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Preface

Discrete mathematics, as opposed to continuous mathematics, broadly comprises algebra,

combinatorics, geometry, and number theory. From Shannon’s counting arguments and

Assmus–Mattson’s theorem to Goppa’s estimates, it is safe to say that all these fields have contributed

to coding theory. The Special Issue collected some interesting papers in this field. More specifically,

the following areas (the list is not exhaustive):

• Codes and finite geometry: Space–time codes, rank metric codes, AG codes, and Boolean

functions;
• Codes and combinatorics: Designs, maximal codes, few-weight codes, and Hadamard matrices;
• Algebraic coding theory: Codes over rings and modules, and codes as ideals and modules over

rings;
• Algorithms for effective construction and efficient decoding;
• Character sums: Gauss sums; exponential sums for explicit enumeration.

Patrick Solé

Guest Editor
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Bounds on the Probability of Undetected Error for q-Ary Codes

Xuan Wang 1, Huizhou Liu 2 and Patrick Solé 3,*

1 School of Mathematical Sciences, Anhui University, Hefei 230601, China; wang_xuan_ah@163.com
2 State Grid Anhui Electric Power Co., Ltd., Hefei 230601, China; 18756027866@163.com
3 I2M, CNRS, Aix-Marseille Univetsity, Centrale Marseille, 13009 Marseilles, France
* Correspondence: patrick.sole@telecom-paris.fr

Abstract: We study the probability of an undetected error for general q-ary codes. We give upper
and lower bounds on this quantity, by the Linear Programming and the Polynomial methods, as a
function of the length, size, and minimum distance. Sharper bounds are obtained in the important
special case of binary Hamming codes. Finally, several examples are given to illustrate the results of
this paper.

Keywords: error correcting codes; probability of undetected error; linear programmming

1. Introduction

Let A = {a1, . . . , aq} be an alphabet with q distinct symbols, where q � 2 and the
alphabet do not have any structure. For instance, A can be Fq, the finite field with q
elements, or Zq, the ring of integers modulo q. Moreover, a linear [n, k] code is a subspace
of the vector space Fn

q and k is the dimension of the subspace. For every two vectors x,
y ∈ An, the (Hamming) distance dH(x, y) between x and y is defined as the number of
coordinates where they are different. A nonempty subset C of An with cardinality M is
called a q-ary (n, M) code, whose elements are called codewords. The minimum distance
d of the code C is the minimum distance between any two different codewords in C. The
distance distribution of C is defined as

Ai =
1
M
|{(x, y) : x, y ∈ C, dH(x, y) = i}|, i = 0, 1, . . . , n. (1)

Assume that the code C is used for error detection on a discrete memoryless channel
with q inputs and q outputs. Each symbol transmitted has a probability 1− p of being
received correctly and a probability pq = p/(q− 1) of being transformed into each of the
q− 1 other symbols. It is natural to let 0 � p � (q− 1)/q. Such a channel model is called
a q-ary symmetric channel qSC(p). When such a code is used on the symmetric q-ary
channel qSC(p), errors occur with a probability p

q−1 per symbol.
Let x ∈ C be the codeword transmitted and y = x + e ∈ Fn

q be the vector received,
where e = y− x is the error vector from the channel noise. Obviously, e ∈ C if and only
if y ∈ C. Note that the decoder will accept y as error free if y ∈ C. Clearly, this decision
is wrong, and such an error is not detected. Thus, when error detection is being used,
the decoder will make a mistake and accept a codeword which is not the one transmitted if
and only if the error vector is a nonzero codeword [1,2]. In this way, the probability that
the decoder fails to detect the existence of an error is called the probability of undetected
error and denoted by Pue(C, p), which is defined as

Pue(C, p) =
n

∑
j=1

Aj

(
p

q− 1

)j
(1− p)n−j. (2)

Entropy 2023, 25, 1349. https://doi.org/10.3390/e25091349 https://www.mdpi.com/journal/entropy1
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In general, the smaller the probability of undetected error Pue for some p, the better the code
performs in error detection. However, this function is difficult to characterize in general.

As for the code C, comparing its Pue with the average probability Pue [3,4] for the
ensemble of all q-ary linear [n, k] codes is a natural way to decide whether C is suitable for
error detection or not, where

Pue(p) = q−(n−k)
(

1− (1− p)k
)

.

According to [4], there exists a code C such that Pue(C, p) > q−(n−k) and there are many
codes, the Pue of each of whom is smaller than q−(n−k). In fact, it was commonly assumed
that Pue(C, p) � q−(n−k) for the linear [n, k] code C in [5], where q−(n−k) = q−r is called the
q−r bound. The q−r bound is satisfied for certain specific codes, e.g., Hamming codes and
binary perfect codes, when 0 < p < 1/2.

For the worst channel condition, i.e., when p = (q− 1)/q,

Pue

(
C,

q− 1
q

)
= q−(n−k)

(
1−

(
1− q− 1

q

)k
)

= Pue

(
q− 1

q

)
.

From the above formula, a code C is called good if Pue(C, p) � Pue((q − 1)/q) for all
0 < p < (q− 1)/q. In particular, if Pue(C, p) is an increasing function of p in the interval
[0, (q− 1)/q], then the code is good, and the code is called proper. There are many proper
codes [1], for example, perfect codes (and their extended codes and their dual codes),
primitive binary 2-error correcting BCH codes, a class of punctured of Simplex codes,
MDS codes, and near MDS codes (see [5–9] for details). Moreover, for practical purposes,
a good binary code C may be defined a bit different, i.e., Pue(C, p) � cPue(C, 1/2) for every
0 � p � 1/2 and a reasonably small c � 1. Furthermore, an infinite class C of binary
codes is called uniformly good if there exists a constant c such that for every 0 � p � 1/2
and C ∈ C, the inequality Pue(C, p) � cPue(C, 1/2) holds. Otherwise, it is called ugly,
for example, some special Reed–Muller codes are ugly (see [10]).

Another way to assess the performance of a code for error detection is to give bounds
of the probability of undetected error. In [11], Abdel-Ghaffar defined the combinatorial
invariant Fj of the code C and proved that

Pue(C, p) =
n

∑
j=1

Fj

(
p

q− 1

)j(
1− qp

q− 1

)n−j
,

where

Fj =
j

∑
i=1

Ai

(
n− i
n− j

)
, j = 1, 2, . . . , n.

Using combinatorial arguments, Abdel-Ghaffar [11] obtained a lower bound on the un-
detected error probability Pue(C, p). Later, Ashikhmin and Barg called Fj the binomial
moments of the distance function and derived more bounds for Pue (see [12,13]).

In particular, constant weight codes are attractive and many bounds are developed,
for example, binary constant weight codes (see [14,15]) and q-ary constant weight codes
(see [16]). In fact, the probability of an undetected error for binary constant weight codes
has been studied and can be given explicitly (see [14,16]).

Note that when A = Fq and p→ 0, according to Equation (2), we have

Pue(C, p) ∼ Ad pq
d(1− p)n−d, (3)

where pq = p/(q− 1), d is the minimum distance of C and Ad is called the kissing number
of the linear code C. In 2021, Solé et al. [17] studied the kissing number by Linear
Programming and the Polynomial Method. They gave bounds for Ad under different

2
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conditions and made tables for some special parameters. Motivated by the work, this paper
is devoted to studying the function Pue using the same techniques.

The rest of this paper is organized as follows. In Section 2, we briefly give the
definition of the (dual) distance distribution of q-ary codes and give some trivial bounds
of the probability of an undetected error. In Section 3.1, linear programming bounds are
discussed. The applications of Krawtchouk polynomial (Polynomial Method) to error
detection are given in Section 3.2. In Section 4, some bounds better than the 2−m bound
are given for binary Hamming codes. Finally, we end with some concluding remarks in
Section 5.

2. Preliminaries

Recall some basic definitions and notations from [2,18–20]. Throughout this paper,
to simplify some formulas, we let pq = p

q−1 and k = logq |C| for some real k. Furthermore,
in this paper, it is natural to define p < (q− 1)(1− p), equivalently, pq < 1− p.

2.1. Dual Distance Distribution

Assume that A = Fq is the finite field of size q and C is a subspace of Fn
q , i.e., C is

a linear code over Fq. Then, the dual code C⊥ of C is the orthogonal complement of the
subspace C. That is to say,

C⊥ = {v ∈ Fn
q : v · u = 0 for all u ∈ C},

where v · u = ∑n
i=1 viui, u = (u1, . . . , un) and v = (v1, . . . , vn). The distance distribution A′i

of C⊥ can be determined similarly. It is well known (see Chapter 5. §2. in [2]) that

A′i =
1
|C|

n

∑
i=0

AjPi(j), (4)

where Pi(j) denotes the Krawtchouk polynomial of degree i. For each integer q � 2,
the Krawtchouk polynomial Pk(x; n) is defined as

Pk(x; n) =
k

∑
j=0

(−1)j
(

x
j

)(
n− x
k− j

)
(q− 1)k−j.

When there is no ambiguity for n, the function Pk(x; n) is often simplified to Pk(x).
Note that Equation (4) holds when C is linear. When C is nonlinear, the dual distance

distribution A′i is defined by Equation (4). Furthermore, by the MacWilliams–Delsarte
inequality,

A′i � 0, (5)

holds for all i = 0, 1, · · · , n. Moreover, A0 = 1 and

qk = 1 +
n

∑
j=1

Aj, when |C| = qk. (6)

2.2. Probability of Undetected Error

The q-ary symmetric channel with symbol probability p, where 0 � p � (q− 1)/q, is
defined as follows: symbols from some alphabet A with q elements are transmitted over
the channel, and

P(b received | a sent) =

{
1− p, b = a,

p
q−1 , b �= a,

where P(b received | a sent) is the conditional probability that b is received, given that a is
sent. For a q-ary code C, when it is used on such a channel, it is possible that the decoder
fails to detect the existence of the errors. Thus, Pue, the function in terms of the weight

3
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distribution of C is given in Equation (2). Clearly, this is a difficult computational problem
for large parameters n, k, d, and q (see [2]). Hence, it is better to give bounds for Pue. For
example, here are some trivial bounds.

Theorem 1. For every q-ary code C with |C| = qk, if p < (q− 1)(1− p), then

(qk − 1)pq
n � Pue(C, p) � (qk − 1)pq

d(1− p)n−d,

where pq = p
q−1 . Especially, when q = 2 and 0 < p < 1

2 , we have

(2k − 1)pn � Pue(C, p) � (2k − 1)pd(1− p)n−d.

Proof. It is easy to check that pq
j(1 − p)n−j > pq

j+1(1 − p)n−j−1 if and only if
p < (q− 1)(1− p). Hence,

Pue =
n

∑
j=d

Aj pq
j(1− p)n−j � pq

d(1− p)n−d
n

∑
j=d

Aj = (qk − 1)pq
d(1− p)n−d,

since pq
j(1 − p)n−j � pq

d(1 − p)n−d when j � d. The lower bound can be obtained
similarly.

The above bounds are trivial. However, they are both tight, because simplex codes
over the finite field Fq attain these bounds.

2.3. Some Special Bounds

It is clear that the general bounds given by Theorem 1 will be much larger (or smaller)
than the true value of Pue for a fixed code. If the distance distribution is known, one
computes Pue(C, p) (as a function of p), and if we know some particular information about
the distance distribution, then we may get some bounds. The following is a special case
and more thoughts can be seen in Section 4.

Theorem 2. Let C be a binary code with An = 1 and Ai = An−i for 1 � i � n− 1, then

Pue =

{
pn+∑t

j=d Aj
(

pj(1− p)n−j+pn−j(1− p)j), n=2t+1,

pn+At pt(1− p)t+∑t−1
j=d Aj

(
pj(1− p)n−j + pn−j(1− p)j), n=2t.

(7)

Moreover, when d � t, we have

Pue�

⎧⎨⎩pn+
(

2k−1−1
)(

pd(1− p)n−d+pt+1(1−p)t
)

, n=2t+1,

pn+At pt(1−p)t+
(

2k−1− At
2 −1

)(
pd(1−p)n−d+pt+1(1−p)t−1

)
, n=2t,

and

Pue�

⎧⎨⎩pn+
(

2k−1−1
)(

pt(1− p)t+1+pn−d(1− p)d
)

, n=2t+1,

pn+At pt(1−p)t+
(

2k−1− At
2 −1

)(
pt−1(1−p)t+1+pn−d(1−p)d

)
, n=2t,

where 0 < p < 1
2 and d � t.

Proof. By the definition of Pue, Equation (7) holds if Ai = An−i and An = 1. Due to
0 < p < 1

2 , It is easy to check that pn−j(1− p)j � pj(1− p)n−j, where 0 � j � �n/2	. In
addition, if n = 2t + 1, then ∑t

j=d Aj = (2k − 2)/2 = 2k−1 − 1. Similarly for the case n = 2t.
Hence, we get the bounds.

4
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Remark 1. If the binary code C satisfies Ai = An−i and An = 0, we can get the following bounds:

Pue�

⎧⎨⎩2k−1
(

pd(1−p)n−d+pt+1(1−p)t
)

, n=2t+1,

At pt(1−p)t+
(

2k−1− At+A0
2

)(
pd(1−p)n−d+pt+1(1−p)t−1

)
, n= 2t,

and

Pue�

⎧⎨⎩2k−1
(

pt(1−p)t+1+pn−d(1−p)d
)

, n=2t+1,

At pt(1−p)t+
(

2k−1− At+A0
2

)(
pt−1(1−p)t+1+pn−d(1−p)d

)
, n=2t.

Here, 0, the all zero vector, may not be a codeword.

Example 1. For a binary linear code, if the all-one vector 1 is a codeword, then Ai = An−i. So,
Theorem 2 can be applied to many codes, for example, Hamming codes. It is known that the binary
Hamming codeHm is a linear [n = 2m − 1, k = 2n − 1−m, 3] code. The distance distribution of
the [15, 11, 3] Hamming code H4 is listed in Table 1. According to Theorem 2, the values of the
bounds and true probability can be seen in Figure 1.

Table 1. Distance Distribution of the Hamming CodeH4.

i 0 3 4 5 6 7 8 9 10 11 12 15

Ai 1 35 105 168 280 435 435 280 168 105 35 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

p

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b

TrueProb
UpperBound
LowerBound

Figure 1. Bounds in Theorem 2 of Pue for the Hamming CodeH4.

3. Universal Bounds for q-Ary Codes

In this section, we will discuss the bounds for Pue using different methods. These
bounds are for general codes, thus they do not look so good. Meanwhile, compared with
some known bounds, they do not perform better. However, it is the first as far as we know

5
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to give bounds for Pue using the following two methods, though they have been shown
in [21,22] due to different thoughts.

3.1. Linear Programming Bounds

Consider the linear programming problem M(n, k, d, p) that maximizes the objec-
tive function

n

∑
j=1

Aj pq
j(1− p)n−j

under the constraints:

(1) Aj � 0,
(2) ∑n

j=1 Aj = qk − 1,
(3) ∑n

j=1 AjPi(j) � −Pi(0),
(4) A1 = A2 = · · · = Ad−1 = 0.

Likewise, let m(n, k, d, p) be the minimization of the same objective function under the
same constraints.

Theorem 3. If C is a q-ary code of parameters (n, qk, d), then m(n, k, d, p) � Pue � M(n, k, d, p).

Proof. The objective function expression comes from (2). Constraint (1) is immediate by
the definition of the distance distribution. Constraints (2) and (3) come from Equation (6)
and Equation (5), respectively. Constraint (4) is a consequence of the definition of minimum
distance.

Remark 2. Let f (x) and g(x) be two functions of x, then f � g if f < g or f ∼ g, when x → 0,
where 0 < x < 1. For example, let f (x) = x2 + x and g(x) = x3 + x, then f (x) > g(x) when
0 < x < 1. But f (x) ∼ g(x), then f (x) � g(x) when 0 < x < 1 and x → 0.

Motivated by Equation (3) and [17], we have the following result.

Theorem 4. Let C be a q-ary [n, k, d]q linear code, then when p→ 0,

(qk − 1− �L	)pq
d(1− p)n−d � Pue(C, p) � (qk − 1− 
S�)pq

d(1− p)n−d, (8)

where L (resp. S) denotes the maximum (resp. minimum) of ∑n
j=d+1 Aj subject to the 2n− d constraints

−Pi(0)− (qk − 1)Pi(d) �
n

∑
j=d+1

Aj(Pi(j)− Pi(d)),

for i = 1, 2, . . . , n and j = d + 1, d + 2, . . . , n.

Proof. It is clear that Pue(C, p) � Ad pq
d(1− p)n−d, then by [17], we get the left side of

Equation (8). As for the right side, if Ad < qk − 1− 
S� and p is small enough, then by
Equation (3), Pue(C, p) < (qk − 1− 
S�)pq

d(1− p)n−d. Otherwise, Ad = qk − 1− 
S� and
then, Pue(C, p) ∼ (qk − 1− 
S�)pq

d(1− p)n−d.

Table 2 is a part of Table I in [17], which is helpful to give bounds for Pue.

Table 2. Bounds of Ad for Some Binary Codes.

Parameters [9, 4, 4] [10, 4, 4] [11, 4, 5] [12, 4, 6] [13, 4, 6] [14, 4, 7] [15, 4, 8]

Upper Bound 14 15 7 14 14 8 15

Lower Bound 6 12 5 11 4 8 15

6
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Example 2. Let C1 be a binary [15, 4, 8] code, then

Pue(C1, p) ∼ 15p8(1− p)7.

As for the binary [12, 4, 6] code C2, we have

11p6(1− p)6 < Pue(C2, p) < 14p6(1− p)6.

Obviously, for any [n, k, d] code, one can give bounds for its Pue.

Remark 3. From the above discussion, it is clear that our bounds depend solely on the three
parameters [n, k, d] of the code, and [n, k, d] is the minimal requirement to use a code in practice.

3.2. Polynomial Method

In this section, we will give some general bounds for Pue for any binary (n, 2k, d) code.
Recall the definition of the Krawtchouk polynomials and some properties. The following
identity is a Polynomial Method of expressing the duality of LP.

Lemma 1. Let β(x) ∈ Q[x] be the polynomial whose Krawtchouk expansion is

β(x) =
n

∑
j=0

β jPj(x).

Then we have the following identity

n

∑
i=0

β(i)Ai = qk
n

∑
j=0

β j A′j. (9)

Proof. Immediate by Equation (4), upon swapping the order of summation.

From now on, we denote the coefficient of Krawtchouk expansion of the polynomial
f (x) of degree n by f j, j = 0, 1, · · · , n, i.e., f (x) = ∑n

j=0 f jPj(x).
The first main result of this section is inspired by Theorem 1 in [23], and given as

follows.

Theorem 5. Let β(x) and γ(x) be polynomials over Q such that β j � 0, γj � 0 for j � 1 and
γ(i) � pq

i(1− p)n−i � β(i) for all i with Ai �= 0. Then we have the upper bound

Pue � qkβ0 − β(0), (10)

and the lower bound
Pue � qkγ0 − γ(0). (11)

Proof. By Lemma 1, we have
n

∑
j=0

Ajβ(j) � β0qk.

Returning to the definition of Pue and using the property of β(j) � pq
j(1− p)n−j, we get

Pue =
n

∑
j=1

Aj pq
j(1− p)n−j �

n

∑
j=1

Ajβ(j) � qkβ0 − β(0).

The proof of the lower bound is analogous and ommitted.

Remark 4. The above result is a special case of Proposition 5 in [22]. More general setting of the
linear programming bounds from Section 3 (Theorem 5) were already considered in [21,22].

7
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The following are some properties of the Krawtchouk expansion, and we omit the
proof, since they are not difficult.

Lemma 2 ([24] Corollary 3.13). Let f (x) = ∑n
j=0 f jPj(x) and g(x) = ∑n

j=0 gjPj(x) be polyno-
mials over Q, where fj � 0, gj � 0, 0 � j � n. Then the coefficients of the Krawtchouk expansion
of λ f (x) + μg(x) are nonnegative, where λ, μ are nonnegative rational numbers.

3.2.1. Upper Bounds

For convenience, let δi,j be the Kronecker symbol, i.e.,

δi,j =

{
1, if i = j,
0, if i �= j.

Lemma 3. For general q, the coefficients of the Krawtchouk expansion of the following polynomial

gi(x) =
(−1)i−1

(i− 1)!(n− i)!
∏n

j=1(j− x)

i− x
,

are all nonnegative if and only if i is odd, where 1 � i � n is an integer and 0! = 1. Moreover,
gi(j) = δi,j.

Proof. Let

h(x) =
qn−d+1

s− x

n

∏
j=d

(
1− x

j

)
=

n

∑
j=0

hjPj(x),

where d � s � n. Then, by Proposition 5.8.2 in [20],

hi =
1
qn

n

∑
j=0

h(j)Pj(i) =
1

qd−1

d−1

∑
j=0

(
n− j

n− d + 1

)Pj(i)
s− j

/(
n

d− 1

)

� 1
qd−1s

d−1

∑
j=0

(
n− j

n− d + 1

)
Pj(i)

/(
n

d− 1

)

=
1
s

(
n− i
d− 1

)/(
n

d− 1

)
� 0.

Note that if d = 1, we have

h(x) =
qn

n!
(−1)i−1(i− 1)!(n− i)!gs(x).

According to Lemma 2, the coefficients of the Krawtchouk expansion of (−1)i−1gi(x) are
all nonnegative.

Obviously, for any j �= i, gi(j) = 0, because j is a root of gi(x). Moreover,

gi(i) =
(−1)i−1

(i− 1)!(n− i)!

i−1

∏
�=1

(�− i)
n

∏
�=i+1

(�− i)

=
(−1)i−1

(i− 1)!(n− i)!

(
(−1)i−1(i− 1)!(n− i)!

)
= 1,

which means gi(j) = δi,j.

8
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Theorem 6. Let C be a binary code with the distance distribution Aj, where Aj = 0 for all possible
odd j, then

Pue � ∑
even i

pi(1− p)n−i
(

n
i

)(
1

2n−k + 1
)

, (12)

where even i means that i runs through the even intergers between d and n.

Proof. According to Lemma 3, the coefficients of the Krawtchouk expansion of the follow-
ing polynomial:

gi(x) =
(−1)i−1

(i− 1)!(n− i)!
∏n

j=1(j− x)

i− x

are nonnegative if and only if i is odd. Then, let

f (x) = ∑
even i

pi(1− p)n−igi(x) =
n

∑
j=0

f jPj(x).

Hence, f j � 0, f (i) = pi(1− p)n−i for even i and f (i) = 0 for odd i. By the proof of
Theorem 5,

Pue � 2k f0 − f (0),

where

f (0) = ∑
even i

(−1)pi(1− p)n−i
(

n
i

)
,

and

f0 =
1
2n ∑

even i
pi(1− p)n−i

(
n
i

)
.

Thus, the upper bound follows from Theorem 5.

Remark 5. If C is linear, then Ai is the number of codewords of weight i, which implies that
Ai � (n

i ). Hence,

Pue � ∑
i∈I

pi(1− p)n−i
(

n
i

)
,

where I = {i|Ai �= 0}. Moreover, if Ai = 0 for all odd i, then

Pue � ∑
even i

pi(1− p)n−i
(

n
i

)
. (13)

Example 3. Consider the Nordstrom–Robinson code, it is a binary nonlinear code with the distance
distribution in Table 3. Moreover, the weight distribution is the same as the distance distribution.
By Equation (2),

Pue = 112p6(1− p)10 + 30p8(1− p)8 + 112p10(1− p)6 + p16.

According to Theorem 6, the values of the upper bound and true probability can be seen in Figure 2.

Table 3. Distance Distribution of the Nordstrom–Robinson Code.

i 0 6 8 10 16

Ai 1 112 30 112 1

9
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Figure 2. The Probability of Undetected Error of the Nordstrom–Robinson Code.

Example 4. Let E be the set of binary vectors of length n and even weight, then it is actually the
Reed–Muller code RM(n− 1, n) in Problem 5 in [2] and is generated by all the binary vectors of
weight 2. Hence,

Pue(E , p) =
�n/2	
∑
i=1

(
n
2i

)
p2i(1− p)n−2i.

Remark 6. The bound is suitable for many codes, and thus it seems not good. In fact, there exists
some code C, whose Pue is very large.

Motivated by [17], we have the following upper bounds for linear codes over F2.

Proposition 1. When C is a q-ary linear [n, k, d] code and p is small enough, we have the
following statements:

(1) If n + 1 + qd− nq > 0, then

Pue �
qk + nq− n− 1
n− nq + 1 + qd

pq
d(1− p)n−d;

(2) If n + qd− nq− 1 < 0, then

Pue �
qk−2n(qn− n− qd + 1) + n(d− 1)

n− d
pq

d(1− p)n−d;

(3) If q = 2, n− 2d > 0, (n− 2d + 2)2 > n, and Ai �= 0 only if d � i � n− 2d, then

Pue �
2k−2((n− 2d + 2)2 − n) + (d− 1)(n− d + 1)

n + 1− 2d
pd(1− p)n−d.

Proof. These three bounds can be deduced easily by Equation (3) and Corollaries 4–6 in [17].

10
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Remark 7. The results in Corollary 4–6 in [17] are actually the upper bounds of Ad under different
conditions. Considering Equation (3), it is necessary to make p small enough. According to the
proof of Theorem 4, if Ad does not meet such bounds, then “<” holds.

3.2.2. Lower Bounds

Similar to Proposition 1, by Corollaries 1–3 in [17], we have

Proposition 2. If C is a q-ary linear code, then we have the following statements:

(1) If d = 
(n− 1)(q− 1)/q�, then

Pue �
qk − nq + n− 1
(n− d)q− n + 1

pq
d(1− p)n−d;

(2) If qd > nq− n− 2q + 1, then

Pue �
qk−2n(n− qn + qd + 2q− 1)− nd− n

n− d
pq

d(1− p)n−d;

(3) If q = 2 and all weights of C are in [d, n− d], with n− 2d > 0 and (n− 2d− 1)2 < n + 1,
then

Pue �
(

2k−2(n2 − 4nd− 3n) + (2k + 1)d(d + 1)
2d− n

− d− 1

)
pd(1− p)n−d.

When using quadratic polynomials, we have the following bound.

Proposition 3. Let f0, f1 and f2 be nonnegative rational numbers such that

f0 − f1n + f2

(
n
2

)
� pd(1− p)n−d and f1 + n f2 � 2d f2,

then, for a binary (n, 2k, d) code, we have

Pue � 2k f0 − pd(1− p)n−d − 2 f1n,

where 0 � p � 1
2 .

Proof. It is known that, when q = 2, P0(x) = 1, P1(x) = n− 2x and P2(x) = 2x2− 2nx+(n
2).

Let f (x) = f0P0(x) + f1P1(x) + f2P2(x) and then it is a quadratic function whose axis of
symmetry is f1+n f2

2 f2
. Considering that pi+1(1− p)n−i−1 � pi(1− p)n−i, it is sufficient to

show that
f (n) � pd(1− p)n−d and

f1 + n f2

2 f2
� d,

i.e., f (i) � f (n) � pd(1− p)n−d � pi(1− p)n−i for i � d. Equivalently,

f0 − f1n + f2

(
n
2

)
� pd(1− p)n−d, f1 + n f2 � 2d f2.

The result follows from Theorem 5.

4. Good Bounds for Hamming Codes

Recall that the weight enumerator of the code C is the homogeneous polynomial

WC(x, y) = ∑
c∈C

xn−wt(u)ywt(u),

11



Entropy 2023, 25, 1349

where wt(u) means the Hamming weight the codeword u. The binary Hamming codeHm
is a [n = 2m − 1, k = n−m, d = 3] code, with the weight enumerator

(x + y)n + n(x + y)(n−1)/2(x− y)(n+1)/2

n + 1
,

whose distance distribution Ai satisfies

n

∑
i=1

iAiyi−1 +
n

∑
i=0

Aiyi +
n−1

∑
i=0

(n− i)Aiyi+1 = (1 + y)n,

and the recurrence A0 = 1, A1 = 0,

(i + 1)Ai+1 + Ai + (n− i + 1)Ai−1 =

(
n
i

)
.

Moreover,

(1 + y)n =
∑n

i=1 iAiyi

y
+

n

∑
i=0

Aiyi + ny
n−1

∑
i=0

Aiyi − y
n−1

∑
i=0

iAiyi

=
n−1

∑
i=1

Aiyi
(

i
y
− iy

)
+ (ny + 1)

n−1

∑
i=1

Aiyi + yn + nyn−1 + ny + 1.

Let α ∈ F2m be a primitive element and let g(x) ∈ F2[x] be the minimal polynomial
of α with respect to F2. According to Exercise 7.20 in [20], g(x) can be regarded as the
generator polynomial of a Hamming code. Since deg(g(x)) = m > 1, then

g(x)
∣∣∣∣ xn − 1

x− 1
= 1 + x + x2 + · · ·+ xn−1,

which implies that the all-one vector is a codeword of the Hamming code and An = 1.
Note that

Pue =
n

∑
i=1

Ai pi(1− p)n−i = (1− p)n
n

∑
i=1

Ai

(
p

1− p

)i
.

Hence,
n−1

∑
i=1

Ai

(
p

1− p

)i
=

Pue − pn

(1− p)n .

Let y = ε = p
1−p , where p ∈ (0, 1/2), then

(nε + 1)(Pue − pn) + (1− p)n
n−1

∑
i=1

Aiε
i
(

i
ε
− iε

)
= 1− pn − np(1− p)n−1 − npn−1(1− p)− (1− p)n.

According to Chapter 6, Exercise(E2), page 157 in [2], there are n− 4 nonzero weights of
Hm. Considering that An = 1, we have Ai = 0 if and only if i = 1, 2, n− 1, n− 2. Since
0 < p < 1/2, then 0 < ε < 1 and we have

3
ε
− 3ε � i

ε
− iε � n− 3

ε
− (n− 3)ε.

12
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Obviously,

(1− p)n
n−1

∑
i=1

Aiε
i
(

i
ε
− iε

)
� (1− p)n

n−1

∑
i=1

Aiε
i
(

n− 3
ε
− (n− 3)ε

)

=

(
n− 3

ε
− (n− 3)ε

) n−1

∑
i=1

Ai pi(1− p)n−i

=

(
n− 3

ε
− (n− 3)ε

)
(Pue − pn).

Similarly,

(1− p)n
n−1

∑
i=1

Aiε
i
(

i
ε
− iε

)
�

(
3
ε
− 3ε

)
(Pue − pn).

Thus,

Pue �
1− pn − np(1− p)n−1 − npn−1(1− p)− (1− p)n

3
ε − 3ε + nε + 1

+ pn (14)

=
p(1− p)− pn+1(1− p)− np2(1− p)n − npn(1− p)2 − p(1− p)n+1

(n− 1)p2 − 5p + 3
+ pn

and

Pue �
1− pn − np(1− p)n−1 − npn−1(1− p)− (1− p)n

n−3
ε − (n− 3)ε + nε + 1

+ pn (15)

=
p(1− p)− pn+1(1− p)− np2(1− p)n − npn(1− p)2 − p(1− p)n+1

(n− 1)p2 − (2n− 7)p + n− 3
+ pn.

Summarize the above discussions, we get

Theorem 7. Let Hm be the binary [n = 2m − 1, k = n − m, 3] Hamming code, then when
0 < p < 1/2 and m � 3, we have the upper bound Equation (14) and the lower bound
Equation (15) for Pue, respectively.

Proof. Note that the upper bound should be larger or equal than the lower bound, then

(−(2n− 7)p + n− 3)− (−5p + 3) = (n− 6)(1− 2p) � 0.

It is sufficient to solve the inequality n = 2m − 1 > 6, due to 1− 2p > 0. Hence, m � 3.

Remark 8. The difference of the upper bound and the lower bound is small.
Let U(n, p) = H1/H and L(n, p) = H2/H be the bound given by Equation (14) and

Equation (15), respectively, where H1 = (n− 1)p2 − 5p + 3, H2 = (n− 1)p2 − (2n− 7)p +
n− 3 and

H = p(1− p)− pn+1(1− p)− np2(1− p)n − npn(1− p)2 − p(1− p)n+1.

In fact, H is a polynomial of p whose degree n + 2 and the leading coefficient is

hn+2 = 1 + (−1)n+2n− n + (−1)n+2 = (1 + (−1)n) + n((−1)n − 1) �= 0,

13
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while the product H1H2 is just a polynomial whose degree is 4. Then,

U(n, p)− L(n, p) =
(H2 − H1)H

H1H2
=

(n− 6)(1− 2p)H
H1H2

−→ (n− 6)(1− 2p)hn+2 pn+2

(n− 1)2 p4 −→ 0 (n→ +∞).

That is to say, the lower bound and the upper bound are very close. On the other hand,

H1 � 12n− 37
4(n− 1)

and H2 � n + 1
4

.

Then,

U(n, p)− L(n, p) =
(H2 − H1)H

H1H2
=

(n− 6)(1− 2p)H
H1H2

<
(n− 6)(1− 2p)p(1− p)

H1H2
<

(n− 6)(1− 2p)p(1− p)
12n−37
4(n−1)

n+1
4

=
16(n− 1)(n− 6)
(n + 1)(12n− 37)

p(1− p)(1− 2p)

�
√

3
18

16(n− 1)(n− 6)
(n + 1)(12n− 37)

−→ 2
√

3
27
≈ 0.1283 (n→ +∞).

Here, let F(p) = p(1− p)(1− 2p), then its derivative is F′(p) = 6p2 − 6p + 1. Note that the
roots of F′(p) are 3±

√
3

6 . Since 0 < p < 1/2, then we choose the root p0 = 3−
√

3
6 . Hence,

F(p) � F(p0) =

√
3

18
≈ 0.0962.

Thus the difference of the upper bound and the lower bound is about 0.1283 at most, and tends to 0
when n→ +∞.

Example 5. Using the bounds in Theorem 7, the results in Figure 1 can be improved. See Figure 3.
When m = 5, the bounds Equations (15) and (14) are also valid. See Figure 4.
Note that the difference of the bounds Equations (15) and (14) is about 0.05, which is much

smaller than the given 0.1283.
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Figure 3. Bounds in Theorem 7 of Pue for the Hamming CodeH4.
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Figure 4. Bounds in Theorem 7 of Pue for the Hamming CodeH5.

It is known that the Hamming codes satisfy the 2−m bound when 0 < p < 1/2
i.e., Pue � 2−m. See [5] for more details. In fact, the obtained new bound is better than the
ordinary 2−m bound, when p is not large.

Theorem 8. Let Hm be the binary [n = 2m − 1, k = n − m, 3] Hamming code, then when
0 < p < 1/2 and m ≥ 3, we have

Pue �
p− p2

(n− 1)p2 − 5p + 3
+ pn. (16)

Moreover, if p < p0, this upper bound is better than the 2−m bound, where p0 is the smaller root of
the equation (2m+1 − 2)x2 − (2m + 5)x + 3 = 0.

Proof. Assume that
p− p2

(n− 1)p2 − 5p + 3
<

1
2m ,

then it is sufficient to solve the inequality

(2m+1 − 2)p2 − (2m + 5)p + 3 > 0.

Obviously, the inequality holds when p < p0, where

p0 =
(2m + 5)−

√
(2m + 5)2 − 12(2m+1 − 2)
2(2m+1 − 2)

is the smaller root of the equation (2m+1 − 2)x2 − (2m + 5)x + 3 = 0.

Example 6. It is clear that when p is small enough, the new upper bound Equation (14) is smaller
than the 2−m bound in Figures 3 and 4.

Remark 9. Of course, the weight distribution of the binary Hamming codes can be computed and
expressed by the sum of combinatorial numbers, which are usually very large when m is large. So,
the method in this section is to estimate Pue quickly. Compared with the 2−m bound, our bounds are
better when p is small enough.
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5. Conclusions

In this paper, we studied the probability of an undetected error Pue and gave many
bounds for Pue. The main contributions of this paper are the following:

(1) The bounds obtained from the linear programming problem are given in Theorem 4.
The bounds obtained from the Polynomial Method are given. According to the
main Theorem 5, we get Theorem 6 (applied to the codes with even distances)
and Proposition 3.

(2) Combining the results of [17], we give the bounds in Propositions 1 and 2.
(3) We find sharper bounds for binary Hamming codes (see Theorems 7 and 8).

To the best of our knowledge, that is the very first time that the LP method has been
applied to bound Pue. Even though computing Pue exactly requires knowledge of the code
weight spectrum, our bounds depend solely on the three parameters [n, k, d], of the code.
The weight frequencies are only used as variables in the LP program. Knowing the three
parameters [n, k, d] is the minimal requirement to use a code in applications.

To sum up, our bounds are most useful when the exact weight distribution is too hard
to compute. Our bounds perform well when p is small enough and the kissing number Ad
is known, and there are many such codes.

We mention the following open problems. The readers interested in Hamming codes
are suggested to derive bounds for general q-ary Hamming codes with q > 2. Moreover, it
is worth mentioning that the linear programming problem works better numerically than
the Polynomial Method. The interest of the latter lies in producing bounds with closed
formulas. It is a challenging open problem to derive better bounds with polynomials of
degree higher than 2.
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Abstract: Vectorial Boolean functions and codes are closely related and interconnected. On the one
hand, various requirements of binary linear codes are needed for their theoretical interests but, more
importantly, for their practical applications (such as few-weight codes or minimal codes for secret
sharing, locally recoverable codes for storage, etc.). On the other hand, various criteria and tables
have been introduced to analyse the security of S-boxes that are related to vectorial Boolean functions,
such as the Differential Distribution Table (DDT), the Boomerang Connectivity Table (BCT), and the
Differential-Linear Connectivity Table (DLCT). In previous years, two new tables have been proposed
for which the literature was pretty abundant: the c-DDT to extend the DDT and the c-BCT to extend
the BCT. In the same vein, we propose extended concepts to study further the security of vectorial
Boolean functions, especially the c-Walsh transform, the c-autocorrelation, and the c-differential-linear
uniformity and its accompanying table, the c-Differential-Linear Connectivity Table (c-DLCT). We
study the properties of these novel functions at their optimal level concerning these concepts and
describe the c-DLCT of the crucial inverse vectorial (Boolean) function case. Finally, we draw new
ideas for future research toward linear code designs.

Keywords: differential uniformity; vectorial function; S-box; linear codes; minimal codes

1. Introduction

Vectorial Boolean functions are intensively used to produce S-boxes in block ciphers
such as DES [1], Rinjdael or AES [2], Blowfish [3], GOST [4], and Serpent [5]. Various
criteria have been proposed to test the resistance of S-boxes and the corresponding vectorial
Boolean functions to known cryptanalytical attacks, such as the differential attack [6], the
linear attack [7], and some of their variants.

Let F : F2n → F2m be a (n, m)-vectorial Boolean function. The derivative of F in the
direction of a ∈ F2n is the function Da(F)(x) = F(x) + F(x + a). The derivative is used
to analyse the resistance of a vectorial Boolean function to the differential attack [6] and
serves to build the Differential Distribution Table (DDT). The derivative is also used in the
Boomerang Connectivity Table (BCT) [8] and in the Differential-Linear Connectivity Table
(DLCT) [9,10]. The entry at (a, b) ∈ F2n × F2m of the DDT is defined by

DDTF(a, b) = #{x ∈ F2n : F(x) + F(x + a) = b}.

To measure the resistance of a vectorial Boolean function, Nyberg [11] introduced the
differential uniformity as

δF = max{DDTF(a, b) | (a, b) ∈ F2n × F2m , and a �= 0}.

Entropy 2024, 26, 188. https://doi.org/10.3390/e26030188 https://www.mdpi.com/journal/entropy18
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The most resistant vectorial Boolean functions have small differential uniformities. The
reader can consult the [12] for a complete background on vectorial Boolean functions with
a deep analysis of their cryptographic aspects.

At FSE 2002, Borisov et al. [13] proposed a variant of the differential attack to study
ciphers’ resistance based on using modular multiplication as a primitive operation. This mo-
tivated Ellingsen et al. [14] to introduce the concept of c-differentials to study the resistance
of a vectorial Boolean function to multiplicative variants of the differential attack. For a vec-
torial Boolean function F : F2n → F2m and c ∈ F2m , the c-derivative F with respect to a ∈ F2n

is the (n, m)-vectorial Boolean function cDaF defined by cDaF(x) = F(x + a) + cF(x) for
all x ∈ F2n . The c-derivative is used to study the resistance of ciphers based on popular
vectorial Boolean functions such as the inverse function [15], the Gold function [16], and
various other functions [17–21]. As for the DDT, a c-differential table was proposed in [14],
where the entry at (a, b) ∈ F2n × F2m is defined by

cDDTF(a, b) = #{x ∈ F2n | F(x + a) + cF(x) = b}.

Also, a c-differential uniformity was proposed in [14] by

cδF = max{cDDTF(a, b) | (a, b) ∈ F2n × F2m , and a �= 0 if c = 1}.

The construction of functions, particularly permutations, with low c-differential uni-
formity is an interesting problem, and recent work has focused heavily on this direction.
Likewise, regarding the original notion of differential uniformity leading to optimal func-
tions Perfect Nonlinear (PN) and Almost Perfect Nonlinear (APN) over finite fields in odd
and even characteristics, respectively, optimal functions having the lowest possible values
of a c-differential uniformity have also been introduced. One can refer to [19,22–27] and the
references therein. Some of those functions with low c-differential uniformity have been
investigated. There are relatively few known (non-trivial, nonlinear) optimal classes of PcN
and APcN functions over finite fields with an even characteristic (see, e.g., [18,28–31] and
the references therein).

Another popular cryptanalysis attack on S-boxes derived from Boolean functions is
the boomerang attack, proposed by Wagner [32] in 1999. In connection with the boomerang
attack, Cid et al. [8] proposed the Boomerang Connectivity Table (BCT) for a vectorial
Boolean function where the entry at (a, b) ∈ F2n × F2m is defined by

BCTF(a, b) = #{x ∈ F2n : F−1(F(x) + b) + F−1(F(x + a) + b) = a}.

Based on the BCT, Boura and Canteaut [33] introduced the boomerang uniformity of
a vectorial Boolean function to measure its resistance against boomerang attack. The
boomerang uniformity of F is defined by

βF = max
a∈F∗2n ,b∈F∗2m

BCTF(a, b).

To extend the BCT and the boomerang uniformity of a vectorial Boolean function,
Stǎnicǎ [34] introduced the concept of the c-Boomerang Connectivity Table (c-BCT). For
c ∈ F∗2m , the c-BCT is defined at the entry (a, b) ∈ F2n × F2m by

cBCTF(a, b) = #{x ∈ F2n : F−1(cF(x) + b) + F−1
(

c−1F(x + a) + b
)
= a}.

The corresponding c-boomerang uniformity is defined by

cβF = max
a∈F∗2n ,b∈F∗2m

cBCTF(a, b).

More generalizations of the differential and boomerang uniformities can be found in [35].
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In 2019, Bar-On et al. [10] (see also [9]) introduced the Differential-Linear Connectivity
Table (DLCT) of a vectorial Boolean function where the entry at (a, b) ∈ F2n ×F2m is defined by

DLCTF(a, b) = #{x ∈ F2n | b · (F(x + a) + F(x)) = 0} − 2n−1,

where x · y is the inner product of x and y on F2m . To measure the resistance of an S-box
connected to a vectorial Boolean function, the differential-linear uniformity of F can be
used, as defined by Li et al. in [36],

γF = max
a∈F∗2n ,b∈F∗2m

|DLCTF(a, b)|.

Various links exist between the DLCT and the Autocorrelation Table (ACT) of a vectorial
Boolean function F. The ACT is defined at (a, b) ∈ F2n × F2m by

ACTF(a, b) = ∑
x∈F2n

(−1)b·(F(x)+F(x+a)).

The corresponding absolute indicator is defined as

ΔF = max
u∈F2n ,u �=0,

b∈F∗2m

|ACTF(a, b)|.

In [37], Canteaut et al. showed that the DLCT and the ACT of a vectorial Boolean function
satisfy γF = 1

2 ΔF and DLCTF(a, b) = 1
2ACTF(a, b) for all (a, b) ∈ F2n × F2m .

One can observe that the derivative Da(F)(x) = F(x) + F(x + a) of a Boolean function
F is used in various tables, such as the DDT, the BCT, and the DLCT. Motivated by the
crucial role of the derivative in the former tables and the attacks related to them, we propose
three new concepts towards the c-derivative cDa(F)(x) = F(x + a) + cF(x):

• The c-Walsh transform of a vectorial Boolean function F: For c ∈ F∗2m , it is defined for
a ∈ F2n and b ∈ F2m by

cWF(a, b) = ∑
x∈F2n

(−1)a·x+b·cF(x).

• The c-autocorrelation of a vectorial Boolean function: Let c ∈ F2m , c �= 0. The
c-autocorrelation of F at (a, b) ∈ F2n × F2m is the integer

cACF(a, b) = ∑
x∈F2n

(−1)b·(F(x+a)+cF(x)).

The absolute indicator is

cΔF = max
u∈F2n ,u �=0 if c=1,

b∈F∗2m

|cACF(a, b)|,

and the autocorrelation spectrum is

cΛF = {cACF(a, b), a ∈ F∗2n , b ∈ F∗2m}.

• The c-Differential-Linear Connectivity Table (c-DLCT) where we use the c-derivative:
Let c ∈ F∗2m . The c-DLCT of F is a 2n × 2m table where the entry at (a, b) ∈ F2n × F2m

is defined by

cDLCTF(a, b) = #{x ∈ F2n | b · (F(x + a) + cF(x)) = 0} − 2n−1.
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We also define the c-differential-linear uniformity of F as

cγF = max
u∈F2n ,u �=0 if c=1,

b∈F∗2m

|cDLCTF(a, b)|,

and, also, we define the c-DLCT spectrum of F by

cΓF = {cDLCTF(a, b), a ∈ F2n , b ∈ F2m}.

We show that there are numerous relationships between the three new concepts. Typi-
cally, we show that cDLCTF(a, b) = 1

2 cACF(a, b) for all (a, b) ∈ F2n × F2m and cγF = 1
2 cΔF.

Moreover, we focus on the inverse function defined on F2n by F(x) = 1
x if x �= 0,

and F(0) = 0. We study its c-DLCT and give an explicit value for the entries, including
when c = 1.

We mention that there is an interesting connection between c differential uniformity
and combinatorial designs, which has been highlighted in [38] by showing that the graph of
a perfect c-nonlinear function (an optimal function concerning the c differential uniformity)
is a set of differences in a quasigroup. Difference sets give rise to symmetric designs, which
are known to build optimal self-complementary codes. Some types of designs also have
concrete applications such as secret sharing and visual cryptography.

Finally, we emphasise that one of our practical applications in brother research lines
is to use the derived (optimal) functions (see, e.g., [12]) to derive minimal binary linear
codes (see, e.g., [39]) that are needed for their theatrical interests but, more importantly, for
their practical applicants such as few-weight codes or minimal codes for secret sharing and
securing two-party computation.

The rest of this paper is organized as follows. Section 2 presents some known results
that will be used in this paper. In Section 3, we define the c-Walsh and the c-autocorrelation
of a vectorial Boolean function and study some of their properties. In Section 4, we present
the concept of the c-DLCT and study its properties. We investigate the c-DLCT of the
inverse function in Section 5. Finally, Section 6 concludes the paper and presents new ideas
for future research toward linear code designs along the same lines as designing (minimal)
codes from Almost Perfect Nonlinear (APN) and recent achievements [40] on minimal
codes from low differential uniformity.

2. Preliminaries

In this section, we present some results and definitions that will be used in the
next sections, including the c-derivative and the c-differential uniformity of a vectorial
Boolean function.

For b ∈ F2n , we define the orthogonal space b⊥ of b as follows.

Definition 1. For b ∈ F2n , the orthogonal space b⊥ of b is defined by

b⊥ = {x ∈ F2n | b · x = 0},

where b · x is the inner product of b and x on F2n .

The following result gives an explicit value for #b⊥.

Proposition 1. For b ∈ F2n , the orthogonal space b⊥ of b satisfies

#b⊥ =

{
2n if b = 0,

2n−1 if b �= 0.
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Proof. It is obvious that #0⊥ = 2n. Suppose that b �= 0. Then, the binary expansion of b is
in the following form.

b = (bn−1, bn−2, . . . , bj, . . . , b0).

Suppose that bj = 1 for some j with 0 ≤ j ≤ n− 1. Let x ∈ F2n such that x �∈ b⊥, that is
b · x = 1, with the binary expansion

x = (xn−1, xn−2, . . . , xj, . . . , x0).

Let y ∈ F2n with the binary expansion

y = (yn−1, yn−2, . . . , xj + 1 (mod 2), . . . , x0).

Then,

b · y = b · x + bj ≡ 1 + 1 ≡ 0 (mod 2).

Hence, y ∈ b⊥. It follows that for b �= 0, each element x of F2n satisfying b · x = 1 is in
correspondence with one element y of F2n satisfying b · y = 0. As a consequence, we have
#b⊥ = 2n−1.

For n ≥ 1, let F2n be the finite field with 2n elements. The trace of an element x ∈ F2n

is given by

Tr(x) = x + x2 + · · ·+ x2n−1
,

and satisfies Tr(x) ∈ {0, 1}. The trace function satisfies Tr(x2) = Tr(x) for all x ∈ F2n .
The following lemma is well known and is useful for our work.

Lemma 1. Let n and k be positive integers and e = gcd(k, n). Then,

gcd
(

2k + 1, 2n − 1
)
=

⎧⎪⎨⎪⎩
1 if

n
e

is odd,

2e + 1 if
n
e

is even.

Some specific equations on F2n may be involved. The following result deals with the
quadratic equation.

Lemma 2. (Proposition 1 of [41]) Let a, b, c ∈ F2n . The equation ax2 + bx + c = 0 has

(i) One root if and only if b = 0.

(ii) Two roots if and only if b �= 0 and Tr
(

ac
b2

)
= 0.

(iii) No root if and only if b �= 0 and Tr
(

ac
b2

)
= 1.

The following lemma concerns another equation on F2n .

Lemma 3. Let k and n be positive integers such that k < n. Let d = gcd(k, n), m = n
d > 1,

and βm−1 = Trn
d(B). Then, the trinomial f (X) = X2k

+ X + B has no root if βm−1 �= 0 and
has 2d roots x + δτ in F2n if βm−1 = 0, where δ ∈ F2d , τ ∈ F2n is any element satisfying
τ2k−1 = 1, and

x =
1

Trn
d(c)

m−1

∑
i=0

(
i

∑
j=0

c2kj

)
B2ki

,

with any c ∈ F∗2n satisfying Trn
d(c) ∈ F∗2d .
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In [14], Ellingsen et al. proposed the concept of c-differentials. The following defini-
tions are valid for binary finite fields.

Definition 2. Let F : F2n → F2m be an (n, m)-vectorial Boolean function and c ∈ F2m . The
c-derivative F with respect to a ∈ F2n is the (n, m)-vectorial function cDaF satisfying t px

cDaF(x) = F(x + a) + cF(x)

for all x ∈ F2n .

Definition 3. Let F : F2n → F2m be a (n, m)-vectorial Boolean function, and c ∈ F2m. The c-
differential table of F is an 2n × 2m table whose components are defined for a ∈ F2n and b ∈ F2m

by
cΔF(a, b) = #{x ∈ F2n | F(x + a) + cF(x) = b}.

Definition 4. Let F : F2n → F2m be a (n, m)-vectorial Boolean function, and c ∈ F2m . The
c-differential uniformity of F is

cΔF =

⎧⎪⎨⎪⎩
max

a∈F2n ,b∈F2m
cΔF(a, b) if c �= 1,

max
a∈F2n\{0},b∈F2m

cΔF(a, b) if c = 1.

3. The c-Walsh and c-Autocorrelation of a Vectorial Boolean Function

The Walsh transform of a Boolean function f : F2n → F2 is defined at u ∈ F2n by

Wf (u) = ∑
x∈F2n

(−1)u·x+ f (x),

where u · x is the inner product of u and x. The Walsh transform serves to compute the
linearity of f as

L( f ) = max
u∈F2n

|Wf (u)|.

For a vectorial Boolean function F : F2n → F2m , the Walsh transform of F is defined for
u ∈ F2n and v ∈ F2m by

WF(u, v) = ∑
x∈F2n

(−1)u·x+v·F(x),

and is used to compute the linearity of F by

L(F) = max
u∈F2n ,v∈F2n\{0}

|WF(u, v)|.

We extend the Walsh transform of a vectorial Boolean function to the c-Walsh transform
as follows.

Definition 5. Let F be an (n, m)-vectorial Boolean function, and c ∈ F∗2m . The c-Walsh transform
of F is defined for u ∈ F2n and v ∈ F2m by

cWF(u, v) = ∑
x∈F2n

(−1)u·x+v·cF(x).

The autocorrelation function is used to study various properties of the Boolean func-
tions (see [42]).

Definition 6. Let f be Boolean function defined on F2n . The autocorrelation of f at u ∈ F2n is
the integer
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ACf (u) = ∑
x∈F2n

(−1) f (x)+ f (x+u),

and its absolute indicator is Δ f = maxu∈F2n ,u �=0

∣∣∣ACf (u)
∣∣∣.

We notice that u = 0 is excluded in the definition of the absolute indicator since
AC f (0) = ∑x∈F2n (−1) f (x)+ f (x) = 2n. The generalization of the autocorrelation to vectorial
Boolean functions can be then defined as follows.

Definition 7. Let F be an (n, m)-vectorial Boolean function defined on F2n . The autocorrelation of
F at (u, v) ∈ F2n × F2m is the integer

ACF(u, v) = ∑
x∈F2n

(−1)v·(F(x)+F(x+u)).

The absolute indicator is

ΔF = max
u∈F2n ,u �=0,
v∈F2m ,v �=0

|ACF(u, v)|,

and the autocorrelation spectrum is

ΛF = {ACF(u, v), u ∈ F2n , u �= 0, v ∈ F2m , v �= 0}.

The trivial values are not considered in the definition of the absolute indicator since
ACF(0, v) = ACF(u, 0) = 2n.

Inspired by Definition 6, we introduce the notion of c-autocorrelation of a Boolean function.

Definition 8. Let f be the Boolean function defined on F2n , and c ∈ F2m, c �= 0. The c-autocorrelation
of f at u ∈ F2n is the integer

cACf (u) = ∑
x∈F2n

(−1) f (x+u)+c f (x),

and the c-absolute indicator is cΔ f = maxu∈F2n

∣∣∣ACf (u)
∣∣∣.

Similarly, to generalize Definition 7, we define the c-autocorrelation of a vectorial
Boolean function.

Definition 9. Let F be an (n, m)-vectorial Boolean function defined on F2n , and c ∈ F2m , c �= 0.
The c-autocorrelation of F at (u, v) ∈ F2n × F2m is the integer

cACF(u, v) = ∑
x∈F2n

(−1)v·(F(x+u)+cF(x)).

The absolute indicator is

cΔF = max
u∈F2n ,u �=0 if c=1,

v∈F2m ,v �=0

|cACF(u, v)|,

and the autocorrelation spectrum is

cΛF = {cACF(u, v), u ∈ F2n , v ∈ F2m , }.

To ease the study of the c-autocorrelation of a vectorial Boolean function F, we present
its c-autocorrelation table defined at (u, v) ∈ F2n × F2m by

cACTF(u, v) = ∑
x∈F2n

(−1)v·(F(x+u)+cF(x)).
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The following result links the c-autocorrelation of a vectorial Boolean function and its
c-Walsh transform.

Proposition 2. Let F be an (n, m) Boolean function. Then, for any u ∈ F2n and any v ∈ F2n ,

WF(u, v)cWF(u, v) = ∑
z∈F2n

(−1)u·z
cACF(z, v).

Proof. We have

WF(u, v)cWF(u, v) = ∑
x∈F2n

(−1)u·x+v·F(x) ∑
y∈F2n

(−1)u·y+v·cF(y)

= ∑
x,y∈F2n

(−1)u·(x+y)+v·(F(x)+cF(y)

= ∑
y,z∈F2n

(−1)u·z+v·(F(y+z)+cF(y))

= ∑
z∈F2n

(−1)u·z ∑
y∈F2n

(−1)v·(F(y+z)+cF(y))

= ∑
z∈F2n

(−1)u·z
cACF(z, v).

This finishes the proof.

4. The c-Differential-Linear Connectivity Table of a Vectorial Boolean Function

In this section, we present a new concept, called the c-Differential-Linear Connectivity
Table (c-DLCT), which generalizes the standard DLCT, independently defined in 2018 by
Kim et al. [9] and Bar-On et al. [10]

We start by defining the standard Differential-Linear Connectivity Table (DLCT).

Definition 10. Let F be an (n, m)-vectorial Boolean function. The DLCT of F is an 2n × 2m table
where the entry at (u, v) ∈ F2n × F2m is

DLCTF(u, v) = #{x ∈ F2n | v · (F(x + u) + F(x)) = 0} − 2n−1.

The DLCT is a tool that could analyse the relationships between differential and linear
parts of a block cipher. One can observe that if x ∈ F2n is such that v · (F(x+ u)+ F(x)) = 0,
then v · (F((x + u) + u) + F(x + u)) = 0. Consequently, DLCTF(u, v) is always even.
Moreover, if u = 0, or if v = 0, then DLCTF(u, v) = 2n−1. This induces the following
definition for differential-linear connectivity uniformity.

Definition 11. Let F be an (n, m)-vectorial Boolean function. The differential-linear connectivity
uniformity of F is

γF = max
u∈F∗2n ,v∈F∗2m

|DLCTF(u, v)|.

The DLCT of a vectorial Boolean function is related to the autocorrelation function by
the following relation.

ACF(u, v) = #{x ∈ F2n | v · (F(x) + F(x + u)) = 0)}
− #{x ∈ F2n | v · (F(x) + F(x + u)) = 1}
= 2#{x ∈ F2n | v · (F(x) + F(x + u)) = 0} − 2n

= 2DLCTF(u, v).

The DLCT is a tool to study the relationships between the linear and the differential
properties of a block cipher. For (u, v) ∈ F2n × F2m , it counts the number of elements
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x ∈ F2n such that v · (F(x + u) + F(x)) = 0. Let a ∈ F2m , a �= 0, and b ∈ F2m , b �= 0, be two
fixed non-zero elements. It is possible to study the relationships between the linear and the
differential properties of a block cipher by studying the number of solutions of the equation
v · (aF(x + u) + bF(x)) = 0 or equivalently v · (F(x + u) + cF(x)) = 0, where c = a

b . This
leads us to define a function’s c-Differential-Linear Connectivity Table (c-DLCT).

Definition 12. Let F be an (n, m)-vectorial Boolean function, and c ∈ F2m , c �= 0. The c-DLCT of
F is an 2n × 2m table where the entry at (u, v) ∈ F2n × F2m is

cDLCTF(u, v) = #{x ∈ F2n | v · (F(x + u) + cF(x)) = 0} − 2n−1.

Moreover, the c-differential-linear connectivity uniformity of F is

cγF = max
u∈F2n ,u �=0 if c=1,

v∈F2m ,v �=0

|cDLCTF(u, v)|,

and the c-DLCT spectrum of F is defined for (u, v) ∈ F2n × F2m by

cΓF = {cDLCTF(u, v), u ∈ F2n , v ∈ F2m}.

From Definitions 9 and 12, we obtain the following connection between the cACT and
the cDLCT of a vectorial Boolean function.

Proposition 3. Let F be (n, m)-vectorial Boolean function. Then, for all u ∈ F2n and v ∈ F2m ,

cDLCTF(u, v) =
1
2 cACF(u, v), and cγF =

1
2 cΔF.

Proof. We have

cACF(u, v) = #{x ∈ F2n | v · (F(x + u) + cF(x)) = 0)}
− #{x ∈ F2n | v · (F(x + u) + cF(x)) = 1}
= 2#{x ∈ F2n | v · (F(x + u) + cF(x)) = 0} − 2n

= 2cDLCTF(u, v).

which gives cDLCTF(u, v) = 1
2 cACF(u, v). On the other hand, we have

cΔF = max
u∈F2n ,u �=0 if c=1,

v∈F2m ,v �=0

|cACF(u, v)| = 2 max
u∈F2n ,u �=0 if c=1,

v∈F2m ,v �=0

cDLCTF(u, v) = 2cγF,

and cγF = 1
2 cΔF. This finishes the proof.

As a consequence of the former proposition, the following result connects the c-DLCT
and the c-derivative of a vectorial Boolean function via the Walsh transform.

Proposition 4. Let F be an (n, m)-vectorial Boolean function, and c ∈ F2m , c �= 0. Then, for any
(u, v) ∈ F2n × F2m ,

cDLCTF(u, v) =
1
2

W(cDu F)(0, v).

Proof. Combining Definition 2 and the definition of the Walsh transform, we obtain

W(cDu F)(0, v) = ∑
x∈F2n

(−1)v·(F(x+u)+cF(x)) = cACF(u, v).
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Then, using Proposition 3, we have

WcDu F(0, v) = cACF(u, v) = 2cDLCTF(u, v),

and cDLCTF(u, v) = 1
2 W(cDu F)(0, v).

The following result shows a connection between the c-DLCT and the c-derivative of
a vectorial Boolean function via the Walsh transform.

Proposition 5. Let F be an (n, m)-vectorial Boolean function, and c ∈ F2m , c �= 0. Then, for any
(u, v) ∈ F2n × F2m ,

WF(u, v)cWF(u, v) = 2 ∑
ω∈F2n

(−1)u·ω
cDLCTF(ω, v).

Proof. Combining Proposition 2 and Proposition 5, we obtain

WF(u, v)cWF(u, v) = ∑
z∈F2n

(−1)u·z
cACF(z, v)

= 2 ∑
ω∈F2n

(−1)u·ω
cDLCTF(ω, v),

as claimed.

The following result gives a link between cDLCTF and cΔF(a, b).

Proposition 6. Let F be an (n, m)-vectorial Boolean function, and c ∈ F2m , c �= 0. Then, for any
(u, v) ∈ F2n × F2m ,

cDLCTF(u, v) =
1
2 ∑

ω∈F2n

(−1)ω·v
cΔF(u, ω).

Proof. By Proposition 3, we have

2cDLCTF(u, v) = cACF(u, v)

= #{x ∈ F2n | v · (F(x + u) + cF(x)) = 0)}
− #{x ∈ F2n | v · (F(x + u) + cF(x)) = 1}
= ∑

ω∈F2n ,ω·v=0
#{x ∈ F2n | F(x + u) + cF(x) = ω}

− ∑
ω∈F2n ,ω·v=1

#{x ∈ F2n | F(x + u) + cF(x) = ω}

= ∑
ω∈F2n

(−1)ω·v#{x ∈ F2n | F(x + u) + cF(x) = ω}

= ∑
ω∈F2n

(−1)ω·v
cΔF(u, ω).

This leads to

cDLCTF(u, v) =
1
2 ∑

ω∈F2n

(−1)ω·v
cΔF(u, ω),

which finishes the proof.

5. The c-DLCT of the Inverse Function

In this section, we give the explicit values of the entries of the c-DLCT, including the
case c = 1, and give some numerical results on F2n with 3 ≤ n ≤ 8.
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5.1. The 1-DLCT of the Inverse Function

For c = 1, the 1-DLCT satisfies the following result.

Theorem 1. Let F : F2n → F2n be the inverse function defined by F(0) = 0, and F(x) = x2n−2

for x �= 0. For a, b ∈ F2n , define the set

E0(a, b) =
{

z ∈ b⊥ | z �= 0, Tr
(

1
az

)
= 0

}
,

where b⊥ is the orthogonal space of b. Then,

1DLCTF(a, b) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2n−1 if a = 0, or b = 0,

2#E0(a, b) + 2− 2n−1 if
1
a
∈ b⊥,

2#E0(a, b)− 2n−1 if
1
a
�∈ b⊥.

Proof. We use the definition

1DLCTF(a, b) = #{x ∈ F2n | b · (F(x + a) + F(x)) = 0} − 2n−1.

We consider the following cases.
Case 1. Suppose that b = 0. Then, for all x ∈ F2n , b · (F(x + a) + F(x)) = 0. Hence,

1DLCTF(a, 0) = 2n − 2n−1 = 2n−1.

Case 2. Suppose that b �= 0 and a = 0. Then, for all x ∈ F2n , b · (F(x+ a)+ F(x)) = b · 0 = 0.
This leads to

1DLCTF(0, b) = 2n − 2n−1 = 2n−1.

Case 3. Suppose that b �= 0 and a �= 0. Consider the equation

b · (F(x + a) + F(x)) = 0. (1)

Case 3.1. If x = 0, then

b · (F(x + a) + F(x)) = b · F(a) = b · 1
a

.

Hence, x = 0 is a solution of the Equation (1) if and only if 1
a ∈ b⊥.

Case 3.2. If x = a, then

b · (F(x + a) + F(x)) = b · F(a) = b · 1
a

.

Hence, x = a is a solution of the Equation (1) if and only if 1
a ∈ b⊥.

Case 3.3. Suppose that x �= 0 and x �= a. We have

F(a + x) + F(x) =
1

a + x
+

1
x
=

a
x2 + ax

.

If b · (F(a + x) + F(x)) = 0, then F(a + x) + F(x) = z for some z ∈ b⊥, that is a
x2+ax = z,

or equivalently

zx2 + azx + a = 0. (2)

Case 3.3.1. If z = 0, then the Equation (2) reduces to a = 0, which is not possible.
Case 3.3.2. Suppose that z �= 0. If Tr

(
1
az

)
= 1, then, by Lemma 2, the Equation (2) has no
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solution, and if Tr
(

1
az

)
= 0, it has two solutions.

Define the set

E0(a, b) =
{

z ∈ b⊥ | z �= 0, Tr
(

1
az

)
= 0

}
.

The 1DLCT in Case 3 is then

1DLCTF(a, b) =

⎧⎪⎨⎪⎩
2#E0(a, b) + 2− 2n−1 if

1
a
∈ b⊥,

2#E0(a, b)− 2n−1 if
1
a
�∈ b⊥,

which finishes the proof.

5.2. The c-DLCT of the Inverse Function for c �= 1

Theorem 2. Let F : F2n → F2n be the inverse function defined by F(0) = 0, and F(x) = 1
x for

x �= 0. Let c ∈ F2n with c �= 0 and c �= 1. For a, b ∈ F2n , define the set

E0(a, b, c) =
{

z ∈ b⊥ | z �= 0, z �= 1 + c
a

, Tr
(

acz
(1 + c + az)2

)
= 0

}
,

where b⊥ is the orthogonal space of b. Then,

cDLCTF(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n−1 if b = 0,

0 if a = 0, b �= 0,

2#E0(a, b, c) + 2− 2n−1 if
1
a
∈ b⊥,

c
a
�∈ b⊥,

2#E0(a, b, c) + 2− 2n−1 if
1
a
�∈ b⊥,

c
a
∈ b⊥,

2#E0(a, b, c) + 4− 2n−1 if
1
a
∈ b⊥,

c
a
∈ b⊥,

2#E0(a, b, c) + 2− 2n−1 if
1
a
�∈ b⊥,

c
a
�∈ b⊥.

Proof. Suppose that c �= 0 and c �= 1. We use the definition

cDLCTF(a, b) = #{x ∈ F2n | b · (F(x + a) + cF(x)) = 0} − 2n−1.

We consider the following cases.
Case 1. Suppose that b = 0. Then, for all x ∈ F2n , b · (F(x + a) + cF(x)) = 0. Hence,

cDLCTF(a, 0) = 2n − 2n−1 = 2n−1.

Case 2. Suppose that b �= 0 and a = 0. If b · (F(x + a) + cF(x)) = 0, then b · (1+ c)F(x) = 0,
and (1 + c)F(x) ∈ b⊥. Observe that x = 0 is a possible solution. If x �= 0, then there exists
z ∈ b⊥\{0} such that (1 + c)F(x) = z, that is 1+c

x = z, and x = 1+c
z . This leads to

cDLCTF(0, b) = #b⊥ − 2n−1 = 0.

Case 3. Suppose that a �= 0 and b �= 0. Consider the equation

b · (F(x + a) + cF(x)) = 0. (3)

Case 3.1. If x = 0, then

b · (F(x + a) + cF(x)) = b · F(a) = b · 1
a

.
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Hence, x = 0 is a solution of the Equation (3) if and only if 1
a ∈ b⊥.

Case 3.2. If x = a, then

b · (F(x + a) + cF(x)) = b · cF(a) = b · c
a

.

Hence, x = a is a solution of the Equation (3) if and only if c
a ∈ b⊥.

Case 3.3. Suppose that x �= 0 and x �= a. We have

F(a + x) + cF(x) =
1

a + x
+

c
x
=

(1 + c)x + ac
x2 + ax

.

