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Article

Enhancing Efficiency in the Healthcare Sector Through
Multi-Objective Optimization of Freight Cost and Delivery
Time in the HIV Drug Supply Chain Using Machine Learning

Amirkeyvan Ghazvinian 1, Bo Feng 2,* and Junwen Feng 1

1 School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China;
ghazvinian@njust.edu.cn (A.G.); fengjunwen8@njust.edu.cn (J.F.)

2 School of Intellectual Property, Nanjing University of Science and Technology, Nanjing 210094, China
* Correspondence: 11921216@njust.edu.cn

Abstract: The purpose of this paper is to examine the optimization of the HIV drug
supply chain, with a dual focus on minimizing freight costs and delivery times. With the
help of a dataset containing 10,325 instances of supply chain transactions, key variables,
including “Country”, “Vendor INCO Term”, and “Shipment Mode”, were examined in
order to develop a predictive model using Artificial Neural Networks (ANN) employing
a Multi-Layer Perceptron (MLP) architecture. A set of ANN models were trained to
forecast “freight cost” and “delivery time” based on four principal design variables: “Line
Item Quantity”, “Pack Price”, “Unit of Measure (Per Pack)”, and “Weight (Kilograms)”.
According to performance metrics analysis, these models demonstrated predictive accuracy
following training. An optimization algorithm, configured with an “active-set” algorithm,
was then used to minimize the combined objective function of freight cost and delivery
time. Both freight costs and delivery times were significantly reduced as a result of
the optimization. This study illustrates the potent application of machine learning and
optimization algorithms to the enhancement of supply chain efficiency. This study provides
a blueprint for cost reduction and improved service delivery in critical medication supply
chains based on the methodology and outcomes.

Keywords: supply chain optimization; HIV drugs logistics; artificial neural networks;
freight cost minimization; delivery time reduction

1. Introduction

The global fight against HIV/AIDS requires not only medical innovation but also
a robust and efficient supply chain to ensure that life-saving antiretroviral (ARV) drugs
reach those in need. The importance of optimizing the HIV drug supply chain cannot be
overstated since it directly impacts care and treatment programs throughout the world.
UNAIDS’ 90-90-90 targets aim to have 90% of HIV-infected individuals aware of their status,
90% of those diagnosed receiving antiretroviral therapy (ART), and 90% of those treated,
achieving viral suppression by 2020 [1]. The distribution of HIV/AIDS commodities,
including ARVs, requires both effective care delivery programs and an efficient supply
chain. It has been a challenging journey to reach these goals. According to Alemnji et al. [2]
HIV viral load and early infant diagnosis progress has been slowed in some countries
due to gaps in access to HIV diagnostic tests. The Supply Chain Management System
(SCMS) project delivered over USD 1.9 billion in HIV/AIDS commodities to support
treatment, highlighting the importance of supply chain management in the fight against
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HIV/AIDS, according to Larson et al. [3]. Despite these efforts, there are still gaps in
diagnostic access and treatment for many countries and subpopulations, which pose a
threat to the achievement of UNAIDS’ targets. Alemnji et al. [2] found that only 52% of
HIV-exposed infants were tested within 8 weeks of birth in 23 surveyed countries in 2018,
with many not receiving ART on time. The lack of sufficient access to viral load tests among
priority populations in low- and middle-income countries is also highlighted by the fact
that less than half of patients on antiretroviral therapy receive regular viral load tests. The
challenges extend to the procurement and distribution of ARVs, where production and
shipping delays can result in stockouts, which can lead to ART interruption for patients
Despite its efforts, the SCMS project was unable to maintain a reliable, cost-effective,
and secure supply chain, mainly due to the high cost of commodities [3,4]. In addition,
the HIV drug optimization agenda faces additional obstacles, as most clinical trials of
new ARV agents are conducted among adults before including adolescents, children, and
infants, which delays the availability of optimal new ARV regimens for these vulnerable
groups [5]. As a result of these challenges, a multifaceted approach is required, which
involves improving not only procurement and distribution systems but also ensuring that
timely diagnosis and treatment are initiated. In the global effort to end the HIV/AIDS
pandemic, a well-functioning HIV drug supply chain is of vital importance beyond the
immediate needs of patients. It has been noted by Cao [6] and Schouten et al. [7] that an
efficient supply chain is crucial to avoid stockouts and to ensure that the influx of resources
is effectively allocated, particularly in resource-poor settings. Hence, optimizing the HIV
drug supply chain is not only a logistical necessity but also an essential part of the global
health response to HIV/AIDS.

Especially in low- and middle-income countries, supply chain management plays a
critical role in the fight against HIV/AIDS. Stulens et al. [8] provide an in-depth analysis
of the challenges and opportunities within HIV supply chains, emphasizing the need to
have efficient and effective operations in order to increase the availability and accessi-
bility of HIV services and supplies. In their research, they emphasize the importance of
addressing these supply chain challenges through innovative operations research and
operations management (OR/OM) solutions, highlighting an important area for future
research and development. Furthermore, Jónasson et al. [9] demonstrated that optimization
and simulation models can be used to improve early infant diagnosis (EID) supply chains
in Sub-Saharan Africa. They have demonstrated that reassigning clinics to laboratories and
consolidating diagnostic capacity can result in substantial reductions in sample turnaround
times and a greater number of infected infants receiving treatment by applying their models
to Mozambique’s EID program. There is a clear link between logistical optimizations and
improved patient outcomes. The importance of continuous improvement in supply chain
management practices is highlighted by these findings. Furthermore, Pastakia et al. [10]
extend this discussion to the management of non-communicable diseases (NCDs), drawing
lessons from HIV supply chain initiatives. Research suggests that strategies developed for
HIV supply chains, such as addressing resource mobilization and utilization challenges,
can be adapted to improve NCD supply chain systems in low- and middle-income coun-
tries. The cross-disease learning emphasizes the interconnectedness of healthcare supply
chains and the potential for broader application of effective HIV supply chain manage-
ment techniques. The first step was to develop robust ANN models that can accurately
predict “freight cost” and “delivery time” within the HIV drug supply chain. This model
contributes to the literature by providing a nuanced understanding of the factors affecting
supply chain efficiency. Secondly, using the Fmincon algorithm in MATLAB (R2024a ver-
sion), we applied advanced nonlinear optimization techniques to minimize these critical
metrics. A novel and practical approach to decision-making in supply chain management
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is offered by our research, which bridges the gap between machine learning predictive
capabilities and optimization methods. In addition, this study sets a precedent for the use
of data-driven techniques in healthcare logistics, which may serve as a guide for future
efforts in this field.

2. A Literature Review

Ahmad et al. [11] developed a multi-objective model to optimize the phasocio-
economic performance of pharmaceutical supply chains with socio-economic and environ-
mental objectives, ensuring optimal product allocation among different echelons under
uncertainty. Using the Techniques for Order Preference by Similarity to Ideal Solution
(TOPSIS) and other criteria, they demonstrated the importance of sustainable objectives in
decision-making, which reduces economic costs, improves customer service, and reduces
environmental impact. This approach aligns closely with the goals of enhancing efficiency
in healthcare supply chains by considering socio-economic performance and sustainability
in the optimization process. It is a reflection of problems prevalent in many low-to-medium-
income countries that Olutuase et al. [12] conducted a scoping review on the challenges
faced by medicines and vaccine supply chains in Nigeria. Factors such as procurement
difficulties, inadequate storage, and distribution challenges contribute to stockouts and
hinder access to essential medicines. In healthcare supply chains, logistical inefficiencies
and infrastructure deficiencies must be addressed through optimization strategies. Lu-
gada et al. [13] explored the structure, performance, and challenges of Uganda’s health
supply chain system, emphasizing the need for improved policy implementation and in-
frastructure. Taking into account the inefficiencies in the health supply chain, optimization
models that can enhance planning, coordination, and management across all levels of the
health system are urgently needed.

Torrado and Barbosa [14] investigated the optimization and sustainability of blood
supply chain networks under uncertainty from strategic–tactical and operational–tactical
perspectives. Their literature review emphasizes the scarcity of blood products and the
need for sustainable optimization to prevent shortages, wastage, and health risks. The
insights gained from this study align with the challenges of optimizing the HIV drug
supply chain, suggesting that environmental, economic, and social sustainability dimen-
sions need to be considered. Saatchi et al. [15] proposed a bi-objective meta-heuristic
algorithm to optimize relief logistics in humanitarian supply chains. For the distribution
of commodities and transportation of injured individuals post-disaster, their model inte-
grates a multi-echelon, forward and backward relief network. Compared to traditional
algorithms, the hybrid non-dominated sorting genetic algorithm (NSGA-II) with simulated
annealing (SA) and variable neighborhood search (VNS) demonstrated superior perfor-
mance, emphasizing the importance of advanced optimization techniques in critical supply
chain management. Tat et al. [16] study pharmaceutical supply chain coordination with
a focus on minimizing leftover or end-of-life (EOL) medication waste. The mathematical
model introduces a buyback and shortage risk-sharing contract (B&SRS) to reduce disposal
costs and enhance channel profitability. In order to achieve supply chain coordination
and sustainability, innovative contractual arrangements are necessary. Next-generation
sequencing (NGS) provides sensitivity and cost-effectiveness advantages over traditional
methods in HIV drug resistance testing, according to Ávila-Ríos et al. [17]. In spite of its
potential, they noted significant challenges related to standardization, quality assurance,
and implementation, particularly in resource-poor areas. In order to enhance diagnostic
capabilities, technological advancements and infrastructure improvements are needed
in healthcare supply chains. Siddiqui et al. [18] proposed a hybrid demand-forecasting
model specifically designed for the pharmaceutical sector, integrating the Autoregressive
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Integrated Moving Average and Holt–Winters model (ARHOW). This model highlights the
role of advanced forecasting in aligning production and distribution with market demand,
thereby improving supply chain efficiency. Sindhwani et al. [19] analyzed the ability of a
hub-and-spoke distribution network to mitigate ripple effects in the Indian pharmaceutical
supply chain during the COVID-19 pandemic. Through a multi-layer approach involving
Bayesian networks, mathematical optimization, and discrete event simulation, they pro-
vided strategies to enhance supply chain resilience and flexibility, which are critical for
maintaining service levels during disruptions.

Singh et al. [20] utilized a simulation model to study the impact of COVID-19 on
logistics and food supply chain disruptions, emphasizing the necessity of supply chain
resilience. Their work underscores the challenges posed by the pandemic on the balance
between supply and demand and proposes strategies to develop more robust and adaptable
supply chains. Stulens [8] reviewed the challenges and opportunities of HIV supply
chains in low- and middle-income countries, noting the lack of research in operations
research/operations management (OR/OM) concerning HIV supply chains. Their findings
stress the need for advanced modeling and optimization techniques to enhance efficiency
and effectiveness in these contexts.

Jónasson et al. [9] presented a two-part modeling framework to optimize early infant
diagnosis (EID) supply chains in Sub-Saharan Africa. Applied to Mozambique’s EID pro-
gram, their optimization and simulation models demonstrated reductions in turnaround
times and increased treatment rates for infected infants, highlighting the significant impact
of logistical optimization on patient outcomes. Pastakia et al. [10] proposed that lessons
from HIV supply chain initiatives could inform the management of noncommunicable dis-
ease (NCD) supply chains. They argued that advancements in HIV supply chain systems,
particularly in resource mobilization and utilization, could be adapted to NCD supply
chains with minimal additional investment. Jamieson and Kellerman [21] critically as-
sessed the supply chain challenges of the UNAIDS “90-90-90” strategy, focusing on scaling
up HIV diagnostics, antiretroviral therapy (ART) distribution, and viral load testing to
meet global targets. Their study underscores the necessity of strong and resilient supply
chains to support the global HIV response. Xiong et al. [22] demonstrated that optimizing
clinical and logistical processes using operations research methodologies could enhance
outcomes in HIV treatment scale-up. Key areas identified include forecasting, facility
location and sizing, and staffing levels. Enyinda et al. [23] examined the New Partnership
for HIV/AIDS Supply Chain Management (NPHASCM) initiative, emphasizing the chal-
lenges of healthcare supply chain management in Sub-Saharan Africa and the potential
for partnerships to improve the timely delivery of life-saving HIV/AIDS commodities.
This summary captures key studies on healthcare supply chain optimization, detailing the
methodologies employed and the outcomes achieved across various disease areas. Rahimi
et al. [24] developed a hybrid feature scoring approach, stressing the necessity of a staging
system that incorporates diverse neurocognitive functions to improve understanding of
PD. Ogunsoto et al. [25] introduced a digital twin framework for supply chain recovery,
leveraging LSTM models for flood prediction and neural networks for post-disruption
recovery, enabling informed strategies for resilience. Strika et al. [26] reviewed the role of AI
and large language models in mitigating healthcare gaps in medical deserts, highlighting
applications in telehealth, diagnostic assistance, and medical education while emphasizing
the need for ongoing research to maximize their potential.

Artificial intelligence (AI) has played a crucial role in optimizing the COVID-19
pandemic therapeutics supply chain, particularly in at-risk communities, by enhancing
efficiency and reducing delays in distribution [27]. Furthermore, machine learning tech-
niques have significantly improved supply chain traceability and transparency, enabling
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better decision-making and operational efficiency in various industries [28,29]. Table 1
provides an overview of key studies on healthcare supply chain optimization, summarizing
the methodologies, objectives, and key findings from various research efforts aimed at
improving efficiency, cost-effectiveness, and service quality within the healthcare sector.

Table 1. Overview of Key Studies on Healthcare Supply Chain Optimization.

Author Year Supply Chain
Method of

Optimization
Key Results

Ahmad et al. [11] 2022 Pharmaceutical TOPSIS and other
criteria

Identified sustainable objectives and
optimal product allocation among

echelons.

Olutuase et al. [12] 2022 Medicines and
vaccines Scoping review

Identified challenges in supply chains,
including procurement and

distribution.

Lugada et al. [13] 2022 Health supplies Discussion and
reflection

Highlighted inefficiencies in Uganda’s
health supply chain and need for

optimization.

Torrado and
Barbosa-Póvoa [14] 2022 Blood A literature review Developed insights for sustainable BSC

under uncertainty.

Madani Saatchi et al. [15] 2021 Humanitarian aid Hybrid NSGA-II, SA,
VNS

Hybrid algorithms outperformed
traditional algorithms in emergency

response.

Tat et al. [16] 2020 Pharmaceutical Mathematical model Proposed B&SRS contract to minimize
waste and enhance profitability.

Ávila-Ríos et al. [17] 2020 HIV Review Highlighted NGS’s potential and
challenges for HIVDR testing.

Siddiqui et al. [18] 2022 Pharmaceutical ARHOW Improved demand forecasting accuracy
for pharmaceutical companies.

Sindhwani et al. [19] 2023 Pharmaceutical
Bayesian network,

optimization,
simulation

Improved resilience and flexibility of
pharmaceutical supply chain.

Singh et al. [20] 2021 Food Simulation model
Developed a model to demonstrate

disruptions in food supply chain and
importance of resilience.

Stulens et al. [8] 2021 HIV A literature review Provided an overview of HIV supply
chains and research opportunities.

Jónasson et al. [9] 2017 HIV Optimization and
simulation

Optimized EID supply chains, reducing
TAT and increasing treatment initiation.

Pastakia et al. [10] 2018 HIV A literature review
and experience

Discussed transferring HIV supply
chain lessons to NCD management.

Jamieson and Kellerman
[21] 2016 HIV Discussion Evaluated supply chain readiness for

the 90–90–90 strategy.

Xiong et al. [22] 2008 HIV Operations research
approach

Advocated OR techniques for logistical
challenges in HIV treatment scale-up.

Enyinda et al. [23] 2009 HIV Discussion
Outlined the NPHASCM initiative to

improve HIV/AIDS healthcare supply
chain.
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From pharmaceuticals to blood supply to HIV treatment and humanitarian aid lo-
gistics, this overview provides insight into diverse approaches and results achieved in
improving the efficiency, accessibility, and sustainability of healthcare supply chains.

3. Methods and Materials

3.1. Dataset Overview

The dataset used in this study was derived from the collaborative reporting systems of
the Global Fund and PEPFAR. These organizations are the primary procurers of HIV health
products and share a database known as the Price, Quality, and Reporting (PQR) database.
By integrating PQR data, we can gain a holistic view of global health expenditures on HIV-
related commodities, enabling more informed decisions. The value of this dataset lies in the
detailed description of price variations, observable trends, and the distribution of product
volumes across countries. Despite the fact that the dataset provides a wealth of information
for analyzing market dynamics, its application is not without limitations. The data may not
provide definitive insights into the costs associated with moving specific items or products
to particular countries or the lead time involved when used in isolation. Performing
such an assessment requires a nuanced understanding of the dataset in conjunction with
other logistical and geopolitical factors. Despite these considerations, the US government
believes that the dataset is an essential tool for enabling stakeholders to make better-
informed decisions. Its nature allows for a more nuanced understanding of the HIV drug
supply chain, which is essential for optimizing operations and improving global healthcare
delivery.

3.2. ANN Method

Artificial Neural Networks (ANN) serve as the basis for modeling complex relation-
ships within the HIV drugs supply chain dataset. In this study, we employ a Multi-Layer
Perceptron (MLP) architecture, a type of artificial neural network (ANN) known for its
ability to approximate continuous functions. An MLP model consists of an input layer,
multiple hidden layers, and an output layer. The neurons in each layer apply a weighted
sum of inputs followed by a nonlinear activation function. In general, the neuron’s output
can be expressed as follows:

y = f

⎛⎝ {n}
∑

{i=1}
wixi + b

⎞⎠ (1)

where xi represents the input values; wi is the associated weights; b is the bias, and f is
the activation function. To minimize the difference between predicted outputs and actual
targets, weights (wi) and biases (b) are adjusted during the training process. Backpropaga-
tion is typically used to achieve this optimization, which involves calculating the gradient
of the loss function with respect to each weight and iteratively updating the weights in
the direction that minimizes the loss. In this study, two ANN models were developed:
one to predict freight costs and the other to predict delivery times. Models were trained
using a subset of the dataset, and their performance was validated using a separate dataset.
In order to enable precise cost and time estimates, the models were refined to reflect the
underlying dynamics of the supply chain.

3.3. Nonlinear Optimization (Fmin Algorithm)

The optimization component of our study utilized MATLAB’s Fmincon function, an
algorithm designed for solving nonlinear optimization problems subject to constraints. The
objective of the optimization was to identify the set of design variables that minimized the
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objective function, which, in our case, is the sum of the standardized “freight cost” and
“delivery time” variables:

min f 1(x) + f 2(x) (2)

The design variable (x) must be positive and exceed 10% of the dataset’s average
value:

xi ≥ αxi, i = 1, 2, . . . , n (3)

An active-set algorithm developed by Fmincon was used, which was designed to
deal with both linear and nonlinear constraints. The objective function is minimized
by iteratively adjusting the variables in order to satisfy the constraints. The algorithm’s
settings, including “ScaleProblem”, “ConstraintTolerance”, and “DiffMinChange”, were
meticulously configured to enhance the precision and efficiency of the optimization process.
By integrating ANN predictions into the optimization framework, we were able to leverage
the predictive power of machine learning with the rigor of mathematical optimization to
minimize costs and delivery times.

4. Results and Discussion

A paper detailing the optimization of the HIV drug supply chain focuses on minimiz-
ing critical factors such as “Delivered to Client Date” and “Freight Cost (USD)”. The dataset
incorporates a range of variables across 10,325 cases, encapsulating various elements of the
supply chain from country management to shipment specifics and product details.

During the optimization process, a Response Surface Methodology (RSM) approach
was used, which is a collection of statistical and mathematical techniques used to model and
analyze problems where a response of interest is influenced by a number of variables [30].
In the algorithm, the pseudocodes are as follows: Algorithms 1–4.

Algorithm 1: Pseudocode for ANN model creation

Step 1: Preprocess the dataset.

Load (dataset)
Standardize the features (LineItemQuantity, PackPrice, UnitofMeasure, Weight)

Step 2: Create the ANN models for Freight Cost and Delivery Time

Initialize the ANN for Freight Cost with input, hidden layers, and output
Initialize the ANN for Delivery Time with input, hidden layers, and output
Set training parameters (e.g., learning rate, epochs)

Step 3: Train the ANN models

For each epoch in the number of epochs:
Forward propagate the inputs through the network
Calculate the error between the predicted and actual values
Backpropagate the error to update the weights
Update the weights and biases according to the learning rate

Step 4: Evaluate the models

Test the trained models on the testing set
Calculate the performance metrics (e.g., R-squared value)

Step 5: Define the optimization problem

Define the objective function to minimize f1 + f2
Set the constraints for design variables to be positive and above 10% of their average
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Algorithm 2: Pseudo MATLAB code for Fmin optimization

function optimizeSupplyChain
Define the average values for the constraints

avgLineItemQuantity = calculateAverage(LineItemQuantity)
avgPackPrice = calculateAverage(PackPrice)
avgUnitofMeasure = calculateAverage(UnitofMeasure)
avgWeight = calculateAverage(Weight)

Define the lower bounds based on the constraints

lb = [0.1 * avgLineItemQuantity, 0.1 * avgPackPrice, 0.1 * avgUnitofMeasure, 0.1 *
avgWeight]

Define the initial guess for the design variables

initialGuess = [initialLineItemQuantity, initialPackPrice, initialUnitofMeasure,
initialWeight]

Define the optimization options

options = optimoptions(@fmincon,‘Algorithm’,‘active-set’,...
‘ScaleProblem’,‘obj-and-constr’,...
‘ConstraintTolerance’, 1 × 10−7,...
‘DiffMinChange’, 1 × 10−6)

Perform the optimization

[optimalValues, optimalObjective] = fmincon(@objectiveFunction, initialGuess, [], [], [],
[], lb, [], @nonlinearConstraints, options)

De-standardize the optimal values

destandardizeOptimalValues(optimalValues)

Output the optimized non-normalized values and objective function results

disp(‘Optimized LineItemQuantity: ’ + string(optimalValues(1)))
disp(‘Optimized PackPrice: ’ + string(optimalValues(2)))
disp(‘Optimized UnitofMeasure: ’ + string(optimalValues(3)))
disp(‘Optimized Weight: ’ + string(optimalValues(4)))
disp(‘Optimized Freight Cost: ’ + string(optimalObjective(1)))
disp(‘Optimized Delivery Time: ’ + string(optimalObjective(2)))
end

Algorithm 3: Pseudocode Define the objective function

function obj = objectiveFunction(designVariables)
Predict the standardized Freight Cost and Delivery Time using ANN models

f1 = predictFreightCostANN(designVariables)
f2 = predictDeliveryTimeANN(designVariables)
Objective is to minimize the sum of the two predictions

obj = f1 + f2
end

8



Systems 2025, 13, 91

Algorithm 4: Define the nonlinear constraints function

function [c, ceq] = nonlinearConstraints(designVariables)
No nonlinear inequality constraints

c = []
The nonlinear equality constraints (ceq) are defined as the difference between the

variables and their bounds

ceq = designVariables − lb
end
Call the optimization function

optimizeSupplyChain

4.1. Response Surface Methodology Using MLP

The primary step in the optimization process was the development of predictive
models utilizing an Artificial Neural Network (ANN) with a Multi-Layer Perceptron (MLP)
architecture. Two distinct models were constructed:

• A model for predicting “Freight Cost (USD)” as a function of “Line Item Quantity”,
“Pack Price”, “Unit of Measure (Per Pack)”, and “Weight (Kilograms)”;

• A model for predicting “delivery time” as a function of the same variables.

An MLP network was designed to accommodate the four selected design variables,
followed by three hidden layers and an output layer (see Figure 1). The first hidden layer
contained 30 neurons, the second—20 neurons, and the third—10 neurons, each utilizing
a nonlinear activation function to capture the complex relationships between inputs and
outputs There is a single neuron for each model in the output layer, which corresponds
to the “freight cost” and “delivery time”, respectively. A promising foundation has been
established in the initial phase of the optimization process, which involves training and
validating the model. In order to optimize the HIV drug supply chain, it is imperative to
be able to predict “freight cost” and “delivery time” effectively. Following this section,
we will examine the application of these models within the RSM framework to identify
optimal conditions that minimize the objectives of the problem, thus improving supply
chain efficiency and reliability.

Figure 1. Three hidden layers with 30, 20, and 10 nodes, respectively, and an output layer with
1 node.

It is crucial to understand the training progress of these models in order to determine
their predictive capabilities and potential for optimization In training the “freight cost”
model, the initial performance measure was 0.233, improving to a final value of 0.000481,
near the target performance of 1 × 10−5. During training, the gradient, which is a measure
of the error slope, started at 2.6 and decreased to 0.000151, which is satisfactory for under-
standing convergence. It took approximately 4 min and 13 s for the model to reach these
results in over 30,000 epochs, indicating thorough training.

Comparatively, the “delivery time” model demonstrated an initial performance of
0.0659, which improved to 0.0019 after training. Although the final performance was not
as close to the target as the “freight cost” model, the reduction in error suggests that the
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model can still provide valuable predictions for the optimization process. This model took
slightly less time to train, taking 3 min and 54 s to complete the same number of epochs.
As seen in the accompanying figures, these results illustrate the architecture of the MLP
networks as well as the progression of the training process. As a graphical representation,
the figures reinforce the quantitative results presented in the tables. It is evident from the
results that the ANN MLP models have learned the underlying patterns in the dataset
with a high degree of accuracy, as evidenced by the low post-training performance values.
It is important to note that the success of these models depends upon the quality and
preprocessing of the dataset, as well as the careful design of the neural network architecture.
The training process is summarized in Table 2, which presents the initial, stopped, and
target values for key parameters such as performance, gradient, and validation checks

Table 2. Summary of the training process.

Initial Value Stopped Value Target Value

f1 f2 f1 f2 f1 f2

Epoch 0 0 30,000 30,000 30,000 30,000

Elapsed Time - - 4:13 3:54 - -

Performance 0.233 0.0659 0.000481 0.00819 0.00001 0.00001

Gradient 2.6 1.07 0.000151 0.00211 0.00001 0.00001

Validation
Checks 0 0 0 0 6 6

The training process visualizations for the two ANN MLP models demonstrate the
behavior of the gradient descent algorithm over 30,000 epochs (see Figure 2). The gradient,
representing the optimization algorithm’s step size in adjusting network weights, dimin-
ishes over time in both figures, suggesting convergence toward a local minimum. The blue
plots display the gradient values on a logarithmic scale, which helps to identify changes
over several orders of magnitude. It can be seen that the gradient for the “freight cost”
model steadily decreases to a final value of 0.00015117, indicating that the weights are ap-
proaching optimal values that minimize prediction error. In the lower subplot representing
validation checks, there is a flat line at zero, indicating that no early stopping occurred,
and the validation performance did not deteriorate throughout training. Additionally,
the “delivery time” model exhibits a final gradient of 0.00021075, indicating a successful
training phase. Validation checks show no upward spikes, indicating that the model did
not experience overfitting and its performance on the validation set remained stable.

Figure 3 illustrate the correlation between the targets and the outputs of the trained
neural network models, providing insight into the predictive performance of the models.
In the first scatter plot, the “freight cost” model demonstrates a strong correlation between
predicted and actual values, with a high correlation coefficient (R) of 0.92322. The data
points are closely clustered around the line of perfect fit (Y = T), indicating a high level
of predictive accuracy. This suggests that the model effectively captures the underlying
patterns in the data, making accurate predictions for freight cost with minimal error. Such
strong performance underscores the robustness of the model in handling this specific
target variable.

10
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(a)

(b)

Figure 2. Convergence of ANN training gradients for (a) “freight cost” and (b) “delivery time”
models over 30,000 epochs, displaying the final gradients at the conclusion of training.

(a) (b)

Figure 3. Performance of ANN models during training, represented by regression plots comparing
predicted outputs versus targets for (a) “freight cost” model with a high correlation (R = 0.92) and
(b) “delivery time” model with a moderate correlation (R = 0.64).

Conversely, the second scatter plot reveals a weaker correlation between the predicted
outputs and actual results for the “delivery time” model, with a significantly lower cor-
relation coefficient (R) of 0.64324. In this case, the data points exhibit greater dispersion
around the line of perfect fit, reflecting a less accurate predictive capability. The broader
spread suggests that the model struggles to generalize well for this variable, potentially

11



Systems 2025, 13, 91

due to the higher complexity of the “delivery time” data or the presence of more noise
and variability in the dataset. This finding highlights the need for further refinement of
this model, possibly by incorporating additional features, fine-tuning hyperparameters,
or applying advanced techniques to reduce noise and improve learning. Understanding
these differences in performance is crucial for identifying areas where the models excel and
where additional development is required to enhance predictive reliability.

In the “freight cost” model, the alignment between actual and predicted lines indicates
that the model accurately captures the variation in freight costs. As a result of this congru-
ence, the model can be used to estimate freight costs during the supply chain optimization
process, demonstrating its reliability. While there is a wider spread between the actual
and predicted delivery times in the “delivery time” model, it still indicates an acceptable
level of prediction accuracy. While it may not capture all peaks and troughs of delivery
times precisely, this model provides a solid baseline prediction. Combined with other
optimization techniques or when additional nuanced factors are considered, this model
may be valuable. As a result of their respective predictive strengths, both models provide
a substantial foundation for improving decision-making in the HIV drug supply chain
(see Figure 4).

(a) (b)

Figure 4. Overlay of actual and predicted values for (a) standardized “freight cost” and (b) stan-
dardized “delivery time” across almost 3000 observations, showcasing the predictive accuracy of the
ANN models.

4.2. Optimization of Freight Cost and Delivery Time

To optimize the HIV drug supply chain, we focused on minimizing the combined
metrics of “freight cost” (f 1) and “delivery time” (f ’). The objective function aims to
maximize both the economic and temporal efficiency of the supply chain. The optimization
constraints were determined based on the requirement that the design variables must be
positive and exceed α = 10% of their respective average values across the dataset. As a result,
the solutions are feasible and significant in the context of the existing data. As a result, the
constraints for the design variables “LineItemQuantity”, “PackPrice”, “UnitofMeasure”,
and “weight” can be expressed mathematically as follows:

LineItemQuantity ≥ α × LineItemQuantity (4)

PackPrice ≥ α × PackPrice (5)
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Unito f Measure ≥ α × Unito f Measure (6)

weight ≥ α × weight (7)

where Variable denotes the average value of that variable across the entire dataset. The
standardized forms of these variables, which were scaled to lie between 0 and 1 for the
ANN modeling phase, were subsequently used as inputs for the optimization algorithm.
The objective function to be minimized was defined as Equation (2). Where f1 represents
the standardized “freight cost”, and f2 represents the standardized “delivery time”. The
function encapsulates the essence of the optimization goal, which is to reduce the cost
and time of deliveries concurrently. The Fmincon function in MATLAB was employed for
optimization, utilizing the “active-set” algorithm. This algorithm is particularly well-suited
for dealing with problems that have a mix of bound constraints and linear constraints. The
optimization options were meticulously set to fine-tune the performance of the algorithm,
with “ScaleProblem” configured to “obj-and-constr” to normalize the scale of the objective
function and constraints, “ConstraintTolerance” set to a stringent 1 × 10−7 to ensure
a precise adherence to the constraints, and “DiffMinChange”s adjusted to 1 × 10−6 to
control the minimum change in variables for the finite-difference gradients. Based on
these methods and settings, the optimal standardized values for “LineItemQuantity”,
“PackPrice”, “UnitofMeasur”, and “weight” were found to be the following:

LineItemQuantity opt = 0.892 (8)

PackPrice opt = 0.903 (9)

UnitofMeasure opt = 0.101 (10)

Weight opt = 0.250 (11)

The de-standardization process, which converts these values back to their original
scales, yielded the following optimum non-standardized values:

LineItemQuantity opt (originalscale) = 459,228.715 (12)

PackPrice opt (originalscale) = 1129.273 USD (13)

UnitofMeasure opt (originalscale) = 101 (14)

Weight opt (originalscale) = 38,758.858 Kg (15)

These values are instrumental in achieving the optimized “freight cost” and “delivery
time”. The application of the optimized variables led to the following results:

FreightCost opt = 45,151.927 USD (16)

DeliveryTime opt = 106.152 days (17)
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In our optimization framework, the constraints were carefully designed to ensure prac-
tical relevance and feasibility in real-world scenarios. Specifically, the constraints required
that all design variables—Line Item Quantity, Pack Price, Unit of Measure (Per Pack), and
Weight (Kilograms)—remain positive and exceed 10% of their respective average values
across the dataset. Mathematically, these constraints were expressed as follows:

xi ≥ 0.1 × Average (xi)∀i (18)

These constraints reflect the realities of supply chain logistics, ensuring that the
optimization solutions remain realistic. For example, Line Item Quantity cannot drop below
a practical minimum threshold without jeopardizing supply chain efficiency, while Pack
Price must account for the minimum cost viability set by suppliers. Similarly, constraints
on weight ensure that shipment volumes remain feasible for transportation modes.

According to the results, the optimized design variables are capable of resulting
in substantial cost savings and efficiency improvements compared to the initial supply
chain state. The study’s results demonstrate the power of combining ANN predictive
models with optimization algorithms to address complex supply chain challenges. In
addition to providing insight into the factors affecting “freight cost” and “delivery time”,
the models also assist in the optimization process in order to discover feasible and efficient
solutions. Moreover, these findings underscore the broader applicability of ANN-driven
optimization frameworks in tackling complex supply chain challenges. The approach not
only enhances operational efficiency but also provides a systematic method to balance
competing objectives, such as cost minimization and timely delivery. The use of MATLAB’s
Fmincon with a carefully configured “active-set” algorithm ensures precise adherence
to constraints and fine-tuning of results, making the methodology robust and scalable.
Future research can build on this foundation by integrating additional factors, such as
supplier reliability, geopolitical risks, and environmental considerations, to further optimize
supply chain operations. These results reaffirm the critical role of advanced predictive
and optimization tools in supporting decision-making, ensuring the sustainable delivery
of essential resources like HIV drugs in challenging and dynamic environments. The
predictive accuracy of the ANN models was evaluated using additional metrics to provide
a more comprehensive assessment. For the “freight cost” model, the following performance
metrics were recorded: RMSE = 0.045; MAE = 0.032; and R2 = 0.923, indicating strong
predictive accuracy and alignment with the actual values. The scatter plot confirms this,
with data points closely clustered around the line of perfect fit, validating the model’s
robustness in predicting freight costs.

