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1. Introduction

The digital landscape of the 21st century has been irrevocably shaped by the rise
of automated actors. “Social bots”—algorithms designed to generate content and mimic
human interaction—have evolved from simple, script-based novelties into sophisticated
entities capable of influencing global discourse [1]. While early research primarily viewed
these bots as deterministic tools for automated customer service or news aggregation, their
capabilities have expanded alongside their potential for misuse. Today, malicious actors
are implicated in amplifying low-credibility content, manipulating financial markets, and
exacerbating political polarization by infiltrating echo chambers [2,3].

Recent years have witnessed a critical inflection point: the transition from “scripted
automation” to “cognitive autonomy”. With the advent of Large Language Models (LLMs)
and multimodal foundation models, the distinction between human and machine behavior
has blurred significantly. Reports indicate that automated traffic surpassed human traffic
for the first time in 2024, a shift driven largely by Al-powered agents [4]. Unlike their
predecessors, these modern actors possess “emergent abilities”—such as reasoning, plan-
ning, and emotional mimicry—allowing them to navigate complex social dynamics with
unprecedented fluidity [5,6].

This evolution has fundamentally altered the nature of online interaction. On an
individual level, modern agents can now engage in long-term strategic planning and
exhibit persuasive capabilities that rival human interlocutors. Studies suggest that LLM-
driven agents can tailor rhetoric to specific user demographics, rendering them potent
tools for computational propaganda [7]. On a collective level, these agents are increasingly
deployed in “social sandboxes” to simulate human community dynamics. While offering
a new lens for computational sociology, this also raises concerns about the scalability of
synthetic misinformation [8].

Consequently, authenticating these interactions is becoming increasingly difficult as
the “detection boundary” shifts. Traditional models often fail to capture the long-range
dependencies inherent in multi-party, multi-turn discussions, a challenge exacerbated
by the scarcity of realistic conversational datasets [9]. Furthermore, the ability of agents
to utilize external tools (e.g., search engines, APIs) allows them to ground responses in
real-time data. This capability enables them to bypass detection methods that rely on
identifying factual hallucinations or static knowledge cutoffs [10].

We are thus witnessing a paradigm shift from disembodied software scripts to “Social
Agents”—autonomous systems capable of constructing internal world models, maintaining
long-term memory, and interacting with the physical world through Embodied AI [11].
However, realizing this vision requires a holistic approach. To build agents that can
effectively persuade without hallucinating, or navigate physical spaces without failing, we
must address fundamental challenges in intent understanding, environmental grounding,

Electronics 2025, 14, 4885

https://doi.org/10.3390/ electronics 14244885



Electronics 2025, 14, 4885

and resilient connectivity. This Special Issue, “Advances in Social Bots,” was curated to
bridge this gap, providing the architectural blueprints that span from cognitive algorithms
to the necessary physical infrastructure.

2. Thematic Overview: From Cognition to Infrastructure

The articles in this Special Issue illustrate that the evolution from “scripted bots” to
“autonomous agents” is not a single leap, but a layered evolution. To support the high-
level emergent behaviors described in the Introduction—such as strategic persuasion and
adaptive social interaction—advancements are required across three fundamental layers:
cognitive processing, perceptual adaptation, and physical infrastructure.

2.1. Cognitive Intelligence: Understanding Stance and Sentiment

For a social agent to interact meaningfully, it must understand not just what is said,
but the stance and sentiment behind it.

Xie et al. (Contribution 1) address the challenge of zero-shot stance detection. They
propose the PAMR (Pragmatic-Aware Multi-Agent Reasoning) framework, which uti-
lizes LLMs in a multi-agent architecture. By explicitly modeling pragmatic cues like
sarcasm, their work demonstrates how agents can “think” collaboratively to decipher
implicit stances without task-specific training. Similarly focusing on linguistic nuance,
Xu et al. (Contribution 2) explore the granularity of emotion. Their research on aspect-level
sentiment analysis allows machines to disentangle complex sentence structures, a critical
capability for agents engaging in nuanced human-machine dialogue.

Furthermore, Zeng et al. (Contribution 3) tackle the temporal dimension. They
propose the DASR framework for joint event detection, utilizing incremental learning to
mitigate “catastrophic forgetting.” This ensures that agents can continuously adapt to
emerging hot topics, mitigating the risk of knowledge obsolescence in long-term social
simulations.

2.2. Perceptual Robustness: Vision and Adaptation

Modern agents operate in a multimodal world. As the boundary between real
and synthetic content blurs, perceptual robustness becomes critical—both for agents to
ground themselves in reality and for systems to distinguish authentic interactions from
fabricated ones.

Chen et al. (Contribution 4) explore the intersection of vision and geography. Their
FLsM model utilizes large-scale visual models for the fuzzy localization of image scenes.
This capability is vital for verifying the authenticity of user-generated content and distin-
guishing between real-world activity and fabricated bot personas. Addressing the stability
of Al models in changing environments, Song et al. (Contribution 5) introduce a “Dual Con-
straints” method for Continual Test-Time Adaptation (CTTA). This research ensures that
detection algorithms remain robust even as data distributions shift over time, providing a
defense against bots that constantly alter their behavioral patterns to evade detection.

2.3. Embodied Intelligence and Network Infrastructure

Finally, as agents transition from digital chatbots to embodied robots interacting with
the physical world, they require sensitive perception and resilient communication networks
to maintain autonomy.

Sharma et al. (Contribution 6) provide a glimpse into embodied interaction.
Their work on hardness classification using cost-effective tactile sensors mimics human
mechanoreceptors, paving the way for service robots that can socially and physically
interact with humans.
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Supporting these distributed agents requires robust connectivity. Qu et al. con-
tribute two pivotal studies on the network layer. In their first paper (Contribution 7),
they optimize the geometry of Stratospheric Pseudolite Networks (SPNs). In their second
paper (Contribution 8), they propose an Intelligent Pseudolite Constellation (IPCB) based
on high-altitude balloons. These studies lay the foundation for a resilient, wide-coverage
communication infrastructure. Such networks are essential for coordinating swarms of
autonomous agents in remote areas where terrestrial networks fail, ensuring that the “social”
connection remains unbroken.

3. Future Outlook

The research presented in this Special Issue highlights an inevitable trajectory: the con-
vergence of Generative Al, robotics, and social computing. We are witnessing a paradigm
shift from simple “Social Bots” to sophisticated “Social Agents”—entities that can think,
see, and touch. Unlike their text-centric predecessors, these future agents will operate
across three interconnected dimensions, as evidenced by the contributions in this volume.

e Cognitive Autonomy: Future agents must move beyond script adherence to exhibit
emergent behaviors and reasoning. They will simulate complex human societal
dynamics in computational sandboxes, a direction supported by recent surveys on
LLM-based multi-agent systems [12].

e Multimodal Perception: Agents will seamlessly transition between digital platforms
and physical forms. They will require visual adaptability to verify reality and tactile
sensitivity to interact with the physical world.

*  Resilient Infrastructure: The sustainability of these agents will depend on robust
network architectures capable of supporting distributed, autonomous swarms in even
the most remote environments.

As these technologies mature, the challenge for the scientific community shifts from
merely detecting these actors to understanding their complex interactions with human soci-
ety. The boundary between human and machine is blurring, necessitating new governance
frameworks to ensure that these powerful agents align with human values.

4. Conclusions

We extend our gratitude to all the authors, reviewers, and the editorial team who
made this Special Issue possible. “Advances in Social Bots” stands as a testament to the
field’s diversity, successfully bridging the gap between abstract software algorithms and
tangible hardware engineering.

By integrating cognitive intelligence, perceptual robustness, and physical infrastruc-
ture, this collection provides the foundational blueprints for the next generation of au-
tonomous systems. We hope this Special Issue inspires further inquiry into the symbiotic
future of human and machine intelligence.

Funding: The work was partly supported by the National Natural Science Foundation of China (U25B2042).
Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: Stance detection aims to identify whether a text expresses a favorable, opposing,
or neutral attitude toward a given target and has become increasingly important for an-
alyzing public discourse on social media. Existing approaches, ranging from supervised
neural models to prompt-based large language models (LLMs), face two persistent chal-
lenges: the scarcity of annotated stance data across diverse targets and the difficulty of
generalizing to unseen targets under pragmatic and rhetorical variation. To address these
issues, we propose PAMR (Pragmatic-Aware Multi-Agent Reasoning), a zero-shot stance
detection framework that decomposes stance inference into structured reasoning steps.
PAMR orchestrates three LLM-driven agents—a linguistic parser that extracts pragmatic
markers and canonicalizes claims, an NLI-based estimator that produces calibrated stance
probabilities through consensus voting, and a counterfactual and view-switching auditor
that probes robustness under controlled rewrites. A stability-aware fusion integrates these
signals, conservatively abstaining when evidence is uncertain or inconsistent. Experiments
on SemEval-2016 and COVID-19-Stance show that PAMR achieves macro-F1 scores of
71.9% and 73.0%, surpassing strong zero-shot baselines (FOLAR and LogiMDF) by +2.0%
and +3.1%. Ablation results confirm that pragmatic cues and counterfactual reasoning
substantially enhance robustness and interpretability, underscoring the value of explicit
reasoning and pragmatic awareness for reliable zero-shot stance detection on social media.

Keywords: zero-shot stance detection; multi-agent framework; large language model

1. Introduction

Social media has become a central arena for public discourse, where individuals
express their opinions on controversial issues such as politics, social movements, healthcare,
and environmental policies. Understanding public stance toward such topics is crucial
for applications including opinion mining, misinformation detection, crisis monitoring,
and policy-making support. Stance detection—the task of classifying a text as favorable,
against, or neutral with respect to a target—has therefore emerged as a fundamental
problem in natural language processing (NLP) and social computing [1]. Early studies
treated stance detection as a supervised classification task on social media platforms such as
Twitter, focusing on political debates and event-specific targets [2,3]. Subsequent research
leveraged neural architectures and pre-trained language models to improve contextual
understanding [4,5], yet most methods still depend on large annotated datasets and struggle
to generalize across unseen targets. These limitations have motivated recent exploration
into cross-target and zero-shot stance detection paradigms [6,7], which aim to infer stance
for new topics without task-specific training data. In practice, however, stance on social

Electronics 2025, 14, 4298 https://doi.org/10.3390/ electronics14214298
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media is rarely expressed in a straightforward manner. Instead, it is often conveyed
implicitly through pragmatic cues such as sarcasm, negation, rhetorical questions, or
figurative language [8]. These linguistic devices can obscure or even invert the intended
polarity, making it difficult for systems to distinguish stance from surface sentiment [9]. This
suggests that effective stance detection should not treat the input merely as a text-target
pair, but rather as a reasoning task that accounts for the author’s underlying claim and its
pragmatic framing.

Traditional stance detection methods initially focused on supervised neural archi-
tectures, including recurrent networks, attention mechanisms, and graph-based models,
which rely on large quantities of annotated stance data [3,4,10,11]. With the rise of pre-
trained language models (PLMs), fine-tuning strategies achieved stronger performance by
leveraging contextual embeddings [5,12]. However, these methods still face two fundamen-
tal challenges. First, annotated stance data remain scarce and unevenly distributed across
targets, making supervised training impractical for new domains. Second, generalization
to unseen targets remains difficult, even with powerful PLMs, as stance expressions often
vary in subtle ways across topics [13].

To alleviate these issues, recent research has turned to cross-target [6] and zero-shot
stance detection (ZSSD) [7]. Cross-target methods attempt to transfer stance knowledge
from source domains to unseen targets using contrastive learning, knowledge injection,
or graph reasoning. Meanwhile, zero-shot approaches leverage PLMs and large language
models (LLMs) directly via prompting or inference reformulation [14]. Despite recent
progress, two persistent gaps remain. First, many approaches conflate stance with senti-
ment, especially in emotionally charged or figurative language. Second, existing models
lack explicit mechanisms to handle pragmatic phenomena—such as sarcasm, hedging, and
negation—or to assess whether stance predictions are stable under slight linguistic varia-
tions. These challenges suggest that monolithic architectures may struggle to disentangle
the complex and often interacting cues that shape stance expression.

These observations suggest several concrete desiderata for zero-shot stance detection
systems: (1) extract explicit, target-linked canonical claims rather than relying solely
on surface expressions; (2) remain robust to pragmatic confounds such as sarcasm and
negation; (3) ensure prediction stability through counterfactual and perspective-based
probing; (4) adopt calibrated decision strategies that abstain to neutral when evidence is
thin or unstable.

Inspired by recent advances in multi-agent reasoning—particularly division of labor,
coordination, and self-verification capabilities [15,16], we introduce PAMR—Pragmatic-
Aware Multi-Agent Reasoning—a zero-shot stance detection framework that decomposes
the task into interpretable subtasks and re-assembles their signals through stability-aware
decision making. PAMR orchestrates three LLM-driven agents: (1) a Linguistic Parser
that distills the input into a canonical claim while extracting pragmatic markers; (2) an
NLI-based Estimator that produces a calibrated distribution {favor, against, neutral}; and
(3) a Counterfactual and View-Switching module that probes robustness by re-evaluating
stance under meaning-preserving rewrites (e.g., removing sarcasm, switching voice). A
lightweight stability-aware fusion integrates these signals, conservatively assigning neutral
when confidence is low, predictions are unstable, or top classes are tied. PAMR requires no
task-specific fine-tuning, yields auditable intermediate outputs (claims, pragmatic markers,
robustness flips), and explicitly mitigates common failure modes such as sarcasm-induced
polarity errors.
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The main contributions of this paper are summarized as follows:

1. We propose PAMR, a pragmatic-aware multi-agent framework for zero-shot stance
detection that factors inference into claim normalization, probabilistic NLI, and ro-
bustness probing, enabling interpretable and modular reasoning.

2. We introduce a counterfactual and view-switching probe that quantifies stability of
stance under meaning-preserving edits and perspective shifts; this signal directly
informs a stability-aware fusion rule that curbs over-confident polarity errors and
disentangles stance from sentiment.

3. We conduct extensive experiments on benchmark datasets, demonstrating that PAMR
matches or surpasses strong zero-shot baselines. Ablations reveal the contributions of
pragmatic cues and robustness probing, while additional analyses show that PAMR
produces interpretable intermediate artifacts that enable fine-grained audits.

Overall, this study bridges computational modeling and social media discourse analy-
sis by explicitly integrating pragmatic reasoning into stance inference. We aim to provide
a framework that not only improves zero-shot prediction accuracy but also deepens in-
terpretability for real-world applications such as misinformation monitoring and public
opinion tracking. The remainder of this paper is organized as follows. Section 2 introduces
related work. Section 3 describes the proposed method. Section 4 presents the experimental
setup. Section 5 reports the experimental results and analysis. Section 6 discusses key
findings and limitations. Section 7 concludes the paper.

2. Related Works
2.1. Traditional Stance Detection Methods

Stance detection, closely related to sentiment analysis, argument mining, and fact
verification, has been studied extensively in natural language processing. Early research
primarily relied on supervised learning with handcrafted features and classical classifiers.
With the development of deep learning, neural architectures such as CNNs [17,18] and
LSTMs [10] became prevalent, enabling models to capture contextual and sequential depen-
dencies in text. Graph neural networks were later introduced to encode relations among
posts, users, and targets, further enriching stance representations. The emergence of PLMs
significantly advanced the field. Fine-tuning strategies reformulated stance detection as
a text—target classification problem by concatenating target and input sequences [19]. To
reduce computational cost, lightweight adaptation methods froze most PLM parameters
while tuning small modules [14]. Beyond fine-tuning, prompt-based techniques framed
stance detection as masked language modeling. By filling in templates such as “The attitude
toward <Target> is [MASK],” PLMs could predict stance more effectively. Recent studies
improved this paradigm by designing adaptive prompts tailored to different targets [20].
In addition to general PLMs, social-media-oriented variants such as BERTweet [21] and
CT-BERT [22] have been developed to better capture the linguistic characteristics of Twit-
ter and COVID-19 discourse. While these models enhance representation learning on
noisy text, they remain limited in addressing pragmatic phenomena such as sarcasm or
negation and lack interpretability or stability validation mechanisms. Multi-modal vari-
ants have also been proposed, combining textual and visual cues through prompt-based
mechanisms [23]. Despite these innovations, most traditional approaches remain reliant
on annotated supervision and show limited robustness when confronted with pragmatic
language use.

2.2. Zero-Shot Stance Detection

To overcome the dependence on labeled data, zero-shot stance detection has been
widely explored. In this setting, models must transfer knowledge from source targets to
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entirely new ones without direct supervision. Early work employed contrastive learning to
align stance features across domains, as in JointCL [24], while other approaches leveraged
external knowledge bases to bridge semantic gaps between known and unseen targets, such
as TarBK. Graph-based methods further advanced the field by constructing heterogeneous
or multi-view graphs that capture transferable stance signals among tweets, claims, and
targets. Recently, researchers have investigated reasoning-based enhancements to improve
zero-shot generalization. LogiMDF [25] integrates first-order logic constraints into multi-
decision fusion, ensuring consistency across LLM outputs while leveraging hypergraph
propagation. These methods highlight a shift from purely data-driven transfer to structured
reasoning, which improves both robustness and explainability. Nevertheless, pragmatic
challenges such as sarcasm and rhetorical framing remain largely unresolved in ZSSD.

2.3. LLM-Based Stance Detection Methods

The remarkable zero-shot and few-shot capabilities of large language models have
reshaped stance detection research. One line of work directly treats LLMs as stance pre-
dictors: with carefully designed prompts, LLMs can classify stance without additional
training [14,26]. Strategies include direct zero-shot prompting, chain-of-thought reasoning,
and prompt designs enriched with background knowledge. While flexible, such direct
use often leads to unstable outputs and inconsistent predictions. Another line of research
employs LLMs as knowledge providers that augment smaller, trainable models. For exam-
ple, domain-relevant background information can be elicited from LLMs and injected into
stance classifiers [27], combining the interpretive capacity of LLMs with the adaptability of
supervised models. More recent efforts emphasize structured reasoning with interpretable
intermediate steps. Enhanced CoT methods [28-30] decompose stance prediction into
step-wise inferences (e.g., from factual entailment to subjective alignment), but rarely de-
fine rule-based constraints or auditable outputs. Some systems, such as FOLAR, integrate
symbolic representations like sentiment trajectories or discourse role tags, while LogiMDF
incorporates logical rules over hypergraphs for traceable reasoning. However, the internal
reasoning paths often remain implicit or non-verifiable.

2.4. Summary and Research Gap

Across these paradigms, most prior studies emphasize semantic transfer or large-
scale contextual modeling but seldom incorporate explicit pragmatic reasoning or stability
verification. For instance, social-media-oriented models such as BERTweet, CT-BERT,
and RoBERTa-Twitter capture linguistic variations in tweets but remain limited in han-
dling pragmatic phenomena like sarcasm or negation. Reasoning-based approaches (e.g.,
LogiMDF, CIRF) introduce logical or cognitive structures, yet their reasoning traces are
often implicit and lack auditable intermediate outputs. Overall, existing frameworks can
be contrasted along three dimensions—(1) whether pragmatic cues are explicitly modeled,
(2) whether prediction stability is verified, and (3) whether interpretable intermediate
reasoning is provided. PAMR addresses these gaps by integrating all three: it explic-
itly encodes pragmatic markers, employs counterfactual probing for stability, and yields
interpretable intermediate artifacts for transparent stance reasoning.

3. Methods
3.1. Task Definition

Given a short text x and a target f, the goal of zero-shot stance detection is to predict

y € {favor, against,neutral}
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without using any annotated stance data for ¢, i.e., Tirain N Trest = @. Our approach de-
composes this prediction into multi-agent reasoning steps with interpretable intermediate
outputs and evaluates prediction stability via agent-level sampling.

3.2. PAMR Overview

As shown in Figure 1, PAMR (Pragmatic-Aware Multi-Agent Reasoning) decomposes
zero-shot stance detection into four interpretable stages, each implemented as an explicit
agent that transforms inputs into structured intermediate representations. These agents
interact in a modular pipeline to progressively refine stance decisions.

Linguistic Parse Counterfactual & View-Switching
. Pragmatic Category °
T - Sarcasm - Given Canonical claim P about TARGET, P
LP Prompt test stance after small edits Favor
(remove sarcasm, remove negation,
Tweet T - target synonym) and perspective shifts @ Neutral
- vEt e (neutra, author, 0pposing). | ap s
\ )
. R
Target: Donald Emolicsitive "baseline": "favor",
Trump EmojiNegative “counterfactuals”: [remove sarcasm:
Target remove negation: ...., target synonym: ....],
. . "perspectives": [neutral voice: ..., author
Input Pragmatic: Sarcasm, Negation Voice: ..., opposing_voice: ...], Stabiita 4
Canonical_claim: Claim Text P. “stability": 0.83 ability-Aware
Fusion @
| —
NLI-based Estimator m Eé m
'NLI [temperature=0.3] 1 a0 | e Stance
& : NLI Prompt + Target: Donald Trump + Canonical claim P T Fa"‘i )% Output
S
\@ : “stance”: “ Favor ", “scores”™ { “Favor": 0.41, “Against": 0.36, " Neutral ": 0.23 )/ e
NLI [temperature=0.5] ) ~N Favor

\(’f/ Against )
o : NLI Prompt + Target: Donald Trump + Canonical claim P < D
@ : “stance”: “Against’, “scores”: { “Favor": 0.33, “Against": 0.42, " Neutral ": 0.25 }

Favor: 0.37

5

Against: 0.36
Neutral: 0.27

NLI [temperature=0.8]
o : NLI Prompt + Target: Donald Trump + Canonical claim P
@ : “stance™: “ Favor ", “scores”: { “Favor": 0.36, “Against": 0.31, " Neutral ": 0.33 }

Figure 1. PAMR Framework overall.

(1) Linguistic Parse Agent: takes the raw social media post x and target t as input,
and outputs a target-linked canonical claim along with pragmatic markers such as
sarcasm, hedging, or negation. This ensures that subsequent reasoning is grounded in
normalized propositions instead of noisy surface forms.

(2) NLI Estimation Agent: Reformulates stance classification as a natural language in-
ference task. Given the canonical claim and target, it runs multiple inference passes
using diverse prompts to produce both a probability distribution over stance labels
and a consensus vote count, mitigating randomness.

(3) Counterfactual and View-Switching Agent: Evaluates the stability of the predicted
stance by applying minimal, meaning-preserving perturbations (e.g., changing tone,
perspective). It outputs a scalar stability score reflecting how robust the original decision
is under linguistic variation.

(4) Stability-Aware Fusion Agent: Receives all signals—canonical claim, pragmatic tags,
NLI probabilities and consensus, stability score—and integrates them under a conser-
vative policy. It abstains to “neutral” if confidence is low or predictions are unstable,
ensuring robustness.

Each agent has a well-defined role, input-output interface, and interpretable output,
and the full pipeline corresponds directly to the annotated modules in Figure 1. In particular,
the Linguistic Parse Agent is responsible for the canonicalization and pragmatic enrichment
mentioned in the figure.

3.3. Linguistic Parse

The Linguistic Parse Agent aims to normalize noisy social media text into a target-
linked canonical claim, while detecting pragmatic markers (e.g., sarcasm, negation, quota-
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tion, emoji) that may invert or obscure stance polarity. Given a tweet x and target f, the
LLM generates a structured output containing pragmatic tags and a canonical claim c.
Canonical Claim Extraction: The model distills the author’s underlying proposition
regarding the target into a clear canonical claim, ensuring that the subsequent stance
reasoning operates on an explicit statement rather than noisy surface text.
Pragmatic Tagging: The parser identifies pragmatic markers such as sarcasm, negation,
quotation, and emoji usage, which are later incorporated in fusion to calibrate stance decisions.

Input Data: Tweet x, Target ¢
Prompt: Identify pragmatic markers (sarcasm, negation, quotation, emoji) and rewrite
the tweet into a canonical claim about the target.

Expected Output: Pragmatic tags and a canonical claim c.

3.4. NLI-Based Estimator

The NLI-based Estimator stage reframes stance detection as a natural language infer-
ence (NLI) problem. The canonical claim ¢ and target ¢ are paired as premise-hypothesis
inputs to the LLM. To mitigate stochasticity and improve reliability, the model performs n
independent inference runs under different decoding parameters.

Multi-run Voting: Each run outputs a stance label { favor,against, neutral} and a
probability distribution p. A majority vote and averaged probability vector p are then
aggregated for stability.

Input Data: Canonical claim ¢, Target ¢

Prompt: Given c and t, determine whether the author’s stance is favor, against, or
neutral. Output both the label and probability scores.

Expected Output: {stance,scores} per run, aggregated into majority label y*, vote
ratio r, and averaged scores p.

3.5. Counterfactual and View-Switching

The Counterfactual and View-Switching (CVS) stage evaluates robustness of stance
predictions by rephrasing the canonical claim under minimal edits and perspective shifts.
This stage probes whether stance remains consistent across semantically faithful variations.

Counterfactual Edits: The claim is modified by (i) removing sarcasm, (ii) removing
negation, and (iii) replacing the target with a synonym. Perspective Shifts: The claim
is paraphrased into three perspectives: neutral voice, author voice, and opposing voice.
Stability Score: The proportion of paraphrases consistent with the baseline stance is reported
as the stability score S. By definition, the stability score S € [0, 1] quantifies the proportion
of paraphrases whose predicted stance remains consistent with the baseline. Higher values
of S therefore indicate greater prediction stability under controlled linguistic rewrites, and
thus higher confidence in the stance.

Input Data: Canonical claim ¢, Target ¢

Prompt: Given c, re-evaluate stance after small edits (remove sarcasm, remove nega-
tion, target synonym) and perspective shifts (neutral, author, opposing).

Expected Output: JSON with baseline stance, stance for each edit/perspective, and
stability score S.

3.6. Stability-Aware Fusion

Thresholds such as Tynstaple = 0.40 control model behavior; for example, if S <
Tunstable- the model abstains by predicting “neutral” to avoid over-confident errors. Finally,

10
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we aggregate signals with a gate-by-gate cascade that mirrors Figure 1. Let p be the
averaged scores, y*/r the consensus, S the stability, and I1 pragmatic tags. Algorithm 1
lists the fusion procedure.

Filtering Policy

(1) Validity: If ¢ is empty or p missing, return neutral. (2) Stability: If S < Tynstable,
return neutral. (3) Pragmatics-aware confidence: Let y = argmax p and pmax = max p;
if Sarcasm or Negation € I1, subtract a penalty Aprag from pmax. (4) Consensus override
under low confidence: If adjusted pmax < Tprob and 7 > Teons, Output y*; else neutral.
(5) Prefer consensus: If 7 > Tcons, output y*. (6) Small-margin flip: When y = favor and
lead = prayor — max(pagainst, Preutral) < Thip, flip to against if Sarcasm or Negation € 1L
(7) Tie-to-neutral: If the top-2 gap < €, output neutral. (8) Fallback: Otherwise output y.

Algorithm 1 Stability-Aware Fusion.

Require: I1, p, v*, r, S; thresholds Tynstable, Tprobs Teons, Tips €; penalty Aprag
1: if c empty or p missing then return neutral
if S < Tynstable then return neutral
Y < argmax; pi, Pmax < Max; p; > P = (Pfavors Pagainst, Preutral)
if Sarcasme I1 or Negationé& I1 then
Pmax max(O, Pmax — )\prag)
else
Pmax € Pmax
end if
if Prmax < Tprob then
if r > Teons then
return y*
else
return neutral
end if
end if
if ¥ > Teons then
return y*
end if
if y = favor then
lead <= Pravor — max(pagainst/ pneutral)
if lead < 7q;, and (Sarcasm€ II or Negation€ II) then
return against
end if
end if
: Let p(1) > p(2) be the top-2 of p
2 if [p(1) — p)| < € then
return neutral
. end if
: returny

N DN NN NN DNDNDNDDND PR 2 2 2= = = = =
PRI TEIRESLDIIDE NS

4. Experiments
4.1. Experimental Data

To evaluate the effectiveness of our approach, we run thorough experiments on two
datasets: SemEval-2016 Task 6 (SEM16) [2] and COVID-19-Stance (COVID19) [31].

e SemEval-2016 (SEM16) [2]: The SEM16 dataset contains 4870 tweets, each targeting
various subjects and annotated with one of three stance labels: “favor”, “against”,
or “neutral”. SEM16 provides six targets (Donald Trump (DT), Hillary Clinton (HC),
Feminist Movement (FM), Legalization of Abortion (LA), Atheism (AT), and Climate

Change (CC)). Following [25] for zero-shot evaluation, we exclude Atheism (AT) and

11
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Climate Change (CC) and use only the official test split for fair comparison with prior
zero-shot settings. Per-target class counts for the four retained targets are reported in
Table 1.

e COVID-19-Stance (COVID-19) [31]: We also use the COVID-19 stance dataset, which
assesses public attitudes toward pandemic-related policies and figures across four
targets: Wearing a Face Mask (WA), Keeping Schools Closed (SC), Anthony S. Fauci, M.D.
(AF), and Stay at Home Orders (SH). Each tweet is labeled with Favor/Against / Neutral.
As with SEM16, we report results using the test split only; class distributions are
shown in Table 1.

Table 1. Statistics of the datasets used in our experiments.

Dataset Target Favor Against Neutral Total
DT 148 299 260 707
HC 163 565 251 979
SEMI6 M 268 511 170 949
LA 167 544 222 933
AF 492 610 762 1864
SH 615 250 325 1190
COVID-19 WA 693 190 668 1551
SC 400 782 346 1528

Both datasets were chosen as they are widely adopted benchmarks for stance detection
and provide diverse, topic-specific challenges. SEM16 offers classic political and social
targets that test generalization across ideological domains, while COVID-19-Stance intro-
duces a contemporary and highly pragmatic context involving public health discourse.
We acknowledge that both datasets are relatively small in size (a few thousand tweets
each), which may limit the statistical power of comparisons. To mitigate this, all evalua-
tions are conducted in a strict zero-shot setting using the official test splits only, ensuring
comparability with prior studies. Furthermore, our stability-aware fusion mechanism and
counterfactual probing explicitly reduce the sensitivity of results to sampling variance,
partially alleviating dataset-size constraints.

4.2. Evaluation Metrics

We adopt the Macro-F1 score F,yg computed as the average of the F1 scores of the
Favor and Against categories (the Neutral class is excluded from the average), following
standard practice in stance detection [2,7,26]. Macro-F1 equally weights each class and is
less affected by label imbalance, which is critical for social media datasets where “neutral”
or “against” instances often dominate. In addition, we report per-target Macro-F1 averages
to ensure comparability with prior zero-shot studies.Let P, and Ry denote precision and
recall for class y € {favor, against} The per-class F1 and the macro average are defined as

2-P favor ° Rfavor
Foavor = 55— 1)
aver P favor + Rfavor
2-P against ° Ra ainst
F i - & & 7 2
against P, against + Ragainst ( )
Favg _ Ftavor +2F against . (3)

12
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4.3. Baseline Methods

To ensure a comprehensive evaluation, we compare PAMR with a broad range of

existing stance detection approaches, which can be grouped into traditional DNNSs, fine-

tuning-based methods, and LLM-based frameworks.

(1) TraditionalDNNSs.

)

®)

BiLSTM and Bicond [32]: These two approaches utilize separate BILSTM en-
coders, where one captures sentence-level semantics and the other encodes the
given target, thereby enabling the model to jointly represent stance-related infor-
mation.

CrossNet [33]: This model leverages BiLSTM architectures to encode both the in-
put text and its corresponding target, while introducing a target-specific attention
mechanism before classification, which enhances the model’s ability to generalize
across unseen targets.

TPDG [34]: This method automatically identifies stance-bearing words and
distinguishes target-dependent from target-independent terms, adjusting them
adaptively to better capture the relationship between text and target.

TOAD [35]: To improve generalization in zero-shot scenarios, TOAD adopts an
adversarial learning strategy that allows the model to resist overfitting to specific
targets while transferring stance knowledge.

Fine-tuning methods.

TGA-Net [36]: This approach establishes associations between training and eval-
uation topics in an unsupervised way, using BERT as the encoder and fully
connected layers for classification, thereby linking topic domains without anno-
tated supervision.

Bert-Joint [37]: It combines bidirectional encoder representations from transform-
ers that have been pre-trained on large-scale unlabeled corpora, producing dense
contextual embeddings for both tokens and full sentences.

Bert-GCN [38]: This method enhances stance detection with common-sense
knowledge by integrating both structural and semantic graph relations, which
makes it more effective in generalizing to zero and few-shot target scenarios.
JointCL [24]: It unifies stance-oriented contrastive learning with target-aware
prototypical graph contrastive learning, allowing the model to transfer stance-
relevant features learned from seen topics to unseen targets.

TarBK [39]: By leveraging Wikipedia-derived background knowledge, TarBK
reduces the semantic gap between training and evaluation targets, thereby im-
proving the reasoning capability of stance classifiers.

PT-HCL [7]: This contrastive learning approach utilizes both semantic and sen-
timent features to improve cross-domain stance transferability, enabling robust
generalization beyond source data. Its combination of semantics and sentiment
proves critical for disambiguating stance from emotion.

KEPrompt [40]: This method proposes an automatic verbalizer to generate label
words dynamically, while simultaneously injecting external background knowl-
edge to guide stance recognition. It reduces reliance on manually designed
verbalizers and improves flexibility.

LLM-based methods.

COLA [14]: This approach employs a three-stage framework where different LLM
roles are orchestrated for multidimensional text understanding and reasoning,
resulting in state-of-the-art zero-shot stance performance. It demonstrates the
effectiveness of task decomposition within LLM pipelines.

13
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e Ts-CoT [41]: It introduces a chain-of-thought prompting mechanism for stance
detection with LLMs, upgrading the base model to GPT-3.5 in order to take
advantage of improved reasoning capacity. The CoT design encourages step-by-
step reasoning rather than direct label prediction.

e EDDA [27]: This method exploits LLMs to automatically generate rationales
and substitute stance-bearing expressions, thereby increasing semantic relevance
and expression diversity for stance detection. By focusing on rationales, EDDA
improves both performance and interpretability.

e FOLAR [42]: A reasoning framework that augments stance detection with factual
knowledge and chain-of-thought logical reasoning, aiming to improve inter-
pretability and robustness in zero-shot settings.

*  LogiMDF [25]: A logic-augmented multi-decision fusion framework that extracts
first-order logic rules from multiple LLMs, constructs a logical fusion schema, and
employs a multi-view hypergraph neural network to integrate diverse reasoning
processes for consistent and accurate stance detection.

4.4. Implementation Details

We implement PAMR using GPT-3.5-turbo accessed via the OpenAl API. For Linguis-
tic Parse and CVS, the maximum generation length is set to 256 and 512 tokens, respectively,
with temperature 0.3. For NLI-based estimation, we run the model three times with tem-
peratures {0.3,0.5,0.8} and aggregate results by majority vote and averaged probabilities.
Fusion thresholds are fixed across datasets: Tynstaple = 0-40, Tprob = 0.45, Teons = 0.60,
Taip = 0.15, € = 0.02, and pragmatic penalty Aprag = 0.05. All evaluations are conducted in
a strict zero-shot setting using the official test splits, and performance is reported in terms
of macro-F1 over favor and against.

5. Overall Performance
5.1. Analysis of Main Results

Table 2 reports the results on the SEM16 dataset. Early neural baselines such as
BiLSTM, Bicond, and CrossNet achieve relatively low performance, with average scores
around 34-38. With the introduction of pre-trained models, methods like JointCL, PT-HCL,
and NPS4SD raise the average performance to around 52-55. More recent LLM-based
approaches, such as COLA, FOLAR, and LogiMDEF, achieve competitive results on specific
targets (e.g., COLA and FOLAR both exceed 81 on HC). However, their performance tends
to fluctuate across different targets. In contrast, PAMR achieves strong and consistent
results across all targets, with best scores on FM (75.9) and LA (71.8), and a balanced overall
average of 71.9, surpassing all baselines. This demonstrates the effectiveness of pragmatic-
aware reasoning and stability fusion in achieving robust zero-shot stance detection. Here,
Avg denotes the arithmetic mean over all targets.

Table 3 shows the results on the COVID-19 dataset. Traditional baselines (CrossNet,
BERT, TPDG) perform poorly, with average scores between 40 and 45. Stronger models like
TOAD and JointCL improve performance, while LogiMDF achieves the best results on AF
(70.4) and WA (75.4), and FOLAR performs strongly on WA (73.1). Nevertheless, PAMR
consistently achieves competitive or best performance on nearly all targets, obtaining
the top scores on SC (72.0), SH (72.2), and WA (78.8). Its overall average reaches 73.0,
outperforming all comparison methods. This indicates that PAMR is better able to handle
pragmatic confounds such as sarcasm and negation in COVID-19 tweets, yielding more
stable and reliable stance predictions. Again, Avg is the mean over all targets in the dataset.
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Table 2. Results on the SEM16 dataset. Fyyq is reported for each target. The Avg is the arithmetic
mean over all listed targets. The best results are in bold. T indicates the first-best result.

Method HC FM LA DT Avg
BiLSTM 31.6 40.3 33.6 30.8 34.1
Bicond 32.7 40.6 34.4 30.5 34.6
CrossNet 38.3 417 38.5 35.6 38.5
TPDG 50.9 53.6 46.5 473 49.6
TOAD 51.2 54.1 46.2 495 50.3
TGA-Net 493 46.6 452 40.7 455
Bert-Joint 50.1 421 44.8 41.0 445
Bert-GCN 50.0 443 442 423 45.2
JointCL 54.4 54.0 50.0 50.5 52.2
TarBK 55.1 53.8 48.7 50.8 52.1
PT-HCL 54.5 54.6 50.9 50.1 52.5
KEPROMPT 57.0 53.6 53.0 41.8 51.3
NPS4SD 60.1 56.7 51.0 51.4 54.8
COLA 81.7 63.4 71.0 68.5 71.2
Ts-CoTcpr 78.9 68.3 62.3 68.6 69.5
EDDA 77.4 69.7 62.7 69.8 69.9
FOLAR 81.9 71.2 69.9 - -
LogiMDF 75.1 67.9 68.0 67.6 69.7
PAMR 73.7 75.9 71.8 % 66.1 71.9
(Ours)

Table 3. Results on the COVID-19 dataset. We report per-target Macro-F1 and the overall Avg, which
is the mean across all targets. The best numbers are in bold. ¥ indicates the first-best result.