If b · (F(a + x) + cF(x)) = 0, then F(a + x) + cF(x) = z for some z ∈ b⊥, that is (1+c)x+ac
x2+ax = z,

or equivalently

zx2 + (1 + c + az)x + ac = 0. (4)

Case 3.3.1. If z = 0, then the Equation (4) reduces to (1 + c)x + ac = 0, which has one
solution x = ac

1+c .
Case 3.3.2. If z0 = 1+c

a ∈ b⊥, then for z0, the Equation (4) reduces to z0x2 + ac = 0, which,
by Lemma 2, has one solution.
Case 3.3.3. Suppose that z �= 0 and z �= 1+c

a . If Tr
(

acz
(1+c+az)2

)
= 1, then, by Lemma 2, the

Equation (4) has no solution, and if Tr
(

acz
(1+c+az)2

)
= 0, it has two solutions.

To summarize all the cases, we define the set

E0(a, b, c) =
{

z ∈ b⊥ | z �= 0, z �= 1 + c
a

, Tr
(

acz
(1 + c + az)2

)
= 0

}
.

The cDLCT in Case 3 is then

cDLCTF(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2#E0(a, b, c) + 2− 2n−1 if
1
a
∈ b⊥,

c
a
�∈ b⊥,

2#E0(a, b, c) + 2− 2n−1 if
1
a
�∈ b⊥,

c
a
∈ b⊥,

2#E0(a, b, c) + 4− 2n−1 if
1
a
∈ b⊥,

c
a
∈ b⊥,

2#E0(a, b, c) + 2− 2n−1 if
1
a
�∈ b⊥,

c
a
�∈ b⊥,

which finishes the proof.

5.3. Numerical Results for the c-DLCT of the Inverse Function

We have computed the c-DLCT of the inverse function over F2n for 3 ≤ n ≤ 7, and
all c ∈ F∗2n , while for n = 8, we only compute it for c = 1, 2, . . . , 10. The inversion and
multiplication in F2n are processed modulo the polynomials presented in Table 1.

In Table 2, we present the values of cDLCTF(u, v) of the inverse function over F24 with
c = 0× 9.

For the inverse function over F2n , we present in Table 3 the c-DLCT spectrum cΓF and
c-differential-linear uniformity cγF for 3 ≤ n ≤ 8 and for small values of c. All the other
c-DLCT spectrums reduce to one of the listed ones in the table.
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Table 1. The polynomials of F2n for 3 ≤ n ≤ 8.

F2nF2nF2n Polynomial

F23 x3 + x + 1

F24 x4 + x + 1

F25 x5 + x3 + 1

F26 x6 + x3 + 1

F27 x7 + x3 + 1

F28 x8 + x4 + x3 + x2 + 1

Table 2. The values of cDLCTF(u, v) of the c-DLCT of the inverse function over F24 for c = 0× 9.

u\v 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 8 0 2 2 0 −4 2 −2 2 −4 0 2 2 0 0 −2

2 8 2 0 −2 2 2 2 −2 0 2 −4 2 −4 0 0 0

3 8 0 2 0 −2 −4 0 0 −2 0 2 2 2 2 2 −4

4 8 −2 2 −2 0 2 −4 0 2 0 2 2 2 −4 0 0

5 8 2 0 2 0 0 −2 2 −4 0 2 2 −2 0 2 −4

6 8 0 −2 0 −2 2 2 −4 0 2 −4 0 0 2 2 2

7 8 2 −4 −4 2 −2 0 2 2 0 2 −2 0 0 2 0

8 8 −2 0 0 2 2 2 0 −2 2 2 −4 0 2 −4 0

9 8 2 −4 0 2 0 2 2 0 2 0 −4 2 0 −2 −2

a 8 2 0 2 −4 2 −2 −4 2 0 0 −2 0 2 0 2

b 8 −4 0 2 0 2 2 2 0 −2 0 0 −2 2 −4 2

c 8 0 −2 −4 0 0 0 2 0 −2 2 2 2 −4 2 2

d 8 0 2 2 −4 0 −4 0 2 2 0 0 2 −2 −2 2

e 8 −4 2 2 2 −2 0 0 2 −4 −2 0 0 2 0 2

f 8 2 2 0 2 0 0 2 −4 2 −2 0 −4 −2 2 0

Table 3. The c-DLCT spectrum and the c-differential-linear connectivity uniformity of the inverse
function over F2n for 3 ≤ n ≤ 8 and small c.

F2nF2nF2n c cΓF cγF

F23 1 {−4, 0, 4} 4

F23 2 {−2, 0, 2, 4} 2

F24 1 {−4, 0, 4, 8} 4

F24 2 {−4,−2, 0, 2, 8} 4

F24 6 {−2, 0, 2, 4, 8} 4

F25 1 {−4, 0, 4, 16} 4

F25 2 {−6,−4,−2, 0, 2, 4, 6, 16} 6

F25 3 {−6,−4,−2, 0, 2, 4, 16} 6

F25 7 {−4,−2, 0, 2, 4, 16} 4

F26 1 {−8,−4, 0, 4, 8, 32} 8

F26 2 {−8,−6,−4,−2, 0, 2, 4, 6, 8, 32} 8

F26 6 {−8,−6,−4,−2, 0, 2, 4, 6, 32} 8

F26 8 {−6,−4,−2, 0, 2, 6, 8, 32} 8

F27 1 {−12,−8,−4, 0, 4, 8, 64} 12

F27 2 {−12,−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10, 64} 12

F28 1 {−16,−12,−8,−4, 0, 4, 8, 12, 16, 128} 16

F28 2 {−16,−14,−12,−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 128} 16

F28 6 {−16,−14,−12,−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10, 12, 14, 128} 16

F28 10 {−14,−12,−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 128} 16
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6. Conclusions

In this paper, we introduced and studied new cryptographic tools and parameters to
help us quantify the security of S-boxes (mathematically, vectorial Boolean functions) involving
block ciphers as main components: the c-Walsh transform, the c-autocorrelation, and the
c-differential-linear uniformity. We also introduced a new table called the c-Differential-Linear
Connectivity Table (c-DLCT) to analyse attacks related to the differential and the linear attacks.
We considered various S-box family properties associated with the above-mentioned notion
and presented the values of the c-DLCT of the particular crucial case of the inverse function.
Finally, recall that codes over finite fields have been studied extensively because of their linear
structures and practical implementations. It is the basis of the research on various kinds of
codes. One well-known construction method of linear codes is derived from special functions
(essentially from cryptographic functions which play a crucial role in symmetric cryptography)
over finite fields (see the book [12]). Cryptographic multi-output Boolean functions and codes
have essential data communication and storage applications. These two areas are closely
related and have had a fascinating interplay (see, e.g., the book chapter in [43] and the
references therein). Cryptographic functions and linear codes are closely related and have
had a fascinating interplay. Cryptographic functions (e.g., highly nonlinear functions, Perfect
Nonlinear (PN), Almost Perfect Nonlinear (APN), Bent, Almost Bent (AB), and Plateaued)
have essential applications in coding theory. For instance, Perfect Nonlinear (APN or PN)
functions have been employed to construct optimal linear codes (see, e.g., [44–48] and the
references therein). Very recently, Mesnager, Shi, and Zhu [40] proposed several constructions
of minimal (cyclic) codes from low differential uniform functions. Given these works, the
derived functions from this paper would help design new families of binary minimal codes.
We will keep an in-depth study of them in future work and cordially invite interested readers
to investigate them.
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1. Introduction

It has been known since the 1970s that the two non-zero weights of a projective Fq-
linear two-weight code C can be written as w1 = upt and w2 = (u + 1)pt, where u ∈ N≥1
and p is the characteristic of the underlying finite field Fq; see Corollary 2 [1]. So, especially
the weight difference w2 − w1 is a power of the characteristic p. Here, we want to consider
Fq-linear two-weight codes C with non-zero weights w1 < w2 which are not necessarily
projective. In [2], it was observed that if w2 − w1 is not a power of the characteristic p, then
the code C has to be non-projective, which settles a question in [3]. Here, we prove the
stronger statement that C is repetitive, i.e., C is the l-fold repetition of a smaller two-weight
code C′, where l is the largest factor of w2 − w1 that is coprime to the field size q, if C
does not have full support, cf. [4]. Moreover, if a two-weight code C is non-repetitive and
does not have full support, then its two non-zero weights can be written as w1 = upt and
w2 = (u + 1)pt, where again p is the characteristic of the underlying finite field Fq; see
Theorem 3.

Constructions for projective two-weight codes can be found in the classical survey
paper [5]. Many research papers considered these objects since they, e.g., yield strongly
regular graphs (srgs), and we refer the reader to [6] for a corresponding monograph on srgs.
For a few more recent papers on constructions for projective two-weight codes, we refer,
e.g., to [7–10]. In, e.g., [9], the author uses geometric language and speaks of constructions
for two-character sets, i.e., sets of points in a projective space PG(k− 1, q) with just two
different hyperplane multiplicities; call them s and t. In general, each (full-length) linear
code is in one-to-one correspondence to a (spanning) multiset of points in some projective
space PG(k− 1, q). Here, we will also mainly use the geometric language and consider
a few general constructions for two-character multisets of points corresponding to two-
weight codes (possibly non-projective). For each subsetH of hyperplanes in PG(k− 1, q)
we construct a multiset of pointsM(H) such that all hyperplanes H ∈ H have the same
multiplicity, say s, and also all other hyperplanes H /∈ H have the same multiplicity, say t.
Actually, we characterize the full set of such multisets with at most two different hyperplane
multiplicities givenH; see Theorems 1 and 2. Using this correspondence we have classified
all two-weight codes up to symmetry for small parameters. For projective two-weight
codes such enumerations can be found in [11].
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Brouwer and van Eupen give a correspondence between arbitrary projective codes
and arbitrary two-weight codes via the so-called BvE dual transform. The correspondence
can be said to be 1–1, even though there are choices for the involved parameters to be made
in both directions. In [12], the dual transform was, e.g., applied to the unique projective
[16, 5, 9]3-code. For parameters α = 1

3 and β = −3 the result is a [69, 5, 45]3 two-weight code,
and for α = − 1

3 and β = 5 the result is a [173, 5, 108]3 two-weight code. This resembles
the fact that we have some freedom when constructing a two-weight code from a given
projective code, e.g., we can take complements or add simplex codes of the same dimension.
Our obtained results may be rephrased in the language of the BvE dual transform by
restricting to a canonical choice of the involved parameters. For further literature on the
dual transform, see, e.g., [12–15]. For a variant that is rather close to our presentation we
refer the reader to [16].

With respect to further related studies in the literature we remark that a special subclass
of (non-projective) two-weight codes was completely characterized in [17]. A conjecture by
Vega [18] states that all two-weight cyclic codes are the “known” ones, cf. [19]. Another
stream of the literature considers the problem of whether all projective two-weight codes
that have the parameters of partial k-spreads indeed have to be partial k-spreads. Those
results can be found in papers considering extendability results for partial k-spreads or
classifying minihypers; see, e.g., [20]. Two-weight codes have also been considered over
rings instead of finite fields; see, e.g., [21].

The remaining part of this paper is structured as follows. In Section 2, we introduce the
necessary preliminaries for linear two-weight codes and their geometric counterpart called
two-character multisets in projective spaces. In general, multisets of points, corresponding
to general linear codes, can be described via so-called characteristic functions and we
collect some of their properties in Section 3. Examples and constructions for two-character
multisets are given in Section 4. In Section 5, we present our main results. We close with
enumeration of the results for two-character multisets in PG(k− 1, q) for small parameters
in Section 6. We will mainly use geometric language and arguments. For the ease of the
reader we only use elementary arguments and give (almost) all details.

2. Preliminaries

An [n, k]q-code C is a k-dimensional subspace of Fn
q , i.e., C is assumed to be Fq-linear.

Here, n is called the length and k is called the dimension of C. Elements c ∈ C are
called codewords and the weight wt(c) of a codeword is given by the number of non-zero
coordinates. Clearly, the all-zero vector 0 has weight zero and all other codewords have
a positive integer weight. A two-weight code is a linear code with exactly two non-zero
weights. A generator matrix for C is a k× n matrix G such that its rows span C. We say
that C is of full length if for each index 1 ≤ i ≤ n there exists a codeword c ∈ C whose ith
coordinate ci is non-zero, i.e., all columns of a generator matrix of C are non-zero. The dual
code C⊥ of C is the (n− k)-dimensional code consisting of the vectors orthogonal to all
codewords of C with respect to the inner product 〈u, v〉 = ∑n

i=1 uivi.
Now, let C be a full-length [n, k]q-code with generator matrix G. Each column g of

G is an element of Fk
q and since g �= 0 we can consider 〈g〉 as a point in the projective

space PG(k− 1, q). Using the geometric language we call 1-, 2-, 3-, and (k− 1)-dimensional
subspaces of Fk

q points, lines, planes, and hyperplanes in PG(k − 1, q). Instead of an l-
dimensional space we also speak of an l-space. By P we denote the set of points and
by H we denote the set of hyperplanes of PG(k− 1, q) whenever k and q are clear from
the context. A multiset of points in PG(k − 1, q) is a mappingM : P → N, i.e., to each
point P ∈ P we assign its multiplicityM(P) ∈ N. By #M = ∑P∈P M(P) we denote the
cardinality ofM. The support supp(M) is the set of all points with non-zero multiplicity.
We say that M is spanning if the set of points in the support of M span PG(k − 1, q).
Clearly permuting columns of a generator matrix G or multiplying some columns with
non-zero elements in F�

q := Fq\{0} yields an equivalent code. In addition to that we obtain
a one-to-one correspondence between full-length [n, k]q-codes and spanning multisets of
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pointsM in PG(k− 1, q) with cardinality #M = n. Moreover, two linear [n, k]q-codes C
and C′ are equivalent if their corresponding multisets of pointsM andM′ are. For details
we refer, e.g., to [22]. A linear code C is projective if its corresponding multiset of points
satisfiesM(P) ∈ {0, 1} for all P ∈ P . We also speak of a set of points in this case. The
multisets of points withM(P) = 0 for all P ∈ P are called trivial.

Geometrically, for a non-zero codeword c ∈ C the set c ·F�
q corresponds to a hyperplane

H ∈ H and wt(c) = #M−M(H), where we extend the function M additively, i.e.,
M(S) := ∑P∈SM(P) for every subset S ⊆ P of points. We callM(H) the multiplicity
of hyperplane H ∈ H and haveM(V) = #M for the entire ambient space V := P . The
number of hyperplanes #H, as well as the number of points #P , in PG(k− 1, q) is given

by [k]q := qk−1
q−1 . A two-character multiset is a multiset of pointsM such that exactly two

different hyperplane multiplicities M(H) occur. i.e., a multiset of points M is a two-
character multiset if its corresponding code C is a two-weight code. IfM actually is a set of
points, i.e., if we haveM(P) ∈ {0, 1} for all points P ∈ P , then we speak of a two-character
set. We say that an [n, k]q-code C is Δ-divisible if the weights of all codewords are divisible
by Δ. A multiset of points M is called Δ-divisible if the corresponding linear code is.
More directly, a multiset of pointsM is Δ-divisible if we haveM(H) ≡ #M (mod Δ) for
all H ∈ H.

A one-weight code is an [n, k]q-code C such that all non-zero codewords have the
same weight w. One-weight codes have been completely classified in [23] and are given
by repetitions of so-called simplex codes. Geometrically, the multiset of points M in
PG(k− 1, q) corresponding to a one-weight code C satisfiesM(P) = l for all P ∈ P , i.e., we
have #M = n = [k]q · l,M(H) = [k− 1]q · l for all H ∈ H, and w = #M−M(H) = qk−1 · l.
We say that a linear [n, k]q-code C is repetitive if it is the l-fold repetition of an [n/l, k]q-code
C′, where l > 1, and non-repetitive otherwise. A given multiset of points M is called
repeated if its corresponding code is. More directly, a non-trivial multiset of pointsM
is repeated if the greatest common divisor of all point multiplicities is larger than one.
We say that a multiset of pointsM or its corresponding linear code C has full support if
supp(M) = P , i.e., ifM(P) > 0 for all P ∈ P . So, for each non-repetitive one-weight
code C with length n, dimension k, and non-zero weight w we have n = [k]q and w = qk−1.
Each non-trivial one-weight code, i.e., one with dimension at least 1, has full support. The
aim of this paper is to characterize the possible parameters of non-repetitive two-weight
codes (with or without full support). For the correspondence between [n, k]q-codes and
multisets of points M in PG(k − 1, q) we have assumed that M is spanning. If M is
not spanning, then there exists a hyperplane containing the entire support, so thatM is
two-character multiset if M induces a one-character multiset in the span of supp(M),
cf. Proposition 1. The structure of the set of all two-character multisets where the larger
hyperplane multiplicity is attained for a prescribed subset of the hyperplanes is considered
in Section 5.

3. Characteristic Functions

Fixing the field size q and the dimension k of the ambient space, a multiset of points in
PG(k− 1, q) is a mappingM : P → N. By F we denote the Q-vector space consisting of
all functions F : P → Q, where addition and scalar multiplication is defined pointwise. i.e.,
(F1 + F2)(P) := F1(P) + F2(P) and (x · F1)(P) := x · F1(P) for all P ∈ P , where F1, F2 ∈ F ,
and x ∈ Q are arbitrary. For each non-empty subset S ⊆ P the characteristic function χS is
defined by χS(P) = 1 if P ∈ S and χS(P) otherwise. Clearly the set of functions χP for all
P ∈ P forms a basis of F for ambient space PG(k− 1, q) for all k ≥ 1. Note that there are
no hyperplanes if k = 1 and hyperplanes coincide with points for k = 2. We also extend
the functions F ∈ F additively, i.e., we set F(S) = ∑P∈S F(P) for all S ⊆ P . Our next aim
is to show the well-known fact that also the set of functions χH for all hyperplanes H ∈ H
forms a basis of F for ambient space PG(k− 1, q) for all k ≥ 2. In other words, alsoM(P)
can be reconstructed from theM(H):
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Lemma 1. LetM ∈ F for ambient space PG(k− 1, q), where k ≥ 2. Then, we have

M(P) = ∑
H∈H : P∈H

1
[k− 1]q

·M(H) + ∑
H∈H : P/∈H

1
qk−1 ·

(
1

[k− 1]q
− 1

)
·M(H) (1)

for all points P ∈ P .

Proof. Without loss of generality we assume k ≥ 3. Since each point P′ ∈ P is contained in
[k− 1]q of the #H = [k]q hyperplanes and each point P′ �= P is contained in [k− 2]q of the
[k− 1]q hyperplanes that contain P, we have

∑
H∈H : P∈H

M(H) = [k− 2]q · |M|+
(
[k− 1]q − [k− 2]q

)
M(P) = [k− 2]q · |M|+ qk−2M(P)

so that

∑
H∈H : P∈H

M(H)− [k− 2]q
[k− 1]q

· ∑
H∈H
M(H) = qk−2M(P)

using [k− 1]q · #M = ∑H∈HM(H). Thus, we can conclude the stated formula using

1
qk−2 ·

(
1− [k− 2]q

[k− 1]q

)
=

1
qk−2 ·

[k− 1]q − [k− 2]q
[k− 1]q

=
1

[k− 1]q

and

− [k− 2]q
[k− 1]q · qk−2 =

1− [k− 1]q
[k− 1]q · qk−1 =

1
qk−1 ·

(
1

[k− 1]q
− 1

)
.

As an example we state that in PG(3− 1, 2) we have

M(P) =
1
3
· ∑

H∈H : P∈H
M(H)− 1

6
· ∑

H∈H : P/∈H
M(H).

Lemma 2. LetM ∈ F for ambient space PG(k− 1, q), where k ≥ 2. Then, there exist αH ∈ Q

for all hyperplanes H ∈ H such that

M = ∑
H∈H

αH · χH . (2)

Moreover, the coefficients αH are uniquely determined byM.

Proof. Each point P ∈ P is contained in [k− 1]q hyperplanes and for each point Q �= P
there are exactly [k− 2]q hyperplanes that contain both P and Q, so that

∑
H∈H : P∈H

χH −
[k− 2]q
[k− 1]q

· ∑
H∈H

χH = qk−2 · χP.

Using
M = ∑

P∈P
M(P) · χP

we conclude the existence of the αH ∈ Q. Since the functions (χP)P∈P form a basis
of the Q-vector space F , which is also generated by the functions (χH)H∈H, counting
#P = [k]q = #H yields that also (χH)H∈H forms a basis and the coefficients αH are uniquely
determined byM.
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IfM ∈ F is given by the representation

M = ∑
P∈P

αP · χP

with αP ∈ Q we can easily decide whether M is a multiset of points. The necessary
and sufficient conditions are given by αP ∈ N for all P ∈ P (including the case of a
trivial multiset of points). If a multiset of points is characterized by coefficients αH for
all hyperplanes H ∈ H, as in Lemma 2, then some αH may be fractional or negative. For
two-character multisets we will construct a different unique representation, involving the
characteristic functions χH of hyperplanes; see Theorem 1.

Let us state a few observations about operations for multisets of points that yield
multisets of points again.

Lemma 3. For two multisets of pointsM1 andM2 of PG(k− 1, q) and each non-negative integer
n ∈ N the functionsM1 +M2 and n ·M1 are multisets of points of PG(k− 1, q).

In order to say something about the subtraction of multisets of points we denote the
minimum point multiplicity of a multiset of pointsM by μ(M) and the maximum point
multiplicity by γ(M). WheneverM is clear from the context we also just write μ and γ
instead of μ(M) and μ(γ).

Lemma 4. LetM1 andM2 be two multisets of points of PG(k− 1, q). If μ(M1) ≥ γ(M2),
thenM1 −M2 is a multiset of points of PG(k− 1, q).

Definition 1. LetM be a multiset of points in PG(k− 1, q). If l is an integer with l ≥ γ(M),
then the l-complementMl−C ofM is defined byMl−C(P) := l −M(P) for all points P ∈ P .

One can easily check thatMl−C is a multiset of points with cardinality l · [k]q − #M,

maximum point multiplicity γ
(
Ml−C

)
= l − μ(M), and minimum point multiplicity

μ
(
Ml−C

)
= l − γ(M). Using characteristic functions we can writeMl−C = l · χV −M,

where V = P denotes the set of all points of the ambient space.
Given an arbitrary functionM ∈ F there always exist α ∈ Q\{0} and β ∈ Z such

that α ·M+ β · χV is a multiset of points.

4. Examples and Constructions for Two-Character Multisets

The aim of this section is to list a few easy constructions for two-character multisets of
pointsM in PG(k− 1, q). We will always abbreviate n = #M and denote the two occurring
hyperplane multiplicities by s and t, where we assume s > t by convention.

Proposition 1. For integers 1 ≤ l < k, let L be an arbitrary l-space in PG(k− 1, q). Then, χL is
a two-character set with n = [l]q, γ = 1, μ = 0, s = [l]q, and t = [l − 1]q.

Note that for the case l = k we have the one-character set χV , which can be combined
with any two-character multiset.

Lemma 5. LetM be a two-character multiset of points in PG(k− 1, q). Then, for each integer
0 ≤ a ≤ μ(M), each b ∈ N, and each integer c ≥ γ(M) the functionsM− a · χV,M+ b · χV,
b ·M, and c · χV −M are two-character multisets of points.

For the first and the fourth construction we also spell out the implications for the
parameters of a given two-character multiset:

Lemma 6. LetM be a multiset of points in PG(k − 1, q) such thatM(H) ∈ {s, t} for every
hyperplane H ∈ H. IfM(P) ≥ l for every point P ∈ P , i.e., l ≤ μ(M), thenM′ :=M− l · χV
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is a multiset of points in PG(k− 1, q) such thatM′(H) ∈ {s− [k− 1]q · l, t− [k− 1]q · l} for
every hyperplane H ∈ H.

Lemma 7. Let M be a multiset of points in PG(k − 1, q) such that M(H) ∈ {s, t} for ev-
ery hyperplane H ∈ H. If M(P) ≤ u, i.e., ≤ γ(M) for every point P ∈ P , then the
u-complement M′ := u · χV −M of M is a multiset of points in PG(k − 1, q) such that
M′(H) ∈ {u[k− 1]− s, u[k− 1]− t} for every hyperplane H ∈ H.

We can also use two (almost) arbitrary subspaces to construct two-character multisets:

Proposition 2. Let a ≥ b ≥ 1 and 0 ≤ i ≤ b− 1 be arbitrary integers, A be an a-space, and B be a
b-space with dim(A ∩ B) = i in PG(k− 1, q), where k = a + b− i. Then,M = χA + qa−b · χB
satisfiesM(H) ∈ {s, t} for all H ∈ H, where s = [a− 1]q + qa−b · [b− 1]q and t = s + qa−1.
If i = 0, then γ = qa−b, and γ = qa−b + 1 otherwise. In general, we have n = [a]q + qa−b · [b]q
and μ = 0.

Proof. For each H ∈ H we haveM(H ∩ A) ∈
{
[a− 1]q, [a]q

}
andM(H ∩ B) ∈

{
[b− 1]q, [b]q

}
.

Noting that we cannot have bothM(H ∩ A) = [a]q andM(H ∩ B) = [b]q, we conclude

M(H) ∈
{
[a− 1]q + qa−b · [b− 1]q, [a]q + qa−b · [b− 1]q, [a− 1]q + qa−b · [b]q

}
= {s, t}.

A partial k-spread is a set of k-spaces in PG(v− 1, q) with pairwise trivial intersection.

Proposition 3. Let S1, . . . ,Sr be a partial parallelism of PG(2k − 1, q), i.e., the Si are partial
k-spreads that are pairwise disjoint. Then,

M =
r

∑
i=1

∑
S∈Si

χS

is a two-character multiset of PG(2k − 1, q) with n = r · [k]q and hyperplane multiplicities
s = r · [k− 1]q, t = r · [k− 1]q + qk−1, where r = ∑r

i=1|Si|.

Cf. example SU2 in [5]. Field changes work similarly to those explained in Section 6 [5]
for two-character sets.

Based on hyperplanes we can construct large families of two-character multisets:

Lemma 8. Let ∅ �= H′ � H be a subset of the hyperplanes of PG(k− 1, q), where k ≥ 3, then

M = ∑
H∈H′

χH (3)

is a two-character multiset with n = r[k− 1]q, s = r[k− 2]q + qk−2, and t = r[k− 2]q, where
r = #H′.

By allowingH′ to be a multiset of hyperplanes we end up with (τ + 1)-character sets,
where τ is the maximum number of occurrences of a hyperplane inH′.

Applying Lemma 6 yields:

Lemma 9. Let ∅ �= H′ � H be a subset of the hyperplanes of PG(k− 1, q), where k ≥ 3. If each
point P ∈ P is contained in at least μ ∈ N elements ofH′, then

M = ∑
H∈H′

χH − μ · χV (4)

is a two-character multiset with n = r[k − 1]q − μ[k]q, s = r[k − 2]q + qk−2 − μ[k − 1]q and
t = r[k− 2]q − μ[k− 1]q, where r = |H′|.
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In some cases we obtain two-character multisets where all point multiplicities have a
common factor g > 1. Here, we can apply the following general construction:

Lemma 10. LetM be a multiset of points in PG(k− 1, q) such thatM(H) ∈ {s, t} for every
hyperplane H ∈ H. If M(P) ≡ 0 (mod g) for every point P ∈ P , then M′ := 1

g · M is a

multiset of points in PG(k− 1, q) such thatM′(H) ∈
{

1
g · s, 1

g · t
}

for every hyperplane H ∈ H.

Moreover, we have #M′ = 1
g · #M, μ(M′) = 1

g · μ(M), and γ(M′) = 1
g · γ(M).

Interestingly enough, it will turn out that we can construct all two-character multisets
by combining Lemma 8 with Lemmas 5 and 10; see Theorems 1 and 2.

5. Geometric Duals and Sets of Feasible Parameters for Two-Character Multisets

To each two-character multiset M in PG(k − 1, q), i.e., {M(H) : H ∈ H} = {s, t}
for some s, t ∈ N, we can assign a set of points M by using the geometric dual, i.e.,
interchanging hyperplanes and points. More precisely, fix a non-degenerated billinear form
⊥ and consider pairs of points and hyperplanes (P, H) that are perpendicular with respect
to ⊥ (different choices of ⊥ lead to isomorphic configurations). We write H = P⊥ for the
geometric dual of a point. We defineM viaM(P) = 1 ifM(H) = s, where H = P⊥, and
M(P) = 0 otherwise, i.e., ifM(H) = t (a generalization of the notion of the geometric
dual has been introduced by Brouwer and van Eupen [12] for linear codes and formulated
for multisets of points by Dodunekov and Simonis [22]). Of course we have some freedom
in how we order s and t. So, we may also writeM(P) = (M(H)− t)/(s− t) ∈ {0, 1} for
all P ∈ P , where H = P⊥. Noting the asymmetry in s and t we may also interchange the
role of s and t or replaceM by its complement. Note that in principle several multisets of
points with two hyperplane multiplicities can have the same corresponding point setM.

For the other direction we can start with an arbitrary set of pointsM, i.e.,M(P) ∈
{0, 1} for all P ∈ P . The multiset of points with two hyperplane multiplicitiesM is then
defined viaM(H) = s ifM(P) = 1, where H = P⊥, andM(H) = t ifM(P) = 0. i.e., we
may set

M(H) = t + (s− t) ·M(H⊥). (5)

While we haveM(H) ∈ N for all s, t ∈ N, the point multiplicitiesM(P) induced by the
hyperplane multiplicitiesM(H) (see Lemma 1) are not integral or non-negative in general.
For suitable choices of s and t they are, while for others they are not.

Definition 2. LetM be a set of points in PG(k− 1, q). By L(M) ⊆ N2 we denote the set of
all pairs (s, t) ∈ N2 with s ≥ t such that a multiset of points M in PG(k − 1, q) exists with
M(H) = s ifM(H⊥) = 1 andM(H) = t ifM(H⊥) = 0 for all hyperplanes H ∈ H.

Directly from Lemma 5 we can conclude:

Lemma 11. LetM be a set of points in PG(k− 1, q). If (s, t) ∈ L(M), then we have

〈(s, t)〉N +
〈(
[k− 1]q, [k− 1]q

)〉
N
=

{(
us + v[k− 1]q, ut + v[k− 1]q

)
: u, v ∈ N

}
⊆ L(M). (6)

Before we study the general structure of L(M) and show that it can be generated by
a single element (s0, t0) in the above sense, we consider all non-isomorphic examples in
PG(3− 1, 2) (ignoring the constraint s ≥ t).

Example 1. LetM be a multiset of points in PG(2, 2) uniquely characterized byM(L) = s ∈ N

for some line L andM(L′) = t ∈ N for all other lines L′ �= L. For each point P ∈ L, we have

M(P) =
s + 2t

3
− 4t

6
=

s
3

(7)
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and for each point Q /∈ L, we have

M(Q) =
3t
3
− s + 3t

6
=

3t− s
6

. (8)

SinceM(P),M(Q) ∈ N we set x :=M(P) = s
3 and y :=M(Q) = 3t−s

6 , so that s = 3x and
t = 2y+ x. With this we have n = 3x + 4y, γ = max{x, y}, and s− t = 2(x− y). If x ≥ y, then
we can writeM = y · χE + (x− y) · χL. If x ≤ y, then we can writeM = y · χE − (y− x) · χL.

For Example 1 the set of all feasible (s, t)-pairs, assuming s ≥ t, is given by 〈(3, 1)〉N +
〈(3, 3)〉N. If we assume t ≥ s, then the set of feasible (s, t)-pairs is given by 〈(0, 2)〉N +
〈(3, 3)〉N. The vector (0, 2) can be computed from (3, 1) by computing a suitable complement.

Due to Lemma 6 we can always assume the existence of a point of multiplicity 0 as a
normalization. So, in Example 1 we may assume x = 0 or y = 0, so thatM = y · χE− y · χL
orM = x · χL.

Due to Lemma 10 we can always assume that the greatest common divisor of all point
multiplicities is 1 as a normalization (excluding the degenerated case of an empty multiset
of points). Applying both normalizations to the multisets of points in Example 1 leaves the
two possibilities χL and χE − χL, i.e., point sets.

Due to Lemma 7 we always can assume #M≤ γ(M) · [k]q/2. Applying also the third
normalization to the multisets of points in Example 1 leaves only the possibility χL, i.e., a
subspace construction; see Proposition 1, where s = 3, t = 1, n = 3, and s− t = 2.

Example 2. Let M be a multiset of points in PG(2, 2) uniquely characterized by M(L1) =
M(L2) = s ∈ N for two different lines L1, L2 and M(L′) = t ∈ N for all other lines L′ /∈
{L1, L2}. For P := L1 ∩ L2, we have

M(P) =
2s + t

3
− 4t

6
=

2s− t
3

, (9)

for each point Q ∈ (L1 ∪ L2)\{P}, we have

M(Q) =
s + 2t

3
− s + 3t

6
=

s + t
6

, (10)

and for each point R /∈ L1 ∪ L2, we have

M(R) =
3t
3
− 2s + 2t

6
=

2t− s
3

. (11)

SinceM(Q),M(R) ∈ N we set x :=M(Q) = s+t
6 and y :=M(R) = 2t−s

3 , so that s = 4x− y
and t = 2x + y. With this we have n = 6x + 7y and s− t = 2(x− y). Of course we need to have
y ≤ 2x so thatM(P) ≥ 0, which implies s ≥ 0.

• M(P) = 0: y = 2x, so that M(P) = 0, M(Q) = x, M(R) = 2x, and the greatest
common divisor ofM(P),M(Q), andM(R) is equal to x. Thus, we can assume x = 1,
y = 2, so that s = 2, t = 4, n = 8, γ = 2, t− s = 2, andM = 2χE − χL1 − χL2 for two
different lines L1, L2.

• M(Q) = 0: x = 0, so that also y = 0 andM is the empty multiset of points.
• M(R) = 0: y = 0,M(P) = 2x,M(Q) = x, so that gcd(M(P),M(Q),M(R)) = x

and we can assume x = 1. With this we have s = 4, t = 2, n = 6, γ = 2, s− t = 2, and
M = χL1 + χL2 for two different lines L1, L2.

So, Example 2 can be explained by the construction in Proposition 2.
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Example 3. Let M be a multiset of points in PG(2, 2) uniquely characterized by M(L1) =
M(L2) =M(L3) = s ∈ N for three different lines L1, L2, L3 with a common intersection point
P = L1 ∩ L2 ∩ L3 andM(L′) = t ∈ N for all other lines. We have

M(P) =
3s
3
− 4t

6
= s− 2t

3
(12)

and
M(Q) =

s + 2t
3
− 2s + 2t

6
=

t
3

(13)

for all points Q �= P. SinceM(P),M(Q) ∈ N we set x :=M(P) = s− 2t
3 and y :=M(Q) =

t
3 , so that s = x + 2y and t = 3y. With this we have n = x + 6y and s− t = x− y.

• M(P) = 0: x = 0, so that we can assume y = 1, which implies s = 2, t = 3, γ = 1, n = 6,
t− s = 1, andM = χE − χP for some point P.

• M(Q) = 0: y = 0, so that we can assume x = 1, which implies s = 1, t = 0, γ = 1, n = 1,
s− t = 1, andM = χP for some point P.

So, also Example 3 can be explained by the subspace construction in Proposition 1.

Example 4. Let M be a multiset of points in PG(2, 2) uniquely characterized by M(L1) =
M(L2) = M(L3) = s ∈ N for three different lines L1, L2, L3 without a common intersection
point, i.e., L1 ∩ L2 ∩ L3 = ∅, andM(L′) = t ∈ N for all other lines. For each point P that is
contained on exactly two lines Li, we have

M(P) =
2s + t

3
− s + 3t

6
=

3s− t
6

, (14)

for each point Q that is contained on exactly one line Li, we have

M(Q) =
s + 2t

3
− 2s + 2t

6
=

t
3

, (15)

and for the unique point R that is contained on none of the lines Li, we have

M(R) =
3t
3
− 3s + t

6
=

5t− 3s
6

. (16)

SinceM(P),M(Q) ∈ N, we set x :=M(P) = 3s−t
6 and y :=M(Q) = t

3 , so that s = 2x + y
and t = 3y. With this we have n = 2x + 5y and s− t = 2(x− y).

• M(P) = 0: x = 0, so that we can assume y = 1, which implies s = 1, t = 3, t− s = 2,
γ = 2, n = 5, andM = χL + 2χP for some line L and some point P /∈ L.

• M(Q) = 0: y = 0, so that x = 0 andM is the empty multiset of points.
• M(R) = 0: x = 2y, so that we can assume y = 1, which implies x = 2, s = 4, t = 6,

t− s = 2, γ = 2, n = 9, and the 2-complement ofM equalsM = χL + 2χP for some line L
and some point P /∈ L; see the caseM(P) = 0.

So, also Example 4 can be explained by the construction in Proposition 2.

In Examples 1–4 we have considered all cases of 1 ≤ #M ≤ 3 up to symmetry.
The cases #M ∈ {0, 7} give one-character multisets. By considering the complement
M′ = χV −M we see that examples for 4 ≤ #M≤ 6 do not give anything new. Since the
dimension of the ambient space is odd, we cannot apply the construction in Proposition 3.

Now, let us consider the general case. Given the setM of hyperplanes with multi-
plicity s we obtain an explicit expression for the multiplicityM(P) of every point P ∈ P
depending on the two unknown hyperplane multiplicities s and t.
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Lemma 12. LetM be a set of points in PG(k− 1, q), where k ≥ 3, andM be a multiset of points
in PG(k− 1, q) such thatM(H) = s ifM(H⊥) = 1 andM(H) = t ifM(H⊥) = 0 for all
hyperplanes H ∈ H. Denoting the number of hyperplanes H � P withM(H) = s by ϕ(P) and
setting r := #M, Δ := s− t ∈ Z, we have

M(P) =
t + Δ · ϕ(P)
[k− 1]q

− Δ
qk−2 ·

[k− 2]q
[k− 1]q

· (r− ϕ(P)). (17)

Proof. Counting gives that [k− 1]q− ϕ(P) hyperplanes through P have multiplicity t, from
the qk−1 hyperplanes not containing P exactly r− ϕ(P) have multiplicityM(H) = s and
qk−1 − r + ϕ(P) have multiplicityM(H) = t. With this we can use Lemma 1 to compute

M(P) = ∑
H∈H : P∈H

1
[k− 1]q

·M(H) + ∑
H∈H : P/∈H

1
qk−1 ·

(
1

[k− 1]q
− 1

)
·M(H)

= ∑
H∈H : P∈H

1
[k− 1]q

·M(H)− ∑
H∈H : P/∈H

1
qk−1 ·

q[k− 2]q
[k− 1]q

·M(H)

= t +
Δ

[k− 1]q
· ϕ(P) − q[k− 2]q

[k− 1]q
· t− Δ

qk−1 ·
q[k− 2]q
[k− 1]q

· (r− ϕ(P))

=
t + Δ · ϕ(P)
[k− 1]q

− Δ
qk−2 ·

[k− 2]q
[k− 1]q

· (r− ϕ(P)).

Note that ϕ(P) =M(P⊥) for all P ∈ P .

Lemma 13. LetM be a set of points in PG(k− 1, q), where k ≥ 3, andM be a multiset of points
in PG(k− 1, q) such thatM(H) = s ifM(H⊥) = 1 andM(H) = t ifM(H⊥) = 0 for all
hyperplanes H ∈ H. Denote the number of hyperplanes H � P withM(H) = s by ϕ(P) and
uniquely choose m ∈ N, I ⊆ N with 0 ∈ I such that {ϕ(P) : P ∈ P} = {m + i : i ∈ I}. If
s > t and there exists a point Q ∈ P withM(Q) = 0, then we have

t =
Δ

qk−2 · [k− 2]q · (r−m)− Δ ·m (18)

and
M(P) =

Δ · i
qk−2 (19)

for all points P ∈ P where i := ϕ(P) − m, r := #M, and Δ := s − t ∈ N≥1. If M is
non-repetitive, then Δ divides qk−2.

Proof. Using Δ > 0 we observe that the expression forM(P) in Equation (17) is increasing
in ϕ(P). So, we need to choose a point Q ∈ P which minimizes ϕ(Q) to normalize using
M(Q) = 0, since otherwise we will obtain points with negative multiplicity. So, choosing
a point Q ∈ P with ϕ(Q) = m we require

0 =M(Q) =
t + Δ ·m
[k− 1]q

− Δ
qk−1 ·

q[k− 2]q
[k− 1]q

· (r−m),

which yields Equation (18). Using i := ϕ(P)−m and the expression for t we compute
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M(P) =
t + Δ · (m + i)

[k− 1]q
− Δ

qk−2 ·
[k− 2]q
[k− 1]q

· (r−m− i)

=
Δ

qk−2 ·
[k− 2]q
[k− 1]q

· (r−m)− Δ ·m
[k− 1]q

+
Δ · (m + i)
[k− 1]q

− Δ
qk−2 ·

[k− 2]q
[k− 1]q

· (r−m− i)

=
Δ · i

[k− 1]q
+

Δ · i
qk−2 ·

[k− 2]q
[k− 1]q

=
Δ · i
qk−2

for all P ∈ P . Note that if f > 1 is a divisor of Δ that is coprime to q, then all point
multiplicities ofM are divisible by f . If Δ = qk−2 · f for an integer f > 1, then all point
multiplicities ofM are divisible by f . Thus, we have that Δ divides qk−2.

Note that I =
{
M(H)−M(H′) : H ∈ H

}
, where H′ ∈ H is a minimizer ofM(H).

Lemma 14. LetM be a set of points in PG(k− 1, q), where k ≥ 3 andM be a multiset of points
in PG(k− 1, q) such thatM(H) = s ifM(H⊥) = 1 andM(H) = t ifM(H⊥) = 0 for all
hyperplanes H ∈ H. Using the notation from Lemma 13 we set

g = gcd
(
{i ∈ I} ∪ {qk−2}

)
, (20)

Δ0 = qk−2/g, (21)

t0 =
1
g
· [k− 2]q · (r−m)− Δ0 ·m, and (22)

s0 = t + Δ0. (23)

If s > t, then we have

L(M) = 〈(s0, t0)〉N +
〈
([k− 1]q, [k− 1]q)

〉
N

.

Proof. Setting μ = μ(M) ∈ N we have thatM′ :=M− μ · χV is a two-character multiset
corresponding to (s′, t′) := (s− μ[k− 1]q, t− μ[k− 1]q) ∈ L(M) and there exists a point
Q ∈ P withM′(Q) = 0. Clearly, we have (s′, t′) ∈ N2 and s′ > t′. From Lemma 13 we
conclude the existence of an integer Δ′ ∈ N≥1 such that t′ = Δ′

qk−2 · [k− 2]q · (r−m)−Δ′ ·m,

s′ = t′ + Δ′, andM′(P) = Δ′ ·i
qk−2 for all P ∈ P . SinceM′(P) ∈ N for all P ∈ P we have

that qk−2 divides Δ′ · g, so that Δ0 ∈ N divides Δ′. For f := Δ′/Δ0 ∈ N≥1 we observe that
M′(P) is divisible by f and we setM′′ := 1

f ·M′. With this, we can check thatM′′ is a

two-character multiset corresponding to (s0, t0) ∈ L(M).

Note that it is not necessary to explicitly check t0 ∈ N sinceM′′(P) ∈ N is sufficient
to this end.

Before we consider the problem whether L(M) ⊆ N2 contains an element (s, t) with
s > t, we treat the so-far-excluded case k = 2 separately.

Lemma 15. LetM be a set of points in PG(1, q). Then, we have

L(M) = 〈(s0, 0)〉N + 〈(q + 1, q + 1)〉N,

where s0 = 0 if #M ∈ {0, q + 1} and s0 = 1 otherwise.

Proof. If #M ∈ {0, q + 1}, then a two-character multisetM corresponding to (s, t) ∈ M
actually is a one-character multiset and there exists some integer x ∈ N such thatM = x · χv.

Otherwise, we observe that in PG(1, q) points and hyperplanes coincide and the image
ofM is {0, 1}. Note that we haveM = t · χV + ∑P∈P (s− t) · M(P) · χP for each two-
character multisetM corresponding to (s, t) ∈ L(M) by definition. We can easily check
(s, t) ∈ 〈(1, 0)〉N + 〈(q + 1, q + 1)〉N. The proof is completed by choosing s = 1 and t = 0
in our representation ofM.
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Theorem 1. LetM be a set of points in PG(k− 1, q) with #M /∈
{

0, [k]q
}

, where k ≥ 2. Then,

M := ∑
H∈H
M(H⊥) · χH (24)

is a two-character multiset corresponding to (s, t) ∈ L(M) with n = #M = r[k − 1]q,
where r := #M, t = r[k − 2]q, and s = r[k − 2]q + qk−2. Setting μ := μ(M) and g :=
gcd({M(P)− μ : P ∈ P}) the function

M′ :=
1
g
·
(
−μ · χV + ∑

H∈H
M(H⊥) · χH

)
=

1
g
· (M− μ · χV) (25)

is a two-character multiset corresponding to (s0, t0) ∈ L(M)with n′ = #M′ = 1
q ·

(
r[k− 1]q− μ[k]q

)
,

where r := #M, t0 = 1
g ·

(
r[k− 2]q − μ[k− 1]q

)
, and s0 = 1

g ·
(

r[k− 2]q − μ[k− 1]q + qk−2
)

,

and g divides qk−2. Moreover, we have

L(M) = 〈(s0, t0)〉N +
〈
([k− 1]q, [k− 1]q)

〉
N
. (26)

Proof. We can easily check M(H) = r[k − 2]q = t if M(H⊥) = 0 and M(H) = r[k −
2]q + qk−2 = s ifM(H⊥) = 1 for all H ∈ H as well as #M = r[k− 1]q directly from the
definition ofM. Using Lemmas 6 and 10 we conclude thatM′ is a two-character multiset
with the stated parameters.

For k = 2, Lemma 15 is our last statement. For k ≥ 3 we can apply Lemma 13 to
conclude g = gcd({i ∈ I}) and use the proof of Lemma 14 to conclude our last statement.
Since s, t ∈ N and s > t we have that g divides g(s− t) = qk−2.

Using the notation from Lemma 13 applied to the multiset of points M− μ · χV
from Theorem 1 we observe #I ≥ 2 for #M /∈

{
0, [k]q

}
. Using the facts that g :=

gcd({M(P)− μ : P ∈ P}), that g divides qk−2, and Equation (19) we conclude

g = gcd({i ∈ I}) = gcd
({
M(H)−M(H′) : H ∈ H

})
, (27)

where H′ ∈ H is a minimizer ofM(H).
Using the classification of one-character multisets we conclude from Theorem 1:

Corollary 1. LetM be a set of points in PG(k− 1, q), where k ≥ 2. Then, there exist (s0, t0) ∈ N2

such that L(M) = 〈(s0, t0)〉N +
〈
([k− 1]q, [k− 1]q)

〉
N

.

Theorem 2. Let M̃ be a two-character multiset in PG(k− 1, q), where k ≥ 2. Then, there exist
unique u, v ∈ N such that M̃ = u ·M′ + v · χV, whereM′ is given by Equation (25).

Proof. Let s > t be the two hyperplane multiplicities of M̃. With this, define M such
that M(H⊥) = 1 if M̃(H) = s and M(H⊥) = 0 if M̃(H) = t for all H ∈ H. So,
(s, t) ∈ L(M) and Theorem 1 yields the existence of u, v ∈ N with (s, t) = u · (s0, t0) +
v · ([k− 1]q, [k− 1]q), where s0, t0 are as in Theorem 1. From Lemma 1 we then conclude
M̃ = u ·M′ + v · χV . Note that μ(M′) and μ(χV) = 1 imply μ(M̃) = v, so that u can be
computed from γ(M̃) = u · γ(M′) + v, i.e., u and v are uniquely determined.

Note that for a one-character multiset M̃ there exists a unique v ∈ N such that
M̃ = v · χV . Given a set of pointsM we callM′ the canonical representant of the set of
two-character multisetsM corresponding to (s, t) ∈ L(M). IfM =M′ we just say that
M is the canonical two-character multiset.
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Theorem 3. Let w1 < w2 be the non-zero weights of a non-repetitive [n, k]q two-weight code C
without full support. Then, there exist integers f and u such that w1 = up f and w2 = (u + 1)p f ,
where p is the characteristic of the underlying field Fq.

Proof. LetM be the two-character multiset in PG(k− 1, q) corresponding to C. Choose
unique u, v ∈ N such thatM = u ·M′ + v · χV , as in Theorem 2. Since C does not have
full support, we have v = 0 and since C is non-repetitive we have u = 1. With this we can
use Theorem 1 to compute

w1 = n− s = 1
g ·

(
r · qk−2 − μ · qk−1 − qk−2

)
= (r− qμ− 1) · p f (28)

and
w2 = n− t = 1

g ·
(

r · qk−2 − μ · qk−1
)
= (r− qμ) · p f , (29)

where f is chosen such that qk−2

g = p f , i.e., we can choose u = r− qμ− 1.

We have seen in Equation (27) that we can compute the parameter g directly from the
set of pointsM. If we additionally assume thatM is spanning, then we can consider the
corresponding projective [n, k]q-code C, where n = #M (ifM is not spanning, then we
can consider the lower-dimensional subspace spanned by supp(M)). Note that we have
M(H) ≡ m (mod g) for all H ∈ H and that g is maximal with this property. If m ≡ n
(mod g), then g would simply be the maximal divisibility constant of the weights of
C. From theorem 7 in [24] or theorem 3 in [25] we can conclude m ≡ n (mod g). Thus,
we have

g = gcd
({

wt(c) : c ∈ C
})

. (30)

The argument may also be based on the following lemma (using the fact that C is projective):

Lemma 16. Let C be an [n, k]q-code of full length such that we have wt(c) ≡ m (mod Δ) for all
non-zero codewords c ∈ C. If Δ is a power of the characteristic of the underlying field Fq, then
we have m ≡ 0 (mod min{Δ, q}). Moreover, if additionally q divides Δ and k ≥ 2, then the
non-zero weights in each residual code are congruent to m/q modulo Δ/q.

Proof. Let M be the multiset of points in PG(k − 1, q) corresponding to C. For each
hyperplane H we have n−M(H) ≡ m (mod Δ), which is equivalent toM(H) ≡ n−m
(mod Δ). The weight of a non-zero codeword in a residual code is given by a subspace
K of codimension 2 and a hyperplane H with K ≤ H. With this, the weight is given by
M(H)−M(K) ≡ n− m−M(K) (mod Δ). Counting the hyperplane multiplicities of
the q + 1 hyperplanes that contain K yields

∑
H∈H : K≤H

M(H) = #M+ q ·M(K) = #M+ q ·M(K) (31)

and
∑

H∈H : K≤H
M(H) ≡ (q + 1)(n−m) (mod Δ), (32)

so that
m ≡ q · (n−m−M(K)) (mod Δ). (33)

Given Equation (30) we might be interested in projective divisible codes (with a large
divisibility constant). For enumerations for the binary case we refer the reader to [26] and
for a more general survey we refer the reader to, e.g., [27]. Note that the only point setsM
in PG(k− 1, q) that are qk−1-divisible are given by #M ∈

{
0, [k]q

}
, i.e., the empty and the

full set. All other point sets are at most qk−2-divisible, as implied by Theorem 1.
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6. Enumeration of Two-Character Multisets in PG(k − 1, q) for Small Parameters

Since all two-character multisets in PG(1, q) can be parameterized asM = b · χV +

∑P∈P (a− b) ·M(P) · χP for integers a > b ≥ 0 and a set of pointsM in PG(k− 1, q) (see
Lemma 15 and its proof), we assume k ≥ 3 in the following. Due to Theorem 2, every
two-character multiset in PG(k− 1, q) can be written as u ·M′ + v · χV , where u, v ∈ N and
M′ is characterized in Theorem 1. So, we further restrict out considerations on canonical
two-character multisets where we have u = 1 and v = 0. For k = 2, all canonical two-
character multisets in PG(k− 1, q) are indeed sets of points and given by the construction
in Proposition 3 (with r = 1).

It can be easily checked that two isomorphic sets of points in PG(k − 1, q) yield
isomorphic canonical two-character multisetsM′. So, for the full enumeration of canonical
two-character multisets in PG(k− 1, q) we just need to loop over all non-isomorphic sets of
pointsM in PG(k− 1, q) and use Theorem 1 to determineM,M′, and their parameters.
We remark that the numbers of non-isomorphic projective codes per length, dimension,
and field size are, e.g., listed in tables 6.10–6.12 in [28] (for small parameters). For the binary
case and at most six dimensions some additional data can be found in [29]. Here, we utilize
the software package LINCODE [30] to enumerate these codes.

In Tables 1 and 2 we list the feasible parameters for canonical two-character multisets
in PG(2, 2) and in PG(3, 2), respectively, where n′ := #M′ and γ′ := γ(M′). The two hy-
perplane multiplicities forM′ are denoted by s0, t0 and those ofM by s, t. The parameters
g, μ, r are as in (25) and n = #M. For PG(2, 2) we can also state more direct constructions:

• (n′, s0, t0, γ′) = (1, 1, 0, 1): characteristic function of a point (not spanning);
• (n′, s0, t0, γ′) = (3, 3, 1, 1): characteristic function of a line (not spanning);
• (n′, s0, t0, γ′) = (4, 2, 0, 1): complement of the characteristic function of a line;
• (n′, s0, t0, γ′) = (6, 3, 2, 1): complement of the characteristic function of a point;
• (n′, s0, t0, γ′) = (5, 3, 1, 2): χL + 2χP for a line L and a point P with P /∈ L;
• (n′, s0, t0, γ′) = (6, 4, 2, 2): χL + χ′L for two different lines L and L′;
• (n′, s0, t0, γ′) = (8, 4, 2, 2): χV − χL − χ′L for two different lines L and L′;
• (n′, s0, t0, γ′) = (9, 5, 3, 2): 2χV − χL +−χP for a line L and a point P with P /∈ L.

Table 1. Feasible parameters for canonical two-character multisets in PG(2, 2).

g μ r n γ s t s0 t0 n′ γ′

2 1 3 9 3 5 3 1 0 1 1
1 0 1 3 1 3 1 3 1 3 1
1 2 6 18 3 8 6 2 0 4 1
2 0 4 12 2 6 4 3 2 6 1

1 1 4 12 3 6 4 3 1 5 2
1 0 2 6 2 4 2 4 2 6 2
1 1 5 15 3 7 5 4 2 8 2
1 0 3 9 2 5 3 5 3 9 2

Table 2. Feasible parameters for canonical two-character multisets in PG(3, 2).

g μ r n γ s t s0 t0 n′ γ′

4 3 7 49 7 25 21 1 0 1 1
2 1 3 21 3 13 9 3 1 3 1
2 4 10 70 6 34 30 3 1 5 1
2 2 6 42 4 22 18 4 2 6 1
1 0 1 7 1 7 3 7 3 7 1
1 6 14 98 7 46 42 4 0 8 1
2 3 9 63 5 31 27 5 3 9 1
2 1 5 35 3 19 15 6 4 10 1
2 4 12 84 6 40 36 6 4 12 1
4 0 8 56 4 28 24 7 6 14 1
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Table 2. Cont.

g μ r n γ s t s0 t0 n′ γ′

2 2 8 56 6 28 24 7 5 13 2
1 0 2 14 2 10 6 10 6 14 2
2 0 4 28 4 16 12 8 6 14 2
1 5 13 91 7 43 39 8 4 16 2
2 3 11 77 7 37 33 8 6 16 2
2 1 7 49 5 25 21 9 7 17 2

1 1 4 28 4 16 12 9 5 13 3
1 4 11 77 7 37 33 9 5 17 3
1 3 9 63 6 31 27 10 6 18 3
1 2 7 49 5 25 21 11 7 19 3
1 1 5 35 4 19 15 12 8 20 3
1 0 3 21 3 13 9 13 9 21 3
1 4 12 84 7 40 36 12 8 24 3
1 3 10 70 6 34 30 13 9 25 3
1 2 8 56 5 28 24 14 10 26 3
1 1 6 42 4 22 18 15 11 27 3
1 0 4 28 3 16 12 16 12 28 3
1 3 11 77 6 37 33 16 12 32 3

1 3 8 56 7 28 24 7 3 11 4
1 2 6 42 6 22 18 8 4 12 4
1 3 9 63 7 31 27 10 6 18 4
1 2 7 49 6 25 21 11 7 19 4
1 1 5 35 5 19 15 12 8 20 4
1 3 10 70 7 34 30 13 9 25 4
1 2 8 56 6 28 24 14 10 26 4
1 1 6 42 5 22 18 15 11 27 4
1 2 9 63 6 31 27 17 13 33 4
1 1 7 49 5 25 21 18 14 34 4
1 0 5 35 4 19 15 19 15 35 4
1 2 10 70 6 34 30 20 16 40 4
1 1 8 56 5 28 24 21 17 41 4
1 0 6 42 4 22 18 22 18 42 4
1 1 9 63 5 31 27 24 20 48 4
1 0 7 49 4 25 21 25 21 49 4

Of course, also for PG(3, 2) some of the examples have nicer descriptions:

• (n′, s0, t0, γ′) = (1, 1, 0, 1): characteristic function of a point (not spanning);
• (n′, s0, t0, γ′) = (3, 3, 1, 1): characteristic function of a line (not spanning);
• (n′, s0, t0, γ′) = (7, 7, 3, 1): characteristic function of a plane (not spanning);
• (n′, s0, t0, γ′) = (5, 3, 1, 1): projective base; spanning projective 2-weight code;
• (n′, s0, t0, γ′) = (6, 4, 2, 1): characteristic function of two disjoint lines; spanning

projective 2-weight code;
• (n′, s0, t0, γ′) = (14, 10, 6, 2): characteristic function of two different planes;
• (n′, s0, t0, γ′) = (21, 13, 9, 3): characteristic function of three planes intersecting in a

common point but not a common line.

Note that we may restrict our considerations to r < [k]q/2, since if M′ is the a
canonical two-character multiset for a set of pointsM with #M = r, then the complement
ofM′ is the a canonical two-character multiset for a set of points which is the complement
ofM and has cardinality [k]q − r.

From the data in Tables 1 and 2 we can guess the maximum possible point multiplicity
γ(M′) ofM′:

Proposition 4. LetM be a canonical two-character multiset in PG(k− 1, q), where k ≥ 2. Then,
we have γ(M) ≤ qk−2.
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Proof. Choose a suitable setH′ ⊆ H and g, ν ∈ N such that

M =
1
g
·
(

∑
H∈H′

χH − μ · χV

)
.

Let P ∈ P be a point withM(P) = γ and Q ∈ P be a point withM(Q) = 0. With this
we have λ ≥ |{H ∈ H′ : Q ≤ H}|. Since P is contained in [k− 1]q hyperplanes inH and
〈P, Q〉 is contained in [k− 2]q hyperplanes inH, we haveM(P) ≤ qk−2.

We can easily construct an example showing that the stated upper bound is tight.
To this end, let P, Q be two different points in PG(k − 1, q), where k ≥ 3, and H′ be
an arbitrary hyperplane neither containing P nor Q. With this, we choose H′ as the
set of all qk−2 hyperplanes that contain P but do not contain Q and additionally the
hyperplane H′. For the corresponding multiset of pointsM we then haveM(P) = qk−2

and M(Q) = 0, so that μ(M) = 0. For an arbitrary point R ∈ H′ we have M(R) =
qk−2 − qk−3 + 1 = (q− 1)qk−3 + 1, so that gcd(M(R),M(P)) = 1 if k ≥ 4 or k = 3 and
q �= 2. For (k, q) = (3, 2) we have already seen examples of canonical two-character
multisets with maximum point multiplicity 2.

In Tables 3 and 4, we list the feasible parameters for canonical two-character multisets
in PG(4, 2) with point multiplicity at most 4.

Table 3. Feasible parameters for canonical two-character multisets in PG(4, 2) with γ′ ≤ 4—part 1.

g μ r n γ s t s0 t0 n′ γ′

8 7 15 225 15 113 105 1 0 1 1
4 3 7 105 7 57 49 3 1 3 1
2 1 3 45 3 29 21 7 3 7 1
1 0 1 15 1 15 7 15 7 15 1
1 14 30 450 15 218 210 8 0 16 1
2 12 28 420 14 204 196 12 8 24 1
4 8 24 360 12 176 168 14 12 28 1
8 0 16 240 8 120 112 15 14 30 1

2 2 6 90 6 50 42 10 6 14 2
2 5 13 195 9 99 91 12 8 20 2
2 3 9 135 7 71 63 13 9 21 2
2 1 5 75 5 43 35 14 10 22 2
2 8 20 300 12 148 140 14 10 26 2
2 6 16 240 10 120 112 15 11 27 2
2 4 12 180 8 92 84 16 12 28 2
2 2 8 120 6 64 56 17 13 29 2
4 0 8 120 8 64 56 16 14 30 2
2 0 4 60 4 36 28 18 14 30 2
1 0 2 30 2 22 14 22 14 30 2
4 7 23 345 15 169 161 16 14 32 2
2 11 27 405 15 197 189 16 12 32 2
1 13 29 435 15 211 203 16 8 32 2
2 9 23 345 13 169 161 17 13 33 2
2 7 19 285 11 141 133 18 14 34 2
2 5 15 225 9 113 105 19 15 35 2
2 3 11 165 7 85 77 20 16 36 2
2 10 26 390 14 190 182 20 16 40 2
2 8 22 330 12 162 154 21 17 41 2
2 6 18 270 10 134 126 22 18 42 2
2 9 25 375 13 183 175 24 20 48 2

2 4 10 150 10 78 70 9 5 13 3
2 9 21 315 15 155 147 10 6 18 3
2 3 9 135 9 71 63 13 9 21 3
2 6 16 240 12 120 112 15 11 27 3
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Table 3. Cont.

g μ r n γ s t s0 t0 n′ γ′

2 4 12 180 10 92 84 16 12 28 3
2 2 8 120 8 64 56 17 13 29 3
1 1 4 60 4 36 28 21 13 29 3
2 7 19 285 13 141 133 18 14 34 3
2 5 15 225 11 113 105 19 15 35 3
2 3 11 165 9 85 77 20 16 36 3
2 1 7 105 7 57 49 21 17 37 3
2 6 18 270 12 134 126 22 18 42 3
2 4 14 210 10 106 98 23 19 43 3
2 2 10 150 8 78 70 24 20 44 3
1 0 3 45 3 29 21 29 21 45 3
1 12 28 420 15 204 196 24 16 48 3
2 7 21 315 13 155 147 25 21 49 3

Table 4. Feasible parameters for canonical two-character multisets in PG(4, 2) with γ′ ≤ 4—part 2.

g μ r n γ s t s0 t0 n′ γ′

2 5 17 255 11 127 119 26 22 50 3
2 3 13 195 9 99 91 27 23 51 3
2 8 24 360 14 176 168 28 24 56 3
2 6 20 300 12 148 140 29 25 57 3
2 4 16 240 10 120 112 30 26 58 3
2 2 12 180 8 92 84 31 27 59 3
1 11 27 405 14 197 189 32 24 64 3
2 7 23 345 13 169 161 32 28 64 3
2 5 19 285 11 141 133 33 29 65 3
2 3 15 225 9 113 105 34 30 66 3
2 6 22 330 12 162 154 36 32 72 3
2 0 10 150 6 78 70 39 35 75 3
2 5 21 315 11 155 147 40 36 80 3

2 4 12 180 12 92 84 16 12 28 4
1 2 6 90 6 50 42 20 12 28 4
2 3 11 165 11 85 77 20 16 36 4
2 4 14 210 12 106 98 23 19 43 4
1 2 7 105 6 57 49 27 19 43 4
1 1 5 75 5 43 35 28 20 44 4
1 11 26 390 15 190 182 25 17 49 4
1 10 24 360 14 176 168 26 18 50 4
1 9 22 330 13 162 154 27 19 51 4
1 8 20 300 12 148 140 28 20 52 4
1 7 18 270 11 134 126 29 21 53 4
1 5 14 210 9 106 98 31 23 55 4
2 6 20 300 14 148 140 29 25 57 4
1 3 10 150 7 78 70 33 25 57 4
2 4 16 240 12 120 112 30 26 58 4
1 2 8 120 6 64 56 34 26 58 4
1 1 6 90 5 50 42 35 27 59 4
1 0 4 60 4 36 28 36 28 60 4
1 11 27 405 15 197 189 32 24 64 4
1 10 25 375 14 183 175 33 25 65 4
2 3 15 225 11 113 105 34 30 66 4
1 9 23 345 13 169 161 34 26 66 4
2 1 11 165 9 85 77 35 31 67 4
1 8 21 315 12 155 147 35 27 67 4
1 6 17 255 10 127 119 37 29 69 4
1 4 13 195 8 99 91 39 31 71 4
1 3 11 165 7 85 77 40 32 72 4
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Table 4. Cont.

g μ r n γ s t s0 t0 n′ γ′

1 2 9 135 6 71 63 41 33 73 4
1 1 7 105 5 57 49 42 34 74 4
1 0 5 75 4 43 35 43 35 75 4
1 10 26 390 14 190 182 40 32 80 4
2 3 17 255 11 127 119 41 37 81 4
1 9 24 360 13 176 168 41 33 81 4
2 4 20 300 12 148 140 44 40 88 4
2 3 19 285 11 141 133 48 44 96 4
1 9 25 375 13 183 175 48 40 96 4
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Abstract: In this paper, we propose the zero-correlation-zone (ZCZ) of radius r on two-dimensional
m × n sonar sequences and define the (m, n, r) ZCZ sonar sequences. We also define some new
optimality of an (m, n, r) ZCZ sonar sequence which has the largest r for given m and n. Because
of the ZCZ for perfect autocorrelation, we are able to relax the distinct difference property of the
conventional sonar sequences, and hence, the autocorrelation of ZCZ sonar sequences outside ZCZ
may not be upper bounded by 1. We may sometimes require such an ideal autocorrelation outside
ZCZ, and we define ZCZ-DD sonar sequences, indicating that it has an additional distinct difference
(DD) property. We first derive an upper bound on the ZCZ radius r in terms of m and n ≥ m.
We next propose some constructions for (m, n, r) ZCZ sonar sequences, which leads to some very
good constructive lower bound on r. Furthermore, this construction suggests that for m and r, the
parameter n can be as large as possible indefinitely. We present some exhaustive search results on the
existence of (m, n, r) ZCZ sonar sequences for some small values of r. For ZCZ-DD sonar sequences,
we prove that some variations of Costas arrays construct some ZCZ-DD sonar sequences with ZCZ
radius r = 2. We also provide some exhaustive search results on the existence of (m, n, r) ZCZ-DD
sonar sequences. Lots of open problems are listed at the end.

Keywords: sonar sequences; zero-correlation-zone; costas arrays; distinct difference property

1. Introduction

Sonar sequences are two-dimensional synchronizing patterns of dots and blanks with
minimal ambiguity [1]. Rectangular array representation of sonar sequences is defined
by having only one dot per column and the distinct difference properties of the dots.
They are used in active sonar systems to improve target detection performance. They
are also useful in radar [2] and many other applications where optimal 2-dimensional
autocorrelation is required. Costas arrays as sonar sequences were introduced by J. P. Costas
in 1984 [3]. Subsequently, research interest was aroused in the existence [4], enumeration,
construction [5–8], and mathematical properties [9–12] of Costas arrays and also sonar
sequences. It is further generalized into various shapes, for example, honeycomb array,
maintaining the distinct difference properties [13].

Numerous studies have delved into the structural properties of sonar sequences.
The properties of symmetry were discussed for Welch and Golomb constructions in [14].
S. W. Golomb and H. Taylor had previously proposed a weakened version of the conjecture,
asserting that single periodicity was characteristic of Welch construction of the Costas array.
Subsequently, in [15], the concept of cyclic Costas sequences was introduced, along with
the conjecture that a Costas sequence is cyclic if and only if it is Welch.

With the introduction of Costas arrays, the search for the number of Costas arrays
began using computers, even though computers were not well developed at the time.
R. Games and M. Chao were the first to report exact values for order n ≤ 10, the values
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for n ≤ 12 were found by J. P. Costas, and J. Robbins furthered the search up to n = 13 in
1984 [8]. In 1988, Silverman et al. reported a further extension to n = 17, and developed a
probabilistic estimation formula for the number of Costas arrays [16]. In 2011, K. Drakakis
and S. Rickard et al. published results enumerating Costas arrays up to n = 29 [17].

In one dimension, a binary sequence is called to have an ideal autocorrelation when
the out-of-phase autocorrelation magnitude is at most 1 or 2 according to the period of the
sequence [18,19]. In [20], P. Fan proposed the concept of zero-correlation-zone (ZCZ) in
which the autocorrelation is zero (perfect). As one-dimensional CDMA sequences, binary
or non-binary ZCZ sequences can be used to perfectly eliminate co-channel and multipath
interference for quasi-synchronous CDMA systems [21]. Therefore, they do not care for the
autocorrelation values of ZCZ sequences outside ZCZ. It would have been mathematically
or theoretically desirable if the autocorrelation magnitudes of ZCZ sequences were also
very low or even close to zero, which is not at all required for QS-CDMA systems using ZCZ
sequences since the system performance depends only on the autocorrelation magnitudes
inside ZCZ [21,22]. In addition, several studies on the construction and bounds of these
one-dimensional ZCZ sequences have been published [22–24].

