristics of multi-GNSS constellations, the
operating period of each type of satellite is considered separately. Therefore, it is necessary
to calculate the time delay of the repeat period of each satellite’s sub-satellite point. The
satellite’s time delay is calculated based on the orbital parameters given by the broadcast
ephemeris, and the single-difference residuals are aligned according to the time delay of
each satellite to implement the ASF method to reduce the subsequent multipath impact.

Figure 1 shows the time delays of orbital repeat periods of the GPS, BDS, and Galileo
satellites for 2022. GPS satellites G10, G13, G14, and G27 change within 4 s in a year. The
remaining satellites show variations of less than 15 s in a year and no more than 2 sin a
month. This indicates that GPS satellites have precise orbit control. The time delays of
the geostationary orbit (GEO) satellites of the BDS were in the range of 215-260 s, with a
maximum of 12 s of daily variation. The medium earth orbit (MEO) satellite has a time
delay of approximately 1700 s and operates more stably. The time delay of the inclined
geosynchronous orbit (IGSO) satellite was in the range of 210-260 s, with a variation of
no more than 20 s a month. The Galileo satellite time delays are above 2400 s and do not
change for more than 30 s in a year. The time delays exhibit significant variations with
satellite operation time, and ASF modeling of the multipath requires the calculation of
time delays for each satellite. In addition, there are significant orbital maneuvers for GPS
satellites and IGSO satellites of BDS, with maneuver adjustment periods of approximately
12 and 6 months, respectively. The variable time delays and satellite maneuvers will limit
the application of ASF in real time.

The time delays of most of the satellites in the figure exhibit short-period perturbations
and long-period linear properties. The time delays of satellites of different systems vary
considerably, and those of satellites of the same system are still not the same. Some satellites
are affected by satellite maneuvers. It is difficult to achieve multi-GNSS multipaths that are
mitigated using repeatability modeling methods in the coordinate domain. This limits the
advantages of ASF for multipath mitigation.
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Figure 1. Time delays of orbital repeat period of GPS, BDS, and Galileo satellites in 2022.

3. Proposed Method

The established modified MHM model is based on the mechanism of spatial repeata-
bility of multipaths, while the temporal repeatability of multipaths is derived from spatial
repeatability. The modified MHM model was established with the station as the center
and elevation and azimuth angles as the coordinate axes. We divided the hemispheri-
cal map into 3 x 3, 6 x 6, and 60 x 60 grids according to 20° x 20°, 10° x 10°, and
1° x 1° resolutions in the range of elevation angles of 30°-90° and azimuth angles of
120°-180°, respectively. After experimentation, we found that the precision difference
between the three resolution grid models is very small (the improvements in the single-
difference residual multipath mitigation of DOY92 corresponding to 20° x 20°, 10° x 10°,
and 1° x 1° are 36.67%, 36.68%, and 36.68%, respectively), but the times to search for all
points for the 20° x 20°, 10° x 10°, and 1° x 1° resolution grids are 3:45:23, 0:15:35, and
1:23:15, respectively. This indicates that the grid resolution has no effect on the precision
of the multipath model, but affects the efficiency of the search, which is best using the
10° x 10° resolution. Therefore, we divided the hemispherical map into 36 x 9 grids at a
10° x 10° resolution, as shown in Figure 2. Satellite single-difference residuals were loaded
into this model based on their positions. In the subsequent multipath mitigation process,
the elevation and azimuth angles of the satellite were input into the model to search for
the nearest point. The searched multipath values were introduced into the observation
equation for multipath mitigation, realizing the purpose of real-time multipath mitigation.
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Figure 2. Hemispherical map with two typical grids.

Previously, the search method generally used the K-nearest neighbor (KNN) algo-
rithm [33], which was implemented by traversing all points. Calculating the distance of
query points from all points is very time consuming when the dataset is large. Therefore,
to improve the efficiency of KNN, we can consider using special data structures to store
data to reduce the number of distance calculations. In this study, a k-d tree was used to
increase the KNN search efficiency. The basic principle of the KNN is as follows:

D - {d1/d2/ o '/dc} KNNkl = {mll myp, -, My, - mkl} (5)

where D presents all ¢ data points; the nearest k; points of query point d in D are found by
KNN search. The composition of KNNj, must satisfy the following conditions.

1, dul < |

d,dj ©)

where ||d, dy,|| is the present distance between d and d; j € [1,¢] — KNN,.

The k-d tree iteratively splits the space with hyperplanes and constructs binary trees,
allowing the KNN to search for the logarithmic time complexity. At each level of the binary
tree, the data were divided into two groups based on the dimension with the highest
variance. A k-d tree must be constructed before performing a KNN search, as shown in
Figure 3. The first step is to construct the root node in a hyperrectangle that contains all data
points in space; the next step is to select a node on the coordinate axes, create a hyperplane
perpendicular to the coordinate axes through the node, and divide the hyperrectangle into
two subregions; the third step is to repeat the second step in the case of at least one data
point in the subregion; otherwise, stop the implementation.
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Figure 3. Construction process of the k-d tree.
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The process of multipath mitigation in multi-GNSS tightly combined positioning
based on the modified MHM model is shown in Figure 4.
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Figure 4. The processing flow of the modified MHM model.

Step 1: Determine the tightly combined model. After evaluating the size and stability
of the DISB estimated from the GPS/BDS/Galileo tight combination, the DISB of the same
type of receiver is close to zero, so we use the tightly combined multi-GNSS model.

Step 2: Multipath extraction. The double-difference observation equation is first
composed, then the fixed ambiguity rate is enhanced by a priori baseline vectors to obtain
the carrier phase double-difference residuals, and further the single-difference residuals
are obtained by the “zero-mean” assumption.

Step 3: Multipath modeling and mitigation. The above single-difference residuals are
formed into a 10° x 10° grid according to the elevation and azimuth angles, and a k-d tree
is built in each grid. The elevation and azimuth angles of the satellite on the subsequent
original data were used as query points by using the KNN search in the k-d tree to obtain
the retrieved multipath, which is brought into the double-difference observation equation
for real-time multipath mitigation. Finally, baseline precision was evaluated.

4. Experiment Analysis
4.1. Data Collection

In order to verify the multipath mitigation performance of the modified MHM method
for GPS/Galileo/BDS tightly combined positioning, the baseline length between the
two stations was set to be 12.92 m during data collection, and both the base station and the
rover station were erected on the roof of the School of Spatial Information and Geomatics
Engineering, Anhui University of Science and Technology, China. The observation environ-
ment is illustrated in Figure 5. The multipath error mainly comes from the wall and the
ground, the height of the base station antenna is about 2.3 m, and the height of the wall
around the rover station is about 1.5 m. The north side of the rover station is at ground level,
with the receiver at a height of about 17 m above ground level, and the south side is on the
roof of the building, with a distance of about 13 m from the opposite wall. This multipath er-
ror source can meet the requirements we deal with in the experiment. We use two receivers
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of the same type for orientation processing to eliminate the antenna phase-center variation,
and the DISB between the systems can be negligible in the short baseline. Ionospheric and
tropospheric errors can be eliminated using the double-difference observation equation,
and ambiguity is fixed using the LAMBDA algorithm [34]. The receivers we use can receive
the GPS triple-frequency, Galileo triple-frequency, and BDS five-frequency observations.
Data were collected from 23 March to 16 April 2022 (DOY82-DOY106) for a total of 25 days,
which covers the minimum time required for Galileo satellites with a repeat period of ten
days, with a data sampling rate of 1 s, a satellite cutoff elevation angle of 15°, and a PDOP
threshold set to 8.

Base station

4

Tl

Figure 5. Observation environment around the station.

4.2. Single-Difference Residuals Analysis

Before conducting formal experiments, it is necessary to distinguish between factors
due to poor satellite geometry and the multipath due to ground reflectors. Figure 6 shows
the position dilution of precision (PDOP), horizontal dilution of precision (HDOP), vertical
dilution of precision (VDOP), and the number of observable satellites for multi-GNSS. The
number of satellites is maintained between 20 and 30 in the entire period, which is more
observable than the single systems because of the tightly combined multi-GNSS single-
frequency observation. The PDOP, VDOP, and HDOP describe the strength of the satellite
geometric distribution on the positioning precision. To avoid poor satellite results in the
spatial geometric distribution, an empirical value of eight was set as the PDOP threshold
when the data were collected. As can be seen in Figure 6, both the PDOP and HDOP are
below 1.5, while the VDOP is below 1, indicating that the positioning measurements are
sufficiently accurate in both the horizontal and vertical directions. Therefore, it can be
considered that the main factor affecting positioning precision is the multipath.

As the elevation angle of the satellite decreases, the GNSS signal is interfered with
more ground reflectors during propagation; therefore, the multipath signal becomes more
complex. It is necessary to evaluate multipaths from different elevation angles and satel-
lite systems. The double-difference residuals are converted to single-difference residuals
based on the “zero-mean” assumption, and the elevation angle corresponding to the single-
difference residuals at each epoch is solved. The single-difference residuals are analyzed
instead of the multipath because the single-difference residuals are mainly composed of
the multipath and random noise, and the total sum of the random noise is 0. The ele-
vation angles were grouped from low to high at 5° intervals, and the root mean square
(RMS) of the single-difference residuals was calculated for each group. Figure 7 demon-
strates the effect of single-difference residuals with increasing elevation angle. The RMS
of the single-difference residuals of the three systems gradually decreased as the eleva-
tion angle increased, and eventually remained between 20 mm and 30 mm. Fluctuations
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were observed between 45° and 55° and between 85° and 90°.

The differences in the

single-difference residuals with the elevation angle among the three systems were small.
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Figure 6. PDOP, HDOP, VDOP, and the number of observable satellites for multi-GNSS.
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Figure 7. RMS of single-difference residuals for different elevation.

Figure 8a shows the single-difference residuals of the GPS satellite in DOY82-84,
and it can be seen that the trend of single-difference residuals of this satellite for three
consecutive days is highly correlated. The single-difference residuals of the previous day
after removing this time delay are highly correlated with the current single-difference
residuals because there is a time delay between the satellite single-difference residuals of
the previous day and the current day. Time delays can be calculated using the broadcast
ephemeris. Figure 8b shows the distribution of single-difference residuals of Galileo
satellites in DOY82, DOY83, and DOY93, which have inconsistent visibility and lower
correlation of their single-difference residuals in two adjacent days. Galileo satellites have
a more significant correlation between DOY82 and DOY92, with a correlation of 0.6436,
despite a time interval of 10 days, and a much longer time delay than GPS satellites.
Figure 8c,d show single difference residual results for the MEO and IGSO satellites of
the BDS, respectively. From the distribution of the single-difference residuals of DOY82,
DOY83, and DOY89, it can be concluded that there is no obvious similarity between the
single-difference residuals of DOY82 and DOY83, and there are differences in the visibility
of the satellites. However, the single-difference residuals of DOY82 and DOY89 present a
strong correlation, and it is verified that the orbital repeat period of the MEO satellites of
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the BDS is 7 days. The fluctuations of the single-difference residuals of IGSO satellites in
DOY82, DOY83, and DOY84 shows the strongest correlation in two consecutive days, and
their time delays are also closer to those of GPS, which show repeatability within a sidereal
day. However, the correlation of the single-difference residuals of DOY82 and DOY84 was
lower than that of the two adjacent days.
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Figure 8. Single-difference residuals and elevation of GPS MEO G12 (a), Galileo MEO E19 (b), BDS-3
MEO C38 (c¢) and IGSO C20 (d).

4.3. Multipath Mitigation by Modified MHM

To analyze the multipath mitigation performance of the modified MHM method in
multi-GNSS single frequency combined positioning, we first mitigated the multipath on
the single-difference residuals, and second compared the differences between single and
multiple systems in the coordinate series. Figure 9 shows the original single-difference
residuals for the G12 satellite and the multipath obtained by the modified MHM and the
residuals mitigated by the modified MHM. As shown in the figure and local figure, the
single residuals obtained by the modified MHM were consistent with the trend of the
original residuals. The noise at both ends of the mitigated residuals is relatively large,
which is consistent with the previous analysis. In the low elevation angle region, the
signal-to-noise ratio of the satellite is small, and the noise is larger.

Figure 10 shows the hemispherical maps of the original single difference residual and
that mitigated using the modified MHM method. GPS, Galileo, and BDS satellites have
severe multipath effects at elevation angles of 15-30°, and the single difference residual
varies significantly with the elevation angle within the black rectangle in Figure 10d. After
modified MHM mitigation of the multipath, as shown in Figure 10h, the color changes
from red-blue to yellow-green in the region of 15-30° elevation angle, and the multipath
was mitigated in the region above 30°.
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Figure 9. Original single-difference residuals for the G12 satellite and the multipath obtained by
modified MHM and the residuals mitigated by modified MHM.

@) (b) ©
GPS(original) Galileo(original) BDS(original)

S

Figure 10. Hemispherical maps of the original single difference residual (a-d) and mitigated by
using the modified MHM method (e-h) for GPS, Galileo, BDS, and GPS/Galileo/BDS combined
observations, respectively. (The black rectangles in (d,h) are used to mark the areas in the sky map
where multipath errors and improvements are evident).

We processed the GPS, BDS, Galileo, and GPS/BDS/Galileo combined observations
to distinguish between single- and multiple-system multipath mitigation performances.
Figure 11 shows the RMS of the original residuals and the residuals mitigated by the
modified MHM of DOY92 in the E/N/U directions. G, C, E, and G/C/E represent GPS,
BDS, Galileo, and GPS/BDS/Galileo, respectively. In the E direction, the RMS of the
original residuals of GPS/BDS/Galileo is significantly lower than that of a single system,
which is 1.79 mm; after multipath mitigation, the RMS of GPS/BDS/Galileo decreases by
0.41 mm, 0.36 mm, and 0.34 mm, respectively, compared to GPS, BDS, and Galileo. In the N
direction, the RMS of the original residuals of Galileo is lower than that of the single systems
and multiple systems, but the RMS of the residuals after multipath mitigation of BDS is
the lowest. In the U direction, the original RMS of GPS/BDS/Galileo is 1.88 mm, 0.81 mm,
and 2.50 mm lower than that of GPS, BDS, and Galileo, respectively; after mitigating
the multipath, the GPS/BDS/Galileo is reduced to 3.00 mm, significantly lower than the
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other results. We mitigated the multipath of seven consecutive days using the modified
MHM method and obtained the following results. Table 3 displays the mean precision
improvements of GPS, BDS, Galileo, and GPS/BDS/Galileo. We found that the precision
improvements of GPS/BDS/Galileo are generally higher than those of the single systems.
However, it should be noted that in the U direction, the RMS of BDS is higher than that of
GPS/BDS/Galileo, before and after multipath mitigation. This unexpected result explains
that the increase in the number of satellites does not necessarily lead to an improvement in
positioning precision, but because of the increase in the number of satellites, the impact of
the multipath effect will also increase.
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Figure 11. RMS of the original residuals and residuals mitigated by the modified MHM of DOY92 in
the E/N/U directions.

Table 3. Mean precision improvement of GPS, BDS, Galileo, and GPS/BDS/Galileo.

Mean Precision Improvement (%)

Direction

GPS BDS Galileo GPS/BDS/Galileo
E 18.41 25.56 5.60 29.19

18.22 29.76 12.80 31.42
18] 17.61 29.20 7.39 24.73

4.4. Comparison with Other Methods in the Observation Domain and the Coordinate Domain

To compare the multipath mitigation performance of the ASF and modified MHM
methods for multi-GNSS, experiments were conducted separately. The results of four
representative satellites before and after multipath mitigation with single-difference residu-
als were selected from the three systems. Figure 12 shows the original single-difference
residuals of G12, E19, C20, and C38 and the residuals mitigated by the ASF and modified
MHM methods. The original single-difference residuals mainly included multipath and
random noise. After multipath mitigation of the ASF and modified MHM methods, the
residuals only contain random noise and the residual multipath, and the mitigation effect
can be intuitively seen according to the fluctuation of the residual series. It can be intuitively
found that the amplitude changes of the G12, C38, and E19 residuals are relatively small,
indicating that the multipath has been eliminated compared with the original residuals and
after multipath mitigation by ASF and modified MHM, respectively. After the modified
MHM mitigates the multipath, the RMS values of G12, C20, and E19 are 2.29 mm,1.38 mm,
and 2.28 mm, respectively. After ASF mitigates the multipath, the RMS values of G12, C20,
and E19 are 2.37 mm, 1.32 mm, and 2.27 mm, respectively. We found that the difference
between the two methods was not significant. As for the residual of C38 after multipath
mitigation, the RMS of the modified MHM is 0.27 mm lower than that of the ASF, and
the performance of the modified MHM is slightly better than that of the ASFE. It is worth
mentioning that the MEO repeat period of BDS causes a significant “end effect” after ASF
processes multipath, while the MHM approach is not affected.
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Figure 12. Original single-difference residuals of G12, E19, C20, and C38 and the residuals mitigated
by ASF and modified MHM methods.

We calculated the precision improvement of all satellite single-difference residuals
after multipath mitigation by ASF and modified MHM for 25 consecutive days to further
verify the difference between the two methods. Figure 13 shows the precision improvement
of the GPS, BDS, and Galileo single-difference residuals. The red and blue dashed lines
represent the mean improvements in ASF and modified MHM, respectively. As can be
seen from the figure, in terms of GPS single-difference residuals, although the precision
improvement of both methods is declining, the precision improvement of the modified
MHM is significantly greater than that of the ASF intuitively, and the mean precision
improvement of the modified MHM is 10.17% higher than that of the ASE. For BDS sing]le-
difference residuals, the precision improvement of the modified MHM is greater than that
of the ASF within 15 days, and the fluctuation of the ASF is significantly larger, with mean
precision improvements of 32.93% and 22.16% for ASF and modified MHM, respectively.
For Galileo, the fluctuation trends of the modified MHM and ASF were similar, but in
DOY93-98, DOY102, and DOY103, the mean precision improvement of ASF was 15.12%
lower than that of modified MHM. The mean precision improvement of the modified MHM
over ASF was 10.20%, 10.77%, and 9.29% for the single-difference residuals for the GPS,
BDS, and Galileo satellites, respectively.
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Figure 13. Precision improvement of GPS, BDS, and Galileo single-difference residuals, respectively.

The performance of ASF can be influenced by two main factors: (1) the precision of
multipath extraction from carrier phase residuals; (2) the precision of each satellite’s repeat
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period. Additionally, multipath effects are most similar in adjacent repeat periods and
tend to diverge over time. Although the repeat period of GPS satellites is relatively more
stable compared to BDS-3 and Galileo (Figure 1), the multipath differences continue to
increase, resulting in a gradual decline in ASF performance. In contrast, the repeat periods
of BDS and Galileo are not fully consistent with GPS and exhibit greater variability. This
inconsistency leads to abrupt changes in ASF performance on DOY 100 and DOY 99. In
summary, statistical analysis of the single-difference residuals before and after multipath
mitigation shows that the MHM has greater performance and behaves more consistently.

The purpose of the multipath mitigation of double-difference observations is to im-
prove the positioning precision, and the mitigated double-difference observations are used
to fix the ambiguity and further estimate the baseline coordinates. The baseline coordi-
nates of the station were determined based on the single epoch model, and the precise
reference coordinates of the station were averaged over multiple consecutive days without
mitigation for the multipath model. Uncorrected double-difference observations were
also used to generate baseline coordinates for comparison purposes. Figure 14 shows the
DOY92 original baseline series and the series after multipath mitigation using the ASF and
modified MHM methods. The distribution of the baseline series can be seen in Figure 15.
After mitigating the multipath, the series obeys the normal distribution, indicating that the
multipath has been eliminated. The E, N, and U components are differenced with accurate
reference station coordinates and then are fast Fourier transformed to obtain the power
spectral density (PSD) to further compare the differences between the two methods in the
frequency domain.
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Figure 14. Original baseline series and the series after multipath mitigation by using ASF and
modified MHM methods in DOY92.
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Figure 15. PSD of the original series and the series mitigated by both methods.

Figure 15 illustrates the PSD of the original series and the series mitigated by both
methods, and both methods can eliminate most of the middle- to high-frequency multipath.
In the frequency below 0.01 Hz, the PSD of the two are more similar on E/N directions, but
in the range of 0.01-0.02 Hz, the PSD of the modified MHM is lower than that of the ASF
in the U direction. Compared with the ASF, the modified MHM has a positive effect on
mitigating the middle-to-high-frequency multipath in the period of 50-100 s.

In order to compare and analyze the differences between our method and the MHM
in terms of accuracy and computational efficiency, we added experiments on the MHM.
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The multipath depends on the position of the satellite and not on the specific satellite,
based on the spatio-temporal correlation of the multipath. The MHM method for multipath
mitigation is as follows. The single-difference residuals of GPS, Galileo, and BDS for a total
of 10 days are denoised to obtain multipaths, and the multipaths are placed in a grid. The
grid is defined by elevation and azimuth angle in a carrier coordinate system [15]. The
grids were divided according to certain elevation and azimuth angle intervals. The MHM
model is established by taking the mean value of the single-difference residuals in the grid
as the multipath of the grid. In order to achieve more accurate multipath error reduction,
considering the large amount of data in the multi-GNSS environment, we adopted an MHM
grid resolution of 0.1° x 0.1°. Such a high resolution helps to improve the refinement
of the model, thereby more effectively capturing and reducing the multipath effect. In
the subsequent multipath mitigation process, the grid corresponding to the elevation and
azimuth angles of the satellite is found in the MHM model, and the multipath of the
grid is introduced into the observation equation for multipath mitigation. Comparing the
computational efficiency of MHM and the modified MHM, we found that, excluding the
time for reading and saving data, the time for establishing the MHM model was 6:30:05 in
the range of elevation angles of 30°-90° and azimuth angles of 120°-180°. The grid search
times of 20° x 20°, 10° x 10°, and 1° x 1° were 3:45:23, 0:15:35, and 1:23:15, respectively.
Therefore, the k-d number enhanced the search method with a 10° x 10° grid resolution is
the most efficient.

The coordinate precision improvement statistics results after multipath mitigation
based on the three models are in Figure 16. The coordinate components for 15 consecutive
days were statistically analyzed to further distinguish the differences between the ASF and
modified MHM methods for multipath mitigation in continuous data. Figure 16 shows
the precision improvement of the original components and components after multipath
mitigation by both methods from DOY92-DOY106. In the E direction, the precision im-
provements of the ASF and modified MHM are more similar in DOY92-97, but after DOY92,
the precision improvements of the modified MHM are greater than those of the ASFE. In the
N direction, after DOY95, the precision improvement of the modified MHM was higher
than that of the ASF. In the U direction, after DOY96, the precision improvements of the
modified MHM are greater than those of the ASE. The mean precision improvement of the
modified MHM is 27.94%, 28.06%, and 21.81% in the E, N, and U directions, respectively.
The mean precision improvements of the modified MHM over the ASF were 1.40%, 2.00%,
and 1.11% in the E, N, and U directions, respectively. The precision improvement of MHM
is more variable in the E and N directions, and the precision improvement in the E direction
of DOY99-101 and the N direction of DOY100-102 is significantly lower than that of the
ASF and the improved MHM. In the U direction, the whole precision performance of MHM
is better. The mean precision improvement of MHM in the E, N, and U directions are
24.97%, 23.85%, and 24.768%. The experimental results show that the mean improvement
of the modified MHM is 2.97% and 4.21% higher than those of the MHM. However, in
the U direction, the average improvement of the MHM is improved by 2.95% higher than
that of the modified MHM. Nevertheless, from the overall performance point of view, the
modified MHM still performs better than the MHM in multipath mitigation.

SF mainly relies on the satellite repeat period to mitigate the multipath. ASF, as an
extension of the SF method, calculates the repeat period of each satellite separately to
enhance the multipath mitigation performance. For multi-GNSS multipath mitigation,
the calculation of the repeat period of different systems becomes cumbersome. At the
same time, the calculation method of the repeat period is inevitably affected by satellite
maneuvers. The satellite repeat period changes slowly over time. All of the above reasons
will cause the performance of ASF in correcting the multipath to continue to decrease. The
modified MHM is not affected by the satellite repeat period, so the modified MHM method
performs better than the ASF method in mitigating the multipath.
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Figure 16. Precision improvement of original components and the components after multipath
mitigation by three methods from DOY92-DOY106.

5. Conclusions

We proposed a modified MHM method to mitigate the multipath for single-frequency
multi-GNSS tightly combined positioning. In the case of single overlapping frequency,
the difference of the multipath between different systems is small; the performance of the
multipath model can be improved by interoperation between multi-GNSS systems. Due to
the sparsity of satellite orbits and the slight orbit offset, the traditional MHM mitigating
multipaths may suffer from omissions. To avoid the shortcomings of multipath mitigation,
we use KNN to search for multipaths. We adopt the multi-dimensional data structure of
k-d tree to speed up the KNN search operation in the space, and also build a grid with
10° x 10° resolution to improve the search efficiency while ensuring the precision. The
experimental results are as follows:

We used a modified MHM for multipath mitigation of the GPS, BDS, Galileo, and
GPS/BDS/Galileo combinations. It can be observed that the precision improvement of
the GPS/BDS/Galileo combination was higher than that of a single system. However, the
RMS of BDS was higher than that of GPS/BDS/Galileo in the U direction. This indicates
that the increased satellite signals may also lead to an increased multipath effect, which in
turn decreases the positioning precision.

We mitigated the multipath of the GPS/BDS/Galileo combination using ASF and
modified MHM and compared it with the uncorrected values. The mean precision of the
modified MHM over the ASF was improved by 10.20%, 10.77%, and 9.29% for the GPS,
BDS, and Galileo satellites’ single-difference residuals, respectively. The mean precision of
the MHM in the E, N, and U directions increased by 1.40%, 2.00%, and 1.11%, respectively,
compared with the ASF. The MHM outperforms the ASF for multipath mitigation in the
case of the GPS\Galileo\ BDS combination. The conclusion is that the modified MHM has
better performance and more consistent behavior, and can improve positioning precision
in quasi-static environments.

Author Contributions: Methodology, Y.T., C.L. and R.T.; software, Y.T. and C.L.; validation, Y.T., R.T.
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Abstract: The BeiDou Navigation Satellite System (BDS) offers orbit and clock corrections
through the B2b signal, enabling Precise Point Positioning (PPP) without relying on ground
communication networks. This capability supports applications such as aerial and maritime
mapping. However, achieving high precision during the convergence period remains
challenging, particularly for missions with short observation durations. To address this, we
analyze the performance of PPP over short periods using PPP-B2b products and propose
using the backward smoothing method to enhance the accuracy during the convergence
period. Evaluation of the accuracy of PPP-B2b products shows that the orbit and clock
accuracy of the BDS surpass those of GPS. Specifically, the BDS achieves orbit accuracies
of 0.059 m, 0.178 m, and 0.186 m in the radial, along-track, and cross-track components,
respectively, with a clock accuracy within 0.13 ns. The hourly static PPP achieves 0.5 m
and 0.1 m accuracies with convergence times of 4.5 and 25 min at a 50% proportion,
respectively. Nonetheless, 7.07% to 23.79% of sessions fail to converge to 0.1 m due to the
limited availability of GPS and BDS corrections at certain stations. Simulated kinematic
PPP requires an additional 1-4 min to reach the same accuracy as the static PPP. Using the
backward smoothing method significantly enhances accuracy, achieving 0.024 m, 0.046 m,
and 0.053 m in the north, east, and up directions, respectively. For vehicle-based positioning,
forward PPP can achieve a horizontal accuracy better than 0.5 m within 4 min; however,
during the convergence period, positioning errors may exceed 1.5 m and 3.0 m in the east
and up direction. By applying the smoothing method, horizontal accuracy can reach better
than 0.2 m, while the vertical accuracy can improve to better than 0.3 m.

Keywords: precise point positioning; B2b; real time; kinematic PPP; vehicle

1. Introduction

With the rapid development of Global Navigation Satellite System (GNSS) technology,
the demand for high-precision real-time positioning has increased significantly. Precise
Point Positioning (PPP) [1] technology enables high-precision positioning using a single
receiver, overcoming the limitations of traditional Real-Time Kinematic (RTK) positioning,
which relies on ground communication networks and reference stations. This technology

Remote Sens. 2025, 17, 25 https://doi.org/10.3390/rs17010025
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holds broad application prospects in fields such as precise positioning in remote areas [2,3],
space weather monitoring [4,5], and high-precision time and frequency transfer [6,7]. PPP
relies on augmentation corrections, such as precise orbits and clocks, which are essential
for achieving high precision. Additionally, tropospheric and ionospheric corrections can
shorten the convergence time of the positioning [8,9]. The application of PPP based on
post-processed products has been extensively validated. To meet the requirements of
rapid and real-time PPP applications, researchers have conducted in-depth studies using
different orbit and clock products. Byram et al. (2012) utilized the rapid and ultra-rapid
products provided by the United States Naval Observatory (USNO) for PPP. The results
demonstrated that the combination of GPS and GLONASS observation data significantly
enhances the position accuracy [10]. Elsobeiey and Al-Harbi (2016) analyzed the real-
time PPP accuracy using International GNSS Service (IGS) ultra-rapid products and real-
time services. Their results showed that, compared to ultra-rapid products, real-time
products achieved a 50% improvement in positioning accuracy [11]. Chun et al. (2018)
analyzed the real-time orbit and clock products provided by the Centre National d’Etudes
Spatiales (CNES), which revealed that the user accuracy of real-time products ranges
between approximately 0.03 and 0.35 m [12]. Subsequent research has further evaluated
the performance of real-time corrections and multi-GNSS PPP on GPS, BDS, and other
systems [13-15]. Furthermore, Yu et al. (2023) conducted a comparative analysis of PPP
based on 12 different centers and assessed its accuracy. The results indicated that products
from Wuhan University showed the best performance, with static PPP over 24 h achieving
an accuracy of 1.0 cm in the horizontal and vertical directions and a median convergence
time of 12.0 min. The hourly kinematic PPP achieved an accuracy of 10.8 cm and 9.5 cm in
the horizontal and vertical directions, respectively. The multi-GNSS combination improved
the accuracy to 5.2 cm [16].

However, the realization of the aforementioned real-time service still relies on receiv-
ing real-time correction data via ground communication networks, as it is only accessible
through the network. PPP corrections are transmitted via the B2b signal (PPP-B2b) from
three BDS geosynchronous Earth orbit (GEO) satellites. These corrections include orbit
and clock data for both GPS and BDS-3 satellites, along with differential code bias (DCB)
corrections. When combined with the GPS LNAV and BDS CNAV1 navigation messages,
the precise satellite orbit and clock can be recovered, enabling decimeter to centimeter-level
positioning across China and the surrounding areas (75°E-135°E, 10°N-55°N) without
relying on internet connectivity [17]. Scholars have conducted thorough evaluations on
the latency and accuracy of orbit and clock products, and the positioning performance of
PPP-B2b products. Nie et al. (2021) evaluated the accuracy of PPP-B2b orbit and clock
corrections against the final precise products obtained from GFZ. The results show that the
radial, along-track, and cross-track accuracies for BeiDou-3 satellites are 0.138 m, 0.131 m,
and 0.145 m, respectively, with clock offset accuracies reaching centimeter-level preci-
sion [18]. Tao et al. (2021) further compared the PPP-B2b with CNES (Centre national
d’études spatiales) products. The results demonstrated that BDS-3-only PPP-B2b kinematic
PPP can achieve a centimeter-level accuracy comparable to the GPS-only results using
CNES [19]. Song et al. (2023) validated the performance of PPP-B2b using different signal
combinations and demonstrated that PPP-B2b can meet the positioning performance re-
quired in China [20]. Furthermore, the application of PPP-B2b in ocean environments [21],
single-frequency scenarios [22], time transfer [23], and its integration with inertial naviga-
tion systems [24] has been validated, demonstrating the promising enhancements PPP-B2b
offers for real-time users.

The assessments so far have primarily focused on daily solutions and simulated kine-
matic experiments. However, applications such as aerial mapping [25] and agriculture [26]
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usually require rapid static positioning during the work preparation phase or high posi-
tional accuracy during the operational phase. The convergence period, particularly at the
start or after an interruption, tends to exhibit relatively poor performance due to the incom-
plete elimination of atmospheric errors and the reinitialization of ambiguities. Although
some studies investigate the performance of PPP with short observation sessions [27,28],
research on real-time PPP-B2b remains relatively limited. To address this issue, this paper
evaluates the performance of PPP-B2b products and investigates the positioning accuracy
achieved through both static and kinematic PPP with varying session lengths. Additionally,
a backward smoothing method is applied to improve the accuracy of PPP during the
convergence period, enabling high-precision positioning throughout the process.

2. Methods and Theory

The GNSS raw pseudorange and carrier phase observations across different frequen-
cies are detailed as follows:

Pl = ot c (dty +dy) (dts + d;) I 4T e, "
@5 =i (dr+0,) —c (A4 8) — I+ T+ A N3 +65,
where superscripts s and r denote a specific satellite and receiver, respectively; p and ¢
represent the pseudorange and carrier phase observations; and j denotes the frequency and
the corresponding wavelength A;. Furthermore, p is the geometric distance from the satellite
to receiver, while dt, and df° are clock offsets for the receiver and satellite, respectively. ¢
represents the speed of light in a vacuum; I} is the ionospheric delay; T is the tropospheric
delay; N stands for ambiguity; e represents the observation noise and multipath effects;
dyjand d; are the receiver-dependent and satellite-dependent instrumental delay biases
in the pseudorange, respectively; and ¢, ; and 47 are the receiver-dependent and satellite-
dependent instrumental delay biases in the carrier phase observations, respectively.

2.1. Recovery of Precise Orbits and Clocks Products Using PPP-B2b Correction

According to the ICD (Interface Control Document) [29] of the BDS PPP-B2b signal,
orbit corrections are provided in the radial, along-track, and cross-track directions within
the satellite orbit coordinate system and denoted as §Orac. The corrections should be
translated to the Earth Center Earth Fixed (ECEF) system using the following equation:

_ X X XxV XxV |
5XECEF - = [|X\ X] X [XxV] [XxV] (SORAC (2)

where X and V are the satellite position and velocity vectors calculated by the broadcast
ephemeris, respectively; 0Xrcrr is the transmitted satellite orbit correction. After calcu-
lating the initial position dXj,;. with the broadcast ephemerides, the precise satellite orbit
dXprec can be calculated with the following:

Xprec = derdc + 5XECEF (3)
In addition, the precise clock dtprec B2y can be calculated using the following:

dtprec,B20 = dtorac — Co/ Cright 4

where dty,. is the clock correction calculated from the broadcast ephemeris in meters; Cyp
is the clock corrections derived from the PPP-B2b corrections in meters and Cy;gp; is the
velocity of light.
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The PPP-B2b service provides clock and orbit corrections with update intervals of 6 s
and 48 s, respectively. To ensure the proper synchronization of these corrections, the “IOD
Corr” parameter acts as a version identifier, aligning orbit and clock data. Additionally,
the “IOD SSR” (Issue of Data, State Space Representation) parameter is used to match the
PPP-B2b corrections with the broadcast ephemerides. Although the synchronization of
these corrections is typically reliable, discrepancies can arise due to missing correction
products for certain satellites or changes in the ephemeris IOD. Such mismatches may
result in the incorrect recovery of orbit and clock information or a reduction in the number
of usable satellites, thereby degrading PPP performance.

To address these challenges, a predictive correction strategy is employed, leveraging
the nearest available correction data to compensate for missing corrections. This method
effectively handles gaps in orbit corrections within a 300 s window and clock corrections
within a 60 s window. In this way, the integrity of PPP positioning is maintained even in
the presence of correction gaps from certain satellites.

Apart from the satellite orbit and clock errors, satellite and receiver biases are another
main factor affecting the accuracy of PPP. The receiver code hardware delays can be
absorbed by the clock parameter, and the satellite and receiver phase biases can be absorbed
by the float ambiguity parameters. However, the satellite code biases persist and impact
the convergence of PPP. Code biases corrections are also provided in PPP-B2b corrections
and can be corrected using the following equation:

P; = Py — DCBs ®)

where P is the original pseudorange observations and f’; is the corrected observations;
DCBy is the PPP-B2b DCB corrections on the B1Cp and B2Ap signals for corresponding
signals of BDS-3 in meters.

The B1I and B3I ionosphere-free (IF) combination are generally used for the satellite
orbit and clock estimation, in addition to the IF PPP at the user end. However, the real-time
precise product clocks calculated with PPP-B2b corrections and the matching broadcast
ephemeris are referenced to the B3 frequency. For the PPP using the IF model, the satel-
lite hardware delay correction should be applied to convert the clocks from B3I to the
B11/B3I [30], which can be described as follows:

2
dtprec = dtprec,B2p — %DCBSBH (6)
fo1r = faar
where dt . is the precise satellite clock offset referred to the B11/B3I IF combination, which
can be used in the same manner as the IGS standard clock products; f2,; and f3,; represent
the frequencies of the B1I and B3I signals, respectively; and DCBj,; is the hardware delays
for the B1I signal.

2.2. SISRE Assessment

To assess the accuracy of the satellite orbits and clocks, the Signal-in-Space Ranging
Error (SISRE) is calculated [31], which can be expressed as follows:

(dA2 +dC?)
B

where dR, dA, dC are the radial, along- track, and cross-track orbit errors in the satellite

SISRE = \/(zx “dR —c - dt)* + @)

orbit coordinate system, respectively; dt is the clock bias; c is the speed of light in a vacuum;
and « and (3 are coefficients determined by the satellite orbit altitudes.
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The satellite orbits calculated from PPP-B2b refer to the satellite’s antenna phase
center, while the precise orbit products provided by the MGEX analysis centers refer to
the satellite’s center of mass. Therefore, prior to comparing broadcast ephemeris and
precise orbits, Phase Center Offset (PCO) correction must be applied according to the
following formula:

5XBZb = Xpre,finul - [Xpre,BZb +A- 5cho] (8)

where 6Xpy), is the orbit error vector; X, fina is the reference orbit vector obtained from
final products; X, oy is the real-time PPP-B2b precise orbit vector; A is the satellite
attitude matrix; and X, is the satellite PCO correction vector obtained from the latest
“igsl4.atx” file released by IGS.

3. Data and Experiments

The objectives of this section are to comprehensively analyze the quality of BDS
PPP-B2b corrections and their accuracy for the static and kinematic PPP.

3.1. Accuracy of PPP-B2b Orbits and Clocks

To verify the accuracy of real-time PPP-B2b products, the final products provided
by Wuhan University (WUM) were selected as the reference. The reported accuracy of
these final products for BDS-3 satellites is 3 to 4 cm [32,33]. Figure 1 shows the error time
series of the PPP-B2b precise orbit products for days 075 to 092 of 2024. Notably, in the
GPS orbit error series, the radial orbit errors for satellites G22 and G28 exhibit systematic
biases of approximately 0.4 m and 1 m, respectively. These biases persist until day 087,
after which the errors return to levels consistent with those of other satellites. Apart from
this, no significant anomalies are detected in the GPS and BDS products across different
days, indicating the stable quality of PPP-B2b products. Overall, the radial component,
which significantly impacts positioning errors, shows the smallest errors among the three
components, with most satellites exhibiting errors within 0.3 m. In the along-track direction,
the GPS products exhibit relatively larger errors, whereas in the cross-track direction, GPS
and BDS exhibit comparable accuracy.
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Figure 1. Cont.
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Figure 1. Time series of GPS and BDS orbit errors in the radial, along-track, and cross-track directions
for PPP, referenced using WUM products.

Figure 2 presents the Root Mean Square (RMS) of PPP-B2b real-time orbits errors. The
average values are 0.098 m, 0.368 m, and 0.214 m for the radial, along-track, and cross-track
components for GPS, respectively. In comparison, the average RMS values for the BDS-3
MEO satellites are 0.059 m, 0.178 m, and 0.186 m, respectively. These results confirm that
BDS real-time orbits are more accurate than GPS. This improved accuracy is due to the
additional observations from the inter-satellite link (ISL) terminals on the BDS-3 satellites,
which enhance orbit determination, particularly in the along-track direction [34].
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Figure 2. The statistics of GPS and BDS orbit errors in the radial, along-track, and cross-track
directions, using WUM products as the reference.

The accuracy of satellite clocks is evaluated using the double-difference method [35].
This method involves first calculating the single difference between the real-time clock and
final clock. The mean of these differences at each epoch is used as the reference clock bias.
Double differences are then computed by subtracting this mean from the clock error of each
satellite. Since the PPP-B2b products are estimated based on regional stations, interruptions
can cause discontinuities in the clock datum. To address this issue, the quality of satellite
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clocks is evaluated using the average standard deviation (STD) and RMS on an hourly basis,
as presented in Figures 3 and 4 for GPS and BDS, respectively. Overall, the averaged STD
and RMS for the GPS are 0.33 ns and 2.76 ns, respectively, which are significantly higher
than the corresponding values of 0.13 ns and 1.82 ns for the BDS. Several GPS satellites
exhibit clock RMS values exceeding 6 ns, which degrades the precision of the pseudorange
observations and increases the convergence time of PPP. However, this does not impact
the accuracy after convergence, as the systematic bias is absorbed into the observation
residuals and ambiguities during PPP [36].
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Figure 3. The clock STD and RMS for the GPS products of PPP-B2b, using the “WUM” as reference.
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Figure 4. The clock STD and RMS for the BDS products of PPP-B2b, using the “WUM” as reference.