Conversely, the “delivery time” model exhibited comparatively lower accuracy, with
RMSE = 0.089, MAE = 0.065, and R2 = 0.643. These metrics suggest that this model struggled
to capture the variability inherent in delivery times, potentially due to unmodeled external
factors such as weather conditions, political stability, and logistical constraints. The broader
dispersion of data points in the scatter plot further highlights these limitations. To improve
the “delivery time” model’s accuracy, we propose the incorporation of additional features
that reflect real-world variability. Sensitivity analysis on key variables, such as “Shipment
Mode” and “Vendor INCO Term”, will also be conducted to assess their relative influence
on delivery time predictions. These enhancements aim to refine the model’s predictive
capability and address the current limitations.

The comparative analysis confirms that Fmincon balances computational efficiency
and solution precision, making it an ideal choice for the healthcare supply chain optimiza-
tion problem. While EAs are effective for highly complex problems, their computational
cost and stochastic variability make them less suitable for scenarios requiring fast, reliable
results. LP, on the other hand, is not a viable alternative for the nonlinear nature of this
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problem. This robust benchmarking demonstrates that our proposed approach offers a
practical and scalable solution for dual-objective optimization, achieving meaningful im-
provements in freight cost and delivery time while maintaining computational efficiency.
Future work can extend this comparison to other advanced techniques, such as hybrid
optimization frameworks, to further validate our methodology.

Table 3 compares the proposed Fmincon-based optimization approach against baseline
methods, including linear programming (LP) and evolutionary algorithms (EAs), high-
lighting differences in optimization type, computational efficiency, convergence behavior,
interpretability, performance metrics, and practical applicability.

Table 3. Comparison of Fmincon, linear programming (LP), and evolutionary algorithms (EAs) on
optimization type, efficiency, convergence, and performance.

Criterion
Proposed Approach

(Fmincon)
Linear Programming (LP)

Evolutionary Algorithms
(EAs)

Optimization Type Nonlinear optimization Linear optimization
Stochastic,
population-based
optimization

Applicability

Handles nonlinear,
constrained, and
multi-objective problems
effectively

Limited to linear objective
functions and constraints

Suitable for highly
nonlinear, complex
problems

Computational Efficiency

High efficiency for
medium-scale problems
with clear convergence
behavior

Very efficient for linear
problems; struggles with
nonlinear extensions

Computationally
expensive due to
population size and
iterations

Convergence Guarantee Converges reliably under
well-defined constraints

Guarantees global
optimum for linear
problems; not applicable to
nonlinear cases

Does not guarantee
convergence to global
optimum

Interpretability
Provides clear
gradient-based insights
into convergence

Transparent and
interpretable for linear
systems

Lacks transparency due to
stochastic nature

Performance Metrics RMSE: 0.045 (Freight Cost),
0.089 (Delivery Time)

RMSE not applicable
(linear assumption);
simplistic results for
nonlinear systems

RMSE: 0.053 (Freight Cost),
0.093 (Delivery Time)

Strengths

Highly precise for
problems with moderate
nonlinearity and
constraints

Efficient for linear
problems; interpretable
solutions

Effective for highly
complex landscapes
without derivatives

Limitations Sensitive to initial guesses
and parameter tuning

Cannot handle
nonlinearity; restricted to
convex problems

Computationally
expensive and
parameter-intensive

5. Conclusions

This study leverages Artificial Neural Networks (ANNs) with a Multi-Layer Percep-
tron (MLP) architecture alongside the Fmincon optimization algorithm to enhance the
efficiency of the HIV drug supply chain. The primary objective was to minimize two
critical metrics: “freight cost’ and “delivery time”, which are vital to ensuring both cost-
effectiveness and timely delivery in drug distribution systems. This methodology involved
training ANN models in predicting these metrics based on four key design variables: “Line
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Item Quantity”, “Pack Price”, “Unit of Measure (Per Pack)”, and “Weight (Kilograms)”.
Using a dataset comprising 10,325 cases that encapsulated diverse supply chain compo-
nents, the models underwent rigorous training. The application of the gradient descent
algorithm resulted in substantial improvements in prediction accuracy, effectively mini-
mizing the error between predicted and actual values. Once validated, the ANN models
were integrated into an optimization framework where constraints ensured that design
variables remained within realistic bounds, such as exceeding 10% of their respective
average values. The Fmincon algorithm was selected for its ability to handle complex
constraints effectively, and its configuration was fine-tuned for precision. The optimization
results, after de-standardizing the design variables, revealed significant improvements,
with the optimized “freight cost” reduced to USD 45,151.93 and “delivery time” shortened
to 106.15 days compared to baseline values.

These results underscore the transformative potential of machine learning and opti-
mization techniques in addressing challenges within complex supply chains. Optimizing
the HIV drug supply chain yields not only economic benefits but also profound social
impacts. By reducing delivery times, critical medications can be made available more
promptly, improving health outcomes and enhancing the quality of life for patients. Addi-
tionally, cost savings from reduced freight expenses can be reallocated to other essential
areas, such as medical research, infrastructure development, and expanding healthcare
access. This study also highlights the robustness and adaptability of combining ANNs with
optimization algorithms, providing a scalable approach for various industries. However,
limitations were identified, particularly regarding the accuracy of the “delivery time” pre-
dictions, which suggests that additional variables—such as weather conditions, geopolitical
factors, or global health crises—could further refine this model. Future research should
explore incorporating such granular data to address these complexities and improve pre-
dictive accuracy. This work bridges the gap between healthcare, supply chain management,
and data science, illustrating how interdisciplinary approaches can tackle real-world chal-
lenges. Beyond healthcare, this methodology has implications for manufacturing, retail,
and logistics sectors, demonstrating the versatility of data-driven, analytical solutions.
The success of this study reaffirms the value of innovative approaches in supply chain
optimization, emphasizing the need for continued research to refine models and drive
positive economic and societal outcomes.

6. Future Work

To expand the future research section, we will include the potential of multi-objective
evolutionary algorithms, such as NSGA-II or MOEA/D, to explore a broader solution
space and address the trade-offs between freight cost and delivery time more effectively.
Additionally, we will propose developing real-time supply chain optimization frameworks
that leverage dynamic data, such as real-time tracking, weather conditions, and geopolitical
factors, to enhance adaptability and decision-making. These directions will provide a
foundation for extending the applicability and robustness of the proposed approach.
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Abstract: In the context of globalized and complex supply chains, supply uncertainty
occurs frequently. To reduce dependence on suppliers, retailers often consider holding
strategic inventory and introducing private brands. To explore the relationship between
private brands and strategic inventory strategies, and to determine the optimal strategic
decisions, this paper constructs a two-stage supply chain model. Using game theory
methods, we calculate the equilibrium outcomes of the supply chain under two scenarios:
one with only national brands and the other with the introduction of private brands. The
main findings are as follows. First, we identify the optimal decisions for both suppliers
and retailers in each scenario. The influencing factors include perceived quality, inventory
costs, and supply stability. Second, we find that there are constraints for retailers to
activate strategic inventory, but these constraints are less restrictive when private brands
are introduced. Finally, introducing private brands benefits retailers in implementing
strategic inventory, although the extent of this impact depends on the conditions under
which the strategic stockpile is implemented. These findings fill the gap in the existing
literature on the impact of private brand introductions on strategic inventory under supply
uncertainty and highlight valuable implications for business decision-makers.

Keywords: supply uncertainty; strategic inventory; private brands; supply chain
management; supply disruption

1. Introduction

In today’s deeply integrated global economy, the compounded impacts of geopolitical
conflicts, trade barrier restructuring, frequent extreme weather events, and disruptive
technological changes have significantly amplified the vulnerabilities of supply chains [1,2].
From the manufacturing shutdowns triggered by semiconductor shortages to global infla-
tion caused by the energy crisis, supply uncertainty has become a constant risk in business
operations [3,4]. This is particularly true for the retail industry, which often faces the
dilemma of being “out of stock” due to supply disruptions, as it heavily relies on external
suppliers for national brand products (labeled NBs) [5,6]. For example, during the pan-
demic, many supermarket shelves were left empty, with only a limited supply of local
products available.

In the face of supply uncertainty, traditional response strategies, such as excessive
stockpiling of strategic inventory, may partially alleviate the risk of supply disruptions [5,6].
Researches show that retailers can mitigate the risk of supply instability and enhance supply
chain resilience through strategic inventory reserves [7]. Furthermore, strategic inventory
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can also improve the retailer’s bargaining power with suppliers and reduce dependence on
them [8]. However, in the real business environment, adopting strategic inventory comes
with high storage costs and capital occupation pressures, posing challenges for retailers in
making informed decisions.

In addition to strategic inventory, another option for retailers to enhance their bargain-
ing power with suppliers is the introduction of private brand products (labeled PBs) [9,10].
PBs, also known as private labels or store brands, are products that carry a brand name cho-
sen by the retailer and are completely owned, controlled, and marketed by the retailer. In
practice, PBs are typically segmented by product category, for instance, grocery, non-food,
and apparel. Research shows that, compared to NBs, PBs offer advantages such as higher
cost-effectiveness, flexible pricing, and a reliable supply [11,12]. They can help retailers
increase profit margins, boost customer loyalty, and reduce dependency on suppliers [13].
In recent years, PBs have developed rapidly worldwide. According to PLMA’s report, in
the U.S., PBs have achieved all-time record highs in both unit and dollar shares in 2023. For
example, PBs’ dollar sales increased by 4.7% to reach approximately USD 236.3 billion, with
a significant presence across nearly all food and non-food categories. Moreover, the report
highlights that U.S. consumers—driven by high market awareness—exhibit a strong ac-
ceptance of PBs (https://www.plma.com/about_industry/research_reports_publications/
consumer-research/plmas-2024-private-label-report accessed on 20th December 2024).
Products like Walmart’s “Great Value”, Tesco’s “Tesco Value”, and Marks & Spencer’s
“M&S” have become core competencies in attracting consumers. However, some scholars
have found that the introduction of PBs may lead to a deterioration in the retailer–supplier
relationship, which, in turn, affects retailers’ profits [14]. Although existing studies have
extensively explored strategic inventory and PBs, most focus independently on the impact
of each strategy on retailers’ profitability. There is a theoretical gap regarding the interaction
between PBs and strategic inventory which limits the ability to fully guide retailers who
must simultaneously make decisions about both strategies in practice. The coexistence
of strategic inventories and PBs is common in practice, as exemplified by Wumart. This
leading Chinese supermarket chain maintains a large amount of strategic inventory without
any supply chain disruption, while also operating PBs such as “Liangshiji”. When the
COVID-19 pandemic broke out, Wumart ensured a stable supply of goods. Therefore,
studying the impact of PBs on retailers’ strategic inventory under conditions of supply
instability holds significant practical importance. This paper aims to address the gaps in
existing theories by investigating the following questions:

1. Under what conditions will a retailer stock strategic inventory?
2. How does the introduction of PBs impact the retailer’s strategic inventory decisions?
3. What impact does the introduction of PBs have on the various entities in the supply

chain under conditions of supply uncertainty?

To address these questions, we construct a game model with supply uncertainty. By
calculating the equilibrium decisions of the supplier and retailer under the scenarios of
having only NBs and introducing PBs, and then comparing and analyzing the results
numerically, we found the following. First, holding strategic inventory is not always
beneficial for retailers; the conditions for activating strategic inventory depend on inventory
costs, supplier wholesale prices, and supply stability. Second, the introduction of PBs
allows retailers to make flexible strategic choices. When strategic inventory cannot be
implemented, PBs can help retailers secure profits and maintain supply chain operations.
Finally, retailers’ decisions should be scientifically formulated based on the perceived
quality of PBs, inventory costs, and supply stability.
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The main contribution of this paper is to fill the theoretical gap in research on the
impact of introducing PBs on strategic inventory in the context of supply uncertainty. It
also reveals how PBs influence strategic inventory decisions. The main conclusions provide
valuable managerial insights and offer guidance for real-world retail businesses with regard
to making informed decisions.

The rest of the paper is organized as follows. Section 2 presents a comprehensive liter-
ature review. Section 3 describes the construction problem, develops the model framework,
and outlines the basic assumptions. Section 4 computes the equilibrium solutions of the
model for different scenarios. Section 5 provides a comparative model analysis and numer-
ical simulations. Section 6 discusses how our results answer the research questions. Finally,
Section 7 concludes the paper with managerial implications and future perspectives.

2. Literature Review

This paper investigates the impact of PBs on retailers’ strategic inventories in the
face of supply uncertainty. Two main types of literature are closely related to this paper:
strategic inventory in supply chains and PB introduction.

2.1. Strategic Inventory

Holding strategic inventory in supply chains is a business strategy where companies
acquire goods over time and retain inventory to mitigate supply chain disruptions and
production fluctuations [15]. Anand et al. found that retailers holding inventory can lower
the average wholesale price, alleviating the double marginalization effect [16]. Arya et al.
investigated the impact of manufacturers’ rebate contracts on strategic inventory and found
that these contracts suppress retailers’ strategic inventory behavior but bring more profits
to supply chain members [17]. Arya et al. explored the impact of strategic inventory
on a supply chain consisting of a single supplier and a retailer with multiple divisions
and elaborated on enterprise inventory management in centralized versus decentralized
decision making [18]. Roy et al. investigated the impact of strategic inventory on supply
chain members under the condition of unobservability of retailer inventory levels, and the
results indicate that retailers may voluntarily disclose their inventory-level information [19].
Li et al. examined strategic inventory decisions in competitive supply chains and found
that intensified competition may induce retailers to order more inventory [20]. Guan et al.
found that manufacturers’ channel encroachment suppresses retailers’ strategic inventory
behavior [21]. Martin et al. examined the impact of retailers using strategic inventory
when product quality declines [22]. Graves et al. discussed the role of safety stock as a
crucial component of supply chain resilience strategies. They highlighted that increasing
safety stock levels for critical items can help buffer against demand uncertainty and supply
disruptions, especially in the wake of major supply chain disturbances such as those
observed during the COVID-19 pandemic. Their findings support the notion that holding
additional inventory can serve as a resilience mechanism [23].

In recent years, scholars have examined various supply chain structures related to
the retail industry in the context of strategic inventory issues. Saha et al. examined the
impact of strategic inventory [24]. The results show that all supply chain members can
achieve higher profits if the holding cost is within a certain range, allowing the retailer
to maintain strategic inventory, and, while cooperation between two manufacturers can
lead to better outcomes without SI, this is not always the case when the retailer holds
strategic inventory. Dong et al. employed a two-period dynamic model to explore the
impact of manufacturers’ strategic inventories on supply chain decisions and profits. They
found that the manufacturer may hold a positive inventory level at equilibrium, which
influences the retailer to carry more strategic inventory at a higher wholesale price in the
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first period. While the manufacturer’s strategic inventory always hurts the retailer’s profit,
it may enhance channel profits, consumer surplus, and social welfare [25]. Yang et al.
constructed a two-period dynamic model to explore the relationship between supplier
encroachment and the retail platform’s strategic inventory withholding behavior. The
results show that the retail platform’s strategic inventory decisions depend on the holding
cost without encroachment and are moderated by the commission rate when the holding
cost is intermediate with encroachment [26]. Most of the above studies are based on
situations where the supply is stable and strategic inventories are constructed mainly for
bargaining purposes with suppliers. This paper introduces the strategic inventory problem
into an environment of unreliable supplies and considers the impact of PB strategies in a
fashion which is more in line with real-world scenarios.

2.2. PB Introduction

Supply chain management, with the introduction of PBs, is another important area of
research. Earlier scholars mainly focused on the impact aspects of introducing PBs. For
example, Mills found that the introduction of PBs by retailers can not only achieve higher
profits, but also mitigate the double marginal effect in the supply chain [27]. Chintagunta
et al. found that the introduction of PBs has a significant impact on the supply chain
pricing and profitability levels by considering price elasticity factors through an empir-
ical study of oatmeal category products from Dominicks Finer Foods in the U.S. [28].
Mandhachitara et al.’s research shows that, in developed countries such as the U.S.,
PBs are more widely accepted, owing to the higher level of market awareness among
consumers in these areas [29]. Wu et al. analyzed 364 articles covering 43 countries;
notably, 82 articles involved U.S. data—the highest among the regions—while Spain
accounted for 54 articles, making it the second largest. Moreover, cross-country stud-
ies on PBs predominantly used data from the U.S. and Europe [30]. Ru et al. found
that the introduction of PBs can produce a win–win situation in a retailer-dominated
situation [31]. In recent years, academics have been focusing on the impact of product
quality on PB introduction. Choi et al. considered the impact of PB introduction on the
supply chain under different quality positioning and showed that retailers can benefit
manufacturers when they introduce high-quality PBs [32]. Hara et al. studied the impact
of PB introduction when a retailer cooperates with an NB supplier and suggested that the
introduction of high-end PBs can be a win–win situation for retailers [33]. Li et al. studied
how retailers should make PB quality decisions [34].

Meanwhile, with the transformation of retail business models, scholars have paid
attention to channel changes. Li et al. considered the model of introducing PBs under
different sales models under the platform model [35]. Xu et al. investigated the logistics
and distribution of fresh PBs under the platform model and found that the introduction
of fresh PBs is conducive to promoting the acceptance of platform logistics services by
merchants [11]. Li et al. explored the situation where manufacturers create new products
in response to the invasion of platform PBs and found that the introduction of new low-
priced products by manufacturers is conducive to market competition [14]. Huang et al.
analyzed the optimal pricing strategy under the introduction of PBs based on the return
perspective [13]. Shen et al., based on the perspective of different agency contracts, explored
the relationship between the perceived value of PBs and the introduction strategy [36].
However, most of the above literature has not yet considered the category problem of PBs,
nor has it focused on the product-ordering problem under the retailer–supplier competition
and gaming which cannot provide comprehensive support for the enterprise’s realistic
decision making. Balasubramanian et al. employed a two-period game-theoretic framework
to investigate the impact of PB competition on a retailer’s strategic inventory decisions. The
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analysis revealed that it is never optimal for the retailer to hold PBs as strategic inventory,
and, while PB competition can sometimes worsen the retailer’s situation, low holding costs
can make strategic inventory and PB competition complementary and beneficial to the
retailer [37].

Summarizing the above literature, it can be observed that the introduction of PBs has
a significant impact on the supply chain operation. However, most of the existing studies
have not yet considered supply chain disruption scenarios or the structural changes in
product ordering introduced by strategic inventory, a fact which limits their applicability for
real-world decision making by enterprises. This paper examines how strategic inventory
changes when retailers introduce PBs in the context of supply uncertainty, providing robust
theoretical support for enterprises with regard to making supply chain decisions within a
complex and dynamic market environment.

3. Problem Description and Model Setup

Here, we consider a two-stage supply chain model consisting of a supplier and a re-
tailer. The supplier sells NBs to the retailer at wholesale price, and the retailer subsequently
sells it to consumers at a retail price (referred to as Scenario N). Under the Stackelberg
game, the supplier acts as the leader, and the retailer acts as the follower. Both participants
are risk-neutral and aim to maximize profits in their decision making, an approach which
is consistent with [38–40].

We first outline the timeline of the two-stage supply chain. In the first stage, the supply
is stable. The supplier determines the wholesale price of NBs, and the retailer purchases a
quantity of K(K > 0) units as strategic inventory, with a holding cost of h per unit. The
holding cost refers to the storage and disposal costs incurred for the strategic inventory
and is consistent with [1,21,24]. In the second stage, the retailer orders a quantity of K
for selling, but unpredictable supply disruptions may occur, such as production capacity
interruptions caused by diseases, natural disasters, geopolitical issues, or the supplier
prioritizing other channels. Supply uncertainty can be represented in the model as a
package of multiple scenarios, including stochastic production, all-or-nothing supply, and
stochastic capacity [40]. In this paper, we assume that supply uncertainty is consistent
with an all-or-nothing supply model [41–43]. If a disruption occurs, the retailer will not
receive any products. For example, during peak sales seasons, NB suppliers may prioritize
their own online channels, leading to supply disruptions for retailers. Consistent with the
literature [43], we assume that the probability of a normal supply in the second stage is
λ(0 < λ < 1), which serves as an indicator of the supply stability. Thus, the probability of
a supply disruption is 1 − λ.

In this paper, we investigate the impact of PBs on the supply chain (referred to as
Scenario P). In our study, we focus specifically on the PB category that comprises products
which are easy to store and not prone to spoilage. This segment is particularly relevant for
our analysis of strategic inventory decisions under supply uncertainty, as these products
allow for more predictable inventory management. The retailer can introduce PBs and
we assume that the supply of PBs is always stable due to the significant control from
the retailer. We assume that the market consists of one unit of consumers. Consumers
exhibit heterogeneous quality preferences, which influence their willingness to pay V.
Consistent with the assumption made by Ru et al. [31], Guo et al. [44], Ru et al. [45], Li
et al. [10], and Alan et al. [46], we assume that consumer willingness to pay follows a
uniform distribution over the interval [0, 1]. We set the perceived quality of the NBs to 1
and denote the perceived quality of the PBs as μ(1/2 < μ < 1). This is because PBs are
still in the early stages of market presence compared to NBs and lag behind in terms of
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technology, production experience, and quality control. This hypothesis is very common in
PB-related research, such as [47–49].

The sequence of the game in two scenarios is shown in Figure 1. First, the supplier
decides the wholesale price of NBs and the retailer decides the strategic inventory level.
Second, the retailer decides the order quantity of NBs, and the order quantity of PBs if
PBs are introduced. Finally, the consumer chooses to buy the product based on the actual
supply of the product and products will be sold.

(a) 

(b) 

Figure 1. The sequence of the game: (a) under scenario N; (b) under scenario P.

When there are only NBs on the market, for a given price, the consumer’s utility after
purchasing NBs is uN

1 = V − pN
1 . When both NBs and PBs exist on the market, the utility

of consumers purchasing NBs is uP
1 = V − pP

1 , while the utility of consumers purchasing
PBs is uP

2 = μV − p2. Thus, the inverse demand function of two products under different
scenarios and cases can be summarized as follows:

pij
1 = 1 − (qij

1 + Ki)− μqij
2 (1)

pj
2 = μ(1 − (qPj

1 + KP)− qj
2) (2)

where i = N, P denotes scenario N and scenario P, k = D, N denotes the case of supply
disruption and not, and qNj

2 = 0 indicates no introduction of PBs. Similar inverse demand
functions for PBs and NBs have been adopted in the literature, such as [32,44,50]. All
the notations are summarized in Table 1. Without loss of generality, we assume that the
marginal cost of production is equal to zero for all products, an approach which is the same
as that adopted in other studies [11,14,51].

24



Systems 2025, 13, 203

Table 1. Notations and definitions.

Notations Definition

Indices
t Subscript, index of product, t = 1 for NBs and t = 2 for PBs
i Superscript, index of scenario, i = {N, P}
j Superscript, index of case, j = {D, N}, e.g., D for

disruption
Parameters

h The unit holding cost for strategic inventory
λ Supply stability: the probability of supply stabilization
μ The perceived quality of PBs

Decision variables
qij

t The order quantity for product t in scenario i with case j
wi The wholesale price for NBs in scenario i
Ki The strategic inventory in scenario i

Dependent variables
pij

t The retail price for product t in scenario i with case j
Ei The consumer surplus in scenario i

πi
M The supplier’s profit in scenario i

πi
R The retailer’s profit in scenario i

4. Model Solution and Equilibrium Analysis

The retailer can choose whether or not to introduce PBs, and, based on this, there are
two scenarios. In this section, we explore the equilibrium results under different scenarios.
All proofs are presented in Appendix A.

4.1. Only NBs (Scenario N)

When no PBs exist, in case N, the retailer’s sales volume is KN + qNN
1 ; in case D, the

retailer’s sales volume is KN . Thus, the retailer’s and supplier’s profit function are:

maxπN
R (qNN

1 , KN) = λπNN
R + (1 − λ)πND

R
= λ(pNN

1 (qNN
1 + KN)− wNqNN

1 ) + (1 − λ)pND
1 KN − hKN (3)

maxπN
M(wN) = λqNN

1 wN + wNKN (4)

Using backward recursion, the optimal solution for the retailer under unconstrained
conditions is obtained as follows: (qNN

1 (wN), KN(wN)) =
(

h
2−2λ , h+λ−λwN+wN−1

2(λ−1)

)
. The

constraint for the strategic inventory is K ≥ 0, and, if, K = 0 the retailer will not maintain
strategic inventory. Therefore, the sign of h+ λ− λwN +wN − 1 affects the implementation
of the strategic inventory strategy, which, in turn, influences the structure of the supply
chain. By discussing the range of values for wN , we can have Lemma 1 as follows.

Lemma 1. When PBs are not introduced, for a given wN, the optimal solutions for the retailer are:

(qNN
1 (wN), KN(wN)) =

⎧⎨⎩
(

h
2−2λ , h+λ−λwN+wN−1

2(λ−1)

)
i f wN < h+λ−1

λ−1(
1−wN

2 , 0
)

i f wN ≥ h+λ−1
λ−1

(5)

Lemma 1 indicates that, when only NBs are available, the retailer’s optimal order
quantity is solely dependent on inventory costs and supply stability. Furthermore, if the
wholesale price set by the supplier is too high, the retailer will not maintain strategic inven-
tory. Substituting Lemma 1 and Equation (5) into Equation (4) yields equilibrium results.
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Lemma 2. When PBs are not introduced, there exists a hN such that the equilibrium prices,
quantities, and profits are given in Table 2, where hN= 1 −√

λ.

Table 2. Equilibrium results under scenario N.

Items Equilibrium Results

h < hN h ≥ hN

wN 1−h
2

1
2

qN
1

h
2−2λ

1
4

KN hλ+h+λ−1
4(λ−1) 0

pNN
1

3−h
4

3
4

pND
1

(h−3)λ+h+3
4−4λ

0
EN h+3

4
4−3λ

4
πN

M
1
8 (h − 1)2 λ

8
πN

R
−h(3hλ+h+2λ−2)+λ−1

16(λ−1)
λ
16

Lemma 2 demonstrates that the retailer’s strategic inventory strategy is closely related
to inventory costs. Only when inventory costs are sufficiently low will the retailer hold
strategic inventory. Furthermore, by maintaining strategic inventory, the retailer weakens
the supplier’s monopoly position, allowing the retailer to flexibly adjust the ordering
strategy during the selling period based on the supplier’s reliability.

Proposition 1. When PBs are not introduced, the values of the decision variables, consumer
surplus, and profits vary with h as follows:

• When h < hN, ∂wN/∂h < 0, ∂qN
1 /∂h > 0, ∂KN/∂h < 0, ∂EN/∂h > 0, and ∂πN

M/∂h > 0
• When hN1 < h < hN, ∂πN

R /∂h > 0; when hN1 > h, ∂πN
R /∂h < 0, where hN1 = 1−λ

3λ+1
decrease with λ.

Proposition 1 indicates that, under moderate inventory costs, as inventory costs
increase, the supplier will lower the wholesale price. This is because the supplier is
concerned that higher inventory costs will lead the retailer to reduce order quantities,
thereby resulting in lower profits. As a result, the retailer will increase the order quantity
during the selling period but will reduce the strategic inventory reserve. This situation,
ultimately, leads to an increase in the supplier’s profit and consumer surplus. Interestingly,
we found that, when inventory costs are within a certain range, the retailer’s profit increases
as inventory costs rise. However, when inventory costs fall below a critical threshold, the
retailer’s profit decreases as inventory costs increase. This critical value is negatively
correlated with supply stability.

4.2. Both NBs and PBs (Scenario P)

When both PBs and NBs are present on the market, in case N, the retailer’s sales
volume for NBs is KP + qPN

1 , while the volume for PBs is qN
2 ; in case D, the retailer’s

sales volume for NBs is KP and the volume for PBs is qN
2 . In scenario P, the retailer’s and

supplier’s profit functions are:

maxπP
R(q

PN
1 , qP

2 , KP) = λ(pPN
1 (qPN

1 + KN)− wPqPN
1 ) + (1 − λ)pPD

1 KP − (wP + h)KP

+λpPN
2 qP

2 + (1 − λ)pPD
2 qP

2
(6)

maxπP
M(wP) = λqPN

1 wP + wPKP (7)
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Using backward recursion, the optimal solution for the retailer under unconstrained
conditions is obtained as follows:

(qPN
1 (wP), qP

2 (w
P), KP(wp)) =

(
h

2 − 2λ
,

h + wP

2 − 2μ
,

hλμ − h + λμ − λ − μ + λwP − wP + 1
2(λ − 1)(μ − 1)

)
Similar to Lemma 1, by discussing the range of values for wP, we can have Lemma 3.

Lemma 3. When PBs are introduced, for a given wP, the optimal solutions for the retailer are:

qPN
1 (wP) =

⎧⎨⎩ h
2−2λ i f wP < −λhμ+h−λμ+λ+μ−1

λ−1
μ+wP−1

2λμ−2 i f wP ≥ −λhμ+h−λμ+λ+μ−1
λ−1

(8)

qP
2 (w

P) =

⎧⎨⎩
h+wP

2−2μ i f wP < −λhμ+h−λμ+λ+μ−1
λ−1

1+(−1+wP)λ

2−2λμ i f wP ≥ −λhμ+h−λμ+λ+μ−1
λ−1

(9)

KP(wP) =

⎧⎨⎩
hλμ−h+λμ−λ−μ+λwP−wP+1

2(λ−1)(μ−1) i f wP < −λhμ+h−λμ+λ+μ−1
λ−1

0 i f wP ≥ −λhμ+h−λμ+λ+μ−1
λ−1

(10)

Lemma 3 indicates that, even when the retailer introduces PBs, if the supplier’s whole-
sale price is too high, similar to Lemma 1, the retailer will also not maintain strategic
inventory. Furthermore, regardless of whether the retailer initially holds strategic inventory,
as the supplier’s wholesale price increases, the retailer will produce more PBs. By substitut-
ing Lemma 3 and Equations (8)–(10) into Equation (7), we can have the equilibrium results
under scenario P as follows.

Lemma 4. When PBs are introduced, there exists a hP such that the equilibrium prices, quantities,

and profits are given in Table 3, where hP = 1 − μ −
√

−λ+3λμ−3λμ2+λμ3

−1+λμ .

Table 3. Equilibrium results under scenario P.

Items Equilibrium Results

h < hP h ≥ hP

wP 1
2 (1 − h − μ) 1−μ

2
qP

1
h

2−2λ
1−μ

4−4λμ

qP
2

h−μ+1
4−4μ

2−λ−λμ
4−4λμ

KN 2hλμ−hλ−h+λμ−λ−μ+1
4(λ−1)(μ−1)

0

pNN
1

1
4 (3 − h − μ) 3−μ

4
pND

1
1
2 (1 − h)μ 0

pPN
2

h(−λ)−h−λμ+3λ+μ−3
4(λ−1)

μ(1+λ+μ−3λμ)
4−4λμ

pPD
2

(h−1)λμ+μ
2−2λ

−4+2μ+3λμ−λμ2

4(−1+λμ)

EP 1
2

1
2

πP
M

(h+μ−1)2

8(1−μ)
λ(−1+μ)2

8−8λμ

πP
R

A
16(λ−1)(μ−1)

λ+4μ−2λμ−3λμ2

16−16λμ

A = 1 − 2h + h2 − λ + 2hλ + 3h2λ + 2μ + 2hμ − 2λμ − 2hλμ − 4h2λμ − 3μ2 + 3λμ2.
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Lemma 4 indicates that, after the retailer introduces PBs, the strategic inventory
strategy is still dependent on inventory costs. Only when inventory costs are sufficiently
low (under hP) will the retailer maintain strategic inventory. Notably, after the introduction
of PBs, consumer surplus tends to stabilize, suggesting that the presence of PBs significantly
enhances consumer choice and provides a stable purchasing environment for consumers.

Proposition 2. When PBs are introduced, the values of the decision variables, consumer surplus,
and profits vary with h as follows:

• When h < hP, ∂wP/∂h < 0, ∂qP
1 /∂h > 0, ∂qP

2 /∂h > 0, ∂KP/∂h < 0, and ∂πN
M/∂h > 0.

• There exist a λP and hP1, when μ = 3/4 and h > hP1; μ < 3/4, λ < λP, and h < hP1 or
λ > λP and h > hP1; μ < 3/4 and h > hP1 or λ > λP and h > hP1, where ∂πP

R/∂h > 0.
Otherwise, ∂πP

R/∂h < 0, where λP = 1
−3+4μ and hN1 = −1+λ+μ−λμ

−1−3λ+4λμ .

As indicated by Proposition 2, similar to Proposition 1, under moderate inventory
costs, as inventory costs increase, the supplier will lower the wholesale price. The retailer
will then increase the order quantities for both products and reduce the strategic inventory
reserve. Additionally, in the case of introducing PBs, the strategic inventory strategy cannot
guarantee an increase in the retailer’s profit. There exists a critical inventory cost threshold,
which is related to the perceived quality of PBs and supply stability, which influences the
variation in the retailer’s profit.

Proposition 3. When PBs are introduced and the strategic inventory strategy is implemented,
the decision variables and profits vary with the perceived quality of PBs, as follows: ∂wP/∂μ < 0,
∂qP

1 /∂μ > 0, ∂qP
2 /∂μ > 0, ∂KP/∂μ < 0, ∂πP

M/∂μ < 0, ∂πP
R/∂μ > 0.

Proposition 3 indicates that the perceived quality of products plays a crucial role
in shaping a supply chain. As the consumer-perceived quality of PBs improves, the
competitive pressure on NBs intensifies, leading to a decline in the wholesale price of NBs
as the supplier attempts to maintain its market position. Simultaneously, both the retailer’s
PBs and the NBs experience higher order quantities, reflecting a shift in consumer demand
toward PB products. From a profitability perspective, the supplier’s profit declines due
to price reductions and intensified competition, while the retailer benefits from increased
sales and improved profit margins as the PBs become more competitive. Additionally,
the retailer reduces its strategic inventory holdings of NBs as the reliance on a single NB
supplier diminishes. Overall, an increase in PB perceived quality enhances the retailer’s
bargaining power, reduces dependence on the NB supplier, and reshapes inventory and
pricing strategies, ultimately influencing supply chain equilibrium.

5. Comparison Analysis and Numerical Simulation

In this section, we discuss the comparative equilibrium results across different sce-
narios, exploring the impact of strategic inventory and the introduction of PBs on the
supply chain. We use � as the difference value between equilibrium results across different
scenarios. For example, the optimal profit difference between scenario N and scenario P
for the retailer is given by �πR = πN

R − πP
R; if �πR < 0, it means that the introduction

of PBs is better for the retailer’s profit. We also provide numerical simulations to support
these findings.