Sonar sequences are two-dimensional synchronizing patterns since their autocorre-
lation properties are well-described in two dimensions. We now propose for the first
time the concept of ZCZ into sonar sequences, and we emphasize that we do care for
the autocorrelation value zero inside ZCZ (except for the in-phase, of course) and we do
not care for the value outside ZCZ. As we have mentioned in the previous paragraph, it
would have been great if we could define a ZCZ sonar sequence that has not only the zero
autocorrelation value inside ZCZ but also the value of at most 1 outside ZCZ. We will call
such a ZCZ sonar sequence a ZCZ-DD sonar sequence, which is itself a sonar sequence.
We note, therefore, that a ZCZ sonar sequence may not be a (conventional) sonar sequence
since it may lack the so called distinct difference property that defines sonar sequences.

In this paper, we propose the zero-correlation-zone (ZCZ) of radius r on two-
dimensional m × n sonar sequences and define the (m, n, r) ZCZ sonar sequences. We
also define some new optimality of an (m, n, r) ZCZ sonar sequence which has the
largest r for given m and n. Because of the ZCZ for perfect autocorrelation, we are
able to relax the distinct difference property of the conventional sonar sequences, and
hence, the autocorrelation of ZCZ sonar sequences outside ZCZ may not be upper
bounded by 1. We may sometimes require such an ideal autocorrelation outside ZCZ,
and we call this a ZCZ-DD sonar sequence, indicating that it has an additional distinct
difference (DD) property.

It is to be noted that, for conventional sonar sequences (without considering ZCZ),
one has to increase the value n for a given m in order to increase the overall autocorrelation
performance [25,26]. This gives the definition of (conventional) optimal (m, n) sonar
sequences with largest n for a given m [26]. Now, we emphasize that it is quite appropriate
to think of the new optimality of (m, n, r) ZCZ sonar sequences with largest value of r given
m and n, since now it has perfect autocorrelation inside ZCZ and hence it is desirable to
have as large ZCZ as possible for given size m× n. It is because we may be able to limit the
operating range (of active sonar systems) inside ZCZ, as is the case for the one-dimensional
sequences with ZCZ [20].

In Section 2, we review sonar sequences, encompassing essential definitions, prop-
erties, autocorrelation properties, and some well-known constructions. We introduce the
Manhattan metric, which will be used in subsequent discussions to represent the ZCZ
radius. Section 3 contains some main results on ZCZ sonar sequences. Section 4 discusses
some theory only on ZCZ-DD sonar sequences. Section 6 discusses some open problems of
both ZCZ sonar sequences and ZCZ-DD sonar sequences.
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2. Preliminary

Definition 1. (Sonar Sequences, Sonar Arrays and Costas Arrays [1,26]) Let m ≤ n be positive
integers. A function f : {1, 2, . . . , n} → {1, 2, . . . , m} has the distinct difference (DD) property if

f (u + h)− f (u) = f (v + h)− f (v) implies u = v

for 1 ≤ h ≤ n− 1 and 1 ≤ u, v ≤ n− h.
An (m, n) sonar sequence is a function f : {1, 2, . . . , n} → {1, 2, . . . , m} with the DD

property. It can be written as
f = [ f (1), f (2), . . . , f (n)],

where 1 ≤ f (j) ≤ i, for j = 1, 2, . . . , n. This can also be represented as an m× n sonar array
A = [A(i, j)], where

A(i, j) =
{

1, f (j) = i
0, otherwise

, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

It is a usual convention to represent "1" with a dot and "0" with a blank in A.
An (m, n) sonar sequence is called optimal if n is the largest with m rows.
The Costas array is a sonar array of square size with an additional condition that there is only

one "dot" in each row.

There are some well-known constructions of Costas arrays as sonar sequences.

• Lempel construction [1,5,8]: Let q > 2 be a prime or a prime power and let α be a
primitive element of Fq which is the finite field of size q. Then f : {1, 2, . . . , q− 2} →
{1, 2, . . . , q − 2} defined by the relation αj + α f (j) = 1, for j = 1, 2, . . . , q − 1, is a
(q− 2)× (q− 2) Costas array.

• (Exponential) Welch construction [1,5,8]: Let α be a primitive element of Fp where p
is a prime. Then f : {1, 2, . . . , p− 1} → {1, 2, . . . , p− 1} defined by f (i) = αi, for i =
1, 2, . . . , p − 1, is a (p − 1) × (p − 1) Costas array. Furthermore, if
[ f (1), f (2), . . . , f (p− 1)] is the exponential Welch Costas array, then so is

[ f (j), f (j + 1), . . . , f (p− 1), f (1), f (2), . . . , f (j− 1)]

for each j = 2, 3, . . . , p− 1. This property is called the single periodicity of the Costas array.

There are also Quadratic constructions [25], Shift construction [27], Golomb construc-
tion [5,8], the constructions using Sidon set [28] and their extensions.

We note that attaching i empty rows, for any integer i = 1, 2, . . ., to the above n× n
Costas array gives an (n + i)× n sonar array. We note also that rotating the rows of the
result any number of times is still an (n+ i)× n sonar array. If we start from the exponential
Welch Costas array, then rotating the columns of the result any number of times is still an
(n + i)× n sonar array because of its single periodicity. This will be used later for the some
new construction of ZCZ-DD sonar sequences with radius 2.

Another variation on any n× n Costas array is to delete any corner dot and obtain the
(n− 1)× (n− 1) Costas array. Deleting the corner dots twice gives the size (n− 2)× (n− 2).
Two corner dots in the diagonal position can be deleted once to produce the size (n−2)× (n−2).
This will also be used later for ZCZ-DD sonar sequence construction.

The discrete non-periodic autocorrelation function [8] C(τ, ϕ) of an m× n sonar array
[A(i, j)] where i = 1, 2, . . . , m, j = 1, 2, . . . , n is defined to be the number of coincidences
between dots in A(i, j) and its shift A(i + ϕ, j + τ) where τ is the amount of horizontal shift
and ϕ is the amount of vertical shift. The set of all the values of C(τ, ϕ) can be represented
as an array of size (2m− 1)× (2n− 1), and it has a center-symmetric structure:

C(τ, ϕ) = C(−τ,−ϕ), for all (τ, ϕ) ∈ Z2.
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When (τ, ϕ) = (0, 0), the correlation has the peak value C(0, 0) = n, since all the dots
coincide. The DD property implies that

C(τ, ϕ) ≤ 1, for all (τ, ϕ) �= (0, 0).

In this paper, we will define ZCZ in the Manhattan metric. The Manhattan metric is
also known as the taxicab metric [29]. In a 2-dimensional plain, the Manhattan distance D
between two dots in positions a = (x1, y1) and b = (x2, y2) is defined by

D(a, b) = |x1 − x2|+ |y1 − y2|. (1)

We will use the terms “sonar array” and “sonar sequence” interchangeably, and hence, the
autocorrelation of a sonar sequence has to be understood as that of the sonar array.

This induces an integer-valued lattice in the 2-dimensional plain, which will be de-
noted by Z2. For a positive integer r, we consider the Manhattan-circle of radius r centered
at the origin in Z2 and the set M(r) of all the integer points inside, i.e.,

M(r) =
{
(x, y) ∈ Z2 : |x|+ |y| ≤ r

}
.

Lemma 1. The area of a Manhattan-circle M(r) of radius r is given as

|M(r)| = 1 + 2r + 2r2. (2)

Proof. The first term in (2) counts the center. The remaining size is given by 4 times
(1 + 2 + · · ·+ r) as shown in Figure 1.

Figure 1. Manhattan-circles of radius r = 1, 2, 3 and its area.

3. Main Results on ZCZ Sonar Sequences

Definition 2. For positive integers r and m ≤ n, an (m, n, r) ZCZ sonar sequence is a function
f : {1, 2, . . . , n} → {1, 2, . . . , m} such that its autocorrelation C(τ, ϕ) = 0 for all (τ, ϕ) �= (0, 0)
with |ϕ|+ |τ| ≤ r where r is the radius of ZCZ in the Manhattan metric.

For clarity, it is important to note that a ZCZ sonar sequence, although termed a “sonar
sequence”, does not necessarily satisfy the DD property of sonar sequences. A special case
of ZCZ sonar sequences is a ZCZ-DD sonar sequence, which is a sonar sequence with ZCZ
of some radius.

Definition 3. An (m, n, r) ZCZ-DD sonar sequence is an (m, n, r) ZCZ sonar sequence that has
the DD property, in addition.

Remark 1. A ZCZ-DD sonar sequence is a sonar sequence. A ZCZ-DD sonar sequence is always
a ZCZ sonar sequence, but not conversely. A ZCZ sonar sequence may not have the DD property.
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Example 1. The first example in Figure 2 is a (5, 5) Costas array (sonar sequence) and its autocor-
relation. The second example is a (5, 5, 2) ZCZ-DD sonar sequence and its autocorrelation showing
the ZCZ of radius 2. We note that it is a sonar sequence. The third example is a (5, 5, 2) ZCZ sonar
sequence. Observe that it is not a sonar sequence because it does not have the DD property. This can
be seen by the value 2 at some out-of-phase shifts (τ, ϕ) �= (0, 0).

Figure 2. Three 5× 5 arrays in Example 1.

Given an (m, n, r) ZCZ sonar array, we define Dmin to be the minimum Manhattan
distance among all the distances between the pairs of dots. The following is obvious:

Lemma 2. For a ZCZ sonar sequence with its ZCZ radius r, the distance D of any pair of dots satisfies

D ≥ Dmin = r + 1.

This lemma gives some trivial upper bound on r of any (m, n, r) ZCZ sonar sequences.
That is,

r = Dmin − 1 ≤ D− 1.

The following upper bound on r is the best in terms of m and n ≥ m that we could prove.
The main idea is analogous to the proof of Hamming bound on binary linear block codes:

Theorem 1. For an (m, n, r) ZCZ sonar sequence with n ≥ m ≥ 2, we have

r ≤
⌊√

2m− 4
⌋

. (3)

Proof. Consider the m× n array corresponding to an (m, n, r) ZCZ sonar sequence. Then,
any two Manhattan-circles of radius ρ with dots at the center will not intersect with each
other when ρ ≥

⌊ r
2
⌋
. Therefore, the sum of the area of all the Manhattan-circles of radius ρ

cannot be more than the total area of the array. Here, we may have to consider the dots in
the edges so that the Manhattan-circle may cover the area beyond the m× n sonar array.
For this, we increase the total area of the array from m× n to (m + 2ρ)× (n + 2ρ), since the
dot in the edges could reach the distance ρ for both horizontally and vertically. By carefully
counting the number of cells in these additional areas, we see that we only have to increase
in one direction. Therefore, we have the bound (similar to Hamming bound in algebraic
coding theory)

n|M(ρ)| ≤ (m + 2ρ)n,

or
|M(ρ)| ≤ (m + 2ρ).
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We substitute ρ = r/2 on LHS and ρ = (r− 1)/2 on RHS by carefully counting again the
additional areas outside the m× n array. This gives the bound in the theorem.

In [30], the maximum number of disjoint non-attacking Queens (NAQ) patterns that
can sit on an n× n chessboard is proposed, where each pattern consists of n NAQs placed
symmetrically around the center. NAQ means that for each dot in the pattern, there are no
other dots in the horizontal, vertical and diagonal directions. We cite one of NAQ patterns
and calculate the autocorrelation as shown in Figure 3. From its autocorrelation, it can be
seen that it is an (11, 11, 2) ZCZ sonar sequence. The following construction of (m, n, r)
ZCZ sonar sequence essentially comes from this idea from [30].

Figure 3. An 11× 11 NAQ pattern from [30] is an (11, 11, 2) ZCZ sonar sequence.

Theorem 2. The function f : {0, 1, . . . , n − 1} → {0, 1, . . . , m − 1} defined by f (j) = rj
(mod m) is an (m, n, r) ZCZ sonar sequence for any positive integers m, n ≥ m and r ≥ 3 with
m = r2 − 1.

Proof. We will focus on a section containing consecutive r columns inside. For j =
0, 1, 2, . . . , r − 1 and also j = r, the function f is shown in Figure 4. We claim that the
Manhattan distance between any two dots is at least r + 1 as shown below, and since this
one period of r columns can repeat indefinitely, the proof is completed:

Figure 4. Proof of Theorem 2.
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Consider the columns from 0 to r − 1 in Figure 4. Any two adjacent dots have
Manhattan distance r + 1. Consider the dot in column r in Figure 4. Since m = r2 − 1, it
is located one row up relative to the dot in column 0. Therefore, the Manhattan distance
(of lower arrow in the figure) is r + 1. The Manhattan distance of the dot from the dot in
column 1 is r− 1 + r− 1 = 2r− 2 ≥ r + 1 since r ≥ 3 (upper arrow in the figure).

The above construction gives a constructive lower bound on the parameter r for
(m, n, r) ZCZ sonar sequences:

Corollary 1. There exists an (m, n, r) ZCZ sonar sequence such that

r ≥
√

m + 1.

In an attempt to improve the lower bound in the above corollary, we propose another
construction for (m, n, r) ZCZ sonar sequences in which the first repeat of the dot in the
lowest block of size r is not in column r (which is the case in Figure 4 for the proof of
Theorem 2) but in some column t where t << r where we assume that r ≥ 3. Since the total
number of rows is m, its row index must be rt (mod m) which is equal to rt−m. Therefore,
we are trying to find the minimum t ∈ {0, 1, . . . , n− 1} such that rt−m > 0, where the
function f : {0, 1, . . . , n− 1} → {0, 1, . . . , m− 1} defined as f (j) = rj (mod m) is shown
in Figure 5.

Figure 5. Proof of Theorem 3 where (r+3)
2 ≤ t and (r− 1)t + 2 ≤ m ≤ (r + 1)(t− 1).

Since any two adjacent dots in the first t columns have the Manhattan distance of r + 1,
we need to check only the distances between the dot in column t and the dots in the first
and second columns. This gives the following inequalities:

r + 1 ≤ t + rt−m (4)
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and
r + 1 ≤ t− 1 + r− (rt−m). (5)

By combining (4) and (5), we obtain the following range of m:

(r− 1)t + 2 ≤ m ≤ (r + 1)(t− 1) (6)

or the inequality
(r− 1)t + 2 ≤ (r + 1)(t− 1)

which implies that
r + 3

2
≤ t. (7)

Now, a ZCZ sonar sequence can be constructed for (m, n, r) as follows: Choose a
positive integer r ≥ 3, and select the parameter t satisfying t ≥ 
 r+3

2 �. The pair of integers r
and t determines the range of m by (6). Select an appropriate value of m in this range. Then,
for any positive integer n, we have an (m, n, r) ZCZ sonar sequence f (j) = rj (mod m) for
j = 1, 2, . . . , n.

As an example, the case where t = r yields

r2 − r + 2 ≤ m ≤ r2 − 1

for r ≥ 3. Taking the value m = r2− 1 in this range for t = r is exactly the case of Theorem 2.
Taking the value m = r2 − r + 2 on the other hand for the same t = r gives another (m, n, r)
ZCZ sonar sequence for any positive integer n.

For some specific example, we consider r = 6. Then t ≥ 5 and 5t + 2 ≤ m ≤ 7(t− 1).
Therefore, we may construct the (m, n, 6) ZCZ sonar sequences for any positive integer n
and the value m in the following range:

t = 5 → 27 ≤ m ≤ 28

t = 6 → 32 ≤ m ≤ 35

t = 7 → 37 ≤ m ≤ 42

etc.

We summarize the discussions above as our main construction for a family of (m, n, r)
ZCZ sonar sequences:

Theorem 3 (Main construction for ZCZ sonar sequences). The function f : {0, 1, . . . , n−
1} → {0, 1, . . . , m − 1} defined by f (j) ≡ rj (mod m), as shown in Figure 5, is an (m, n, r)
ZCZ sonar sequence for any positive integers n ≥ m and r ≥ 3 where the value m must be in the
range (6) in which t satisfies the inequality (7).

Example 2. When r = 3, the value of m can be 8 according to Theorem 3. Figure 6 depicts the
(8, 8, 3) ZCZ sonar sequence with their autocorrelation on the left side.

When r = 4, the construction derived from Theorem 3 produces the square array depicted on
the right side of the figure with its autocorrelation. It becomes apparent that the top r

2 − 1 = 1 row
of the array does not contain any dots. Thus, by removing this top row, we arrive at the construction
for the size 13× 14 with r = 4.

Both examples can be repeated any number of times so that the result becomes either (8, n, 3)
ZCZ sonar sequence or (13, n, 4) ZCZ sonar sequence for any positive integer n.
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Figure 6. The (8, 8, 3) and (13, 14, 4) ZCZ sonar sequences from the construction in Theorem 3.

By selecting the minimum value of t = 
 r+3
2 � for r ≥ 3 from the above construction,

we derive the minimum value of m and hence the best constructive lower bound on r:

Corollary 2. The minimum value of m in Theorem 3 becomes the following

m =

⎧⎨⎩
r2+2r+1

2 , r is odd

r2+2r+2
2 , r is even

,

for the value t = 
 r+3
2 �. This gives a constructive lower bound as follows: for any positive integer

m ≥ 3, there exists an (m, n, r) ZCZ sonar sequence (for any n ≥ m) with the value r satisfying

r ≥
√

2m− 1− 1. (8)

Proof. The case of an odd r is obvious. When r is even, the theorem says the minimum
value of m = r2+3r

2 , and the construction gives an m× n ZCZ sonar array for any n ≥ m
where the top r/2− 1 rows are empty. These rows can be further removed to make m
smaller. The resulting value of m becomes r2+2r+2

2 .

We show an example of a (61, 52, 10) ZCZ sonar sequence in Figure 7 found by
computer. This is an interesting example since the construction in Theorem 3 for r = 10
gives a ZCZ sonar sequence with the smallest value m = 61. It is also very special in that
it has a periodic structure of a period of 13 columns repeating 4 times. We note that this
period can be repeated any number of times to make a (61, 13a + b, 10) ZCZ sonar sequence
for any integers a and b. Essentially, it gives a family of examples of (61, n, 10) ZCZ sonar
sequences for any positive integer n ≥ 1.
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Figure 7. A (61, 52, 10) ZCZ sonar sequence by computer search.

Remark 2. It is obvious that one can find a family of (m, n, r) ZCZ sonar sequences for some
given values of m and r with infinitely many values of n. Some evidence we discussed so far can be
summarized as follows:

1. The example of (11, 11, 2) ZCZ sonar sequence in Figure 3 from [30] can be repeated any
number of times and the result can be an (11, n, 2) ZCZ sonar sequence for any positive
integer n.

2. The example of (61, 52, 10) ZCZ sonar sequence in Figure 7 can be repeated any number of
times and the result can be an (61, n, 10) ZCZ sonar sequence for any positive integer n.

3. Theorem 2 gives a family of (m, n, r) ZCZ sonar sequences for any r ≥ 3 and m = r2 − 1 but
with infinitely many values of the positive integer n.

4. Theorem 3 generalizes Theorem 2. Corollary 2 gives one specific case for m and r with any
positive integer n, which is different from those by Theorem 2. Two examples from this
construction are shown in Example 2.

Therefore, it becomes meaningless to talk about the ‘optimal’ (m, n, r) ZCZ sonar sequence
with the maximum value of n for given m and r. Instead, we may define the optimality of an (m, n, r)
ZCZ sonar sequence if it has the maximum r for given m and n.

Definition 4. The ZCZ sonar sequence with the maximum r is called optimal for given m and n. In
other words, an (m, n, r) ZCZ sonar sequence is optimal when there does not exist an (m, n, r + 1)
ZCZ sonar sequence.

We have searched by computer for the true maximum r in (m, n, r) ZCZ sonar se-
quences for m up to 78 and n in the range from m to m + 2. We show this result in
Table 1. The value r in this table is the maximum in the sense of Definition 4. This has been
checked exhaustively. Therefore, they all are optimal ZCZ sonar sequences for given m and
n. It is to be noted further that the upper bound in Theorem 1 is not tight since there are
cases where this value is not attained. However, we argue that it is quite good since some
other many times, this bound or one less value is attained.
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Table 1. The maximum r in (m, n, r) ZCZ sonar sequence found by computer.

m

n
m m + 1 m + 2

u.bnd
(Theorem 1)

l.bnd
(Corollary 2)

m

n
m m + 1 m + 2

u.bnd
(Theorem 1)

l.bnd
(Corollary 2)

3 1 1 1 1 1 41 8 8 8 8 8
4 2 1 1 2 1 42 8 8 8 8 8
5 2 2 2 2 2 43 8 8 8 9 8
6 2 2 2 3 2 44 8 8 8 9 8
7 3 2 2 3 2 45 8 8 8 9 8
8 3 3 3 3 2 46 8 8 8 9 8
9 3 3 3 3 3 47 8 8 8 9 8

10 3 3 3 4 3 48 8 8 8 9 8
11 3 3 3 4 3 49 9 9 9 9 8
12 4 3 3 4 3 50 9 9 9 9 8
13 4 4 4 4 4 51 9 9 9 9 9
14 4 4 4 4 4 52 9 9 9 10 9
15 4 4 4 5 4 53 9 9 9 10 9
16 4 4 4 5 4 54 9 9 9 10 9
17 5 4 4 5 4 55 9 9 9 10 9
18 5 5 5 5 4 56 9 9 9 10 9
19 5 5 5 5 5 57 9 9 9 10 9
20 5 5 5 6 5 58 9 9 9 10 9
21 5 5 5 6 5 59 9 9 9 10 9
22 5 5 5 6 5 60 10 10 9 10 9
23 5 5 5 6 5 61 10 10 10 10 10
24 6 5 5 6 5 62 10 10 10 10 10
25 6 6 6 6 6 63 10 10 10 11 10
26 6 6 6 6 6 64 10 10 10 11 10
27 6 6 6 7 6 65 10 10 10 11 10
28 6 6 6 7 6 66 10 10 10 11 10
29 6 6 6 7 6 67 10 10 10 11 10
30 6 6 6 7 6 68 10 10 10 11 10
31 7 6 6 7 6 69 10 10 10 11 10
32 7 7 7 7 6 70 10 10 10 11 10
33 7 7 7 7 7 71 11 11 11 11 10
34 7 7 7 8 7 72 11 11 11 11 10
35 7 7 7 8 7 73 11 11 11 11 11
36 7 7 7 8 7 74 11 11 11 12 11
37 7 7 7 8 7 75 11 11 11 12 11
38 7 7 7 8 7 76 11 11 11 12 11
39 7 7 7 8 7 77 11 11 11 12 11
40 8 8 7 8 7 78 11 11 11 12 11

We also show the upper bound on r from Theorem 1 for comparison. Therefore, any
max value in the table must be equal to or smaller than this upper bound. We also show
the constructive lower bound from Corollary 2 as well in the last column. As n increases
from m, the max r will be non-increasing. When it reaches the lower bound, it will stay
forever as n increases indefinitely. Therefore, it is enough to show the values of n in the
range m ≤ n ≤ m + 2 for 3 ≤ m ≤ 78.

In this range of values of m, we see that the difference between the upper bound and
the constructive lower bound is either 0 or 1. When they are the same, the max r is this
value for any n ≥ m. When they differ by 1, then the max r starts either from the upper
bound and decreases by 1 somewhere and stays forever or from the lower bound and stays
forever. The example of the former case is when m = 17 and those of the latter is when
m = 20.

For example, for m = 17, the max r for n = 17 is 5 which is the upper bound. Since
the constructive lower bound is 4 for m = 17 and this value is reached at n = 18 = m + 1,
we know that the max r = 4 stays the same as n increases from 18 indefinitely. For the case
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m = 20, the max r at n = 20 is 5 which is already equal to the lower bound. Therefore, the
max r = 5 for n stays the same as n increases indefinitely. We show the three ZCZ sonar
sequences with parameters (17, 17, 5), (17, 18, 4) and (20, 20, 5) as follows:

(17, 17, 5) : [5, 10, 15, 1, 7, 12, 17, 4, 9, 14, 1, 6, 11, 16, 3, 8, 13]

(17, 18, 4) : [1, 5, 9, 13, 2, 6, 10, 14, 1, 5, 9, 13, 2, 6, 10, 14, 1, 17]

(20, 20, 5) : [7, 12, 1, 16, 5, 10, 19, 2, 7, 12, 17, 4, 9, 14, 1, 6, 11, 16, 3, 20]

These are shown in Figure 8. These are examples of optimal ZCZ sonar sequences.

Figure 8. The optimal (17, 17, 5), (17, 18, 4) and (20, 20, 5) ZCZ sonar sequences by computer search.

4. Two Constructions for Zcz-Dd Sonar Sequences with R = 2

Theorem 4. Let q be a prime or a prime power and α be a primitive element of Fq which is the
finite field of size q. Consider the Lempel Costas array (j, f (j)) for j = 1, 2, . . . , q− 2 given by
αj + α f (j) = 1. If α satisfies α2 + α = 1, then deleting the two corner dots at (1, 2) and (2, 1) gives
a (q− 4, q− 4, 2) ZCZ-DD sonar sequence.

Proof. The Lempel Costas array has only one dot in each row and column and is symmetric
along the main diagonal [8]. Therefore, there are two types of dot pairs with a Manhattan
distance of 2, as shown in Figure 9. One type consists of two consecutive dots along the
diagonal (white dot pair), while the other type consists of two adjacent dots on either side
of the diagonal (black dot pair).

Figure 9. Dot pair types with Manhattan distance 2 in the Lempel construction.

We now claim that the pair of white dots do not exist in Lempel construction for any q.
When q is even, αj + αj = 0 �= 1 for all j. Therefore, no dot may come on the diagonal. In
odd q, αj + αj are all distinct for j = 1, 2, . . . , q− 2, with a unique j satisfying αj + αj = 1.
Therefore, there exists only one dot on the diagonal. Consequently, only black dot pair type
exists in the array and no white dot pairs.

When α2 + α = 1, the dots at positions (2, 1) and (1, 2) constitute the type of black
dot pair. Due to the DD property, this is the only dot pair of this type. Thus, removing
the dots at positions (2, 1) and (1, 2) ensures that the Manhattan distance between the
remaining pair of dots is at least 3 and hence r = 2. The remaining array is a Costas array
and maintains the DD property.
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Example 3. Figure 10 shows a (7, 7) Lempel Costas array from q = 9. Deleting the dots (1, 2)
and (2, 1) gives a (5, 5, 2) ZCZ-DD sonar sequence.

Figure 10. The (5, 5, 2) ZCZ-DD sonar sequence from the construction in Theorem 4.

For the second type construction of ZCZ-DD sonar sequence with r = 2 from the
exponential Welch construction for Costas arrays, we observe the following:

Lemma 3. Let p be a prime and α be a primitive root mod p. There must exist unique j
(mod p − 1) satisfying

αj − αj−1 = 1 or − 1 (mod p).

Proof. Consider the case αj − αj−1 = 1 (mod p) or αj−1(α− 1) = 1 (mod p). Since any
non-zero element is some power of α, we let α− 1 = αu for some u with 2 ≤ u ≤ p− 2.
This gives

αj−1+u = 1 (mod p).

Then j− 1 + u = 0 (mod p− 1) or j = p− u is the unique integer mod p− 1. The other
case is similar.

Theorem 5. Consider the exponential Welch Costas array f (j) = αj for any consecutive p− 1
values of j. Let j0 (mod p− 1) satisfy αj0 − αj0−1 = 1 (mod p) and i0 (mod p− 1) satisfy
αi0 − αi0−1 = −1 (mod p). Then

f (j) = αj − 1− αi0 (mod p)

for j = j0, j0 + 1, . . . , j0 + p− 2 is a (p, p− 1, 2) ZCZ-DD sonar sequence.

Proof. The Welch construction satisfies the DD property. According to Lemma 3, since
there is a unique j0 that satisfies αj0 − αj0−1 = 1 (mod p), take j when starting from j0,
the rest of the dots are all at a Manhattan distance greater than 2 from the point (j0, αj0).
And of the rest of the dots, only the Manhattan distance between the dot pair (i0, αi0) and
(i0 − 1, αi0−1) is 2 since αi0 − αi0−1 = −1 (mod p). By adding an empty row at the bottom
of the array, called the 0-th row, and cyclically rotating the rows of the array, once the dot
(i0, αi0) moves to the top row of the array, then the pairs of dots with a Manhattan distance
of 2 are avoided. Consequently, the Manhattan distance between the dots becomes at least
3. After adding a row, the array consists of a total of p rows, it retains the DD property
because of its single periodicity.

Example 4. There exists a unique integer i0 (mod p− 1) satisfying αi0 − αi0−1 = −1 (mod p)
from Lemma 3. Similarly, there exists a unique integer j0 (mod p− 1) satisfying αj0 − αj0−1 = 1
(mod p). As shown in Figure 11, when p = 7, we have α = 3, and hence, i0 = 2 and j0 = 5
both mod 6. Therefore, we take the exponential Welch Costas array given as f (j) = 3j (mod 7)
for j = j0 = 5, 6, . . . , 10. This 6× 6 array has two adjacent dots in some two consecutive columns
whose row indices are αi0−1 = 3 and αi0 = 2 both mod 7. We will make this a 7× 6 sonar array by
adjoining an empty row at the bottom. Now, rotating all p = 7 rows downward 1 + αi0 = 3 times
will place the dot in column i0 at the top. The resulting 7× 6 array becomes a (7, 6, 2) ZCZ-DD
sonar sequence.
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Figure 11. The (7, 6, 2) ZCZ-DD sonar sequence from the construction in Theorem 5.

Remark 3. The upper bound on r for (m, n, r) ZCZ sonar sequences can be an upper bound on r
for (m, n, r) ZCZ-DD sonar sequences, only because any (m, n, r) ZCZ-DD sonar sequence is an
(m, n, r) ZCZ sonar sequence. We expect that this upper bound must be quite loose.

Some search results for the max r in (m, n, r) ZCZ-DD sequences are documented
initially in [31] for m ≤ 17 and we extend the search for m ≤ 20 and show the results in
Table 2. Where the parameters m = 10, n = m + 4, and r = 2 represent the existence of
an optimal (10, 14, 2) ZCZ-DD sonar sequence. It also implies that there does not exist a
(10, 14, 3) ZCZ-DD sonar sequence.

Table 2. The maximum r in (m, n, r) ZCZ-DD sonar sequence.

m
n m m + 1 m + 2 m + 3 m + 4

2 1 1 0 − −
3 1 1 1 0 −
4 1 1 1 1 0
5 2 1 1 1 1
6 2 2 1 1 1
7 2 2 2 1 1
8 2 2 2 1 1
9 2 2 2 1 1
10 2 2 2 2 2
11 2 2 2 2 2
12 3 3 2 2 2
13 3 3 2 2 2
14 3 3 3 2 2
15 3 3 3 3 2
16 3 3 3 3 2
17 3 3 3 3 2
18 3 3 3 3 2
19 3 3 3 3 2
20 3 3 3 3 ?

5. Some Relations with Results in [26,30]

This subsection is newly added as a result of some analysis from the comments of
the initial reviewers of this manuscript. All of the authors would like to express sincere
appreciation for these comments. We have investigated most of the results in both [26]
and [30], with emphasis on some possibility of having ZCZ sonar sequences from theirs.
Following is some conclusion from this analysis.

Most of the best known m× n sonar sequences in [26] for m up to 100 turned out to
have no ZCZ at all. We show only two cases here for m = 10 and m = 30 from [26]. These
are 10× 16 and 30× 37 sonar sequences as shown in Figure 12. These have the largest
value of n for the given value of m = 10 and m = 30. The fact that they do not have ZCZ
can be seen easily by observing that there exist two adjacent dots of (Manhattan) distance 1.
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Figure 12. Best known sonar sequences from [26] without ZCZ (m = 10 and m = 30).

The main topic of [30] is to find the maximum number of disjoint nonattacking-n-
queen patterns that simultaneously pack the n× n board. We find one of interesting relation
there when n > 7 is an odd prime. One of the solution in this case gives not only an (n, n, 3)
ZCZ sonar sequence, but a family of disjoint n ZCZ sonar sequences (which are also n
disjoint nonattacking-n-queen patterns) of the same parameters that simultaneously pack
n× n× n cube without attacking each other in three dimensional space as n-queen patterns.
We may formulate a theorem from this construction as follows. We skip the proof which
is quite straightforward. The first conclusion is from [30]. The second conclusion is the
relation with ZCZ sonar sequences.

Theorem 6. Let n > 7 be a prime. Construct the n× n matrix Q = (qi,j) with integers mod n for
i, j = 0, 1, . . . , n− 1 as follows:

• Put q0,j = 1 for j = (n− 1)/2.
• Put q0,j+2 = q0,j + 1 (mod n) where the subscript j + 2 is computed mod n, for j =

(n− 1)/2, (n− 1)/2 + 2, . . ..
• For each j = 0, 1, . . . , n − 1, put qi+1,j = qi,j + 2 (mod n) where the subscript i + 1 is

computed mod n for i = 0, 1, . . ..

Then, the first conclusion from [30] is that Q is a packing of an n × n board by n disjoint
nonattacking-n-queen patterns, which is three-dimensionally nonattacking queens also. Second
(new) conclusion: for each symbol k = 0, 1, . . . , n− 1, the pattern of the constant symbol k in Q is
an (n, n, 3) ZCZ sonar sequence.

6. Concluding Remarks

Some immediate open problems on (m, n, r) ZCZ sonar sequences are the following:

1. Describe the values of m for which the upper bound on r is the same as its constructive
lower bound. Some of the smaller such values of m from Table 1 are m = 5, m = 9,
m = 13, m = 14, etc.

2. Describe the values of m for which the upper bound on r is one more than its con-
structive lower bound. Some examples of such values of m from Table 1 are m = 6,
m = 10, m = 15, m = 16, etc.

3. Prove that the difference between the upper bound and the constructive lower bound
is at most 1 for all positive integers n ≥ m or else find the values of m for which the
difference is more than 1.

4. Find the formula for the max r for the optimal m×m ZCZ sonar sequence.
5. Prove that the max r as n = m, m + 1, m + 2, . . . is non-increasing. We know that it

eventually reaches and stays at the constructive lower bound in Cor.2.
6. Find any new construction for ZCZ sonar sequences (j, f (j)) for j = 1, 2, . . . , n which

is not of the type f (j) = rj (mod m). Note that the construction in Theorem 6 is
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of the form f (j) = rj (mod n) where r = −4 for all n disjoint patterns with some
appropriate initial condition. See Figure 13.

Figure 13. Disjoint nonattacking-n-queen patterns (n = 11) where each pattern of the constant symbol
is an (n, n, 3) ZCZ sonar sequence.

For (m, n, r) ZCZ-DD sonar sequences, we have a lot of open problems. Only some of
them are listed here:

1. Find the max r for given m and n.
2. Prove that the max r as n = m, m + 1, m + 2, . . . is non-increasing.
3. Find the max n for given m and r.
4. Find the max n ≥ m such that r = 2 for a given m. Some small cases are n = m = 5,

n = m + 1 = 7, n = m + 2 = 9, and n = m + 2 = 10, etc.
5. Find the relation of n and r for a given m.
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6. Find a systematic construction for (m, n, r) ZCZ-DD sonar sequences for r > 2.
7. Improve the upper bound on r in Remark 3 for given m and n.
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Abstract: We revisit the well-known Gilbert–Varshamov (GV) bound for constrained systems. In
1991, Kolesnik and Krachkovsky showed that the GV bound can be determined via the solution of
an optimization problem. Later, in 1992, Marcus and Roth modified the optimization problem and
improved the GV bound in many instances. In this work, we provide explicit numerical procedures
to solve these two optimization problems and, hence, compute the bounds. We then show that the
procedures can be further simplified when we plot the respective curves. In the case where the graph
presentation comprises a single state, we provide explicit formulas for both bounds.

Keywords: Gilbert–Varshamov bound; constrained codes; asymptotic rates; sliding window
constrained codes

1. Introduction

From early applications in magnetic recording systems to recent applications in DNA-
based data storage [1–4] and energy-harvesting [5–10], constrained codes have played a
central role in enhancing reliability in many data storage and communications systems (see
also [11] for an overview). Specifically, for most data storage systems, certain substrings are
more prone to errors than others. Thus, by forbidding the appearance of such strings, that is,
by imposing constraints on the codewords, the user is able to reduce the likelihood of error.
We refer to the collection of words that satisfy the constraints as the constrained space S.

To further reduce the error probability, one can impose certain distance constraints on
the codebook. In this work, we focus on the Hamming metric and consider the maximum
size of a codebook whose words belong to the constrained space S and whose pairwise
distance is at least of a certain value d. Specifically, we study one of the most well-known
and fundamental lower bounds of this quantity—the Gilbert–Varshamov (GV) bound.

To determine the GV bound, one requires two quantities: the size of the constrained
space, |S|, and, also, the ball volume, that is, the number of words with a distance of at most
d− 1 from a “center” word. In the case where the space is unconstrained, i.e., S = {0, 1}n,
the ball volume does not depend on the center. Then, the GV bound is simply |S|/V, where
V is the ball volume of a center. However, for most constrained systems, the ball volume
varies with the center. Nevertheless, Kolesnik and Krachkovsky showed that the GV lower
bound can be generalized to |S|/4V, where V is the average ball volume [12]. This was further
improved by Gu and Fuja to |S|/V in [13] (see pp. 242–243 in [11] for additional details).
In the same paper [12], they showed the asymptotic rate of average ball volume can be
computed via an optimization problem. Later, Marcus and Roth modified the optimization
problem by including an additional constraint and variable [14], and the resulting bound,
which we refer to as GV-MR bound, improves the usual GV bound. Furthermore, in most
cases, the improvement is strictly positive.

Entropy 2024, 26, 346. https://doi.org/10.3390/e26040346 https://www.mdpi.com/journal/entropy72
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However, about three decades later, very few works have evaluated these bounds for
specific constrained systems. To the best of our knowledge, in all works that numerically
computed the GV bound and/or GV-MR bound, the constrained systems of interest have,
at most, eight states [15]. In [15], the authors wrote that “evaluation of the bound required
considerable computation”, referring to the GV-MR bound.

In this paper, we revisit the optimization problems defined by Kolesnik and
Krachkovsky [12] and Marcus and Roth [14] and develop a suite of explicit numerical
procedures that solve these problems. In particular, to demonstrate the feasibility of our
methods, we evaluated and plotted the GV and GV-MR bounds for a constrained system
involving 120 states in Figure 1b.

(a) Lower bounds for R(δ; S) where S is the class of (3, 2)-SWCC

(b) Lower bounds for R(δ; S) where S is the class of (10, 7)-SWCC

Figure 1. Lower bounds for optimal asymptotic code rates R(δ; S) for the class of sliding-window
constrained codes

We provide a high-level description of our approach. For both optimization problems,
we first characterized the optimal solutions as roots of certain equations. Then, using the
celebrated Newton–Raphson iterative procedure, we proceeded to find the roots of these
equations. However, as the latter equations involved the largest eigenvalues of certain
matrices, each Newton–Raphson iteration required the (partial) derivatives of these eigen-
values (in some variables). To resolve this, we made modifications to another celebrated
iterative procedure—the power iteration method—and the resulting procedures computed
the GV and GV-MR bounds efficiently for a specific relative distance δ. Interestingly, if we
plot the bounds for 0 ≤ δ ≤ 1, the numerical procedure can be further simplified. Specifi-
cally, by exploiting certain properties of the optimal solutions, we provided procedures
that use less Newton–Raphson iterations.
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Parts of this paper were presented in the IEEE International Symposium on Informa-
tion Theory (ISIT 2022) [16]. In the next section, we provide the formal definitions and state
the optimization problems that compute the GV bound.

2. Preliminaries

Let Σ = {0, 1} be the binary alphabet and let Σn denote the set of all words of length n
over Σ. A labeled graph G = (V,E,L) is a finite directed graph with states V, edges E ⊆ V×V,
and an edge labeling L : E→ Σs for some s ≥ 1. Here, we use vi

σ−→ vj to mean that there is
an edge from vi to vj with label σ. The labeled graph G is deterministic if, for each state, the
outgoing edges have distinct labels.

A constrained system S is, then, the set of all words obtained by reading the labels of
paths in a labeled graph G. We say that G is a graph presentation of S. We further denote
the set of all n-length words S by Sn. Alternatively, Sn is the set of all words obtained by
reading the labels of (n/s)-length paths in G. Then, the capacity of S, denoted by Cap(S),
is given by Cap(S) � lim supn→∞ log |Sn|/n. It is well-known that Cap(S) corresponds
to the largest eigenvalue of the adjacency matrix AG (see, for example, [11]). Here, AG is a
(|V| × |V|)-matrix whose rows and columns are indexed by V. For each entry (u, v) ∈ V×V,
we set the corresponding entry to be one if (u, v) is an edge, and zero otherwise.

Every constrained system can be presented by a deterministic graph G. Furthermore,
any deterministic graph can be transformed into a primitive deterministic graph H such
that the capacity of G is same as the capacity of the constrained system presented by
some irreducible component (maximal irreducible subgraph) of H (see, for example,
Marcus et al. [11]). It should be noted that a graph G is primitive if there exists a positive
integer � such that (AG)

� is strictly positive. Therefore, we henceforth assume that our
graphs are deterministic and primitive. When |V| = 1, we call this a single-state graph
presentation and study these graphs in Section 5.

For x, y ∈ S, dH(x, y) is the Hamming distance between x and y. We fix 1 ≤ d ≤ n,
and a fundamental problem in coding theory is finding the largest subset C of Sn such that
dH(x, y) ≥ d for all distinct x, y ∈ C. Let A(n, d; S) denote the size of largest subset C.

In terms of asymptotic rates, we fix 0 ≤ δ ≤ 1, and our task is to find the highest attain-
able rate, denoted by R(δ), which is given by R(δ; S) � lim supn→∞ log A(n, �δn	; S)/n.

2.1. Review of Gilbert–Varshamov Bound

To define the GV bound, we need to determine the total ball size. Specifically, for
x ∈ Sn and 0 ≤ r ≤ n, we define V(x, r; S) � |{y ∈ Sn : dH(x, y) ≤ r}|. We further define
T(n, d; S) = ∑x∈Sn V(x, d− 1; S) . Then, the GV bound, as given by Gu and Fuja [13,17],
states that there exists an (n, d; S) code of size at least |Sn|2/T(n, d; S).

In terms of asymptotic rates, there exists a family of (n, �δn	; S) codes such that their
rates approach

RGV(δ) = 2Cap(S)− ∼T(δ), (1)

where
∼
T(δ) � lim supn→∞ log T(n, �δn	; S)/n .

In this paper, our main task is to determine RGV(δ) efficiently. We observe that since
Cap(S) =

∼
T(0), it suffices to find efficient ways of determining

∼
T(δ). It turns out that

∼
T(δ) can be found via the solution of a convex optimization problem. Specifically, given a
labeled graph G = (V,E,L), we define its product graph G′ = (V′,E′,L′) as follows:

• V′ � V× V.

• For (vi, vj), (vk, v�) ∈ V′, and (σ1, σ2) ∈ Σs × Σs, we draw an edge (vi, vj)
(σ1,σ2)−−−→

(vk, v�) if and only if both vi
σ1−→ vk and vj

σ2−→ v� belong to E.
• Then, we label the edges in E′ with the function L′ : E′ → Z≥0, where

L′
(
(vi, vj)

(σ1,σ2)−−−→ (vk, v�)
)
= dH(σ1, σ2)/s.
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A stationary Markov chain P on a graph G = (V,E,L) is a probability distribution
function P : E → [0, 1] such that ∑e∈E P(e) = 1 and, for any state u ∈ G, the sum of the
probabilities of the outgoing edges equals the sum of the probabilities of the incoming
edges. We denote by M(G) the set of all stationary Markov chains on G. For a state u ∈ V,
let Eu denote the set of outgoing edges from u in G. The state vector πT = (πu)u∈V of
a stationary Markov chain P on G is defined by πu = ∑e∈Eu P(e). The entropy rate of a
stationary Markov chain is defined by

H(P) = − ∑
u∈V

∑
e∈Eu

πuP(e) log(P(e))

Furthermore,
∼
T(δ) can be obtained by solving the following optimization problem [12,14]:

∼
T(δ) = sup

{
H(P) : P ∈M(G× G), ∑

e∈E′
P(e)D(e) ≤ δ

}
. (2)

To this end, we consider the dual problem of (2). Specifically, we define a (|V|2× |V|2)-
distance matrix TG×G(y) whose rows and columns are indexed by V′. For each entry indexed
by e ∈ V′ × V′, we set the entry to be zero if e /∈ E′ and we set it to be yD(e) if e ∈ E′. Then,
the dual problem can be stated in terms of the dominant eigenvalue of the matrix TG×G(y).

By applying the reduction techniques from [14], we can reduce the problem size by a
factor of two. Formally, in the case of s = 1, we define a (|V|+1

2 )× (|V|+1
2 )-reduced distance

matrix BG×G(y) whose rows and columns are indexed by V(2) � {(vi, vj) : 1 ≤ i ≤ j ≤ |V|}
using the following procedure.

Two states s1 = (vi, vj) and s2 = (vk, v�) in G× G are said to be equivalent if vi = v�
and vj = vk. The matrix BG×G(y) is then obtained by merging all pairs of equivalent states
s1 and s2. That is, we add the column indexed by v2 to the column indexed by v1 and
then remove the row and column which are indexed by v2. It should be noted that it may
be possible to reduce the size of this matrix BG×G(y) further. However, for the ease of
exposition, we did not consider this case in this work.

Following this procedure, we observe that the entries in the matrix BG×G(y) can be
described by the rules in Table 1. Moreover, the dominant eigenvalue of BG×G(y) is the
same as that of TG×G(y). Then, by strong duality, computing (2) is equivalent to solving
the following dual problem [18,19] (see also, [20]):

∼
T(δ) = inf{−δ log y + log Λ(BG×G(y)) : 0 ≤ y ≤ 1}. (3)

Here, we use Λ(M) to denote the dominant eigenvalue of matrix M. To simplify further,
we write Λ(y; B) � Λ(BG×G(y)).

Since the objective function in (3) is convex, it follows from standard calculus that
any local minimum solution y∗ in the interval [0, 1] is also a global minimum solution.
Furthermore, y∗ is a zero of the first derivative of the objective function. If we consider the
numerator of this derivative, then y∗ is a root of the function

F(y) � yΛ′(y; B)− δΛ(y; B). (4)

In Corollary 1, we showed that there is only one y∗ such that F(y∗) = 0 and F′(y) is
strictly positive for all values of y. Therefore, to evaluate the GV bound for a fixed δ, it
suffices to determine y∗.

Later, Marcus and Roth [14] improved the GV bound (1) by considering certain subsets
of the constrained space S. This entails the inclusion of an additional constraint defined
in the optimization problem (2), and, correspondingly, an additional variable in the dual
problem (3). Specifically, they considered certain subsets S(p) ⊆ S where each symbol in
the words of S(p) appears with a certain frequency dependent on the parameter p. We
describe this in more detail in Section 4.
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Table 1. We set the
(
(vi, vj), (vk, v�)

)
entry of the matrix BG×G(y) according to subgraph induced by

the states vi,vj,vk Gilbert–Varshamov v�. Here, σ̄ denotes the complement of σ.

BG×G(y) at Entry
(
(vi,vj), (vk,v�)

)
Subgraph Induced by the States {vi, vj, vk, v�}

0

vi

vj

vk

v�

vi

vj

vk

v�

vi

vj

vk

v�

vi

vj

vk

v�

vi

vj

vk

v�

1

vi

vj

vk

v�

σ

σ

vi

vj

vk

v�

σ

σ

vi

vj

vk

σ

σ

y

vi

vj

vk

v�

σ

σ̄

vi

vj

vk

v�

σ

σ̄

vi

vj

vk

σ

σ̄

2y

vk

v�

vi

σ

σ̄

2.2. Our Contributions

(A) In Section 3, we develop the numerical procedures to compute
∼
T(δ) for a fixed δ

and, hence, determine the GV bound (1). Our procedure modifies the well-known
power iteration method to compute the derivatives of Λ(y; B). After that, using these
derivatives, we apply the classical Newton–Raphson method to determine the root
of (4). In the same section, we also study procedures to plot the GV curve, that is, the
set {(δ, RGV(δ)) : 0 ≤ δ ≤ 1}. Here, we demonstrate that the GV curve can be plotted
without any Newton–Raphson iterations.

(B) In Section 4, we then develop similar power iteration methods and numerical pro-
cedures to compute the GV-MR bound. Similar to the GV curve, we also provide a
plotting procedure that uses significantly less Newton–Raphson iterations.

(C) In Section 5, we provide explicit formulas for the computation of the GV bound
and GV-MR bound for graph presentations that have exactly one state but multiple
parallel edges.

(D) In Section 6, we validate our methods by computing the GV and the GV-MR bounds
for some specific constrained systems. For comparison purposes, we also plot a simple
lower bound that is obtained by using an upper estimate of the ball size. From the
plots in Figures 1–3, it is also clear that the GV and GV-MR bounds are significantly
better. We also observe that the GV bound and GV-MR bound for subblock energy-
constrained codes (SECCs) obtained through our procedures improve the GV-type
bound given by Tandon et al. (Proposition 12 in [21]).
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(a) Lower bounds for R(δ; S) where S is the class of (1, 3)-RLL

(b) Lower bounds for R(δ; S) where S is the class of (3, 7)-RLL

Figure 2. Lower bounds for optimal asymptotic code rates R(δ; S) for the class of runlength lim-
ited codes.

Figure 3. Lower bounds for optimal asymptotic code rates R(δ; S) where S is the class of (3, 2)-SECCs
(subblock energy-constrained codes).

3. Evaluating the Gilbert–Varshamov Bound

In this section, we first describe a numerical procedure that solves (3) and, hence,
determine RGV(δ) for fixed values of δ. Then, we show that the procedure can be simplified
when we compute the GV curve, that is, the set of points {(δ, RGV(δ)) : δ ∈ [0, 1]}. Here,
we eschew notation and use [a, b] to denote the interval {x : a ≤ x ≤ b}, if a < b, and the
interval {x : b ≤ x ≤ a} otherwise.
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Below, we provide formal description of our procedure to obtain the GV bound for a
fixed relative distance δ.
Procedure 1 (GV bound for fixed relative distance) .
INPUT: Adjacency matrix AG, reduced distance matrix BG×G(y), and relative minimum
distance δ

OUTPUT: GV bound, that is, RGV(δ) as defined in (1)

(1) Apply the Newton–Raphson method to obtain y∗ such that F(y∗) is approximately
zero.

• Fix the tolerance value ε.
• Set t = 0 and pick an initial guess 0 ≤ yt ≤ 1.
• While |yt − yt−1| > ε,

– Compute the next guess yt+1 as follows:

yt+1 = yt −
F(yt)

F′(yt)
= yt −

ytΛ′(yt; B)− δΛ(yt; B))
(1− δ)Λ′(yt; B) + ytΛ′′(yt; B)

.

– In this step, apply the power iteration method to compute Λ(yt; B), Λ′(yt; B),
and Λ′′(yt; B).

– Increment t by one.

• Set y∗ ← yt.

(2) Determine RGV(δ) using y∗. Specifically, compute
∼
T(δ) � −δ log y∗ + log Λ(y∗; B),

Cap(S) � log Λ(AG), and RGV(δ) � 2Cap(S)− ∼T(δ).
Throughout Sections 3 and 4, we illustrate our numerical procedures via a running

example using the class of sliding window-constrained codes (SWCCs). Formally, we fix a
window length L and window weight w, and say that a binary word satisfies the (L, w)-
sliding window weight constraint if the number of ones in every consecutive L bits is at
least w. We refer to the collection of words that meet this constraint as an (L, w)-SWCC
constrained system. The class of SWCCs was introduced by Tandon et al. for the application
of simultaneous energy and information transfer [7,10]. Later, Immink and Cai [8,9] studied
encoders for this constrained system and provided a simple graph presentation that uses
only (L

w) states.
In the next example, we illustrate how the numerical procedure can be used to compute

the GV bound for the value when δ = 0.1.

Example 1. Let L = 3 and w = 2, and we consider a (3, 2)-SWCC constrained system. From [8],
we have the following graph presentation with states x11, 101, and 110:

x11 110 101
0 1

1
1

Then, the corresponding adjacency and reduced distance matrices are as follows:

AG =

⎡⎣1 1 0
0 0 1
1 0 0

⎤⎦, BG×G(y) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 2y 0 1 0 0
0 0 1 0 y 0
1 y 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

To determine the GV bound at δ = 0.1, we first approximate the optimal point y∗ for which
−δ log y + log Λ(y; B) is minimized.
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We apply the Newton–Raphson method to find a zero of the function F(y). Now, with the
initial guess y0 = 0.3, we apply the power iteration method to determine

Λ(0.3; B) = 1.659, Λ′(0.3; B) = 0.694, Λ′′(0.3; B) = 0.183.

Then, we compute that y1 ≈ 0.238. Repeating the computations, we have that y2 ≈ 0238.
Since |y2 − y1| is less than the tolerance value 10−5, we set y∗ = 0.238. Hence, we have that
∼
T(0.1) = 0.9. Applying the power iteration method to either AG or BG×G(0), we compute the
capacity of the (3, 2)-SWCC constrained system to be Cap(S) = 0.551. Then, the GV bound is
given by RGV(0.1) = 2(0.551)− 0.9 = 0.202.

We discuss the convergence issues arising from Procedure 1. We observe that there
are two different iterative processes in Step 1, namely, (a) the power iteration method
to compute the values Λ(yt; B), Λ′(yt; B), and Λ′′(yt; B), and (b) the Newton–Raphson
method that determines the zero of F(y).

(a) We recall that Λ(y; B) is the largest eigenvalue of the reduced distance matrix BG×G(y).
If we apply naive methods to compute this dominant eigenvalue, the computational
complexity increases very rapidly with the matrix size. Specifically, if G has M states,
then the reduced distance matrix has dimensions Θ(M2)× Θ(M2) and finding its
characteristic equation takes O(M6) time. Even then, determining the exact roots of
characteristic equations with at least five degrees is generally impossible. Therefore,
we turn to the numerical procedures like the ubiquitous power iteration method [22].
However, the standard power iteration method is only able to compute the dominant
eigenvalue Λ(y; B). Nevertheless, we can modify the power iteration method to
compute Λ(y; B) and its higher order derivatives. In Appendix A, we demonstrate
that under certain mild assumptions, the modified power iteration method always
converges. Moreover, using the sparsity of the reduced distance matrix, we have that
each iteration can be completed in O(M2) time.

(b) Next, we discuss whether we can guarantee that yt converges to y∗ as t approaches
infinity. Even though the Newton–Raphson method converges in all our numerical
experiments, we are unable to demonstrate that it always converges for F(y). Nev-
ertheless, we can circumvent this issue if we are interested in plotting the GV curve.
Specifically, if our objective is to determine the curve {(δ, RGV(δ)) : δ ∈ [0, 1]}, it
turns out that we do not need to implement the Newton–Raphson iterations and we
discuss this next.

We fix some constrained system S. Let us define its corresponding GV curve to be the
set of points GV(S) � {(δ, RGV(δ)) : δ ∈ [0, 1]}. Here, we demonstrate that the GV curve
can be plotted without any Newton–Raphson iterations.

To this end, we observe that when F(y∗) = 0, we have that δ = y∗Λ′(y∗; B)/Λ(y∗; B).
Hence, we eschew notation and define the function

δ(y) � yΛ′(y; B)/Λ(y; B) . (5)

We further define δmax = δ(1) = Λ′(1; B)/Λ(1; B). In this section, we prove the following
theorem.

Theorem 1. Let G be the graph presentation for the constrained system S. If we define the function

ρGV(y) � 2Cap(S) + δ(y) log y− log Λ(y; B) , (6)

then the corresponding GV curve is given by

GV(S) =
{
(δ(y), ρGV(y)) : y ∈ [0, 1]

}
∪
{
(δ, 0) : δ ≥ δmax

}
. (7)
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Before we prove Theorem 1, we discuss its implications. It should be noted that to
compute δ(y) and ρ(y), it suffices to determine Λ(y; B) and Λ′(y; B) using the modified
power iteration methods described in Appendix A. In other words, no Newton–Raphson
iterations are required. We also have additional computational savings, as we do not need
to apply the power iteration method to compute the second derivative Λ′′(y; B).

Example 2. We continue our example and plot the GV curve for the (3, 2)-SWCC constrained
system in Figure 1a. Before plotting, we observe that when y = 0, we have (δ(0), ρ(0)) =
(0, 0.551) = (0, Cap(S)), as expected. When y = 1, we have δ(1) = δmax = 0.313. Indeed, both
ρ(1) and RGV(δmax) are equal to zero and we have that RGV(δ) = 0 for δ ≥ δmax.

Next, we compute a set of 100 points on the GV curve. If we apply Procedure 1 to compute
RGV(δ) for 100 values of δ in the interval [0, δmax], we require 275 Newton–Raphson iterations
and 6900 power iterations to find these points. In contrast, applying Theorem 1, we compute
(δ(y), ρ(y)) for 100 values of y in the interval [0, 1]. This does not require any Newton–Raphson
iterations and involves only 2530 power iterations.

To prove Theorem 1, we demonstrate the following lemmas. Our first lemma is
immediate from the definitions of RGV, δ, and ρ in (1), (5), and (6), respectively.

Lemma 1. RGV(δ(y)) = ρ(y) for all y ∈ [0, 1].

The next lemma studies the behaviour of both δ and ρ as functions in y.

Lemma 2. In terms of y, the functions δ(y) and ρ(y) are monotone increasing and decreasing,
respectively. Furthermore, we have that (δ(0), ρ(0)) = (0, Cap(S)), (δ(1), ρ(1)) = (δmax, 0) and
RGV(δ) = 0 for δ ≥ δmax.

Proof. To simplify notation, we write Λ(y; B), Λ′(y; B), and Λ′′(y; B) as Λ, Λ′, and Λ′′,
respectively.

First, we show that δ′(y) is positive for 0 ≤ y < 1. Differentiating the expression in
(5), we have that δ′(y) > 0 is equivalent to

Λ(Λ′ + yΛ′′)− y(Λ′)2 > 0. (8)

We recall that (3) is a convex minimization problem. Hence, the second order derivative
of the objective function is always positive. In other words,

δ

y2 +
Λ′′Λ− (Λ′)2

Λ2 > 0.

Substituting δ with yΛ′/Λ and multiplying by yΛ2, we obtain (8), as desired.
Next, we show that ρ is monotone decreasing. We recall that ρ(y) = RGV(δ(y)) =

Cap(S)− ∼T(δ). Since
∼
T(δ) yields the asymptotic rate of the total ball size, we have that as

y increases, δ(y) increases and so,
∼
T(δ) increases. Therefore, ρ(y) decreases, as desired.

Next, we show that ρ(1) = 0. When y = 1, we have from (6) that ρ(1) = 2Cap(S)−
log Λ(1; B). Now, we recall that BG×G(y) shares the same dominant eigenvalue as the
matrix TG×G(y) [12]. Furthermore, it can be verified that when y = 1, TG×G(1) is tensor
product of AG and AG. That is, TG×G(1) = AG ⊗AG. It then follows from standard linear
algebra that Λ(1; B) = Λ(1; T) = Λ(AG)

2. Thus, log Λ(1; B) = 2Cap(S) and ρ(1) = 0. In
this instance, we also have that

∼
T(δmax) = 2Cap(S).

Finally, for δ ≥ δmax, we have that
∼
T(δmax) = 2Cap(S) and thus, RGV(δ) = 0,

as required.

Theorem 1 is then immediate from Lemmas 1 and 2.
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We have the following corollary that immediately follows from Lemma 2. This corol-
lary then implies that y∗ yields the global minimum for the optimization problem.

Corollary 1. When 0 ≤ δ ≤ δmax = Λ′(1,B)
Λ(1,B) , F(y) � yΛ′(y; B)− δΛ(y; B) has a unique zero in

[0, 1]. Furthermore, F′(y) is strictly positive for all y ∈ [0, 1].

4. Evaluating Marcus and Roth’s Improvement of the Gilbert–Varshamov Bound

In [14], Marcus and Roth improved the GV lower bound for most constrained systems
by considering subsets S(p) of S where p is some parameter. Here, we focus on the case
s = 1 and set p to be the normalized frequency of edges whose labels correspond to one.
Specifically, we set S(p) � {x ∈ S : wt(x) = �p|x|	}.

Next, let Sn(p) be the set of all words/paths of length n in S(p) and we define S(p) �
lim supn→∞

1
n log |Sn(p)|.

Similar to before, we define
∼
T(p, δ) = lim supn→∞

1
n log T(�δn	, n; Sn(p)). Since Sn(p)

is a subset of Sn, it follows from the usual GV argument that there exists a family of
(n, �δn	; S) codes whose rates approach 2S(p)− ∼T(p, δ) for all 0 ≤ p ≤ 1. Therefore, we
have the following lower bound on asymptotic achievable code rates:

RMR(δ) = sup{2S(p)− ∼T(p, δ) : 0 ≤ p ≤ 1} . (9)

Now, a key result from [14] is that both S(p) and
∼
T(p, δ) can be obtained via two dif-

ferent convex optimization problems. For succinctness, we state the dual formulations of
these optimization problems.

First, S(p) can be obtained from the following problem:

S(p) = inf{−p log z + log Λ(CG(z)) : z ≥ 0}. (10)

Here, CG(z) is the following (|V| × |V|) matrix CG(z) whose rows and columns are
indexed by V. For each entry indexed by e, we set (CG(z))e to be zero if e /∈ E, and zL(e)

if e ∈ E.
As before, we simplify notation by writing Λ(z; C) � Λ(CG(z)). Again, following the

convexity of (10), we are interested in finding the zero of the following function:

G1(z) � zΛ′(z; C)− pΛ(z; C). (11)

Next,
∼
T(p, δ) can be obtained via the following optimization:

∼
T(p, δ) = inf

{
− 2p log x− δ log y + log Λ(DG×G(x, y)) : x ≥ 0, 0 ≤ y ≤ 1

}
. (12)

Here, DG×G(x, y) is a (|V|+1
2 )× (|V|+1

2 )-reduced distance matrix indexed by V(2). To define
the entry of matrix DG×G(x, y) indexed by ((vi, vj), (vk, v�)), we look at the vertices vi, vj,
vk, and v� and follow the rules given in Table 2.

Again, we write Λ(x, y; D) � Λ(DG×G(x, y)). Furthermore, following the convexity
of (12), we have that if the optimal solution is obtained at x and y, then

G2(x, y) � xΛx(x, y; D)− 2pΛ(x, y; D) = 0. (13)

G3(x, y) � yΛy(x, y; D)− δΛ(x, y; D) = 0. (14)

To this end, we consider the function Δ(x) = Λy(x, 1; D)/Λ(x, 1; D) for x > 0 and
set δmax = sup{Δ(x) : x > 0}. As with the previous section, we develop a numerical
procedure to solve the optimization problem (9). To this end, we have the following
critical observation.
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Table 2. We set the
(
(vi, vj), (vk, v�)

)
entry of the matrix DG×G(x, y) according to the subgraph

induced by the states vi,vj,vk, and v�.

DG×G(x, y) at Entry
(
(vi, vj), (vk, v�)

)
Subgraph Induced by the States {vi, vj, vk, v�}

0

vi

vj

vk

v�

vi

vj

vk

v�

vi

vj

vk

v�

vi

vj

vk

v�

vi

vj

vk

v�

1

vi

vj

vk

v�

0

0

vi

vj

vk

v�

0

0

vi

vj

vk

0

0

x2

vi

vj

vk

v�

1

1

vi

vj

vk

v�

1

1

vi

vj

vk

1

1

xy

vi

vj

vk

v�

σ

σ̄

vi

vj

vk

v�

σ

σ̄

vi

vj

vk

σ

σ̄

2xy

vk

v�

vi

σ

σ̄

Theorem 2. For a given δ < δmax, consider the optimization problem

sup
{
− 2p log z + 2 log Λ(z; C) + 2p log x + δ log y− log Λ(x, y; D) :

G1(z) = G2(x, y) = G3(x, y) = 0
}

.

If (p∗, x∗, y∗, z∗) is an optimal solution, then x∗ = z∗. Furthermore, if 0 ≤ p∗ ≤ 1, then
x∗, z∗ ≥ 0 and 0 ≤ y∗ ≤ 1.

Proof. Let λ1, λ2, and λ3 be real-valued variables and we define L(p, x, y, z, λ1, λ2, λ3) �
G(p, x, y, z)+λ1G1(z)+λ2G2(x, y)+λ3G3(x, y). Using the Lagrangian multiplier theorem, we
have that ∂L/∂p = ∂L/∂x = ∂L/∂y = ∂L/∂z = 0 for any optimal solution. Solving these equa-
tions with the constraints G1(z) = G2(x, y) = G3(x, y) = 0, we have that λ1 = λ2 = λ3 = 0
and x = z for any optimal solution.

Now, when p∗ ∈ [0, 1], using G1(z) = 0, let us define z(p) � zΛ′(z; C)/Λ(z; C).
Then, proceeding as with the proof of Lemma 2, we see that z(p) is monotone increasing
with z(0) = 0. Therefore, z∗ = z(p∗) is zero.

Similarly, given p∗ and x∗, we use G3(x∗, y) = 0 to define δ(y) = yΛy(x∗, y; D)/Λ(x∗, y; D).
Again, we can proceed as with the proof of Lemma 2 to show that δ(y) is monotone increasing.
Furthermore, since δ(y∗) < δmax = δ(1), we have that y∗ ∈ [0, 1].

Therefore, to determine RMR(δ) for any fixed δ, it suffices to find x, y, z, and p such
that G1(z) = G2(x, y) = G3(x, y) = 0 and x = z.

Now, the optimization in Theorem 2 does not constrain the values of p. Furthermore,
for certain constrained systems, there are instances where p falls outside the interval [0, 1].
In this case, instead of solving the optimization problem (9), we set p to be either zero or
one, and we solve the corresponding optimization problems (10) and (12). Specifically, if
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we have p∗ < 0, then we set p∗ = 0 and x∗ = 0, or if p∗ > 1, then we set p∗ = 1 and
x∗ = ∞. Hence, the resulting rates that we obtain are a lower bound for the GV-MR bound.

Procedure 2
(

RMR(δ) for fixed δ ≤ δmax

)
.

INPUT: Matrices CG(x), DG(x, y)
OUTPUT: RMR(δ) or RLB(δ), where RMR(δ) ≥ RLB(δ).

(1) Apply the Newton–Raphson method to obtain p∗, x∗, and y∗ such that G1(x∗), G2(x∗, y∗),
and G3(x∗, y∗) are approximately zero. Specifically, do the following:

• Fix a tolerance value ε
• Set t = 0 and pick an initial guess pt ≥ 0, xt ≥ 0, 0 ≤ yt ≤ 1.
• While |pt − pt−1|+ |xt − xt−1|+ |yt − yt−1| > ε ,

– Compute the next guess pt+1, xt+1, yt+1:

⎡⎣pt+1
xt+1
yt+1

⎤⎦ =

⎡⎣pt
xt
yt

⎤⎦−
⎡⎢⎢⎣

∂G1
∂p

∂G1
∂x

∂G1
∂y

∂G2
∂p

∂G2
∂x

∂G2
∂y

∂G3
∂p

∂G3
∂x

∂G3
∂y

⎤⎥⎥⎦
−1⎡⎣ G1(xt)

G2(xt, yt)
G3(xt, yt)

⎤⎦ .

– Here, apply the power iteration method to compute Λ(xt; C), Λ′(xt; C),
Λ′′(xt; C), Λ(xt, yt; D), Λx(xt, yt; D), Λy(xt, yt; D), Λxx(xt, yt; D), Λyy(xt, yt; D),
and Λxy(xt, yt; D).

– Increment t by one.

• Set p∗ ← pt, x∗ ← xt, y∗ ← yt.

(2A) If 0 ≤ p∗ ≤ 1, set RMR(δ)← 2 log Λ(x∗; C) + δ log y∗ − log Λ(x∗, y∗; D).
(2B) Otherwise,

• If p∗ < 0, set p∗ ← 0, x∗ ← 0, and y∗ ← solution of G3(0, y) = 0.
• If p∗ > 1, set p∗ ← 1, x∗ ← ∞, and y∗ ← solution of G3(∞, y) = 0.

Finally, set RLB(δ)← 2 log Λ(x∗; C) + δ log y∗ − log Λ(x∗, y∗; D).

Remark 1. Let p∗ be the value computed at Step 1. When p∗ falls outside the interval [0, 1], we set
p∗ ∈ {0, 1}, and we argued earlier that the value returned RLB(δ) (at Step 2B) is, at most, RMR(δ).
Nevertheless, we conjecture that RLB(δ) = RMR(δ).

As before, we develop a plotting procedure that minimizes the use of Newton–
Raphson iterations.