Figure 5 illustrates the time series of SISRE for the GPS and BDS-3 satellites. The
SISRE of BDS-3 outperforms that of the GPS, which is consistent with the orbit and clock
accuracy assessment presented in the previous analysis. The GPS SISRE exhibits significant
errors and a substantial discrepancy on DOY 087, which can be easily identified through
the positioning outlier screening process in PPP due to its relatively large magnitude.
Moreover, no notable discrepancies are observed among different satellites, differing from
the characteristics seen in the GPS orbit evaluation results. This can be attributed to the use
of consistent orbit and clock products, where radial errors are effectively compensated [37].
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Figure 5. The SISRE time series for the GPS and BDS satellite from PPP-B2b products, with different
colors representing the different satellites.
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3.2. Experiments and Validation

Figure 6 illustrates the distribution of stations used for data processing in this study.
Data from eight MGEX stations for days of year (DOY) 075 to 092 in 2024 were selected,
with a data sampling rate of 5 s. The observation data were processed using the in-house
developed software, NavEngine V1.1. Both GPS and BDS measurements were processed
using PPP-B2b real-time orbits, clocks, and code biases, as well as the rapid products from
Wuhan University (WHR). All data were processed using a dual-frequency combination
and an ionosphere-free model. The receiver coordinates in the forward Kalman filter [38]
were initialized using the position obtained from single-point positioning, with a variance
of 30 m. Afterwards, the coordinates were estimated as white noise at 30 m for kinematic
mode and as constant in the static mode. The backward smoothing method [39] utilizes the
estimated parameters and variance from the forward filter as constraints, thereby enhancing
the accuracy of the estimated parameters during the convergence process. Details of the
processing strategies are outlined in Table 1.
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Figure 6. Distribution of the MGEX stations.

Table 1. Processing strategies of PPP using the PPP-B2b and WHR products.

Items Strategies
Observation GPS: L1/1L2; BDS: B11/B3I
Elevation mask 7°

Weight for observations

Elevation-dependent weighting

Noise for observations

0.003 m for phase and 0.6 m for code

Satellite orbit/clock

PPP-B2b and WHR

Satellite antenna phase center

Using igs20.atx for WHR PPP

Filter method

Forward Kalman and backward smoothing

Tides correction

TERS 2010 [40]

Troposphere Zenith wet delay is estimated as a random walk
Ionosphere Ionosphere-free combination
Ambiguity Estimated as constant with float solution

Receiver coordinate

Constant in static processing and white noise in
the kinematic processing

Receiver clocks

Estimated as white noise
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Horizental errors(m)

3.2.1. Static PPP Processing

Static PPP solutions were calculated in 1 h intervals. A total of 8 stations were used
over 15 days, resulting in 24 periods per day, which corresponds to 2880 h of data. Figure 7
illustrates the convergence of positioning errors over time in the horizontal direction. The
green dots represent the original positioning error sequence, while the red, blue, and purple
curves represent the 50%, 68%, and 95% percentile positioning error at corresponding times.
The three gray lines indicate horizontal positioning accuracies of 0.5 m, 0.2 m, and 0.1 m,
respectively. A comparison of the positioning errors during initialization shows that the
errors for “WHR” products are around 2 m, while the initial positioning error for PPP-B2b
is greater than 4 m. After initialization, the overall positioning errors for “WHR” products
are significantly smaller than those for PPP-B2b. At some stations, the errors exceed 1 m
even after 1 h of convergence, primarily due to differences in the availability of GPS and
BDS corrections across the PPP-B2b service region.
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Figure 7. Convergence time for static PPP using with PPP-B2b products (left) and WHR products
(right) with green dots representing the original positioning errors.

For further quantitative analysis, Table 2 compares the time required for different
proportions of positioning errors to reach a desired accuracy threshold of 50 cm, 20 cm,
and 10 cm. At each sampling interval, the positioning errors from all processed stations
are sorted. The times at which the proportions of errors within the 50%, 68%, and 95%
confidence intervals first meet these thresholds are recorded as the convergence times.
The analysis reveals that for static positioning with PPP-B2b, 4.5 min, 12.7 min, and
26.4 min are required for 50% of positioning errors to converge to 0.5 m, 0.2 m, and
0.1 m, respectively. The time required for high-accuracy convergence to 0.1 m increases
significantly compared to 0.2 m, primarily because achieving high-accuracy positioning
requires more precise atmospheric delay information, which takes time to converge. To
meet 68% of positioning errors within 0.5 m, 0.2 m, and 0.1 m, it takes 7.3 min, 18.9 min,
and 55.5 min, respectively, with significant increases in time. Using “WHR” rapid orbit
products, 50% of the positioning errors converge to an accuracy better than 0.1 m within
8.6 min, and it takes 13.0 min for 68% of positioning errors to reach this accuracy.

Due to the fact that PPP-B2b corrections primarily cover the Asia—Pacific region,
different stations experience variations in the number of visible satellites and DOP values,
which in turn affect the positioning accuracy. To further analyze this impact, we examined
the station-specific convergence time needed for PPP to reach 0.5 m and 0.1 m accuracy, as
presented in Figure 8. The average convergence time needed to achieve a 0.5 m positioning
accuracy is 6 min for PPP-B2b corrections and 2 min for WHR products, with the average
difference between stations being within 2 min. To achieve a 0.1 m positioning accuracy,
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the average convergence time required is 24.8 min for PPP-B2b corrections and 16.6 min for
WHR products, with the average difference between stations being within 5 min and 8 min,
respectively. However, it is important to note that, in some cases, static PPP fails to converge
to 0.1 m even after the mean convergence time or beyond 50 to 60 min, as indicated by the
station-specific statistics in Table 3. This is primarily attributed to the observation geometry
and the limited number of available GPS and BDS corrections from PPP-B2b.

Table 2. The average convergence time required for horizontal positioning errors to reach specified
thresholds at different proportions.

Time for 50% Time for 68% Time for 95%
Error

Product Type Threshold (m) Pe(rrcneirlllt)lle Pe(rrcneirrllt)lle Pe(r;eirrllt)lle
PPP-B2B 0.5 4.5 7.3 19.0
0.2 12.7 18.9 60.0
0.1 26.4 55.5 60.0
WHR 0.5 0.4 1.3 4.2
0.2 3.6 5.9 14.3
0.1 8.6 13.0 34.5
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Figure 8. Station-specific convergence time using different products to achieve 0.5 m and 0.1 m.

Table 3. Proportion of convergence time exceeding the average, 50 min and 60 min for each station.

Station BIKO GAMG JENG POL2 ULAB URUM WUH2
>average 39.23% 36.66% 39.02% 38.46% 37.18% 44.48% 42.32%
>50 min 27.33% 9.65% 11.74% 19.55% 12.50% 27.05% 18.26%
>60 min 23.79% 7.07% 7.57% 16.98% 10.26% 19.57% 12.45%

Figure 9 further depicts the station-specific hourly three-dimensional positioning RMS
and its corresponding average number of satellites. The average RMS is approximately
0.1 m with hourly data at different stations, with the number of satellites ranging from 12.5
to 14.5. Stations with a lower average number of satellites typically exhibit longer conver-
gence times. The statistical analysis reveals that 95% of the positions fall within 0.065 m,
0.143 m, and 0.148 m for the hourly positioning RMS in the N/E/U directions, respectively.
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3D RMS and Average Satellites by Station
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Figure 9. Station-specific three-dimensional positioning RMS and its corresponding average number
of satellites.

3.2.2. Simulated Kinematic PPP Processing

Based on selected data, static stations are estimated using the simulated kinematic
mode, where receiver coordinates are re-initialized each epoch, and ambiguities are contin-
uously estimated unless a cycle slip is detected. Figure 10 shows the convergence times
needed for the hourly dynamic PPP to achieve accuracies of 0.5 m and 0.1 m using PPP-B2b
and WHR products. The average times needed to reach a 0.5 m accuracy are 9.9 min with
PPP-B2b and 2.1 min with WHR, while for a 0.1 m accuracy, the times are 25.9 min and
13.2 min, respectively. Compared to static PPP, dynamic PPP using PPP-B2b products
requires an additional 1-4 min to achieve the same level of accuracy.

Convergence time for kinematic PPP
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Figure 10. Convergence time of kinematic PPP to reach 0.1 m and 0.5 m accuracy using PPP-B2b and
WHR products.

To further characterize the station-specific positioning accuracy, Figure 11 shows the
relationship between the RMS of 3D positioning errors after convergence to 0.1 m accuracy
and the number of visible satellites. The blue data points represent the RMS for each hourly
session, plotted against an average number of visible satellites, while the red line shows the
RMS average grouped by the integer number of visible satellites. The results indicate that
the RMS of 3D positioning errors varies significantly after convergence to 0.1 m accuracy,
ranging from 0.05 m to 0.3 m. This can be attributed to factors such as the number of visible
satellites, the orbit accuracy of different satellites, and the data quality of different stations.
Some stations experience periods with fewer than 10 usable satellites in the combined
GPS + BDS system. As the average number of visible satellites exceeds 10, the average 3D
positioning error gradually decreases.
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Figure 11. Variation in 3D positioning errors with respect to the number of visible satellites for
hourly PPP.

To eliminate the inaccuracies during the convergence period and fully utilize observa-
tions from dynamic scenarios over a short time span, backward filtering was conducted
based on forward Kalman filtering. The average positioning RMS values in the N/E/U
directions using PPP-B2b corrections are 0.024 m, 0.046 m, and 0.053 m, respectively, while
using WHR products, they are reduced to 0.009 m, 0.021 m, and 0.027 m. Figure 12 shows
the distribution of positioning error in the N/E/U directions using PPP-B2b products
(left) and WHR products (right) for each station. Specifically, the proportions of hourly
PPP-B2b solutions with positioning errors less than 0.1 m in the N/E/U directions are
94.03%, 73.00%, and 60.79%, respectively, while those with errors less than 0.2 m are 98.53%,
91.00%, and 88.89%, respectively. When using WHR products, the proportions of posi-
tioning errors less than 0.1 m in the N/E/U directions are 100.00%, 97.61%, and 96.88%,
respectively; the proportions with positioning errors less than 0.2 m are 100.00%, 100.00%,
and 99.82%, respectively. The comparison reveals that the larger positioning errors obtained
with PPP-B2b products are mainly due to the accuracy of the PPP-B2b products rather than
the quality of the station observation.
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Figure 12. Distribution of hourly PPP positioning errors in the N/E/U directions calculated using
PPP-B2b (left) and WHR (right) products.

Overall, the results indicate that the positioning accuracy in the north direction is better
than that in the east direction, with a higher proportion of smaller errors. However, some
stations still exhibit hourly positioning errors exceeding 0.4 m in the E and U directions.
Figure 13 further illustrates the positioning time series of station BIKO on DOY 075 in
the north, east, and up directions, along with the variations in the number of satellites
(Nsat) and Geometric Dilution of Precision (GDOP) values. It confirms that the backward
smoothing PPP achieves better consistency in the north direction, while the east and up
directions exhibit greater variations across different sessions. Notably, the number of
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satellites decreases to fewer than 10 from 12:00 to 13:00, during which the positioning errors
of the forward PPP increase to approximately 0.6 m in all three components. Although the
backward smoothing PPP improves the positioning accuracy during this session, it still
performs worse than in other sessions. As only the dual-system GPS and BDS-3 can be used
with PPP-B2b, despite the availability of multi-GNSS observations from the receiver, a high
positioning accuracy cannot be maintained when the number of satellites is insufficient.
A reasonable solution is to partially combine the PPP-B2b with other correction sources,
such as those from the Galileo HAS service [41], using a proper weighting model or an
equivalent transformation model.

06:00  09:00  12:00  15:00  18:00  21:00

03:00

0.6

0.3 1
0.0 1
—0.3 1
—0.6

North[m]

=

forward

B S s

backward smoothing

0.6

0.3 1 .

0.0 rrr ;

HAL

0.6
03:00

East[m]

0.6
0.3
0.0
—0.3
—0.6

Up[m]

12:00 18:00  21:00

Time(hour)

06:00  09:00 15:00
Figure 13. Positioning time series of station BIKO on DOY 075 in the north, east, and up directions,

along with the variations in the number of satellites (Nsat) and GDOP values.

3.2.3. Vehicle-Based Dynamic PPP

To further validate the accuracy of dynamic PPP, we conducted a vehicle dynamic
experiment. The vehicle’s trajectory, as shown in the left panel of Figure 14, begins at
the point marked “1” and ends at the point marked “2”. Data were collected using a
multi-constellation, multi-frequency GNSS positioning module (UM980) manufactured
by Unicore, along with a corresponding multi-frequency GNSS antenna mounted on the
roof of the vehicle. The experiment took place on the school campus from 08:07:44 to
08:31:00 (GPS time) on 15 July 2024, with a sampling interval of 0.5 s. The corresponding
time series of positioning errors in the N/E/U directions, which are converted into a local
coordinate system based on the coordinates at the final epoch, are shown in the right
panel of Figure 14. The vehicle remained stationary for approximately five minutes before
initiating dynamic motion, followed by another stationary period from 08:26:21 to 08:28:58,
with brief movement thereafter. Due to the 40 km distance between the base station and
the rover, the RTK ambiguity resolution rate was only 93.2%, as indicated by the float
ambiguities represented by the yellow points. The positioning errors observed during
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stationary periods show that the RTK positioning accuracy achieved was better than 0.05 m,
which is sufficient for assessing the accuracy of the PPP results.

RTK solution for vehicle experiment
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Figure 14. Vehicle trajectory for the dynamic experiment starting at point “1” and ending at point ‘2’
(left), and time series of RTK positioning, along with its ambiguity fixing status, where the green

color represents the fixed solution.

First, simulated kinematic PPP using observations from the reference station was used
to evaluate the accuracy of PPP using two separate software tools, namely PRIDE PPP-
AR [42] and NavEngine. PRIDE utilizes a total least squares algorithm, while NavEngine
uses forward Kalman filtering combined with backward smoothing. Both tools used rapid
products provided by Wuhan University. Figure 15 compares the time series of positioning
errors, revealing that both software tools produced stable error sequences. However,
systematic biases of varying magnitudes were observed across the three components.
Table 4 summarizes the statistical results of positioning errors. The analysis shows that
the accuracy, measured by the STD, is similar across both software, achieving millimeter-
level precision, while the vertical precision is slightly lower, with errors around 1 cm.
The RMS analysis reveals systematic errors of 0.1 m in the east direction and 0.06 m in
the north direction. This discrepancy is primarily due to the short observation duration
of the reference station’s data, which lasted only two hours, leading to the incomplete
convergence of the dynamic solution’s positioning accuracy.
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Figure 15. Time series of positioning errors at the base station using PrideLab and NavEngine
software with WHR products.
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Table 4. Averaged RMS and STD using different processing modes.

RMS (m) STD (m)
North East Up North East Up
Pride_WHR 0.051 0.111 0.014 0.004 0.004 0.011

NavEngine. WHR 0.061 0.086 0.039 0.005 0.008 0.010
NavEngine_B2b 0.055 0.076 0.049 0.006 0.024 0.045

Furthermore, a comparison of the positioning errors observed using NavEngine with
WHR and PPP-B2b products, as shown in Figure 16, reveals that the systematic biases
exhibit good consistency, with RMS differences of less than 0.01 m, which is reasonable
within the kinematic positioning noise of PPP. However, the STD accuracy of the PPP-B2b
solution is larger than that of WHR, particularly in the east and up directions. Overall, the
positioning errors obtained using PPP-B2b products at the reference station can achieve
centimeter-level accuracy when utilizing the backward smoothing method.
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Figure 16. Time series of positioning errors at the base station using WHR and PPP-B2b products
processed with NavEngine.

Following the simulated kinematic validation, the positioning accuracy of the vehicle
dynamic station was analyzed by comparing it against the RTK solution. Figure 17 presents
the positioning errors of the forward PPP using WHR and PPP-B2b products in NavEngine
software. The results indicate that PPP achieves a horizontal accuracy of 0.5 m within 4 min
of convergence. Afterward, the horizontal positioning errors continue to decrease, with
WHR and PPP-B2b products converging to horizontal accuracies of 0.05 m and 0.23 m,
respectively. The vertical positioning error requires about 12 min to converge to a 0.5 m
accuracy, and a constant bias persists even after the convergence.

In comparison, Figure 18 shows the positioning error time series using the WHR
and PPP-B2b products with backward smoothing. Although the trends are similar due
to variations in the reference RTK solution, significant biases exist between the products.
The WHR products exhibit better accuracy in the horizontal direction, with average RMS
values of 0.062 m and 0.152 m for the north and east directions, respectively, compared to
0.139 m and 0.163 m for the PPP-B2b products. Conversely, PPP-B2b products demonstrate
superior accuracy in the vertical direction, achieving an RMS value of 0.137 m compared to
0.354 m for the WHR products, respectively. This discrepancy arises because the solution
using PPP-B2b products continues to converge vertically during the forward filter, whereas
the WHR products reach a stable state earlier. Although backward filtering can enhance the
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PPP accuracy during the convergence period, the overall accuracy largely depends on the
parameter convergence precision achieved through the forward filtering. The convergence
period is partially influenced by the quality control strategy implemented in the software,
as well as the accuracy of the products.
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Figure 17. Time series of positioning errors for forward PPP using WHR and PPP-B2b products.
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Figure 18. Positioning error time series of backward PPP using the WHR and PPP-B2b products.

4. Conclusions

BDS provides precise orbit, clock, and bias corrections through PPP-B2b signals,
enabling PPP in the Asia—Pacific region without the need for internet connectivity. To
achieve a high positioning accuracy with short observation periods, the accuracy of static
PPP using PPP-B2b was evaluated, and a backward smoothing method was proposed to
improve the accuracy during the initialization period. The performance was validated
using the static and vehicle observations. The following conclusions can be drawn:

(1) The accuracy of the orbits and clocks recovered from the PPP-B2b is assessed, indicat-
ing that BDS products outperform GPS. The improvement is largely due to the BDS
inter-satellite link ranging, which enhances orbit performance.
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(2) The static hourly PPP results show that the average convergence times required to
achieve horizontal accuracies better than 0.5 m and 0.1 m are approximately 4.5 min
and 25 min, respectively. However, a proportion of the sessions, ranging from 7.07%
to 23.79%, fail to converge to 0.1 m due to the limited availability of GPS and BDS
satellites. For sessions that do converge, the average 3D RMS is 0.1 m.

(3) The simulated kinematic PPP results indicate that the average times required to
achieve horizontal accuracies of 0.5 m and 0.1 m are approximately 9.9 min and
25.9 min, respectively. The average positioning RMS values in the N/E/U directions
using backward smoothing PPP are 0.024 m, 0.046 m, and 0.053 m. Similar to the
case of static PPP, convergence to 0.1 m accuracy cannot always be achieved due
to variations in the observation quality at different stations. Using the backward
smoothing method, the proportions of positioning errors less than 0.1 m in the north,
east, and up directions are 94.03%, 73.00%, and 60.79%, respectively.

(4) The vehicle experiments show that forward PPP can achieve a horizontal accuracy
better than 0.5 m within 4 min, with steady improvement over longer observation
periods. However, large positioning errors of 1.5 m in the east direction and 3.0 m
in the vertical direction are observed during the convergence period. Using the
backward smoothing method, an RMS of 0.139 m, 0.163 m, and 0.137 m is achieved in
the north, east, and up directions, respectively.

Overall, the results demonstrate that using PPP-B2b can achieve decimeter-level
positioning with different observation durations, without relying on an external base station.
The backward smoothing method further enhances accuracy during the convergence
period. However, the accuracy observed in the vehicle experiments is lower than that
of the simulated real-time results due to the effects of the observation environment. For
applications such as Unmanned Aerial Vehicles (UAVs) and marine navigation, where the
observation environment typically offers open-sky conditions, the results are expected to
be comparable. Furthermore, at the boundary of the PPP-B2b service region, the number of
available satellites decreases, which may degrade the positioning accuracy. The integration
of PPP-B2b with the High-Accuracy Service (HAS) could be further explored to improve
global positioning accuracy.
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Abstract: Aiming at the problem of nonlinear observation model mismatch and insufficient
anti-interference ability of SINS/GNSS integrated navigation system in complex dynamic
environment, this paper proposes an adaptive robust filtering algorithm with improved
fading factor. Aiming at the problem that the traditional Kalman filter is easy to diverge
in severe heave motion and abnormal observation, a multi-source information fusion
framework integrating satellite positioning geometric accuracy factor (PDOP), solution
quality factor (Q value), effective satellite observation number (Satnum), and residual
vector is constructed. The dynamic weight adjustment mechanism is designed to realize
the real-time optimization of the fading factor. Through the collaborative optimization of
robust estimation theory and adaptive filtering, a dual robust mechanism is constructed
by combining the sequential update strategy. In the measurement update stage, the
observation weight is dynamically adjusted according to the innovation covariance, and
the fading memory factor is introduced in the time update stage to suppress the error
accumulation of the model. The experimental results show that compared with EKF, Sage-
Husa adaptive filtering and robust filtering algorithms, the three-dimensional positioning
accuracy is improved by 47.12%, 35.26%, and 9.58%, respectively, in the vehicle strong
maneuvering scene. In the scene of ship-borne heave motion, the corresponding increase
is 19.44%, 10.47%, and 8.28%. The research results provide an effective anti-interference
solution for navigation systems in high dynamic and complex environments.

Keywords: SINS/GNSS integrated navigation; robust adaptive filtering kalman filtering;
optimization algorithm; dynamic disturbances; positioning accuracy

1. Introduction

Positioning, Navigation, and Timing (PNT) is regarded as the cornerstone and impor-
tant infrastructure of national economy and national defense security [1]. In a complex
environment, a single PNT service system has the risk of discontinuity, unavailability, or
unreliability, and even completely loses its service capability [2]. Therefore, how to make
the carrier system generate efficient, stable, and reliable PNT information under complex
interference environment is an important research direction.

The noise in the marine environment usually presents a non-Gaussian distribution and
has time-varying characteristics. It is difficult for traditional filtering methods to accurately

Remote Sens. 2025, 17, 1449
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describe its statistical characteristics, resulting in distortion of state estimation results [3].
At the same time, the marine navigation system is highly nonlinear. Especially in the case
of severe heave motion, the linearization of the traditional filtering method may introduce
significant errors, which may lead to the performance degradation or even divergence of
the filter. GNSS is widely used in the fields of smart agriculture, public transportation,
aviation, and navigation. Because GNSS signal is a form of radio propagation, it is prone to
inaccuracy or signal loss in complex environments such as occlusion and interference [4].
Relying solely on the global satellite navigation and positioning system to achieve nav-
igation and positioning cannot meet the requirements of high precision, high stability,
and high reliability. It is a reasonable choice to make full use of multi-sensors to obtain
multi-source PNT information. In order to obtain more accurate and stable results, the
information obtained by SINS and GNSS is usually fused. As an independent navigation
method, the strapdown inertial navigation system (SINS) is not easily affected by the
external environment, but the position error will accumulate over time. In addition, due
to the influence of vibration and other factors, the inertial measurement unit (IMU) data
may have abnormal values. Especially in the ocean, a low speed and high vibration heave
environment, the sensor output is unstable [5]. When the GNSS signal is disturbed by a
multipath effect, occlusion and other non-Gaussian noise, or the navigation information
output by the inertial sensor in a complex environment is unreliable, it is easy to cause the
Kalman filter to diverge, resulting in inaccurate positioning information. In view of the
above situation, researchers have proposed a variety of improved Kalman Filter algorithms
based on robust and adaptive Kalman Filter to improve the adaptability and reliability of
integrated navigation.

In view of GNSS signal anomaly and noise distribution uncertainty, robust and adap-
tive filters have become research hotspots. Yang, Y, improved the abnormal observation and
state disturbance control in the filtering process through adaptive estimation. A method of
using adaptive factor to control the abnormal influence of prior prediction state is proposed.
The adaptive factor is constructed by a variety of error statistics, such as prediction residual
statistics and state inconsistency statistics. In addition, they use a two-or three-segment
function model to implement the adaptive factor, thereby enhancing the adaptability and
robustness of the filter to dynamic system noise and observation anomalies [6]. In the
unknown time-varying noise environment, Song uses the improved square root cubic
Kalman filter (ISRCKF) to estimate the motion state of the target vehicle. It is proposed to
combine the Sage-Husa noise statistical estimator with the decay memory index weight-
ing method to construct a time-varying noise statistical estimator suitable for nonlinear
systems, so as to improve the filtering accuracy under the condition of uncertain noise
characteristics, and solve the problem of low accuracy or even divergence of traditional
filtering methods in high-dimensional nonlinear target tracking [7]. Chun Ma proposed
the Variational Bayesian-based Robust Adaptive Kalman Filtering (VBRAKF) method
for GNSS/INS tightly coupled positioning in urban environments. It combines robust
estimation and variational Bayesian adaptive filtering to handle measurement outliers
and inaccurate noise statistics, improving positioning accuracy. Tested in urban vehicle
experiments, VBRAKF outperformed traditional methods, showing significant improve-
ments in accuracy and ambiguity resolution, especially under GNSS signal outages [8].
Jun Xiong proposed an adaptive hybrid robust filter (AHRF) for multi-sensor relative
navigation systems. This method integrates KF-RAIM (FDE-based method) and Huber’s
M-estimation-based Kalman filter (Huber-KF) using an adaptive interactive multiple model
(AIMM) framework. The AHRF improves positioning by efficiently switching between the
two filters to handle various error conditions, such as slowly growing errors, step errors,
and random biases. The proposed method outperforms conventional systems, particu-
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larly in scenarios with sharp system model transitions, achieving better robustness and
positioning accuracy [9].

The Sage-Husa adaptive filter is mainly used to estimate the statistical characteristics
of constant coefficient noise in linear systems, but it does not perform well for nonlinear or
time-varying noise systems [10,11]. In addition, it cannot compare the abrupt changes that
rely on historical observation data and cannot respond quickly to noise. Robust filtering
suppresses the influence of abnormal data, but it may also introduce bias to a certain extent.
In some extreme cases, the filter may ignore the drastic change in the real value, resulting
in the result deviating from the actual state [12].

In order to solve this problem, a SINS/GNSS adaptive robust filtering algorithm based
on an improved fading factor is proposed in this paper. An adaptive filtering algorithm
for dynamically adjusting the fading factor is designed. Firstly, the measurement variance
is artificially limited to prevent extreme values from affecting the positioning accuracy.
The construction of the fading adaptive factor comprehensively considers the satellite
positioning geometric precision factor (PDOP value), the solution quality factor (Q value),
the number of effective satellite observations and the observation vector residual, dynami-
cally adjusts the measurement noise covariance matrix, and enhances the adaptability to
the nonlinear observation model. The measurement is updated by sequential filtering to
prevent the negative determination of the measurement noise matrix due to the excessive
input state noise. The robust factor is based on the standardized residual vector, and the
weight function is used to assign weights to suppress the interference of abnormal observa-
tions on the filtering results. In order to further optimize the navigation state estimation,
this paper combines the improved adaptive filtering algorithm with the robust filtering
algorithm to obtain the optimal estimation value of the navigation, which suppresses the
accumulation of model error and reduces the influence of nonlinear error on the state esti-
mation. By designing vehicle-borne and ship-borne experiments, the proposed algorithm
is compared with the extended Kalman filter (EKF), robust filter (RKF), and Sage-Husa
adaptive filter (AKF) in terms of position, speed, and attitude. The algorithm shows better
accuracy and smoother performance. The experimental results show that the algorithm can
significantly improve the stability and accuracy of navigation and positioning in a complex
dynamic environment.

The structure of this paper is as follows: Section 2 summarizes the proposed method.
This section introduces the overall framework and process of the adaptive robust filtering
algorithm with improved fading factor and focuses on the implementation steps of adaptive
filtering and the dynamic weight adjustment mechanism of real-time optimization of
fading factor. Through the collaborative optimization of robust estimation theory and
adaptive filtering, combined with sequential update strategy, a dual-factor robust method
is constructed. In Section 3, the performance of the proposed method is verified by vehicle
experiments under high maneuvering environment and ship-borne experiments under
heave and sloshing, and the experimental results are discussed. Section 4 of the article
discusses the advancements over other algorithms and the potential benefits and limitations
of this paper’s algorithm. It also makes an exploration of future research based on the
limitations Finally, Section 5 summarizes this article.

2. Methods
2.1. Research Design Framework

This study aims to solve the problem of nonlinear observation model mismatch and
insufficient anti-interference ability of SINS/GNSS integrated navigation system in complex
dynamic environment, and proposes an improved adaptive robust filtering algorithm
(ARKF). The research framework follows the closed-loop research system of “problem-
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driven — theoretical modeling — algorithm design — experimental verification’. The
specific framework design is as follows:

e  Problem-driven: In complex dynamic environments (such as urban canyons, marine
high-vibration scenarios), the SINS/GNSS integrated navigation system faces the
following core challenges: (1) Model structure mismatch: The traditional EKF uses
first-order Taylor expansion linearization. When encountering high-frequency vibra-
tions, the second-order truncation error accumulates, resulting in a non-positive state
estimation covariance matrix, causing the risk of filtering divergence. (2) Dissimilation
of noise characteristics: GNSS observation noise exhibits pulse characteristics due to
multipath effects and occlusion; the colored noise generated by IMU in the vibration
environment breaks through the classical Gaussian white noise hypothesis, which
leads to the inaccurate estimation of the noise model by the system and affects the
filtering effect.

o  Theoretical modeling: Based on the SINS/GNSS loosely coupled model, the 15-
dimensional error state vector and the 6-dimensional observation vector are defined
and the state equation and measurement equation are constructed.

e  Algorithm design: The dynamic fading factor is constructed by multi-source informa-
tion fusion, and the sequential filtering is used to update the measurement to avoid
the negative determination of the measurement noise covariance matrix. At the same
time, the standardized residual and IGG-III weight function are combined to suppress
the influence of abnormal observation on state update, and the two-factor robust
mechanism is realized.

e  Experimental verification: In order to verify the performance of the algorithm, a set of
vehicle-mounted experiments was designed. The experimental time was about 20 min.
Due to the high-rise occlusion, the data had a GNSS signal of about 200 s. A set of
ship-borne experiments, three-level sea conditions, were designed, and the experiment
lasted about 1 h. After the 2000s, the heave of the ship was significantly increased
due to the wind and waves. The emergence of these abnormal conditions increases
the uncertainty of navigation and can better verify the stability of the algorithm in a
disturbed environment.

2.2. Combined SINS/GNSS Navigation Models
In this paper, based on the observation of position and velocity by GNSS, the

GNSS/INS loose combination is studied to solve the nonlinear problem of the system [13].
The state space model and measurement model of SINS and GNSS integrated navigation
system are as follows [14]:

X = Py /-1 Xp—1 + L1 Wi
Z, = Hi X + vg

E[Wi] = 0, E[W,W]] = Q;dy, @
E[Vi] = 0, E[ViV]] = Rk,
E[WkV]T] =0

where ®; /i1 is the state transfer matrix of the system; I',_; is the noise driver matrix; Wjy_,
is the process noise vector; Qy is the state noise covariance matrix; Ry is the observation
noise covariance matrix; meanwhile, Q;, Ry should be positive definite matrices; X
is the state vector; Z; denotes the measurement vector of the system output; Hy is the
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measurement matrix; v, denotes the measurement noise, where the 21-dimensional state
vector contains the navigation state error and the sensor error, defined as [15].

T
Xi= o 80" ¢ by ba sy s @

where J7" is the inertial position error vector; dov" is the inertial velocity error vector; ¢
is the attitude error vector; by is the three-axis gyroscope bias vector; b, is the three-axis
accelerometer bias vector; s¢ is the gyroscope scale factor error; s, is the accelerometer scale
factor error vector.

2.3. SINS/GNSS Adaptive Robust Filtering Algorithm Based on Improved Fading Factor (ARKF)

The SINS/GNSS adaptive robust filtering algorithm based on improved fading factor
solves the problem that the traditional filtering algorithm is susceptible to non-Gaussian
noise and abnormal observation in complex dynamic environment. The core of the algo-
rithm is to dynamically adjust the filter by constructing a fading adaptive factor and a
robust factor to improve the filtering performance and navigation accuracy.

The key to improving adaptive filtering is to construct a fading adaptive factor and ad-
just the measurement noise covariance matrix in real time, so as to enhance the adaptability
of the filter to dynamic environmental changes. This paper comprehensively considers the
four parameters of satellite geometric precision factor (PDOP value), solution quality factor
(Q value), effective satellite observation number and observation vector residual, and dy-
namically adjusts the size of the adaptive factor. And the gross error detection is performed
before the measurement update, and the upper and lower limits of the measurement vari-
ance are artificially set to avoid the influence of extreme values. When the PDOP value
and Q value are low, and the number of effective satellite observations is sufficient, the
measurement environment is better, the adaptive factor is close to 1, and the filter trusts the
current observation data more. When the PDOP value and Q value are large, the number of
effective satellite observations decreases or the observation residual increases, the adaptive
fading factor decreases, and the filter reduces the weight of abnormal observations, thereby
reducing the impact of abnormal data on state estimation. According to the evaluation
results of the normalized vector residual mean, if a certain error standard C is met, the
weight of the filter will be adjusted accordingly. Secondly, the robust factor is constructed,
and the right function is used to determine the weight, so as to ensure the resistance of the
robust filter to abnormal data. Finally, the fusion of these two filtering methods can further
optimize the dynamic estimation accuracy of the system, especially in the case of complex
environment or strong interference, to ensure the stable operation of the navigation system.

The flow chart of SINS/GNSS adaptive robust filtering algorithm based on improved
fading factor is shown in Figure 1:

2.4. Improved Fading Factor Adaptive Filtering Algorithm (IAKF)

Since some information about the system model is implied in the measurement output,
if the system model parameters are not accurate enough, some of the parameters can be
modeled by adaptive estimation based on the measurement output [16,17].

When E[Wj] and E[Vj] do not satisfy equal to 0, using the traditional Kalman filter is
prone to filter divergence and does not allow the system to reach the optimal estimation [18].
When the observation is in an abnormal state, the measurement noise will have a great
impact on the filtering results. Therefore, the adaptive filtering is introduced to estimate
the measurement noise while estimating the parameters. The system noise variance is
difficult to adapt, and the measurement noise variance matrix is relatively easy to adapt.
Therefore, the designed adaptive filter uses the output edge as the state estimation and the
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measurement noise identification. The adaptive filtering algorithm of the improved fading
factor is as follows:

PDOP

number of satellites

Construct standardized
residual mean

A

Adaptive fading
factor b

| Detection of outliers |

Construct the measurement
noise covariance matrix R

Sequential filtering
Measurement update

| v
Robust Fltering{RKF)
| (Xmiﬂ I

. ARKF -
Xi=ox Xy +(1-)=x Xy,

Figure 1. SINS/GNSS adaptive robust filtering algorithm based on an improved fading factor.

The measurement noise covariance matrix is adaptive by innovation. The measure-
ment innovation is as follows [19]:

Vi =Zk — Zy k1 = HiklXye + Vi — KXo k1 = HiXo o1 + Vi 3)

where Vi is the measurement innovation; Zj denotes the observation vector; X /i1
denotes the predicted state vector; Hy is a measurement matrix [20,21]:

Vi ~ N(0, HyPy/x_1Hy + Ry) 4)

Ry is the measurement noise covariance matrix. where the measurement innovation
is considered to be white noise with 0 as the mean and Hy Py /k_lHE + Rg represents the
variance when the system is working normally [22]; and Py /1 is the covariance matrix of
the prediction error. The measurement noise variance matrix is estimated as follows [23]:

1& - ~T
Rie =+ Y (Viji-1Vijiog — HiPyji 1 H] ) (5)
i=1
. L . o . )
Ry = E[Z (Visi-1Vijioa — HiPiji 1H; ) + (Vi1 Vieyk—1 — HePry—1Hg)] (6)
i-1
- - < ~T
R = (1— B)Ri—1+ Br(Viesk—1Vi/k—1 — HkPrsk—1Hy) 7)
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In Equation (7):
_ _Pra
& Br—1+b
where o= 1,Bo=1— b, b is called the adaptive fading factor (0 < b < 1).
In Equation (5), when the actual noise is relatively small, it is easy to have neg-

®)

ative determination of the measurement variance, which is handled here by using
sequential filtering.

. (i 2 N N T
o) = (V) —HIPD (=) ©)

In order to prevent the filter from becoming unstable due to inaccurate measurement
noise estimation. By limiting the update range of the estimated measurement noise variance,
the stability of the filter is improved. The upper and lower limits of R,((i) are set artificially.
In the experiment, the lower limit R,,;,, is 0.3 times the nominal variance of GNSS position
noise and velocity noise, and the upper limit R,y is 3 times the nominal variance of GNSS
position noise and velocity noise. This setting can prevent extreme values from causing

filter divergence, while retaining the space for dynamic adjustment of noise [24]. There are

as follows: . j '
Rgl)in P I(cl) = Rgl)in
R = 3= por( + e’ RU, <0l < RUh o
R p¢ = Rinax

In this paper, we also add fault judgment on the basis of adaptive filtering, according
to Equation (10) when the system is fault-free Vj x_1 ~ N(0, H;Py /k—1H} + Ry.), based
on the residual detection technique, the filtering dispersion judgment is based on the
following [25]:

~T ~
Viesk-1Visk-1 > 3tr(HiPy k1 Hy + Ry) (11)

If the above equation is valid, it means that the actual error value is more than 3 times
that of the theoretical value, according to the principle that it is anomalous value, and the
use of these data for filtering can easily lead to unstable filtering dispersion, at this time,
let IA{,(:) = R

thaxs through the increase in the large number of measurement of the noise

variance array to make the anomalous value of the filtering system weighting is reduced to
reduce the impact on the results.

In order to obtain the adaptive fading factor b, the adaptive fading factor is constructed
by the PDOP value, Q value, effective satellite observation number and measurement vector
residual obtained by satellite observation. Firstly, the measurement scale factors &, f and A
are obtained to adjust the sensitivity of the system to the measurement error. The system
can evaluate the quality of the current environment and observation data in real time and
dynamically adjust the weight of the filter. The following is the formula:

_ PDOP—PDOPpmin
= PDOPuax—PDOPuin

B = oo Oy (12)
A=1— satnum—satnummin

satnummax —SaAtNUMpyin

In this formula, the factor  is used to adjust the influence of PDOP. PDOP represents
the geometric distribution of the satellite. The lower PDOP indicates a better satellite
geometric distribution and usually has better positioning accuracy, while the higher PDOP
indicates a worse geometric distribution. When PDOP is poor, this factor is at a lower
value, which makes the filtering system weaken the influence of measurement innovation
on positioning, thus improving the reliability of the filtering. The Q value measures the
quality of the satellite positioning solution and represents the accuracy and reliability of
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the GNSS positioning data. The f factor ensures that when Q is high, it usually indicates

that the quality of the positioning solution is poor. At this time, the filter is dynamically

adjusted to reduce the dependence on the data. The A factor is adjusted according to the

number of effective satellites used for positioning. When the number of satellites is large, it

means that the number of satellites involved in the solution is large, and the positioning is

usually more accurate. The A factor helps the system to adapt to changes in the number of

visible satellites. When the number of satellites is small, it can still maintain stability.
The construction formula for the fading adaptive factor is as follows:

_ ViV

"~ 3x|tr(HPHT+R)|

w1+ wr+ws =1

b= (1-u)x[0.999 — (w1 X« +wy X B+ w3 x A)*A]

u
(13)

where b is the adaptive fading factor, the measurement noise weight is adjusted by the
adaptive fading factor. The parameter u becomes larger, so that the adaptive fading factor
b decreases, and by reducing the value of b, the system’s response to the measurement
noise can be accelerated, so as to improve the tracking accuracy, especially in the case
of large noise fluctuations, so that it can be better adjusted and adapted to the current
environmental changes.

A represents the amplitude of the amplitude adjustment coefficient of the adaptive
fading factor, and the value is 0.07. Its core significance is to balance the dynamic response
speed of the noise estimation, so that the value of the fading factor is kept in the range of
[0.9-0.999] as much as possible [26]. If the fading factor is too small, the noise estimation
result will jump too violently.

For the selection of the adaptive fading factor amplitude adjustment coefficient A, we
re-compare the performance of the adaptive fading factor when A = 0.05, A = 0.07, and
A =0.09. It can be seen from the Figure 2 that when A = 0.05, the adaptive fading factor
b is insensitive to changes in the disturbance environment, which weakens the system’s
adaptive ability and reduces the response speed. When A = 0.09, the known adaptive
fading factor b should be between [0.9-0.999]. When b is too small, it is easy to cause
instability of the system. Therefore, when A = 0.07, the response speed and stability of the
filter achieve the best balance.

It is the weight coefficient of the satellite geometric accuracy factor PDOP, the weight
coefficient of the solution factor Q, and the weight coefficient of the number of effective
satellite observations. The selection and distribution of weight coefficients adhere to the
principle of significant influence of geometric accuracy factor, satellite solution factor and
effective satellite observation number on satellite positioning error.

e  Satellite geometric precision factor (PDOP): it directly reflects the influence of satellite
geometric distribution on positioning accuracy [27], and its weight w; is set to 0.4.

e  Satellite solution factor (Q): used to quantify the quality of GNSS solution. Table 1
shows the relationship between Q value and 3D positioning accuracy. The Q value
directly reflects the error range of GNSS positioning. Its weight wj is also set to 0.4.

e The number of effective satellite observations (Satnum): The number of effective
satellite observations does not directly reflect the advantages and disadvantages of
GNSS positioning solutions, but it can reflect the redundancy of GNSS positioning.
Therefore, this paper sets its weight w3 to 0.2.

In the filtering process, when the GNSS observation results are abnormal, the PDOP
and Q values will increase significantly, which represents the deterioration of the geometric
distribution of the satellite and the decrease in the solution quality [28]. This change means
that the system faces greater uncertainty, which may lead to a decrease in the confidence
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of the filter in the observed data. At the same time, the observation residuals of GNSS
will also increase, and the system will increase the adaptability to the measurement noise
according to the change in these abnormal residuals, and it will gradually improve the
response ability to the noise estimation. In addition, the parameter u will also increase,
thus prompting the adaptive fading factor b to decrease within a reasonable range. The
dynamic adjustment of the fading factor b enables the filtering system to flexibly adjust
the measurement noise covariance matrix according to the actual observation conditions,
thereby improving the robustness of the system in the face of complex disturbances. It
effectively suppresses the influence of abnormal data on the filtering results and prevents
abnormal observations from adversely affecting the navigation system.

The value selection of A
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Figure 2. Selection of adaptive fading factor amplitude adjustment coefficient A.

Table 1. Solution quality factor.