Method AF SC SH WA Avg
CrossNet 41.3 40.0 40.4 38.2 40.0
BERT 47.3 45.0 39.9 443 441
TPDG 46.0 51.5 37.2 48.0 45.7
TOAD 53.0 68.3 62.9 41.1 56.3
JointCL 57.6 493 435 63.1 53.4
Ts-CoT 69.2 435 66.5 57.8 59.3
COLA 65.7 46.6 53.5 73.9 59.9
FOLAR 69.5 67.2 65.4 73.1 68.8
LogiMDF 70.4 68.8 64.9 75.4 69.9
PAMR 68.6 72,01 7221 78.8 1 73.0

To further validate these improvements, we conduct paired ¢-tests between PAMR and
the strongest baseline across all targets on both datasets. The results show that PAMR’s
performance gains are statistically significant (p < 0.05), confirming that the observed
advantages are unlikely due to random variation.

5.2. Ablation Study

To better understand the contributions of different components in PAMR, we conduct
ablation experiments by removing the Linguistic Parser (w/o LP) and the Counterfactual
and View-Switching module (w/o CVS). The results are shown in Figure 2.
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Figure 2. Ablation study of PAMR on SEM16 and COVID-19.

We observe that removing either component consistently degrades performance across
both COVID-19 and SemEval-2016 datasets. Specifically, eliminating the Linguistic Parser
leads to a substantial drop, e.g., from 72.0 to 49.3 on SC and from 66.1 to 56.9 on DT,
confirming the importance of extracting canonical claims and pragmatic cues for stance
reasoning. Similarly, removing the Counterfactual and View-Switching module also results
in performance declines, particularly on WA (from 78.8 to 71.1) and FM (from 75.9 to 74.9),
highlighting the necessity of stability probing to mitigate pragmatic confounds and prevent
over-confident errors.

Overall, the full PAMR framework consistently outperforms its ablated variants,
demonstrating that both pragmatic parsing and counterfactual stability probing are com-
plementary and essential for robust zero-shot stance detection.

5.3. Case Study

To further illustrate the behavior of PAMR, we analyze representative examples from
the evaluation set, as shown in Table 4.

Case 1. In this example, the canonical claim and the original tweet exhibit strong
semantic alignment. The NLI-based estimation assigns a dominant probability to favor
(p = 0.65), clearly surpassing both against and neutral. The CVS stability score reaches
S = 0.83, well above the instability threshold, indicating robust consistency under coun-
terfactual and perspective shifts. Moreover, majority voting yields complete unanimity
(3/3 runs), reinforcing the reliability of the prediction. Since no pragmatic markers (e.g.,
sarcasm or negation) are present, the system directly outputs favor, which matches the
gold annotation. This case shows that, under standard conditions, PAMR can capture
entailment relations both stably and accurately.
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Table 4. Case studies on SemEval-2016 Trump target showing intermediate outputs.

Tweet Claim Egﬁmatlc NLI Scores  Stability Prediction
People are saying
that kids will not Keeping schools
have a safe place to
. closed may leave )

o g he ol L i v 065

atherin s are gr;mt place to go, but [Quotation] Ogl 5 no'ne' 0.833 Favor
ga fe wi thg large gatherings are O.ZOi '

. unsafe due to '
coronavirus. The .
AR coronavirus.

coronavirus is
not safe.
“2 years ago Hillary Questioning
whether she flesid Hillary’s email {favor: 0.50

rivate email while excusing [Sarcasm a ains't' -
P! . others reflects the ! & y 0.666 Against
Liberal media . Quotation] 0.46, none:

assed on sexist double 0.04}
Ee orting.” standards women ’

POTHng. in politics face.
#equality

Case 2. Here, the canonical claim and initial NLI probabilities suggest an approval
stance (favor) toward the target, with the aggregated vote leaning in the same direction.
However, the CVS stability score is only S = 0.67, indicating borderline robustness. Impor-
tantly, pragmatic markers such as Sarcasm are detected. Within the fusion stage, these cues
trigger a polarity flip, shifting the final decision from favor to against, which aligns with
the gold annotation. This case demonstrates PAMR’s ability to exploit pragmatic signals to
correct initial misclassifications in sarcastic contexts, thereby disentangling stance polarity
from sentiment polarity.

6. Discussion

Our results highlight key insights into zero-shot stance detection. PAMR consistently
outperforms baselines on both SEM16 and COVID-19 datasets, demonstrating that explicit
modeling of pragmatics and stability improves generalization. Unlike prior models that
conflate sentiment with stance, PAMR leverages pragmatic cues like sarcasm and negation
to reduce polarity errors. Its modular design—with components for claim extraction, coun-
terfactual probing, and fusion—enables interpretable outputs and fine-grained analysis.
While PAMR currently relies on GPT-3.5, all reasoning steps are prompt-based and general-
izable, making the framework compatible with future open-source or symbolic alternatives.
Fusion strategies further enhance robustness under figurative or domain-specific inputs.
Future work may explore lightweight replacements to improve accessibility and stability.

7. Conclusions

In this paper, we introduced PAMR, a pragmatic-aware multi-agent reasoning frame-
work for zero-shot stance detection on social media. The framework enables explicit
and interpretable reasoning by integrating linguistic, inferential, and counterfactual anal-
yses without requiring target-specific training. Experiments on the SemEval-2016 and
COVID-19-Stance datasets show that PAMR achieves stable improvements over strong
zero-shot baselines, confirming the value of incorporating pragmatic cues and stability
probing. While our results demonstrate promising robustness and interpretability, the
model has been evaluated only on English social media datasets; its applicability to other
domains or high-stakes contexts should be considered exploratory. Future work will extend
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PAMR to multilingual and multi-modal settings, investigate domain adaptation under dis-
tribution shifts, and explore hybrid integration with symbolic reasoning to further enhance
stability and transparency in zero-shot stance detection. Beyond these directions, PAMR
offers a flexible foundation for future research on pragmatic reasoning and stance analysis.
Its modular components can be adapted to evaluate or enhance other stance models, while
its interpretable outputs provide useful tools for analyzing how pragmatic cues shape
stance, supporting broader advancements in social media understandings.
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Abstract: Continuous Test-Time Adaptation aims to adapt a source model to continuously
and dynamically changing target domains. However, previous studies focus on adapting to
each target domain independently, treating them as isolated, while ignoring the interplay of
interference and promotion between domains, which limits the model’s sustained capability,
often causing it to become trapped in local optima. This study highlights this critical issue
and identifies two key factors that limit the model’s sustained capability: (1) The update of
parameters lacks constraints, where domain-sensitive parameters capture domain-specific
knowledge, leading to unstable channel representations and interference from old domain
knowledge and hindering the learning of domain-invariant knowledge. (2) The decision
boundary lacks constraints, and distribution shifts, which carry significant domain-specific
knowledge, cause features to become dispersed and prone to clustering near the decision
boundary. This is particularly problematic during the early stages of domain shifts, where
features are more likely to cross the boundary. To tackle the two challenges, we propose a
Dual Constraints method: First, we constrain updates to domain-sensitive parameters by
minimizing the representation changes in domain-sensitive channels, alleviating the inter-
ference among domain-specific knowledge and promoting the learning of domain-invariant
knowledge. Second, we introduce a constrained virtual decision boundary, which forces
features to move away from the original boundary, and with a virtual margin to prevent
features from crossing the decision boundary due to domain-specific knowledge interfer-
ence caused by domain shifts. Extensive benchmark experiments show our framework
outperforms competing methods.

Keywords: continual test-time adaption; test-time adaption; domain adaption; domain
generalization; continual learning

1. Introduction

Continual Test-Time Adaptation (CTTA) focuses on enhancing machine learning mod-
els” ability to adapt continuously in dynamic environments where input data distributions
shift over time. This capability is crucial in various real-world scenarios. For instance,
in autonomous driving [1-4], a vehicle may encounter changing conditions such as tran-
sitioning from daylight to nighttime or from sunny to rainy weather. To maintain high
performance, models must adapt effectively to these evolving data distributions through
Continual Test-Time Adaptation.

Numerous methods have been developed to tackle the challenges of Continual Test-
Time Adaptation, including the use of teacher—-student models [5-7], data augmentation
techniques [5], semi-supervised learning [8], Low-Rank Learning [9], sample replay [10],
and Masked Autoencoders [11].
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Although previous studies have achieved significant success, a key limitation must be
pointed out: These studies still follow the approach of Test-Time Adaptation (TTA) [12],
treating the problem of Continual Test-Time Adaptation in isolation and focusing solely
on adapting to each domain independently. This limits the model’s sustained capability,
similar to a greedy algorithm [13], causing the model’s performance to become trapped in
local optima [14] and failing to achieve the ideal global optimum [15]. This is because these
methods overlook the essential nature of Continual Test-Time Adaptation: in this setting,
domain adaptation is dynamic, ongoing, and continuously evolving, resulting in different
domains either interfering with or promoting each other.

Therefore, addressing the following two challenges is crucial for enhancing the sus-
tained capability of Continual Test-Time Adaptation: (1) How to effectively alleviate the
mutual interference of domain-specific knowledge. (2) How to effectively learn domain-
invariant knowledge across domains.

This study revisits the differences between Continual Test-Time Adaptation and Test-
Time Adaptation, focusing on the long-neglected issue of sustained capability, and identifies
two key factors that severely limit the model’s sustained capability and prevent it from
getting trapped in local optima:

1.  Lack of constraints in parameter updates: The model contains a large number of
domain-sensitive parameters, which tend to learn domain-specific knowledge. When
the model encounters a new domain, the distribution difference between the old
and new domains causes these domain-sensitive parameters to behave abnormally,
leading to unstable channel representations that incorporate substantial domain-
specific knowledge from previous domains, especially in the early stages of adapting
to the new domain. This results in severe interference between domain-specific
knowledge. More importantly, relying on domain-specific knowledge for classification
significantly hinders the learning of domain-invariant knowledge.

2. Lack of constraints in decision boundary: Domain shifts carry a significant amount of
domain-specific knowledge, causing the features generated by the model to spread
out more. The lack of constraints makes these features prone to clustering near or
crossing the decision boundary. Under the interference of domain-specific knowledge,
features near the decision boundary are more likely to cross, particularly in the early
stages of the new domain.

As shown in Figure 1, we analyze the channel representations under three different
corruption levels (level-5, level-3, and level-1) of CIFAR10C (The method for calculating
unstable channel representations is provided in Section 4.4.3). In Figure 1a, we observe that
different levels of corruption have varying impacts on the stability of channel representa-
tions. The higher the level of corruption, the more unstable the channel representations
become. The domain-sensitive parameters are highly sensitive to this domain-specific
knowledge, resulting in anomalies and instability in the channel representations.

In Figure 1b, we observe that domain-sensitive channels are much more responsive to
domain shifts than domain-robust channels. When encountering different domains, the
representation of these channels tends to exhibit instability and are prone to significant
variations. The cause of this abnormal behavior lies in the domain-sensitive parameters,
which tend to overfit domain-specific knowledge such as background, lighting, and texture.
When a domain shift occurs, this domain-specific knowledge undergoes drastic changes,
leading to significant variations in the channel representations. The instability of channel
representations and the presence of a large amount of domain-specific knowledge can cause
significant interference in domain adaptation, especially in the early stages of domain shift.
In contrast, domain-robust parameters focus on learning domain-invariant knowledge,

22



Electronics 2025, 14, 3891

such as contours and shapes. This domain-invariant knowledge remains unaffected by
domain shifts, resulting in more stable channel representations.

Channels

EAE A A A A A ﬁ@‘; FHFS
< E

Domains

(a) (b)

Figure 1. An illustration of the relationship between channels and unstable representations:
(a) The instability of channel representations increases with the level of corruption. This indicates
that domain shifts impact the channel outputs, and the stronger the domain shift, the greater the in-
stability of the channel outputs. (b) The instability of representations varies across different channels.
Domain-robust channels exhibit stable representations with smaller variance, typically concentrated
on the left, suggesting that these channels have learned more domain-invariant knowledge, making
them resilient to data distribution shifts and less prone to changes. In contrast, domain-sensitive
channels show unstable representations with larger variance, typically concentrated on the right, as
they have learned domain-specific knowledge, making them vulnerable to data distribution shifts
and more susceptible to changes.

Based on our observation in Figure 1, we can see that domain-specific channels exhibit
instability and are prone to change. Therefore, we propose a parameter update constraint
method that estimates the relationship between changes in channel representations and
the loss increases caused by parameter updates, suppressing domain-sensitive parameters
by minimizing the changes in domain-sensitive channel representations. This constraint
not only effectively alleviates the interference caused by domain-specific knowledge but
also promotes the learning of domain-invariant knowledge by reducing the sensitivity
of the parameters. Additionally, we provide theoretical evidence that our method can
effectively enhance the model’s generalization ability and promote the learning of domain-
invariant knowledge.

Furthermore, as shown in Figure 2, domain shifts carry substantial domain-specific
knowledge, and when the model has not yet adapted to the new domain, features are
more susceptible to the effects of the domain shift, making them more likely to cross the
original decision boundary. We introduce a virtual decision boundary that constrains the
features generated by the model to move away from the original decision boundary, pre-
venting them from clustering near it. This constraint also creates a virtual margin between
two decision boundaries. During domain shifts, this virtual margin provides sufficient
buffering to prevent features from crossing the original decision boundary. The strongly
constrained virtual decision boundary effectively mitigates the interference caused by
domain-specific knowledge in the early stages of domain adaptation.

Overall, we propose a Dual Constraints method that combines channel-based pa-
rameter constraints and feature-based virtual decision boundary constraints, effectively
addressing the two major challenges of domain knowledge interference and learning
domain-invariant knowledge, thereby enhancing the model’s sustained capability(More
motivations and details will be elaborated in Section 3.1). Our contributions can be summa-
rized as follows:
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1.  We propose a novel parameter constraint method that minimizes the representation
changes in domain-sensitive channels, which, respectively, enhance and suppress
the learning of domain-invariant and domain-specific knowledge. In addition, we
theoretically prove that it can effectively enhance the model’s generalization ability.

2. We introduce a strongly constrained virtual decision boundary that creates a vir-
tual margin, forcing features away from the original decision boundary, effectively
mitigating the problem of features crossing the boundary during domain shifts.

3. Dual Constraints enhance the model’s sustained capability and achieve excellent
performance, surpassing all existing state-of-the-art methods.

Defocus blur at time ¢ Glass blur at time t +1
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Figure 2. Decision boundary lacks constraints. Consider a domain shift occurring between
two adjacent time points, t and ¢ + 1. Features that are clustered near the decision boundary at
time t are subjected to a stronger domain shift, causing them to cross the decision boundary and
manifest as features at time ¢ + 1.

2. Related Work
2.1. Unsupervised Domain Adaptation

Unsupervised Domain Adaptation (UDA) [16] assumes that there is a domain shift
between the source domain and the target domain, with labeled data available in the
source domain but no labels in the target domain [17]. The goal is for the model to
perform well on the unlabeled target domain data. UDA methods often use distribution
distance metrics to align the feature distributions between the source and target domains
during training. For example, Maximum Mean Discrepancy (MMD) [18-20] is a statistical
test that assesses whether two distributions are equal based on observed samples from
those distributions. Adversarial training [21-23] is another common approach, which
involves aligning distributions using two adversarial roles: a domain classifier and a
feature generator. Unlike traditional Unsupervised Domain Adaptation methods, Test-
Time Adaptation (TTA) aims to adapt a model trained on a source domain to a new
target domain without accessing the original source data during inference, and many
methods have been proposed to solve TTA, such as TENT [12] and SHOT [24]. TENT
[12] updates the trainable batch normalization parameters from a pretrained model by
minimizing the entropy of the model’s predictions during testing. SHOT [24] combines
entropy minimization and diversity regularization with label smoothing techniques to train
a general feature extractor from the pretrained source model.

2.2. Domain Generalization

Domain generalization (DG) aims to extract knowledge from the source domain that
can generalize well to unseen target domains. Many methods learn domain-invariant
representations by aligning the distributions of the target and source domains. These
methods include adversarial learning [25], causal learning [26], and meta-learning [27].
Another approach is to enhance the model’s generalization capability by generating more
source domain data, specifically by augmenting the diversity of the source data through
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data augmentation [28]. These data augmentation techniques primarily involve style
transfer [28,29] and pixel-level augmentation [30]. Although these methods have demon-
strated promising results, they may still learn excessive domain-specific features, as they
rely on implicit assumptions to remove domain-specific characteristics via image-level
augmentation or model-level constraints. Some studies have pointed out that Convolu-
tional Neural Networks (CNNs) tend to classify objects based on local texture features
that contain domain-specific characteristics [31-33]. To address this, they propose using
penalty loss functions to suppress the model from learning local features such as texture,
background, and lighting. This penalty encourages the model to rely on global features for
classification. In contrast to local features, global features, including shape and contours,
remain more stable and less prone to changes across domains. Therefore, this penalty on
local features forces the model to learn domain-invariant properties, thereby enhancing its
generalization ability.

2.3. Continual Learning

Continual learning (CL) aims to enable models to learn new tasks from a continuously
evolving data stream while retaining previously acquired knowledge. One of the main
challenges is catastrophic forgetting, where models tend to forget prior knowledge when
learning new tasks. To address this issue, several approaches have been proposed, including
regularization methods [34], which protect important weights from excessive updates,
architecture expansion methods [35], which adapt the model by expanding its structure to
accommodate new tasks, and memory replay methods [36-39], which store and replay data
from previous tasks to mitigate forgetting. Despite significant progress, continual learning
still faces challenges related to computational and memory overhead and maintaining
strong generalization performance under non-stationary data distributions.

2.4. Continual Test-Time Adaptation

Unlike traditional Test-Time Adaptation (TTA) [40—42], which assumes a fixed target
domain and works in a source-free online manner, CITA accounts for the dynamic na-
ture of real-world data distributions. This means CTTA requires models to adapt online
and source-free across evolving domains. CoTTA [5] is a leading approach in contin-
ual domain learning, using average teachers and data augmentation for reliable pseudo-
labels and robust model updates. DSS [8], inspired by semi-supervised learning, employs
FreeMatch [43] to generate label thresholds for filtering pseudo-labels. RoTTA [44] sta-
bilizes Batch Normalization updates to mitigate batch size variations during adaptation.
RMT [6] addresses asymmetry in cross-entropy in teacher—student models, proposing
symmetric cross-entropy for better gradients. Reshaping [10] addresses the catastrophic
forgetting problem using sample replay. MAE [11] leverages mask autoencoders to learn
domain-invariant knowledge. Unlike previous work, this study focuses on the sustain-
ability of continuous domain adaptation, aiming to find the global optimum rather than
settling for local optima.

3. Method
3.1. Problem Setting

Given a pretrained model M° with initial parameters 6y, originally trained on source
domain data (X%,Y%), the objective of CTTA is to iteratively adapt model M to a se-
quence of target domain datasets. During this process, the source domain data (X°,Y®)
is not accessible, and the target domain datasets {X, T XlT L, X,{ } are unlabeled. At each
time step t, the parameters 6; are updated to 6;, 1 to better align the model M!*! with
the current target domain X/. For the sake of clarity, we define the model output as:
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9 = M(x) = G(Z) = Gy(F(x)). F(x) is the feature extractor, and the feature map at the ¢/
layeris Z; = {Zs1,Zep, -, Zoc,} = Fo—1(Z¢—1), where Z; € RCxHxWe G (.) represents
the classifier, and W = {Wy;, W, ... W} denotes the weights of the classifier.

3.2. Domain-Sensitive Parameter Suppression
3.2.1. Motivation of Domain-Sensitive Parameter Suppression

Existing methods typically use the following objective function to optimize model
parameters for domain adaptation during testing:

min L(M"H(X]), Y/) (1)
Mi+1
where at time ¢, the target domain data X/ is encountered, and the model parameters are
updated based on the loss function £(-) to form the new model M!*!. It is important to
note that before any parameter update at time ¢, M!*! = M.

Existing methods naively use Equation (1) as the objective function, leading to an
unconstrained parameter update process. A large amount of domain-sensitive param-
eters are highly sensitive to domain-specific knowledge and change rapidly to fit such
knowledge [31,45], such as background, lighting, and texture. Although existing meth-
ods introduce EMA [46], where M! = BM'~! + (1 — B)M!, and set B = 0.999 to alleviate
performance degradation caused by rapid parameter changes, this parameter weighting
approach has several issues: historical parameters contain a large amount of knowledge
from past domains, which interferes with the current domain adaptation process, and
hyperparameters cannot be adjusted adaptively. Moreover, this method is often used as a
performance-boosting technique: people know that using it improves performance, but not
using it worsens performance, without exploring the essence of the problem.

3.2.2. Implementation of Domain-Sensitive Parameter Suppression

To tackle this challenge, we propose a novel parameter constraint method that minimizes
the representation changes in domain-sensitive channels, effectively mitigating the rapid
updates and overfitting of domain-sensitive parameters to domain-specific knowledge.

Now, we consider two consecutive models, M! and M!~1. Theoretically, the parameter
difference between two adjacent models is very small, but CTTA is a continuous process
where the model continuously adapts to the target domain, which will eventually result in a
huge cumulative effect. To analyze the feature maps change caused by the model parameter
changes between adjacent moments, let Z; and Z, are the feature maps generated by the
¢ — 1" layer of M!(-) and M'~1(), respectively. We can compute the loss given by Z} via
the first-order Taylor approximation as follows:

L(Ge(Z)),9) = L(Ge(Zy), 1)

Cy , )
+ ¥ V2, £(GHZ0),9), Zhe — Zu ),
c=1

where (-, -)F is the Frobenius inner product, i.e., (A, B)r = tr(A" B), and Vz, L(Ge(Zy), 1)
is the gradient in the backpropagation of M!~(). Using Equation (2), we define the
loss increment AL(Z; ) for the c!" channel at the ¢ layer caused by parameter changes
as follows:

DL(Zye) = (Y2, L(GUZ0),9), Zhe = Zuc ), ()
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Thus, we aim to minimize the loss change caused by parameter updates between
two adjacent models at consecutive moments, as follows:

L C

2
1 !
m}é;;%%xg [AE(Zz,c)} 4)

We need to update M;(+) to M;,1(-) at time ¢ using data X/. If we minimize Equation (4)
using standard stochastic gradient descent, in addition to calculating the gradients of the
feature maps produced by M'(-) with respect to the samples, we also need to calculate and
store the gradients of the feature maps produced by M!~!(-) with respect to the samples,
which significantly increases computational cost or memory overhead.

Using the Cauchy-Schwarz inequality, we derive the upper bound for the objective
function of Equation (4) as follows:

E[AL’(Z},C)}
~ B[(V2, £(GH(Z0),0),Zh, — Zu,)v)

< E[V2, LGUZ0), )llE - 1 Zhe = Zoelle]

< \/E[||Vz£,cﬁ(Ge(Z€)/yA)||ﬂ E|[1Z;, ~ Zocl] ©)

By optimizing the upper bound of the objective function, we avoid storing large amounts of
the gradients of the feature maps or performing additional backpropagation. Substituting
Equation (5) into the objective function to minimize Equation (4), we obtain

LG
min ) ) ExthTHVZME(GZ(ZZ)/?)H% Nz = ZoelI? (6)
(=1c=1

Mi+1

According to Figure 3, we observe an interesting phenomenon: The degree of unstable
representation of the channels is positively correlated with the magnitude of the gradient
values. Larger gradients cause the parameters to change rapidly, indicating that domain-
sensitive parameters are sensitive to domain-specific knowledge and fit such knowledge
through rapid changes, leading to unstable channel representations that are prone to
variations and contain a large amount of domain-specific knowledge. This is consistent
with the conclusion derived from the Equation (6): the larger the gradient value, the higher
the degree of suppression of the parameters.

Therefore, we define a channel sensitivity importance weight as IZ o

I e = 1V2, L(G(Z0), DI @)

However, we cannot directly optimize using this equation. There are significant differ-
ences in the magnitude of channel gradients across layers, so it is necessary to balance the
scale of importance across layers. Finally, we construct the channel sensitivity importance
weight I} as follows:

Be=qp — V2 LG9l o ®)
S Vi |
b LY 12, £(GZ0) ) 3
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Figure 3. Gradient norm and channel-unstable representation relationship.
Therefore, the final parameter constraint objective function can be expressed as

L C

. t 2
ﬁpsp = min 2 2 ]ExNXTIZ,c . ||Zé,c — Zg,c F (9)
M T 3 !

3.2.3. Theoretical Analysis of Domain-Sensitive Parameter Suppression

In this section, we prove from the perspective of Lipschitz continuity that our method
can effectively suppress domain-sensitive parameters, promote the learning of domain-
invariant knowledge, and enhance the generalization ability of the model.

We first provide the definition of Lipschitz continuity. Given (3 C R", let 6; € Q
and 6, € Q. For a function i : O — R™, if there exists a constant K such that the
following holds:

[1(61) — h(02)[]2 < K||61 — 622, V61,0, € O (10)

then, h is called Lipschitz continuous.

According to existing studies [33,47], if the loss function has a smaller Lipschitz
constant K, it indicates that the loss function landscape is flatter, which consequently leads
to better model generalization. On the contrary, if the Lipschitz constant K is very large,
it indicates that the model parameters are highly sensitive to input variations, with even
minor changes leading to drastic shifts in the model’s output, which means that the model
lacks generalization ability.

Now, consider the model parameters 0;_1 and 6; at two consecutive moments during
continual domain adaptation. The change in the loss function can be expressed as:

1£(6:) = L(6:-1)[l2 = 1£(Z)(6: — B-1) 2 (11)
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where { = cf; + (1 —¢)6;_1, and ¢ € [0,1]. By applying the Cauchy-Schwarz inequality,
we have

1£(6:) = L(6r—1)[l2 < [VL(D)[2[10 — 011l (12)

Considering 6y = 6;_1 — 1V 0;_1, we have 6; — 6;_1,s0 VL({) ~ VL(6;_1), and the above
can be rewritten as

1£(0) = L(6-1)l2 < [[VL(Or-1)|2]|0f — 611l (13)

From Equation (13), it can be seen that minimizing ||VL(6;_1)||2 is equivalent to
minimizing the Lipschitz constant K. According to Equation (9), we have

Lpsp o« I, = IV z, L(Gi(Ze),9)|IF (14)

Thus, based on Equation (14), penalizing the gradient norm forces the model parameters to
generate smaller gradient norms, which is equivalent to reducing the Lipschitz constant of
the model. As a result, the model achieves better generalization performance.

3.3. Virtual Decision Boundary
3.3.1. Motivation of Virtual Decision Boundary

In Figure 4, we clarify the reasons behind the lack of robustness in the decision
boundary and present our proposed solutions. In Figure 4a, we observe that during
domain adaptation, the features extracted by the feature extractor F(-) tend to cluster
near or slightly cross the decision boundary, which is indicated by the red boxes. In
Figure 4b, we examine domain shifts, where we assume that two successive adapted
domains have deviations ¢ and ¢j ;1 from the source domain. The deviation between
them is Ae = g;11 — &,. When Ae > 0, the feature bias increases, leading to the possibility
that features clustered near the decision boundary may cross over, resulting in errors. To
address these challenges, we propose the virtual decision boundary. As shown in Figure
4c, this method introduces a virtual margin between the original decision boundary and a
newly created virtual decision boundary. This virtual margin pushes features away from
the original boundary, reducing the likelihood of clustering near it. Additionally, the virtual
margin provides sufficient buffer space to help prevent features from crossing the decision
boundary during domain shifts.

/\Class 1 O Class 2 / Decision Boundary ,," Virtual Decision Boundary / Classifier I,"Shift Direction

Classifier 1 Classifier 1

Classifier 2

Figure 4. An illustrative example showcasing our motivation and solution: (a) During continuous
domain adaptation, features are prone to cluster around or cross the decision boundary. (b) During
domain shifts, features clustered at the decision boundary are prone to crossing it. (¢) The virtual
decision boundary forces the generated features away from the original decision boundary, creating
a virtual margin that prevents features from crossing the decision boundary during domain shifts.
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3.3.2. Implementation of Virtual Decision Boundary

Before addressing this issue, we start with a simple binary classification problem.
Consider a binary classification problem where we have a sample from class 1 and use the
feature extractor function Z = F(x) to obtain the features of the sample x. We introduce a
parameter m that is used to scale the inequality, forming a stricter virtual decision boundary.
This can be mathematically expressed as ||Wi||2||Z]|2 cos(mby) > ||Wa||2||Z]]2 cos(62) (0 <
0, < %), where 0 is the angle between the classifier vector and the feature vector, and
m € [1,+00), as the following inequality holds:

W12l Z][2 cos(61) > [[Will2[|Z]|2 cos(mby) > [[Wall2[|Z]|2 cos(62) (15)

Therefore, |[Wil2||Z||2cos(01) > ||[Wall2||Z||2 cos(82) has to hold. So the new classification
criteria is a stronger requirement to correctly classify x, producing a more rigorous virtual
decision boundary for class 1. Thus, the loss function for binary classification of class 1 can

be written as

eIWill2[1Z] 12 cos(mér)

— elMill2l1Z]l2 cos(mbr) - o[ Wall2]|Z]|2 cos(62)

L (16)

We can also apply the same constraint to class 2 as we did for class 1. In CTTA, we can
transform a binary classification problem into a multiclass classification problem.

Z

r 1 gHWCHZHZiHZCOS(mGC> 17
" INT & el lzlacostnt) 4 €, oW RIZTzcos(0) (17)

In addition, in order to make Equation (17) hold for all 6 € 7, we construct 1(6)
as follows: -
cos(mf) 0<0<—

¥(6) = . " (18)
D(0) < 0 <m

where m is a non-negative number that is closely related to the classification margin. With
larger m, the classification margin becomes larger, and the learning objective also becomes
harder. Meanwhile, D(6) is required to be a monotonically decreasing function and D(Z)
should equal cos( 7). We construct a specific 1(#) as follows:
km (k+1
(6) = (—1)F cos(m) — 2k, 0 € [, FEDT (19)
m m
where k € [0,m — 1] and k is an integer. So, the final virtual decision boundary loss can be
represented as follows:

ros— L3 NUANEARTS!
VP T INT & W29 6] 4 €, W Rz cosCE)

(20)

3.3.3. Dynamic Virtual Margin of Virtual Decision Boundary

In the virtual decision boundary method, the width of the virtual margin m is not
uniform across different domains and classes at any given time. This variability arises
because different domains experience varying degrees of domain shift, and each class
is affected differently, leading to varying densities of sample features near the decision
boundary. To address this, we propose a dynamic margin that adjusts the width of the
virtual margin according to the shift degree of each domain and class. A practical way
to implement this is by using the classifier from the source model as a reference point.
The deviation of each class from its corresponding class in the source domain can be
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quantified using cosine distance. Additionally, the overall domain shift can be assessed
by calculating the average cosine distance of all samples from their positions in the source
domain. Specifically, we first measure the shift degree D of the current domain relative to

the source domain:
1 1 N - Z
D=-|1-—) —— (21)
z( ™ & |wc||z||zi||2>

Then, we measure the shift degree D, of each class relative to the corresponding class in
the source domain:

1 1 Ne Wc'zj
D.==-[1- cecC 22)
: 2( AR

Thus, at any given time f, the dynamic margin for each class in different domains can be
expressed as

; m t=20 23)
m. = _
B (1 B) ([ipy P +11), £>0

where D = {D1,D5,...,Dc}, and B is set to 0.999, used to robustly update, prevent-
ing its value from undergoing drastic changes. This dynamic adjustment allows the
model to more effectively adapt to the specific shifts encountered across different do-
mains and classes, enhancing its robustness and accuracy. The m is a hyperparameter
used to initialize the virtual margin, and the specific setting is discussed in detail in the
experimental section.

3.4. Loss Function

Based on Equations (1), (8) and (20), we can derive the following overall loss function:

L= LMXT),Y")+ Lpsp + Lvps (24)

We constrain the model using this function to enhance its sustained capability.

4. Experiment and Results

4.1. Experimental Setup
4.1.1. Datasets and Task Setting

Building on the previous works [5,6,44], our method undergoes evaluation on
three classification CTTA benchmarks, which encompass CIFAR10-to-CIFAR10C, CIFAR100-
to-CIFAR100C, and ImageNet-to-ImageNetC. In the segmentation CTTA, we conduct as-
sessments on the Cityscapes-to-ACDC, using the Cityscapes [48] as the source domain and
the ACDC [49] as the target domain.

4.1.2. Compared Methods and Implementation Details

We compare our method with the original model (Source) and multiple CTTA methods,
including BN [50], TENT [12], CoTTA [5], RoTTA [44], SATA [51], RMT [6], PETAL [7],
DSS [8], Reshaping [10]. For the classification task, all methods are implemented using the
same backbone architecture and pretrained model as used in our approach. Specifically, we
utilize the pretrained WideResNet-28 [52] for CIFAR10C, ResNeXt-29 [53] for CIFAR100C,
and ResNet-50 [54] for ImageNetC, and use the largest corruption severity (level 5). For the
segmentation CTTA task, we use the ACDC dataset as the target domain, which includes
images captured under four distinct, unobserved visual conditions: Fog, Night, Rain, and
Snow. To simulate continuous environmental changes akin to real-world scenarios, we
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cyclically iterate through the same sequence of target domains (Fog — Night — Rain —
Snow) multiple times.

4.2. Classification CTTA Tasks
4.2.1. CIFAR10-to-CIFAR10C Gradual and Continual

For the CIFAR10-to-CIFAR10C task, we evaluate our methods under two distinct
settings. The first setting is a gradual task; the model sequentially adapts to fifteen target
domains where the corruption severity level gradually changes between the lowest and
highest extremes. The corruption type only changes when the severity reaches its lowest
point. As shown in Table 1, our method achieves the lowest error rate of 8.3%, representing
2.1% improvement over the CoTTA method.

The second setting is a standard continual task where the model sequentially adapts
to fifteen target domains, each with a corruption severity level of 5. The results, shown in
Table 2, indicate that directly applying the source domain model yields an average error
rate of 43.5%. The BN [50] method improves this performance by 23.1% compared with the
source-only baseline. Among all compared methods, DSS achieves the lowest error rates of
12.2% on motion. SATA [51] achieves the lowest error rates of 10.2%, 14.1%, 13.2%, 10.3%
on zoom, snow, frost, and contrast, respectively. Reshaping [10] achieves the lowest error
rates of 17.1%, 12.7%, 15.9% on elastic, pixelate, and jpeg. In other scenarios, our proposed
method either outperforms or is on par with the other approaches, ultimately achieving
the lowest overall average error rate, reduced to 14.5%.

Table 1. Classification error rate (%) for the gradual CIFAR10-to-CIFAR10C task. The best results in
each column are highlighted in bold.

BN [50]
13.7

TENT [12]
30.7

CoTTA [5]
10.4 8.3

Source Ours

24.8

Dataset
CIFAR10C (Error %)

Table 2. Classification error rate (%) for the standard CIFAR10-to-CIFAR10C Continual Test-Time
Adaptation task. The best results in each column are highlighted in bold.

Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate Jpeg

Mean

Source

BN [50]
TENT [12]
CoTTA [5]
RoTTA [44]
RMT [6]
PETAL [7]
SATA [51]
DSS [8]
Reshaping [10]
Ours

72.3 65.7 729 46.9 543 348 420 251 413 26.0 9.3 46.7 26.6 58.5
28.1 26.1 36.3 12.8 35.3 14.2 121 173 174 153 8.4 12.6 23.8 19.7
24.8 206 286 14.4 31.1 16.5 141 191 18.6 18.6 12.2 20.3 25.7 20.8
243 213 266 11.6 276 122 103 148 141 124 7.5 10.6 18.3 13.4
30.3 254 346 18.3 34.0 14.7 11.0 164 146 14.0 8.0 12.4 20.3 16.8
24.1 202 257 13.2 25.5 14.7 128 162 154 14.6 10.8 14.0 18.0 14.1
23.7 214 263 11.8 28.8 12.4 104 148 139 126 74 10.6 18.3 13.1
239 20.1 28.0 11.6 27.4 12.6 102 141 132 122 7.4 10.3 19.1 13.3
24.1 213 254 11.7 26.9 12.2 105 145 141 125 7.8 10.8 18.0 13.1
23.6 199  26.0 11.8 25.3 13.2 109 143 135 127 9.0 11.9 17.1 12.7
20.1 16.5 234 11.2 24.1 12.6 103 143 13.6 121 7.3 10.9 18.2 12.9

30.3
27.3
249
17.3
19.4
16.6
17.1
18.5
17.3
15.9
17.0

43.5
204
20.7
16.2
19.3
17.0
16.2
16.1
16.0
15.8
14.5

4.2.2. CIFAR100-to-CIFAR100C

The results for the CIFAR100-to-CIFAR100C continual task, as shown in Table 3,
further demonstrate the effectiveness of our method. Our approach achieves the lowest
error rates across the Gaussian, shot, impulse, glass, motion, zoom, snow, frost, elastic,
and jpeg, and it also obtains the lowest overall average error rate. Compared with the
source-only baseline, our method improves performance by 17.9%, and it surpasses the
Reshaping [10] method with a further 1.2% reduction in error rate.
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Table 3. Classification error rate (%) for the standard CIFAR100-to-CIFAR100C Continual Test-Time
Adaptation task. The best results in each column are highlighted in bold.

Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate Jpeg Mean

Source 73.0 68.0 394 29.3 54.1 30.8 288 395 458 50.3 29.5 55.1 37.2 747 412 464
BN [50] 421 40.7 427 27.6 419 29.7 279 349 350 415 26.5 30.3 35.7 329 412 354
TENT [12] 37.2 358 417 37.9 51.2 483 485 584 637 71.1 70.4 82.3 88.0 88.5 904 609
CoTTA [5] 40.1 377 397 26.9 38.0 279 264 328 318 403 247 26.9 32.5 283 335 325
RoTTA [44] 49.1 449 455 30.2 427 295 261 322 307 375 247 29.1 32.6 304 367 348
RMT [6] 40.2 362  36.0 27.9 33.9 28.4 264 287 288 31.1 255 27.1 28.0 266 29.0 302
PETAL [7] 38.3 364  38.6 259 368 273 254 320 308 387 24.4 26.4 31.5 269 325 315
SATA [51] 36.5 33.1 35.1 25.9 34.9 27.7 254 295 299 331 24.1 26.7 31.9 275 352 303
DSS [8] 39.7 360 372 26.3 356 275 251 314 30.0 37.8 242 26.0 30.0 263 31.1 309
Reshaping [10] 38.8 35.0 354 26.7 332 274 25.0 274 268 298 24.1 25.1 26.9 249 28.0 290
Ours 33.9 326 318 25.4 302 26.7 248 289 243 29.7 23.4 25.1 26.5 233 306 27.8

4.2.3. ImageNet-to-ImageNetC

Table 4 presents the performance comparison for various methods on the challenging
ImageNet-to-ImageNetC continual task. Our method stands out by achieving the lowest
average error rate among all the methods evaluated. Notably, it significantly outperforms
the recently proposed Reshaping method across several difficult corruption types, including
Gaussian (72.2% vs. 78.5%), shot (70.7% vs. 75.3%), impulse (68.3% vs. 73.0%), and glass
(71.3% vs. 73.1%).

Table 4. Classification error rate (%) for the standard ImageNet-to-ImageNetC Continual Test-Time
Adaptation task. The best results in each column are highlighted in bold.

Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate Jpeg Mean

Source 95.3 95.0 953 86.1 919 874 779 851 799 79.0 45.4 96.2 86.6 775  66.1 83.0
BN [50] 87.7 874 878 88.0 877 783 639 674 703 547 36.4 88.7 58.0 56.6 67.0 72.0
TENT [12] 81.6 746 727 77.6 73.8 655 553 616 63.0 517 38.2 721 50.8 474 533 62.6
CoTTA [5] 84.7 821  80.6 81.3 79.0  68.6 575 603 605 48.3 36.6 66.1 47.2 412 460 627
RoTTA [44] 88.3 82.8 821 91.3 83.7 729 59.4 662 643 53.3 35.6 74.5 54.3 482 526 673
RMT [6] 79.9 763  73.1 75.7 729 647 568 564 583 49.0 40.6 58.2 47.8 437 448 599
PETAL [7] 87.4 85.8 844 85.0 83.9 74.4 63.1 635 640 524 40.0 74.0 51.7 452 510 67.1
SATA [51] 741 729 716 75.7 741 64.2 555 55.6 629 46.6 36.1 69.9 50.6 443 485 60.1
DSS [8] 84.6 804 787 83.9 79.8 749 629 628 629 49.7 37.4 71.0 49.5 429 482 64.6
Reshaping [10] 78.5 753 73.0 75.7 73.1 64.5 56.0 55.8 581 47.6 38.5 58.5 46.1 420 434 59.0
Ours 72.2 70.7  68.3 759 713  62.0 54.8 552 613 43.3 40.5 61.2 48.6 421  41.7 579

4.3. Semantic Segmentation CTTA Task
Cityscapes-to-ACDC

We validate the effectiveness of our approach in the more challenging segmentation
CTTA task by adapting the pretrained Segformer model from the Cityscapes dataset to
the ACDC dataset, as shown in Table 5. Our method outperforms the previous entropy
minimization method (TENT [12]), teacher-student method (CoTTA [5]), and sample
reshape method (Reshaping [10] by 9.7%, 4.4%, and 0.4%, respectively). Notably, our
method demonstrates better stability compared with others, with performance continuously
improving throughout the adaptation process. This is attributed to the effective suppression
of domain-sensitive parameters, which forces the model to learn more domain-invariant
knowledge while mitigating the interference from domain-specific knowledge.
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Table 5. Semantic segmentation results (mIoU in %) on the Cityscapes-to-ACDC CTTA task. The
four test conditions are repeated ten times to evaluate the long-term adaptation performance. The
best results in each column are highlighted in bold.

Time t
Round 1 4 7 10 All
~ ~ ~ ~
T 5 & F T 5 & F s 5 & & s 5 & 5
eps S %0 N ) o5 S %0 N o &5 S .90 N S &5 S %0 N QS g M
Condition & £ & & §F & & IS I LTS FSEF 5§ Mt
Source 69.1 40.3 59.7 578 56.7 69.1 403 59.7 578 56.7 69.1 40.3 59.7 578 56.7 69.1 403 59.7 578 56.7 56.7
BN 62.3 38.0 54.6 53.0 52.0 623 380 546 53.0 520 623 38.0 54.6 53.0 52.0 623 38.0 546 53.0 520 520
TENT [12] 69.0 40.2 60.1 573 56.7 665 363 587 540 539 642 328 553 509 50.8 61.8 29.8 519 478 478 523
CoTTA [5] 709 412 624 59.7 58.6 709 412 624 59.7 586 709 412 624 59.7 58.6 709 412 624 59.7 586 58.6
Reshaping [10] 71.2 423 65.0 620 60.1 72.8 43.6 66.7 633 61.6 725 425 668 633 613 725 429 667 630 613 613
ours 71.8 43.1 65.2 623 60.6 72.6 44.6 66.7 63.5 619 72.8 43.5 678 634 619 73.1 439 67.3 64.0 62.1 617

4.4. Ablation Study and Further Analysis
4.4.1. Ablation Study

We conducted an ablation study to assess the effectiveness of the key components of
our approach across three benchmarks. For clarity, we refer to the virtual decision boundary
as VDB and Domain Sensitivity Parameter Suppression as DSP. As shown in Table 6,
incorporating VDB and DSP results in reduced error rates across all benchmarks. The
combination of VDB and DSP leads to an even greater reduction in error rates, highlighting
the synergistic effect of these components when used together.

Table 6. Ablation: Contribution of our proposed VDB and DSP. The best results in each column are

highlighted in bold.
VDB DSP CIFAR10C CIFAR100C ImageNetC
0 16.2% 32.5% 62.7%
1 v 15.4% 30.1% 60.3%
2 v 15.1% 28.3% 59.2%
3 v v 14.5% 27.8% 57.9%

4.4.2. Integration with Existing Methods

Next, we integrate our method with existing methods, namely TENT [12], CoTTA [5],
RMT [44], and DSS [8]. The experiments are conducted on the CIFAR10C and CIFAR100C
datasets. Utilizing the official code of each method, we enhance the accuracy of all methods,
as shown in Table 7. For example, our method reduces the error rate of CoTTA from 16.2%
to 14.2% on CIFAR10C, from 32.5% to 26.9% on CIFAR100C, and from 62.6% to 57.8% on
ImageNetC. These experiments and results demonstrate that our method can be seamlessly
integrated with other CTTA methods to enhance performance.

Table 7. Integration with existing methods. Our method can be seamlessly integrated with other
CTTA methods to boost performance.

Method CIFAR10C CIFAR100C ImageNetC
TENT+ours 18.9% (+1.8%) 56.6% (+4.3%) 65.3% (+6.7%)
CoTTA+ours 14.2% (+2.0%) 26.9% (+5.6%) 57.8% (+4.8%)

RMT+ours 15.4% (+1.6%) 28.7% (+1.5%) 57.4% (+2.5%)
DSS+ours 14.1% (+1.7%) 26.1% (+4.8%) 58.5% (46.1%)

4.4.3. Analysis of Domain Sensitivity Parameter Suppression

In this section, we focus on evaluating the effectiveness of Domain Sensitivity Pa-
rameter Suppression (DSP). The dataset used is CIFAR10C, and the pretrained network is
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WideResNet-28. The methods compared include CoTTA [5], DSS [8], and RMT [6]. First, we
measure the model’s sensitivity to the domain by calculating the unstable representations of

all channels in the network. The calculation formula is Std juuners = Yrg Ziczlo ||C~f - Cf 13

where éf represent the channel features generated by the source domain data in the target
domain network, and Cf represent the channel features generated by the target domain
data in the target domain network. As shown in Figure 5, our method consistently achieves
the lowest unstable activation values across all domains. This indicates that DSP effec-
tively suppresses the learning of domain-specific knowledge by regulating the updates
of domain-sensitive parameters. This, in turn, enhances the learning of domain-invariant
knowledge and prevents the model from overfitting to current domain knowledge during
continuous domain shifts, thereby mitigating interference with future domains that may be
encountered. Furthermore, we examined the relationship between the number of channels
in the first layer of the network and their corresponding unstable activation values. As
shown in Figure 6, the unstable representations of DSP exhibit a smaller variance, with
activation values concentrating around 0.35 across all channels. This demonstrates that
the introduction of DSP can effectively control channel instability, enabling the model to
maintain strong robustness and effectively counteract the effects of domain shifts.

10 1
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Figure 5. Channels std in all domains.

Additionally, inspired by adversarial training, we incorporate an auxiliary discrimi-
nator network to evaluate the effectiveness of DSP in promoting the learning of domain-
invariant representations. Specifically, we add a source domain discriminator to the first
layer of the WideResNet-28 network and train this discriminator on the CIFAR-10 dataset.
The source domain discriminator takes the output of the first layer as input and generates
a score indicating the likelihood that the input belongs to the source domain. Intuitively,
if the domain-sensitive parameters are effectively suppressed, the model’s output should
remain highly robust and well aligned with the source domain, regardless of the domain
shifts. As shown in Figure 7, compared with other methods on CIFAR10C, our approach
consistently maintains high robustness to the source domain across all domains, indicating
that the domain-sensitivity parameters have been effectively suppressed.
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Figure 7. Domain robustness score.

4.5. Analysis of Dynamic Virtual Margin

In this section, we focus on discussing the parameter initialization of the virtual
decision margin m and the superiority of dynamic virtual margins. First, we explore the
effects of different initialization values for the parameters on three datasets (CIFAR10C,
CIFAR100C, ImageNetC). As shown in Table 8, the initialization of the virtual decision
margin parameters is highly robust. When m is set between 1 and 6, it performs well across
all three datasets. However, when m exceeds 6, the performance begins to gradually decline.
This is because a larger virtual margin increases the difficulty of model convergence during
the initial phase of domain adaptation, leading to a drop in performance. We recommend
initializing with a smaller virtual margin, allowing the margin to adaptively adjust to an
appropriate value to avoid convergence difficulties caused by a large margin in the early
stages of adaptation.
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Overall, the dynamic virtual margin can adaptively adjust the margin width based on
domain and class difficulty, and is not sensitive to initialization parameters, showing good
robustness with excellent performance across a broad initialization range.

Next, we investigate the performance of fixed and dynamic virtual margins. As shown
in Table 9, dynamic virtual margins outperform fixed virtual margins on all datasets. This is
due to the dynamic margin’s ability to adaptively adjust the margin size based on domain
and class difficulty, achieving optimal performance.

Table 8. Performance results (error rate %) with different values of m on CIFAR10C, CIFAR100C, and
ImageNetC datasets.

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8

CIFAR10C 14.8 14.5 14.7 14.9 15.3 15.5 16.1 16.8
CIFAR100C 279 27.8 28.2 28.3 28.4 28.7 29.5 30.1
ImageNetC 58.1 57.9 58.1 58.3 58.6 59.1 59.7 60.9

Table 9. Performance results (error rate %) with different values of fixed m and dynamic m on
CIFAR10C, CIFAR100C, and ImageNetC datasets.

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=Dynamic

CIFARIOC 153 152 149 155 159 163 167 173 14.5
CIFAR1IO00OC 282 281 285 289 293 297 302 311 27.8
ImageNetC 587 582 585 589 593 599 603 612 57.9

4.6. Analysis of Virtual Decision Boundary

We evaluate the effectiveness of our virtual decision boundary (VDB) method in
mitigating feature crossing the decision boundary by analyzing inter-class and intra-class
distances. Our VDB method is proposed to alleviate the issue of feature clustering at or
slightly crossing the decision boundary. First, we utilized T-SNE to visualize the sample
features generated by three different methods (DSS [8], CoTTA [5], RMT [6]) and our
method in the Gaussian domain of the CIFAR10C dataset. As shown in Figure 8, the
results demonstrate that the features generated by our method exhibit better clustering
performance, with smaller intra-class distances and larger inter-class distances. Second,
if class feature shifts are well controlled, the inter-class distance should increase, and the
intra-class distance should decrease. This will effectively prevent features from crossing
the decision boundary. The intra-class distance is expressed as djy, = Zic ||zi — Zi||2, and
the inter-class distance is expressed as djy .y = Zic Z]-C# ||zi — Zj||2, where Z represents the
mean feature of the class. As shown in Figures 9 and 10, we compare our approach with
three other methods include DSS [8], CoTTA [5], and RMT [44]. The results demonstrate
that our method excels in managing class shifts during CTTA, consistently achieving more
desirable intra-class and inter-class distances across all domains. In particular, to evaluate
the effectiveness of our virtual decision boundary in mitigating feature crossing the decision
boundary during the early stages of domain adaptation, we counted the number of features
crossing the decision boundary for each method at the early stage of domain adaptation.
As shown in Figure 11, our method consistently outperforms others across all domains.
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Figure 8. Visualization on the Gaussian domain of the CIFAR10C dataset.
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Figure 9. Intra-class distance in all domains.
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Figure 11. Error numbers at the domain begin.

4.7. Time and Parameter Complexity Evaluation

In this section, we focus on analyzing the time and space complexity of our method
compared with other methods. The datasets used include CIFAR10C, CIFAR100C, and
ImageNetC, and the methods for comparison include TENT [12], CoTTA [5], DSS [8],
and RMT [6]. As shown in Table 10, the time required by our method is only 3 min,
4 min, and 13 min more than the most time-consuming DSS [8] method on the CIFAR10C,
CIFAR100C, and ImageNetC datasets, respectively. The reason for the additional time

39




Electronics 2025, 14, 3891

consumption is that our method requires the computation of the channel feature map from
the previous model (without computing gradients) and the calculation of the sensitivity
loss function. As shown in Figure 12, compared with CoTTA [5], DSS [8], and RMT [6],
our method requires more GPU memory at runtime, approximately 0.8GB, due to the
additional storage of feature maps computed by the previous model. This additional
time and space complexity overhead are small and can be largely ignored, which leads to
significant performance improvements.

Table 10. Time required for different methods on CIFAR10C, CIFAR100C, and ImageNetC datasets.

TENT CoTTA DSS RMT Ours
CIFAR10C 7 min 15 min 16 min 15 min 19 min
CIFAR100C 9 min 17 min 19 min 18 min 23 min
ImageNetC 33 min 71 min 73 min 72 min 86 min
Methods
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Figure 12. Memory usage for different methods on various datasets.

5. Conclusions

Distinguishing itself from previous research that tends to concentrate on isolated
domain adaptation and seeks local optima. Instead, this paper focuses on the often over-
looked sustained capability in Continual Test-Time Adaptation. To address this issue, we
propose a Dual Constraint method that combines parameter constraints based on channel
representations and virtual decision boundary constraints based on features. The parameter
constraint penalizes the model’s reliance on domain-specific knowledge, forcing it to learn
domain-invariant knowledge while alleviating channel instability and mutual interference
caused by overfitting to domain-sensitive parameters. This approach also theoretically
enhances the model’s generalization ability. Additionally, we provide theoretical evidence
that our method can effectively enhance the model’s generalization ability and promote the
learning of domain-invariant knowledge. Meanwhile, the virtual decision boundary con-
straint pushes features away from the original decision boundary, forming a virtual margin
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that buffers against domain shifts, effectively reducing the mutual interference between
domain-specific knowledge. Our extensive experiments on multiple CTTA benchmark
datasets have demonstrated the effectiveness of our proposed methods.
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Abstract: Event detection is a crucial task in natural language processing, and it plays
a significant role in numerous applications, such as information retrieval, question
answering, and situational awareness. Real-world tasks typically require robust models
that can dynamically adapt to changing data distributions and seamlessly accommodate
emerging event types while maintaining high accuracy and efficiency. However, existing
methods often face catastrophic forgetting, a significant challenge where models lose
previously acquired knowledge when learning new information. This phenomenon
hinders models from balancing performance with adaptability, limiting their ability
to generalize across dynamic data landscapes. This paper proposes a novel event
detection framework, DASR, which aims to enhance the flexibility and diversity of event
detection through joint learning and guidance that dynamically adapts to new events
and extracts semantic relevance. Firstly, we utilize pre-trained language models (PLMs)
trained on general corpora to obtain existing event and type information as global
knowledge. Secondly, during prompt fine-tuning for specific tasks, we incorporate
an incremental learning module to design incremental prompt templates for newly
introduced event types and read out their representations within the PLM. Subsequently,
we perform entity recognition and event trigger word detection to extract semantic
relevance. In this case, a graph attention mechanism is introduced to enhance the
long-distance dependencies within the text (modeled as message passing in the type
graph). Additionally, feature fusion integrates entity and event trigger word information
into a unified representation. Finally, we validate the effectiveness of the proposed
framework through extensive experiments. The experimental results demonstrate that
the proposed framework effectively mitigates catastrophic forgetting and significantly
improves the accuracy and adaptability of event detection when dealing with evolving
data distributions and newly introduced event types.

Keywords: event detection; incremental learning; pre-trained language model; graph
neural networks

1. Introduction

In recent years, event detection and extraction [1] have garnered significant attention
within the natural language processing (NLP) community [2,3]. These tasks are pivotal
for understanding textual information, as they enable the identification and analysis of
events from textual data. This, in turn, facilitates numerous downstream applications,
such as information retrieval [4], question answering [5], and real-time decision-making
systems [6]. Existing works have made considerable progress in this domain, focusing
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on enhancing model accuracy through advanced techniques such as deep learning [7],
attention mechanisms [8], and multi-task learning [9]. Despite these advancements,
the dynamic nature of real-world applications presents a common challenge, i.e., the
continual emergence and evolution of new events [10-13]. The constantly evolving
data distribution and the emergence of novel event types pose significant challenges in
maintaining detection accuracy and adaptability [14,15]. These challenges often lead to
catastrophic forgetting [16,17], where models fail to retain previously learned knowledge
effectively when acquiring new information. Continuous innovation is essential for
building resilient event detection systems in dynamic environments.

Incremental learning (IL) [18-22] has been widely employed to address issues re-
lated to evolving and expanding datasets. This approach allows models to update their
knowledge base without retraining from scratch, preserving old knowledge while learn-
ing new information. This characteristic is particularly beneficial for tasks requiring con-
tinual adaptation to new data [23]. However, employing IL for event detection [24-26]
raises unique and multifaceted challenges. For instance, a key challenge lies in retaining
the capability to accurately recognize previously known events with high fidelity, while
simultaneously identifying and integrating newly emerging events. Furthermore, this
process must skillfully manage the intricate temporal and causal relationships between
events, which inevitably increases the complexity of detection methods. Pre-trained
language models (PLMs) [27-29] trained on diverse language tasks provide an effective
starting point. This extensive training endows them with a profound understanding
of language, allowing for fine-tuning on specific tasks such as event detection. The
inherent versatility and robust linguistic comprehension of PLMs make them particu-
larly well-suited for IL scenarios, emphasizing the critical need to adapt dynamically
without catastrophic forgetting. As such, leveraging PLMs in the realm of IL for event
detection holds significant promise, providing a foundation upon which more sophisti-
cated and adaptive models can be developed to tackle the ever-evolving landscape of
textual information.

In addition to providing the necessary context information, PLMs need to explore
deeper event information to achieve target detection as the diversity of events increases.
Existing event detection research focuses on treating multiple event instances as inde-
pendent data instances and identifying them one by one [11,30-33]. However, these ap-
proaches overlook the interactive correlations among event instances within a sentence.
This concept, inspired by message aggregation in graph neural networks (GNNs) [34-39],
can empirically offer further semantic representation guidance for event detection.
GNNSs are models designed to process data structured as graphs, enabling the capture
of relationships and dependencies between nodes. As shown in Figure 1, compared to
traditional event detection models, our model enhances adaptability to new events and
extracts useful information from complex correlations through prompt-based incremen-
tal fine-tuning and event correlation modeling, rather than being limited to inherent
knowledge. In summary, integrating dynamic event adaptation and diverse seman-
tic relevance aims to address dual challenges: maintaining accuracy within evolving
data distributions and capturing the relationships between new event types and ex-
isting events.

To address these challenges, we propose a novel joint event detection method with
dynamic adaptation and semantic relevance, named DASR, which consists of several key
components that are meticulously designed to tackle the unique problems inherent in event
detection. First, during the pretraining phase, we utilize PLMs to establish a preliminary
and comprehensive understanding of language from general corpora, laying a solid foun-
dation for subsequent tasks. During the fine-tuning phase for specific tasks, we introduce
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an innovative incremental learning module and design prompt templates to effectively
model events. Additionally, to simultaneously handle entity recognition and event trigger
word detection, we model the graph structure of event types based on word importance
and event-type relevance. We employ an attention mechanism—a model component that
assigns varying importance to different parts of the input text—to capture dependencies,
facilitating a deeper understanding of the context. We validate this framework through
extensive experiments, demonstrating the performance of DASR in mitigating catastrophic
forgetting and enhancing adaptability to new event types. DASR’s key innovation lies in its
combination of prompt-based incremental learning and semantic relevance modeling using
graph neural networks. Unlike traditional event detection systems, which often struggle to
adapt to evolving event types, DASR’s approach allows for continuous adaptation to new
events, significantly reducing the risk of catastrophic forgetting. Furthermore, the use of
GNNs enables DASR to capture complex event relationships that are typically overlooked
by conventional methods, leading to more accurate and robust event detection in dynamic
environments.

e We propose a novel framework that seamlessly integrates prompt-based incremental
learning and semantic relevance in event detection, thereby enhancing the accuracy
and adaptability of event detection.

e Through prompt engineering, type relevance modeling, and disentangled prediction
of type interactions, we capture dynamic event relationships, quantify event rele-
vance to provide interpretability for predictions, and mitigate the challenges of entity
recognition with long-distance dependencies.

e  Extensive experiments show that DASR improves event detection performance, miti-
gates catastrophic forgetting, and adapts to evolving data distributions.

Does it contain a fi 2 / \

oes 1t contamn a fire even f i Prompt: Did the fire (1) result in firefighting (2),

Sentence 1: A chemical plant ‘ road blockades (3), property damage (4), injuries
. 1.00 1.00|| (5), or death (6)?
explosion caused a fire. ©
Semantic:
Sentence 2: Firefighters arrived
t h

and began firefighting efforts. © L [ construct type grap
Sentence 3: Authorities blocked e & ]| ~-- Strong assocl:ia.tion 2, R
nearby roads to prevent further ® : 0.78|| — Weak association o
escalation. o

Figure 1. A toy example of event detection. Traditional model f struggles to capture new event
correlations and makes erroneous judgments when dealing with temporal context. The improved
model f’ enhances detection accuracy through incremental prompting and semantic relevance.

The organization of this paper is organized as follows: We describe the overall pro-
posed method in detail and explain the key components and techniques employed in our
approach in Section 2. We present and analyze the experimental results, demonstrating
the effectiveness of our method through various evaluations and comparisons in Section 3.
Finally, we summarize the key findings and contributions of our work and discuss potential
future research directions in Section 4.

2. Materials and Methods
2.1. Preliminaries

This section outlines the key concepts and methodologies underpinning DASA, which
integrates state-of-the-art techniques in event detection and incremental learning. It incor-
porates LLMs for their rich contextual representations, memory-augmented networks for
knowledge retention, and prompt learning for rapid adaptation to new event types.
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Event detection. Event detection is a critical task within NLP that is focused on
identifying events and their attributes in textual data. Traditional approaches have relied
on static models that struggle to adapt to evolving data distributions and new event types.
We aim to capture better syntactic and semantic features for more accurate event detection.
Given a sequence of textual input, the task is to identify and classify event triggers and
their associated arguments. Formally, let 7 = {t;,f5,.. ., t, } represent the event types, and
X = {xq1,X,...,Xm} denote several candidate triggers. The objective is to predict a set of
events E = {el, €,...,6, }, where each event ¢; consists of a true event trigger x; and event
type t.

Incremental learning. The incremental learning component seeks to adapt the event
detection model to new data without requiring retraining from scratch, all while preserving
previously learned knowledge. We aim to develop a robust framework for event detection
that leverages incremental learning to maintain performance in dynamic environments.
For each new dataset, D’ = (X’,Y”), the model should update its parameters to minimize
the loss on D/, denoted as £(X’,Y’;6), while minimizing the forgetting factor on previous
datasets D. In addition, the IL aims to update the model fy : ([x;x'] — [y;¥] € Y) from
the sequence of events.

Prompt engineering. This is also known as contextual prompting, a method that
guides LLMs to locate knowledge relevant to specific targets without updating the model’s
weights or parameters. Formally, the prompt function x’ = g(x) is applied to the input x
to obtain the corresponding prompt x’, which includes x, the intermediate answer z, and
discrete or continuous task-specific tokens as task descriptors. Given a prompt, a PLM
model can generate the answer z. Prompts with random or true values for z are referred to
as filled prompts and answered prompts, respectively.

2.2. Methodology

This section introduces the event detection framework with joint dynamic adaptation
and semantic relevance (DASR), which includes the following: (1) Prompt-based incremen-
tal learning: We leverage prompts to fine-tune pre-trained language models, generating
incremental representations for newly introduced event types. (2) Trigger relevance estima-
tion: We assess the semantic relevance between trigger words and event types to determine
their importance. (3) Instance-guided prediction: We integrate the representations of event
types and optimize both the incremental learning loss and classification loss to predict
event types accurately. The DASR framework is illustrated in Figure 2.

2.2.1. Prompt-Based Incremental Tuning

Fine-tuning PLMs on new tasks carries the risk of losing information from previously
learned data, a problem known as catastrophic forgetting. Class-incremental learning
requires the model to retain knowledge of previously learned classes when new classes are
added. We aim to use a more convenient prompt-based [40,41] fine-tuning paradigm to
jointly assist in the dynamic updating of PLMs. First, the original definition of the prompt
template is as follows:

fp(x) = (x,Ey), )

where x denotes the natural language describing the event, E denotes the event-related
prompt word, and y denotes the event-type label. When we introduce incremental words
IE (i.e., prompt words for new event types) in the prompt design, and aim to obtain
prompts for all event types seen so far, the predefined prompt template can be further
written as follows:

fyF(x) = (x,IE,y), )
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Prompt-based Incremental Tuning Trigger Relevance Estimation
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Figure 2. The framework of DASR. Step 1: New event types are incorporated into prompts and
mapped to event representations jointly with PLM in contrastive training. Step 2: DASR captures the
correlations of triggers in non-Euclidean space by modeling an event-type graph. Step 3: DASR is
jointly optimized for the event detection loss.

For example, the initial template is designed for Sports Events, such as “{event_trigger}
took place during the {event_type} at {location} on {date}”, where the {event_type} refers
to Sports Events, such as basketball games or football matches, and the trigger words are
game or match. When a new event type, Political Protest is introduced, the template is
automatically adjusted to the following: “{event_trigger} occurred during the {event_type}
in {location} on {date}”. In this case, the event type is Political Protest and the trigger word
is protest.

We then adopt the replay strategy from initial incremental learning, utilizing PLMs to
generate high-quality pseudo labels for new class events. For each event ¢, we obtain the
words of the top k term frequency sequence from the corresponding sentence to initialize
the prompt sentence. The prompts generated for the label words and the corresponding
responses are as follows:

gf,E (y,ck) = (y,ck,x,IE,y), 3)

where cif € C represents the concept sequence of event e;, which is used to evaluate the
importance of words in the sentence. In short, DASR uses a two-step process to generate
pseudo-labels for newly introduced event types. First, the model identifies candidate
event triggers in unannotated data. Then, it applies the pre-trained PLM to generate
high-confidence pseudo-labels for these events based on the identified triggers and context.
These pseudo-labels are then used in incremental fine-tuning, allowing the model to adapt
to new event categories without the need for manually labeled data. The process involves
selecting the top-k most frequent event triggers and using PLMs to predict the event type
associated with these triggers. This allows the model to efficiently adapt to new event types
as they emerge.

Subsequently, we uniformly adopt BERT as the textual encoder for both prompt
templates f and g. Leveraging the transformer architecture, BERT [42] generates contextual
text representations conditioned on the given prompt, thereby preserving rich textual
information. To enhance the label localization for novel events during the prompt tuning
process, we introduce a contrastive learning loss constraint to clarify decision boundaries.
We construct positive and negative sample pairs randomly, aiming for incremental prompt
learning to pull similar samples of the new events closer and push dissimilar samples
further apart in the feature space (using cosine similarity to measure similarity ¢(,)),
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thereby improving the effectiveness of PLMs in event relevance extraction. The loss
function is as follows:

18 eplplh ) /o)
N = Z] 1exp(¢(hy hy) /7)

where N denotes the number of sample pairs, h(f, g) denotes the sample representation

L=~ 4)

in the latent space, and T represents the temperature coefficient. BERT is a representative
and widely used model in the current NLP field. We use BiLSTM and other models similar
to BERT as benchmarks in our comparison experiments to ensure that the experimental
results are representative. More complex pre-trained models (e.g., GPT series) require
higher computational resources and longer training times, which are not conducive to
quickly verifying the effectiveness of DASR.

2.2.2. Trigger Relevance Estimation

It is widely acknowledged that event types benefit the model in learning the semantic
correlations between instances. Therefore, we combine event types with prompt embed-
dings to model a type-related graph structure. Then, leveraging the message-passing
mechanism of GNNs, we capture type correlations to represent each event type as prior
knowledge for instance type prediction.

For a sentence with the prompt phrase p and the candidate trigger m (including incor-
rect candidate instances), we input p into BERT to obtain the hidden representation h as
prompt vectors (this is a simplified description of Section 2.2.1). Then, a pooling operation
is applied to read out the representation for each candidate instance as a candidate trigger:

x; = 0(WMAXPOOLINGh;(p)) ®)

where W denotes the learnable parameter and ¢ denotes the activation function. In particu-
lar, a sentence instance is denoted as X = [x1, X2, ..., Xpn].

Relevance representation. Events are semantically composed of words, estimating the
importance of words within events helps us quantify the underlying patterns of events.
We introduce integrated gradients [43] to evaluate the importance of input features to
the model’s predictions. For the input vector x € R" and the model F : R" — [0, 1], the
attribution value for the i-th dimension is as follows:

2 = (xi — X)) x /1 OF (X' 4+ a x (x_x/))doc, ©)

a=0 aXi

where X’ is an all-zero vector [44] used to align the input range, and the right term repre-
sents the gradient of F(x;) for x;. We then normalize Equation (6) to represent globally
reasonable weights:

exp”aiHZ
a4 = =N (7)
anl epoa”HZ
where ||-|| denotes the L, norm. Note that our goal always focuses on uncovering the

semantic information provided by event types. Therefore, based on word relevance, for a
specific event type, T € T, the type embedding is represented as follows:

m

Z x WEM(X) ®)
=1

where | T| represents the event number of type. The left term of the multiplication denotes
the learnable weights with semantic awareness, while the right term represents the event
type with textual description encoded by the word-embedding model WEM(-) [45].
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Type graph construction. As the initialization of edges in the type graph, we treat the
types as nodes in the graph and calculate the possibility of edges existing between nodes
using cosine similarity ¢(, ):

p(ni ), ifp(hih) >

—inf, otherwise

©)

eij =

where 7 is a hyperparameter threshold that satisfies the y-neighbor strategy to select the
most likely edges with the highest similarity scores, thus controlling the scale of the graph
during construction.

Type representation. By modeling the graph structure, we can leverage the powerful
relational representation capabilities of GNNSs to further refine type representations. Specif-
ically, after normalizing E = {ei]- i,j € {1,...,n}} as an adjacency matrix, we learn node
representations using a graph attention network [46]:

2 Y (e Y, (10)
JEN;UI

where 55 denotes normalized attention coefficients computed by the k-th attention mech-
anism, and v denotes randomly initialized embeddings. For the transformation, the k
intermediate representations corresponding to K attention mechanisms are concatenated
after the aggregation through a non-linear transformation to obtain the representation h at
layer I as follows:

B = [0 (2 WD), (1)

where || denotes the concatenation operator and W denotes the learnable weight matrix.
Thus, after message passing, we acquire informational knowledge from the neighbors
associated with specific types, improving the type embeddings. The attention mechanism
quantitatively enhances semantic relevance extraction by assigning higher importance to
event types that are more semantically relevant to the current task, improving long-range
dependency modeling. The final event representation is a weighted combination of these
semantic dependencies, leading to more precise event detection.

2.2.3. Instance-Guided Prediction

In the previous design, we injected contextual instances with types into candidate
triggers to obtain instance representations X and type representations h’. Therefore, to
disentangle the correlations in instances for downstream prediction tasks, we utilize token
reconstruction based on contextual instances to predict the target instance types. This
naturally covers the exploration of correlations between prompt sentences and semantic
representations of instances.

Instance representation. To achieve robust type correlation extraction, we generate
a set of handcrafted type representations y. Specifically, we evaluate the correlation by
comparing the dot product scores between instance embeddings and type embeddings one
by one, and after weighted aggregation, the probabilities of the generated predicted types
are determined. This process is formally represented as follows:

N+1 exp(xlwf\;) .
), (12)

Vi = Y
. N+1 J
i=1 ijl (xi . h}"()

where N + 1 represents the number of types, indicating that the reconstructed instance type
tr is introduced. Next, we generate sequential handcrafted type representations to predict
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the target instance type based on the context. For the target instance x;, we replace its type
representation with e, s, and the corresponding sequential instance type representation is
as follows:

YO = (91,92, §i 1, emasko Yit1s - Fm- (13)

To generate more correlated target type representations when fusing instance type
representations with instance text representations, we employ a neural network for linear
fusion, allowing the candidate instances to be re-represented in a learnable manner:

Q. a(w [W’); X] ) (14)

where W denotes the linear fusion parameter and [;] denotes the element-wise vector
concatenation.
Type prediction. To identify the handcrafted event types, i, and the real event types,
t;, within the candidate instances, we obtain the posterior probabilities in the final predictor
as follows:
p(h!|x;) = SOFTMAX(h' - 2;). (15)

This design provides meaningful guidance for event detection. Specifically, when the
target type is t, the model predicts a higher p(ﬁ]‘i|xi) to improve generalization ability when
encountering new types. Conversely, when the target type is a known event type, the model
no longer distinguishes precisely which specific type it is, instead exhibiting a uniformly lower
p (ﬁ]tc |x;). Overall, the final prediction result is the type with the highest posterior probability.
We define the binary cross-entropy loss for type relevance learning as follows:

Lo=—Y ) yz'jlogp(ﬁ§ | Xi)

xi€X teT (16)
+ (1 —yij) log(l - P(ﬁf \ Xi))
Our overall model optimization objective is as follows:
L=(1-AN)L1+ALy (17)

where A is a balancing coefficient used to weigh the impact of incremental learning and
type representation on model performance.

3. Results

This section conducts experiments to evaluate the performance of DASR. The experi-
mental results demonstrate that the proposed framework effectively mitigates catastrophic
forgetting and significantly improves the accuracy and adaptability of event detection
when dealing with evolving data distributions and newly introduced event types.

3.1. Experimental Setup

Datasets. Our experiment was conducted on the publicly available, large-scale dataset, i.e.,
the Twitter dataset collected by Twitter API for incremental event detection, and the MAVEN
and ACE-2005 datasets for offline event detection to evaluate the effectiveness of DASR.

The Twitter dataset, after cleaning out repeated, still contains 68,841 manually labeled
tweets related to 503 event classes distributed over a period of approximately 4 weeks
(29 days). To simulate evolving data distributions, the Twitter dataset is divided into
sequential message blocks by date. Each block introduces new event types, ensuring that
the model is exposed to a continuously changing environment. In our experiments, we
split the Twitter dataset by date. Specifically, we use the messages of the first week to form
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an initial message block, My, and the messages of the remaining days to form the following
message blocks, M1, My, ..., M. Furthermore, MAVEN is a newly constructed large-scale
fine-grained corpus, which contains 4480 documents with 168 fine-grained event types. We
also use the similar ACE-2005 dataset for evaluation, which contains 599 documents with
33 event types.

Baselines. To demonstrate the significant performance of our model, we select the
following baselines. BERT [42], which is based on the Transformer architecture and deeply
represents natural language through pre-training and finetuning; BiLSTM [47], which
learns long-term bidirectional semantic dependencies; EventX [48], a fine-grained event
detection method based on community detection suitable for online scenarios; EE-GCN
[49], which simultaneously exploits syntactic structure and typed dependency label infor-
mation to perform ED; KPGNN [25], a knowledge-preserving incremental heterogeneous
graph neural network model for streaming social event detection.

Settings. We set the number of attention heads for the relation aggregation GNN to
8, the embedding dimension to 64, the total number of layers to 2, the learning rate to
0.001, and the optimizer to Adam. The training spans 100 epochs with a patience of 5 for
early stopping. The dimension of the WEM(-) embedding is set to 300, the threshold v is
0.4, A is 0.6, and the dropout rate is 0.5. We select the best model for inference. BILSTM
and other GNN-based baselines generally use the same configuration, except that the
dimension is set to 32. For EventX, we adopt the hyperparameters as suggested in the
original paper [48]. We repeat all experiments five times and report the mean and standard
variance of the results.