We note that we have three scenarios for Δ(x). If Δ(x) is monotone decreasing, then
δmax = limx→0 Δ(x) and we set x# = 0. If Δ(x) is monotone increasing, then δmax =
limx→∞ Δ(x) and we set x# = ∞. Otherwise, Δ(x) is maximized for some positive value
and we set x# to be this value. Next, to obtain the GV-MR curve (see Remark 2); we iterate
over x ∈

[
1, x#]. It should be noted that if y(x#) < 1 or, equivalently, δ(x#) < δmax, we

obtain a lower bound on the GV-MR curve by iterating over y ∈
[
y(x#), 1

]
. Similar to

Theorem 1, we define

ρMR(x) � 2 log Λ(x; C) + δ(x) log y(x)− log Λ(x, y(x); D) , (15)

and
ρLB(y) � 2 log Λ(x#; C) + δ(y) log y− log Λ(x#, y; D) . (16)

Finally, we state the following analogue of Theorem 1.

Theorem 3. We define δmax, x# as before. For x ∈
[
1, x#], we set
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p(x)← xΛ′(x; C)/Λ(x; C),

y(x)← solution of G2(x, y) = 0,

δ(x)← y(x)Λy(x, y(x); D)/Λ(x, y(x); D),

If y(x#) < 1, then for y ∈
[
y(x#), 1

]
, we set

δ(y)← yΛy(x#, y; D)/Λ(x#, y; D) ,

then, the corresponding GV-MR curve is given by{
(δ(x), ρMR(x)) : x ∈

[
1, x#

]}
∪ {(δ(y), ρLB(y)) : y ∈

[
y(x#), 1

]
} ∪

{
(δ, 0) : δ ≥ δmax

}
. (17)

where ρMR and ρLB are defined in (15) and (16), respectively.

Example 3. We continue our example and evaluate the GV-MR bound for the (3, 2)-SWCC
constrained system. In this case, the matrices of interest are

CG(z) =

⎡⎣z 1 0
0 0 z
z 0 0

⎤⎦ and DG×G(x, y) =

⎡⎢⎢⎢⎢⎢⎢⎣

x2 2xy 0 1 0 0
0 0 x2 0 xy 0
x2 xy 0 0 0 0
0 0 0 0 0 x2

0 0 x2 0 0 0
x2 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Here, we observe that Δ(x) is a monotone decreasing function and so, we set x# = 0.01 and
δmax = limx→0 Δ(x) ≈ 0.426. If we apply Procedure 2 to compute RMR(δ) for 100 points in
[0, δmax], we require 437 Newton–Raphson iterations and 85,500 power iterations. In contrast, we
use Theorem 3 to compute (δ(x), ρMR(x)) for 100 values of x in the interval

[
1, x#]. This requires

323 Newton–Raphson iterations and involves 22,296 power iterations. The resulting GV-MR curve
is given in Figure 1a.

Remark 2. Strictly speaking, the GV-MR curve described by (17) may not be equal to the curve
defined by the optimization problem (15). Nevertheless, the curve provides a lower bound for the
optimal asymptotic code rates and we conjecture that the GV-MR curve described by (17) is a lower
bound for the curve defined by the optimization problem (15).

5. Single-State Graph Presentation

In this section, we focus on graph presentations that have exactly one state. Here,
we allow these single-state graph presentations to contain the parallel edges and their
labels to be binary strings of length possibly greater than one. Now, for these constrained
systems, the procedures to evaluate the GV bound and its MR improvements can be
greatly simplified. This is because the matrices BG×G(y), CG(z), and DG×G(x, y) are all of
dimensions one by one. Therefore, determining their respective dominant eigenvalues is
straightforward and does not require the power iteration method. The results in this section
follow directly from previous sections and our objective is to provide explicit formulas
whenever possible.

Formally, let S be the constrained system with graph presentation G = (V,E,L) such
that |V| = 1 and L : E→ Σs with s ≥ 1 (existing methods that determine the GV bound for
constrained systems with |V| ≥ 1 assume that the edge-labels have single letters, i.e., s = 1.
In other words, previous methods developed in [12,14] do not apply).

We further define αt � #{(x, y) ∈ L(E)2 : dH(x, y) = t} for 0 ≤ t ≤ s. Then. the
corresponding adjacency and reduced distance matrices are as follows:

AG =
[
|E|

]
and BG×G(y) =

[
∑t≥0 αtyt] .

Then, we compute the capacity using its definition as Cap(S) = (log |E|)/s.
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To compute
∼
T(δ), we consider the following extension of the optimization problem (3)

for the case s ≥ 1:

∼
T(δ) =

1
s

inf{−δs log y + log λ(y; B) : 0 ≤ y ≤ 1}

=
1
s

inf

{
−δs log y + log

(
∑
t≥0

αtyt

)
: 0 ≤ y ≤ 1

}
. (18)

As before, following the convexity of the objective function in (18), we have that the
optimal y is the zero (in the interval [0, 1]) of the function

F(y) � ∑
t≥0

(t− δs)αtyt. (19)

So, for fixed values of δ, we can use the Newton–Raphson procedure to compute the
root y of (19), and, hence, evaluate RGV(δ). It should be noted that the power iteration
method is not required in this case.

On the other hand, to plot the GV curve, we have the following corollary of Theorem 1.

Corollary 2. Let G be the single-state graph presentation for a constrained system S. Then, the
corresponding GV curve is given by

GV(S) �
{
(δ, RGV(δ)) : δ ∈ [0, 1]

}
=

{
(δ(y), ρ(y)) : y ∈ [0, 1]

}
∪
{
(δ, 0) : δ ≥ δmax

}
, (20)

where

δmax =
∑t≥0 tαt

s|E|2 ,

δ(y) =
∑t≥0 tαtyt

s
(
∑t≥0 αtyt

) ,

ρ(y) =
1
s

(
log

|E|2
∑t≥0 αtyt −

∑t≥0 tαtyt

∑t≥0 αtyt log y

)
.

We illustrate this evaluation procedure via an example of the class of subblock energy-
constrained codes (SECCs). Formally, we fix a subblock length L and energy constraint w. A
binary word x of length mL is said to satisfy the (L, w)-subblock energy constraint if we
partition x into m subblocks of length L, then the number of ones in every subblock is at
least w. We refer to the collection of words that meet this constraint as an (L, w)-SECC
constrained system. The class of SECCs was introduced by Tandon et al. for the application
of simultaneous energy and information transfer [7]. Later, in [21], a GV-type bound was
introduced (see Proposition 12 in [21] and also, (28)) and we make comparisons with the
GV bound (20) in the following example.

Example 4. Let L = 3 and w = 2 and we consider a (3, 2)-SECC constrained system. It is
straightforward to observe that the graph presentation is as follows with the single state x. Here,
s = L = 3.

x 011

101

110
111

Then, the corresponding adjacency and reduced distance matrices are as follows:

AG =
[
4
]
, BG×G(y) =

[
4 + 6y + 6y2] .
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First, we determine the GV bound at δ = 1/3. We observe that F(y) = −4 + 6y2 and, so, the
optimal point y for (18) is

√
2/3 (the unique solution to F(y) in the interval [0, 1]). Hence, we

have that
∼
T(1/3) ≈ 1.327. On the other hand, the capacity of a (3, 2)-SECC constrained system is

Cap(S) = 2/3. Therefore, the GV bound is given by RGV(1/3) = 0.006.
In contrast, the GV-type lower bound given by Proposition 12 in [21] is zero for δ > 0.174.

Hence, the evaluation of the GV bound yields a significantly better lower bound. In fact, we can
show that RGV(δ) > 0 for all δ ≤ δmax = 3/8.

To plot the GV curve, using the fact that δmax = 3/8, we have that

GV(S) =

{(
y + 2y2

2 + 3y + 3y2 ,
1
3

log
8

2 + 3y + 3y2 +
3y + 6y2

2 + 3y + 3y2 log y
)

: y ∈ [0, 1]
}
∪
{
(δ, 0) : δ ≥ 3

8

}
.

We plot the curve in Section 6.
From this example, we see that our methods yield better lower bounds in terms of asymptotic

coding rates for a specific pair of (L, w). It is open to determine how much improvement can be
achieved for general pairs of L and w.

Next, we evaluate the GV-MR bound. To this end, we consider some proper subset
P ⊂ E and define

αt � #{(x, y) ∈ L(E)2 : dH(x, y) = t, x, y ∈ P},
βt � #{(x, y) ∈ L(E) : dH(x, y) = t, (x ∈ P, y /∈ P) or (x /∈ P, y ∈ P)},
γt � #{(x, y) ∈ L(E) : dH(x, y) = t, x, y /∈ P}.

Then, we consider the following matrices:

CG(z) =
[
|E| − |P|+ |P|z

]
and DG×G(x, y) =

[
∑t≥0(αtx2 + βtx + γt)yt] .

Setting p to be the normalized frequency of edges in P, we obtain S(p) by solving the
optimization problem (10).

Specifically, we have that

S(p) =
1
s
(H(p) + p + log |P|+ (1− p) log(|E| − |P|)) , (21)

and this value is achieved when

z =
p(|E| − |P|)
(1− p)|P| . (22)

To compute
∼
T(p, δ), we consider the following extension of the optimization prob-

lem (12) for the case s ≥ 1.

∼
T(p, δ) =

1
s

inf{−2p log x− δs log y + log λ(y; D) : 0 ≤ y ≤ 1}

=
1
s

inf

{
−2p log x− δs log y + log

(
∑
t≥0

(αtx2 + βtx + γt)yt

)
: 0 ≤ y ≤ 1

}
. (23)

As before, following the convexity of the objective function in (23), we have that the
optimal x and y are the zeroes (in the interval [0, 1]) of the functions

G2(x, y) �2(1− p)(∑
t≥0

αtyt)x2 + (1− 2p)(∑
t≥0

βtyt)x− 2p(∑
t≥0

γtyt)

G3(x, y) � ∑
t≥0

(t− δs)(αtx2 + βtx + γt)yt (24)
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So, for fixed values of p and δ, we can use the Newton–Raphson procedure to compute
the roots x and y of (24), and, hence, evaluate RGV(p, δ). It should be noted that the power
iteration method is not required in this case. We find x# as defined in Section 4 and set

ρMR(x) � 2 log(|E| − |P|+ |P|x) + δ(x) log y(x)− log ∑
t≥0

(αtx2 + βtx + γt)y(x)t . (25)

Furthermore, if y(x#) < 1, we set

ρLB(y) � 2 log(|E| − |P|+ |P|x#) + δ(y) log y− log ∑
t≥0

(αt(x#)2 + βtx# + γt)yt . (26)

Next, to plot the GV-MR curve, we have the following corollary of Theorem 3.

Corollary 3. Let G be the single-state graph presentation for a constrained system S. For x ∈[
1, x#], we set

p(x) =
|P|x

(|E| − |P|) + |P|x) ,

δ(x) =
∑t≥1 t(αtx2 + βtx + γt)y(x)t

s ∑t≥0(αtx2 + βtx + γt)y(x)t ,

where y(x) is the smallest root of the equation

2(|E| − |P|)(∑
t≥0

αtyt)x + (|E| − |P| − |P|x)(∑
t≥0

βtyt)− 2|P|(∑
t≥0

γtyt) = 0.

If y(x#) < 1, then for y ∈
[
y(x#), 1

]
, we set

δ(y) =
∑t≥1 t(αt(x#)2 + βtx# + γt)yt

s ∑t≥0(αt(x#)2 + βtx# + γt)yt ,

Then, the corresponding GV-MR curve is given by{
(δ(x), ρMR(x)) : x ∈

[
1, x#

]}
∪ {(δ(y), ρLB(y)) : y ∈

[
y(x#), 1

]
} ∪

{
(δ, 0) : δ ≥ δmax

}
. (27)

where ρMR and ρLB are defined in (25) and (26), respectively.

Example 5. We continue our example and evaluate the GV-MR bound for the (3, 2)-SECC
constrained system. We have the following single-state graph presentation:

A 011
101

110

Then, the matrices of interest are:

CG =
[
1 + 3z

]
, DG×G(x, y) =

[
(3 + 6y2)x2 + 6xy + 1

]
.

Since CG and DG×G(x, y) are both singleton matrices, we have Λ(z; C) = 1+ 3z and Λ(x, y; D) =
(3+6y2)x2 +6xy+1. Then, G1(z) = −p(1+3z)+3z, G2(x, y) = 3(1+2y2)x2(1− p)+3xy(1−
2p)− p and G3(x, y) = 4x2y2− 3δ(1+ 2y2)x2 + 2xy(1− 3δ)− δ. Now, we apply Theorem 2 and
express p, y, and δ in terms of x where x ∈ [1, x#] where x# → ∞.
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p =
3x

(1 + 3x)

y =
x− 1

2x

δ =
2x(x− 1)
(9x2 − 1)

Now, we observe that we have y(x#) = 1/2. Since we can still increase y to 1, we apply the
GV bound with p = 1 and x = z = x# once we reach the boundary that is p = 1. Hence, at the
boundary, we solve the following problem:

S(1) = 2 log 3
∼
T(1, δ) = inf

{
− 2 log x− 3δ log y + log(3(1 + 2y2)x2 + 6xy + 1) : 1/2 ≤ y ≤ 1; x = x# → ∞

}
= inf

{
− 3δ log y + log 3 + log(1 + 2y2) : 1/2 ≤ y ≤ 1

}
RMR(δ) = S(1)− ∼T(1, δ).

By setting F(y) = −3δ(1+ 2y2) + 4y2 = 0, we get δ = 4y2/3(1+ 2y2) where y ∈ [1/2, 1]
and we plot the respective curve.

6. Numerical Plots

In this section, we apply our numerical procedures to compute the GV and the GV-MR
bounds for some specific constrained systems. In particular, we consider the (L, w)-SWCC
constrained systems defined in Section 3, the ubiquitous (d, k)-runlength limited systems
(see, for example, p. 3 in [11]) and the (L, w)-subblock energy constrained codes recently
introduced in [7]. In addition to the GV and GV-MR curves, we also plot a simple lower
bound. For each δ ∈ [0, 1/2], any ball size is at most 2H(δn). So, for any constrained system
S, we have that T̃(δ) ≤ Cap(S) +H(δ). Therefore, we have that

R(δ; S) ≤ Cap(S)−H(δ) . (28)

From the plots in Figures 1–3, it is also clear that the computations of (7) and (17) yield a
significantly better lower bound.

6.1. (L, w)-Sliding Window Constrained Codes

We fix L and w. We recall from Section 3 that a binary word satisfies the (L, w)-
sliding window weight constraint if the number of ones in every consecutive L bits is
at least w and the (L, w)-SWCC constrained system refers to the collection of words that
meet this constraint. From [8,9], we have a simple graph presentation that uses only (L

w)
states. To validate our methods, we choose (L, w) ∈ {(3, 2), (10, 7)} and the corresponding
graph presentations have 3 and 120 states, respectively. Applying the plotting procedures
described in Theorems 1 and 3, we obtain Figure 1.

6.2. (d, k)-Runlength Limited Codes

Next, we revisit the ubiquitous runlength constraint. We fix d and k. We say that
a binary word satisfies the (d, k)-RLL constraint if each run of zeroes in the word has a
length of at least d and at most k. Here, we allow the first and last runs of zeroes to have
a length of less than d . We refer to the collection of words that meet this constraint as
a (d, k)-RLL constrained system. It is well known that a (d, k)-RLL constrained system has
the graph presentation with k + 1 states (see, for example, [11]). Here, we choose (d, k) ∈
{(1, 3), (3, 7)} to validate our methods and apply Theorems 1 and 3 to obtain Figure 2. For
(d, k) = (3, 7), we corroborate our results with those derived in [15]. Specifically, Winick
and Yang determined the GV bound (1) for the (3, 7)-RLL constraint and remarked that
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the “evaluation of the (GV-MR) bound required considerable computation” for “a small
improvement”. In Table 3, we verify this statement.

Table 3. Comparison of the GV-MR bound with lower bound [15] for (3, 7)-RLL constrained systems.

δ GV-MR Bound (15) GV Bound [15] (see Equation (1))

0 0.406 0.406
0.05 0.255 0.225
0.1 0.163 0.163
0.15 0.095 0.094
0.2 0.048 0.044
0.25 0.018 0.012

6.3. (L, w)-Subblock Energy-Constrained Codes

We fix L and w. We recall from Section 5 that a binary word satisfies the (L, w)-
subblock energy constraint if each subblock of length L has a weight of at least w and the
(L, w)-SECC constrained system refers to the collection of words that meet this constraint.
Then, the corresponding graph presentation has a single state x with ∑w

i=0 (
L
i ) edges, where

each edge is labeled by a word of length L and weight at least w. We apply the methods in
Section 5 to determine the GV and GV-MR bounds.

For the GV bound, we provide the explicit formula for αt and proceed as in Example 4.

αt =

(
L
t

)
(|E| −

t

∑
j=1


 j
2 �−1

∑
k=0

(
L− t

w− j + k

)(
t
k

)
) (29)

Similarly, for GV-MR bound, we provide the explicit formula for αt, βt, and γt and
proceed as in Example 5.

αt =

(
L
w

)(
L− w

i/2

)(
w

i/2

)
if t is even, otherwise, αt = 0. (30)

βt = 2
(

L
w

) � t
2 	

∑
j=1

(
L− w
t− j

)(
w
j

)
− 2αt (31)

γt =

(
L
t

)
(|E| −

t

∑
j=1


 j
2 �−1

∑
k=0

(
L− t

w− j + k

)(
t
k

)
)− αt − βt (32)

In Figure 3, we plot the GV bound and GV-MR bounds. We remark that the simple
lower bound (28) corresponds to Proposition 12 in [21].
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Appendix A. Power Iteration Method for Derivatives of Dominant Eigenvalues

Throughout this appendix, we assume that A is a diagonalizable matrix with dominant
eigenvalue λ1 and whose corresponding eigenspace has dimension one. Let e1 be the unit
eigenvector whose entries are positive in this space. Then, the power iteration method
is a well-known numerical procedure that finds the dominant eigenvalue λ1 and the
corresponding eigenvector e1 efficiently.

Now, in the preceding sections, the entries in the matrix A are given functions in
either one or two variables and, thus, the dominant eigenvalue λ1 is a function in the same
variables. Moreover, the numerical procedures in these sections require us to compute the
higher order (partial) derivatives of this dominant eigenvalue function λ1. To the best of
our knowledge, we are unaware of any algorithms or numerical procedures that estimate
the values of these derivatives. Hence, in this appendix, we modify the power iteration
method to compute these estimates.

Formally, let A be an irreducible nonnegative diagonalizable square matrix with
dominant eigenvalue λ1 and corresponding unit eigenvector e1. Since A is diagonalizable,
A has n eigenvectors e1, e2, . . . , en that form an orthonormal basis for Rn. Let λ1, λ2, . . . , λn
be the corresponding eigenvalues and, so, we have that

Aei = λiei for all i = 1, 2, . . . , n. (A1)

Since A is irreducible, the dominant eigenspace has dimension one and, also, the dominant
eigenvalue is real and positive. Therefore, we can assume that λ1 > |λ2| ≥ · · · ≥ |λn|.

We first assume that the entries of A are functions in the variable z. Hence, λi and the
entries of ei are functions in z too. Then Power Iteration I then evaluates both λ1 and λ′1
for some fixed value of z, while Power Iteration II additionally evaluates the second order
derivative λ′′1 .

The case where the entries of A are functions in two variables x and y is discussed at
the end of the appendix. Here, Power Iteration III evaluates higher order partial derivatives
of λ1 for certain fixed values of x and y. For ease of exposition, we provide detailed proofs
for the correctness of Power Iteration I and the proofs can be extended for Power Iteration II
and Power Iteration III.

We continue our discussion where the entries of A are univariate functions in z. We
differentiate each entry of A with respect to z to obtain the matrix A′. Furthermore, for all
1 ≤ i ≤ n, we differentiate each entry of eigenvectors ei and the eigenvalue λi to obtain e′i
and λ′i, respectively. Specifically, it follows from (A1) that

A′ei + Ae′i = λ′iei + λie′i for all i = 1, 2, · · · , n. (A2)

Then, the following procedure computes both λ1 and λ′1.

Power Iteration I.
INPUT: Irreducible nonnegative diagonalizable matrix A

OUTPUT: Estimates of λ1 and λ′1
(1) Initialize q(0) such that all its entries are strictly positive.

• Fix a tolerance value ε.
• While |q(k) − q(k−1)| > ε,

– Set
λ(k) = ‖Aq(k−1)‖,

q(k) =
Aq(k−1)

λ(k)
,
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μ(k) = ‖A′q(k−1) + Ar(k−1) − λ(k)r(k−1)‖,

r(k) =
Ar(k−1) + A′q(k−1) − μ(k)q(k−1)

λ(k)
.

– Increment k by one.

(2) Set λ1 ← λ(k) and λ′1 ← μ(k).

Theorem A1. If A is an irreducible nonnegative diagonalizable matrix and q(0) has positive
components with unit norm, then, as k→ ∞, we have

λ(k) → λ1, q(k) → e1, μ(k) → λ′1 .

Here, q(k) → e1 means that
∥∥∥q(k) − e1

∥∥∥→ 0 as k→ ∞.

Before we present the proof of Theorem A1, we remark that the usual power iteration
method computes only λ(k) and q(k). Then, it is well-known (see, for example, [22]) that
λ(k) and q(k) tend to λ1 and e1, respectively.

Now, since ei spans Rn, we can write q(0) = ∑n
i=1 αiei for any initial vector q(0). The

next technical lemma provides closed formulas for λ(k), q(k), μ(k), and r(k) in terms of λi, ei
and αi.

Lemma A1. Let q(0) = ∑n
i=1 αiei. Then,

q(k) =
∑n

i=1 αiλ
k
i ei

‖∑n
i=1 αiλ

k
i ei‖

, (A3)

λ(k) =
‖∑n

i=1 αiλ
k
i ei‖

‖∑n
i=1 αiλ

k−1
i ei‖

, (A4)

r(k) =
∑n

i=1(αie′i + α′iei)λ
k
i + (kλ′i −∑k

j=1 μ(j))αiλ
k−1
i ei

‖∑n
i=1 αiλ

k
i ei‖

, (A5)

μ(k) =

∥∥∥∥∥ ∑n
i=1(αie′i + α′iei)λ

k−1
i (λi − λ(k)) + αiλ

k−1
i λ′iei + ((k− 1)λ′i −∑k−1

j=1 μ(j))αiλ
k−2
i (λi − λ(k))ei

∥∥∥∥∥
‖∑n

i=1 αiλ
k−1
i ei‖

. (A6)

Proof. Since q(k) is defined recursively as q(k) = Aq(k−1)

λ(k) = Aq(k−1)

‖Aq(k−1)‖ , we have that

q(k) =
Akq(0)

‖Akq(0)‖
.

Then, it follows from Equation (A1) that

Akq(0) = Ak
n

∑
i=1

αiei =
n

∑
i=1

αi(Akei) =
n

∑
i=1

αiλ
k
i ei, (A7)

and, so, we obtain (A3). Similarly, from (A1), we have that

λ(k) = ‖Aq(k−1)‖ = ‖Akq(0)‖
‖Ak−1q(0)‖

=
‖∑n

i=1 αiλ
k
i ei‖

‖∑n
i=1 αiλ

k−1
i ei‖

,

as required for (A4).
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Next, we note that r(0) = ∑n
i=1 αie′i + ∑n

i=1 α′iei. Then, using the recursive definition of
r(k), we have

r(k) =
Akr(0) + ∑k−1

j=0 AjA′Ak−j−1q(0) − (∑k
j=1 μ(j))Ak−1q(0)

‖Akq(0)‖
. (A8)

Then, from (A1), we have

Akr(0) = Ak

(
n

∑
i=1

αie′i +
n

∑
i=1

α′iei

)
=

n

∑
i=1

αi(Ake′i) +
n

∑
i=1

α′iλ
k
i ei. (A9)

and, from (A2),

A′
n

∑
i=1

αiλ
k−j−1
i ei =

n

∑
i=1

αiλ
k−j−1
i (A′ei) =

n

∑
i=1

αiλ
k−j−1
i (λ′iei + λie′i −Ae′i).

Therefore, using (A1) again,

k−1

∑
j=0

AjA′
n

∑
i=1

αiλ
k−j−1
i ei =

k−1

∑
j=0

Aj
n

∑
i=1

αiλ
k−j−1
i (λ′iei + λie′i −Ae′i)

= k
n

∑
i=1

αiλ
k−1
i λ′iei +

n

∑
i=1

αiλ
k
i e′i −

n

∑
i=1

αi(Ake′i).

Therefore, we obtain (A5).
Finally, we recall that μ(k) is defined as

μ(k) = ‖A′q(k−1) + Ar(k−1) − λ(k)r(k−1)‖.

Then, by replacing r(k−1) and q(k−1) from (A5) and (A3), respectively, and then using
Equation (A2), we obtain (A6).

Finally, we are ready to demonstrate the correctness of Power Iteration I.

Proof of Theorem A1. Since A is an irreducible nonnegative diagonalizable matrix, λ1 is
real positive and there exists 0 < ε < 1 such that |λi |

λ1
< ε for all i = 2, 3, · · · , n (see, for

example, [11]). For purposes of brevity, we write

Φk =
n

∑
i=1

αiλ
k
i ei (A10)

and, so, we can rewrite (A3) as

q(k) =
Φk
‖Φk‖

=
λk

1
‖Φk‖

Φk

λk
1
=

λk
1

‖Φk‖

(
α1e1 +

n

∑
i=2

αi
λk

i

λk
1

ei

)
.

Now, since λk
i /λk

1 ≤ εk for all i = 2, . . . , n, we have that∥∥∥∥∥Φk

λk
1
− α1e1

∥∥∥∥∥ ≤ C1εk for some constant C1. (A11)

Then, using the triangle inequality, we have that as k→ ∞,
∣∣∣∣ ‖Φk‖

λk
1
− α1

∣∣∣∣→ 0 and, thus,

λk
1

‖Φk‖ →
1
α1

. Therefore, ‖q(k) − e1‖ → 0 as required.
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It should be noted that since λk
1

‖Φk‖ tends to a finite limit, we have that λk
1

‖Φk‖ is bounded
above by some constant. In other words, we have that

λk
1

‖Φk‖
≤ C2 for some constant C2. (A12)

Next, we show the following inequality:

|λ(k) − λ1| ≤ C3εk−1 for some constant C3. (A13)

Using (A4), we have that

‖Φk − λ1Φk−1‖
‖Φk−1‖

=
λk−1

1
‖Φk−1‖

∑n
i=1 αiλ

k
i ei − αiλ1λk−1

i ei

λk−1
1

=

(
λk−1

1
‖Φk−1‖

)
· λ1 ·

n

∑
i=2

αi

(
λk

i

λk
1
− λk−1

i

λk−1
1

)
ei .

Now, observe that
(

λk
i

λk
1
− λk−1

i
λk−1

1

)
≤ 2εk−1 for i = 2, . . . , n. Since λk−1

1
‖Φk−1‖ ≤ C2, we have (A13)

after applying the triangle inequality.
Again, to reduce clutter, we introduce the following abbreviations:

Dk =
n

∑
i=1

(αie′i + α′iei)λ
k−1
i (λi − λ(k)),

Ek =
n

∑
i=1

αiλ
k−1
i λ′iei,

Fk =
n

∑
i=1

(
(k− 1)λ′i −

k−1

∑
j=1

μ(j)

)
αiλ

k−2
i (λi − λ(k))ei.

Thus, we can rewrite (A6) as

μ(k) =
‖Dk + Ek + Fk‖
‖Φk−1‖

≤ λ′1 +
‖Dk‖
‖Φk−1‖

+
‖Ek − λ′1Φk−1‖
‖Φk−1‖

+
‖Fk‖
‖Φk−1‖

.

Next, we bound each of the summands on the right-hand side. Specifically, we show the
following inequalities:

‖Dk‖
‖Φk−1‖

+
‖Ek − λ′1Φk−1‖
‖Φk−1‖

≤ C4εk−1 for some constant C4, (A14)

‖Fk‖
‖Φk−1‖

≤ C5(k− 1)εk−1 + C5

(
k−1

∑
j=1

μ(k)

)
εk−1 for some constant C5. (A15)

To demonstrate (A14), we consider

‖Dk‖
λk−1

1

=

∥∥∥∥∥ n

∑
i=1

(αie′i + α′iei)
λk−1

i

λk−1
1

(λi − λ(k))

∥∥∥∥∥ ≤ ‖α1e′1 + α′1e1‖|λ1 − λ(k)|+ εk−1
n

∑
i=2
‖αie′i + α′iei‖|λi − λ(k)|.

We use (A13) to bound the first summand by some constant multiple of εk−1. On the other
hand, we have |λi − λ(k)| ≤ |λi − λ1|+ |λ1 − λ(k)| ≤ max{|λi − λ1| : 2 ≤ i ≤ n}+ C3εk−1

for 2 ≤ i ≤ n. In other words, the second summand is also bounded by some constant
multiple of εk−1. Next, we consider

‖Ek − λ′1Φk−1‖
λk−1

1

=

∥∥∥∥∥ n

∑
i=1

αi
λk−1

i

λk−1
1

(λ′i − λ′1)ei

∥∥∥∥∥ ≤ εk−1
n

∑
i=2
|αi(λ

′
i − λ′1)|.
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and, so, ‖Ek−λ′1Φk−1‖
λk−1

1
is also bounded by a multiple of εk−1. Therefore, since λk−1

1
‖Φk−1‖ ≤ C2,

we have (A14). Using similar methods, we can establish (A15).
Next, we apply (A14) and then recursively apply (A15) until the right-hand side is

free of μ(i)s. Then, it follows that

μ(k) ≤ λ′1 + C4εk−1 + C5(k− 1)εk−1 +
k−1

∏
j=2

(1 + C5εk−j) + C5εk−1
k−1

∑
i=1

(λ′1 + C4εk−i−1C5(k− i− 1)εk−i−1)
i

∏
j=2

(1 + C5εk−j)). (A16)

Furthermore, since i ≤ k− 1, ∏i
j=2(1 + C5εk−j) ≤ ∏k−1

j=2 (1 + C5εk−j), we can rewrite
(A16) as

μ(k) ≤ λ′1 + C4εk−1 + C5(k− 1)εk−1 +
k−1

∏
j=2

(1 + C5εk−j)

(
1 + C5εk−1

k−1

∑
i=1

(λ′1 + C4εk−i−1C5(k− i− 1)εk−i−1)

)
. (A17)

Next, it follows from standard calculus that ∏k−1
j=2 (1 + C5εk−j) < e

C5
1−ε . Furthermore,

since ε < 1, we have ∑k−2
i=0 εj < 1

1−ε and ∑k−2
i=0 jεj < 1

(1−ε)2 . Putting everything together,
we have

μ(k) ≤ λ′1 + C4εk−1 + C5(k− 1)εk−1 + C5εk−1e
C5

1−ε

(
1 + (k− 1)λ′1 +

C4

1− ε
+

C5

(1− ε)2

)
. (A18)

As k → ∞, since ε < 1, we have εk → 0 and kεk → 0. Therefore, limk→∞ μ(k) ≤
λ′1. Using similar methods, we have that limk→∞ μ(k) ≥ λ′1 and, so, limk→∞ μ(k) = λ′1,
as required.

Next, we modify Power Iteration I so as to compute the higher order derivatives. We
omit a detailed proof as it is similar to the proof of Theorem A1.
Power Iteration II.
INPUT: Irreducible nonnegative diagonalizable matrix A

OUTPUT: Estimates of λ1, λ′1, and λ′′1
(1) Initialize q(0) such that all its entries are strictly positive.

• Fix a tolerance value ε.
• While |q(k) − q(k−1)| > ε,

– Set
λ(k) = ‖Aq(k−1)‖,

q(k) =
Aq(k−1)

λ(k)
,

μ(k) = ‖A′q(k−1) + Ar(k−1) − λ(k)r(k−1)‖,

r(k) =
Ar(k−1) + A′q(k−1) − μ(k)q(k−1)

λ(k)
,

ν(k) = ‖A′′q(k−1) + 2A′r(k−1) + As(k−1) − λ(k)s(k−1) − 2μ(k)r(k−1)‖,

s(k) =
A′′q(k−1) + 2A′r(k−1) + As(k−1) − 2μ(k)r(k−1) − ν(k)q(k−1)

λ(k)
.

– Increment k by one.

(2) Set λ1 ← λ(k), λ′1 ← μ(k) and λ′′1 ← ν(k) .

Theorem A2. If A is an irreducible nonnegative diagonalizable matrix and q(0) has positive
components with unit norm, then, as k→ ∞, we have

λ(k) → λ1, q(k) → e1, μ(k) → λ′1, ν(k) → λ′′1 .
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Finally, we end this appendix with a power iteration method that computes the partial
derivatives when the elements of the given matrix are bivariate functions.

Power Iteration III.
INPUT: Irreducible nonnegative diagonalizable matrix A

OUTPUT: Estimates of λ1, (λ1)x, (λ1)y, (λ1)xx, (λ1)yy, and (λ1)xy

(1) Initialize q(0) such that all its entries are strictly positive.

• Fix a tolerance value ε.
• While |q(k) − q(k−1)| > ε,

– Set

λ(k) = ‖Aq(k−1)‖,

q(k) =
Aq(k−1)

λ(k)
,

λ
(k)
x = ‖Axq(k−1) + Aq(k−1)

x − λq(k−1)
x ‖,

q(k)x =
Axq(k−1) + Aq(k−1)

x − λ
(k−1)
x q(k−1)

λ(k)
,

λ
(k)
y = ‖Ayq(k−1) + Aq(k−1)

y − λq(k−1)
y ‖,

q(k)y =
Ayq(k−1) + Aq(k−1)

y − λ
(k−1)
y q(k−1)

λ(k)
,

λ
(k)
xx = ‖Axxq(k−1) + 2Axq(k−1)

x + Aq(k−1)
xx − λ(k−1)q(k−1)

xx − 2λ
(k−1)
x q(k−1)

x ‖,

q(k)xx =
Axxq(k−1) + 2Axq(k−1)

x + Aq(k−1)
xx − 2λ

(k−1)
x q(k−1)

x − λ
(k−1)
xx q(k−1)

λ(k)

λ
(k)
yy = ‖Ayyq(k−1) + 2Ayq(k−1)

y + Aq(k−1)
yy − λ(k−1)q(k−1)

yy − 2λ
(k−1)
y q(k−1)

y ‖,

q(k)yy =
Ayyq(k−1) + 2Ayq(k−1)

y + Aq(k−1)
yy − 2λ

(k−1)
y q(k−1)

y − λ
(k−1)
yy q(k−1)

λ(k)

λ
(k)
xy = ‖Axyq(k−1) + Axq(k−1)

y + Ayq(k−1)
x + Aq(k−1)

xy − λ(k−1)q(k−1)
xy − λ

(k−1)
x q(k−1)

y − λ
(k−1)
y q(k−1)

x ‖,

q(k)xy =
Axyq(k−1) + Axq(k−1)

y + Ayq(k−1)
x + Aq(k−1)

xy − λ
(k−1)
xy q(k−1) − λ

(k−1)
x q(k−1)

y − λ
(k−1)
y q(k−1)

x

λ(k)
.

– Increment k by one.

• Set λ(k) ← λ1, λ
(k)
x ← (λ1)x, λ

(k)
y ← (λ1)y, λ

(k)
xx ← (λ1)xx, λ

(k)
yy ← (λ1)yy,

λ
(k)
xy ← (λ1)xy.

Theorem A3. If A is an irreducible nonnegative diagonalizable matrix and q(0) has positive
components with unit norm, then, as k → ∞, we have λ

(k)
xx → (λ1)xx, λ

(k)
yy → (λ1)yy, λ

(k)
xy →

(λ1)xy .
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Abstract: Linear complementary dual (LCD) codes, which are a class of linear codes introduced
by Massey, have been extensively studied in the literature recently. It has been shown that LCD
codes play a role in measures to counter passive and active side-channel analyses on embedded
cryptosystems. In this paper, tables are presented of good quaternary Hermitian LCD codes and they
are used in the construction of puncturing, shortening and combination codes. The results of this,
including three tables of the best-known quaternary Hermitian LCD codes of any length n ≤ 25 with
corresponding dimension k, are presented. In addition, many of these quaternary Hermitian LCD
codes given in this paper are optimal and saturate the lower or upper bound of Grassl’s code table,
and some of them are nearly optimal.

Keywords: quaternary code; Hermitian; linear complementary dual; linear code; optimal

1. Introduction

Let q be a power of a prime p, Fq be a finite field with q elements, and Fn
q be an

n-dimensional vector space over Fq. A q-ary [n, k, d]q linear code over Fq is a k-dimensional
subspace of Fn

q with Hamming distance d. For a given [n, k]q linear code, the code
C⊥ = {x|x · c = 0, c ∈ C} is called the dual code of C. A q-ary linear code C is called
a linear complementary dual (LCD) code if it meets its dual trivially, that is, C ∩ C⊥ = {0},
which was given by Massey [1,2]. In addition to their applications in data storage, com-
munication systems, and consumer electronics, LCD codes have recently been employed
in cryptography and quantum error correcting. Carlet and Guilley in ref. [3] showed
that LCD codes play an important role in armoring implementations against side-channel
attacks and presented several constructions of LCD codes.

In [4], according to finite geometry theory, Lu et al. proposed the radical codes R(C)
of C and C⊥, which are R(C) = C ∩ C⊥. If R(C) = C ∩ C⊥ = {0}, then C is called a zero
radical code, which is the same as the LCD code presented in [2]. Using these zero radical
codes, they constructed families of maximal entanglement entanglement-assisted quantum
error-correcting codes, which can help to engineer more reliable quantum communication
schemes and quantum computers. Furthermore, constructions of Hermitian zero radical
BCH codes were discussed in [5], which are also called reversible codes in [1] or LCD cyclic
codes in [6]. Güneri et al. studied quasi-cyclic LCD codes and introduced Hermitian LCD
codes [7]. Moreover, for the Euclidean case, the question of when cyclic codes are LCD codes
is answered affirmatively by Yang and Massey in [8]. Ding et al. investigated LCD cyclic
codes in [6], in which several families of LCD cyclic codes were constructed. It is shown
that some LCD cyclic codes are optimal linear codes or have the best possible parameters
for cyclic codes. Shi et al. constructed a lot of good LCD codes [9–12]. Moreover, many
works have focused on the construction of LCD codes with good parameters, see [13–21].

Recently, Carlet, Mesnager, Tang, Qi and Pellikaan in [22] have shown that any [n, k, d]-
linear code over Fq2 is equivalent to an [n, k, d]-linear Hermitian LCD code over Fq2 for
q > 2. Araya, Harada and Saito in [23] gave some conditions for the nonexistence of
quaternary Hermitian linear complementary dual codes with large minimum weights.
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Inspired by these works and extending our previous work in [4], we study constructions
of linear Hermitian LCD codes over F4. Then, some families of linear Hermitian LCD
codes with good parameters are constructed from the known optimal codes via puncturing,
extending, shortening and the combination method. Compared with the tables of best
known linear codes (referred to as the Database later) maintained by Markus Grassl in [24],
some of our codes presented in this paper saturate the lower bound of Grassl’s code table.

In this paper, an optimal quaternary Hermitian LCD code [18, 7, 9] is given, which
improves the minimal distance of the codes in [4,25,26]. According to classification codes
in [27], there exist some optimal quaternary Hermitian LCD codes [15, 4, 8], [16, 4, 9],
[17, 4, 10], [19, 4, 13], [23, 5, 14] and [15, 6, 7]. According to [24], the following quaternary
Hermitian LCD codes we give in this section are also optimal linear codes: [n, k, d] for
21 ≤ n ≤ 25 and 16 ≤ k ≤ 18; [n− i, 15− i, d] for 21 ≤ n ≤ 24 and 0 ≤ i ≤ 2; and [23, 4, 15],
[24, 5, 15], [21, 6, 12], [22, 6, 12], [23, 6, 13], [24, 6, 14], and [25, 8, 12].

This paper is organized as follows. In Section 2, we provide some required basic
knowledge on Hermitian LCD codes. We derive constructions of Hermitian LCD codes in
Section 3. In Section 4, we discuss Hermitian LCD codes with good parameters.

2. Preliminary

In this section, we introduce some basic concepts on quaternary linear codes. Let
F4 = {0, 1, ω, �} be the Galois field with four elements, with � = 1 + ω = ω2, ω3 = 1.
Denote the n-dimensional space over F4 by Fn

4 ; we call a k-dimensional subspace C of Fn
4

a k-dimensional linear code of length n and denote it as C = [n, k]. A matrix G whose
rows form the basis of C is called a generator matrix of C. If the minimum distance of C
is d, then C can be denoted as C = [n, k, d]. A code C= [n, k, d] is an optimal code if there is
no [n, k, d + 1] code. An optimal code is denoted [n, k, do(n, k)] in this paper. For a given
code [n, k, d], if d is the largest value present known, then C is called the best-known code
and also denoted as [n, k, do(n, k)]. Denote dl(n, k) = max{d| as an [n, k, d] LCD code}. If a
C = [n, k, dl(n, k)] LCD code saturates the lower or upper bound of Grassl’s code table [24],
we call C an optimal LCD code and can say dl(n, k) = do(n, k). If dl(n, k) = do(n, k)− 1 ,
we call C a nearly optimal LCD code.

Define the Hermitian inner product of u, v ∈ Fn
4 as

(u, v)h = uv2 = u1v̄1 + u2v̄2 + · · ·+ unv̄n.

The Hermitian dual code of C = [n, k] is C⊥h = {x | (x, y)h = 0, ∀y ∈ C}, and C⊥h

= [n, n− k]. A generator matrix H = H(n−k)×n of C⊥h is called a parity check matrix of C.
If C ⊆ C⊥h, C is called a weakly self-orthogonal code. If C is a self-orthogonal code, then each
generator matrix G of C must satisfy rank(GG†) = 0, where G† is the conjugate transpose
of G.

If C ∩ C⊥h = {0}, then C (or C⊥h) is called a quaternary Hermitian LCD code, and each
generator matrix G of C must satisfy k = rank(GG†), see refs. [2,4].

In the following sections, we will discuss the construction of Hermitian quaternary
LCD code C = [n, k, d], where d is as large as possible for a given n and k ≤ 5. Firstly, we
present some notation for later use.

Let 1n = (1, 1, ..., 1)1×n and 0n = (0, 0, ..., 0)1×n denote an all-one vector and an all-zero
vector of length n, respectively.

Construct

S2 =

(
0 1 1 1 1
1 0 1 ω �

)
= (α1, ..., α5),

S3 =

(
S2 02×1 S2 S2 S2
05 1 15 ω15 �15

)
= (β1, β2, · · · , β21),

S4 =

(
S3 03×1 S3 S3 S3
021 1 121 ω121 �121

)
= (γ1, γ2, · · · , γ85).
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S5 =

(
S4 04×1 S4 S4 S4
085 1 185 ω185 �185

)
= (ζ1, ζ2, · · · , ζ341).

...

Sk =

(
Sk−1 0k−1×1 Sk−1 Sk−1 Sk−1

0 4(k−1)
3

1 1 4(k−1)
3

ω1 4(k−1)
3

�1 4(k−1)
3

)
It is well known that the matrix S2 generates the [5, 2, 4] simplex code with weight

polynomial 1 + 15y4. S3 generates the [21, 3, 16] simplex code with weight polynomial
1 + 63y16. S4 generates the [85, 4, 64] simplex code with weight polynomial 1 + 255y64, S5
generates the [341, 5, 256] simplex code with weight polynomial 1 + 1023y256, and SkS†

k = 0
for k = 2, 3, 4, 5, · · · , see ref. [28].

Notation

In the following sections, the conjugation is defined by x̄ = x2 for x ∈ F4. We use
2 and 3 to represent ω and � in each generator matrix of linear codes, respectively. An
[n, k, d]4 code is denoted as [n, k, d] for short.

3. Hermitian LCD Linear Codes over F4

In this subsection, we discuss the construction of [n, k] optimal Hermitian quaternary
LCD codes. For k ≥ 5 and n ≤ 20, there are some Hermitian quaternary LCD codes in
[21, 23, 26, 28]. For 20 ≤ n ≤ 25, there is no systematic discussion in the literature. The
discussion is presented in four cases for n ≤ 25.

Lemma 1 ([4,29]). If 21 ≤ n ≤ 25 and 1 ≤ k ≤ 5, then dl(2, 24) = 18, dl(2, 25) = 19,
dl(3, 21) = 15, dl(3, 22) = 15, dl(4, 22) = 14, dl(4, 23) = 15, dl(5, 24) = 15. All the other
Hermitian quaternary LCD codes saturate the lower bound of Grassl’s code table [24].

Proof. Refs. [4,29] proved this lemma.

Lemma 2 ([30]). There exist [n, n− 2, 2] and [n, n− 3, 2] quaternary Hermitian LCD codes.

Proof. (1) For when n is even, let G =

[
I2

∣∣∣∣ 11×n
01×n

]
. If G is a check matrix of C with generator

matrix H, then C = [n, n − 2, 2] and rank(HHh) = n − 2. For when n is even, let G =[
I2

(
�
�

)∣∣∣∣ 11×n
1×n

]
. If G is a check matrix of C with generator matrix H, then C = [n, n− 2, 2]

and rank(HHh) = n− 2.

(2) For when n is odd, let G =

[
I3

∣∣∣∣ 11×n
02×n

]
. If G is a check matrix of C with generator

matrix H, then C = [n, n − 3, 2] and rank(HHh) = n − 3. For when n is even, let G =[
I3

⎛⎝ �
�
0

⎞⎠∣∣∣∣ 11×n
02×n

]
. If G is a check matrix of C with generator matrix H, then C = [n, n− 3, 2]

and rank(HHh) = n− 3.

Theorem 1. If 21 ≤ n ≤ 25 and 13 ≤ k ≤ 18, then there exist 29 optimal quaternary Hermitian
LCD codes saturating the lower bound of Grassl’s code table [24], as in Table 1.
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Table 1. Optimal quaternary Hermitian LCD codes with 21 ≤ n ≤ 25 and 13 ≤ k ≤ 19.

n\k 13 14 15 16 17 18 19

21 6 5 5 4 3 2 2
22 6 6 5 4 4 3 2
23 6 6 5 4 4 3
24 6 6 5 4 4
25 6 6 5 4

Proof. For 21 ≤ n ≤ 25, calculating by Magma, one can obtain nine optimal LCD codes as
follows: [21, 14, 5], [21, 15, 5], [21, 16, 4], [22, 16, 4], [24, 16, 6], [22, 18, 3], [23, 18, 4], [25, 18, 5],
[23, 19, 3].

And then, calculating by Magma, one can obtain another five optimal codes, [27, 19, 6],
[26, 21, 4], [25, 18, 5], [26, 20, 4], [33, 24, 6], which are not all quaternary Hermitian LCD codes.

Case 1. Construction of quaternary Hermitian LCD codes via puncturing. Puncturing
C = [23, 15, 6] on coordinate sets {16}, {1, 19}, one can obtain [22, 15, 5] and [21, 17, 3]
Hermitian quaternary LCD codes. Puncturing C = [24, 17, 5] on coordinate sets {1, 18},
one can obtain the [22, 17, 4] Hermitian quaternary LCD code. Puncturing C = [24, 19, 4]on
coordinate sets {1, 4, 8}, one can obtain the [21, 19, 2] quaternary Hermitian LCD code.

Case 2. Construction of LCD codes via shortening. Shortening C = [27, 19, 6] on
coordinate sets {1, 4}, {1, 2, 3, 8}, {1, 2, 3, 4, 7}, {1, 2, 3, 4, 7, 8}, one can obtain the [25, 17, 6],
[23, 15, 6], [22, 14, 6], [21, 13, 6] Hermitian quaternary LCD codes, respectively. Shortening
D = [26, 21, 4] on coordinate sets {1}, {1, 2} obtain [25, 20, 4] and [24, 19, 4] Hermitian
quaternary LCD codes, respectively. Shortening D = [25, 18, 5] on coordinate sets {4} and
{1, 4}, one can obtain the [24, 17, 5], [23, 16, 5] Hermitian quaternary LCD codes. Short-
ening D = [26, 20, 4] on coordinate sets {1}, {1, 2}, {1, 2, 4}, one can obtain the [25, 19, 4],
[24, 18, 4], [23, 17, 4] Hermitian quaternary LCD codes. Shortening D = [33, 24, 6] on coor-
dinate sets {1, 2, 3, 4, 5, 6, 7, 8} and {1, 2, 3, 4, 5, 6, 7, 8, 9}, one can obtain the [25, 16, 6] and
[24, 15, 6] Hermitian quaternary LCD codes. Shortening D = [33, 24, 6] on coordinate sets
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14}, one can obtain the C = [23, 14, 6]
and [22, 13, 6] Hermitian quaternary LCD codes.

Remark 1. In Theorem 2, all of the codes are optimal quaternary Hermitian LCD codes. Since
[21, 3, 16] is a simplex code, there is no [21, 18, 3] quaternary Hermitian LCD code. Hence, [21, 18, 2]
is an optimal quaternary Hermitian LCD code. By shortening D = [33, 24, 6] on coordinate sets
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, we can obtain C = [21, 12, 6]. This is a nearly optimal quater-
nary Hermitian LCD code with weight enumerator 1 + 279z6 + 1116z7 + 5739z8 + 22023z9 +
79815z10 + ....

Theorem 2. If 21 ≤ n ≤ 25 and 6 ≤ k ≤ 8, then dl(6, 21) = 12, dl(6, 22) = 12, dl(6, 23) = 13,
dl(6, 24) = 14, dl(8, 25) = 12, dl(7, 20) = 10. All these codes are quaternary Hermitian LCD
codes saturating the lower or upper bound of Grassl’s code table.

Proof. A constacyclic code C = [21, 15, 5] is given in [21], where its generator polynomial
is x6 + ωx5 + x4 + ωx2 + x + ω . The dual code of C is the code D = [21, 6, 12] with a
generator matrix G6,21, and both C and D are quaternary Hermitian LCD codes.

Let

G6,21 =

⎛⎜⎜⎜⎜⎜⎜⎝

211210221102122100000
303201310313021010000
221130310133220001000
022113031013322000100
320131031302101000010
223203322032332000001

⎞⎟⎟⎟⎟⎟⎟⎠,

100



Entropy 2024, 26, 373

G6,24 =

⎛⎜⎜⎜⎜⎜⎜⎝

100000111120112310122020
010000011112011231012202
001000201111101123201220
000100120111310112020122
000010112011231011202012
000001111201123101220201

⎞⎟⎟⎟⎟⎟⎟⎠,

G7,20 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

11011111101000000011
11120323003110000012
30132223011030000020
11202023001001100001
11000132002013010001
30220233000013001003
30313002003012000101

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

G8,25 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1000000010012123213103310
0100000031322111123203311
0010000012120332303223021
0001000021122001100022303
0000100013332221330202233
0000010010113203310220220
0000001001011320330022022
0000000112200212232000033

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

There exists a quaternary Hermitian LCD code [24, 6, 14] with generator matrix G6,24.
Its weight enumerator is 1+ 207z14 + 378z15 + 630z16 + 360z17 + 495z18 + 1062z19 + 585z20 +
180z21 + 162z22 + 36z23. Puncturing C= [24, 6, 14] on coordinate sets {7}, {1, 3}, we can
obtain two quaternary Hermitian LCD codes: [23, 6, 13], [22, 6, 12].

There exists a quaternary Hermitian LCD code [20, 7, 10] with generator matrix G7,20.
Its weight enumerator is 1 + 210z10 + 594z11 + 969z12 + 1647z13 + 2703z14 + 3519z15 +
3060z16 + 2205z17 + 1107z18 + 291z19 + 78z20.

There exists a quaternary Hermitian LCD code [25, 8, 12] with generator matrix G8,25.
Its weight enumerator is 1 + 177z12 + 540z13 + 1365z14 + 2721z15 + 4836z16 + 8283z17 +
10938z18 + 11694z19 + 10983z20 + 7734z21 + 4185z22 + 1617z23 + 411z24 + 25z25.

Shortening the [25, 8, 12] quaternary Hermitian LCD code on coordinate sets {2}, one
can obtain [24, 7, 12]. Its weight enumerator is 1 + 102z12 + 267z13 + 561z14 + 1086z15 +
1764z16 + 2628z17 + 3144z18 + 2730z19 + 2226z20 + 1233z21 + 495z22 + 120z23 + 27z24. We
can deduce a submatrix G7,25 from G8,25. Setting G7,25 as a generator matrix, one can obtain
[25, 7, 12].

Theorem 3. If 21 ≤ n ≤ 25 and 8 ≤ k ≤ 15, then there exist 27 quaternary Hermitian LCD
codes, as in Table 2.

Table 2. Optimal quaternary Hermitian LCD codes with 21 ≤ n ≤ 25 and 8 ≤ k ≤ 15.

n\k 8 9 10 11 12 13 14 15

21 9 8 7 6
22 10 8 8 7 6
23 11 9 8 8 7 6
24 11 10 9 8 8 7 6
25 11 10 9 8 7 7 6
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Proof. Let

A�12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

300201200120300312
330322220222130112
133330122212313132
213031312011331230
002033213230313123
021303131201133123
300300221033231123
330133122213123323
033110212131112103
203212121103311021
020120012030031210
002012001203003121

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A�11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1232130030332100
3202331131102132
1100132302320200
1321332231223320
0013213203303002
0131021110330323
1322322221212333
2203012112300132
3122131011102120
0002212120320222
3223331032121221

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

There exists a code [30, 18, 8] with generator matrix G18,30 =

[
I18

∣∣∣∣A12

]
. It is not a qua-

ternary Hermitian LCD code. Shortening C = [30, 18, 8] on coordinate sets {1, 3, 6, 12, 13, 17},
{1, 2, 3, 4, 5, 6, 8}, {1, 2, 3, 4, 5, 6, 7, 8} and {1, 2, 3, 4, 5, 6, 7, 8, 10}, one can obtain quaternary
Hermitian LCD codes [24, 12, 8], [23, 11, 8], [22, 10, 8] and [21, 9, 8], respectively.

There exists a code [27, 16, 7] with generator matrix G16,27 =

[
I16

∣∣∣∣A11

]
. Shortening

C = [27, 16, 7] on coordinate sets {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5} and {1, 2, 3, 4, 5, 6},
one can obtain quaternary Hermitian LCD codes [25, 14, 7], [24, 13, 7], [23, 12, 7], [22, 11, 7]
and [21, 10, 7], respectively.

Let A�10 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11121122120230323210
00000000000000000000
12103313201003102111
11331313032000112032
21133320003300003220
01030322203233222121
32210120113300112032
00331212201211230320
11321302013232210003
11010110212023020323

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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B16 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0331200330200
0033102033020
2330330112100
0233003311210
1201303302020
2213122121000
0221321212100
0022113221210
1220202211020
2211033130300
0221130313030
3133123113000
0313331211300
0031313321130
3112111310210
1133222202120

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

There exists a code [30, 20, 6] with generator matrix G20,30 =

[
I20

∣∣∣∣A10

]
. Shortening

C = [30, 20, 6] on coordinate sets {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5, 6}, {1, 2, 3, 5, 6, 7, 13},
{1, 2, 3, 4, 5, 6, 7, 8, 9} and {1, 2, 3, 4, 5, 6, 7, 8}, one can obtain quaternary Hermitian LCD
codes [25, 15, 6], [24, 14, 6], [23, 13, 6], [22, 12, 6] and [21, 11, 6], respectively.

There exists a code [29, 16, 8] with generator matrix G16,29 =

[
I16

∣∣∣∣B16

]
. It is not a

quaternary Hermitian LCD code. Shortening C = [29, 16, 8] on coordinate sets {1, 2, 3, 4},
{1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6, 8}, {1, 2, 3, 4, 5, 6, 7, 8}, one can obtain quaternary
Hermitian LCD codes [25, 12, 8], [24, 11, 8], [23, 10, 8], [22, 9, 8] and [21, 8, 8], respectively.

Let A14 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13000123002211
10211103211330
01021110321133
33231222301220
03323122230122
22110130001230
02211013000123
33112232033321
12200332312223
32113300102111
12300221101300
01230022110130
00123002211013
33321033112232
21110321133001
11111111111111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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A15 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

102333010301203
210033301030123
122000202121223
013221122033211
202131213310100
220013121331010
223330023223223
123212100103011
113310121300022
212032120112232
322220031221030
033023210111210
000220311212022
000312113202231
000121022211230
000102331310131

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

333231302012
122021230233
012231331333
110121333101
322213123331
123133323323
321131111021
301331322211
212033023133
021232013200
113202212020
000012102221
000001110222

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

There exists a code [30, 16, 9] with generator matrix G16,30 =

[
I16

∣∣∣∣A14

]
. It is not a

quaternary Hermitian LCD code. Shortening C = [30, 16, 9] on coordinate sets {1, 2, 3, 4, 5},
{1, 2, 3, 4, 5, 11}, {1, 2, 3, 4, 5, 6, 11} and {1, 2, 3, 4, 5, 6, 11}, one can obtain quaternary Hermi-
tian LCD codes [25, 11, 9], [24, 10, 9], [23, 9, 9] and [22, 8, 9], respectively.

There exists a code [31, 16, 10] with generator matrix G16,31 =

[
I16

∣∣∣∣A15

]
. It is not a qua-

ternary Hermitian LCD code. Shortening C = [31, 16, 10] on coordinate sets {8, 9, 10, 11, 16},
{1, 6, 9, 10, 12, 15}, {2, 4, 5, 9, 10, 13, 15} and {3, 4, 7, 8, 11, 12, 13, 15}, one can obtain quater-
nary Hermitian LCD codes [26, 11, 10], [25, 10, 10], [24, 9, 10] and [23, 8, 11], respectively.
Puncturing C = [23, 8, 11] on coordinate sets {2} and {1, 2}, one can obtain quaternary
Hermitian LCD codes [22, 8, 10] and [21, 8, 9], respectively.

There exists a quaternary Hermitian LCD code [25, 13, 7] with generator matrix G13,25 =[
I13

∣∣∣∣A12

]
.

Theorem 4. dl(7, 21) = 10, dl(7, 22) = 11, dl(7, 22) = 11, dl(7, 23) = 12, dl(7, 25) = 13,
dl(6, 25) = 14, dl(12, 25) = 8, dl(13, 25) = 7, dl(7, 18) = 9 and dl(7, 19) = 9 are Hermitian
quaternary LCD codes.
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Proof. Let

G7,24 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

022312110003211100000321
102231211000321110000032
110223121100032121000003
211022311110003232100000
121102232111000303210000
312110223211100000321000
231211020321110000032100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

G7,25 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1100000032031300131303121
0010000003203130213130311
0001000003123223332223321
0000100033111212020312021
0000010020112011011101111
0000001011212331312020201
0000000112322303222332331

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

G7,19 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1130121231010000000
0133203320031200000
0303332320310100000
0131030320010011000
0130001110020230300
0301202120000230010
0302110010030220003

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

G6,25 =

⎛⎜⎜⎜⎜⎜⎜⎝

3111201330100001230133122
1111110133030000122013312
2311100013323000012201331
1131131001312300001220133
1213130100101230003122013
1121313010000123003312201

⎞⎟⎟⎟⎟⎟⎟⎠
There exists a code [24, 7, 13] with generator matrix G7,24. Its weight enumerator is

1+ 384z13 + 744z14 + 888z15 + 1746z16 + 2544z17 + 3156z18 + 2928z19 + 2118z20 + 1200z21 +
540z22 + 120z23 + 15z24. It is not a quaternary Hermitian LCD code. Puncturing C1 on
coordinate sets {1}, {1, 3}, {1, 2, 7}, we can obtain [23, 7, 12], [22, 7, 11], [21, 7, 10] quaternary
Hermitian LCD codes.

There exists a quaternary Hermitian LCD code [25, 7, 13] with generator matrix G7,25.
Its weight enumerator is 1 + 189z13 + 495z14 + 750z15 + 1179z16 + 1908z17 + 2577z18 +
2967z19 + 2667z20 + 1932z21 + 1092z22 + 495z23 + 117z24 + 15z25.

There exists a quaternary Hermitian LCD code [25, 6, 14] with generator matrix G6,25.
Its weight enumerator is 1 + 48z14 + 240z15 + 432z16 + 534z17 + 573z18 + 648z19 + 657z20 +
510z21 + 363z22 + 84z23 + 6z24.

There exists an optimal quaternary Hermitian LCD code [19, 7, 9] with generator matrix
G7,19. Its weight enumerator is 1+ 195z9 + 483z10 + 888z11 + 1479z12 + 2361z13 + 3165z14 +
3327z15 + 2508z16 + 1368z17 + 492z18 + 117z19. Puncturing the quaternary Hermitian LCD
code [19, 7, 9] on coordinate sets {1}, one can obtain the optimal quaternary Hermitian LCD
code [18, 7, 9] with weight enumerator 1 + 393z9 + 666z10 + 1245z11 + 2193z12 + 3315z13 +
3597z14 + 2799z15 + 1554z16 + 504z17 + 117z18.

4. Discussion and Conclusions

This paper is dedicated to the construction of quaternary Hermitian LCD codes. For
k ≤ n and n ≤ 25, each [n, k] quaternary Hermitian LCD code is constructed. Some of
these quaternary Hermitian LCD codes constructed in this paper are optimal codes which
saturate the bound of the minimum distance of the code table in [24], and some of them
are nearly optimal codes. According to weight enumerators for classification codes in
[27], there exist some optimal codes, [15, 4, 9], [16, 4, 10], [17, 4, 11], [19, 4, 14], and [23, 5, 15],
which are not LCD codes. In addition, the number of these five optimal codes is one.
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Thus, the [15, 4, 8], [16, 4, 9], [17, 4, 10], [19, 4, 13], and [23, 5, 14] quaternary Hermitian LCD
codes in this paper are optimal. In [27], all of the codes with parameters of [15, 6, 8] are
self-orthogonal. Thus, the quaternary Hermitian LCD code in this paper, [15, 6, 7], is also
optimal. We emphasize that there are three quaternary Hermitian LCD codes, [18, 7, 9],
[19, 7, 9] and [20, 7, 10], which are optimal.

According to ref. [24], the following quaternary Hermitian LCD codes constructed
in this paper are also optimal codes with parameters of [n, k, d] for 21 ≤ n ≤ 25 and
16 ≤ k ≤ 18; [n− i, 15− i, d] for 21 ≤ n ≤ 24 and 0 ≤ i ≤ 2: [23, 4, 15], [24, 5, 15], [21, 6, 12],
[22, 6, 12], [23, 6, 13], [24, 6, 14], [25, 8, 12] and [20, 7, 10]. Except for these codes mentioned
above, the quaternary Hermitian LCD codes constructed in this paper do not reach the
known upper or lower bounds of the minimum distance of a linear code. Nonetheless, the
minimum distances of these codes appears to be the best possible. These codes are the best
possible among those obtainable by our approach.

Combining the results in the previous subsections, we improved the table of lower
and upper bounds on the minimum distance of quaternary Hermitian LCD codes for
n ≤ 20 [4,25,30] in Table 3. In addition, many lower and upper bounds of the minimal
distance of Hermitian LCD codes with a length of n ≤ 25 are listed. To make the bounds in
Table 3 tighter, we need to choose other quaternary Hermitian LCD codes better than those
given in this paper and investigate other code constructions to raise the lower bounds. We
also plan to explore the construction of Hermitian LCD codes from a geometric aspect to
decrease the upper bounds.

In [4,20,25], it has been shown that if there exists a quaternary Hermitian [n, k, d] code
over Fq2 , then there exists a maximal entanglement entanglement-assisted quantum error
correcting code (EAQECC) over Fq with parameters [[n, 2k − n + c, d; c]], where c is the
rank of the product of the parity check matrix and its conjugate. Moreover, a maximal
entanglement EAQECC derived from an LCD code has the same minimum distance as
the underlying classical code. Hence, all of the optimal quaternary Hermitian LCD codes
can be used to construct optimal binary maximal entanglement EAQECCs. In addition,
from the three quaternary Hermitian LCD codes [18, 7, 9] given in this paper, a maximal
entanglement EAQECC [[18, 7, 9; 11]] can be constructed, which improves the minimal
distance of the codes in [4,25]. The maximal entanglement EAQECCs [[19, 7, 9; 12]] and
[[20, 7, 10; 12]] are optimal and are different to the codes constructed in [30].

Table 3. Lower and upper bounds on the minimum distance of quaternary Hermitian LCD codes.

The bold entries represent improvements over prior work. The superscript * represents the codes

that achieve bounds given in the Grassl table.

n\k 1 2 3 4 5 6 7 8 9 10 11 12

3 3 * 2 *
4 3 * 2 1
5 5 * 3 2 2 *
6 5 * 4 * 3 2 * 1
7 7 * 5 * 4 * 3 * 2 * 2 *
8 7 * 6 * 5 * 4 * 3 * 2 * 1
9 9 * 6 6 * 5 * 4 * 3 * 2 * 2 *
10 9 * 7 6 * 6 * 5 * 4 * 3 * 2 * 1 1
11 11 * 8 * 7 * 6 * 6 * 5 * 4 * 3 * 2 * 2 * 1
12 11 * 9 * 8 * 7 * 6 * 5 4 * 4 * 3 * 2 * 2 * 1
13 13 * 10 * 9 * 8 * 7 * 6 * 5 * 4 * 4 * 3 * 2 * 2 *
14 13 * 10 9 8 7–8 7 * 6 * 5 * 4 * 4 * 3 * 2 *
15 15 * 11 10 9 8 * 7 7 * 6 * 5 * 4 * 4 * 3 *
16 15 * 12 * 11 10 9 * 8 * 7–8 6–7 6 * 5 * 4 * 4 *
17 17 * 13 * 12 * 11 10 * 9 * 7–8 7–8 6–7 6 * 5 * 4 *
18 17 * 14 * 13 * 11–12 10 * 9–10 9 * 8 * 7–8 6 * 5–6 5 *
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Table 3. Cont.

n\k 1 2 3 4 5 6 7 8 9 10 11 12

19 19 * 14 13 12 *–13 11 * 10 * 9 * 8 *–9 8 * 7 * 6 * 5–6
20 19 * 15 14 13 * 12 * 11 * 10 * 9 * 8 *–9 7–8 6–7 6 *
21 21 * 16 * 15 14 * 12 12 * 10–11 9–10 8–9 7–9 6–8 6–7
22 22 * 17 * 15 14 13 12 *–13 11–12 10 8–10 8–9 7–9 6–8
23 23 * 18 * 16 * 15 14 13 * 12 *–13 11 9–11 8–10 8–9 7–9
24 24 * 18 17 * 16 * 15 14 * 12–13 11–13 10–12 9–11 8–10 8–9
25 25 * 19 18 * 17 * 15 14–15 13–14 12 *–13 11–13 10–12 9–11 8–10

n\k 13 14 15 16 17 18 19 20 21 22 23 24

14 1
15 2 * 2 *
16 3 * 2 * 1
17 3–4 3 * 2 * 2 *
18 4 * 3 * 3 * 2 * 1
19 5 * 4 * 3 * 3 * 2 * 2 *
20 5–6 5 * 4 * 3 * 2 2 * 1 1
21 6 * 5 *–6 5 * 4 * 3 * 2 2 * 2 * 1
22 6 *–7 6 * 5 *–6 4 *–5 4 * 3 * 2 * 2 * 2 1
23 6–8 6 *–7 6 * 5 *–6 4 *–5 4 * 2 * 2 * 2 * 2 * 1 *
24 7–9 6–8 6 *–7 6 * 5 *–6 4 *–5 3 * 3 * 2 * 2 * 2 * 1 *
25 7–9 7–9 6–8 6 *–7 6 * 5 *–6 4 * 4 * 3 * 2 * 2 * 2 *
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Abstract: The focus of our research is the examination of Hermitian curves over finite fields, specif-
ically concentrating on places of degree three and their role in constructing Hermitian codes. We
begin by studying the structure of the Riemann–Roch space associated with these degree-three
places, aiming to determine essential characteristics such as the basis. The investigation then turns to
Hermitian codes, where we analyze both functional and differential codes of degree-three places,
focusing on their parameters and automorphisms. In addition, we explore the study of subfield
subcodes and trace codes, determining their structure by giving lower bounds for their dimensions.
This presents a complex problem in coding theory. Based on numerical experiments, we formulate
a conjecture for the dimension of some subfield subcodes of Hermitian codes. Our comprehensive
exploration seeks to deepen the understanding of Hermitian codes and their associated subfield
subcodes related to degree-three places, thus contributing to the advancement of algebraic coding
theory and code-based cryptography.

Keywords: Hermitian curves; degree-three places; Riemann–Roch space; Hermitian codes; subfield
subcodes; automorphisms of Hermitian codes

1. Introduction

The advent of quantum computers presents significant threats to classical crypto-
graphic schemes, requiring the development of post-quantum cryptographic primitives
that resist quantum attacks. In this regard, algebraic geometry (AG) codes have gained
considerable attention due to their error-correcting capabilities and potential applications
in secure communication and cryptographic protocols. Among various classes of AG codes,
subfield subcodes stand out against structural attacks, making them good candidates for
deployment in post-quantum cryptography.