Q Description 3D Accuracy (m)
1 Fixed integer 0.00-015
2 Converged float or noisy fixed integer 0.05-0.40
3 Converging float 0.20-1.00
4 Converging float 0.50-2.00
5 DGPS 1.00-5.00

The value of fading factor b should not be too small. If b is set too small, the response of
the system to noise estimation will change dramatically. This change may lead to unstable
noise estimation results and jump phenomenon, thus affecting the stability and positioning
accuracy of the filter. Therefore, the fading factor should be kept within a reasonable range,
usually set between [0.9,0.999] to ensure that the filtering system can respond smoothly
during dynamic adjustment [29,30].

e  When the GNSS observations are reliable, when the satellite geometry is well dis-
tributed and the number of effective satellite observations is sufficient, the PDOP
value and Q value are usually low, and the system can obtain high-quality positioning
results [31]. In this case, the fading factor b will increase, the confidence of the filter to
the observation data will increase, and the system believes that the measurement data
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are more reliable. The update of the measurement noise covariance matrix will become
more stable, and the filter will give greater weight when processing the observation
data, so that the estimation results are more dependent on the observation data.

e  When the GNSS observations are unreliable, when the satellite geometric distribution
is poor and the number of effective satellite observations is insufficient, the PDOP
value and Q value will increase, and the system will face higher uncertainty and
positioning error. In this case, the quality of the observation data is poor, and there
may be a large measurement error or noise, which will lead to a decrease in the trust
of the filter to the observation data [31]. As the fading factor decreases, the update
of the measurement noise covariance matrix becomes more conservative, the trust of
the filter to the measurement data decreases, and the system depends more on the
inertial navigation system (SINS). This dynamic adjustment can effectively avoid the
estimation error caused by measurement noise or abnormal data.

Therefore, the dynamic adjustment mechanism of the adaptive fading factor designed
in this paper can make the system flexibly adapt to the changes under different environ-
mental conditions. Under harsh environmental conditions, a large number of measurement
noise matrices are obtained by reducing the b value, and the sensitivity to measurement
noise is enhanced. When the observation conditions are improved, the fading factor ap-
proaches 1, which helps the system to make more accurate use of historical data, so as to
maintain efficient noise suppression and positioning accuracy during long-term operation.
In the filtering system, with the dynamic adjustment of the fading factor, the system can
quickly reduce the dependence on abnormal observations in harsh environments, and
restore a high degree of trust in valid data when the observation conditions are good.
Through this adaptive mechanism, the system can automatically adjust the trust degree of
different measurements according to the real-time observation quality and achieve higher
positioning accuracy and robustness. Especially in the environment of GNSS signal occlu-
sion or large external vibration, it can effectively avoid the attenuation of filter performance
and the expansion of positioning error.

In summary, the overall flow chart of the improved adaptive filtering algorithm is
shown in Figure 3:

Y
GNSS
measurement
Constrained measurement
variance
v ‘
PDSP Construct the adaptive factorb Setto maximum
. Obtain measurement weights noise covariance
number of satellites
Constructing the measurement

noise variance matrix

!

Sequential filtering
Measurement update

Figure 3. Improved fading factor adaptive fading algorithm (IAKF).
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2.5. Robust Filtering (RKF)

Robust filtering can solve the problem of outliers and errors in navigation systems. By
reducing the influence of outliers on the filtering results, robust filtering can avoid filtering
divergence and ensure the stable operation of the integrated navigation system in various
complex environments [32]. The robust filtering process is as follows:

The prediction residual vector can better respond to the anomalies of state perturba-
tions [33]. Then, the weight function is constructed based on the standardized residual
vector. The construction process of standardized vector residual construction and anti-
differential factor sk is as follows:

_ “71((1')‘

5 JE S
g Rk [l/ l]

(14)

Sorting &, we have §{orted[j] > gforted[j 1], /j € [0,n — 2]. Since the observation
vector is 6-dimensional, n = 6, is taken:

5zorted [3] 4 (szorted [4]

mid
= 1
oF 5 (15)
The vector of resistance factor is as follows:
’Vk(i) ‘ a8
oA /Ry i, ]

Here, we use a three-stage weight reduction factor, IGGIII weight function [27,33]:

. <
o sk < ko pi - . sk < ko
= <<k = p () w<sk<h @7
0 sk > kq 0 sk > kq

where ‘171 denotes the standardized residual; kg and k; are constants, usually chosen as
ko=10 ~ 15, ky =25 ~ 8.0.
Sequential filtering is used to update measurements. In the robust filtering framework,

only the data at the current time and the estimation results at the previous time are needed,
and the weight can be dynamically adjusted according to the weighting factor and residual
of the current observation without storing all the historical data [34].

-1
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In summary, the overall flow chart of the robust filtering algorithm is as follows: In
summary, the overall flow chart of the robust filtering algorithm is shown in Figure 4:

2.6. Data Collection and Processing Analysis Strategy

The inertial navigation of SINS/GNSS integrated navigation vehicle data adopts
Honeywell HG4930, and its sampling frequency is 100 Hz. GNSS uses a single antenna
with a sampling frequency of 5 Hz. The vehicle line is a circle around Shandong University
of Science and Technology. The experiment lasted about 20 min. The ship-borne data also
uses HG4930 with a frequency of 100 Hz, and the GNSS sampling frequency is 10 Hz. The
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ship-borne route revolves around the offshore wind farm in Changyi, and the experiment
time is about 1 h. The time synchronization of GNSS and SINS is shown in Figure 5.
According to the satellite data, the UTC and PPS signals are obtained. The initial data of
IMU is timed by PPS, and the subsequent data are recursively timed according to the initial
time of IMU, and the subsequent data are measured by timer. The final IMU data with time
information is obtained by weighted fusion of recursive time and measurement time [35].

(Robust Filtering(RI(F))

a(V;) =1

Pi=pi

Figure 4. Robust filtering algorithm.
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Figure 5. Hardware time synchronization strategy.
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3. Experimental Demonstration and Analysis of Results
3.1. Experimental Environment

In order to evaluate the performance of the SINS/GNSS adaptive robust filtering
algorithm based on the improved fading factor, a set of vehicle-mounted measured data
collected in the complex environment of Qingdao City in 2024 was processed and analyzed
(Figure 6a); a set of ship-borne measured data collected in the sea area near Changyi,
Weifang, in 2024 under heave, low frequency, and high vibration environment are analyzed
(Figure 6b).

Figure 6. Experimental environment: (a) in-vehicle experiments; (b) shipboard experiments.

The INS data of the following two sets of experiments were collected by HG4930, and
the performance index parameters are shown in Table 2.

Table 2. HG4930 performance parameters.

Performance Parameters HG4930
Range/(deg/s) +400
gyros Bias instability / (deg/h) 0.35
ARW/(deg/v/h) 0.05
Range/g +20
accelerometer Bias instability /mg 0.05
VRW/(m/s/+/h) 0.05

3.2. In-Vehicle Experiments

GNSS uses the differential positioning solution, and the GNSS base station is set up in
the comprehensive building of Shandong University of Science and Technology Science
Park, with a baseline length of about 1 km. The experiment lasted for about 1200 s. The
experimental scene was selected as a complex urban environment, and the sports car
experiment was carried out around Shandong University of Science and Technology.

The GNSS differential sports car trajectory is as follows Figure 7 shows that the
differential signal is lost during the experiment. The satellite signal will be interfered
or reflected due to the occlusion of the building; similarly, satellite signals may also be
reflected by surrounding buildings or objects, resulting in multipath effects. The signal
incorrectly receives the reflected wave, affecting the accuracy of positioning [36].
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Figure 7. Vehicle experiment running trajectory.

Four different schemes are designed for this data set: method one uses extended
Kalman filter (EKF); the second method is the Sage-Husa adaptive Kalman filter (AKF);
the third method is robust filtering (RKF); method 4 uses the filtering method (ARKF)
mentioned in this paper. The high-precision navigation results obtained by NovAtel’s
post-processing software Inertial Explorer 8.70 are used as the true value of the reference
ground [37].

Figure 8A shows the geometric accuracy factor of the vehicle-borne experimental
satellite, which directly reflects the influence of the distribution of the satellite geometry
on the positioning error. When the vehicle passes under the tall buildings between 600 s
and 800 s, most of the satellite signals are blocked, resulting in poor satellite geometry,
which affects the observation effect of differential positioning. Figure 8B represents the
satellite solution factor (Q), which is used to quantify the GNSS solution quality. The Q
value can directly reflect the problem of satellite positioning difference between 600 and
800 s. Figure 8C shows the number of satellites involved in the solution in the vehicle
experiment. There are only four satellites involved in the solution between 600 and 800 s,
and the solution quality is poor. Figure 8D shows the change in adaptive fading factor b in
the vehicle experiment. In the case of poor satellite solution quality, the filtering system can
quickly adapt to environmental changes by adjusting the adaptive fading factor to obtain
the optimal measurement noise matrix in the current situation. When the observation
conditions are good and the measurement data are reliable, the value of the adaptive fading
factor approaches 1, so that the measurement noise is closer to the historical value. This
adjustment helps to improve the smoothness and stability of measurement noise, effectively
reduce the impact of noise fluctuations on system performance, and ensure the stability of
positioning accuracy.

The position, velocity, and attitude errors obtained by using the above four methods
and professional solution software are shown in Figures 9 and 10.

Figure 9A,C,E represent the comparison of the position errors of the four algorithms in
the northeast direction. Figure 9B,D,F represent the comparison of the velocity errors of the
four algorithms in the northeast direction, respectively. In the 600-800 s period with poor
satellite observation conditions, the algorithm proposed in this paper shows more stable
error characteristics than the other three algorithms. Specifically, the error value approaches
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Figure 8. Vehicle experiment (A) satellite geometric accuracy factor PDOP, (B) satellite solution
quality Q, (C) the number of effective satellite observations, (D) adaptive fading factor.

Figure 10A—C represent the error changes in the four algorithms in the roll, pitch,
and heading directions with time. According to the figure, because the algorithm in this
paper has adaptive characteristics, it can be adjusted according to different environmental
conditions. The proposed algorithm (ARKF) shows good stability and smoothness in the
estimation of roll, pitch, and heading angles.

In summary, EKF shows large transient fluctuations in multiple images, especially in
areas with high GNSS occlusion. This shows that EKF has poor response to nonlinear and
dynamic complex systems. The algorithm in this paper can quickly track the system state
in areas with large dynamic changes, and there is no significant deviation or oscillation.
The algorithm in this paper has high tracking accuracy for changes and can quickly recover
to a stable state. In summary, the algorithm in this paper shows obvious smoothness and
has the smallest fluctuation compared with other algorithms. In order to further compare
the accuracy of the position, velocity, and attitude of the four schemes, the position and
velocity error (RMS) are plotted as a histogram (Figure 11), and the corresponding results
are also summarized in Table 3.
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Figure 9. In the vehicle experiment, (A,C,E) represent the comparative analysis of the position
errors of the four algorithms in the three directions of the northeast day. In the vehicle experiment,
(B,D,F) represent the speed error comparison and analysis of the four algorithms in the three directions

of the northeast day.

For vehicle experiments, it can be seen from Table 3 that the accuracy of the algorithm
in the three-dimensional position is 47.12% higher than that of EKF, 35.26% higher than
that of Sage-Husa adaptive filtering, and 9.58% higher than that of robust filtering.
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Table 3. Vehicle-mounted experiments. Comparative analysis table of position, velocity, and
attitude errors.

ERROR EKF AKF RKF ARKF
Velocit FEastward 0.191 0.068 0.024 0.011
(er:fs)y Northward 0.215 0.075 0.015 0.012
Upward 0.078 0.040 0.054 0.055

. Roll 0.098 0.125 0.049 0.038
Azgzu?e Pitch 0.054 0.131 0.022 0.026
& Heading 0.715 0.308 0.575 0.313
Eastward 0.125 0.101 0.071 0.064

Position Northward 0.157 0.089 0.060 0.052
(m) Upward 0.237 0.215 0.156 0.142

Improved accuracy (%)  47.12% 35.26% 9.58%

3.3. Shipboard Experiments

The experiment was carried out in the sea area around Changyi, Weifang, China.
The experimental scene was a low-speed and high-vibration marine environment. The
experiment lasted about 1 h. The ship is equipped with four GNSS antennas, and a main
antenna is used as the GNSS solution result. The base station is set up on the coast, and the
baseline length is about 20 km, so as to obtain the differential GNSS positioning solution.
The specific ship-borne experimental route is shown in Figure 12.

Differential GNSS Trajectory
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Figure 12. Shipborne experimental trajectory.

Figure 13A,C show the geometric accuracy factor of the shipborne experimental
satellite and the number of satellites participating in the solution. Because there is no
satellite occlusion problem under the sea observation condition, the observation condition
is better. Figure 13B represents the satellite solution factor (Q) of the sea experiment.
Figure 13D shows the change in the adaptive fading factor b in the ship-borne experiment.

Figure 14 shows the change in the ship’s heave with time. For the marine sloshing
environment, the influence of the ship’s heave on the positioning accuracy cannot be
ignored, and the maximum heave amplitude reaches 1 m. After 2500, the heave amplitude
of the ship increases significantly. The SINS is prone to abnormal measurement in the low-
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speed and high-vibration heave environment, which has a great impact on the estimation

of the filter.
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Figure 13. Shipborne experiment. (A) Satellite geometric precision factor PDOP, (B) satellite solution
quality Q, (C) the number of effective satellite observations, (D) adaptive fading factor.
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selected for analysis. The position, velocity and attitude errors obtained by using the above

four methods and professional solution software are shown in Figures 15 and 16.

Delta E

EKF |
RKF 1

0.3

0.2

0.1

-0.1

-0.2

-0.3

1.5

’ H i i i l'-':“'
\ M

500 1000 1500 2000 2500 3000
t/sec
(A)
Delta N
EKF
RKF ‘
AKF I C

I,/
L

|

3500

-1.5

500 1000 1500 2000
tisec

©

Delta U

2500 3000

EKF
RKF

3500

500 1000 1500 2000 2500 3000
t/sec

(E)

3500

0.4

e
)

Delta ve/(m/s)
o

Delta ve

EKF
RKF

0.25

Delta vn/(m/s)

500

1000 1500 2000 2500 3000 35(
t/sec

(B)

Delta vn

-0.25

04

Delta vu/(m/s)
: °
o N

o
N

-0.4

-0.6

500 1000 1500 2000 2500 3000 3500
t/sec
Delta vu
EKF
RKF

500

1000

1500 2000 2500 3000 3500
t/sec

(F)

Figure 15. In the ship-borne experiment, (A,C,E) represent the comparative analysis of the position

errors of the four algorithms in the three directions of the northeast sky. In the ship-borne experiment,

(B,D,F) represent the comparative analysis of the velocity errors of the four algorithms in the three

directions of the northeast sky.



Remote Sens. 2025, 17, 1449

Delta pitch

Delta roll

04

EKF
RKF

Delta roll/deg

Delta pitch/deg

500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500
t/sec t/isec

(A) (B)

Delta yaw

EKF
RKF |

AKF

0.5

Delta yaw/deg
o

0 500 1000 1500 2000 2500 3000 3500
t/sec

(©

Figure 16. In the ship-borne experiment, (A—C) are the error comparison of the four algorithms in

roll, pitch and, yaw, respectively.

At around 2000 s, the interference of the ship’s heave motion to the positioning system
increases significantly. When the heave motion is enhanced, EKF has insufficient ability
to deal with the interference of nonlinear and non-Gaussian distribution, and the error
fluctuates greatly. Robust filtering needs to be improved and adapted to the offshore
heave vibration environment. The error of the algorithm in this paper can still maintain low
amplitude and good stability. Compared with all the algorithms in this paper, this algorithm
has the smallest error in the sky direction and the smallest fluctuation of the velocity error
curve, which shows that it has better stability in the strong interference environment.

In summary, other algorithms have poor adaptability to dynamic environments. Es-
pecially when the heave motion is intensified, the attitude estimation error increases
significantly, and even diverges. Whether it is roll angle, pitch angle, or heading angle, the
error curve of the algorithm in this paper maintains a small fluctuation under the influence
of heave motion (around 2000 s).

In order to further compare the accuracy of the position, velocity, and attitude of the
four schemes, the position and velocity error (RMS) is plotted as a histogram (Figure 17),
and the corresponding results are also summarized in Table 4.
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Table 4. Shipboard experiment position, velocity, and attitude error comparison and analysis table.

ERROR EKF AKF RKF  ARKF
Velodit Eastward 0.101 0.091 0.084 0.080
(er;’/“ )Y Northward 0.112 0.094 0.086 0.071
s Upward 0.254 0216 0.209 0173

. Roll 0.181 0.140 0.151 0.107
AEE:“;Q Pitch 0.204 0.163 0.141 0.128
8 Heading 0.355 0.279 0.321 0.223
Eastward 0.240 0.238 0.221 0.187

Position Northward 0.161 0.143 0.156 0134
(m) Upward 0.407 0.353 0.345 0.331

Improved accuracy (%)  19.44% 10.47% 8.28%

For ship-borne experiments, it can be seen from Table 4 that the accuracy of the
algorithm in three-dimensional position is improved by 19.44% compared with EKF, 10.47%
compared with Sage-Husa adaptive filtering, and 8.28% compared with robust filtering.
These results show that although the system faces great uncertainty and noise interference
in the marine environment with low speed, high vibration and severe heave, the algorithm
proposed in this paper can still effectively maintain a high accuracy level.

4. Discussion

The ARKEF algorithm can maintain stable and accurate positioning performance in
the vehicle environment with poor satellite positioning and the complex marine environ-
ment with severe heave. Compared with other algorithms, ARKF algorithm has stronger
robustness, better anti-interference ability, and higher application value.

The quantitative correlation between environmental perception (PDOP value, Q value)
and state prediction credibility breaks through the coupling problem of traditional filtering
noise statistics and disturbance suppression, and it provides a new paradigm for nonlinear
filtering theory. Two-factor robust theoretical framework: Through the collaborative
optimization of fading factor and residual weight, the stability criterion in the dynamic
noise scene is established, and the related results can be extended to the field of multi-sensor
fusion. In terms of practical value, high-precision navigation of unmanned systems can be
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achieved. Vehicle experiments show that the three-dimensional positioning error of ARKF
in complex urban areas is less than 0.1 m. Meet the sub-meter precision requirements of
unmanned distribution vehicles. In the ship-borne experiment, the heading angle error is
less than 0.223, which can support the accurate berthing of autonomous ships.

Limitations of the algorithm in this paper. In the existing research, the collaborative
optimization of robust filtering and adaptive filtering can partially suppress the influence of
non-Gaussian noise. However, if the statistical characteristics of noise are highly deviated
from the preset model, the adaptive mechanism of the algorithm may face the challenge
of insufficient convergence speed or lagging weight adjustment. For example, in the
vehicle experiment of this paper, when the satellite signal is completely occluded and
the inertial sensor noise is suddenly abnormal, the positioning error of ARKF is better
than other algorithms mentioned in this paper, but there are still short-term fluctuations.
This indicates that extreme non-Gaussian noise may impose higher requirements on the
dynamic adjustment range of the fading factor.

Aiming at the limitations, the deep learning method is introduced, and the filtering
parameters are adjusted by the online noise characteristic identification network to enhance
the real-time modeling ability of non-stationary noise. The weight design is improved, and
the robustness factor is optimized by combining more flexible distribution assumptions to
improve the robustness to impulse noise.

5. Conclusions

In this study, a dynamic robust filtering framework based on multi-source information
fusion is constructed to solve the problem of navigation accuracy attenuation in low-speed
and high-vibration environment. The real-time optimization of the fading factor is realized
by PDOP-Q-effective satellite number-residual joint criterion, and the double weighting
strategy constructed by standardized residuals breaks through the coupling problem of
traditional algorithms in measurement noise estimation and dynamic disturbance sup-
pression. The experimental results show that in the urban vehicle scene, the proposed
algorithm reduces the RMS value of three-dimensional positioning error by 47.12%, 35.26%,
and 9.58%, respectively, compared with EKF, RKF, and AKF, and improves the heading
angle accuracy by 42.3%. The mean square error of the velocity vector is reduced by 19.44%,
the roll angle tracking delay is shortened by 40 ms, and the continuous failure time of the
system is extended from 8.2 s to 23.7 s under strong disturbance conditions.

By establishing a closed-loop correction mechanism for the dynamic noise covari-
ance matrix, the collaborative optimization of robust estimation and adaptive filtering is
successfully realized, and the nonlinear mapping law between the observation quality
quantification index and the state prediction credibility is revealed. It provides a new solu-
tion for the fault-tolerant control of multi-source navigation systems in complex dynamic
environments, especially for the high-precision pose estimation requirements of unmanned
vehicles in low-frequency and high-vibration coupling scenarios.
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Abstract: Low Earth orbit (LEO) satellites offer a revolutionary potential for positioning,
navigation, and timing (PNT) services due to their stronger signal power and rapid geomet-
ric changes compared to traditional global navigation satellite systems (GNSS). However,
dedicated LEO navigation systems face high costs, so opportunity navigation based on
LEO satellites is a potential solution. This paper presents an orthogonal frequency division
multiplexing (OFDM)-based LEO navigation system and analyzes its navigation perfor-
mance. We use 5G new radio (NR) as the satellite transmitting signal and introduce the
NR signal components that can be used for navigation services. The LEO NR system and
a novel zero-padding correlation (ZPC) are introduced. This ZPC receiver can eliminate
cyclic prefix (CP) and inter-carrier interference, thereby improving tracking accuracy. The
power spectral density (PSD) for the NR navigation signal is derived, followed by a com-
prehensive analysis of tracking accuracy under different NR configurations (bandwidth,
spectral allocation, and signal components). An extended Kalman filter (EKF) is proposed
to fuse pseudorange and pseudorange rate measurements for real-time positioning. The
simulations demonstrate an 80% improvement in ranging precision (3.0-4.5 cm) and 88.3%
enhancement in positioning accuracy (5.61 cm) compared to conventional receivers. The
proposed ZPC receiver can achieve centimeter-level navigation accuracy. This work com-
prehensively analyzes the navigation performance of the LEO NR system and provides a
reference for LEO PNT design.

Keywords: low Earth orbit (LEO); new radio (NR); OFDM; navigation; navigation receiver;
integrated communication and navigation

1. Introduction

During the past decades, global navigation satellite systems (GNSS) have served as
the foundation for positioning, navigation, and timing (PNT) services that are critical for
agriculture, industry, and daily life [1]. Existing GNSS satellites are typically deployed in the
medium Earth orbit (MEO) to provide extensive signal coverage [2]. Consequently, due to
their extremely weak power levels, GNSS signals are highly susceptible to interference and
spoofing while suffering severe degradation in urban canyons and indoor environments [3,4].

The burgeoning low Earth orbit (LEO) constellations present a new opportunity to
overcome the limitations of existing GNSS and enhance the quality of PNT service [5-7].

Remote Sens. 2025, 17,2116 https://doi.org/10.3390/rs17132116
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Numerous studies have demonstrated the advantages of LEO-based PNT services. (1)
Compared to the existing MEO GNSS, the received signal power of LEO satellites enhances
by 25~30 dB [4,8,9]. (2) Rapid orbital motion of LEO satellites induces faster geometric
changes, reducing the convergence time of precise point positioning (PPP) from 30 to just
1 min [10].

Some studies focus on dedicated LEO satellites for PNT services. The first dedicated
LEO navigation satellite was the TRANSIT system designed by the US Navy [11]. Luojia-
1A, developed by Wuhan University, broadcasts a dual-band ranging signal with its orbital
data, significantly improving GNSS positioning performance [12]. The Centispace system,
an LEO navigation augmentation system designed for GNSS, operates in the same radio
frequency bands as GNSS (L1 1575.42 MHz and L5 1176 MHz) [13]. The Pulsar constella-
tion, designed by Xona Space, not only provides enhanced GNSS services but also offers
encrypted signals to support authentication [14]. Furthermore, by retrofitting existing
Iridium satellites, the satellite time and location (STL) service aims to provide assured time
and location estimates, even in challenging and strongly attenuated environments [15].

The limited coverage of LEO satellites [16] requires massive constellations to ensure
continuous navigation services, imposing prohibitively high costs that render dedicated
LEO navigation systems economically unfeasible. As most existing LEO constellations
are designed for broadband communications [17], integrating navigation functions into
communication signals has become a feasible solution. Three multiplexing methodologies
are used to integrate communication and navigation: time division multiplexing (TDM),
frequency division multiplexing (FDM), and code division multiplexing (CDM) [18]. In TDM,
navigation signals are inserted into communication signal as a frame [19,20]; FDM employs
binary offset carrier (BOC) modulation to achieve spectral separation between communi-
cation and navigation signals [21-24]; and CDM directly superimposes spread-spectrum
navigation signals onto communication waveforms. But these multiplexing approaches
inherently introduce mutual interference between communication and navigation signals.
This fundamental conflict motivates the exploration of opportunity navigation, which
directly leverages original reference signals in communication waveforms as navigation
signal [25-27].

Due to the spectral efficiency and anti-multipath capabilities [28], orthogonal frequency
division multiplexing (OFDM) has been adopted as the core physical modulation method
in Starlink [29,30] and 5G NTN networks [31,32] The OFDM-based opportunity navigation
is an increasingly vital and attractive paradigm [33-35]. Studies in [36,37] investigate the
feasibility of OFDM-based positioning; for non-cooperative LEO OFDM signals, cognitive
approaches have been adopted for localization [38,39].

However, there are some limitations for LEO OFDM navigation. (1) Cyclic prefixes
(CPs) have been universally adopted in OFDM, and they are a part replica of the OFDM
signal. These CP signals are used to mitigate inter-symbol interference caused by multipath
effects, but no work analyzes their adverse impact on the navigation performance. (2) The
OFDM system has reconfigurable bandwidth and spectrum allocation [31]. In addition,
the communication signal includes various channels (such as synchronization, broadcast,
and reference signals), and numerous signal components can be used for navigation
service. These NR and receiver configurations significantly influence their tracking accuracy.
But no study systematically evaluated the impact of different configurations and signal
components on tracking accuracy. (3) Many works research opportunity navigation based
on actual signals from the LEO constellations like Starlink, and the experiment systems are
complicated [30,38—44]. These studies also lack quantitative analyses of error sources, such
as clock bias and ionospheric and tropospheric delays. Providing simple, quantitative, and
low-cost analysis for LEO navigation research is essential.
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This paper builds a simulation system of OFDM opportunity navigation to overcome
these limitations. The 5G new radio (NR) is an open communication standard based
on OFDM, and it is used as an OFDM signal in the simulation. A novel zero-padding
correlation (ZPC) is proposed for the navigation receiver to eliminate interference from
cyclic prefixes (CP) and inter-carriers (including communication and reference signals). We
derive the power spectral density of NR reference signals and comprehensively analyze
how different NR configurations and signal components affect tracking accuracy. Moreover,
an extended Kalman filter (EKF) is designed for the LEO position. The experimental
results demonstrate an 80% improvement in tracking precision and a 88.3% enhancement in
positioning accuracy compared to existing NR receivers. This paper has three contributions:

1. A system architecture for LEO NR opportunity navigation is presented in detail. We
design an NR navigation receiver, and the zero-padding correlator (ZPC) is proposed
to address the influence of OFDM CP and inter-carrier interference on navigation
performance. For the proposed ZPC receiver, all the reference signals in NR can be
utilized to provide navigation service.

2. A experiment validates that ZPC eliminates the influence caused by CP and inter-
carriers and significantly enhances tracking accuracy. Compared with other works, the
ZPC receiver achieves higher tracking accuracy. Moreover, the relationship between
the tracking accuracy and NR configurations, including bandwidth, spectrum location,
and signal components combination, is rigorously investigated.

3. We discuss the positioning performance of LEO NR based on an EKF, and simulation
results show it can achieve centimeter-level accuracy. Additionally, the clock bias
and ionospheric and tropospheric effects on positioning performance are quantita-
tively analyzed.

The remainder of this paper is organized as follows. Section 2 introduces related
works. Section 3 details the NR signal model, OFDM modulation, and power spectral
density (PSD). Section 4 introduces the LEO NR navigation system and proposes the ZPC
receiver and EKF algorithm. Section 5 discusses the advantages of ZPC in tracking accuracy.
Section 6 analyzes ZPC'’s tracking performance under varying NR and receiver configura-
tions. Section 7 evaluates positioning accuracy via simulations. Section 8 summarize this

paper.

2. Related Works

To further explore LEO OFDM-based opportunity navigation, we survey relevant
research, including cooperative and non-cooperative, OFDM-based, and LEO navigation.

2.1. Non-Cooperative and Cooperative Opportunity Navigation

Opportunity navigation utilizes existing radio signals, such as cellular communication
signals and television broadcast signals, to provide navigation services [45]. Opportunity
navigation can be categorized into two paradigms: cooperative and non-cooperative.
Non-cooperative navigation typically operates without base station assistance, and the
navigation receiver does not subscribe to base stations. Thereby, non-cooperative navigation
offers enhanced privacy preservation. However, non-cooperative navigation suffers from
several limitations. (1) The transmitter positions are either unknown or low-accuracy,
resulting in degraded navigation accuracy. For terrestrial communication base stations,
estimating transmitters’ locations requires sophisticated systems and the estimated results
often remain unsatisfactory [46,47]. Although third parties may provide LEO satellite
ephemerides, their accuracy is low [48,49]. (2) Unauthorized users cannot precisely acquire
signal structures [44,50]. (3) Communication signals are not consistently active.
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These challenges in non-cooperative navigation can be effectively addressed through
the cooperative method [8,25]. For cooperative receivers, precise orbital data and signal
structures can be readily obtained from the transmitter, and transmitting signals can be
activated on demand according to receiver requirements. These features enhance navigation
accuracy, simplify receiver processing, and ensure continuous navigation services [51].
Hence, cooperative opportunity navigation is adopted in this paper.

2.2. OFDM-Based Opportunity Navigation

OFDM has been widely adopted in LTE, 5G NR, and LEO satellites due to its spectral
efficiency and multipath resilience. It is a promising modulation scheme for integrated
space-air-ground communications [29,30,33,34]. Therefore, OFDM-based opportunity nav-
igation has become a prominent research domain. LTE opportunity navigation focuses
on the time-of-arrival (TOA) delay estimation and interference mitigation. Shamaei [52]
pioneered theoretical performance bounds for LTE opportunity positioning through joint
TOA and direction-of-arrival (DOA) estimation, while Yang [53,54] experimentally charac-
terized the impact of fading environments and antenna ports on TOA estimation. Wang [55]
innovatively modeled inter-cell interference as Gaussian perturbations to quantify TOA ac-
curacy degradation. Techniques such as multipath estimating delay lock loop (MEDLL) and
synthetic aperture beamforming [56-58] have been developed to address multipath chal-
lenges. Additionally, channel fingerprint machine learning [59] and differential positioning
frameworks [60] are used to achieve meter-level accuracy.

The evolution of 5G NR has further expanded OFDM-based opportunity naviga-
tion capabilities. Abdallah [61] explored carrier-phase-based localization by NR signals,
whereas Xhafa [62] and Koivisto [63] achieved joint uplink time-difference-of-arrival (UT-
DoA) and angle-of-arrival (AoA) estimation through antenna arrays. Lapin [64] enhanced
multipath robustness via ESPRIT-based joint delay-phase estimation. Tensor-based channel
estimation [65], millimeter-wave beam fingerprinting [66], and machine learning-driven
TOA estimation systems [67,68] collectively constitute intelligent positioning architectures
that enhance both accuracy and operational reliability.

However, the CP is an essential part of OFDM signals, and its influence on navigation
performance is seldom addressed in these existing studies. Furthermore, the relationship
between navigation performance and OFDM configurations remains largely unexplored.

2.3. LEO Opportunity Navigation

The burgeoning development of LEO satellites provides new opportunities for oppor-
tunity navigation. Khalife [41] pioneered the feasibility verification of Starlink positioning
using carrier-phase observations, establishing a framework for LEO-based opportunity
navigation. Building upon this, an efficient integer ambiguity resolution algorithm was
developed via LEO differential carrier-phase processing [69]. While Doppler frequency can
offer alternative navigation solutions, its tracking accuracy remains constrained [40,42—44].
Signal coginitvie methodology is proposed to identify configurations of Starlink’s OFDM
signal [30,38]. Moreover, Kozhaya [70] achieved positioning through blind estimation of
OneWeb constellation beacons, whereas Zhao [71] enhanced navigation robustness by
fusing Doppler measurements from Iridium NEXT and Orbcomm constellations. Funda-
mental research investigates the impact of LEO satellite oscillator stability on navigation
performance [72]. The differential Doppler positioning method is proposed to improve
navigation accuracy for orbit-unknown LEO satellites [73].

However, the existing works rarely quantitatively evaluate the impact of different error
sources, such as clock bias, ionosphere, and tropospheric delay, on navigation performance.
This paper assumes that the LEO constellation transmits NR signals to quantitatively ana-
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lyze the error source’s impact on opportunity navigation performance. The experimental
results provide critical insights to future LEO PNT services.

3. Signal Model

This section first introduces the downlink physical channels of 5G NR, emphasizing
the signal components that can be used in opportunity navigation. Subsequently, the
OFDM modulation with CP is elaborated. The power spectral density (PSD) of the NR
reference signal is derived, serving as the foundation for tracking performance analysis.

3.1. NR Signal Components

NR specifies different physical channels to utilize radio resources fully [31]. As shown
in Figure 1, an NR frame lasts 10 ms and consists of 10 subframes, each lasting 1 ms.
Furthermore, each subframe is divided into 2# slots and numerology y € {0,...,4} is
an NR configuration parameter. Every slot contains 14 (normal CP) or 12 (extended CP)
symbols and the subcarrier spacing follows Af = 2# . 15 kHz. The resource grid further
illustrates the allocation of NR physical channels. Each resource element (RE) in the
resource grid carries a modulation symbol c, x, where n and k denote the symbol and
subcarrier indices, respectively. These modulation symbols c,, x, obtained from higher-
layer signaling, can be categorized into two types: (1) unknown communication data and
(2) predefined reference signals or predictable broadcast signals. The latter category can
serve as navigation signals.

1 Frame
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1 Half-fi
=5 o ame Half-frame0O | Half-framel
=) ms
1 sub-frame | | | B | | P | | | | |
=1 ms 0 3 5 6 7 8 9
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Figure 1. New radio (NR) physical channel structure and resource grid.

NR downlink signals conclude multiple physical channels: a synchronization signal
and physical broadcast channel (SSB), physical downlink shared channel (PDSCH), physical
downlink control channel (PDCCH), and channel state information reference signal (CSI-
RS). The SSB facilitates synchronization of user equipment (UE) and provides system
message broadcasting. It comprises three signal components: primary synchronization
signal (PSS), secondary synchronization signal (SSS), and physical broadcast channel
(PBCH). In the time domain, the SSB occupies four OFDM symbols with specific allocation:
one for PSS, one for SSS, and two for PBCH. Its transmission periodicity is configurable with
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options {5,10, 20,40, 80,160} ms. Both PSS and SSS are m-sequences and their combination
uniquely determines the physical layer cell identity (PCI):

PCI = N35° x 34+ NJSS 1)

where NIPDSS € {0,1,2} denotes the PSS sequence index, and NISSS €{0,1,...,335} repre-
sents the SSS sequence index. The PSS and SSS are fixed for transmitters and can be used
for navigation service.

The PBCH comprises a master information block (MIB) and demodulation reference
signals (DMRS). UE uses the DMRS, with predefined positions and content, for channel
estimation. The MIB carries system information about the base station: system frame
number (SEN), subcarrier spacing configurations, subcarrier offset parameters, and PDCCH
configurations. The SEN increases over time, and other MIB parameters typically remain
static. To enhance interference resistance, the MIB undergoes polar coding followed
by scrambling. As a consequence, the coded MIB signal is time-varying. Nevertheless,
cooperative receivers can effectively estimate these dynamic MIB components through
predefined protocol specifications. Due to the predictable property, the entire SSB signal
can serve as a local replica signal for navigation receivers.

PDCCH dynamically schedules uplink and downlink radio transmission resources.
The downlink control information (DCI) within PDCCH randomly varies according to
service requirements. Apart from DCI, PDCCH also contains DMRS, which is used for
channel estimation. PDCCH’s DMRS are predetermined; thus, it can be used for navigation.

PDSCH carries downlink communication data. Its time-frequency resources are flexi-
bly allocated according to service demands. To optimize spectral efficiency, NR allocates
most resource grid elements to PDSCH. Beyond random communication data, PDSCH also
incorporates fixed DMRS for channel estimation. Once PDSCH is configured, the DMRS is
deterministic, allowing it for navigation service.

CSI-RS in NR system is dynamically configured by base station according to commu-
nication scenarios. UE measures its power to evaluate the wireless channel quality. This
protocol-defined determinism signal can be used for navigation.

5G NR employs an ultra-lean transmission paradigm: Only SSB maintains periodic
transmission, while other physical channels are transmitted on demand. SSB, CSI-RS, and
DMRS embedded in PDSCH/PDCCH are predictable for the receiver and can be used as a
local replica signal in NR navigation receiver. All these predictable navigation signals are
referred to as reference signals for brevity in the following paper. Based on the reference
signal, time delays between the transmitter and receiver can be estimated through code
tracking loops to provide PNT service.

3.2. OFDM Modulation

OFDM combines multiple orthogonal narrowband subcarriers into a single wideband
signal and it is a core modulation technology for 5G NR systems. Consider an OFDM
signal containing K subcarriers with subcarrier spacing of Af. For modulation symbol c,, s,
the useful OFDM symbol s, (t) is expressed as

su(t) = 1 K/il_l Cp ke Ay (1) (2)
u - Kk, %1 nk Ty
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where T;, = 1/Af represents the useful symbol duration. This paper employs 1024 sub-
carriers with a subcarrier spacing of 15 kHz. The rectangular window function uy(t) is

<
uT_{l,O_t<T )

defined as

0, others

The cyclic prefix (CP) is adopted in the NR system to mitigate inter-symbol interference
(ISI) caused by the multipath. CP is a copy of OFDM symbol:

1 K/2-1

sg(t) = kf;qz cn e Wug (1) 4)

where Ty denotes the CP duration and is determined by maximum multipath delay.
CP is appended at the beginning of the useful OFDM symbol and the complete
time-domain representation of an OFDM symbol with CP is given by

1 K/2-1

Ssym(t) = X kf_ZK/z Cn,kej(Z”kAft)uTsym (t) (5)

where Tsym = T, + Ty is the duration of total OFDM with CP.

3.3. PSD of NR Reference Signal

The PSD of navigation signals enables the quantitative analysis of tracking accuracy
and anti-jamming capability, serving as a critical tool for navigation performance eval-
uation [74]. According to the NR signal model, reference signals are distributed across
subcarriers and are part of the NR signal. ZPC ensures orthogonality between reference
signals on different subcarriers while eliminating interference caused by the CP and inter-
carrier. Therefore, when the correlation integration period is sufficiently long, the PSD of
the NR reference signal can be expressed as the summation of the PSDs of all individual
subcarrier reference signals:

Grs(f Y. Guil(f (6)
NRS (n,k)eQ

where Ngg and ) denotes the total number and location set of the reference signal in an OFDM
resource grid, respectively. G, i (f) represents the PSD of the subcarrier reference signal at the
n-th symbol and k-th subcarrier. Its corresponding time-domain signal s,, x (f) comprises the
modulation symbol ¢, , multiplied by a complex exponential (subcarrier waveform):

Sn,k(t) = Cn,kejznkAftuT(t) = Cn,kpk(t) (7)

where pi(t) denotes the pulse shaping waveform of the k-th subcarrier.
For the subcarrier reference signal, its PSD G,, x(f) can be derived from the PSD Gprn/(f)
of the modulation symbol c,, ; and the spectrum Py(f) of the subcarrier waveform [75]:

1 2
Gi(f) = - IP(f)I"Gern(f) ®)
where Py (f) is the Fourier transform of the subcarrier’s pulse shaping waveform:

Pi(f) = FT[p(t)] = Tye 7™~ Tusine[(f — fi) T ©)

where f; = kAf represents the k-th subcarrier frequency.

99



Remote Sens. 2025,17,2116

The modulation symbol ¢, ; of the reference signal can be regarded as an ideal pseudo-
random sequence (PRN), and its PSD remains constant at unity:

Gern(f) =1 (10)

This paper uses a default NR and receiver configuration as listed in Table 1. Its PSD
curve is illustrated in Figure 2. The PSD of the NR reference signal exhibits multiple spectral
peaks at corresponding frequencies. Between these peaks, spectral notches appear due to
the absence of a subcarrier reference signal. NR parameters can adjust the number and
location of PSD peaks. Hence, the NR parameters determine its tracking performance.

Table 1. Default configurations in LEO NR navigation.

Parameter Value
FFT Length 1024
Subcarrier Spacing (kHz) 15
Sampling Rate (MHz) 15.36
Period (ms) 10
NR Basic Slot Number Per Period 5
Symbol Length Per Slot 8
Used BandWidth (MHz) 1.8
Resource Block Number 10
Subcarrier Number 240
Modulation QPSK
DMRS Mapping Type A
DMRS-TypeA-Position 2
PDSCH DMRSLength 1
DMRS-Additional-Position 0
DMRS-Configuration-Type 2
DMRS proportion « 3.50%
B (Hz) 20
Damping Coefficient 0.707
Delay-locked loop (DLL) Integration Time (ms) 10
Early-Late Spacing A (Sampling Time) 2
Transmit Power (W) 10
Proportion of Reference Signal in NR signal ~ 19.44%
Receiver Front-end Bandwidth (MHz) 15.36
Sampling Rate (MHz) 15.36
-55
¥
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Figure 2. Power spectral density (PSD) of NR. The unit of horizontal axis is Af.
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4. NR Navigation System

This section presents the system block diagram of the NR transmitter and navigation
receiver. We give a detailed introduction to the receiver tracking loop. A novel correlation
integration scheme is proposed to avoid the interference caused by the CP and inter-carrier.
Based on the tracking loop, an extended Kalman filter (EKF) is proposed to realize LEO
NR positioning.

4.1. Transmitting and Reception System Block Diagram

As illustrated in Figure 3, an NR opportunity navigation system comprises three
components: an NR signal transmitter, wireless channel, and navigation receiver.