5.1. The Impacts on Strategic Inventories

According to Lemma 2 and Lemma 4, regardless of whether the retailer introduces
PBs, there exists a critical inventory cost threshold under both scenarios that causes the
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retailer not to maintain a strategic inventory. By comparing the critical inventory cost
thresholds under these two scenarios, we can determine the extent of the limitations on the
activation of the strategic inventory.

Proposition 4. When the retailer introduces PBs, it becomes easier for the retailer to implement
a strategic inventory strategy, as hP < hN. Furthermore, the optimal level of strategic inventory
reserve is lower.

Proposition 4 indicates that the introduction of PBs enables the retailer to flexibly
respond to supply chain disruptions. When inventory costs are high, the retailer can choose
to increase the quantity of PBs to replace the strategic inventory, thereby maintaining a
stable profit level despite the unstable supply. When inventory costs are low, the retailer can
reserve strategic inventory and supplement it with the production of some PBs to maximize
profit. Additionally, the introduction of PBs can reduce the retailer’s strategic inventory
purchase volume, thereby alleviating the pressure on the retailer’s capital accumulation.

According to Younis et al.’s empirical research data on 800 questionnaires, the average
perceived quality of PBs is roughly 0.8 [52]. Based on that, we assume the perceived quality
of PBs to be 0.8 and observe the change in strategic inventory under different supply stabil-
ity scenarios. Figure 2 reveals two key insights. First, when supply stability is held constant,
the introduction of PBs significantly reduces the level of strategic inventory required. No-
tably, the critical threshold for activating strategic inventory is lower with PBs in place.
This indicates that retailers can adopt a more flexible approach to inventory management.

Figure 2. The impact of inventory costs on strategic inventory with different λ values.

Second, the figure shows that the level of strategic inventory is sensitive to the stability
of the supply. As the supply becomes more stable, retailers tend to reduce their strategic
inventory holdings. In contrast, under conditions of poor supply stability, the demand for
strategic inventory increases sharply, reflecting the need to buffer against higher risks of
supply disruption.

Overall, these results suggest that incorporating PBs not only lowers the barrier for
activating strategic inventory, but also enables retailers to better adjust their inventory
levels in response to varying supply conditions. This more flexible strategic approach could
help retailers manage costs more effectively while maintaining service levels in uncertain
environments.
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Furthermore, Proposition 4 also indicates that, under the same h, a retailer operating
without PBs would need to hold a larger buffer, thereby incurring higher financing costs.
For smaller retailers, who typically face financial constraints such as limited cash flow,
we suggest several practical financial strategies to implement strategic inventory more
effectively. First, warehouse receipt financing, which uses strategic inventory as collateral,
can help secure short-term financing. Second, factoring allows retailers to convert receiv-
ables into cash, thereby easing cash flow constraints. Third, negotiating extended payment
periods with the suppliers, known as supplier credit terms, can provide additional working
capital relief.

5.2. The Impacts on Profit
5.2.1. Supplier’s Profit

Based on Lemma 2, Lemma 4, and Proposition 4, the value of �πM depends on the
different intervals of h, resulting in three distinct forms:

�πM =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ(h2+μ−1)

8(μ−1) i f 0 < h < hP

1
8 (h − 1)2 + λ(μ−1)2

8λμ−8 i f hP ≤ h < hN

λμ(λ+μ−2)
8λμ−8 i f hN ≤ h

(11)

By comparing the sign of �πM, we can assess the differences in the supplier’s optimal
profit across various scenarios.

Proposition 5. Regardless of the value of h, the introduction of PBs will always lead to a decrease
in the supplier’s profit, i.e., �πM > 0.

According to Proposition 5 as the retailer introduces PBs, the retailer’s dependence
on the supplier decreases, leading to a reduction in the supplier’s profit. We consider the
supply chain parameters with four cases as μ ∈ {0.55, 0.8}, λ ∈ {0.1, 0.8} to show the
changes in the profit difference for the supplier under different inventory costs and supply
stabilities (Figure 3).

Figure 3. The impact of inventory costs on supplier’s profit difference with different {λ, μ}.

As shown in Figure 3, when PBs are not introduced, the supplier’s profit is higher.
Moreover, as inventory costs decrease, the profit loss caused by the introduction of PBs
becomes more significant for the supplier. The higher the perceived quality of the PBs, the
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greater the profit loss for the supplier. On the other hand, Proposition 5 also indicates that,
when the retailer introduces PBs, the supplier may lower the stability of the supply in order
to protect their profit, in turn affecting the retailer’s strategic choices.

5.2.2. Retailer’s Profit

Based on Lemma 2, Lemma 4, and Proposition 4, the value of �πR depends on the
different intervals of h, resulting in three distinct forms:

�πR =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ(h2−3μ+3)

16(μ−1) i f 0 < h < hP

B
16(−1+λ)(−1+λμ)

i f hP ≤ h < hN

(4+λ(−2+λ−3μ))μ
16(−1+λμ)

i f hN ≤ h

(12)

where B = −2h(−1 + λ)(−1 + λμ) − h2(1 + 3λ)(−1 + λμ) − (−1 + λ)(1 − 4μ + λ(−1
+μ + 3μ2)). By comparing the sign of �πR, we can assess the differences in the supplier’s
optimal profit across various scenarios.

Proposition 6. Regardless of the value of h, the introduction of PBs will always lead to an increase
in the retailer’s profit i.e., �πR < 0.

According to Proposition 6, the introduction of PBs can guarantee that the retailer’s
profit will always increase. When PBs are introduced, the retailer can build a more resilient
supply chain by setting a combination of strategic inventories, order quantities for both
NBs and PBs, and by adjusting prices based on supply stability conditions. However, the
improvement in profit is not fixed, and the difference is based on the specific inventory
costs, perceived quality of PBs, and supply stability. We use numerical simulations to
explain this phenomenon; the parameters are the same as those used in Proposition 5.
Then, Figure 4 illustrates the interaction between exogenous variables and retailer’s profit
change.

Figure 4. The impact of inventory costs on retailer’s profit difference with different {λ, μ}.

Figure 4 shows that, when inventory costs are too high and the retailer is unable to
adopt a strategic inventory strategy, the introduction of PBs significantly increases the
retailer’s profit level. Furthermore, under the same conditions, the higher the perceived
quality of PBs, the greater the increase in the retailer’s profit. Under the condition of
introducing PBs of the same quality, if inventory costs are high and supply stability is poor,
the profit increase after introducing PBs will be greater.

31



Systems 2025, 13, 203

6. Discussions

In this section, we discuss how our research results answer the questions raised in the
previous section.

In addressing the conditions under which a retailer opts to hold a strategic inventory,
our analysis indicates that such a decision is economically justified only when the cost
structure—specifically, the wholesale price and inventory holding expenses—remains
sufficiently low. Our model demonstrates that only under these favorable cost conditions
does the benefit of buffering against supply uncertainty outweighs the costs, enabling
the retailer to optimize its inventory levels. This optimality is derived by balancing the
marginal cost of additional inventory against the anticipated gains from mitigating potential
supply disruptions.

The introduction of PBs significantly reshapes the retailer’s inventory strategy. Our
findings reveal that the presence of PBs effectively lowers the threshold required to initiate
strategic inventory practices. In other words, PBs provide an alternative supply source
that enhances the retailer’s flexibility and responsiveness. This additional option not only
alleviates reliance on external suppliers, but also enables retailers to maintain a more
adaptable and proactive inventory policy, especially in environments characterized by
supply uncertainty.

Under conditions of supply uncertainty, the incorporation of PBs exerts a multifaceted
influence across the supply chain. Our simulations suggest that while the introduction
of PBs can lead to competitive adjustments—such as a reduction in wholesale prices and
altered order quantities—the overall effect is a stabilization of supply chain dynamics.
Specifically, PBs help maintain a more consistent consumer surplus and support a resilient
supply chain structure, even if this comes at the cost of reduced supplier margins. These
dynamics highlight the role of the complex interplay among market perceptions, cost
structures, and supply stability in shaping the strategic decisions of all entities involved.

7. Conclusions and Future Research

In the current development of the retail industry, strategic inventory and PB intro-
duction are two widely adopted strategies. While previous studies have examined the
impact of each strategy on profitability independently, limited attention has been paid to
the interaction among these strategies, especially under supply uncertainty [1,37]. How-
ever, with the advancement of technology and changes to the retail environment, supply
chain structures have evolved significantly, leading to more frequent supply disruptions.
This paper addresses this gap by proposing a novel retailer strategic inventory model
that integrates PB introduction in an unstable supply context. By examining the strategic
inventory and profits of various supply chain stakeholders under different scenarios, we
draw the following main conclusions.

Firstly, regardless of whether PBs are introduced, the retailer will only maintain the
strategic inventory if the wholesale price and inventory costs are sufficiently low. The
introduction of PBs can lower the critical threshold for activating strategic inventory,
allowing the retailer to make more flexible strategic decisions. We also identify the optimal
strategic inventory levels under different scenarios. Secondly, the introduction of PBs lowers
the barriers to implementing strategic inventory strategies, thereby indirectly enhancing
supply chain resilience. In scenarios where PBs are introduced, consumer surplus remains
stable, though lower than when only NBs are present. The supply level across the entire
supply chain remains stable. Even when strategic inventory costs are too high to implement,
PBs can still support the retailer. Finally, the impact of PBs on the profits of retailers and
suppliers is multifaceted, depending on factors such as the perceived quality of PBs,
inventory costs, and supply stability. Some previous pieces of literature suggest that the
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introduction of PBs benefits suppliers as well. However, this dynamic changes when supply
instability and strategic inventory are taken into account.

This study makes several key contributions to the literature. First, it is the first paper
to develop a theoretical model that comprehensively considers supply uncertainty, PB
introduction, and strategic inventory decisions. Second, through comparative model
analysis, we identify the boundary conditions under which a retailer engages in strategic
inventory and examine the changes brought by the introduction of PBs under different
scenarios. Finally, our findings yield several important managerial insights that can serve
as valuable references for business decision-makers.

For retail enterprises, both strategic inventory and PBs are valuable strategic options.
These strategies can help retailers strengthen their bargaining power with suppliers. It
is important to note that the implementation of these strategies is not static; they need
to be applied flexibly, considering factors such as the perceived quality of PBs, inventory
costs, and supply stability. For instance, in highly competitive environments, retailers can
adopt a more aggressive PB strategy. By leveraging the cost advantages associated with
PBs, retailers can secure lower wholesale prices and invest in quality improvements to
build consumer trust. This, in turn, permits them to lower their strategic inventory levels
without compromising service levels, thus achieving a more efficient and responsive supply
chain. Conversely, in markets with lower competitive pressures or more stable supplier
relationships, a more cautious approach may be warranted. In these settings, retailers
might opt to gradually introduce PBs, maintaining a relatively higher level of strategic
inventory as a safeguard against supply disruptions.

This study employs a two-stage Stackelberg game model to analyze strategic inven-
tory decisions under supply uncertainty. While this approach offers valuable theoretical
insights, it also involves several simplifying assumptions. For instance, our model assumes
a binary supply scenario (either full supply or complete disruption) and a monopoly-like
supplier–retailer relationship. In reality, supply disruptions can be partial, such as de-
layed shipments or quality issues, and supply chains often involve multiple competing
suppliers and retailers [40]. For future research, we suggest extending our framework
by incorporating more advanced modeling techniques, such as dynamic programming
or stochastic optimization, which can better account for partial supply disruptions and
logistical challenges like warehouse limitations and transportation delays. We also aim
to broaden our sensitivity analysis by testing various market conditions (e.g., changes in
consumer demand elasticity and supplier pricing) and by integrating empirical data with
our theoretical model. These enhancements will help bridge the gap between theoretical as-
sumptions and real-world complexities, ultimately leading to more tailored and actionable
managerial recommendations.
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Abbreviations

The following abbreviations are used in this manuscript:

NBs National Brand Products
PBs Private Brand Products

Appendix A. Proofs

Proof of Lemma 1. Using backward recursion to solve Equation (3), we can easily have the
optimal solution for KN as h+λ−λwN+wN−1

2(λ−1) under unconstrained conditions. If KN∗ > 0,

the retailer will maintain strategic inventory. If KN∗ ≤ 0, the retailer will not maintain
strategic inventory. If KN = 0, the structure of the supply chain will change, as no products
are available for customers when the supply is disrupted.

Firstly, we discuss the situation with respect to the strategic inventory, which means
that h + λ − λwN + wN − 1 > 0; then, when wN < h+λ−1

λ−1 , we have (qNN
1 (wN), KN(wN)) =(

h
2−2λ , h+λ−λwN+wN−1

2(λ−1)

)
.

Secondly, we discuss the situation without strategic inventory, meaning that h + λ −
λwN + wN − 1 ≤ 0. When wN ≥ h+λ−1

λ−1 , Equation (3) becomes as follows:

maxπN
R (qNN

1 ) = λ(pNN
1 qNN

1 − wNqNN
1 ) (A1)

Then, we can easily obtain the optimal solution using backward recursion, as follows:

(qNN
1 (wN), KN(wN)) =

(
λ − w

2λ
, 0
)

.

�

Proof of Lemma 2. Based on Lemma 1, substitute Equation (5) into (4) and (A1). Then, we
can obtain the following. In a situation where strategic inventory exists, the optimal solution
for the wholesale price is wN = (1 − h)/2; then, we can have h < h1 = (1 − λ)/(1 + λ)

when it satisfies the constraint condition; when h ≥ h1, wN = (h+λ− 1)/(λ− 1). Similarly,
when in a situation without strategic inventory, we can derive the following. When
h > h2 = (1 − λ)/2, wN = 1/2. By comparing the optimal profits of the supplier, we can
obtain hN = 1 −√

λ. Take hN , wN back to (1)–(4) and (A1) and we can obtain equilibrium
results under scenario N in Table 2. �

Proof of Proposition 1. By comparing the sign of the first derivative of the objective value
with respect to h, we can obtain the result in the previous line of Proposition 1.

As ∂πN
R /∂h = −−1+h+λ+3hλ

8(−1+λ)
, then when hN > h > hN1 = 1−λ

1+3λ , we can have

∂πN
R /∂h > 0. �

Proof of Lemma 3. The proof follows the same steps as that of Lemma 1. When
wP < −λhμ+h−λμ+λ+μ−1

λ−1 , we can obtain (qPN
1 (wP), qP

2 (w
P), KP(wp)) = ( h

2−2λ , h+wP

2−2μ ,
hλμ−h+λμ−λ−μ+λwP−wP+1

2(λ−1)(μ−1) ).

When wP ≥ −λhμ+h−λμ+λ+μ−1
λ−1 , Equation (6) becomes as follows:

maxπN
R (qNN

1 ) = λ(pPN
1 qPN

1 − wPqPN
1 ) + λpPN

2 qP
2 + (1 − λ)pPD

2 qP
2 (A2)
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Then, we can easily obtain the optimal solution using backward recursion, as follows:

(qPN
1 (wP), qP

2 (w
P), KP(wp)) =

(
μ + wP − 1

2λμ − 2
,

1 +
(−1 + wP)λ

2 − 2λμ
, 0

)
.

�

Proof of Lemma 4. Based on Lemma 3, substitute Equations (8)–(10) into (7) and (A2). Then,
we can obtain the following. In a situation where strategic inventory exists, the optimal so-
lution for the wholesale price is wP = (1− h − μ)/2 if h < h3 = (−1+ λ + μ − λμ)/(−1−
λ + 2λμ) satisfies the constraint condition; when h ≥ h3, wP = −1+h+λ+μ−λμ−hλμ

−1+λ . Simi-
larly, when in a situation without strategic inventory, we can derive the following. When
h > h4 = (−1 + λ + μ − λμ)/(−2 + 2λμ), wP = (1 − μ)/2. By comparing the optimal

profits of the supplier, we can obtain hP = −
√

λμ3−3λμ2+3λμ−λ
λμ−1 − μ+ 1. Take hP, wP back to

(1), (2), (6), and (7) Lemma and (A2) and we can obtain equilibrium results under scenario
P in Table 3. �

Proof of Proposition 2. Similar to the proof of Proposition 1, by comparing the sign of
the first derivative of the objective value with respect to h, we can obtain the result in
Proposition 2. �

Proof of Proposition 3. Similar to the proof of Proposition 2, by comparing the sign of
the first derivative of the objective value with respect to μ, we can obtain the result in
Proposition 3. �

Proof of Proposition 4. Under the constraint of μ and λ, we can obtain hN − hP > 0. Under
the same h, KN − KP > 0. �

Proof of Proposition 5. For the piecewise function �πM, by separately comparing the
values of each stage under different constraints, we can conclude that, for any h in (11),
�πM is always bigger than zero. �

Proof of Proposition 6. For the piecewise function �πR, by separately comparing the
values of each stage under different constraints, we can conclude that, for any h in (12),
�πR is always smaller than zero. �
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Abstract: A two-stage cold supply chain manages the transportation, storage, and dis-
tribution of temperature-sensitive products like frozen food, fresh/green products, and
pharmaceuticals, which makes it costly. It consists of three key elements: a supplier, a
warehouse, and multiple customers. Procurement planning can be conducted for various
products, and this study assumes the transport of a fresh/green product with gradually
decreasing quality due to its perishable nature. In a two-stage cold supply chain, multiple
objective functions can be defined, including cost minimization, product quality optimiza-
tion, and transportation/storage condition optimization. We developed a mathematical
model to optimize these objectives, incorporating two specific functions, cost minimization
and product age reduction, to ensure efficient supply chain performance. Traditional
solution methods often struggle with multi-objective mathematical models due to their
complexity. Therefore, the Non-Dominated Sorting Genetic Algorithm II (NSGA-II), a
Genetic Algorithm-based approach, was applied to solve the model efficiently. NSGA-II
optimized planning for a 7-day period under specific demand conditions, ensuring better
resource allocation. The results showed that NSGA-II was better than traditional methods
at making decisions and routing efficiently in the two-stage cold supply chain. This led to
much better outcomes, with lower costs, less waste, and better product quality throughout
the process.

Keywords: two-echelon inventory system; cold supply chain; multi-objective function;
meta-heuristic algorithm; NSGA-II

1. Introduction

The cold supply chain is a process that involves ensuring and maintaining the appro-
priate temperature conditions required from the production to the storage, distribution,
and consumption of frozen food, fresh/green products, medicines, and other perishable
goods. For this reason, it is critically important to ensure food safety, extend the shelf life of
products, and reduce costs. In the literature, the importance of supply chain collaboration
in cold supply chain management is emphasized [1,2]. Since the cold supply chain requires
products to be transported under specific temperature conditions, studies on how supply
chain integration can be used to meet these special requirements are also of great impor-
tance. In this context, cold chain management requires a comprehensive approach that
includes various factors such as sustainability, risk management, supply chain integration,
and collaboration. In cold supply chains, many problems can arise due to the numerous
factors associated with the transported product and the system. We can summarize some
common problems in cold supply chain management as follows:
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Temperature control: Since products need to be kept within a certain temperature
range, temperature control is a critical factor in the cold supply chain. If the temperature
exceeds the specified temperature range, it can seriously affect the quality and efficacy of
the products.

Moisture levels: It is of great importance to keep moisture levels under control,
especially for medicines, chemicals, and fresh/green products. Inappropriate humidity
levels for products can cause them to spoil or become ineffective.

Light intensity: Some medications and chemicals can deteriorate or become unus-
able under the influence of light. Therefore, the product must be kept under controlled
conditions to ensure the most suitable light intensity.

Carbon dioxide levels: Monitoring carbon dioxide levels is critically important, espe-
cially in products that undergo fermentation or chemical reactions. High levels of carbon
dioxide can negatively affect the quality of these products.

Lack of traceability: The lack of traceability of products at every step of the supply
chain causes interventions that need to be made in critical situations to be delayed.

Health risks and safety concerns: The deterioration or ineffectiveness of product
quality can lead to health and safety risks. For this reason, ensuring the optimal level of
cold supply chain management is of vital importance.

In the following sections, we present a structured literature review that situates this
study within the broader context of cold supply chain optimization, highlighting key gaps
and emerging trends. We then detail our Materials and Methods, elaborating on the multi-
objective mathematical model and the NSGA-II–based solution procedure. After describing
the dataset and experimental design, we share and discuss our results, underscoring how
the proposed framework improves cost efficiency and freshness preservation compared to
traditional methods. Finally, this paper concludes with Implications and Future Research
Directions, offering insights into how these findings can guide more sustainable and
effective cold supply chain strategies.

2. Literature Review

The two-echelon cold supply chain management involves a multi-layered approach to
managing the flow of perishable goods, ensuring quality and minimizing waste. This sys-
tem typically includes a supplier and a retailer, with a focus on transportation modes,
inventory management, and pricing strategies to optimize supply chain performance [2,3].
The integration of cold chain logistics is crucial for maintaining product quality, especially
for perishable goods, and involves strategic decisions regarding transportation and inven-
tory management. In terms of transportation modes, cold chain transportation is essential
for maintaining the quality of perishable goods, such as fresh produce, during long-distance
transport [4,5]. It benefits all supply chain participants, including consumers, by reduc-
ing both quality and quantity loss [6]. The choice between low-cost normal temperature
transportation and high-cost cold chain transportation depends on cost thresholds and
contractual agreements, such as revenue-sharing contracts, which can incentivize suppliers
to adopt cold chain logistics [7]. The inventory management side is another perspective. Ef-
ficient inventory management is critical for sustainability in pharmaceutical supply chains,
where lateral transshipment can reduce costs and minimize product deterioration [7–10].
A mixed-integer non-linear program (MINLP) model can optimize replenishment order
quantities and shipment times, thereby reducing waste and ensuring a sustainable supply
of medicines [7].

While the two-echelon cold supply chain management offers numerous benefits,
challenges such as high transportation costs and the need for coordination among supply
chain members persist. These challenges necessitate strategic planning and collaboration

39



Systems 2025, 13, 206

to ensure the sustainability and efficiency of the supply chain [11–13]. A two-echelon
cold supply chain can be defined as a supply chain model that involves the management
and transportation of products through two different stages of the cold supply chain [12,
14,15]. In this type of supply chain, elements such as suppliers, cold storage facilities,
distribution/transportation vehicles, and customers are involved. In two-stage cold supply
chains, supply planning for many products can be carried out. In this study, it is assumed
that a fresh/green product with gradually decreasing quality will be transported. In
a two-stage cold supply chain, multiple objective functions can be determined, such
as cost minimization, product quality optimization, product transportation conditions
optimization, product storage conditions optimization, etc. This study aims to analyze
a two-stage cold supply chain with a supplier and a warehouse selling a product in the
market under a certain demand. The fresh/green product received from the supplier will
be stored in a single warehouse before customer distribution. It is accepted that the quality
of the product transported along the supply chain gradually decreases. Therefore, the aim
is to keep the storage duration of fresh/green products in the intermediate warehouse short.
A mathematical model has been proposed to minimize expected costs and achieve the best
solution. To solve the mathematical model, one of the meta-heuristic algorithms, the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II), has been used. The results obtained
from the solution are presented in this study. Suggestions have been made based on the
results obtained. Liu, Chen, and their colleagues presented a dynamic planning model
in their 2021 study aimed at delivering fresh products to customers in a two-stage cold
supply chain [15]. In their 2020 study, Wang and Wen aimed to solve the vehicle routing
problem for cold supply chains by considering costs and carbon emissions as performance
metrics. Under the constraints and performance metrics they established, they created a
model for the two-stage heterogeneous vehicle routing problem and proposed the Adaptive
Genetic Algorithm (AGA) approach to reach a solution. Based on the results obtained, they
made recommendations to logistics companies, governments, and consumers involved
in the cold chain to support the improvement of cold supply chain development [16].
Liu and colleagues (2021) stated in their published article that delivering fresh products
to customers is the primary objective of the two-stage cold supply chain model they
addressed. In the two-stage cold supply chain they established, a producer and a retailer
collaborate. In the study, the producer decides on the effort to maintain optimal product
freshness, while the retailer decides on the level of optimal advertising effort. In the
decentralized decision-making mode, they showed that both the freshness factor and
the optimal levels of effort significantly decrease due to the reduction in profit margins.
To solve this problem, they proposed a dynamic control model. At the same time, they
developed a dynamic linear bonus scheme [15]. Jaigirdar and his colleagues, in their study
published in 2022, aimed to reduce the annual supply chain cost and the cold storage
setup cost for a sustainable supply chain while maintaining the freshness of perishable
products by establishing an appropriate distribution system. For this purpose, a multi-stage
and multi-product three-objective optimization model was developed in the study [17].
In the established optimization model, a mixed-integer linear programming model was
proposed to solve the supply chain distribution network problem. For the remaining part
of the model, the weighted sum method was used, and the solution was reached using the
CPLEX optimization studio [3]. Theeb and colleagues published a study in 2023 focusing
on vaccine distribution, one of the key issues to be addressed during the pandemic. They
argued that building permanent warehouses to address the weak infrastructure and other
challenges that do not meet the urgent vaccine needs in developing countries is impractical.
To address the specified issues in vaccine supply, they proposed a two-tiered approach [18].

40



Systems 2025, 13, 206

The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is a powerful tool for
optimizing two-echelon cold supply chain systems, offering numerous advantages. These
include strong multi-objective optimization, better handling of complex logistics, and
the ability to balance competing goals such as cost, carbon emissions, and customer sat-
isfaction. NSGA-II is particularly valuable for cold supply chains because it generates
Pareto-optimal solutions, allowing decision-makers to easily compare and choose among
different objectives.

One of the main benefits of using NSGA-II for two-echelon cold supply chains is its
effectiveness in addressing multiple objectives at once. This is especially important in
cold chains, where cost, carbon emissions, and product freshness must all be considered.
Researchers have applied NSGA-II to optimize distribution routes by factoring in traffic
conditions and replenishment strategies, significantly cutting both costs and emissions
while keeping products fresh [19]. The algorithm pinpoints sets of Pareto-optimal solutions,
helping decision-makers select the best balance between competing goals like cost and
quality [20,21]. NSGA-II also strengthens the resilience of supply chain networks by
optimizing attributes like agility, leanness, and flexibility. This is especially useful for
addressing risks and uncertainties in cold supply chains [22]. The system adapts to shifting
conditions, such as urban traffic congestion, and still delivers reliable planning outcomes
in unpredictable circumstances [19]. Moreover, NSGA-II helps strike a balance between
economic and environmental goals by optimizing inventory and transport decisions in
accordance with carbon emissions limits, a crucial consideration for cold chains, which
produce significant emissions from refrigerated transport and storage [23].

Combining NSGA-II with hybrid methods, such as large-scale neighborhood search,
further boosts its ability to explore vast solution spaces and avoid local optima, thereby
improving local search performance [19]. Its flexibility also allows for easy customization
to meet specific supply chain needs, ranging from optimizing storage in automated systems
to managing dual-sale channel networks [24,25]. However, when using NSGA-II for
two-echelon cold supply chain optimization, it is important to consider the algorithm’s
computational complexity and the need to fine-tune parameters like population size,
crossover, and mutation rates for the best results [26]. Additionally, while NSGA-II handles
multiple objectives well, dealing with an extremely large number of them may require
further refinements or hybrid approaches to maintain efficiency [27]. NSGA-II efficiently
integrates many constraints, ensuring that optimized routing and inventory strategies align
with the specific requirements of cold logistics operations.

3. Materials and Methods

The mathematical formulation of the problem and the methodological approach
are presented in this section. Additionally, the fundamental principles of the NSGA-II
algorithm and its application steps are discussed comprehensively, ensuring a holistic
explanation of the methods employed.

Two-Stage Cold Supply Chain Problem: The main objectives of the established model
are as follows:

• Minimizing routing and inventory costs;
• Minimizing the number of vehicles used;
• Minimizing the number of spoiled fresh/green products.

Mathematical Model: The mathematical model is one of the engineering methods
used to solve problems. At the same time, it represents the problem by forming a basis for
other solution methods. In the mathematical model established based on the assumptions
and premises made for this study, the optimization model developed by Rohmer and
others in their 2019 publication, “A Two-echelon Inventory Touting Problem for Perishable
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Products”, has been referenced [28,29]. The sets used in the developed mathematical model
and their descriptions are summarized in Table 1.

Table 1. Sets used in the mathematical model and their descriptions.

Cluster Explanation

N The set of nodes indexed by i, j, l is {depot:0;
customer: 1, . . ., n}

A Set of springs (i, j): i, j ∈ N, i 	= j
T The set of periods indexed by t
K The set of vehicles indexed by k: k∈ {1, . . ., m}
G The set of product ages indexed by g
Ri The set of visit combinations of i

The parameter variables used in the mathematical model and their explanations are
presented in Table 2.

Table 2. Parameters used in the mathematical model and their explanations.

Parameter Description

cij (i, j) the guidance costs on the bow: i, j ∈ {0, . . ., n}.
C supplier–warehouse–supplier line transportation routing cost
dt

i i the customer’s demand in period t

Qk k the capacity of the vehicle (k = 0: supplier–warehouse; k = 1, 2, 3:
warehouse–customer)

H warehouse inventory holding capacity

hg g unit holding cost in the warehouse for product age (including
spoilage cost)

art If the combination of r visits on day t is equal to 1

Simultaneously, Table 3 displays the variables and explanations of the mathematical
model.

Table 3. Variables used in the mathematical model and their explanations.

Variable Description

xkt
ij

If customer j is visited by agent k in period t immediately after
customer i, it is equal to 1.

ykt
i If the intermediary visits customer i in period t, it is equal to 1

zr
i If the r visits combination of customer i is selected, it equals 1

ut The number of supplier–warehouse vehicles in period t.

vgkt
i

The quantity of g age delivered to customer i from the warehouse
by vehicle k during period t

wt The quantity delivered from the supplier to the warehouse during
period t.

Igt the amount of g age stored in the warehouse during the t period
skt

i the position of vehicle k on the route of customer i at time t

3.1. Objective Functions

In the mathematical model, two different objective functions have been created. Equa-
tion (1) is the first of the objective functions created. The aim of this objective function is to
minimize the total cost of the two-stage cold supply chain. Equation (1) includes transporta-
tion costs, inventory holding costs, and distribution costs to customers. In Equation (2), the
main aim of the objective function is to minimize the age of the products available in the
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cold supply chain. In this way, the number of spoiled products in the system is reduced,
thereby minimizing product waste.

Minimise ∑
t ∈T

Cut + ∑
g∈G

∑
t∈T

hg Igt + ∑
i∈N

∑
j∈N

∑
k∈K

∑
t∈T

Cijxkt
ij (1)

Minimise ∑
i ∈N

∑
k∈K

∑
t∈T

vgkt
i (2)

3.2. Constraints

Constraints are crucial for accurately representing the existing conditions and as-
sumptions within the model, in conjunction with the established objective functions, to
attain optimal outcomes. This study has identified a total of 18 restrictions. Within these
established restrictions, the resolution of the target functions and the optimal transporta-
tion and storage strategy in the supply chain will be attained. Equations (3) and (4) are
storage/inventory constraints related to the age of the product. Products that reach a fixed
age, as determined by Equation (3), are removed from inventory and not distributed to
customers. This constraint prevents the delivery of products that have deteriorated in
quality to users.

Igt = Ig−1,t−1 − ∑
i∈N

∑
k∈K

vg−1,k,k−1
i g ∈ G\{0}, t ∈ T\{0} (3)

I0t = wt t ∈ T (4)

Equation (5) is a constraint added to determine the delivery to the warehouse for
updating the inventory. It also determines the deliveries made from the supplier to the
warehouse.

Igt ≥ ∑
i ∈N {0}

∑
k ∈K

vgkt
i , g ∈ G , t ∈ T (5)

Equations (6) and (7) ensure that the inventory level meets at least the customer
deliveries for the same period. At the same time, they ensure that the fixed inventory
capacity of the warehouse is not exceeded in the solution obtained.

∑
g ∈G

Ig0 = w0 (6)

∑
g ∈G

Igt ≤ H , t ∈ T (7)

In the delivery plan of the optimal solution, the condition for meeting each customer’s
demand is included in the mathematical model expressed in Equation (8).

∑
r∈Ri

artdt
i z

r
i = ∑

g∈G
∑
k∈K

vgkt
i , i ∈ N\{0}, t ∈ T (8)

With Equation (9), the quantity of products that can be delivered to the warehouse for
the optimal solution is restricted based on warehouse capacity and current inventory.

wt ≤ H − ∑
g∈G

Ig,t−1, t ∈ T (9)
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With Equations (10) and (11), a fixed vehicle capacity constraint has been added for
the vehicles to be used for delivery to the warehouse and the customer.

∑
g∈G

∑
i∈N\{0}

vgkt
i ≤ Qkykt

0 , k ∈ K, t ∈ T (10)

wt ≤ Q0ut, t ∈ T (11)

The assumption that each delivery to a customer in each period can only be made
by a single vehicle has been added to the model as a constraint in Equation (12). While
Equation (12) addresses the single vehicle constraint, Equation (13) imposes the constraint
that each delivery in that period will be made with the vehicle that is active during that
period.

∑
k∈K

ykt
i ≤ 1, i ∈ N\{0}, t ∈ T (12)

ykt
i ≤ ∑

j∈N
xkt

ij ≤ 1, i ∈ N, k ∈ K, t ∈ T (13)

A delivery plan will be assigned to each customer according to their requests. Equa-
tion (14) ensures that a single delivery assignment is made to each customer for this
assignment. Equation (15) ensures that the delivery plan assigned to each customer, based
on Equation (14), is followed.

∑
r∈Ri

zr
i , i ∈ N\{0} (14)

∑
i∈N

∑
k∈K

xkt
ij − ∑

r∈Ri

artzr
j = 0, j ∈ N\{0}, t ∈ T (15)

∑
i∈N

xkt
ij − ∑

l∈N
xkt

jl = 0, k ∈ K, t ∈ T, j ∈ N (16)

In addition to all the constraints between Equations (3) and (16), the model includes
constraints that ensure that the variables added to achieve the optimal solution are not
negative.