Within linear codes over finite field extensions, the process of generating subfield
subcodes, commonly referred to as restriction, entails converting a given linear code C
over a large field extension Fqn into a code that is defined over a subfield Fqm , where m
divides n. This strategic approach restricts the codewords of C to elements found within
the smaller field Fqm , effectively concealing the details about the structure inherent in
C. A classic example of this concept is the Reed–Solomon codes, which are algebraic
geometry (AG) codes constructed over a projective line. They are widely used in practical
applications, with their subfield subcodes represented by Goppa codes. In particular,
in cryptography, especially within a McEliece cryptosystem, subfield subcodes play a
crucial role in hiding the code structure, thus enhancing its resilience against distinguishing
attacks [1,2]. The long-lasting security of the McEliece cryptosystem based on Goppa
codes [3] emphasizes its effectiveness in preventing such attacks. Despite subsequent
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proposals exploring Reed–Solomon codes [4], AG codes, and their subcodes [5], all have
been susceptible to structural attacks. By imposing restrictions, cryptographic systems can
enhance their security by minimizing the risk of potential attacks aimed at distinguishing
the chosen subfield subcode. With growing interest in AG codes, particularly Hermitian
codes, they are being evaluated as feasible alternatives to Reed–Solomon codes in specific
applications [6]. Hermitian codes have been extensively studied in prior research [7–12],
particularly those associated with the point at infinity of the Hermitian curve. However,
in [13,14], the authors introduced an alternative construction of Hermitian codes associated
with higher-degree places on the Hermitian curve.

Our contribution involves conducting further research on Hermitian codes associated
with degree-three places, deriving additional properties, and establishing explicit bases
for the corresponding Riemann–Roch spaces; additionally, this should align with previous
findings in [13]. The stabilizer of a degree-three place has order 3(q2 − q + 1); the action of
this group and the associated quotient curve has been studied by Cossidente, Korchmáros,
and Torres [15]. We make heavy use of their approach which relates the Hermitian curve
with the curve projective curve XYq +YZq + ZXq = 0. Beelen, Montanucci, and Vicino [16]
studied another class of Hermitian quotient curves, which are obtained by automorphisms
stabilizing a degree-three place of the Hermitian curve.

One-point Hermitians of degree-three places have improved minimum distances,
as shown by the Matthews–Michel bound [14], and have been further strengthened by
Korchmáros and Nagy in [13]. Moreover, we explore the properties of their subfield
subcodes, with a particular focus on determining their true dimensions through explicit
constructions. This investigation aims to provide a precise understanding of the codes’
capabilities for our future work. Since the family of subfield subcodes of Hermitian codes
associated with degree-three places holds promise for the construction of an improved and
secure McEliece cryptosystem, the aforementioned investigation will enable a comparison
of these parameters with those of other existing codes (see [12], Table 1), such as Goppa
codes, to assess the potential improvement in the key size of the McEliece cryptosystem.
This suggests that such a proposal could reduce the key size and meet the security level
required by NIST [17]. Using bounds on the dimensions offers only an estimate of the
code’s performance, which means that this will not help us accurately decide whether these
codes can achieve the required security level with an improved key size.

The paper is structured as follows. In Section 2, we introduce the essential back-
ground of AG codes constructed from a Hermitian curve, including Hermitian curves,
divisors, and the Riemann–Roch space. In Section 3, we provide some facts on the geom-
etry of degree 3 places of the Hermitian curve, and the unitary transformations which
stabilize the given degree-three place. Our main tool is the Hermitian sesquilinear form
〈u, v〉 = u1vq

1 − u2vq
3 − u3vq

2 and the Frobenius map Frq2 . Section 4 deals with their corre-
sponding Riemann–Roch spaces. We explore their structure and give explicit and practical
bases over Fq6 , and a decomposition into invariant subspaces over Fq2 (Theorem 3). In
Section 5, we study the functional and differential Hermitian codes of a degree 3 place,
where we explicitly give the monomial equivalence between them (Theorem 4). In Section 6,
we give the main result on the dimensions of the subfield subcodes of degree 3 place Her-
mitian codes (Theorem 5). This result consists of a theorem that provides a lower bound on
the dimensions of the underlying codes, while the conjecture suggests a possible equality
based on numerical experiments.

The computational results were obtained using the HERMITIAN package [18] within
the GAP [19] computer algebra system. This involved implementing higher-degree places
of Hermitian curves, their divisors and the associated Hermitian codes. This package
employs a generic method for computing the bases of Riemann–Roch spaces, independent
of the results presented in this paper. Specifically, we acquired computational evidence
supporting Conjecture 1 without relying on the theoretical findings of this work.
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2. Algebraic Geometry (AG) Codes

2.1. Hermitian Curves and Their Divisors

For more details, we refer the reader to [15,20,21]. The Hermitian curve, denoted as
Hq, over the finite field Fq2 in affine coordinates is given by the equation:

Hq : Yq + Y = Xq+1.

This curve has a genus g = q(q−1)
2 , classifying it as a maximal curve because it achieves the

maximum number of Fq2 -rational points, which is #Hq(Fq2) = q3 + 1. Furthermore, Hq
has a unique point at infinity, denoted Q∞.

A divisor on Hq is a formal sum D = n1Q1 + · · · + nkQk, where n1, · · · , nk are
integers and Q1, · · · , Qk are points on Hq. The degree of the divisor D is defined as
deg(D) = ∑k

i=1 ni. The valuation of D at a point Qi is vQi (D) = ni, and the support of D is
the set {Qi | ni �= 0}.

The Frobenius automorphism, denoted as Frq2 , is defined over the algebraic closure
Fq2 and acts on elements as follows:

Frq2 : Fq2 → Fq2 , x �→ xq2
.

It acts on the points of Hq by applying Frq2 to their coordinates. A point Q on Hq

is Fq2 -rational if and only if it is fixed by Frq2(Q). Over Fq2 , the points in Hq correspond
one-to-one to the places in the function field Fq2(Hq).

For a divisor D, its Frobenius image is given by

Frq2(D) = n1Frq2(Q1) + · · ·+ nkFrq2(Qk).

and D is Fq2 -rational if D = Frq2(D). In particular, if all points Q1, . . . , Qk are in Hq(Fq2),
then D is inherently Fq2 -rational.

2.2. Riemann–Roch Spaces

For a non-zero function g in the function field Fq2 and a place P, vP(g) stands for
the order of g at P. If vP(g) > 0, then P is a zero of g, while if vP(g) < 0, then P is
a pole of g with multiplicity −vP(g). The principal divisor of a non-zero function g is
(g) = ∑P vP(g)P.

The Riemann–Roch space associated with an Fq2 -rational divisor G is the Fq2 vec-
tor space

L (G) := {g ∈ Fq2(Hq) | (g) + G ≥ 0} ∪ 0.

From ([20], Riemann’s Theorem 1.4.17), we have

dim L (G) ≥ deg(G) + 1− g,

with equality if deg(G) ≥ 2g− 1.
In this work, our primary focus is on an Fq2 -rational divisor G of the form sP, where

P is a degree r place in Fq2(Hq) and s is a positive integer. In the extended constant field
Fq6(Hq) of Fq2(Hq) with degree r, let P1, P2, · · · , Pr be the extensions of P. These points are

degree-one places in Fq2r (Hq), and, after appropriately labeling the indices, Pi = Fri
q2(P1),

where the indices are considered modulo r.

2.3. Hermitian Codes

Here, we outline the construction of an AG code from the Hermitian curve.
In algebraic coding theory, Hermitian codes stand out as a significant class of algebraic

geometry (AG) codes, renowned for their distinctive properties. These codes are con-
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structed from Hermitian curves defined over finite fields. These codes are typically viewed
as functional AG codes, denoted by CL(D, G). In this standard approach, the divisor G
is usually a multiple of a single place of degree one. The set P , which encompasses all
the rational points in Hq, is listed as {Q1, . . . , Qn}. This approach gives rise to a structure
known as a one-point code. However, it is important to note that recent research in the field
suggests that the use of a more varied selection for the divisor G can result in the creation
of better AG codes [13,14].

Consider a divisor D = Q1 + Q2 + · · ·+ Qn, where all Qi are distinct rational points,
and an Fq2 -rational divisor G such that Supp(G) ∩ Supp(D) = ∅. By numbering the places
in the support of D, we define an evaluation map evD such that evD(g) = (g(Q1), . . . , g(Qn))
for g ∈ L (G).

The functional AG code associated with the divisor G is

CL(D, G) := {(g(Q1), g(Q2), · · · , g(Qn)) | g ∈ L (G)} = evD(L (G)),

Theorem 1 ([20], Theorem 2.2.2). CL(D, G) is an [n, k, d] code with parameters

k = dim L (G)− dim L (G− D) and d ≥ n− deg G.

The dual of an AG code can be described as a residue code (see [20] for more details), i.e.,

CL(D, G)⊥ = CΩ(D, G).

Furthermore, the differential code CΩ(D, G) is monomially equivalent to the func-
tional code

CL(D, W + D− G),

where W represents a canonical divisor of Fq2(Hq). The notion of monomial equivalence of
codes is defined as follows. Let C ≤ Fn

q be linear subspaces and μ = (μ1, . . . , μn) ∈ (F∗q)
n

with non-zero entries. We define the Schur product

μ � C = {(μ1x1, . . . , μnxn) | (x1, . . . , xn) ∈ C}.

The vector μ is also called a multiplier. Clearly, μ � C ≤ Fn
q . Two linear codes C1, C2 ≤

Fn
q are monomially equivalent if C2 = μ � C1 for some multiplier μ. Monomially equivalent

codes share identical dimensions and minimum distances; however, this correspondence
does not preserve all crucial properties of the code.

2.4. Subfield Subcodes and Trace Codes

For the efficient construction of codes over Fq, one approach involves working with
codes originally defined over an extension field Fqm . When considering a code C within
Fn

qm , a subfield subcode of C is its restriction to the field Fq. This process, often employed
in the definition of codes such as BCH codes, Goppa codes, and alternant codes, plays a
fundamental role.

Let q be a prime power and m be a positive integer. Let C denote a linear code
of parameters [n, k] defined over the finite field Fqm . The subfield subcode of C over Fq,
represented as C|Fq , is the set

C|Fq = C ∩ Fn
q ,

which consists of all codewords in C that have their components in Fq.
The subfield subcode C|Fq is a linear code over Fq with parameters [n, k0, d0], satisfying

the inequalities d ≤ d0 ≤ n and n − k ≤ n − k0 ≤ m(n − k). Moreover, a parity check
matrix for C over Fq provides up to m(n− k) linearly independent parity check equations
over Fq for the subfield subcode C|Fq . Typically, the minimum distance d0 of the subfield
subcode exceeds that of the original code C.
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Let TrFqm /Fq denote the trace function from Fqm down to Fq, expressed as

TrFqm /Fq(x) = x + xq + xq2
+ . . . + xqm−1

.

For any vector c = (c1, c2, . . . , cn) ∈ Fn
q , we define

TrFqm /Fq(c) =
(

TrFqm /Fq(c1), TrFqm /Fq(c2), . . . , TrFqm /Fq(cn)
)

.

Furthermore, for a linear code C of length n and dimension k over Fqm , the code

TrFqm /Fq(C) = {TrFqm /Fq(c) | c ∈ C}

is a linear code of length n and dimension k1 over Fq.
A seminal result by Delsarte connects subfield subcodes with trace codes:

Theorem 2 ([22]). Let C be an [n, k] linear code over Fq. Then, the dual of the subfield subcode of
C is the trace code of the dual code of C, i.e.,

(C|Fq)
⊥ = TrFqm /Fq(C

⊥).

Finding the exact dimension of a subfield subcode of a linear code is typically a hard
problem. However, a basic estimation can be obtained by applying Delsarte’s theorem [22]:

dim C|Fq ≥ n−m(n− k). (1)

In [20] (Chapter 9), various results are discussed with respect to the subfield subcodes
and trace codes of AG codes. This motivated us to formulate the following propositions on
the dimension of the subfield subcodes of AG codes, which are useful for the case G = sP
with a place P of higher degree.

Proposition 1. Let G1 be a positive divisor of the Hermitian curve Hq and D = Q1 + · · ·+ Qn
be the sum of Fq2-rational places such that Supp(G) ∩ Supp(D) = ∅. Assume that deg G1 <
n/q. Then,

dim CL(D, G1) |Fq= 1.

Proof. Let f be a function in L (G1) such that f (Qi) ∈ Fq for i = 1, · · · , n. Then, f q − f ∈
L (qG1) (since L (G1)

q ⊆ L (qG1)), and hence f q − f ∈ L (qG1 − D), where

L (qG1 − D) = ker(evD) =
{

x ∈ L (qG1) | vPi (x) > 0 for i = 1, . . . , n
}

.

Since deg(qG1 − D) < 0, it follows that L (qG1 − D) = 0 and f q − f = 0, which
implies that f ∈ Fq. Consequently, dim CL(D, G1)|Fq = 1.

3. The Geometry of Hermitian Degree-Three Places

In this section, we collect useful facts on degree-three places of the Hermitian curve,
their stabilizer subgroups, and Riemann–Roch spaces.

3.1. The Hermitian Sesquilinear Form

The Hermitian curve Hq has the affine equation Xq+1 = Y + Yq. The Hermitian
function field Fq2(Hq) is generated by x, y so that xq+1 = y + yq holds. The Frobenius field

automorphism Frq2 : x �→ xq2
of the algebraic closure Fq2 includes an action on rational

functions, places, divisors, and curve automorphisms. For this action, we continue to use
the notation Frq2 in the exponent: PFrq2 , f Frq2 , DFrq2 , etc.
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Let K be a field extension of Fq2 . An affine point is a pair (a, b) ∈ K2. A projective
point (a : b : c) is a one-dimensional subspace {(at, bt, ct) | t ∈ K} of K3. If c �= 0, then the
projective point (a : b : c) is identified with the affine point (a/c, b/c). For u = (u1, u2, u3),
v = (v1, v2, v3) ∈ K3, we define the Hermitian form

〈u, v〉 = u1vq
1 − u2vq

3 − u3vq
2.

Clearly, 〈u, v〉 is additive in u and v, 〈αu, βv〉 = αβq〈u, v〉, and

〈u, v〉q = 〈vFrq2 , u〉.

The point u is self-conjugate if

0 = 〈u, u〉 = uq+1
1 − u2uq

3 − uq
2u3.

This is the projective equation Xq+1 −YZq −YqZ = 0 of the Hermitian curve Hq.
Let u = (u1 : u2 : u3) be a projective point. The polar line of u has equation

u⊥ : 〈(X1, X2, X3), u〉 = uq
1X1 − uq

3X2 − uq
2X3 = 0.

If u is on Hq, then u⊥ is the tangent line at u. More precisely, u⊥ intersects Hq at u and

uFrq2 with multiplicities q and 1, respectively. If u is Fq2 -rational, then u = uFrq2 , and the
intersection multiplicity is q + 1.

3.2. Unitary Transformations and Curve Automorphism

Let A be a 3× 3 matrix. The linear map u �→ uA will also be denoted by A. If A
is invertible, then it induces a projective linear transformation, denoted by Â : (u1 : u2 :
u3) �→ (u′1 : u′2 : u′3) = (u1 : u2 : u3)

Â, where

u′1 = a11u1 + a21u2 + a31u3,

u′2 = a12u1 + a22u2 + a32u3,

u′3 = a13u1 + a23u2 + a33u3.

We use the same notation Â : (X, Y) �→ (X′, Y′) = (X, Y)Â for the partial affine map:

(X, Y) �→ (X′, Y′) =
(

a11X + a21Y + a31

a13X + a23Y + a33
,

a12X + a22Y + a32

a13X + a23Y + a33

)
.

The action f (X, Y) �→ f ((X, Y)Â−1
) of Â on rational functions will be indicated by A∗.

The following lemma is straightforward.

Lemma 1. Let f (X, Y) be a polynomial of total degree n. Define the degree n homogeneous
polynomial F(X, Y, Z) = Zn f (X/Z, Y/Z). Then,

f A∗(X, Y) =
F((X, Y, 1)A−1)

(a13X + a23Y + a33)n .

We remark that the line a13X + a23Y + a33 = 0 can be seen as the pre-image of the line
at infinity under Â.

The linear transformation A is unitary if

〈uA, vA〉 = 〈u, v〉

holds for all u, v. Since 〈., .〉 is non-degenerate, unitary transformations are invertible.
Moreover, for all u, v, one has
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〈(vFrq2 )A, uA〉 = 〈vFrq2 , u〉
= 〈u, v〉q

= 〈uA, vA〉q

= 〈(vA)
Frq2 , uA〉.

This implies (vFrq2 )A = (vA)
Frq2 for all v, that is, A and Frq2 commute. This shows

that unitary transformations are defined over Fq2 . They form a group which is denoted by
GU(3, q). A useful fact is that if b1, b2, b3 is a basis and

〈bi A, bj A〉 = 〈bi, bj〉

for all i, j ∈ {1, 2, 3}, then A is unitary.
Let A ∈ GU(3, q). If (x, y) is a generic point of Hq, then (x′, y′) = (x, y)Â satisfies

(x′)q+1 − y′ − (y′)q = 〈x′, y′〉 = 〈x, y〉 = 0.

Therefore, (x′, y′) is a generic point of Hq, and A∗ induces an automorphism of the function
field Fq2(Hq). If A is defined over Fq2 , then A∗ is an automorphism of Fq2(Hq).

3.3. Places of Degree Three and Their Lines

Let a1, b1 ∈ Fq6 \ Fq2 be scalars such that aq+1
1 = b1 + bq

1. In other words, (a1, b1) is an

affine point of Hq : Xq+1 = Y + Yq, defined over Fq6 . Write a2 = aq2

1 , b2 = bq2

1 , a3 = aq2

2 ,

b3 = bq2

2 , and pi = (ai, bi, 1). Then, pi+1 = p
Frq2

i , 〈pi, pi〉 = 0, and

0 = 〈pi, pi〉q = 〈p
Frq2

i , pi〉 = 〈pi+1, pi〉

hold for i = 1, 2, 3, with the indices taking modulo three. Since 〈., .〉 is non-trivial, γi =
〈pi, pi+1〉 ∈ Fq6 \ {0}. More precisely,

γ
q3

1 = 〈p1, p2〉q
3
= 〈p

Frq2

2 , p1〉q
2
= 〈p

(Frq2 )
2

2 , p
Frq2

1 〉 = 〈p1, p2〉 = γ1,

which shows γi ∈ Fq3 \ {0}. Clearly, γi+1 = γ
q2

i and γi+2 = γ
q
i . By γi �= 0, the vectors

p1, p2, p3 are linearly independent over Fq6 .
Let K be a field containing Fq6 . Since p1, p2, p3 is a basis in K3, any u ∈ K3 can be

written as

u = x1 p1 + x2 p2 + x3 p3,

with xi ∈ K. Computing

〈u, pi+1〉 = 〈x1 p1 + x2 p2 + x3 p3, pi+1〉 = xi〈pi, pi+1〉,

we obtain xi = 〈u, pi+1〉/γi. In the basis p1, p2, p3, the Hermitian form has the shape

〈u, v〉 = 〈x1 p1 + x2 p2 + x3 p3, y1 p1 + y2 p2 + y3 p3〉
= x1yq

2〈p1, p2〉+ x2yq
3〈p2, p3〉+ x3yq

1〈p3, p1〉

= γ1x1yq
2 + γ

q2

1 x2yq
3 + γ

q4

1 x3yq
1.
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In this coordinate frame, the Hermitian curve has projective equation

γ1X1Xq
2 + γ

q2

1 X2Xq
3 + γ

q4

1 X3Xq
1 = 0.

Let x, y be the generators of the function field Fq2(Hq) such that xq+1 = y + yq. Write

�i = 〈(x, y, 1), pi〉 = aq
i x− y− bq

i .

Then,

(x, y, 1) =
�2

γ1
p1 +

�3

γ2
p2 +

�1

γ3
p3

and

0 = xq+1 − y− yq = 〈(x, y, 1), (x, y, 1)〉 = �1�
q
2

γ
q
1

+
�2�

q
3

γ
q
2

+
�3�

q
1

γ
q
3

. (2)

The Hermitian curve Hq is non-singular, the places of Fq2(Hq) correspond to the
projective points over the algebraic closure Fq2 . Let Pi denote the place corresponding to

(ai : bi : 1). Pi is defined over Fq6 , Pi+1 = P
Frq2

i , and

P = P1 + P2 + P3

is an Fq2 -rational place of degree three.
The line aq

i X − Y − bq
i = 0 is tangent to Hq at pi; the intersection multiplicities are

q and 1 at pi and pi+1, respectively. This implies that the zero divisor (�i)0 is qPi + Pi+1,
and the principal divisor of �i is

(�i) = qPi + Pi+1 − (q + 1)Q∞. (3)

3.4. The Stabilizer of a Degree-Three Place

Let β1 ∈ Fq6 be an element such that β
q3+1
1 = 1. Define β2 = β

q2

1 , β3 = β
q2

2 . Then,

βiβ
q
i+1 = β

q3+1
i = 1.

For p′i = βi pi, this implies that

〈p′i, p′i+1〉 = βiβ
q
i+1〈pi, pi+1〉 = 〈pi, pi+1〉.

Hence, for all i, j ∈ {1, 2, 3},

〈p′i, p′j〉 = 〈pi, pj〉.

This shows that we can extend the map pi �→ p′i to a unitary linear map B = B(β1) :
u �→ u′ in the following way. Write

u = x1 p1 + x2 p2 + x3 p3,

with xi = 〈u, pi+1〉/γi, and define

u′ = x1 p′1 + x2 p′2 + x3 p′3 = x1β1 p1 + x2β2 p2 + x3β3 p3. (4)
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The extension B is a unique unitary transformation. As we have seen in Section 3.2,
this implies that B = B(β1) is a well-defined element of the general unitary group GU(3, q).
The set

B = {B(β1) | β1 ∈ Fq6 , β
q3+1
1 = 1}

is a cyclic subgroup of GU(3, q), whose order is |B| = q3 + 1.
In the projective plane, B induces a projective linear transformation B̂. B̂ is trivial if

and only if β1 = β2 = β
q2

1 , that is, if and only if βi ∈ Fq2 . As gcd(q3 + 1, q2 − 1) = q + 1,

B̂ is trivial if and only if β
q+1
1 = 1. The set B̂ = {B̂ | B ∈ B} is a cyclic group of unitary

projective linear transformations, whose order is |B̂| = q2 − q + 1.
In a similar way, we fix the elements

δi = γ
q3−q

2
i .

since γ1 ∈ Fq3 , δi ∈ Fq3 . Moreover,

δ
q3+1
i = δ2

i = γ
q3−q
i = γ

1−q
i .

As before, the map
Δ : pi �→ p′′i = δi pi−1

preserves the Hermitian form:

〈p′′i , p′′i+1〉 = 〈δi pi−1, δi+1 pi〉 = δ
q3+1
i 〈pi−1, pi〉 = γ

1−q
i γi−1 = γi.

Hence, Δ extends to a unitary linear map, which commutes with Frq2 and normalizes
B. Indeed,

pΔ−1BΔ
i = (δ−1

i+1 pi+1)
BΔ = (δ−1

i+1βi+1 pi+1)
Δ = βi+1 pi,

and hence, Δ−1BΔ = Bq2
. Δ3 maps pi to δ1δ2δ3 pi, and

δ1δ2δ3 = δ
1+q+q2

1 =

(
γ

q3−q
2

1

)1+q+q2

=
(

γ
q3−1
1

) (q+1)q
2

= 1.

Therefore, Δ has order 3.
As introduced in Section 3.2, the unitary transformations B and Δ induce automor-

phisms B∗ and Δ∗ of the function field.

Proposition 2. The group B∗ = {B∗ | B ∈ B} of curve automorphisms has order q2 − q + 1,
and Δ∗ normalizes B∗ by

(Δ∗)−1B∗Δ∗ = (B∗)q2
= (B∗)q−1.

Both B∗ and Δ∗ stabilize the degree-three place P.

Proposition 3. Let β1 ∈ Fq6 be an element such that β
q3+1
1 = 1. Define β2 = β

q2

1 , β3 = β
q2

2 ,
and the unitary map B = B(β1) ∈ B. Then,(

�i
�i+1

)B∗

= β
q+1
i

(
�i
�i+1

)
.

Proof. By Lemma 1,
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�B∗
i =

〈(x, y, 1)B−1, pi〉
w

=
〈(x, y, 1), piB〉

w

=
〈(x, y, 1), βi pi〉

w

=
β

q
i �i

w
,

where the linear w = w1x + w2y + w3 over Fq2 depends only on B. Therefore,

(
�i
�i+1

)B∗

=
β

q
i

β
q
i+1

(
�i
�i+1

)
= β

q−q3

i

(
�i
�i+1

)
= β

q+1
i

(
�i
�i+1

)
.

4. Riemann–Roch Spaces Associated with a Degree-Three Place

In this section, we keep using the notation of the previous section: Pi is a degree-

one place of Fq6(Hq) associated with the projective point (ai : bi : 1). P
Frq2

i = Pi+1; the
index i = 1, 2, 3 always takes modulo three. P = P1 + P2 + P3 is an Fq2 -rational place of
degree three of Fq2(Hq). The generators x, y of Fq2(Hq) satisfy xq+1 = y + yq. The rational
function �i = aq

i x− y− bq
i is obtained from the tangent line of Hq at Pi.

4.1. Basis and Decomposition of the Riemann–Roch Space

Let s, u, v be positive integers such that v ≤ q and s = u(q + 1)− v. Clearly, u, v are
uniquely defined by s. In [13], the Riemann–Roch space associated with the divisor sP is
given as

L (sP) =
{

f
(�1�2�3)u | f ∈ Fq2 [X, Y], deg f ≤ 3u, vPi ( f ) ≥ v

}
∪ {0}.

The Weierstrass semigroup H(P) consists of the integers s ≥ 0 such that the pole divisor
( f )∞ = sP for some f ∈ Fq2(Hq), see [20] (Section 6.5) and [16]. If s �∈ H(P), then it is called
a Weierstrass gap; the set of Weierstrass gaps is denoted by G(P). By [13] (Theorem 3.1),
we have

G(P) = {u(q + 1)− v | 0 ≤ v ≤ q, 0 < 3u ≤ v}.
By the Weierstrass Gap Theorem ([20], Theorem 1.6.8), |G(P)| = g for a place of degree

one. In our case, P has degree three and the situation is slightly more complicated.

Lemma 2.

3|G(P)| =
{
g if q ≡ 0, 1 (mod 3),
g− 1 if q ≡ 2 (mod 3).

Proof. The lemma follows from

|G(P)| = ∑
1≤u≤q/3

|{3u, . . . , q}|

=
�q/3	
∑
i=1

q + 1− 3u

=
�q/3	(2q− 1− 3�q/3	)

2
.

The following proposition gives an explicit basis for the Riemann–Roch space L (sP)
over the extension field Fq6 .
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Proposition 4. Let t, u, v be positive integers such that v ≤ q and t = u(q + 1)− v. Define the
rational functions

Ut,i = �2u−v
i �v−u

i+1 �
−u
i+2 =

(
�i
�i+2

)u( �i+1

�i

)v−u
, i = 1, 2, 3.

Define U0,i = 1 as the constant function for i = 1, 2, 3. Then, the following holds:

(i) (Ut,i)
Frq2 = Ut,i+1.

(ii) The principal divisor of Ut,i is

(Ut,i) = −tP +
(
(3u− v− 1)q + (q− v)

)
Pi +

(
v(q− 2) + 3u

)
Pi+1.

In particular, if 3u ≥ v + 1, then (Ut,i) ≥ −tP.
(iii) The elements Ut,i, t ≥ 0, i = 1, 2, 3 are linearly independent with the following exception:

q ≡ 2 (mod 3), t = (q2 − q + 1)/3,

Ut,1

γ
q
1

+
Ut,2

γ
q
2

+
Ut,3

γ
q
3

= 0. (5)

(iv) The set

U (s) = {Ut,i | t ∈ H(P), t ≤ s, i = 1, 2, 3, (3t, i) �= (q2 − q + 1, 3)}

of rational functions is a basis of L (sP) over Fq6 .

Proof. Note first that u, v are uniquely defined by t; therefore, Ut,i is well defined. (i) is
trivial and (ii) is straightforward from (3). To show (iii), let us write a linear combination in
the form

α1Ut,1 + α2Ut,2 + α3Ut,3 = ∑
r<t

i=1,2,3

λr,iUr,i (6)

such that (α1, α2, α3) �= (0, 0, 0). The right-hand side has a valuation of at least −t + 1 at
P1, P2, P3. If t �= (q2 − q + 1)/3 and αi �= 0, then the right-hand side has valuation −t at
Pi+2. Hence, αi = 0 for all i = 1, 2, 3, a contradiction. Assume t = (q2 − q + 1)/3. Then,

Ut,i =
�i�

q
i+1

(�1�2�3)
q+1

3

,

and (5) follows from (2). We can use (5) to eliminate Ut,3 from (6); that is, we can assume
α3 = 0. Then, again, the only term that has a valuation−t at Pi+2 is αiUt,i with αi �= 0. Since
the left- and right-hand sides of (6) must have the same valuations at P1, P3, α1 = α2 = 0
must hold, a contradiction.

(iv) By (iii), U (s) consists of linearly independent elements. To show that it is a basis
of L (sP), it suffices to show that |U (s)| = dim(L (sP)) for 3s ≥ 2g− 2. On the one hand,
in this case, dim(L (sP)) = 3s + 1− g. On the other hand,

|U (s)| = 1 + 3(s− |G(P)|)− ε = 3s + 1− (3|G(P)|+ ε),

where ε = 0 if q ≡ 0, 1 (mod 3), and ε = 1 if q ≡ 2 (mod 3). By Lemma 2, 3|G(P)|+ ε = g,
and the claim follows.

It is useful to have a decomposition of L (sP) over Fq2 .
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Theorem 3. For a t ≥ 0 integer and α ∈ Fq6 , define the Fq2 -rational function

Wt,α = αUt,1 + αq2
Ut,2 + αq4

Ut,3

and the Fq2 -linear space
Wt = {Wt,α | α ∈ Fq6}.

For t ∈ H(P), we have

dim(Wt) =

⎧⎪⎨⎪⎩
1 if t = 0,
2 if q ≡ 2 (mod 3) and t = (q2 − q + 1)/3,
3 otherwise.

The Fq2 -rational Riemann–Roch space L (sP) has the direct sum decomposition

L (sP) =
⊕

t∈H(P), t≤s

Wt. (7)

Proof. For t ∈ H(P), Wt is the set of Fq2 -rational functions in the space spanned by
Ut,1, Ut,2, Ut,3. The claims follow from Proposition 4.

4.2. Invariant Subspaces of L (sP)

Lemma 3. Let b ∈ Fq6 such that bq3+1 = 1. Then, (bq+1)q2
= (bq+1)q−1 and (bq+1)q4

= (bq+1)−q.

Proof. By assumption, bq+1 has order q2 − q + 1. The claim follows from the facts that
q2 − (q− 1) and q4 − q are divisible by q2 − q + 1.

The following lemma shows that the basis elements in U (s) are eigenvectors of B∗.

Lemma 4. Let β1 ∈ Fq6 be an element such that β
q3+1
1 = 1. Define β2 = β

q2

1 , β3 = β
q2

2 , and the
unitary map B = B(β1) ∈ B. Then,

(Ut,i)
B∗ = β

t(q+1)
i Ut,i.

Proof. Proposition 3 implies (
�i
�i+2

)B∗

=
1

β
q+1
i+2

(
�i
�i+2

)

and (
�i+1

�i

)B∗

=
1

β
q+1
i

(
�i+1

�i

)
.

By Lemma 3, 1
β

q+1
i+2

= (β
q+1
i )−q4

= (β
q+1
i )q. Write t = u(q + 1)− v with 0 ≤ v ≤ q.

Then,

B∗ :
(

�i
�i+2

)u( �i+1

�i

)v−u
�→ (β

q+1
i )qu

(
�i
�i+2

)u
(β

q+1
i )−v+u

(
�i+1

�i

)v−u

The result follows from the definition of u and v.
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Proposition 5.

(i) Let β1 ∈ Fq6 be an element such that β
q3+1
1 = 1, and B = B(β1) ∈ B. Then,

(Wt,α)
B∗ = W

t,βt(q+1)
1 α

.

(ii) The subspacesWt, t ∈ H(P) are B∗-invariant.
(iii) The Fq2B∗-modulesWt andWs are isomorphic if and only if one of the following holds:

(a) s ≡ t (mod q2 − q + 1);
(b) s ≡ (q− 1)t (mod q2 − q + 1);
(c) s ≡ −qt (mod q2 − q + 1).

Proof. (i) and (ii) follow from Lemma 4. (iii) Let Φ : Wt → Ws be an Fq2B∗-module
isomorphism betweenWt andWs. It can be written as

(Wt,α)
Φ = Wt,αϕ,

where ϕ : Fq6 → Fq6 is an Fq2 -linear bijection. Moreover,

(Wt,α)
B∗Φ = (W

t,βt(q+1)
1 α

)Φ = W
s,(β

t(q+1)
1 α)ϕ

,

(Wt,α)
ΦB∗ = (Ws,αϕ)

B∗ = W
s,βs(q+1)

1 (αϕ)
.

Since b = β
q+1
1 satisfies bq2−q+1 = 1, this means that for any α, b ∈ Fq6 , bq2−q+1 = 1,

we have
(btα)ϕ = bs(αϕ).

Let b be an element of order q2 − q + 1 in Fq6 . If bt or bs is in Fq2 , then bt = bs and a)
hold. Assume that neither bt nor bs is in Fq2 . Then, Fq6 = Fq2(bt) = Fq2(bs), and over Fq2 ,
the minimal polynomial of bt has the degree three. Assume b3t + c1b2t + c2bt + c3 = 0 with
c0, c1, c2 ∈ Fq2 . Then,

0 = (b3t + c1b2t + c2bt + c3)ϕ

= (b3t ϕ) + c1(b2t ϕ) + c2(bt ϕ) + c3(1ϕ)

= (b3s + c1b2s + c2bs + c3)(1ϕ).

As ϕ is bijective, 1ϕ �= 0, 0 = b3s + c1b2s + c2bs + c3 follows. This means that bs has
the same minimal polynomial and bt → bs extends to a field automorphism of Fq6 over Fq2 .

This implies bs = bt, bs = (bt)q2
or bs = (bt)q4

, and the claim follows.

5. Hermitian Codes of Degree-Three Places and Their Duals

In this section, we explore the one-point Hermitian codes of degree-three places and
their dual codes. Let P be a degree-three place on the Hermitian curve Hq; Q1, . . . , Qn, Q∞
are its Fq2 -rational places, where n = q3. We define the divisors D = Q1 + Q2 + · · ·+ Qn,

D̃ = D + Q∞, and G = sP for a positive integer s.

5.1. Functional Hermitian Codes of Degree-Three Places

Given a divisor D and G, we define the degree-three place functional Hermitian code
CL(D, sP) as:

CL(D, G) := {(g(Q1), g(Q2), · · · , g(Qn)) | g ∈ L (G)},
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This code forms an [n, k] AG code, where k ≥ 3s− g+ 1, achieving equality when
� 2g−2

3 	 < s < n/3. Furthermore, the code has a minimum distance d ≥ d∗ = q3 − 3s,
where d∗ is the designed minimum distance.

Furthermore, another degree-three place functional Hermitian code associated with G,
denoted by CL(D̃, G), is constructed by evaluating the functions in L (G) at all rational
points Q1, Q2, · · · , Qn and the point at infinity Q∞ as follows:

CL(D̃, G) := {(g(Q1), g(Q2), · · · , g(Qn), g(Q∞)) | g ∈ L (G)},
Clearly, CL(D̃, G) has a length of n + 1. Concerning the dimensions, we have the

following result.

Proposition 6. If s < q3/3, then L (sP), CL(D, G) and CL(D̃, G) have the same dimensions.

Proof. If f ∈ ker evD, then f ∈ L (sP − D), which is trivial if s < q3/3. In this case,
ker evD̃ is also trivial.

Remark 1. Numerical experiments show that L (sP), CL(D, G) and CL(D̃, G) have the same
dimension if s < (q3 + 1)/3 + q− 1.

In the study of the divisors D and D̃, we make use of the polynomial

R(X, Y) = X ∏
c∈Fq2

cq+c �=0

(Y− c).

As shown in [13] (Section 2), the principal divisor of R(x, y) ∈ Fq2(Hq) is

(R(x, y)) = D− q3Q∞. (8)

Further properties of R(x, y) are given in the following proposition.

Proposition 7. In the function field, we have

xqR(x, y) = yq2 − y and R(x, y) = xq2 − x.

The differential of R(x, y) is
d(R(x, y)) = −dx.

Proof. Clearly,
∏

c∈Fq2

cq+c=0

(Y− c) = Yq + Y,

and

∏
c∈Fq2

cq+c �=0

(Y− c) =

∏
c∈Fq2

(Y− c)

∏
c∈Fq2

cq+c=0

(Y− c)
=

Yq2 −Y
Yq + Y

.

Hence, by xq+1 = y + yq,

xqR(x, y) = xq+1 ∏
c∈Fq2

cq+c �=0

(y− c) = xq+1 yq2 − y
yq + y

= yq2 − y.

Using this, we obtain
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xq(xq2 − x) = (xq+1)q − xq+1 = yq + yq2 − (y + yq) = yq2 − y = xqR(x, y).

Canceling by xq, we get R(x, y) = xq2 − x, and d(R(x, y)) = −dx follows immediately.

5.2. Differential Hermitian Codes of Degree-Three Places

Differential Hermitian codes of degree-three places are essential counterparts to
functional codes on the Hermitian curve Hq. The dual code CΩ(D, G) of CL(D, G) is
called the differential code. It constitutes an [n, �(G− D)− �(G) + deg D, d⊥] code, where
d⊥ ≤ deg(G)− (2g− 2), with deg(G)− (2g− 2) being its designed distance.

Ref. [20] (Proposition 8.1.2) provides an explicit description of the differential code as
a functional code

CΩ(D, G) = CL (D− G + (dt)− (t)),

where t is an element of Fq2(Hq) such that vQi (t) = 1 for all i ∈ {1, . . . , q3, ∞}. If G = sP
and D = Q1 + · · ·+ Qq3 , then t = R(x, y) is a good choice, with

(dt) = (−dx) = (2g− 2)Q∞ = (q− 2)(q + 1)Q∞,

see [20] (Lemma 6.4.4). Then, (8) implies the following proposition:

Proposition 8.

CΩ(D, sP) = CL (D, (q3 + q2 − q− 2)Q∞ − sP).

The computation of CΩ(D̃, sP) is more complicated. We claim the next results for the
prime powers q ≡ 2 (mod 3), since the proofs are rather transparent in this case. We are
certain that they hold for q ≡ 1 (mod 3) as well. Our opinion is supported by numerical
experiments with q ≤ 8.

Lemma 5. Assume q ≡ 2 (mod 3) and define the Fq2 -rational function

T =
1
3

⎛⎝ �
q2

1
�2

+
�

q2

2
�3

+
�

q2

3
�1

⎞⎠.

Then,

d

⎛⎝ R

(�1�2�3)
q2−q+1

3

⎞⎠ = −

⎛⎝ T

(�1�2�3)
q2−q+1

3

⎞⎠dx.

Proof. We have d�i = (ai − x)qdx, and

�
q2

i − �i+1 = aq3

i xq2 − yq2 − bq3

i − (aq
i+1x− y− bq

i+1)

= aq
i+1(xq2 − x)− (yq2 − y)

= aq
i+1R(x, y)− xqR(x, y)

= (ai+1 − x)qR(x, y).

In one line,

(ai+1 − x))q

�i+1
=

�
q2

1 /�2 − 1
R(x, y)

. (9)

Hence,
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d(�1�2�3) = �1�2�3 ·
(
(a1 − x)q

�1
+

(a2 − x)q

�2
+

(a3 − x)q

�3

)
dx

= �1�2�3 ·

⎛⎝ �
q2

1 /�2 − 1
R

+
�

q2

2 /�3 − 1
R

+
�

q2

3 /�1 − 1
R

⎞⎠ dx

=
�1�2�3

R
(3T − 3)dx.

This implies

d
(

R(�1�2�3)
−q2+q−1

3

)
=

(
−(�1�2�3)

−q2+q−1
3

)
dx+

R
(
−1

3
(�1�2�3)

−q2+q−4
3

)
�1�2�3

R
(3T − 3)dx.

By easy cancellation

d
(

R(�1�2�3)
−q2+q−1

3

)
=

(
−(�1�2�3)

−q2+q−1
3

)
dx +−1

3
(�1�2�3)

−q2+q−1
3 (3T − 3)dx

= −

⎛⎝ T

(�1�2�3)
q2−q+1

3

⎞⎠dx.

Lemma 6. Assume q ≡ 2 (mod 3) and define the Fq2 -rational functions

T =
1
3

⎛⎝ �
q2

1
�2

+
�

q2

2
�3

+
�

q2

3
�1

⎞⎠ and R1 =
R

(�1�2�3)
q2−q+1

3

.

Let G be a divisor of Fq2(Hq) whose support is disjoint from the support of D̃. Then,

L (D̃− G + (dR1)− (R1)) = L

(
(q2 − 1)(q + 1)

3
P− G

)
· (�1�2�3)

q2−1
3

T
.

Proof. We have

D̃− G + (dR1)− (R1) = D̃− G + (T)− q2 − q + 1
3

(�1�2�3) + (dx)

− (R) +
q2 − q + 1

3
(�1�2�3)

= D̃− G + (T) + (dx)− (R)

= Q∞ + q3Q∞ + (2g− 2)Q∞ − G + (T)

= (q2 − 1)(q + 1)Q∞ − G + (T)

=
(q2 − 1)(q + 1)

3
P−

(
(�1�2�3)

q2−1
3

)
− G + (T).

For Riemann–Roch spaces, the results follow.

Lemma 7. For any i, j ∈ {1, 2, 3}, we have(
�i
�j

)
(Q∞) = 1.
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Proof. We use the local expansion τ(t) = (t : 1 : tq+1 + · · · ) of Hq at Q∞. The dots
represent terms of a higher degree.(

�i
�j

)
(τ(t)) =

aq
i t− 1− bq

i (t
q+1 + · · · )

aq
j t− 1− bq

j (t
q+1 + · · · )

,

which implies (
�i
�j

)
(Q∞) =

(
�i
�j

)
(τ(0)) = 1.

Lemma 8. Assume q �≡ 0 (mod 3) and define the Fq2 -rational functions

T =
1
3

⎛⎝ �
q2

1
�2

+
�

q2

2
�3

+
�

q2

3
�1

⎞⎠ and T1 =
(�1�2�3)

q2−1
3

T
.

Then, T1(Q∞) = 1.

Proof. Since
�

q2

i

�i+1(�1�2�3)
q2−1

3

is the product of terms such as �i/�j, it takes the value of 1 at Q∞. This implies (1/T1)(Q∞) =
1.

Before stating our main result on differential codes, we remind the reader that two
linear codes C1, C2 are monomially equivalent if C2 = μ � C1 for some multiplier vector μ.

Theorem 4. Assume q ≡ 2 (mod 3) and define the Fq2 -rational functions

T =
1
3

⎛⎝ �
q2

1
�2

+
�

q2

2
�3

+
�

q2

3
�1

⎞⎠ and T1 =
(�1�2�3)

q2−1
3

T
.

Let G be a divisor of Fq2(Hq), whose support is disjoint from the support of D̃. Define
μi = T1(Qi) for i ∈ {1, . . . , q3, ∞} and write μ = (μi). Then, all entries μi ∈ F∗q2 , and

CΩ(D̃, G) = μ � CL (D̃,
(q2 − 1)(q + 1)

3
P− G).

Proof. If i ∈ {1, . . . , q3}, then �
q2

i (Qi) = �i+1(Qi). Therefore, T(Qi) = 1 and T1(Qi) is a
well-defined non-zero element in Fq. Lemma 8 implies T1(Q∞) = 1. The theorem follows
from Lemma 6.

Corollary 1.

CΩ(D̃, sP) = μ � CL

(
D̃,

(
(q2 − 1)(q + 1)

3
− s

)
P
)

.

6. Hermitian Subfield Subcodes from Degree-Three Places

In this section, we study the subfield subcodes of CL(D, sP). As before, q is a prime
power, s ≥ 0 integer, and P is a place of degree three of the Hermitian curve Hq. The divisor
D = Q1 + · · ·+ Qn, n = q3, is defined as the sum of the Fq2 -rational affine places of Hq.

The rational place at infinity is Q∞ and D̃ = D + Q∞.
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6.1. Trace Maps of Hermitian Functions and Hermitian Codes

We collect properties of the maps z �→ zq + z and z �→ zq − z, where z is either a field
element, a function, or a vector. We refer to zq + z as the trace of z, and to the map itself as
the trace map Tr = TrFq2 /Fq . Clearly, Tr is linear over Fq.

Lemma 9. Consider a positive divisor G1. The trace map satisfies the following properties:

(i) For any function f ∈L (G1), its trace lies within L (qG1), implying Tr(L (G1)) ⊆L (qG1).
(ii) Similarly, for any codeword c ∈ CL(D, G1), its trace resides in CL(D, qG1).
(iii) Tr(CL(D, G1)) is an Fq-linear subspace of CL(D, qG1) ∩ Fn

q .

Proof. Since G1 ≥ 0, we have L (G1), L (G1)
q ≤ L (qG1); hence, (i) holds. Then, (i)

implies (ii), and (iii) follows trivially.

Proposition 9. Let G1 be a positive divisor that satisfies deg G1 < n/q. Then, Tr(CL(D, G1)) is
an Fq-linear subfield subcode of CL(D, qG1). Its dimension is

dimFq(Tr(CL(D, G1))) = 2 dimFq2 (L (G1))− 1.

Proof. Tr(CL(D, G1)) is an Fq-linear subfield subcode by Lemma 9. The trace map Tr
and the evaluation map evD commute, and by deg(G1) < n, evD is injective. Define the
Fq-linear map

τ : L (G1)→ CL(D, qG1) ∩ Fn
q , f �→ evD(Tr( f )).

On the one hand,

dimFq(L (G1)) = 2 dimFq2 (L (G1)) = dim Im(τ) + dim ker(τ).

We have to show that ker(τ) = 1. Define ε ∈ Fq2 such that ε = 1 if q is even and

ε = g(q+1)/2 if q is odd and g is a primitive element in Fq2 . Then, εq−1 = −1. For the
rational function f ∈ Fq2(H (q)), we have

f ∈ ker(τ)⇒ f q + f = 0

⇒ (ε f )q = ε f

⇒ ε f ∈ Fq

⇒ f ∈ ε−1Fq.

This finishes the proof.

6.2. An Explicit Subfield Subcode

In this subsection, we study a subfield subcode of CL(D, (q2 − q + 1)P). As q2 − q +
1 = (q− 1)(q + 1)− (q− 1), one has

Uq2−q+1,i =
�

q
i �i+2

�i+1�
q
i+2

.

The vector spaceWq2−q+1 ≤ L ((q2 − q + 1)P) consists of the functions

Wq2−q+1,α = α
�

q
1�3

�2�
q
3
+ αq2 �

q
2�1

�3�
q
1
+ αq4 �

q
3�2

�1�
q
2

, α ∈ Fq6 .
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For rational functions f , g ∈ Fq6(Hq), we introduce the relation

f ≈ g⇐⇒ f (Qi) = g(Qi) for all i ∈ {1, . . . , q3, ∞}.

This is clearly an equivalence relation, which can be also written in terms of the
principal divisor

f ≈ g⇐⇒ ( f − g) ≥ D̃,

or in terms of the evaluation map

f ≈ g⇐⇒ evD̃( f ) = evD̃(g).

Lemma 10.

(i) (Uq2−q+1,i)
q ≈ Uq2−q+1,i+2.

(ii) (Wq2−q+1,α)
q ≈W

q2−q+1,αq3 .

Proof. Lemma 7 implies Uq2−q+1,i(Q∞) = 1. In the proof of Lemma 5, we have seen that

�
q2

i − �i+1 = (ai+1 − x)qR(x, y). Therefore, (�q2

i − �i+1)(Qi) = 0 for all i ∈ {1, . . . , q3}.
This shows

(Uq2−q+1,i)
q(Qi) =

⎛⎝ �
q2

i �
q
i+2

�
q
i+1�

q2

i+2

⎞⎠(Qi)

=

(
�i+1�

q
i+2

�
q
i+1�i

)
(Qi)

= Uq2−q+1,i+2(Qi)

This proves (i). For (ii):

(Wq2−q+1,α)
q = (αUq2−q+1,1 + αq2

Uq2−q+1,2 + αq4
Uq2−q+1,3)

q

≈ αqUq2−q+1,3 + αq3
Uq2−q+1,1 + αq5

Uq2−q+1,2

= αq3
Uq2−q+1,1 + (αq3

)q2
Uq2−q+1,2 + (αq3

)q4
Uq2−q+1,3

= W
q2−q+1,αq3 .

Proposition 10. The set
W̃ = {evD(Wq2−q+1,α) | α ∈ Fq3}

is a three-dimensional Fq-linear subfield subcode of CL(D, (q2 − q + 1)P).

Proof. Lemma 10(ii) implies that evD(Wq2−q+1,α) has Fq-entries if and only if αq3
= α.

6.3. Main Result and a Conjecture

Theorem 5. Let q ≥ 3 be a prime power, n = q3, D = Q1 + · · ·+ Qn be the sum of rational
affine places of Fq2(Hq), and P be a place of degree three. The dimension of the subfield subcode of
the one-point Hermitian code is

dim CL(D, sP)|Fq ≥
{

7 for s = 2g = q(q− 1),
10 for s = 2g+ 1 = q2 − q + 1.

Proof. Set G1 = (q− 1)P. By Proposition 9,

T = evD(Tr(L (G1)))
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is an Fq-linear subspace in CL(D, q(q − 1)P)|Fq . Since dim(L ((q − 1)P)) = 4, T has
dimension seven. This proves dim CL(D, q(q− 1)P)|Fq ≥ 7.

Let W̃ be the three-dimensional Fq-linear subfield subcode of CL(D, (q2− q+ 1)P) given
in Proposition 10. We show that T ∩ W̃ = {0}; the inequality dim CL(D, (q2 − q + 1)P)|Fq ≥
10 will follow. On the one hand,

W̃ ≤ evD(Wq2−q+1).

On the other hand, using Theorem 3, we have

T ≤ evD(L (q(q− 1)P)) = evD

⎛⎝ ⊕
t∈H(P), t≤q(q−1)

Wt

⎞⎠.

As evD is injective on L ((q2 − q + 1)P), and⎛⎝ ⊕
t∈H(P), t≤q(q−1)

Wt

⎞⎠ ∩Wq2−q+1 = {0},

we obtain T ∩ W̃ = {0}. This completes the proof.

Our proof was constructive, we used the subfield subcodes given explicitly in the
previous subsections. Based on computer calculations for small q, we have the follow-
ing conjecture.

Conjecture 1. If q ≥ 4, then equalities hold in Theorem 5.

The claim of the conjecture has some equivalent formulations.

Proposition 11. The following are equivalent.

(i) dim CL(D, (q2 − q)P)|Fq = 7.
(ii) dim CL(D, (q2 − q− 1)P)|Fq = 1.
(iii) dim CL(D, sP)|Fq = 1 for all 0 ≤ s ≤ 2g− 1 = q2 − q− 1.

Proof. We use the notation of the proof of Theorem 5. Assume (i). We have L ((q− 1)P) =
W0 ⊕Wq−1. Moreover, T is an FqB-module that decomposes into the direct sum of a
one-dimensional submodule and a six-dimensional submodule. Note that any non-trivial
irreducible FqB-module has dimension six. Since T ∩ CL(D, (q2 − q − 1)P) is a proper
submodule, the only possibility is that it is one-dimensional over Fq. (ii) follows. Trivially,
(ii) implies (iii). Let us now assume (iii).

dimFq CL(D, (q2 − q)P)/CL(D, (q2 − q− 1)P) = 6,

and therefore,

dimFq CL(D, (q2 − q)P)|Fq /CL(D, (q2 − q− 1)P)|Fq ≤ 6.

This implies dim CL(D, (q2 − q)P)|Fq ≤ 7. Together with Theorem 5, we have (i).

We have a partial result related to case (iii) of Proposition 11.

Proposition 12. dim CL(D, sP)|Fq = 1 for all 0 ≤ s ≤ 2
3g.

Proof. Fix an arbitrary integer s in the range 0 ≤ s < 2
3g and consider a generic element

(c1, . . . , cq3) ∈ Cq(s). This corresponds to a function g in L (sP) such that ci = g(Qi) is an
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element of Fq for each i = 1, . . . , q3. We note that there exists a γ ∈ Fq such that at least
q2 of the ci values is equal to γ. In other words, the function g− γ is in L (sP) and has
at least q2 zeros on Hq. However, a non-zero function in L (sP) cannot have more than
deg(G) ≤ 2g = q(q− 1) zeros, leading us to conclude that g− γ must be the zero function.
This implies that every ci is equal to γ, and hence CL(D, sP)|Fq consists of constant vectors.
This completes the proof.

7. Conclusions

In summary, our research has uncovered important properties of the family of Hermi-
tian subfield subcodes associated with degree-three places. We achieved this by precisely
determining the dimension of these codes for certain parameters and providing explicit
bases for the corresponding Riemann–Roch spaces. Moreover, we conducted experiments
aimed at calculating the exact dimension of the underlying family of codes across a broad
spectrum of parameters. This process has contributed to the reformulation of certain con-
jectures, with some being proven. Additionally, we have established lower bounds on the
dimension of Hermitian subfield subcodes associated with the divisor sP, where P is a
degree-three Hermitian place, for specific cases such as 0 ≤ s ≤ 2

3g, s = 2g, and s = 2g+ 1,
utilizing the bases of the underlying family of codes. Our motivation to explore the prop-
erties of Hermitian subfield subcodes stems from their potential as a family of AG codes
for post-quantum cryptography use. In our future work, we anticipate using the param-
eters of subfield subcodes of degree-three Hermitian codes to enhance and secure the
McEliece cryptosystem.
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Abstract: Two-dimensional optical orthogonal codes have important applications in optical code
division multiple access networks. In this paper, a generic construction of two-dimensional opti-
cal orthogonal codes with at most one pulse per wavelength (AM-OPPW 2D OOCs) is proposed.
As a result, some optimal AM-OPPW 2D OOCs with new parameters can be yielded. The new
AM-OPPW 2D OOC may support more subscribers and heavier asynchronous traffic compared with
known constructions.

Keywords: two-dimensional optical orthogonal code (2D OOC); optical orthogonal code (OOC);
optical code division multiple access network

1. Introduction

With the advantage of combining the large transmission bandwidth of fiber-optic
media and the flexibility of code division multiple access (CDMA) techniques, the optical
code division access system (OCDMA) has been extensively studied since the 1980s. In this
system, unipolar {0, 1} optical orthogonal codes (OOCs [1]) are employed as spreading
codes. However, this multiple-access scheme has a drawback in that the effect of multiple-
access interference (MAI) cannot be completely eliminated as in directly spreading CDMA
systems. Thus, one of the key points for the OCDMA system is to design OOCs with low
cross-correlation and off-peak autocorrelation. In the meantime, to enlarge the discrimina-
tion between the correct codeword and interfering codewords, we also need a large peak
autocorrelation value, i.e., the weight of the OOCs. Finally, since the number of users in
the system is less than or equal to the code size of OOCs, it is beneficial to design OOCs
with large code sizes. However, as the volume of codewords or the weight of the code
increases rapidly, the code length increases rapidly. Thus, optimal solutions, i.e., optimal
OOCs, were proposed with respect to the tradeoff of those parameters (see, e.g., [2–10]).

In the meantime, two-dimensional optical orthogonal codes (2D OOCs) that spread
in both time and wavelength were introduced for the OCDMA system to overcome this
drawback. Similarly, to minimize multiple-access interference, we have to minimize the
cross-correlation and off-peak autocorrelation of 2D OOCs; to support a large number of
users, we need a large set of 2D OOCs. Moreover, to simplify the practical implementations,
restrictions, such as at most one pulse per wavelength (AM-OPPW) and at most one pulse
per time slot (AM-OPPTS), are often imposed on 2D OOCs [11]. However, these param-
eters are not independent of each other. They suffer some theoretic bounds, for instance,
the Johnson bound [4] and the bound for 2D OOCs with the AM-OPPW restriction [11]. So
far, various works have addressed optimal 2D OOCs with respect to these bounds [11–27].

The main idea of this paper is to generate new optimal AM-OPPW 2D OOCs based
on known OOCs and 2D OOCs. In [16,17,19], OOCs were used to construct 2D OOCs
by spreading them in the time domain, i.e., the OOCs form rows of 2D OOCs. In our
construction, the OOCs are utilized to determine which rows of 2D OOCs are not all-zero
vectors. In this way, new AM-OPPW 2D OOCs can be yielded with large sizes, some
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of which are optimal with respect to the theoretic bound proposed in [11]. Further, we
also analyze the performances of the new 2D OOCs under the chip-synchronous and
chip-asynchronous assumptions, respectively.

The remainder of this paper is organized as follows. Section 2 reviews some necessary
preliminaries. Section 3 introduces the new construction of AM-OPPW 2D OOCs. Section 4
conducts the performances of the new AM-OPPW 2D OOCs under the chip-synchronous
and chip-asynchronous assumptions, respectively. Section 5 concludes this paper.

2. Preliminaries

Let Λ, T, w, and λ be positive integers, and 〈a〉b be the least non-negative residue of a
modulo b for positive integers a and b. A (Λ× T, w, λ) two-dimensional optical orthogonal code
(2D OOC) C is a family of {0, 1} arrays of order Λ× T with constant weight w satisfying
the following two properties:

(1) The autocorrelation property

RX,X(τ) =
Λ−1

∑
k=0

T−1

∑
t=0

Xk,tXk,〈t+τ〉T ≤ λ, 0 < τ ≤ T − 1, (1)

(2) The cross-correlation property

RX,Y(τ) =
Λ−1

∑
k=0

T−1

∑
t=0

Xk,tYk,〈t+τ〉T ≤ λ, 0 ≤ τ ≤ T − 1, (2)

where X = (Xk,t)0≤k<Λ,0≤t<T ∈ C, Y = (Yk,t)0≤k<Λ,0≤t<T ∈ C and X �= Y.
If λ is the smallest integer such that (1) and (2) hold, then we say that λ is the maximum

collision parameter (MCP) of C. If Λ = 1, then C is exactly an optical orthogonal code (OOC) [1].
The following restrictions on the placement of pulse within an array are often proposed

for 2D OOCs to simplify the practical implementations [11]:

• Arrays with one pulse per wavelength (OPPW): For any array X in C, the element 1
appears exactly once in each row of X.

• Arrays with at most one pulse per wavelength (AM-OPPW): For any array X in C,
the element 1 appears at most once in each row of X.

• Arrays with one pulse per time slot (OPPTS): For any array X in C, the element 1
appears exactly once in each column of X.

• Arrays with at most one pulse per time slot (AM-OPPTS): For any array X in C,
the element 1 appears at most once in each column of X.

Obviously, OPPW (OPPTS resp.) is a special case of AM-OPPW (AM-OPPTS resp.).
In the following, we briefly review the theoretic bounds on the code size of OOCs and

2D OOCs with AM-OPPW.

Lemma 1 ([4]). The maximum possible size Φ(1 × T, w, λ) of an OOC with parameters (1× T,
w, λ) is bounded by

Φ(1× T, w, λ) ≤
⌊

1
w

⌊
T − 1
w− 1

⌊
T − 2
w− 2

· · ·
⌊

T − λ

w− λ

⌋
· · ·

⌋⌋⌋
.

Lemma 2 ([11]). The maximum possible size Φ(Λ× T, w, λ) of a (Λ× T, w, λ) 2D OOC with
AM-OPPW is bounded by

Φ(Λ× T, w, λ) ≤
⌊

Λ
w

⌊
T(Λ− 1)

w− 1

⌊
T(Λ− 2)

w− 2
· · ·

⌊
T(Λ− λ)

w− λ

⌋
· · ·

⌋⌋⌋
.
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In particular, for the 2D OOC with OPPW,

Φ(Λ× T, w, λ) ≤ Tλ.

An OOC (a 2D OOC with AM-OPPW resp.) is called optimal if the number of code-
words achieves the theoretic bound in Lemma 1 (Lemma 2 resp.).

3. Optimal AM-OPPW 2D OOCs via Known AM-OPPW 2D OOCs and OOCs

In this section we introduce a general construction of AM-OPPW 2D OOCs based on
known OOCs and AM-OPPW 2D OOCs.

Let C = {C0, C1, · · · , CM−1} be an AM-OPPW 2D OOC with parameters (Λ× T,
Λ, λ1). For 0 ≤ i < M, Ci is defined by

Ci = (Ci
0
�

, Ci
1
�

, · · · , Ci
Λ−1

�
)� =

⎛⎜⎜⎜⎜⎝
ci

0,0, ci
0,1, · · · , ci

0,T−1
ci

1,0, ci
1,1, · · · , ci

1,T−1
...

...
...

ci
Λ−1,0, ci

Λ−1,1, · · · , ci
Λ−1,T−1

⎞⎟⎟⎟⎟⎠,

where� is the transpose operation, and the T-dimensional vector Ci
j =

(
ci

j,0, ci
j,1, · · · , ci

j,T−1

)
is the (j + 1)-th row of the array Ci, 0 ≤ j < Λ. Let S = {S0, · · · , SN−1} be an OOC with
parameters (n, Λ, λ2), where Sr = (sr

0, · · · , sr
n−1) for 0 ≤ r < N.

With the above preparation, we can construct an AM-OPPW 2D OOC X = {X(Ci ,Sr ,j) |
Ci ∈ C, Sr ∈ S , 0 ≤ i < M, 0 ≤ r < N, 0 ≤ j < n} as follows.

Construction A: For each three-tuple (i, r, j), 0 ≤ i < M, 0 ≤ r < N, 0 ≤ j < n, run
the following Algorithm 1 to generate a new n× T array X(Ci ,Sr ,j):

Algorithm 1 Generate the new array

Input: Ci, Sr, j.
Initiate: τ = 0, t = 0;
while 0 ≤ k < n do

if sr
k+j = 1 then

X(Ci ,Sr ,j)
k = Ci

τ ;
τ = τ + 1;

else

X(Ci ,Sr ,j)
k = 0; // 0 is the all-zero T-dimensional vector

end if
k = k + 1;

end while

return X(Ci ,Sr ,j) =

(
X(Sr ,Ci ,j)

0 , X(Sr ,Ci ,j)
1 , · · · , X(Sr ,Ci ,j)

n−1

)�
.

Theorem 1. The 2D OOC X generated by Construction A is an AM-OPPW 2D OOC with
parameters (n× T, w, λ), code size nNM, and λ ≤ max{λ1, λ2}.

Proof. We first show that the MCP of X is less than or equal to max{λ1, λ2}. By (1) and (2),
it is sufficient to investigate

R
X(Ci1 ,Sr1 ,j1) ,X(Ci2 ,Sr2 ,j2)

(τ) =
Λ−1

∑
k=0

T−1

∑
t=0

X(Ci1 ,Sr1 ,j1)
k,t X(Ci2 ,Sr2 ,j2)

k,〈t+τ〉T ,

which is divided into two cases according to the values of i, r, and j.
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Case I: (r1, j1) �= (r2, j2). By Algorithm 1, the rows X(Ci1 ,Sr1 ,j1)
k �= 0 and X(Ci2 ,Sr2 ,j2)

k �= 0

if and only if sr1
k+j1

= 1 and sr2
k+j2

= 1, where 0 ≤ k < n. Note that both X(Ci1 ,Sr1 ,j1)
k �= 0

and X(Ci2 ,Sr2 ,j2)
k �= 0 contain at most one element 1. Thus, the cross-correlation value

R
X(Ci1 ,Sr1 ,j1) ,X(Ci2 ,Sr2 ,j2)

(τ) is less than or equal to the correlation of Sr1 and Sr2 at time shift

j2 − j1, i.e., ≤λ2.

Case II: (r1, j1) = (r2, j2). By Algorithm 1, X(Ci1 ,Sr1 ,j1)
k �= 0 and X(Ci2 ,Sr1 ,j1)

k �= 0 are
rows of Ci1 and Ci2 , respectively. Hence, the correlation value R

X(Ci1 ,Sr1 ,j1) ,X(Ci2 ,Sr1 ,j1)
(τ) is

less than or equal to the correlation of Ci1 and Ci2 at time shift τ. Then, the nontrivial
correlation value R

X(Ci1 ,Sr1 ,j1) ,X(Ci1 ,Sr1 ,j1)
(τ), i.e., i1 �= i2 or (i1 = i2 and τ �= 0(mod T)), is less

than or equal to λ1.
In addition, it is easy to check that |X | = nNM. Therefore, the AM-OPPW 2D OOC

X has parameters (n× T, Λ, λ) and size nNM, where λ ≤ max{λ1, λ2}.

In what follows, we present some results obtained by Construction A for specific cases
of λ = 1, 2. Firstly, for λ = 1, we have the following result:

Corollary 1. If C is an optimal OPPW 2D OOC with parameters (Λ× T, Λ, 1) and S is an optimal
OOC with parameters (n, Λ, 1), then the AM-OPPW 2D OOC X generated by Construction A
with parameters (n× T, Λ, 1) is optimal for T ≥ Λ and Λ(Λ− 1) | (n− 1).

Proof. Because of the optimality of both the OOC S and the OPPW 2D OOC C, the code
size of S and C are, respectively, M = T and N =

⌊
1
Λ

⌊
n−1
Λ−1

⌋⌋
by Lemmas 1 and 2. Thus,

applying Theorem 1, we obtain that X is an AM-OPPW 2D OOC with parameters (n× T,
Λ, 1) and the code size nNM = nT

⌊
1
Λ

⌊
n−1
Λ−1

⌋⌋
. On the one hand, the fact Λ(Λ− 1) | (n− 1)

implies that nT
⌊

1
Λ

⌊
n−1
Λ−1

⌋⌋
= nT n−1

Λ(Λ−1) , i.e., the code size of X is nT n−1
Λ(Λ−1) . On the other

hand, it follows from Lemma 2 that

|X | ≤
⌊

n
Λ

⌊
T(n− 1)

Λ− 1

⌋⌋
= nT

n− 1
Λ(Λ− 1)

,

where the last equality holds for Λ(Λ− 1) | (n− 1). Thus, X is optimal with respect to the
bound in Lemma 2. This finishes the proof.

In Table 1, we list some known optimal OOCs with parameters (n, Λ, 1) satisfying
Λ(Λ− 1)|(n− 1), where p is a prime and q is a prime power.

Table 1. Some known optimal OOCs with Λ(Λ− 1)|(n− 1).

Parameters Code Size Constraint Ref.

(q2 + q + 1, q + 1, 1) 1 [4,28](
qd+1−1

q−1 , q + 1, 1
)

qd−1
q2−1 d even [4]

(n, 3, 1) n−1
6 n ≡ 1 (mod 6) [4]

(p, w, 1) r p = w(w− 1)r + 1 [29]

As an application of Corollary 1, in Table 2, we provide some optimal AM-OPPW 2D
OOCs by means of the optimal OPPW 2D OOCs in [19] and optimal OOCs in Table 1.
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Table 2. Some new optimal AM-OPPW 2D OOCs from Corollary 1.

Parameters Code Size Constraint

((q2 + q + 1)× T, q + 1, 1) (q2 + q + 1)T
T = pk pk−1 · · · p1

with pk ≥ pk−1 ≥ p1 ≥ q + 1(
qd+1−1

q−1 × T, q + 1, 1
)

T(qd+1−1)(qd−1)
(q−1)(q2−1)

T = pk pk−1 · · · p1

with pk ≥ pk−1 ≥ p1 ≥ q + 1

(n× T, 3, 1) Tn(n−1)
6

T = pk pk−1 · · · p1

with pk ≥ pk−1 ≥ p1 ≥ 3
n ≡ 1 mod 6

(p× T, w, 1) rpT
p = w(w− 1)r + 1
T = pk pk−1 · · · p1

with pk ≥ pk−1 ≥ p1 ≥ w

Next, for λ = 2, we have the following corollary.

Corollary 2. Let C be an optimal OPPW 2D OOC with parameters (Λ× T, Λ, 2) and S be an
optimal OOC with parameters (n, Λ, 2). Then, the AM-OPPW 2D OOC X generated by Construc-
tion A with parameters (n× T, Λ, 2) is optimal if Λ(Λ− 1)(Λ− 2)|(n− 2) or (Λ− 2)|(n− 2)
and Λ(Λ− 1)| (n−1)(n−2)

Λ−2 .

Proof. The proof is similar to that of Corollary 1.

It was shown in [30] that there exist optimal OOCs with parameters (n, 4, 2) for
n ∈ {10, 26, 34, 50, 74, 98}. Note that (4× 3)× 2|(n− 2) or 2|(n− 2) and (4× 3)| (n−1)(n−2)

2
for n ∈ {10, 26, 34, 50, 74, 98}. Associated with the optimal OPPW 2D OOC of parameters
(Λ× p, Λ, 2) in [11], where p is a prime and 2 < Λ ≤ p, the following result can be directly
obtained from Corollary 2.