C
5 ( t) ¢ < k .
s (¢ u < < _ | Bits Stream |
T_SQ_L Add CP P/S . | IFFT [ S/P |« Modulator Reforonce
<"
Channel
Loss and Dela
( y) ﬁocal
P fé‘st P
- ™
r FLL f meas

Discriminator

2 E
1&D > || |—’2 DLL T
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meas LPF

RS Generate

Navigation Service

Figure 3. NR navigation system block diagram.

We first introduce the NR transmitter, whose physical layer is similar to the OFDM
system. According to NR protocol [31], the higher layer of the base station generates a
reference signal and random downlink bit streams. These bit streams undergo digital
modulation (e.g., QAM or 16QAM), followed by resource grid mapping. As a result, the
serial data streams are transformed to parallel modulation symbols c,, . OFDM modulation
is implemented via inverse fast Fourier transform (IFFT), converting parallel signals to
serial waveforms to generate the useful modulated signal s, (t). The cyclic prefix is subse-
quently appended on useful signal s, (t) to form the final transmitted waveform ssym (t)
(the frequency up and down conversions are omitted). OFDM signals experience amplitude
attenuation and time delay through the wireless propagation channel. For LEO satellite
signals, additional Doppler frequency shift occurs due to relative motion between satellites
and receivers.

The architecture of the NR navigation receiver has an analogous process flow to
conventional GNSS receivers. First, the received NR signal is mixed with a local carrier to
generate an intermediate-frequency (IF) signal:

SIF([') = Re <SR(t)ef]‘27Tflocalt> = [SRS(t) —+ SCOM(t)]efj(znfet“’qje) (]_1)
where fi,, denotes the local carrier frequency, and f. and ¢, represent the frequency and

phase offset of the IF signal, respectively. scop(t) and sgs(t) denote the communication
data and navigation-available reference signal, respectively. The scop(t) may influence
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the navigation performance, and this influence should be avoided as much as possible for
the navigation receiver.

The NR receiver consists of two core processing loops: (1) a delay-locked loop (DLL)
for code delay estimation using the non-coherent early-late processor (NELP); and (2) a
frequency-locked loop (FLL) dedicated to estimating carrier frequency offset. The DLL and
FLL exhibit functional complementarity in signal tracking: the DLL eliminates transmission
delays by adjusting the phase of the local replica signal, while the FLL maintains carrier
synchronization by compensating frequency offset.

The NELP employs three parallel processing branches with relative delays 7 (prompt),
T —d (early), and T + d (late), where d specifies the correlator spacing. In the early branch,
the local replica reference signal sgg g (t) correlates with the received IF signal. Then, the
correlation results are sent to the integrate and dump (I&D) filter and generate correlation
amplitude Vg:

Tcoh
Vi = ‘/O SIF(t)SF{S,E(t)dt = RE(T)|SinC(ngCOh)| + 1ncor (12)

where T}, represents the duration of correlation integration. ncor quantifies the interfer-
ence caused by the CP and inter-carrier. Compared with the traditional GNSS receiver, the
CP and inter-carrier communication data significantly impact DLL accuracy. An interfer-
ence elimination method is proposed in the following subsection.

Similarly, the correlation amplitude V; of the delayed branch can be obtained. The
time delay of the received signal can be measured by utilizing Vi and V;:

2 2
VE _VL

Krg—=——= 13

Tmeas =
where Krs denotes the normalization parameter of the time delay discriminator, derived
from the S-curve [2].

To avoid the noise interference and achieve stable tracking time delay, a second-order
DLL tracking loop is utilized and it contains a first-order filter [2]:

Tcoh 2

Tt = Tfpre T Wy * 1.414 [Tmeas - Tmeas,pre] + > Wy [Tmeas + Tmeas,pre} (14)

where Tmeas, pre and T, pre Tepresent the measured and filtered delay from the previous
integration period, respectively. The natural frequency w, critically affects the tracking
accuracy and dynamic response of the NELP. w;, is calculated by the DLL noise bandwidth

BrpLL:
B pLL
Wy = _— 15
" 053 (15)
Next, the time delay estimate Test is derived according to the previous estimate Test pre
and the filter output 7y
Test = Test,pre + Teoh - Tr (16)

FLL operates on the prompt branch, and the frequency offset f, of the received signal is
measured according to the phase change. The phase can be obtained from correlation value
rp, which is integrated correlation between the IF signal s;(t) and local replica signal:

'Tcoh %
rp = /0 str(t)srg p(f)dt

TCO .
:/ " [sks (£) + scom(t)|e T sty 1 (1) dt (17)
0 ,

= Rp(7) sinc( feTeon)e'? + ncor
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When the correlation noise ncor is negligible, the phase variation between consecutive
integration periods becomes measurable:

T'PYPpre = |7p| ‘TP,prelej[¢7(PPre] (18)

where 7p pre and @pre denote the correlation value and phase offset in previous integration
period, respectively.
Hence, the frequency offset is calculated as follows:

arg [7P7P,pre]

19
ZnTcoh ( )

f meas —

Like DLL, the FLL employs a low-pass filter to eliminate high-frequency noise from
fmeas- The filtered output updates the local carrier frequency fioca to stably track the
frequency of the received signal.

Different from the conventional communication receiver, the time-delay configura-
tion of the local replica signal is a new requirement for the NR opportunity navigation
receiver. The total delay T decomposes into integer and fractional components relative to
the sampling interval T:

T= (Tint + TfraC)TS (20)

Integer delay T is implemented through discrete signal shifting, while fractional delay
Tfrac 1S achieved by precise phase adjustment of subcarriers. For example, the k-th subcarrier
accomplishes early and late phase shifts T, by multiplying modulated symbol c,, , with
complex exponential functions:

{ Cn,k,E = Cn,keszn'karac/K

) 21
Cnpl = Cn,ke]27tk1'fmc/l< ( )

4.2. Interference-Free Correlation: ZPC

First, we introduce the orthogonality condition of OFDM subcarriers: Subcarriers with
different frequencies are integrated within a useful symbol period T, i.e.,:

Ty ; ;
/ Cn’kcfnle]27rkAft67]27rlAftdt _ 0, k 7£ ! (22)
0 ' Tucpic,, k=1

m,k’
However, NR base stations append cyclic prefixes after OFDM modulation to prevent
ISI. The CP extends the symbol duration to Tsym. There exists interference when directly
correlating OFDM signals containing CP, as depicted in Figure 4a; in other words, cross-
correlation between different subcarriers becomes non-zero:

" Tsym . .
/0 § cn,kc,’;,leJZ”kAfte_]hlAftdt #0, k#I (23)

Using Tsym as the integration duration breaks subcarriers” orthogonality and induces
mutual interference, degrading NR DLL tracking accuracy.

This paper proposes an interference-free correlation: zero-padding correlation (ZPC).
As depicted in Figure 4b, the ZPC process involves two aspects: (1) For every OFDM symbol,
confining the integration duration to T, preserves subcarrier orthogonality, ensuring that
integration between different subcarriers equals zero; and (2) zero-padding the cyclic
prefix (CP) intervals effectively eliminates intersymbol interference (ISI). The proposed
correlation method preserves subcarrier orthogonality while eliminating the influence of
CP and communication data.
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Figure 4. Different correlation method: (a) conventional CP-based method with integration interval
Tsym (replica signal includes CP); (b) effective integration interval of proposed ZPC method is Ty
(replica signal utilizes zero-padding).

4.3. EKF for LEO Navigation

The extended Kalman filter (EKF) is a nonlinear estimation technique and demon-
strates particular efficacy in handling the real-time positioning of GNSS navigation re-
ceivers [2]. To ensure compatibility with subsequent research, the receiver’s state vector
incorporates position, velocity, and clock error parameters:

x(k) = [x(k), #(k), 5t (k), 6t (k)] " (24)

where r(k) = [x(k), y(k),z(k)] denotes the receiver position at epoch k in Earth-centered,
Earth-fixed (ECEF) coordinates, and i(k) represents receiver’s velocity. 5t and ot are the
receiver’s clock bias and drift rate, respectively.

The system dynamic model is constructed based on receiver motion characteristics:

x(k+1) = Fx(k) + w(k) (25)
where F is the state transition matrix and its definition is as follows:

I; Ists 031 03
03 I3 037 03
01,3 01[3 1 0
01,3 01[3 0 1

(26)
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where 7; denotes the EKF state propagation interval, equal to the coherent integration
duration T, in this study. I,; represents an n x n identity matrix, while 0, indicates an
m X 1 zero matrix.

w (k) is the process noise vector and its covariance matrix Q models system uncertainties:

187 18,72 031 031
0-— 78aT  SaTs 03,1 031 27)
013 015  SepTs+ 5ScfT8 3ScfT2
01,3 01,3 %Schs2 Schs

where S, denotes the PSD vector of receiver acceleration in ECEF coordinates, S represents
clock frequency drift PSD, and Sy corresponds to clock phase noise PSD. In this paper, S,
S, s and S are, respectively, set to diag(10, 10, 10), 1, and 1. Hence, Q remains constant
for specified motion states.

The pseudorange and pseudorange rate are used as observations in this paper, and
these observations are measured by the DLL and FLL, respectively. In addition to real
geometric distance and velocity, these measurements also contain various error components.
For i-th LEO satellite, its pseudorange measurement p;(k) can be expressed as

pi(k) = di(k) + c[0t(k) 4 Otsai(k) + Li(k) + Ti(k)] + €;(k) (28)

where d;(k) = ||r5(k) — r(k)|| denotes the true geometric distance between receiver and
satellite, with r, ; (k) representing the satellite’s ECEF position coordinates. ¢ denotes the
speed of light while 6t(k) and 0t (k) correspond to receiver and satellite clock offsets,
respectively. The ionospheric and tropospheric delays are modeled as I;(k) and T;(k), while
g;(k) is the ranging measurement error caused by receiver noise.

The pseudorange rate p;(k), measured from FLL, incorporates the satellite-receiver
relative velocity #;(k) and receiver’s clock drift 5t (k):

pi(k) = #i(k) + cot(k) + &4, (k) (29)

where ¢, ;(k) represents the velocity measurement error.
Assuming an LEO NR navigation receiver tracking N satellites, the augmented observa-
tion vector p(k) contains all the pseudorange and pseudorange rate measurements, i.e.,:

p(k) = [p1(k), -, pn(K), pr(k), -, pn (K)] (30)

Therefore, the receiver’s tracking loop provides 2N observations for estimating eight state
parameters, establishing an overdetermined system when N > 4.
The nonlinear observation equation is formulated as

p (k) = h{x(k)] + vi (31)

where h(-) denotes the pseudorange and pseudorange rate measurement function, and
vi = [e1(k), ea(k), - ,en(k), evi(k) eup(k), -, e,n(k)] represents observation noise. Its
covariance matrix Ry characterizes the measurement noise:

Ry =E {Vkvﬂ (32)

Ry has a close relationship with the carrier-to-noise ratio and is acquired according to
measured noise.
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EKF uses the Jacobian matrix Hj to linearize the observation model, and it is the
partial derivative of the measurement function to the state vector:
oh(x(k
g, - hx(k) -
ox(k)
This matrix quantifies the sensitivity of observations to variations in receiver position,
velocity, and clock bias parameters.
Moreover, the covariance matrix P characterizes the estimation accuracy of the state
vector, and its definition is as follows:

P = E|(x(k) — (k) (x(k) — x(k))" | (34)

where x(k) and (k) represent the true states and estimated states, respectively.

Figure 5 illustrates the EKF’s update process, which contains prediction and correction
modules. At the beginning of the EKF update, two initial parameters are required: (1) initial
state vector x(0), obtained via least-squares positioning using first-epoch observations; and
(2) initial covariance matrix P(0), evaluated by the uncertainties in position, velocity, and
clock ambiguity.

Initial estimates: k=k+1 l p(k)
%(0),P(0)

Measurement Update ( “Correct” )

Time Update ( “Predict” ) .
(1) Project the state ahead M C(;énpllt;tl}_ller KI?II??III_I%MHR -!
% (k+1) = FR(k) (=PH(HPH +R,)
(2) Project the error covariance ahead (22 I/{pciag eztlmia;[e w1t2 mezsgter;ent
P (k+1)=FP(b)F' +Q, R0 =% () +K,[p(k)=h(% ()]

(3) Update the error covariance
P, =(I—Kka)P,;

Figure 5. EKF update process.

In EKE, iterations update execute recursive prediction-correction cycles: In the predic-
tion phase, the filter propagates the state estimate X~ (k + 1) and covariance P~ (k4 1) from
%(k) and P(k) by using the system dynamics model. Then, the correction phase refines
these predictions through observation vector p(k) and Kalman gain matrix Kj:

K = P HY (HP H + Ry)™ (35)
The updated state estimate and covariance are as follows:

x(k) = %7 (k) + Ki(p (k) = h(x~(k))) (36)

P(K) = (1— K.H)P; 37

This closed-loop EKF outputs real-time navigation solutions while maintaining an
optimal balance between model predictions and sensor measurements.
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5. Improvement of ZPC Tracking Performance

This section validates the interference-free property of ZPC and compares ZPC with
other works in tracking performance. The experiment results demonstrate the improvement
of ZPC tracking accuracy and its advantages.

5.1. Validate the ZPC'’s Interference-Free Property.

An experiment is proposed to demonstrate the ZPC’s interference-free property, which
improves the tracking accuracy. There are three configurations in the experiments. (1) The
received signal is a conventional NR signal containing both reference signals and unknown
communication data. The local replica signal has a CP and its integration duration is Tsym.
(2) The input signal is the same as (1). Implementing ZPC utilizes a zero-padded local
replica signal with a T, integration duration. (3) The received signal only contains the
reference signal without communication data, and the receiver uses ZPC. The tracking
accuracy of DLL with different configurations is plotted in Figure 6. Comparative results
reveal two critical findings: First, the ZPC configuration (red curve) achieves significantly
higher tracking accuracy than conventional CP-based processing with duration Tsym (blue
curve). Because the CP introduces interference to the subcarriers” orthogonality when
the integrated duration is Tsym, the subcarrier maintains orthogonality when the ZPC is
adopted (the integrated duration is T,,). ZPC significantly eliminates interference caused
by the CP and inter-carriers, thereby improving tracking accuracy. Second, configurations
(2) and (3) have identical DLL standard deviation (STD) curves, which confirms their same
tracking performance. This indicates that the NR communication signal in other carriers
has no interference on the DLL when using ZPC. The reason is that ZPC maintains subcar-
rier orthogonality through optimized integration window selection and zero-padding CP.
Opverall, ZPC ensures the orthogonality and serves as an interference-free correlation mech-
anism, effectively eliminating the influence of the CP and inter-carriers while significantly
enhancing tracking accuracy.
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Figure 6. The relationship between delay-locked loop (DLL) tracking accuracy and different correla-
tion methods. DLL standard deviation (STD) represents the DLL tracking accuracy.
5.2. Tracking Performance Comparison of ZPC Against Other Works

This subsection compares our proposed ZPC receiver with other representative NR
navigation receivers by tracking accuracy. The ZPC receiver is a cooperative navigation
receiver that utilizes all detectable signal components as a local replica signal, including
SSB, CSI-RS, and DMRS in PDSCH and PDCCH. Shamaei first proposed an NR receiver
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exclusively using SSB signals [37]. This reception strategy ignores other available navi-
gation signals and does not consider the LEO navigation scenario. Neinavaie introduces
a cognitive (CON) method for LEO OFDM-like signals to identify navigation reference
signals without considering cyclic prefix influence [30,38].

For comprehensive comparison, three NR signal configurations are used in the experi-
ment:

e  Signal 1: using default configuration as baseline (see Table 1).

e  Signal 2: equivalent bandwidth to Signal 1 with PDSCH spectral center shifted from
zero frequency to 260Af.

*  Signal 3: PDSCH bandwidth expands (1.8 MHz — 10.62 MHz), slot number increase
(5 — 9), and DMRS-Additional-Position adjustment (0 — 1). For every NR frame,
the resource elements of the reference signal increase from 830 to 6850, leading to an
augmentation in the reference signal’s power.

Figure 7 compares the DLL tracking accuracy of different navigation reception strate-
gies for three NR signals. The experimental results reveal four key findings. (1) The SSB
navigation receiver (proposed by Shamaei) exhibits identical tracking performance for
different NR signals. This receiver only utilizes SSB signals, so the PDSCH changes do not
affect its tracking performance. (2) Our proposed ZPC receiver achieves superior tracking
accuracy compared to SSB receivers. This enhancement stems from comprehensively utiliz-
ing all known reference signals, including SSB, DMRS in PDCCH and PDSCH, and CSI-RS.
(3) Compared with CON, the ZPC receiver significantly enhances tracking accuracy for
identical NR signals. Because the CON receiver does not consider the CP process, noise
caused by CP exists. Moreover, the PBCH changes over time, and the CON receiver cannot
recognize the PBCH signal. Notably, this paper assumes the CON receiver operates in
an ideal scenario, whereas real-world implementations face additional challenges from
dynamic PDSCH bandwidth allocation and an aperiodic reference signal. (4) The tracking
accuracy of ZPC can significantly improve by using different NR configurations. because
navigation signals demonstrate varying PSD and CNR across different NR configurations.
So, the base stations can flexibly configure NR signals according to navigation requirements.

ZPC (Signal 1)

ZPC (Signal 3)

— — —CON (Signal 1) — — —CON (Signal 3)
ZPC (Signal2) —-—-— SSB
0251 CON (Signal 2)
02— _

g sl 7T
50
= b ——— - - ____
w
= 0.1
[m)

Transmit Power (dBm)

Figure 7. DLL tracking accuracy for different NR signals and reception strategies. For signals 1, 2,
and 3, ZPC, respectively, achieves 80.3%, 85.6%, and 82.6% higher tracking accuracy than CON.
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6. NR Tracking Performance Analysis for Different NR and
Receiver Configuration

This section evaluates the impact of different NR signal and receiver configurations
on tracking accuracy. The analysis results offer systematic insights for LEO OFDM track-
ing loop.

6.1. Impact of NR Signal Configuration on Tracking Accuracy

As described in Section 4, NELP is used as a code tracking loop and its theoretical
tracking accuracy is as follows [76]:

Br, DLL(1 -0. SBLTcoh f Br /2 f) Sinz(ﬂ’fA)df
(Cnav>(27'(flsrﬁ/32 (f)sin(an)df)Z
fﬁ;ﬁz f)cos?(rfA)df
coh(cnav>(fﬁrr/2 Cos(ﬂfA)df)Z

ONELP =

(38)

where G(f) denotes the normalized PSD of the navigation signal, and f, represents the
receiver front-end bandwidth. A = 2d is the time interval between the early and late
branches, and By, pr 1 is the bandwidth of DLL. Cpay/ Ny is the carrier-to-noise ratio, which
can be determined by LEO transmit power (Appendix A) .

Unless otherwise specified, all NR signals follow default configurations listed in
Table 1. This section only utilizes PDSCH DMRS as a local replica signal to evaluate the
impact of NR configurations on tracking accuracy. The NR’s PDSCH contains 10 resource
blocks (RBs), each comprising 12 subcarriers with a 15 kHz spacing. Hence, the default
NR signal contains 120 subcarriers, and its bandwidth is 1.8 MHz. The center frequency of
PDSCH is located at zero frequency.

The DLL tracking accuracy significantly depends on three key configurations: signal
bandwidth, spectral distribution, and the proportion of NR reference signal. The base station
flexibly configures these parameters according to the communication scenario. First, we
discuss the relationship between tracking accuracy and signal bandwidth. The experiment
chooses three signal bandwidths: 1.8 MHz, 3.6 MHz, and 5.4 MHz. Their corresponding
reference signal PSD and DLL standard deviation (STD) are depicted in Figure 8. The
comparison results reveal that expanded NR bandwidth significantly enhances the DLL
tracking accuracy. At a fixed transmitting power of 60 dBm, the DLL tracking accuracy
improves from 0.1187 m (1.8 MHz) to 0.0605 m (3.2 MHz) and 0.0506 m (5.4 MHz), respec-
tively, by 49.03% and 65.80%. When the NR bandwidth increases, its spectral redistribution
moves to higher frequencies. This spectral redistribution leads to higher tracking accuracy.
Moreover, the tracking accuracy increases with transmitting power. Each five dBm power
increment generates approximately 44% improvement in DLL tracking accuracy.

The spectral location of the NR signal constitutes another critical factor affecting
tracking performance. For a fixed bandwidth NR signal, its center frequencies are placed at
0,130Af, and 260A f, respectively. The receiver front-end bandwidth is 15.36 MHz to ensure
complete signal reception. The relationship of NR signal spectral location and tracking
accuracy is shown in Figure 9. We can find that the tracking accuracy increases with the
center frequency of the NR signal. Under 60 dBm transmitting power, the tracking accuracy
achieves 86.35% enhancement when the center frequency shifts from zero frequency to
260A f. Moving the NR spectral to a higher frequency is conducive to improving tracking
accuracy. Notably, the NR spectral should be within the receiver front bandwidth to ensure
the integrity of the received NR signal.
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Figure 8. Relationship between NR signal bandwidth and tracking accuracy. (a) PSD of NR reference
signal; (b) DLL STD with different bandwidth NR signal. At 60 dBm transmitting power, the DLL
has 65.8% accuracy gain at 5.4 MHz compared to 1.8 MHz.
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Figure 9. Relationship between signal frequency location and tracking accuracy. (a) PSD of NR
reference signal; (b) DLL STD with different NR frequency location.
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The proportion of reference signals in NR signal is dynamically configured according
to channel quality [31], significantly affecting DLL tracking accuracy. According to NR
protocol, the parameter DMRS-Additional-Position adjusts PDSCH DMRS proportions. In
the experiments, DMRS-Additional-Position is configured to 0, 1, and 2, achieving refer-
ence signal proportions of 4.17%, 8.33%, and 12.5%, respectively. Its tracking accuracy is
plotted in Figure 10, and we can find that the DLL tracking accuracy increases with the
proportion of the reference signal. At 60 dBm transmitting power, elevating the reference
signal proportion from 4.17% to 8.33% and 12.5% yields 31.52% and 44.95% accuracy en-
hancements, respectively. Increasing the reference signal power allocation enhances the
CNR of the navigation signal. Notably, increasing the reference proportions reduces the
communication capacity, and reference signals occupy the same resource blocks as data
transmission. This one-to-one compromise suggests that a 12.5% reference signal allocation
would consume 12.5% of the total channel capacity, leaving 87.5% capacity for data. The
optimal ratio should be determined by specific application requirements for navigation
accuracy versus data throughput.

0.25

0.2}

m)

DLL STD

55 60 65
Transmit Power (dBm)

Figure 10. Relationship between portion of NR reference signal and tracking accuracy.

Overall, for fixed transmitting power, there are three NR configurations to enhance
DLL tracking accuracy: first, maximizing signal bandwidth; second, the spectral of the
NR signal is moved away from zero frequency as far as possible; and third, enhancing the
proportion of the reference signal to increase navigation signal power.

6.2. Impact of Receiver Configuration on Tracking Accuracy

DLL tracking accuracy is also determined by NR receiver configurations: (1) coher-
ent integration time (T.op), (2) DLL loop bandwidth (B ), and (3) different local replica
signals. T}, determines the integration duration of the integrate-and-dump filter, while
the loop bandwidth Bj, governs both DLL tracking accuracy and dynamic response speed.
Figure 11 and Table 2 demonstrate DLL tracking accuracy with different coherent in-
tegration time T.,, and DLL bandwidth By, and the results reveal that (1) at 60 dBm
transmitting power with fixed By = 20 Hz, decreasing T, to 5 ms (relative to the base-
line T, = 10 ms, By = 20 Hz) reduces DLL tracking accuracy by 2.52%, while elevating
Teon to 15 ms enhances accuracy by 2.52%; and (2) at 60 dBm with fixed T, = 10 ms,
reducing B; from 20 Hz (baseline) to 5 Hz and 1 Hz yields DLL tracking accuracy im-
provements of 48.10% and 76.58% respectively, indicating the stronger influence of loop
bandwidth on DLL tracking accuracy. Generally, extending T}, or reducing B; enhances
DLL tracking accuracy.

111



Remote Sens. 2025,17,2116

Table 2. DLL tracking accuracy summary for different coherent integration time T}, and DLL loop
bandwidth By at 60 dBm transmit power.

Teon (ms) Br (Hz) DLL STD (m) DLL STD Improvement
5 20 0.122 —2.52%
10 20 0.119 0% (baseline)
15 20 0.116 2.52%
10 5 0.062 47.9%
10 1 0.028 76.5%
0.25 : —
—Tcoh 5, BL'20
0.2 —Tcoh:10, BL:20<
= Tcoh:‘IS, BL:20
=015 T 10, B35 |
S —— Teon:10, B.:1
= 0.1
a
0.05 \
0 1
55 60 65

Transmit Power (dBm)

Figure 11. DLL tracking accuracy with different coherent integration time T, and DLL loop
bandwidth Bj.

Multiple reference signals, such as SSB, CSI-RS, and DMRS in PDCCH and PDSCH,
can be used as local replica signals for an NR navigation receiver. The selection of local
replica signals significantly influences DLL tracking accuracy. Previous experiments only
utilize PDSCH DMRS as the local replica signal. This experiment systematically evaluates
the impact of four NR replica signals: (1) SSB only; (2) PDSCH DMRS only; (3) combined
PDSCH DMRS and SSB; and (4) combined PDSCH DMRS, SSB, and CSI-RS. The DLL
tracking accuracy with different replica signals is plotted in Figure 12, and the proportion
of the replica reference signal is listed in Table 3. The results show the following: First,
exclusive use of PDSCH DMRS yields inferior tracking accuracy compared to other config-
urations; and second, composite replica signals demonstrate measurable improvements
in tracking accuracy. At 60 dBm transmitting power, the combined PDSCH DMRS+SSB
achieves a 3.48% accuracy enhancement over SSB only, while the full combination (PDSCH
DMRS+SSB+CSI-RS) provides a 5.06% improvement. The proportion of CSI-RS and PDSCH
DMRS is lower than 4%, so the improvement in tracking accuracy is not apparent. This
enhancement in tracking accuracy is attributed to the increased correlator output power
achieved through reference signal superposition. Hence, all predictable NR signals should
be used as reference signals to improve navigation performance.

Table 3. Resource elements distribution in an NR frame.

PBCH CSI PDSCH DMRS PDSCH Data Sum
Resource Elements 830 80 200 4600 5710

Resource Proportion 540 490, 3.50% 80.56% 100.00%
(Power Proportion)

In summary, this section analyzes the impact of NR signal and receiver configurations
on DLL tracking accuracy, offering systematic insights for LEO OFDM navigation design.
Based on the tracking results, the positioning performance is discussed in the following.
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Figure 12. DLL tracking accuracy with different local replica signals. (a) Transmitting power range:
55~65 dBm. (b) Zoomed-in range: 58~62 dBm.

7. Positioning Performance of LEO NR Signal

This section first simulates the motion trajectory of LEO satellites to generate the
wireless channel characteristics. Next, the positioning performance of the ZPC receiver
will be discussed, covering static and dynamic scenarios as well as the impacts of various
error sources.

7.1. LEO Navigation Scenario

The propagation channel is a key part of the NR navigation system and is generated
by LEO scenario simulation. We use Starlink’s orbit data to establish the LEO satellite
motion scenario [77]. The static receiver is located in Xi’an Jiaotong University, Shaanxi,
China (108.9788°E, 34.2481°N), at an altitude of 450 m. The dynamic receiver moves around
the campus at a speed of 60 km/h. The simulation starts at 12:03 UTC on 5 November
2024, and lasts 15 s. As shown in Figure 13, the elevation angles of six visible LEO satellites
are higher than 10 degrees, and their orbit parameters are shown in Table 4. Therefore,
the satellite-receiver kinematic simulation generates their geometric distance and relative
velocity. According to the distance and velocity, we obtain three key propagation channel
characteristics: (1) path loss, (2) time delay, and (3) Doppler shift. These parameters are
sampled at T}, interval to capture rapid channel variations. The received NR signal can
be built based on the transmitting signal and propagation channel characteristics. The NR
receiver includes multiple received signals from different LEO satellites, which experience
various channels. We use DLL and FLL to measure the time delay and relative velocity of
the received NR signals. Finally, at each T,y interval, the EKF updates these measured
values to estimate the receiver state vector, such as position, velocity, and clock error.
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Figure 13. The trajectory of LEO satellites and receiver.

Table 4. Orbital data from Starlink satellites [77].

Parameter Sat1 Sat 2 Sat 3 Sat4 Sat 5 Sat 6
Semi-major Axis a (km) 7136 6980 6970 7050 6820 7130
Eccentricity e 0.0001568 0.0001459 0.0001603 0.0001432 0.0001464 0.0001406
Inclination 7 (°) 53.0531 53.2146 53.2157 43.0039 43.0019 53.1584
RAAN Q (°) 189.0089  191.0164  305.9367  291.2627  294.6071  192.7046
Argument of Perigee w (°)  63.1495 78.6725 89.8188  270.5086  262.0388  61.5981
Mean Anomaly M (°) 82.5489 166.1697  347.1216  212.3624  208.9401  164.3645
Altitude ! (km) 765 609 599 679 449 759

1 The radius of Earth is 6371 km.

7.2. Positioning Performance

This section compares the three-dimensional (3D) positioning performance between
the proposed ZPC navigation receiver and the CON receiver. As described in Section 4, the
simulation of the LEO NR system consists of three core components: the NR transmitter, the
LEO satellite channel, and the NR navigation receiver. The NR navigation receiver contains
two sequential operational phases: signal acquisition and tracking. The acquisition module
initially estimates the pseudo-random noise (PRN) sequence identifier, code phase delay,
and carrier frequency offset. Like conventional GNSS receivers, the acquisition process
detects peaks generated by correlating local replica and received signals. For brevity, the
acquisition module is not expanded upon.

After successful acquisition, the receiver enters tracking mode. The DLL and FLL in
the NR receiver estimate the pseudorange and pseudorange rate, respectively. Based on
these measurements, the EKF output receiver’s state vector is in real time. The simulation
experiment includes six viewed satellites, as described in Section 7.1, and their tracking
errors are plotted in Figure 14. All the tracking error curves have a similar trend: There are
transient responses at the beginning of the tracking (0-0.2 s), then the error curves tend to
stabilize. The settling time is determined by the tracking loop bandwidth B; and is about
4.24/By [2].
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Figure 14. ZPC receiver tracking errors over time: (a) ranging error; (b) velocity error.

The proposed ZPC and CON receiver’s tracking accuracy comparison is plotted
in Figure 15. All simulation parameters for the ZPC and CON receivers are identical
except for the replica signal and correlation process. This simulation configuration helps
to compare the difference of receivers with high repeatability. The tracking accuracy is
quantified through the standard deviation (STD) of ranging and velocity errors. The
comparison results show that (1) significant differences exist in ranging and velocity
error STD for different satellites, with this difference being caused by distinct orbital
characteristics, leading to different Doppler shifts and carrier-to-noise ratios; and (2) the
CON architecture ranging accuracy ranges from 17.8 to 27.9 cm, and velocity precision
ranges from 3.66 to 4.93 cm/s. In contrast, the ZPC receiver demonstrates superior ranging
accuracy (3.0~4.5 cm) and velocity accuracies (0.7~1.14 cm/s). ZPC achieves about an 80%
improvement in both ranging and velocity accuracy. The CON receiver has two shortages:
Omitting the CP process leads to inter-carrier interference (ICI), and it cannot identify
PBCH signals decreasing the output power of correlation. The ZPC receiver addresses
these shortages, and all known NR reference signals are utilized as local replica signals.

Next, we analyze the positioning performance of the LEO NR system, considering
only the receiver noise while excluding other error sources. Four navigation reception
strategies are utilized: static ZPC, mobile ZPC, static CON, and mobile CON. Figure 16 and
Table 5 present the state estimation results from the EKF: the positioning and velocity error
in the north-south, east-west, and altitude dimensions (the ECEF coordinate is generally
used in the EKF filter; for clarity, ECEF outputs are converted to the ENU coordinate). The
experiment results show the following. (1) The static ZPC receiver exhibits positioning
error fluctuation during initial operation, stabilizing after 3 s of continuous operation.
The means of positioning errors in the north, east, and horizontal directions measure
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—1.84cm, 2.51 cm, and 4.54 cm, respectively. Moreover, the mean of the three-dimensional
positioning accuracy is approximately 5.61 cm. (2) For static and mobile ZPC receivers, the
difference of position and velocity errors is lower than 4%. Hence, they have similar position
performances, and the ZPC receiver is robust in mobile scenarios. Moreover, the CON
receiver demonstrates a similar position performance in both static and mobile scenarios.
(3) The CON receiver demonstrates lower positioning accuracies: 5.85cm, —17.33 cm, and
—44.38 cm in the north, east, and horizontal directions. Compared to the CON receiver, our
proposed ZPC receiver achieves 88.3% improvement in positioning accuracy. (4) The ZPC
receiver also demonstrates a significantly enhanced velocity measurement compared to
the CON receiver. The 3D velocity error mean of ZPC is 0.59 cm/s, while CON exhibits
more significant errors of 2.42 cm/s. This corresponds to a 75.62% improvement in velocity

accuracy.
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Figure 15. Stable tracking accuracy for different LEO satellites in static scenario: (a) ranging accuracy;

Velocity Error STD (m/s)

(b) velocity accuracy.

Table 5. Position and velocity error statistics: ZPC and CON receiver.

Mean Std
North East Down 3D North East Down 3D

ZPC (Static) —0.0184  0.0251  —0.0454 0.0561 0.0055 0.0050 0.0096 0.0059

Position error  ZPC (Mobile) ~ —0.0152  0.0184  —0.0507 0.0585 0.0087  0.0097  0.0139 0.0091
(m) CON (Static) 0.0585 —0.1733 —0.4438 0.4807 0.0184 0.0172  0.0249 0.0242
CON (Mobile) 0.0570 —0.1765 —0.4327 04717 0.0199  0.0270 0.0231 0.0288

ZPC (Static) 0.0005 —0.0039  0.0069 0.0487 0.0169  0.0267  0.0459 0.0281

Velocity error ZPC (Mobile) —0.0012 —0.0009 0.0115 0.0484 0.0160  0.0265 0.0465 0.0301
(m/s) CON (Static) 0.0189 —0.0126  0.0351 0.2157 0.0760  0.1361 0.1876  0.1212
CON (Mobile)  0.0171  —0.0099  0.0414 0.2200 0.0762 —0.1383 0.1918 0.1240
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Figure 16. Position and velocity error comparison: ZPC and CON receiver.

7.3. Positioning Performance with Error Components

The previous simulation experiment only considered receiver thermal noise, but actual
LEO NR systems necessitate comprehensive error modeling. These error sources include
(1) the clock error of receiver and satellite; and (2) the propagation delay uncertainties
induced by ionospheric and tropospheric effects. These errors are empirically configured
as follows [78]:

e Receiver clock phase offset: 0.1 m;

®  Receiver clock frequency drift: 0.01m/s;
e  Satellite clock phase offset STD: 0.5 m;

¢ Ionospheric error STD: 0.1 m;

e Tropospheric error STD: 0.2 m.

Over the simulation duration, these error components are stable and can be viewed
as constant. For the i-th satellite, its satellite clock offset dtg,, ;, ionospheric delay I;, and
tropospheric delay T; can be modeled as an equivalent time-delay error 6t ;, e.g.,:

Otegi = Otsati + L+ T; 39)

Moreover, the satellite-receiver geometry impacts the ionosphere and troposphere delay.
In the simulation, the six satellites” equivalent range delays cd teq,i are 0.238, 0.506, —0.747,
0.258, —0.466, and —0.062 m, respectively. Figure 17 and Table 6 demonstrate the effect of
different error components on the positioning error. The experiment sets four error combi-
nations: (1) white noise only; (2) white noise adds receiver clock offset; (3) composition of
white noise, clock error, and ionospheric delay; and (4) composition of white noise, clock
error, and ionospheric and tropospheric delays. The comparison results reveal that (1) the
first and second configuration have identical positioning accuracies, indicating that the
clock error has negligible positioning accuracy degradation due to receiver clock estimation
in the state vector; and (2) the third and fourth configurations generate substantial error
output, resulting in a notable EKF positioning bias. When comparing the results of the third
and fourth configurations, it is evident that incorporating tropospheric effects exacerbates
the positioning outcomes. Since the receiver is unable to estimate these errors, alternative
error-elimination techniques should be adopted to eliminate them.
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Figure 17. Position and velocity error with different error components.

Table 6. Position and velocity error statistics for different error components.

Mean Std
North East Down 3D North East Down 3D
Noise —0.0184  0.0252  —0.0454 0.0561 0.0055 0.0050 0.0096 0.0059

Noise and clock —0.0184  0.0252  —0.0454 0.0561 0.0055 0.0050 0.0096 0.0059

Position error  Noise, clock,
(m) and ION ! —1.2169 —0.1098 1.8210 2.1951 0.0135 0.0928 0.0537 0.0445
Noise, clock,

ION, and TRO 2
Noise 0.0005 —0.0039 0.0069 0.0487 0.0169 0.0267 0.0459 0.0281
Noise and clock ~ 0.0005  —0.0039  0.0069 0.0487 0.0169 0.0267 0.0459 0.0281

Velocity error  Noise, clock,
(m/s) and ION —0.0184 —0.0055 0.0502  0.0696 0.0170 0.0268 0.0460 0.0341

Noise, clock,
ION, and TRO

1 JON denotes inonospheric; 2 TRO denotes tropospheric.

—1.7307  1.7201 5.1643 5.7143 0.0540 0.1142 0.1938 0.1591

—0.0199 —0.0279  0.0857 0.1024 0.0172 0.0274 0.0461 0.0347

It is obvious that the simulation is essential for the LEO NR navigation system. The
simulation can estimate positioning performance and analyze the influence of error com-
ponents. The simulation method is cost-effective and repeatable in the LEO navigation
system design.

8. Conclusions

This paper investigates the navigation potential of OFDM-based LEO broadband
constellations and demonstrates that it can achieve a 5.61 cm 3D positioning accuracy. We
assume the satellites transmit a 5G NR signal and introduce the structure of NR, focusing
on reference signals applicable for navigation service such as SSB, DMRS, and CSI-RS,
along with CP OFDM modulation. The PSD of NR reference signals is derived and used
for the theoretical analysis of tracking performance.

Subsequently, the workflow of the LEO NR navigation system is outlined, encompass-
ing the transmitter, channel, and navigation receiver. A ZPC is proposed for the tracking
loop to eliminate CP and inter-carrier interference, ensuring that navigation performance
remains unaffected by CP and communication data. Based on the tracking loop, an EKF
positioning algorithm is developed.

118



Remote Sens. 2025,17,2116

We validate the interference-free property of ZPC and compare ZPC with conventional
SSB and CON receivers in tracking performance. The experiment results demonstrate that
the ZPC receiver has a significant improvement in tracking accuracy.

The comprehensive analysis evaluates navigation performance impacted by NR signal
bandwidth, spectral allocation, reference signal proportion, and replica signal combina-
tions. This parametric investigation provides theoretical support for tracking accuracy
enhancement of the LEO NR system.

A LEO satellite motion scenario is simulated to characterize channel properties. Based
on the EKF, the positioning performance of the LEO NR system and the impacts of error
sources are systematically evaluated. The simulation results provide configuration recom-
mendations for implementing opportunity navigation in LEO broadband constellations.
This study proposes a low-cost, repeatable, and efficient methodology for analyzing LEO
navigation performance through software simulation.

As LEO broadband constellations are primarily designed for communication services, fu-
ture research should focus on developing integrated communication and navigation receivers.
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Appendix A. Carrier-to-Noise Ratio of LEO NR Signal

This paper focuses on the navigation performance analysis of LEO NR signals. For
navigation researchers, the carrier-to-noise ratio (CNR) is often used in navigation perfor-
mance analysis. Next, we derive the relationship between LEO satellite transmitting power
and CNR at the receiver. Assuming the transmitting power of the LEO satellite is Prx, the
received power Prx after path loss (PL) attenuation is

Prx = Prx — PL (A1)

where the unit of Prx and Prx is dBm.

Only the reference signal is used for navigation service in opportunity navigation
scenarios. The reference signal includes system information broadcasting and channel
estimation signals, occupying a subset of NR signals. Let « denote the proportion of the
reference signal in the OFDM’s resource grid. Therefore, the navigation signal power Cpay
in the receiver becomes

Cnav = 10log;(«) + Prx (A2)

The resulting carrier-to-noise-density ratio is

CnaV
No

= Prx — PL 4 10log;,(a) — Np (A3)

where Ny denotes the noise power spectral density ant its representative value is
—203.98 dBW/Hz [2].
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For a LEO satellite at 600 km altitude with reference signal ratio « = 19.44%, Equa-
tion (A3) simplifies to
Cnav
No
The transmitting power of LEO satellites ranges 40~57 dBm (10 W~500 W) [79,80].
Considering antenna gains (0~40 dBi), the equivalent isotropic radiated power (EIRP)

~ Prx +10.87 (Ad)

exhibits significant variation. For brevity, this paper assumes Prx = 55~65 dBm, yielding a
navigation CNR of 65.87~75.87 dB - Hz.
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Abstract: The integer precise point positioning (IPPP) technique significantly improves the
accuracy of positioning and time and frequency transfer by restoring the integer nature of
carrier-phase ambiguities. However, in practical applications, IPPP performance is often
degraded by day-boundary discontinuities and instances of incorrect ambiguity resolution,
which can compromise the reliability of time transfer. To address these challenges and
enable continuous, robust, and stable IPPP time transfer, this study proposes an effective
approach that utilizes narrow-lane ambiguities to absorb receiver clock jumps, combined
with a robust sliding-window weighting strategy that fully exploits multi-epoch infor-
mation. This method effectively mitigates day-boundary discontinuities and employs
adaptive thresholding to enhance error detection and mitigate the impact of incorrect
ambiguity resolution. Experimental results show that at an averaging time of 76,800 s, the
frequency stabilities of GPS, Galileo, and BDS IPPP reach 4.838 x 10-16,4.707 x 10716, and
5.403 x 1071°, respectively. In the simulation scenario, the carrier-phase residual under
the IGIII scheme is 6.7 cm, whereas the robust sliding-window weighting method yields a
lower residual of 5.2 cm, demonstrating improved performance. In the zero-baseline time
link, GPS IPPP achieves stability at the 10~17 level. Compared to optical fiber time trans-
fer, the GPS IPPP solution demonstrates superior long-term performance in differential
analysis. For both short- and long-baseline links, IPPP consistently outperforms the PPP
float solution and IGS final products. Specifically, at an averaging time of 307,200 s, IPPP
improves average frequency stability by approximately 29.3% over PPP and 32.6% over the
IGS final products.