3.3. Assumptions

This section explains the assumptions used in this study. In the two-stage cold supply
chain, the supplier is considered a single entity, as they collect the green product from
the producers. The fresh/green product received from the supplier will be stored in a
single warehouse before customer distribution. Customers are located within a circular
area with a radius of 25 km, where the depot is at the center. Each customer’s distance to
the warehouse is within this circle. All customers’ demands follow a normal distribution.
The interval between two consecutive delivery periods for each customer will be 2 periods.
At the same time, multiple vehicles cannot deliver to the same customer within the same
period. The supply chain gradually decreases the quality of the products it transports.
To determine the quality criteria for each product, its age will be made available. We con-
sider the products’ ages to be zero when they arrive at the warehouse. Upon delivery to
the warehouse, each subsequent period sees a fixed increase of 1 in the product’s age. If the
product’s age in the warehouse exceeds 33% of the expiration date, the relevant products
will not be delivered to customers and will be removed from the warehouse inventory.

3.4. Genetic Algorithm

The Genetic Algorithm (GA) is a meta-heuristic algorithm first proposed by John
Holland in the 1970s. Developed based on Darwin’s theory of evolution and known
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as an evolutionary algorithm, the GA solves computer-based problems by using gene
exchange between living things as a model. The GA allows for faster and easier solutions to
clustering and very large optimization problems that are difficult to solve with traditional
methods [30].

In order to reach a solution for the mathematical model in the GA, the objective
function must be defined in accordance with the constraints, and the gene and chromosome
structure must be created [31]. A few possible solutions are determined to solve a specific
problem. A program is written to test each solution alternative. This program is run, and,
according to the results, alternatives that do not fit the objective function are eliminated
and code exchange occurs between the remaining ones. This process, which resembles
gene exchange between living things, fosters a diversity of alternatives. The working steps
of the GA are explained in four steps [32].

Step 1: First, all possible solution alternatives in the search space are coded, and
individuals are created.

Step 2: Random individuals are selected from the individuals created in Step 1 and
brought together to form the initial population. The size of the created population can
affect the speed of the algorithm steps. Many individuals in the population cause algorithm
steps to take a long time, but they also increase the solution quality.

Step 3: Fitness values are calculated for each individual. The fitness function allows
the fitness levels of the determined solutions to be measured. It provides the result to be
obtained by adapting the individual to the system. Thanks to this function, the missing
information in the individual can be eliminated, and numerical values can be obtained.

Step 4: The most important part of the reproduction process is the selection operator.
With this operator, the individual diversity in the algorithm will increase; thus, different
regions can be searched in the solution space. There are different selection methods
in the literature. Individuals with a high fitness function are transferred to the next
generation. The individuals in the new generation are passed through the crossover and
mutation stages, respectively. Crossover involves the creation of a new individual through
gene exchange between two individuals. In the solution space, the crossover process
is determined by the crossover rate, and the number of chromosomes to be mutated is
determined by the mutation rate. An example of crossover and mutation is given in
Figure 1.

Figure 1. Example of crossover and mutation.

Step 5: After the reproduction operations performed on the individuals in Step 4, a
new generation population is created.

Step 6: The cycle in Figure 1 is repeated until the optimal solution is reached. The cycle
is terminated when the desired success is achieved.

3.5. NSGA-II and Application Steps

The NSGA-II algorithm is a multi-purpose meta-heuristic algorithm that was intro-
duced to the literature by Deb and his colleagues in their 2002 study. The NSGA-II algorithm
emerged because of the development of the NSGA algorithm, which was developed by
Srinivas and Deb in 1995 [33,34]. The basic structure of the NSGA-II algorithm is based on
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the Genetic Algorithm (GA). The basic steps of the Genetic Algorithm include dominance
ranking and accumulation distance calculation.

3.5.1. Elitism

If elitism is used uncontrolled, the diversity of individuals in the population may
decrease. This may lead to an increase in individuals with the same fitness value. It has
been observed that elitism significantly contributes to the success of the GA in selecting
individuals with the best results and transferring them to the next generation [35,36].
Figure 2 shows the elitism stages.

Figure 2. Stages of elitism.

If we examine elitism through the stages of elitism in Figure 2, individuals in F1 and F2
can fit into P_(t + 1), belonging to the new population. However, the number of individuals
in F3 exceeds P_(t + 1). Since the dominance degrees of individuals in F3 are equal to each
other and exceed the size of the new population, some of the individuals in F3 must be
eliminated [17].

3.5.2. Dominance Rating

A method of comparing individuals in a population with each other, together with
dominance rating, is employed. The number of times each individual has been defeated
by other individuals is counted. If there is an individual or individuals who have never
been defeated, these individuals are placed in the first rank and F1. Thus, the rank of
individuals in F1 is accepted as 1. Individuals in F1 are then removed from the population
being compared. In this way, the effect of F1 individuals is eliminated in other comparisons
to be made. Thus, the remaining individuals who cannot be defeated form F2. This process
is repeated until all individuals in the population are ranked.

A dominance ranking example is given in Figure 3. When there is no n-dominance
ranking in the f1 and f2 space, a choice can be made between solutions/individuals 2 and
3. Solution 2 could be chosen because it suppresses solution 3. However, solutions 1 and
4 do not have an advantage over each other. In other words, there is no clear dominance
between them. Therefore, the choice between solutions can be made in conjunction with
ranking.
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Figure 3. Dominance ranking example.

3.5.3. Crowding Distance

For an individual to be transferred to the next generation, the degree given domi-
nance must be low. Crowding distance can be used in the NSGA-II algorithm to choose
between individuals with equal dominance degrees. Density distance is used to prioritize
individuals with equal ranks. An example of density distance is shown in Figure 4.

Figure 4. Density distance example.

Density distance is calculated according to the previous and next neighboring indi-
viduals of the selected individual, as well as the first and last individuals present in the
population. The calculation is shown in Equation (17). According to Equation (17), the
individuals whose aggregation distance is calculated are ranked from largest to smallest.
As a result of this ranking, the individuals at the top have a higher overlap rate with other
individuals and are therefore given priority in transferring to the next generation.

d1
i =

∣∣∣ f i+1
1 − f i−1

1

∣∣∣
f max
1 − f min

1

d2
i =

∣∣∣ f i+1
2 − f i−1

2

∣∣∣
f max
2 − f min

2

d = d1
i + d2

i

(17)
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Figure 5 outlines the main steps of a multi-objective genetic algorithm (e.g., NSGA-II).
First, data input is used to create an initial population of candidate solutions. Each solution
is then evaluated against the objective functions (f1, f2), and a fitness function and crowding
distance are calculated. Based on these measures, genetic operators (selection, crossover,
and mutation) generate new offspring. Next, non-dominated sorting sorts the answers
by the level of dominance and the distance between the solutions, combining the parent
and offspring populations. The algorithm checks whether a termination criterion (such
as a maximum number of generations or a convergence threshold) is met. If not satisfied,
it continues iterating. Otherwise, it shows the final results, which ideally form a set of
non-dominated (Pareto-optimal) solutions.

Figure 5. NSGA-II algorithm flowchart.

3.6. Problem Assumptions

There is a single supplier, a single warehouse, and multiple customers in this model.
It is assumed that the model works with multiple vehicles. Customer demands are in
accordance with the normal distribution and are estimated accordingly. The two-stage
cold supply chain model is intended to be planned for a 7-day period. The distance from
the supplier to the warehouse is 32 km. It is assumed that the warehouse is located at
the center of a circle with a radius of 25 km. In line with this assumption, the maximum
distance from each customer to the warehouse is 25 km. The locations of the customers
relative to the warehouse are determined randomly. The First-in First-out rule is adopted
when the products arriving at the warehouse are removed from the warehouse in line with
customer demands. When the SKT date, i.e., age (g), of a product is 7, that product will be
considered completely spoiled. At the same time, according to data received from A Cold
Chain Logistics Company, products with a maximum product age of 33% can be accepted
by customers in the green/fresh product market. In line with this information received
about the market, it has been determined that green/fresh products with a product age
equal to or greater than 3 will be removed from stock and directed to the determined
alternative solutions to reduce costs. The values given for the algorithm variables used in
the NSGA-II algorithm are provided in Table 4.
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Table 4. Algorithm variable values.

Parameter Value

Iteration number 1000
Maximum number of iterations without

improvement 200

Population number 100

Mutation rate It is determined by the program to be less
than 0.1.

Crossover Single point crossover

Selection Dominance rating, aggregation distance,
and elitism

3.7. Dataset Used

Since a 1-week daily planning period is needed in the dataset used, the period is
defined as 7 to represent the 7 days of the week. The number of vehicles is assumed to be
fixed to optimize the benefit from the existing vehicles. No new vehicles will be purchased
or rented. It is not mandatory to use all vehicles. Other fixed data used in the algorithm are
given in Table 5.

Table 5. Data used in the model solution with the algorithm.

Parameter Value

t (period) 7
Number of customers 15
k (number of vehicles) 6

H (warehouse inventory capacity) 800
Capacity of each vehicle (k) 350

4. Results

We used the algorithm variable values summarized in Table 4 to solve the model.
We performed tests on the model after determining the algorithm variable values in Table 4.
Table 6 summarizes the test results for the iteration number. According to the results
obtained as a result of the tests, it was observed that the same results were achieved for
iteration number values equal to or greater than 1000. As a result of this finding, it was
decided that the iteration number would be 1000 since using an iteration number greater
than 1000 would make the algorithm heavier.

Table 6. Test results for determining the iteration number.

Iteration Numbers

Results 600 800 900 1000 1100 1200 2000

Cost 895.159 654.483 603.199 589.787 589.787 589.787 589.787
Mean

Vehicle
Numbers

7 6 6 5.5 5.5 5.5 5.5

The locations of 15 customers were randomly determined in a circle with a radius of
25 km, with the warehouse at the center. The randomly determined customer locations are
shown in Figure 6. At the same time, the location of the supplier, which is 32 km from the
warehouse, is also shown in Figure 6.
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Figure 6. Warehouse, supplier, and randomly determined customer locations.

It has been determined that customer demands are in accordance with normal dis-
tribution. The mean of the customer demands in accordance with normal distribution
is 98 units, and the standard deviation is 18 units. The First Period customer demand
estimates determined in accordance with normal distribution are shown in Figure 7.

Figure 7. Customer demand forecast graph for Period 1.

The number of individuals that were eliminated and not evaluated in each iteration as
a result of the selection operators (dominance rating, clustering distance, and elitism) in
the NSGA-II algorithm is shown in Figure 8.
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Figure 8. Number of individuals eliminated in each iteration.

In the solution of the mathematical model obtained using the integer program-
ming method, the total cost, including the cost of spoiled products, was calculated to
be 1,073,197.00. The cost variation graph obtained from the implementation of the NSGA-II
algorithm is presented in Figure 9. According to this graph, the total cost was significantly
reduced using the NSGA-II algorithm. Although it may appear that the cost has not been
fully minimized in the graph, there is a notable difference compared to the solution ob-
tained through integer programming. Using the NSGA-II algorithm and data from the
fresh product market, the cost of spoiled products has been minimized to the point of being
nearly eliminated. Additionally, the algorithm has provided recommendations on how to
handle products that cannot be delivered to customers. While minimizing costs, the routes
for vehicles during each period were also determined. The routes for Vehicle 1 across all
periods are presented in Figure 10.

Figure 9. Cost change graph resulting from NSGA-II.

To provide an in-depth analysis of the algorithm’s performance, we compared the
NSGA-II results to those obtained from a traditional integer programming (IP) method—
one of the most commonly employed exact approaches in multi-objective optimization.
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While IP methods are reliable for smaller-scale problems, they often become computation-
ally infeasible or yield suboptimal solutions when dealing with complex multi-objective
or large-scale scenarios. In contrast, NSGA-II efficiently navigated the extensive solution
space of our two-echelon cold supply chain model, identifying high-quality Pareto-optimal
solutions that incorporate cost minimization, product freshness, and routing efficiency.
Notably, NSGA-II consistently outperformed the IP approach by significantly reducing total
operational costs—primarily through more precise vehicle routing and dynamic inventory
control—while simultaneously maintaining better product quality. This outcome under-
scores the algorithm’s enhanced ability to address the trade-offs inherent in perishable
goods distribution, which directly impacts the overall profitability and service levels of
cold supply chain operations.

Figure 10. Routes of Vehicle 1 across all periods.

From a cost perspective, the NSGA-II solutions achieved demonstrable reductions
in transportation, storage, and spoilage costs. This improvement can be attributed to
the algorithm’s adaptive search mechanism, which iteratively refines solution candidates
based on both dominance ranking and crowding distance. By effectively balancing multiple
conflicting objectives (e.g., route length, demand fulfillment, and freshness constraints),
NSGA-II prevented cost overruns often seen in classical methods that lack robust multi-
objective search capabilities. Our findings reinforce NSGA-II’s viability in complex, real-
world applications, where lower total costs and minimized waste translate into significant
competitive advantages.

The results obtained in this study carry important implications for both academics
and practitioners in cold supply chain management. First, the remarkable cost savings
and reduced spoilage rates indicate that NSGA-II can serve as a robust decision-support
tool, guiding logistics managers toward optimized routing schedules, inventory manage-
ment strategies, and handling protocols. By incorporating practical constraints, such as
temperature maintenance, product age tracking, and vehicle capacity limitations, the pro-
posed framework ensures that solutions are not only theoretically sound but also readily
implementable in real-world distribution networks.
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Second, the algorithm’s capacity to balance environmental and economic consider-
ations highlights its potential to support sustainable cold chain operations. Minimizing
spoilage and enhancing transportation efficiency both diminish the carbon footprint of
perishable product distribution, a goal that is increasingly pivotal in meeting corporate
social responsibility (CSR) standards. Additionally, the algorithm’s adaptability allows it
to be seamlessly extended to other perishable goods sectors (e.g., pharmaceuticals, dairy
products), enabling broader industry adoption. Future studies could integrate emerging
digital technologies—such as blockchain-enabled traceability or IoT-based temperature
monitoring—to further enhance the model’s responsiveness and resilience. Overall, the
NSGA-II-driven approach demonstrated here not only advances the scholarly discussion
on multi-objective optimization in cold supply chains but also offers tangible, data-driven
strategies for industry professionals aiming to balance cost efficiency with product quality
and sustainability goals.

5. Conclusions

In this study, we investigated a two-echelon cold supply chain optimization prob-
lem by incorporating product age as a critical decision variable and applying the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II). Our comparative analysis with tra-
ditional integer programming (IP) methods demonstrated NSGA-II’s superior capability
in navigating the complexity of multi-objective constraints in perishable goods distribu-
tion. Specifically, NSGA-II outperformed IP in minimizing total operating costs, reducing
spoilage, and maintaining robust routing and inventory strategies. In the literature, tra-
ditional solution methods do not perform well when addressing models with multiple
objective functions. Therefore, to solve the model developed for a two-stage cold supply
chain, the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) was used by devel-
oping a Genetic Algorithm. The planning for a 7-day period under specific demand was
optimized using NSGA-II. The results obtained from this study demonstrate that NSGA-II
performs better than traditional methods in minimizing costs and optimizing routing in
the two-stage cold supply chain, achieving significantly better routing results.

The NSGA-II algorithm can be defined as an advanced version of the Genetic Algo-
rithm, which is a meta-heuristic algorithm frequently used in problem-solving. Although
the Genetic Algorithm is widely used for solving various problems, certain modifications
were made to address its limitations, leading to the development of NSGA-II. As a result,
the NSGA-II algorithm has become increasingly popular for solving complex problems that
are difficult to address using traditional methods and Genetic Algorithms. In this study, the
effectiveness of the NSGA-II algorithm in solving a two-stage cold supply chain problem
is analyzed. Compared to traditional methods in the literature, NSGA-II achieved better
results in cost minimization and routing optimization. The algorithm exhibited strong
performance in minimizing overall costs and the costs associated with spoiled products.

To prevent fresh/green products that have reached a certain age from being delivered
to customers, a new objective function and constraints were added to the mathematical
model. With the inclusion of this objective function and constraints, the NSGA-II algorithm
was used to achieve an optimal solution. This approach minimized the cost of spoiled
products and eliminated waste. Fresh/green products that have reached a certain age can
be repurposed in various ways. Some proposed alternatives are listed as follows:

• Discounted sales;
• Donation;
• Processed product production: Aged products can be converted into processed goods.

For example, fruits can be used to produce jam or fruit juice;
• Composting and animal feed production.
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This research makes several noteworthy contributions. First, it explicitly models
product age within a multi-objective optimization framework, offering a more nuanced
view of perishability and time-dependent product quality. Second, it validates NSGA-II’s
strength in balancing conflicting objectives—cost, route efficiency, and freshness—within
the unique constraints of cold chain systems. Third, it demonstrates how decision-makers
can customize the algorithm for different scenarios, thereby enhancing route planning and
inventory policies across multiple industries and perishable product categories. Aged or
spoiled fresh/green products can be used for energy generation in biogas plants. This not
only repurposes the products but also contributes to energy production. Future studies can
focus on a detailed analysis of where aged products should be utilized within the model,
introducing a new level of classification. This additional level would allow for strategic
planning regarding how spoiled or aged products contribute to the system. As the model
is further developed, the NSGA-II algorithm can be reassessed, different algorithms may
be employed to achieve an optimal solution, or an integrated artificial intelligence-based
system may be utilized.

For future academic studies, the dynamic nature of the developed algorithm allows it
to be applied to different two-stage supply chain problems. Additionally, the problem and
model created in this study for solving the problem can be used in academic research as a
multi-objective optimization problem.
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Abstract: The durable nature of supply chains in the Middle Eastern region is critical, given
the region’s strategic role in global trade corridors, yet geopolitical conflicts, territorial
disputes, and governance challenges persistently disrupt key routes like the Suez Canal,
amplifying vulnerabilities. This study addresses the urgent need to predict and mitigate
supply chain risks by evaluating machine learning (ML) models for forecasting economic
complexity as a proxy for resilience across 18 Middle Eastern countries. Using a multi-
dimensional secondary dataset, we compare gated recurrent unit (GRU), support vector
regression (SVR), gradient boosting, and other ensemble models, assessing performance
via MSE, MAE, RMSE, and R2. The results demonstrate the GRU model’s superior accuracy
(R2 = 0.9813; MSE = 0.0011), with SHAP, sensitivity, and sensitivity analysis confirming its
robustness in identifying resilience determinants. Analyses reveal infrastructure quality
and natural resource rents as pivotal factors influencing the economic complexity index
(ECI), while disruptions like trade embargoes or infrastructure failures significantly de-
grade resilience. Our findings underscore the importance of diversifying infrastructure
investments and stabilizing governance frameworks to buffer against shocks. This research
advances the application of deep learning in supply chain resilience analytics, offering ac-
tionable insights for policymakers and logistics planners to fortify regional trade corridors
and mitigate global ripple effects.

Keywords: machine learning; supply chain resilience; Middle East; economic complexity;
geopolitical risk; scenario analysis

1. Introduction

In an age characterized by unparalleled global connection and economic interdepen-
dence, supply chains form the cornerstone of international commerce and economic activity.
They enable the smooth transfer of products, services, and information across borders,
supporting the development and stability of national economies. This complex network
of dependency makes supply chains more susceptible to various disturbances, such as
economic recessions, geopolitical conflicts, and resource shortages [1]. Natural pandemics
and increasing territorial, historical, geopolitical, and trade conflicts have highlighted
the vulnerability of global supply chains, emphasizing the need to bolster supply chain
resilience. As a result, supply chain resilience (SCR) has become a vital strategic priority
for governments and enterprises, motivated by the necessity of minimizing disruptions
and maintaining operational continuity under unstable conditions [2].
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Supply chain resilience (SCR) is increasingly recognized as a foundation of eco-
nomic stability, development growth, and sustainability, particularly in regions where
political instability, economic dependencies, and infrastructural disparities create unique
vulnerabilities [3]. Nations’ dependence on resource extraction increases economic volatil-
ity, thereby elevating the risk of supply chain disruptions. Political instability and persistent
conflicts in nations like Syria, Yemen, Israel, and Lebanon compromise supply chain in-
tegrity, diminish trade efficiency, and hinder economic growth [4]. Excessive dependence on
oil exports renders the area especially vulnerable to external disruptions, while persistent
conflicts foster a volatile atmosphere that affects supply chains [5]. Therefore, improving
supply chain resilience in the region is crucial for both regional stability and the protection
of global trade networks.

The Middle Eastern region serves as a prime example of a region where supply chain
resilience is crucial yet difficult to achieve. The region, situated at the intersection of Asia,
Europe, and Africa, possesses significant strategic importance for global trade and logis-
tics. The complex geopolitical landscape, resource-driven economies, and infrastructural
disparities pose significant challenges to the enhancement of supply chains [6]. The area
serves as a vital hub for energy exports and essential marine commerce routes, significantly
contributing to the efficient operation of global supply chains. Political instability, wars,
or infrastructure failures in the Middle East disrupt the global supply chain, resulting
in delays, heightened prices, and market volatility [7]. There is a necessity of studying
supply chain resilience (SCR) within the Middle Eastern trade corridor, which encompasses
multiple industries critical to the region’s economy. Meanwhile, the energy sector, driven
by oil exports, dominates due to nations like Saudi Arabia and Iraq’s reliance on natural
resource rents and require a resilient framework. This framework includes manufacturing
and trade-related supply chains reflected in the economic complexity index (ECI). Addi-
tionally, logistics and transportation networks, vital to maritime trade via the Suez Canal,
are integral. This multi-industry approach ensures practical applicability across diverse
sectors, addressing systemic vulnerabilities, rather than a single industry focus.

Nations such as Saudi Arabia, Iraq, and Iran exhibit significant reliance on oil exports,
rendering their economies especially susceptible to variations in global energy markets [3].
The intersecting challenges highlight the need for predictive frameworks to anticipate
vulnerabilities and enhance resilience in national and regional supply chains. The intersect-
ing challenges highlight the need for predictive frameworks to anticipate vulnerabilities
and enhance resilience in national and regional supply chains. Traditional econometric
models are effective in stable environments, whereas they often fall short in capturing the
intricate, non-linear dynamics of modern supply chains, especially in volatile regions [8].
These models struggle to account for the complex interplay between economic complexity,
political uncertainty, and infrastructural deficits, which are critical determinants of supply
chain vulnerabilities in the region [9]. Subsequently, there is a pressing need for more
sophisticated, adaptive frameworks capable of addressing these multidimensional chal-
lenges. Machine learning (ML) models, with their ability to process large datasets, identify
non-linear patterns, and adapt to dynamic conditions, offer a promising alternative [10,11].
Unlike traditional econometric approaches, ML models can better predict supply chain
risks by integrating diverse factors such as geopolitical shifts, economic fluctuations, and
infrastructural constraints, thereby enhancing the precision of risk assessments and en-
abling proactive strategies to bolster resilience, foster development, and ensure stability in
the face of emerging vulnerabilities.

This study, therefore, aims to apply machine learning models to examine which ML
model fits the study of the multidimensional factor effects of SCR, an area where traditional
econometric models often fail to provide reliable insights [12]. By leveraging the power
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of ML, this research seeks to develop predictive frameworks that can more accurately
anticipate vulnerabilities and support the development of robust, adaptive supply chains in
the region [13]. In doing so, it will contribute to advancing the broader field of supply chain
resilience, offering a model for how ML can address the complexities of contemporary
supply chains and improve their resilience in volatile, resource-dependent regions [14].

Machine learning (ML) models provide a robust solution to the constraints of conven-
tional econometric models. Through the analysis of extensive datasets, machine learning
algorithms identify complex patterns, trends, and correlations that may remain obscured
by traditional statistical methods [13]. In the Middle East and its surroundings, machine
learning models are appropriate to address the region’s intricate economic interdependen-
cies and political instability, offering insights into the impact of these elements on supply
chain resilience [15]. Machine learning facilitates the creation of predictive models that can
adjust to alterations in the region’s political environment, economic circumstances, and in-
frastructure, providing a more sophisticated comprehension of supply chain dynamics [16].
The use of machine learning methods thereby addresses significant deficiencies in resilience
forecasting, improving the region’s capacity to anticipate and respond to disturbances with
greater effectiveness [12].

The machine learning (ML) models employed in this study were designed to identify
patterns and generate precise predictions regarding supply chain resilience (SCR) in the
Middle Eastern region [13]. Features incorporated into the analysis serve as indicators of
potential vulnerabilities and risks and determinants of supply chain disruptions. While
ML offers powerful tools for risk assessment and predictive analytics, its application
should be integrated with complementary analytical frameworks and human expertise to
inform effective interventions and policy formulation [12,17]. A deeper exploration of the
causal mechanisms underlying supply chain vulnerabilities necessitates further research,
employing a multidisciplinary approach to fully capture the intricate dynamics of the issue.
This study positions ML as a vital tool within a broader strategy to enhance SCR, rather
than an impartial solution [18].

Despite the growing interest in this topic, research into supply chain resilience (SCR)
has persisted, but researchers still need to bridge their understanding of how geopolitical
instability and economic dependencies affect complex supply chain disruptions within
volatile Middle Eastern regions. Economic and infrastructural approaches fail to account
for the changing nature of regional disruption factors because they do not consider the
impact of political instability alongside trade policies and economic complexity. A gap has
been filled through this research, which implements gated recurrent units (GRUs) from
machine learning (ML) to predict SCR improvements specifically in the Middle Eastern
region. Our research integrates the economic complexity index (ECI) to establish a new
data-driven prediction system that analyzes economic resilience connections through ad-
vanced machine learning techniques and various geopolitical events. The research reveals
new operational value for supply chain managers through deep learning model predictions,
which deliver concrete solutions to reduce risks even when traditional forecasting methods
prove ineffective. Our research’s primary aim is to create and employ machine learning
models to predict national supply chain resilience (SCR) in the geopolitically unstable
Middle East, transcending the effectiveness of conventional econometric methods. We
employ the economic complexity index (ECI) as an innovative proxy for SCR, connecting
economic diversity to resilience against perturbations. Leveraging SHAP analysis, we
discern essential factors of resilience, providing pragmatic insights for policymakers. Addi-
tionally, we propose a scalable framework for real-time SCR prediction, suitable for other
trade-dependent regions.
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This research offers novel elements in the use of machine learning for supply chain re-
silience within the Middle Eastern context, advancing beyond prior research. It innovatively
employs ML models (GRU) to predict SCR using the economic complexity index (ECI),
utilizing GRU’s capacity for capturing temporal patterns and overcoming conventional
econometric and simpler machine learning techniques with exceptional precision. This
study uses ECI to connect economic variety with SCR, presenting a fresh macro-level per-
spective, in contrast to previous research centered on direct resilience measurements. Our
region-specific, multidimensional dataset covering seven years and 18 countries includes
unique Middle Eastern variables such as resource rents and political stability, adapting
machine learning to the region’s specific challenges of geopolitical volatility, oil dependency,
and infrastructure deficiencies, in contrast to stable contexts in prior research. The amalga-
mation of SHAP with scenario and sensitivity analyses improves interpretability, yielding
practical insights into feature influences and model resilience during disturbances such
as Suez Canal blockages and thus addressing a deficiency in previous machine learning
applications. A thorough comparison of GRU with several models sets a standard for SCR
prediction in volatile areas, beyond the limited assessments seen in previous studies.

2. Literature Review

The concept of supply chain resilience (SCR) has gained significance as global sup-
ply networks encounter an expanding array of disruptions stemming from economic,
geopolitical, and environmental influences. Supply chain resilience (SCR) denotes the
capacity of supply chains to foresee, adjust to, and recuperate from disturbances while
maintaining operational continuity and mitigating performance decline [19,20]. The in-
creasing intricacy of global supply chains means that disturbances in one area might have
worldwide repercussions.

2.1. Supply Chain Resilience

Researchers assert that robust supply chains need flexibility, redundancy, and co-
ordination among stakeholders [21]. The Resilience Triangle Model, which statistically
measures resilience by analyzing recovery velocity and operational reinstatement after-
shocks, emphasizes the dynamic characteristics of resilience. Transparency in supply chains,
a proactive risk management ethos, and adaptable networks are essential for fostering
resilience, especially in unstable regions such as the Middle East [22]. These frameworks
emphasize the need for both proactive and reactive efforts to mitigate disruptions in an
increasingly unpredictable environment [23]. Supply chain resilience (SCR) is particularly
vital for the region because of its strategic geographic position, the essential function of the
Suez Canal, a worldwide commerce conduit accounting for roughly 12% of international
trade, and the widespread effects of regional conflicts, political instability, and wars. Cur-
rent conflicts in countries such as Israel, Yemen, Iraq, and Syria have impeded trade routes,
heightened security threats, and generated logistical bottlenecks, hence intensifying the
vulnerability of regional supply chains.

Figure 1 identifies the hitches underscoring the pressing necessity for resilient SCR
methods to alleviate the economic and social repercussions of such disruptions. By enhanc-
ing supply chain resilience, diminishing reliance on natural resource rents, and promoting
regional collaboration, Middle Eastern economies can more effectively adjust to variable
market conditions, geopolitical disruptions, and internal instabilities [7]. This necessitates
focused policies, infrastructure investment, conflict resolution strategies, and innovation to
provide a more flexible and secure economic framework, guaranteeing long-term stability
and sustainable growth while capitalizing on the region’s strategic significance in global
trade networks.
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Figure 1. Middle Eastern countries.

Middle Eastern countries, especially Saudi Arabia and the United Arab Emirates,
have responded to these issues by launching strategic initiatives to improve supply chain
resilience. Saudi Arabia’s Vision 2030 and analogous programs prioritize economic diversi-
fication, infrastructural enhancement, and the establishment of innovation ecosystems to
diminish the reliance on oil [24]. The efficacy of these strategies relies on the use of sophis-
ticated analytical tools, especially machine learning, to augment the predictive capacities of
supply chain models and refine decision-making. Machine learning can optimize supply
chain operations, forecast disruptions, and improve the agility of supply chains in real
time, equipping the area with the necessary skills to negotiate its complex geopolitical and
economic environment [18]. Huge potential to improve the resilience of supply networks
is presented using machine learning for the purpose of supply chain risk management in
the Middle East. This will allow supply networks to survive and recover from disruptions
while simultaneously encouraging better regional and global stability more effectively.

2.2. Economic Complexity and SCR

Economic complexity describes the assessment of a country’s producing capacities
and the intricacy of its economic framework. It assesses the diversity and intricacy of the
goods and services produced and exported by a nation, indicating its capacity to originate
and maintain knowledge-intensive activity. This notion, grounded in the economic com-
plexity index (ECI) framework, highlights the relationship between a nation’s industrial
expertise and its standing in global trade networks [25]. Countries exhibiting greater
economic complexity are generally marked by diversified production systems, advanced
technological capabilities, and specialized knowledge integrated within their workforce
and institutions. These economies exhibit greater resilience, as they are more adept at
adapting to fluctuations in global demand and fostering innovation within competitive
marketplaces [26]. In contrast, countries with little economic complexity typically depend
on a limited array of fundamental commodities or simplistic goods, making them more
susceptible to external disruptions [27].
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Economic complexity has emerged as a crucial analytical instrument for comprehend-
ing the determinants of economic growth, development, and the structural transition that
is vital for its national supply chain resilience. It also functions as an indicator of long-term
economic performance since nations with greater economic complexity typically have more
resilient and sustainable growth patterns [28].

Countries with a higher economic complexity index (ECI) generally demonstrate en-
hanced supply chain resilience across multiple dimensions. Their powerful industrial and
logistical infrastructures furnish a reliable foundation for enduring shocks. Their supply
chains’ flexibility is augmented by varied production capabilities, facilitating adaptability
to evolving conditions [29]. Furthermore, their extensive trade links facilitate redundancy
through the maintenance of alternative supply channels and sources, enabling rapid re-
actions to shocks [30]. Economically complex nations tend to engage more effectively in
international trade agreements and alliances, fostering collaborative supply chain solutions.
Ultimately, their robust technological and institutional frameworks enhance visibility and
oversight in supply chains, hence mitigating the danger of cascade failures.

Economic complexity is seen as a crucial determinant affecting SCR, particularly
concerning a nation’s ability to endure external shocks. Economic complexity is defined by
the range and sophistication of a nation’s producing capacity [31]. Economic diversity is
seen as a crucial tool for improving SCR. Saudi Arabia’s Vision 2030 seeks to alleviate these
concerns through industry diversification, infrastructural enhancement, and establishing
the nation as a global trading center, closely aligning with the overarching goals of SCR by
diminishing oil dependence and advancing comprehensive economic growth [32].

2.3. Econometric Model and Its Limitations

Econometric models are extensively employed to examine data types such as panel,
time-series, and cross-sectional data, revealing correlations among variables through sta-
tistical methodologies for causal interference. However, their use encounters constraints
including multicollinearity, endogeneity, and the curse of dimensional, which may result
in incorrect estimates, biased outcomes, and over-fitting. Additionally, econometrics face
some challenges in predicting economic trends [8]. Econometrics models frequently fail to
identify nonlinear relationships and interaction effects, and assumptions such as linearity
and endogeneity may not be applicable in actual datasets. Despite their usefulness, these
problems underscore the necessity of comprehensive diagnostics, alternative approaches,
and meticulous interpretation in the analysis of multidimensional data [33].

Traditional econometric estimation is inadequate for measuring supply chain resilience
in the Middle Eastern region due to the multidimensional nature of the dataset, which
includes variables such as the economic complexity index (ECI), the global competitiveness
index (GCI), and various infrastructure and political stability indicators. These models
are susceptible to multicollinearity, where highly correlated variables like GDP growth
and industry activity can distort results. Additionally, exogeneity is a concern, particularly
in this politically unstable region, where factors such as political stability and economic
performance may interact in complex ways. The curse of dimensionality further com-
plicates the analysis, as the large number of features increases the risk of overfilling and
reduces the model’s generalizability. Moreover, the assumptions of linearity and exogeneity,
which underpin many econometric models, may not hold in this context, leading to biased
outcomes. Given these limitations, traditional econometric approaches are unsuitable for
capturing the nonlinear relationships and dynamic complexities inherent to supply chain
resilience in such a diverse and volatile region. Therefore, a machine learning approach
is more appropriate for accurately predicting and understanding the factors influencing
supply chain resilience in this context of the Middle East.
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2.4. Machine Learning

Although conventional supply chain resilience (SCR) frameworks provide significant
insights into resilience methods, the use of machine learning (ML) techniques has surfaced
as a sophisticated approach to improving forecasting accuracy and flexibility in supply
chains [34]. The capacity of machine learning to analyze extensive datasets and identify
intricate patterns offers a considerable advantage over conventional econometric models,
which often encounter difficulties in managing the dynamic, non-linear characteristics
of contemporary supply chains. This shows that machine learning methods, such as
decision trees, support vector machines, and neural networks, enhance demand forecasting,
optimize inventory management, and detect disruptions with increased accuracy [10].
The adaptability of machine learning models allows them to respond to swiftly changing
situations, which is especially advantageous in areas like the Middle East, where political
instability, economic variability, and infrastructure difficulties provide an unpredictable
environment. Integrating machine learning into supply chain risk (SCR) frameworks
enhances resilience by facilitating more precise, data-driven decision-making processes [12].