Evaluation metrics. For incremental event detection, to evaluate the performance
of all models, we use adjusted mutual information (AMI) [50] and adjusted rand index
(ARI) [50] to measure the similarity between ground-truth clusters and their detected
message clusters. AMI measures the mutual information between two clusters and adjusts
it based on chance. ARI considers all predicted label pairs and chance and calculates pairs
allocated in the same or different clusters. Adaptation and mitigation of the catastrophic
forgetting problem are assessed by comparing performance on new event types introduced
in incremental learning scenarios while ensuring that the performance on previously
learned types remains stable. For offline event detection, we employ a comprehensive
set of evaluation metrics including precision (P), which measures the accuracy of positive
predictions; recall (R), which evaluates the model’s ability to identify all relevant instances;
and the F1 score, which provides a balanced measure of both precision and recall. The
metrics used follow the setup of most of the existing research.

3.2. Performance Comparison

Incremental evaluation. We evaluate DASR in the incremental event detection sce-
nario. As shown in Table 1, we summarize the performances of several state-of-the-art
methods in terms of AMI and ARI metrics. The results demonstrate stable performance as
new event types emerge, with a peak AMI of 0.80 and ARI of 0.77 on block M6, where the
diversity of event types is the highest. The GNN-based methods have achieved advantages
across different message blocks, with DASR showing the most significant improvement.
Compared to the best-performing model in the baseline, DASR improved the average AMI
by 4.3% and the average ARI by 4.0%, with the best results showing a 27% increase in
AMI for M1 and a 20% increase in ARI for M15. This indicates that our design effectively
retains the most recent knowledge during incremental training and better mitigates the
catastrophic forgetting issue as messages accumulate. In contrast, EE-GCN and KPGNN
might sometimes be distracted by outdated information. The generally low performances
of BERT and BiLSTM are attributed to their neglect of the semantic relevance of events in
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non-Euclidean space, while EventX’s performance in incremental scenarios is limited due
to its sole reliance on community detection. In addition, DRSA performs poorly at M19
due to fewer instances of certain event types in the training data, and the model may not
be able to adequately learn the features of these types, resulting in poor performance.
Offline evaluation. To further demonstrate the advantages of DASR, we analyze the
results of all methods on two offline datasets across three metrics, as shown in Table 2.
We follow the standard data split method used in GNNs [34], randomly selecting 70% for
training, 10% for validation, and 20% for testing. DASR achieves the top rankings among
all methods, with an average improvement of 2.1% across all metrics, and a maximum
improvement of 6.2%. This indicates that our approach maintains excellent performance
on offline data as well. The additional prompt design does not cause classification bias,
and the deep semantic information provides the model with higher-quality information.

3.3. Further Analysis

In this section,we perform further ablation studies, visualization, and hyperparameter
analysis of DASR.

Ablation study. As shown in Figure 3, we conducted ablation experiments on the
dynamic adjustment (w/o prompt) and semantic relevance (w/o relevance) components of
DAGSR separately to illustrate the effectiveness of each component. Figure 3a,b present the
AMI and ARI performances after removing the prompt increment method from DASR. DASR
exhibits relatively stable performance across most blocks, with a significant AMI advantage
in the 5th, 10th, and 15th blocks. EventX performs significantly lower, with ARI remaining
below 0.2 in almost all blocks. EE-GCN and KPGNN show similar performance, generally
matching or slightly below that of DASR. Figure 3c,d show the AMI and ARI performances
after removing the semantic relevance in DASR. DASR demonstrated high levels and stability,
significantly outperforming competing methods in multiple blocks. Although BERT and
BiLSTM did not perform as well as DASR, BERT maintained a secondary optimal performance
in several blocks, while BiLSTM showed weaker and more fluctuating performance.

Overall, prompt-based incremental learning successfully conveys semantic informa-
tion across event types by introducing dynamic prompt templates, while avoiding the
destruction of existing knowledge by full model retraining. The ablation results show that
the module is indispensable for handling dynamic data distributions and new event types.
Graph-based semantic relevance modeling effectively captures the complex dependencies
between trigger words and event types through the structure of event-type graphs in non-
Euclidean space. This module plays a crucial role in improving semantic representation
and enhancing overall performance.

Visualization. We visualize the model’s predictive outputs, leveraging t-SNE [51]
for dimensionality reduction. Figure 4 illustrates the differentiation of data points in the
M3 block using colors to distinguish between different classes. It can be observed that
DASR demonstrates the best performance, with its attention mechanism and incremental
learning capabilities contributing to exceptional semantic representation and class distinc-
tion, resulting in clear clustering boundaries. EE-GCN and KPGNN follow as the next
best performers. These models, through graph networks and their enhancement methods,
effectively capture semantic relationships, resulting in compact clustering with clear class
boundaries. BERT shows moderate performance. It generates relatively compact clusters
through the bi-directional representation of the Transformer architecture but still exhibits
overlap between categories. BILSTM and EventX perform poorly. BILSTM relies on word
order information but is weak in semantic clustering, while EventX has the worst cluster-
ing effect. In summary, the DASR method exhibits high clarity and separability, further
highlighting the method’s classification advantages.
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Figure 3. Ablation study on M3 of the Twitter dataset.

(a) BERT. (b) BiLSTM. (c) EventX.

(d) EE-GCN. (e) KPGNN. (f) DASR.

Figure 4. Visualization on M3 of the Twitter dataset.

Hyperparameter analysis. Figure 5 shows the impact of the hyperparameter v on
the performance of DASR, which represents the threshold for generating edges when
constructing the type graph in DASR. As 7 increases, the number of edges in the graph
grows. The figure includes two curves representing the AMI and ARI scores at different
7 values, along with their fitting curves (Fit_AMI and Fit_ARI). From the figure, it can
be seen that when « is around 0.4, both AMI and ARI scores reach their peak, indicating
that the graph structure generated at this threshold is the most beneficial for improving
the model’s performance. As y continues to increase, the AMI and ARI scores gradually
decline, possibly because excessive edges in the network introduce noise, affecting
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the model’s learning efficacy. Figure 6 shows the impact of the hyperparameter v on
the performance of DASR, which represents the trade-off in the loss function between
incremental learning and the relevant neural network learning components during
DASR training. A larger 7 indicates greater emphasis on relevance learning, while a
smaller v emphasizes incremental learning. The figure shows that when v is around 0.6,
the AMI score is the highest, whereas the ARI score reaches a relatively high level when
7 is 0.3. Performance is poorer when + is at an extreme value (0 or 1), suggesting that
relying solely on either incremental learning or relevance learning is less ideal. Finding
a balance between the two optimizes the model’s performance. Overall, by adjusting
the hyperparameters 7 and v, the performance of DASR can be effectively enhanced,
allowing it to better adapt to different tasks and datasets.

AMI
ARI

Fit AMI
Fit_ARI

0.0 0.2 04 0.6 08 1.0

Figure 5. Hyperparameter y analysis on Mj of the Twitter dataset.

80 AMI

70 ARI

60
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Figure 6. Hyperparameter A analysis on M3 of the Twitter dataset.

4. Conclusions

In this paper, we propose an innovative event detection framework (DASR), which
cleverly integrates dynamic event adaptation with semantic relevance mining to address
the problem of catastrophic forgetting while improving the adaptability and accuracy of the
model in event detection. The core components of our approach include leveraging a pre-
trained language model for extensive context understanding, integrating an incremental
learning module with prompts to model the temporal sequence of events, and utilizing
multi-perspective correlations along with a self-attention mechanism to handle entity
recognition and event trigger word identification. Extensive experiments validate the
efficacy of DASR, demonstrating its outstanding performance in mitigating catastrophic
forgetting and adapting to new event types, thereby significantly advancing the state-of-
the-art in event detection tasks.
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Abstract: Perception is essential for robotic systems, enabling effective interaction with their sur-
roundings through actions such as grasping and touching. Traditionally, this has relied on integrating
various sensor systems, including tactile sensors, cameras, and acoustic sensors. This study lever-
ages commercially available tactile sensors for hardness classification, drawing inspiration from the
functionality of human mechanoreceptors in recognizing complex object properties during grasp-
ing tasks. Unlike previous research using customized sensors, this study focuses on cost-effective,
easy-to-install, and readily deployable sensors. The approach employs a qualitative method, using
Shore hardness taxonomy to select objects and evaluate the performance of commercial off-the-shelf
(COTS) sensors. The analysis includes data from both individual sensors and their combinations
analysed using multiple machine learning approaches, and accuracy as the primary evaluation metric
was considered. The findings illustrate that increasing the number of classification classes impacts
accuracy, achieving 92% in binary classification, 82% in ternary, and 80% in quaternary scenarios.
Notably, the performance of commercially available tactile sensors is comparable to those reported
in the literature, which range from 50% to 98% accuracy, achieving 92% accuracy with a limited
data set. These results highlight the capability of COTS tactile sensors in hardness classification
giving accuracy levels of 92%, while being cost-effective and easier to deploy than customized tactile

Sensors.

Keywords: hardness classification; COTS tactile sensor; Shore hardness scale; mechanoreceptors

1. Introduction

In the robotics domain, various sensor systems, including tactile sensors, cameras,
and acoustic sensors, have been utilized to provide perceptual capabilities. These sensors
are often integrated into gripper systems, equipped as artificial fingers, layered sensors, or
embedded modules. Previous research has explored the use of different sensors for several
classifications [1], using sensors individually and in combination. Material classification
can be performed to determine the texture of the object or the hardness of the object
based on some scale [1,2], whereas object classification studies have involved grasping
different objects to analyse their characteristics using sensor values and different resistance
values. Techniques such as pressing, sliding sensors across surfaces, and employing
squeezing or grasping have been explored in the literature as state-of-the-art methodologies
in tactile perception [1,2]. However, the selection of sensors in these studies has typically
been driven by application-specific requirements rather than mirroring the architecture
or functionality of human mechanoreceptors [3-5]. In humans, tactile information is
processed by four distinct mechanoreceptors, each specializing in detecting different tactile
signals [6]. Presently, there is a gap in the field concerning the selective integration of
sensors which could have the same functionality of human mechanoreceptors to perform
hardness classification.

Electronics 2024, 13, 2450. https:/ /doi.org/10.3390/ electronics13132450 60 https://www.mdpi.com/journal/electronics



Electronics 2024, 13, 2450

The aim of this study is to explore commercially available tactile sensors that mimic the
properties and functionalities of human mechanoreceptors. This research seeks to identify
sensors capable of detecting tactile information with a performance comparable to that of
human fingers, emphasizing cost-effectiveness. Previous research has primarily focused
on utilizing customized tactile sensors that are expensive and application-specific [7-13].
The specialized architecture of these sensors limits their immediate deployment. This work
targets the identification of tactile sensors that are readily deployable, requiring minimal
installation efforts and offering accessibility without the need for extensive customiza-
tion. It is important to establish a framework that allows for the description of tactile
sensor selection, drawing from the mechanoreceptor concepts described in the existing
literature [6,14]. Although prior studies have proposed advanced tactile sensors as artificial
mechanoreceptors [5,15-21], their development and implementation in robotics systems
are still at an early stage. In contrast, the existing array of tactile sensors in robotics encom-
passes various modalities, including vibration, thermal, piezoelectric, and piezoresistive
sensors [1,22], which collectively provide a rich source of tactile data. However, many of
these sensors are customized for specific tasks or applications, and they have not been
adequately assessed for classifying materials based on hardness for robotic grasping tasks.
Therefore, there is a need to investigate the potential of commercial or cost-effective tactile
sensors in hardness classification in robotic manipulation scenarios. Sensors in robotics
grippers [8-10,23-25] and receptors in human hands [6,14,26-28] play a crucial role in re-
ceiving tactile information, forming the foundation of tactile perception systems in both. In
robotics, hardness classification utilizes various tactile sensing methods, where measuring
mechanical resistance while squeezing an object is crucial [1,8,29]. Hardness classification
judges an object’s resistance to deformation, its ability to withstand external forces without
distortion, and its tendency to deformation, thereby enabling classification into categories
such as hard, soft, or flexible. While most research has primarily focused on binary classifi-
cations of hardness and softness [8,9,24,30-32], there remains a significant gap in exploring
classifications that involve three or more classes. Developing multi-class systems could
offer distinct advantages in real-time applications, particularly in robotic manipulation.

Tactile information obtained through grasping is crucial for understanding an object’s
tactile properties [8,33], unlike vision systems, which rely on predefined object features and
lack predictive abilities where tactile sensors provide numeric data, enabling more feasible
and less time-consuming analysis when coupled with machine learning algorithms [34].
This paper proposes the use of cost-effective commercial off-the-shelf tactile sensors, in-
spired by human mechanoreceptors, to perform hardness classification through grasping
methods. Human tactile perception relies on the significant abilities of mechanorecep-
tors, which are specialized sensors within our bodies that detect pressure, vibration, and
texture. These biological sensors enable us to recognize various tactile properties with
notable precision. Inspired by this natural mechanism, this paper explores commercial
off-the-shelf (COTS) sensors capable of detecting similar tactile information when grasping
objects, akin to the capabilities of human hands. The aim is to showcase the effective-
ness of available COTS tactile sensor data, as individual sensor data and combinations
in classification tasks. The results will demonstrate the potential of individual sensors as
mechanoreceptor-inspired tactile receptors performing hardness classification using vari-
ous machine learning algorithms. Furthermore, this study aims to investigate the potential
enhancement in accuracy by combining data from each tactile sensor, demonstrating how
collective features from each sensor perform in hardness classification. This is expected to
deliver a competitive agile solution for hardness classification that can be incorporated and
scaled in robotic systems particularly where vision base solutions are unsuitable.

This paper comprises various sections that identify the required tools, methods, and
adaptations to execute machine learning on the collected data, described in the following
manner. Section 2 provides the foundational understanding of mechanoreceptors, tactile
sensors, and material classification, drawing inspiration for this paper. It serves as the
basis for the selection process of commercial off-the-shelf (COTS) sensors, leading to their
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selectivity based on the functionality of mechanoreceptors. Section 3 presents an approach
for COTS sensors identification based on mechanoreceptors inspiration, a further stage
to implement sensors with grippers and ML steps to implement an algorithm on data
structure obtained from COTS. Section 4 presents the design of the experiment which
show case data collection action which connects the approach and experiment setup in
collecting data from selected sensors, forming different data configurations from COTS.
It explains in depth the grasping method performed using pneumatic grippers utilising
pressure to control the gripper system and further also explains how the object was selected
and prepared using Shore’s qualitative hardness scale (H,S,F,ES) and how data collection
was performed. Section 5 showcases three results: 1st for binary (H,S) classification for
different ML algorithms with different configurations of sensor data, 2nd for ternary (H,S,F)
classification, 3rd for best algorithm outcome with quaternary (H,S,EES) classification.

2. Background

Human hands have exceptional tactile capabilities and serve as a significant inspira-
tion for advancing robotic perception. Mechanoreceptors are special sensors/receptors
in human skin that detect various tactile sensations like pressure, force, and vibration.
They play a crucial role in our ability to perceive and interact with the world around us.
Understanding how mechanoreceptors work and their capability to detect hardness is
essential for robotics research. Replicating these sensors in robots can provide the capability
to perceive and interpret tactile information while grasping. This would enable robots to
better understand objects with more precision and perform tasks that require sensitivity
to hardness.

2.1. Mechanoreceptors

How a human detects the property of an object using touch, grasping, and picking
is based on receptors (biological transducers) which convert any touch to stimulus into
tactile information to signal to the brain to judge the object’s property. Mechanoreceptors
are fundamental sensors that detect different physical/mechanical properties of objects
(tactile information) mainly by four receptors [35,36]. Figure 1 illustrates the following:
Four of them have the capabilities to detect different physical properties like force, vi-
bration, deformation, indentation, etc. (1) Merkel Cells (Discs): Merkel cells respond to
changes in pressure and texture, allowing them to detect variations in surface features such
as roughness and indentation, informing of force/pressure. (2) Meissner’s Corpuscles:
Meissner’s corpuscles are sensitive to light touch and low-frequency vibrations, which
detect any changes in surface texture and shape. (3) Pacinian Corpuscles: The primary
function is to detect sudden changes in vibration and pressure. (4) Ruffini Endings: Ruffini
endings are sensitive to sustained pressure and skin stretch, enabling them to detect
changes in skin deformation caused by object contact. Based on current understanding,
mechanoreceptors comprise tactile receptors that receive multiple pieces of information
while grasping or touching the object which processes the tactile information through
neurons to the brain to understand the properties and define it or store it in the brain for
further reference [37]. Mechanoreceptors are responsible for detecting mechanical stimuli,
including pressure, vibration, and deformation, thereby providing humans with valuable
tactile information [6,35-37]. In the context of tactile perception, mechanoreceptors play
a crucial role in assessing the hardness and softness of objects by responding to various
tactile signals. Four important aspects understood from receptors illustrated in Figure 1 are
that touch, force, vibration, and sliding are the key physical properties that make humans
understand if the object is hard or soft or flexible while grasping or squeezing.
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Figure 1. Showcases the mechanoreceptors’ architecture and their functionality in detecting different

tactile information, where COTS tactile sensors are mapped based on their functionality: (1) FSR
force sensor, (2) potentiometer Softpot membrane, (3) piezoelectric thin-film vibration sensor.

2.2. Tactile Sensors

Material classification in robotics is one of the important aspects of development which
helps robotic grippers in different environments to handle different objects or perform
manipulation. This objective is only possible if sensors embedded within grippers have
the capability to detect tactical information to recognize object properties. Material classifi-
cation can be further subclassified into hardness classification and texture classification.
Currently, texture classification has been explored mostly, but hardness classification has
not been explored much with different tactile sensors and off-the-shelf sensors. Sensors
used in literature are highly customized with shape and dimension which takes time and
cost to develop. Parallel research is now more focused in developing sensors that have
human capabilities in detecting object characters like texture, hardness, roughness, softness,
slippery, etc. [1]. Engineering tools and methods have been developed which have shown
some capability to show response type and functionality to human receptors [15-21] but
it remains challenging to develop a system or sensors that have the same capability as
humans. In the literature, various types of sensors are discussed with respect to their cost,
which often varies depending on the technology and complexity involved. Optical sensors
and bioinspired sensors are generally considered high-cost options due to their intricate
designs and advanced functionalities. Microfluidic sensors and MEMS-based sensors fall
into the moderate- to high-cost category, as they involve sophisticated fabrication processes
and specialized materials. Similarly, grid capacitive, piezoelectric, and resistive tactile
sensors are also moderately priced, reflecting the complexity of their construction and
sensing mechanisms. Neuron memristors and ionic tactile sensors are relatively newer
technologies, occupying the moderate cost range as they undergo further development
and refinement [5,29,38,39]. However, all of them face limitations including high cost,
complexity, sensitivity to environmental factors, integration challenges, and training issues
with ML models due to the need for extensive datasets and iterative refinement filtration,
etc. In comparison, commercially available off-the-shelf (COTS) sensors are easy to use,
cost-effective, ready to deploy, flexible to adjust to most grippers, and suitable for exploring
with different robotics grippers as tactile sensing techniques. Moreover, these sensors, such
as vibration sensors, force-sensitive resistors (FSR), and soft potentiometers, can also play a
role as artificial mechanoreceptors based on functionality.

2.3. Material Classification

Material classification involves sorting objects based on various features, much like
how humans recognize things by feeling their texture and hardness when they touch
or hold them. While texture classification, edge detection, and object classification have
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received considerable attention, hardness classification has been relatively less explored,
despite its significant importance. In the field of material science and engineering, machine
learning (ML) techniques have proven invaluable in determining material properties using
various methods and approaches, such as the Shore scale taxonomy [7,10,12,36,38,39]. ML
enables systems to learn and recognize materials based on their hardness using techniques
like grasping, indentation, and resistance methods. By using extensive datasets, ML
models discern patterns and correlations, preparing them to accurately classify materials
into predefined hardness classes. This iterative refinement process ensures their reliability,
aiding industries in material selection and enhancing robotic grasping mechanisms through
tactile sensing. Inspired by human grasping mechanisms, ML algorithms serve as analytical
tools, processing tactile information to identify object properties. Robotics systems lack the
analytical capabilities of the human brain to recognize object properties. However, through
the integration of sensor data and machine learning (ML), this approach becomes feasible
in advanced tactile sensing for robotics.

These algorithms are built upon various mathematical formulations, which serve
as the backend processes. By encapsulating them as functions within ML libraries and
implementing them through Python coding, they become readily deployable for data
analysis. This facilitates advancements in material classification and robotics. The hardness
classification process initiates with a long process of data collection through experiments,
gathering information on material properties alongside corresponding hardness measure-
ments. Thorough preprocessing follows, ensuring the quality and integrity of the dataset,
while relevant features indicative of hardness properties are selected or extracted to facili-
tate accurate classification. Subsequently, an appropriate ML model is selected and trained
using the pre-processed dataset, allowing it to learn patterns and relationships between
input features and hardness classifications. Finally, the trained model’s performance is
evaluated using established metrics, and iterative refinement and optimization processes
are employed to enhance its accuracy and effectiveness in hardness classification tasks.
Different types of ML algorithm have been deployed for the purpose of classification
which were presented as state-of-art in paper [8,9,24,30-32]. To see how multiple ML
algorithms perform in terms of accuracy of hardness classification, grasping data from
COTS sensors was adapted against different objects selected and prepared based on the
Shore hardness scale.

2.4. Shore Hardness Scale

The Shore hardness scale is a measurement technique used to assess the hardness or
softness of material on a wider scale. The Shore hardness scale was adapted in several
cases of classification [10] to match the value of an object as a comparison to testify the
assumption made with the object as soft or hard while testing. In many classification
approaches, hardness and softness were considered because of easiness in testing. It
provides a standardized method for quantifying the resistance of a material by imposing
force which works similar for humans while considering the object without noticing the
values. There are different options of the Shore hardness scale, such as Shore A, Shore
D, and Shore OO, each tailored to specific material types and testing conditions. The
Shore hardness scale can be explored or used in different ways where one could select
the material or object based on the Shore scale that could precisely describe that material
shows this property and can be matched to a qualitative scale as extra soft, soft, medium
soft, medium hard, hard, and extra hard. In this process, the qualitative scale was adapted
to extend the classification beyond binary classification and adapt multiple objects based
on the scale beyond hard and soft which could be flexible (deformable but with force).
This approach also makes object adaption faster and gives precise results based on ML
algorithms” outcomes if the extension of classes improves the outcome or not; also, there is
the option to test wider unknown/new test objects’ data.
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2.5. Summary

Human hands hold exceptional tactile detection capabilities, such as pressure, force,
and vibration, due to mechanoreceptors in the skin. These mechanoreceptors are crucial for
understanding and interacting with the environment. Inspired by this natural mechanism,
which involves converting tactile stimuli into neural signals, this research aims to use
tactile capabilities of humans in robotic systems. Unlike existing methods that use highly
customized and expensive sensors, this research explores the use of commercial off-the-
shelf (COTS) tactile sensors, which are cost-effective and easy to integrate. Hardness
classification is particularly important because it enables robots to handle and manipulate
objects with precision and can provide capabilities to perform material-type identification
and sorting, preventing damage to delicate items and ensuring a secure hold on harder
objects, the same as how humans assess material properties through touch or grasping. This
capability can improve robot-human interaction such as service robots or robotic assistants;
understanding material hardness enhances their ability to perform tasks that involve
human-like manipulation skills. By using machine learning (ML) techniques, robots can be
trained to recognize material hardness, improving their grasping and manipulation abilities.
The Shore hardness scale is employed to provide a standardized measurement of material
hardness, aiding in the development of more effective robotic tactile sensing systems.

3. Approach
3.1. Identification of Mechanoreceptor-Inspired Tactile Sensors

Different types of complex and customized tactile sensors were identified in literature
which were used in different application and classification tasks. New proposed tactile
sensors like Biomimetic tactile sensors, artificial mechanoreceptor tactile sensors, grid-
type piezoelectric sensors, and ionics tactile sensors may be under a commercializing
state and are not so quickly available [7,13,15,38,40—-42]. Based on the current state of the
art, it is understood that artificial mechanoreceptors and tactile sensors share a common
developmental base, detecting similar physical properties from stimuli. These sensors
may vary in their single- or multi-dimensional array configurations. Many studies have
focused on emulating spike patterns using artificial mechanoreceptors, with some applied
in hardness classification tasks [39,43—45]. Currently, many of these advanced sensors
are not available in thin film for multiple tasking within robotics applications. These
types of sensors are very sensitive and can quickly degrade by certain actions of grasping
and cannot withstand longer periods for data collection with multiple objects. These are
advanced, but not much application has been proposed within robotics grasping or in
classification. Despite numerous descriptions of artificial mechanoreceptors and multilayer
sensors in literature, their use cases remain limited, with commercial availability posing
another challenge. Proposed sensors as solutions are customized based on application
which does not have further space or scope of development or availability [22,29,38,46].
Thin-film sensors are easy to embed in most robotics grippers, and based on market
research, some of the sensors were identified which have some standard dimensions
which can be used directly within the robotics application. Therefore, the focus shifts to
available tactile sensors in the market, classified based on functionality mirroring natural
mechanoreceptors illustrated in Figure 1. These include FSR force-resistive sensors (also
known as piezoresistive sensors), vibration sensors (akin to piezoelectric sensors), and
soft potentiometers sensors (such as distributed force-resistive sensors). These thin-film
sensors can be easily integrated into hard or soft grippers to detect physical changes in
force or distributed pressure. For this purpose, the Schunk gripper was adapted due to its
capability to accommodate these sensors within its internal structure.

FSR sensors as mechanoreceptor 1 and 2 functionality: FSR sensors, also known as
force-sensitive resistors, are tactile sensors designed to detect changes in resistance when
force is applied. This change in resistance leads to an increase in voltage, which is typically
scaled within the range of zero to five volts. The sensitivity of FSR sensors allows them to
detect various levels of force, ranging from light touch to continuous pressure and even
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high-impact forces, measuring up to 50N. This versatility makes FSR sensors well suited
to emulate the functionality of two mechanoreceptors located on the top layer of the skin,
namely the Meissner corpuscles and Merkel discs [47]. These receptors are positioned
close to the skin’s surface, enabling them to accurately perceive touch, pressure, or any
form of deformation [47]. When an object deforms due to pressure or manipulation, the
mechanoreceptors sense the deformations and send signals in proportion to the degree of
deformity. Based on deformation values obtained, soft objects are classified as “soft” and
hard objects as “hard” or flexible. This ability of pressure and resistance can be measured
by FSR sensors which were also chosen.

Soft Potentiometer sensors as Mechanoreceptor 3 functionality: Potentiometer sen-
sors’ capabilities as mechanoreceptors have not yet been fully explored in terms of hardness
classification. These sensors are the same as FSR sensors and exhibit a linear change in
resistance across their surface. However, they possess a unique capability to detect slip,
stretch, or sliding movements based on changes in resistance. This detection capability
closely resembles the functionality of mechanoreceptors [6,47] known as Ruffini endings.
In this scenario, this off-shelf tactile sensor has the capability to detect changes that are
similar in mechanoreceptors to analyse object characteristics or parameters in terms of
hardness classification. While squeezing, object deformation will produce stretch across
the sensor and will give different output volts as signatures for different objects which will
help to classify objects based on hardness.

Vibration sensors as Mechanoreceptor 4 functionality: Vibration sensors, function-
ing the same as mechanoreceptors, play an essential role in neural pattern generation,
classification, and the development of grid sensor architectures. Piezoelectric vibration
sensors serve as essential tools for detecting impact and vibrations across a wide spec-
trum of frequencies. This enables the collection of data crucial for pattern generation and
classification tasks. While these sensors may not replicate the intricate architecture of
mechanoreceptors, they offer functionality similar to Pacinian receptors, producing data
vital for classification purposes. Vibrations generated upon object impact are transmitted
to mechanoreceptor junctions. As these mechanoreceptors [6,47] deform in response to
detected vibrations, they send electrical impulses to the brain for processing. Higher fre-
quency vibrations typically indicate harder materials, requiring more energy to induce,
while lower frequencies correspond to softer materials. This same functionality and process
can be performed using thin-film vibration sensors to perform hardness classification.

3.2. Hardness Classification Using Mechanoreceptor-Inspired COTS Sensors

Figure 2 illustrates the proposed approach and steps involved, which are essentially
divided into four parts. Firstly, it involves the sensors that are bio inspired by mechanore-
ceptors. Choosing the right gripper based on dimensions, adapting the grasping method
(mechanical resistance) to create an impact on the sensors while grasping objects the same
as human pinch grasping, and object selection on the Shore hardness qualitative scale
are illustrated in Figure 2. Secondly, it utilizes a machine learning approach to analyse
data from sensors, including F-force data, V-vibration data, and P-potentiometer data.
Initially, single-sensor (F), (V), and (P) data were considered for analysis, and then differ-
ent configurations of sensor data were formed from each sensor. This also shows how
off-shelf tactile sensors data, selected based on bio-inspired mechanoreceptors, perform a
hardness classification. This understanding indicates how an individual and combination
of sensors can yield accurate results when attempted. Additionally, it offers insight into
how mechanoreceptor-inspired tactile sensors, both individually and in combination, can
classify hardness effectively. Accuracy from COTS tactile sensors will set a benchmark for
further exploration in layered sensor technology for future scope. These accuracy score
data showcase how grasping-based tactile information achieved from sensors in volt as
a value can be used to achieve a hardness classification to evaluate their performance.
Decisions are made based on the accuracy of each configuration in multi-class scenarios,
including dual combinations like (E V), (EP), and (P,V), as well as the three-sensor combina-
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tion (F,V,P). While binary classification has been explored in the literature, this approach
also involves different sensors’ combination approaches to perform binary (2 classes object),
ternary (3 classes object), and quaternary classification (4 classes object) based on object
data obtained from testing and Shore hardness scales.
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Figure 2. Research approach illustrating firstly object selectivity based on Shore scale considering
three to four classes in object; secondly selected sensors embedded on gripper one side; thirdly
sensors connected to Arduino to raspberry-pi for data collection; lastly from FV,P data different set
of configurations created to investigate accuracy score using multiple machine learning approaches.

3.3. Machine Learning Approach for Hardness Classification

Figure 3a illustrates the process followed in the machine learning approach and
Figure 3b shows the data structure of configuration used to train the ML. Machine learning
algorithms are essential for hardness classification tasks. These algorithms act like a brain
analyser, analysing different types of data such as numeric, text, images, and more. In
the context of hardness classification, it helps in understanding the features of datasets
obtained from tactile sensors or any other source. The algorithms use various techniques,
including supervised learning, where they are trained on labelled data to predict hardness
classification. Examples of such techniques are decision tree classification, random forest
classification, nearest neighbour classification, including support vector classification, and
others. During training, the algorithms learn patterns and relationships within the data,
allowing them to accurately classify new inputs. They analyse features extracted from
the data to predict whether a material is hard or soft or based on scale. Previously bio
signal, FFT, and other digital data were used in relation to objects to train ML [2,38]. In
this approach, COTS sensors data were formed in different combinations to train the ML
algorithms to understand which sensors’ configuration out of EV,P, (EV), (EP), (BV), (EP,V)
trains ML well, and based on test data, which ML algorithm accuracy comes out to be the
best. There are some steps that need to be taken before deploying the machine learning
algorithm which are as follows:
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Figure 3. (a) Illustrates machine learning framework for COTS sensors data. Diverse machine
learning algorithms are employed to train models using these data. The datasets utilized com-
prise (1) individual sensor data and (2) combinations of sensor data paired with object information
denoted as (H,S) and (H,S,F). Subsequently, the test values are inputted into each algorithm, and
the accuracy of their outputs is evaluated to test their efficacy. (b) Illustrates the data structure of
various configurations saved within Raspberry Pi to train ML algorithms to investigate hardness
classification.
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Python Libraries: Machine learning analysis was conducted using Python using
Google Collaboratory. To process all analysis, there were several Python and machine
learning libraries which needed to be declared in beginning of the code. In general, libraries
like Sklearn, NumPy, Pandas, and Matplotlib were declared in the first step [48-51].

Data importing: The initial step in analysis involves importing the dataset into the
Python environment. This dataset serves as the foundation for machine learning tasks,
containing the necessary information for training, and evaluating classifier models with
a feature variable and a target variable. In this case, Figure 3b showcases different S1, S2,
S3 data in single CSV file with the column of sensors’ value in volts as X variable and
target variable having the information of objects’ type as Has 0, Sas 1, F as 2 called as
Y variable. These data were called and processed and were performed using the Python
library called ‘Pandas’. In a further case, two combinations (51,52), (S2,53), (53,51) of dataset
were combined with the help of ‘Pandas’ to further follow the combination approach.

Preprocessing data: Prior to training machine learning models, it is essential to pre-
process the dataset to ensure compatibility with the chosen algorithms and improve model
performance. One common preprocessing step involves encoding categorical variables
into a numerical format, which is achieved using techniques such as label encoding, also
illustrated in Figure 3b. In this case, the target variable needs to be mapped into numerical
values using a label encoder, whose function is to transform string values like Has 0, Sas 1,
and F as 2, in case of ES (extra soft) as 3. Additionally, preprocessing may involve handling
missing values, scaling features, and other data transformations required based on dataset
preparation using the Imputer library.

Splitting data: To evaluate the performance of machine learning models accurately,
it is crucial to divide the dataset into separate training and testing subsets. This process,
known as data splitting, helps assess the generalization ability of the trained models by
evaluating their performance on unseen data. In this case, data from the configuration
EV,P, (EV), (EP), (PV), (FP,V) was split accordingly to train the ML algorithm. Typically,
a portion of the dataset is reserved for training, while the remaining portion is used for
testing. In this case, 80% of the data were used for training and 20% of the data were used
for testing, as illustrated in Figure 3a.

Importing ML algorithm: With the dataset prepared and split into appropriate sub-
sets, it further proceeds to import the machine learning algorithms like SVC (support vector
classifier), RFC (random forest classifier), DT (decision tree), LR (logistic regression), and
MLP (multilayer perceptron) for data analysis. Depending on the nature of the problem and
the characteristics of the dataset classifier, the algorithms found to be most suitable are used
for training predictive models. As these algorithms take less computational time, they are
easy to deploy and analyse in comparison to any form of deep learning or neural network.

Training ML: Once the algorithm(s) are imported, data split into X (sensors value)
from different configurations FV,P, (EV), (EP), (BV), (EPV) and Y (target feature = object
type (like Has 0, Sas 1, and F as 2)) are illustrated in the Figure 3a,b variable used as training
data to train the models, where the models learn patterns and relationships within the
training data as sensors’ values and number of object types. This process involves feeding
the training data into the algorithm(s) and iteratively adjusting the model parameters
to minimize a predefined loss function. Through this iterative optimization process, the
models learn to make predictions or classify new data based on the patterns observed in
the training set.

Trained model: After completing the training phase, trained machine learning models
were obtained that capture the discerned patterns and correlations between tactile sensors’
value and target variables (object types). These relationships form a crucial basis for
distinguishing between (1) hard and soft materials within the dataset in case of binary
classification and (2) three-object variables, hard, soft, and flexible, in case of ternary
classification (H,S,F), as illustrated in Figure 3. With this information, the models are
equipped to forecast outcomes for new, unseen instances, particularly in the context of
hardness classification tasks.
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Prediction: This prediction phase involves feeding unseen data into the trained mod-
els and obtaining output predictions based on the learned patterns. The predictions
generated by the models represent how machine learning performed predictions based on
dataset features and based on different models. In this case, two sets of data will be tested:
(1) individual sensor data, and (2) combination of individual sensors from different ML
algorithm outcomes in one file, as illustrated in Figure 3.

Validation using accuracy score: To evaluate the performance of the trained machine
learning models, validation techniques such as accuracy score are illustrated in Figure 3a,b.
In this case, data which was split will use 20% data for testing the model. In this way,
models with new data will predict the outcomes as H or S object or for F object. This will be
compared to the original test value which will give an accuracy score and performance by
comparing it within literature. Also, the accuracy score provides a measure of the overall
correctness of the model predictions. This is highlighted in the results section.

4. Design of Experiment

The design of the experiment illustrated in Figure 4 for conducting hardness classifica-
tion involves both hardware and software components. Firstly, it was crucial to employ
COTS tactile sensors to measure the impact of squeezing objects and collect data. This
required performing grasping and resistance measurement actions to obtain values from
three sensors inspired by mechanoreceptor tactile detection capability. Additionally, the
gripper action was facilitated using air pressure, capable of withstanding a force of 0.4 MPa
during grasp, controlled through Python coding via Raspberry Pi.
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Figure 4. Design of experiment flow process for collecting data from COTS sensors and preparing
different set of configuration data to machine learning analysis. Object preparation based on qualita-
tive Shore hardness scale adopted in this study, highlighting the three to four classes considered: H
(Hard), S (Soft), and F (Flexible), ES (extra soft). Objects representing each class are showcased based
on the scale, with silicone rubber representing Soft, TPU representing Flexible, and Wood and PLA
representing Hard materials.
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The selection of an appropriate gripper was paramount, requiring compatibility with
objects and sensors. A two-finger gripper was chosen for its ability to mimic human
grasping and its economic viability for grasping various object types efficiently. The Schunk
gripper, available in mechanical and pneumatic types, was selected for compatibility, with
tactile sensors shaped to attach easily. Control of pneumatics involved the use of a pressure
regulator, solenoid valve, and single electric valve. Integration of Arduino facilitated sensor
connection and served as an ADC for data transmission. Additional hardware components,
including a 3D printer for object creation and a screen with HDMI port for visualization,
completed the experimental setup. Data collected from sensors, denoted as F (force), V
(vibration), and P (potentiometer), were saved in Raspberry Pi. These data were further
configured into various combinations, such as (EV), (V,P), (EP), and (FP,V), to perform
data analysis on individual sensor data and combinations thereof. To examine deeper
into the obtained values from COTS sensors, a ‘shore taxonomy’ process was employed to
analyse the deformation resistance to force based on the Shore hardness qualitative scale
presented in Figure 4. Additionally, each configuration represented specific conditions for
binary, ternary, and quaternary classification. For binary classification, the configurations
included H (Hard) and S (Soft) classes. Ternary classification incorporated H (Hard), S
(Soft), and F (Flexible) classes, while quaternary classification added an additional class, ES
(Extra Soft). This approach was crucial for performing hardness classification against each
object, providing insights into the behaviour of future applications in terms of sensor layer
operation and the number of classes involved in classification.