Corollary 3. Let C be the optimal OPPW 2D OOC with parameters (4× p, 4, 2) and S be the
optimal OOC with parameters (n, 4, 2), where p ≥ 4 is a prime and n ∈ {10, 26, 34, 50, 74, 98}.
Then, AM-OPPW 2D OOC generated from Construction A is optimal with parameters (n× p, 4, 2).

Remark 1. Compared with 2D OOCs, the AM-OPPW 2D OOC may have a lower code rate
because the AM-OPPW condition is indeed a constraint from the perspective of code construction.
The reader may refer to [12] for a more detailed comparison.

4. Performance Analysis of the New Optimal AM-OPPW 2D OOCs

Let X be the optimal AM-OPPW 2D OOC with parameters (n× T, Λ, 1) and code size
nMN generated from Corollary 1 based on a known AM-OPPW 2D OOC with parameters
(Λ× T, Λ, 1) and code size M together with a known OOC with parameters (n, Λ, 1) and
code size N. From now on, we examine its performances under the chip-synchronous and
chip-asynchronous assumptions, respectively.

In an OCDMA using on–off keying (OOK), “1” and “0” are sent with equal probability
but only bit “1” is encoded by the 2D OOC. Following the simple protocol in [1], we analyze
the performance of the OCMDA in an ideal case where performance deterioration is only
due to multiple-access interference (MAI) so that the effects of physical noises, such as
thermal noise, shot noise, and beat noise are ignored [31]. That is, a decision error occurs
only when the accumulative MAI reaches over a decision threshold and a data bit zero is
transmitted. In addition, before correlation is performed, a hard-limiter is often placed at
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the front end of a receiver for reducing the effects of MAI [32]. Thus, throughout this section
we discuss the performances of the new 2D OOC in the ideal case with a hard-limiter.

4.1. Performance Analysis under the Chip-Synchronous Assumption

Without loss of generality, let X(C0,S0,0) be the desired codeword. Let ql be the proba-
bility of l hits in a time slot when it cross-correlates with all the other codewords X(Ci1 ,Sr1 ,j1),
where 0 ≤ l ≤ 1, 0 ≤ i1 < M, 0 ≤ r1 < N, 0 ≤ j1 < n, and (i, r, j) �= (0, 0, 0).

For the chip-synchronous case, the hard-limiting error probability of the new AM-OPPW
2D OOCs with parameters (n× T, Λ, λ) in on–off keying (OOK) data modulation is [33]

Psyn =
1
2

Λ

∑
j=Δ

(
Λ
j

) j

∑
i=0

(−1)j−i
(

j
i

)(
λ

∑
m=0

(m
i )

(m
Λ)

qm

)K−1

, (3)

where K denotes the number of simultaneous users and Δ is the decision threshold. Hence,
for the case λ = 1, to derive the error probability of the new AM-OPPW 2D OOCs we only
need to calculate the probabilities q0 and q1.

Firstly, we count the number of the hits between arrays X(C0,S0,j0) and X(Ci1 ,Sr1 ,j1) to

compute q1. Recall from Algorithm 1 that their k-th rows X(C0,S0,0)
k �= 0 and X(Ci1 ,Sr1 ,j1)

k �= 0

if and only if

s0
k = sr1

k+j1
= 1, 0 ≤ k < n. (4)

When s0
k+0 = sr1

k+j1
= 1, one hit occurs exactly once as τ running through all the possible

time delays, i.e., 0 ≤ τ < T, since the two rows X(C0,S0,0)
k and X(Ci1 ,Sr1 ,j1)

k contain exactly
one element 1, respectively. Note that the OOCs S0 and Sr1 have weight Λ. According to
the proof of Theorem 1, the following are true:

• When r1 �= 0, (4) happens exactly Λ2 times as j1 ranges from 0 to n− 1. Then, there
are M(N − 1)Λ2 hits since i1 and r1, respectively, have M and N − 1 possible choices;

• When r1 = 0 and j1 �= 0, (4) happens exactly Λ2 −Λ times as j1 ranges from 1 to n− 1.
Then, there are M(Λ2 −Λ) hits since i1 has M possible choices;

• When r1 = 0 and j1 = 0, (4) happens exactly Λ times. Then, there are (M− 1)Λ hits
since i1 has M− 1 possible choices.

Therefore, there are Λ2NM−Λ hits in total. Then, we have

q1 =
Λ2NM−Λ

2T(nMN − 1)
, (5)

where the factor 1/2 comes from the assumptions that the error occurs only if a data bit
zero is transmitted and the element 0 is sent with probability 1/2. (nMN − 1) denotes
the number of codewords except for X(C0,S0,0), and T is the number of all the time slots.
Secondly, the fact q0 + q1 = 1 implies

q0 = 1− Λ2NM−Λ
2T(nMN − 1)

. (6)

In the sequel, we present some simulation results acquired by MATLAB r2023b as
an example.

Example 1. Let C be the optimal OPPW 2D OOC with parameters (5× 25, 5, 1) and code size
M = 25 [19] and S be the optimal OOC with parameters (41, 5, 1) and code size N = 2 [5].
Then, we can construct a new optimal AM-OPPW 2D OOC with parameters (41 × 25, 5, 1)
and code size nMN = 41× 25× 2 = 2050 using Construction A. In this case, using (5) and
(6) we obtain q1 = 0.0122 and q0 = 0.9878. Then, we can calculate the hard-limited chip-
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synchronous error probability by means of (3), which is plotted against K simultaneous users with
threshold Δ = Λ = 5 in Figure 1. Similarly, based on the OPPW 2D OOC with parameters
(5× 35, 5, 1) [19], an optimal AM-OPPW 2D OOC with parameters (41× 35, 5, 1) and code size
nMN = 41× 35× 2 = 2870 can also be yielded by Construction A.

In [34], the multi-wavelength optical orthogonal codes (MWOOCs) with parameters (41× 31,
5, 1) and code size 1681 can be generated. As a comparison, we plot the hard-limited chip-
synchronous error probability of the MWOOCs with parameters (41× 31, 5, 1) and our new
2D OOCs with parameters (41× 25, 5, 1) and (41× 35, 5, 1) together in Figure 1.

Further, simulation for the new 2D OOCs with parameters (41× 25, 5, 1) ((41× 35, 5, 1)
resp.) is performed by choosing K codewords for K simultaneous users randomly from the 2050
(2870 resp.) codewords. Particularly, the transmission time delay of each codeword is chosen from a
random integer in [0,25) to simulate the chip-synchronous condition. In order to attain the error
probability, the simulation is iterated 104 times for K ∈ {350, 400, 450, 500, 550}.

As shown in Figure 1, the new 2D OOC with parameters (41× 35, 5, 1) has better performance
than the MWOOC with parameters (41× 31, 5, 1), while the MWOOC performs better than the
new 2D OOC parameters (41× 25, 5, 1). However, the code size of the new 2D OOCs, even for the
case with parameters (41× 25, 5, 1), are larger than that of the MWOOCs. This is desirable. On
the one hand, the larger the code size, the more the users in the OCDMA systems. On the other
hand, new 2D OOCs with large size may support multicode keying in OCDMA systems [35].
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100

Nnumerical result of new 2 D OOCs with parameters (41*25,5,1)

Nnumerical result of new 2 D OOCs with parameters (41*35,5,1)

Nnumerical result of MWOOCs with parameters (41*31,5,1) in [ ]

Simulation of the new 2 D OOCs with parameters (41*25,5,1)

Simulation of the new 2 D OOCs with parameters (41*35,5,1)

Figure 1. Error probabilities versus the numbers of simultaneous users under the chip-synchronous
assumptions [33].

4.2. Performance Analysis under the Chip-Asynchronous Assumption

It is known that the chip-synchronous assumption provides pessimistic upper bounds
on the performance of the system, whereas the chip-asynchronous assumption assures a
more accurate performance [32]. In this subsection, we study the hard-limiting performance
of the new AM-OPPW 2D OOCs under the chip-asynchronous assumption.

For the chip-asynchronous case, the hard-limiting error probability of the new AM-OPPW
2D OOCs with parameters (n× T, Λ, λ) in on–off keying (OOK) data modulation is [17,33]

Pasyn =
1
2

Λ

∑
r=Δ

(
Λ
r

) Λ−r

∑
j=0

(
Λ− r

j

)
2j ·

2r+j

∑
i=0

(−1)2r+j−i
(

2r + j
i

)
·
[

λ

∑
k=0

λ

∑
l=0

qk,l
( i

k+l)

( 2Λ
k+l)

]K−1

,
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where K denotes the number of simultaneous users, qi,j denotes the probability of the
cross-correlation value in the preceding time slot equal to 0 ≤ i ≤ λ (the present time
slot 1 ≤ j ≤ λ, respectively), and Δ is the decision threshold. In particular, for the new
AM-OPPW 2D OOCs with parameters (n× T, Λ, 1), we then have

Pasyn =
1
2

Λ

∑
r=Δ

(
Λ
r

) Λ−r

∑
j=0

(
Λ− r

j

)
2j ·

2r+j

∑
i=0

(−1)2r+j−i
(

2r + j
i

)
·
[

q0,0 +
(q0,1 + q1,0)i

2w
+

q1,1(
i
2)

(2Λ
2 )

]K−1

. (7)

That is, it is sufficient to determine qi,j, i, j ∈ {0, 1} for computing Pasyn.
According to [36], the 2D OOCs with λ = 1 satisfy that

q1,0 = q0,1, (8)

q1,1 = q1 − q0,1, (9)

q0,0 = 1− q1,1 − q1,0 − q0,1. (10)

To derive q1,1, we need to count the total number of two consecutive hits, i.e., two hits
occurring firstly at the preceding time slot and subsequently the present time slot, when
the desired code array correlates with all the other arrays in the code set. Without loss of
generality, assume that X(C0,S0,0) is the desired array.

Firstly, we discuss the arrays from the set {X(C,S,j) |C ∈ C and (S �= S0 or j �= 0)}.
Assume that there exists a hit at the time slot τ, i.e., R

X(C0,S0,0) ,X(C,S,j) (τ) = 1. Note that for

S �= S0 or j �= 0, there exists at most one integer k, 0 ≤ k < n, such that sk+j = s0
k = 1 since

their non-trivial correlation value is no more than 1. Then, by Algorithm 1, for any C ∈ C
and any 0 ≤ j ≤ n− 1, both X(C,S,j)

k �= 0 and X(C0,S0,0)
k �= 0 occur at most once for all the

integers 0 ≤ k < n, which indicates that X(C,S,j) and X(C0,S0,0) have at most one hit for all
the time slots. This is to say, no other hits happen except for the one at time slot τ.

Secondly, we investigate the arrays based on the same OOC S0 and j = 0, i.e.,{
X(C,S0,0) |C ∈ C

}
. Suppose that there is a hit at the time slot τ, i.e., R

X(C0,S0,0) ,X(C,S0,0) (τ) =

1. In the OOC S0, there are Λ elements s0
k = 1 where 0 ≤ k < n. If s0

k = 1, the rows X(C,S0,0)
k

and X(C0,S0,0)
k contain exactly one element 1 otherwise they are all-zero vectors according to

Algorithm 1. Then, there are Λ possible time slots τ such that R
X(C0,S0,0) ,X(C,S0,0) (τ) = 1 and

Λ− 1 times τ′ such that R
X(C0,S0,0) ,X(C,S0,0) (τ

′) = 1 when τ′ varies over {0, 1, · · · , T− 1} \ {τ}
for a given τ. Thus, in total, Λ(Λ− 1)(M− 1) hits happen as C ranging over the set C \ {C0}.
This to say, there are Λ(Λ−1)(M−1)

T−1 consecutive hits on average.
Based on the above analysis, we have

q1,1 =
Λ(Λ− 1)(M− 1)

2T(nMN − 1)(T − 1)
, (11)

where the factor 1/2 comes from the assumptions that the error occurs only if a data bit
zero is transmitted and the element 0 is sent with probability 1/2, (nMN− 1) is the number
of codewords except X(C0,S0,0), and T is the number of all the time slots.

Then, by (8), (9), and (10), we get

q1,0 = q0,1 = q1 − q1,1 =
Λ2NM−Λ

2T(nMN − 1)
− Λ(Λ− 1)(M− 1)

2T(nMN − 1)(T − 1)
, (12)

and

q0,0 = 1− q1,1 − q1,0 − q0,1 = 1− Λ2NM−Λ
T(nMN − 1)

+
Λ(Λ− 1)(M− 1)

2T(nMN − 1)(T − 1)
. (13)
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Finally, we present some simulation results obtained using MATLAB as an example.

Example 2. Analyzing the new 2D OOCs with parameters (41× 25, 5, 1) and (41× 35, 5, 1) gen-
erated in Example 1, using (11), (13), and (12), we can calculate that q11 = 0.0002, q00 = 0.9759
and q10 = 0.0120 (q11 = 0.0001, q00 = 0.9827 and q10 = 0.0086 resp.). Substituting them
into (7), we derive the hard-limited chip-asynchronous error probability, which is plotted against K
simultaneous users in Figure 2, where Δ = Λ = 5. As a comparison, we also plot the hard-limited
chip-asynchronous error probability of the MWOOCs with parameters (41× 31, 5, 1) together with
our new 2D OOCs with parameters (41× 25, 5, 1) and (41× 35, 5, 1) in Figure 2.
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Simulation of the new 2 D OOCs with parameters (41*25,5,1)

Simulation of the new 2 D OOCs with parameters (41*35,5,1)

Figure 2. Error probabilities versus the numbers of simultaneous users under chip-asynchronous
assumptions [33].

Simulations are conducted by choosing K codewords for K simultaneous users randomly from
2050 (2870 resp.) codewords. Specifically, the transmission time of each codeword is chosen from a
random real number between 0 and 25 to simulate the chip asynchronous condition. In order to
acquire an error probability, the simulations are iterated 104 times for K ∈ {350, 400, 450, 500, 550}.
As shown in Figure 2, the simulation result is very close to the chip-asynchronous curves given
by (7).

In addition, we compare the performance of the new optimal AM-OPPW 2D OOC with param-
eters (41× 25, 5, 1) under the hard-limited chip asynchronous and hard-limited chip synchronous
conditions in Figure 3. It is seen that the performance of the hard-limited chip asynchronous is
better than the hard-limited chip synchronous case, which is consistent with the result in [32].

In Figure 4, we plot the performance of the new 2D OOC with parameters (41× 25, 5, 1)
under hard-limited chip-asynchronous conditions for the decision threshold Δ with the value varying
from 3 to 5. It was firstly pointed out in [32] that the higher the threshold level, the better system
performance since multiple users will become less probable to occupy a particular chip above the
level of the threshold. Clearly, our simulation result reveals this fact.
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Figure 3. Error probabilities of the new optimal AM-OPPW 2D OOC under hard-limited chip-
asynchronous and hard-limited chip synchronous conditions.
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Figure 4. Error probabilities of the new optimal AM-OPPW 2D OOC under the hard-limited chip
asynchronous with different decision threshold Δ.

5. Conclusions

In this paper, a new generic construction of AM-OPPW 2D OOCs was proposed.
By restricting the OOCs and OPPW 2D OOCs to optimal ones, optimal AM-OPPW 2D OOCs
and asymptotically optimal 2D OOCs with new parameters were obtained. Additionally,
the performance of the new AM-OPPW 2D OOCs was demonstrated under both chip-
synchronous and chip-asynchronous assumptions.
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However, in general, the known parameters of AM-OPPW 2D OOCs are quite lim-
ited, and the performance of AM-OPPW 2D OOCs in real-world scenarios remains an
open question.
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Abstract: An even Eisenstein integer is a multiple of an Eisenstein prime of the least norm.
Otherwise, an Eisenstein integer is called odd. An Eisenstein integer that is not an integer
multiple of another one is said to be primitive. Such integers can be used to construct
signal constellations and complex-valued codes over Eisenstein integers via a carefully
designed modulo function. In this work, we establish algebraic properties of even, odd, and
primitive Eisenstein integers. We investigate conditions for the set of all units in a given
quotient ring of Eisenstein integers to form a cyclic group. We perform set partitioning
based on the multiplicative group of the set. This generalizes the known partitioning of
size a prime number congruent to 1 modulo 3 based on the multiplicative group of the
Eisenstein field in the literature.

Keywords: Eisenstein integers; unit group; set partitioning; signal constellation

1. Introduction

Eisenstein integers, named after the mathematician Ferdinand Gotthold Max Eisenstein,
are complex numbers that can be expressed as α := a + bρ, where a and b are integers
and ρ = e2πi/3 = −1

2 +
√

3
2 i such that ρ3 = 1 in C and i2 = −1. The integers a and

b are the real part and the rho part, respectively. Since the set of all Eisenstein integers,
denoted by Z[ρ], forms a commutative ring with identity, it is commonly referred to as
the ring of Eisenstein integers [1]. Occasionally, it is also called the ring of Eisenstein–Jacobi integers.
The integers possess remarkable geometric properties. They form a hexagonal lattice in the
complex plane, making them particularly useful in coding theory, cryptography, and signal
processing. They allow for optimal packing and minimal energy configurations in various
practical setups. The ring Z[ρ] is a Euclidean domain and, hence, is also a principal ideal
domain and a unique factorization domain. Inspired by the algebraic properties of Gaussian
integers discussed in, e.g., [2,3], many researchers have discovered properties of Z[ρ] by
generalizing important properties of the ring of integers Z and the ring of Gaussian integers
Z[i]. We know of fundamental concepts such as the factor ring, the unit structure of the factor
ring, and the Euler-Totient function on Eisenstein integers from results presented in [4–7].

Gullerud and Mbirika in [7] introduced the notion of even and odd numbers in Z[ρ].
Revisiting their motivation, the prime number 2 has the least norm, in this case defined as
the absolute value, in Z. The quotient by the ideal generated by the even prime 2 has two
cosets that partition Z into even and odd integers. Since 1− ρ and its associates are primes

Entropy 2025, 27, 337 https://doi.org/10.3390/e27040337
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with the least norm, to be formally defined below, in Z[ρ], we can pick 1− ρ to play the role
of an even prime in Z[ρ], just like 2 in Z. Unlike in Z, however, the quotient by the ideal
generated by 1− ρ is the set whose elements partition Z[ρ] into three sets, which we call
even, odd of Type 1, and odd of Type 2 sets. Some of their properties were investigated based
on the norm and the sum of the real and the rho parts in [7].

In Z[ρ], an Eisenstein integer that is not an integer multiple of another is called prim-
itive. Such an integer can be used to construct signal constellations and complex-valued
codes over Eisenstein integers. These codes are obtained through a modulo function.
Complex-valued codes are mathematical representations of coded symbols in commu-
nication systems, where codewords are constructed from complex numbers rather than
real-valued symbols. These codes are particularly useful in digital communication for
efficient modulation and error correction. We have provided a necessary and sufficient con-
dition for an Eisenstein integer to be primitive in [8]. In that same work, we also constructed
signal constellations for codes over Z[ρ] by studying primitive and non-primitive Eisenstein
integers. In communication systems, a signal constellation is a physical diagram that depicts
all possible symbols used by a signaling system to transmit data better. Mathematically,
a signal constellation is a set of the residual class rings obtained by taking some modulo.
Eisenstein integers have been used in designing denser and more efficient patterns in signal
transmission. Such patterns have been shown to be beneficial in modern approaches, such
as multiple input multiple output (MIMO) in [9], physical-layer network coding in [10–13],
and compute and forward in [14].

Primitive Eisenstein integers exhibit excellent algebraic and number theoretic proper-
ties for applications in cryptography and error-correcting codes. There is an isomorphism
between Z[ρ] modulo a primitive Eisenstein integer and Z modulo an integer, based on
Theorem 8 below. In this work, we focus on discovering further algebraic properties of
primitive Eisenstein integers as well as even and odd Eisenstein integers.

The multiplicative group of units in the quotient ring of Eisenstein integers has appli-
cations in coding theory. It has been used as QAM signals in [15,16], for enhanced spatial
modulation in [17], and as a tool for set partitioning and multilevel-coded modulation
in [18]. The set partitioning method leverages on the cyclic group structure of the units in
the Eisenstein field Z[ρ]/〈ψ〉 such that the norm of ψ is a prime integer q ≡ 1 (mod 3).

Constructions of codes over a number of other rings based on their primitive elements
have been proposed in the literature. They utilize an isomorphism between a quotient ring
induced by a primitive element and the ring of integers modulo the norm of a primitive
element. The isomorphism sends a one-dimensional signal to a higher-dimensional signal.
This general approach has been successfully performed to obtain codes. Examples include
codes over Z[i] built based on primitive Gaussian integers in [19], codes over Lipschitz
integers based on primitive Lipschitz integers in [20], and codes over Hurwitz integers,
again using the primitive Lipschitz integers in [21–23]. The properties of primitive Lipschitz
integers that are beneficial for encoding can be found in [24].

Li, Gan, and Ling in [25] provided a necessary and sufficient condition for two Eisen-
stein integers to be relatively prime.

Theorem 1 ([25]). Two arbitrary Eisenstein integers α and θ are relatively prime if and only if

gcd
(

Nρ(α), Nρ(θ),
2√
3

Im(αθ)

)
= 1,

with θ being the conjugate of θ, or, equivalently,

gcd
(

Nρ(α), Nρ(θ), Re(αθ)− 1√
3

Im(αθ)

)
= 1.
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We also know, this time from [26] that, if a Gaussian integer α and its conjugate α

are relatively prime, then α−1 (mod α) is an integer. This fact is useful in constructing
multi-channel modulo samplers from Gaussian integers. It seems that no one has checked
if the analogue of the fact and its application work over Z[ρ].

Freudenberger and Shavgulidze in [18] considered finite sets of Eisenstein integers
Eη = {μη(α) : α ∈ ZNρ(η)}. They paid special attention to the case of η = ψ, which
is a primitive and prime Eisenstein integer whose norm is a prime q ≡ 1 (mod 3), as a
two-dimensional signal constellation. Computing μψ(α) according to (2) below, the set
of all units in Eη , denoted by (Eψ)∗, can then be considered as a signal constellation for
the general spatial modulation. In general, Eη is a representation of the quotient ring of
Eisenstein integers only when η is primitive. In such a case, we can then partition (Eψ)∗

into n = ϕ(ψ)
6 subsets, indexed by j ∈ {0, 1, . . . , n− 1}, as

(Eψ)
∗
(j) = {αn+j, α2n+j, α3n+j, α4n+j, α5n+j, α6n+j} = {±αj,±ραj,±(1 + ρ)αj},

with α being a generator of the cyclic group (Eψ)∗ that corresponds to the generator of
the cyclic group (Z[ρ]/〈ψ〉)∗. We can perform set partitioning on (Eψ)∗(j) according to the
following theorem to obtain a larger minimum distance in each subset.

Theorem 2 (Proposition 1 in [18]). Let j ∈ {0, 1, . . . , n− 1}. The minimum Euclidean distance
in (Eψ)∗(j) is ‖αj‖. We can partition (Eψ)∗(j) further into three subsets

(Eψ)
∗
(j) = {±αj} ∪ {±ραj} ∪ {±(1 + ρ)αj},

each with minimum Euclidean distance 2‖αj‖. We can also partition (Eψ)∗(j) into two subsets

(Eψ)
∗
(j) = {αj, ραj,−(1 + ρ)αj} ∪ {−αj,−ραj, (1 + ρ)αj},

each with minimum Euclidean distance
√

3‖αj‖.

In this paper, we gladly report the following contributions.

1. We establish further algebraic properties of primitive, even, and odd Eisenstein
integers. We then answer Question 6.1 in [7]. Let ψ be an Eisenstein prime such that
Nρ(ψ) = q is a prime integer and q ≡ 1 (mod 3).

a. Are the (non-associate) distinct pairs of primes ψ and ψ always of the same odd
class? The answer is yes, they are.

b. Does the corresponding q predict the odd class of ψ and ψ? The answer is no, it
does not.

2. Taking advantage of Theorem 1, our Theorem 22 confirms that, if Eisenstein integers α

and α are relatively prime, then α−1 (mod α) is in Z. This result leads to a construction
of multi-channel modulo samplers.

3. We prove important properties of the set of all units in a quotient ring of Z[ρ] when
the set forms a cyclic group. The multiplicative group of the set leads to a nice set
partitioning that generalizes Theorem 2 by using the modulo function in (1), which
differs from the original modulo function in (2).

In terms of organization, Section 2 reviews known properties of Eisenstein integers.
Section 3 presents our new results. We establish the algebraic properties of Eisenstein
integers related to their being even, odd, or primitive. We look into the cyclic groups
in the quotient ring. Set partitioning based on the multiplicative group of units in the
quotient ring is the focus of Section 4. Section 5 highlights the role of primitive Eisenstein
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integers in the relevant code constructions. Section 6 contains a summary and several
concluding remarks.

2. Preliminaries

This section recalls known properties of Eisenstein integers related to their being
prime, primitive, odd or even. We also recall useful results on the quotient rings and and
the unit group in a quotient ring.

2.1. Ring of Eisenstein Integers

Since ρ = −1
2 +

√
3

2 i is a complex primitive third root of unity, we have ρ3 = 1 and
(ρ− 1)(ρ2 + ρ + 1) = 0 implies ρ2 + ρ + 1 = 0. Addition and multiplication in Z[ρ] are
defined, respectively, by

(a + bρ) + (c + dρ) = (a + c) + (b + d)ρ

(a + bρ) · (c + dρ) = (ac− bd) + (ad + bc− bd)ρ.

The conjugate and norm of α = a + bρ ∈ Z[ρ] for a, b ∈ Z are defined, respectively, as

α = (a− b)− bρ and Nρ(α) = Nρ(α) = α α = a2 + b2 − ab ∈ Z.

By definition, Nρ(α) = ‖α‖2, where ‖ · ‖ denotes the Euclidean distance, and the norm is
multiplicative since Nρ(αθ) = Nρ(α) Nρ(θ) for all α, θ ∈ Z[ρ].

The division algorithm works over Z[ρ], i.e., for α, η �= 0 ∈ Z[ρ], there exists a unique
quotient θ and a remainder δ in Z[ρ] such that α = θη + δ and Nρ(δ) < Nρ(η). Since Z[ρ] is
a Euclidean domain (ED), it is a principal ideal domain (PID) and a unique factorization
domain (UFD).

In Z[ρ], an element η divides α, denoted by η | α, if there exists θ ∈ Z[ρ] such that
α = θη. We say that α is a unit in Z[ρ] if αλ = 1 for some λ ∈ Z[ρ]. A unit has a unique
multiplicative inverse. It is known that α is a unit if and only if Nρ(α) = 1 and that Z[ρ]
has 6 units. These are ±1,±ρ, and ±(1 + ρ). We say that α and β are associates, denoted
by α ∼ η, if α = θ η for some unit θ ∈ Z[ρ]. The associates of α = a + bρ are ±α, ±ρα, and
±(1 + ρ)α, with ρα = −b + (a− b) ρ and (1 + ρ)α = (a− b) + a ρ.

The greatest common divisor (GCD) ω of α, θ ∈ Z[ρ], denoted by ω := gcd(α, θ), is
the largest Eisenstein integer in terms of modulus, up to multiplication by any unit, that
divides both α and θ. Every common divisor of α and θ divides ω.

Let Q(·) denote the quantization to the closest Eisenstein integer in as [27,28]. Fixing
a nonzero η ∈ Z[ρ], we can define a modulo function μη(·) as

μη(α) := α (mod η) = α−Q( α
η ) · η. (1)

Algorithm 1, which computes a remainder μη(α) when α is divided by η, is a slight
adaptation of the version in [11,27].

We highlight that the modulo function μη in (1) is different from the modulo function

μη(α) = α− � α
η �η, (2)

with �·� denoting the rounding to the nearest integer as defined in [29]. For avoidance
of doubt, we choose to define �x� := �x + 0.5	 for all x ∈ R in this paper. Our choice is
somewhat arbitrary. If so desired, one can define �x� := 
x− 0.5� for all x ∈ R.
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Algorithm 1: Finding a remainder δ := α (mod η) on input a given α and a fixed η.

1. z← α
η = Re(z) + Im(z)i and z− ρ← Re(z− ρ) + Im(z− ρ)i.

2. The nearest Eisenstein integers θ1 ∈ Z[
√

3i] and θ2 ∈ ρ +Z[
√

3i] are

θ1 ← �Re(z)�+
⌊

Im(z)√
3

⌉√
3i

θ2 ← �Re(z− ρ)�+
⌊

Im(z− ρ)√
3

⌉√
3i + ρ.

3. δ1 ← α− θ1 η and δ2 ← α− θ2 η.
4. Output δ := α (mod η) based on

δ← δ1, if Nρ(δ1) < Nρ(δ2), or Nρ(δ1) = Nρ(δ2) and Re(θ1) < Re(θ2),

δ← δ2, otherwise.

We use the modulo function in (1) because it gives us Nρ(μη(α)) = Nρ(δ) ≤ Nρ(α) for
every α ∈ Z[ρ]. In contrast, using (2) over Z[ρ] implies the existence of η ∈ Z[ρ] such that
Nρ(μη(α)) > Nρ(α) for some α ∈ Z[ρ].

Example 1. Let η = −6 + 5ρ and α = 5. Since

5
−6 + 5ρ

=
5(−11− 5ρ)

(−6 + 5ρ)(−11− 5ρ)
=
−55
91

+
−25
91

ρ,

we have ⌊
5

−6 + 5ρ

⌉
=

⌊−55
91

⌉
+

⌊−25
91

⌉
ρ = −1 + 0ρ = −1.

Applying (2), we obtain

μη(5) = 5− (−1)(−6 + 5ρ) = −1 + 5ρ and

Nρ(μη(5)) = Nρ(−1 + 5ρ) = 31 > 25 = Nρ(5).

2.2. Prime and Primitive Eisenstein Integers

An α ∈ Z[ρ] is called (Eisenstein) prime if α cannot be expressed as α = θη where θ and
η are not units in Z[ρ]. In other words, α is Eisenstein prime if all of its divisors are of the
form u α with u ∈ {±1,±ρ,±(1 + ρ)}. Otherwise, α is (Eisenstein) composite. An α = a + bρ

is primitive if gcd(a, b) = 1.
Eisenstein primes are classified as follows:

1. The prime 1− ρ and its associates.
2. The prime c+ d ρ, with Nρ(c+ d ρ) = q such that q is a prime in Z, with q ≡ 1 (mod 3),

and its associates.
3. The prime p ∈ Z such that p ≡ 2 (mod 3) and its associates.

For the rest of this paper, let β := 1− ρ and let p and q be prime integers such that
p ≡ 2 (mod 3) and q = ψ ψ ≡ 1 (mod 3), where ψ and ψ are non-associate Eisenstein
primes. We denote a generic Eisenstein prime by γ.

Remark 1. Units as well as Eisenstein primes β and ψ up to associates are primitive Eisenstein
integers. Any prime integer p ≡ 2 (mod 3) and its associates are not primitive Eisenstein integers.
We note that 5 + 4ρ is primitive but not an Eisenstein prime since 5 + 4ρ = (1− ρ)(2 + 3ρ).
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Theorem 3 ([30]). If γ1 and γ2 are Eisenstein primes such that Nρ(γ1) = Nρ(γ2), then γ1 ∼ γ2

or γ1 ∼ γ2. If Nρ(γ1) = 3, then γ1 ∼ β. If Nρ(γ1) = p2, with p ≡ 2 (mod 3), then γ1 ∼ γ1.
Lastly, if q is a prime integer such that Nρ(γ1) = q ≡ 1 (mod 3), then γ1 �∼ γ1.

Theorem 4 ([8]). Given any two elements α, θ ∈ Z[ρ], we have Nρ(α) = Nρ(θ) ∈ Z if and only
if α ∼ θ or α ∼ θ.

Gullerud and Mbirika stated in Theorem 5.8 of [7] that any power of an Eisenstein
prime ψ is a primitive element. To prove this valid claim, they had assumed that if the
norms of two Eisenstein integers are the same, then they are associates. This assumption is
invalid. Theorem 4 states that it does not hold in general. We reproduce the original theorem
and supply a proof in Appendix A. Our proof uses Theorem 4.

Theorem 5 (Theorem 5.8 in [7]). Let ψ = x + yρ be a prime in Z[ρ]. If Nρ(ψ) = q ≡ 1 (mod 3)
be such that q is a prime in Z, then ψn is a primitive Eisenstein integer for all n ∈ N.

Proof. See Appendix A.

In another recent work, we have established a necessary and sufficient condition for
an Eisenstein integer to be primitive.

Theorem 6 ([8]). An Eisenstein integer η is primitive if and only if η ∼ βrψr1
1 · · ·ψ

rm
m , with

• r ∈ {0, 1}, m, and ri are nonnegative integers,
• Nρ(ψi) = qi ∈ Z is a prime such that qi ≡ 1 (mod 3) for 0 ≤ i ≤ m,
• qi �= qj for i, j ∈ {0, 1, . . . , m} such that i �= j.

2.3. On the Quotient Ring of Eisenstein Integers

Since Z[ρ] is a PID, any ideal is of the form 〈η〉 for some η ∈ Z[ρ]. A congruence in
Z[ρ] modulo 〈η〉 can then be defined. For any α, θ ∈ Z[ρ], we have α ≡ θ (mod η) if and
only if α− θ ∈ 〈η〉. For any α ∈ Z[ρ], the equivalence class of α with respect to η, denoted by
[α]η , is defined to be

[α]η = {θ ∈ Z[ρ] : θ ≡ α (mod η)}.

The set {[α]η : α ∈ Z[ρ]} forms the quotient ring Z[ρ]/〈η〉.
We will soon make use of three results from [4].

Theorem 7 ([4]). If η ∈ Z[ρ] \ {0} is such that η = a + bρ = t(m + nρ), with gcd(a, b) = t
and gcd(m, n) = 1, then the complete residue system is

Z[ρ]/〈η〉 = {[x + yρ]η : 0 ≤ x < tNρ(m + nρ), 0 ≤ y < t},

with [x + yρ]η := x + yρ + 〈η〉.

Theorem 8 ([4]). If η is a primitive Eisenstein integer, then Z[ρ]/〈η〉 ∼= ZNρ(η).

Theorem 9 ([4]). If n ∈ N, then Z[ρ]/〈n〉 ∼= Zn[ρ].

The ring Zn[ρ] is known as the ring of Eisenstein integers modulo n.
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2.4. Even and Odd Eisenstein Integers

By Theorem 7, for β = 1− ρ ∈ Z[ρ], we have Z[ρ]/〈β〉 = {[0]β, [1]β, [2]β}, with

[0]β = {x + yρ ∈ Z[ρ] : x + yρ ≡ 0 (mod β)},
[1]β = {x + yρ ∈ Z[ρ] : x + yρ ≡ 1 (mod β)},
[2]β = {x + yρ ∈ Z[ρ] : x + yρ ≡ 2 (mod β)}.

An Eisenstein integer α is even if α ∈ [0]β. An Eisenstein integer α is odd if α is in [1]β ∪ [2]β.
More precisely, α is odd of Type-1 if α ∈ [1]β. It is odd of Type-2 if α ∈ [2]β. We denote the
respective sets of all even, odd Type-1, and odd Type-2 Eisenstein integers by E, O1, and O2.

Remark 2. By Theorem 6, an Eisenstein integer of the form (1 + ρ)�βψr1
1 · · ·ψ

rm
m is even primitive

and an Eisenstein integer of the form (1 + ρ)�ψr1
1 · · ·ψ

rm
m is odd primitive.

We have a simple characterization based on the sum of the real and the rho parts.

Theorem 10 ([7]). For any x + yρ ∈ Z[ρ], we have

i. x + yρ ∈ E if and only if x + y ≡ 0 (mod 3) if and only if Nρ(x + yρ) ≡ 0 (mod 3).
ii. x + yρ ∈ O1 if and only if x + y ≡ 1 (mod 3), which implies Nρ(x + yρ) ≡ 1 (mod 3).
iii. x + yρ ∈ O2 if and only if x + y ≡ 2 (mod 3), which implies Nρ(x + yρ) ≡ 1 (mod 3).

Example 2. A prime β, its associates and multiples are even Eisenstein integers. The other primes
are odd Eisenstein integers. The prime ψ1 = 2 + 3ρ is an odd Eisenstein integer of Type-2. The
prime ψ2 = 3 + 4ρ is an odd Eisenstein integer of Type-1. Any prime integer p ≡ 2 (mod 3) is an
odd Eisenstein integer of Type-2.

Theorem 11 ([7]). If α, θ, τ, τ′, σ, and σ′ are in Z[ρ] such that θ ∈ E, τ, τ′ ∈ O1, and
σ, σ′ ∈ O2, then

α · θ ∈ E, τ · σ ∈ O2, τ · τ′ and σ · σ′ ∈ O1.

2.5. Unit Group in the Quotient Ring of Eisenstein Integers

The set of all units in Z[ρ]/〈η〉, formally defined to be

(Z[ρ]/〈η〉))∗ = {[α]η ∈ Z[ρ]/〈η〉 : gcd(α, η) = 1},

is a group under multiplication. The Euler-Totient function with respect to η ∈ Z[ρ] is the
order of unit group (Z[ρ]/〈η〉)∗,

ϕρ(η) = |(Z[ρ]/〈η〉)∗|.

If η and 1 are associates, then ϕρ(η) = 1.
Recall that γ denotes a generic Eisenstein prime. We have the following easy way to

determine the units in Z[ρ]/〈γn〉.

Theorem 12 ([4]). The set of all units in Z[ρ]/〈γn〉 are

(Z[ρ]/〈βn〉)∗ = {[x + yρ]βn ∈ Z[ρ]/〈βn〉 : x + y �≡ 0 (mod 3)},
(Z[ρ]/〈ψn〉)∗ = {[x]ψn ∈ Z[ρ]/〈ψn〉 : gcd(x, q) = 1},
(Z[ρ]/〈pn〉)∗ = {[x + yρ]pn ∈ Z[ρ]/〈pn〉 : gcd(x, p) = 1 or gcd(y, p) = 1}.
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The unit group Z∗n in Z is cyclic if and only if n ∈ {2, 4, pk, 2pk}, where p is an odd
prime and k is a positive integer. A necessary and sufficient condition for the unit group
(Z[ρ]/〈η〉)∗ to be cyclic is known.

Theorem 13 ([31,32]). A unit group (Z[ρ]/〈η〉)∗ is cyclic if and only if

η is an element or an associate of an element in {β, β2, 2β, ψk, p},

where k ∈ N, ψ is an Eisenstein prime such that Nρ(ψ) = q ≡ 1 (mod 3), and p is a prime integer
such that p ≡ 2 (mod 3).

Theorem 14 ([7]). If η ∈ Z[ρ] \ {0}, then ϕρ(η) is even, except when η is a unit, or η and 2
are associates.

Theorem 15 ([33]). Let η ∈ Z[ρ] \ {0} be such that η is not a unit. If β �∼ η �∼ 2, then 6 | ϕρ(η).

Theorem 16 ([33]). If η ∼ n for an n ∈ Z, then ϕ(n) | ϕρ(η) and ϕ(ϕ(n)) ≤ ϕ(ϕρ(η)). In
particular, for any positive integer k,

ϕρ(η) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕ(n), if n = 1,

nϕ(n), if n = 3k,

(ϕ(n))2, if n = qk, with q ≡ 1 (mod 3) being a prime integer,(
n + n

p

)
ϕ(n), if n = pk, with p ≡ 2 (mod 3) being a prime integer.

3. Further Properties of Eisenstein Integers

We discuss further properties of primitive, even, and odd Eisenstein integers in the
first subsection. The second subsection centers on the cyclic group of units in the quotient
rings of Eisenstein integers.

3.1. On Even, Odd, and Primitive Eisenstein Integers

Theorem 17. Let α, θ ∈ Z[ρ]. The following statements hold:

i. If α, θ ∈ E, then α + θ ∈ E.
ii. If α, θ ∈ O1, then α + θ ∈ O2.
iii. If α, θ ∈ O2, then α + θ ∈ O1.
iv. If α ∈ O1 and θ ∈ O2, then α + θ ∈ E.
v. If α ∈ E and θ ∈ O1, then α + θ ∈ O1.
vi. If α ∈ E and θ ∈ O2, then α + θ ∈ O2.

Proof. A straightforward application of Theorem 10 confirms the assertions.

Theorem 18. Let α, θ ∈ Z[ρ].

i. If α ∈ E and α ∼ θ, then θ, α ∈ E.
ii. If α ∈ O1 and α ∼ θ, then θ = α, ρα,−(1 + ρ)α ∈ O1, and −θ ∈ O2.
iii. If α ∈ O2 and α ∼ θ, then θ = α, ρα,−(1 + ρ)α ∈ O2, and −θ ∈ O1.
iv. If α ∈ O1, then α ∈ O1.
v. If α ∈ O2, then α ∈ O2.

Proof. We proceed by items as listed.

i. Let α = a + bρ ∈ E and θ ∼ α. By Theorems 4 and 10, Nρ(α) ≡ 0 (mod 3) and
Nρ(θ) = Nρ(α) = Nρ(α) ≡ 0 (mod 3), affirming θ, α ∈ E.
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ii. Assuming α = a + bρ ∈ O1 and α ∼ θ, Theorem 10 yields (a + b) ≡ 1 (mod 3). Hence,

−α = −a− b ≡ 2(a + b) ≡ 2 (mod 3),

ρα = −b + (a− b) ≡ a− 2b ≡ a + b ≡ 1 (mod 3),

−ρα = b + (b− a) ≡ 2b− a ≡ 2b + 2a ≡ 2(a + b) ≡ 2 (mod 3),

−(1 + ρ)α = (−a + b)− a ≡ b− 2a ≡ b + a ≡ 1 (mod 3),

(1 + ρ)α = a− b + a ≡ 2a− b ≡ 2(a + b) ≡ 2 (mod 3).

Thus, θ ∈ O1 and −θ ∈ O2 whenever θ ∈ {α, ρα,−(1 + ρ)α}.
iii. Assuming α = a + bρ ∈ O2 and α ∼ θ, Theorem 10 yields (a + b) ≡ 2 (mod 3). Hence,

−α = −a− b ≡ 2(a + b) ≡ 4 ≡ 1 (mod 3),

ρα = −b + (a− b) ≡ a− 2b ≡ a + b ≡ 2 (mod 3),

−ρα = b + (b− a) ≡ 2b− a ≡ 2b + 2a ≡ 2(a + b) ≡ 4 ≡ 1 (mod 3),

−(1 + ρ)α = (−a + b)− a ≡ b− 2a ≡ b + a ≡ 2 (mod 3),

(1 + ρ)α = a− b + a ≡ 2a− b ≡ 2(a + b) ≡ 4 ≡ 1 (mod 3).

Thus, θ ∈ O2 and −θ ∈ O1 whenever θ ∈ {α, ρα,−(1 + ρ)α}.
iv. Assuming α = a + bρ ∈ O1, Theorem 10 gives us a + b ≡ 1 (mod 3). Hence,

a− b− b ≡ a− 2b ≡ a + b ≡ 1 (mod 3), ensuring α ∈ O1

v. Assuming α = a + bρ ∈ O2, we obtain a + b ≡ 2 (mod 3) by Theorem 10. Hence,
a− b− b ≡ a− 2b ≡ a + b ≡ 2 (mod 3) and −a− b ≡ 2(a + b) ≡ 4 ≡ 1 (mod 3),
which means α ∈ O2.

We can now answer Question 6.1 in [7].

• By Theorem 18 iv. and v., we conclude that distinct primes ψ and ψ which are non-
associates always belong to the the same odd class. Both are in O1 or both are in O2.

• Any prime q ≡ 1 (mod 3) is always in O1. By Theorem 11, however, both ψ and ψ are
in O1 or both are in O2. We note, for example, that both ψ1 = 2+ 3ρ and ψ1 = −1− 3ρ

are in O2. Both ψ2 = 3 + ρ and ψ2 = 2− ρ are in O1, with q = Nρ(ψ1) = Nρ(ψ2) =

7 ≡ 1 (mod 3) being in O1. Without further investigation, the q that corresponds to a
given ψ does not automatically identify which odd class both ψ and ψ belong to.

The next result is a corollary to Theorem 11.

Corollary 1. Given an odd Eisenstein integer

η = ∏
ψi∈O1

ψ
ri
i ∏

ψj∈O2

ψ
sj
j ∏

pk∈O2

ptk
k ,

if (∑ sj + ∑ tk) ≡ 0 (mod 2), then η ∈ O1. Otherwise, η ∈ O2.

Proof. By Theorem 11, if (∑ sj + ∑ tk) ≡ 0 (mod 2), then

∏
ψi∈O1

ψ
ri
i ∈ O1 and ∏

ψj∈O2

ψ
sj
j ∏

pk∈O2

ptk
k ∈ O1,

ensuring η ∈ O1. If (∑ sj + ∑ tk) ≡ 1 (mod 2), then ∏
ψj∈O2

ψ
sj
j ∏

pk∈O2

ptk
k ∈ O2. Since

∏
ψi∈O1

ψ
ri
i ∈ O1, we confirm that η ∈ O2.
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Theorem 19. The associates and conjugates of a primitive Eisenstein integer are also primitive
Eisenstein integers.

Proof. If η = a + bρ such that gcd(a, b) = 1, then

gcd(a− b,−b) = gcd(b− a, b) = gcd(−a,−b) = gcd(a− b, a) = gcd(b− a,−a) = 1.

Hence, its conjugate η = a − b − bρ and associates ±α,±ρα and ±(1 + ρ)α, with ρα =

−b + (a− b)ρ and (1 + ρ)α = (a− b) + aρ, are primitives.

We know from Corollary 3 in [34] that an Eisenstein integer α = a + bρ and its
conjugate α are relatively prime if and only if gcd(a− b, b) = 1 and gcd(a− 2b, 3) = 1.
Since gcd(a− b, b) = 1 is equivalent to gcd(a, b) = 1, and gcd(a− 2b, 3) = 1 is equivalent
to a + b ≡ ±1 (mod 3), we can use the following equivalent expression of the corollary.

Proposition 1. An Eisenstein integer α = a + bρ and its conjugate α are relatively prime if and
only if gcd(a, b) = 1 and a + b ≡ ±1 (mod 3). In short, an Eisenstein integer and its conjugate
are relatively prime if and only if the Eisenstein integer is odd and primitive.

The next result is a direct consequence of Proposition 1.

Corollary 2. If an odd primitive Eisenstein integer η is not a unit, then η and η are not associates.

Proof. Let η be an odd primitive Eisenstein integer such that η is not a unit. If η and η are
associates, then gcd(η, η) = η, which contradicts Proposition 1.

Theorem 20. Let η = ∏
ψi∈O1

ψ
ri
i ∏

ψj∈O2

ψ
sj
j be an odd primitive Eisenstein integer. If ∑ sj ≡

0 (mod 2), then η ∈ O1. Otherwise, η ∈ O2.

Proof. By Theorem 11, if ∑ sj ≡ 0 (mod 2), then

∏
ψi∈O1

ψ
ri
i ∈ O1 and ∏

ψj∈O2

ψ
sj
j ∈ O1,

implying η ∈ O1. On the other hand, if ∑ sj ≡ 1 (mod 2), then ∏
ψj∈O2

ψ
sj
j ∈ O2. Since

∏
ψi∈O1

ψ
ri
i ∈ O1, it is clear that η ∈ O2.

Theorem 21. Let η be a non-unit primitive Eisenstein integer.

i. If η is even, then gcd(η, η) = β.
ii. If η and β are not associates, then η and η are also not associates.

Proof. We prove the assertions according to their order of appearance.

i. Let u ∈ Z[ρ] be a unit and let η = uβψr1
1 · · ·ψ

rk
k . Since β = (1 + ρ)β, we have

η = (1 + ρ)uβψr1
1 · · ·ψ

rk
k .

By Proposition 1, we have gcd(ψr1
1 · · ·ψ

rk
k , ψr1

1 · · ·ψ
rk
k ) = 1. Thus, gcd(η, η) = β.

ii. For a contradiction, let us assume that η and η are associates. Let u ∈ Z[ρ] be a unit
such that η = uψ

r1
1 · · ·ψ

rk
k . Then,

ψ
r1
1 · · ·ψ

rk
k ∼ ψ1

r1 · · ·ψk
rk , contradicting Corollary 2.
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If η = uβψr1
1 · · ·ψ

rk
k for some unit u ∈ Z[ρ], then

βψ
r1
1 · · ·ψ

rk
k ∼ βψ1

r1 · · ·ψk
rk ,

βψr1
1 · · ·ψ

rk
k ∼ (1 + ρ)βψ1

r1 · · ·ψk
rk ,

ψr1
1 · · ·ψ

rk
k ∼ ψ1

r1 · · ·ψk
rk , contradicting Corollary 2.

Theorem 22. If an Eisenstein integer α = a + bρ and its conjugate α are relatively prime, then the
modular multiplicative inverse c ≡ α−1 (mod α) is an integer.

Proof. By Theorem 1 and recalling that Nρ(α) = Nρ(α), we have

1 = gcd
(

Nρ(α),
2√
3

Im(α2)

)
= gcd(a2 + b2 − ab, b(2a− b))

= gcd(a2 + b2 − ab, b) = gcd(a2 + b2 − ab, 2a− b).

Hence, there are integers c and d such that

c(2a− b) + d(a2 + b2 − ab) = c(α + α) + dαα = 1.

We verify that cα ≡ 1 (mod α) and confirm that c ≡ α−1 (mod α).

Corollary 3. If η is an odd primitive Eisenstein integer, then the modular multiplicative inverse
c ≡ η−1 (mod η) is an integer.

Proof. By Proposition 1, gcd(η, η) = 1. Applying Theorem 22 settles the claim.

Theorem 23. An Eisenstein integer α is an associate of α if and only if α is an associate of n or kβ

for some n, k ∈ Z.

Proof. If α ∼ n then α ∼ n and n ∼ α. If α ∼ kβ for some k ∈ Z, then α ∼ kβ ∼ kβ ∼ α.
Conversely, if α = a + bρ and α ∼ α, then α = uα for some unit u in Z[ρ].

• If u = 1, then a + bρ = (a− b)− bρ. In this case, b = 0, which implies α = a.
• If u = ρ, then a + bρ = b + aρ. Hence, a = b, implying α = a + aρ = a(1 + ρ).
• If u = −(1 + ρ), then a + bρ = −a + (b− a)ρ. Hence, a = 0, which yields α = bρ.
• If u = −1, then a + bρ = (b− a) + bρ. We obtain b = 2a and, hence, α = a + 2aρ =

a(1 + 2ρ).
• If u = −ρ, then a + bρ = −b− aρ. We obtain b = −a and, therefore, α = a− aρ =

a(1− ρ).
• If u = 1 + ρ, then a + bρ = a + (a− b)ρ. We have a = 2b, which means α = 2b + bρ =

b(2 + ρ).

Having covered all cases, we confirm that α is an associate of n or kβ for some n, k ∈ Z.

Recalling Theorem 3, we know that ψ �∼ ψ whenever ψ is an Eisenstein prime.

Corollary 4. If α is a primitive Eisenstein integer such that α is not a unit and α is neither β nor
any of its associates, then α and α are not associates.

Proof. Given the conditions on α, it is neither an associate of any n ∈ Z nor a multiple kβ

of β with k ∈ Z. The conclusion follows by Theorem 23.
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3.2. The Group of Units as a Cyclic Group

If α is a generator element of a cyclic group G of order n, then αi is also a generator of
G if and only if gcd(i, n) = 1. The number of generators of such a G is ϕ(n). Moreover, an
α ∈ G is a generator of G if and only if α

n
q �= 1 for each prime divisor q of n.

The cyclic group (Z[ρ]/〈η〉)∗ of order ϕρ(η) have ϕ(ϕρ(η)) generators. Our next
result shows that the probability of successfully selecting one generator in the cyclic group
(Z[ρ]/〈η〉)∗ at random is smaller than doing so in the cyclic group Z∗n.

Theorem 24. If η is an associate of some n ∈ N, then
ϕ(ϕρ(η))

ϕρ(η)
≤ ϕ(ϕ(n))

ϕ(n)
.

Proof. By Theorem 16, we know that ϕ(n) | ϕρ(η) whenever η and n ∈ N are associates.

For a, b ∈ N, it is well known that, if a | b, then ϕ(b)
ϕ(a) ≤

b
a . Hence, we have

ϕ(ϕρ(η))

ϕ(ϕ(n))
≤ ϕρ(η)

ϕ(n)
, which implies

ϕ(ϕρ(η))

ϕρ(η)
≤ ϕ(ϕ(n))

ϕ(n)
.

Example 3. For the Eisenstein prime p = 5, the order of the cyclic group (Z[ρ]/〈5〉)∗ ∼= (Z5[ρ])
∗

is ϕρ(5) = 52 − 1 = 24 whose prime factorization is ϕρ(5) = 23 · 3. Let α be a generator of
(Z5[ρ])

∗. It suffices to show that

α
ϕρ(5)

3 = α8 �= 1 (mod 5) and α
ϕρ(5)

2 = α12 �= 1 (mod 5).

We can select α := 2 + ρ to generate (Z5[ρ])
∗, since α8 = 4 + 4ρ (mod 5) and α12 = 4 (mod 5).

The other seven generators are

α5 = 1 + 4ρ, α7 = 1 + 3ρ, α11 = 3 + 2ρ, α13 = 3 + 4ρ,

α17 = 4 + ρ, α19 = 4 + 2ρ, α23 = 2 + 3ρ.

The group Z∗5 has ϕ(ϕ(5)) = ϕ(4) = 2 generators, namely, 2 and 3. It is clear that

ϕ(ϕρ(5))
ϕρ(5)

=
8

24
<

2
4
=

ϕ(ϕ(5))
ϕ(5)

.

Theorem 25. If (Z[ρ]/〈η〉)∗ is a cyclic group, then

∏
α∈(Z[ρ]/〈η〉)∗

α ≡ −1 (mod η).

Proof. Let (Z[ρ]/〈η〉)∗ be a cyclic group. By Theorem 13, η is an element in the set
{β, β2, 2β, ψk}, a prime p ≡ 2 (mod 3), or any of their associates. We investigate by the
values that η takes.

If γ = β, then, by Theorem 12, we get (Z[ρ]/〈β〉)∗ = {[1]β, [2]β}. Hence,

∏
α∈(Z[ρ]/〈β〉)∗

α ≡ 1 · 2 ≡ 2 ≡ −1 (mod β).

If γ = 2, then (Z[ρ]/〈2〉)∗ is a cyclic group of order ϕρ(2) = 3. Letting θ be a generator,

∏
α∈(Z[ρ]/〈2〉)∗

α ≡ ∏
0≤t≤2

θt ≡ θ3 (mod 2).
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Since the generators of (Z[ρ]/〈2〉)∗ are ρ and 1 + ρ, we have θ3 ≡ 1 ≡ −1 (mod 2).
If γ ∈ {β2, 2β, ψk} or γ = p ≡ 2 (mod 3) such that p �= 2, then ϕρ(γ) is an even

number, by Theorem 14. Letting θ be a generator of (Z[ρ]/〈γ〉)∗,

∏
α∈(Z[ρ]/〈γ〉)∗

α ≡ ∏
0≤t≤ϕρ(γ)−1

θt ≡ θ
ϕρ(γ)(ϕρ(γ)−1)

2 (mod γ).

The order of θ is an even number ϕρ(γ). Hence, θ
ϕρ(γ)

2 ∈ (Z[ρ]/〈γ〉)∗ must be −1 because
−1 is the only element of order 2 in (Z[ρ]/〈γ〉)∗. Since ϕρ(γ)− 1 is an odd number,

θ
ϕρ(γ)(ϕρ(γ)−1)

2 =

(
θ

ϕρ(γ)
2

)ϕρ(γ)−1
(mod γ) = (−1)ϕρ(γ)−1 (mod γ) = −1 (mod η).

The Wilson Theorem over Z had been generalized to Gaussian integers in [35], but not
to Eisenstein integers in the prior literature. We highlight that we have achieved this as a
special case of Theorem 25.

Theorem 26 (Wilson Theorem for Eisenstein Integers). If γ ∈ Z[ρ] is an Eisenstein prime, then

∏
α∈(Z[ρ]/〈γ〉)∗

α ≡ −1 (mod γ).

4. Set Partitioning Based on the Multiplicative Group

In a recent work [8], we proposed a number of Eisenstein constellations Eη as two-
dimensional signal constellations by using the modulo function in (1). The setup, given a
suitable η, has

Eη = {μη(α) : α ∈ Rη} with (3)

Rη = {x + yρ : 0 ≤ x < tNρ(m + nρ) and 0 ≤ y < t}.

In that work, we also introduced set partitioning of Eisenstein integers based on additive
subgroups. In this section, we focus on set partitioning based on the multiplicative group.

We now propose Eisenstein constellations (Eη)∗, corresponding to the cyclic group
(Z[ρ]/〈η〉)∗, with η ∈ {β2, 2β, ψk : k ∈ N} or η being an odd prime integer p ≡ 2 (mod 3).
In doing this, we generalize Proposition 1 in [18], which covers the case of η = ψ. Our set
partitioning technique for signal constellation (Eη)∗ benefits from the facts that (Z[ρ]/〈η〉)∗
is a cyclic group of order ϕρ(η), by Theorem 13, and ϕρ(η) ≡ 0 (mod 6), by Theorem 15.
The elements of (Eη)∗ can be expressed as powers of a generator α as

(Eη)
∗ =

{
α0, α1, . . . , αϕρ(η)−1

}
.

Letting n := ϕρ(η)
6 , the set of all unit (see [29] for η = ψ) is

{αn, α2n, α3n, α4n, α5n, α6n} = {±1,±ρ,±(1 + ρ)}.

We can then partition (Eη)∗ into n subsets, indexed by j ∈ {0, 1, . . . , n− 1}, as

(Eη)
∗
(j) = {αn+j, α2n+j, α3n+j, α4n+j, α5n+j, α6n+j} = {±αj,±ραj,±(1 + ρ)αj}.
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All elements of (Eη)∗ can be found by calculating αj for j ∈ {0, 1, . . . , n − 1} using the
modulo function in (1), followed by multiplying each αj by the units.

Our next result extends Theorem 2 to the cases η ∈ {2β, β2, ψk : k ∈ N} or η being an
odd prime integer p ≡ 2 (mod 3).

Theorem 27. Let η ∈ {2β, β2, ψk : k ∈ N} or η = p, with p ≡ 2 (mod 3) being an odd prime.
If α is a generator of (E)∗η , then the minimum Euclidean distance in the subset (Eη)∗(j) is ‖αj‖.
Furthermore, (Eη)∗(j) can be partitioned into three subsets

(Eη)
∗
(j) = {±αj} ∪ {±ραj} ∪ {±(1 + ρ)αj},

each with minimum Euclidean distance 2‖αj‖. We also can partition (Eη)∗(j) into two subsets

(Eη)
∗
(j) = {αj, ραj,−(1 + ρ)αj} ∪ {−αj,−ραj, (1 + ρ)αj},

each with minimum Euclidean distance
√

3‖αj‖.

Proof. Two neighboring points in (Eη)∗(j) have a phase difference of π/3. Hence, the

pair together with the origin form an equilateral triangle whose sides are of length ‖αj‖,
confirming that the minimum Euclidean distance is ‖αj‖.

The sets {±αj}, {±ραj} and {±(1 + ρ)αj} contain points whose pairwise phase dif-
ference is π, ensuring the minimum distance 2‖αj‖. The sets {αj, ραj,−(1 + ρ)αj} and
{−αj,−ραj, (1 + ρ)αj} contain points whose pairwise phase difference is 2π/3, yielding
the minimum distance of

√
3‖αj‖.

Example 4. (Primitive but not prime) Given a primitive Eisenstein ψ2 = −5 + 3ρ, with
ψ = 2 + 3ρ, we have the cyclic group (Z[ρ]/〈−5 + 3ρ〉)∗ ∼= (E−5+3ρ)

∗ generated by α = 3.
Since ϕρ(ψ2) = 42, we can partition (Eψ2)∗ into 7 subsets defined as

(Eψ2)∗(j) = {±αj,±ραj,±(1 + ρ)αj} with j ∈ {0, 1, 2, 3, 4, 5, 6}.

Since α = 3, by using the modulo function (1), we have

α2 = −4− 2ρ, α3 = −4− ρ, α4 = 1− ρ, α5 = −2, α6 = −1− 3ρ.

We rely on Theorem 27 to partition (Eψ2)∗(j) into three subsets and two subsets, each with respective

minimum Euclidean distances 2‖αj‖ and
√

3‖αj‖ for j ∈ {0, 1, 2, 3, 4, 5, 6} as follows:

(Eψ2)∗(0) = {1, ρ, 1 + ρ, −1,−ρ, −1− ρ},
= {1, −1} ∪ {ρ, −ρ} ∪ {−1− ρ, 1 + ρ},
= {1, ρ, −1− ρ} ∪ {−1,−ρ, 1 + ρ},

(Eψ2)∗(1) = {3, 3 + 3ρ, 3ρ, −3, −3− 3ρ, −3ρ},
= {3, −3} ∪ {3ρ, −3ρ} ∪ {−3− 3ρ, 3 + 3ρ},
= {3, 3ρ, −3− 3ρ} ∪ {−3, −3ρ, 3 + 3ρ},

(Eψ2)∗(2) = {4 + 2ρ, 2 + 4ρ, −2 + 2ρ, −4− 2ρ, −2− 4ρ, 2− 2ρ},
= {4 + 2ρ, −4− 2ρ} ∪ {2 + 4ρ, −2− 4ρ} ∪ {−2 + 2ρ, 2− 2ρ},
= {4 + 2ρ, −2− 4ρ − 2 + 2ρ} ∪ { −4− 2ρ, 2 + 4ρ, 2− 2ρ},
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(Eψ2)∗(3) = {4 + ρ, 3 + 4ρ, −1 + 3ρ, −4− ρ, −3− 4ρ, 1− 3ρ},
= {4 + ρ, −4− ρ} ∪ {3 + 4ρ, −3− 4ρ} ∪ {−1 + 3ρ, 1− 3ρ},
= {4 + ρ, −1 + 3ρ, −3− 4ρ} ∪ {−4− ρ, , 1− 3ρ, 3 + 4ρ},

(Eψ2)∗(4) = {2 + ρ, 1 + 2ρ, −1 + ρ, −2− ρ, −1− 2ρ, 1− ρ},
= {2 + ρ, −2− ρ} ∪ {−1 + ρ, 1− ρ} ∪ {−1− 2ρ, 1 + 2ρ},
= {2 + ρ, −1− 2ρ, −1 + ρ} ∪ {−2− ρ, 1 + 2ρ, 1− ρ},

(Eψ2)∗(5) = {2, 2 + 2ρ, 2ρ, −2, −2− 2ρ, −2ρ},
= {2, −2} ∪ {2ρ, −2ρ} ∪ {−2− 2ρ, 2 + 2ρ},
= {2, 2ρ, −2− 2ρ, } ∪ {−2, 2 + 2ρ, −2ρ},

(Eψ2)∗(6) = {3 + 2ρ, 1 + 3ρ, −2 + ρ, −3− 2ρ, −1− 3ρ, 2− ρ},
= {3 + 2ρ,−3− 2ρ} ∪ {1 + 3ρ, −1− 3ρ} ∪ {−2 + ρ, 2− ρ},
= {3 + 2ρ, −1− 3ρ, −2 + ρ} ∪ {−3− 2ρ, 1 + 3ρ, 2− ρ}.

Figures 1–3 visualize the Eisenstein constellations (Eψ2)∗ and its signal partitions in C.

Figure 1. Set partitioning of (Eψ2 )∗ into seven subsets. Circles represent the integers, with colours
corresponding to indices.
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Figure 2. Set partitioning of (Eψ2 )∗(j) into three subsets. Colours correspond to indices. Forms (circle,
square, and triangle) correspond to subsets.

Figure 3. Set partitioning of (Eψ2 )∗(j) into two subsets. Colours correspond to indices. Forms (circle
and triangle) correspond to subsets.
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Example 5. (Prime but not primitive) Given an Eisenstein prime p = 5, we have the cyclic group
(Z[ρ]/〈5〉)∗ ∼= (E5)

∗ generated by α = 2 + ρ. Since ϕρ(5) = 24, we can partition (E5)
∗ into 4

subsets as
(E5)

∗
(j) = {±αj,±ραj,±(1 + ρ)αj}, with j ∈ {0, 1, 2, 3}.

Since α = 2 + ρ, the modulo function in (1) gives us α2 = −2− 2ρ and α3 = −2 + ρ. By
Theorem 27, we partition (E5)

∗
(j) into three and two subsets each with respective minimum Euclidean

distances 2‖αj‖ and
√

3‖αj‖ for j ∈ {0, 1, 2, 3} as follows:

(E5)
∗
(0) = {1, ρ, 1 + ρ, −1,−ρ, −1− ρ},

= {1, −1} ∪ {ρ, −ρ} ∪ {−1− ρ, 1 + ρ},
= {1, ρ, −1− ρ} ∪ {−1,−ρ, 1 + ρ},

(E5)
∗
(1) = {2 + ρ, 1 + 2ρ, −1 + ρ, −2− ρ, −1− 2ρ, 1− ρ},

= {2 + ρ, −2− ρ} ∪ {−1 + ρ, 1− ρ} ∪ {−1− 2ρ, 1 + 2ρ},
= {2 + ρ, −1− 2ρ, −1 + ρ} ∪ {−2− ρ, 1 + 2ρ, 1− ρ},

(E5)
∗
(2) = {2, 2 + 2ρ, 2ρ, −2, −2− 2ρ, −2ρ},

= {2, −2} ∪ {2ρ, −2ρ} ∪ {−2− 2ρ, 2 + 2ρ},
= {2, −2− 2ρ, 2ρ} ∪ {−2, 2 + 2ρ, −2ρ},

(E5)
∗
(3) = {3 + 2ρ, −3− 2ρ, −2 + ρ, 2− ρ, −1− 3ρ, 1 + 3ρ},

= {3 + 2ρ, −3− 2ρ} ∪ {−2 + ρ, 2− ρ} ∪ {−1− 3ρ, 1 + 3ρ},
= {3 + 2ρ, −1− 3ρ, −2 + ρ} ∪ {−3− 2ρ, 2− ρ, 1 + 3ρ}.

Figures 4–6 visualize the constellation (E5)
∗ and its signal partitions in C.

Figure 4. Set partitioning of (E5)
∗ into four subsets. Circles represent the integers, with colours

corresponding to indices.
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Figure 5. Set partitioning of (E5)
∗
(j) into three subsets. Forms (circle, square, and triangle) correspond

to subsets. Colours correspond to indices.

Figure 6. Set partitioning of (E5)
∗
(j) into two subsets. Form (circle and triangle) correspond to subsets.

Colours correspond to indices.
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5. Discussion

We can use a primitive Eisenstein integer η to construct signal constellations and
complex-valued codes over Eisenstein integers. We consider the setsRη and Eη in (3) as
code alphabets, where Eη is obtained through the modulo function in (1), based on an
isomorphism between Z[ρ] modulo a primitive Eisenstein integer η and Z modulo a norm
of the primitive Eisenstein as in Theorem 8. Codes over Eisenstein integers whose alphabet
set Eψ is an Eisenstein field of cardinality a prime q ≡ 1 (mod 3) were investigated in [29]
and [36]. The Eisenstein field corresponds to a quotient ring of Eisenstein integers over an
ideal generated by a prime and a primitive Eisenstein integer ψ. More generally, a recent
code construction via a quotient ring of Eisenstein integers induced by an ideal generated
by a primitive but not a prime Eisenstein integer can be found in [8]. Table 1 provides an
example. The alphabet set Eψ2 is obtained from the quotient ring Z[ρ]/〈ψ2〉 with primitive
Eisenstein ψ2 = −5 + 3ρ and ψ = 2 + 3ρ via the modulo function in (1).

Table 1. Elements in Z[ρ]/〈ψ2〉 ∼= Z49 and Eψ2 .