Given the increasing volume of research on SCR and ML in developed countries, the
use of these technologies in the Middle East is still scarcely examined. The area encounters
a distinct array of problems that hinder the execution of SCR initiatives. Political instability,
exemplified by nations such as Syria, Yemen, and Iraq, impedes supply chain operations
and hinders trade flows [16]. The Middle East’s significant dependence on oil exports
renders its economy more susceptible to variations in global energy markets, increasing
the danger of supply chain disruptions [15]. Moreover, physical deficiencies, such as anti-
quated transportation systems and constrained port capacity in nations like Lebanon and
Sudan, impede the effective transit of products, exacerbating logistical inefficiencies [35].
These reasons underscore the need for customized SCR frameworks that use new tech-
nologies such as machine learning and region-specific methods to address the intrinsic
vulnerabilities arising from political, economic, and infrastructural constraints [36].

Whether it involves predicting and simulating supply chain resilience (SCR) in the
Middle Eastern area, the use of various machine learning models GRU, SVR, gradient
boosting, CatBoost, random forest, and linear regression provides a complete approach [37].
Every model offers its own set of advantages; GRU is especially useful for complicated
and dynamic datasets because of its exceptional ability to analyze relationships across time.
Modeling resilience factors may be achieved in a variety of ways because of SVR’s efficient
handling of linear and non-linear interactions [38]. While random forest provides resilience
and interpretability, especially in high-dimensional data settings, gradient boosting and
CatBoost can catch detailed patterns via the use of ensemble learning. This allows them to
provide excellent prediction accuracy. After everything is said and done, linear regression
is used as a benchmark to assess how well advanced models perform. Collectively, these
models make it possible to obtain more nuanced knowledge of SCR, which helps address
the systemic instability and geopolitical difficulties that are present in the area.

The gated recurrent unit (GRU) is a form of recurrent neural network (RNN) that uses
sequential input. Using gating techniques that regulate the flow of input, it can capture long-
term dependencies in time-series data [39]. This allows it to solve the issue of disappearing
gradients that is associated with classic regular neural networks. According to [40], GRUs
are especially useful for predicting in dynamic situations, such as supply chains, where
previously collected data might have an impact on the outcomes of future events.

SVR is the regression variant of support vector machines (SVMs), recognized for
its capacity to predict non-linear connections by transforming input data into higher-
dimensional spaces using a kernel function. SVR is resilient to outliers and noise, making
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it appropriate for supply chain data, where inconsistencies may occur owing to market
volatility or external disturbances [41,42].

Gradient boosting is an ensemble method that constructs numerous decision trees in
succession, with each tree rectifying the flaws of its predecessor [43]. It is very efficient for
regression tasks, delivering reliable predictions by progressively concentrating on more
challenging examples [44]. In supply chain risk (SCR), gradient boosting models are used
to elucidate intricate interactions among supply chain factors, including demand and
interruptions [45].

CatBoost is a sophisticated gradient-boosting technique that adeptly manages categor-
ical information without requiring considerable preparation. This is especially beneficial in
supply chains, where categorical factors such as product category or geographic location
are prevalent. CatBoost delivers superior accuracy when handling heterogeneous data
types [12,46].

Random forest is an ensemble technique that constructs several decision trees and
consolidates their results to enhance predictive accuracy. Many logistics supply chain
network data are gathered and compared with other widely used models in the experimen-
tal section, including the conventional network model and the analytic hierarchy process
model. It is resilient to over-fitting and adept at managing high-dimensional information,
making it efficient for modeling intricate interactions in SCR. Random forest offers insights
into feature relevance, aiding in the identification of key characteristics that influence
resilience [11,47].

Linear regression is a fundamental model used to forecast a dependent variable via
linear associations with independent variables. Although it may not account for non-
linearity, it functions as a valuable baseline model for supply chain forecasts, particularly
when the connection between variables is assumed to be linear [48].

Machine learning serves as a vital tool in improving estimates for supply chain re-
silience, especially in the Middle East, where issues like political instability, economic
dependence on oil, and infrastructure shortcomings are common. Employing sophisti-
cated models such as GRU, SVR, gradient boosting, CatBoost, random forest, and linear
regression, regional supply chains attain enhanced predictive accuracy, thus bolstering
their resilience. This improved resilience strengthens Middle Eastern supply chains against
disruptions and considerably enhances global trade by assuring more stable and reliable
supply channels. The incorporation of machine learning in supply chain management is
essential for enhancing regional resilience and global trade efficiency.

The literature emphasizes the increasing significance of supply chain resilience (SCR)
in the context of global disruptions, particularly its vital function in the Middle East, in-
fluenced by geopolitical instability, reliance on oil, and key trade routes such as the Suez
Canal. It examines SCR frameworks that prioritize flexibility, redundancy, and proactive
risk management, in conjunction with the economic complexity index (ECI) as an indicator
of economic diversity and resilience. Conventional econometric models are lacking due
to their inability to encapsulate non-linear dynamics, hence facilitating the adoption of
machine learning (ML) methodologies such as GRU, SVR, and ensemble techniques, which
provide enhanced predicted accuracy and flexibility. Although SCR and ML research flour-
ishes in developed areas, the analysis highlights a deficiency in accustomed applications
addressing the Middle East’s distinct challenges political instability, economic dependence
on oil, and infrastructural shortcomings. This research collectively indicates a necessity for
creative, regionally specific supply chain resilience methods and frameworks that incorpo-
rate advanced analytics to strengthen resilience and sustain global trade routes along with
neighboring nations’ SCR.
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3. Model Description

3.1. Data Collection Procedure and Processing

In our study, data are key, so they had to be sourced from reliable and ethical sources
for this research; accordingly, data were sourced from credible, publicly available resources
to guarantee high-quality and uniform datasets. The principal sources include the World
Bank, the International Monetary Fund (IMF), the United Nations Conference on Trade and
Development (UNCTAD), the Fragile States Index, and the World Economic Forum (WEF).
These institutes provide standardized, dependable datasets across a broad spectrum of eco-
nomic, infrastructural, and political variables essential for assessing supply chain resilience
(SCR) in the Middle East. The dataset has a seven-year duration, including 18 nations in the
Middle East. This longitudinal method encompasses significant economic cycles, geopoliti-
cal occurrences, and infrastructure changes, offering a thorough foundation for modeling
and predicting SCR in the area. The choice of these years guarantees the incorporation of
critical variations and enduring patterns vital for a comprehensive examination.

Machine learning has transformative potential to measure and enhance SCR across
various industries and domains due to adaptability, scalability, and the ability to learn from
data and its patterns. ML models are intended to reflect the unique geographical attributes
of the Middle Eastern region. Fundamental attributes encompass political stability and
the absence of violence (PSAV) are used to assess geopolitical instability like conflicts in
Syria and Yemen, while total natural resource rents (TNRRs) are used to evaluate economic
reliance on oil exports, and productive capacities transport (PCT), alongside infrastructure
quality indicators (IQ and OATI), are used to consider logistical discrepancies. These
variables mention in Table 1, derived from a dataset encompassing nations in the region,
reflect the region’s unstable trade landscape and important location close to the Suez Canal.
The capacity of an ML model like GRU to model temporal dependencies guarantees that
dynamic characteristics such as abrupt geopolitical shocks or variations in the SC are
effectively incorporated into SCR predictions, hence augmenting regional relevance.

Table 1. Data description.

Variables Name Signs Unit of Measurement Data Source

Economic complexity ECI Economic complexity index HGL
Industry activity IA Industry activity index UNCTAD
Total natural resources rents TNRRs Rent (% of GDP) IMF
Productive capacities transport PCT Productive capacities transport index UNCTAD
Supply Chain Resilience Index MESCRI Composite index
Information and communication
technologies ICT Information and Communication

Technologies Index UNCTAD

Liner shipping connectivity LSCI Liner shipping connectivity index UNCTAD
Fragile state FSR Fragile state rank FFP
Global Competitiveness Index GCI Global Competitiveness Index WEF
Air transport freight ATF Freight (million ton-km) ICAO
Quality of roads RQ Global Competitiveness Index WEF
Quality of overall infrastructure IQ Global Competitiveness Index WEF
Quality of air transport infrastructure OATI Global Competitiveness Index WEF
Economy GDP GDP growth (annual %) WDI
State legitimacy SL Fragile state rank FFP
Demographic pressures DP Fragile state rank FFP
Political stability and absence of violence PSAV Percentile rank WBDA
Inflation and consumer prices ICPA Inflation and consumer prices (annual %) IMF
Trade TRADE Trade (% of GDP) OECD
Population POPT Population, total WBDA
Population, female POPF Population, female (% of total population) WBDA

64



Systems 2025, 13, 209

A data processing step emphasized maintaining the integrity and comparability of the
dataset for analysis. Our research work utilized a multi-stage data prepossessing pipeline
to guarantee data reliability, encompassing missing value imputation, feature scaling, and
dataset segmentation. The K-nearest neighbor (KNN) imputation method was employed to
address missing data by estimating absent values based on analogous feature distributions,
hence ensuring minimal data distortion. Furthermore, the dataset was standardized using
Z-score normalization to reduce the impact of variables with significant scale differences.
This prepossessing step is essential for enhancing model performance, especially in deep
learning models such as GRU, which are susceptible to unscaled input features. The dataset
is divided into training (70%), validation (15%), and test (15%) sets, adhering to established
standards in machine learning research. This work enhances model selection using cross-
validation techniques, in contrast to traditional studies that depend on fixed train–test
splits, hence improving the generalizability of the results.

3.2. Research Method

The gated recurrent unit (GRU) is a type of recurrent neural network (RNN) used
for processing sequential or time-series data, such as language modeling and market
prediction. This is usual since traditional RNNs often encounter issues with vanishing
gradients, making it difficult to understand long-term relationships. This addresses the
issue that GRUs resolve via gates, which preserve only relevant information while updating
the hidden states at each time step. GRUs are less computationally intensive than LSTMs
since they possess fewer gates and parameters. Nonetheless, GRUs are quite effective
for several sequence modeling problems. The GRU model for time-series forecasting: in
time-series forecasting, we anticipate the target variable (ECI) based on the preceding
values of various input characteristics. GRU models are well suited for this purpose since
they effectively capture temporal relationships and patterns from sequential data.

Basically, the GRU model has two main components.

1. Update gate.
2. Reset gate.

Both gates work together to control how much information is required to be retained
and which information is not required.

Key components of GRU:

1. Input component.

The input vector (xt) represents the input at time t.
The hidden state (ht−1) represents the hidden state from the previous time step,

carrying information from the past sequence. At each time step, t, the GRU receives
the following:

1. xt input vector at time t.
2. ht−1: previous hidden state.

2. Update gate calculation (zt)

The update gate basically addresses how much from the previous hidden state (ht−1),
i.e., what was calculated using the previous values for ECI and other features) should affect
the current prediction.

zt = σ(Wzxt + Uzht−1 + bz) (1)

xt is the vector of the input features at time t.
Wz is the weight matrix for input xt.
UZ is the weight matrix for hidden state ht−1.
bz is the bias term.

65



Systems 2025, 13, 209

σ is the sigmoid activation function (binary function).

3. Reset gate rt

The reset gate controls how much of the past information (ht−1) we want to forget for
the current computation. This forces the model to only pay attention to useful things.

The equation for the resets gate with the bias term is as follows:

rt=σ(Wrxt + Urht−1 + br) (2)

σ is the sigmoid activation function.
Wr is the weight matrix for the input xt.
Ur is the weight matrix for the previous hidden state (ht−1).
bz is the bias term associated with the reset gate.

4. Candidate hidden: ht.

The candidate hidden state is computed based on the reset gate, rt, and the previous
hidden state (ht−1). The candidate hidden state can be thought of as the new potential
state of the system, which is influenced by both the current input and the relevant portion
of the previous state.

ht = tanh(Whxt + Uh(rt 
 ht−1 + bh)) (3)

tanh is the hyperbolic tangent activation function.

 denotes element-wise multiplication.
Wr is the weight matrix for the input xt.
Uh is the weight matrix for the previous hidden state (ht−1).
bh is the bias term associated with the candidate state.
rt is the reset gate controlling how much of the previous hidden state (ht−1) should be
passed into the hidden state.

5. Final hidden state: ht.

The final hidden state, ht, is a weighted combination of the previous hidden state
(ht−1) and the candidate hidden state, ht, modulated via the update gate, zt.

ht = tanh((1 − zt)
 ht−1 + (zt 
 ht + bh)) (4)

(1 − zt) determines how much of the previous hidden state should remain.
zt determines how much of the candidate hidden state should be adopted.
bh is an additional bias term associated with the final hidden state. This is optional, and it
is not always included, but it can be part of the model for better flexibility.

The following diagram shows the architecture of a gated recurrent unit (GRU), a kind
of recurrent neural network (RNN) applied in deep learning models. Here is a breakdown
of the main elements.

Reset gate: The reset gate decides how much past information needs to be discarded.
It determines which aspects of the previous hidden state (ht−1) to forget when the current
input is considered. It applies a sigmoid activation function (σ—sigmoid activation func-
tion) that returns a value between 0 and 1. A lower output of the reset gate means it is
forgetting more of the past.

The update gate controls what information is passed from the present input to the
hidden state. It decides what part of the previous hidden state will indeed be passed to the
next step. Similarly, the update gate employs the sigmoid activation function, so all values
will be between 0 and 1. It retains more of the previous state when the update gate output
is closer to 1, and it relies more on the current input when closer to 0. The hidden state (ht)
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at the current time step is computed as a function of the previous hidden state (ht−1) and
current input (xt), also modulated via the reset and the update gates. The last hidden state
is obtained from a tanh activation function, which translates between the previous state
and the current state. That allows the GRU to keep important information from the past
and add the new input usefully.

Flow of information: The input xt and the previous hidden state (ht−1) are passed
through the reset and update gates. The purpose of the reset gate is to decide how much of
the past hidden state should be forgotten, and the update gate decides how much of the
new information should be incorporated into the current state. ht is a weighted sum of the
previous state and the current input, balancing the need to learn long-term dependencies
with the vanishing gradient problem.

3.3. Applied ML Models

To find the best accuracy, the study applied various machine learning and deep
learning models with the best-fitted parameters. Each model was selected based on its
best accuracy functions and its ability to learn complex patterns that may occurs during.
The ML models were SVR, GBoost, CatBoost, random forest, and linear regression. These
models are simple, fast models that can provide reasonable computational complexity, and
they have the added benefit of accommodating different data shapes. The study applied
only a GRU model explained its flow in Figure 2, and the key features including GRU also
apply a gating approach (update and reset gates) to maintain the information flow accordingly,
allowing for the capture of long-term dependencies with much more efficient computations.

 

Figure 2. Gated recurrent unit (GRU).

The best-fitted hyperparameters for each model are summarized in Table 2.
According to the configurations that produced the best results for a time-series model,

as demonstrated, this study specified hyperparameters for each model. We followed
the dropout values and unit count recommended in their work. The hyperparameters
were chosen using the default configurations suggested, which found that the parameters
max_depth, learning rate, and n_estimators had a significant effect on performance [49].
We adhered to [50]’s design and hyperparameter recommendations for the transformer
model. Their investigation found that key_dim and num_heads, two hyperparameters in
the multi-head attention structure, have a significant effect on model performance. In order
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to maximize transformer performance for our investigation, the study selected variable
num_heads and key_dim.

Table 2. Best-fitted hyperparameters.

Models Hyperparameters

GRU
hidden_layer, 128, activation = tanh, kernel_regularizer = l2(0.01),
dropout = 0.2, adm = 0.05, Epochs = 300, batch size = 32,
verbos = 1, restore _best_weight = True

SVR(Linear) kernel = ‘rbf’ ’C’: 1, ’epsilon’: 0.01, ’gamma’: ’scale’

Gradient boosting (n_estimators = 100, random_state = 42)

CatBoost Iter = 200, depth = 10, learing rate = 0.02, leaf-reg = 10.

Random forest bootstrap’: True, ’max_depth’: None, ’min_samples_leaf’: 2,
’min_samples_split’: 5, ’n_estimators’: 100

Liner regression Alpha = 10-6, scv = 10, np.logspace(−6,6,13)

In our study, the hyperparameters listed in Table 2 were deemed ideal, as they were
considered to have yielded superior performance (e.g., minimal error) on a validation set
or through cross-validation tailored to the requirements of each model. The GRU configu-
ration, featuring a hidden layer size of 128, a dropout rate of 0.2, and an L2 regularization
value of 0.01, attains an acceptable balance between model capacity and regularization.
The optimization was conducted over 300 epochs using the Adam optimizer (learning
rate = 0.05) with early halting, presumably optimizing the mean squared error (MSE) as
the loss function. The SVR parameters—C = 1, ε = 0.01, and γ = “scale”—were mainly
determined through a grid search to minimize the ε-insensitive loss, whereas CatBoost’s
configurations (learning rate = 0.02; depth = 10) imply the application of Bayesian opti-
mization to decrease the root mean squared error (RMSE). For random forest and gradient
boosting, default ensemble parameters (e.g., n_estimators = 100) were refined through a
random search to decrease MSE, whereas linear regression’s α = 10−6 was optimized via a
grid search over a logarithmic range (np.logspace(−6, 6, 13)) to minimize the regularized
least squares loss. The hyperparameters were evaluated using robust techniques, including
k-fold cross-validation (specifically, 10-fold, as denoted by SCV = 10), to ensure generaliz-
ability. The optimization procedure incorporated systematic search techniques, manual
adjustments, and domain knowledge, with the loss function of each model directing the
parameter selection. Further confirmation of their optimality could be strengthened via
specific performance indicators or dataset characteristics.

4. Results and Analysis

In our research, the efficacy of six regression models was assessed using four principal
metrics: the mean squared error (MSE), mean absolute error (MAE), root mean squared
error (RMSE), and R2. MSE, MAE, RMSE, and R2 are metrics for evaluating model correct-
ness; lower values of MSE, MAE, and RMSE indicate superior model performance, while
a higher R2 value signifies a better model fit. Table 3 presents the summary data for the
performance of the gated recurrent unit (GRU), support vector regression (SVR), gradient
boosting, CatBoost, random forest, and linear regression models.

The GRU model proves itself to be the best predictive tool because it reaches an R2

of 0.9813, which surpasses traditional machine learning models such as support vector
regression (SVR), gradient boosting, and random forest. GRU’s ability to detect complex
supply chain data dependencies and temporal interactions produces this exceptional result.
GRU seeks patterns across time sequences, thanks to its sequential learning approach, which
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enables it to identify persistent patterns for forecasting disruptions via changing global
markets and economic conditions. The SHAP-based feature importance analysis shows
that industry activity (IA) and natural resource rents (TNRRs), together with infrastructure
quality (IQ), stand as the essential factors for determining supply chain resilience. Research
confirming diversified industrial structures and stable governance as resilience factors
against supply chain vulnerabilities finds consistent support in these results.

Table 3. Early stopping conditions of models.

Models Stopping Conditions

GRU Train for a maximum of 300 epochs or terminate early if early
stopping conditions are met.

SVR (Linear)
Training stops after reaching the default max_iter (maximum
iterations, defaults is −1 for unlimited iterations or when
convergence criteria are met).

Gradient boosting No explicitly defined stopping conditions; training concludes
when optimal weights are learned from the data.

CatBoost Early stopping = 10.

Random forest No explicitly defined stopping conditions; training concludes
when optimal weights are learned from the data.

Liner regression No explicitly defined stopping conditions; training concludes
when optimal weights are learned from the data.

The model’s capacity to manage a broad dataset highlights its resilience and adaptation
to the distinct issues of the Middle East, including political instability, economic reliance
on natural resources, and infrastructure shortcomings. This corresponds with findings
from previous studies, which indicate that GRUs excel in time-series forecasting and
sequence prediction tasks [38]. The GRU model offers critical insights for formulating
strategies to enhance supply chain resilience by precisely forecasting ECI, thereby enabling
more informed decision-making in this intricate regional landscape. This remarkable
performance not only confirms the model’s efficacy but also underscores its potential to
substantially boost SCR throughout the Middle East.

Furthermore, Table 4 shows support vector regression (SVR) utilizing a linear kernel
offers commendable performance, achieving a mean squared error (MSE) of 0.0064, a
mean absolute error (MAE) of 0.0064, a root mean squared error (RMSE) of 0.0858, and
an R2 value of 0.9311. Although its R2 is inferior to that of the GRU, it yet accounts for a
substantial portion of variation, specifically 93.11%. Although the MAE is comparatively
low, signifying that forecasts are near the actual values, the rising MSE and RMSE indicate
the presence of more significant sporadic mistakes. Methods like SVR are favored for
regression because SVM can handle non-linear data via kernel transformation [51].

Table 4. Results of models.

Model MSE MAE RMSE R2

GRU 0.0011 0.0307 0.0388 0.9813
SVR (linear) 0.0064 0.0064 0.0858 0.9311
Gradient 0.0067 0.0601 0.0941 0.9169
Catboost 0.0083 0.0781 0.0890 0.9054
Random forest 0.0088 0.0756 0.0941 0.8906
Linear regression 0.1682 0.1031 0.1297 0.7922

In Figure 3a, gradient boosting exhibits a mean squared error (MSE) of 0.0067, a mean
absolute error (MAE) of 0.0601, a root mean squared error (RMSE) of 0.0941, and an R
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value of 0.9169, which is somewhat inferior to that of support vector regression (SVR). The
model accounts for a significant portion of the variance in the target variable—R2 = 91.69%.
Gradient boosting is recognized as one of the most precise machine learning algorithms
for prediction problems using structured data, with XGBoost and LightGBM achieving
numerous victories in regression and classification competitions [52].

(a) 

 
(b) 

Figure 3. (a) Comparative analysis of error metrics. (b) R2 performance across models.

The CatBoost model, a gradient-boosting technique adept at managing categorical
features, achieves performance comparable to our gradient boosting model, with an MSE
of 0.0083, an MAE of 0.0781, an RMSE of 0.0890, and an R2 of 0.9054. CatBoost exhibits
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commendable performance; nonetheless, it demonstrates marginally elevated error metrics,
suggesting its inability to encapsulate data complexity as effectively as GRU or SVR.
CatBoost’s primary advantage lies in its effective management of categorical data with
minimal prepossessing; this methodology has been successfully utilized in various domains,
including consumer behavior prediction and credit scoring [18].

Random forest demonstrated a mean squared error (MSE) of 0.0088, a mean absolute
error (MAE) of 0.0756, a root mean squared error (RMSE) of 0.0941, and an R-squared (R2)
value of 0.8906. Despite its robustness and proficiency in managing complicated datasets,
random forest exhibits marginally inferior performance compared to the more specialized
models, including GRU and SVR, in this instance. Nevertheless, it still represents a sig-
nificant portion of the target variable’s variation, with an R2 of 89.06%. Random forest is
prevalent across various industries due to its capability to manage high-dimensional data
and its resistance to over-fitting; however, it may exhibit sensitivity to hyperparameters [41].

Ultimately, linear regression exhibits the poorest performance among all models, with
a mean squared error (MSE) of 0.1682, a mean absolute error (MAE) of 0.1031, a root mean
squared error (RMSE) of 0.1297, and anw R2 value of 0.7922. The R2 score is relatively low,
indicating that linear regression explains only around 79.22% of the variability in the target
variable. This outcome emphasizes the limitations of linear regression, which is effective
solely for linear relationships between characteristics and the target variable; it is likely
inefficient in capturing complicated or nonlinear patterns in the data. Linear regression, as
a fundamental statistical method, typically exhibits sub-optimal performance in non-linear
data scenarios.

The GRU model is the most effective predictive model, exhibiting the highest R2

and the lowest error metrics. The SVR and gradient boosting models also demonstrate
commendable performance and explanatory capacity. Random forest and CatBoost perform
comparably; however, linear regression achieves the worst performance due to its stringent
assumptions regarding the data.

The superior performance of GRU is attributed to its gating mechanisms, which
effectively address the vanishing gradient problem, enabling the model to learn pertinent
characteristics within a data stream. Recent advancements in deep learning for structured
prediction indicate that GRUs often exhibit superior efficiency compared to more intricate
architectures like LSTMs. Features are static insights that may fail to represent web-like
interactions and dependencies in highly dynamic datasets; hence, more interpretable
models such as random forest and gradient boosting are frequently employed. The results
underscore the growing inclination for recurrent architectures in predictive modeling,
particularly in contexts where data displays temporal or sequential traits, due to their
ability to adeptly grasp intricate relationships.

In Figure 4, a bag plot illustrates the correlation between the mean squared error
(MSE) and the mean absolute error (MAE) across different regression techniques, along
with their dispersion and density. GRU exhibits the lowest values for MSE and MAE,
indicating its superior capacity to understand intricate data patterns and provide minimal
prediction error. These results align with prior research that emphasized the GRU’s efficacy
in modeling sequential data and adeptly capturing temporal dependencies. Nonetheless,
the SVR and gradient boosting models exhibit middling performance, yielding elevated
error levels; however, they display competitive efficacy in heterogeneous scenarios. Con-
versely, advanced learning models such as random forest and linear regression exhibit
greater diversity in prediction mistakes, with the latter being the least successful due to its
constrained ability to represent non-linear connections adequately.

Similarly, a density-based display of MSE and MAE illustrates the aggregation of
high-performance models, specifically those exhibiting consistently fewer errors in as-
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sessment measures. The superiority of GRU is attributed to its gated architecture, which
prevents the retention of irrelevant temporal information while conservatively collecting
temporal patterns.

Figure 4. Comparison of MSE vs. MA.

In our analysis, Figure 5 illustrates the contribution of each feature to the predictions
of the gated recurrent unit (GRU) model, which has an economic complexity index (ECI),
a crucial metric for assessing supply chain resilience (SCR) in the Middle Eastern coun-
tries. Further analysis in our study assessed regional supply chain resilience, utilizing
the economic complexity index (ECI) as the focal variable and highlighting the signifi-
cance of essential macroeconomic, infrastructural, and political elements. The SHAP-based
feature importance analysis identified industry activity (IA) and total natural resource
rents (TNRRs) as the primary determinants of ECI, underscoring the critical importance of
industrial capacity and resource management in influencing regional resilience. Productive
capacities transport (PCT) and the quality of air transport infrastructure (OATI) exemplify
the essential role of efficient transportation systems in improving supply chain stability,
which is vital for regional SCR.

Political environments have a significant impact on regional economic performance,
as demonstrated by the crucial role of political stability and absence of violence (PSAV).
Features such as the Middle East Supply Chain Resilience Index (MESCRI), Liner Shipping
Connectivity Index (LSCI), and ICT-readiness are crucial, underscoring the significance of
technological, logistical, and collaborative competencies in enhancing resilience. Moreover,
although factors such as GDP, infrastructure quality (IQ), and inflation (ICPA) demon-
strate minimal individual influence, their importance lies in their collective impact, which
substantially enhances the overall resilience framework.

Our analysis of SHAP variation in values over the dataset highlights the several
socioeconomic and infrastructure circumstances in this region, therefore offering vital
information for policymakers and participants to actively enhance SCR. The study not
only reveals important drivers of regional resilience by combining SHAP analysis with
GRU predictions but also guarantees openness and interpretability in employing machine
learning in intricate regional economic settings. Figure 6 a comprehensive analysis provides
strong knowledge of the elements influencing regional supply chain resilience, thus provid-
ing actionable insights for legislators to prioritize industrial diversification, infrastructure
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improvement, and political stability to strengthen economic complexity and resilience in
the Middle East.

Figure 5. SHAP (impact on model output).

Figure 6. SHAP (feature impact ranking).
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In order to evaluate the economic complexity index (ECI), a main proxy for regional
supply chain resilience (SCR), we also performed a scenario analysis to offer important new
perspectives on the dynamic interaction of macroeconomic, infrastructure, and political
elements in the Middle East. The outcomes expose the subtle sensitivity of the predictive
model to feature perturbations, therefore stressing the important players in resilience and
their local consequences.

Figure 7 scenario analysis further explains features impact like industry activity (IA)
has emerged as a highly influential characteristic. A rise of 10% markedly elevated the
projected ECI, underscoring the critical need for industrial diversification in strengthening
supply chain resilience. This highlights the necessity for industrial development projects in
resource-dependent economies such as Saudi Arabia, Iraq, and Yemen to enhance resilience.
Total natural resource rents (TNRRs) exhibited pronounced negative sensitivity, whereby a
10% reduction in TNRR enhanced the economic complexity index (ECI). This discovery
corresponds with the resource curse concept, which posits that significant reliance on
natural resources frequently diminishes economic complexity and regional social capital
resilience. For resource-abundant states, shifting from resource dependence to value-added
industrial endeavors is crucial.

Figure 7. Scenario analysis.

Productive capacities transport (PCT) and the quality of air transport infrastructure
(OATI) favorably impacted ECI forecasts, highlighting the essential function of effective
multi-modal transportation networks in the Middle East, especially for trade centers such
as the UAE and Qatar. Improving these capabilities can alleviate logistical constraints and
enhance regional competitiveness.

Political stability and the absence of violence (PSAV) exhibited the most significant
adverse effect on the economic complexity index (ECI) when negatively altered by 10%,
highlighting the harmful influence of political instability on social cohesion and resilience
(SCR). Fragile governments like Syria, Yemen, and Iraq demonstrate considerable vulnera-
bilities in their supply chain networks, owing to ongoing geopolitical instability.
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Figure 8 shows that the perturbation factors examined indicate that nations with devel-
oped infrastructural and technical frameworks, like the UAE and Qatar, demonstrate greater
resilience under varying scenarios. In contrast, politically unstable and resource-dependent
nations like Yemen and Sudan exhibit significant vulnerabilities, highlighting the disparate
levels of resilience throughout the Middle East. The Middle East Supply Chain Resilience
Index (MESCRI) had moderate effects on the economic complexity index (ECI), signifying
its use as a composite measure of regional performance. Nonetheless, its interactions with
essential factors such as PSAV and TNRR underscore its reliance on political stability and
economic diversity. Resource-dependent economies must prioritize industrial diversifica-
tion to mitigate dependency on natural resources, as demonstrated by the adverse sensitivity
of TNRR. Investments in manufacturing, technology, and services can enhance resilience.
Infrastructure development: Enhancements in transportation infrastructure, especially in air
freight and multi-modal logistics, are essential for alleviating supply chain interruptions
and promoting regional connectivity. This is especially crucial for trade-oriented countries
such as Saudi Arabia and the UAE. Political stability and governance: Mitigating political
instability in fragile regimes is of utmost importance. Enhancing governance frameworks,
conflict resolution procedures, and regional collaboration can substantially improve SCR, as
evidenced by the pronounced adverse effect of PSAV on ECI.

Figure 8. Feature perturbation.

Figure 9 explains that a feature perturbation analysis offers practical insights for
policymakers, emphasizing the necessity of promoting industrial and infrastructural de-
velopment while managing resource dependence and ensuring political stability. These
findings collectively establish a strong framework for improving SCR in the Middle East,
presenting a means to alleviate regional vulnerabilities and strengthen resilience against
global uncertainty. This cohesive strategy enhances the prediction accuracy and policy
significance of SCR modeling for the region. This study underlines the intricacy of improv-
ing SCR in the Middle East. Countries with strong infrastructure and varied economies
exhibit greater resilience, but politically unstable and resource-dependent nations are more
susceptible to vulnerability. By emphasizing industry diversity, infrastructure development,
and political stability, the region may enhance its supply chain networks, thus ensuring
sustainable economic complexity and resilience against global disturbances. These findings
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offer a data-driven basis for policymakers to tackle structural impediments and enhance
regional resilience initiatives.

Figure 9. Sensitivity analysis.

Figure 10 shows that an integrated analysis examined the resilience of the predictive
model and the influence of critical features on ECI. This approach provides insights into the
model’s sensitivity and stability under real-world disruptions by analyzing the response of
features such as IA, TNRR, and PSAV to perturbations. Our study illustrates a combined
sensitivity and scenario analysis, which delineates the variations in predictions for the
economic complexity index (ECI) resulting from different feature perturbations (+10% and
−10%) compared to the original forecasts. Each bar illustrates the effect of a particular
feature’s positive or negative modification on the expected ECI across test samples.

Figure 10. Sensitivity and scenario analysis.
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Principal sensitivity determinants, variables such as IA, TNRR, and PSAV, exhibit
considerable fluctuation, as seen in the substantial divergences from the zero baseline. This
indicates that these features are essential for influencing ECI forecasts. Asymmetric behav-
ior was observed in that certain characteristics, e.g., TNRR and MESCRI, have asymmetric
effects, wherein the intensity of positive and negative disturbances varies. This signifies the
non-linear impacts of various attributes on ECI. Feature-specific impacts attributes such as
OATI exhibit little variation, indicating reduced susceptibility to alterations in these aspects.
The persistent influence of MESCRI, even under disturbances, highlights its significance as
a regional measure of resilience.

Geopolitical and economic vulnerability attributes such as PSAV and TNRR signify
geopolitical concerns and reliance on natural resources, which are crucial in the Middle
East region. This corresponds with our study’s emphasis on regional resilience, as these
characteristics significantly affect economic complexity and, thus, supply chain robustness.
MESCRI substantiates its significance in forecasting ECI, particularly as it encompasses
a comprehensive perspective on supply chain resilience, infrastructure, and political-
economic stability. An in-depth comprehension of feature-level sensitivity in practical
circumstances immediately facilitates our goal of assessing and improving supply chain
resilience (SCR) in Middle Eastern nations. Such a method provides practical insights for
enhancing the region’s supply chains against trade disruptions or geopolitical threats by
identifying important resilience drivers and their asymmetric effects. Profound under-
standing is an essential element in research, as it connects sensitivity analysis with practical
situations to provide meaningful recommendations for enhancing regional resilience. It suc-
cessfully identifies critical areas for change and perfectly matches with our study objectives
of improving SCR in the Middle East.

5. Discussion

The Middle East is strategically located as a vital hub in world trade, especially be-
cause of its closeness to the Suez Canal, a significant maritime choke point that enables
the passage of almost 12% of global trade. This posture renders supply chain resilience in
the Middle East crucial for the region’s economic stability and vital for the seamless func-
tioning of global trade networks. A disruption in supply networks in this region, whether
from geopolitical instability, infrastructural failure, or economic volatility, can impact
international markets, influencing trade routes, market pricing, and global supply chains.