Keywords: IPPP; time and frequency transfer; ambiguity resolution; day-boundary
discontinuity; sliding window

1. Introduction

Time and frequency transfer technology plays a critical role in sustaining the global
time scale based on International Atomic Time (TAI). Various techniques have been de-
veloped to achieve precise time and frequency transfer, including two-way satellite time
and frequency transfer (TWSTFT), common-view (CV) and precise point positioning (PPP)
techniques based on Global Navigation Satellite System (GNSS) satellites, and optical fiber
link time and frequency transfer. Among these, PPP has emerged as a dominant method for
time and frequency transfer due to its cost-effectiveness and capability to simultaneously
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determine parameters such as station coordinates and receiver clock offsets using both
carrier-phase and pseudorange observations. However, in the standard PPP mathematical
model, the ambiguity parameters absorb both uncalibrated satellite hardware delays and
receiver hardware delays. Consequently, these ambiguities are estimated as float values.
This can introduce additional errors into the estimated receiver clock offset, potentially
degrading the accuracy of time and frequency transfer. To restore the integer nature of
carrier-phase ambiguities, several methods of server-side products to support this process
have been proposed, primarily categorized as the Uncalibrated Phase Delay (UPD) method
(theoretically equivalent to the Observable-Specific Signal Bias (OSB) method [1-3]), the
Integer Recovery Clock (IRC) or phase clock method, and the decoupled clocks method. In
this study, we utilize post-processed OSB products provided by the International GNSS
Service (IGS) analysis center to recover the integer properties of the ambiguities. This
enables high-precision positioning and time and frequency transfer with integer ambi-
guity resolution, known as integer PPP (IPPP). Experiments employing IPPP time and
frequency transfer techniques with post-processed IPPP products have demonstrated the

achievement of frequency transfer stability at the level of 1 x 10716

at averaging times
of 5 days [4,5]. While time and frequency transfer utilizing integer ambiguity resolution
already attains high accuracy, aspects concerning its continuity (especially during signal
outages or high ionospheric activity) and robustness (resistance to biases and errors under
diverse conditions) warrant further consideration and improvement.

Currently, the IGS analysis center generates post-processed precise products based on
single-day processing. During this process, day-boundary discontinuities manifest in the
estimated receiver clock offsets due to variations in pseudorange biases [6]. To mitigate
these discontinuities, Yao and Levine (2013) [7] proposed the shift-stacking (Rinex-Shift)
method. Similarly, Dach et al. (2006b) [8] and Guo et al. (2025) [9] employed a multi-
day batch processing strategy to attenuate the impact of day-boundary jumps, thereby
improving the continuity and stability of PPP time and frequency transfer. Petit et al.
(2015b) [10] implemented a combination of bridging and extrapolation methods to achieve
continuous IPPP time and frequency transfer. However, these processing strategies tend
to complicate the data processing workflow to a certain extent. Subsequently, Guo et al.
(2025) [9] employed IPPP using multi-day batch-processed precise products to further
reduce day-boundary discontinuities. This approach relies on specific server-side auxiliary
products, which significantly limits its applicability. Nevertheless, no universally accepted
solution exists to completely eliminate day-boundary discontinuity effects.

Within single-epoch processing, ambiguity parameters exhibit strong correlation with
the receiver clock offset parameter. Incorrect integer ambiguity resolution directly propa-
gates into the estimated receiver clock offset. Consequently, the time and frequency transfer
link may exhibit some jumps or outliers, leading to degraded stability [11]. Furthermore,
post-processed precise products are inevitably subject to anomalies or periods of degraded
accuracy. If these products contain biases due to system failures or anomalies [12], these
errors can be transferred into the estimated ambiguities or receiver clock offsets. Therefore,
an IPPP time and frequency transfer solution necessitates a robust IPPP processing strategy
capable of detecting and mitigating false ambiguity fixes. This is essential to maintain the
continuity and stability of the time and frequency transfer. In conventional approaches, a
float narrow-lane ambiguity is considered successfully fixed when its residual is smaller
than 0.25 cycles [13]. Nonetheless, abnormal values may still occur within this fixed thresh-
old. To address this issue, the IGIII scheme was proposed, in which the constraint variance
is appropriately inflated based on the magnitude of the residuals [14]. However, it relies
solely on single-epoch information, which may reduce its ability to detect localized anoma-
lies. Moreover, in most IPPP processing strategies, the threshold used to determine the
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correctness of ambiguity fixing, such as the ratio test, is typically chosen empirically and
cannot readily adapt to dynamic environmental changes [15,16]. Thus, static thresholds
are not necessarily optimal for all processing scenarios, and adaptive thresholding may
provide enhanced effectiveness in detecting and mitigating errors.

In this study, we implement IPPP time and frequency transfer utilizing OSB products,
which provide greater flexibility in handling multi-frequency signal combinations. To ad-
dress key challenges in operational IPPP links, we propose a novel strategy that effectively
mitigates the classical day-boundary discontinuity problem in time and frequency transfer
links. This strategy enables mitigation of day-boundary discontinuities through relatively
simple yet effective narrow-lane ambiguity compensation using products from different
IGS analysis centers. It thereby eliminates the dependency on specific post-processed
products and avoids complex data processing procedures. In addition, we design a robust
ambiguity-resolution constraint scheme to enhance the stability of time and frequency
transfer results. This method employs robust error detection metrics for anomaly iden-
tification. By integrating a sliding-window mechanism that incorporates historical data,
it achieves enhanced sensitivity to localized incorrect ambiguity fixes. The manuscript is
structured as follows: First, we detail the methodology for IPPP time and frequency transfer
using OSB products. This is followed by a comprehensive description of the processing
strategy for day-boundary discontinuity mitigation and the implementation of the robust
constraint scheme. Subsequently, we present the experimental design and evaluate the
performance of time and frequency transfer links across multiple stations. Finally, we
present the principal conclusions of this work.

2. Method
2.1. Materials and IPPP Approach

Multi-frequency GNSS Observation Model
For GNSS satellite s and receiver r, the multi-frequency pseudorange and carrier-phase
observation equations can be expressed as

)

Py = oy +cdty —cdt® + vy - Iy + 3y Zew + (brn — by) + €7
L}, = 07 +cdty —cdt® — vy - Iy 415, Zs o + An (N;, +Bry—B) +¢,

where P and L denote raw pseudorange and carrier-phase observations, respectively; n
represents the frequency index; p; is the true geometric range between receiver and satellite;
c is the speed of light in a vacuum; dt, and dt° are receiver and satellite clock offsets; Z; 4
is the zenith wet tropospheric delay; m; ,, is the mapping function for zenith wet delay
tropospheric delay; I7 is the slant ionospheric delay at the first frequency; v, = A2/ is
the ionospheric scaling factor; A, is the signal wavelength (m); N}, denotes the integer
carrier-phase ambiguity in units of cycles; b, ,,/b;, denote receiver/satellite pseudorange
hardware delays; likely, B, , / B;, denote receiver/satellite phase hardware delays; ¢; ,, / ¢} ,
represent pseudorange/carrier-phase observation noise, including multipath effects.

In this study, the following error sources are corrected using established models and
thus omitted from the equations: satellite/receiver antenna phase center offsets (PCOs) and
variations (PCVs), relativistic effects, solid earth tides, ocean tidal loading, and phase wind-
up. For first-order ionospheric delay elimination in dual-frequency scenarios (frequencies 1
and 2), the ionosphere-free combination is applied:

{ P = P} + BrePs = 5 + cdty — cdt® + 15 Zo + (b — big) + € 2

Lip = wipLs + BieLs = o5 + cdty — cdt® +m3 o Zy o + Atp (Nip + Brir — Bjp) + € 15
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where IF denotes the ionosphere-free combination; ajr and Bip are the corresponding
combination coefficients. In the pseudorange observation model, b, 1r and b represent
the combined hardware delays at the receiver and satellite ends, respectively. Similarly,
in the carrier-phase observation model, B, 1r and By, ei/IF refer to the receiver and satellite
phase hardware delays, respectively. The terms e} | and €} | represent the measurement
noise and multipath effects in the ionosphere-free pseudorange and phase observations.
At is the wavelength of the ionosphere-free combination, and Nj; is the corresponding
carrier-phase ambiguity.

To implement PPP with ambiguity resolution, we adopt a cascaded ambiguity fixing
strategy, introducing the wide-lane and narrow-lane ambiguities Ny, and Ny, (where Nj
is typically regarded as Ny for simplicity). These ambiguities are jointly estimated using
the Melbourne-Wiibbena (MW) combination [17] and the ionosphere-free combination, as
defined by the following equations:

Livw = AwL(Nwr + Awe)
o (Latza Lotz ARz )t (Pate,) )
N ( ) fith
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where Ay, and Ay, represent the wavelengths of the wide-lane and narrow-lane combi-
nations, respectively. Ay, denotes the fractional component of the wide-lane ambiguity,
corresponding to the non-integer portion less than one full cycle. Equation (5) describes the
transformation relationship between the ionosphere-free carrier-phase observation model
and the wide-lane and narrow-lane ambiguity parameters. z;; and z; , denote the antenna
phase center offsets (PCOs) for different frequencies, as defined in [18]. It is particularly
important to note that PCO errors can be frequency-dependent. When the Z-component
of dual-frequency PCOs is inconsistent, the discrepancy may reach several decimeters,
potentially leading to incorrect ambiguity fixes [19].

s fitfas fo s
= N — N 6
7 NL F nE T g N (6)

Due to the relatively long wavelength of the wide-lane combination (up to several
tens of centimeters), it is less sensitive to errors and can be reliably fixed by rounding.
Subsequently, based on the transformation relationship among Nig, Nwr,, and Ny, the
narrow-lane ambiguity can be resolved using the LAMBDA method.

IPPP Implementation Utilizing OSB Products

From the above equations, it is evident that the critical step in restoring float ambiguity
parameters to integer solutions lies in separating the integer component of ambiguities
from the fractional hardware biases originating from satellites and receivers. To achieve
this, various analysis centers provide distinct products to eliminate satellite hardware
delays from integer ambiguity estimates. When combined with between-satellite single
differencing, these products further mitigate receiver hardware delays. Consequently,
the fractional components can be isolated from ambiguity parameters, enabling integer
ambiguity resolution.
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In this study, we utilize the post-processed OSB products provided by the Centre Na-
tional d’Etudes Spatiales (CNES) analysis center (note that this differs from the traditional
IRC-based fixing method). The IPPP fixing procedure presented herein is generalizable
and can also be applied to clock and OSB products from other IGS analysis centers. The
fundamental workflow for implementing OSB products alongside other post-processed
precise products is illustrated in Figure 1.
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Figure 1. Flowchart of the ambiguity resolution strategy based on CNES OSB products using a
dual-frequency ionosphere-free combination. Green boxes denote data or products while blue boxes
denote processes.

To recover the integer nature of the ambiguities, a cascaded ambiguity resolution
strategy is adopted, as proposed by Ge et al. [20]. In this approach, the ionosphere-free
ambiguity is decomposed into wide-lane and narrow-lane components, and all three
ambiguity terms are subsequently estimated. The relationship among these components is
described by Equation (6).

~1, ~ 1 ~
ANI}]7 =N — NiF @)

The first step is to estimate the float ionosphere-free ambiguities, which forms the
foundation for implementing IPPP. In this study, the satellite with the highest elevation
angle is selected as the reference satellite. Between-satellite single differences (SDs) are
then formed between the reference satellite and the remaining satellites involved in the
ambiguity resolution. Using an extended Kalman filter (EKF), the float single-differenced

ionosphere-free ambiguities are denoted as AZ:I;;, where i refers to the satellite under
consideration and j denotes the reference satellite.

The next step is to fix the wide-lane ambiguities. The float wide-lane ambiguities can
be derived from the MW combination. The MW combined observation equation is given
as follows:

AR, = Awi AN + AwLAugy + AwLAO iy + AwrAeyy @®)

AO%/\/L represents the phase center offset (PCO) correction. When the PCO corrections

for the first and second frequencies are equal, AO;’/{NL becomes zero. Aui}\j,L denotes satellite
and receiver hardware bias. After applying the OSB corrections and compensating for the
vertical PCO error, the satellite-side hardware bias and PCO-related bias in the wide-lane
ambiguity are effectively removed—this is referred to as the Wide-lane Satellite Bias (WSB).
Subsequently, by forming between-satellite single differences, the receiver-side hardware
biases—known as the Wide-lane Receiver Bias (WRB)—can also be eliminated, thereby
restoring the integer nature of the wide-lane ambiguity.

AN = (N - 83) — (%] - 1) )
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The MW combination has a relatively long wavelength (approximately 86 cm for GPS),
and Equation (9) possesses inherent integer characteristics. After multi-epoch smoothing,
the wide-lane ambiguities can be directly fixed by applying rounding.

Finally, the narrow-lane ambiguities are fixed. Due to the short wavelength of Ni
(approximately 19 cm for GPS), measurement noise and multipath effects can cause sig-
nificant deviations between Nj and the true ambiguity Nj. Moreover, the strong corre-
lation among ambiguities associated with different satellites must be taken into account.
Therefore, the LAMBDA method is employed to reliably fix Nj. Once fixing Nj, it is
implemented as a virtual observation to constrain the Kalman filter state, yielding the
ambiguity-fixed solution.

2.2. Fundamentals of Time and Frequency Transfer

The receiver clock offset dt, estimated in IPPP represents the time difference between
the local receiver clock and the time scale t.¢ of the precise satellite products. It is important
to note that the receiver clock in this context refers specifically to the phase clock, as it is
estimated solely from carrier-phase observations. This approach avoids contamination from
the pseudorange-derived clock estimates during the ambiguity resolution process [10].

Since the time scale t,.¢ provided by the precise satellite products is consistent across
stations, the local time difference between any two stations A and B can be derived by a
simple differencing of their respective clock offsets. The resulting time difference between
the two local receiver clocks is given by

At = th - dtB = (tA — tref) - (tB - fref) (10)

where t and tp are the local time at stations A and B, respectively, and ¢, is the time scale
of the satellite products.

2.3. Day-Boundary Discontinuity Compensation

Currently, the majority of precise post-processed products provided by the IGS analy-
sis center are generated in daily batches. On the one hand, satellite time scale discontinuities
may occur at daily boundaries in the precise satellite products. On the other hand, during
IPPP processing, strong correlations between parameters may cause the receiver clock
estimates to be affected by hardware delays embedded in the ambiguity parameters—
particularly wide-lane and narrow-lane delays—resulting in polluted clock solutions. Con-
sidering that these uncertainties may vary across time and location, their propagation
into time and frequency transfer links between stations can lead to discontinuities at
day boundaries.

According to Equation (5), a quantitative relationship between the receiver clock offset
parameter and the narrow-lane (NL) ambiguity can be derived [21]. For example, a single
cycle jump in the NL ambiguity (assuming GPS L1 and L2 frequencies of 1575.42 MHz and
1227.60 MHz, respectively, yielding an NL wavelength of approximately 0.19 m) would
result in a corresponding jump in the clock offset of approximately 0.353 ns. Therefore,
NL ambiguity cycles can be exploited to absorb clock discontinuities and repair the day-
boundary discontinuities in the time link.

To minimize the impact of such day-boundary discontinuities, the correction can
be performed either at the PPP solution level or during time link formation [21]. In
this study, we propose a convenient and effective correction strategy at the link level to
mitigate day-boundary jumps as much as possible. The proposed method consists of the
following steps:

(I) Estimating the clock jump across the day boundary.
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Since NL ambiguities may change between daily batches, such changes will inevitably
introduce clock jumps equivalent to integer multiples of the NL wavelength. Based on
this, standard processing using single-day products is first performed. After detecting a
day-boundary discontinuity and verifying it over multiple epochs, the float-level clock
jump can be estimated directly.

(IT) Bridging the discontinuity in the time link.

Once the float jump in the clock offset has been determined, it is rounded to the
nearest integer multiple of the NL cycle, based on the known conversion factor. Since we
are dealing with between-satellite single-difference ambiguities, the compensation can be
implemented in one of two ways: either by keeping the ambiguity of the reference satellite
fixed and adjusting the ambiguity of the other satellite, or by fixing the ambiguity of the
secondary satellite and applying the correction to the reference satellite. This procedure
effectively bridges the cycle-induced clock jump and restores the continuity of the time link
across the day boundary.

2.4. Robust Sliding-Window Weighted Strategy

During single-epoch integer ambiguity fixing, degraded signal quality, excessive
multipath effects, or imperfections in post-processed precise products may introduce
anomalies into the observations. These deviations are often absorbed by the fractional part
of the float ambiguity estimates. When the fractional residual approaches 0.5 cycles, it
may result in incorrect ambiguity fixes to a neighboring integer value. Due to the strong
correlation between ambiguities and receiver clock parameters, such erroneous integer
constraints can directly compromise the receiver clock estimation, potentially leading
to instability in the time and frequency transfer link—manifesting as abrupt jumps or
isolated outliers.

In conventional residual analysis for ambiguity fixing, the float residuals of narrow-
lane ambiguities serve as an indicator of fixing quality. A commonly adopted threshold is
0.25 cycles, below which the fixed solution is considered reliable. However, under abnormal
conditions, relying solely on single-epoch residuals may not provide sufficient sensitivity
for detecting outliers.

To address this issue, we propose a robust ambiguity fixing constraint method that
incorporates multi-epoch narrow-lane residual information, as shown in Figure 2. The key
steps are as follows:
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Figure 2. Structure of the robust sliding-window weighting algorithm. The blue blocks represent
the narrow-lane residuals currently being processed; the green blocks indicate residuals classified as
normal, while the orange blocks denote residuals identified as outliers.
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(T) Construction of Detection Metric

To enhance sensitivity to local anomalies, we employ a sliding window to statisti-
cally evaluate the float residuals of narrow-lane ambiguities across multiple consecutive
epochs for all satellites involved in the ambiguity resolution process. The selection of
an appropriate sliding window size must strike a balance between estimation accuracy
and sensitivity to errors [22], as well as between real-time responsiveness and the use of
historical information. In the case of sudden ambiguity fixing errors, a small window is
more responsive to transient anomalies and can effectively capture such events [23,24].
However, an overly small window may result in misidentification of normal residuals as
outliers. Previous studies have shown that one hour of epoch data provides a sufficient
number of points for anomaly detection [21]. In this study, the primary motivation for
using a small window is to preserve finer details, which is particularly suitable for detect-
ing abrupt changes while maintaining low latency and enabling timely identification of
ambiguity fixing errors. Based on extensive experimental evaluations of different window
lengths, a 40-epoch window was selected by considering both positioning accuracy and
computational efficiency. From the residual set, the median and median absolute deviation
(MAD) are computed to construct a robust error detection metric. Compared with the
standard deviation, the MAD provides better resistance to outliers and is thus more suitable
for robust detection in noisy datasets.

|res — med)|
P =t

where res denotes the fractional part of the float narrow-lane ambiguity; med represents the
median of the residual dataset; MAD is the median absolute deviation of the parameter
dataset; and r is the test statistic used for error detection.

(IT) Error Detection

An error detection procedure is applied to the set of narrow-lane ambiguity residuals.
A dynamic threshold is used for the test, defined as k = 1.345 x MAD, which corresponds
to 95% Gaussian efficiency. If an outlier is detected, it will be down-weighted in the
subsequent step, and the residual from the current epoch will be removed from the sliding
window used to maintain the residual set. Otherwise, the PPP processing proceeds to the
next epoch as usual.

(III) Adaptive Down-Weighting

For satellites identified with abnormal narrow-lane ambiguity behavior, a Huber-
based down-weighting strategy is employed. The Huber function is used to compute the
weight factor of each affected satellite, which is then applied to adjust the observation
weight accordingly. This procedure reduces the influence of incorrect ambiguities on the
estimation of receiver clock offset and ensures robust PPP ambiguity resolution.

(=4 M= (12)
w(r) =
\r\k*a’ |7”| >k

Here, w(r) denotes the weighting factor constructed based on the error detection
metric, k is the dynamic threshold, and « represents the variance inflation factor.

3. Data and Strategy
3.1. Dataset

To validate the effectiveness of the proposed method and evaluate the performance
of IPPP time and frequency transfer, we collected 30 days of multi-frequency GNSS ob-
servations at a 30-s interval from six globally distributed IGS reference stations, covering
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day of year (DOY) 72-101, 2025 (corresponding to MJD 60746-60776). The corresponding
post-processed precise products, including satellite orbits, clock offsets, and OSB cor-
rections, were obtained from the CNES analysis center. All stations are equipped with
high-performance atomic clocks. The geographical distribution of the stations is illustrated
in Figure 3, and the hardware configuration of each station is summarized in Table 1. The
baseline distances for the selected time links are listed in Table 2.

180° 120°W 60°W 0° 60°E 120°E 180°

Figure 3. Spatial distribution of the experimental stations. IENG (red dot) serves as the center, linked
with the other stations (blue dots) to establish time links. An optical fiber link is used between BOR1
and GUMb.

Table 1. The hardware details of the stations.

Station Receiver Type Antenna Type Atomic Clock Type
IENG SEPT POLARX5TR-5.4.0 SEPCHOKE_MC-NONE EXTERNAL H-MASER
BRUX SEPT POLARX5TR-5.5.0 JAVRINGANT_DM-SCIS  EXTERNAL IMASER 3000
SPTO SEPT POLARX5TR-5.5.0 TRM59800.00-OSOD EXTERNAL H-MASER
TWTF SEPT POLARX4TR-2.9.6 SEPCHOKE_B3E6-SPKE EXTERNAL H-MASER
BOR1 TRIMBLE NETR9-5.45 TRM59800.00-NONE EXTERNAL H-MASER
GUM>5 TTS-5 NAX3G + C NONE EXTERNAL H-MASER

Table 2. The distance of the time links.
Link Type Distance
BRUX-IENG Short-baseline link 688 km
SPTO-IENG Short-baseline link 1457 km
TWTE-IENG Long-baseline link 9736 km
USN7-USN8 Zero-baseline link 0 km
BOR1-GUM5 Optical fiber link 267 km

For the zero-baseline experiment, two co-located stations in the United States, USN7
and USNS, were selected as the test sites. For the medium- and long-baseline experiments,
IENG was chosen as the central reference station, forming three time and frequency transfer
links. The IGS final precise products were used as the reference. Additionally, two domestic
Polish stations, BOR1 and GUMS5, were selected. Although the two stations collect only
GPS observations, an optical fiber time transfer link is available between them. Owing to its
superior frequency stability compared to GNSS time links and the absence of day-boundary
discontinuities [9], this optical link can serve as a benchmark for independently validating
the performance of IPPP time and frequency transfer.
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3.2. Processing Strategies

The dual-frequency ionosphere-free combination is formed based on GPS L1C and
L2W observations, and all parameters are solved using single-epoch processing. IPPP em-
ploys a stepwise ambiguity fixing strategy, in which the wide-lane (WL) satellite-differenced
ambiguities are sequentially rounded to integers and fixed. Once fixed, these ambiguities
are used to generate virtual observations to constrain the PPP equations. Subsequently, the
narrow-lane (NL) satellite-differenced ambiguities are fixed using the LAMBDA method
and validated by the ratio test. The reference satellite is selected as the one with the highest
elevation angle. A partial ambiguity resolution (PAR) strategy is applied by selecting
ambiguities in descending order of satellite elevation. Upon successful NL ambiguity
fixing, the receiver clock offset is estimated under the combined constraints of WL and
NL ambiguities. Notably, to further reduce the probability of incorrect ambiguity fixes,
a more rigorous fixing strategy is adopted: after obtaining a continuous and stable PPP
solution, the Kalman filter states are updated only when the ambiguities are fixed correctly
for eight consecutive epochs [1,25]. In all processing schemes, all datasets are processed in
static mode, antenna phase center offsets and variations are corrected using ATX files, the
receiver clock offset is modeled as white noise, and the receiver coordinates are estimated
as constants. Further details on the error handling and modeling strategies can be found in
Table 3.

Table 3. Details of the PPP processing strategies.

Item Strategy
Observations 1 day pseudorange and carrier phase
Sampling rate of solutions 30s
Elevation cut off 7°
PCV and PCO igs20_2350.atx
Tropospheric delay Dry delay: Corrected by Saastamoinen model;

Wet delay: Estimated as random walk
Dual-frequency ionosphere-free combination

Ionospheric delay correction
Relative effect Applied
Phase-windup effect Corrected
Positions Estimated as daily constants
Receiver clock Estimated as white noise
Tidal effects Ocean tide file
Estimator EKF

4. Results and Analysis

In this section, the availability of the IPPP algorithm based on OSB products is first
validated. Subsequently, the results of the day-boundary discontinuity repair experiments
and related simulations are presented. Finally, a comprehensive performance evaluation of
the proposed IPPP time and frequency transfer scheme is conducted using multiple transfer
links across various baselines. In the tests, the performance of GPS IPPP is compared with
the GPS PPP float solution (to avoid contamination of phase clocks by pseudorange-related
biases, carrier phase-only processing was employed in both the IPPP and PPP experimental
schemes), optical fiber links, and the IGS final products employing the modified Allan
deviation (MDEV) as the primary stability metric. Notably, to ensure consistency with the
IGS final products, the experimental results were resampled to obtain a uniform interval of
300 s. Observations from all selected stations span from MJD 60,746 to 60,776.
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4.1. Distribution of the WL and NL Ambiguity Fractional-Cycle Residuals

It is generally accepted that the NL residuals represent the quality of ambiguity fixing,
and effective integer ambiguity resolution can only be achieved when these residuals are
sufficiently small. In both WL and NL ambiguity resolution, the subset of satellites used
for ambiguity fixing is initially selected based on residuals, with a threshold set at 0.25
cycles. Figures 4 and 5 illustrate the probability distribution of float WL and NL ambiguity
residuals during the 30-day short baseline link (SPT0-IENG) experiment, showing a large
concentration of residuals near zero to ensure reliable ambiguity resolution. Table 4
summarizes the ratios of WL and NL fractional residuals within 0.25 cycles. The statistical
average was computed based on the measurements from both stations. Specifically, 97.90%
of WL fractional residuals are within 0.25 cycles, and 87.84% are within 0.15 cycles; for NL
fractional residuals, 99.70% fall within 0.25 cycles, and 97.83% within 0.10 cycles. Moreover,
the standard deviations of both WL and NL residuals are within picosecond-level precision,
indicating good accuracy. These results demonstrate that the OSB products from the CNES
satisfy the requirements for IPPP and enable precise time and frequency transfer.
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Figure 4. Statistics of WL and NL fractional residuals over 30 days (SPTO).
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Figure 5. Statistics of WL and NL fractional residuals over 30 days (IENG).

Table 4. Percentages of WL and NL fractional residuals within 30 days (%).

Station WL (Within 0.25) WL (Within 0.15) NL (Within 0.25) NL (Within 0.10)
SPTO 97.54 85.25 99.61 97.68
IENG 98.26 90.43 99.79 97.97

4.2. Repair of Day-Boundary Discontinuities

In this section, GPS observation data from the SPTO-IENG link between day of year
(DOY) 72 and 78 in 2025 were collected to conduct continuity tests of IPPP time and
frequency transfer. The experiments are divided into two groups: before and after dis-
continuity repair. Note that a small vertical offset is applied to the time transfer results
in the figure to facilitate better comparison. As shown by the blue curve in Figure 6,
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when performing standard single-day batch processing for time and frequency transfer,
a discontinuous clock jump occurs at the day boundary (between DOY 74-75, 75-76 and
76-77) with a magnitude of approximately 0.353 ns. Using the compensation algorithm
proposed in this study, the clock jump at the day boundary is actively absorbed by the
satellite-differenced NL ambiguities, thereby repairing the discontinuity. The orange curve
in the figure indicates that after applying the NL ambiguity-based clock jump absorption,
the discontinuities in the time link between DOY 74-75, 75-76 and 76-77 have been bridged,
and the discontinuities are minimized.

SPTO-IENG

Clock Offset (ns)

72 73 74 75 76 747 78 79
DOY (2025)

Figure 6. Comparison of day-boundary discontinuity repair for the SPTO-IENG (about 1457 km) link
over 7 days. The blue curve shows the time link before repair, and the orange curve shows the result

after repair.

4.3. Measured-Data and Simulation Time Link Experiments
4.3.1. IPPP Time Links of GPS, BDS, and GAL

To evaluate the general applicability of the proposed algorithm, IPPP time transfer
experiments were conducted using GPS, Galileo (GAL), and BeiDou (BDS) signals. For this
purpose, 30-day time transfer links were established between the BRUX and IENG stations
using GPS L1C and L2W signals, GAL L1C and L5Q signals, and BDS B1C and B2a signals,
respectively. The goal was to assess the frequency stability performance across different
GNSS constellations.

As shown in Figure 7, continuous time transfer was successfully achieved using
IPPP for all three systems—GPS, GAL, and BDS. Among them, BDS exhibited slightly
inferior frequency stability compared to GPS and GAL. Tables 5 and 6 present the standard
deviation (STD) and the frequency stability of the time link. In terms of the STD of
the time link, GPS IPPP achieved 0.744 ns, GAL IPPP 0.727 ns, and BDS IPPP 0.859 ns.
At an averaging time of 1200 s, the frequency stability reached 1.258 x 10~* for GPS,
1.038 x 10~ for GAL, and 1.411 x 10~'* for BDS. When the averaging time increased to
9600 s, the corresponding values were 2.061 x 10715,2.394 x 1015, and 2.893 x 10~15.
At 76,800 s, the stability further improved to 4.838 x 10716 (GPS), 4.707 x 10~'¢ (GAL),
and 5.403 x 10716 (BDS). Compared with GPS and GAL, the frequency transfer stability of
BDS time links demonstrates relatively inferior performance. Possible contributing factors
include the relatively lower performance of onboard clocks; the limited number of visible
satellites when using the newly introduced BDS-3 signals (B1C/B2a) alone; lower global
availability of BDS ground stations, which may lead to inconsistencies in orbit and clock
product precision; and higher pseudorange multipath noise levels.
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Figure 7. Time transfer results and MDEV frequency stability comparison of GPS, Galileo, and BDS
IPPP solutions over the BRUX-IENG (about 688km) link (DOY 72-101).

Table 5. STD of GPS, GAL, and BDS IPPP time transfer links.

System GPS GAL BDS
STD/ns 0.744 0.727 0.859
Table 6. Frequency stability of the BRUX-IENG test time links from DOY 72 to 101.
Solution
Averaging Time/s
GPS GAL BDS
1200 1.258 x 10~ 14 1.038 x 10~ 4 1.411 x 1074
9600 2.061 x 1071 2.394 x 10715 2.893 x 10~1°
76800 4.838 x 10716 4707 x 10716 5403 x 10716

4.3.2. Simulation of Incorrect Ambiguity Fixes

To compare the performance of the IGIII and the proposed robust sliding-window
weighting strategies under worst-case conditions, a simulated experiment involving in-
correct ambiguity fixes was conducted over the 7-day time link between SPT0 and IENG
(DOY 72-78). Specifically, incorrect ambiguity fixes at epochs 3000, 4000, and 5000 were
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introduced at station SPT0. As shown in Figure 8, such incorrect ambiguity fixes cause
significant fluctuations in the time transfer link between BRUX and SPTO, with the carrier-
phase residual increasing sharply to 9.6 cm, ultimately leading to a degradation in time
and frequency stability.

SPTO-IENG 02 T
Stimulate

STD: 0.0096m

—NORMAL

—Stimulate

Clock Offset (ns)
Residuals (m)

DOY (2025) DOY

Figure 8. Time transfer link comparison and carrier-phase residuals for the SPTO-IENG baseline
(about 1457 km) after simulating incorrect ambiguity fixes at station SPT0 (DOY 72-78). An arbitrary
vertical offset was added to the time link results for visual comparison. In the right figure, each color
corresponds to a different satellite.

As shown in Figures 9 and 10, the IGIII triple-segment down-weighting strategy
(parameter 1 is 0.25 cycles and parameter 2 is 0.15 cycles) [11,26] fails to fully eliminate
the anomalies caused by incorrect ambiguity resolution. Table 7 presents the STD of
carrier-phase residuals under different strategies. Both the time transfer link and the carrier-
phase residuals exhibit abnormal fluctuations, with the STD of the residuals increasing
to 6.7 cm. In contrast, the proposed robust sliding-window weighting strategy, which
employs dynamic thresholding, effectively reduces the impact of incorrect ambiguity fixes
by suppressing abrupt changes in the time transfer link. As a result, the STD of the carrier-
phase residuals is reduced to 5.2 cm. These findings indicate that the dynamic thresholds
derived from the robust sliding-window weighting algorithm can more comprehensively
and accurately detect incorrect ambiguity fixes, thereby improving the reliability and
stability of time transfer links.

SPTO-IENG SPTO-IENG

m—NORMAL
— G

Clock Offset (ns)
Clock Offset (ns)

3 % 7 76 7 B3 7
DOY (2025) DOY (2025)

Figure 9. Time transfer link comparison at station SPTO after applying the IGIII scheme and the
robust sliding-window weighting strategy (DOY 72-78).

Table 7. STD of carrier-phase residuals under different strategies.

Strategy Stimulate IGIIT Robust
STD/cm 9.6 6.7 5.2

137



Remote Sens. 2025, 17, 2878

0
IGIIT STD: 0.0067m Robust STD: 0.0052m

Residuals (m)
o
=1
3

—0.05F*

-0.10

-0.15

-0.20

72 73 74 75 76 77 78 9 72 73 74 75 76 77 78 79
DOY DOY

Figure 10. Carrier-phase residuals at SPTO after processing with the IGIII scheme and the proposed
robust sliding-window weighting algorithm. Each color corresponds to a different satellite.

4.4. Zero-Baseline Experiment

In a zero-baseline configuration, the signal propagation paths from the satellites to the
two stations are nearly identical, thereby minimizing geometry-related errors. Additionally,
the use of a shared high-performance external clock significantly reduces the impact of
receiver-related noise. For these reasons, zero-baseline setups are frequently employed
to assess the noise level and performance of time and frequency transfer techniques. In
this study, USN7 and USN8—equipped with identical high-stability hydrogen masers and
sharing a common antenna—were selected to validate the time transfer performance under
a common-clock, zero-baseline condition. Results were also compared against the IGS
final products.

Figure 11 presents the zero-baseline time transfer results between USN7 and USNS,
using both PPP float solutions and IPPP with ambiguity resolution. The float solution
was obtained from a standard processing procedure, while the IPPP solution was derived
by constraining the float solution with resolved integer ambiguities. As expected, due
to the shared antenna and high-quality external clock, the time transfer results exhibit
minimal fluctuations. For visualization purposes, the curves were shifted to align the
baseline levels. Compared to the PPP float solution, the IPPP results show a noticeable
improvement in smoothness and stability. Furthermore, as shown in red circles, the time
transfer link between the USN7 and USNS stations exhibits significant fluctuations when
ambiguities are incorrectly fixed, resulting in a noticeable degradation of frequency stability.
Traditional triple-segment down-weighting schemes, such as the IGIII method (parameter
1is 0.25 cycles and parameter 2 is 0.15 cycles) [11,26], are not fully effective in suppressing
these anomalies. In contrast, the proposed sliding window-based robust weighting strategy
dynamically adjusts the weights and helps recover correct ambiguity fixing. This adaptive
mechanism successfully mitigates the outliers in the time transfer link, resulting in fewer
isolated points and enhanced robustness against abnormal data.

The STD of the clock differences over a 30-day period was calculated. The GPS
IPPP Robust, GPS IPPP IGIII, and GPS PPP solutions yielded STDs of approximately
9 ps, 10 ps, and 29 ps, respectively, all indicating high time transfer precision. In terms
of frequency stability analysis, GPS IPPP exhibits increasingly improved stability over
longer averaging intervals, as shown in Table 8. For zero-baseline time transfer using GPS
IPPP Robust, frequency stabilities at averaging times of 1200 s, 9600 s, and 38,400 s are
denoted as 3.699 x 10~1%,5.235 x 1071, and 1.087 x 10~1°, respectively—representing
improvements of 15.1%, 59.8%, and 82.0% over the corresponding float PPP solutions.
When the averaging time extended to 76,800 s, the frequency stability of GPS IPPP Robust
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reached 3.332 x 10~!7. The reliability of the proposed robust sliding-window weighting
strategy was thus confirmed, and it was subsequently adopted as a default component
in all IPPP experimental schemes involving baselines of different lengths. For simplicity
of notation, all GPS IPPP experimental schemes are assumed to incorporate both the day-
boundary discontinuity repair algorithm and the robust sliding-window weighted strategy
by default.

USN7-USN8

0.100

0.075

o
=3
@
S

Clock Offset (ns)
=3
=3
5

—0.025

= [PPP Robust
' = = PPP
mmmmm [PPP IGIIT
72 77 82 87 92 97
DOY (2025)

—0.050

USN7-USN8
—@— IPPP Robust
-\ —- PPP
10" \ ——IPPPIGII |

i= =i
g0
<
2
a
% __ Last 4Points Comparison \ \l\\-\ :
=
}.d..:) e 5 oL t -
= 5
2 : \ \
£ i%_u\ d ~_,
= ) |
2 10" F -@— 1PPP Robust
i 2 -l PP
= —A— IPPPIGII
10 2x10% 3x10° 4x10°  6x10°
Averaging Time (5) T
10° 10° 10* 10° 10°

Averaging Time (s)

Figure 11. Frequency stability analysis of IPPP IGIII, IPPP Robust, and IPPP time transfer on USN7-
USNS8 zero-baseline common-clock link (DOY 72-101). Outliers in the time transfer link are marked
by red circles in the upper panel of the figure.

Table 8. Frequency stability of the USN7-USNS test time links from DOY 72 to 101.

. . Solution
Averaging Time/s
GPS IPPP Robust GPS PPP GPS IPPP IGIII
1200 3.699 x 10 1° 4368 x 10715 4.061 x 107>
9600 5.235 x 10716 1.304 x 10715 6.161 x 10716
38,400 1.087 x 1016 6.055 x 10716 1411 x 10716
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4.5. Additional Baseline Experiments
4.5.1. Optical Fiber Link Experiment

To benchmark IPPP time transfer performance, a comparative analysis was conducted
against a high-precision optical fiber link between BOR1 and GUMb5.

As shown in Figure 12, the performance of the optical fiber link surpasses that of the
GPS IPPP and PPP differential schemes for averaging times shorter than 9600 s. This is
primarily because the transmission medium in optical fiber links is more stable—largely
due to consistent refractive index and signal power loss characteristics. These results also
indicate that the IPPP- and PPP-based time transfer links are subject to higher short-term
frequency noise.

BOR1-GUMS5

—@— I1PPP-Opt
—#- PPP-Opt |
—— Opt

Modified Allan Deviation

10° 10° TS 1
Averaging Time (s)
Figure 12. MDEV of time transfer links obtained by differencing the GPS IPPP, GPS PPP, and optical
fiber link solutions and the corresponding optical fiber link (about 267 km).

For longer averaging times, however, the IPPP differential scheme outperforms the
optical fiber link in terms of time transfer precision, which may be attributed to clock
instability or other limiting factors on the optical fiber link.

4.5.2. Short-Baseline and Long-Baseline Experiment

Using IENG as the reference station, two short-baseline links (BRUX-IENG and SPTO-
IENG) and one long-baseline link (TWTF-IENG) were tested. To evaluate the performance
of the IPPP-based time transfer solution over different baseline lengths, the results were
compared with time links derived from the IGS final products.

Figures 13 and 14 present the comparisons and MDEV analyses of the GPS IPPP, GPS
PPP, and IGS final product time links for the tested baselines. It is evident from the time
series comparison that the IGS-derived links exhibit day-boundary discontinuities, which is
consistent with the fact that they are based on single-day batch processing. In contrast, the
GPS IPPP and PPP links—enhanced with a compensation algorithm—show significantly
reduced discontinuities at the day boundaries.
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Figure 13. Time transfer links over short baselines (BRUX-IENG, about 688 km, and SPTO-IENG,
about 1457 km) from DOY 72-101 are shown in the upper panel, with the corresponding MDEV
stability analysis presented in the lower panel. The blue line represents the GPS IPPP solution, the
orange line denotes the GPS PPP float solution, and the green line indicates the solution based on IGS
final products. The time differences in the top panel remove a linear drift and add an arbitrary offset.

Tables 9-11 present the frequency stability of the three solutions. When the averaging
time is relatively short, the frequency stability of the three solutions remains comparable.
This is expected, as the IPPP solution is derived by applying integer ambiguity constraints
to the PPP float solution, and thus inherits its short-term stability characteristics [13]. In-
terestingly, for long baselines, the IGS solution sometimes exhibits slightly better stability,
likely due to the fact that the path-consistent errors are not effectively mitigated by dif-
ferencing over long distances. At an averaging time of 76,800 s, all three schemes exhibit
similar levels of frequency stability. As the averaging time exceeds 153,600 s for all tested
links, both GPS IPPP and PPP demonstrate improved frequency stability compared to the
IGS final products, with IPPP consistently delivering the best performance. In the compari-
son with IGS final products over both short- and long-baseline links, for the averaging time
of 307,200 s, the GPS IPPP solution achieves an average improvement of approximately
29.3% in frequency stability over the PPP float solution, and about 32.6% over the IGS
final product.

Table 9. Frequency stability of the BRUX-IENG test time links from DOY 72 to 101.

Solution
Averaging Time/s
GPS IPPP GPS PPP IGS
1200 1.258 x 10~ 14 1.279 x 10~ 4 1.146 x 1074
9600 2.061 x 10715 2.735 x 10715 3463 x 10715
38,400 1.021 x 1071 1.356 x 10715 1.723 x 10715
153,600 3.530 x 10716 4.067 x 10716 5.427 x 10716
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Figure 14. Time transfer links over long baselines (TWTF-IENG) from DOY 72-101 are shown in the
upper panel, with the corresponding MDEV stability analysis presented in the lower panel. The blue
line represents the GPS IPPP solution, the orange line denotes the GPS PPP float solution, and the
green line indicates the solution based on IGS final products. The time differences in the top panel
remove a linear drift and add an arbitrary offset.
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Table 10. Frequency stability of the SPTO-IENG test time links from DOY 72 to 101.