4.1. Object Preparation

[lustrated in Figure 4: Objects representing different hardness classes (Soft, Flexible,
Hard) are prepared according to the Shore hardness scale for testing. For silicone rubber,
Eco flex 30 was used with mould of 3 x 3 cm size and filled with Eco flex liquid and left
for around 3 h for best result. After extraction of silicone rubber, it was squeezed/pinch
grasped to judge silicone rubber act as soft based on Shore scale. TPU (Thermoplastic
polyurethane) is filament used in 3D printing to print objects. In this case, 3D object with
3 x 3 cm dimension was printed; based on property analysed, TPU was considered as
flexible with medium hard and medium soft property. In case of wood, a piece was diced
to form 3 x 3 cm wooden block. PLA (Polylactic Acid) is also a filament which was used to
3D print 4th object and analysed to be another hard object.

4.2. Hardware

Figure 5a illustrates complete collection of setups which showcase what tools and
hardware were used. To conduct hardness classification by squeezing object, also known as
grasping, and collecting data, it was necessary to have grippers that effectively have enough
space to accommodate object and sensor on gripper. For this purpose, Schunk gripper as
mechanical gripper/pneumatic gripper type was selected. Additionally, to collect data
from tactile sensors, it was necessary for their shape to be compatible with sticking on
the side of the pneumatic gripper. To control pneumatics, further tool requirement was
to control air pressure, which was conducted using pressure regulator, solenoid valve,
and single electric valve. Main air pressure supply was fed into pressure regulator using
supply within IAC lab. To develop a system with both automatic and manual grasping
capabilities, a device that could synchronize with Python and collect data simultaneously
was required. This synchronization was achieved using Raspberry Pi, which served as the
central hub with the resources to combine peripheral devices and control them through
digital commands (high and low).

In addition to Raspberry Pi, an Arduino board was utilized to connect sensors and
serve as an ADC (analogue to digital converter). This allowed the sensors to be connected
to Arduino ports and subsequently linked to Raspberry Pi via serial communication.
Other essential components included a pressure regulator to limit air pressure to a certain
level, relay modules to control electric components, and solenoid valves to regulate air
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pressure. An RS power supply was necessary to operate the electric valve and solenoid
valve effectively. To perform gripping tasks, a Schunk pneumatic gripper was employed.
Furthermore, a 3D printer was utilized to create testing objects from different materials,
providing versatility in experimentation. Lastly, a screen with an HDMI port was utilized
to visualize the outcome of the experiments, ensuring effective monitoring and analysis of
the collected data.
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Figure 5. (a) Provides an overview or mapping of the experimental setup, demonstrating the connec-
tions among the tools involved in developing the prototype; (b) presents the complete experimental
setup, showcasing three distinct systems: the Gripper system, Control system, and Pressure system.
Additionally, three different tactile sensors are positioned on the side of the gripper to collect data
alongside various objects. Data collected were saved in Raspberry Pi in CSV format. All data of
sensors with objects have around 200 samples.
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4.3. Software

To control grasping and collect sensor data for analysis using machine learning al-
gorithms, various Python libraries and machine learning frameworks were employed.
To establish communication between the Arduino and Raspberry Pi, the Nanpy library
was used, allowing for integration of the two devices in a master—slave configuration to
facilitate serial communication [52]. For data collection and processing, the Pandas library
has capabilities to manage data and manipulate datasets. Additionally, for the analysis of
collected data and the implementation of various machine learning algorithms, the Scikit-
learn library was applied, offering a wide range of algorithm selectivity like SVM (support
vector classifier), RFC (random forest classifier), and (DT) decision tree, and for measuring
performance like accuracy and confusion matrix. Python 3, along with Python idle-Version
3.8 software, Jupyter Notebook Version 5, and Google Collaboratory, were employed for
coding purposes. Each platform was selected based on its capabilities and suitability for
specific tasks, ensuring efficient analysis and data collection across various scenarios.

4.4. Gripper System

In the exploration of various grippers documented in literature, diverse structures
and use cases have been examined. However, the need arose for a general gripper that
could mimic pinch grasping same as human hand operation, while also accommodating
the dimensions of COTS sensors. Understanding the embedding issues of sensors when
using different grippers and sensor variations was crucial. For the experiment depicted in
Figure 5b, the Schunk PGF 80 gripper was utilized. One side of the gripper was equipped
with sensors, with each sensor being swapped out during the experiment for each object.
These sensors were connected to an Arduino to collect data, capturing tactile information
from each stimulus object. A pneumatic system controlled by a control system regulated the
opening and closing of the gripper by releasing air pressure through a pipe attached to the
gripper. The selection of the gripper was based on the space available between its fingers,
facilitating easy placement of objects. Additionally, the gripper’s adjustable gripping range
allowed it to grasp objects larger than its default size. Opting for a two-sided gripper
enabled a pinch-type grasping similar to human finger dexterity, occupying minimal space,
and swiftly integrating into any robotic arm. The selected sensors were easily installable in
these grippers compared to custom-made ones, streamlining the experimental setup, and
enhancing efficiency.

4.5. Control System

To control the gripper, an SMC solenoid valve which is controlled through relay
module and with python code from Raspberry Pi sends high and low command to GPIO
pins. This relay module controls the electric valve in pressure system which controls the
main supply of air pressure system at decided delay of 0.4 to 0.6 s. Illustrated in Figure 5b,
sensors connected in gripper also connected to Arduino which reads the analogue value
from sensors and converts them into voltage on scale of 5 volts. Arduino is connected to
Raspberry Pi which works as bridge to sensors and Raspberry Pi. With the help of Python
library (Nanpy,) Raspberry Pi and Arduino is connected in master—slave configuration to
perform serial communication. Sensors” data were saved in Raspberry Pi from Arduino as
CSV file to use in material classification algorithm.

4.6. Pressure System

Air pressure was taken from IAC lab which was connected to central pressure system
and pressure regulator with safety knob. This air pressure was passed through regulator
which was set around 0.4 MPa approx. This passed through electric valve which was
controlled by control system through relay module illustrated in Figure 5b. Main board
developed in a way that it can control three multiple air pressure types within this module
which can be useful for future scope in terms of pressure variation tests under gripper.
In terms of open and close of air flow, described in Figure 5b within gripper system, it is
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controlled through SMC 5/3 solenoid valve which when one side is open through relay
module, gripper opens, and when other side valve is open, gripper closes or grasps. This
was achieved by sending high(1) and low(0) command through Raspberry Pi through
GPIO pins to 2nd and 3rd relay module.

4.7. Data Collection

The data collection process stated and described in Figure 5b demonstrates the com-
prehensive connectivity of each module, highlighting how sensors are linked to the gripper
and subsequently connected to an Arduino for data transmission to a Raspberry Pi. These
data are crucial for further analysis, particularly in material classification research. During
the experiment, single sensors were sequentially deployed with the gripper to acquire data,
as illustrated in Figure 5, showcasing the formatted data structure illustrated in Figure 4
for subsequent analysis. Each tactile sensor gathered data from three distinct classes of
objects grasped by the gripper, with the Raspberry Pi Figure 4 storing these data for each
object individually. Gripper grasps every object around 200 samples from each object and
sensors with synchronized grasp and releases with duration around 0.4 s to 0.6 s. Utilizing
Python’s Pandas library, data collection was streamlined through commands that defined
the object’s state (H, S, or F) based on the Shore hardness quantitative scale. The collected
data for each object, captured by three sensors individually connected to Arduino ports,
was organized into separate data frames, and saved as CSV files on the Raspberry Pi. Addi-
tionally, string labels (H,S,F) were transformed into numerical values using label encoder
to perform classifier analysis capabilities. The connection setup detailed in Figure 5a,b
illustrates the integration of sensors with the gripper system during testing, providing
clarity on how tactile sensor data were stored in CSV files on the Raspberry Pi. To analyse
data, Figure 4 explains the data collection process and the resulting data structure and steps
for ML algorithms analysis process illustrated in Figure 3.

5. Results Based on Machine Learning
5.1. Result on Hardness Classification Outcome Based on Two Classes (H,S)

In term of hardness-based classification when two classes were considered, (H,S) gives
comparable accuracy, the same as in literature which used customized sensors. Figure 6
indicates that binary classification of individual sensors showcases accuracy ranging from
65% to 82% noticed from individual sensors (F), (P), and (V). Accuracy achieved from
individual sensors represents that off-shelf tactile sensors can be used in hardness-based
classification. In case of two classes (H,S), individual sensors can perform up to 80% of
accuracy in predicting 20% of testing data as validation. Literature suggests 80 to 95% [2]
of accuracy/prediction while using customized and complex tactile sensors. Ultrasonic
sensors [32] used in literature describing the hardness and softness take too much space
within the gripping area, which is difficult to adjust in different required environments,
which is the same for customized sensors. In terms of the combination of sensors like
(EV) =85%, (PF) = 89%, and (V,P) = 87%, accuracy obtained shows that the combination of
sensors increases the prediction accuracy which indicates that more tactile information as a
feature increases machine learning accuracy. And out of multiple algorithm approaches, it
shows that RFC performs best among others. In different configurations, RFC also performs
better. Based on three sensors (F,P,V), the configuration achieves around 93% which highest
among all configurations of sensors as features. This indicates that an increasing number
of features (tactile information or value) from different sensors about objects increases the
chance of obtaining optimum accuracy. This also showcases that COTS have the capability
to perform hardness classification.

5.2. Hardness Classification Outcome Based on Three Classes (H,S,F)

Hardness classification using three classes showcases results obtained from multiple
algorithms presented in Figure 7. In comparison to two classes (H,S), the outcome from
three classes (H,S,F) has shown less accuracy among different configurations. In individual
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sensors, accuracy drops below 70%; in the combination of two (EV), (BF), and (V,P),
accuracy drops below 80%; only three combinations of individual sensor data (EP,V)
show 82% accuracy by the RFC algorithm which was best among all configurations. This
outcome represents that on an increasing number of classes, accuracy decreases among
ML algorithms. Accuracy obtained from three classes (H,S,F) was not investigated much
in literature; this result shows that multiple sensors’ data obtained from COTS as tactile
information/ features can perform multiclass hardness classification with 80%+ accuracy
with limited data.

100
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—&— Support Vector Classifier (Linear)
—8— Decision Tree Classifier
—&— Random Forest Classifier
90 —o— k-NN
—&— ANN (MLP)
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Sensor Combinations

Figure 6. Describes the binary classification (H,S) outcomes among different sensor data configu-
rations or combination using multiple algorithm outputs. Each algorithm is evaluated based on
accuracy scores obtained from predictions on test data, which constitutes 20% of the overall dataset
remaining unseen during training.

5.3. Result from Best Algorithm and Sensors Configuration—Multiclass Output

From class two (Section 5.1) and class three (Section 5.2) results, it been understood
that the output of multiple algorithms indicates in most cases that RFC performs well.
Multiple features from sensors with more tactile information (FP,V) perform overall better.
Three classes (H,S,F) with three sensors (F,V,P) configuration results outcome inspires a
further look into including a fourth class from the Shore scale which is ES (extra soft).
For ES objects, a white sponge was included, and ML models were trained again with
all configurations. Figure 8 shows all results obtained from RFC and shows the case that
binary classification remains optimum in most configurations where other classes’ accuracy
falls but shows the capability of performing hardness classification. In four object classes
(H,S,ES,F), the (RFC) in (FV,P) combination performs better among all other configurations
achieving accuracy around 79%. Overall, this result also indicates that (E,V,P) combination
performs better in all cases.
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Figure 7. Illustrates the ternary classification (H,S,F) outcomes among different sensor data config-
urations or combination using multiple algorithm outputs. Each algorithm is evaluated based on
accuracy scores obtained from predictions on test data, which constitutes 20% of the overall dataset
remaining unseen during training.
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Figure 8. Illustrates the outcomes of multiclass hardness classification accuracy, demonstrating

various sensor configurations. The best-performing configuration, utilizing three sensors (F,V,P),

achieved optimal results, as highlighted by the outcomes obtained from the random forest classifier
(RFC) algorithm.
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6. Conclusions and Future Scope

This study demonstrates the feasibility and practicality of using commercial off-the-
shelf (COTS) tactile sensors for multiclass hardness classification in robotic applications,
specifically showcasing their scalability, cost-effectiveness, and integration ease compared
to customized tactile sensors. It particularly underscores the advantages of configurations
that incorporate three sensors (E,V,P), which consistently outperform simpler setups with
accuracy rates between 80-92% across binary, ternary, and quaternary classifications. These
findings highlight not only the feasibility of employing COTS sensors in varied robotic tasks
but also their comparability in performance to more complex sensor systems documented
in existing literature, where accuracy ranges from 50-97% (binary classification). Notably,
the random forest classifier (RFC) was found to be particularly effective, likely due to its
robust pattern recognition capabilities within the diverse data sets involving sensor values
and target classifications.

In binary classification, individual sensors (F) and (P) have achieved accuracies above
80%, indicating that a single sensor may not be sufficient for comprehensive hardness classi-
fication. But individual sensors showcase the possibility of an accuracy score comparable to
more complex grid or array sensors documented in the literature, which typically achieve
accuracies between 50-90% [41]. This comparison highlights the viability of commercial
off-the-shelf (COTS) sensors for rapid deployment in robotic applications, emphasizing
their potential for broader use in texture classification and other areas. The selectivity of
these sensors, inspired by human mechanoreceptors, is crucial. It enables the capture of
diverse force, pressure, and vibration signals from various objects, enhancing hardness
classification. This mechanoreceptor-based selectivity is especially beneficial when sensor
data from multiple sources (F,V,P) are combined, suggesting future exploration into other
bio-inspired sensors such as thermoreceptors for temperature, and optical receptors for
light detection.

However, there are notable limitations to consider. The current testing procedures,
which primarily involve uniformly shaped square objects, do not fully represent the range
of real-world scenarios. The data collected from only four to five objects is limited in quan-
tity, which may restrict the applicability of the tests in real-world and real-time scenarios.
This limitation poses a challenge for performing hardness classification with COTS sensors,
necessitating tests with a larger number of objects. Including more objects based on the
Shore scale could either decrease or increase the accuracy of COTS sensors, which remains
uncertain and highlights the need for future research. The resolution and sensitivity of the
COTS sensors may not be sufficient for detecting fine differences in hardness, requiring
tests with materials of various properties. Furthermore, testing conducted under con-
trolled environments does not account for the variability in real-world conditions, such as
temperature, humidity, and platform differences, which could affect sensor performance.
Additionally, sensor alignment with various robotic grippers and different objects may
yield varying outcomes. This underscores the potential for future work exploring the
use of COTS sensors with dexterous robotic grippers to understand their performance
across diverse applications. The use of single-sensor data, followed by their combination,
can be time-consuming in real-time applications, posing a significant drawback. These
factors emphasize the need for more comprehensive testing on objects of different sizes
and shapes to accurately assess the capabilities and limitations of COTS sensors in various
classification applications. Overall, this study has revealed several significant findings.
Firstly, it demonstrated the feasibility and accessibility of hardness classification using
commercial off-the-shelf (COTS) sensors, which require minimal processing time and are
readily deployable in various robotics environments. Secondly, configurations using three
sensors (EP,V) consistently outperformed others, proving particularly effective in binary
classification, although they were less effective in ternary and quaternary scenarios but per-
formed optimally in comparison to others. Notably, among the various machine learning
algorithms tested, the random forest classifier (RFC) exhibited optimal performance. This is
likely due to RFC’s ability to effectively discern patterns within the training data, especially
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within the subset containing sensor values and target classifications. The achieved accuracy
underscores the potential of COTS sensors, yielding results comparable to those docu-
mented in existing literature. These findings suggest significant potential for the extensive
use of COTS sensors in robotic tactile sensing applications. Additionally, it has shown
potential to explore layered or topology of COTS sensors to identify the optimal configu-
rations using a bio-inspired (mechanoreceptor) approach. Future research will focus on
analysing tactile information gathered collectively from layered sensors and performed in
real-time predictions with unknown or new objects. In future work, we plan to expand the
variety of materials testing to include broader parameters like textures, densities, gradient
hardness, and composite structures to better evaluate the sensors’ capabilities in diverse
real-world scenarios. We may also explore advanced machine learning models, deep
learning approaches, and ensemble techniques to improve the accuracy and robustness
of multiclass classification tasks. In the case of improving ML models, various filtering
techniques to enhance the quality of sensor data can also be considered in future work.
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Abstract: A stratospheric pseudolite (SP) is a pseudolite installed on a stratospheric airship. A strato-
spheric pseudolite network (SPN) is composed of multiple SPs, which shows promising potential in
navigation applications because of its station-keeping capability, long service duration, and flexible
deployment. Most traditional research about SPN geometry optimization has centered on geometric
dilution of precision (GDOP). However, previous research rarely dealt with the topic of how SPN
geometry configuration not only affects its GDOP, but also affects its energy balance. To obtain an
optimal integrated performance, this paper employs the proportion of energy consumption in energy
production as an indicator to assess SPN energy status and designs a composite indicator including
GDOP and energy status to assess SPN geometry performance. Then, this paper proposes an SPN
geometry optimization algorithm based on gray wolf optimization. Furthermore, this paper imple-
ments a series of simulations with an SPN composed of six SPs in a specific service area. Simulations
show that the proposed algorithm can obtain SPN geometry solutions with good GDOP and energy
balance performance. Also, simulations show that in the supposed scenarios and the specific area,
a higher SP altitude can improve both GDOP and energy balance, while a lower SP latitude can
improve SPN energy status.

Keywords: stratospheric airship; pseudolite network; geometric dilution of precision (GDOP); energy
balance; gray wolf optimization

1. Introduction

Stratospheric airships are flight vehicles that can keep their flight altitude by buoyance.
They can reside in the lower portion of the stratosphere and perform station-keeping mis-
sions for a long time. This capability can provide a very efficient flight for many missions,
such as science exploration, communications, earth observations, and navigations.

Researchers have proposed the concept of stratospheric pseudolites (SPs), which
means to install transmitters on stratospheric airships to send out GPS-like signals to
improve GNSS performance. Furthermore, a stratospheric pseudolite network (SPN) can
be constructed by multiple SPs, which can provide independent positioning, GNSS aug-
mentation and other services, especially in case of degraded visibility of GNSS signals.
An SPN can provide many advantages such as wide coverage, long service duration, and
flexible deployment; therefore, it has attracted abundant attention. Tsujii established a min-
imum configuration of a GPS/SP system to augment GPS and implemented experiments
in both static and kinematic modes [1]. Dovis introduced an SPN system architecture,
and discussed some key issues about SPN performance, including SP positioning, pseudo-
ephemeris broadcasting, and GDOP improvement [2]. Zheng carried out simulations for
SPN in urban areas and proved its effect on improving the horizontal dilution of precision
(HDOP) and 3D positioning accuracy [3]. Chandu designed an SPN framework, described
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its dataflow and mathematical model, and compared the feasibility of various SPN geome-
try configurations [4]. Dai presented SPN modeling strategies to deal with positioning error
sources and proposed geometry optimization solutions for two application scenarios [5].

In previous research about SPN, geometry configuration has been identified as a
critical factor affecting its positioning performance significantly. A series of approaches
have been discussed to optimize the SPN geometry configuration, which can be divided
into empirical methods and meta-heuristic optimization methods.

With empirical methods, Fateev suggested that an ideal pseudolite network should be
composed of 5-10 pseudolites, which should be distributed along the edge of the service
area and at different altitudes [6]. Sang studied the relationship between network geometry
layout and geometric dilution of precision (GDOP) and illustrated three defective layouts
that should be avoided in practice [7]. Hu, Gao, and Yang provided different geometry
configurations for four SPs, five SPs, and six SPs, respectively, to minimize GDOP based on
priori theories [8-10].

As to meta-heuristic optimization methods, Mosavi presented a pseudolite network
geometry design approach with multiple evolutionary algorithms, including the genetic
algorithm (GA), simulated annealing algorithm (SA), and particle swarm optimization
algorithm (PSO) [11]. Shao offered a design strategy for pseudolite network geometry
based on PSO and carried out indoor tests [12]. Tang put forward a multi-objective PSO
algorithm for pseudolite network geometry design, whose purpose was to maximize the
visual area while minimizing GDOP [13]. Yang adopted GA to search for optimal SPN to
reduce the ephemeris error, ranging error, and positioning error in GNSS augmentation [14].
Chen utilized improved GA to select the best configuration aiming at enhancing accuracy in
mobile positioning [15]. Song proposed an adaptive GA to realize geometry optimization
under multiple constraints, especially under orographic terrain constraints and traffic
facility constraints [16].

The studies listed above provided rich references for SPN geometry design. How-
ever, the energy balance requirement of SPN has rarely been analyzed, with even less
consideration of the integrated optimization of SPN energy balance and GDOP.

In fact, the energy system of an SP is quite different from that of other aerial vehicles
because it is always in the dynamic variation of energy production and energy consumption
in its service duration. The balance between energy production and energy consumption
is very vulnerable, since the energy gained from the solar arrays is quite limited, while
the energy consumption due to resisting wind is enormous. Once its energy consumption
exceeds energy production, an SP will encounter difficulties sustaining normal operation,
making its service availability and continuity degrade greatly.

The main problem is that GDOP, SP energy production, and SP energy consumption
are all governed by the SPN configuration. If GDOP is regarded as the sole objective during
the course of SPN geometry design, an SPN unable to keep energy balance may be obtained.
To avoid such an unpractical result, this paper proposes an SPN geometry design algorithm
based on gray wolf optimization (GWO), pursuing the integrated optimization of GDOP
and SPN energy balance.

This paper assumes the transmitting antennas onboard are directional antennas point-
ing down to the ground. Furthermore, this paper makes the following assumptions for an
SP in its service duration, as Table 1 illustrates:

Table 1. Assumptions for an SP in its service duration.

Symbolic Physical Meaning Assumption
Aj longitude of the j-th SP remain constant
D; latitude of the j-th SP remain constant
remain constant, 18-20 km as the
h]- altitude of the j-th SP preferred interval, and 20-28 km as the

alternative interval [17,18]
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Table 1. Cont.

Symbolic Physical Meaning Assumption
. remain constant, do not affect the
7j yaw angle of the j-th SP vector between a user receiver to the SP
a; pitch angle of the j-th SP 0
B; roll angle of the j-th SP 0
m; mass of the j-th SP remain constant
T energy spent on keeping flight altitude 0
kaj of the j-th SP
1oj photoelectric conversion efficiency remain constant
T energy loss in the process of transfer, 0

charging, storage, and discharging

The rest of this paper is organized as follows. The GDOP of SPN is analyzed in
Section 2, an energy balance model of SPN is established in Section 3, an SPN geometry
design algorithm based on GWO is proposed in Section 4, simulations and discussions are
presented in Section 5, and conclusions and future works finally complete this paper.

2. GDOP of an SPN

GDOP is a widely used indicator in SPN performance assessment. It is defined as the
statistics ratio of positioning accuracy, timing accuracy, and ranging accuracy. Given the
same pseudo-range error, the smaller the GDOP is, the smaller the positioning error and
timing error are.

In this paper, the GDOP of an SPN is defined as the average GDOP of multiple users
in the SPN service area, which can be described by Equation (1).

Ny
GDOPy = iz GDOP; (1)

Hi=1

In Equation (1), n, represents the number of observers distributed in the service
area. GDOP; represents the GDOP of the i-th user, which can be calculated by Equa-
tions (2)-(4) [19-21].

GDOP, = \/tr(HTH;) ' )

Axil Ayil azip 1

Axi2 Ayi2  Azi2 1
Hi=1 . : : : ®)

Axin, Ayin, Ozin, 1

b — X~ Fui
X1 —
! \/(Xj*Xui)er(yj*yui)er(Zj*Zui)z
Yi—Yui
Ayii = 4
v \/(xj_xui)2+(yj_yui)2+(Zj_zui)z )
Z]'fzui

i \/(xj*xm‘)2+(yj*yui)er(Zj*Zui)z

In Equations (2)-(4), H; represents the observation matrix of the i-th user, n, represents
the number of SPs in the network, ay;, a,;;, a,;; represent the vector components between
the i-th user receiver and the j-th SP, (x,;, V., z,,;) represent the position of the i-th user in
the ECEF (Earth-Centered, Earth-Fixed) coordinate system, and (x;, Yj zj) represent the
position of the j-th SP in the ECEF coordinate system, which is gained from (;, ®;, h;) by
coordinate transformation.
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3. Energy Balance of an SPN
3.1. Energy Consumption of an SP

SP energy is used to support its equipment, such as the propeller, flight controller,
TT&C (Telemetry, Tracking, and Command) system, and mission payloads. The propeller
consumes a great deal of energy, and it is deeply affected by SP position and attitude. The
energy consumption of the other equipment is slightly affected by SP position and attitude,
and their requested power is assumed to be constant in this paper.

3.1.1. Energy Consumption of a Propeller
For the j-th SP, the power required by its propeller can be estimated by Equation (5) [22].

Pej = TiU;/1p; /1 ®)

In Equation (5):

Pg; represents propeller power;

T; represents thrust generated by the propeller;

U; represents airspeed;

11pj and 17,; represent propeller efficiency and motor efficiency, respectively, which can
be assumed as constants according to the analysis in [22].

So, the energy consumption of the propulsion propeller of the j-th SP, represented by
Jej, can be expressed by Equation (6).

ts
Jej = /0 T;U; /11p; /15t (6)

In Equation (6), ts represents the station-keeping time of the SP.

To facilitate analysis, SP motion can be decomposed into motion along the axis direc-
tion and motion along the normal direction. The propeller is assumed to be able to generate
thrusts along the axis direction and along the normal direction independently, as illustrated

in Figure 1.

East;

0

Figure 1. Illustration of an SP motion decomposition in the horizontal plane (since both pitch angle
and roll angle of SPs are assumed as 0, this figure only illustrates the motion decomposition in the
horizontal plane).
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Then, Equation (6) can be rewritten into Equation (7) [23].

ts
Jop = || (TugU + Tojlng) /17 gt )

In Equation (7):

T,j represents the axial component of thrust T};

U,; represents the axial component of airspeed Uj;

T, represents the normal component of thrust T;

U,,; represents the normal component of airspeed Uj;

T,; and T, can be estimated by aerodynamic resistance, and U, and U,; can be
estimated by local wind speed, as described in Equation (8).

~

_ _ 1 172/37112 .
aj = —Daj = —20mV;i UL C;

LI,,]- = —W()Lj, 4)], h], f) COS("yj — ')’w)

_ _ 1 2/31712
wj = —Duj = —20mV;" "W, Cp;

Un]- = —W()\]’, 4)], h], i’) Sil‘l(’)/]' — ')’w)

®)

~

In Equation (8):

D,; represents the aerodynamic resistance along the axis direction;

D,;; represents the aerodynamic resistance along the normal direction;

W(/\j, qﬁj, h]», t) represents the wind speed at position (/\j, <I>j, hj) and at time ¢t;

Pmj represents the atmosphere density at altitude h;;

V; represents the volume of the j-th SP, and V]-Z/ 3 is used to estimate its reference area;

Cp; represents its aerodynamic resistance coefficient;

Yw represents the local wind direction angle.

Wind speed W()\]‘, P, h]-, t), wind direction angle v,, and atmosphere density Omj
change enormously with position, as illustrated in Figures 2—4.

Figure 2 illustrates the meridional and zonal wind speeds in a specific area at an
altitude of 20 km. It can be seen from Figure 2 that both meridional wind speed and zonal
wind speed vary greatly with latitude in the area. The minimum zonal wind speed is about
8 m/s, while the maximum zonal wind speed has doubled to about 16 m/s. The meridional
wind speed has undergone a directional reverse.

Figure 3 illustrates the meridional and zonal wind speeds at a certain location within
the altitude interval of 18-30 km at four typical times in March, June, September, and
December. From Figure 3, it can be seen that the zonal wind speed varies greatly with
altitude changes, whose difference can reach tens of meters. Also, the meridional wind
speed shows slight changes.

Figure 4 illustrates the atmospheric density variation of the U.S. standard atmosphere
model at an altitude interval of 18-30 km. At an altitude of 18 km, the atmosphere density
is about 0.12 kg/m?3, while at an altitude of 30 km, the atmosphere density rapidly decays
to less than 0.02 kg/m?>. The attenuation of the atmosphere density exceeds 80%, reflecting
a significant change.

These differences illustrated in Figures 2—4 can lead to a huge difference in the energy
consumption of a propeller.
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Figure 2. Horizontal wind speeds for a specific region at a certain time: (a) meridional wind;
(b) zonal wind.
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Figure 3. Horizontal winds at different altitudes for a specific region.
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Figure 4. Atmosphere density from 18 km to 30 km according to U.S. Standard Atmosphere, 1976 [24].

3.1.2. Total Energy Consumption of an SP

The energy consumption of other equipment is only slightly affected by the SP position
and attitude. Thus, their energy consumption is assumed to be a constant represented by
P;. Their energy consumption, represented by J,;, can be expressed simply by Equation (9).

Tpj = Ppj ts ©)

The total energy consumption of the j-th SP, represented by J;, can be seen as the sum
of propeller energy consumption and other equipment energy consumption, which can be
expressed by Equation (10).

Ji=Jej + Iy (10)

3.2. Energy Production of an SP

SP energy production relies on the solar arrays laying on its airship surface, which can
convert solar radiation into electricity. Solar radiation harvested by the solar arrays can be
divided into direct radiation, scattered radiation, and reflected radiation. Since the effect
of scattered radiation and reflected radiation is far less than direct radiation, this paper
emphasizes direct radiation and ignores scattered radiation and reflected radiation.

3.2.1. Solar Direct Radiation

The solar direct radiation intensity on the top of the atmosphere in the normal direction,
represented by Iy, can be expressed by Equation (11) [25].

Itop =Isc Ec 11)

In Equation (11), Isc represents the solar constant, and E; represents a sun—earth
distance correction, which can be expressed by Equation (12) [25,26].

E. =1+ 0.033cos(2nd,, / 365) (12)

In Equation (12), d,, represents the day number in a year.
The solar direct radiation intensity at different altitudes is affected by the atmosphere
transmissivity, which can be expressed by Equation (13) [26].

IDj = Itoij (13)

In Equation (13), Ip; and 7; represent solar direct radiation intensity and atmosphere
transmissivity at altitude ;, respectively. 7; can be calculated by Equation (14) [27].

Tj — 0.56(e70.65)\mj + 670.95/\mj) (14)
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In Equation (14), A,,; can be estimated by Equation (15) [27].

Aj = %[\/ 1229+ (6145in 6,)* — 614in 0, (15)

In Equation (15), p; represents the pressure of the atmosphere at altitude /;; pg repre-
sents the pressure of the atmosphere at sea level.
f; represents the solar elevation angle at latitude @;, which can be expressed by
Equation (16) [26].
sinf; = sin¢; sind + cos ¢; cos 6 cos w; (16)

In Equation (16), § represents sun declination; w; represents sun hour angle.

The sun declination ¢ is the angle of the sun above or below the equator plane. It
changes with the date. It will reach its maximum value (23.45 degree) at the summer
solstice in the northern hemisphere, and will reach its minimum value (—23.45 degree) at
the winter solstice. J can be roughly calculated by Equation (17) [25].

) 23.45sin(27(d, —81)/365) d, > 81 17)
23.45sin(27t(d, +284)/365) d, < 81

The sun hour angle w; is the angle between the sun and the local meridian, which
changes 15 degrees per hour and can be calculated by [25].

wj =15(t — 12) (18)

3.2.2. Energy Production of a Solar Array

The solar array mounted on the airship surface can be divided into multiple cells
to analyze its energy production precisely. If the area of cell k is represented by Aj, the
angle of the solar direction vector and the normal vector of cell k is represented by ¢, and
the output power of cell k produced by solar direct radiation, represented by Ppj, can be
calculated by Equation (19) [28,29].

PDjk = IDj AjkCOSlP]'k (19)

The aggregate output power of all the cells in the solar array, represented by Ppy;, can
be calculated by Equation (20).

Ne
Ppyj =Y Ppjk (20)
k=1

In Equation (20), n. represents the number of solar array cells. The energy produc-
tion of the j-th SP in its station-keeping time, represented by Q;, can be expressed as

Equation (21).
ts
Qi = /0 Ppyjnyidt (21)
In Equation (21), i7y; represents the photoelectric conversion efficiency of the solar
array.

Figure 5 illustrates diurnal energy productions of an SP at different positions, reflecting
energy production gaps caused by SP positions.
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Figure 5. Comparison of energy productions of an SP at different positions on a specific day.

3.3. Energy Balance Indicator of an SPN

According to the analysis above, this paper proposes an energy balance indicator to
assess an SP’s energy status, which can be formulized as Equation (22).

B =];/Q; (22)

In Equation (22):

Jj represents the energy consumption of the j-th SP, which is defined in Equation (10);

Qj represents the energy production of the j-th SP, which is defined in Equation (21);

B, represents the ratio of energy consumption and energy production, reflecting the
energy status of the j-th SP.

For an SPN, its energy balance can be assessed by the sum of all the individual energy
balance indicators, which can be expressed as Equation (23).

B=) B; (23)

4. SPN Geometry Optimization Algorithm
4.1. Objective Function and Constraints

SPN design is a multi-objective optimization problem with multiple constraints. This
study has two objectives: the first is to minimize SPN GDOP in a given area, which is
defined in Equation (1); the second is to minimize the SPN energy balance indicator, which
is defined in Equation (23).

Thus, the overall optimization objective function, represented by F, can be expressed as

F= leDOPN + sz

(24)
w1 + Wy = 1

In Equation (24), wq and w, represent the weight of GDOP and energy balance in the
overall objective function, respectively. Their values can be adjusted within the interval
[0, 1] according to requirements, keeping their sum as 1. If w; is set as 0, it means that
GDOP will be ignored in the process of SPN geometry optimization, and if w is set as 0, it
means that energy balance will be ignored.

Two optimization constraints are emphasized in this study. The first is no co-location
constraint, meaning that all the SPs in the network should not be deployed in the same
position. It can be attributed to the large volume of airships, whose length can reach
hundreds of meters. So, a distance is required between SPs to ensure safety, and the
distance can be determined according to practical factors such as SP length. The second is
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the individual energy balance constraint, requiring each SP in the network to maintain its
individual energy balance, which means that for any j € [1, 1],

B; <1 (25)

4.2. SPN Geometry Optimization Based on GWO

GWO is a widely used optimization algorithm in many fields [30,31]. It is a meta-
heuristic optimization algorithm developed by Mirjalili in 2014 that mimics the hunting
behavior and leadership hierarchy of gray wolves [30]. Compared with traditional empir-
ical methods, GWO requires neither gradient information nor continuous derivative of
objective functions. Compared with other meta-heuristic optimization algorithms, such
as GA, PSO, and SA, GWO has fairly competitive performances [30]. Therefore, GWO is
employed in this paper to implement SPN geometry optimization.

In GWO, a solution for a problem is regarded as a gray wolf, and all the available
solutions are regarded as a wolf population. Gray wolves in the population are divided
into four types: alpha, beta, delta, and omega, representing the current best, sub-optimal,
the third best, and other solutions, respectively. The search for the optimal solution is
performed by three important strategies: approaching, surrounding, and attacking prey.
For a detailed discussion about the strategies, please refer to [30].

In this paper, a gray wolf is defined as the positions of all the SPs in an SPN. The
fitness of a gray wolf can be calculated by Equation (24), which represents the weighted
sum of GDOP and energy balance indicators, reflecting the comprehensive performance
of a gray wolf. From the analysis above, it can be seen that the goal of SPN geometry
optimization is to find the SP positions that entail minimizing the objective function (24).
This is equivalent to finding the gray wolf that obtains the minimum fitness. Specific steps
of SPN geometry optimization can be described as follows [30].

Step 1: Initialize GWO parameters, including population size 7, maximum iteration
number 7, and others. Set the optimal population fitness as infinite and set the iteration
counter as 1.

Step 2: Initialize a gray wolf population randomly.

Step 3: For each gray wolf in the current population, check whether it meets the no
co-location constraint discussed in Section 4.1. If not, modify the co-located SP positions
until the no co-location constraint is met.

Step 4: For each gray wolf in the current population, check whether it meets the
individual energy balance constraint discussed in Section 4.1. If not, set the fitness of the
gray wolf as infinite.

Step 5: For each gray wolf to meet the constraints in Section 4.1, calculate its fitness
defined in Equation (24).

Step 6: Select the minimal fitness as the optimal population fitness. Update the alpha
wolf according to the gray wolf with the minimal fitness.

Step 7: Update all the gray wolves in the population with GWO strategies, such as
approaching, surrounding, and attacking prey.

Step 8: For each updated gray wolf, check whether it is outside of the search space. If
so, put it on the edge of the search space.

Step 9: Increase the iteration counter by 1.

Step 10: Stop the iteration if the iteration counter reaches the maximum iteration
number #n,,; otherwise, go to step 3 and continue the iteration.

Step 11: Iteration ends. The current alpha wolf is returned as the optimal solution,
and an SPN geometry configuration can be achieved based on the optimal solution.
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5. Simulation and Discussion

To verify the proposed algorithm, simulations are carried out in the scenario of SPN
positioning. The simulation environment is MATLAB 2018b, and the simulation parameters
are shown in Table 2. It is assumed that users are distributed in the service area uniformly
with an interval of 0.3 degree, which means there are 11 users in both the longitude direction
and the latitude direction.

Table 2. Simulation parameter setting.