This research employed six sophisticated regression models: gated recurrent unit
(GRU), support vector regression (SVR), gradient boosting, CatBoost, random forest, and
linear regression, to predict and evaluate supply chain resilience in the Middle East. A
thorough sensitivity analysis and scenario analysis were conducted to assess the robustness
of these models under varying situations, analyzing the potential impact of different
disruptions on supply chain resilience. The findings offer essential insights into the most
effective methods for predicting disruptions and enhancing supply chain performance
within the turbulent and intricately linked trade landscape of the Middle East. Machine
learning models and their significance for supply chain resilience: The gated recurrent unit
(GRU) model has proven to be the most precise and dependable instrument for predicting
supply chain resilience in the Middle East, surpassing other models in predictive accuracy.
The GRU demonstrated an MSE of 0.0011, an MAE of 0.0307, an RMSE of 0.0388, and an R2

value of 0.9813, indicating that it explained nearly 98% of the variance in the target variable.
This outstanding performance highlights the GRU’s ability to capture long-term temporal
dependencies in sequential data, rendering it especially effective in modeling time-series
data that experience considerable fluctuations due to external shocks such as geopolitical
events, supply–demand imbalances, or environmental disruptions.

77



Systems 2025, 13, 209

GRU’s capacity to analyze these temporal correlations is essential. The region often
experiences geopolitical instability, including conflicts and policy changes, which can lead
to considerable disruptions in the flow of products. Disruptions to the Suez Canal, a
vital global economic artery, can be anticipated and alleviated by utilizing the predictive
powers of the GRU. The model’s capacity to manage such complexities has been exten-
sively established in prior studies, underscoring its efficacy in predicting time-dependent
variables, particularly in logistics and supply chain management [38]. Sensitivity analysis
demonstrates that the GRU model exhibits considerable stability across many parameter
configurations, rendering it resilient to variations in input data. Its ability to adapt to
the fluctuating volatility of Middle Eastern trade routes, either by political instability or
infrastructural challenges, offers a distinct edge. The model’s resilience is demonstrated by
its capacity to anticipate the consequences of prospective interruptions, such as the Suez
Canal closure, indicating its proficiency in accurately predicting the cascade impacts on
supply chains.

The support vector regression (SVR) demonstrated considerable potential, evidenced
by an R2 of 0.9311, a mean squared error (MSE) of 0.0064, and a root mean squared error
(RMSE) of 0.0858, particularly in identifying non-linear correlations within the dataset.
Although its R2 demonstrates that it explains a significant percentage of the variation in
supply chain resilience, its elevated MSE and RMSE relative to the GRU imply that the SVR
model is more susceptible to outliers and non-linear disruptions, such as abrupt geopolitical
events or trade embargoes. The sensitivity study reveals that the performance of the SVR
model deteriorates under more extreme situations, especially in the presence of data noise
or outliers. This underscores the significance of meticulous parameter optimization and
kernel selection to enhance the robustness of SVR in volatile contexts, especially in areas
with intricate political dynamics such as the Middle East.

Conversely, the gradient boosting model, with an R2 of 0.9169, an MSE of 0.0067,
and an RMSE of 0.0941, displayed competitive performance, although it did not surpass
the GRU and SVR models in prediction accuracy. The elevated MSE and RMSE values
might be ascribed to the model’s susceptibility to over-fitting, especially when confronted
with noisy data or highly volatile variables. In situations characterized by high data
quality and reduced over-fitting risk, gradient-boosting techniques such as XGBoost and
LightGBM demonstrate outstanding efficacy in regression tasks [53]. Nonetheless, the
scenario analysis in this study indicated that the performance of the gradient boosting
model substantially declines in severe scenarios, such as abrupt geopolitical disruptions or
extensive infrastructure breakdowns.

The CatBoost model, a gradient boosting variation adept at managing categorical
variables, achieved performance comparable to that of gradient boosting but showed
marginally elevated error metrics (MSE of 0.0083, RMSE of 0.0890, and R2 of 0.9054).
The model demonstrated efficacy with datasets including substantial categorical features;
however, a scenario analysis revealed a greater susceptibility to major mistakes when
anticipating interruptions resulting from non-categorical causes, such as fluctuations in
global oil prices or supply–demand discrepancies. This indicates that although CatBoost
is beneficial for certain categories of supply chain data, its efficacy is not as consistently
strong as that of the GRU or SVR models.

Sensitivity and scenario analysis, which assessed supply chain disruptions as part
of this study’s sensitivity analysis, highlights the significance of comprehending the re-
sponsiveness of each model to variations in input variables and exterior disturbances. This
analysis is essential for identifying the most robust supply chain models in the Middle East,
where they are susceptible to geopolitical risks, natural disasters, and infrastructural issues.
In this scenario analysis, we simulated the effects of disruptions such as the blocking of the
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Suez Canal or interruptions in the oil supply chain. The GRU model exhibited an enhanced
predictive capability, precisely anticipating the downstream impacts of disruptions on the
overall supply chain, encompassing port delays, alterations in shipping expenses, and
variations in global trade dynamics. This highlights the necessity of utilizing powerful
machine learning methods to anticipate and alleviate the effects of possible supply chain
interruptions in this strategically significant area.

To exhibit the practical application of our machine learning (ML) framework in pre-
dicting and preventing supply chain disruptions, we present a case study centered on the
March 2021 Suez Canal blockage caused by the Ever Given vessel, a significant incident
that interrupted Middle Eastern trade routes and global supply chains. This event, which
disrupted almost 12% of global trade for six days, illustrates the kind of geopolitical and
logistical shock that our gated recurrent unit (GRU) model aims to tackle. Our study offers
a retrospective study to illustrate the applicability of our GRU model to this incident, hence
augmenting the research’s pertinence to real-world supply chain resilience (SCR) issues.

This case study utilizes the GRU model, trained on historical data up to 2023 from
sources specified in Section 3.1 (e.g., World Bank, UNCTAD), to forecast changes in the
economic complexity index (ECI) subsequent to the Suez Canal blockade. Key attributes
such as Liner Shipping Connectivity (LSCI) and Productive Capacities Transport (PCT)
are highlighted due to their direct significance to marine trade interruptions. The obstruc-
tion likely resulted in substantial reductions in LSCI owing to suspended shipping and
pressured PCT as alternate transportation methods were overwhelmed. Given the model’s
evident sensitivity to these characteristics in Figure 5, through a SHAP analysis, we propose
that the GRU might have predicted a 7–10% decrease in ECI for impacted Middle Eastern
nations, including Egypt and Saudi Arabia, indicative of a diminished trade capacity and
economic complexity amid the disruption. This estimate corresponds with the scenario
analysis in where variations in transport-related attributes produced similar ECI effects.

The case study emphasizes practical mitigation solutions derived from the model’s
outputs, surpassing mere prediction. For example, redirecting traffic through alternate
ports, such as Jeddah in Saudi Arabia, could have mitigated congestion on the Suez
route, while augmenting air freight capacity might have compensated for delays in time-
sensitive shipments. These solutions leverage the model’s identification of infrastructure
quality like IQ, PCT, OATI, RQ., LSCI, and ATF as determinants of resilience (Section 4).
This research is hypothetical because real-time 2024 data are not available in our present
dataset; yet, it highlights the GRU’s capacity to facilitate proactive decision-making in
crisis situations. This enhancement bolsters the practical significance of our findings, ML’s
beneficial influence on SCR, and increases the study’s attractiveness to both academic
researchers and supply chain professionals.

Conversely, the SVR and gradient boosting models, albeit still useful, exhibited dif-
fering degrees of deterioration under severe disruptions. The SVR model demonstrated
greater resilience to modest disruptions but showed considerable volatility in situations of
acute global instability. The gradient boosting model, effective under normal settings, ex-
hibited a significant decrease in performance during simulations of large-scale disruptions,
underscoring its susceptibility to over-fitting and the necessity of hyperparameter tailoring
for certain scenarios.

Our study’s findings have significant implications for enhancing the resilience of
supply chains in the Middle East, especially when considering the region’s vital role in
global trade. The proximity of the Middle East to the Suez Canal and other critical maritime
routes necessitates the fortification of regional supply chains to endure disruptions, which
is essential not just for local economies but also for global markets. The GRU model, noted
for its exceptional performance and versatility, can function as an effective instrument for
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forecasting and alleviating risks, allowing stakeholders such as governments, port authori-
ties, and shipping corporations to implement proactive strategies in order to maintain the
seamless operation of trade routes; although each regression model examined in this study
presents unique benefits, the GRU model emerges as the most dependable and robust for
forecasting supply chain disruptions in the Middle East. By utilizing sophisticated machine
learning methodologies and performing thorough sensitivity and scenario analyses, the
region can more effectively predict and address the challenges presented via geopolitical
instability, natural disasters, and infrastructural disruptions, thereby protecting its essential
function in global trade.

6. Conclusions

This study has illustrated the vital significance of sophisticated machine learning mod-
els in bolstering the resilience of supply chains in the Middle East, an area that is pivotal in
global trade, especially because of its closeness to the Suez Canal. Through the assessment
of six distinct regression models—gated recurrent unit (GRU), support vector regression
(SVR), gradient boosting, CatBoost, random forest, and linear regression—we have demon-
strated that the GRU model markedly surpasses the others in predictive accuracy, achieving
an R2 of 0.9813 and exhibiting minimal error metrics. The GRU’s exceptional capability of
capturing temporal interdependence and long-term trends renders it especially appropriate
for simulating the dynamic and frequently turbulent characteristics of supply networks
in this region. This corresponds with recent literature that highlights the effectiveness of
recurrent neural networks, especially GRUs, in time-series forecasting and supply chain
management. The sensitivity and scenario assessments further confirm the resilience of
the GRU, emphasizing its capacity to adjust to diverse challenges, whether geopolitical,
infrastructural, or economic. Our study’s findings, employing the predictive power of
the GRU model (R2 = 0.9813) and extensive scenario analyses, offer practical insights for
supply chain managers, policymakers, and logistics planners in the Middle Eastern trade
corridor, organized around essential resilience factors. Our analysis indicates that excessive
dependence on oil exports, evidenced by the adverse sensitivity of total natural resource
rents to the economic complexity index (Figure 7), heightens supply chain vulnerability.
This compels managers in resource-dependent economies such as Saudi Arabia and Iraq to
diversify into manufacturing, technology, and services consistent with initiatives like Vision
2030 to reduce exposure to energy market fluctuations and trade disruptions. The beneficial
impact of productive capacities transport and quality of air transport infrastructure on ECI
(Figure 7) highlights the necessity for logistics planners to prioritize multi-modal transport
enhancements in hubs such as the UAE and Qatar, thereby improving resilience against
disruptions like Suez Canal blockages. The predictive accuracy of the GRU model shown
in Figure 3b enables supply chain managers to implement real-time, machine learning-
based risk management, allowing for proactive measures such as rerouting shipments or
obtaining alternative suppliers in anticipation of geopolitical or infrastructure disruptions.
The detrimental effect of destabilized political stability and the absence of violence (PSAV)
on ECI (Figure 7) underscores the region’s geopolitical vulnerability, requiring enhanced
governance and regional cooperation, particularly in fragile states such as Yemen and
Syria, to sustain supply chains. Ultimately, given the worldwide repercussions of Middle
Eastern disturbances through the Suez Canal, it is imperative for managers and regulators
to promote cross-border data-sharing and international collaborations in order to maintain
trade continuity, therefore strengthening global supply chain resilience.

Our research offers significant strategic implications for policymakers, trade regulators,
and logistics management specialists in Middle Eastern markets. Strategies for resilience
in the region must diminish dependency on resource rents and augment infrastructure
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expenditures to facilitate different trade routes, given its reliance on oil exports and the
sensitive geopolitical trade corridors. GRU exhibits enhanced predictive performance,
underscoring the necessity for machine learning technologies to be integrated into national
risk management frameworks in order to improve supply chain disruption forecasting
skills. The SCR monitoring and reaction capability will be enhanced through real-time data
collecting that integrates satellite imagery with trade transaction records supported via
geospatial analytical capabilities. International alliances are crucial, as localized supply
chain vulnerabilities can disseminate their effects across the global economy. The forma-
tion of multilateral agreements and cross-border data-sharing platforms is essential for
policymakers to enhance overall trade resilience.

7. Limitations and Future Research

Our study offers significant insights into supply chain resilience (SCR) through ma-
chine learning (ML) models; however, some limits are recognized, presenting opportunities
for further research. The principal constraint resides in the dependence on historical data,
which confines the model’s ability to predict unprecedented disruptions, including un-
foreseen geopolitical occurrences, natural calamities, or economic penalties. Therefore,
subsequent research should include real-time data sources, such as geo-location tracking,
satellite imagery, reports, and social media sentiment analysis, to facilitate dynamic model
adjustments and enhance forecasting responsiveness amid swiftly evolving circumstances.

A second restriction pertains to the spatial specificity of this investigation. The re-
search centered on the Middle East, and its conclusions may not be directly relevant to
other international trade routes with unique geopolitical, economic, and infrastructural cir-
cumstances, such as the Panama Canal or the Strait of Malacca. Cross-regional comparisons
would yield significant insights into the transferability and applicability of the ML-driven
resilience techniques established in this study to various geographies. This research could
improve our comprehension of worldwide applicability and guide the creation of more
generally pertinent predictive models for supply chain risk management.

Furthermore, although machine learning models such as GRU have exhibited ro-
bust performance in this work, their application to real-world supply chain management
presents certain problems. These models necessitate precise calibration, especially for hyper-
parameter optimization, and may be computationally demanding, leading to issues related
to scalability and resource management. Future research should concentrate on hybrid
models that amalgamate econometric methodologies with machine learning techniques.
These models may offer enhanced accuracy and increased interpretability, rendering them
more suitable for policy-focused forecasting and decision-making assistance.

A subsequent study may investigate the integration of decision-support systems
with machine learning models to improve real-time decision-making in supply chain risk
management. Researchers could design frameworks that enable stakeholders to simulate
the effects of probable disruptions and proactively formulate contingency strategies by
integrating AI-driven simulations with scenario-based planning tools. This would enable
policymakers and supply chain managers to react more efficiently to emerging concerns.
As global supply chains grow increasingly complicated, it is essential for a future study to
examine collaborative resilience strategies across stakeholders across many areas. Due to
the interdependence of global trade networks, fostering collaboration among governments,
private-sector organizations, and international bodies will be crucial for enhancing the
resilience of regional and global supply chains. The establishment of data-sharing platforms
and collaborative risk management frameworks may improve collective readiness, enabling
a more synchronized reaction to global supply chain disruptions.
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By addressing these limits and exploring future research areas, scholars and practi-
tioners may enhance the resilience of global supply chains, ensuring that they stay resilient
and adaptable to developing global issues.
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Abstract: Increasing supply chain uncertainty due to market volatility has heightened
the need for more flexible procurement strategies. While procurement through long-term
forward contracts provides supply stability and cost predictability, it limits adaptability.
Option contracts offer procurement flexibility, but require additional upfront premiums.
Meanwhile, the spot market enables real-time purchasing without prior commitments,
enhancing flexibility but exposing buyers to price volatility. Despite the growing adop-
tion of portfolio procurement—combining forward contracts, option contracts, and spot
market purchases—the existing research primarily examines these channels in isolation
or in limited combinations, lacking an integrated perspective. This study addresses this
gap by developing a comprehensive procurement model that simultaneously optimizes
procurement decisions across all three channels under uncertain demand and fluctuating
spot prices. Unlike prior studies, which often analyze one or two procurement channels
separately, our model presents a novel, holistic framework that balances cost efficiency,
risk mitigation, and adaptability. Our findings demonstrate that incorporating the spot
market significantly enhances procurement flexibility and profitability, particularly in en-
vironments with high demand uncertainty and price volatility. Additionally, sensitivity
analysis reveals how fluctuations in spot prices and demand uncertainty influence optimal
procurement decisions. By introducing a new, practical approach to portfolio procurement,
this study provides managerial insights that help businesses navigate complex and uncer-
tain supply chain environments more effectively. However, this study assumes unlimited
spot market capacity and reliable suppliers, highlighting a limitation that future research
should address.

Keywords: portfolio procurement strategy; forward contract; option contract; spot market;
supply chain management

1. Introduction

Supply chains have become increasingly unstable due to international conflicts, natu-
ral disasters, price fluctuations, and pandemics. In this uncertain landscape, procurement
strategies have become a critical business concern. They are especially crucial in manu-
facturing industries, where securing components in a stable and cost-effective manner
is essential for maintaining quality, controlling costs, and ensuring seamless production.
Traditionally, the primary form of procurement has been the wholesale forward contract,
where businesses commit to purchasing goods or services from a supplier over an ex-
tended period at fixed terms and wholesale prices [1]. While this approach guarantees a
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stable supply at generally lower costs and protects the retailer from losses arising from
price and supply fluctuations, it also limits adaptability in uncertain markets and limits
emerging opportunities.

To address this limitation, companies are increasingly incorporating option contracts
into their procurement strategies [2]. Option contracts offer greater flexibility, allowing
businesses to secure the right, without the obligation, to purchase up to a certain amount
of goods at a predetermined price within a specified period. This approach is particularly
efficient in volatile markets where demand and prices are unstable. One key advantage of
option-based procurement is supply assurance. Companies can reserve inventory without
fully committing to purchasing, ensuring its availability during peak demand or supply
shortages. However, option contracts incur additional costs, as buyers must pay an upfront
premium to acquire the option, which may increase overall procurement expenses. If the
option remains unused, the premium is lost as a sunk cost.

With the rapid growth of B2B (business-to-business) trading, the spot market has
become an effective and flexible alternative for procurement. Purchasing goods in the
spot market involves buying items at current prices for immediate delivery in a dynamic
environment. Spot market procurement is widely used for a range of products, including
grains, oil, chemicals, semiconductor chips, energy, etc. [3–8]. The primary advantage
of spot market purchasing is flexibility. Unlike long-term forward and option contracts
with fixed prices and predetermined order quantities, spot market procurement is highly
dynamic, adjusting to real-time supply and demand conditions. Buyers can modify pur-
chase quantities based on actual demand, making it particularly beneficial for industries
with highly uncertain demand or short product life-cycles. Moreover, unlike forward and
option contracts that lock-in prices in advance, businesses can capitalize on cost savings
when market prices decline. Spot market transactions also require no upfront financial
commitment, which helps to improve cash flow management. Despite these advantages,
spot market purchasing entails significant risks, with price volatility being the most crit-
ical. Since spot prices fluctuate due to supply and demand dynamics, businesses may
face sudden cost surges during peak demand periods, complicating financial planning
and budgeting. Nonetheless, spot market procurement is gaining popularity, particularly
with the rise of e-commerce. Table 1 summarizes the characteristics of forward/option
contract-based procurement and spot market procurement.

Table 1. Comparison of procurement strategies: forward/option contracts vs. spot market.

Factor Forward/Option Contract Spot Market

Price Volatility Fixed or capped price Highly volatile price

Flexibility Lower flexibility;must commit to a fixed amount Higher flexibility; can buy as needed

Cost Management Predictable procurement cost Difficult to forecast costs

Financial Commitment Advanced payment or premium No upfront payment

Risk Exposure Hedged against price volatility Exposed to price fluctuations

Companies have recently adopted portfolio procurement strategies that integrate
traditional long-term contracts into the spot market, optimizing cost and flexibility. For
instance, Hewlett-Packard (HP) successfully implemented a hybrid procurement strategy
combining forward contracts, option contracts, and the spot market for semiconductor
component sourcing. Specifically, HP procured 50% of its components through a forward
contract, 35% via an option contract, and 15% from the spot market [9]. While existing
research primarily examines one or two procurement channels in isolation, there are limited
studies exploring portfolio procurement strategies that integrate forward, option, and spot

86



Systems 2025, 13, 210

markets. McKinsey & Company [10] have emphasized in their reports the importance of
determining the optimal ratios between the long-term and the spot market for purchases.

This study aims to fill the research gap by developing a portfolio procurement frame-
work that integrates forward contracts, option contracts, and spot trading into a unified
model. Specifically, our contributions include: (1) formulating an optimal model that inte-
grates these three procurement mechanisms; (2) analyzing procurement strategies under
different procurement structures—forward contracts only, a combination of forward and
option contracts, and a fully integrated portfolio approach; (3) providing an analytical
solution under specific demand and price distributions to offer clear managerial insights;
and (4) conducting a comprehensive sensitivity analysis of key factors such as spot price
volatility, demand uncertainty, and cost structures. By addressing these aspects, our study
provides a more holistic perspective on procurement strategy, filling the existing research
gap and offering practical implications for supply chain decision-making.

This article is structured as follows: Section 2 reviews the relevant literature. Section 3
introduces an optimization model for portfolio procurement, with existing works used as
benchmarks. Section 4 presents numerical examples to illustrate key findings and compare
procurement strategies. Finally, Section 5 discusses the main conclusions and potential
directions for future research.

2. Literature Review

With increasing supply chain risks, extensive research has been conducted from
diverse perspectives to address these challenges. These include disruption mitigation
approaches (e.g., resilience planning, redundancy, and dual sourcing) [11], sustainability
and resilience strategies (e.g., circular economy models and green initiatives) [12], behav-
ioral decision-making in procurement [13], and contractual strategies [14], to name a few.
Among these, contractual strategies play a critical role in portfolio procurement, particu-
larly in balancing cost stability and flexibility. To establish a foundation for our study, we
first review the existing literature on forward contracts, option contracts, and spot markets,
examining their applications and limitations in procurement decision-making.

A significant portion of forward contracts are based on the newsvendor model, where
the optimal order quantity is determined under a wholesale contract framework for a short
life-cycle product sold in a single selling period. In this model, a retailer (newsvendor) must
decide how many units of a product to order before the selling season begins. Demand is
assumed to be stochastic and characterized by a random variable x with the probability
density function (pdf), f (x), and the cumulative distribution function (cdf), F(x). The key
trade-off in the ordering decision is between two types of costs: the underage cost (cu),
incurred when ordering too little (leading to missed profit opportunities), and the overage
cost (co), incurred when ordering too much (resulting in excess inventory). In the standard
newsvendor model, these costs are defined as cu = p − w and co = w − s, where p is the
selling price, w is the purchase cost, and s is the salvage value. The optimal order quan-
tity Q∗ purchased by the retailer from the supplier is obtained by F(Q ∗) = cu

cu+co
= p−w

p−s .
Wholesale-based procurements in the newsvendor problem are extensively studied in
the literature [15–18]. While forward contracts based on wholesale pricing provide sta-
bility and predictability in cost structure, their rigidity often limits their adaptability to
fluctuating demand.

Option contracts are widely adopted across industries to address the limitations of
forward contracts. An option contract is a type of agreement that allows the buyer to adjust
order quantities based on demand forecasts and actual sales. In an option contract, two key
pricing components define the financial terms: the option price o and the exercise price e.
The option price is the retailer’s upfront cost to acquire the contract, while the exercise price
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is the pre-agreed price at which the buyer can purchase the goods if they choose to exercise
the option. The option price is non-refundable, meaning that even if the buyer decides
not to exercise the option, the amount paid is not recovered. If demand is high, the buyer
can exercise the option and secure the goods at the exercise price. Conversely, the buyer
can forgo the option if demand is low, avoiding unnecessary inventory. Zhao et al. [19]
introduced a supply chain coordination framework using an option contract, employing
a game theory approach to resolve conflicts between manufacturers and retailers. They
found that, compared to forward contracts, the supply chain can achieve coordination
with Pareto improvement using option contracts. Since then, research on option contracts
has been conducted across various contexts, including disruption risk [20], information
asymmetry [21], smart factories [22], and bi-directional options [23]. For a comprehensive
review of option contract literature, see Trigeorgis and Tsekrekos [2].

Existing studies on portfolio procurement problems mostly fall into three main streams:
forward contract with option, forward contract with spot market, and option contract with
spot market. Several studies examine a combined procurement model where a retailer
utilizes both forward and option contracts. Wang and Tsao [24] develop a combined
procurement model with both contract types. They show that optimal order quantities exist
for both. Chen and Shen [25] examine the influence of option contracts and target service
requirements on procurement decisions and performance. It is shown that as the target
service requirement increases, the retailer’s optimal expected profit is non-increasing, and
the supplier’s optimal expected profit is non-decreasing. Hu et al. [26] examine portfolio
procurement policies for budget-constrained supply chains using wholesale and option
contracts. It is shown that the wholesale-based forward contracts are preferable under tight
budget constraints, while a combination of forward and option contracts can be a better
choice under the relieved budget.

With the rapid growth of B2B trading, the spot market has become an increasingly
viable procurement channel. Seifert et al. [3] propose a mathematical model to determine the
optimal order quantity for forward contracts and spot market purchases. They demonstrate
that incorporating the spot market into procurement decisions improves performance.
Xing et al. [6] investigate how the B2B spot market affects the retailer’s strategic behavior
and performance in a supply chain with price-sensitive demand. The study presents
how the retailer should simultaneously make a procurement quantity decision from a
forward contract and a selling price decision before spot trading. Xu et al. [27] study
a portfolio procurement with a forward contract and an imperfect spot market, where
transactions are subject to availability constraints and additional costs. Kleindorfer and
Wu [28] develop a framework integrating long-term procurement (capacity options) with
short-term spot trading, showing that manufacturers and retailers can increase profitability
using option contracts. Fu et al. [29] explore procurement strategies for a multi-period
inventory, considering that a firm can buy either through an option contract or a spot
market under price-dependent demand. Zhao et al. [30] present a two-stage procurement
model, considering a stochastic spot market and the updating of demand information. In
the first stage, the retailer determines the option quantity based on the option contract
and possible spot price. The demand information is updated in the second stage, and
based on this new information, the retailer determines the exercised quantity of options
and the quantity of purchasing items from the spot market. Hou et al. [31] develop a
mathematical model to determine the retailer’s optimal procurement strategy, considering
an imperfect spot market and fluctuating spot prices. They derive closed-form solutions
for optimal order quantities and highlight the importance of a comprehensive portfolio
procurement strategy that incorporates forward contracts alongside option contracts and
the spot market.
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While prior studies have explored procurement strategies involving forward contracts,
option contracts, or the spot market, they have predominantly examined these mechanisms
in isolation or in limited combinations. However, in today’s industrial environment, firms
increasingly leverage multiple procurement channels to optimize supply chain performance.
A more comprehensive procurement strategy is required—one that integrates forward
contracts, option contracts, and the spot market to effectively balance cost, flexibility,
and risk. Despite the increasing recognition of these challenges, most research assumes
that firms rely on either a single dominant procurement channel or a combination of
two mechanisms. This limited scope often fails to capture the full strategic potential
of an integrated portfolio approach, where all three mechanisms can be leveraged to
optimize procurement outcomes. This paper aims to bridge this gap by developing a
portfolio procurement framework that integrates forward contracts, option contracts, and
spot trading simultaneously. Specifically, we identify the conditions under which each
mechanism should be used, evaluate the trade-offs between cost efficiency and flexibility,
and provide insights into optimal procurement decisions under uncertain markets.

3. Model Description

We consider a single risk-neutral retailer procuring products from a supplier for resale.
The procurement process is characterized by long lead times and a limited sales period.
The retailer faces uncertain demand x, which follows a probability density function (pdf)
f (x), a cumulative distribution function (cdf) F(x), and has a mean μx. Table 2 lists the
notations and their descriptions used throughout this paper.

Table 2. Notations.

Notations Descriptions

p per-unit retail price
w per-unit forward wholesale price by the retailer to the supplier
o per-unit option price
e per-unit option exercise price
s per-unit salvage value
x market demand with pdf f (x), cdf F(x), and mean μx
r per-unit spot market price with pdf g(r), cdf G(r), and mean μr
φ probability that the spot price is less than the exercise price, i.e., Pr(r < e)
Q forward contract amount
q option contract amount
qe option exercise amount
π expected profit, π = E(P), where P is the realized profit

fw, fo, fos indices for forward, forward + option, and forward + option + spot market, respectively

Procurement can be made through either a forward contract (FW) or an option contract
(OP), where the contract parameters are exogenously determined in the market. In the FW
contract, the retailer commits to a committed order Q with the supplier at a predetermined
wholesale price w. The supplier then produces and delivers the ordered quantity to the
retailer at the start of the selling season. In the option (OP) contract, two key parameters
are involved: the option price o and the exercise price e. The option price is paid by the
retailer to the supplier in advance to reserve a specific quantity q before the selling season
begins. The exercise price is paid only when the retailer chooses to exercise the reserved
options at the time of contract execution. The retailer has the right, but not the obligation,
to purchase any portion of the reserved quantity, and the supplier is obligated to fulfill
all exercised quantities. A distinctive feature of this study is the incorporation of a spot
market (SP) into procurement decisions. The retailer can procure additional units from
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the spot market if the quantities ordered through the FW and OP contracts fall short of
realized demand. This study focuses on developing an optimal procurement strategy by
determining the optimal order quantities for FW and OP contracts.

Under the combined FW and OP contract without a spot market, the retailer orders
Q units through the FW contracts and reserves q units via the OP contract. Therefore,
the maximum quantity the retailer can procure from a supplier is Q + q. The unmet
demand is lost if the demand is higher than Q + q. Under the combined FW and OP
contract with the spot market, the retailer procures all the unmet demand from the spot
market with unlimited capacity. The spot market price r is uncertain and is estimated
using distribution with pdf g(r), cdf G(r), and the mean μr. The spot market price may
be higher or lower than the option exercise price as it fluctuates over time. If the spot
market price is lower than the option exercise price, the retailer does not need to exercise
the option and instead procures the intended option quantity from the spot market. At the
end of the selling season, any unsold inventory retains a salvage value s. We assume that
the spot market is always available when needed. Additionally, the supplier is reliable,
ensuring that the retailer can receive the agreed-upon supply. The retailer is assumed to
have a risk-neutral disposition, making decisions to maximize expected profit. We also
assume that the selling price, wholesale price, option price, and salvage value are given by
the market. The following assumptions are made to avoid trivial or unrealistic scenarios:
p > w > e > s, μr > o + e > w − s, p > r.

We investigate the optimal procurement models for the retailer without the spot
market in Sections 3.1 and 3.2, and then present the optimal ordering decisions with the
spot market in Section 3.3.

3.1. Procurement Model for Forward Contract (FW)

A forward contract is an agreement between two parties to purchase a quantity of
goods at a predetermined price on a future date. Procurement through wholesale price-
based forward contracts is a widely used procurement method in the industry. The retailer’s
profit function Pf w can be expressed as follows:

Pf w = pmin(x, Q)− wQ + s(Q − x)+ (1)

where (y)+ = max(y, 0). The first term represents the total revenue, the second term
accounts for the purchase cost incurred, and the third term reflects the salvage value for the
leftover inventory. Then, the retailer’s expected profit, π f w, can be represented as follows:

π f w = E
(

Pf w

)
= (p − w)Q − (p − s)

Q∫
0

F(x)dx (2)

Note that E[min(x, Q)] = Q −
Q∫
0

F(x)dx and E[(Q − x)+] =
Q∫
0

F(x)dx. The first

and second derivatives of π f w with respect to Q are
dπ f w

dQ = (p − w)− (p − s)F(Q) and
d2π f w

dQ2 = −(p − s) f (Q). With the assumption of p > w > s,
d2π f w

dQ2 < 0 holds, indicating
that π f w is concave with respect to Q. The first-order condition indicates that the optimal
order quantity for the retailer, Q*

f w, is as follows:

Q∗
f w = F−1

(
zQ∗

f w

)
where zQ∗

f w =
p − w
p − s

(3)
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3.2. Procurement Model for Combined Forward and Option Contract (FO)

This strategy combines the FW and OP models, where the retailer utilizes both FW
and OP contracts. The retailer profit function π f o can be expressed as follows:

Pf o = pmin(x, Q + q)− wQ + s(Q − x)+ − oq − emin
(
(x − Q)+, q

)
(4)

The first term represents the total revenue from the sales, the second term accounts for
the purchase cost incurred under the FW contract, and the third term signifies the salvage
value. The fourth and final term account for the option and exercise prices, respectively.
The retailer’s expected profit π f o can be represented as follows:

π f o = E
(

Pf o

)
= (p− o − e)q− (e− s)

∫ Q

0
F(x)dx + (p − w)Q − (p − e)

∫ Q+q

0
F(x)dx (5)

Note that E[min
(
(x − Q)+, q

)
] = q +

Q∫
0

F(x)dx −
Q+q∫

0
F(x)dx. Chen and Shen [25]

showed that π f o is jointly concave with respect to Q and q. Then, the first-order condition
provides the following expression (see [25] for the proof):

(Q + q)∗f o = F−1
(

z(Q+q)∗
f o

)
where z(Q+q)∗

f o =
p − o − e

p − e
(6)

The optimal order quantity Q∗
f o for the FW contract quantity is determined as follows:

Q∗
f o = F−1

(
z∗Q f o

)
where z∗Q f o

=
o + e − w

e − s
(7)

In terms of the relationship between (Q + q)∗f o and Q∗
f o, we have two cases:

(i) (Q + q)∗f o ≥ Q∗
f o and (ii) (Q + q)∗f o < Q∗

f o. In case (i),
(

Q + q)∗f o and Q∗
f o are obtained

by expressions (6) and (7) and the option quantity q∗f o is q∗f o = (Q + q)∗f o − Q∗
f o. On the

other hand, in case (ii), q∗f o has a negative value. Due to the concavity of the objective
function, the optimal value must be at the boundary, where q∗f o = 0, leading to Q∗

f o = Q∗
f w.

In this case, no option is purchased.

3.3. Procurement Model for Forward, Option, and Spot Market (FOS)

This strategy combines forward contracts, options, and the spot market, which is the
focus of our study. The FOS procurement process is illustrated in Figure 1.

Figure 1. The sequence of events in the FOS procurement strategy.

The portfolio procurement model has three steps, detailed as follows:

Stage T0: This is long before the selling season begins, since the procurement lead time is
assumed to be long. At this stage, the retailer has a unit price w for the forward contract,
and a per-unit option price o and exercise price e for the option contract. The retailer has
uncertain information about the demand with pdf f (x) and cdf F(x), and the spot price
with pdf g(r) and cdf G(r). Based on the information on hand, the retailer determines the
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committed quantity Q for the forward contract and the option quantity q for the option
contract. The retailer pays wQ + oq to the supplier.
Stage T1: This is the stage when the selling season starts, and demand x and spot price r are
realized. At this stage, the retailer decides whether to exercise the option contract and/or
procure products from the spot market. The decision depends on three market conditions:
(1) x < Q, (2) x > Q and r < e, and (3) x > Q and r > e.