Solution
Averaging Time/s
GPS IPPP GPS PPP IGS
1200 1.393 x 10~ 4 1.492 x 10~ 14 1212 x 10714
9600 2.908 x 10715 3.572 x 107 1° 3.067 x 10~1°
38,400 8.725 x 10716 1.350 x 10~1° 1.561 x 10715
153,600 3.243 x 10716 4795 x 1016 6.405 x 10716
Table 11. Frequency stability of the TWTE-IENG test time links from DOY 72 to 101.
Solution
Averaging Time/s
GPS IPPP GPS PPP IGS
1200 3.020 x 1014 3.050 x 1014 2.603 x 10714
9600 1.126 x 10~ 4 1.598 x 10~ 14 1.427 x 10~ 14
38,400 4929 x 10715 4961 x 10715 4250 x 107>
153,600 1.721 x 1071 1.835 x 10715 1.934 x 10715
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5. Conclusions

The IPPP technique enhances the accuracy of time and frequency transfer by restoring
the integer nature of carrier-phase ambiguities, particularly improving long-term frequency
stability. In this study, integer ambiguity resolution was performed using OSB products.
Additionally, a day-boundary discontinuity correction algorithm and a robust sliding-
window weighting strategy were proposed and employed to assess the effectiveness of
IPPP in time and frequency comparison. The following conclusions can be drawn from
the analysis:

(1) The proposed day-boundary correction method effectively mitigates clock jumps
at daily boundaries. The robust sliding-window weighting approach fully utilizes the
narrow-lane residuals across multiple adjacent epochs, enabling more reliable detection
and suppression of erroneous ambiguity fixes.

(2) Over a 7-day dataset, the IPPP time transfer technique achieved frequency stabilities
of 4.838 x 10716 (GPS), 4.707 x 1071 (Galileo), and 5.403 x 10~1¢ (BDS) at an averaging
time of 76,800 s. In the simulation experiments, the proposed robust sliding-window
weighting algorithm demonstrated its ability to derive adaptive thresholds, enabling more
comprehensive detection of anomalies compared to the IGIII method. Specifically, when
applying the IGIII scheme, the carrier-phase residual reached 6.7 cm, whereas with the
robust sliding-window approach, the residual was reduced to 5.2 cm.

(3) Across both zero-baseline and longer baseline links, the IPPP time transfer tech-
nique consistently outperformed the traditional float PPP solution in terms of accuracy
and stability—especially for long-term averaging. Especially in differential comparisons
with optical fiber time transfer, the IPPP solution showed better long-term stability than the
optical fiber link itself. In the zero-baseline experiment, the frequency stability of GPS IPPP
showed improvements of 15.1%, 59.8%, and 82.0% over the float PPP solution at averaging
times of 1200 s, 9600 s, and 38,400 s, respectively. At 76,800 s, GPS IPPP achieved a fre-
quency stability of 3.332 x 10~17. For both short- and long-baseline links, when compared
to the IGS final products at an averaging time of 307,200 s, the IPPP solution showed an
average improvement of approximately 29.3% over the PPP float solution and 32.6% over
the IGS products.

Since this study is based on dual-frequency ionosphere-free combinations, it inherently
requires that the user equipment support at least two frequencies. In the future, we aim to
extend this work to single-frequency and multi-GNSS scenarios and further investigate
ionospheric error correction, with the goal of enabling more flexible and reliable time
transfer under constrained environments.
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Abstract: The stochastic model in Precise Point Positioning (PPP) defines the statistical
properties of observations and the dynamic behavior of parameters. An inaccurate stochas-
tic model can degrade positioning accuracy, ambiguity resolution, and other aspects of
performance. However, due to the influence of multiple factors, the stochastic model in PPP
cannot be precisely predetermined, necessitating the development of an Adaptive Stochas-
tic Model (ASM) based on Variance Component Estimation (VCE). While the benefits of
ASMs for PPP float solutions are well documented, their contributions to other performance
aspects remain insufficiently explored. This paper presents a comprehensive assessment of
an ASM’s impact on PPP. First, the implementation of an ASM using VCE is described in
detail. Then, experimental results demonstrate that the ASM effectively captures observa-
tional conditions through the estimated variance component factors. It enhances both PPP
float and fixed solutions when the predefined stochastic model is inadequate, improves
cycle-slip detection by tightening the stochastic model (reducing the missed detection rate
from 19% to 8%), and accelerates both direct reconvergence and re-initialization after data
gaps, with reconvergence times improved by 18% and 55%, respectively.

Keywords: stochastic model; Precise Point Positioning (PPP); Variance Component
Estimation (VCE); Ambiguity Resolution (AR); Detection, Identification, Adaptation (DIA);
interruption fixing

1. Introduction

GNSS Precise Point Positioning (PPP) is a global high-precision positioning method [1].
The PPP model comprises a functional model and a stochastic model. The latter describes
the statistical properties of observational noise and process noise, serving as a critical
component for data processing in PPP. A well-defined stochastic model is essential for
optimal parameter estimation, reliable precision metrics, and effective hypothesis testing.
Conversely, an improper stochastic model can degrade positioning accuracy [2], impact the
detection of mismodeling errors with Detection, Identification, Adaptation (DIA) [3-7], and
even result in incorrect ambiguity resolution [8-10]. The properties of stochastic noise are
influenced by numerous factors, such as hardware design, observational environment, and
even the time of day, making it challenging to capture these variations using a predefined
stochastic model. Compared to other high-precision GNSS positioning methods like Real-
Time Kinematic (RTK), PPP faces more complex stochastic noise characteristics due to its
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lack of support from regional GNSS networks. Thus, a real-time adaptive stochastic model
is vital for refining the PPP model.

The PPP model is typically solved using the Kalman filter (KF), and the Sage-Husa
adaptive KF is a classic algorithm for real-time stochastic model adjustment. The Sage—
Husa algorithm is based on the principle that the a priori variance of the innovation
vector can be expressed as a combination of observational noise variance and process
noise variance. If one is accurately known, the other can be derived from the estimated
innovation vector [11,12]. This algorithm is used extensively for dynamic positioning and
navigation, such as GNSS integrated with Inertial Measurement Units (IMUs) [13,14], dead
reckoning [15], and celestial navigation systems [16]. However, the Sage-Husa algorithm
has notable limitations: it cannot simultaneously estimate both observational noise and
process noise variances, and it requires estimating a full variance matrix, which often has
more entries than just the innovation vector and cannot be estimated stably.

Variance Component Estimation (VCE) is another well-established algorithm that uses
redundant information to estimate the variance matrix. Unlike the Sage-Husa algorithm,
VCE decomposes the variance matrix into a linear combination of predefined matrices
and estimates their coefficients, termed variance factors. This approach avoids the chal-
lenges associated with estimating the full variance matrix and enables the simultaneous
refinement of observational and process noise models. VCE has been extensively used
in post-processing applications, such as refining stochastic models with inter-frequency
and temporal correlations [17-19] and stochastic models for multi-frequency observa-
tions [19,20]. Recent studies have explored integrating VCE with the Kalman filter for
real-time stochastic model refinement. Some of them focused on the enhancement of
stochastic models, such as applying Helmert’s simplified VCE to GPS Standard Point
Positioning (SPP) [21], refining the stochastic model of PPP with Online-VCE [22], and the
joint estimation of the variances of the dual-frequency GNSS observational noise and the
process noise of the receiver code bias [23]. These studies are valuable to the analysis of
stochastic models but did not present the benefits to the performance of refined stochastic
models. Regarding the benefits of VCE to the performance of GNSS data processing, several
different topics have been covered. Regarding the positioning performance, Zhang et al.
combined modified VCE and Helmert VCE to improve observation weighting for PPP [24],
while Zhang and Zhao adjusted the unit weight variance factor of the pseudo-range and
the carrier-phase observations [25]; these results showed improvements in positioning
accuracy, stability, and convergence time. For the estimation of non-positioning parameters,
Yang et al. developed an adaptive KF using VCE to adjust the process noise variance for
tropospheric delay of PPD, significantly improving the root-mean-square (RMS) error of
tropospheric delay estimates [26]. For the quality control of data processing, Chang et al.
used VCE to refine the stochastic model for ionospheric process noise in a cycle-slip repair
algorithm [27], and the results showed that all manually introduced nontrivial cycle slips
were correctly repaired.

These studies highlight the benefits of an Adaptive Stochastic Model (ASM) in various
aspects of GNSS applications, including improved observational stochastic modeling, en-
hanced positioning precision, and refined tropospheric delay estimates; meanwhile, many
of them are based on a PPP model which retains parameters for systematic errors and
needs precise modeling of these parameters [22,24-26]. However, many aspects of GNSS
PPP that depend on a proper stochastic model remain underexplored. For instance, ambi-
guity resolution (AR) typically involves two steps: decorrelation using Z-transformation
and ambiguity fixing [28,29]. The Z-transformation operates on the variance matrix of
ambiguities [30] while the success rate of fixing is calculated using the variance matrix [31].
Similarly, mismodeling detection algorithms such as DIA rely on hypothesis testing, whose
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effectiveness is determined by the quality of the stochastic model [32]. Furthermore, when
satellite signals are interrupted, a dynamic model with an appropriate process noise model
can better link epochs before and after the interruption, accelerating reconvergence and
improving performance after data gaps [33-35]. However, it is incomplete to study only
the benefits of an ASM for applicational problems; the value of an ASM to PPP lies in
reflecting observational conditions through refined stochastic modeling, which should be
assessed first. For a better understanding of the value of the ASM algorithm to PPP, an
ASM algorithm is designed based on VCE and its influences on several topics of PPP are an-
alyzed, including reflecting observational conditions through the estimation of time-variant
variance factors, PPP float solution, PPP-AR, cycle-slip detection with DIA, reconvergence
after data interruption, and interruption repair. The remaining sections are as follows:
Section 2 proposes the ASM algorithm for the Kalman filter and the mathematical model of
PPP; Section 3 evaluates the benefits of ASM across various PPP applications; and Section 4
summarizes the conclusions.

2. Materials and Methods
2.1. ASM for the Kalman Filter

In this section, the ASM for the Kalman filter is proposed, which is implemented with
VCE. There are many VCE methods, including the Minimum Norm Quadratic Unbiased
Estimator (MINQUE) [36], the best invariant quadratic unbiased estimator (BIQUE) [37],
and the Least-Squares-VCE (LS-VCE) [38,39]. The LS-VCE is based on the well-known
least-squared principle, which is more versatile and will be used to construct our ASM
method. The LS-VCE will be introduced first; then, the implementation of the LS-VCE for
the Kalman filter model will be derived; finally, the implementation of the ASM for the
Kalman filter will be provided.

2.1.1. LS-VCE

Assume a linear observational model as
n
y=Ax+¢ D) =Q=Q + ) aQ 1
i=1

where y is the observational vector, A is the design matrix, x is the estimable parameter, e
is the observational noise, Q is the variance matrix of &, Q is the known part of variance
matrix, and ¢; is the variance factor with corresponding matrix Q;. A normal equation for
the estimationof ¢ = [0y, -, O'n]T can be formed as follows:

No =L )

where ¢ is the estimated value of o, and the entries of N and L are calculated with

1
N;; = Etr(QiQ’lPﬁQjQ’lpﬁ) 3)
L = %yTPjQ_lQiQ_lPﬁy - %tr(Q,«Q‘lP,%QoQ‘lPﬁ) ()

Fori,j € [1,n], where P; = E — A(ATQ'A)~'ATQ™! is the projector of the
orthogonal complement of R(A), and the column space of A [40]; tr(x) obtains the trace of
a matrix. The estimated variance factoris & = N~'L and the variance of ¢ is Q; = N~
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2.1.2. LS-VCE for the Kalman Filter

The dynamic model and observational model of the Kalman filter read
x¢ = Foxe 1+ g0, Dl(gpr) = Qi ®)

Yy = Axp + &np, D(eni) = Qui (6)

where x; _ 1 and x are the system states at epoch k — 1 and k, respectively; Fy is the state

transition matrix; €, is the process noise with the corresponding variance matrix Q, s;

Yy, is the observational vector; Ay is the design matrix; and g,  is the measurement noise

with the corresponding variance matrix Q,, . Assume the estimated system state at epoch
k — 1as

Rp_1=x_1+ €, ,, Dleg ) = Qs | ()

Then, the predicted system state at epoch k can be obtained from the time update

Equations (8) and (9), while the estimated system state can be obtained from the measure-
ment update Equations (10) and (11).

X = B 4 ®)

Qr, = FeQs (F{ + Qui ©)

X = x + Koy (10)

Q;, = (I — KkAr)Qx, (11)

where vy = y, — Ag¥y is the innovation vector, K, = kaA,fQ;kl is the Kalman gain
matrix, and Q, = AkakAZ + Q is the variance matrix of vy. vy holds all the

redundant information of the measurement update and can be used for determining the
variance components of Q,, ; and Q,,, x. Assume that Q,, ; is divided as

p
Qi = Qopr + Y TipkQipk (12)
i=1
while Q,, ; is divided as
Nm
Quk = Qomk + Z Ti,m k Qi k (13)

i=1

The expression of vy can be rewritten in the form of (1) as

U = Yy — ArXr = Apxk + emp — ArFi&r -
= Ay + epp — AF(xe— 1 + €5, ) (14)
= &mk + Argprp — AxFrez,

where the symbols in (1) arey = y, — A A = 0 & = g + Agyp — Ahiey
T AT T T n
Q = AEQy  FA + AQuuAl + Quue T 16Q; = 571 GippAQpiAl + 1 1 6gQnge
T
o= |:0'1’p/k,' Oy p e Ol ,anm,m,k} . Furthermore, since A = 0, Pj is simplified

as P; = E and Equations (3) and (4) are simplified accordingly as
1 _ .
N, = str(@e'Qe™) (15)

1 1
L = 5v'Q7'QiQ ly — 5tr(QiQ Q0 ) (16)

148



Remote Sens. 2025, 17, 3071

Then ¢; , x and 0; ;, x can be estimated with the LS-VCE. The normal equation of the
kth epoch is noted as
Nio, = Ly (17)

2.1.3. Implementation of ASM

In most articles about refining stochastic models with VCE, data of several minutes
or even hours are used for the estimation of one set of variance factors. However, the
estimation in Equation (17) uses single-epoch data, which could be unstable due to the
lack of redundant information. Meanwhile, the subtraction in Equation (16) may yield
negative results, leading to negative estimated values of variance factors. To compensate
the instability of single-epoch VCE, the single-epoch normal equations can be accumulated
as Equation (18), where Ny ; and Wy j form the accumulated normal equation of epoch k.
Ny, o and Wy for epoch 0 are obtained from the initial value & and variance matrix Qg
as Ny = Q(;Ol and Wy = Ny 6¢. The solution of Ny and Wy is 05k = Qpy kWsik
with variance matrix Qs = Ng}{

{ Nyx = Nyx -1 + N (18)
W = Wep o1 + Wi

%

However, when the estimated variance factors are time-variant, which happens when
the observational environment changes, the accumulated estimations of the variance factors
cannot reflect the temporal variation of the factors. To preserve the temporal characteristics
of the estimated factors, a fading process is carried out as Equation (19) for 5 _ 1, the
estimation of last epoch, and its corresponding variance matrix Qs ; _ 1 before updating
with Equation (18), where Qy is a variance matrix for fading. Qy is diagonal and its ith
diagonal entry reads Qi = a;Qpy k — 1,i, where a; is the fading factor for the ith variance
factor and Qg  — 1, the ith diagonal entry of Q1 — 1.

1
Nyi_1 = (Q(rz,kfl + Qf,k) + N
1
Wsp_1 = (Q&Z,k—l + Qf,k) Osp—1 + Wi

(19)

Figure 1 shows the estimations of the variance factor for pseudo-range observation.
The single-epoch solution is noisy; with the normal matrices accumulated, the solution
becomes so flat that it does not preserve any temporal variations; finally, with the fading
process, the solution is both time-varying and smooth.

The flow chart in Figure 2 shows the update of the Kalman filter with ASM. The
update starts with system state and variance factor of the last epoch and observation of the
current epoch; the green arrows show how the Kalman filter obtains the estimated system
state of the current epoch, while the red ones show the process of updating the variance
factor. Since the update of the variance factor is carried out after every update of the filter,
it can be used for real-time applications.

2.2. Data Processing Model of GNSS PPP

In this section, the multi-GNSS dual-frequency PPP model will be introduced.
For the sake of simplicity, here we provide directly the full-rank observational equa-
tions. Equations (20) and (21) are the observational equations of pseudo-range and
carrier-phase observations for GPS; Equations (22) and (23) are those of Galileo; and
Equations (24) and (25) are those of BDS.

Tk = Pk = Gpxpk + A + T + Wil + e (20)
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;,k — p]s( = G;’kxp,k + Aty + ﬂZTk + ,‘lejl,? + /\ij + ei’b,j,k (21)

e = 0F = GouXpk + At + ISBY + iTx + pili + €y (22)

s

S — 0F = Goxpk + A + ISBE + piTy + il + ANT + €5y (23)

e — 0p = Gopxpx + A + ISBY + T + Iy + €51 (24)
S — 00 = G x4+ Aty + ISBS + 5T, + will + ANS + €5, (25)
ik — Pk pk¥pk k kT Mtk T Hilk i @,k

Superscript s indicates the index of satellite, while subscripts j and k indicate the
indices of frequency and epoch; P].S,  and CD]S,k are pseudo-range and carrier-phase observa-
tions, respectively; pj is the approximated distance between satellite and receiver; x,,  is
the positioning error with coefficient G;/k ; Aty is the clock error of receiver; IS B,’f and [ SB,?
are Inter-System Bias (ISB) for Galileo and BDS, respectively; Ty is the zenith tropospheric
wet delay with mapping function 7j; I} is the total electron content (TEC) in the unit of
TECU, with p; = 40.3 x 10'6/ sz that converts I} to signal delay on the jth frequency
band in meter; N? is the estimable ambiguity with wavelength )\j ; and sslgl ik and efbl i are
observational noise for pseudo-range and carrier-phase, respectively. Other systematic
errors are corrected and omitted. Xp ks Aty ISB f , IS B,({:, Ty, 1 f(’, and N ]S are set as parameters.
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Figure 1. The estimations of the variance factor for pseudo-range observation, single epoch (top),
accumulating normal matrices of multiple epochs (middle), and with fading process (bottom).

150



Remote Sens. 2025, 17, 3071

Obser- System Variance
vation state factor

7 Innovation :
Kalman filter —% vector Fading

LS-VCE model

v

Normal Merge normal
equation equation

) System Variance

state factor

Figure 2. Flow chart for the update of Kalman filter with ASM.

The dynamic model and observational model can be formed as Equations (5) and (6),

T T T

where x; = {xlg,k'xg,k} S XRE = [x;k,Tk,Atk, ISBE,ISBﬂ S XSk = {xgl,k/""xgn,k} ,
Xssk = [Ii,N{,Ng]T fors = 1,---,n, n for number of satellites; F, = E;
T T T S S S S T T T T

Y = [yl,k"" r?/n,k] Ysk = [P 1,k'Pz,k'q’1,k/(D2,k] Ay = [ARAs) AR = [AR,lf---rAR,n] /
A = [e4 & G;,k, 134, 4,0, 0} for GPS, Agrs = {e4 ® G;,kf 1pe4, €4, €4, 0] for Galileo,

%

ARs = [e4 ® G;,k’ 13e4, 4,0, e4} for BDS,As = E, ® S with

H1
S = _”;1 . (26)

Meanwhile, the variance matrices Q, x and Q,, x are divided as
Q, = blkdiag (axp,kbg, OT k0 Ot T o O g En © diag (0,07, O aNs,k)) (27)

Qi = diag(aly,, - ,al,) ® diag(opk, op, 0ok, Ta ) (28)

where af,  is the elevational factor calculated with a°,, = ——L - for the elevation ele®
ele ele sin(ele®)
s _ |Pprc|"Psut _Prec|
pre - Pprc‘(Psat - Prec)
are the positions of the satellite and receiver; Pyc = Pr + kD is the position of the
P, sat — b, rec
. . : : . . (Poat = Prec|
is the unitary vector from receiver to satellite and k is calculated by solving the equation

|Prec + kD| = R + r;and R = 6,378,137 mand r = 450,000 m are the length of the
semi-major axis of Earth and height of the single-layer ionospheric model, respectively.

of satellite s; a is the ionosphere mapping factor; P, and Py

ionospheric piercing point of the single-layer ionospheric model, where D =
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3. Results

In this section, the benefits of the ASM to several topics of PPP will be analyzed,
including the estimation of variance factors, PPP float solution, PPP-AR, cycle-slip detection,
reconvergence after data interruption, and interruption repair, where PPP tests are carried
out for the model of Section 2.2 with either the predefined stochastic model or the ASM.
Please note that although these tests are carried out in post-processing, the ASM can be
used for real-time applications.

3.1. ASM Reflecting the Observational Conditions

To assess the ability of the ASM of reflecting the observational conditions, PPP tests
with the ASM will be carried out for the model in Section 2.2 for global stations to obtain
the estimated variance factors. Multi-GNSS observational data from 106 global stations on
DOY 1~3 of 2023 is collected and processed with the configuration in Table 1. The precise
products come from the Center for Orbit Determination in Europe (CODE), an analysis
center of International GNSS Service (IGS), and include orbit, clock error, code bias, and
phase bias [41,42].

Table 1. Processing scheme for the analyses of variance factors.

Items Values
Observations GPS: L1/L2; BDS: B11/B3I; Galileo: E1/E5a
Data input Sampling rate 30s
Satellite orbit and clock CODE final MGEX product
o Estimator Kalman filter
Parameter estimation -
PPP models Uncombined PPP
. Pseudo range 0.2m
Measurement noise -
Carrier phase 2 mm
Position White noise
Tropospheric wet delay Random walk
. Receiver clock error White noise
Dynamic
model Code bias Random walk
Phase bias Random walk
Ambiguity Random constant
Ionospheric delay Random walk

3.1.1. Observational Noises of Pseudo-Range and Carrier-Phase Observations

Figure 3 shows the estimated variance factors of the pseudo-range observations for
all stations, which are transformed to the unit of meter. The factors of the three systems
vary around 0.1 m for most stations with visible temporal variations, which shows that the
observational conditions are overall stable with slight fluctuations through time.

Furtherly, Figure 4 shows the estimated variance factors of the carrier-phase observa-
tions for all stations. The curves of most stations vary around 1 mm for all three systems
and the temporal variations are also preserved.

Overall, the ASM can estimate the variance factors of both pseudo-range and carrier-
phase observations and the temporal variations are preserved. It should be noted that the
estimated factors are influenced by not only the observational noise but also systematic
errors such as the precision of orbit/clock products. The factors reflect the overall obser-
vational conditions, which are influenced by multiple error sources; therefore, they can
enhance the performance of positioning.
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Figure 3. Estimated variance factors of the pseudo-range observations for all stations.
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Figure 4. Estimated variance factors of the carrier-phase observations for all stations.

3.1.2. Process Noises of Atmospheric Parameters

Besides refining the observational stochastic model, the stochastic model of process
noise is also improvable with an ASM. Figure 5 shows the estimated variance factors of
ionospheric delay for all stations, where the x-axis is local time. The curves are correlated
with local time and reach peak value at 12-18 every day, which matches the fact that the
ionosphere is more active in daytime. It shows that the ASM is very helpful in adjusting the
variance factor of ionospheric delay and could enhance cycle-slip detection, which requires
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refined ionospheric modeling for effective detection [43,44]. The enhancement of the ASM
of cycle-slip detection with DIA will be examined in Section 3.4.

0.1

0.01

Estimated variance factors for
process noise of ion. delay [tecu/sgrt(s)]

0.001

Local time [h]

Figure 5. Estimated variance factors of ionospheric delay for all stations.

Furtherly, Figure 6 shows the estimated variance factors of zenith tropospheric delay.
The curves are almost straight lines, which shows that the factor of tropospheric delay
is not estimable with the ASM and keeps its initial value. This is due to the fact that the
variations of tropospheric delay between epochs are so small that they are overwhelmed by
observational noises which are at least 10 times larger than them. However, the estimated
factors do not diverge either, which shows that the algorithm is stable.
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Figure 6. Estimated variance factors of zenith tropospheric delay for all stations.

3.1.3. Process Noises of ISBs

Finally, Figure 7 shows the estimated variance factors of ISB. Like the factors of
tropospheric delay, the curves are almost straight lines, which shows that the factors of ISB
are not estimable with the ASM. This is due to the fact that the ISBs are linear combinations
of receiver code biases, which are mostly stable.
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Figure 7. Estimated variance factors of ISB for all stations.

3.2. Standard PPP Tests

In this section, PPP tests are carried out with an ASM (Adaptive) and without an
ASM (Original) to show whether the positioning performance is improved with the pro-
posed model.

3.2.1. PPP Results for Global Stations

Figure 8 shows the PPP positioning errors for IGS stations CHPG, MET3, and YAR3.
The plots on the left and the right panels are very similar, which shows that the ASM has

little impact on the performance.

L T TR RS NUIETRUTY ) ST e
YARS, Original YARS3, Adaptive
T T T T T T T T T T T
0 4 8 12 16 20 24 4 8 12 16 20 24
Time [h]

Figure 8. PPP positioning errors without (left) and with (right) ASM.

Furtherly, with the solutions of global stations, the percentage of converged stations
for different thresholds are shown in Figure 9 and the hists for 3D positioning errors are
given in Figure 10. It shows that the ASM has little effect on both convergence time and
positioning precision. This is due to that the estimated pseudo-range and carrier-phase
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variance factors in Figures 3 and 4 are all close to their initial values and show little inter-
station differences. Therefore, the ASM is not beneficial to PPP float solution when the
stochastic model is suitable.
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Figure 9. Percentage of converged stations without (left) and with (right) ASM.
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Figure 10. Hists for 3D positioning error without (left) and with (right) ASM.

3.2.2. PPP Results for Unsuitable Stochastic Model

The results for the IGS station TONG are specifically analyzed, which is the only
station whose observational errors are obviously larger than other stations. Figure 11
shows the estimated observational variance factors. The factors for pseudo-range and
carrier-phase observations are about 0.6 m and 6 mm, respectively, which are larger than
other stations. Though the exact cause for the large factors remains unknown, enhancing
the stochastic model could still be beneficial to the performance. Figure 12 shows the
positioning errors with and without the ASM and Table 2 shows the RMSs of positioning
errors on east, north, and up directions after convergence. Note that the stochastic model
for results without the ASM is the same as those in Section 3.2.1. The positioning precision
is improved with the help of the ASM for 57%, 51%, and 25% for east, north, and up
directions. It shows that when the predetermined stochastic model is unsuitable, the ASM
can be adjusted according to the actual statistical properties of the observational noise and
improve the positioning performance. Unfortunately, the data quality for most IGS stations
is good, and it is difficult to find another example to prove the benefits of ASM to PPP float
solutions. Non-IGS data under bad observational conditions is needed for future study.
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Figure 11. Estimated pseudo-range and carrier-phase variance factors for TONG station.
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Figure 12. Positioning error for TONG station without (top) and with (bottom) ASM.

Table 2. RMS of the position errors for TONG station.

RMS on Three Directions (m)

Processing Scheme

East North Up
Original 0.116 0.061 0.136
Adaptive 0.050 0.030 0.102

To further show the benefits of the ASM, PPP without an ASM is carried out again for
the TONG station with standard deviations of pseudo-range and carrier-phase observations
as 0.6 m and 6 mm, whose positioning error is shown in Figure 13. The result is different
from the top panel of Figure 12 while similar to the bottom panel, which shows that the
positioning performance is improved when the stochastic model is adjusted. This proves
that the benefits of the ASM to positioning come from the ability of adjusting the stochastic
model on-the-fly.
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Figure 13. Positioning error for TONG station with standard deviations of pseudo-range and carrier-
phase observations as 0.6 m and 6 mm.

3.3. PPP-AR Test

Besides PPP float solution, ambiguity resolution is also influenced by the stochastic
model, which will be analyzed in this section. The ambiguity resolution with the Integer
Bootstrapping (IB) strategy will be introduced first; then, the performance of PPP-AR with
an ASM will be analyzed.

3.3.1. Ambiguity Resolution

The IB strategy is a widely used ambiguity resolution strategy which fixes one ambi-
guity at a time and corrects the remaining float ambiguities with the fixed one [45]. For
integer ambiguity parameter x4 and its float estimation %4 with variance matrix Q; ,, the
ith ambiguity is fixed with the IB strategy as

Xpi = {QA,i\ifl} (29)

where £, ;; _ 1 is £4,; corrected with the fixed solution of its previous i — 1 ambiguities,
i.e., 4, under the conditions of X4 1,---,X4, — 1. The recursive evaluation equation for
fA,ill' -1 reads

Qs ,iklk — 1 (fA,k\k 1 - fA,k)

(30)
Qs kklk — 1

XAk = XAik—1 —

where Q¢ i xjx — 1 and Qg r ki — 1 are Qg ik and Qg x x corrected with the fixed solution
of the previous i — 1 ambiguities, Qz, ;  is the entry on the ith row and kth column of Q;,
and Qg , i« is the kth diagonal entry of Q; x For arbitrary i, j, and k thati < n,j < n,
k < i,and k < jhold, where 1 is the number of ambiguities, one has

Qs iklk — 198 kjlk — 1
Qs kklk — 1

Qeuijik = Qapijlk—1 — (31)

where fork = 0,onehas 24 ;0 = fa,and Qz, ;0 = Qz,,ij-

3.3.2. PPP-AR Results for Global Stations

The ambiguity parameters of PPP are not integer due to the existence of phase biases
of the satellites and receiver. To obtain ambiguities with integer properties, the satellite
phase biases need to be corrected with IGS product and single difference should be applied
between satellites to eliminate receiver phase biases. The BIA product from CODE is used
to correct the satellite phase biases [41]. Due to the lack of a BDS phase bias product, only
the ambiguities of GPS and Galileo are fixable. The AR process starts with float solutions of
ambiguities and the corresponding variance matrix. Z-transformation is applied to obtain
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decorrelated ambiguities. Then, the widely used partial AR (PAR) procedure with the IB
strategy is conducted, where a subset of decorrelated ambiguities is selected with a success
rate threshold of 99.99% [29,46—48]. Finally, the position parameters are corrected with
the fixed decorrelated ambiguities. Figure 14 shows the GPS+Galileo PPP-AR positioning
errors for IGS stations AJAC, CHPG, and FAIR. The plots in the left and the right panels
are very similar, which shows the ASM has little impact on the performance of PPP-AR.

]

Position error [cm

Time [h]

Figure 14. PPP-AR positioning errors without (left) and with (right) ASM.

With the solutions of all stations, Figure 15 shows the hists for 3D positioning errors.
The plots for results with the ASM are similar to those without the ASM, which also
happens to the float solution. This shows that, if the stochastic model is suitable, the ASM
is not beneficial to the performance of PPP-AR.
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Figure 15. Hist for PPP-AR 3D positioning error without (left) and with (right) ASM.

3.3.3. PPP-AR Results for Unsuitable Stochastic Model

The results for IGS station TONG are specifically analyzed, whose observational errors
are larger than other stations, as is shown in Section 3.2.2. Figure 16 shows the PPP-AR
positioning errors for the TONG station and the RMSs on three directions are given in
Table 3. With the ASM, the positioning errors on east, north, and up directions are reduced
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for 36%, 28%, and 36%, respectively. This shows when the predetermined stochastic model
is unsuitable, an ASM can enhance the performance of PPP-AR greatly.
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Figure 16. PPP-AR positioning error for TONG station without (top) and with (bottom) ASM.

Table 3. RMS of the PPP-AR position errors for TONG station.

RMS on Three Directions (m)

Processing Scheme

East North Up
Original 0.211 0.109 0.380
Adaptive 0.134 0.078 0.244

To further show the benefits of the ASM, PPP-AR without an ASM is carried out
again for the TONG station with standard deviations of pseudo-range and carrier-phase
observations as 0.6 m and 6 mm, whose positioning error is shown in Figure 17. The
result is better than the top panel of Figure 16 while slightly worse than the bottom panel,
which shows the benefits of the ASM to positioning come from the ability of adjusting the
stochastic model on-the-fly.
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Figure 17. PPP-AR positioning error for TONG station with standard deviations of pseudo-range
and carrier-phase observations as 0.6 m and 6 mm.
3.4. Tests on Cycle-Slip Detection

The detection of unmodeled bias with DIA is another algorithm that could benefit
from an ASM. DIA could use all the redundant information and construct an optimal
procedure for anomaly detection [32]. Since DIA uses the stochastic model, it can show the
ability of an ASM to enhance the detection effectiveness when the predefined stochastic
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model is improper. Among the anomalies of PPP, the cycle slip is the most important one
due to its impact on positioning; therefore, cycle-slip detection with DIA will be tested
to examine the benefit of the ASM. The DIA algorithm will be introduced; then, the PPP
cycle-slip detection with DIA will be designed; finally, the performance will be analyzed.

3.4.1. DIA Algorithm

For an arbitrary observational model

Yy = Ax + &m (32)
where D(e,,) = Q,,, one has the least square estimation (LSQ)
=N'Ww Q=N (33)

where N = ATQ,,'Aand W = ATQ,'y form the normal equation W = N#. The
estimated value of the LSQ residual reads

én = Phy, Q;, = Q, — AQ;AT (34)

where Pi = E — Py, Py = AN~ 1ATQ;Zl. Equation (32) is also known as the
null hypothesis. When there is unmodeled bias in the observational model, one has the
alternative hypothesis

y = Ax + Bb + &, (35)

where b is the unmodeled bias parameter with corresponding design matrix B. Since
Equation (35) is solved without considering b, the solution of Equation (35) reads

x=A"y+ AT Bb (36)

ém = P4y + P;Bb (37)

where AT = N7'ATQ,,!. This shows that the unmodeled bias is absorbed by both % and
£, causing both increased positioning error and a larger residual. Note that there could
be different types of unmodeled biases. The DIA algorithm is carried out in three steps:
it determines whether there is unmodeled bias in the detection step, distinguishes what
type of bias it is in the identification step, and finally modifies the observational model to
include the unmodeled bias for better positioning performance in the adaptation step. For
the detection, an overall test for determining whether there is unmodeled bias is carried
out as

&l Qutem > X2(r,0) (38)

where x2(r,0) is the upper a-quantile of a central chi-squared distribution with r degrees of
freedom, o is the false alarm probability of the overall test, and r is the rank of the residual
estimation. If Equation (38) holds, there is unmodeled bias during the observation, which
needs to be identified. For the identification with n different alternative hypothesis, T; is
calculated for the ith alternative hypothesisy = Ax + B;b; + ¢, as

T; = &,P} Q' Py ém (39)
where P;. = B; (B/Q,'B:)"'B/ Q;;!, B, = P4 B;. When the dimensions of each b; are
the same, the alternative hypothesis with the biggest T; is selected as the most likely one.

Finally for the adaptation, the solution & and its variance matrix Q; are updated as

=% - A'Bb,Q; = Q; + A'B,Q; BlA™T (40)
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~ =T ~A—15 \—151 ~— =T ~A—13%5 \ —
whereb; = (B; Q,,'B;) 'Bi Q,'y, Q; = (B; Q,,'B)) .

3.4.2. PPP Cycle-Slip Detection with DIA

To detect cycle slip with DIA, the model of the Kalman filter should be expressed in the
form of Equation (32) and the alternative hypothesis for cycle slip should be designed. With
the estimated system state at epoch k — 1 in Equation (7), dynamic model in Equation (5),
and observational model in Equation (6), the single-epoch model of the Kalman filter can
be summarized as

X -1 E X S T
0o | = |F -E kx; o | ek (41)
Y Ay ~—— Em k
———— —_——— x
Yy A Em

The alternative hypothesis for the dynamic model with unmodeled bias reads
xp = Fxp 1 + b + gy (42)

where ¢; is a unit vector with the ith entry as 1, and b is the bias that introduced for
the ith parameter of x;. To detect the cycle slip, an alternative hypothesis in the form
of Equation (42) is set up for each ambiguity parameter of PPP, where b is actually the
cycle-slip parameter. Then, DIA algorithm is applied to detect the cycle slip.

3.4.3. Results for the Cycle-Slip Detection

The test is carried out for observational data with simulated cycle slips. For the
observation of each station, two carrier-phase observations are randomly selected every
10 min and simulated with cycle slips of one cycle. Note that the observations are mod-
ified for not only the epoch that the cycle slips happen in but also subsequent epochs.
GPS + BDS + Galileo PPP is performed for global stations with DIA detecting the simu-
lated cycle slips, where either a predefined stochastic model or an ASM is used. Figure 17
shows the positioning error for the IGS station AJAC. Without the ASM, the positioning er-
ror degrades due to some undetected cycle slips; with the help of the ASM, the positioning
error looks normal and free of undetected cycle slips. The main reason could be that the
enhanced stochastic model for ionospheric delay makes the detection with dual-frequency
data easier.

Figure 18 shows the hists for 3D positioning error. Though not comparable with those
without simulated cycle slips, the positioning error of the ASM is dramatically reduced
compared with that of the predefined stochastic model. Table 4 shows the numbers of
simulated and detected cycle slips of all stations. The detection rate is improved from 81%
to 92% with the help of the ASM, which indeed shows that the enhanced stochastic model
is helpful to cycle-slip detection.

Table 4. Numbers of simulated and detected cycle slips.

Original Adaptive
Simulated 30,528 30,528
Detected 24,711 28,047
Detection rate 81% 92%

162



Remote Sens. 2025, 17, 3071

Position error [cm]
N
o

10 I o s i i s e 5 s A1 R 2w S I W . i ) R T S NI S i W R S $50 o
1 ]
0 - UMy s 7%
0 A
] Adaptive
=20 T T u T T ¥ ¥ T ¥ T x T v T T T 4 B T T T T p' v
0 4 8 12 16 20 24
Time [h]

Figure 18. PPP positioning error with simulated cycle slips which are detected with DIA.

3.5. Tests on Reconvergence and Interruption Repair

The reconvergence and interruption repair of PPP after data interruption are also
influenced by the stochastic model. Here the interruption means all satellites are not visible
for a few minutes and then reappear, which could happen in a city environment. Direct
reconvergence is the basic method for handling interrupted data, which is to keep the pa-
rameters of the satellites and continue updating them once the satellites reappear. However,
the ambiguities have to be reset due to the interrupted tracking of carrier-phase signals,
whose reconvergences take dozens of minutes. Furthermore, the difference between the
ambiguities before and after the interruption is actually a cycle-slip parameter with integer
properties, which could be fixed with AR algorithm to accelerate the reconvergence [49-53].
The latter method is called interruption repair. The direct reconvergence requires a reliable
time update of the filter to preserve the information, which would require a suitable stochas-
tic model; the interruption repair is based on the AR algorithm, which is also influenced
by the stochastic model. The variance factor of ionospheric delay is the only time-variant
factor among all factors. The enhanced stochastic model of ionospheric delay should be
beneficial to convergence. Unfortunately, the estimated factor also takes time to converge,
which makes the ASM not beneficial to the convergence. However, the factor is already
converged when interruptions occur; therefore, the stochastic model of ionospheric delay
refined with an ASM could be beneficial to reconvergence and interruption repair, which
will be tested in this section.

3.5.1. Reconvergences After 3 Min Interruptions

For the observation data of each station, 3 min of data interruptions are simulated
every 2 h by simply removing all observations during the interruptions. GPS PPP tests are
carried out, where the ionospheric delay parameters are kept during the interruption while
ambiguity parameters are reset. Figure 19 shows the positioning errors for the IGS station
BUCU. For data segments such as 2~4, 4~6, and 6~8, the ASM improves the reconvergence.
This is mainly because of the enhanced stochastic model for ionospheric delay. Figure 20
shows the percentage of reconverged data segments for all stations. The time for 60% of
the segments to reconverge to the threshold of 0.1/0.1/0.2 m is reduced from 19 min to
15.5 min, showing the benefits of ASM.
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Figure 19. Hists for 3D positioning error with simulated cycle slips which are detected with DIA.
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Figure 20. PPP positioning errors with 3 min data interruptions every 2 h, without (top) and with
(bottom) ASM.

To show the impact of refined ionospheric stochastic model to reconvergence, Figure 21
shows the PPP positioning errors for the IGS station BUCU where ionospheric delay is
modeled as white noise process. It shows that, as the model of ionospheric delay cannot be
enhanced by the ASM, the reconvergence is not improved at all.
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Figure 21. Percentage of reconverged data segments without (left) and with (right) ASM.

3.5.2. Interruption Repair for 3 Min Interruptions

The algorithm for repairing interruption will be introduced first. The basic idea
is to fix the cycle slip between the ambiguity before the interruption and the one after
the interruption. The ionospheric delay and ambiguity parameters of all satellites are
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kept during the interruption. Once the satellites reappear, new ambiguity parameters
are introduced and updated during the filter update. Then cycle slips are derived from
the ambiguities before the interruption and the newly introduced one. The ambiguity
resolution method in Section 3.3 is applied to the cycle-slip parameters and the system
state is updated with the fixed cycle slips. This attempt of repairing repeats for each
subsequent epoch. After 30 min, the ambiguities before the interruption are removed
and the remaining “float” cycle slips will not be fixed anymore. Since the cycle slips are
obtained via subtraction between old and new ambiguities, positive correlation between
ambiguities would yield more precise and easy-to-fix cycle slips. With the ionospheric
information preserved, the new ambiguity is linked with the old one through ionospheric
parameters; therefore, the ASM could help the repair through precise modeling of the
ionospheric delay.