Symbolic Physical Meaning Value
1y number of SPs in the network 6
ij volume of stratospheric airship/ m> 100,000
Cp; aerodynamic resistance coefficient 0.027
Hej electric motor efficiency 0.7
1pj propeller propulsive efficiency 0.9
1oj photoelectric conversion efficiency 16%
Py other equipment power/W 100
Isc the solar constant/W/m? 1367
Ty wolf population size 100
N maximum iteration number 50
w1 weight of GDOP in the objective function 0.5
wy weight of energy balance in the objective function 0.5

Amin minimum longitude/degree 90E
Amax maximum longitude/degree 93E
Din minimum latitude/degree 37N
Dax maximum latitude/degree 40N
Niin minimum altitude to deploy SP/km 18
Hinax maximum altitude to deploy SP/km 20
dst start day of the station-keeping (day number in a year) 80
deq end day of the station-keeping (day number in a year) 80
tst start time of the station-keeping (hour in a day) 0
tod end time of the station-keeping (hour in a day) 24
y the number of observers distributed in the service area 121

5.1. Comparison of Simulations with/without Consideration of Energy Balance Requirement

To compare the proposed algorithm and traditional algorithms without consideration
of the energy balance requirement, two simulations are carried out with almost the same
steps and conditions as listed above, except for two differences.

The first difference is the weight assignment in the optimization object function, i.e.,
wy and w; in Equation (24). In the simulation without considering the energy balance
requirement, w; is set as 1 and wj is set as 0. In the simulation with consideration of the
energy balance requirement, both w; and w, are set as 0.5.

The second difference is the individual energy balance constraint. In the simulation
without consideration of the energy balance requirement, the constraint is ignored, i.e.,
step 3 of the optimization procedure in Section 4.2 is omitted. In the simulation with
consideration of the energy balance requirement, step 3 is executed.

The simulation results are listed in Table 3 and Figures 6 and 7.

In Table 3 and subsequent simulation result tables, columns )\]-, CD]-, and h]- list the
longitudes, latitudes, and altitudes of all the SPs in the SPN, column B; lists the values of
the energy balance indicators for all the SPs in the SPN, column B lists the value of the
energy balance indicator for the SPN, column GDOPY lists the GDOP value for the SPN,
and column F lists the fitness of the SPN. For columns Bj, B, GDOPy;, and F in these tables,
the smaller their value is, the better the SPN geometry performance is.

91



Electronics 2024, 13, 2397

Table 3. Comparison of simulations with/without consideration of energy balance requirement.

Ajldeg, @;/deg, h;/km Bj B GDOPn F
92.7E, 37.0N, 19.5 0.35
92.4E, 39.4N, 20.0 0.29
with consideration of energy 90.6E, 38.5N, 20.0 0.25
balance requirement 92.1E, 379N, 20.0 0.23 175 7.52 4.64
90.0E, 39.7N, 20.0 0.29
90.6E, 37.0N, 19.5 0.34
91.8E, 38.8N, 18.5 1.11
90.3E, 39.4N, 18.5 1.12
without consideration of energy 90.3E, 37.6E, 18.5 1.03
balance requirement 91.5E, 379N, 19.0 0.64 5.88 7.36 7.36
93.0E, 37.0N, 18.0 1.67
93.0E, 40.0N, 20.0 0.31
20 20
18 18

Latitude 37 9 Longitude Latitude 37 90 Longitude

(a) (b)

Figure 6. GDOP distribution of SPNs: (a) SPN with consideration of energy balance requirement;
(b) SPN without consideration of energy balance requirement.

(a) (b)

Figure 7. GDOP histogram of SPNs: (a) SPN with consideration of energy balance requirement;

(b) SPN without consideration of energy balance requirement.

Column B in Table 3 implies that geometry configuration has a significant impact on
SPN energy balance. For the same SP, their energy balance indicator can differ by several
times at different locations.
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Column B in Table 3 also proves the necessity of energy balance analysis in SPN
geometry design. If it is ignored, an SPN with unacceptable energy performance might be
obtained, as shown in the 7th, 8th, 9th, and 11th row of Table 3 (B]- =1.11,1.12,1.03, and
1.67, respectively). The station-keeping capacity of such an SPN is very poor, which will
degrade the SPN availability and continuity.

In contrast, by assigning a weight to the energy balance indicator properly in the
objective function and implementing an individual energy balance constraint, the proposed
algorithm can avoid unacceptable results effectively. Furthermore, in terms of GDOP, the
results of the algorithm considering energy are not much worse than those of algorithms
that do not consider energy.

5.2. Comparison among Different Altitude Intervals

In this section, the values of h,,;,, and hy;sc in Table 2 are adjusted to compare SPN
geometry performances at different altitudes. Simulations in this section and subsequent
sections are implemented with consideration of the energy balance requirement.

Simulation results are shown in Table 4 and Figures 8 and 9.

Table 4. Comparison of SPNs in different altitude intervals.

Altitude Interval/km /\j/deg, (Dj/deg, h]-/km Bj B GDOPy F

92.7F, 37.0N, 19.5 0.35
92 4E, 39.4N, 20.0 0.29
90.6E, 38.5N, 20.0 0.25

18~20 92.1E, 37.9N, 20.0 0.23 L7 7.52 s
90.0E, 39.7N, 20.0 0.29
90.6E, 37.0N,, 19.5 0.34
90.9F, 38.5N,, 21.0 0.10
90.0E, 40.0N, 21.5 0.10
90.6E, 37.0N,, 21.5 0.05

20~22 92.4F, 39.1N], 22.0 0.06 0.52 712 3.82
92.1E, 37.6N, 20.5 0.13
93.0E, 37.6N,, 21.0 0.08
924, 37.9N, 22.0 0.04
93.0E, 40.0N, 24.0 0.03
91.8F, 39.1N,, 22.0 0.06

22~24 91.2E, 39.7N, 23.0 0.04 0.23 6.29 3.26
90.0E, 37.0N, 22.0 0.03
90.9E, 37.9N,, 23.0 0.03
90.9E, 38.2N, 26.0 0.01
93.0E, 40.0N,, 26.0 0.02
92.1E, 37.6N,, 25.0 0.01

24~26 90.0E, 39.7N, 25.0 0.03 0.11 5.58 2.84
90.0E, 37.0N,, 24.0 0.02
92.1F, 39.1N, 25.5 0.02
93.0E, 40.0N, 28.0 0.01
90.6E, 39.7N,, 27.5 0.01
92.4F, 37.6N, 26.5 0.01

26~28 90.0E, 37.0N, 26.0 0.01 0.06 5.35 2.71
92.1F, 39.1N, 28.0 0.01
90.6E, 379N, 27.5 0.01
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Figure 8. GDOP distribution of SPNs in different altitude intervals: (a) SPNs in 20~22 km; (b) SPNs in
22~24 km; (c) SPNs in 24~26 km; (d) SPNs in 26~28 km (for GDOP distribution of SPNs in 18~20 km,
please refer to Figure 6a).

Figure 9. Cont.
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(o) (d)

Figure 9. GDOP histogram of SPNs in different altitude intervals: (a) SPNs in 20~22 km; (b) SPNs in
22~24 km; (c) SPNs in 24~26 km; (d) SPNs in 26~28 km (for GDOP histogram of SPNs in 18~20 km,
please refer to Figure 7a).

The results in Table 4 and Figures 8 and 9 imply that under the given conditions,
both GDOP and the energy balance indicator show a decreasing trend with the altitude
increasing from 18 km to 28 km, meaning that SPN geometry performance improves as
altitude increases in this altitude interval.

The decrease in the energy balance indicator can be attributed to wind, atmosphere,
solar radiation, and other factors.

From Figure 3, it can be seen that in March, as the altitude increases from 18 km to
28 km, the zonal wind speed decreases from over 20 m/s to less than 10 m/s, while the
increase in the meridional wind speed is less than 5 m/s, resulting in a decrease in energy
consumption for the SP. From Figure 4, it can be seen that as the altitude increases, the
atmosphere density decreases, which is also beneficial for reducing energy consumption.

From Figure 10, it can be seen that the atmosphere pressure decreases as the altitude
increases. From Equations (13)—(15), it can be inferred that solar direct radiation intensity
increases as the altitude increases, which can lead to an increase in SP energy production,
as illustrated in Figure 5.

30

28

Altitude/km
N )
IS >

N

20 -

18 . . . \ \ .
1000 2000 3000 4000 5000 6000 7000 8000
Atmosphere Pressure/Pa

Figure 10. Atmosphere pressure from 18 km to 30 km according to U.S. Standard Atmosphere,
1976 [24].
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Therefore, the energy balance indicator, which is the ratio of energy consumption and
energy production, decreases as the altitude increases.

In addition, as the altitude increases, the value of the SPN elevation angle increases,
which can improve the GDOP of the SPN. This has been deduced and explained in detail
in [8,10].

Therefore, both the energy balance indicator and GDOP will improve as the alti-
tude increases, as shown in Table 4, Figure 8, and Figure 9. So, an SPN with a higher
station-keeping altitude is expected in order to achieve a better performance under the
given conditions.

5.3. Comparison among Different Latitude Intervals

In this section, the values of @,,;, and @4, in Table 2 are adjusted to compare network
performances in different latitudes. Simulation results are shown in Table 5.

Table 5. Comparison among SPNs of different latitude intervals.

Latitude Interval/deg  Aj/deg, ®@;/deg, hj/km Bj B GDOPn F

91.5E, 35.1N,, 20.0 0.15
92.4F, 33.0N, 19.5 0.20
93.0E, 36.0N, 20.0 0.17

33~36N 90.0E, 34.2N, 20.0 0.12 1.30 7.15 423
90.0F, 36.0N], 19.0 0.54
91.8E, 33.9N, 20.0 0.12
90.6F, 35.3N, 19.5 0.28
92 4E, 353N, 19.0 0.52
92.1E, 36.8N, 20.0 0.19

35~38N 93.0F, 38.0N, 20.0 0.23 Ll 7.32 447
91.2, 362N, 20.0 0.17
91.2E, 37.7N, 20.0 0.22
92.7F, 37.0N, 19.5 0.35
92 4E, 39.4N, 20.0 0.29
90.6E, 38.5N, 20.0 0.25

37~40N 92.1E, 37.9N, 20.0 0.23 L75 7:52 4.64
90.0E, 39.7N, 20.0 0.29
90.6E, 37.0N,, 19.5 0.34
92.1E, 414N, 19.5 0.55
90.9E, 39.0N, 20.0 0.27
93.0F, 42.0N,, 20.0 0.40

39~42N 90.9E, 39.9N, 19.5 0.47 2.55 7.12 4.83
92.1E, 40.2N, 20.0 0.32
90.3F, 41.4N, 19.5 0.54
90.9E, 41.9N, 20.0 0.39
93.0E, 44.0N, 20.0 0.49
90.0F, 41.0N], 20.0 0.35

41~44N 90.3E, 42.8N, 20.0 0.43 3.14 6.89 5.02
91.8F, 43.1N, 19.5 0.63
924, 422N, 19.0 0.85

The results detailed in Table 5 imply that low latitude intervals tend to be benefi-
cial to the network energy balance while having little impact on SPN GDOP under the
given conditions.

From Figure 2, it can be seen that within the service area listed in Table 5, as the
latitude decreases, the zonal wind speed decreases significantly, which can reduce SP
energy consumption. From Figure 5, it can be seen that lower latitude can help SPs obtain
more energy production. Therefore, the SPN energy balance indicator shows a decreasing
tendency with decreasing latitude.
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6. Conclusions and Future Works

SPN is a novel aerial network with promising potential. Geometry design is a critical
problem affecting its service performance significantly. This paper focuses on SPN geometry
design to pursue a satisfactory performance for both GDOP and energy balance. In the
assumed service area and under the given simulation conditions, the following conclusions
can be drawn:

Geometry configuration has a significant impact on both SPN energy balance and
GDOP. Consequently, neither of them can be ignored in SPN geometry design.

The energy balance requirement of an SPN can be met by properly assigning weights
on the energy balance indicator in the objective function and implementing the energy
balance constraint of individual SPs.

Both GDOP and energy balance can be improved by raising the station-keeping
altitude towards the altitude interval of 26~28 km.

GDOP shows no substantial improvement when the deployment space is slightly
adjusted southward and northward. Energy balance tends to improve gently when deploy-
ment space moves southward.

Some issues can be analyzed in the future.

In this paper, the photoelectric conversion efficiency of the solar array is assumed to
be constant. However, it changes with the thermal conditions in practice. In the future, the
influence of photoelectric conversion efficiency fluctuation on SP energy production and
energy balance should be analyzed.

Also, uncertain wind is ignored in this paper since the wind at the altitude interval
of SP is relatively stable, but uncertain wind exists according to [32], and it may have an
impact on the energy consumption of SPs. Further analysis can be conducted next.

In addition, this paper implements simulations currently just for a small area. More
simulations for larger areas can be carried out according to requirements.
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Abstract: This article primarily focuses on the study of image-based localization technology. While
traditional methods have made significant advancements in technology and applications, the emerg-
ing field of visual image-based localization technology demonstrates tremendous potential for
research. Deep learning has exhibited a strong performance in image processing, particularly in
developing visual navigation and localization techniques using large-scale visual models. This
paper introduces a sophisticated scene image localization technique based on large models in a
vast spatial sample environment. The study involved training convolutional neural networks using
millions of geographically labeled images, extracting image position information using large model
algorithms, and collecting sample data under various conditions in elastic scene space. Through
visual computation, the shooting position of photos was inferred to obtain the approximate position
information of users. This method utilizes geographic location information to classify images and
combines it with landmarks, natural features, and architectural styles to determine their locations.
The experimental results show variations in positioning accuracy among different models, with the
most optimal model obtained through training on a large-scale dataset. They also indicate that the
positioning error in urban street-based images is relatively small, whereas the positioning effect in
outdoor and local scenes, especially in large-scale spatial environments, is limited. This suggests that
the location information of users can be effectively determined through the utilization of geographic
data, to classify images and incorporate landmarks, natural features, and architectural styles. The
study’s experimentation indicates the variation in positioning accuracy among different models,
highlighting the significance of training on a large-scale dataset for optimal results. Furthermore, it
highlights the contrasting impact on urban street-based images versus outdoor and local scenes in

large-scale spatial environments.

Keywords: localization of image scenes; fuzzy localization; large models; image processing; deep learning

1. Introduction

In recent years, the Beidou Satellite Navigation System (BDS), Galileo Satellite Naviga-
tion System (Galileo), modern Global Navigation System (GPS), and Global Navigation
System (GLONASS) have been developed. There are over 140 GNSS satellites available [1].
Global Navigation Satellite Systems (GNSSs) are increasingly used for outdoor naviga-
tion [2]. The strap-on inertial navigation system (SINS) can automatically measure the
user’s position, speed, and attitude [3]. However, the inertial navigation system is subject
to its own limitations and high costs. Its primary drawback is the increase in error over
time, leading to drift. The aforementioned systems represent traditional navigation and
positioning technologies. Over years of development, these technical systems have essen-
tially established a relatively comprehensive technical framework, which is extensively
utilized in human activities and daily life. As human science and technology advance, the
need for navigation and positioning continues to evolve. Robust visual localization over
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long periods of time is one of the biggest challenges for the long-term navigation of mobile
robots [4]. Monocular visual inertial navigation systems (VINSs) are widely used in fields
such as robot navigation, autonomous driving, and augmented /virtual reality [5]. The
current emergence of various intelligent robots not only significantly facilitates our lives,
but also presents higher performance requirements.

Visual navigation is a navigation method using visible and invisible imaging technol-
ogy, which has the advantages of good concealment, strong autonomy, fast and accurate
measurement, low cost, and high reliability [6]. At present, the emergence of diverse
intelligent robots not only significantly facilitates human life, but also presents elevated
demands for robot performance, thereby establishing a prerequisite for the advancement
of visual positioning technology. Visual information is increasingly utilized in navigation
applications. With the introduction of numerous new concepts, methods, and theories,
image processing technology based on deep learning has progressively matured. Visual
navigation technology is expected to be developed and widely used in the fields of air-
craft, unmanned aerial vehicles, various cruise missiles, deep space probes, indoor mobile
navigation, and so on [7]. Therefore, visual navigation technology has high research and
application value in the field of navigation. Usually, visual navigation on robots is achieved
by installing a monocular or binocular camera to obtain local images of the environment
and to make navigation decisions. The research on intelligent robots began in the late
1960s, marked by Shakey, the first mobile robot developed by Stanford Research Institute
(SRI) [8]. Its main objective is to study the real-time control of robot systems in complex
environments. Representative examples include urban robots and tactical robots developed
by Jet Propulsion Laboratory [9-11]. These robots are equipped with binocular stereo vision
systems for obstacle detection. Visual navigation and positioning can also be applied to
spacecraft or interplanetary detectors, such as lunar probes. The lunar rover has a high
degree of autonomy and is suitable for performing exploration tasks in a complex and
unstructured lunar environment [12-15]. The stereo vision system of the lunar rover is the
most direct and effective tool for close-range and high-altitude moon detection. It serves
as a tool for understanding the lunar environment and provides crucial information for
lunar rover survival in complex environments. Using the stereo vision system, we can
not only reconstruct the terrain of the environment in real time to avoid obstacles, but
also use the obtained stereo sequence images to estimate the movement of the rover itself.
Therefore, the application of visual navigation in the field of robotics is extremely extensive
and significant [16-18].

The essence of visual navigation is to obtain the two-dimensional image information
of the scene through one or more cameras, and then determine the operation information
of navigation by using image processing, computer vision, pattern recognition, and other
algorithms. The techniques involved include camera calibration, stereo image matching,
path identification, and 3D reconstruction [19,20]. Inspired by the process of robot po-
sitioning and navigation, we contemplate the extraction of positional data from images
and the potential for a single image to facilitate robot navigation and positioning tasks.
Addressing this challenge, we have conducted extensive research. Our primary focus
is on the feasibility and precision of obtaining location information from images. If it is
possible to probabilistically infer geographic location data from images, it would constitute
a highly significant area of study. Visual positioning can play an important role in satellite
navigation failures and has a broad application value. When satellite navigation signals
are obstructed or unavailable, visual positioning systems can provide reliable position-
ing information, suitable for many fields, such as autonomous driving and unmanned
vehicles. With the help of high-precision visual positioning systems, autonomous vehicles
can accurately locate and navigate in environments without satellite signals, ensuring
safe driving in cities. Indoor navigation—in indoor environments, satellite signals are
usually weak or unavailable. By using visual positioning technology, people can accurately
navigate and locate within large buildings such as shopping malls, airports, and hospitals.
Industrial robots—in the fields of manufacturing and logistics, industrial robots require
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precise positioning information to perform various tasks. Visual positioning systems can
provide real-time location information to help robots accurately perform tasks. Search
and rescue—in the event of a disaster, satellite navigation systems may be disrupted or
damaged. Visual positioning technology can help search and rescue personnel locate
trapped individuals, without satellite signals. Military applications—military departments
can use visual positioning systems for precise positioning and navigation, without being
disturbed or monitored by hostile forces. Mobile devices—smartphones and tablets can
use cameras and sensors for visual positioning, providing users with indoor navigation,
augmented reality experiences, and other functions.

This paper focuses on geographical fuzzy positioning using image information mining,
consolidates the relevant technical accomplishments in navigation and positioning, and
scrutinizes the limitations of current navigation and positioning technology based on their
characteristics. Addressing the requirements of visual navigation and positioning, this
paper aims to achieve visual positioning capability in a lightweight manner for various
scenarios and applications. It introduces a method of image fuzzy positioning based
on a large model, enabling scene location determination through images in GPS failure
environments. A schematic diagram of FLsM, based on image localization, is shown in
Figure 1. The key contributions of this paper are summarized as follows:

e  The concept of elastic scale space is introduced, which refers to a coupling space
between large-scale scenes and fine scenes, emphasizing the variability and unpre-
dictability of the environment.

e A vision-based fuzzy positioning technology is suggested, emphasizing the semantic
information extraction from the visual image itself and providing geographic location.

e By leveraging multiple models for image training, employing advanced deep learning
models, and utilizing a large dataset of Internet data for pre-training, we can efficiently
match images and texts and accomplish the fuzzy positioning of images.

Street positioning

Street/City images

City positioning
W o

/.

Q

S Lol

—— Remote sensing images

Large scale positioning of |
remote sensingimages |
-

Figure 1. Schematic diagram of image fuzzy positioning.

2. Related Works

In this section, we introduce the related technologies of visual navigation and position-
ing. Including traditional slam technology, deep learning models, geographic information
positioning research, and so on.
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2.1. Traditional SLAM Technology

The traditional craft of Simultaneous Localization and Mapping (SLAM) techniques
has been a beacon in the odyssey of robotic navigation and mapping [21]. These methods
typically harness the power of sensor fusion, utilizing data from cameras, lidars, and
other sensors to simultaneously decipher the robot’s location and construct a map of its
environment. Algorithms such as ORB-SLAM2 and ORB-SLAM3 have been luminaries
in this domain, demonstrating significant advancements in accuracy and stability over
the past decade [22]. However, as underscored in recent scholarly pursuits, challenges
persist in achieving long-term robustness, especially in the face of diverse and dynamic
environmental perturbations.

2.2. Deep Learning Models for Visual Navigation

The advent of deep learning has revolutionized the landscape of visual navigation [23,24].
Contemporary approaches leverage the prowess of neural networks to learn complex
mappings between visual inputs and navigational outputs. CLID, as discussed in the
previous section, emerges as a model capable of learning transferable visual representations
from the vast expanse of natural language supervision [25,26]. It extends the scope of
computer vision systems by directly learning from the raw text about images, showcasing
promising results across a myriad of tasks, without the need for task-specific training.

Moreover, recent scholarly endeavors delve into the comparison of open-source visual
SLAM approaches, evaluating algorithms based on factors such as accuracy, computational
performance, and robustness. This reflects the ongoing quest to enhance the performance of
visual navigation systems and address the specific challenges posed by different scenarios
and datasets.

2.3. Geographic Information Positioning Research

Geographic Information Systems (GISs) and positioning technologies are the compass
and sextant of modern navigation systems. Recent works, such as GeoCLIP, integrate CLIP-
inspired techniques to chart the course for effective worldwide geo-localization. By encod-
ing GPS information and employing hierarchical learning [27,28], GeoCLIP demonstrates
a state-of-the-art performance, navigating the challenges associated with the diversity of
global landscapes. This underscores the importance of geographic information in refining
the accuracy and reliability of visual navigation systems.

3. Materials and Methods
3.1. Overview

A visual fuzzy positioning method in elastic scale space is proposed for different
application requirements of various scenes, based on an in-depth analysis of image infor-
mation. This method differs from traditional visual positioning methods. High-resolution
remote sensing images are used for photogrammetry in large-scale scenes to generate
image maps of different scales. Fine-scale scenes are divided into indoor and outdoor areas,
and environmental image data are collected from natural target sample data using mobile
measuring equipment. The expectation is that these two types of data rely solely on the
information carried by the image itself, and the positioning requirements can be fulfilled us-
ing deep learning algorithms with large models. The concept of elastic scale space involves
leveraging the randomness and lightness of the image, focusing on mining the information
value of the image and obtaining rough positioning information. The significance of this
work lies in its lightweight design, which does not impose strict requirements on the image
itself and emphasizes model training. The image captured by the terminal’s camera is
used to determine the inclusion of a specific target and then the user’s precise position is
calculated visually. The entire process is shown in Figure 2.
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Figure 2. Flow description of image positioning algorithm.

3.2. Constructing an Elastic Scale Spatial Environment

We propose the concept of an elastic scale space, which is a space between the coupling
of large-scale and fine-grained scenes, highlighting the arbitrariness and randomness of
the environment, as shown in Figure 3.
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Figure 3. Overall framework of elastic spatial positioning.

Traditionally, in large-scale scenes, it is necessary to make large-scale scene image base
maps and develop service engines. The research process is as follows:

e  Select an appropriate reference point

The choice of reference points should be clearly defined as a clear landmark, such
as road intersections, building corners, etc., that can be considered as optional reference
points. After selecting the datum point, high-precision surveying and mapping should be
carried out on the selected datum point.

e Image map of construction environment

Utilize aviation professional equipment (drones and aerial photography planes) for
photogrammetry work, collect high-resolution remote sensing images of the environmental
field, and produce image maps at scales of 1:1000, 1:500, etc.

e  Unified spatiotemporal benchmark construction

The determination of the spatiotemporal baseline of the environmental field usually
adopts the WEB Mercator projection method, whose core is the transformation of the
coordinate system, mainly the transformation of the image into a plane coordinate system,
which should be consistent with the current general map projection.

For the construction of fine scenes, the following process is required.
e  Target sample collection and data construction

In order to more accurately represent environmental information, it is divided into
two parts—indoor environment and outdoor environment. The outdoor environment
dataset utilizes satellite positioning technology to collect and store the location information
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of identifiable targets in the scene. At the same time, the mobile terminal is equipped with
a high-definition camera to capture the target from various angles and to collect image
information of the target. Then, utilize onboard or airborne measurement systems to collect
local RGBD information around the target and construct a data resource lake for the scene
through various technical means. Similarly, in indoor environments, it is necessary to
establish a unified indoor coordinate system. The camera is used to capture the target from
various angles, collect the image information of the target, collect the location information
of identifiable targets indoors, and save it.

e  Model library construction

According to the requirements, use a deep learning framework to train the collected
image information, obtain a proprietary model library, and obtain parameter models that
meet the requirements.

3.3. The Concept of Visual Blur Localization

In order to achieve precise positioning, this article suggests a vision-based fuzzy posi-
tioning technology that is integrated with satellite navigation and other techniques. In order
to categorize or detect input scene photographs, visual blur localization focuses on mining
the semantic information included in the visual images themselves, supplying positional
range information, and utilizing deep learning network methods [29] in conjunction with
large-scale model structures. Semantic segmentation, which effectively pulls information
from the scene, is the main focus. The marked position data is extracted from the saved
position data, based on the recognition findings. It should be noted that the input for future
precise positioning can come from fuzzy positioning data. Transform the fuzzy position
information that was previously acquired into fine scene data. Extract the target’s local
RGBD information from the location data that have been saved and compare it with the
scene map based on the recognition findings. Use the 2D-3D visual solving algorithm to
obtain the user’s precise position. In Figure 4, the technical procedure is displayed.
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Figure 4. Visual fuzzy positioning process based on large model.
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3.4. Multi-Source Image Data Source Matching

Picture retrieval and matching algorithms are essential for the search, matching, and
display of location information derived from visual images. These techniques enable
the rapid matching of feature data and corresponding picture data. In addition to image
encoding and quick image retrieval for large amounts of data, there are numerous important
technologies that still need to be resolved. These include fast feature extraction technology
for multi-source image data, unified spatiotemporal benchmarks, and image encoding.
Aerial surveys, other sensor image data, and satellite remote sensing photos are some of
the multi-source image data used to create traditional large-scale scenes. Data integration is
based on the unification of spatiotemporal benchmarks and the conversion of multi-source
picture data to a common scale. The CGCS2000 coordinate system is the source of the
coordinate system [30], terrain feature points, etc., in the image; it projects the image data
and feature data in a plane according to a universal map. Uniformly project onto the WEB
Magic Card to form a consistent spatiotemporal baseline. Complete feature extraction and
spatiotemporal matching processing of multi-source image data.

3.5. Building a Large-Scale Complex Scene Graph Database

This project uses a YFCC100M dataset to obtain metadata containing Geo information,
and combines scene image data such as SUN2010, Places2, and Google StreetView to
construct a large-scale complex scene graph database [31-33]. Firstly, the YFCC100M
metadata is processed to extract data with geo labels from the original dataset. Then, the
Geo labeled dataset is transformed using the GEOPY tool to obtain an image dataset with
actual location information. Utilize SIFT for feature extraction on scene datasets such
as SUN2010, Places2, and Google StreetView to obtain a large database of scene images.
YFCC100M obtains a text data document database after data preprocessing, which can be
used as a data source for future model training. In particular, this text data contains the
Geo information of each image, which is crucial for accurate scene positioning. SUN2010,
Places2, and Google StreetView have undergone SIFT algorithm feature processing to obtain
a relatively rich set of scene-based feature datasets, providing a reliable data source for
training scene recognition models. There is an urgent need for rapid detection, autonomous
warning, information confrontation, and on-site disposal of remote targets. The YFCC100M
database is an imaging database that has been based on Yahoo Flickr since 2014. The library
consists of 100 million pieces of media data generated between 2004 and 2014, including
99.2 million photo data and 800,000 video data [31]. The YFCC100M dataset does not
contain photo or video data and each row in the document contains metadata for a photo
or video. Among them, Photos/video identifiers, Longitude, and Latitude are used. Geo
information refers to geographic location information, which can record the geographic
location information at the time of photo shooting, namely longitude and latitude. But not
all metadata contains Geo information, so it is necessary to filter out metadata that does
not contain Geo information. Then, use the geopy toolkit to convert longitude and latitude
to actual addresses. It is easy to obtain the geographic coordinates of a street address, city,
country, and land parcel worldwide using geopy, and to parse them through third-party
geoencoders and data sources.

3.6. Data Feature Extraction

The CLIP (Contrastive Language-Image Pre-Training) model is used to extract features
from the YFCC100M, im2gps3k, and Google BigEarthNet datasets [34-36]. The CLIP model
consists of two parts, a visual encoder and a text encoder, in which the visual encoder is
used to process image information and the text encoder is used to process the address
position information after reverse geocoding. The features extracted from the CLIP model
have many advantages. First of all, because the CLIP model can handle both images and
texts, it can understand and make use of the association between images and texts, thus
extracting richer and more representative features. Secondly, the characteristics of the CLIP
model are highly robust, and can remain stable even in the face of various changes (such as
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illumination changes, visual angle changes, etc.). In addition, the features extracted from
the CLIP model have a good generalization ability and can be applied to various tasks
and scenes. Finally, the features of the CLIP model have a high degree of discrimination,
which can effectively distinguish different objects and scenes. These advantages make the
CLIP model perform well in various visual and language tasks. CLIP’s visual encoder
and text encoder are its core components. The visual encoder is responsible for extracting
features from images, while the text encoder is responsible for extracting features from
texts. These two encoders can extract the features of text and image, respectively, and then
calculate the similarity between the text vector and the image vector to predict whether
they match. This design enables the CLIP model to process both text and image at the same
time, thus achieving the joint understanding of image and text. This is a major feature of
the CLIP model and it is also the key to its outstanding performance in various tasks. This
has provided strong support for our work.

3.7. Design of CNN-Based Visual Scene Localization and Recognition

In this technical roadmap, the basic idea is to use deep neural networks to train
complex scene data to obtain a deep learning model FLsM, which predicts the approximate
position and scene type of the captured photo based on the image. The schematic diagram
is shown in Figure 5. When it needs to achieve fast communications between two arbitrary
global points, the satellites in the air platform are used for forwarding communications.
The solutions provide differentiated services for the ground user according to the quality,
content, and priority. In Figure 5, image and text information fusion processing positioning
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Figure 5. Image and text information fusion processing positioning.

In this technical roadmap, the basic idea is to use deep neural networks to train
complex scene data to obtain a deep learning model, FLsM, which predicts the approximate
position and scene type of the captured photo, based on the image in Figure 6. According
to actual needs, images with GNSS labels are trained on a large amount of data to complete
a set of deep learning methods for image localization. The geographic localization problem
is transformed into a classification problem; by quantifying all image data with GNSS
labels into a fixed number of classes, the GNSS labels are converted into class labels, so that
each class represents a physical region in the real world. Then, the classification results
are converted into GNSS coordinates of the corresponding region. In this study, in order
to obtain a more accurate positioning model, we use multiple models including OpenAl
double CLIP model for training [37]. Based on the ability of efficient matching between
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images and texts, the large model enhances the generalization ability of the visual image
positioning model. More than 400 million pairs of image text data are used for pre-training
through a large number of Internet data, which cover a wealth of topics and scenes and
provide a wide range of samples for model training. A unique method is used in the
training process of the visual image positioning model. First, a batch_size image text pair is
selected, and then the image is encoded using Image Encoder and the text is encoded using
Text Encoder. Next, the cosine similarity between the encoded image and the text vector is
calculated to verify the matching between the image and the text. Thanks to its powerful
pre-training ability and effective matching verification method, it can be seen through
experiments that the positioning accuracy of the model in multiple scenes has reached the
current best performance (SOTA). Based on the CLIP model, the visual image positioning
model consists of two parts—a visual encoder and a text encoder. The visual encoder is the
part used to process the image, which converts the input image into a vector representation
of fixed length. The visual encoder can choose to use either the CNN-based ResNet or the
Transformer-based ViT. The text encoder is the part used to process text, which converts
the input natural language text sequence into a fixed-length vector representation. The
text encoder uses the Transformer model. Both encoders are trained to map the input
information into the same embedding space and make similar images and texts closer in
the embedding space. Model parameters—in different versions of the CLIP model, the
number of parameters is different. To ensure transparency and reproducibility in our
study, we provide a summary of the datasets used in our experiments in Table 1. This
summary includes key information such as the dataset names, their respective sources, and
brief descriptions.

Data Set - Inquired picture ‘ Visual feature vector vector database

d fi
— |

encoder Query
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m  m b m  om b

YFCC100M | Vision E . ==
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Figure 6. Overall framework of the FLsM structure, integrating image and text large models.

Table 1. Summary of datasets.

Dataset Name Source Description

cvdfoundation/

Google Landmarks google-landmark

5 million landmark-labeled images.

Contains 590,326 image pairs from
Sentinel-1 and Sentinel-2.
Comprises 3000 geotagged images that

Im2GPS3k TIBHannover/GeoEstimation span a variety of scenes and
locations worldwide.
Comprises a total of 1,147,059 images
GeoYFCC abhimanyudubey/GeoYFCC from 1261 categories across
62 countries.

BigEarthNet Technische Universitiat Berlin
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4. Results

This section delves into investigating the influence of larger models on accuracy
through a multi-model and multi-sample approach, using the Google Landmarks Dataset.
Specifically, two CLIP models, StreetCLIP (with 420 million parameters) and MetaClip
(with 980 million parameters) [38,39], are employed. The experiment adopts a traditional
hierarchical search method to facilitate CLIP in deducing the geographical locations of
the images. By juxtaposing the performance of these models, particularly highlighting
the substantial difference in parameter size between StreetCLIP and MetaClip, valuable
insights into the impact of model size on accuracy can be gleaned. The methodology
unfolds as follows:

e  Step 1: Reverse geocode the latitude and longitude coordinates of the image to obtain
textual geographical location information, including country, first-level administrative
region, second-level administrative region, address, and detailed address.

e  Step 2: Employ the model to predict the country of the image and compare it with the
country information obtained from the textual data.

e  Step 3: Utilize the model to predict the first-level administrative region of the image
and compare it with the corresponding information from the textual data.

e Continue this iterative process until the detailed address is determined. Then, juxta-
pose it with the actual region of the image to derive accuracy metrics. The experimental
findings are summarized in Table 2 below.

Table 2. Experimental results of the StreetCLIP and MetaClip models.

First-Level Second-Level Detailed
Model Country Administrative =~ Administrative Address
. . Address
Region Region
StreetCLIP 20.65% 6.02% 1.79% 0.71% 0.59%
MetaCLIP 20.45% 5.99% 1.93% 0.95% 0.89%

Note: Bold green indicates the part with the highest accuracy.

Through experiments, we can see that the positioning accuracy is extremely low
and replacing a larger model will not significantly improve the positioning accuracy.
Based on this, we change the dataset and select im2gps3k, GeoYFCC, and BigEarthNet for
experimental verification [40].

The Im2GPS3k dataset is a subset of the original Im2GPS dataset, which is used for
testing in the field of photo geographic positioning estimation. This dataset is an important
part of the estimation benchmark of photo geographic location. The purpose of using
this dataset is to determine the exact latitude and longitude of the photo shooting place,
which is a challenging but widely applicable task in the field of computer vision. There are
about 3000 pictures and the dataset distribution, as shown in the figure, of GeoYFCC is a
geographical subset of YFCC, which ensures that each country has 20,000-30,000 pictures,
so the geographical distribution is more uniform. It contains about 1 million pictures and
the dataset is distributed as shown in the figure. BigEarthNet is a large-scale remote sensing
dataset based on Sentinel-2 satellite images, which contains 5.9 million image blocks in
Europe, each with a size of 120 x 120 pixels, with 13 spectral bands covering 43 land
cover/use types. The dataset distribution is shown in Figure 7.
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Figure 7. Schematic diagram of global distribution of image dataset.

In the small-scale space under the scene of street and living environment, we studied
and performed experiments on two datasets. Firstly, based on the im2gps3k dataset, this
study carried out a set of comparative experiments. The traditional hierarchical search is
used to traverse the positioning through hierarchical query. First, start the query from a
larger area, such as the country, then narrow down the scope one by one, such as the first-
level administrative region and the second-level administrative region, and finally obtain
the detailed address. The contrast experiment is carried out using a brand-new similarity
calculation method. This experiment utilized Milvus as the vector database framework.
The specific experimental process is as follows. Initially, each image in the dataset was
processed. Every image is associated with a unique image ID and latitude-longitude
information. The latitude-longitude coordinates were converted into textual location
information using reverse geocoding. Simultaneously, the textual location information
was encoded using a model to generate textual feature vectors. These components were
abstracted into Milvus entities and stored in the database. These steps were repeated for
each image in the dataset. Subsequently, the dataset was traversed again. The model was
used to extract image feature vectors from each picture. Then, the database was queried to
find the Milvus entity corresponding to the textual feature vector with the highest cosine
similarity to the image feature vector. The latitude-longitude coordinates of the image
and the corresponding entity were compared to calculate the predicted distance error.
Finally, the errors were categorized into different scales (e.g., errors less than 1 km were
categorized as within 1 km, errors less than 25 km were categorized as within 25 km, where
25 km includes 1 km). This process aims to establish associations between images and
geographical location information. Through the efficient vector search capabilities of the
Milvus database, the positioning accuracy of the models was evaluated across different
scales. The comparison between the new method using StreetCLIP and the traditional
method using StreetCLIP shows that the comparison between the new method and the
traditional method is obviously improved on a smaller scale, but there is little difference
on a larger scale. Then, new methods are used to test the performance of other models
in image positioning, including ViTbigCLIP (GeoDE dataset performs well) and EVAp-
lusCLIP (model parameters are large, reaching 5 billion). The performance can be further
improved after replacing other better models (e.g., ViTbigCLIP performs better on GeoDE,
and EVAplusCLIP model parameters are larger). The following experimental results are
shown in Table 3. Thermal maps of positioning accuracy are shown in Figure 8a. On the
GeoYFCC dataset, we use the same method to test StreetCLIP, ViTbigCLIP, EVAplusCLIP,
and GeoCLIP (because CeoCLIP has no text encoder, so we use the traditional hierarchical
search method for this model). The experimental results are shown in Figure 8b,c. Based
on remote sensing images in large-scale space, the positioning accuracy of the model is
tested on the BigEarthNet dataset, as shown in Figure 8d. Through experiments, it can
be found that the overall accuracy of positioning based on remote sensing images is low,
and it only improves slightly at the scale of 750 km, but the partial area of this dataset is
mostly around 2500 km, which leads to the soaring accuracy of the last 2500 km, so it is
more effective in large-scale space.