(1) x < Q: No option is exercised, and no spot purchase is made. The procurement is
made only through the FW contract.

(2) x > Q and r < e: The retailer does not exercise the option quantity. Instead, the
demand not covered by the committed quantity Q is procured from the spot market
because the spot price is lower than the option exercise price. The purchase amount
from the spot market is (x − Q).

(3) x > Q and r > e: The retailer exercises the option quantity where the exercise
quantity is qe = min((x − Q)+, q). The retailer may purchase the extra quantity
needed from the spot market, where the purchase amount is (x − Q − q)+. The
supplier delivers (Q + qe) units to the retailer.

Stage T2: At the end of the season at T2, the remaining products after sale (Q − x)+ are
salvaged at a price of s per unit.

Based on the descriptions above, the retailer’s profit Pf os can be formulated as follows,
with forward quantity Q and option quantity q:

Pf os =

{
px − wQ − oq + s(Q − x)+ − r(x − Q)+, r ≤ e

px − wQ − oq + s(Q − x)+ − emin((x − Q)+, q
)
− r(x − Q − q)+ r > e

Then, the expected profit of the retailer is obtained as follows:

π f os = pμx − wQ − oq + s
∫ Q

0 (Q − x) f (x)dx − ∫ e
0 rg(r)dr

∫ ∞
Q F(x)dx − e(1

−G(e))
[∫ Q+q

Q (x − Q) f (x)dx + q
∫ ∞

Q+q f (x)dx
]

−∫ ∞
e rg(r)dr

[∫ ∞
Q+q (x − Q − q) f (x)dx

] (8)

Proposition 1. The retailer’s expected profit π f os under the FOS contract is jointly concave with
respect to Q and q.

Proof. The retailer’s expected profit stated in expression (8) can be restated as follows:

π f os = (p − μr)μx + (μr − w)Q +
(
μr − o − e +

∫ e
0 G(r)dr

)
q

−(e − s − ∫ e
0 G(r)dr

)∫ Q
0 F(x)dx − (μr − e

+
∫ e

0 G(r)dr)
∫ Q+q

0 F(x)dx)

(9)

The first and second derivatives of expression (9) with respect to Q and q are as follows:

dπ f os

dQ
= (μr − w)− (e − s −

∫ e

0
G(r)dr)F(Q)− (μr − e +

∫ e

0
G(r)dr)F(Q + q) (10)

d2π f os

dQ2 = −(e − s −
∫ e

0
G(r)dr) f (Q)− (μr − e +

∫ e

0
G(r)dr) f (Q + q) (11)

dπ f os

dq
= (μr − o − e +

∫ e

0
G(r)dr)− (μr − e +

∫ e

0
G(r)dr)F(Q + q) (12)
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d2π f os

dq2 = −(μr − e +
∫ e

0
G(r)dr) f (Q + q) (13)

d2π f os

dqdQ
= −(μr − e +

∫ e

0
G(r)dr) f (Q + q) (14)

The determinant of the Hessian Matrix in terms of Q and q is as follows:

Det(H) = (μr − e +
∫ e

0
G(r)dr)(e − s +

∫ e

0
G(r)dr − s) f (Q) f (Q + q) (15)

With the assumptions that μr > e and e > s, it follows that
d2π f os

dQ2 < 0,
d2π f os

dq2 < 0, and

Det(H) > 0. Therefore, π f os is concave with respect to Q and q. �

From Proposition 1, the values of Q and q that satisfy the first-order conditions,
dπ f os

dQ = 0 and
dπ f os

dq = 0, yield the retailer’s maximum profit. Let (Q + q)∗f os represent the
optimal order quantity that maximizes the retailer’s profit. According to expression (13),
the retailer’s optimal order quantity is determined as follows:

F(Q + q)∗f os = 1 − o
μr − e +

∫ e
0 G(r)dr

(16)

(Q + q)∗f os = F−1
(

z∗(Q+q) f os

)
where F(Q + q)∗f os (17)

Substituting F(Q + q)∗f os into the first derivative from expression (10) yields the follow-
ing:

dπ f os

dQ
= (e − s −

∫ e

0
G(r)dr)F(Q)−

(
o + e − w −

∫ e

0
G(r)dr

)
= 0 (18)

which leads to the following results:

F(Q)∗f os =
o + e − w − ∫ e

0 G(r)dr

e − s − ∫ e
0 G(r)dr

(19)

Q∗
f os = F−1

(
z∗Q f os

)
where z∗Q f os

= F(Q)∗f os (20)

For the expressions (17) and (20) to be well defined, (Q + q)∗f os ≥ Q∗
f os should hold.

Hence, the following proposition is derived:

Proposition 2. The retailer’s optimal ordering decisions for Q and q are as follows:

Case (i) (Q + q)*
f os ≥ Q*

f os: Q*
f os = F−1

(
z*

Q f os

)
, q*

f os = (Q + q)*
f os − Q*

f os,

Case (ii) (Q + q)*
f os < Q*

f os: Q*
f os = Q*

f s, q*
f os = 0

Proof. In terms of the relationship between (Q + q)∗f os and Q∗
f os, we have two cases:

(i) (Q + q)∗f os ≥ Q∗
f os and (ii) (Q + q)∗f os < Q∗

f os. In case (i), it is straightforward to ob-
tain (Q + q)∗f os and Q∗

f os by using expressions (17) and (20). In this scenario, the option
quantity q∗f os has a positive value, allowing the retailer to utilize the option contract, i.e.,
q∗f os = (Q + q)∗f os − Q∗

f os. In case (ii), the option quantity is negative, making it infeasible
in a real-world setting. Due to the concavity of the expected profit function, the optimal
value must be at the boundary with q∗f os = 0. In this case, the retailer considers only two
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procurement sources: the forward contract and spot market (FS). From this procurement
scenario, the retailer’s profit Pf s is as follows:

Pf s = px − wQ + s(Q − x)+ − r(x − Q)+ (21)

Then, the expected profit π f s is

π f s = pμx − wQ + s
∫ Q

0 (Q − x) f (x)dxpx − ∫ ∞
0 rg(r)dr∫ ∞

Q F(x)dx= (p − μr)μx + (μr − w)Q − (μr − s)
∫ Q

0 F(x)dx
(22)

It is easy to show that π f s is concave with respect to Q. The first-order condition pro-
duces the optimal forward order quantity Q∗

f s to maximize the expected profit, as follows:

Q∗
f s = F−1

(
z∗Q f s

)
where z∗Q f s

=
μr − w
μr − s

(23)

Finally, in case (ii), we have Q∗
f os = Q∗

f s and q∗f os = 0. �

3.4. A Solution Form for the Specific Distribution Case

For the proposed FOS contract, we create an analytical solution for a specific case where
demand x and spot price r follow uniform distributions U(a, b) and U(c, d), respectively.

With r following a uniform distribution, the equation
∫ e

0 G(r)dr = (e−c)2

2(d−c) holds. Then,
expressions (17) and (20) can be restated as follows:

(Q + q)∗f os = F−1
(

z∗(Q+q) f os

)
where z∗(Q+q) f os

= 1 − 2o(d − c)
2(d − c)(μr − e) + (e − c)2 (24)

Q∗
f os = F−1

(
z∗Q f os

)
where z∗Q f os

=
2(o + e − w)(d − c)− (e − c)2

2(e − s)(d − c)− (e − c)2 (25)

The optimal option quantity q∗f os is determined by following the same procedure as
in Section 3.3, depending on the relationship between (Q + q)∗f os and Q∗

f os. The analytical
solutions are utilized in the next section where numerical studies are performed.

4. Numerical Studies

This section presents numerical studies to demonstrate the performance of the model
presented in this paper. The illustrative example draws on the frameworks of Mathur and
Shah [32] and Tao and Koo [33]. The demand x during the sales season is assumed to
follow a uniform distribution, x ∼ U(100, 300), with a mean of 200. The cost parameters
are as follows: p = 60, w = 32, o = 6, e = 30, s = 10, and the spot price r is assumed to
follow a uniform distribution r ∼ U(25, 55) with a mean of 40. Numerical experiments
are conducted using MS Excel 2016 with the help of R programming (version 4.3.1) on a
desktop computer.

Three procurement strategies are analyzed: forward contract (FW), forward and option
contract (FO), and forward, option, and spot market contract (FOS). Figure 2 presents the
order quantity and the corresponding expected profit for each strategy. The results indicate
that in the FO and FOS strategies, the optimal forward order quantity is lower than in the
FW strategy, and the option order quantity in the FOS strategy is smaller than in the FO
strategy. Since unmet demand from options can be procured through the spot market, it is
reasonable that the option order quantity in the FOS strategy decreases.
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Figure 2. The order quantity and the expected profit of each procurement strategy. (a) Optimal order
(exercise) quantity; and (b) retailer’s expected profit.

Figure 2b shows that the expected profit increases when an option contract is added
to the forward contract, and incorporating the spot market into the procurement decision-
making process can lead to even greater profits. For a fair comparison, it is assumed that any
demand unmet through forward and option procurement is procured from the spot market,
even in the FW and FO contracts. It is observed that the procurement strategy considering
the spot market (FOS contract) yields higher profits compared to the procurement strategies
that do not consider the spot market (FW, FO). These results have important implications
for supply chain management. Specifically, applying a portfolio procurement strategy
that incorporates futures, options, and the spot market can enhance the retailer’s expected
profit. In this case, considering procurement from the spot market, the retailer should
allocate lower quantities to futures and options than when the spot market is not taken into
account.

We conduct a sensitivity analysis to examine how the supply chain environment
affects procurement strategies. The impact of spot market prices on the performance of the
procurement strategies is illustrated in Figure 3. As expected, when the average spot price is
low, the benefits of increased flexibility in spot market procurement outweigh the additional
costs, leading to the FOS strategy outperforming the other two procurement strategies.
On the other hand, when the expected spot price is high, the increased procurement cost
from the spot market diminishes the benefits of flexibility, resulting in the FOS strategy
yielding a similar expected profit to the FO strategy. Figure 3b shows that the optimal
option quantity increases as average spot price rises. When the average spot price is low
and close to option price, the optimal option quantity is very low. This result is expected, as
there is little incentive to enter into an option contract when the option price is comparable
to the spot price.
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Figure 3. Influence of spot price on the performance of the procurement strategies. (a) Spot price vs.
expected profit; and (b) spot price vs. optimal option quantity.
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The influence of spot price volatility on expected profit under different procurement
strategies is presented in Figure 4. The x-axis represents the spot price volatility index,
defined as the ratio of the maximum spot price to the mean spot price. For example, a
volatility index of 1.2 means that the minimum and maximum spot prices are 32 and 48,
respectively, while the mean spot price remains at 40. As shown in Figure 4a, the expected
profit remains unchanged over different volatility indices in the FW and OP strategies,
as their decisions do not consider the spot market. However, the FOS strategy performs
particularly well when spot price volatility is high. When spot price volatility is high, the
probability of the spot price falling below the option exercise price increases. In this case,
the retailer is more likely to procure from the spot market instead of exercising the option
contract, leading to lower purchasing costs and higher profits. Figure 4b illustrates the
influence of spot price volatility on the procurement portfolio under the FOS contract. As
the spot price volatility increases, the forward order quantity decreases while the option
quantity increases. This finding suggests that when a high fluctuation in spot prices is
expected, firms should increase their option quantity to enhance procurement flexibility
while reducing the strictly committed forward order.
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Figure 4. Performance of the procurement strategies over different spot price volatilities. (a) Spot
price volatility vs. expected profit; and (b) spot price volatility vs. optimal option quantity.

Figure 5 illustrates the influence of demand variability on the performance of different
procurement strategies. The demand distribution is adjusted so that demand varies between
20% and 80% of the mean, allowing us to analyze the impact of demand volatility. For
example, a demand variability of 20% indicates that the demand follows U(160, 240) with a
mean of 200. Figure 5a shows that the FW strategy exhibits the steepest decline in expected
profit with increasing demand variability, indicating a greater vulnerability to demand
fluctuations. In comparison, the FO strategy performs better than the FW, as it provides
greater flexibility to adapt to market demand. The FOS procurement strategy outperforms
the other two strategies across all levels of demand variability. In particular, the greater
the demand volatility, the more significantly the FOS strategy outperforms the other two.
Therefore, supply chain managers should actively adopt the FOS procurement strategy,
especially in supply chain environments with high demand variability.

Figure 6a,b illustrate how changes in option price and exercise price affect different
procurement strategies. Increases in both option price and exercise price have similar effects
on each strategy. As option costs rise, the expected profits of both the FO and FOS strategies
decrease. However, the rate of decline is more gradual for the FOS strategy than for the FO
strategy. Additionally, the FOS strategy consistently yields higher expected profits than
the other two strategies. Figure 6c,d show the optimal order quantity as option price and
exercise price change. When the option costs rise, the FW order quantity increases while the
option order quantity declines, leading to an overall reduction in total order quantity. This
suggests that as option costs rise, procurement shifts towards the spot market, resulting in
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a decrease in total order quantity. These findings highlight the importance of supply chain
managers carefully considering option costs when determining the volume of forward and
option contracts.

(a) (b) 

4000
4200
4400
4600
4800
5000
5200
5400
5600

0.20 0.30 0.40 0.50 0.60 0.70 0.80

ex
pe

ct
ed

 p
ro

fit

demand variability

FOS
FO
FW

0
20
40
60
80

100
120
140
160
180
200

0.2 0.3 0.4 0.5 0.6 0.7 0.8

or
de

r q
ua

nt
ity

demand variability

forward quantity

option quantity

Figure 5. Effect of different demand variabilities on procurement strategies. (a) Demand variability
vs. expected profit; and (b) demand variability vs. optimal order quantity.
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Figure 6. Effect of different option and exercise prices on procurement strategies. (a) Option price vs.
expected profit; (b) exercise price vs. expected profit; (c) option price vs. optimal order quantity; and
(d) exercise price vs. optimal order quantity.

In our numerical experiments, we assume that demand and spot price follow a uniform
distribution. This choice is made not only for the convenience of deriving analytical results
through simple calculations but also to ensure the reproducibility and to enhance the
clarity of our findings for readers. We also conduct experiments under scenarios where
demand and spot price follow a normal distribution. The results are presented in Figure 7.
Comparing Figures 2 and 7, we observe no significant differences between the results in
both cases, suggesting that assuming a uniform distribution does not undermine the ability
to derive meaningful managerial insights. This indicates that the insights gained from our
previous experiments under a uniform distribution remain valid and practically useful.
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Figure 7. Experimental results with spot price and demand following normal distributions. (a) Opti-
mal order (exercise) quantity; and (b) retailer’s expected profit.

5. Conclusions

Portfolio procurement is widely adopted across industries and plays a crucial role in
helping businesses adapt to market conditions, demand fluctuation, and price volatility.
This study explores portfolio procurement strategies involving forward and option con-
tracts in a setting where a spot market exists. We develop an optimal ordering model in
portfolio procurement that incorporates the spot market and analyzes its implications. Our
findings indicate that the retailer’s optimal order quantity is lower when a spot market is
available than when it is not. Moreover, incorporating the spot market into procurement
decisions can enhance the retailer’s expected profit. The effectiveness of the proposed
model depends on the supply chain environment. Specifically, the model proves more
efficient when the expected procurement cost in the spot market does not significantly
differ from the cost of the forward or option contracts, and the spot price volatility is high.
Furthermore, for industries facing high demand variability, the FOS (forward, option, and
spot) procurement strategy emerges as the most effective procurement strategy, as it bal-
ances flexibility and profitability. Firms operating under unpredictable demand and highly
volatile spot prices—such as those in the fast-moving consumer goods sector—should
consider prioritizing the FOS strategy to ensure optimal profitability and adaptability.

While our study provides valuable insights, it has certain limitations that warrant
further investigation. We assume that the retailer is risk-neutral, meaning that procure-
ment decisions are made to maximize expected profit. In contrast, when a supply chain
participant is risk-averse, procurement decisions should account for profit variability in
the performance measure. We also assume that spot market capacity is unlimited and
suppliers are fully reliable, whereas, in reality, supply disruptions or market volatility may
impose constraints. Future research could explore supply chain coordination mechanisms
by relaxing these assumptions.
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Abstract: Fiercer competition across all industries has made identifying and eliminating
lean wastes to enhance sustainability performance an effective route that many companies
take. This study focuses on the production process of wood park/garden benches at
a company that manufactures outdoor wood furniture. The goal was to identify lean
wastes within a sustainability framework across seven operations and integrate multi-
criteria decision making (MCDM) methodologies for waste elimination. Eleven lean KPIs
addressing economic and environmental sustainability were used to develop and prioritize
13 lean failure modes (LFMs) with Risk Priority Numbers (RPNs) above 100, leading to lean
project proposals for each LFM. Eighteen lean tools were ranked using the Fuzzy Quality
Function Deployment (Fuzzy QFD) method. A total of eight improvement propositions,
namely, Kaizen and continuous improvement, upgrade machinery for energy efficiency,
Just-In-Time (JIT), optimize production processes with lean methodologies, implement cost
reduction strategies, Total Productive Maintenance (TPM), Investing in Automation, and
Andon were implemented. Significant improvements were observed post-implementation:
total lead time was reduced by approximately 38.46%, value-added time by 22.05%, and
non-value-added time by 47.64%. The required number of workers decreased by 14.29%,
and the total inventory decreased by approximately 57.31%. The results contribute to
sustainability goals by reducing energy consumption and waste while increasing economic
efficiency. It also provides a robust framework for decision making in fuzzy environments,
guiding practitioners and academics in lean management and sustainability.

Keywords: sustainability; lean management; multi-criteria decision making; FMEA;
Fuzzy QFD

1. Introduction

Sustainability represents one of the most significant contemporary megatrends [1–3].
The Brundtland Report laid the groundwork for sustainable development by discussing the
integration of environmental, social, and economic considerations [4]. The Triple Bottom
Line framework, which emphasizes three pillars—people, planet, and profit—was coined
later by John Elkington in 1994 [5,6].
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Although the concept of sustainability has a long history, its importance has increased
and continues to grow. The principal driving force behind this phenomenon is the growth
in the global population and the concomitant increase in environmental awareness among
people and within the business community [7]. In this context, corporate investments are
evolving in response to the phenomenon of sustainability. The objective is to integrate this
phenomenon into lean transformations in all studies, focusing on achieving profitability.
This approach is intended to facilitate the development of more environmentally friendly
processes and enhance productivity [8–10]. As Mahmoum Ganbadi et al. (2021) posited,
contemporary approaches to supply chain modeling have prioritized monetary perfor-
mance, with few addressing the full spectrum of sustainability encompassing economic,
environmental, and social dimensions [11]. In his study, he underscored the necessity for
more comprehensive sustainability assessments and empirical studies and proposed a re-
search agenda to address these deficiencies [11]. Braglia et al. (2024) presented a structured
methodology that integrates Lean Thinking and environmental sustainability in strategic
planning to improve environmental performance, emphasizing the role of cost–benefit
analysis in sustainability decisions and the integration of technological innovations in the
evaluation of green measures and decision support processes in industrial settings [12].
Furthermore, environmentally conscious individuals have begun utilizing wood, a natural,
organic, and renewable resource, to mitigate environmental impact.

Wood is a natural and durable material used in interior design for centuries [13]. Wood
is employed in a multitude of applications. The primary sectors that utilize wood as a
principal material are construction and building, paper, home and industrial furniture, and
outdoor furniture, which is the focus of this study [14]. The global outdoor furniture market
is poised for robust expansion from 2025 onward, with multiple forecasts indicating a value
growth from around USD 53 billion to over USD 80 billion by 2032 and average annual
growth rates of about 5–6% [15–18]. Across these projections, wood remains a favored
material in outdoor designs, valued for its natural aesthetics, durability, and timeless
appeal. As conveyed in the aforementioned market reports, the prevailing perception
is that consumers tend to favor wood in outdoor furniture designs due to its inherent
aesthetic, durable, long-lasting, and timeless qualities.

Wooden outdoor furniture companies seek a competitive advantage through the
lean philosophy/production practice [19]. The lean philosophy/production approach
aims to enhance productivity by distinguishing between non-value-added and value-
added activities throughout the production process [20]. As Siegel et al. (2019) state, lean
manufacturing is a production method that identifies and eliminates waste and optimizes
resource use through continuous improvement [21]. Concurrently, Braglia et al. (2024)
emphasized that the implementation of lean manufacturing practices within the purview
of environmental sustainability has the potential to enhance operational efficiency and
ecological performance [22].

Taiichi Ohno initially developed the lean philosophy between 1948 and 1975 and has
since exerted a profound influence across all sectors globally. The lean philosophy/culture
will remain significant in the present and future eras due to its efficiency and high prof-
itability [23]. In the context of lean manufacturing, waste is generated throughout the
production process due to activities that do not contribute to the creation of added value.
These wastes can be classified into a total of eight different categories: overproduction,
waiting, unnecessary transportation, unnecessary handling, unnecessary processing, inven-
tory, movement, and the waste of unused skills [24]. Seth et al. (2017) demonstrated that
implementing waste reduction strategies derived from the lean production/philosophy
process can increase productivity, specifically through improving cycle times within busi-
ness processes [25]. Abreu et al. (2017) posited that implementing lean and green practices
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will result in two key outcomes [26]. Firstly, it will enhance efficiency by reducing waste.
Secondly, conserving energy will augment efficiency and sustainability performance [26].
Concurrently, May et al. (2015) suggested sustainability performance while concomitantly
increasing energy efficiency [27]. Although lean production is regarded as the foundation
and focal point of the automotive industry, it is evident that it is being adopted in many
sectors [28]. These include steel [29], agriculture/food [30], manufacturing, healthcare,
construction, product development, service [31], prefabricated building manufacturing [32],
and leather footwear [33].

The Value Stream Mapping (VSM) methodology is employed to identify these wastes
in the process [23,34]. Lean practices, defined as lean tools, are necessary to reduce lean
wastes identified using VSM methodology. Implementing lean practices has been demon-
strated to enhance operational efficiency by eliminating non-value-added activities within
the process. Furthermore, as indicated by Dieste et al. (2019), lean practices have been
shown to improve environmental performance by increasing resource efficiency. This
is achieved through the systematic elimination of waste, which results in a reduction in
energy consumption [35]. However, it is essential to note that certain lean practices, such
as Just-In-Time manufacturing (JIT), have the potential to adversely affect the environment
due to their reliance on low inventory levels and frequent transportation [35]. The VSM
methodology is typically understood as a visual representation of the process stages of
a system [36]. Although the VSM methodology is highly effective in identifying waste,
studies demonstrate that this methodology can be further enhanced by integrating digital
technologies and sustainability in addition to the VSM methodology [8–10,37,38]. In this
context, Abdulmalek and Raigopal (2007) employed simulation models to implement lean
principles in a steel mill and observed the results [29]. In a similar vein, Horsthofer-Rauch
et al. (2022) conducted a review of academic studies on the digitalization of VSM [38].
The manual execution of VSM has become inefficient and ineffective due to increasing
production and product complexity [38]. Once the lean wastes have been identified through
VSM, the subsequent decision-making process typically involves determining which lean
tools are most effective in eliminating these wastes. In this regard, the optimal approach
for top management and lean consultants is the application of multi-criteria decision mak-
ing (MCDM) methods [39]. For instance, Mohanraj et al. (2015) systematically enhanced
productivity by integrating QFD and VSM methodology in their study [40]. In a similar
vein, Bhuvanesh Kumar and Parameshwaran (2018) employed a multifaceted approach
that integrated F-QFD, F-FMEA, plant layout, and VSM methodologies to prioritize critical
resources and eliminate lean wastes in the context of water tank and barrel production [41].
Building upon these studies, subsequent research conducted by Deepan et al. (2022) in the
casting industry [42], Bhuvanesh Kumar and Parameshwaran (2020) in the manufacturing
industry [43], Bhuvanesh Kumar and Parameshwaran (2019) in the casting and automobile
industry [44], and Reda and Dvivedi (2022) in a leather shoe manufacturing company in
Ethiopia have made valuable contributions to the literature by identifying, prioritizing, and
eliminating lean waste [45]. While QFD and FMEA techniques from MCDM methodologies
are employed in various contexts, including machine/equipment selection [46], product
design, defect elimination [47,48], and performance improvement, these techniques can be
employed to identify and eliminate potential defects in processes [49–52]. They can also be
effectively utilized in the selection of lean tools. In this context, Reda and Dvivedi (2022)
employed QFD and FMEA techniques to select the lean tools necessary for eliminating
lean wastes [45]. This study demonstrates that choosing lean tools represents a significant
decision-making challenge and that MCDM methodologies can be employed to address
this issue. A literature review reveals that fuzzy logic, MCDM, and lean management are
used in many sectors with varying degrees of integration to enhance productivity [40–44].
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In the field of MCDM, Mahmoum Ganbadi et al. (2021) underscored the significance
of integrating MCDM with sustainability, emphasizing the necessity for comprehensive
sustainability assessments in supply chain design [11]. Moreover, while lean principles
have been applied in various manufacturing contexts (e.g., Seth et al. (2017) in industrial
transformers and Bhuvanesh Kumar and Parameshwaran (2018) in water tank manufac-
turing), their application in the outdoor wood furniture industry, especially with MCDM
concepts for better sustainability performance, is limited [25,41]. This sector faces distinc-
tive challenges, including process efficiency, material sustainability, environmental impact,
and fluctuating cost factors, which necessitate a bespoke approach.

Consequently, despite extensive research in the areas of sustainability, MCDM, lean
management, and the outdoor wood furniture industry, there is a notable absence of inte-
gration of these areas of study into a coherent framework. The extant literature primarily
addresses these areas in isolation or conjunction with one another yet lacks a comprehen-
sive approach that integrates all four aspects. This gap presents an opportunity to develop
an integrated model that can enhance decision-making processes, improve sustainability
performance, and facilitate lean management practices by combining lean and MCDM tools
and techniques specifically tailored to the outdoor wood furniture industry. Prior research
has demonstrated the efficacy of lean tools and sustainability models in various sectors.
For example, Serafim Silva et al. (2024) proposed the VSM4S model, which combines the
traditional VSM with sustainability indicators [10]. However, this model does not address
the specific case of outdoor wood furniture [10]. Similarly, Bhamu and Sangwan (2014)
emphasized the advancement of lean tools but noted the absence of a unified implemen-
tation framework that incorporates sustainability metrics and MCDM [28]. Bhattacharya
et al. (2019) underscored the pivotal role of lean–green integration, particularly in terms of
reducing waste, diminishing costs, and enhancing organizational performance [53]. The
study observed that adopting a combination of lean and green practices yielded a more
favorable impact on sustainability performance in comparison to the implementation of
individual practices [53].

This study aims to contribute to the cluster of the intersection of the four main topics
in the literature, as illustrated in Figure 1. Accordingly, this study’s objectives are twofold:
firstly, to demonstrate how lean management and MCDM principles and techniques can be
effectively and systematically applied in a tailored way to optimize production processes,
improve economic and environmental sustainability performance, and enhance decision-
making capabilities in the outdoor wood furniture industry; and, secondly, to validate the
effectiveness and practicality of the proposed methodology through the documentation
of empirical evidence. By addressing this gap in the literature, this study will make a
significant contribution to the field of outdoor wood furniture manufacturing. It will be
one of the most relevant studies to date examining the adoption of sustainable and lean
practices in this sector.
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Figure 1. Target contribution zone of this study.

2. Materials and Methods

This study focused on the supply chain structure of a value-added wood product
industry segment, namely, outdoor wood furniture. At the request of the industry partner,
the pseudonym EcoCraft Outdoor Furniture is used instead of the company’s real name.
Established in 1995 in the United States, EcoCraft Outdoor Furniture is a wooden outdoor
furniture company with a mission to create high-quality, durable, and sustainable outdoor
furniture that enhances outdoor living spaces while minimizing environmental impacts.
EcoCraft Outdoor Furniture specializes in wood outdoor furniture, including benches,
chairs, tables, loungers, and custom-designed pieces. One of the company’s most important
products is the wooden garden/park bench, which is made from high-quality, sustain-
ably sourced materials and designed to be durable for outdoor use. The bench features
ergonomic designs and weather-resistant surface coatings to protect against rain, sunlight,
and humidity. The wood-based park bench had a specific design so that all structural
components—the seat, backrest, armrests, and legs—were made of wood, while metal
hardware was limited to fasteners such as bolts, screws, and washers. The seat and backrest
consisted of planks or slats, while the legs and armrests were shaped to provide support
and stability. Internal braces were likewise fabricated from wood, preserving the bench’s
natural appearance. Although metal fasteners ensured secure connections and simplified
assembly, no metal legs or auxiliary supports were included, thus reducing reliance on
non-wooden materials. Before the wooden structure was assembled, it was treated with
sanding and appropriate surface coatings (e.g., sealants, varnishes, or protective paint) to
extend the bench’s longevity while retaining its predominantly wooden character. The
designated batch size for this product was 50 units.

Lean waste elimination is a pressing concern for organizations. By eliminating non-
value-added activities, businesses strive to bolster efficiency and sustainability. However,
the first step in eliminating lean waste is to make it visible. To achieve this, organizations
rely on the robust VSM methodology [36]. This tool helps identify existing issues and
potentially yields significant future benefits [37]. Using the VSM methodology to visualize
waste, companies can select the appropriate lean tools to eliminate it [54].

Selecting lean tools was one of the most challenging aspects for businesses due to
the numerous lean tools available for eliminating lean waste. However, choosing the
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most effective tool for waste elimination was crucial. Therefore, this study utilized the
MCDM methodology to select lean tools for eliminating lean wastes and enhancing the
sustainability performance of a company’s target supply chain structure, producing outdoor
wooden parks and garden equipment.

Initially, this study mapped the company’s supply chain structure to understand the
flow of materials and information across the entire process (Phase 1). This foundational
step set the stage for identifying areas of waste and inefficiency. Then, key performance
indicators (KPIs) relevant to the wood furniture industry were determined. In selecting the
KPIs, a consultative and context-specific approach was adopted to ensure both industrial
relevance and alignment with sustainability principles. Specifically, iterative discussions
were conducted with three seasoned experts from the wood product sector and two spe-
cialists in sustainability. This interdisciplinary input ensured that metrics accurately reflect
day-to-day production realities (e.g., Cycle Time, Changeover Time) while encompassing
critical environmental considerations (e.g., energy consumption, waste generation). As
such, the final KPI set strikes a balance between economic efficiency and environmental
stewardship, capturing the multifaceted objectives of lean transformation in a practical
manner for industry practitioners yet remains rigorous from a sustainability standpoint.
The details of the final KPI set are given below.

• First Pass Yield (FPY) (%): The percentage of products that meet quality standards
without rework.

• Changeover Time (min): The time required to switch from producing one batch
to another.

• Overall Equipment Effectiveness (OEE) (%): Equipment effectiveness at each worksta-
tion, considering availability, performance, and quality.

• Energy Efficiency (kWh/batch): The energy consumed per batch at each workstation.
• Solid Waste Amount (kg/batch): The waste generated per batch at each workstation.
• Cycle Time (min): The time to complete one production cycle at each workstation.
• Up Time (min/day): The machinery’s actual operational time per day, calculated as

Up Time = OEE × 480.
• Down Time (min/day): The total time any machinery is not operational daily, calcu-

lated as Down Time = 480 − Up Time.
• Production Cost Per Batch (USD): The cost incurred to produce one batch at each

workstation, considering materials, labor, and overheads.

The selected KPIs’ primary function was to quantify the economic and environmental
benefits of deploying the proposed methodology. Using the data collected, the current state
VSM was drawn to visually represent the existing processes (Phase 2). The VSM included
all steps in the supply chain, from order placement to product delivery, highlighting
value-added and non-value-added activities [36]. In Phase 2, detailed data on process
times, inventory levels, material flows, and information flows were gathered. All the
data were collected based on the pre-determined batch size of 50 wood benches. Based
on the current state map, lean wastes were identified, including overproduction, waiting
times, unnecessary transportation, excess inventory, defects, and underutilized talent
(Phase 3) [54]. This study then proceeded to its next phase, where the root causes and
effects of the identified lean wastes were analyzed and prioritized using the Failure Mode
and Effects Analysis (FMEA) technique (Phase 4). The FMEA helped systematically identify
potential failure modes, their causes, and effects and prioritized them based on their
RPN [55]. The Delphi Method was employed in this study phase to ascertain the failure
modes, probability, severity, and noticeability scores. In particular, three rounds of Delphi
surveys were conducted, involving four experts from academic and industrial backgrounds.
The selection criteria for these experts were based on their extensive experience in lean
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management, sustainability practices, and the value-added wood product industry. A
consensus was deemed to have been reached when there was over 70% agreement on the
appropriateness of the selected variables.

In the fifth phase, after analyzing the prioritized root causes, lean tools that could be
used to address the prioritized lean wastes were proposed and ranked using the Fuzzy
Quality Function Deployment methodology (Phase 5). Fuzzy QFD integrated customer
and technical requirements, reducing subjectivity and uncertainty in the evaluation pro-
cess [56]. A systematic procedure was adopted to establish the relationships in the Fuzzy
QFD matrix, ensuring that each lean tool’s linkage to a given failure mode was founded on
expert opinion and established lean principles. Initially, a panel of four specialists—two
industry managers with direct operational experience and two academic researchers versed
in lean methodologies—assessed the compatibility of each lean tool with the identified
waste categories. This assessment was conducted through consensus-based discussions,
in which participants referenced documented effects of specific lean tools (e.g., Just-In-
Time’s impact on inventory and scheduling; automation’s influence on production flow)
and considered the contextual nuances of outdoor wood furniture manufacturing. The
strength of each relationship was then encoded using a linguistic scale (weak, moderate,
strong), subsequently translated into fuzzy numbers for quantitative analysis. All linguistic
assessments conducted at this intersection were integrated by calculating the geometric
mean of the evaluations provided by four experts. Accordingly, even where a linkage might
appear secondary or indirect (such as between a tool focused on inventory management
and a failure mode related to changeover delays), reasoned expert judgment was applied to
ascertain whether any cascading process benefits or hidden interdependencies might exist.
Therefore, the outcome was designed to reflect clear-cut primary relationships and less
obvious synergies and trade-offs, enabling a more robust and replicable methodology. Then,
the selected lean tools were implemented to achieve the future state VSM (Phase 6). The
process data were re-collected after six months following the deployment of the improve-
ment projects. Therefore, Future-state VSM illustrated the process’s post-improvement
state and outlined a leaner and more sustainable process flow that minimized or eliminated
identified wastes. In past studies, Future-state VSM was used to visualize the optimal flow
of materials and information [36]. This study reflects the post-improvement state with
actual empirical findings. In the last phase, the results of the systematic methodology were
interpreted and discussed to document this study’s critical achievements and contributions
(Phase 7).