PPP tests are carried out for global stations with interruption repair. Figure 22 shows
the positioning errors with interruption repair for the IGS station CPVG. With the prede-
fined stochastic model, at least six data segments are not repaired; while with the ASM,
only two data segments are not repaired and the remaining segments instantly reconverge
once the satellites reappear. This shows that with the ionospheric model refined, the repair
of interruption becomes more effective. Finally, Figure 23 shows the percentage of recon-
verged data segments for all stations. The time for 80% of the segments to converge to the
threshold of 0.1/0.1/0.2 m is greatly reduced from 30 min to 13.5 min, which proves the
enhanced ionospheric stochastic model is indeed beneficial to the interruption repair.
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Figure 22. PPP positioning errors with interruption repair, without (top) and with (bottom) ASM.
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4. Discussion

An adaptive stochastic model (ASM) significantly enhances various aspects of Precise
Point Positioning (PPP), necessitating a comprehensive assessment of its benefits. This
paper implements an ASM by integrating the least-squares variance component estimation
(LS-VCE) algorithm with the Kalman filter model and evaluates its contributions to PPP
performance from multiple perspectives, including observational condition reflection, PPP
float and fixed solutions, cycle-slip detection using DIA, reconvergence, and interruption
repair. The main findings demonstrate that the ASM effectively improves the observational
variance matrix when the predefined model is inadequate, benefiting both PPP float and
fixed solutions. Additionally, the ASM enhances the ionospheric stochastic model, captures
its temporal variations, and contributes to higher DIA success rates, faster reconvergence
after data interruptions, and improved interruption repair. The detailed conclusions are
summarized as follows:

1. Variance Factor Estimation: Variance factors for the observational noise of pseudo-
range and carrier-phase measurements are estimable and capture time-varying ob-
servational conditions. The variance factor for the ionospheric delay process noise is
estimable and reflects the temporal variation of the ionosphere. The variance factor
for tropospheric delay is not estimable due to its minimal variation between epochs,
which is overwhelmed by the noise.

2. PPP Float and Fixed Solutions: The ASM offers no significant advantage when the
predefined stochastic model is appropriate. However, when observational noise
is large, rendering the predefined model unsuitable, the ASM adjusts the variance
factors to deliver superior PPP float and fixed solutions.

3. Cycle-Slip Detection with DIA: With the predefined stochastic model, 19% of simu-
lated cycle slips remain undetected, resulting in degraded positioning precision at
the meter level. With the ASM, the undetected cycle slips are reduced to 8%, and
positioning precision improves. Notably, the 50th percentile error is reduced by 75%.

4. Reconvergence and Interruption Repair: Simulated 3 min data interruptions every
2 h reveal that the ASM reduces the reconvergence time for 60% of data segments to a
threshold of 0.1/0.1/0.2 m from 19 min (predefined stochastic model) to 15.5 min. This
improvement is attributed to the enhanced variance factor for ionospheric delay pro-
cess noise. Interruption repair tests show that reconvergence time for 80% of segments
to the same threshold decreases from 30 min (predefined stochastic model) to 13.5 min
(ASM), underscoring the benefits of the improved ionospheric stochastic model.

In summary, the adaptive stochastic model not only refines variance factor estimation
to reflect observational conditions but also significantly enhances PPP float and fixed
solutions under challenging conditions, improves cycle-slip detection, and accelerates
reconvergence and interruption repair. These findings highlight the broad applicability
and effectiveness of an ASM in improving PPP performance. However, the IGS stations
used for our tests are mostly under good observational conditions. The ASM will be tested
for challenging applications such as maritime positioning in the future to show its ability
to improve positioning in poor observational conditions.
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Abstract: Global navigation satellite System (GNSS) precise point positioning (PPP) enables
high-precision global positioning using a single receiver, yet its widespread application
is hindered by long convergence times. In contrast, pseudolite system (PLS) transmitters
are located relatively close to receivers, and the movement of receivers induces rapid
spatial geometry changes, which greatly facilitate fast parameter convergence. Therefore,
leveraging the fast-converging PLS to augment GNSS PPP presents a promising solution.
This study proposes a tightly coupled PLS and GNSS observation-level integration model.
A key factor influencing the augmentation effectiveness is the strategy of ambiguity resolu-
tion. In this work, we design a novel strategy of ambiguity resolution, in which the fast
convergence property of PLS is taken into account, and the PLS ambiguities are picked out
to be fixed independently. This strategy can resolve the PLS ambiguities, GNSS wide-lane
(WL) ambiguities, and GNSS L1 ambiguities cascadingly. Further, the fixed ambiguities
can be treated as constraints in the filtering process. The experimental results demonstrate
that the proposed strategy substantially improves the ambiguity fixing rates, especially in
short-duration augmentation.

Keywords: global navigation satellite systems; precise point positioning; ambiguity resolution;
pseudolite system (PLS); augmentation

1. Introduction

Mass-market applications such as autonomous vehicles and unmanned aerial vehicles
are increasingly demanding fast, high-accuracy, and low-bandwidth location services [1].
Precise point positioning (PPP) is one of the mainstream global navigation satellite system
(GNSS) positioning technologies that can achieve centimeter-level positioning accuracy
globally with a single receiver [2]. However, slow geometry variations, atmospheric delays,
and uncalibrated phase delays result in PPP usually taking tens of minutes to converge,
which hinders its wide application.

Integer ambiguity resolution (AR) can effectively shorten the convergence time of
GNSS PPP. This technique utilizes precise satellite orbit, clock, and code/phase bias pro-
vided by the server side to recover the integer nature of ambiguity, thus achieving integer
ambiguity resolution [3-5]. Once integer ambiguities are fixed correctly, the positional
parameters will converge instantaneously, which greatly reduces the convergence time of
the PPP [6,7]. In addition, precise atmospheric delay corrections obtained from a regional
network can also be applied to constrain the relevant parameters to further accelerate the
ambiguity resolution and convergence [8-10].
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Some scholars utilize other positioning systems such as the pseudolite system (PLS)
to augment GNSS to accelerate its convergence. PLS transmits GNSS-like signals near the
ground [11-14]. It can not only work independently but can also be used to augment GNSS.
Due to PLS transmitters being close to receivers, moving receivers can produce quick spatial
geometry variations, which is conducive to the rapid convergence of parameters [15,16].
Jiang et al. [17] proposed a Locata (a ground-based pseudolite system) augmented GPS
PPP, which was referred to as Locata/GPS-PPP. The convergence time of the integrated
Locata/GPS-PPP was only about 10 s. However, neither Locata nor GPS ambiguities were
fixed to integers. If the ambiguity can be fixed to an integer, the convergence time is
expected to be further reduced. In order to fix the integer ambiguity of PLS, our previous
work proposed an on-the-fly method to estimate the PLS transmitter phase bias (TPB) and
recover the integer nature of PLS ambiguities [18]. Furthermore, we presented a concept of
PLS short-duration augmented GNSS PPP and realized the integer ambiguity resolution of
PLS and GNSS [19].

However, in prior research, PLS has been typically treated as a subsystem of GNSS,
with its ambiguities resolved jointly. This approach overlooks a critical characteristic: PLS
ambiguities converge significantly faster than those of GNSS. Simultaneous ambiguity
resolution may inadvertently degrade the PLS ambiguity fixing rate. Therefore, it is
worthwhile to further investigate how to perform ambiguity resolution and how to utilize
the fixed ambiguities under the PLS augmented GNSS PPP model. In this work, a strategy
of ambiguity resolution has been proposed based on the characteristics of PLS and GNSS,
and its performance has been analyzed.

The structure of this paper is organized as follows: Firstly, the observation models for
GNSS and PLS are presented; a tightly coupled model for PLS-augmented GNSS PPP is
then established. Based on this tightly coupled model, a strategy of ambiguity resolution
has been proposed. Subsequently, real-time PPP experiments are conducted to evaluate the
performance under different strategies of ambiguity resolution. Finally, conclusions are
presented.

2. Observation Model

Here, the GNSS and PLS observation models are presented, respectively. The GNSS
pseudorange observation (pf]fs) and phase observation (LrG]fS) are described as follows:

P = RYS 4 c(8tF = 619%) + 7SI + TP% + b8 — b7 + ¢ )
Gs _ pG, G, G, G, G, G,
Lr,js =R+ C(étrc - 5tG’S) - ]'GIr,lS +T77 + A]G <NV,fS + BVGJ N Bj S) + grr]'s

where indices G, s, #, and j refer to the GNSS, satellite, receiver, and frequency band,
respectively. RS* is the geometric distance between the phase center of the receiver
antenna and the satellite antenna. c is the speed of light in vacuum. 6t¢ and 6t denote
the clock offsets of the GNSS receiver and satellite, respectively. Irc,is represents the first-

order slant ionospheric delay on the first frequency, and the slant ionospheric delay on
2

the j-th frequency can be obtained by a multiplier factor 'ij = {A]G / /\ﬂ that depends

on the wavelength )tjG. TS is the slant tropospheric delay. er]. and b].G’s are the code

biases of the GNSS receiver and satellite, respectively. BrGj and B].G’S are the phase biases

of the GNSS receiver and satellite, respectively. Nrcjfs denotes the GNSS integer ambiguity.

erG]fS and er}S are the sum of measurement noise and multipath error of code and phase
observations, respectively.
In GNSS PPP, the errors caused by the Sagnac effect, relativistic effect, polar tide, ocean

tide, solid earth tide, phase center offset, phase center variations, and phase wind-up are
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corrected by models [20]. The tropospheric delays consist of dry and wet components.
The dry component can be accurately modeled, while the wet component is difficult to
eliminate by models, and thus the zenith wet delay is usually estimated with mapping
functions. The satellite orbit, clock, and code/phase bias are corrected by precise products
generated by analysis centers.

Compared with GNSS observations, the PLS observations have relatively fewer errors.
The tropospheric delay can be ignored or corrected by a simplified model [21,22] if the
signal propagation distance is short. Furthermore, due to PLS signals propagating near
the surface of the Earth, PLS observations are not affected by ionospheric delays. The
coordinates of transmitters are accurately measured in advance. For synchronized PLS,
the clock offsets of transmitters are equivalent and can be absorbed by the clock offset of
the receiver. The transmitter code/phase biases can be estimated by the service end and
broadcast to the user [18]. Therefore, the PLS observations equation can be simplified from
Equation (1) as follows:

P, P, P,
p,; =Ry +cot] +b] +e,7 o
LY% = RP* + cot] + AT (Nf - Bf,]) el

Ps
rj
observations, respectively. 5t! is the clock offset of the PLS receiver. It should be noted

that 6tF absorbs the clock offsets of the transmitters so that it drifts differently from that of
the GNSS receiver. This should be taken care of in the setting of the clock offset parameter

where the superscript P denotes PLS. p 7 and Lf’].s are the PLS pseudorange and phase

within the integration model.

3. PLS-Augmented GNSS PPP Model

In this work, we implement PLS-augmented GNSS PPP based on a tightly coupled
(TC) model [19]. The diagram of the GNSS/PLS TC model is shown in Figure 1. The input
data include GNSS observations, State Space representation (SSR) of GNSS corrections,
PLS observations, and PLS ephemeris. SSR corrections include satellite orbit, clock, and
code/phase biases, which are used for GNSS real-time PPP. PLS ephemeris contains the po-
sition, attitude, and code/phase biases of the pseudolite [18]. The attitude of the pseudolite
antenna is primarily used to calculate the wind-up correction, and the phase bias is mainly
employed to recover the integer nature of the PLS ambiguity. In this study, dual-frequency
GNSS observations and single-frequency PLS observations are integrated with an Extended
Kalman Filter (EKF). The undifferenced and uncombined PPP model is very convenient for
system and frequency expansion [23]. Therefore, it is adopted in the GNSS/PLS TC model.

In the EKF, the state equation and measurement equation at the k-th epoch are
as follows:

Xp = Xg—1 + Wg—1
{zk = h(x;) + v ©)

T T T T
where the unknown state vector x;, = {r,T, cotS, cot?, <Isl) TS, (N%) , (NSZ) , (N}?,l) L.

IG,l IG,Z

T
G,m . .
br VS by PRRp Ir,1 } is the slant ionosphere

1, represents the receiver position; I,; = [
T T
G _ G1 /G2 Gm G _ G1 pnG2 Gm r
delay, N = [NGUNG,.. NG"| NS, = [NG N2 NG"|, and NP, =
T
NP NP2 ..,NrP '1" } are the GNSS first frequency band, GNSS second frequency band,

r17 %, 17"
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and PLS first frequency band ambiguity vectors, respectively. The measurement model
T T T T T 7T
vector reads h(x) = [(h,?l) , (hﬁl) , (h&) , (hgz) , (h5,1) , (hlL)J) } , with

RE 4 c(8 — 0161) 1S 15" + T + bS, — b

G2 G G2 G162, 7G2 , .G G2
o | R He(oty —oto?) + P I + T 4 by — b
hy; = _ , )

REM 4 ¢ (StF — S19M) + o SI™ 4+ T 4 b8, — b

RE o (015 — 6tG1) —9G1 + TE! 4 AG (BE, — B+ N7
G2 G G2 G1G2 G,2 G( nG G,2 G2
Ry +c(ty — 6t92) =S L7 + Ty +AP (B — BT+ N

hg;’ - T . , , O
RS 4 (018 — 15) 915 4 75 1 A (B, — 557+ NG
and
P1 P P RE 4 cot? + AP (NP 4 BP
R+ Cétr + br,l r r 1 r,1 r,1
b RO +bE | L | RPP ooty + AT (NFY + BE
h,1 = : = : : ©)
P, P 3P .
Ry™ + coty + by RE™ 4 cotf + AP (Nf’ s Bﬁl)

The partial derivatives matrix of h(x;) reads

H(x) = 2

“Ox; |Xk:f<k

-5 E, 0 I, Mr o0 0 0 |
_gg En, 0 —Iy Mr A?Im 0 0
-8 En 0 451, Mr 0 0 0 @)
_g;g E, 0 _'Yg;lm Mr 0 /\?Im 0
-g' 0 E, 0 0 0 0 0
-gr 0 E, 0 0 o0 0 AL
where g& and g are the line-of-sight unit vector from the receiver to GNSS satellite
T
and pseudolite, respectively; E,;, = {1 1 --- 1} ) ; Iy is a m-dimensional identity
Xm
Mo — [ Gl G2 em| T, . , :
matrix; Mt = |m;, my cee oMy is the mapping matrix of zenith wet delay. The

covariance matrixes of process noise wy read

Q= ! G (8)

Omxm

Ome

L OVan_

Adequately large process noises (co = 10°) of receiver position and receiver clock offset
are added to the variance at every epoch. Qf and QY is the process noise covariance slant
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ionosphere and zenith wet troposphere terms, respectively [24]. The covariance matrixes
of measurement error vj read

)

. G1\2 ; G242 G,my\2 . G1\2 ; G242 G,my2
where ng = d1ag((ap,k ), (0, (o) ),R%’k = d1ag<((7L,k) , (UL,k) ey (aerm) ),

pk pk
P g P12 P2y2 P2 P _ 3 P12 (P22 P2
R, = d1ag((0p,k) ’(Up,k) /“'(‘Tp,k) ,and Ry, = diag((o7%) , (o%) - (o) )-
UPG]'(S and (TE;CS are the standard deviations of GNSS pseudorange and phase measurement

errors, respectively. (7;’; and 0{; are the standard deviations of PLS pseudorange and
phase measurement errors, respectively. The setting of the standard deviations of GNSS
measurement errors employed an elevation-dependent model [24]. However, for PLS mea-
surements, their standard deviations are primarily related to environmental factors. Based
on empirical values, the standard deviations of PLS pseudorange and phase measurement
errors are set to constants of 2 m and 0.01 m, respectively.

SSR ] ( GNSS ]

L[ PLS
; L streams J LobservationsJ

observations

PLS ]
ephemeris J

-/
mm—

S

4
\

L )
SSR Pseudolite position, attitude
corrections and bias corrections
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\ 4

Ambiguity
resolution

A 4

i Output ;

Figure 1. The diagram of GNSS/PLS tightly coupled model.

4. Strategies of Ambiguity Resolution

In the undifferenced and uncombined PPP model, ambiguities are affected by both
initial phase biases and clock offsets, thus lacking the integer nature. Specifically, satellite-
dependent initial phase biases and precise clock offsets are typically provided by the
International GNSS Service (IGS) analysis center, which can be removed from the obser-
vations. Nevertheless, the raw zero-difference ambiguity parameters estimated within
the filter are still affected by receiver-dependent initial phase biases and clock offsets. Be-
fore fixing the ambiguities using the Least-squares Ambiguity Decorrelation Adjustment
(LAMBDA) algorithm [25], the receiver clock offsets and initial phase biases can be elimi-
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nated through the between-satellites single difference. Here, the first satellite is assumed as
the reference satellite, thus defining the single-difference transformation matrix as follows:

D= | ’ (10)

Single-difference ambiguities are obtained through the single-difference transforma-
tion matrix as follows:

-1 1 N!

A A -1 1 N2
AN=DN = | . . . (11)

-1 1| | N®

The float single-difference ambiguity vector AN is processed by the LAMBDA al-
gorithm for integer ambiguity resolution. Upon successful resolution, the fixed single-

difference ambiguity vector AN is obtained. The AN can be used as a pseudo-observation
to constrain other parameters to obtain fixed solutions.

This constraint can be distinguished between temporary constraint and tight con-
straint, which correspond to the modes termed “Continuous” (Figure 2a) and “Fix and
Hold” (Figure 2b) in the open-source software RTKLIB [24]. In “Continuous” mode, upon
successful ambiguity resolution, the fixed integer ambiguity vector constrains a temporarily
copied filter, yielding a fixed solution. Crucially, the integer ambiguity vector is not fed
back to the original filter, whereas, in “Fix and Hold” mode, the fixed integer ambiguity
vector is fed back to the original filter, constraining its ambiguity parameters to integers to
obtain the fixed solution.

observations
\ 4

| |
| |
I | | :
| | | -
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Figure 2. Two modes after ambiguities are fixed successfully.
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The fundamental distinction between the two modes is as follows: in the “Continuous”
mode, the fixed ambiguities influence only the current epoch, while in the “Fix and Hold”
mode, they persist to constrain subsequent epochs. Notably, “Fix and Hold” mode carries
higher operational risk. Should an incorrect ambiguity vector be fed back into the original
filter, it propagates systematic errors, causing deviations in positioning solutions for the
following epochs.

In the GNSS/PLS TC model, PLS can be regarded as a subsystem of GNSS, in which
PLS observations and GNSS observations are processed together. However, the ambiguity
convergence rate of PLS is significantly faster than that of GNSS. Ignoring this characteristic
and jointly fixing their ambiguities simultaneously may compromise the optimal fixation
rate, thereby compromising augmentation effectiveness. Therefore, it can be considered to
prioritize fixing the PLS ambiguities, and the fixed PLS ambiguity vector can subsequently
be employed as a virtual observation to constrain the remaining parameters. This strategy
reduces the correlation between GNSS ambiguities and other parameters (e.g., atmospheric
delays), facilitating the subsequent GNSS ambiguity resolution.

Furthermore, GNSS dual-frequency data enables the formation of wide-lane (WL)
ambiguity. Owing to the fact that the WL ambiguities have substantially longer wavelength
(~86 cm for GPS WL) compared to fundamental-frequency ambiguities (~19 cm for GPS L1),
WL ambiguities can be fixed rapidly and reliably. The WL ambiguity can be constructed by
the following transformation:

TG
R = [1 1] m@j (12)

where NJ and N, represent the estimated GNSS ambiguities of the first and second
frequency bands, respectively. Once WL ambiguities are fixed, they can be used as a
pseudo-observation to constrain the fundamental-frequency (L1/L2) ambiguities, reducing
parameter correlations and accelerating their resolution.

Combining the aforementioned ambiguity resolution sequence and the constrained
mode after the ambiguity is fixed, this paper proposes a new strategy of ambiguity reso-
lution, as illustrated in Figure 3. In the traditional strategy, the PLS is treated as a subsys-
tem of GNSS, and its ambiguities are fixed together. However, in the proposed strategy,
the PLS ambiguities are fixed first, and the fixed PLS integer ambiguity vector is used
to update the temporary filter; subsequently, the GNSS WL ambiguities are fixed, and
the temporary filter is updated with the fixed WL ambiguity vector; finally, the GNSS L1
(first frequency band) ambiguities are fixed. Updating the temporary filter only affects
the current epoch, meaning it solely constrains the remaining parameters at that epoch.
To propagate the influence of fixed ambiguities across all subsequent epochs, these fixed
ambiguities should be fed back into the original filter. This feedback mechanism is imple-
mented through the “Fix and Hold” mode, which operates as an optional strategy in the
processing workflow.

It should be noted that in PPP mode, attempting to fix the full set of ambiguities is
highly challenging due to high-dimensional correlations and residual atmospheric errors.
Consequently, partial ambiguity resolution (PAR), which only fixes a suitable subset of
the ambiguities, is typically employed [26-29]. Several kinds of strategies have been
proposed to select ambiguity subsets, such as the elevation order strategy, the Signal-to-
Noise Ratio (SNR) order strategy. Pseudolites typically have low elevation angles; using
the elevation order strategy is likely to exclude them. As for the SNR order strategy,
pseudolites generally exhibit significantly higher SNR than GNSS satellites. Once a new
pseudolite appears, if it cannot be fixed, it will block the fixing of subsequent GNSS
satellites. Furthermore, considering the fast geometric variations between pseudolites
and moving users, the correlation among the PLS ambiguity parameters decreases fast,
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and theoretically, PLS ambiguities will be fixed faster than GNSS ambiguities. Therefore,
selecting a subset of ambiguities based on the ordering of ambiguity correlation ensures
that the PLS ambiguities can be effectively retained during the subset selection process,
thereby improving the fixing rate.
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Figure 3. The traditional and proposed strategies of ambiguity resolution.

Figure 4 shows the flowchart of the PAR procedure adopted in this study. The core
of this method involves sorting the decorrelated ambiguity variances in ascending order
and sequentially removing ambiguities with the largest variances until the remaining
subset satisfies the minimum predefined success rate. First, the PAR process starts with
the decorrelation of the ambiguities [25]. Then, the full set of ambiguity resolution success
rates is computed as Ps [30]. If Ps > 99%, a normal full AR process is performed; otherwise,
PAR is performed. It should be noted that the diagonal elements of D, have been sorted
in ascending order during the decorrelation process. Therefore, we sequentially remove
the ambiguities with the largest covariances from the first to the last until the success
rate exceeds 99%. If the number of selected ambiguities is more than 4, the AR search is
performed. In this PAR, a fixed solution is obtained only if both the success rate and the
ratio-test [31] are satisfied.

In summary, the proposed strategy employs a PAR algorithm based on decorrelated
ambiguity variances and leverages the rapid convergence advantage of PLS. The PLS
ambiguities are first sequentially resolved, followed by the GNSS WL ambiguities, and
finally the GNSS L1 ambiguities. Furthermore, during the ambiguity fixing process, the
already fixed ambiguities are utilized to constrain the remaining ambiguities, thereby
enhancing the success rate of fixing the remaining ambiguities.
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Figure 4. The flowchart of partial ambiguity resolution.

5. Experiment and Analysis
5.1. Overview of the Experiment

To evaluate the performance of different ambiguity resolution strategies on real-time
kinematic PPP augmented by PLS, we conducted a two-hour kinematic experiment on a
building rooftop. Due to frequency regulation standards, the PLS transmits signals in the
2.4 GHz band, which is license-free for industrial, scientific, and medical (ISM). Therefore,
GNSS and PLS work in different frequency bands, meaning that separate antennas need
to be used to receive GNSS and PLS signals, respectively. The experimental environment
and platform are illustrated in Figure 5. The rover was equipped with one PLS receiver
and two GNSS receivers. The PLS receiver and its antenna are custom developed, while
the model of the GNSS receivers is Septentrio Mosaic X5, with two low-cost quadrifilar
helix GNSS antennas. The PLS receiving antenna was located in the middle of the two
GNSS antennas. This dual-GNSS-antenna configuration enabled lever-arm correction,
thereby correcting measurements from the main GNSS antenna to the PLS antenna phase
center [19]. Additionally, the average coordinates of two GNSS antennas, derived from
moving-RTK solutions, served as the reference trajectory for assessing positioning results
during the experiment.
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Antenna

Figure 5. Experimental environment and platform.

The coordinates of the GNSS RTK base station were determined through long-term
static GNSS PPP processing, while the coordinates of the 6 PLs were obtained from long-
term static GNSS RTK and total station measurements. Figure 6 presents the planimetric
view of the layout of the 6 PLs and the rover trajectory during the experiment. Within this
figure, the PLs are denoted by yellow circles. The two-hour walking trajectory (about 1 min
to walk one circuit) is indicated by the blue line.

L~ P =t
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] PL 1 PL 2
I B B S S L S B B S B B B S R
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Figure 6. Planimetric views of the moving trajectory and PLs. The blue line indicates the 2 h trajectory,
and the yellow circles indicate PLs.

Figure 7 illustrates the variation in the number of tracked GNSS satellites. The black,
red, blue, and green lines represent the number of satellites of GPS, Galileo, GLONASS,
and BDS, respectively, while the purple line denotes the total number of all satellites.
The number of satellites changes frequently, due to the fact that some of the satellites’
signals are blocked when the user approaches the wall. At certain moments, the total

number of GNSS satellites drops to approximately 20, primarily caused by the loss of BDS
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observations output from the receiver. Overall, the total number of GNSS satellites is about
35 throughout the experiment.
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Figure 7. The variation in the number of tracked GNSS satellites.

5.2. Analysis of the Experimental Results

In this experiment, we analyzed the GNSS/PLS ambiguity fixing rate and positioning
accuracy. The ambiguity fixing rate was defined as the ratio of the number of epochs with
successful ambiguity resolution to the total number of epochs. The experiment duration
spanned 2 h, subdivided into 8 sequential segments, each lasting 15 min (900 s), with a reset
procedure applied at the start of each segment. To enhance visual clarity in illustrating the
positioning errors and the number of fixed ambiguities over time, only the data from the
first 15 min segment (900 s) is presented graphically. However, for the statistical evaluation
of the ambiguity fixing rate and root mean square error (RMSE) of positioning, data from
all eight segments (the full 2 h) was utilized.

In the following experiments, we analyze both the traditional and the proposed strate-
gies of ambiguity resolution. Based on the constraint mode after ambiguity is fixed, the
traditional strategy is categorized into “Traditional (C)” and “Traditional (H)”, while the
proposed strategy is similarly categorized into “Proposed (C)” and “Proposed (H)”. In “Tra-
ditional (C)” and “Proposed (C)”, the fixed ambiguities are not fed back to the original filter;
that is, “Continuous” mode is adopted. Conversely, in “Traditional (H)” and “Proposed
(H)”, the fixed ambiguities are fed back to the original filter, corresponding to the “Fix and
Hold” mode. Additionally, based on the duration of PLS-augmented GNSS, we divided
the experiments into long-duration augmentation and short-duration augmentation.

5.2.1. Long-Duration Augmentation

Figure 8 presents the number of fixed ambiguities with different strategies of ambigu-
ity resolution, including the number of PLS ambiguities and GNSS L1 (first frequency band)
ambiguities. First, we will focus on the PLS ambiguity resolution performance. It can be
seen that PLS ambiguities are fixed in about 4 s for all strategies. Note that in the traditional
strategy, the PLS and GNSS ambiguities are fixed together without deliberate separation,
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but it achieves fast resolution comparable to the proposed strategy. The traditional strategy
achieved fast ambiguity resolution, primarily due to the PAR algorithm, which ranks
ambiguity parameters based on their variance after decorrelation. The rapid geometric vari-
ations result in PLS ambiguity variances decreasing faster than that of GNSS ambiguities.
Consequently, the PAR algorithm first removes GNSS ambiguities with large variances and
preserves the PLS ambiguities with smaller variances to be fixed. This process inherently
performs a selection mechanism functionally similar to the explicit PLS ambiguity selection
employed in the proposed strategy. However, after approximately 160 s, the PLS ambigui-
ties in “Traditional (C)” and “Traditional (H)” fail to be fixed. After careful analysis, it was
found that after 160 s, the variances of GNSS ambiguities also decrease. Partial GNSS ambi-
guities satisfied the success rate threshold yet failed the ratio-test threshold, resulting in the
failure of ambiguity resolution. Since the PLS and GNSS ambiguities are fixed together in
this strategy, the overall failure consequently prevents the resolution of the PLS ambiguities.
As the GNSS ambiguities continued to converge and passed the “ratio-test” threshold,
PLS ambiguities were therefore fixed again, as shown in “Traditional (H)”. There is no obvi-
ous difference between the “Proposed (C)” and “Proposed (H)” in terms of PLS ambiguity
resolution. In a word, the slow convergence of GNSS ambiguities may compromise the
fixing rate of PLS ambiguities when they are resolved together. Therefore, it is advisable to
resolve them separately.
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Figure 8. The number of fixed ambiguities of PLS and GNSS L1 under different strategies of
ambiguity resolution.

Regarding GNSS L1 ambiguity resolution, the proposed strategy achieves a higher
fixing rate compared to the traditional strategy in both “Continuous” and “Fix and Hold”
modes. Notably, the fixing rate of the “Proposed (H)” strategy significantly exceeds that of
other strategies, demonstrating the effectiveness of feeding fixed ambiguities back into the
original filter for enhancing the ambiguity fixing rate.

Figure 9 presents the statistical results of the ambiguity fixing rates under different
strategies of ambiguity resolution. The performance is consistent with the previous analysis.
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Figure 9. Ambiguity fixing rates of PLS and GNSS L1 under five strategies of ambiguity resolution.

Figure 10 depicts the positioning errors under these strategies. The statistical results
of the positioning errors under strategies Traditional (C), Traditional (H), Proposed (C),
and Proposed (H) are 0.021, 0.020, 0.019, and 0.020 cm, respectively. It can be seen that
the positioning errors obtained by these strategies show no significant differences, with
positioning errors consistently around 0.02 m. This consistency arises primarily because
the PLS converges rapidly and stays converged throughout, which plays a major role
in positioning.
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Figure 10. The positioning errors under different strategies of ambiguity resolution.

5.2.2. Short-Duration Augmentation

On the one hand, it is difficult to see the effect of these strategies of ambiguity resolu-
tion on the positioning accuracy because the PLS augments GNSS throughout the whole
period. On the other hand, due to the limited coverage area of PLS, sometimes GNSS can
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only be augmented for a short period of time. Therefore, we specifically investigated the
performance of the short-duration (15 s) PLS augmentation to GNSS.

Figure 11 depicts the positioning errors under these strategies of ambiguity resolution
with short-duration PLS augmentation. It can be seen that the positioning error in the
“Proposed (H)” strategy remains consistently convergent, while other strategies exhibit a
little divergence tendency. The statistical results of the positioning errors under strategies
Traditional (C), Traditional (H), Proposed (C), and Proposed (H) are 0.111, 0.059, 0.097, and
0.048 cm, respectively. It can be seen that the positioning accuracy in the “Proposed (C)”
strategy is higher than that achieved by the “Traditional (C)” strategy. When applying
the “Fix and Hold” mode, the positioning accuracy is further improved, and the “Pro-
posed (H)” mode still achieves higher positioning accuracy than the “Traditional (H)”.
This demonstrates that regardless of whether the “Continuous” or “Fix and Hold” mode
is employed, the proposed strategy of ambiguity resolution yields consistently higher
positioning accuracy. However, the positioning accuracy of “Traditional (H)” is better than
that of Proposed (C)”. This indicates that feeding back the fixed PLS integer ambiguities to
the original filter is crucial in short-duration augmentation scenarios.
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Figure 11. The positioning errors under different strategies of ambiguity resolution with short-
duration PLS augmentation.

From the previous experiment, it can be seen that applying “Fix and Hold” mode
to fixed ambiguities does not yield significant improvements in terms of positioning
accuracy under long-duration augmentation scenarios. However, in short-duration aug-
mentation scenarios, “Fix and Hold” mode provides considerable benefit. This is because
in the case of long-duration augmentation, the PLS ambiguity parameters typically con-
verge near integer values. As a result, whether they are fixed or not yields no signifi-
cant difference in performance. However, in the case of short-duration augmentation,
the PLS ambiguity parameters have not yet converged near integer values. Therefore,
imposing additional integer constraints (“Fix and Hold” mode) leads to a significant
augmentation improvement.

The effectiveness of ambiguity resolution under PLS short-duration augmentation
to GNSS is further evaluated in Figures 12 and 13. In the short-duration augmentation,
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PLS is available only for the initial 15 s and becomes unavailable thereafter. Therefore, the
number of fixed PLS ambiguities dropped after 15 s. Here, the PLS ambiguity fixing rate
is defined as the ratio of fixed epochs to the total number of available epochs. As can be
seen, the PLS ambiguity fixing rate exhibits very little difference across these strategies.
As we analyzed earlier, the PAR algorithm can automatically select PLS ambiguities for
priority fixing. The previous experiments confirmed that GNSS ambiguities primarily
impair the PLS ambiguity fixing rate after 100 s. However, in this experiment, PLS was
unavailable after 100 s, thus its fixing rate was hardly affected by GNSS. Consequently,
the PLS ambiguity fixing rates show comparable levels across all strategies under short-
duration augmentation.
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Figure 12. The number of fixed ambiguities of PLS and GNSS L1 under different strategies of
ambiguity resolution with short-duration augmentation.
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Figure 13. Ambiguity fixing rates of PLS and GNSS L1 under different strategies of ambiguity
resolution with short-duration augmentation.
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In contrast, significant differences exist in the GNSS L1 ambiguity fixing rates. In
the “Proposed (C)” strategy, the L1 ambiguity fixing rate is approximately 30%, while
in the “Traditional (C)” strategy, it is only approximately 3%. Furthermore, under the
“Fix and Hold” mode, the “Proposed (H)” strategy achieves a remarkable fixing rate of
approximately 97%, vastly exceeding the 15% attained by “Traditional (H)”. These results
demonstrate that the cascaded ambiguity resolution approach and the “Fix and Hold”
mode both greatly improve the GNSS ambiguity fixing rate.

Fixed PLS integer ambiguities adopt the “Fix and Hold” mode to provide a sig-
nificant improvement in short-duration augmentation scenarios. However, the wave-
length of PLS ambiguity (approximately 12 cm) is really short. Consequently, incorrectly
fixed PLS ambiguities may introduce substantial deviations into positioning solutions.
Figure 14 shows a positioning experiment, in which the duration of PLS-augmented GNSS
is still 15 s. At approximately the 4th s, the PLS ambiguities were initially erroneously
fixed in the “Proposed (H)” strategy and fed back into the original filter, contaminating
the state parameters and resulting in significant positioning deviations. In contrast, the
“Proposed (C)” strategy—which avoids feedback of wrong PLS ambiguities to the original
filter—maintains relatively better positioning accuracy. As previously analyzed, in the
long-duration augmentation, the “Fix and Hold” mode offers limited benefits yet carries
substantial risks. Therefore, it is not recommended to apply the “Fix and Hold” mode
to PLS. In the case of short-duration augmentation, feedback of PLS ambiguities to the
original filter yields significant benefits but requires cautious validation mechanisms.

1.0 4

Proposed(C)
Proposed(H)

0.8

m)

0.6
0.4+

or M

0.0 : , .
0 300 600 900

Positioning error (

Time (s)

Figure 14. Positioning error when the PLS ambiguities are erroneously fixed under “Proposed (C)”
and “Proposed (H)” strategies.

6. Conclusions

Based on the PLS-augmented GNSS PPP model, this study proposes a new strategy of
ambiguity resolution. Within this proposed strategy, by leveraging the rapid convergence
characteristics of PLS ambiguities, the PLS ambiguities and GNSS ambiguities are fixed
cascadingly. Experiments were conducted to analyze the ambiguity fixing rate and posi-
tioning accuracy under different strategies of ambiguity resolution in both long-duration
and short-duration PLS-augmented GNSS scenarios.
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In the long-duration augmentation, if the rapid convergence characteristic of PLS
ambiguities is not considered and they are fixed together with GNSS ambiguities, the
PLS ambiguity fixing rate is only 16.9%. However, in the proposed strategy, the PLS
ambiguity fixing rate can reach 99.5%. Furthermore, employing the proposed strategy also
substantially enhanced the GNSS ambiguity fixing rate.

For short-duration PLS augmentation, the proposed strategy can also improve the
GNSS ambiguity fixing rate and positioning accuracy. Additionally, during the short-
duration augmentation, where PLS ambiguities have not yet converged sufficiently close
to integer values, feeding back the fixed PLS integer ambiguities to the original filter
effectively introduces additional integer constraints. This process significantly boosts
positioning accuracy and the GNSS ambiguity fixing rate. However, the feedback of fixed
PLS ambiguities to the original filter requires extreme caution, since the ambiguity with
short wavelength is more prone to being incorrectly fixed, resulting in systematic deviations
in the positioning solutions.

Given the rapid convergence characteristics of Low Earth Orbit (LEO) satellites, this
study thus provides valuable reference for ambiguity resolution in LEO-augmented GNSS.
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Highlights:

1. This review systematically summarizes and compares both classical and Al-based
satellite clock bias prediction models, providing a comprehensive reference for model
selection in real-time high-precision GNSS applications.

2. We propose generalized modeling frameworks for classical and Al-driven approaches
and analyze error sources from systematic, data, and applicability perspectives to
enhance prediction robustness.

3. This review identifies that Al models (e.g., LSTM, Transformer) outperform in complex
nonlinear scenarios, whereas classical models (e.g., polynomial, Kalman) excel under
short-term or stable conditions.

4. We outline promising research directions including multi-source data fusion, inte-
gration of short- and long-term prediction, and enhanced model generalizability to
advance next-generation GNSS timing services.

Abstract: As foundational infrastructure for spatiotemporal information, the Global Navi-
gation Satellite System (GNSS) delivers high-precision positioning, navigation, and timing
(PNT) services worldwide. However, satellite atomic clock drift causes satellite clock
bias, degrading PNT service quality. Compared to post-processed clock bias products
and real-time estimation, satellite clock bias prediction offers a key advantage: it provides
high-precision real-time clock bias even in scenarios with limited real-time data or poor
communication. Through analysis and summarization of error sources in prediction mod-
els, this paper proposed generalized modeling frameworks for both classical and Al-based
approaches. We reviewed current research on classical mathematical models—including
polynomial, grey, Kalman filter, and time series models—and Al-based models such as
machine learning (ML), multilayer perceptron (MLP), recurrent neural networks (RNN),
and Transformer architectures. Technical characteristics, applicability, and limitations of
each model were discussed. While Al-based models demonstrate superior flexibility and
adaptability in complex scenarios compared to classical approaches, they require extensive
datasets and computational resources. In conclusion, we summarized the advantages, dis-
advantages, and future research directions, offering insights for developing next-generation
real-time high-precision GNSS PNT services.

Keywords: high-precision PNT; real-time satellite clock bias; clock bias prediction model;
artificial intelligence
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1. Introduction

As fundamental infrastructure for spatiotemporal information, the Global Navigation
Satellite System (GNSS) provides high-precision global positioning, navigation, and timing
(PNT) services. It is extensively utilized in transportation logistics, agriculture, environmen-
tal monitoring, scientific research, and military applications, delivering critical foundational
support for developing information-based intelligent societies [1-4]. With technological
advancements, emerging high-precision applications—including autonomous driving, un-
manned aerial vehicle (UAV) collaborative operations, smart grids, and communication
networks—increasingly demand real-time GNSS positioning accuracy at the centimeter
level and timing precision at the nanosecond level. These requirements impose heightened
demands on next-generation GNSS real-time high-precision PNT services. Consequently,
real-time precise satellite clock bias prediction has become a prerequisite for achieving high-
precision GNSS time synchronization and PNT services, establishing it as a key research
focus in the GNSS field.

Autonomous GNSS navigation and sustained high-precision PNT services require pre-
cise satellite clock bias products. GNSS ground control centers establish and maintain the
navigation system’s time reference using high-performance atomic clock ensembles. These
centers continuously monitor and periodically correct clock deviations—termed satellite
clock bias—between GNSS satellite atomic clocks and ground-system time references. For
example, the US GPS system conducts satellite-to-ground time comparisons via a global
network of ground stations performing continuous 24-h GPS satellite observations [5].
Similarly, China’s BeiDou System (BDS) employs inter-satellite and satellite-to-ground
links for real-time monitoring of on-orbit satellite clock bias [6,7]. However, disruptions to
ground stations or communication links may permit natural onboard atomic clock drift to
induce clock bias, potentially degrading PNT service quality. Notably, a satellite clock bias
of merely 1 nanosecond (1079 s) can introduce pseudo-range errors up to 30 cm [8]. Achiev-
ing centimeter-level positioning thus demands clock bias products with sub-nanosecond
accuracy. User Range Error (URE), a key determinant of positioning accuracy, quantifies
errors in measured satellite-to-user ranges caused by orbital and clock bias inaccuracies.
Current GNSS open service performance indicates average UREs (95% reliability) of 1.0 m
for BDS, 7.8 m for GPS, 7.0 m for Galileo, and 18.0 m for GLONASS [9].

Currently, precise satellite clock bias is primarily obtained from four sources: broadcast
ephemeris clock bias, post-processed precise products from data analysis centers, real-time
estimation, and prediction [10]. GNSS broadcast clock bias satisfies real-time requirements
but exhibits limited accuracy, typically around 5 ns. Post-processed precise products
achieved tens of picoseconds accuracy, yet suffer from significant latency—often released
hours to days after observation. The International GNSS Service (IGS) final products
currently provided 75 ps accuracy but require 12-18 days for availability. To address this,
IGS offered ultra-rapid products comprising a 48-h arc: the first 24-h observed segment
achieves <0.15 ns accuracy with 3-9 h latency, while the subsequent 24-h predicted segment
attains only ~3 ns accuracy. This marginally exceeded broadcast ephemeris performance
but remains substantially below the IGS-recommended 0.3 ns threshold for real-time high-
precision positioning [11]. Domestically, Wuhan University’s WUM products demonstrate
consistency with IGS final products. When referenced against IGS final GPS solutions,
WUM achieves daily average RMS and STD values of 154.9 ps and 55.1 ps, respectively,
though requiring 2-3 days for release [12].