Z[ρ]/〈ψ2〉 Eψ2 Z[ρ]/〈ψ2〉 Eψ2 Z[ρ]/〈ψ2〉 Eψ2

[0]ψ2 0 [17]ψ2 −1 + ρ [34]ψ2 −2 + 2ρ

[1]ψ2 1 [18]ψ2 ρ [35]ψ2 −1 + 2ρ

[2]ψ2 2 [19]ψ2 1 + ρ [36]ψ2 2ρ

[3]ψ2 3 [20]ψ2 2 + ρ [37]ψ2 1 + 2ρ

[4]ψ2 −1 + 3ρ [21]ψ2 3 + ρ [38]ψ2 2 + 2ρ

[5]ψ2 3ρ [22]ψ2 4 + ρ [39]ψ2 3 + 2ρ

[6]ψ2 1 + 3ρ [23]ψ2 −3− 4ρ [40]ψ2 4 + 2ρ

[7]ψ2 2 + 3ρ [24]ψ2 −2− 4ρ [41]ψ2 −3− 3ρ

[8]ψ2 3 + 3ρ [25]ψ2 2 + 4ρ [42]ψ2 −2− 3ρ

[9]ψ2 −4− 2ρ [26]ψ2 3 + 4ρ [43]ψ2 −1− 3ρ

[10]ψ2 −3− 2ρ [27]ψ2 −4− ρ [44]ψ2 −3ρ

[11]ψ2 −2− 2ρ [28]ψ2 −3− ρ [45]ψ2 1− 3ρ

[12]ψ2 −1− 2ρ [29]ψ2 −2− ρ [46]ψ2 −3
[13]ψ2 −2ρ [30]ψ2 −1− ρ [47]ψ2 −2
[14]ψ2 1− 2ρ [31]ψ2 −ρ [48]ψ2 −1
[15]ψ2 2− 2ρ [32]ψ2 1− ρ

[16]ψ2 −2 + ρ [33]ψ2 2− ρ

A code is a nonempty subset C ⊆ En
η whose elements are called codewords. A linear code

C of length n over Eη is a submodule of En
η . Since Eη and En

η are abelian groups, we say
that C is a group code if it is a subgroup of En

η . When Eη is a finite field, that is, En
η is a vector

space of dimension n over Eη , a linear code C is a subspace of En
η . We call C an (n, k) code

if C has exactly |Eη |k codewords.
By Corollaries 2 and 4, odd primitives η and η are not associates. Hence, 〈η〉 �= 〈η〉

and, therefore, Z[ρ]/〈η〉 �= Z[ρ]/〈η〉. By Proposition 1, odd primitives ψr1
1 · · ·ψ

rk
k and

ψr1
1 · · ·ψ

rk
k are relatively prime. By the Chinese Remainder Theorem (CRT) with Nρ(ψi) = qi

being a prime integer such that qi ≡ 1 (mod 3), we have

Z[ρ]/〈qr1
1 · · · q

rk
k 〉 ∼= Z[ρ]/〈ψr1

1 · · ·ψ
rk
k 〉 ×Z[ρ]/〈ψr1

1 · · ·ψ
rk
k 〉.

For an even primitive Eisenstein integer η, however, the CRT does not hold. Hence,

Z[ρ]/〈n〉 �∼= Z[ρ]/〈η〉 ×Z[ρ]/〈η〉 with Nρ(η) = n.

Set partitioning based on an additive subgroup is structurally not feasible on the Eisen-
stein field Eψ due to its cardinality being a prime integer. Hence, set partitioning based
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on a multiplicative group of the Eisenstein field Eψ was proposed in [18]. The investigation
leveraged on the fact that a multiplicative group of the Eisenstein field is cyclic to perform
set partitioning. Theorem 27 is an insightful generalization. It extends set partitioning to a
multiplicative group of a quotient ring of Eisenstein integers when the group is designed
to be cyclic.

Given a primitive Eisenstein integer η, the quotient ring Z[ρ]/〈η〉 ∼= ZNρ(η) defines a
finite set of representative elements that form the signal constellation

Eη = {μη(α) : α ∈ ZNρ(η)}.

This constitutes a special case of (3), where μη(α) denotes the modulo function in (1)
applied to an Eisenstein integer α. Such a structure is fundamental in designing mul-
tidimensional lattice codes. It enables efficient encoding and decoding procedures. By
integrating Eisenstein constellations into coding theory, we establish a direct link between
complex-valued codes and structured lattice-based signal constellations. The resulting
codes benefit from increased minimum Euclidean distances, enhancing signal robustness
in noisy communication channels.

6. Summary and Concluding Remarks

We have just reported properties of primitive, even, or odd Eisenstein integers. For
the odd ones, we investigated whether they are of Type 1 or 2 and their implied properties
according to the type.

Given an Eisenstein prime ψ such that Nρ(ψ) = q is a prime integer equivalent to
1 (mod 3), we settled the question posed as Question 6.1 in [7]. If ψ and ψ are distinct
Eisenstein primes which are not associates, then they belong to the same odd class. If
one of them is of Type 1, then the other is also of Type 1. The same goes for Type 2. The
corresponding q, however, is insufficient to conclude which odd class ψ and ψ belong to.

We have confirmed that, if Eisenstein integers α and α are relatively prime, then
α−1 (mod α) is in Z. We also managed to prove that the multiplicative group of the set of
all units in a quotient ring of Z[ρ] forms a cyclic group. This leads to a nice set partitioning,
allowing us to propose Eisenstein signal constellations. Some examples were given to
further illustrate the insights.

Many algebraic signal constellations have been known to enhance the performance
of communication systems. Studying use cases and measuring the optimality of certain
families of constellations form an important topic in modern communications. Constructing
good constellations and benchmarking their performance against previously best-known
ones, either in general or for specific setups, are interesting directions to consider.
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Appendix A. Proof of Theorem 5

We prove by induction. Starting with n = 1, we have

ψn = ψ = x + yρ and Nρ(ψ) = q = x2 + y2 − xy.

Let us assume that gcd(x, y) = r ≥ 1. Hence, r | x and r | y, implying r | (x2 + y2 − xy),
that is r | q. Since q is prime integer, r = 1 or r = q. If r = q, then x = rs = qs and
y = rt = qt for some s, t ∈ Z. Observing that

q = x2 + y2 − xy = q2Nρ(s + tρ),

we obtain 1 = q Nρ(s + tρ), which is impossible since q is a prime integer. Thus, we
conclude that r = gcd(x, y) = 1.

Next, we assume ψk = c + dρ, where gcd(c, d) = 1 for some k ≥ 1. We have

ψk+1 = (x + yρ)k+1 = (x + yρ)k(x + yρ) (A1)

= (c + dρ)(x + yρ) = (xc− yd) + (xd + yc− yd)ρ.

Letting A = xc− yd and B = xd + yc− yd, it now suffices to show that gcd(A, B) = 1.
For a contradiction, suppose that gcd(A, B) = r > 1. We have r | A and r | B. Since
qk+1 = Nρ(ψk+1) = A2 + B2 − AB, we are sure that r | (A2 + B2 − AB), implying r | qk+1.
Since q is a prime integer, r = 1 or r = qm for some m ∈ {1, . . . , k + 1}. We show that
having r = qm is impossible. Again, since r | A and r | B, we can write A = qms and
B = qmt for some s, t ∈ Z. Using the expression

qk+1 = A2 + B2 − AB = q2mNρ(s + tρ), (A2)

we consider three cases, namely, 2m > k + 1, 2m = k + 1, and 2m < k + 1.

Case A1. If 2m > k + 1, then q2m−(k+1) ≥ q > 1. Hence, q2m−(k+1)Nρ(s + tρ) > 1, which
contradicts (A2).

Case A2. If 2m < k + 1, then Nρ(s + tρ) = qk+1−2m = Nρ(ψk+1−2m). By Theorem 4,

s + tρ ∼ ψk+1−2m or s + tρ ∼ ψk+1−2m.

If s + tρ ∼ ψk+1−2m, then

A + Bρ = qm(s + tρ) ∼ qmψk+1−2m.

Since ψk+1 = A + Bρ by Equation (A1), we obtain ψ2m ∼ qm = ψmψm, which means
that ψ ∼ ψ. This contradicts Theorem 3, in which ψ � ψ. Similarly, if s + tρ ∼ ψk+1−2m,
then ψ ∼ ψ, which is a contradiction.

Case A3. If 2m = k + 1, then, by Equation (A2), Nρ(s + tρ) = 1, meaning s + tρ is a unit in
Z[ρ]. Since ψk+1 = A + Bρ = qm(s + tρ), we know that ψk+1 = ψ2m ∼ qm = ψmψm and,
hence, ψ ∼ ψ, which is a contradiction.

Thus, gcd(A, B) = r = 1 and the proof is now complete.
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points in all other cases. It is known that when 2 ≤ α ≤ r− 1, these parameters cannot
be realized by exact-repair storage codes. Each of these codes come with an explicit and
relatively simple repair method, and repair can even be realized as help-by-transfer (HBT)
if desired. The coding states of codes from this family can be described geometrically
as configurations of r + 1 subspaces of dimension α in an m-dimensional vector space
with restricted sub-span dimensions. A few “small” codes with these parameters are
known: one for (r, α) = (3, 2) dating from 2013 and one for (r, α) = (4, 3) dating from 2024.
Apart from these, our codes are the first examples of explicit, relatively simple, optimal
functional-repair storage codes over a small finite field, with an explicit repair method and
with parameters representing an extremal point of the attainable cut-set region distinct
from the MSR and MBR points.
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1. Introduction

The amount of data in need of storage continues to grow at an astonishing rate. The
International Data Corporation (IDC) predicts that the Global Datasphere (the total amount
of data created, captured, copied, and consumed globally) will grow from 149 zettabytes in
2024 [1], to 181 zettabytes by the end of 2025 [2,3], and to an estimated 394 zettabytes in
2028 [4] (a zettabyte equals 1021 bytes). These developments may even be accelerated by
the advancement of generative AI models. In view of these developments, the importance
of efficient data storage management can hardly be underestimated. A major challenge is
to devise storage technologies that are capable of handling these huge amounts of data in
an efficient, reliable, and economically feasible way.

1.1. Distributed Storage Systems and Storage Codes

In modern storage systems, data storage is handled by a Distributed Storage System
(DSS). A DSS stores data across potentially unreliable storage units commonly referred to
as storage nodes, which are typically located in servers in data centers in widely different
locations. Efficient update and repair mechanisms are critical for maintaining stability,
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especially during node failures [5]. To handle the occasional loss of a storage node, the
DSS employs redundancy, in the form of a storage code [6,7]. Often, a DSS simply employs
replication, where the storage code takes the form of a repetition code. But nowadays,
many storage systems such as Amazon S3 [8]; Goole File System [9] and its successor
Colossus [10]; Microsoft’s Azure [11–13]; and Facebook’s storage systems [14,15], offer
a storage mode involving a (non-trivial) erasure code. Especially for cold data (data that
remains unchanged, for example for archiving), but also for warm data (data that needs
to be updated only occasionally), non-trivial erasure codes such as Reed–Solomon (RS)
codes, Locally Repairable Codes (LRCs) or Regenerating Codes (RGCs) are considered or
already applied [7,16]. For example, Microsoft Azure employs a Reed–Solomon code for
archiving purposes [11]. Hadoop implements various Reed–Solomon (RS) codes [17,18],
and the implementation of other codes such as HTEC has been proposed, see, e.g., [19].
The Redundant Array of Independent Disks (RAID) standard RAID-6 specifies the use of
two-parity erasure codes, see, e.g., [20]. Huawei OceanStor Dorado [21,22] employs Elastic
EC, offering choice between replication and EC, for example RAID-TP (triple parity), and
IBM Ceph also offers a choice of EC profiles [23,24] (see also [25]). Several good overviews
of modern storage codes and their performance are available, see for example [16,26–29].
For a general and recent reference on storage systems, see [30], and for an overview of
Big–Data management, see [31].

1.2. Node Repair

In the case of a lost node, the DSS uses the storage code to repair the damage. During
repair, the DSS introduces a replacement node (sometimes called a newcomer node) into the
system and downloads a small amount of data from some of the remaining nodes, referred
to as the helper nodes; the data obtained is then used to compute a block of replacement
data that is to be placed on the replacement node. This process, commonly referred to as
node repair, comes in two variations. In the simplest repair mode, referred to as exact repair
(ER) [32,33], the data stored on the newcomer node is an exact copy of the data stored on
the lost node. A more subtle repair mode, first considered in [6], is functional repair (FR),
where the replacement data need not be an exact copy of the lost data, but is designed
to maintain the possibility of recovering the data that was originally stored, as well as to
maintain the possibility for future repairs. An ER storage code can be thought of as an
erasure code that enables efficient repair. In contrast, an FR storage code can be seen as a
family of codes, all having the same parameters, where an erasure in a codeword from a
code in the family is corrected into a codeword from possibly another code in the family [29]
(Section 3.1.1). We define and discuss linear FR storage codes in detail in Section 3, and
describe an example in Example 1. For a formal definition of general FR storage codes, we
refer to [29] (Section 3.1.1).

1.3. Effectiveness of a Storage Code

Key considerations for measuring the effectiveness of a storage code are the storage
overhead and the efficiency of the repair process. The storage overhead is determined by the
fraction of redundancy employed by the code, and is measured by the rate of the code.
Efficient repair, first of all, requires an easily implementable repair algorithm. Other
important factors are the amount of data that needs to be transferred during repair, referred
to as the repair bandwidth, and the amount of disk I/O, the number of times that a symbol is
accessed on disk. In addition, it is desirable to limit the number of nodes that participate in
the repair process, known as the repair degree [6] or repair locality [34,35].

In general, the data that is transferred by a helper node during repair may be computed
from the available data symbols stored in that node. If each of the helper nodes simply
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transfers a subset of the symbols stored in that node, then we speak of help by transfer
(HBT) [26,29]; if, in addition, no computations are done either at the newcomer node
then we speak of repair by transfer (RPT) [36,37]. We say that a storage code is an optimal-
access code if the number of symbols read at a helper node equals the number of symbols
transferred by that node [26,29,38].

1.4. Regenerating Codes and Locally Repairable Codes

Research into storage codes has diverged into two main directions. Regenerating
codes (RGCs) investigate the possible trade-off between the storage capacity per node
and the repair bandwidth (the total amount of data download during repair), which is
determined by the cut-set bound [6]. On the other hand, Locally Repairable Codes (LRCs)
study the influence of the repair degree, the number of helper nodes that may be contacted
during node repair [34,35,39]. A good overview of the different lines of research on codes
for distributed storage and the obtained results can be found in [40].

We first discuss an often-used model for storage codes, see, i.e., [6,26,27,29]. A regener-
ating code (RGC) with parameters {m, (n, k), (r, α, β)}q is a code that allows for the storage
of m information symbols from some finite field Fq, in encoded form, onto n storage nodes,
each of which being capable of holding α data symbols from Fq. We will refer to α as the
storage capacity or the subpacketization of a storage node. The parameter k indicates that at
all times, the original stored information can be recovered from the data stored on any set
of k nodes. It is assumed that k is the smallest integer with this property; since any set of
r nodes can repair all the remaining nodes, we then have k ≤ r. Note that the rate of the
code is the fraction m/(nα) of information per stored symbol. The resilience of the code
is described in terms of a parameter r, referred to as the repair degree, and a parameter β,
referred to as as the transport capacity of the code. If a node fails, then a replacement node is
introduced into the system, which is then allowed to contact an arbitrary subset of size r
of the remaining nodes, referred to as the set of helper nodes. Each of the helper nodes is
allowed to compute β data symbols, which are then sent to the new node, which uses this
data to compute a replacement block, again of size α. Therefore, the repair bandwidth γ of
a RGC satisfies γ = rβ. It has been shown [6] that the parameters of an RGC satisfy the
cut-set bound

m ≤
k−1

∑
i=0

min(α, (r− i)β). (1)

Remarkably, the cut-set bound is independent of n (but n does influence the required
field size q for code construction). For fixed m, k, and r, the equality case in (1) takes the
form of a piece-wise linear curve that represents the possible trade-off between the storage
capacity α and the transport capacity β. Note that we have α ≥ m/k (since k nodes can
recover the data) and β ≥ α/r (since r nodes can repair); the points on the curve where
α = m/k with minimal β (so with β = α/(r− k + 1)) and β = α/r with minimal α (so with
α = rm/(rk− (k2 − k)/2)) are referred to as the Minimum Storage Regenerating (MSR)
and Minimum Bandwidth Regenerating (MBR) points, respectively. It is easily verified that
the achievable region determined by (1) is convex and has precisely k extreme points (also
referred to as corner points), see Figure 1. We review the cut-set bound in detail in Section 4.
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Figure 1. The typical achievable region for functional repair and for exact repair when k = 4, with
fixed m and r.

An optimal RGC is an RGC with parameters that attain the cut-set bound (1). It has
been shown [41] (Theorem 7) that the MSR and MBR points are the only corner points
that can be achieved by exact-repair RGCs; indeed, the only points on the cut-set bound
between the MSR and MBR points that can be achieved by ER RGCs are the MSR and MSB
points, with the possible addition of a small line segment starting at the MSR point and
not including the next corner point. In fact, it is conjectured that the achievable region for
ER RGCs is described by the (identical) parameter sets of Cascade codes [42] and Moulin
codes [43]. Conversely, it has been shown [44] that every point on the cut-set bound is
achievable by functional-repair RGCs; however, these codes are not (or not really) explicit,
require a very large field size, and do not come with a repair algorithm. As far as we know,
the only known explicit optimal FR RGCs are the partial exact-repair MSR codes with
m = 2k from [37], the explicit k = n− 2 HBT “FMSR” codes in [45] (see also the “random”
NCCloud HBT codes in [46] and the non-explicit k = 2 MSR codes in [47]), and the two
explicit optimal FR RGCs from [48] and from [49,50]. Therefore, it is of great interest to
construct “simple” FR RGCs with a small field size, in corner points different from the MSR
and MBR points.

A Locally Repairable Code (LRC) also has parameters {m, (n, k), (r, α, β)}q, where m, n, k,
α, and β have the same meaning as for RGCs, but now we just require that repair of a failed
node is always possible if we employ a specific set of r helper nodes (i.e., we are allowed
to choose the r helpers). In [51,52] the maximal rate of such codes (without any constraint
on k) was investigated, and in [52], it was conjectured that for the case where r + 1 | n,
the optimal rate is achieved by partitioning the n storage nodes into repair groups of size
r + 1 and, within each repair group, using an {m, (n, r), (r, α, β)}q optimal RGC, so with m
attaining equality in (1). This partly explains our interest in RGCs with these parameters
in this paper. It is an interesting problem to investigate optimal codes for the case where
r + 1 � | n.

1.5. Our Contribution

Many existing storage codes employ MDS codes or, essentially, arcs in projective
geometry, in their construction. Some examples are the MBR exact-repair codes obtained
by the matrix-product code construction in [53], the MSR functional-repair codes in [37]
and in [47], and the exact-repair Moulin codes in [43]. In this paper, we use MDS codes to
construct explicit optimal linear RGCs with n− 1 = r = k, β = 1, and with α an integer
with 1 ≤ α ≤ r, so with m = (2r− α + 1)α/2, which we refer to as (r, α)-regular codes. In
fact, we show that the existence of (r, α)-regular storage codes is equivalent to the existence
of an [r, α, r− α + 1]q MDS code, so they can be realized over finite fields Fq with q ≥ r− 1,
and even as binary codes if r− α ≤ 1. These codes come with a relatively simple repair

169



Entropy 2025, 27, 376

method, and we show that, if desired, they allow for help-by-transfer (HBT) repair. The
parameters of these codes achieve the r extremal points of the achievable cut-set region
for varying α. Note that by employing the obvious space-sharing technique [37], we can
use the two storage codes in consecutive extremal points on the cut-set bound (1) to also
achieve the points between these extremal points. Our construction is based on what
we call (r, α)-regular configurations, collections of r + 1 subspaces of dimension α in an
ambient space of dimension m with restricted sub-span dimensions (such configurations
where called (r, α− 1)-good in [48] and [49], see also [51] (Example 3.3)).

The contents of this paper are organized as follows. In Section 2, we introduce some
notation and we recall various notions from coding theory, and in Section 3, we review
linear storage codes. We revisit the cut-set bound in Section 4, where we also show that
in optimal RGCs with k > 1, no two nodes store identical information; in addition, we
show that if s an integer such that (s − 1)β ≤ α ≤ sβ, then any r − s + 1 nodes carry
independent information, that is, together they carry an amount of information equal to
(r− s + 1)α. In addition, in the case where r = k, we derive an inequality that motivates
our definition of (k, r, s, β)-regular configurations in Section 5, where we also construct
such configurations for all relevant parameters. The (k, r, s, β)-regular configurations with
k = r, β = 1, and α = s are called (r, α)-regular. In Section 6, we investigate the structure of
such configurations. Section 7 contains our main results. Here, we show that the repair
of a lost node in an (r, α)-regular coding state necessarily involves an MDS code, thus
providing a lower bound for the size of the finite field for which an (r, α)-regular storage
code can be constructed. Theorems 3 and 4 together demonstrate existence of (r, α)-regular
codes for all feasible pairs (r, α), and include precise and simple repair instructions for the
corresponding codes. In Section 8, we describe how to obtain smaller (r, α)-regular storage
codes with extra symmetry, involving only (r, α)-regular configurations of a more restricted
type. Finally, in Section 9, we present some conclusions.

2. Notation and Preliminaries

For a positive integer n, we define [n] := {1, . . . , n}. We write Fq to denote the (unique)
finite field of size q. For two vectors a = (a1, . . . , am) and b = (b1, . . . , bm) in some vector
space V ∼= Fm

q , and for a k×m matrix M = (Mi,j) with entries in Fq, define the dot product
a · b := a1b1 + · · ·+ ambm; define M · a := (M(1) · a, . . . , M(k) · a), where M(i) denotes
the i-th row of M; and define a · M = (a · M1, . . . , a · Mk), where M j denotes the j-th
column of M.

We define the span 〈U1, . . . , Un〉 of subspaces U1, . . . , Un of an ambient vector space V
as the collection of all sums u1 + · · ·+ un with ui ∈ Ui for i ∈ [n]. (In other works, the span
is sometimes denoted as U1 + · · ·+ Un.) We simply denote the span 〈〈u1〉, . . . , 〈un〉〉 of the
vectors u1, . . . , un in V by 〈u1, . . . , un〉. We say that subspaces U1, . . . , Un of a vector space
V are independent if dim〈U1, . . . , Un〉 = dim U1 + · · ·+ dim Un, where dim V denotes the
dimension of a vector space V.

We repeatedly use Grassmann’s identity, which states that for vector spaces U, V
we have

dim U ∩V + dim〈U, V〉 = dim U + dim V.

We need various notions from coding theory. For reference, see, e.g., [54].
The support supp(v) of a vector v ∈ Fn

q is the collection of positions i ∈ {1, . . . , n} for
which vi �= 0; the (Hamming) weight w(v) of v is the number of positions i ∈ {1, . . . , n} for
which vi �= 0, that is, w(v) = |supp(v)|. The (Hamming) distance d(v, w) between v, w ∈ Fn

q
is the number of positions i ∈ {1, . . . , n} for which vi �= wi. Note that d(v, w) = w(v−w).

A code C of length n over Fq is just a subset of Fn
q ; the code C is called linear if C is a

subspace of Fn
q . We often refer to the vectors contained in a code as codewords. The minimum
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weight w(C) of a code C is the smallest weight of a nonzero codeword from C, and the
minimum distance d(C) of C is the smallest distance between two distinct codewords from C.
Note that if the code C is linear, then d(C) = w(C). We often refer to a linear code C of
length n, dimension k, and minimum distance d over Fq as an [n, k]q code or as an [n, k, d]q
code; we simply write [n, k] or [n, k, d] if the intended field is clear from the context.

A generator matrix for an [n, k]q code C is a k× n matrix G over Fq with rank k and
with its rowspace equal to C, that is, C consists of the vectors a · G with a ∈ Fk

q. An
(n− k)× n matrix H is a parity-check matrix for C if H has rank n− k and c ∈ C if and only
if H · c = 0. The dual code C⊥ of C is the collection of all vectors x for which x · c = 0 for
all c ∈ C. It is not difficult to see that C⊥ is an [n, n− k]-code, and has generator matrix H
and parity-check matrix G, see also [54] (Chapter 11).

Finally, we need some notions related to MDS codes. As a general reference for this
material, see [54] (Chapter 11). The Singleton bound states that an [n, k, d]q code satisfies
d ≤ n− k + 1. For a proof, see, e.g., [54] (Chapter 1, Theorem 11), or see [55] (Theorem 4.1)
for a generalization for non-linear codes. An [n, k, n− k + 1]q code, that is, a linear code
that attains the Singleton bound, is called an MDS code. A related notion is that of an arc, a
collection of nonzero vectors in Fk

q with the property that any k of them are independent.
(Usually, an arc is defined projectively, that is, as a set of points in PG(k− 1, q), but for our
purposes, this will do.) We say that a k× n matrix M represents an n-arc if the columns
of M constitute an n-arc (i.e., an arc of size n) in Fk

q; alternatively, we refer to such a matrix
as an MDS-generator. (The term MDS matrix comes from cryptography and is commonly
reserved for a matrix M for which [IM] is an MDS-generator.) Consider an [n, k]q code C,
with generator matrix G and parity-check matrix H. Obviously, if H has n− k columns
that are dependent, then C has a nonzero codeword of weight at most n− k. Therefore, C
is MDS if and only if the columns of H form an n-arc. Moreover, if G has k columns that
are dependent, then there exists a ∈ Fk

q with a �= 0 such that the codeword c = G�a is
nonzero but has a 0 in the corresponding positions, so that 0 < w(c) ≤ n− k and C is not
MDS. Hence, C is MDS if and only if G is an n-arc, that is, if and only if its generator matrix
(or parity-check matrix) is an MDS-generator. In particular, C is MDS if and only if C⊥ is
MDS [56] and [57] (Lemma 6.7, p. 245).

Note that Fk
q itself, the repetition codes with parameters [n, 1, n]q and their duals, the

codes with parameters [n, n− 1, 2]q (called even-weight codes when q = 2), are all MDS
codes. For k ≥ 2, let m(k, q) denote the largest n for which an [n, k, n− k + 1]q MDS code
exists. The famous MDS conjecture, proven by Simeon Ball for the case where q is prime
in [58], claims that

m(k, q) =

{
q + 1, for 2 ≤ k < q;
k + 1, for k ≥ q,

(2)

except that when q is even,

m(3, q) = m(q− 1, q) = q + 2. (3)

For k ≥ q, it was shown in [59] that m(k, q) = k + 1, and that an [k + 1, k]q MDS
code is equivalent to the dual of the repetition code, see also [54] (Corollary 7). It is well
known that m(k, q) is at least equal to the stated values in (2) and (3). Indeed, we already
mentioned that ⎛⎜⎜⎜⎜⎝

1 0 · · · 0 −1
0 1 · · · 0 −1
...

...
...

...
0 0 · · · 1 −1

⎞⎟⎟⎟⎟⎠ (4)
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is an MDS-generator for all k; the corresponding linear code for q = 2 is called the even-
weight code. Furthermore, let α1, . . . , αq−1 be the non-zero elements of Fq. If k ≤ q− 1, then⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1 1 0
α1 · · · αq−1 0 0
... · · ·

...
...

...
αk−2

1 · · · αk−2
q−1 0 0

αk−1
1 · · · αk−1

q−1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(5)

is a k× (q + 1) MDS-generator; moreover, if q is even, then⎛⎜⎝ 1 · · · 1 1 0 0
α1 · · · αq−1 0 1 0
α2

1 · · · α2
q−1 0 0 1

⎞⎟⎠ (6)

is a 3× (q + 2) MDS-generator. The corresponding codes are referred to as (Generalized)
Reed–Solomon codes. In fact, for any k, 1 ≤ k ≤ q + 1, such that q is even or k is odd, there
exists a [q + 1, k, q− k + 2] cyclic MDS code over Fq [60] (this corrects an erroneous claim
in [54]). For a reference for the above claims, see, e.g., [54] (Chapter 11, Sections 5–7).

3. Linear Storage Codes

In this paper, we adhere to the vector space view ([33,41,48,51,53,61–63]) on linear
storage codes. Informally, a storage code with symbol alphabet Fq is called linear if the four
processes of data storage, data recovery, the generation of repair data from the helper nodes,
and the generation of the replacement data from the repair data, are all linear operations
over Fq [29]. It turns out that in that case, the storage code can be described in terms
of subspaces of an ambient vector space over Fq referred to as the message space. In the
description below, we will follow a similar approach as in [49,50]. We first need a few
definitions.

Definition 1. We say that the subspaces U1, . . . , Uk of a vector space V form a recovery set for V
if V = 〈U1, . . . , Uk〉.

Definition 2. We say that a subspace U0 of a vector space V can be obtained from subspaces
U1, . . . , Ur of V by β-repair, written as

U1, . . . , Ur
β−−→ U0,

if there are β-dimensional helper subspaces Hj ⊆ Uj (j ∈ [r]) such that U0 ⊆ 〈Hj | j ∈ [r]〉.

We can now present a formal definition of a Linear Regenerating Code (LRGC) in terms
of vector spaces, which can be seen as a “basis-free” representation of a linear storage code.
To understand the definition, think of the data that is stored by the storage code as being
represented by a vector x in the ambient vector space V ∼= Fm

q , referred to as the message
space of the code. Then for every subspace W of V that occurs in the definition, choose a
fixed basis w1, . . . , wt, and think of W as representing the t data symbols x ·w1, . . . , x ·wt.

Definition 3. Let m, n, k, r, α, β be integers for which 1 < k ≤ r < n and β ≤ α ≤ rβ. A linear
storage code with parameters {m, (n, k), (r, α, β)}q consists of an ambient m-dimensional vector space
V over Fq together with a collection S of sequences σ = U1, . . . , Un of α-dimensional subspaces
U1, . . . , Un of V, referred to as coding states of the storage code, with the following properties.
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(i) (Data recovery) Every k subspaces in a coding state σ ∈ S constitute a recovery set for V.
Moreover, we will assume that k is minimal with respect to this property.
(ii) (Repair) For every i ∈ [n] and for every J ⊆ [n] \ {i} with |J| = r, there is a subspace U′i of V

such that (Uj)j∈J
β−−→ U′i for which σ′ := U1, . . . , Ui−1, U′i , Ui+1, . . . , Un is again a coding state

in S .

For future use, we introduce some additional terminology.

Definition 4. We refer to the collection of all the α-dimensional subspaces of V that occur in some
coding state in S as the coding spaces of the linear storage code S .

A subsequence π = U1, . . . , Ui−1, Ui+1, . . . , Un (i ∈ [n]) of a state σ = U1, . . . , Un ∈ S
will be referred to as a protostate of the storage code S .

So to actually employ the collection S as in Definition 3 as a storage code, think of
the stored data as a vector x ∈ V (or as a linear functional, that is, as an element of the dual
V∨ of V mapping a ∈ V to x · a ∈ Fq as in [64]). Then, for every coding space U involved
in S , choose a fixed m× α matrix U = U(U) with columnspace equal to U; now, if U is the
coding space associated with a particular storage node, then we let this node store the α

symbols of the vector c(U, x) := x ·U. Note that if u is any vector in U, with u = Ua ∈ U,
say, then x · u = (x ·U) · a, so for every u ∈ U, we can compute x · u from the stored vector
x ·U. Similarly, for a repair subspace H contained in a helper node with associated coding
space U during repair, we choose a fixed m× β matrix H = H(H) with columnspace equal
to H, and let this (helper) node contribute the β symbols x · H. The code associated with
a coding state σ = U1, . . . , Un is the collection Cσ of all words c(x) in Fnα

q obtained as the
concatenation of the words c(Ui, x) for i ∈ [n] when x ranges over V. Note that Cσ is an
[nα, m]q code with m× nα generator matrix

G(σ) = [U1 · · ·Un],

where U i is a matrix with columnspace Ui, for all i. It is not difficult to verify that the family
of codes Cσ associated with states σ from a storage code S as in Definition 3 indeed has
the desired repair properties when used in this way to store data. Note that the resulting
functional-repair (FR) storage code is exact-repair precisely when the code consists of a
single coding state. In the case where the storage code is FR, at any time every storage
node must “know” its associated coding space. The extra overhead that this entails can be
relatively small if the code is used to store a large number of data vectors simultaneously. For
further details, we refer to [49,50]. The next example illustrates the above.

Example 1 (See also [48] (Example 2.2), [49] (Example 2.6), and [50] (Example 2.7)). We will
construct a binary linear functional-repair storage code S with parameters {m, (n, k), (r, α, β)}q =

{5, (4, 3), (3, 2, 1)}2 (representing the smallest non-MSR/MBR extreme point of the achievable
cut-set region). So let V be a 5-dimensional vector space over F2. A set of three 2-dimensional
subspaces {U1, U2, U3} of V is said to be (3, 2)-regular if any two of them are independent and
〈U1, U2, U3〉 = V (this was called (3, 1)-good in the cited papers). It is easily verified that if
{U1, U2, U3} is (3, 2)-regular, then there are nonzero vectors ai ∈ Ui (i = 1, 2, 3) such that
a1 + a2 + a3 = 0; as a consequence, there is a basis e1, e2, e3, a1, a2 for V such that Ui = 〈ei, ai〉
(i = 1, 2, 3). It is easily checked that with U4 := 〈e1 + e2, e1 + e3〉, any subset of {U1, U2, U3, U4}
of size 3 is (3, 2)-regular. As a consequence, the collection of all states σ = U1, U2, U3, U4 for
which any set of three of the spaces form a (3, 2)-regular collection is a linear storage code with
the parameters as specified. Note that there are coding states that are unreachable, that is, not
obtainable by repair from a protostate; for example, states of the form σ = U1, U2, U3, U4 with
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Ui = 〈ei, ai〉 (i = 1, 2, 3) and with U4 = 〈e1 + e2, e1 + e3 + a1〉; obviously, such states can be
freely deleted from the code.

4. The Cut-Set Bound Revisited

Suppose that the DSS employs an {m, (n, k), (r, α, β)} storage code. Since k is assumed
to be minimal and any r nodes can regenerate the stored information, we have n− 1 ≥ r ≥ k.
(Indeed, to see this, choose an arbitrary set of r helper nodes, and one by one destroy
and repair all the other nodes, employing these helper nodes for each repair. Then the
information contained in the system is just the information that is contained in these r
helper nodes.) Note also that, obviously, m/k ≤ α (since any k nodes regenerate the
stored information), and α ≤ rβ (since r helper nodes, each contributing an amount β

of information, can create a replacement node), and β ≤ α (since α is the maximum
amount that can be contributed by a helper node). Finally, let s be an integer such that
(s− 1)β ≤ α ≤ sβ, or such that β ≤ α ≤ sβ if s = r− k + 1; therefore, we may assume that
r− k + 1 ≤ s ≤ r. We let α := α/m and β := β/m denote the normalized storage capacity
and transport capacity, respectively. Our aim is to provide a quick and informal derivation
of the cut-set bound for RGCs and to establish a few simple properties of optimal codes
that seem to have gone unobserved. First, we show the following.

Lemma 1 (Cut-set bound). Let m, n, k, r be positive integers with n− 1 ≥ r ≥ k, and let α, β

be positive real numbers with β ≤ α ≤ rβ. Let s be an integer such that (s− 1)β ≤ α ≤ sβ if
s = r − k + 2, . . . , r or such that β ≤ α ≤ (r − k + 1)β if s = r − k + 1. A storage code with
parameters {m, (n, k), (r, α, β)} satisfies

m ≤
k−1

∑
i=0

min(α, (r− i)β) = (r− s + 1)α + ((s− 1) + · · ·+ (r− k + 1))β. (7)

Moreover, in the case of equality in (7), we have the following.

• Any r− s + 1 nodes, together, contain an amount of information (r− s + 1)α, that is, these
nodes carry independent information.

• Any two nodes carry an amount of information of at least 2α if s < r or α + (k− 1)β if s = r.
Therefore, if k = 1, then every node carries the stored information, so the code is essentially a
repetition code, but if k ≥ 2, then no two nodes carry identical information .

• If, in addition, we have r = k, then for any J ⊆ [n] with size |J| ≤ k, the information
I(Nj | j ∈ J) contained in any collection of storage nodes Nj with j ∈ J satisfies

I(Nj | j ∈ J) = |J|α (8)

if |J| ≤ r− s + 1, and

I(Nj | j ∈ J) ≥ (r− s + 1)α + ((s− 1) + · · ·+ (s− t))β. (9)

if |J| = r− s + 1 + t with 1 ≤ t ≤ k− r + s− 1.

Proof. Assume that nodes N1, . . . , Nn store the file, and that each k nodes regenerate the
stored file, with every node storing α symbols. Consider nodes N1, . . . , Nr+1. Pretend that
nodes Nr−s+2, . . . , Nk fail in turn, and are replaced by newcomer nodes N′r−s+2, . . . , N′k,
with none of the nodes Nr+2, . . . , Nn ever participating in a repair. Assume that for
i = 1, . . . , k− r + s− 1, the lost node Nr−s+1+i is replaced by newcomer node N′r−s+1+i,
which receives an amount of β information from each node contained in the set of r
helper nodes consisting of the old nodes N1, . . . , Nr−s+1, the new nodes N′r−s+2, . . . , N′r−s+i,
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and the old nodes Nr−s+2+i, . . . , Nr+1. Now consider the sequence K of k nodes de-
fined by K := N1, . . . , Nr−s+1, N′r−s+2, . . . , N′k. The first r − s + 1 nodes N1, . . . , Nr−s+1

in K contain an amount of information that is at most equal to (r − s + 1)α. And for
i = 1, . . . , k− r + s− 1, the information in N′r−s+1+i that is not already contained in the
preceding nodes N1, . . . , Nr−s+1, N′r−s+2, . . . , N′r−s+i in K is the information obtained from
Nr−s+2+i, . . . , Nr+1, so is at most equal to (s− i)β. As a consequence, the amount of in-
formation contained in K is at most equal to (r − s + 1)α + (1 + 2 + · · ·+ (r − k + 1))β,
and since any k nodes should be able to regenerate the stored information, we conclude
that (7) holds. Moreover, we conclude that if the bound (7) holds with equality, then the
nodes N1, . . . , Nr−s+1 in K, together, contain an amount of (r − s + 1)α of information,
and, in addition, a node Nr−s+2+i contributes a further amount iβ of information that is
independent of the information already present in preceding nodes in K.

By keeping track which of the nodes among Nr−s+2, . . . , Nr+1 contributed the various
pieces of information during the above repair process, we see that node Nr−s+2+i for
i = 1, . . . , k − r + s − 2 contributes an independent amount of information iβ, and the
nodes Nk+1, . . . , Nr+1 each contribute an independent amount (k− r + s− 1)β. Also note
that the sequence of nodes N1, . . . , Nk, as well as their order, is arbitrary, and nodes N1

and Nr+1 form an arbitrary pair of nodes. Now, if s < r, then r − s + 1 ≥ 2 and we
already showed that any r − s + 1 nodes, together, contain at least an amount of 2α of
information; and if s = r then nodes N1 and Nr+1, together, contain at least an amount of
α+(k− r+ s− 1)β = α+(k− 1)β of information. Obviously, in the case where k = 1, every
node carries the same information, so the code is essentially a repetition code. Finally, in the
case where r = k, by considering the sequence of nodes N1, . . . , Nr−s+1, Nr+1, . . . , Nr−s+3,
we see that the last claim in the lemma holds.

Definition 5. We say that a Regenerating Code (RGC) with parameters {m, (n, k), (r, α, β)} is
optimal if the bound (1) is attained with equality, and if, moreover, lowering α or β results in
violation of this bound.

Note that if α ≤ (r − k + 1)β, then (7) reads as m ≤ kα. In that case, if the code is
optimal, then according to Definition 5, we must have α = m/k and β = α/(r− k + 1).

It is not difficult to see that in terms of the normalized parameters α := α/m and
β := β/m, we have the following. For s ∈ {r− k + 1, . . . , r}, define

mk,r,s := (r− s+ 1)s+(s− 1)+ · · ·+(r− k+ 1) = (r− s+ 1)s+
(

s
2

)
−

(
r− k + 1

2

)
, (10)

and set
αs := s/mk,r,s, βs := 1/mk,r,s. (11)

Then the feasible cut-set region, the region of all pairs (α, β) that can be realized by tuples
(m, k, r, α, β) for which m ≤ kα, β ≤ α ≤ rβ, and for which (7) holds with s as defined
above, has extreme points (αs, βs) for s = r− k + 1, . . . , r, and is further bounded by the
half-lines α = 1/k = αr−k+1, β ≥ α/(r− k + 1) = βr−k+1 and rβ = α ≥ 2/(2rk− k2 + k),
see Figure 1 in Section 1.

We sometimes refer to the extreme points (αs, βs) (s = r− k + 1, . . . , r) as the corner
points of the achievable region. The corner points (αr−k+1, βr−k+1) and (αr, βr) are known
as the MSR point and the MBR point, respectively (note that these points are equal if and
only if k = 1).

Definition 6. We say that an RGC with parameters {m, (n, k), (r, α, β}q attains a corner point
of the achievable cut-set region if the pair (α/m, β/m) equals one of the pairs (αs, βs) with s ∈
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{r− k + 1, . . . , r}. An RGC that attains the MSR point or the MBR point is referred to as an MSR
code or an MBR code, respectively.

Remark 1. The result in (9) may well hold also for optimal storage codes where r > k, but we have
no proof and no counterexample.

Remark 2. There are cases of optimal codes where (9) is not satisfied with equality. Consider an
MBR code with α = r = k = 3, n = 4, and m = 3 + 2 + 1 = 6. The “standard” code has coding
spaces Ui = 〈e{i,j} | j ∈ [4], j �= i}, where the C(4, 2) = 6 vectors e{i,j} with 1 ≤ i < j ≤ 4 form
a basis. This code satisfies (8) and (9) with equality.

Now, let U1 = 〈e1, e2, e3〉, U2 = 〈e4, e5, e6〉, U3 = 〈e1 + e4, e2, e6〉, and U4 = 〈e2 +

e6, e3, e5〉. Note that U4 can be obtained by repair from U1 (use e3), U2 (use e5), and U3 (use
e2 + e6). Now any two coding spaces span at least a 5-space, and any three span a 6-space, but
U1, U2 are independent.

This example shows that in a coding state, (9) is not necessarily satisfied with equality. But note
that this example can only represent an unreachable state in a storage code with these parameters,
since once we have a protostate with no two spaces disjoint, then the new space has a repair vector
in common with each of the other coding spaces.

5. (k, r, s, β)-Regular Configurations

In this section, let n, k, r be integers with n− 1 ≥ r ≥ k ≥ 1, let s be an integer with
r− k + 1 ≤ s ≤ r, and let mk,r,s be as defined in (10). Moreover, let β be a positive integer
and let α := sβ. Motivated by the results from the previous section—notably, by (8) and
(9)—and by the form of the “small” storage codes from [48,49]) (see also [50]), we introduce
and investigate the following notion.

Definition 7. Let V be a vector space with dim V = mk,r,sβ, and let U1, . . . , Un be α-dimensional
subspaces of V. We say that the collection {U1, . . . , Un} is (k, r, s, β)-regular in V if α = sβ and,
for every integer t with 0 ≤ t ≤ k− (r− s + 1) and for every J ⊆ [n] with |J| = r− s + 1 + t,
we have dim〈Uj | j ∈ J〉 = dtβ, where

dt := dr,s
t := (r− s + 1)s +

t

∑
i=1

(s− i) = (r− s + 1)s + (s− 1) + · · ·+ (s− t). (12)

In addition, we say that {U1, . . . , Un} is (k, r, s)-regular if it is (k, r, s, β)-regular with β = 1,
and (r, s)-regular if it is (k, r, s)-regular with k = r. We will write

mr,s := mr,r,s = (r− s + 1)s + (s− 1) + · · ·+ 1 (13)

to denote the dimension of the ambient space of an (r, s)-regular collection.

Note that Definition 7 requires, in particular, that any r− s + 1 of the vector spaces in
a (k, r, s, β)-regular collection are independent, and that any k of the vector spaces span V.
Our aim in the remainder of this section is to study the properties of the numbers mk,r,s

defined in (10), and to describe a construction of (k, r, s)-regular collections (and, hence, of
(k, r, s, β)-regular configurations for all integers β). To that end, we need the following.

Lemma 2. For i ∈ [s], define mi := min(r− s + i, k). Then r− s + 1 = m1 ≤ · · · ≤ ms = k.
Let t be an integer with 0 ≤ t ≤ k− (r− s + 1), and set u := (r− s + 1) + t. Then r− s + 1 ≤
u ≤ k and

dt = (r− s + 1)s + (s− 1) + · · ·+ (s− t) =
s

∑
i=1

min(mi, u).
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In particular, for mk,r,s as defined in (10), we have

mk,r,s = ds−(r−k+1) = m1 + m2 + · · ·+ ms.

Proof. Since r − k + 1 ≤ s, we have r − s + 1 ≤ k, hence m1 = r − s + 1. Also,
ms = min(r, k) = k. Obviously, mi ≤ mj if i < j. Therefore, the first claim follows im-
mediately. Since u = (r − s + 1) + t ≤ k, we have min(mi, u) = min(r − s + i, u), so we
have

∑s
i=1 min(mi, u) = (r− s + 1) + · · ·+ (r− s + t) + (s− t)u

= (r− s + 1)t + 0 + 1 + · · ·+ (t− 1) + (s− t)(r− s + 1) + (s− t)t

= (r− s + 1)s + 0 + 1 + 2 + · · ·+ (t− 1) + t(s− t)

= (r− s + 1)s + (s− t) + · · ·+ (s− 1) = dt.

Taking t = k − (r − s + 1), we have u = k ≥ mi for all i, and we find that mk,r,s =

dk−(r−s+1) = ∑s
i=1 min(mi, k) = ∑s

i=1 mi.

Now, to construct a (k, r, s)-regular configuration of size n ≥ r + 1, we proceed as
follows. For i ∈ [s], let Mi be a mi × r MDS-generator over a sufficiently large field Fq, and
let M := diag(M1, . . . , Ms). Now let Uj := 〈M1(j), M2(j), . . . , Ms(j)〉, where Mi(j) denotes
the j-th column of Mi. Also, write V′i = F

mi
q and let V := V1 ⊕ · · · ⊕ Vs = 〈V1, . . . , Vs〉,

where we identify V′i with the subspace Vi := {0} ⊕ · · · ⊕ {0} ⊕V′i ⊕ {0} ⊕ · · · ⊕ {0} of V.
Note that dim Uj = s (j ∈ [n]), and, by Lemma 2, we have that dim V = mk,r,s.

Theorem 1. Given the above definitions, σ := {U1, . . . , Un} is (k, r, s)-regular, and σ can be
constructed from a generator matrix of an [r, k, r − k + 1]q MDS code (that is, from a k × r
MDS-generator).

Proof. We begin by remarking that since mi ≤ k ≤ r and ms = k, the matrices Mi can
indeed be constructed if the field size q is large enough. Indeed, the matrices M1, . . . , Ms−1

can be constructed from a matrix Ms by deleting some columns, and since ms = k, such a
matrix exists if and only if there exists an [r, k, r− k + 1]q MDS code. Note that for i ∈ [s],
the columns of Mi are in V′i ; hence, the corresponding columns in M are in Vi. Next,
consider the span of a collection Ui for i ∈ I, where |I| = u. Since this span contains u
vectors from Vi, which correspond to u columns from Mi, the MDS property of Mi implies
that the dimension of their span is equal to min(mi, u). Therefore, with u := (r− s + 1) + t,
according to Lemma 2, the span in V is equal to ∑s

i=1 min(mi, u) = dt, as required. In
particular, for t := k− (r− s + 1), we have m := dim V = dt = mk,r,s.

The above suggests investigating storage codes with parameters {mk,r,s, (n, k), (r, s, 1)}
and with coding states that are (k, r, s)-regular. This is the subject of Sections 7 and 8 for
the case where k = r. We note that not every such coding state is reachable by repair,
see Example 2 below.

Example 2. Let U1 := 〈a1, b1〉. U2 := 〈a2, b2〉, U3 := 〈a3, b1 + b2〉, and U4 := 〈−a1 − a2 −
a3, b1 − b2〉, where V := 〈a1, a2, a3, b1, b2〉 has dimension 5. Then σ := {U1, U2, U3, U4} is
(3, 2)-regular, but no subspace Ui can be obtained from the other three subspaces Uj with j �= i
by 1-repair. Therefore, σ cannot be a reachable coding state in a {5, (4, 3), (3, 2, 1)} storage code.
Replacing U4 by U′4 := 〈a1 − a2, a1 − a3〉 yields a (3, 2)-regular configuration that could be a
reachable state in a storage code with these parameters.
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In Section 8, we shall describe an alternative construction of an (r, s)-regular configuration.
Here, we state a useful property of the numbers mk,r,s that is needed in that construction.

Lemma 3. We have

mk,r,s = (r− s + 1)s + (s− 1) + · · ·+ (r− k + 1)

=

{
r + mk−1,r−1,s−1, if s > r− k + 1);
ks, if s = r− k + 1,

and hence

mk,r,s = r + (r− 1) + · · ·+ (2r− s− k + 2) + (r− s + 1)(r− k + 1). (14)

Proof. If r− k + 1 < s, then with r′ := r− 1, k′ := k− 1, s′ := s− 1, we have

mk,r,s = (r− s + 1)s + (s− 1) + · · ·+ (r− k + 1)

= (r′ − α′ + 1)s′ + (r− s′) + s′ + (s′ − 1) + (r′ − k′ + 1)

= r + mk′ ,r′ ,s′ .

The last claim follows immediately from this claim by induction.

6. The Structure of an (r, r, s, β)-Regular Configuration

In this section, we consider the case where r = k. We begin with a result that is
fundamental for what follows.

Lemma 4. Let U1, . . . , Ur be subspaces of a vector space V. Define

Ui := 〈Uj | j ∈ [r], j �= i〉. (15)

Suppose that Hi is a subspace of Ui with Hi ∩ Ui = {0} for all i ∈ [r]. Then, with
H := 〈Hi | i ∈ [r]〉, we have dim H = ∑ dim Hi, and for every J ⊆ [r], we have 〈Uj | j ∈
J〉 ∩ H = 〈Hj | j ∈ J〉.

Proof. Let j and t be integers with 0 ≤ j < t ≤ r. Since U1, . . . , Uj, H1, . . . , Ht−1 ⊆ Ut and
Ht ∩ Ut = {0}, we have dim〈U1, . . . , Uj, H1, . . . , Ht〉 = dim〈U1, . . . , Uj, H1, . . . , Ht−1〉 +
dim Ht. Since H1, . . . , Hj ⊆ 〈U1, . . . , Uj, 〉, by induction we have that

dim〈U1, . . . , Uj, H1, . . . , Hr〉 = dim〈U1, . . . , Uj〉+
r

∑
i=j+1

dim Hi. (16)

By (16) for j = 0, we conclude that dim H = ∑ dim Hi, which proves the first part of
the lemma. Next, let J ⊆ [r] with |J| = j. After renumbering the subspaces if necessary, we
may assume that J = {1, . . . , j}. By (16) and Grassmann’s identity, we have

dim〈U1, . . . , Uj〉 ∩ H = dim〈U1, . . . , Uj〉+ dim H − dim〈U1, . . . , Uj, H〉 =
j

∑
i=1

dim Hj.

Since H1, . . . , Hj ⊆ 〈U1, . . . , Uj〉 and dim〈H1, . . . , Hj〉 = ∑
j
i=1 dim Hi, we conclude

that 〈U1, . . . , Uj〉 ∩ H = 〈H1, . . . , Hj〉, so the second part of the lemma follows.

Now assume that r, s, and β are positive integers with 1 ≤ s ≤ r and r ≥ 2; set α := sβ;
and let V be an m-dimensional vector space over some finite field Fq with m = mr,sβ, where
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mr,s is as defined in (10). Assume that π = {U1, . . . , Ur} is (r, r, s, β)-regular in V. For
i ∈ [r], let Hi be a β-dimensional subspace of Ui with Hi ∩Ui = {0}, where Ui is as defined
in (15), and define H := 〈H1, . . . , Hr〉. Below, we will use these assumptions to draw a
number of conclusions. First note that since π is (r, r, s, β)-regular, we have

dim Ui = m− β (17)

and
〈Ui, Ui〉 = V (18)

for all i ∈ [r]. By Lemma 4, H1, . . . , Hr are independent in H, so dim H = rβ. Next, we note
the following.

Lemma 5. We have that
dim U1 ∩U2 ∩ · · · ∩Ut = m− tβ

for all t; in particular, with
V′ := ∩r

j=1Uj, (19)

we have dim V′ = m− rβ.

Proof. We use induction on t. By (17), the result certainly holds for t = 1. Now, let t ≥ 2,
and suppose the claim holds for smaller values of t. First, we observe that since Ut is
contained in U1, . . . , Ut−1, by (18), we have 〈U1 ∩ · · · ∩Ut−1, Ut〉 ⊇ 〈Ut, Ut〉 = V. Hence

dim〈U1 ∩ · · · ∩Ut−1, Ut〉 = m. (20)

By the induction hypothesis, dim U1 ∩ · · · ∩Ut−1 = m + (t− 1)β, so using (17), (20),
and Grassmann’s identity, we obtain

dim U1 ∩ · · · ∩Ut = dim U1 ∩ · · · ∩Ut−1 + dim Ut − dim〈U1 ∩ · · · ∩Ut−1, Ut〉
= (m− (t− 1)β) + (m− β)−m = m− tβ.

The last claim in the lemma follows by letting t = r.

Lemma 6. We have 〈V′, H〉 = V and V′ ∩ H = {0}. (We will write this as V = V′ ⊕ H,
identifying V′ with V′ ⊕ {0} and H with {0} ⊕ H.)

Proof. We already noted that dim H = rβ. Moreover, since r ≥ 2, using Lemma 4 we have

H ∩V′ ⊆ H ∩U1 ∩U2 = (H ∩U1) ∩ (H ∩U2) = H1 ∩ H2 = {0}.

By Lemma 5, we have dim V′ = m− rβ, so dim V = dim V′ + dim H, and the claimed
result follows.

Next, for i = 1, . . . , r, we define

U′i := Ui ∩V′. (21)

Lemma 7. For all i ∈ [r], we have dim U′i = (s− 1)β and Ui = U′i ⊕ Hi.

Proof. Let i ∈ [r]. Since Ui ⊆ Uj for j �= i, we have that

U′i = Ui ∩V′ = Ui ∩ (∩r
j=1Uj) = Ui ∩Ui.
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So by (17), (18), and Grassmann’s identity, we have

dim U′i = dim Ui ∩Ui = dim Ui + dim Ui − dim〈Ui, Ui〉 = sβ + (m− β)−m = (s− 1)β.

Since U′i , H ⊆ Ui, U′i = Ui ∩ V′, and H ∩Ui = Hi by Lemma 4, the claimed results
now follow.

We summarize the above result in the following theorem.

Theorem 2. Let r, s, and β be positive integers with 2 ≤ s ≤ r and r ≥ 2; set α := sβ; and let V
be a vector space with m := dim V = mr,sβ, with mr,s as defined in (13).

(i) Let V′ and H be subspaces of V for which V = 〈V′, H〉 and V′ ∩ H = {0} (so that
V = V′ ⊕ H), and let m′ := dim V′ = m− rβ = mr−1,s−1 and dim H = rβ. Furthermore,
let H1, . . . , Hr be independent in H with dim Hi = β (i ∈ [r]), and let σ′ = {U′1, . . . , U′r} be
(r− 1, r− 1, s− 1, β)-regular in V′. Then, with Ui := 〈U′i , Hi〉 = U′i ⊕ Hi (i ∈ [r]), we have that
π = {U1, . . . , Ur} is (r, r, s, β)-regular in V; moreover, V′ satisfies (19), U′i = Ui ∩V′, Hi ⊆ Ui,
and Hi ∩Ui = {0}, where Ui is as defined in (15).

(ii) Conversely, if π = {U1, . . . , Ur} is (r, r, s, β)-regular in V, then π can be put in the form
as in (i) by letting V′ be as in (19), and, for all i ∈ [r], letting U′i := Ui ∩V and choosing Hi ⊆ Ui

with Hi ∩Ui = {0}.

Proof. We first note that m − rβ = mr−1,s−1 by Lemma 3. With dr,s
t as in (12), we have

dr,s
t = dr−1,s−1

t + (r − s + 1) + t for integers t with 0 ≤ t ≤ s− 2. Now, if Ui = U′i ⊕ Hi

(i ∈ [r]), then with J ⊆ [r] with |J| = r − s + 1 + t and 0 ≤ t ≤ s− 1, we have dim〈Uj |
j ∈ J〉 = dim〈U′j | j ∈ J〉+ β|J|. So for t < s− 1, we have dim〈Uj | j ∈ J〉 = dr,s

t β if and

only if dim〈U′j | j ∈ J〉 = dr−1,s−1
t β, and, in addition, dim〈Uj | j ∈ [r]〉 = dim V if and

only if dim〈U′j | j ∈ [r]〉 = dim V′. We conclude that π is (r, r, s, β)-regular in V if and
only if σ′ is (r− 1, r− 1, s− 1, β)-regular in V′. This proves part (i); part (ii) follows from
Lemmas 5–7.

The next lemma handles the case where s = 1.

Lemma 8. Let σ = {U1, . . . , Ur+1} be (r, r, 1, β)-regular in a vector space V with m := dim V =

mr,1,ββ = rβ. Then there is a basis {hi,j | i ∈ [r], j ∈ [β]} of V such that Ui = 〈hi,j | j ∈ β〉
for i ∈ [r] and Ur+1 = 〈−h1,j − · · · − hr,j | j ∈ [β]〉. In particular, the resulting storage code is
linear, exact-repair, and optimal, meeting the cut-set bound in the MSR point.

Proof. Since σ is (r, r, 1, β)-regular, U1, . . . , Ur are independent in V and every vector u
in Ur+1 is of the form u = u1 + · · ·+ ur with ui ∈ Ui (i ∈ [r]). Now, let h1, . . . , hβ be a
basis for Ur+1, and let hi = hi,1 + · · ·+ hi,β with hi,j ∈ Ui for j ∈ [β] and i ∈ [r]. Since
〈Uj | j ∈ [r + 1], j �= i〉 = V, we conclude that Ui = 〈hi,j | j ∈ [β]〉 for all i ∈ [r]. Since
Ur+1 = 〈−h1, . . . ,−hr〉, the first claim follows. It is also easily checked that a lost coding
space Ui can be exactly repaired from knowledge of all the vectors ht,j (j ∈ [β] for t ∈ [r + 1],
t �= i. Since s = 1, the resulting code is an ER MSR storage code.

The case where s = r is more complicated, as is illustrated by the example below.

Example 3. The standard example is the following. Let dim V = β(r + 1)r/2, let H{i,j} (1 ≤
i < j ≤ r + 1 be independent in V with dim H{i,j} = β, and let Ui = 〈H{i,j} | j ∈ [r + 1], j �= i〉.
Then σ = {U1, . . . , Ur+1} is (r, r, r, β)-regular in V. But already for r = 2 and β = 1 we have
a different example. Indeed, let dim V = m2,2 = 3 with V = 〈e, a1, a2〉, and let U1 := 〈e, a1〉,
U2 := 〈e, a2〉, and U3 := 〈e, a1 + a2〉. Then σ = {U1, U2, U3} is (2, 2)-regular.
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We leave the determination of (r, r, r, β)-regular configurations as an open problem.

7. Main Results

In this section, we specialize to the case where β = 1 and, except in Corollary 1, also
k = r. The following simple result may be of independent interest.

Lemma 9. Let U1, . . . , Ur be subspaces in an m-dimensional vector space V over Fq. Let hi ∈ Ui

(i ∈ [r]), and suppose that U0 is a subspace of H := 〈h1, . . . , hr〉 with dim U0 = α. Define C ⊆ Fr
q

to be the collection of all c ∈ Fr
q for which ∑r

i=1 cihi ∈ U0. If every collection {Uj | j ∈ J ∪ {0}}
with J ⊆ [r] and |J| = r − α is independent, then h1, . . . , hr are independent and C is an
[r, α, r− α + 1]q MDS code.

Proof. Since U0 is a subspace, the code C is linear over Fq. Suppose that (after renumbering
if necessary) h1, . . . , ht form a basis of H, for some t ≤ r. Let C0 be the subcode of C
consisting of all c ∈ C with supp(c) ⊆ [t]}. Obviously, every u ∈ U0 can be written
as u = ∑ cihi for a codeword c ∈ C0, and since h1, . . . , ht are independent, every such
expression is unique. As a consequence, dim C0 = dim U0 = α. Moreover, if C0 contains a
nonzero codeword c with |supp(c)| ≤ r− α, then U0 and the subspaces Uj with j ∈ supp(c)
are not independent, since the word u ∈ U0 corresponding to the codeword c can be written
as a linear combination of the vectors hj with j ∈ supp(c). Therefore, C0 is a linear code
of length at most r, of dimension α, and with minimum distance at least r− α + 1. By the
Singleton bound, we conclude that t = r and C0 has minimum distance r − α + 1. As a
consequence, h1, . . . , hr are independent and C0 = C; hence C is an [r, α, r− α + 1] MDS
code over Fq.

Remark 3. We note that a similar result holds if β > 1 and α = sβ. As before, we can describe U0

in terms of an [rβ, sβ]q code, with the positions partitioned into r groups of β positions each, but we
can now only conclude that a nonzero codeword is nonzero in at least r− s + 1 of these groups, and
so the code need not be MDS. However, by considering the code an a code of length r over the larger
symbol alphabet Fqβ , we see that the minimum symbol-weight of this Fq-linear but not Fqβ -linear
code of length r and size (qβ)s is at least r− s + 1, so the minimum symbol-distance is r− s + 1.
Therefore, this code meets the Singleton bound for non-linear codes [55] (Theorem 4.1), and is, again,
a (non-linear) MDS code (or MDS array code). We leave further details to the interested reader.

Lemma 9 has an interesting consequence.

Corollary 1. If there exists an optimal linear FR storage code with parameters {m, (n, k), (r, α, 1)}q

in a corner point of the achievable cut-set region (that is, with α integer), then there exists an
[r, α, r− α + 1]q MDS code.

Proof. Suppose that π = U1, . . . , Un−1 is a protostate of such a code. Then we can choose
helpers hi ∈ Ui for i ∈ [r] and a subspace U0 ⊆ H := 〈hi | i ∈ [r]〉 with dim U = α such
that σ = U1, . . . , U0, . . . , Un−1 is a coding state of that code. By Lemma 1, any collection
of subspaces Uj (j ∈ J) with |J| = r− α + 1 is independent. Now the desired conclusion
follows from Lemma 9.

We are now ready to state our main result. This result was announced already in [48]
(Theorem 4.1), but, unfortunately, the required extra condition on the helper nodes was
inadvertently omitted.

Theorem 3. Suppose that π = {U1, . . . , Ur} is (r, α)-regular in a vector space V of dimension
m = mr,α = α(2r − α + 1)/2 over a finite field Fq, and let hi ∈ Ui for i ∈ [r]. Define Ui as
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in (15). Then Ui \Ui is nonempty for all i ∈ [r]. Let C ⊆ Fr
q and let U0 := {c1h1 + · · ·+ crhr |

c = (c1, . . . , cr) ∈ C}. Then σ := {U0, U1, . . . , Ur} is an (r, α)-regular extension of π if and only
if hi ∈ Ui \Ui for all i ∈ [r] and C is an [r, α, r− α + 1] MDS code over Fq.

Proof. Note that by our assumption on π, we have dim Ui = m− 1 and dim〈Ui, Ui〉 =
dim V = m, hence Ui is not contained in Ui; so Ui \Ui is nonempty.

We begin by showing that the conditions on the vectors hi (i ∈ [r]) and on C are
necessary. So suppose that σ is (r, α)-regular. First, if hi ∈ Ui, then U0 ⊆ Ui, hence σ \ {Ui}
is contained in the proper subspace Ui of V, so it is not an (r, α)-configuration, contradicting
our assumption. Hence hi ∈ Ui \Ui for all i. Then by Lemma 4 with Hi := 〈hi〉 (i ∈ [r]),
the vectors h1, . . . , hr are independent. Next, let C denote the collection of all c ∈ Fr

q for
which ∑ cihi ∈ U0. Since h1, . . . , hr are independent, we have C = C and by Lemma 9, we
have that C, hence also C, is an [r, α, r− α + 1]q MDS code.

Now, we show that the conditions are also sufficient. So assume that hi ∈ Ui \Ui

for all i and that C is [r, α, r − α + 1] MDS. By Lemma 4 with Hi = 〈hi〉 (i ∈ [r]), the
vectors h1, . . . , hr are independent; hence dim U0 = dim C = α. Next, let J ⊆ [r] ∪ {0} with
|J| = r− α + 1 + t for some integer t with 0 ≤ t ≤ k− r + s− 1. According to Definition 5,
we have to show that dim〈Uj | j ∈ J〉 = dt = (r − α + 1)α + (α− 1) + · · ·+ (α− t). If
0 /∈ J, this holds since π is (r, α)-regular. So assume that J = J0 ∪ {0} with J0 ⊆ [r] and
|J0| = r− α + t. Again using that π is (r, α)-regular, we have dim〈Uj | j ∈ J0〉 = dt−1, so
by Grassmann’s identity,

dim〈Uj | j ∈ J〉 = dt−1 + α− dim〈Uj | j ∈ J0〉 ∩U0, (22)

which is also correct for t = 0 if we set d−1 := (r− α)α. Setting H := 〈h1, . . . , hr〉, we have
U0 ⊆ H; hence, using Lemma 4 and setting C0 := {c ∈ C | supp(c) ⊆ J0}, we have

〈Uj | j ∈ J0〉 ∩U0 = 〈Uj | j ∈ J0〉 ∩ H ∩U0 = 〈hj | j ∈ J0〉 ∩U0 = {∑ cjhj | c ∈ C0}. (23)

Now C is MDS and dim C = α; hence, dim C0 = max(0, α− (r− |J0|)) = max(0, t) = t.
So combining (22) and (23), we have

dim U0 ∩ 〈Uj | j ∈ J0〉 = dt−1 + α− t = dt.

Since J0 is arbitrary, we conclude that σ is (r, α)-regular and of size r+ 1 as claimed.

This theorem has the following important consequence.

Theorem 4. Let Fq be the finite field of size q. Suppose that there exists an [r, α, r− α + 1] MDS
code C over Fq. Then the family of all (r, α)-configurations of size r + 1 in a vector space V of
dimension m = mr,α = (r− α + 1)α + (α− 1) + · · ·+ (r− k + 1) over Fq forms the collection
of coding states of an optimal linear storage code over Fq with parameters {m, (r + 1, r), (r, α, 1)}q.
The protostates of his code are the (r, α)-regular configurations of size r.

Proof. In Theorem 1, we showed how to use an [r, α, r− α + 1]q MDS code C to construct
an (r, α)-regular configuration of size r + 1, so the collection of coding states in the theorem
is nonempty. And if a coding space is lost, then we are left with a protostate, which is
(r, α)-regular of length r, and we can use Theorem 3 and the MDS code C to repair this
protostate to another coding state.

It is usually possible to use a subset of the collection of all (r, α)-configurations of
length r + 1 as coding states. A rather obvious restriction is discussed in the remark below.
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Remark 4. In Theorem 4, we can limit the coding states to all (r, α)-regular collections of size r + 1
in V that can be obtained by repair from a subcollection of size r, since other ones are not reachable.
For example, let V = F5

2, and let a1, a2, e1, e2, e3 be a basis for V; set a3 := a1 + a2. For i ∈ [3],
define Ui := 〈ai, ei〉, define U4 := 〈e1 + e2, a1 + e1 + e3〉, and define U′4 := 〈e1 + e2, e1 + e3〉. It
is easily verified that both π := {U1, U2, U3, U4} and π′ := {U1, U2, U3, U′4} are (3, 2)-regular of
size 4 (in fact, it can be shown that, up to a linear transformation, every (3, 2)-regular configuration
is equal to either π or π′), and, moreover, no subspace Ui (i ∈ [4]) can be obtained by 1-repair from
the other three subspaces in π. So there is no need to include configurations such as π as coding
states of a {5, (4, 3), (3, 2, 1)}2 storage code.

In view of Theorem 3, Theorem 4, and of Remark 4, we introduce the following.

Definition 8. Let r and α be integers with 1 ≤ α ≤ r. An optimal linear storage code with
parameters {mr,α, (r + 1, r), (r, α, 1)} is called an (r, α)-regular storage code if the code has an
ambient space V with dim V = mr,α and if every coding state is an (r, α)-regular configuration
in V.

In the next section, we will introduce a more interesting family of (r, α)-regular stor-
age codes.

We end this section with two further remarks.

Remark 5. We show in Theorem 3 that an (r, α)-regular storage code over a finite field Fq exists if
and only if an [r, α, r− α + 1]q MDS code exists. As rightly pointed out by a reviewer, that leaves
open the possibility that a storage code with parameters {mr,α, (r + 1, r), (r, α, 1)}q exists while no
[r, α, r− α + 1]q MDS code exists. We are not aware of any non-existence results for regenerating
codes in terms of the alphabet size (even for MBR codes, this is listed as Open Problem 1 in [29]), so
we cannot rule out this possibility. If one could prove that (9) always holds with equality, then we
could conclude that every linear {mr,α, (r + 1, r), (r, α, 1)} storage code is (r, α)-regular, but we do
not see how to prove that (if it is true at all, which we doubt). But given the strong relation between
construction methods for storage codes and MDS codes, and given our idea that these (r, α)-regular
codes are, in a sense, “best-possible”, we strongly believe that these codes indeed realize the smallest
possible alphabet size for their parameters. We leave this question as an interesting open problem.