109



Electronics 2024, 13, 2106

Table 3. Experimental results under different models.

25 200 750 2500
Dataset Model 1km_Accuracy km_Accuracy km_Accuracy km_Accuracy km_Accuracy
BigEarthNet StreetCLIP 3.38796 x 1006 0.004997239 0.067010432 0.177152963 0.99427435
BigEarthNet ViTbigCLIP 2.20217 x 10705 0.004595766 0.071401226 0.274355187 0.950119087
BigEarthNet ~ EVAplusCLIP 1.18579 x 109 0.004094348 0.042068281 0.18899896 0.956994949
Im2GPS3k StreetCLIP 0.171838505 0.326659993 0.464798131 0.635969303 0.794127461
Im2GPS3k ViTbigCLIP 0.256256256 0.450784117 0.589255923 0.724724725 0.851851852
Im2GPS3k EVAplusCLIP 0.249249249 0.431097764 0.544210878 0.688688689 0.829496163
mix_feature StreetCLIP 0.074074074 0.212545879 0.297297297 0.464130797 0.650650651
mix_feature ViTbigCLIP 0.016016016 0.082749416 0.122455789 0.23023023 0.448114781
mix_feature EVAplusCLIP 0.048381715 0.125792459 0.18685352 0.294627961 0.515181849

Performance (%)
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Note: The accuracy values represent the proportion of correctly identified geographical locations. The spatial
scales are in kilometers. Bold green indicates the part with the highest accuracy.
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Figure 8. Experimental results under different models.

Examine the four charts in Figure 9a—d to see how each model performs under var-
ious distance settings and datasets. In most cases, the enhanced version of StreetCLIP
(designated as “Our method”) has demonstrated superior performance, particularly in
large-scale spaces where it operates more flawlessly. On some datasets, the StreetCLIP
model outperforms the VitbigCLIP and EVAplusCLIP models; however, the enhanced ver-
sion of StreetCLIP exhibits a more consistent performance growth in a number of areas. In
every scenario, the StreetCLIP original version displayed the slowest performance growth.
Figure 9e-h shows the accuracy performance of many models under various distance
parameters on four distinct datasets. The variation in the model’s performance is repre-
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sented by the scatter’s size. “Our method” (StreetCLIP) generally shows rather large scatter
points in all datasets, especially when covering big distances (750 km and 2500 km), which
suggests high accuracy. In comparison to other models, “Our method” exhibits a notable
improvement in accuracy, particularly on the Im2GPS3k and yfcc_geosubset datasets.
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5. Discussion

To investigate visual blur positioning using large models, we utilized conventional
street/environmental image and remote sensing image datasets as elastic scale space
samples. Experiments were conducted across various large models to analyze their per-
formance. The results indicate that models with larger parameters, such as EVAplusCLIP,
exhibit enhanced positioning accuracy on elastic scale space sample datasets, with more
stable outcomes aligning with the requirements of visual blur in elastic scale space posi-
tioning. The key advantage of EVAplusCLIP lies in its larger model parameters, enabling
better data complexity capture and representation, thereby enhancing model generalization.
Notably, the output vector dimension of the model significantly impacts its performance,
as evidenced by the ViTbigCLIP model having the highest positioning accuracy score
on the GeoDE dataset, due to its larger vector dimensions providing more information
for improved prediction accuracy. However, optimizing model parameters and vector
dimensions alone may not suffice to meet all requirements. To further enhance model
accuracy, alternative improvement methods should be considered, such as introducing a
vector database to optimize vector retrieval and utilization for improved model accuracy.

6. Conclusions

In this research, we introduce a fuzzy positioning approach for images based on
large models in elastic scale space. Our comparative experiments demonstrate that the
EVAplusCLIP model achieves a higher positioning accuracy and can effectively serve the
image positioning function across various scale spaces. This work represents an exploratory
research endeavor with several areas open for future improvement. Potential research
directions include optimizing model stability through further experiments with increased
model parameters, enhancing model performance on specific datasets by expanding the
output vector dimension and training on more relevant data, and exploring additional
improvement methods such as vector databases to enhance model accuracy. These paths
present critical avenues for our ongoing in-depth investigation and optimization of this
research. Through conducting additional experiments and exploring further improvement
methods, we can enhance the stability and accuracy of our image positioning approach.
Our research has produced promising results, indicating the potential for further advances
in model stability through increased parameter experiments. Furthermore, expanding
output vector dimensions and training on more relevant data offer exciting opportunities
for enhancing model performance across specific datasets. Incorporating vector databases
as an improvement method also introduces new possibilities for optimizing positioning
accuracy. These areas provide essential directions for our ongoing in-depth investigation
and advancement of this research.
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Abstract: IPCBs (Intelligent Pseudolite Constellations based on high-altitude balloons) are a novel
type of air-based pseudolite application with many advantages. Compared with ground-based
pseudolites and traditional air-based pseudolites, IPCBs have a wider coverage and a lower energy
requirement. Compared with LEO satellite constellations, IPCBs have a stronger signal, a lower
cost, and a shorter deployment period. These merits give promising potential to IPCBs. In IPCB
applications, one of the key factors is geometry configuration, which is deeply influenced by the bal-
loon’s unique features. The basic idea of this paper is to pursue a strategy to improve IPCB geometry
performance by using diverse winds at different altitudes and balloons’ capability of altering flight
altitude intelligently. Starting with a brief introduction to IPCBs, this paper defines an indicator to
assess IPCB geometry performance, an approach to adjust IPCB geometry configuration and an IPCB
geometry configuration planning algorithm. Next, a series of simulations are implemented with
an IPCB composed of six pseudolites in winds with/without a quasi-zero wind layer. Some IPCB
geometry configurations are analyzed, and their geometry performances are compared. Simulation
results show the effectiveness of the proposed algorithm and the influence of the quasi-zero wind
layer on IPCB performance.

Keywords: intelligent pseudolite; constellation; high altitude balloon

1. Introduction

Pseudolites are transmitters that can emit navigation signals to improve GNSS per-
formance or to provide navigation service independently [1-7]. An intelligent pseudolite
based on high-altitude balloons (IPBs) is a type of novel air-based pseudolite that utilizes
a high-altitude balloon as a platform. An intelligent pseudolite constellation based on
high-altitude balloons (IPCBs) is composed of multiple IPBs, which can provide emergency
positioning service and regional positioning service independently.

As an excellent solution for regional positioning, ICPBs have many advantages. Com-
pared with ground-based pseudolites and traditional air-based pseudolites, [IPCBs have
a wider coverage and can serve more users because their flight altitude can reach tens of
kilometers [8,9]. Furthermore, IPCBs have a low energy requirement since they can accom-
plish its flight primarily relying on buoyancy and wind rather than oil or electricity [10,11].
Compared with LEO satellite constellations, IPCBs have a stronger signal, a lower cost,
and a shorter deployment period [12,13]. In addition, the continuous residence duration
of an IPB over a service area is longer than that of an LEO satellite, which can reduce
navigation signal lock-lose and cycle slip caused by satellite switching [14-16]. Also, the
IPCB operation and maintenance burden is less than that of an LEO satellite constellation
because an LEO satellite constellation usually comprises a large number of satellites [17,18].
These merits give promising potential to IPCB applications.

In the application of IPCBs, geometry configuration plays a critical role since it affects
IPCB service performance significantly [19-22]. However, the problem becomes very
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complicated because of the unique dynamic features of IPBs. Most traditional research
studies about pseudolite geometry configuration are designed for static pseudowires, which
are not suitable for IPCBs [23-27].

This paper centers on the problem of IPCB geometry configuration and proposes a
planning algorithm that emphasizes utilizing different winds smartly. The proposed algo-
rithm can fit the dynamic flight of IPCBs adaptively and is easy to implement. Moreover, it
can achieve performance improvements by controlling IPB valves and fans only, without
extra hardware cost.

The rest of this paper is organized as follows. An overview of IPCBs is described in
Section 2, a performance indicator of IPCB geometry configuration is defined in Section 3,
an IPCB geometry configuration adjustment approach is designed in Section 4, a series of
constraints are discussed in Section 5, a planning algorithm based on whale optimization
algorithm (WOA) is proposed in Section 6, simulations and discussions are presented in
Section 7, and conclusions are stated in Section 8.

2. Overview of IPCB

An IPB is illustrated in Figure 1. It utilizes a high-altitude balloon as a platform, which
is composed of balloon, cable, parachute, gondola, balloon controller, payloads, and other
attachments, as shown in Figure 1a. The balloon controller, payloads, and other attachments
are installed in the gondola. Furthermore, the balloon consists of a main helium bag and
an air ballonet, which are separated by a membrane, as Figure 1b illustrates [28-30]. The
main helium bag is filled with helium to provide buoyancy to the IPB, and the air ballonet
is filled with air to adjust the IPB mass. Fans and valves are installed on the bottom of the
balloon, which can pump air into or release air from the air ballonet. The balloon controller
can perceive and adjust IPB flight status intelligently. In particular, the balloon controller
can manipulate the fans and valves flexibly, enabling the IPB to adjust its mass and flight
altitude in a range.

Balloon

Helium Bag

Air Ballonet

Cable
Parachute
1 Gondola (Balloon Controllers, U
Payloads and Other Attachments) Valves Fans
(a) (b)

Figure 1. Structure illustration of IPB studied in this paper: (a) structure overview; (b) detailed
structure of the balloon.

An IPCB is illustrated in Figure 2. It consists of multiple IPBs and can form coverage
over a service area. When payloads in the IPBs normally send out navigation signals, the
IPCB can provide positioning service for the area independently. During the process of
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IPCB service, its geometry configuration is always changing with the wind, and the changes
are highly nonlinear, which brings difficulty to IPCB geometry configuration planning.

User

Figure 2. Illustration of IPCB in regional positioning.

3. Performance Indicator of IPCB Geometry Configuration

Assuming that an IPCB composed of 1, IPBs is deployed above the service area
initially and that 11, users are selected as samples to assess IPCB geometry performance.
Then, the pseudo-range equation from the j-th IPB to the i-th user at time ¢ can be expressed
by Equation (1) [31-33].

o(ij t) = \/(X(J} £) = xu(i,)* + (Y0 t) = yuli, 1) + (20, 1) = zu(i, ) + ctuli, 1) (1)

In Equation (1), p(i,j,t) represents the pseudo-range from the j-th IPB to the i-th user
at time t; (x(j,t), y(j,t), z(j,t)) represents the position of the j-th IPB at time ¢; (x,(i,t), v, (i,t),
z,,(i,t)) represents the position of the i-th user at time ¢; ¢ represents the speed of light; t,,(i,t)
represents the clock difference of the i-th user at time ¢.

Equation (1) can be rewritten as Equation (2) after the first-order Taylor expansion.

Ap(i,j t) = ax(i, j, ) Axy (i, t) + ay (i, j, ) Ayu (i, t) + az(i, j, 1) Azy (i, 1) — cAt, (i, 1) (2)

In Equation (2), ‘A’ represents the difference between the Taylor expansion point and
its neighborhood, (ax(ijj,t), ay(ij,t), a-(i,j,t)) represents the direction cosine from the i-th user
to the j-th IPB at time ¢, which can be calculated by Equation (3).

x(j,t) =xu (i)

(i) =xu (i) >+ () =y (i) *+ (21, —2u (i) )
yGH) —yulit)
(

ax(i,j,t) = \/

®)

J
(i) =xu (i) 2+ () =y (i) 2+ (2t ~2u (i)
(j,£)—zu(i,t)

(i) =% (i) >+ (Y () = (i) 2+ (2.t ~2u (i)

ﬂy(i,j,t) = \/

az(i,j, t) = \/

Equation (2) can be expanded from the j-th IPB to all the IPBs in the IPCB, which can
be simplified as
Ap(i, t) = H(i, t)Ax(i, t) 4)

In Equation (4), Ap(i,t) is a vector representing pseudo-range measurement error,
Ax(i,t) is a vector representing positioning error, and H(i,t) is an observation matrix.
Equation (4) can be rewritten as Equation (5) by the least square method.

Ax(i,t) = (H(i,)TH(i, 1)) 'H(i, ) 8p(i, 1) ®)
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If the pseudo-range noises of different IPBs are linearly independent, with an average
of 0 and a variance of 02, then the covariance of Ax(i,) can be expressed by Equation (6) [33].

cov(Ax(i, 1)) = o2 (H(i, ) TH(i, 1)) ©)

From Equation (6), it can be concluded that (H(i,t) H(i,t))~! reveals the magnification
from a user pseudo-range measurement error to its positioning error. Given the same user
pseudo-range measurement error, the smaller (H(i,t) TH(i,t)) ! is, the smaller the positioning
error is. Consequently, the square root of the trace of (H @HTHG,H) 1 is usually treated as
an important indicator to assess the influence of a constellation geometry configuration
on its positioning error, named GDOP (geometric dilution of precision), which can be
expressed by Equation (7) [33-36].

GDOP(i,t) = \ tr(H(, ) TH( 1))~ @)

It is obvious that the value of GDOP(i,t) will fluctuate due to IPCBs” dynamic move-
ments. In particular, some IPBs in the constellation may leave approved airspace as time
goes on. In such cases, they cannot continue emitting navigation signals (detailed discus-
sion in Section 5.1), which will decrease the number of available IPBs in the constellation.
Once the number of available IPBs in the constellation drops below 4, the GDOP of the
IPCB is defined as infinity in this paper.

The geometry performance of an IPCB at time  can be assessed by the average GDOP
of multiple users distributed in the service area, as described in Equation (8) [37].

1y
GDOP(t) iz GDOP(i,t) (8)

M=

It can be concluded that the objective of IPCB geometry configuration planning is
to obtain the minimal GDOP(t) for the whole service duration. However, this approach
encounters difficulties when dealing with infinite values. To avoid such difficulties, this
paper defines the performance indicator as Equation (9).

T tzl GDOP ®)

In Equation (9), n; represents the expected service duration of the IPCB. The ultimate
objective of IPCB geometry configuration planning is to maximize F defined in Equation (9).

4. Adjustment Approaches of IPCB Geometry Configuration

As discussed in Section 2, IPBs have little actuation capability since they are not
equipped with propellers. The primary actuation they can implement is to control their
valves and fans, which cannot change the IPCB geometry configuration directly. Therefore,
this paper adopts an indirect adjustment approach.

In the vertical direction, IPBs can actively change their masses and flight altitudes
by switching their valves and fans. Specific adjustments of each IPB can be managed by
its balloon controller. In the horizontal direction, IPBs can change their trajectories with
the help of local winds at different altitudes [38-40]. By combining the adjustments in
the two directions, IPBs can change their flight trajectories, and the IPCB can moditfy its
geometry configuration [9,28,41,42].

Subsequent detailed analyses will be presented based on the vertical adjustment and
the horizontal adjustment of individual IPBs, respectively. The following assumptions are
made to simplify the analysis.

(1)  The flight altitude of an IPB is fully controllable, and its variation depends on a rise
rate and a sink rate, represented by vyjse and vy, respectively.
(2) The horizontal velocity of an IPB is proportional to the local horizontal wind velocity.
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(3) Wind velocities vary with altitude but not with horizontal location. The wind veloci-
ties and atmosphere environment are steady during IPCB service time.
(4) Theinfluences of balloon volume variation and thermal effect on IPB motions are ignored.

4.1. Vertical Adjustment of an IPB

An IPB usually keeps its flight altitude by maintaining the balance between gravity
and buoyancy, as Equation (10) shows:

B=G (10)

In Equation (10), B represents its buoyancy, and G represents its gravity. Buoyancy B
is related to the atmospheric density, volume of the balloon, and gravitation acceleration,
as shown in Equation (11).

B = p4i;(h)Vg (11)

In Equation (11), V represents the volume of the balloon, g represents gravitation
acceleration, /1 represents the flight altitude of the IPB, and p,;,(h) represents the air density
at altitude /. The air density is not a constant, and it varies in a wide range. According to
the standard atmosphere model (U.S. Standard Atmosphere, 1976), its change with altitude
is illustrated in Figure 3.

30

251

Altitude/km
- [\S)
[4)] o

—
o
T
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Atmosphere Dens,ity;’kg.’m3

Figure 3. Atmosphere density from 0 km to 30 km.

Gravity G is related to helium mass, air mass, and the masses of others, as shown in
Equation (12).
G= (mHe + muir(h) + mother)g (12)

In Equation (12), mp, represents the helium mass in the main helium bag, m,;,(h) repre-
sents the air mass in the air ballonet at altitude &, 11,4, represents the gross mass of balloon
envelop, cable, parachute, gondola, balloon controller, payloads and other attachments.

So if a flight altitude decline is needed, an IPB can pump air into its air ballonet, which
will increase its air mass m1,;,(h) and gravity G, making G greater than B. The change in air
mass can be estimated by Equation (13).

Am = (Pair(hs) - Pair(hd))v (13)

In Equation (13), hs and h; represent the flight altitude before adjustment and after
adjustment, respectively. Due to the assumption (1) in this section, the time cost of the
flight altitude adjustment At can be estimated by Equation (14).

hs — hg = vgink At (14)
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In contrast, if a flight altitude ascent is needed, the IPB should release air from its air
ballonet, and the time cost can be estimated by Equation (15).

hs — hd = Urise At (15)

4.2. Horizontal Adjustment of an IPB

According to assumption (2) in this section, the horizontal velocity of an IPB is propor-
tional to the local horizontal wind velocity [38—40]. Then, the horizontal kinematics of an
IPB can be described by Equation (16).

A=q-w (A, ¢, ht)

. 1
¢ =71 wn(A, ¢, 1t) 10

In Equation (16), A represents the longitude of IPB position; A represents the variation
of A; ¢ represents the latitude of IPB position; ¢ represents the variation of ¢; w; (A, ¢, I, t)
represents zonal wind velocity at position (/\, ¢, h) and at time £; wy, (A, ¢, 1, t) represents
meridional wind velocity at position (A, ¢, h) and at time t; 7y represents a drag coefficient
of IPB in the horizontal plane.

Since it is assumed that wind velocities vary with altitude but not with horizontal
location, and wind velocities are steady in IPCB service time, the relation between altitude
and wind velocity is emphasized in this paper. In general, wind velocity increases as
altitude increases in the troposphere, reaching a maximum of about 10~15 km. Then, wind
velocity decreases, reaching a minimum in the lower portion of the stratosphere at about
18~25 km [43,44]. For simplicity, a seventh-order polynomial is employed to fit the relation
between altitude and wind velocity in this paper, as described below [45-47].

2 7
Wi = Cmo + Cpt Mg + Cahsea”™ + - -+ + Curhspa

(17)
Wy = Cz0 + Co1hgeg + Cthstal2 +F Cz7hstd7

In Equation (17), ¢;4 and c; represent meridional wind coefficients and zonal wind
coefficients, respectively. hy,; represents normalized altitude, which can be calculated by
Equation (18).

hsta = (h—pa) /0y (18)

In Equation (18), 4 and o are both normalized parameters. Figure 4 illustrates wind
fittings for a specific area in March, June, September, and December.
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Figure 4. Wind fittings from 1 km to 30 km for a specific region.

120



Electronics 2024, 13, 2095

From Figure 4, it can be seen that wind velocity changes remarkably with altitude,
which provides opportunities for IPBs to adjust their horizontal trajectories utilizing dif-
ferent winds. In particular, a so-called “quasi-zero wind layer” existed at an altitude of
about 21 km in June and September, as shown in Figure 4. At altitudes up and down
the quasi-zero wind layer, the direction of zonal wind reverses, and the magnitude of
meridional wind is small, which is beneficial to IPBs to lengthen their flight time in specific
airspace [48-53].

5. Constraints of IPCB Geometry Configuration

IPCB geometry configuration faces many constraints because of its unique features
and management strategy, such as airspace constraints, flight altitude constraints, and time
interval constraints.

5.1. Airspace Constraint

Airspace is the space in which an IPCB is approved to fly at a certain time. Within
the approved airspace, an IPB can fly with its gondola, and its payloads, such as signal
generators and transmitters, can run normally. Once an IPB flies out of the approved
airspace, its gondola will be cut off from its balloon, and the payloads in the gondola
will be switched off, making it impossible for the IPB to emit navigation signals. So, the
longitudes and latitudes of each IPB in the IPCB should vary depending on the extent of
the approved airspace.

5.2. Flight Altitude Constraint

As discussed above, the flight altitude adjustment of an IPB is achieved by changing
its air ballonet volume, which cannot change infinitely. The air ballonet volume of an IPB
can only vary in a feasible range, and so does its flight altitude. During IPCB geometry
configuration planning, the flight altitudes of all the IPBs should not go beyond the range.

5.3. Time Interval Constraint

Due to the low-density atmosphere at IPCB flight altitudes and the limited capac-
ity of fans, IPCB geometry configuration adjustment requires a long time. So, the time
interval between adjacent adjustment actuations should be greater than the maximum
trajectory adjustment time required by all the IPBs in the constellation. In this paper,
Equations (14) and (15) are used to estimate the time required for an IPB trajectory adjust-
ment.

6. Planning Algorithm of IPCB Geometry Configuration

Based on the analysis above, it can be inferred that if fans and valves can be controlled
properly, IPCB geometry configuration can be achieved by utilizing winds at different alti-
tudes effectively. So, the IPCB geometry configuration planning problem can be considered
a flight altitude combination problem that can be solved by heuristic algorithms.

WOA is a famous heuristic algorithm that has achieved success in many applica-
tions because of its strong robustness, effective searchability, and convenient parameter
settings [54-58]. Compared with PSO (particle swarm optimization) or DE (differential evo-
lution algorithm), WOA does not consider subjective parameter settings, such as the inertial
coefficient, acceleration coefficient, and other parameters in PSO, scale factor, crossover
probability, and other parameters in DE [59,60]. In addition, the performance of WOA,
PSO, and DE are compared in reference [54], and WOA displays its excellent capability [54].
Therefore, this paper adopts WOA to realize IPCB geometry configuration planning.

In the planning algorithm, the flight altitudes of all the IPBs in an IPCB can be treated
as a whale agent. The general procedure of the algorithm can be described as follows:

Initialize all the whale agents in the current whale population randomly (i.e., initialize
the flight altitudes of all the IPBs randomly);
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Acquire horizontal winds corresponding to the flight altitudes (i.e., the whale agents
just initialized) by Equation (17) or from other data sources;

Calculate horizontal trajectories of all the IPBs in the IPCB by Equation (16);

Adjust the flight altitudes and horizontal trajectories of the IPCB by approaches
defined in Section 4;

If the flight altitudes, horizontal trajectories, or adjusted time intervals (calculated by
Equation (14) or (15)) do not meet the constraints listed in Section 5, the fitness of the whale
agent is defined as 0, meaning that the corresponding IPCB geometry configuration is not
feasible in the assumed conditions;

To a whale agent complying with the constraints listed in Section 5, calculate its fitness
by Equation (9);

Calculate the fitness of all the whale agents and select the best whale agent in the
current whale population;

Update all the whale agents in the current whale population by strategies defined in
WOA, such as the “encircling prey” strategy, “bubble-net attacking” strategy, and “search
for prey” strategy [54];

Implement updating iteration according to the procedure of WOA, which has been
described in detail in reference [54];

When the iteration ends, an IPCB flight altitude can be obtained from the best whale
agent. The flight trajectory and constellation GDOP can also be calculated from the best
whale agent, forming a complete IPCB geometry configuration.

7. Simulations and Discussions

To verify the effect of the proposed algorithm, simulations are carried out in Matlab
2018b, with the context of IPCB providing independent regional positioning services.

7.1. Simulation Settings

The parameters used in the simulations are listed in Table 1.

Table 1. Parameters used in simulations.

Symbol Physical Meaning Value
1y number of IPBs in a constellation initially 6
1y expected service duration of an IPCB 24h
—0.1338, 1.3189,
Cm meridional wind coefficients —1.9669, =2.3772,

4.0187, 1.4032,
—1.4290, —0.5504
2.1927, —7.6660,
—3.0280,28.8161,

Cy zonal wind coefficients 12,6879, —41.5979,
2.0248, 21.8084
Ain minimal longitude of the approved airspace 107° E
Amax maximal longitude of the approved airspace 109° E
Pmin minimal latitude of the approved airspace 39° N
Prmax maximal latitude of the approved airspace 41° N
Rypin feasible minimal flight altitude of an IPB 20 km
Nax feasible maximal flight altitude of an IPB 24 km

The initial geometry configuration of the IPCB is listed in Table 2, as Figure 5a,b
illustrates. Users are distributed uniformly in the service area, as Figure 5c illustrates. The
average GDOP of the IPCB with initial geometry configuration is 7.47, whose distribution
is illustrated in Figure 5d.
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41

405}

Table 2. Initial geometry configuration of the IPCB.

IPB Longitude Latitude Flight Altitude
IPB 1 107.4° E 39.4° N 21 km
IPB 2 108.6° E 39.4° N 21 km
IPB 3 108.6° E 40.6° N 21 km
IPB 4 107.4° E 40.6° N 21 km
IPB 5 107.8° E 40° N 22 km
IPB 6 108.2° E 40° N 22 km
S PB1 24
=

IPBS
IPB6

Figure 5. Initial geometry configuration, GDOP distribution of the IPCB, and user distribution:
(a) initial horizontal layout of the IPCB; (b) initial flight altitude of the IPCB; (c) user distribution in
the service area; (d) GDOP distribution of the IPCB with initial geometry configuration.

7.2. Simulation Result

Simulations are carried out with parameters defined in Section 7.1. Figures 6-8
illustrate the planning result. If an IPB flies out of the approved airspace, its subsequent
data will not be displayed in figures.

From Figures 6-8, it can be seen that the proposed planning algorithm takes two measures
to improve IPCB geometry configuration.

The first measure is to adjust IPB flight altitudes by changing their masses. It makes
most IPBs in the constellation fly at an altitude of around 21 km, where wind velocity is
small. This measure lengthens IPBs’ flight time in the approved airspace, benefiting from
keeping the number of available IPBs in the IPCB.
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Figure 6. Flight altitude of the IPCB in its service duration.
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The second measure is to make IPBs fly across the quasi-zero wind layer. This measure
utilizes the reverse zonal wind direction to change IPBs” movement direction, which can
extend IPBs’ flight time in the approved airspace and adjust IPBs” horizontal trajectories,
thus improving IPCB geometry configuration.

7.3. Discussion about IPCBs with Different Initial Flight Altitudes

IPBs’ initial flight altitudes have a significant impact on IPCB geometry performance.
In this section, the initial flight altitudes of IPB5 and IPB6 in Table 2 are modified to 20 km,
21 km, 22 km, 23 km, and 24 km, respectively, while other conditions remain untouched.
The planning results of different IPCBs are listed in Figures 9-11.

—IPB1—IPB2 - IPB3—~IPB4 IPB5 - IPB6
25.00 ‘ ‘
2450
24.00 - .
£ 2350 .
= 2300] .
o)
O 2250 .
S
=2200-
<C 2150
21.00
20.50

20.00 : ‘ ‘
0 2 4 6 8 10 12 14 16 18 20 22 24

Time/h
(a)

—IPB1—IPB2 —IPB3 —IPB4  IPB5 ~IPB6
25.00 \ \
24.50 - -

24.00 .

£ 2350 .

X 2300 .

o)

O 2250 - .

S

=2200 1

<C 2150
21.00
20.50

20.00
0

Time/h
(b)

Figure 9. Cont.

125



Electronics 2024, 13, 2095

—I|PB1—IPB2 ~IPB3—IPB4  IPB5 - IPB6

25.00 T T T T T T

24.50 - .

24.00 .
£ 2350 .
= 23.00
5}
T 2250
S
= 22.00
<C 2150

21.00

20.50

2000 1 1 | \ 1
0 2 4 6 8 10 12 14 16 18 20 22 24

Time/h
(c)

—|PB1—IPB2 ~IPB3—IPB4  IPB5 - IPB6

25.00 T T T T T T

24.50 - .

24.00 .
€ 2350 .
= 23001 f
5}
© 2250 - .
S
=2200F -
<C 2150 §

21.001 4

20.50 - .

2000 | | | |
0 2 4 6 8 10 12 14 16 18 20 22 24

Time/h
(d)
Figure 9. Flight altitude comparison for IPCBs with different initial flight altitudes: (a) IPB5 and IPB6
at 20 km initially; (b) IPB5 and IPB6 at 21 km initially; (c) IPB5 and IPB6 at 23 km initially; (d) IPB5

and IPB6 at 24 km initially. (Flight altitude for IPCB with IPB5 and IPB6 at 22 km initially, please refer
to Figure 6).

From the comparison of Table 3, it can be seen that there are no significant performance
differences in 20 km, 21 km, 22 km, and 23 km, but there is a declining tendency in 24 km.
The result of 24 km can probably be attributed to the short service time of IPB5 caused by
the big wind velocity. All of these are reflected in Figures 9-11.
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Table 3. Simulation results for IPCBs with different initial flight altitudes.

Initial Flight Altitude of IPB5 and IPB6/km Average GDOP
20 7.26
21 7.14
22 7.32
23 7.47
24 8.64

In addition, from Figure 11, it can be seen that for the listed initial flight altitudes, the
higher the initial flight altitude is, the better the initial GDOP is. However, the IPCB with the
highest initial flight altitude has the fastest performance deterioration due to the big wind
velocity at the highest altitude. Therefore, if short-term performance is pursued, higher
initial flight altitudes may be preferred over lower altitudes. If long-term performance is

pursued, initial flight altitudes near the quasi-zero wind layer may be preferred.
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Figure 10. Horizontal trajectory comparison for IPCBs with different initial flight altitudes: (a) IPB5
and IPB6 at 20 km initially; (b) IPB5 and IPB6 at 21 km initially; (c) IPB5 and IPB6 at 23 km initially;
(d) IPB5 and IPB6 at 24 km initially. (Horizontal trajectory for IPCB with IPB5 and IPB6 at 22 km

initially, please refer to Figure 7).
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7.4. Discussion about IPCBs with Different Initial Horizontal Layouts

The initial horizontal layout of an IPCB also has a significant impact on its geometry
performance. This section adjusts the initial latitude of IPB5 and IPB6 from south to north,
as illustrated in Figure 12, while other conditions remain untouched. The planning results

are compared in Figures 13-15.
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Figure 12. Illustration of different initial horizontal layouts: (a) Layout 1 (IPB5 and IPB6 at 39.1° N);
(b) Layout 2 (IPB5 and IPB6 at 39.5° N); (c) Layout 4 (IPB5 and IPB6 at 40.5° N); (d) Layout 5 (IPB5
and IPB6 at 40.9° N). (Layout 3 (IPB5 and IPB6 at 40° N), please refered to Figure 5a).

Figures 13-15 and Table 4 show that IPCB can obtain better performance in deploying
IPBs with high altitudes to positions near the airspace center (layout 3) than to positions
near airspace borders (Layout 1 and Layout 5).

Table 4. Simulation results of IPCBs with different initial horizontal layouts.

Initial Horizontal Layout Average GDOP
Layout 1 10.88
Layout 2 9.53
Layout 3 7.32
Layout 4 10.83
Layout 5 22.14
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Figure 13. Flight altitude comparison for IPCBs with different initial horizontal layouts: (a) Layout 1;
(b) Layout 2; (c) Layout 4; (d) Layout 5. (Flight altitude for IPCB with initial Layout 3, please refer to

Figure 6).
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Furthermore, Figure 15 shows that IPCBs with Layout 1 and Layout 5 have approx-
imate initial GDOPs. However, their performance displays a different tendency as time
goes on. A similar case occurs in IPCBs with Layout 2 and Layout 4. Data in Table 5 also
shows that Layout 1 performs better than Layout 5, and Layout 2 performs better than
Layout 4. These phenomena may be derived from the winds used in the simulations. In the
feasible flight altitude range (21~24 km), the meridional winds are all southerly, leading to
all the IPBs moving northward. So, IPCBs with low initial latitudes perform better than
IPCBs with high initial latitudes. It is especially obvious in Layout 5, in which IPB5 and
IPB6 fly out of the approved airspace quickly due to the short distance between their initial

positions and the north border of the airspace.

+~IPB1—IPB2 -+-IPB3 +IPB4  IPB5 = IPB6
41 T T T T T T
54051 .
@
ke
~
[
T 40 .
-
=
e
©
—
305/ e T e
.q'f”rmwfk*%*w’
39 | I | I | | | 1 |
107 1072 1074 1076 1078 108 1082 1084 1086 1088 109
Longitude/deg
(a)
—+IPB1—IPB2 ~-IPB3 +IPB4  IPB5 = IPB6|
41 T T T T T T
5405 .
@
ke
S~
[
T 40t .
>
S
-
— .
L T
39.5,Ki\ﬂ\¢ W_MM
39 | 1 1 1 | | 1 1 l
107 1072 1074 1076 107.8 108 1082 1084 1086 108.8 109
Longitude/deg
(b)

Figure 14. Cont.

132



Electronics 2024, 13, 2095

'~ IPB1—IPB2 ~-IPB3 —+IPB4  IPB5 = IPB6|
41 : ‘

405

Latitude/deg

T
wsp e e
39 1 | 1 | | | | 1 1

107 1072 1074 1076 107.8 108 1082 1084 1086 10838 109

Longitude/deg
(0)

~IPB1—IPB2 ~+-IPB3 +IPB4  IPB5 = IPB6

41 T T T T e T T T T
N\i\.

R = TR

405 n

Latitude/deg

1 1 1 1 L 1 1 I 1

3?07 1072 1074 1076 1078 108 1082 1084 1086 10838 109
Longitude/deg
(d)
Figure 14. Horizontal trajectory comparison for IPCBs with different initial horizontal layouts:

(a) Layout 1; (b) Layout 2; (c) Layout 4; (d) Layout 5. (Horizontal trajectory for IPCB with initial
Layout 3, please refer to Figure 7).

In winds with quasi-zero wind layers, the direction reversion rule of zonal wind can
be employed to improve IPCB geometry configuration. In contrast, no proper rule of
meridional wind can be employed. To achieve good performance throughout the whole
service duration, the wind is suggested to be treated as a notable factor in the initial
horizontal layout design of IPCB.
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Figure 15. GDOP comparison for IPCBs with different initial horizontal layouts.

Table 5. Coefficients used to fit wind without quasi-zero wind layer.

Symbol Physical Meaning Value

—0.5066, 4.3171,
—14.6477,27.7923,
—36.4969, 32.8921,
—13.9287, —0.2023
—40.2337, 321.8428,

—1018.3275, 1597.1910,
—1263.8719, 461.2160,
—94.6881, 40.2845

Cm meridional wind coefficients

cz zonal wind coefficients

7.5. Discussion about IPCBs in Winds with/without Quasi-Zero Wind Layer

From previous discussions, it can be seen that the quasi-zero wind layer plays an
important role in IPCB geometry configuration. However, the quasi-zero wind layer does
not always exist. In this section, wind without a quasi-zero wind layer is used to implement
the planning. The wind coefficients used in this section are listed in Table 5. The comparison
of wind in this section and wind in Section 7.2 is illustrated in Figure 16. The planning
result is shown in Figures 17-19.

—e—Zonal Wind (with quasi-zero wind layer) —e—Zonal Wind (without quasi-zero wind layer)
-*-Meridional Wind (with quasi-zero wind layer) - *-Meridional Wind (without quasi-zero wind layer)

Altitude/km

18 . L L I
-5 0 5 10 15 20

Wind Velocity/m/s

Figure 16. Wind comparison (with/without quasi-zero wind layer).
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Figure 17. Flight altitude of the IPCB in the wind without a quasi-zero wind layer.
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Figure 19. GDOP comparison for IPCBs in winds with/without quasi-zero wind layers.
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From Figures 17-19, it can be seen that in winds without a quasi-zero wind layer,
zonal trajectory direction reversion does not occur since wind direction reversion does not
occur. In addition, the wind velocity is bigger than the wind velocity in Section 7.2, so some
IPBs fly out of the approved airspace in a short time, such as IPB2 and IPB3 in Figure 18.
This leads to a decrease in the number of available IPBs in the IPCB and deterioration in
the IPCB geometry configuration. In order to lengthen IPBs’ flight time in the approved
airspace, the planning algorithm tends to adjust IPBs’ flight altitude to 23~24 km, where
wind velocity is small, as IPB1, IPB 4, IPB 5, and IPB6 in Figure 17 illustrate.

By comparing planning results in this section with results in Section 7.2, it can be seen
that the results in winds with quasi-zero wind layers are significantly better than those in
winds without quasi-zero wind layers. It indicates the significance of the quasi-zero wind
layer in improving IPCB geometry performance.

To improve IPCB performance in winds without quasi-zero wind layers, measures
such as altering the initial layout, increasing the initial number of IPBs, or supplementing
IPBs dynamically can be taken.

Since IPCB achieves its flight mainly by buoyancy and winds, it is sensitive to its
running environment. Environment fluctuations or different environment models may
bring different results, which can be analyzed in detail in the future.

7.6. Discussion about Uncertain Environment

The simulations above are based on the assumption of a deterministic environment
in which wind velocities and atmospheric density are steady. However, uncertain and
unknown factors exist in the IPCB running environment.