Real-time satellite clock bias prediction employs a global network of GNSS observation
stations, utilizing efficient data communication and rapid processing to generate clock bias
in real time. This approach provides near-real-time precise solutions with significantly en-
hanced accuracy compared to broadcast products, forming the foundation for contemporary
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high-precision positioning services. In 2013, the International GNSS Service (IGS) launched
its comprehensive Real-Time Service (RTS) through collaboration with Natural Resources
Canada (NRCan), the German Federal Agency for Cartography and Geodesy (BKG), and
ESA’s European Space Operations Centre (ESOC). Supported by 160+ globally distributed
stations, multiple data centers, and 10 analysis centers, RTS delivered products with 0.300 ns
accuracy at ~25 s latency [13]. Nevertheless, practical implementations may encounter service
interruptions, clock bias anomalies (errors/jumps), and network failures [14].

Satellite clock bias prediction involves predicting future clock bias variations over a
certain period by establishing mathematical models or employing deep learning methods.
Compared to post-processed precise clock bias products and real-time estimation, clock bias
prediction offers the advantage of providing real-time high-precision clock bias services even
in scenarios lacking real-time data or under poor communication conditions. This capability
is particularly critical in specific applications, such as environments with limited ground
stations, poor data transmission conditions, or strict mission planning requirements. Due to
these advantages, extensive research on satellite clock bias prediction has been conducted
both domestically and internationally. However, the field currently lacks a systematic and
comparative review that synthesizes the diverse modeling approaches—from classical mathe-
matical methods to modern artificial intelligence techniques—and evaluates their performance,
applicability, and limitations under varying operational conditions. This gap hinders the
optimization and selection of appropriate prediction strategies for emerging high-stakes appli-
cations. Therefore, the primary motivation of this review is to comprehensively summarize
and analyze existing satellite clock bias prediction models, clarify their theoretical foundations
and practical challenges, and provide a clear reference for future research and operational
deployments. This paper summarizes the factors influencing the errors of prediction models
and presents generalized modeling flowcharts for classical prediction models and artificial
intelligence-based prediction models. It reviews the research progress, technical characteristics,
and limitations of satellite clock bias prediction models from both classical mathematical and
artificial intelligence perspectives, while also outlining future research directions for reference
by researchers in related fields worldwide.

2. Model Error Analysis

Errors in clock bias prediction models mainly arise from model construction methods,
data quality, and applicability constraints. As illustrated in Figure 1, we analyze these
errors through three dimensions: systematic model errors, input data error propagation,
and scenario-specific applicability limitations.

[ Error Source of Satellite Clock Bias Prediction

{ Prediction Accuracy } { Model Parameter } { Generalization Ability ]
Systematic error Optimized model Input data errors Enhancing input Model applicability Enhancing model
e Overfitting or e Adopting * Historical data data quality limitations applicability
underfitting of appropriate affected by e Data denoising e Time-varying e Targeted
machine mathematical multiple error and error characteristics parameter
learning models representations sources correction not fully optimization
e Incomplete e Incorporating ¢ Random noise e Improving raw captured e Scenario-
fitting of clock deep learning- interference clock bias e Error specific
bias variation based nonlinear e Orbital errors, accuracy accumulation in adaptability
patterns modeling clock bias long-term validation
¢ Linearmodels approaches comparison link predictions
struggle with errors e Nonlinear and
nonlinear periodic
fluctuations fluctuation
effects

Figure 1. Error analysis of satellite clock bias.

Systematic errors in clock bias prediction models originate from inherent design
limitations, primarily determined by whether the mathematical formulation accurately
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captures variation patterns. Current mainstream models include time series methods
(e.g., Autoregressive Integrated Moving Average, Kalman filtering) and machine learning
approaches (e.g., Support Vector Machines, Long Short-Term Memory networks). Time
series models typically assume autocorrelation and trend characteristics in clock bias data.
However, empirical clock signals often exhibit nonlinear fluctuations that models cannot
fully characterize, introducing systematic errors. For example, in a study predicting the
clock bias of BDS satellites, the ARIMA model exhibited an average prediction error of
approximately 3.5 ns over 6 h due to unmodeled periodic variations and thermal-induced
fluctuations [15]. Although machine learning models excel at handling complex data,
their dependence on historical datasets creates vulnerabilities: insufficient training data
or suboptimal feature selection frequently causes overfitting or underfitting, degrading
prediction accuracy [16]. When using LSTM for Galileo satellite clock error prediction,
model performance degraded significantly during solar radiation periods because the
training set lacked sufficient examples of space weather-induced anomalies [17].

Input data error propagation constitutes another major error source in clock bias pre-
diction models. Historical clock bias data—essential for model training—contain inherent
inaccuracies from acquisition and processing stages [18]. Errors originating from onboard
atomic clocks and post-processed products directly propagate into prediction models, com-
promising prediction precision. Satellite orbit inaccuracies and signal propagation delays,
for example, introduce additional noise that degrades data integrity. A notable case is the
error amplification observed in BeiDou-3 satellites: orbital determination errors of 20 cm
resulted in additional clock bias prediction inaccuracies of up to 1.8 ns over a 12-h predic-
tion horizon [19]. Since models train on historical data, both systematic and random errors
affect parameter estimation, propagating into future predictions. Furthermore, satellite
clock bias exhibits random noise characteristics, particularly power-law noise components
(e.g., frequency random walk, phase flicker noise) [20], which destabilize data and reduce
predictability, further diminishing prediction accuracy. Experimental support comes from
a study on clocks of Compass constellations where ignoring noise type mismatches (e.g.,
treating flicker noise as white noise) increased prediction RMS error by 40% compared to
noise-adaptive filtering methods [21].

Model applicability limitations constitute a third significant error source in clock
bias prediction. The generalization ability of the prediction model depends on multiple
factors, including the time-varying nature of clock variations and complex environmental
influences. During operation, satellite clock bias is affected not only by onboard atomic
clock performance but also by periodic orbital perturbations, attitude variations, and
space environmental conditions. These factors exhibit nonlinear periodic fluctuations that
challenge model adaptability [22]. Failure to accurately capture such dynamics induces
error accumulation, particularly in long-term predictions. For instance, during geomagnetic
storms, the prediction error of a quadratic polynomial model for GPS clocks increased
by 230% due to unmodeled ionospheric delay variations and increased atomic frequency
instability [23]. Consequently, adaptive validation across satellites and timeframes, coupled
with dynamic parameter adjustments, becomes essential for enhancing model robustness
and accuracy in diverse scenarios.

In summary, clock bias prediction model errors originate from three primary sources:
inherent systematic errors in model design, propagated input data inaccuracies, and
scenario-specific applicability limitations. Mitigating these errors requires not only ju-
dicious model parameter selection and optimization during the modeling phase but also
rigorous input data preprocessing through noise reduction and error correction techniques
to enhance prediction accuracy and reliability.
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3. Classical Prediction Models

Classical prediction models rely on precise mathematical formulations for modeling,
achieving forecasts through data feature extraction and fitting. Figure 2 illustrates the
general modeling process of these models, demonstrating sequential relationships be-
tween stages and incorporating a closed-loop feedback mechanism to support continuous

optimization and improvement.

Data Preparation
Completing missing values
Noise reduction using
filtering algorithms
Outlier detection through
difference transformation
and median absolute
deviation

—>

Feature Extraction
Extracting data
characteristics: trend,
periodicity, seasonality, and
stochastic components
Identifying key features
influencing clock bias

Model Construction
Selecting appropriate
mathematical models (e.g.,
QP, GM, Kalman filter, or
ARIMA)

Determining initial model
parameters and modeling
methodology

Error Analysis and Feedback
Comparing predicted and
actual values to identify
error sources
Updating data processing
procedures or refining

<—

Model Prediction
Forecasting future clock
bias using optimized models
Generating prediction
results

<—

Model Optimization
Tuning model parameters
using optimization
algorithms
Validating model
adaptability and robustness

modeling approaches based across diverse datasets

on error analysis

Figure 2. General modeling flow of a classical prediction model.

This section will introduce the following four categories of classical prediction models:
Polynomial Model (PM), Grey Model (GM), Kalman Filter Model (KFM), and Autoregres-
sive Integrated Moving Average model (ARIMA).

3.1. Polynomial Model

The polynomial model for satellite clock bias prediction originates from studies on the
operational behavior of onboard atomic clocks. Its primary objective is to forecast clock
bias variations using mathematical modeling techniques, thereby improving the accuracy
of navigation systems. The earliest implementation of such a model was proposed by
developers of the U.S. GPS system, where clock bias variations were represented using
a quadratic polynomial. This method characterizes clock bias changes through three
parameters: clock bias, frequency bias, and frequency drift [24,25]. The mathematical
formulation is presented in Equation (1).

x(ti) =ag+ad (ti — f()) + az(ti — t0)2 + 1/«’(ti) (1)

where x(t;) represents the clock bias at epoch t;, ty is the reference time, (t;) denotes the
residual error of the clock bias at epoch t;, ag, a1 and a, are the parameters representing
clock bias, frequency bias, and frequency drift, respectively.

To more accurately capture the characteristics of onboard atomic clocks, the peri-
odic variations of satellite clocks should also be taken into account. Spectral analysis
techniques can be applied to identify significant periodic components within the data
sequence. By incorporating these components into the quadratic polynomial model, a
spectral analysis—based model can be derived [26], whose mathematical formulation is
presented in Equation (2).

P
X(tl‘) =ap+ Lll(fi — to) + ﬂz(ti — to)z + Z Ap sin[27'cfk(ti — to) + gok] + lp(ti) 2)

k=1
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where p represents the number of main periodic functions, Ak, f; and ¢; denote the
amplitude, frequency, and phase of corresponding periodic terms, respectively. Other
parameters maintain the same meaning as in Equation (1).

Recent research has introduced numerous enhancements to polynomial models for
satellite clock bias prediction. Han et al. [24] combined IGS precise orbit data with clock
bias observations from IGS tracking stations in 2001 to predict post-processed precise
clock bias at 30-s intervals, achieving an accuracy of 0.1 ns. Bernier et al. [25] investigated
the characteristics of new passive hydrogen masers in 2005 using standardized quadratic
difference prediction algorithms, obtaining results second only to those of energy spectrum
noise models. In 2008, Panfilo et al. [26] conducted targeted research on noise components
in onboard atomic clock bias, extracting random walk noise and developing a prediction
model that produced objective results. Allan et al. [27], in their 2018 study, analyzed opti-
mal estimation methods for onboard atomic clocks under five common noise conditions,
deriving extrapolation expressions for these noise models and providing corresponding
prediction confidence levels and trends. Lei et al. [28] employed polynomial fitting based
on the physical characteristics of onboard atomic clocks to extract clock bias trend terms,
followed by phase space reconstruction and Gaussian process prediction for the fitting
residuals. For processing random terms in polynomial models, Wang et al. [29] adopted
robust least-squares collocation methods, whereas Liao et al. [30] proposed iterative ap-
proaches for random error correction and modeling, achieving a 1-day RMS accuracy of
0.57 ns and a maximum deviation of 1 ns.

Polynomial models exhibit strong data-fitting capabilities and are effective for short-
term clock bias prediction; however, they face challenges in capturing complex nonlinear
variations and generally perform poorly in extrapolation. While these models can provide
basic fitting and prediction of clock bias, their accuracy deteriorates markedly over time.
Therefore, regularly updating the polynomial model parameters in navigation messages is
essential for maintaining prediction precision.

3.2. Grey Model

The grey model was first applied to GPS satellite clock bias prediction in the 1990s. A
grey prediction system is a prediction framework that operates with partially known and
partially unknown information, representing an incompletely certain system. Based on grey
models, it generates new data sequences by accumulating or differencing the original series,
and then models these sequences to more objectively capture useful information. Atomic
clocks onboard navigation satellites are highly sensitive to both external and internal
factors, making it challenging to characterize their complex and detailed variation patterns.
These characteristics closely correspond to the principles of grey system theory.

Among grey system models, the GM(1,1) model is the most commonly used grey
model, with its expression shown in Equation (3).

10 (k) = (1= eI (1) = ZJe D ®)

where () (k) represents the original clock bias sequence, a denotes the grey coefficient, u
indicates the grey action quantity, e is a natural number.

A comprehensive review of literature from the past decade reveals substantial re-
search efforts aimed at improving the prediction accuracy of grey models from multiple
perspectives. In clock bias data processing, Liang et al. [31] employed difference sequences,
whereas Mei et al. [32] proposed ratio sequences for clock bias modeling. Jiang Yu et al. [33]
applied a power function transformation to clock bias data, and Yu et al. [34] implemented
Vondrék filtering for preprocessing. Regarding coefficient determination and optimization,
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Zheng et al. [35] analyzed the relationship between prediction accuracy, GM exponen-
tial coefficients, and different sampling intervals, and compared the results with those
from polynomial models. Yu et al. [36] improved the grey prediction model by employ-
ing least absolute deviation to enhance performance under abrupt-change conditions.
Yu Ye et al. [37] developed a particle swarm optimization-weighted grey regression hybrid
model, achieving average 24-h prediction residuals below 5.71 ns. Li et al. [38] proposed an
adaptive twin-subpopulation improved particle swarm optimization algorithm (TS-IPSO),
whereas Yang et al. [39] optimized grey model parameters using the Levenberg-Marquardt
algorithm. Yuan et al. [40] introduced an enhanced firefly algorithm (SAFA-FD), achieving
3-6 h prediction errors below 1 ns and 9-12 h errors under 2 ns. Additionally, Zhao et al. [41]
developed a dynamic grey model that continuously updates by discarding outdated data
and incorporating new observations, thereby improving the whiteness of prediction inter-
vals. Tan et al. [42] optimized the initial conditions of grey models by deriving them from
components of the original clock bias sequence.

The grey model demonstrates effective prediction capability with limited samples, low
data requirements, and fast modeling speed, yet exhibits instability in long-term predictions,
making it suitable for monotonic data but less effective for highly fluctuating datasets.

3.3. Kalman Filter Model

The Kalman filter, introduced by Rudolf E. Kalman in 1960, is a recursive optimal
estimation algorithm originally developed for navigation systems. The National Institute
of Standards and Technology (NIST) employed the Kalman filter algorithm to establish
Atomic Time. However, due to the incomplete observability of the system during the
filtering process, the error covariance matrix diverged continuously, leading to unbounded
growth in the clock bias estimates. Additionally, the Kalman filter’s estimation of clock
offset relied on the long-term stability of atomic clocks while overlooking their short-term
stability. To address these limitations, several improved Kalman filter algorithms were
proposed. For instance, Davis et al. [43] introduced two distinct methods to reduce the
estimation error covariance matrix and demonstrated the optimality of the reduced Kalman
scale. Greenhall et al. [44] developed an approach that combined the Kalman filter with a
weighted average algorithm, along with a method for modeling flicker noise, to constrain
the divergence in the estimated clock error covariance matrix.

Kalman filter enables real-time computation of satellite clock bias, frequency bias,
and frequency drift, thereby functioning as both a clock bias prediction model and an
estimation model. In this framework, the current state prediction depends on the previous
state estimate and the latest observations. The state equation of the Kalman filter for
onboard atomic clocks is presented in Equation (4) [45].

x(t+ 1) 1t ©2/2| | x(t) €x
y(t+7) | =10 1 T y(t) |+ | &y (4)
z(t+T) 00 1 z(t) €z

where: T represents the sampling interval; x(t), y(t) and z(t) denote the clock bias, fre-
quency bias, and frequency drift parameters of the onboard clock, respectively. ¢y, &, and
¢, are random errors with zero mean.

The key to constructing a Kalman filter model lies in determining the process noise
covariance matrix and the measurement noise covariance matrix. Current approaches
include the Hadamard total variance method proposed by Guo and Yang [46], the Allan
variance introduced by Howe et al. [47], and the variance recursion method developed
by Hutsell et al. [48]. Further research indicates that Davis ]. et al. [49] implemented a
Kalman filter-based prediction algorithm capable of achieving near-optimal performance,
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maintaining prediction errors at the 1-nanosecond level for next-generation Block IIR and
IIF satellites over a one-day prediction horizon. Pihlajasalo et al. [50] used grid search
to identify optimal noise parameters, selecting those that minimized prediction errors
in experimental tests. Pratt et al. [51] incorporated both satellite-to-ground and satellite-
to-satellite measurement data into a Kalman filter framework to estimate each Iridium
satellite’s clock bias, with typical results showing a current filter accuracy within 200 ns,
consistently meeting the original system specification of 0.5 us. Various improvements
to the Kalman filter model have been proposed: Zhang et al. [52] integrated prediction
penalties and amplitude variation constraints into clock bias estimation, while Wang
et al. [53] applied wavelet denoising to clock bias observations and proposed a linearly
weighted combination Kalman filter model.

The Kalman filter model can update predictions in real-time and is suitable for clock bias
prediction in dynamic environments. However, its performance may degrade for nonlinear
systems or when noise distributions deviate from Gaussian assumptions, as it strictly requires
accurate noise statistical characteristics—prediction quality decreases with inaccurate noise
models, and demands prior knowledge of both system models and noise statistics.

3.4. Autoregressive Integrated Moving Average Model

The autoregressive integrated moving average (ARIMA) model, proposed by Box
and Jenkins in 1970, is a widely used time series analysis method applied in fields such
as economics, meteorology, and engineering for prediction purposes. ARIMA modeling
and prediction rely on analyzing the characteristics of the time series data to determine
an appropriate model type and select suitable orders. The ARIMA (p, d, ) model, which
incorporates differencing, is denoted as ARIMA (p,d, q), where p and g represent the
autoregressive and moving average orders, respectively, and denotes the number of differ-
encing operations. When d = 0, the ARIMA model reduces to the autoregressive moving
average (ARMA) model, whose formulation is given in Equation (5) [54].

P q
X = Z aixy_;+ e+ Z bjet; (5)
i=1 j=1

where: a; and b; represent the autoregressive and moving average parameters to be es-
timated; {e;} ~ WN(0,0?) denotes the white noise sequence, and ¢ is the white noise
variance; when p and g equal 0, respectively, the model becomes an MA model and an AR
model correspondingly.

Mutaz et al. [54] applied time series models to predict and correct time-delay errors in
precise point positioning (PPP) single-point solutions, achieving a 28% improvement in
prediction accuracy. Zhou et al. [55] optimized the ARIMA model by introducing a novel
fitting approach and refined criteria for determining the p and g orders, applying it to short-
term satellite clock bias prediction, with most GPS rubidium clocks exhibiting prediction
errors below 0.6 ns for 6-h forecasts and below 0.25 ns for 1-h forecasts. Jiang et al. [56] eval-
uated the performance of ARIMA models under varying data-fitting lengths and prediction
horizons. Several enhancements to ARIMA models have been reported: Yan et al. [57]
applied sparsity theory to autoregressive model parameters to mitigate the influence of re-
dundant parameters; Gonzalez et al. [58] incorporated seasonal components into prediction
residuals, achieving nanosecond-level root-mean-square errors (RMSE) throughout the day;
Kim et al. [59] integrated neural networks with ARIMA models for predicting IGS real-time
service corrections, where the ARIMA coefficients were determined via neural networks.
In addition, time series models are widely employed for detecting and correcting AO-type
outliers in clock bias data. Han et al. [60] developed an algorithm for detecting AO-type
outliers in autoregressive (AR) models, effectively addressing masking and swamping
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issues in clustered outlier detection. Ma et al. [61] proposed a variance-inflation model
based on ARIMA for anomaly detection in BDS satellite clock bias, employing likelihood
ratio methods to identify outliers in BDS clock bias time series. Zhang et al. [62] introduced
a method that combines ARMA time series modeling with Bayesian statistics for both
precise satellite clock bias prediction and historical anomaly detection.

The ARIMA model effectively captures temporal dependencies and autocorrelations
in clock bias data, making it suitable for long-term prediction with solid theoretical founda-
tions and broad applicability. However, parameter selection and order determination can
be complex, often requiring substantial prior knowledge, and while the model works well
for linear variations, its performance degrades with nonlinear data patterns.

3.5. Summary of Classical Models

Classical mathematical modeling approaches rely on explicitly defined mathematical
formulas and parameters, where the predictive accuracy is strongly influenced by the trend,
periodicity, stochastic characteristics, and noise properties of the clock bias data. However,
such models encounter challenges when addressing complex nonlinear relationships and
typically impose stringent requirements on parameter selection and prior knowledge. As the
prediction horizon extends, errors tend to accumulate progressively, thereby constraining
the models’ capability for long-term prediction. Moreover, the inherent linear assump-
tions and fixed parameter configurations in classical methods reduce their adaptability to
the dynamic variations and intricate noise patterns frequently observed in satellite clock
behavior—particularly over extended horizons, where error propagation becomes increas-
ingly significant. These limitations have driven researchers to investigate more advanced
modeling techniques, such as machine learning approaches, to more effectively capture
nonlinear dynamics and enhance the long-term prediction stability of satellite clock bias.

4. Artificial Intelligence Prediction Models

The general modeling workflow for artificial intelligence (Al)-based prediction models
is illustrated in Figure 3. Compared with classical mathematical modeling approaches, the
Al prediction framework places greater emphasis on model complexity and the importance
of iterative optimization. At present, Al models applied to satellite clock bias time series
prediction can be broadly classified into four categories: machine learning (ML)-based
models, multilayer perceptron (MLP)-based models, recurrent neural network (RNN)-based
models, and Transformer-based models that employ self-attention mechanisms.
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Collecting and processing
historical satellite clock bias
data
Integrating multi-source data
(e.g., orbital parameters,
environmental noise)

Data Preprocessing
Performing data cleaning and
normalization/standardization
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Figure 3. General modeling process for Al predictive models.

Model Optimization
Hyperparameter tuning with
regularization techniques to
prevent overfitting
Enhancing model performance
through ensemble methods

4.1. ML-Based Models

Classical machine learning algorithms have well-established theoretical foundations,
providing strong mathematical interpretability and reliable performance guarantees. These
conventional models depend on manual feature extraction and generally adopt relatively
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simple architectures with fewer layers, which enable faster training and make them partic-
ularly suitable for small- to medium-sized datasets.

In Support Vector Machine (SVM) prediction models, the radial basis function (RBF)
is commonly employed as the kernel function, enabling nonlinear mapping of input
variables into a high-dimensional feature space where linear optimization functions are
constructed for prediction. Xiao et al. [63] developed a refined quadratic polynomial
prediction algorithm based on Particle Swarm Optimization-SVM (PSO-SVM), which
performs rolling predictions by modeling residuals during the fitting stage. He et al. [64]
proposed an enhanced approach that integrates spectral analysis models (SAM) with least
squares support vector machines (LS-SVM). As illustrated in Figure 4, their satellite clock
bias data processing framework demonstrated that the improved model can maintain
prediction deviations within £1.0 ns for most Medium Earth Orbit (MEO) satellites over
3-h prediction periods. Zhu et al. [65] introduced a least squares support vector machine
(LSSVM) prediction algorithm for hydrogen atomic clocks, achieving improvements in
prediction accuracy of 50% and 29% compared with linear prediction algorithms and
standard SVM prediction algorithms, respectively.
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Figure 4. Clock bias data processing flowchart using an improved SVM model [56].

The Extreme Learning Machine (ELM), proposed by Huang and colleagues in 2004,
is a single-hidden-layer feedforward neural network distinguished from classical neural
networks by its random initialization of input weights and hidden layer biases, which
remain fixed during training, while the output weights are computed directly via least
squares methods. This design significantly accelerates the training process. He et al. [66]
developed an enhanced clock prediction method by integrating spectral analysis models
with ELM, demonstrating that prediction accuracy remains consistently high, with errors
below 1.0 ns as the prediction horizon extends from 0 to 18 h. Lei et al. [67] proposed an
ELM network structure design based on Adaptive Resonance Theory (ART) networks,
leveraging ART’s superior self-organizing classification capabilities. Ya et al. [68] imple-
mented a Sparrow Search Algorithm (SSA)-optimized ELM prediction model that utilizes
12-h historical satellite clock bias data to forecast the subsequent 6-h bias. The SSA-ELM
model achieved improvements of 53.16% and 52.09% over QP models, and 40.66% and
46.38% over GM models, respectively, as illustrated in Figure 5.
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Figure 5. Predicting BDS Satellite Clock Bias Accuracy for the Next 6 Hours Based on Historical
12-Hour Satellite Clock Bias Data [60].

SVMs are well-suited for small sample sizes and have strong theoretical foundations;
however, they face challenges in parameter selection and exhibit high computational com-
plexity. ELMs offer advantages such as rapid training speeds and fewer tunable parameters,
facilitating relatively straightforward implementation. Nonetheless, ELMs suffer from lim-
ited generalization capability and comparatively poor robustness to noise and anomalous
data. Moreover, classical machine learning methods may encounter computational and
storage limitations when processing large-scale datasets, restricting their applicability in
scenarios that require real-time processing of massive GNSS observation data.

4.2. MLP-Based Models

The Multilayer Perceptron (MLP) is a feedforward neural network consisting of
multiple fully connected layers. Input data is processed through successive layers of
linear transformations followed by nonlinear activation functions, resulting in hierarchical
feature extraction. In time series prediction tasks, historical values of the time series are
typically employed as inputs, allowing the MLP to learn underlying patterns and trends
for prediction purposes [69]. The MLP demonstrates strong adaptability, robustness, and
associative memory capabilities, rendering it especially effective in capturing complex
nonlinear relationships within satellite clock bias data.

Du et al. [70] employed empirical mode decomposition combined with backpropa-
gation neural networks to predict GNSS receiver clock biases, demonstrating excellent
performance in predicting receiver clock bias time series. However, MLP models are sus-
ceptible to becoming trapped in local optima during backpropagation training and exhibit
slow convergence rates, which ultimately affect final convergence accuracy. To optimize
MLP neural network weights and thresholds while enhancing prediction accuracy and
convergence speed, numerous scholars have proposed various optimization algorithms,
including genetic algorithms [71], mind evolutionary algorithms [72,73], sparrow search
algorithms [69], whale optimization algorithms [74], beetle antennae search algorithms [75],
and improved particle swarm optimization algorithms [76]. These optimized models
demonstrate varying degrees of improvement in prediction accuracy compared to classical
MLP models and conventional prediction methods. Specifically, Bai et al. [73] achieved a
12-h prediction accuracy of 1.56 ns using mind evolutionary algorithm optimization, while
Lyu et al. [76] attained average prediction accuracies better than 0.15 ns for 20-min and
60-min forecasts with their improved particle swarm optimization model, representing
approximately 85% improvement over conventional models. Building upon the MLP neural
network framework, researchers have further enhanced hidden layer neural units by replacing
standard activation functions with wavelet basis functions or radial basis functions, resulting
in wavelet neural networks [77-79] and radial basis function neural networks [80,81], both of
which provide notable improvements in clock bias prediction accuracy.

MLP neural networks exhibit strong adaptability in modeling complex nonlinear
relationships; however, their training processes require multiple iterations and are time-
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consuming, with a propensity to converge to local optima. Wavelet neural networks
leverage the multiscale analysis capabilities of wavelet transforms to more effectively cap-
ture time-frequency characteristics in clock bias data, as wavelet transforms can compress
data efficiently and enhance computational performance. Nevertheless, these networks
involve complex architectural designs and wavelet basis function selections, necessitating
substantial training data and computational resources. RBF neural networks offer rapid
training speeds suitable for real-time prediction and demonstrate strong generalization
abilities; however, they are highly dependent on sample quality and present challenges in
parameter selection. Each of these neural network approaches presents distinct advantages
and limitations in satellite clock bias prediction, with their relative efficacy contingent
upon specific operational requirements, available computational resources, and desired
prediction horizons within GNSS.

4.3. RNN-Based Models

Recent research on clock bias prediction has increasingly focused on Recurrent Neural
Networks (RNNs), which possess inherent “memory” capabilities that differentiate them
from conventional Multilayer Perceptron (MLP) networks. Designed specifically for se-
quential data processing, RNNs are characterized by their recurrent connections, which
enable the retention of historical information. At each time step, RNNs incorporate the hid-
den state from the previous step, allowing them to capture temporal dependencies within
sequential data. Long Short-Term Memory (LSTM) networks and Gated Recurrent Unit
(GRU) networks represent enhanced variants of RNNs, addressing the vanishing gradient
problem via more sophisticated and more streamlined gating mechanisms, respectively,
thereby improving their capacity to model long-term dependencies. The architectures of
these three models are depicted in Figure 6 [82], illustrating their progressive complex-
ity and efficiency in handling time series data. The Tanh function maps any real-valued
number to a value between —1 and 1. The Sigma function is a mathematical function that
maps any real-valued number to a value between 0 and 1. In a standard RNN cell, the Tanh
function is typically used to activate the combined input and hidden state to produce the new
hidden state. The Sigma function is not used in the simplest RNN cells but becomes crucial in
gated architectures like LSTMs to manage information flow over long sequences.

Forget
gate
)
5 } 1 > = & g

................. ﬁ.

tanh Y
J )% ) — ‘
” 4
Input Output Reset Updata
gate gate . gate gate

C) (b) (©)

Figure 6. Three Typical Recurrent Neural Network Models. (a) The Basic RNN Model Architecture.
(b) The LSTM Model Architecture. (c) The GRU Model Architecture.

Piotr et al. [82] employed LSTM models for real-time clock bias prediction of GPS
satellites, achieving results superior to current state-of-the-art methods. Huang et al. [83]
proposed a supervised learning LSTM network (SL-LSTM) that separately models the
periodic and random components of clock bias data, demonstrating improved prediction
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accuracy and stability in long-term prediction. He et al. [84] utilized LSTM models to pre-
dict BDS-3 satellite clock biases, attaining short-term (0-6 h) prediction accuracies of 0.5 ns
and 0.3 ns for IGSO and MEO satellites, respectively. For long-term clock bias prediction,
the LSTM model exhibited improvements of 72.0% and 64.0% over ARIMA and QP models,
respectively. Cai et al. [85] developed an integrated LSTM-attention neural network incor-
porating self-attention mechanisms, as illustrated in Figure 7, which effectively balances
global attention with local feature extraction, achieving 62.51% improvement over standard
LSTM models in 12-h prediction tasks and 71.16% enhancement in 24-h prediction.
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Figure 7. The LSTM-Attention Neural Network Model [77].

Yang et al. [86] employed a sparsely sampled LSTM network algorithm to enhance
the long-term prediction accuracy of clock biases for space-based time scales, achieving
onboard frequency stabilities of 1.35 x 10715,3.37 x 10716, and 2.81 x 1071 at sampling
intervals of 300 s, 8.64 x 10* s, and 1 x 10° s, respectively. Liu et al. [87] developed a
BDS-3 satellite clock bias prediction model using GRU neural networks, implementing an
improved Sparrow Search Algorithm (SSA)-GRU hybrid model (ITSSA-GRU) that demon-
strates superior generalization capability and prediction performance across three types of
satellite clocks. Additionally, Liang et al. proposed the Nonlinear Autoregressive Exoge-
nous (NARX) neural network in 2021 [88], an enhanced recurrent neural network variant
capable of incorporating feedback from output neurons, and introduced the Elman neural
network in 2022 [89], which incorporates a “context layer” to memorize previous states,
rendering it particularly effective for time series processing and dynamic system modeling.

RNN-based models excel at capturing long-term dependencies and are well-suited
for time series prediction. By employing gating mechanisms to regulate information
flow, these models demonstrate strong memory capabilities for extended sequential data.
However, they require lengthy training periods, involve complex training procedures, and
demand careful tuning of network architectures and parameters. Despite these challenges
in practical implementation, RNN-based models outperform conventional approaches in
capturing the intricate temporal patterns of satellite clock behavior.

4.4. Transformer-Based Models

The Transformer neural network model, first proposed by Vaswani et al. [90] in 2017
was illustrated in Figure 8. It was originally designed to address sequence modeling chal-
lenges in natural language processing (NLP) and to overcome the limitations of classical
sequence models such as RNNs and LSTMs in capturing long-range dependencies. The core
innovation of the Transformer is the self-attention mechanism, which fundamentally differs
from the recurrent structures of RNNs and LSTMs by processing input sequences entirely
through attention mechanisms. This design enables effective modeling of long-distance
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dependencies and allows parallel data processing, resulting in higher computational effi-
ciency. The Transformer architecture comprises two main components: an encoder and a
decoder, each consisting of multiple identical layers.

Outputs

Linear

Add & Norm

il

4 I
Add & Norm Add & Norm
Mul-Head g
Attention
~— Z
X

»  Add & Norm ) Add & Norm

Mul-Head Masked Mul-Head
Attention Attention
- 2N /

Positional
Encoding

Inputs Outputs

Figure 8. The Transformer Model Architecture [82].

Syam et al. [8] developed a Transformer-based deep neural network for ML time series
modeling, providing fast and reliable clock bias correction predictions for single-frequency
receivers with an accuracy of less than 2 ns and maximum prediction horizons up to 2 h.
This model demonstrated a 50% improvement in prediction performance compared to
other clock bias prediction methods, as illustrated in Figure 9. Pan et al. [91] proposed a
sequence-to-sequence neural network model (Informer) based on optimized self-attention
mechanisms, which effectively leverages dependencies within clock bias data to achieve
deep latent feature extraction and parallel computation, exhibiting high accuracy and
stability in short-term clock bias prediction.

The Transformer deep learning model utilizes parallel computation via its self-
attention mechanism, enabling efficient training and superior capability in capturing global
features of sequence data, particularly excelling in handling long sequences. However, it
requires substantial computational resources and memory, performing optimally with large-
scale datasets but exhibiting relatively poorer performance than classical RNNs, LSTMs,
or convolutional neural networks when data or computational resources are limited. The
Informer model, specifically designed for long-term time series prediction, offers enhanced
capabilities for modeling lengthy sequences and achieves greater computational efficiency
compared to conventional Transformer architectures. Nevertheless, its complex structure
imposes stringent hardware and algorithmic requirements, and its performance heavily
depends on abundant training data; insufficient data volume may hinder the model from
reaching its full potential.
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Figure 9. Clock Bias Prediction Results for two hours Based on the Transformer Model [8]. (a) RMSE
of PRN Clock Bias Prediction. (b) RMSE of Clock Bias Prediction for the Next.
4.5. Summary of AI Models
Satellite atomic clocks are vulnerable to external environmental factors and possess
inherently complex characteristics, causing their clock bias to exhibit pronounced nonlinear
behavior that challenges classical models in accurately describing these variations [84]. In
contrast, artificial neural networks exhibit strong sensitivity to nonlinear dynamics and can
overcome the limitations of conventional models, rendering them particularly suitable for
modeling within big data environments. By leveraging extensive historical data through deep
learning and optimization techniques, these networks automatically extract salient features
from the data, making them well-suited for various complex time series prediction tasks.
5. Conclusions
The clock bias prediction models introduced above each possess distinct characteristics
in practical applications, all capable of achieving relatively good prediction results under
certain conditions. An analysis and summary of the advantages and disadvantages of
current major clock bias prediction models are presented in Table 1.
Table 1. Advantages and disadvantages of satellite clock bias prediction model.
Prediction Models Model Features
QP Advantages: Simple implementation, suitable for short-term prediction, and high computational efficiency.
Limitations: Poor nonlinear adaptability, weak extrapolation performance
oM Advantages: Strong small-sample adaptability, low data requirements, fast modeling.
Classical Limitations: Unstable long-term prediction, limited applicability.
Prediction Advantages: Strong dynamic tracking capability, suitable for multi-variable fusion, and effective
Models Kalman noise handling.
Limitations: High model complexity, dependent on model assumptions
Advantages: Captures temporal dependencies, and suitable for long-term prediction.
ARIMA RPN . . . o . S
Limitations: Requires data stationarity, poor adaptability to nonlinear variations
Advantages: Simple model structure with fast training speed.
ML-based Limitations: Relies on manual feature extraction, suitable for relatively simple datasets or limited
computing resources.
MIP-based Advantages: Simple structure with fast computation, ideal for small-scale high-dimensional data.
Al Limitations: Unable to capture temporal dependencies in sequential data.
Prediction Advantages: Capable of handling long-term dependencies, and suitable for longer sequence prediction.
RNN-based R P ) ) -
Models Limitations: Prone to vanishing/exploding gradients, slower computation speed.

Advantages: High computational efficiency, parallel processing capability, captures long-range dependencies,

Transformer-based suitable for long time series.

resources with a relatively slow training process

Limitations: High model complexity, requires large training datasets. Demands substantial computing
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Classical mathematical models rely on well-defined formulas and parameters, em-
ploying specific algorithms that make them suitable for scenarios characterized by strong
regularity or short-term predictions. These conventional models demonstrate higher effi-
ciency with linear and regular data patterns, exhibit better applicability for small sample
sizes, and incur low computational costs, rendering them appropriate for short-term,
regular predictions or resource-constrained environments.

Artificial intelligence prediction models leverage neural networks and deep learning
techniques to automatically extract data features and adapt to complex nonlinear char-
acteristics, proving particularly effective in big data contexts. While AI models excel at
handling nonlinear features and complex data patterns, they require substantial data vol-
ume and computational resources, making them more appropriate for large-scale datasets
and predictions involving intricate dynamics. Despite these advances, the fundamental
trade-off between model complexity and interpretability remains a inherent limitation of
many state-of-the-art Al systems.

Table 2 systematically reviews both classical and recent representative studies in the
field, compiling key performance metrics (e.g., RMSE, MAE) reported across different
research works on official datasets. This approach allows for evidence-based extraction
from existing literature, objectively illustrating the relative performance of various models
and providing a well-founded basis for our comparative analysis.

Table 2. The accuracy of each model from classical and recent representative studies.

Type Model Institution Year Periodical Model Accuracy
polynomial GFZ 2014 GPS Solutions real-time predlcthn accuracy is superior t‘o 0.55 ns.
model WUM 2017 The standard deviation of the clock bias is 0.15 ns.
Classical Grey Model NTSC 2018 Acta Astronomica Sinica 24-h prediction accuracy is 1.27 ns.
Model Kalman XISM 2023 Acta Geodgetlc? o 6-h prediction accuracy is 8~9 ns.
Filter Cartographica Sinica
! Tampere 2019 ICL-GNSS 30-days prediction accuracy is 5.22~241.79 ns
ARIMA 2021 30-days prediction accuracy is 18.16-86.28 ns
uLP IEU 5020 1-h prediction accuracy is superior to 0.3 ns.
s GPS Solutions ” _
Deep- XSCC 2021 3-days prediction accuracy is 1.59 ns
learning RNNs SYSU 2023 3~7 days prediction accuracy is 8.6~19.2 ns.
Model SSC 2024 Satellite Navigation 10-days prediction accuracy is 0.316 ns
Transformer GMV UK 2023 ION GNSS 2-h prediction accuracy is below 2 ns

Table 3 provides a decision-making framework for the practical application of different
models in real-world scenarios. Model selection is not merely a benchmarking exercise
based on performance rankings, but rather a trade-off process constrained by practical
considerations. While academic research often prioritizes State-of-the-Art (SOTA) results
and tends to favor complex Al models such as Transformers, real-world industrial ap-
plications are typically governed by critical factors including robustness, interpretability,
computational cost, and maintenance overhead. It is considered best practice to begin
with a simple model to establish a strong baseline. More complex deep learning models
should only be introduced when simpler approaches prove insufficient and the anticipated
benefits clearly justify the additional complexity and cost.
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Table 3. Decision-making reference framework for model application.

The Dimensions Considered Preferred Model
The amount of data is very small (n < 100) GM, QP
High computational efficiency /interpretability ML-based, QP
The data is stable and the trend is obvious. ARIMA
Dynamic system, multi-sensor fusion Kalman Filter
Medium-sized sequence data LSTM/GRU
Massive data, long sequence prediction Transformer-based
Limited computing resources ML-based, ARIMA
Requires rapid deployment and debugging ML-based, ARIMA

The future of satellite clock bias prediction will depend on the integrated optimization
of classical mathematical and artificial intelligence models, advancements in real-time
data acquisition and processing technologies, and efficient utilization of computational
resources. Through multifaceted innovation and refinement, the accuracy, robustness,
and adaptability of clock bias prediction will be significantly enhanced, thereby better
supporting the advancement of navigation and positioning systems. Considering the
critical importance of satellite clock bias prediction and the limitations of existing research,
several promising research directions and their associated key technologies are proposed:

1. Multi-source data fusion and processing

Satellite clock bias data come from diverse sources, including ground observation data,
measured atomic clock data, inter-satellite link data, and satellite orbit parameters, with
coupled relationships existing between clock bias data and orbit parameter determination.
Future research could explore multi-source data fusion methods to improve the accuracy
and stability of prediction models by integrating data from different sources.

2. Integration of short-term and long-term prediction

Current satellite clock bias prediction models mostly focus on either short-term or
long-term prediction while neglecting their complementary nature. Short-term prediction
models typically rely on recent data and can quickly respond to short-term variations but
are susceptible to sudden events and noise; long-term prediction focuses on global trends
and better captures stable long-term variation patterns but responds relatively slowly to
dynamic changes. Future research should emphasize the combination of short-term and
long-term prediction to achieve accurate full-cycle prediction of satellite clock bias.

3. Improving model generalization capability and robustness

Although existing models perform well in specific scenarios, their generalization capa-
bility and robustness across different satellites and environments still need improvement.
Future research could focus on cross-satellite and cross-constellation adaptability studies
to enhance prediction capability in complex environments. Further improvements could
also be made to existing models by incorporating actual physical characteristics of on-
board clocks, such as considering more complex periodic and random terms, and applying
more advanced algorithms. Deep learning techniques could be further utilized to improve
the capture of complex nonlinear clock bias variations, while optimizing neural network
architectures and parameter tuning strategies to obtain higher-precision prediction results.

4. Emphasizing real-time performance and computational efficiency

As application scenarios of satellite navigation systems become increasingly complex,
the real-time requirements for clock bias prediction are also growing. Future research
could focus on improving computational efficiency by applying parallel and distributed
computing technologies to enhance model training and prediction efficiency, particularly
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for processing long time series data. Hardware acceleration devices such as GPUs and
TPUs could be utilized to improve the training speed and prediction efficiency of deep
learning models.

5. Innovating deep learning model architectures

Future research could also explore how to integrate these new deep learning models
with existing models to form a multi-model ensemble system. By combining the advantages
of different models and optimizing ensemble strategies, the robustness and accuracy of
satellite clock bias prediction could be further improved. Such innovative deep learning
architectures are expected to break through current bottlenecks of prediction models and
provide more reliable clock bias prediction support for future satellite navigation systems.
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