Remark 6. Interestingly, every storage code as in Theorem 3 can be realized as an optimal-access
code, and, in fact, as a help-by-transfer (HBT) code. Essentially, with notation as in Theorem 3,
the reason is that if a coding space Ui is represented by a basis e1, . . . , eα, then since Ui � Ui,
there must be an index j ∈ [α] such that ej ∈ Ui \Ui. Note that this property need not hold
for every (r, α)-regular storage code, since it may be required to choose helper vectors outside
the given basis in order to repair to an available coding state. An example of this is given by
the (r, α) = (3, 2)-regular code from [48], as can be seen from its description in [50]. It is an
interesting problem to find the smallest (3, 2)-regular HBT code. We leave further details to the
interested reader.

8. Smaller (r, α)-Regular Storage Codes

Inspired by Theorem 2, we will use Theorem 3 to produce a second (essentially
recursive) construction of an (r, α)-regular collection of size r + 1.

To this end, let V be a vector space over Fq with dim V = mr,α. For t = 1, . . . , α, let
C(δ+t) be an [δ − 1 + t, t, δ]q MDS code, where δ = r − α + 1. In what follows, we will
consider bases H for V consisting of vectors hi,j for i = 1, . . . , α and j = 1, . . . , δ− 1 + i,
arranged as in Table 1.
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Table 1. The array of basis vectors.

h1,1 · · · h1,δ
...

...
. . .

ht,1 · · · ht,δ · · · ht,δ−1+t
...

...
. . .

hα,1 · · · hα,δ · · · hα,δ−1+t · · · hα,r

Recall that by Lemma 3, we have mr,α = δ+ (δ+ 1) + · · ·+ r, so by counting “by row”,
we see that these bases indeed have the right size. Given such a basis H = (hi,j), we can use
the given MDS codes to construct a sequence σ = σ(H, C(δ+1), . . . , C(r+1)) = U1, . . . , Ur+1

as follows. First, for t = 1, . . . , δ, we let

Ut := 〈hi,t | i ∈ [α]〉. (24)

Then, for t = 1, . . . , α, we define

Wδ+t := {
δ−1+t

∑
j=1

cjht,j | c = (c1, . . . , cδ−1+t) ∈ C(δ+t)} (25)

and we let
Uδ+t := 〈Wδ+t, ht+1,δ+t . . . , hα,δ+t〉. (26)

Lemma 10. With the above notation and assumptions, we have dim Wδ+t = dim C(δ+t) = t
(t ∈ [α]), and the collection σ := {U1, . . . , Ur+1} is (r, α)-regular.

Proof. First, since ht,1, . . . , ht,δ−1+t are independent, it follows that dim Wδ+t = dim C(δ+t);
hence dim Wδ+t = C(δ+t) = t. Then, from (24), we see that dim Ut = α for t ∈ [α], and
from (26), we see that dim Uδ+t = t + (α − (t + 1) + 1) = α, so all the subspaces in σ

have the required dimension α. We will use induction to prove the last claim. To establish
the base case for the induction, note that the δ + 1 subspaces U(1) := 〈h1,1〉, . . . , U(δ) :=
〈h1,δ〉, U(δ+1) := Wδ+1 form a (δ, 1)-regular configuration (indeed, since C(δ+1) is MDS with
dimension 1, the unique (up to a scalar) nonzero codeword in C(δ+1) has weight δ, hence
is nonzero in every position). Now, suppose that we have constructed a (δ− 1 + t, t− 1)-
regular configuration σ(t) := {U(t−1)

1 , . . . , U(t−1)
δ−1+t}. Then, we “add an extra layer” by

setting U(t)
j := 〈U(t−1)

j , ht,j〉 (j ∈ [δ− 1 + t]), we add an extra subspace U(t)
δ+t := Wδ+t, and

we apply Theorem 2, part (i) to conclude that σ(t) := {U(t)
1 , . . . , U(t)

δ+t} is (δ + t, t)-regular.
Since σ(α) = σ, the claim follows by induction.

Next, we want to show that by restricting the allowed MDS codes involved, we can
construct an (r, α)-regular storage code using only coding states of the type in Lemma 10. In
that case, a coding state of this restricted type, when losing a subspace, must be repairable
to a new coding state that is again of this restricted type. We will now sketch how this can
be achieved.

Let C be a fixed [r, α, δ] MDS code C. For every permutation τ = τ1, . . . , τr of {1, . . . , r},
we define codes C(δ+1), . . . , C(r+1) by letting

C(δ+t) := {(cτ1 , . . . , cτδ−1+t) | c = (c1, . . . , cr) ∈ C, supp(c) ⊆ {τ1, . . . , τδ−1+t}}. (27)

Note that since C is MDS, the code C(δ+t) is easily seen to be [δ − 1 + t, t, δ] MDS;
note also that C(r+1) = C. Now, for every basis H = {hi,j | 1 ≤ i ≤ α, 1 ≤ j ≤ δ− 1 + i}
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for V, we use these codes C(δ+t) defined above to construct an (r, α)-regular configuration
σ = σ(H, τ) as explained earlier, that is, we set σ(H, τ) := σ(H, C(δ+1), . . . , C(r+1)). Then
by Lemma 10, σ(H, τ) is (r, α)-regular. We now have the following.

Theorem 5. Let r and α be integers with 1 ≤ α ≤ r, let V be a vector space over Fq, with dim V =

mr,s, and let C be an [r, α, δ]q MDS code, so with δ = r− α + 1. The collection of all (r, α)-regular
configurations of the form σ(H, τ) as defined above, where H = (hi,j | i ∈ [α], j ∈ [δ− 1 + i]) is a
basis for V and where τ is a permutation of [r], forms an (r, α)-regular storage code.

Proof. We sketch a proof as follows. Suppose that for each t ∈ [α], we choose a basis
s1,δ+t, . . . , st,δ+t for Wδ+t. Then

Uδ+t = 〈s1,δ+t, . . . , st,δ+t, ht+1,δ+t . . . , hα,δ+t〉.

Note that every vector su,δ+t can be uniquely expressed as a linear combination of the basis
vectors hi,j for V; we will say that a vector hi,j occurs in su,δ+t if hi,j occurs in that linear
combination with a nonzero coefficient. Later, we will impose additional conditions on
these vectors su,δ+t.

We can now arrange the vectors hi,j and the vectors si,δ+j in a rectangular α× (r + 1)
array such that the vectors in column j span Uj, see Table 2 below.

Table 2. The array of vectors constructed above.

U1 Uδ Uδ+1 Uδ−1+t Uδ+t Uδ+t+1 Ur+1

h1,1 · · · h1,δ s1,δ+1 · · · s1,δ−1+t s1,δ+t s1,δ+t+1 · · · s1,r+1

...
...

. . .
...

...
... ...

ht,1 · · · ht,δ · · · ht,δ−1+t st,δ+t st,δ+t+1 · · · st,r+1
ht+1,1 · · · ht+1,δ · · · ht+1,δ−1+t ht+1,δ+t st+1,δ+t+1 · · · st+1,r+1

...
...

...
...

... ...
hα,1 · · · hα,δ hα,δ+1 · · · hα,δ−1+t hα,δ+t hα,δ+t+1 · · · sα,r+1

This array has the following characteristics.

A1 Row i of the array contains δ− 1 + i of the basis vectors of V.
A2 The basis vectors in row i occur only in the vectors s1,δ+i, . . . , si,δ+i.
A3 The vector space Wδ+i = 〈s1,δ+i, . . . , si,δ+i〉 is determined by the basis vectors in row i

and by an [δ − 1 + i, i, δ] MDS code C(δ+i) derived from the [r, α, δ] MDS code C
through a fixed permutation τ of {1, . . . , r}.
Now consider what happens if we lose a subspace, that is, if we lose a column of

the array in Table 2. Our aim will be to arrange the remaining r subspaces into a similar
array, but with the last column removed, and then to use the MDS code C to construct
the last column from the last row of the new array. Losing any column j with j ≤ r has
the consequence of losing the basis vectors hi,j in the array, and our aim will be to replace
these lost basis vectors with the vectors su,δ+t (where u = 1 if j ≤ δ and u = j − δ if
δ + 1 ≤ j ≤ r), while maintaining the characteristics A1–A3 above. By A1, a row that
contains a lost variable should move one row up, and the row that contains the replacement
basis vectors should move into the last row. By A2, if su,δ+t replaces hi,j, then hi,j should
occur in su,δ+t and should not occur in ss,δ+t for s �= u. Note that since C(δ+i) is an MDS
code, there is no position where all codewords have a 0; hence we can always choose a
basis s1,δ+i, . . . , si,δ+i for Wδ+i such that a given vector hi,j occurs in one and in only one of
the basis vectors. Finally, by A3, there has to be a suitable permutation τ′ that can describe
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the new [δ− 1 + t, t, δ] MDS codes. As we saw above, A1 and A2 determine how the new
array should be formed; what is left is to find a suitable τ′, and then to verify that A3 holds
again. Let us now turn to the details.

As remarked before, if we lose Ur+1, then we can recover that subspace exactly. For
the other subspaces, we distinguish two cases.

First, suppose we lose a subspace Ut with 1 ≤ t ≤ δ. Then, in Table 2, we delete
column t, and we take out row 1 and place it after the last row, where we want the α

vectors s1,δ+1, . . . , s1,r+1 to replace the lost basis vectors h1,t, . . . , hα,t. Recall that the vectors
s1,δ+i, . . . , si,δ+i span Wδ+i and are each a linear combination of hi,1, . . . , hi,δ−1+u; now,
choose these vectors such that su,δ+i contains hi,t if and only if u = 1 (as remarked above, it
is not difficult to verify that this is possible). Define a new permutation

τ′ = τ1, . . . , τt−1, τt+1, . . . , τr, τt, (28)

and a new basis H′ = (hi,j), where, for i = 1, . . . , α− 1, j = 1, . . . , δ− 1 + i, we let

h′i,j =

{
hi+1,j, if j < t;
hi+1,j+1, if j > t

and for j = 1, . . . , r, we let

h′α,j =

⎧⎪⎨⎪⎩
h1,j, if j < t;
h1,j+1, if t < j < δ;
s1,j+1, if j ≥ δ.

Finally, with

U0 := {
r

∑
s=1

cτs h′α,s | c ∈ C}, (29)

it is easily verified that σ′ := U1, . . . , Ut−1, Ut+1, . . . , Ur+1, U0 is precisely the configuration
σ(τ′, H′).

Secondly, suppose that we lose subspace Uδ+t with 1 ≤ t ≤ α. In that case, we proceed
in a similar way, where in Table 2 we remove column δ + t, take out row t and place that
row after the last row in the table, where we now want the α− t vectors st,δ+t+1, . . . , st,r+1

to replace the lost basis vectors ht+1,δ+t, . . . , hα,δ+t. This can be achieved by now choosing
su,δ+i to contain hi,δ+t if and only if u = t. Define a new permutation

τ′ = τ1, . . . , τδ+t−1, τδ+t+1, . . . , τr, τδ+t, (30)

and a new basis H′ = (hi,j), where for i = 1, . . . , α− 1, j = 1, . . . , δ− 1 + i, we let

h′i,j =

⎧⎪⎨⎪⎩
hi,j, if i < t, j < δ + t;
hi,j+1, if i < t, j > δ + t;
hi+1,j+1, if i > t, j > δ + t

and

h′α,j =

{
ht,j, if j < δ + t;
st,j+1, if δ + t < j < r.

With U0 as in (29), it is again easily verified that σ′ := U1, . . . , Uδ+t−1, Uδ+t+1, . . . , Ur+1,
U0 is precisely the configuration σ(τ′, H′).

We leave further details to the reader.
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It turns out that with a proper choice for the MDS code C, the (r, α)-regular configura-
tions described in Theorem 5 may possess extra symmetry, even to the point where they are
all equal up to a linear transformation, for example, when q = 2, r− α = 1, and the MDS
code C is the even weight [r, r− 1, 2]2 MDS code. In such cases, we can apply automorphism
group techniques to construct “small” (r, α)-regular storage codes that involve only a
relatively small number of different coding spaces. Examples of storage codes constructed
in this way are the small (3, 2)-regular code from [48] that involves only 8 different coding
spaces, and the small (4, 3)-regular storage code from [49,50] that involves only 72 different
coding spaces. For more details on how such codes can be constructed, using groups of
linear transformations fixing a protostate, we refer to [48–50].

9. Conclusions

A regenerating storage code (RGC) with parameters {m, (n, k), (r, α, β)}q is designed
to store m data symbols from a finite field Fq in encoded form on n storage nodes, each
storing α encoded symbols. If a node is lost, a replacement node may be constructed by
obtaining β symbols from each of a collection of r of the surviving nodes, called the helper
nodes. The name of these codes stems from the requirement that, even after an arbitrary
amount of repairs, any k nodes can regenerate the original data. We say that the code
employs exact repair (ER) if, after each repair, the information on the replacement node
is identical to the information on the lost node; if not, then we say that the code employs
functional repair (FR). An RGC is called optimal if its parameters meet an upper bound called
the cut-set bound.

Linear MDS codes have often been instrumental in the construction of optimal RGC’s.
In this paper, we first introduce a special type of configurations of vector spaces that we
call (r, α)-regular. We show that such configurations can be constructed from suitable
linear MDS codes. Then we employ linear MDS codes and (r, α)-regular configurations
to construct what we call (r, α)-regular codes, which are optimal linear RGC’s with n− 1 =

k = r and β = 1, over a relatively small finite field Fq (if r− α ≤ 1, then any field can be
used; if r− α > 1, then q ≥ r− 1 is required). Along the way, we show that, conversely,
the existence of an (r, α)-regular code over a finite field of size q implies the existence of an
[r, α, r− α + 1]q MDS code over that field.

Apart from two known examples, these storage codes are the only known explicit
optimal RGC’s with parameters realizing an extremal point of the achievable cut-set region
different from the MSR and MBR points.
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Abstract: We improve on known upper bounds for the size of permutation arrays under
the Chebyshev metric, defined as follows. The Chebyshev distance between permutations
π and σ on the symbols {1, 2, · · · , n}, denoted by d(π, σ), is max{|πi − σi| | 1 ≤ i ≤ n}.
For an array A (set) of such permutations, the Chebyshev distance of A, denoted by d(A),
is min{d(π, σ) | π, σ ∈ A, π �= σ}. An array A of such permutations with d(A) = d will
be called an (n, d)-PA. Let P(n, d) denote the maximum size of any (n, d)-PA. The function
P(n, d) has been the subject of previous research. In this paper, we consider strings on the
symbols {0, 1, 2}, with the 0’s representing low symbols and the 2’s high symbols for the
function P(n, d). An array A of such strings of length n is separable if for any two strings in
A, there is a position 1 ≤ i ≤ n such that the ith symbol in one string is 0 and the ith symbol
in the other is a 2. The maximum size of a separable array of strings of length n, with a
occurrences of the symbol 0 and b occurrences of the symbol 2, is denoted by R(n; a, b).
We show that R(n; k, k) is an upper bound for P(n, n− k) when k ≤ n

2 . We derive upper
bounds for R(n; a, b) by various recursive and combinatorial methods, from which follow
upper bounds for the Chebyshev function P(n, d), which improve upon previous such
upper bounds in the literature.

Keywords: permutation arrays; Chebyshev metric; upper bounds

1. Introduction

In refs. [1,2] , studies of permutation arrays under the Chebyshev metric were pre-
sented. This complemented many studies of permutation arrays under other metrics, such
as the Hamming metric [3–5], Kendall τ metric [6,7], and several others [8]. The use of the
Chebyshev metric was motivated by applications of error correcting codes and recharging
in flash memories [6].

The flash memory application is based on a rank-modulation scheme [9], which
eliminates the need to use absolute values of cell levels in storing information. Instead,
relative ranks are used. The data are coded by permutations of a finite number of ranks.

Let π = π1π2 . . . πn and σ = σ1σ2 . . . σn be two permutations on the symbols in
{1, 2, . . . n}. The Chebyshev distance between π and σ, denoted by d(π, σ), is max{|πi −
σi| | 1 ≤ i ≤ n}. For an array (set) of permutations, say, A, the Chebyshev distance of
A, denoted by d(A), is min{d(π, σ) | π, σ ∈ A, π �= σ}. An array A of permutations on
{1, 2, . . . n} with d(A) = d will be called an (n, d)-PA . Let P(n, d) denote the maximum
size of any (n, d)-PA. We shall also define analogously the Chebyshev distance between
two strings and the Chebyshev distance of an array of strings. The context will make clear
whether the objects are strings or permutations.

Entropy 2025, 27, 558 https://doi.org/10.3390/e27060558
191



Entropy 2025, 27, 558

Previous work on permutation arrays under the Chebyshev metric gave upper bounds
based on a Gilbert–Varshamov inequality [10,11] (see our Theorem 2, or, for a recursive
inequality, see our Theorem 3). In [2], it was also shown for fixed r ≥ 1 that there exist
constants cr and dr such that P(d + r, d) = cr for d ≥ dr (see our Theorem 1). Upper bounds
on cr and dr were given in [2]. We give substantial improvements on these upper bounds.

We consider strings over the alphabet {0, 1, 2}. A set A of such strings of length n is
separable if for any two strings in A, there is a position 1 ≤ j ≤ n such that the jth symbol in
one string is 0 and the jth symbol in the other is a 2. We will often view such a set A as a
matrix in which the rows are the strings in A (ordered arbitrarily) and the columns are the
coordinate positions 1, 2, · · · , n of entries in these strings. So, the (i, j)’th entry of A in this
view is the entry (0, 1, or 2 ) in the j’th position of string i of A. If every string in a separable
array A has length n and has a occurrences of the symbol 0 and b occurrences of the symbol
2, then we call A an (n, a, b)-array. The maximum number of strings in an (n, a, b)-array is
denoted by R(n; a, b). Examples of a (5, 2, 2) array and a (7, 1, 3) array are shown in Figure 1.

Such matrices, consisting of the three symbols 0, 1, and 2, are reminiscent of weighing
matrices. A weighing matrix W of weight w is a square matrix of rank n containing symbols
−1, 0, and 1 such that W ·WT = wIn [12]. A weighing matrix is an extension of Hadamard
matrices [13] by adding the symbol 0 (see [14]). A circulant weighing matrix is a weighing
matrix in which each row is a circular shift of the first row [14]. There are examples of
n× n weighing matrices that can be transformed to an (n, a, b)-array, for appropriate a and
b, by transforming the three symbols (−1, 0, 1) to (0, 1, 2), respectively. For example, the
circulant weighing matrix with first row (−1 1 0 1 1 0) is transformed into a circulant (6, 1,
3)-array with first row (0 2 1 2 2 1) by the indicated replacement of symbols.

The motivation for our study begins with Lemma 1, given in the next section, showing
that any upper bound for R(n; k, k) also serves as an upper bound for the Chebyshev
function P(n, n− k). The resulting upper bounds we obtain on the Chebyshev function
give improvements over what was previously known in the literature.

(a)

0 0 1 2 2
0 1 2 2 0
1 2 2 0 0
2 2 0 0 1
2 0 0 1 2
0 2 0 1 2
2 0 1 2 0
0 1 2 0 2
1 2 0 2 0
2 0 2 0 1

(b)

0 1 1 1 2 2 2
1 1 1 2 2 2 0
1 1 2 2 2 0 1
1 2 2 2 0 1 1
2 2 2 0 1 1 1
2 2 0 1 1 1 2
2 0 1 1 1 2 2

Figure 1. (a) (5,2,2)-array with 10 rows and (b) (7,1,3)-array with 7 rows.

Our results are the following.

1. By means of a transformation, we adapt a result of Bollobás from the theory of
extremal sets to show that R(n; s, t) ≤ (2s+2t

s+t ). From this, we derive P(d + r, d) ≤

(4r
2r) =

24r
√

2πr
(1 + o(1)) (as r grows). This improves on the previously known upper

bound for P(d + r, d) for large r.
2. We develop recursive methods for upper bounding R(n; s, t). For small r, these yield

upper bounds for P(d + r, d), which improve on both the previously known upper
bounds for P(d + r, d) and on the bound obtained through the transformation of the
Bollobás result stated above.

We will need the following notation and terms. For an array A, we let |A| be the
number of rows in A. For any row r in an array A, we let r(i) be the entry of r in column i
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(which we also call position i) of A. Given a set S of rows in A, we say that S is separated
in a set of columns C if for any two rows r, s ∈ S there is a column i ∈ C such that one of
{r(i), s(i)} is 0 while the other is 2. Given two sets S1, S2 of rows in A, we refer to internal
separations of S1 and S2 as that set of columns at which either S1 is separated or S2 is
separated. We refer to cross separations of S1 and S2 as that set of columns C such that
for any two rows r ∈ S1 \ S2 and s ∈ S2 \ S1, there is a column c ∈ C at which {r, s}
are separated.

2. Background and Preliminary Results

We begin with a theorem by Klove et al. [2], preceded by a definition.

Definition 1. If A is a (d + r, d)-PA , then the integers 1, 2, . . . , r and d + 1, d + 2, . . . , d + r
are called potent symbols. Moreover, the integers 1, 2, . . . r are called low potent symbols and the
integers d + 1, d + 2 . . . d + r are called high potent symbols.

Their proof of the following upper bound, here omitted, uses the idea of potent
symbols.

Theorem 1 (Klove et al. [2]). For fixed r ≥ 1, there exist constants cr and dr such that P(d +

r, d) = cr for d ≥ dr. Moreover,
cr ≤ 22r(2r)! (1)

and
dr ≤ 1 + (2r− 1)cr − r. (2)

Exact values are known for r = 1 and r = 2, namely, c1 = 3, d1 = 2 [2], c2 = 10, and
d2 = 3 [1]. The upper bounds for cr and dr given in (1) and (2) turn out to be quite generous.
For example, inequality (1) gives the bound c2 ≤ 384, but we know that c2 = 10. We will
see additional improvements on cr as given in Equation (1) later in this paper.

The role of potent symbols motivates the idea behind the following lemma, which
establishes the connection between the Chebyshev function and R(n; k, k). Consider an
(n, n − k)-PA, which we call A, and any row π of A. The idea is to put the symbols
1, 2, · · · , n of π into three groups. Those that are high (resp. low) potent symbols, namely,
n− k+ 1, n− k+ 2, · · · , n (resp. 1, 2, · · · , k), are relabeled 2 (resp. 0), while all other symbols
are relabeled 1. Repeating this replacement over all rows of A, independently in any two
rows, will yield an (n, k, k)-array, as we will see below. On the other hand, given an (n, k, k)
array B, we perform the inverse replacement independently in each row of B to obtain an
(n, n− 2k + 1)-PA. We obtain bounds linking the R function with the Chebyshev function
in the lemma following.

Lemma 1. P(n, n− k) ≤ R(n; k, k) ≤ P(n, n− 2k + 1) when k ≤ n
2 .

Proof. We begin with the first inequality. Let A be an (n, n− k)-PA, where k ≤ n
2 . Create

an (n, k, k)-array A′ as follows. For each row π ∈ A, create a row π′ ∈ A′ by

π′(i) =

⎧⎪⎪⎨⎪⎪⎩
0 if π(i) ∈ {1, . . . , k},
2 if π(i) ∈ {n− k + 1, . . . , n}, and

1 otherwise.

Then, A′ is an array over the symbols {0, 1, 2}, having k many 0’s and k many 2’s in
each row. Since d(A) ≥ n− k, then for any two rows π and σ of A, there is a position i such
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that |π(i)− σ(i)| ≥ n− k. So, one of π(i) or σ(i) is ≥ n− k + 1 and the other must be ≤ k.
Consequently, one of π(i) or σ(i) is transformed into a 2 and the other into a 0. So the rows
π′ and σ′ are separated in A′. Furthermore, as any two rows of A′ are separated, any two
such rows must be distinct. Therefore A′ is an (n, k, k)-array and R(n; k, k) ≥ |A′| = |A|, so
the inequality follows.

Consider now the second inequality. Let B be an (n, k, k)-array with the maximum
possible number R(n; k, k) of rows. Let B′ be the permutation array obtained from B
by arbitrarily replacing, in any row of B, the k many 2’s by the high potent symbols
n− k + 1, n− k + 2, · · · , n, the k many 0’s by the low potent symbols 1, 2, · · · , k, and the 1
symbols by the symbols k + 1, · · · , n− k. (It is, of course, required that the replacements
create a permutation). The replacements performed on any two rows of B are performed
independently of each other. Since B is separable, given any two rows r and s of B′, there
is a column c in B′ for which one of r(c), s(c) is a high potent symbol while the other is
a low potent symbol. So, we have |r(c) − s(c)| ≥ n − 2k + 1. Since rows r and s were
arbitrary, this shows that d(B′) ≥ n− 2k + 1. So, by monotonicity in d of P(n, d), we obtain
P(n, n− 2k + 1) ≥ |B′| = |B| = R(n, k, k).

The following Corollary of Lemma 1 shows that R(n; k, k) reaches a maximum that
depends only on k.

Corollary 1. There are constants nk and mk (depending only on k) such that for all n ≥ nk, we
have R(n; k, k) ≤ mk. Moreover, we can take mk = c2k−1 and nk = 2k + d2k−1 − 1. Here, c2k−1

and d2k−1 are the constants from Theorem 1.

Proof. By the second inequality of Lemma 1, we have R(n; k, k) ≤ P(n, n− 2k + 1) =
P(n − 2k + 1 + (2k − 1), n − 2k + 1). So, by Theorem 1, P(n, n − 2k + 1) ≤ c2k−1 for
n− 2k + 1 ≥ d2k−1; that is, R(n; k, k) ≤ c2k−1 for n ≥ 2k + d2k−1 − 1.

We note that a transformation of an (n, k, k)-array with N rows into an (n, n− k)-PA
with N rows is not known to be always possible.

We will see later that the existence of the constants nk and mk follows from one of our
theorems (Theorem 6), together with an improvement on the bounds given in Theorem 1
for the constants cr and dr. Still, we mention Corollary 1 here to show that the existence of
nk and mk is already implied by Theorem 1 combined with the argument in that Corollary.

There are a few other theorems in the literature that give upper bounds on the Cheby-
shev function. Let V(n, d) be the number of permutations on {1, 2, . . . , n}within Chebyshev
distance d of the identity permutation.

Theorem 2 (Theorem 11 [2]). For even d and 2d ≥ n ≥ d ≥ 2, P(n, d) ≤ (n+1)!
V(n+1,d/2) .

Theorem 3 (Theorem 12 [1]). For 1 ≤ k ≤ d < n,

P(n, d) ≤ P(n− k, d) ·
(

n
k

)
.

Corollary 2. For s ≤ t and 1 ≤ k ≤ s,

R(n; s, t) ≤ R(n− k; s− k, t) ·
(

n
k

)
.

Proof. Consider any (n, s, t)-array A, which we can take to be of maximum possible size
R(n; s, t). Create subsets of the rows of A, determined by the positions of their k many
0’s. That is, two rows are in the same subset if they both have k many 0’s occurring in the
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same k positions. There are (n
k) such sets. Any two rows in such a set must be separated

somewhere in the remaining n− k positions, using s− k many 0’s and t many 2’s in those
n− k positions. Hence, any such set of rows must have the size at most R(n− k; s− k, t). It
follows that |R(n; s, t)| = |A| ≤ R(n− k; s− k, t) · (n

k).

Corollary 3. For all 2 ≤ t ≤ n− 2, R(n; 2, t) ≤ (n
2).

Proof. Setting s = k = 2 in Corollary 2, we have R(n− 2, s− k, t) = R(n− 2; 0, t) = 1 since
R(m, 0, t) = 1 for all m.

We will see later (Theorem 9) a bound on R(2, t) that depends only on t once n is big
enough. But, the bound in Corollary 3 is still the best for n that is small enough relative to t,
as we will see.

Some of the best previous upper bounds for small n were given using Theorem 3.
For example, from Theorem 3, P(n, n − 3) ≤ min{(n

3), 3(n
2), 10(n

1)}, choosing k = 3, 2, 1,
respectively. To see this, consider the following. Since P(r, r) = 1 for any r, taking k = 3,
we obtain P(n− 3, n− 3) = 1. As mentioned previously after Theorem 1, c1 = 3, so, taking
k = 2, we obtain P(n− 2, n− 3) = 3. Again, recalling c2 = 10, we take k = 1 to obtain
P(n− 3, n− 1) = 10. Since min{(n

3), 3(n
2), 10(n

1)} = 10n for all n ≥ 10, Theorem 3 gives
the upper bound P(n, n − 3) ≤ 10n. In an application of our recursive upper bounds,
we will see later in Corollary 7 that R(n; 3, 3) ≤ 169, yielded by Lemma 1. P(n, n− 3) ≤
R(n; 3, 3) ≤ 169. Thus, Theorem 3 gave the best upper bound for P(n, n− 3) ≤ 10n for
n ≤ 16, while our new recursive results give an improved bound for P(n, n− 3) ≤ 169
when n ≥ 17.

Similarly, from Theorem 3, P(n, n− 4) ≤ min U, where U = {(n
4), 3(n

3), 10(n
2), P(n, n−

3)(n
1)}, choosing k = 4, 3, 2, 1, respectively. The previous paragraph shows that P(n, n−

3) ≤ 169 for all n ≥ 17. Calculating, min U = 10(n
2) for 14 ≤ n ≤ 34 and = 169n for all

n ≥ 35. In Corollary 8, which we will see later, we obtain R(n; 4, 4) ≤ 3087. Calculating,
one observes that 3087 ≤ min U for all n ≥ 19. So, we obtain the improved upper bound:
P(n, n− 4) ≤ R(n; 4, 4) ≤ 3087 for all n ≥ 19.

We observe that R(n; a, b) is symmetric and monotone; that is,

R(n; a, b) = R(n; b, a), (3)

R(n; a, b) ≥ R(m; a, b) if n ≥ m. (4)

Later in this paper, it will be useful to consider separable arrays on {0, 1, 2} in which
the number of 0’s and 2’s in each row is not constant for all rows. The following definition
and the lemma which follows treat this case.

Definition 2. For a, b ≥ 2, an (n,≤ a,≤ b)-array is a separable array of length n strings
over {0, 1, 2} such that each string in A has at most a many 0’s and at most b many 2’s. Let
R(n;≤ a,≤ b) be the maximum size of any (n,≤ a,≤ b)-array.

Lemma 2. If s, t ≥ 1 and n ≥ s + t, then

R(n;≤ s,≤ t) ≤ R(n; s, t). (5)

Proof. Let A be an (n,≤ s,≤ t)-array with entries from {0, 1, 2}, realizing R(n;≤ s,≤ t).
Consider any string π in A having s′ ≤ s many 0’s and t′ ≤ t many 2’s. Since n− s− t ≥ 0,
we have n− s′ − t′ ≥ s− s′ + t− t′, so A must have at least s− s′ + t− t′ many 1’s in its
row corresponding to π. We transform π into a string π′ with s many 0’s and t many 2’s as
follows. We convert any s− s′ of the 1’s in π to 0’s and any t− t′ of the remaining 1’s to 2’s
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and let π′ be the resulting string. Let A′ be the array obtained from A by replacing each
π ∈ A by π′.

It suffices to show that A′ is separable. It would then follow that no two strings
π′, σ′ ∈ A′ are the same, since they would not be separated, and since the number of rows
in A′ is at most R(n; s, t), then, also, R(n; s′, t′) ≤ R(n; s, t). So, let π, σ be two arbitrary
strings of A and let π′, σ′ be the respective transformed strings in A′. There is a column
c of A where {π(c), σ(c)} = {0, 2} (in either order). Since the transformation affects no
symbols in π or σ that are either 0 or 2, it follows that π′(c) = π(c) and σ′(c) = σ(c) and,
hence, π′ and σ′ are separated. Thus, A′ is separable.

The following theorem will lead to the exact value R(n; 2, 2) = 10 for n ≥ 5.

Theorem 4. Suppose that R(n0; k, k) ≤ m such that

2k(m + 1) < (n0 + 1)(1 + �n0/(2k− 1)	). (6)

Then, R(n; k, k) ≤ m for all n ≥ n0.

Proof. Suppose to the contrary that R(n; k, k) ≥ m + 1 for some n > n0. Let n be the
smallest such number. Let A = {π1, π2, . . . , πm+1} be an (n, k, k)-array. Let ki denote the
number of 0 and 2 symbols in position i, taken over all rows of A. Let z = 1+ �n0/(2k− 1)	,
so that n0 ≥ (z − 1)(2k − 1). We show that ki ≥ z for all i. Suppose, by symmetry of
argument, that k1 ≤ z− 1 and (by rearranging the order) only πi, 1 ≤ i ≤ k1, have 0 or
2 symbols in the first position. By our assumption, all of the first k1 rows, and only the
first k1 rows, have a 0 or 2 symbol in position 1. So, if there are z− 1 rows, each adding
2k− 1 0 or 2 symbols to some position j > 1, the total number of 0 or 2 symbols (other than
the one in position 1) is (2k− 1)(z− 1). Since the number of positions, namely, n > n0, is
greater than (2k− 1)(z− 1), by the pigeonhole principle, there is a position j > 1 where no
πi, 1 ≤ i ≤ k1 do not has any 0 or 2 symbols. Now, do the following:

• For each row πi, 1 ≤ i ≤ k1, exchange the 0 or 2 symbol in position 1 with the symbol
in position j.

• Delete the symbol in position 1 in all rows.

The result is a separable array of ≥ m + 1 rows, where each row is a string of length
n− 1. This contradicts our choice of n being the smallest. So, we have ki ≥ z for all i.

Note that the total number of 0 and 2 symbols in the (n, k, k)-array A is≥ 2k(m+ 1). As
ki ≥ z, for all i, we have 2k(m + 1) ≥ nz ≥ (n0 + 1)(1 + �n0/(2k− 1)	), which contradicts
inequality (6). So, the (n, k, k)-array A with ≥ m + 1 rows does not exist.

Theorem 15 was used in [1] to prove that P(n, n− 2) = 10 for all n ≥ 5. A similar
proof shows that R(n; 2, 2) = 10 for all n ≥ 5.

Corollary 4. For all n ≥ 5, R(n;2,2) = 10.

Proof. R(n; 2, 2) ≥ 10 for all 5 ≤ n ≤ 11, by computation. In Theorem 4, set n0 = 11, k = 2,
and m = 10. Then, z = 1 + �n0/(2k− 1)	 = 4 and 2k(m + 1) = 44 < 48 = (n0 + 1)z. So,
R(n; 2, 2)) ≤ 10 for all n ≥ 11, following Theorem 4.

Therefore, R(n; 2, 2) = 10 for all n ≥ 5.

An example of a (5, 2, 2)-array with 10 rows realizing R(5; 2, 2) is given in Figure 1a .
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3. Applying a Result of Bollobás

We begin with the following result of Bollobás from the theory of extremal sets. It is
actually a reformulation, given in [15], of a theorem on saturated hypergraphs originally
appearing in [16]. The proof can be found in [15].

Theorem 5. For two nonnegative integers a and b, write w(a, b) = (a+b
a )
−1

. Let {(Ai, Bi : i ∈ I}
be a finite collection of finite sets such that Ai ∩ Bj = ∅ if i = j. For i ∈ I, set ai = |Ai|,
bi = |Bi|. Then, ∑i∈I w(ai, bi) ≤ 1 with equality if there is a set Y and integers a, b such that
0 ≤ a ≤ a + b ≤ |Y|, and {(Ai, Bi) : i ∈ I} is the collection of all ordered pairs of subsets of Y
with |Ai| = ai and |Bi| = bi.

In particular, if ai = a and bi = b for all i ∈ I, then |I| ≤ (a+b
a ).

We obtain an upper bound for R(n; s, t) by reducing to the above theorem.

Theorem 6. R(n; s, t) ≤ (2s+2t
s+t ).

Proof. Let M be a an (n, s, t)-array realizing R(n; s, t), and set p = R(n; s, t). For any
1 ≤ i ≤ p, let Si = {ai1 < ai2 < · · · < ais} be the set of column indices at which row i of M
has 0 entries and Ti = {bi1 < bi2 < · · · < bit} the set of column indices at which row i of M
has 2 entries.

Now, construct a p× 2n array Q whose first n columns are the same as in M and whose
subarray M′ consisting of the last n columns is obtained by interchanging 0 and 2 entries in
M, leaving the 1 entries unchanged. That is, M′ is obtained from M by flipping each 2 entry
of M to a 0 entry in M′, flipping each 0 entry in M to a 2 entry in M′ and leaving each 1 in M
unchanged as a 1 entry in M′. Let S′i = {a′ij : 1 ≤ j ≤ s} (resp. T′i = {b′ij : 1 ≤ j ≤ t}) be the
column indices in M′ corresponding to the column indices of Si (resp. Ti) by a translation
of n. That is, we have a′ij = aij + n and b′ij = bij + n. Now, for each i, 1 ≤ i ≤ p, define two
sets of column indices, Qi and Q′i, of Q by Qi = Si ∪ T′i and Q′i = S′i ∪ Ti. Observe that Qi

(resp. Q′i) is the set of column indices at which row i of Q has 0 (resp. 2) entries.
We now show that for 1 ≤ i ≤ p, the sets Qi, Q′i can play the roles of Ai and Bi

(respectively) in the statement of Theorem 5 with p = |I|. Trivially, we have Qi ∩Q′i = ∅
for each i since Si ∩ Ti = ∅. Now, take j �= i, 1 ≤ j ≤ p. We must show that Qi ∩ Q′j �= ∅
and Q′i ∩ Qj �= ∅. Since M is separable, we have Si ∩ Tj �= ∅ or Sj ∩ Ti �= ∅, so assume
by symmetry that Si ∩ Tj �= ∅. Then, immediately, we have Qi ∩ Q′j �= ∅ since Si ⊂ Qi

and Tj ⊂ Q′j. Also, it follows from Si ∩ Tj �= ∅ and the interchange of 0’s and 2’s that
S′i ∩ T′j �= ∅. Therefore, Q′i ∩ Qj �= ∅ since S′i ⊂ Q′i and T′j ⊂ Qj. Thus, the conditions of

Theorem 5 are satisfied. Since |Qi| = |Q′i| = s + t for all i, we obtain p = |I| ≤ (2s+2t
s+t ).

The preceding theorem implies Corollary 1 with the considerably improved value
mk = (4k

2k) over that obtained by combining that corollary and Theorem 1.

Corollary 5. P(d + r, d) ≤ (4r
2r) =

24r
√

2πr
(1 + o(1)) (as r grows).

Proof. By Lemma 1 and Theorem 6, we have P(d + r, d) ≤ R(d + r; r, r) ≤ (4r
2r). The final

equality follows from the Stirling approximation applied to (4r
2r).

We note that the preceding corollary implies that cr ≤
24r
√

2πr
(1 + o(1)), where cr is

the constant in Theorem 1. This is an improvement on the upper bound for cr given in
that theorem.
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4. Recursive Techniques

4.1. The Positions Method

In this subsection, we introduce a technique, called positions, to recursively obtain an
upper bound for R(n; a, b). The strategy involves considering a fixed row π of a (n, a, b)-
array A, with a occurrences of the symbol 0 in positions p1, p2, . . . , pa and b occurrences
of the symbol 2 in positions q1, q2, . . . , qb. By separability, every row in A other than π

must either have a symbol 2 in at least one of the positions p1, p2, . . . , pa or a symbol 0 in at
least one of the positions q1, q2, . . . , qb. Let S(pi) (respectively, S(qi)) be the set of rows in A
with the symbol 2 (respectively, symbol 0) in position pi (resp., qi). Each S(pi) (resp. S(qi)
must be a separable subarray of A, with separations occurring at positions other than pi

(respectively, qi). As one 2 (one 0) is used in position pi (resp., qi), there are at most a many
0’s and at most b− 1 many 2’s (resp., a− 1 many 0’s and b many 2’s) that can be used to
separate S(pi) (resp. S(qi)). This method gives the following recursive bound on R(n; a, b).

Theorem 7. For all a, b ≥ 1 and n ≥ a + b, R(n; a, b) ≤ 1 + aR(n− 1; a, b− 1) + bR(n−
1; a− 1, b).

Proof. Let A be an (n, a, b)-array of size R(n; a, b). Let π be a permutation in A. Suppose
that in π, the 0’s are at positions p1, . . . , pa and the 2’s are at positions q1, . . . , qb. Every
permutation σ ∈ A − π has a symbol 2 in at least one of the positions pi, 1 ≤ i ≤ a or
a symbol 0 in at least one of the positions qj, 1 ≤ j ≤ b. For every position pi, there
are at most R(n− 1; a, b− 1) strings σ ∈ A− π with σ(pi) = 2 and, hence, a total of at
most aR(n− 1; a, b− 1) such strings over all pi. For every position qj, there are at most
R(n − 1; a − 1, b) strings in σ ∈ A − π with σ(qj) = 0 and, hence, a total of at most
bR(n− 1; a− 1, b) such strings over all qi. The bound follows.

We can obtain an exact formula for R(n; 1, k) in the next lemma and the theorem
that follows.

Lemma 3. For all k ≥ 1 and n ≥ k + 1, R(n; 1, k) ≥

⎧⎨⎩n if k + 1 ≤ n ≤ 2k,

2k + 1 if n ≥ 2k + 1.

Proof. Suppose k + 1 ≤ n ≤ 2k + 1. Let π0 be the permutation

π0 = (0, 1, 1, . . . , 1︸ ︷︷ ︸
k times

, 2, 2, . . . , 2︸ ︷︷ ︸
n−k−1 times

).

Consider permutations π0, π1, . . . , πn−1 defined by πi(j) = π0(j− i) (mod n), that
is, πi is obtained from π0 by shifting elements rightward by i with wraparound.

First, we observe that the array A with rows π0, π1, · · · , πn−1, appearing in A in order
of their index, is separated. It suffices to show that row π0 is separated from any row πi,
i ≥ 1. The 0 in position 1 of π0 separates π0 from the 2 in column 1 of πi for 1 ≤ i ≤ k. The
2’s in columns k + 2 through n of π0 each separate from the 0 in the same columns for πi,
k + 1 ≤ i ≤ n− 1. Therefore, the permutations πi, 0 ≤ i < n are pairwise separable and
R(n; 1, k) ≥ n.

If n ≥ 2k + 1, then R(n; 1, k) ≥ R(2k + 1; 1, k) ≥ 2k + 1, the first inequality by mono-
tonicity of R(n; 1, k) for a fixed k (see Equation (4)) and the second by the same circular
shift construction just given.
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Theorem 8. (a) For all k ≥ 1 and n ≥ k + 1, R(n; 1, k) =

{
n if k + 1 ≤ n ≤ 2k,
2k + 1 if n ≥ 2k + 1.

(b) Suppose a separated array A has at most one 0 and at most k many 2’s in each row. If A has
2k + 1 rows, then A must have exactly one zero and k many 2’s in each row.

(c) Suppose A is an (n, 1, k)-array. If A has 2k + 1 rows, then A is a (2k + 1)× (2k + 1) array
also with one 0 and k many 2’s in each column.

Proof. Consider first (a). In view of the lower bound in Lemma 3, it remains only to prove
the corresponding upper bounds.

The upper bound R(n; 1, k) ≤ n follows from the fact that any two rows do not have 0
in the same position. Suppose n ≥ 2k + 1.

Take an (n, 1, k)-array with p rows. There are (p
2) = (p− 1)p/2 pairs of rows that have

to be separated. Let Q be the total number of unordered pairs {0, 2} with both the 0 and
the 2 lying in the same column of A. Then, (p

2) ≤ Q.
But, Q ≤ {the number of 2’s that are members of such a pair (since there is only one 0

per column)} ≤ {the total number of 2’s in the array} = pk.
So, we obtain (p

2) ≤ pk. Solving for p, we obtain p ≤ 2k + 1.
Consider now (b). Recall that no two 0’s of A can be in the same column, since,

otherwise, the two rows containing those 0’s cannot be separated. For any column i
containing a 0, let si be the number of of 2’s in column i. Since A is separated, the number
of pairwise row separations in A is at least (2k+1

2 ) = k(2k + 1). Since there is at most one 0
in each column, we have ∑i si ≥ k(2k + 1).

Assume to the contrary that claim b) is false, so that either some row contains no 0
or some row has fewer than k many 0’s. Suppose first that some row contains no 0. Then,
since it has at most k many 2’s, this row can be separated from most k other rows since its
separation from other rows can only occur at columns containing its 2’s, and each column
has at most one 0. This contradicts A being separated, which requires each row to be
separated from 2k other rows.

So we may suppose that A has 2k + 1 many 0’s, but that some row has at most k− 1
many 2’s. Then, by the assumption in b), the total number of 2’s in A is less than (2k + 1)k
but is also equal to ∑i si . Then, we have (2k + 1)k ≤ ∑i si < (2k + 1)k, a contradiction.

Consider now (c). Since no two 0’s of A can be in the same column, it follows that
each column has exactly one 0. It also follows that A must be a (2k + 1)× (2k + 1) array.

Suppose to the contrary that some column c of A has at most k− 1 many 2’s. Consider
the row r passing through the 0 in column c. Row r must be separated from each of the 2k
other rows of A. There are k− 1 separation pairs involving row r that use the 0 in column
c. The remaining k + 1 separation pairs involving row r must use the k many 2’s in row r.
But each such 2 participates in only a single separation, that being with the unique 0 in its
column. Hence, we cannot find k + 1 separations involving these 2’s, a contradiction.

An example of a (7, 1, 3)-array realizing R(n; 1, 3) = 7 is given in Figure 1b.
In the next lemma and theorem that follow, we use the positions technique to obtain

an upper bound on R(n : 2, k).
As a notation, for any subarray B of an array A, let col(B) (resp, row(B)) be the set of

columns (resp. rows) of B. Further, let Br (resp. Bc) be the set of rows (resp. columns) of A
containing entries of B. For a particular column c, 1 ≤ c ≤ n, in some array A of n columns,
we refer to it just by its index c. For example, for a subarray B of A, we write c ∩ B or B \ c
for column(c) ∩ B or B \ column(c), respectively.

Now, let A be an (n, 2, k)-array and let c be some column of A. Let B be the subarray
consisting of all rows of A with a 0 in column c. Then, B \ c has one 0 and k many 2’s in each
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row. Assume now that B has exactly 2k + 1 rows. We then let sep(B) be that (n, 1, k)-array
in B (guaranteed to exist by Theorem 8), which has dimensions (2k + 1)× (2k + 1).

Lemma 4. Let A be an (n, 2, k)-array and let c1, c2 be two distinct columns of A. Let S1 (resp. S2)
be the subarray of A whose rows have a 0 entry in column c1 (resp. c2). If |S1| = |S2| = 2k + 1,
then |Sr

1 ∩ Sr
2)| = 1.

Proof. Since each row of S1 \ c1 and S2 \ c2 has one 0 and k many 2’s, we have |Si| ≤
R(1, k) = 2k + 1 by Theorem 8. By our assumption and the same theorem, we then see that
sep(Si), i = 1, 2, is a (2k + 1, 1, k)-array with dimensions (2k + 1)× (2k + 1) and one 0 and
k many 2’s in each row and in each column. Note also that if |Sr

1 ∩ Sr
2| ≥ 2, then any two

rows in this intersection have both 0’s in the same two coordinates c1 and c2 and, hence,
cannot be separated, a contradiction to A being separated.

We are thus reduced to showing that |Sr
1 ∩ Sr

2| = 0 leads to a contradiction. Slightly
abusing previous notation, in what follows, we use the term potent symbol to refer to either
a 0 symbol or a 2 symbol in A.

Assume that |Sr
1 ∩ Sr

2| = 0. It follows that every entry in c1 ∩ S2 is nonzero. So,
c1 ∩ S2 /∈ col(sep(S2)) since every column of sep(S2) has a 0. Since each row of sep(S2)

contains one 0 and k many 2’s, and since every entry of c2 ∩ S2 is 0 by definition, it follows
that every potent symbol in S2 lies in (c2 ∩ S2) ∪ sep(S2). So, there remain no potent
symbols of S2 that can appear in c1 ∩ S2. So, every entry in c1 ∩ S2 is 1. By a symmetric
argument, we also have that every potent symbol in S1 lies in (c1 ∩ S1) ∪ sep(S1) and that
every entry of c2 ∩ S1 is 1. It follows that all S1 − S2 cross separations must occur in the
columns contained in sep(S1)

c ∩ sep(S2))
c.

The number of S1 − S2 cross separations must be at least (2k + 1)2, since every row of
S1 must be separated from every row of S2. Now, in each column c ∈ sep(S1)

c ∩ sep(S2)
c,

there are 2k many S1 − S2 cross separations, obtained by pairing the 0 in c ∩ sep(S1) with
each of the k many 2’s in c ∩ sep(S2), and the same with S1 and S2 interchanged. Since
|sep(S1)

c ∩ sep(S2)
c| ≤ 2k + 1, the total number of S1 − S2 cross separations is at most

2k(2k + 1) < (2k + 1)2, a contradiction.

In the theorem that follows, we abbreviate the symbols R(n; 2, k), R(n− 1; 2, k− 1),
and so on by R(2, k) or R(2, k− 1); that is, we drop the first coordinate in the R function. We
take n large enough so that R(n; 2, k) depends only on k (see Corollary 1). By monotonicity,
the upper bound we then obtain for R(n, 2, k) holds also for R(n′, 2, k), where n′ < n.

Theorem 9. R(2, k) ≤ k(k + 4)(2k + 1)
3

− 10.

Proof. Let A be be an (n, 2, k) array achieving the maximum possible number of rows
R(2, k) for such arrays. Let π be a fixed row of A, with its two 0’s in columns p1 and p2

and its k many 2’s in columns q1, q2, · · · , qk. Every row of A \ π, being separable from π,
must have a 2 in at least one of the columns p1 and p2 or a 0 in at least one of the columns
q1, q2, · · · , qk.

Let T1 (resp. T2) be the subarray of A \ π consisting of the rows of A with a 2 in
column p1 (resp. p2). Note that any row of T1 ∪ T2 has at most k− 1 many 2’s outside the
columns p1, p2.

First, we give an upper bound for |T1 ∪ T2| as follows. Let B1 be the set of rows in
T1 ∪ T2 with no 0 entry in columns p1, p2. Then, |B1| ≤ R(2,≤ k − 1) ≤ R(2, k − 1) by
Lemma 2. Let B2 be the set of rows in T1 ∪ T2 with exactly one 0 in one of the columns p1

or p2. Then, by Lemma 4 and Theorem 8, we have |B2| ≤ 2R(1, k− 1)− 1 = 4k− 3. Finally,
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no row of T1 ∪ T2 can have both its 0’s in columns p1, p2 since such a row would not be
separated from π. Therefore, we have |T1 ∪ T2| ≤ |B1|+ |B2| ≤ R(2, k− 1) + 4k− 3.

Let Si, 1 ≤ i ≤ k, be the subarray of A consisting of the rows of A with a 0 in column
qi, 1 ≤ i ≤ k. Note that |Si| ≤ R(1,≤ k) ≤ R(1, k) = 2k + 1.

We now give an upper bound for | ∪k
i=1 Sr

i |. First note that for any triple of indices
1 ≤ i < j < t ≤ k, we have |Sr

i ∩ Sr
j ∩ Sr

t | = 0, since any row of A contained in this
triple intersection has three 0 entries, contradicting A being an (n, 2, k)-array. Applying
inclusion–exclusion, we thus obtain

| ∪k
i=1 Sr

i | = ∑
1≤i≤k

|Sr
i | − ∑

1≤i<j≤k
|Sr

i ∩ Sr
j |. (7)

Also note that |Sr
i ∩ Sr

j | = 0 or 1 since any two rows of A contained in Sr
i ∩ Sr

j have
both of their 0 entries in the same two columns qi, qj and, hence, cannot be separated.

We now maximize the right side of (7) over all possible collections of subarrays
Si, 1 ≤ i ≤ k of A as defined above. Let |Sr

i | = 2k + 1 for 1 ≤ i ≤ t, while |Sr
i | ≤ 2k for

t + 1 ≤ i ≤ k. By Lemma 4, we have |Sr
i ∩ Sr

j | = 1 for 1 ≤ i < j ≤ t. Therefore, we obtain

| ∪k
i=1 Sr

i | ≤ (2k + 1)t + (k− t)2k− (t
2) = g(t).

To maximize g(t) on the domain 1 ≤ r ≤ k, we differentiate to obtain g′(t) = 3
2 − t,

so t = 3
2 is the only critical point, and, also, g′(1) > 0, while g′(2) < 0. So, the maximum

of g(t) at integer values 1 ≤ t ≤ k is max{g(1), g(2)} = 2k2 + 1. So, we have | ∪k
i=1 Si| ≤

2k2 + 1.
Finally, for k ≥ 3, we obtain the following recurrence, where the first summand “1”

accounts for the fixed permutation π.

R(2, k) ≤ 1 + |T1 ∪ T2|+ | ∪k
i=1 Sr

i | ≤ R(2, k− 1) + 2k2 + 4k− 1.

We can unravel this recurrence to obtain

R(2, k) ≤ R(2, 2) + 2
k

∑
i=3

i2 + 4
k

∑
i=3

i− (k− 2)

= 10 + 2
(

k(k + 1)(2k + 1)
6

− 12 − 22
)
+ 4

(
k(k + 1)

2
− 1− 2

)
− (k− 2)

=
k(k + 4)(2k + 1)

3
− 10.

We note that the upper bound on R(n; 2, k) from Theorem 9, being independent of n
once n is big enough, is better than the bound R(n; 2, k) ≤ (n

2) from Corollary 3 for n that is
large relative to k, but the latter bound is stronger when n ≤ Ck3/2 for a suitable constant
C. Also, the bound from Theorem 9 is stronger than the bound R(n; 2, k) ≤ (2k+4

k+2 ) from
Theorem 6 for all but small k.

As examples to be used later, we mention the following.

Corollary 6. R(2, 3) ≤ 39 and R(2, 4) ≤ 86.

4.2. The Partition Method

In this subsection, we develop a recursive method, which we call the partition method,
which, in some sense, generalizes the positions method of the previous subsection. In the
partition method, we consider subarrays of a separable array A over {0, 1, 2} defined by
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restrictions of rows of A to a certain set of coordinates in A. In the preceding positions
method, the subarrays were defined by their restriction to a single coordinate.

Let A be an (n, s, t)-array with, say, s ≤ t. Choose a row π ∈ A with s occurrences of
the symbol 0 in positions p1, . . . , ps and t occurrences of the symbol 2 in positions q1, . . . , qt.
For separation, all rows in A other than π must have either a symbol 2 in one of the
positions p1, . . . , ps or a symbol 0 in one of the positions q1, . . . , qt. Let S be the set of strings
in A with at least one 2 in the positions {p1, p2, · · · , ps} and let T be the set of strings in
A with at least one 0 in the positions {q1, q2, · · · , qt}. Since every string in A is separated
from π, we have A = {π} ∪ S ∪ T, so |A| ≤ 1 + |S|+ |T|. In this section, we upper bound
|S| (and similarly |T|) by partitioning S into certain collections of strings, and then upper
bound the sizes of each of these collections. The collections come in two types as follows.
For any string σ ∈ S, let σP be the length s restriction of σ to the positions {p1, p2, · · · , ps};
that is, σP = σp1 σp2 · · · σps . Also, let τ(σP) be the set of positions among {p1, p2, · · · , ps} at
which σP has a 2 symbol. The two types of collections are the following.

(1) S0 = {σ ∈ S : σP has no 0 symbols}.
(2) For each nonempty subset D ⊆ {p1, p2, · · · , ps} satisfying |D| ≤ s− 1, let SD = {σ ∈

S : σP contain at least one 0 and τ(σP) = D}.

Clearly, S = S0 ∪
(⋃

D
SD

)
is a partition of S, so |S| = |S0|+ ∑D |SD|. We upper bound

the sizes of these sets of rows in the following lemma.

Lemma 5. The sets S0, SD satisfy the following.

(a) No two strings in S0 and no two string in SD are separable in any of the coordinates {pi, 1 ≤
i ≤ s}. So, all internal separations in S0 and in SD occur outside the coordinates pi, 1 ≤ i ≤ s.

(b) |S0| ≤ R(n− s, s,≤ t− 1) ≤ R(n− s, s, t− 1).
(c) |SD| ≤ R(n− s,≤ s− 1, t− |D|) ≤ R(n− s, s− 1, t− |D|).

Proof. For (a), no two strings in S0 are separable in one of the coordinates {pi, 1 ≤ i ≤ s},
since neither has a 0 in those coordinates. Similarly, no two strings σ, γ in any SD are
separable in a coordinate c ∈ {pi, 1 ≤ i ≤ s} since we have σc = 2 if and only if γc = 2.
Thus, all internal separations in S0 or in any SD occur in columns outside p1, p2, · · · , ps.
We then define the subarrays S′0 and S′D of A by

S′0 = {σ \ σP : σ ∈ S0} and S′D = {σ \ σP : σ ∈ SD}.

So, S′0 (resp. S′D) is the set of length n− s strings obtained by deleting the substring
σP from each string σ ∈ S0 (resp. σ ∈ SD). Note that |S0| = |S′0| since for any two strings
σ, γ ∈ S0, we have σ \ σP �= γ \ γP because, for some coordinate c outside p1, p2, · · · , ps,
we must have σc = 2 and γc = 0. This is because all internal separation in S0 occurs outside
the pi coordinates, as observed above. Similarly, |SD| = |S′D| for any nonempty subset
D ⊆ {p1, p2, · · · , ps}.

Consider now part (b). Since any σ ∈ S0 has no 0’s in positions pi, 1 ≤ i ≤ s, then
σ \ σP is a length n− s string containing s many 0’s and at most t− 1 many 2’s. Hence,
|S0| = |S′0| ≤ R(n− s, s,≤ t− 1). The second inequality then follows Lemma 2.

For part (c), note that by definition for any γ ∈ SD, γP contains at least one 0 and
|D| many 2’s. So, γ \ γP is a length n− s string that has at most s− 1 many 0’s and at
most t− |D|many 2’s. So, we obtain |SD| = |SD′ | ≤ R(n− s,≤ s− 1, t− |D|). Again, the
second inequality follows Lemma 2.

We mention the analogue of Lemma 5 for subsets of T that correspond to S0 and
the sets SD. For any string σ ∈ T, let σQ be the length t restriction of σ to the positions
{q1, q2, · · · , qt}; that is, σQ = σq1 σq2 · · · σqt . Also, let τ′(σQ) be the set of positions among
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{q1, q2, · · · , qt} at which σQ has a 0 symbol. In a similar way, one can define sets of rows T0

and TE within T as follows.

(1) T2 = {σ ∈ T : σQ has no 2 symbols}.
(2) For each nonempty subset E ⊆ {q1, q2, · · · , qt}, |E| ≤ s, let TE = {σ ∈ T : σQ contain

at least one 2 and τ′(σQ) = E}. The restriction |E| ≤ s is necessary since each row in
A has at most s many 0’s.

Again, we have T = T2 ∪
(⋃

E
TE

)
as a partition of T, so |T| = |T2|+ ∑E |TE|. The

corresponding upper bounds for |T2| and |TE| are given in the following lemma. We omit
the proof as it is entirely analogous to the proof of Lemma 5.

Lemma 6. The sets T2 and TE satisfy the following.

(a) No two strings in T0 and no two strings in TE are separable in the coordinates qi, 1 ≤ i ≤ s.
So, all internal separations in T0 and in TE occur outside the coordinates qi, 1 ≤ i ≤ t.

(b) |T2| ≤ R(n− t,≤ s− 1, t) ≤ R(n− t, s− 1, t)
(c) |TE| ≤ R(n− t,≤ s− |E|,≤ t− 1) ≤ R(n− t, s− |E|, t− 1).

We illustrate the use of the partition method for upper bounding R(n; 3, 3) in the
following corollary.

Corollary 7. R(n; 3, 3) ≤ 169.

Proof. Consider an (n, 3, 3) array A achieving R(n; 3, 3). We find the sets S0, SD (with
a symmetric procedure for finding the sets T2, TE). Then, we use Lemma 5 and other
theorems to upper bound |S0| and |SD| for each D ⊂ {p1, p2, p3}, |D| ≤ 2. From this,
we obtain a bound for S and, using Lemma 6, a symmetric bound on T. Finally, using
|A| ≤ 1 + |S|+ |T|, we obtain our bound for R(n; 3, 3).

Again, we take π to a row of an (n, 3, 3) array A, with its three 0’s in coordinates
p1 < p2 < p3 and its three 2’s in coordinates q1 < q2 < q3. We describe the sets of rows in
S0 or SD by specifying for each row σ in such a set its length 3 restriction σP to p1, p2, p3.
Then, we upper bound S0 and SD using the preceding lemmas and additional results
already given. The justification for these bounds are given after the list of sets S0 and SD.

1. S0 = {σ ∈ S : σP ∈ {222, 221, 212, 122, 211, 121, 112}}, |S0| ≤ R(n− 3, 3,≤ 2) ≤ 39.
2. D1 = {p1, p2}, SD1 = {σ ∈ S : σP = {220}}, |SD1 | ≤ R(n− 3, 2, 1) ≤ 5.
3. D2 = {p1, p3}, SD2 = {σ ∈ S : σP = {202}}, |SD2 | ≤ R(n− 3, 2, 1) ≤ 5.
4. D3 = {p2, p3}, SD3 = {σ ∈ S : σP = {022}}, |SD3 | ≤ R(n− 3, 2, 1) ≤ 5.
5. D4 = {p1}, SD4 = {σ ∈ S : σP = {201, 210, 200}}, |SD4 | ≤ R(n− 3, 2, 2) ≤ 10.
6. D5 = {p2}, SD5 = {σ ∈ S : σP = {021, 120, 020}}, |SD5 | ≤ R(n− 3, 2, 2) ≤ 10.
7. D6 = {p3}, SD6 = {σ ∈ S : σP = {012, 102, 002}}, |SD6 | ≤ R(n− 3, 2, 2) ≤ 10.

The bound for S0 in item 1 comes from Theorem 9, for SDi in items 2–4 from Theorem 8,
and in items 5–7 from Corollary 4. We obtain |S| = |S0| + ∑D |SD| = 84 by symmetry
|T| = 84 using sets T2 and TE, as in Lemma 6. Finally, we have R(n; 3, 3) = |A| ≤
1 + |S|+ |T| ≤ 169.

Note that from Lemma 1, we then have P(d + 3, d) ≤ 169, an improvement over the
previous bound P(d + 3, d) ≤ 26(6!) = 46, 080, cited in Theorem 1. This bound is also
an improvement on the bound P(d + 3, d) ≤ (12

6 ) = 924 in Corollary 5 derived from the
theorem of Bollobás.
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The partition technique shown in the above example is generalized in the next
two theorems.

Theorem 10. For all k ≥ 3, R(n; k, k) ≤ 1 + 2 ∑k−1
i=0 (k

i) · R(n− k; k− 1, k− i).

Proof. Let A be an (n, k, k) array realizing R(n; k, k) and let π be a row of A. As usual, we
take π to have 0’s in positions p1, p2, . . . , pk and 2’s in positions q1, q2, . . . , qk. We continue
with the notation S, T, S0, SD, T0, TE from the two lemmas preceding this theorem and we
take s = t = k in those lemmas. In particular, we have |A| = 1 + |S|+ |T|, and we now
proceed to estimate |S|, the estimate for |T| being identical by symmetry.

By Lemma 5, we have S0 ≤ R(n− k; k, k− 1).
For each subset D ⊆ {p1, p2, · · · , pk}, we have by Lemma 5 that |SD| ≤ R(n− k, k−

1, k− |D|). If |D| = i, there are (k
i) such D’s. Since |S| = |S0|+ ∑D |SD|, we obtain

|S| ≤ R(n− k; k, k− 1) +
k−1

∑
i=1

(
k
i

)
· R(n− k;≤ k− 1, k− i), so (8)

|S| ≤
k−1

∑
i=0

(
k
i

)
· R(n− k;≤ k− 1, k− i), (9)

We have the same bound for T based on Lemma 6 and |T| = |T0|+ ∑E |TE|. Since
|A| = 1 + |S|+ |T|, we then obtain

R(n; k, k) ≤ 1 + 2
k−1

∑
i=0

(
k
i

)
· R(n− k;≤ k− 1, k− i). (10)

By Lemma 2 and Equation (4), the theorem follows.

Theorem 11. For all t > s ≥ 2,
R(n; s, t) ≤ 1 + R(n− s; s, t− 1) + R(n− t; s− 1, t)+∑s−1

i=1 (
s
i) · R(n− s; s− 1, t− i) +

∑s
i=1 (

t
i) · R(n− t; s− i, t− 1).

Proof. We continue with the notation of Theorem 10 and the Lemmas that precede it.
Using exactly the same reasoning as in Theorem 10, we obtain

|S| ≤ R(n− s; s, t− 1) + ∑s−1
i=1 (

s
i) · R(n− s; s− 1, t− i).

The estimate for T is very similar, except for a restriction on the sizes of sets E defining
the sets TE.

By Lemma 6, we have T2 ≤ R(n− t, s− 1, t). By the same lemma, we have that for any
E ⊂ {q1, q2, · · · , qt} with the size restriction |E| ≤ s, we have |TE| ≤ R(n− t, s− |E|, t− 1).
Since there are (t

i), 1 ≤ i ≤ s choices for the set E, we obtain

|T| ≤ R(n− t; s− 1, t) +
s

∑
i=1

(
t
i

)
· R(n− t; s− i, t− 1). (11)

Finally, the theorem follows from Equations (11) and the preceding bound for |S|.

We now calculate some values from the above recurrences.

Corollary 8. R(n; 3, 4) ≤ 605, R(n; 4, 4) ≤ 3087, R(n; 3, 5) ≤ 1, 669, R(n; 4, 5) ≤ 12, 327, and
R(n; 5, 5) ≤ 69, 435.
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Proof. We denote R(n; s, t) by R(s, t) for short (using monotonicity of R(n; s, t) in n). Then,
the bounds in Theorems 10 and 11 can be written as

R(k, k) ≤ 1 + 2
k−1

∑
i=0

(
k
i

)
· R(k− 1, k− i)

R(s, t) ≤ 1 +
s−1

∑
i=0

(
s
i

)
· R(s− 1, t− i) +

s

∑
i=0

(
t
i

)
· R(s− i, t− 1)

= 1 + (s + t)R(s− 1, t− 1) +
s−1

∑
1 �=i=0

(
s
i

)
· R(s− 1, t− i) +

s

∑
1 �=i=0

(
t
i

)
· R(s− i, t− 1).

For starting values in these recurrences, we use Theorem 9 for R(2, 3) ≤ 39 and
R(2, 4) ≤ 86, Corollary 7 for R(3, 3) ≤ 169, Theorem 8 for R(3, 1) = 7, Corollary 4 for
R(2, 2) = 10, and R(0, k) = 1 for all k. Now, applying the recurrences, we obtain the
following values.

1. R(3, 4) ≤ 1 + 7R(2, 3) + R(2, 4) + 3R(2, 2) + R(3, 3) + 6R(1, 3) + 4R(0, 3)
≤ 1 + 7 · 39 + 86 + 3 · 10 + 169 + 6 · 7 + 4 · 1 = 605.

2. R(4, 4) ≤ 1 + 2
(

R(3, 4) + 4R(3, 3) + 6R(3, 2) + 4R(3, 1)
)
≤ 1 + 2

(
605 + 4 · 169 + 6 ·

39 + 4 · 7
)

= 3087.
3. R(3, 5) ≤ 1 + 8R(2, 4) + R(2, 5) + 3R(2, 3) + R(3, 4) + 10R(1, 4) + 10R(0, 4)

≤ 1 + 8 · 86 + 158 + 3 · 39 + 605 + 10 · 9 + 10 = 1669.
4. R(4, 5) ≤ 1 + 9R(3, 4) + (R(3, 5) + 6R(3, 3) + 4R(3, 2)) + (R(4, 4) + 10R(2, 4) +

10R(1, 4) + 5R(0, 4)) ≤ 1 + 9 · 605 + 1669 + 6 · 169 + 4 · 39 + 3087 + 10 · 86 + 10 · 9 + 5
= 12,327.

5. R(5, 5) ≤ 1+ 2(R(4, 5) + 5R(4, 4) + 10R(4, 3) + 10R(4, 2) + 5R(4, 1)) ≤ 1+ 2(12327+
5 · 3087 + 10 · 605 + 10 · 86 + 5 · 9) = 69,435.

By Lemma 1, we have P(n, n− 4) ≤ 3087, so in the notation of Theorem 1, we have
c4 ≤ 3087. This is an improvement over that given in inequality (1), namely, c4 ≤ 28(8!) =
10, 321, 920. It is also an improvement on the bound P(n, n− 4) ≤ (16

8 ) = 12, 870 derived
from Corollary 5 based on the reduction from the theorem of Bollobás. The latter bound is
still best though for large r.

Similarly, from the bound R(5, 5) ≤ 69,435, we obtain c5 ≤ 69,435. This improves
considerably the bound c5 ≤ 210(10!), which is roughly 3.6× 109.

A rough upper bound for R(k, k) obtained by applying the positions technique is
R(k, k) ≤ kk−1( e

2
)k. Since ck ≤ R(k, k) (for n large enough), this is also a considerable im-

provement on the bound for ck from inequality (1). The positions and partition techniques
give good bounds for R(k, k) (and, hence, ck) for moderately large k, but, still, the best such
bounds so far for large k come from Corollary 5.
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