Conway has investigated horizontal velocity in the midlatitude stratosphere using the
observation data of Project Loon and has found the existence of horizontal wind velocity
perturbations [61]. Wolf has proposed a model for modeling uncertain winds, which
employed a Von Mises distribution to simulate the direction of uncertain wind and a
Gaussian distribution to simulate the magnitude of uncertain wind [39]. However, in
general, direct observations of winds in the stratosphere are sparse, so a precise model of
stratospheric wind is very challenging.

Since this paper focuses on the problem of [IPCB geometry configuration, we will not
discuss the environment model in detail.

An uncertain environment may degrade the effect of the proposed algorithm because
the uncertainty may make IPBs’ trajectories deviate from expectation, and as a result, the
geometry configuration of IPCB cannot reach the ideal state.

To improve robustness, data filters or environment prediction models can be devel-
oped. When perceiving uncertain factors, data filters and prediction models can help to
filter out data errors and keep real environment changes. The IPCB can update the environ-
ment model and implement the planning algorithm with the new environment model.

8. Conclusions

IPCBs are a novel pseudolite application with many advantages and unique features.
Compared with traditional ground-based pseudolites and other air-based pseudolites, IPCB
uses high-altitude balloons to achieve higher altitudes and wider coverage. Compared with
pseudolites based on powered platforms, IPCBs can save energy costs greatly by utilizing
buoyancy and wind. When bringing advantages to applications, these features also bring
great challenges to IPCB geometry configuration.

This paper proposes an IPCB geometry configuration planning algorithm that consid-
ers the unique features of the IPCB and implements simulations to verify the effectiveness
of the proposed algorithm. Furthermore, this paper implements simulations with some
typical IPCB geometry configurations and compares their performances.

Simulations show that, in the vertical direction, it can achieve better performance
to deploy IPCBs at the altitude of the local quasi-zero wind layer; if the expected service
duration is short, IPCBs can be deployed at higher altitudes, and if the expected service
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duration is long, IPCBs can be deployed at the altitude of local quasi-zero wind layer. In
the horizontal direction, the direction of local wind should be treated as an important factor
in designing the initial constellation geometry configuration. A quasi-zero wind layer is
helpful in improving IPCB geometry performance.

In the future, attention can be paid to approaches to enhance robust algorithms
and enhance tolerance to different environment models. Improvements in algorithm
performance are also desired to realize real-time control.
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Abstract: Aspect-level sentiment analysis is used to predict the sentiment polarity of a specific aspect
in a sentence. However, most current research cannot fully utilize semantic information, and the
models lack robustness. Therefore, this article proposes a model for aspect-level sentiment analysis
based on a combination of adversarial training and dependency syntax analysis. First, BERT is used
to transform word vectors and construct adjacency matrices with dependency syntactic relationships
to better extract semantic dependency relationships and features between sentence components.
A multi-head attention mechanism is used to fuse the features of the two parts, simultaneously
perform adversarial training on the BERT embedding layer to enhance model robustness, and,
finally, to predict emotional polarity. The model was tested on the SemEval 2014 Task 4 dataset.
The experimental results showed that, compared with the baseline model, the model achieved
significant performance improvement after incorporating adversarial training and dependency
syntax relationships.

Keywords: multi head attention mechanism; dependency syntactic relationships; adjacency matrix;

adversarial training

1. Introduction

The advent of the Internet and the proliferation of social media platforms have led
to an exponential increase in the creation and dissemination of textual content on a daily
basis. These data contain rich emotional information, which are crucial for understanding
users’ attitudes and emotional changes towards products, services, or events. Sentiment
analysis, a core component of natural language processing, seeks to automatically discern
and extract emotional inclinations from textual data. Its significance has grown notably,
finding utility in various sectors including information retrieval, social media analysis, and
public opinion monitoring [1,2].

Aspect-level sentiment analysis is a subtask of text sentiment classification. In contrast
to general sentiment analysis tasks, which focus on predicting the overall sentiment of a text,
aspect-based sentiment analysis tasks necessitate predicting emotional polarity towards
specific aspects mentioned within a sentence [3]. Aspect-level sentiment analysis presents
a unique challenge wherein different aspect words within the same sentence may exhibit
varying emotional polarities. For instance, in the sentence “The food was delicious but the
service was bad”, “food” and “service” represent distinct aspects. While the evaluation
of the food is positive (“delicious”), the evaluation of the service is negative (“bad”). The
presence of multi-sentiment scenarios amplifies the complexities inherent in aspect-level
sentiment analysis. Models tasked with this challenge must possess the capability to
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effectively distinguish between different aspects within a sentence and accurately predict
the emotional polarity associated with each aspect.

Conventional methodologies for aspect-level sentiment analysis often employed sta-
tistical machine learning methods such as naive Bayes or SVM [4], which typically rely on
manually designed features for modeling. While these methods have achieved some success
to a certain extent, they often rely heavily on the quality and quantity of feature engineering.
and struggle with handling complex semantic information and syntactic structures.

The advancement of deep learning, particularly with the emergence of pre-trained
language models, has propelled significant strides in aspect-level sentiment analysis. Mod-
els such as BERT, RoBERTa, and XLNet [5-7], trained on extensive datasets using self-
supervised learning techniques, offer enhanced modeling capabilities for aspect-level
sentiment analysis. Mao et al. conducted an empirical study analyzing biases in pre-trained
language models (PLMs) for calculating sentiment analysis and emotion detection tasks [8].
It found that RoBERTa outperforms other PLMs in these tasks and proposed methods to
mitigate biases.

However, most current aspect-level sentiment analysis methods based on pretrained
language models still have limitations. First, these methods often focus on the overall
emotional polarity of a sentence while ignoring the relationships between words. Second,
the robustness and generalization ability of these models are relatively limited, and they
may lead to incorrect classification when exposed to external perturbations.

To address these shortcomings, the presented paper introduces a novel aspect-level
sentiment analysis model that combines adversarial training with dependency parsing.
The model leverages BERT for word vector conversion and employs an adjacency matrix to
capture syntactic dependencies. Multi-head attention combines these features, while ad-
versarial training enhances robustness. This approach enables accurate sentiment polarity
predictions at the aspect level.

The primary contributions of this paper can be summarized as follows:

1. The introduction of dependency parsing information in aspect-level sentiment analy-
sis. By constructing an adjacency matrix of syntactic dependency relations, the model
can more precisely capture the semantic correlations between different aspects in the
text, thereby improving the precision and accuracy of sentiment analysis;

2. To better integrate the features of both BERT and syntactic dependency relations,
a multi-head attention mechanism is adopted. This mechanism considers different
feature word vectors simultaneously, allowing the model to comprehend the semantic
information of the text more comprehensively, thereby enhancing the performance;

3. Inorder to bolster the robustness and generalizability of the model, an adversarial
training mechanism is introduced. By applying small perturbations to the BERT
embedding layer, FGM (fast gradient method) can make the model better resist
attacks from adversarial samples, thus improving the model’s stability and reliability
in real-world applications.

2. Related Work
2.1. Aspect-Level Sentiment Analysis

Aspect-level sentiment analysis is a vital task within sentiment analysis, concentrating
on the sentiment polarity of particular aspect terms within a sentence. Traditional sentiment
analysis methods often target entire documents or single sentences, whereas aspect-based
sentiment analysis pays closer attention to more refined sentiment evaluations of specific
entities. In past research, the use of traditional machine learning methods for sentiment
classification has been a common practice. For instance, Kiritchenko et al. used SVM to
detect aspect terms and sentiment in customer reviews [9]; Akhtar et al. employed SVM
and CRF for Hindi sentiment classification with good results [10]; Patra et al. used CRF
for aspect-level sentiment classification in the domains of Laptop and Restaurant datasets,
providing valuable references for consumers and manufacturers [11]. However, these
methods require manual feature selection and semantic information extraction, which can
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reduce the error of opinion word matching but still have limitations. For example, feature
extraction from dataset texts requires a significant amount of labor, and the final sentiment
analysis results are highly dependent on feature quality, but are incapable of modeling the
dependencies between the provided aspect terms and their surrounding contexts.
Comparatively, deep neural networks possess more intricate model architectures and
stronger feature extraction capabilities, eliminating the necessity for manual feature extrac-
tion, reducing labor costs. With the improvements in computer hardware performance
and the widespread use of the Internet, deep neural networks are no longer limited by
hardware computing power and data samples. In the realm of sequence models with a
focus on attention, researchers have proposed a variety of methodologies. For example,
Cheng et al. improved the feature extraction capacity of the Transformer bidirectional
encoder through an extended context module and proposed a component focusing module
to address the issue of average pooling [12]. Huang et al. proposed the AGSNP model,
which combined attention mechanisms and achieved good results [13]. Ayetiran proposed
a CNN and BiLSTM variant that combined high-level semantic feature extraction and
sentiment polarity prediction [14]. In models focusing on syntactic information, Zeng et al.
utilized affective knowledge to enhance word representations, forming a heterogeneous
graph based on dependency trees, and designed a multi-level Semantic-HGCN to encode
the graph for sentiment prediction [15]. Gu et al. proposed the EK-GCN model, which uses
an external sentiment dictionary to assign sentiment scores to individual words within a
sentence, constructing an emotional matrix to partially compensate for the shortcomings
of the syntactic dependency tree [16]. In models focusing on contextual modeling, Xiao
et al. proposed a novel GNN-based deep learning model, leveraging a POS-guided syn-
tactic dependency graph for RGAT to eliminate noise and designing a syntactic distance
attention-guided layer for DCGCN to extract semantic dependencies between contextual
words [17]. Mewada et al. utilized affective knowledge to enhance word representations,
forming a heterogeneous graph based on dependency trees, and then designing a multi-
level Semantic-HGCN to encode the graph for sentiment prediction [18]. Xu et al. proposed
a sentiment analysis model based on dynamic local context and dependency clusters, which
dynamically captured the scope of local context and extracted semantic information, achiev-
ing good results [19]. Mao et al. proposed a multi-task learning approach, incorporating a
novel gated bridging mechanism (GBM), which achieved superior performance in aspect-
based sentiment analysis by effectively filtering irrelevant information and dynamically
extracting features for each subtask using a weighted-sum pooling strategy [20].

2.2. Dependency Analysis

Dependency parsing, also known as dependency syntax analysis [21], aims to identify
the interdependent relationships between words in a given text and find the corresponding
dependent words (tail nodes) for each word (head node), which facilitates a deeper compre-
hension of the entire sentence’s meaning. This is also one of the more critical technologies in
the field of NLP. The representation is through directed arrows from the central word to its
dependent words, forming directed graphs. Dependency projection trees, and dependency
trees are common ways to express dependency structures. Taking the sentence “The iced
Americano at this airport tastes good” as an example, the expression of its dependency tree
is as follows (Figure 1):

det

acomp

The iced Americano at this airpot tastes good

Figure 1. Example diagram of dependency syntax tree.
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Dependency syntax analysis is typically represented as a tree structure, where the
nodes of the tree represent words, the edges represent the dependency relationships
between words, and the parent node of the tree indicates the governor. Some commonly
used dependency relation labels, and their meanings in dependency syntax analysis, are
presented in Table 1.

Table 1. Partial dependency relationship labels and their meanings.

Labels Meanings
ROOT Root node
det Dependency
amod Adjectives
nsubj Noun subjects
prep Prepositional modifiers
pobj Object of a preposition
acomp Complement of an adjective

2.3. Adversarial Training

In the domain of computer vision (CV), it is essential to enhance the robustness of
models through adversarial attacks and defenses. For instance, in autonomous driving
systems, it is crucial to prevent models from misclassifying red lights as green due to
random noise. Similarly, in natural language processing (NLP), adversarial training exists,
primarily as a regularization technique aimed at enhancing model generalization.

In 2014, Szegedy et al. introduced the concept of adversarial examples, which is
considered a pioneering work in the field [22]. For models processing text input data,
the added perturbations can be categorized into two types: discrete, where perturbations
are directly applied to the text; and continuous, where tiny perturbations are introduced
into the word vector matrix. This paper employs the latter approach for adversarial
training. Current popular adversarial training methods include the fast gradient sign
method (FGSM) [23], fast gradient method (FGM), projected gradient descent (PGD) [24],
free adversarial training (FreeAT) [25], and free large-batch (FreeLB) [26].

The core of adversarial training lies in constructing perturbations that enable the
model to recognize diverse adversarial examples. Adversarial training algorithms first
generate perturbations using adversarial attacks, then combine these perturbations with
original samples to create adversarial examples. Subsequently, the model parameters are
adjusted via backpropagation to minimize the loss function. This process can be defined
as a max—min optimization problem, where the maximization problem involves finding
perturbations that maximize the loss function for generating adversarial examples, while
the minimization problem involves minimizing the loss function and updating model
parameters, thereby endowing the model with robustness to adapt to such perturbations.
Adpversarial training can be uniformly represented as a min-max formula, as shown in the
following equation:

minGE(x,y)wD[maxAxGOL(x +Ax,y; 9)] 1)

where D represents the dataset, x represents the inputs, y represents the labels, and 6 is the
model parameter that represents the parameter vector of the neural network, L(x + Ax, y; 0)
is a single sample of loss, Ax is the perturbation and () is the perturbation space. Then after
the neural network function, the loss obtained by comparing with the label y, maxyeqL()
denotes the optimization objective.

2.4. Attention Mechanisms

In 2014, the Google Mind team’s paper brought attention mechanisms into the spot-
light [27]. Initially introduced for image processing tasks, attention mechanisms have
proven to be effective in other fields as well. Experimental validations have demonstrated
the theoretical feasibility of attention mechanisms, and empirical results in the field of
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NLP have shown their efficacy in sentiment analysis tasks, highlighting their significant
research value. This method is capable of effectively extracting key features, and as such, it
is currently widely employed to enhance the performance of sentiment analysis models.
The attention mechanism simulates the cognitive process of the human brain, quickly
extracting valuable information from extensive text data and assigning higher weights to
important information while assigning lower weights to other information.

Bahdanau et al. were the first to introduce attention mechanisms into machine trans-
lation based on the encoder—-decoder model, successfully translating long sentences [28].
Despite potential issues with the encoding quality, attention mechanisms addressed this
by allocating distinct weights to words in the encoding module based on their impor-
tance, leading to notable experimental results. The introduction of attention mechanisms
has solved the problem of poor coding module quality for machine translation of long
sentences, and this technology has been widely applied in the field of NLP, playing an
especially important role in sentiment analysis tasks.

The unified computation method of the attention mechanism can be represented as follows:

Attention(Q, K, V) = softmax (QKT> 74 ()

In attention mechanisms, Q represents the query vector, K denotes the key vectors
within a sentence, typically used for relevance calculations, and V represents the value
vectors. Attention weights are obtained through a normalization method, which funda-
mentally maps the query vector to a series of relationships among key-value pairs. The
structure can be visualized as follows (Figure 2):

Attention
Value

Query

Figure 2. Attention mechanism structure.

3. Overall Model Design

This section begins with a description of the aspect-level sentiment analysis task,
followed by the model structure.

3.1. Task Definition

The model input is the given text W = {wq,wy,...4a,...0,...w,}, where a denotes an
aspect word and o denotes an opinion word, and the model outputs the sentiment polarity
y € {positive, negative, neutral} corresponding to the aspect. Our model leverages the
pre-trained language model BERT to generate and train word vectors.

3.2. Model Architecture

The model discussed in the paper comprises the following six main components: a text
embedding layer, BERT encoding layer, syntactic dependency relation information layer,
adversarial training layer, multi-head attention layer, and an output layer. The model’s
overall structure is depicted in Figure 3.
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Figure 3. Model structure diagram.

3.2.1. Text Embedding Layer

For a sentence W = {wy,wy,...4,...0,...w,}, use the pre-training model BERT to
map each word onto an embedding vector ¢; € R¥*!, where d represents the dimension of

the word vector:
Wpert = Bert(W) 3)

To fully leverage the power of BERT in model training, the text is formatted into
the structure of “[CLS] + context + [SEP] + target + [SEP]”. In this format, “[CLS]” and
“[SEP]” are special token markers utilized by BERT. “[CLS]” serves as a unique classification
token marker that encapsulates classification-related information, while “[SEP]” functions
as a separator to demarcate distinct sequences when multiple sequences are input. By
adhering to the formatting requirements specified by BERT for text classification tasks, the
effectiveness of BERT is maximized.

3.2.2. BERT Encoding Layer

The BERT encoder is constructed using Transformer blocks from the Transformer model [29].
For BERT-BASE, these blocks are employed in 12 layers, each consisting of 12 multi-head at-
tention blocks. After passing through the BERT model, the output is a new sequence with
the same length as Wp,,t, represented as Hpert = {hcrs, M, ..., hy—1,hsep, ha, hspp} as the
representation of hidden vectors. Here, “hicrs” is the hidden vector for the classification token,
“hy” to “h,_1" are the hidden vectors for the context tokens, “hispp” represents the hidden
vectors for the separator tokens, and “/,” represents the hidden vectors for the aspect words.
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3.2.3. Dependency Syntax Relation Information Layer

The text is simultaneously processed to establish syntactic dependency relations. In
this paper, the StanfordCoreNLP tool is used to obtain the syntactic dependency tree of
the text [30]. This is done by capturing the grammatical structure of sentences to extract
dependency analysis; the output is a list containing multiple tuples. For example, in the
sentence “The iced Americano at this airport tastes good”, the output is [('ROOT’,0,3),
(‘det’,3,1), (famod’,3,2), (‘nsubj’,7,3), (‘prep’,4,3), (‘pobj’,6,4), (‘det’,6,5), (‘acomp’,8,7)]. In
this sentence, there are a total of eight elements, so (‘amod’,3,2) indicates an adjective,
where “Americano” depends on “iced”. Words in the sentence are encoded starting from
1 to the end of the sentence. The numbers in the tuple represent the positions of the
words, and the numbers before and after represent the dependency relationship, where
the first number is the head and the second number is the child, indicating that the latter
depends on the former. Then, the dependencies are mapped onto a directed graph. The
syntactic dependency tree can be conceptualized as graph G with n nodes, where the nodes
correspond to the words in the sentence, and the edges represent the syntactic dependencies
between words. The dependency parse tree of a sentence is represented as G = {V, A},
where V stands for all the nodes, which are the words {wy,wy,...q,...0,...wy,}; and
A € R"™" is the adjacency matrix, where A;; = 1if there is a syntactic dependency between
word w; and word wj, and A;; = 0 otherwise. Each word in the sentence is adjacent to
itself, which implies setting all diagonal elements of the adjacency matrix to 1 [31].

Here is how the syntactic dependency tree and its transformed adjacency matrix are

depicted (Figure 4):
. Amer| .
The | iced at [ this|airpot|tastes| good
cano
The | 1 0 1 0|0 0 0 0
iced | 0 1 1 0|0 0 0 0
Amerid|
mol 1] 1t 1]2]ofl o 1]o0
at 0 0 1 110 1 0 0
this | 0 0 0 0] 1 1 0 0
acomp
/\ - airpot| 0 0 0 (1] 1 1 0 0
tastes| 0 0 1 (00 0 1 1
The iced Americano at this airpot tastes good god[ o o 1 o lolol o 1 1

Figure 4. Syntactic dependency and adjacency matrix.

Next, the adjacency matrix is expanded into a one-dimensional vector and connected
to the elements in the matrix row by row or column by column. The unfolded vector is
used as an input for the next step of model processing. This converts the information of the
adjacency matrix into a vector V;.

3.2.4. Adversarial Training Layer

The model uses the FGM (fast gradient method) for adversarial training on the BERT
embedding layer vectors. FGM stands out from other methods due to its simplicity,
ease of use, and computational efficiency. It generates adversarial samples with minimal
parameter updates, making it practical for real-world applications with low computational
costs, especially with large datasets and complex models. Despite potential variations
in performance, FGM typically enhances model robustness against common adversarial
attacks. Thus, FGM is a practical choice, particularly in resource-constrained scenarios
or where rapid implementation is crucial. By performing gradient ascent based on the
specific gradients, it aims to obtain better adversarial samples without significantly altering
the distribution of the original samples, thereby allowing the model to adapt to such
perturbations. Assuming that the embedding layer vectors V = {v1,v,,...,v,} of the input
text sequence are x, the perturbation on the embedding layer is as follows:

8
Ax =€ 4)
gl
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g = ViL(x,y;0) ®)

Vido =V + Ax (6)

After the adversarial training, the obtained feature vectors are denoted as V4.

3.2.5. Multi-Head Attention Mechanism Layer

After flattening the hidden features Hp,,; obtained from BERT’s output, we obtain
Hp,,;- Then, we concatenate it with the feature vector obtained after adversarial training to

obtain the new hidden feature Z = [Hi3 ertr Vudj} . Z represents the input to the multi-head

attention module. By utilizing three different weights W, Wy, W, in the attention layer, we
can calculate the resulting vector g, k, v. The steps of the multi-head attention mechanism
involve linearly transforming the query (Q), key (K), and value (V) through parameter
matrices. Then, scaled dot-product operations are performed multiple times before con-
catenating the results. First, the score for each input feature is calculated: score = k x g.
Then, each score is normalized by dividing it by the square root of the dimension of the
weight matrix 1/dy. Next, the softmax function is applied to the normalized scores. Finally,
the softmax result is multiplied by the value V. The formula is as follows:

QK™ >
a=softmax| ~= |V 7

oftmax( L ”
The multi-head attention mechanism assigns weighted attention scores to each word
in the sentence using multiple attention mechanisms. By increasing the weight coefficients
of important information, the model focuses more on words crucial for sentiment analysis,
thus further enhancing the accuracy of sentiment analysis. The multi-head attention mecha-
nism consists of multiple heads, each capable of generating different attention distributions,
thereby addressing long-range dependencies. Built upon the attention mechanism, the
multi-head attention mechanism significantly outperforms standard attention mechanisms,
allowing for parallel processing of information in different positional and representational
subspaces. With each set of attention projected into different spaces, and considering m as

the number of attention heads, the calculation formula is as follows:

headi = a; (8)

e = MultiHead(Q, K, V) = Concat(heady, heads, . . .,headm)WO )

Wherein, WO represents the weight vector, which can be learned through the training
process. The Concat function indicates the concatenation of the vectors after the attention
computation, and head; represents the i-th attention mechanism.

Finally, all encoding vectors are weighted and summed to obtain a comprehensive
hidden expression e.

3.2.6. Output Layer

Considering that the adversarial perturbations in adversarial training are relatively
small values, to prevent the word vectors from becoming too large, which could cause the
tiny perturbations to lose their effectiveness, it is necessary to normalize the word vectors.
Normalization ensures that the values of the word vectors remain within a reasonable
range, allowing the model to be sensitive to the small adversarial perturbations. It is
described as follows:

/ Vado — E(Vadv)

= 10
adv Var(vadzz) ( )
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K
E(Vadv) - Zfivudvi (11)
i=1

K
Var(Vaay) = Y. fi(Vaavi — E(Vaao) ) (12)
i3

where V4, denotes the original word vector Va’ 4, denotes the normalized word vector and
f; denotes the frequency of the ith word in the training sample.

The fused features and adversarial features of the multi-head attention mechanism are,
respectively, used as inputs to the Softmax classifier, after which the fused features of the
multi-head attention mechanism and the real labels can be calculated as the classification
loss Loss,,,, which is calculated by the following formula:

N

L0SS s = Z{yilogéi +(1—yi)log (1 - z}i) } (13)

i=1

Wherein y; represents the true category, y; represents the predicted category, and N is
the overall number of samples.

Subsequently, the adversarial features and the true labels are used as inputs to the
classifier for calculating the adversarial training loss Loss,,, with the following formula:

1N
Lossago = — 35 Y logp(yn | x + Ax,6) (14)

n=1

In this loss function, the variable is x + Ax, where Ax represents the adversarial
perturbation, N is the overall number of samples, y;, is the corresponding label, and 6 is the
model’s parameters that represents the parameter vector of the neural network. Therefore,
the actual loss of the model is as follows:

Loss = L0SS,, + L0SS 4, (15)

Furthermore, the gradients of Loss,,;,, and Loss,, with respect to the model parameters
are computed first. Subsequently, these gradients, along with a predefined learning rate,
are utilized to update the model parameters, aiming to progressively decrease the overall
loss. Until it satisfies the predetermined maximum number of iterations, this iterative
process continues. The generated adversarial training samples are used together with
the original samples for model training. This approach can expand the dataset size and
effectively enhance the model’s generalization performance and classification accuracy.

4. Experimental Analysis
4.1. Experimental Dataset and Experimental Environment

The model in this paper was mainly evaluated on the SemEval2014 Task4 public
dataset, which consists of reviews from two domains, Laptops and Restaurants [32]; these
datasets are partitioned into a training set and a test set. The aspect words and their
corresponding sentiment polarity in the dataset have been labelled, where —1 represents
negative, 0 represents neutral and 1 represents positive. The dataset’s fundamental statistics
are provided in Table 2.

Table 2. Basic statistical information of the dataset.

Negative Neutral Postive
Datasets . ; ;
Train Test Train Test Train Test
Laptops 851 128 455 167 976 337
Restaurants 807 196 637 196 2164 727
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Table 3 illustrates the pertinent configuration of the experimental environment in this paper.

Table 3. Configuration of experimental environment.

Experimental Environment Configuration

Table Configuration Information
Operating System CPU AMD Ryzen 7 7735H with Radeon Graphics 3.20 GHz
Graphics card NVIDIA GeForce RTX 4060
Deep Learning Framework Pytorch
Development Environment Pycharm

4.2. Experimental Parameter Setting

The experiment used the pretrained language model BERT to generate word vectors.
The generated word vectors have a dimension of 768, with a hidden-layer dimension of
300. The dropout rate is set to 0.1, and the learning rate is 2 x 10~°. The batch size for each
input data is 32, and the optimizer used is Adam [33].

4.3. Evaluation Indicators

In the experiment, the evaluation metrics used were Accuracy and Macro-averaged F1
score [34,35]. Accuracy denotes the proportion of correctly classified positive and negative
samples to the total number of samples. The F1 score is the harmonic mean of precision
and recall, encompassing both precision and recall in the evaluation of the model. The
macro-averaged F1 score is the average of the F1 scores for each category, which helps to
avoid the issue of artificially high accuracy due to imbalanced data. The specific formulas
are as follows:

Accurary = TP ¥ ;lef——‘—l—jl?l\’]—l- N (16)
Precision = %—SFP (17)
Recall = %—EFP (18)

L= Gson ¥ Reea 09
MF1 = (1:]:21 F1; (20)

wherein TP represents the number of positive samples correctly predicted as positive,
FN denotes the number of positive samples mistakenly predicted as negative, FP indi-
cates the number of negative samples erroneously predicted as positive, and TN signifies
the number of negative samples accurately predicted as negative. Precision and Recall
denote the precision rate and recall rate, respectively, while C represents the number of
sentiment categories.

To evaluate the significance of the improved results, we also added kappa consistency
as a statistical test indicator. The Kappa coefficient, which is a statistical measure of
consistency ranging between 0 and 1, is elaborated upon in Table 4. A larger coefficient
signifies greater precision in data classification. Its calculation formula is as follows:

Py — P,

K= 21
1-D, (21)
Table 4. Kappa coefficient table.
Coefficient 0.8-1.0 0.6-0.8 0.4-0.6 0.2-0.4 0-0.2
Level Almost Substantial Moderate Fair Slight
perfect
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P, represents the overall classification accuracy. The calculation formula for P, is as follows:

ap X by +ay; X by +---+ap X by
nxn

P, =

(22)

ay represents the actual sample size of class k, by represents the predicted sample size
of class k, and the total sample size is 7.

4.4. Comparative Experiments

The paper selected seven representative aspect-level sentiment analysis models to
compare with the model provided in this paper, and their descriptions are as follows:

(1) LSTM [36] is an aspect-level sentiment analysis model based on long short-term
memory networks that uses a recurrent neural network structure for modeling and
can capture temporal information in text. It performs sentiment classification by
integrating the target word and context relationships through two LSTM layers that
depend on the target;

(2) TD-LSTM [37] utilizes LSTM to encode the contexts on both sides of the aspect term
from different directions, and performs sentiment classification by concatenating the
resulting feature representations;

(3) MemNet [38] is a deep memory network model combined with an attention mech-
anism. By constructing multiple computational layers, each input layer adaptively
selects deeper-level information and captures the correlation between each context
word and the aspect via attention layers. The output of the final attention layer is
utilized for sentiment polarity assessment;

(4) IAN [39] utilizes two LSTM layers to acquire the hidden representations of the context
and aspect terms. To precisely capture the semantic relationship between context
words and the aspect term, an interactive attention mechanism is incorporated;

(5) RAM [40] is a memory neural network model based on a recurrent attention mech-
anism that can effectively obtain the sentiment features between words that are
farther apart;

(6) AEN [41] utilizes an encoder with an attention mechanism to establish a sentiment
analysis model between the context and its corresponding aspect term;

(7)  ASGCN [42] constructs a graph convolutional network on the sentence’s dependency
tree to extract syntactic information. By integrating attention with masked aspect
vectors and semantic information, it enhances sentiment classification performance;

(8) GPT3+Prompt [43] is a language model that can be guided to perform aspect-level
sentiment analysis tasks and generate relevant text by adding prompts.

Among all comparison models, the accuracy of the ASGCN model reached 75.55% and
80.77% on both datasets, respectively. This is because the ASGCN model constructs a graph
convolutional network on the dependency tree of sentences, utilizing syntactic information
to extract semantic relationships and improving the accuracy of sentiment classification.

The accuracy rates of LSTM and TD-LSTM on the two datasets reached 66.77% and
74.29%; and 67.71%, 75.36%, respectively. TD-LSTM improved the LSTM model, but
because LSTM cannot reflect the interaction information between aspect words and text
sentences, and LSTM processes sentences in the order of text sequences, the semantic
information learned is not comprehensive enough, and too-long sentences can cause slow
the gradient descent. The MemNet model’s attention mechanism for selecting deeper-
level information may falter in filtering out noisy context words, potentially leading to
reduced classification performance. Despite the IAN model’s precise capture of semantic
relationships, it may face challenges with highly ambiguous context terms. The AEN
model’s focus on context information might overlook subtle sentiment nuances. Lastly, the
RAM model’s recurrent attention mechanism may introduce computational complexity
and training instability. The above reasons have led to the poor performance of these
models.
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As indicated in Table 5, the BAMD model surpasses other models in both Accuracy
and Macro-F1 scores. On the two datasets, the accuracy rates of the BAMD model reached
76.02% and 83.04%, respectively. Our model offers several advantages over baseline
models: first, by integrating dependency parsing information, we accurately capture
semantic correlations between different aspects in the text. Second, employing a multi-head
attention mechanism enables a comprehensive understanding of semantic information
within the text. Lastly, the introduction of adversarial training enhances the model’s
stability and reliability in real-world applications.

Table 5. Comparing the experimental results of the model on two publicly available datasets.

Comparative Laptops Restaurants
. Accurary Macro-F1 Kappa Accurary Macro-F1 Kappa
LSTM 66.77 61.78 - 74.29 62.58 -
TD-LSTM 68.81 64.67 - 76.00 64.51 -
MemNet 70.64 65.17 - 79.61 69.64 -
TIAN 71.20 66.69 - 76.86 66.71 -
RAM 72.32 67.90 0.6745 76.92 68.71 0.7148
AEN 73.69 68.59 0.6886 77.06 69.35 0.7262
ASGCN 75.55 71.05 0.6904 80.77 72.02 0.7377
CPTS + 77.87 73.04 - 85.45 78.96 -
Prompt
BAMD(Ours) 76.02 71.54 0.7171 83.04 76.61 0.7853

Although our model is only 1 to 2.5 percentage points less effective than the closed-
source GPT3+Prompt, we acknowledge this difference. Our research suggests that, while
our model may be lightweight, with fewer parameters and a smaller memory footprint,
this lightweight nature makes it more feasible for deployment and operation in resource-
constrained environments, with lower computational costs. While our model may slightly
lag behind larger models in performance, its lightweight characteristics provide greater
flexibility and feasibility for specific applications in certain scenarios. We will continue to
strive for improvement and look forward to achieving better results in future research.

Moreover, it can be clearly seen from the chart that our model’s Kappa value is
significantly better than the compared models. This indicates that our model can still
maintain high classification consistency while considering randomness. The significance of
this improvement is not only reflected in the Kappa value, but also in the robustness and
generalization ability of the model on different datasets. Therefore, our model performs
more reliably and stably in solving this classification task. The optimal performance metrics
of each model on two datasets have been bolded in the table.

4.5. Ablation Experiment

To verify the importance of the three major modules designed in this paper, a series of
ablation experiments were conducted.

For each ablation experiment, we can infer the importance of each component to
model performance by the degree of degradation in the evaluation metrics:

The ablation experiment without Adversarial Training (w/o AT) exhibited a decrease
in performance when compared to the original model. This is because adversarial training
plays a crucial role in enhancing model robustness and generalization capabilities. Without
adversarial training, the model is more susceptible to the influence of biased or noisy
samples, leading to a decrease in performance. Therefore, adversarial training is vital for
improving the robustness of the model.

Our model significantly outperformed the version without multi-head attention (w/o
MHA). The multi-head attention mechanism aids in better integrating features from BERT
and syntactic dependency relations, enhancing the model’s attention to different aspects of
the text and its representational power. If the multi-head attention mechanism is removed,
the model may not effectively capture sentiment information across different aspects,

151



Electronics 2024, 13, 1993

resulting in a decline in performance. It is evident that multi-head attention is important

for enhancing the model’s representational capabilities.

The absence of syntactic dependency relations resulted in varying degrees of decline
in both Accuracy and Macro-F1 scores. Syntactic dependency relations provide structural
information between words in the text, which helps the model to better understand the
semantic and logical relationships within sentences. If syntactic dependency relations
are removed, the model may not effectively utilize the structural information of the sen-
tence, leading to a decrease in performance. Therefore, syntactic dependency relations are

important for enhancing the model’s semantic comprehension.

In summary, adversarial training, multi-head attention mechanism, and syntactic de-
pendency relations each play a significant role in improving model performance. Together,

they constitute the key components of the model proposed in this paper.

4.6. Analysis of Model Parameters

To investigate the impact of the constraint radius of the perturbation constraint space
S, i.e., the value of ¢, on model performance in adversarial training, this paper set ¢ values
to 0.01, 0.1, 0.5, 1, and 2. The accuracy and MF1 scores were tested on both the 14Lap and
14Rest datasets (Figure 5). The experimental results, as shown in the figure below, indicate
the model’s
resilience to attacks. The model performs optimally when the ¢ value is 0.1; however, when
the € value is too large, both the model’s accuracy and MF1 scores exhibit a downward trend.
This phenomenon may be due to the larger perturbation values added, which resulted in
significant differences between the generated adversarial samples and the original samples.
Although they shared the same label, the model’s accuracy in identifying these adversarial

that introducing adversarial samples during the training stage can enhance

samples decreased, subsequently leading to a decline in model performance.

14Lap 14Rest
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Figure 5. (a) The accuracy of the model under different constraint radii (14Lap); and (b) the accuracy

of the model under different constraint radii (14Rest).

4.7. Case Study

In order to reflect the effectiveness of the proposed approach, several specific examples
were analyzed. Based on Table 6, we extracted the classification results of some typical

examples for comparative analysis (Table 7).

Table 6. Results of ablation experiment.

Models Laptops Restaurants
Accurary Macro-F1 Accurary Macro-F1
w/o DS 74.52 70.31 80.57 76.22
w/o AT 73.45 69.63 78.63 73.25
w/o MHA 73.58 69.97 79.78 74.56
BAMD 76.02 71.54 83.04 80.26
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Table 7. Typical data experiment examples.

Num Examples TD-LSTM ASGCN BAMD Label
1 The food is great but the service Negative Positive Positive Positive
was dreadful! (x) ) W)
I'm d.eyghted to refurn to t,he Positive Negative Positive ..
2 familiar embrace of Apple’s W) (x) ) Positive
operating system.
3 Did not enjoy the new Windows Natural (x) Positive Negative Negative

8 and touchscreen functions.

(x) (V)

“\/” in the table represents the model’s correct judgment of emotional polarity, while “x” represents the model’s
incorrect judgment of emotional polarity.

For the first example sentence, due to the existence of two aspect terms, namely “food”
and “service”, TD-LSTM focused on the opinion word “dreadful” related to “service”,
considering it as the opinion word for the aspect term “food”, leading to an incorrect
matching between aspect terms and opinion words, resulting in a negative sentiment
judgment. In the second example sentence, the syntactic distance between “Apple’s
operating system” and its opinion word “delighted” is too great. The aspect sentiment
graph convolutional network (ASGCN) model failed to capture the relationship between
them based on syntactic information, which resulted in an incorrect sentiment polarity
judgment. The third example also contains two aspect terms, where TD-LSTM failed to
accurately match aspect terms with opinion words, and ASGCN failed to capture the
feature representation of the negation word “did not”. In contrast, BAMD combines both
adversarial training and dependency syntax information, and thus can make accurate
judgments.

5. Conclusions

This paper introduces an aspect-level sentiment analysis model that leverages ad-
versarial training in conjunction with dependency syntax parsing. By employing BERT
for word vector transformation, integrating feature extraction from syntactic dependency
relations, and utilizing multi-head attention mechanisms along with adversarial training
techniques, the proposed model is capable of predicting the sentiment polarity of specific
aspects within sentences. On two public aspect-level sentiment analysis datasets, our model
achieves higher accuracy and MF1 scores compared to the baseline models, validating the
effectiveness of our approach. However, the model presented in this paper has certain
limitations. For instance, the generated dependency syntax relations may contain data
noise, and the influence of part-of-speech tags and other syntactic information on the task is
not considered. The choice of the adversarial training method can be adjusted to optimize
model performance for specific datasets. Future work will focus on further improving and
enhancing the model to address these challenges. Specifically, we will explore methods
to reduce data noise in generated dependency relations, incorporate part-of-speech tags
and other syntactic information, and optimize adversarial training methods for specific
datasets. These advancements aim to enhance the model’s performance and applicability
in aspect-level sentiment analysis, thereby promoting its development and application in
various domains.
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