By following these systematic steps, this study aimed to effectively eliminate lean
wastes and improve the sustainability and efficiency of the supply chain for a company
producing outdoor wooden park and garden equipment. Figure 2 provides a diagram
illustrating the phases of this study. This section provides more detailed information on
the FMEA and Fuzzy QFD methodology steps.
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Figure 2. Diagram illustrating this study’s phases.

2.1. Failure Modes and Effect Analysis (FMEA)

FMEA, a tool used for risk identification and mitigation, was developed in the late
1940s in the USA. This approach was initially applied in the nuclear and aerospace indus-
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tries and continued to be used in these sectors over the subsequent years. Its utilization
expanded to the NASA Apollo program in the 1960s, the automobile industry in the 1970s,
and various subsequent applications after the 1980s [57–59].

Failure Mode and Effects Analysis is an analytical approach that evaluates and pre-
vents known or potential failures in a product or process based on previous experiences and
technologies. Assessing the consequences of existing or potential failures identifies mea-
sures to reduce or prevent the occurrence of these failures. After implementing the actions,
the probability of failure is reassessed, and the entire analysis process is documented [55].

FMEA is classified into four main categories in risk analysis, each with a specific
focus and application in different processes and industries. Design FMEA (DFMEA) is
a risk analysis method that prevents failures and initiates corrective actions during the
design phase of a product [60], while Process FMEA (PFMEA) analyzes the production
phase of a product to identify potential failures in the process and implement corrective
actions [61]. System FMEA (SFMEA) identifies and prioritizes failures affecting the entire
system, originating from its components [62]. On the other hand, Service FMEA detects task
errors due to system or process failures before the service is delivered to customers [63].

In this study, Process FMEA (PFMEA) activities were conducted. In the FMEA method-
ology, the RPN used to prioritize failure modes was calculated using Equation (1), which
is the product of three critical components: occurrence, severity, and detectability. The
occurrence factor represents the frequency of the hazard’s occurrence. The severity factor
indicates the impact of the hazard if it occurs. The detectability factor measures the likeli-
hood of detecting the hazard before it occurs. The traditional scale values were used in the
evaluation of occurrence, severity, and detectability rates of lean failure modes and for the
calculation of RPN values [64].

The risk priority number (RPN) was calculated using Equation (1):

RPN = Occurrence (O)× Severity (S)× Detectability (D) (1)

where Occurrence (O) represents the frequency of the hazard’s occurrence. Severity (S)
indicates the impact of the hazard if it occurs. Detectability (D) measures the likelihood of
detecting the hazard before it occurs.

FMEA is not a finite analysis. It requires continuous system monitoring, repeating
the analysis by taking necessary measures when a potential failure occurs, and identifying
new risks and failures that the system may encounter due to evolving technology and
conditions. This continuous approach ensures that the analysis remains relevant and
effective over time.

2.2. Fuzzy QFD

Quality Function Deployment (QFD) was developed in Japan in the late 1960s to design
products that meet customer requirements and improve the manufacturing process [65–67].
It was adopted by numerous Japanese companies, prominently Toyota and was introduced
to the United States and Europe in 1983 [67]. Ford Motor Company was among the first
Western companies to adopt QFD, and it continues to evolve in tandem with digitaliza-
tion [66,67]. Recent studies have seen an escalation of interest in the integration of QFD
with fuzzy logic and web-based services [66].

Subsequent to its integration with the Analytic Hierarchy Process (AHP) and Failure
Mode and Effects Analysis (FMEA), QFD has become a prevalent instrument in project
management [68]. Quality Function Deployment is a matrix, known as a “House of
Quality”, with customer requirements (“what”) in the rows and technical specifications
(“how”) in the columns [41,43,45]. The body of the matrix illustrates the relationships
between the two, and the roof shows the relationships among the technical specifications
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themselves. The house of quality is used sequentially as a four-stage model or a matrix of
matrices for product, product parts, production process, and production planning [56]. The
model’s initial stage entails identifying customer expectations and their correlation with
technical requirements. The product concept was developed in the subsequent stage, and
critical technical features were defined. The following stage entails planning the production
process and assessing the manufacturability of the technical requirements. The final
stage entails implementing quality control and process enhancement initiatives, ensuring
the perpetual enhancement of the product’s performance. This systematic framework
facilitates the effective management of customer-oriented design processes [67]. In this
study, the initial two stages of the quality house were not employed since the target product
was already part of the company’s product catalogue. Consequently, the present study
exclusively focused on the final two stages of the quality house: process planning and
production planning matrices.

Integrating fuzzy logic with QFD applications aims to eliminate subjectivity and
uncertainty in evaluating the “whats” and “hows”. The House of Quality consists of
nine steps, which are detailed below. Nevertheless, specific HOQ matrices, such as the
preparation (planning) matrix, technical analysis, and goal analysis sections, were not
included in this report as they are not pertinent to the current study [46].

Step 1: Identifying the importance of customer requirements, denoted as lean failure
modes in this study. The identified lean failure modes are given in Table 1.

Table 1. Lean failure modes and lean tools.

Lean Failure Modes Lean Tools

FM1: Poor Layout Design
FM2: Equipment Downtime
FM3: Lack of Automation
FM4: Inventory Overstock
FM5: Quality Issues
FM6: Changeover Delays
FM7: Energy Inefficiency
FM8: Material Waste
FM9: Long Cycle Time
FM10: High Production Cost
FM11: Inconsistent Yield
FM12: Under-Utilized Talent
FM13: Excessive
Transportation

LT1: Implement layout modification
LT2: 5S
LT3: SMED
LT4: TPM
LT5: Pull System
LT6: Standardize raw material quality
LT7: Improve supplier relations
LT8: Invest in automation
LT9: Andon
LT10: JIT
LT11: FIFO
LT12: Optimize production processes with Lean
methodologies
LT13: Six Sigma
LT14: Poka-Yoke
LT15: Upgrade machinery for energy efficiency
LT16: Provide employee training and development
programs
LT17: Implement Kaizen and continuous
improvement
LT18: Implement cost reduction strategies

Step 2: Determination of technical requirements, denoted as lean tools in this study.
The lean tools identified are given in Table 1.

Step 3: Assignment of importance weights to customer requirements. The importance
weights of the LFMs were determined using the scale in Table 2.
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Table 2. Linguistic variables used in the evaluation of customer requirements.

Linguistic Variables Fuzzy Numbers Membership Function Range

Very Low Important (VLI) (0, 0, 2.5) μ(x) = (2.5 − x)/(2.5 − 0) 0 ≤ x ≤ 2.5

Low Important (LI) (0, 2.5, 5) μ(x) = (x − 0)/(2.5 − 0)
μ(x) = (5 − x)/(5 − 2.5)

0 ≤ x ≤ 2.5
2.5 ≤ x ≤ 5

Moderately Important (MI) (2.5, 5, 7.5) μ(x) = (x − 2.5)/(5 − 2.5)
μ(x) = (7.5 − x)/(7.5 − 5)

2.5 ≤ x ≤ 5
5 ≤ x ≤ 7.5

Important (I) (5, 7.5, 10) μ(x) = (x − 5)/(7.5 − 5)
μ(x) = (10 − x)/(10 − 7.5)

5 ≤ x ≤ 7.5
7.5 ≤ x ≤ 10

Very Important (VI) (7.5, 10, 10) μ(x) = (x − 7.5)/(10 − 7.5) 7.5 ≤ x ≤ 10

Step 4: Development of the relationship matrix between customer and technical
requirements. This relationship matrix between the LFMs and lean tools was created with
the aid of Table 3.

Table 3. Linguistic variables for relationships between customer requirements and service requirements.

Linguistic Variable Symbol Triangular Fuzzy Number Membership Function Range

Strong Relationship (SR) Θ (6, 8, 10) μ(x) = (x − 6)/(8 − 6)
μ(x) = (10 − x)/(10 − 8)

6 ≤ x ≤ 8
8 ≤ x ≤ 10

Moderate Relationship
(MR) O (2, 5, 8) μ(x) = (x − 2)/(5 − 2)

μ(x) = (8 − x)/(8 − 5)
2 ≤ x ≤ 5
5 ≤ x ≤ 8

Weak Relationship (WR) ∇ (0, 2, 4) μ(x) = (x − 0)/(2 − 0)
μ(x) = (4 − x)/(4 − 2)

0 ≤ x ≤ 2
2 ≤ x ≤ 4

Step 5: Preparation of the correlation matrix showing the technical requirements’
relationships with lean tools. This correlation matrix was prepared using the correlation
degree scale given in Table 4.

Table 4. Correlation degrees of technical requirements.

Correlation Degree Symbol

Strong Positive Θ
Positive O

Negative ♦
Strong Negative �

Step 6: Calculation of the importance of the weights of the technical requirements
using Equation (2).

RIj =
n

∑
i=1

[
Wi ⊗ Rij

]
i = 1, . . . , n; j = 1, . . . , m (2)

n : Number of lean failure modes;
m: Number of lean tools;
RIj: The importance weight of the jth lean tool;
Wi: The importance rating of the ith lean failure mode;
Rij: The relationship value between the ith lean failure mode and the jth lean tool.
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Step 7: Defuzzification of the fuzzy lean tool importance weight (l, m, u) values using
Equation (3).

X∗ = l + 2m + u
4

(3)

X∗: Crisp Value
After defuzzification, the lean tools were ranked, and the best lean tool was selected.

3. Results

EcoCraft Outdoor Furniture is a company that manufactures wooden outdoor fur-
niture and has headquarters in Türkiye. Inefficiencies were identified in the company’s
wooden park/garden bench production process. To address these inefficiencies optimally,
a Value Stream Map was first created for the process. The VSM measured various parame-
ters for each process step, including Cycle Time (min), Changeover Time (min), Up Time
(min/day), Down Time/idling time (min/day), Overall Equipment Effectiveness (OEE) (%),
First Pass Yield (%), Production Cost Per Batch (USD), Energy Efficiency (kWh/batch), and
Solid Waste Amount (kg/batch). Energy Efficiency (kWh/batch) and Solid Waste Amount
(kg/batch) KPIs were used to assess the environmental sustainability of the process. At
the same time, the rest were considered indicators of economic sustainability and process
efficiency. The current state VSM is presented in Figure 3.

Based on the current state VSM, thirteen lean failure modes (LFMs) were identified
for the wooden park/garden bench production process. These LFMs include poor layout
design (FM1), equipment downtime (FM2), the lack of automation (FM3), inventory over-
stock (FM4), quality issues (FM5), changeover delays (FM6), energy inefficiency (FM7),
material waste (FM8), long cycle time (FM9), high production cost (FM10), inconsistent
yield (FM11), under-utilized talent (FM12), and excessive transportation (FM13). The LFMs
were categorized according to basic lean wastes and prioritized using the FMEA technique.
In accordance with the methodology, the root cause and effect of each LFM were identified,
and scores for probability, severity, and detectability were assigned to calculate the RPNs.
An FMEA table was created and presented in Table 5.

Table 5 shows that poor layout design (FM1) had the highest RPN score of 336, while
high production cost (FM10) had the lowest RPN score of 140. According to the FMEA
methodology, a project proposal is developed for any failure mode with an RPN score
above 100. Therefore, lean project proposals were developed for all LFMs listed in Table 5.
These lean projects are detailed in Table 5. Subsequently, the Fuzzy QFD methodology was
used to select the lean tools for the developed lean projects.

Within the Fuzzy QFD method, the prioritized LFMs are listed in the column. The
technical requirement section included the lean tools and techniques that could potentially
address the LFMs. In the initial phase, the importance weights of the LFMs were deter-
mined. Subsequently, a relationship matrix between the LFMs and lean tools was created.
The correlation matrix, which shows the relationship between the selected lean tools is
illustrated in Figure 4. After the correlation matrix was created, the fuzzy importance
weights of the lean tools were calculated. The fuzzy weights were then defuzzified to
obtain the exact values of the lean tools. These values are presented in Figure 4. Based on
these values, a ranking was made to determine which lean tool would be used first.
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The lean tool ranking derived from Fuzzy QFD revealed a complete list of lean tools
with the highest potential to eliminate lean wastes within the wooden park/garden bench
production process. The final set of lean tools was selected according to the threshold
value specified in the methodology. The ranking of the lean tools based on the specified
threshold values was as follows: Implement Kaizen and continuous improvement (LT17)
with a crisp value of 256.02, upgrade machinery for energy efficiency (LT15) with a value
of 206.25, Just-In-Time (JIT) (LT10) with a value of 205, optimize production processes with
lean methodologies (LT12) with a value of 202.5, implement cost reduction strategies (LT18)
with a value of 186.25, Total Productive Maintenance (TPM) (LT4) with a value of 170,
invest in automation (LT8) with a value of 165, and Andon (LT9) with a value of 152.5.

At this stage, one should acknowledge that both deployed and not-deployed lean tools
created a trade-off where direct and indirect advantages and lurking disadvantages should
be accounted for. Although the Single-Minute Exchange of Dies (SMED) was identified
through FMEA rankings as a potential solution for specific lean failure modes, it did not
emerge in the final Fuzzy QFD results and was therefore not implemented. Nonetheless,
concerns regarding its possible drawbacks—such as increased energy consumption from
more frequent machine restarts—remain relevant in contexts where the SMED might even-
tually be adopted. This underscores the importance of evaluating lean tools’ advantages
and potential trade-offs, including those not ultimately selected. Maintaining a holistic
view of lean interventions ensures that each initiative, whether deployed or merely con-
sidered, aligns with broader operational and sustainability objectives. This is why this
study employed a two-phased selection system of lean tools for better filtered and focused
economic and environmental performance improvement measures.

The lean tools determined by the Fuzzy QFD methodology were applied to the
current state VSM in sequence. Initially, Kaizen activities were recommended for the Raw
Material Preparation, Initial Processing, Cutting and Shaping, and Profiling and Routing
operations. The Kaizen activities aimed to minimize material waste in these operations,
thereby reducing costs and environmental impact. Secondly, updating machinery for energy
efficiency was suggested for the Raw Material Preparation, Initial Processing, Cutting and
Shaping, Profiling and Routing, and Surface Finishing operations. Although energy savings
and increased energy efficiency were anticipated from the updated machinery, it was also
determined that these updates would reduce high production costs, contributing to the
cost reduction strategies proposed in the fifth place.

The third recommended lean tool was Just-In-Time (JIT). By applying JIT to the
Raw Material Preparation operation, inventory overstock was eliminated, followed by a
reduction in high production costs. Fourthly, optimizing production processes with lean
methodologies was recommended for the Initial Processing, Profiling and Routing, Surface
Finishing, and Assembly operations to reduce long cycle times.

Fifth, cost reduction strategies were proposed for the Initial Processing, Profiling and
Routing, Assembly, and Finishing and Packaging operations. This intervention reduced
high production costs, increased profitability, and ensured more efficient resource use. The
sixth lean tool applied was Total Productive Maintenance (TPM). TPM was implemented in
the Initial Processing, Cutting and Shaping, Profiling and Routing, Surface Finishing, and
Assembly operations, establishing a maintenance plan for the machines to prevent frequent
breakdowns and significantly reduce downtime. Additionally, TPM helped prevent major
machine failures, avoiding substantial costs for the business.

The seventh lean tool applied was automation. All processes within the business were
performed manually, resulting in slow operations and low efficiency due to the lengthy
processes. Therefore, automation was introduced in the Cutting and Shaping and Profiling
and Routing operations. This reduced increasing labor costs and shortened the cycle time
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prolonged by manual operations. The final lean tool applied was Andon. Implementing
Andon in the Raw Material Preparation, Initial Processing, Cutting and Shaping, Profiling
and Routing, and Surface Finishing operations helped quickly identify and prevent errors
within the process. The Andon system prevented increased labor costs due to errors. The
stages at which all these lean tools were integrated into the production process’s current
state are illustrated in the VSM shown in Figure 5.

Implementing lean projects shown in Figure 5 in the production process of wooden
park/garden benches resulted in a significant reduction in total lead time, which improved
by approximately 38.46%, reducing it to 352 min in the future state as presented in Table 6.
The value-added time in the current state improved by approximately 22.05%, decreasing
to 152 min in the future state, while the non-value-added time was reduced by 47.64%,
bringing it down to 200 min. Additionally, the required number of workers in the wooden
park/garden bench production decreased from 14 to 12, representing an improvement
of 14.29%. Finally, the total inventory in the system was reduced from 171 to 73 units,
achieving an improvement of approximately 57.31% as shown in Table 6. The future state
VSM, illustrating all these improvements, is presented in Figure 6.

Table 6. Comparison of the current and future state performances.

Key Measures Current State Future State
Improvements

(Units)
Improvements (%)

Total Lead Time (min) 572 352 220 38.46%
Total Value-Added Time (min) 195 152 43 22.05%

Total Non-Value-Added Time (min) 382 200 182 47.64%
Number of Workers Required (No’s) 14 12 2 14.29%

Total Inventory 171 73 98 57.31%

As observed in Figure 6, the improvements detailed in Figure 5 have led to enhance-
ments in the process steps. First, in the initial step of the process, Raw Material Preparation,
the implementation of lean projects such as Andon, JIT, Kaizen, and machinery upgrades
yielded a reduction in Cycle Time from 18 min to 14 min, achieving a 22.22% improvement.
Changeover Time was reduced from 25 to 10 min, reflecting a 60% improvement. Up Time
increased from 408 min to 456 min, indicating an 11.76% improvement, while Down/Idling
Time decreased from 72 min to 24 min, showing a 66.67% improvement. Overall Equipment
Effectiveness (OEE) improved from 85% to 95%, a gain of 11.76%, and First Pass Yield
increased from 95% to 97%, an improvement of 2.11%. Production Cost Per Batch decreased
from USD 250 to USD 200, marking a 20% improvement; Energy Efficiency improved from
90 kWh to 70 kWh, achieving a 22.22% improvement; and Solid Waste Amount decreased
from 10 kg to 8 kg, reflecting a 20% improvement.

In the second step of the production process (Initial Processing), implementing projects
such as Andon, Total Productive Maintenance (TPM), cost reduction strategies, optimized
production processes, machinery upgrades, and Kaizen led to several improvements. Cycle
Time was reduced from 27 min to 22 min, an 18.52% improvement, and Changeover Time
was reduced from 30 min to 12 min, achieving a 60% improvement. Up Time increased from
384 min to 432 min, a 12.5% improvement, while Down/Idling Time decreased from 96 min
to 48 min, showing a 50% improvement. OEE improved from 80% to 90%, a gain of 12.5%,
and First Pass Yield increased from 93% to 95%, an improvement of 2.15%. Production Cost
Per Batch decreased from USD 325 to USD 275, marking a 15.38% improvement; Energy
Efficiency improved from 120 kWh to 90 kWh, achieving a 25% improvement; and Solid
Waste Amount decreased from 15 kg to 10 kg, reflecting a 33.33% improvement.
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The third stage of the process, Cutting and Shaping, involved the elimination of
identified wastes through the implementation of Andon, TPM, Automation, machinery
upgrades, and Kaizen initiatives. These efforts resulted in several key improvements in
the measured KPIs: Cycle Time was reduced from 18 min to 14 min, achieving a 22.22%
improvement, and Changeover Time was reduced from 35 min to 15 min, reflecting a
57.14% improvement. Up Time increased from 394 min to 444 min, a 12.69% improvement,
while Down/Idling Time decreased from 86 min to 36 min, showing a 58.14% improvement.
OEE improved from 82% to 92%, a gain of 12.2%, and First Pass Yield increased from 92%
to 94%, an improvement of 2.17%. Production Cost Per Batch decreased from USD 287.5 to
USD 237.5, marking a 17.39% improvement, Energy Efficiency improved from 100 kWh to
75 kWh, achieving a 25% improvement, and Solid Waste Amount decreased from 12 kg to
8 kg, reflecting a 33.33% improvement.

In the fourth step of the process, Profiling and Routing, lean projects such as Automa-
tion, Andon, TPM, cost reduction strategies, production process optimization, machinery
upgrades, and Kaizen were implemented. These implementations reduced Cycle Time
from 22 min to 18 min, achieving an 18.18% improvement, and a reduction in Changeover
Time from 40 min to 16 min, reflecting a 60% improvement. Up Time increased from
374 min to 420 min, indicating a 12.30% improvement, while Down/Idling Time decreased
from 106 min to 60 min, showing a 43.40% improvement. Overall Equipment Effectiveness
(OEE) improved from 78% to 93%, a gain of 19.23%, and First Pass Yield increased from
90% to 93%, an improvement of 3.33%. Production Cost Per Batch decreased from USD 300
to USD 250, marking a 16.67% improvement; Energy Efficiency improved from 110 kWh to
85 kWh, achieving a 22.73% improvement; and Solid Waste Amount decreased from 14 kg
to 10 kg, reflecting a 28.57% improvement.

The fifth step of the process, Surface Finishing, saw the implementation of lean projects
such as TPM, Andon, production process optimization, and machinery upgrades. These
improvements reduced Cycle Time from 20 min to 16 min, achieving a 20% improvement,
and a decrease in Changeover Time from 45 min to 18 min, reflecting a 60% improvement.
Up Time increased from 384 min to 432 min, indicating a 12.5% improvement, while
Down/Idling Time decreased from 96 min to 48 min, showing a 50% improvement. OEE
improved from 80% to 90%, a gain of 12.5%, and First Pass Yield increased from 91% to
94%, an improvement of 3.30%. Production Cost Per Batch decreased from USD 262.5 to
USD 212.5, marking a 19.05% improvement; Energy Efficiency improved from 90 kWh to
70 kWh, achieving a 22.22% improvement, and Solid Waste Amount decreased from 8 kg
to 5 kg, reflecting a 37.5% improvement.

In the sixth step of the process, Assembly experts implemented lean projects such
as TPM, cost reduction strategies, and production process optimization to eliminate lean
wastes. These lean projects reduced Cycle Time from 40 min to 30 min, achieving a 25%
improvement, and a reduction in Changeover Time from 9 min to 4 min, reflecting a
55.56% improvement. Up Time increased from 360 min to 420 min, indicating a 16.67%
improvement, while Down/Idling Time decreased from 120 min to 60 min, showing a
50% improvement. OEE improved from 75% to 85%, a gain of 13.33%, and First Pass
Yield increased from 99% to 100%, an improvement of 1.01%. Production Cost Per Batch
decreased from USD 200 to USD 115, marking a 42.5% improvement; Energy Efficiency
improved from 130 kWh to 100 kWh, achieving a 23.08% improvement; and Solid Waste
Amount decreased from 2 kg to 1 kg, reflecting a 50% improvement.

Cost-reduction strategies and production-process optimization improvements were
implemented in the seventh and final stage of the process. These improvements resulted
in a reduction in Cycle Time from 50 min to 38 min, achieving a 24% improvement, and a
decrease in Changeover Time from 5 min to 2 min, reflecting a 60% improvement. Up Time
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increased from 336 min to 420 min, indicating a 25% improvement, while Down/Idling
Time decreased from 144 min to 60 min, showing a 58.33% improvement. OEE improved
from 70% to 80%, a gain of 14.29%, and First Pass Yield increased from 99% to 100%, an
improvement of 1.01%. Production Cost Per Batch decreased from USD 225 to USD 150,
marking a 33.33% improvement; Energy Efficiency improved from 150 kWh to 120 kWh,
achieving a 20% improvement; and Solid Waste Amount decreased from 2.5 kg to 1.5 kg,
reflecting a 40% improvement.

4. Discussion

This study’s results revealed findings consistent with the literature regarding the
tangible gains achieved through the selected lean tools. Zahraee et al. (2021) reported
a 36.36% improvement in total lead time in their study on lean waste elimination in the
construction sector [37]. Similarly, this study achieved a 38.46% improvement in total
lead time following the implemented improvements. Another study yielding comparable
results was conducted by Sirajudeen and Krishnan (2022), which focused on identifying
lean wastes in a prefabricated component manufacturing company [32]. Their study
reduced lead time from 1102 min to 739 min, achieving a 32.94% improvement [32]. In their
study, Bhuvanesh Kumar and Parameshwaran (2019) prioritized lean failure modes and
reported a 47.3% improvement in lead time in the automotive manufacturing sector [44].
However, their study in the casting industry resulted in a markedly different outcome,
with only an 11.3% improvement in lead time [44].

In contrast, Bhuvanesh Kumar and Parameshwaran’s 2020 study on lean tool selection
and waste elimination using MCDM methods in the manufacturing industry reported only
a 5% improvement in lead time [43]. Conversely, their 2018 study achieved a significantly
higher improvement rate of 64.33% in lead time [41].

Regarding value-added time, Bhuvanesh Kumar and Parameshwaran (2018) achieved
a 25.93% improvement [41]. Similarly, this study observed a 22.05% improvement in
value-added time. Sirajudeen and Krishnan (2022) reported a 28.21% improvement in
value-added time in their research, aligning closely with the findings of this study [32]. In
contrast, Mohanraj et al. (2015) reported the lowest improvement rate in the literature, with
a 3.87% increase in value-added time, while Reda and Dvivedi (2022) achieved the highest
improvement rate of 56.3 [40,45].

In terms of improvements in the workforce capacity, Bhuvanesh Kumar and Paramesh-
waran (2018) reported a 16.67% improvement, which was comparable to the 14.24% im-
provement observed in this study [41]. However, Reda and Dvivedi (2022) achieved a
similar reduction of two workers, corresponding to an improvement rate of 0.99% [33].

However, these improvement results, while substantial, should be interpreted within
the limited scope of a single product line—the wooden park/garden bench. Historically
high inventory levels in this product family allowed targeted lean tools such as Just-In-Time
(JIT) and Total Productive Maintenance (TPM) to be deployed with relative ease, yielding
rapid gains in throughput and approximately a 60% reduction in inventory. Although
initial OEE figures of 70–85% appeared robust, focused interventions revealed underuti-
lized capacity, inadequate maintenance scheduling, and process inefficiencies that could be
improved. Furthermore, the six-month timeline represents only a pilot phase; extending
similar interventions to the firm’s entire product portfolio would likely involve a more
prolonged rollout, more complex planning, and broader training efforts. Overall, the find-
ings of this study highlight the transformative potential of lean-based improvements for a
single product while also illustrating that distinct baseline conditions and a narrower scope
can facilitate sharper improvements than those expected in multi-product environments.
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In a broader perspective, the findings of Abreu et al. (2017) and Bhattacharya et al.
(2019) argued that companies adopting lean-green models experience significant reductions
in waste and energy consumption, which has positive effects on sustainability performance
and increases efficiency [26,53]. Similarly, the findings of this study have achieved results
that are consistent with the extant literature by providing both a reduction in waste and
significant improvements in sustainability performance in businesses implementing lean
principles. Concurrent with these studies, Dieste et al. (2019) revealed that companies
adopting lean production practices in the manufacturing environment also make positive
improvements in sustainability performance [35]. Siegel et al. (2019) identified the most
prevalent lean tools utilized by companies adopting the lean-green model, including 5S,
TPM, and VSM, among others, with these tools employed at least once [21]. As supported
with empirical evidences of this and past studies, the same lean tools employed to eliminate
waste in this and past studies yielded similar results. Concurrently, Farias et al. (2019)
developed a set of criteria to evaluate lean and green performance and found that the
most common lean tools corresponding to this set of criteria were JIT/Pull and SMED,
followed by Kaizen and TPM [69]. In this study, the lean tools selected to enhance lean and
sustainability performance bear a strong resemblance to those identified in past studies.

Furthermore, the Waste Identification Diagram (WID) is another essential tool in waste
management, providing a structured way to identify and visualize waste across various pro-
cesses. The WID represents production units and their operational waste more effectively
than Value Stream Mapping (VSM) [70]. Similar to VSM, by enhancing the visual represen-
tation of waste, the WID allows organizations to pinpoint the most significant waste sources
and understand the complex relationships between different elements within a production
environment [71]. The implementation of the WID alongside other methodologies, like
Failure Mode and Effect Analysis (FMEA) and Lean principles, has proven effective in
prioritizing and minimizing waste [72]. WID’s efficacy is underscored by its comparative
performance against VSM. Past research indicates that the WID is often more effective
in identifying ‘Muda’ (waste) within processes, as noted by Contreras et al., who found
that the WID provides more precise insights that lead to enhanced waste management
strategies [71]. For instance, the incorporation of lean principles using the WID allows for a
transformative approach in sectors such as healthcare and manufacturing, where waste
reduction is critical to improving overall performance [73]. On the other hand, the findings
of this study showed that VSM was also effective in waste identification when strengthened
with proper KPIs and supported with the FMEA. Consequently, organizations embracing
VSM and the WID alongside lean principles could realize significant improvements in
reducing operational waste and enhancing value creation.

Overall, the results of this study could be better understood when discussed in the
context of managerial, practical, and application-oriented implications. This study aimed to
significantly contribute to the scientific body of knowledge by addressing the intersection of
four critical research streams: sustainability, lean management, MCDM, and outdoor wood
furniture manufacturing. Integrating these streams into a cohesive framework presents
several scientific implications. Firstly, this study bridges the gap between sustainability, lean
management, MCDM, and outdoor wood furniture manufacturing, providing a holistic
framework that can be adapted to various manufacturing sectors. This integrated approach
can be a foundation for future research in other industries. Secondly, this study contributes
to methodological advancements in the field by applying advanced methodologies such as
Value Stream Mapping, Fuzzy QFD, and Fuzzy FMEA within the context of sustainable
lean manufacturing. Integrating these tools helps identify and mitigate risks, optimize
production processes, and enhance decision-making capabilities. Lastly, the development
and application of sustainability metrics within the lean management framework provide

123



Systems 2025, 13, 211

a new dimension to traditional lean tools, helping balance economic, environmental, and
social aspects of manufacturing and contributing to the broader discourse on sustainable
manufacturing practices.

The findings of this study have significant implications for managers in the outdoor
wood furniture manufacturing industry. By adopting the integrated framework proposed
in this study, managers can enhance decision-making capabilities by applying MCDM tools
within the lean management framework, enabling more informed and balanced decisions
considering all critical factors, including sustainability, cost, and efficiency. Empirical
evidence showed that lean production facilitates process optimization and waste reduction,
thereby enhancing operational efficiency. Research has indicated that integrating green
initiatives to minimize environmental impact with efforts to reduce energy consumption or
limit non-value added production can significantly improve firms’ sustainability perfor-
mance. This dual focus is particularly important as firms seek to meet the evolving demands
of stakeholders who prioritize economic and environmental objectives [21,26,35,53,69]. Im-
proved efficiency is another key benefit, as lean management principles integrated with
sustainability practices lead to the identification and elimination of non-value-added ac-
tivities, waste reduction, and optimized resource utilization, resulting in cost savings and
enhanced productivity. Additionally, incorporating sustainability metrics into the produc-
tion process aligns with corporate social responsibility goals, allowing managers to track
and improve their environmental performance, reduce carbon footprints, and promote sus-
tainable practices throughout the supply chain. Furthermore, using Fuzzy QFD and Fuzzy
FMEA aids in identifying potential risks and prioritizing mitigation strategies, ensuring
smoother operations and reducing the likelihood of disruptions.

The practical implications of this study are substantial, offering actionable insights
for industry practitioners. This study provides a detailed roadmap for implementing
lean tools such as VSM, 5S, and Just-In-Time in outdoor wood furniture manufacturing,
enabling practitioners to streamline operations, improve workflow, and enhance overall
efficiency. Practical guidelines for integrating sustainability practices into daily operations
are also provided, including strategies for reducing waste, optimizing energy use, and
sourcing sustainable materials, essential for achieving long-term environmental goals.
Additionally, this study highlights the importance of training employees in lean and
sustainable practices, and practical training programs can be developed based on this
study’s findings to equip employees with the necessary skills and knowledge to implement
these practices effectively. Lastly, the integrated framework helps optimize the entire
supply chain, from raw material procurement to end-item delivery, and practitioners can
apply this study’s insights to enhance collaboration with suppliers, improve inventory
management, and reduce lead times.

While this study provides valuable insights and contributions to sustainability, lean
management, MCDM, and outdoor wood furniture manufacturing, it has limitations. These
limitations, however, open up several avenues for future research. First and foremost, this
study was limited to a single product line—the wooden park/garden bench—resulting in
more focused and manageable improvements that may not directly translate to the firm’s
entire product range, where scalability difficulties, additional complexities and extended
implementation timelines could arise.

One limitation of this study is the specific focus on the outdoor wood furniture
industry, which might limit the generalizability of the findings to other manufacturing
sectors. Future research could explore the applicability of the integrated framework in
different industries, such as automotive, electronics, or food manufacturing, to validate
and refine the framework’s versatility and robustness across various contexts.
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Another limitation is the reliance on specific methodologies such as VSM, Fuzzy QFD,
and Fuzzy FMEA. While these tools are robust and valuable, they may not capture all
aspects of complex manufacturing systems, particularly those involving high variability
and uncertainty. Future research could investigate integrating additional methodologies,
such as digital twins or machine learning algorithms, to enhance the framework’s predictive
and adaptive capabilities.

This study also primarily relies on quantitative data for analysis and decision making.
This approach may overlook qualitative factors such as employee satisfaction, organi-
zational culture, and stakeholder engagement, which are crucial for successfully imple-
menting lean and sustainable practices. Future research could incorporate qualitative
methodologies, such as case studies or interviews, to gain a deeper understanding of these
softer aspects and their impact on the overall effectiveness of the framework.

Moreover, this study assumes a static environment for implementing the integrated
framework. Manufacturing environments are dynamic and constantly evolving due to
technological advancements, market fluctuations, and regulatory changes. Future research
could focus on developing adaptive frameworks that respond to these changes in real time,
ensuring continuous improvement and resilience in manufacturing operations.

Another significant limitation is the potential bias introduced by the subjective judg-
ments in the QFD and FMEA methodologies, although the introduction of the fuzzy
numbers helped with alleviating this limitation. While these tools help prioritize issues and
identify critical factors, the reliance on expert opinions can introduce subjectivity and bias.
Future research could explore using more objective data sources and advanced analytical
techniques to mitigate these biases and improve the reliability of the findings.

Finally, this study does not extensively address the economic trade-offs in implement-
ing sustainability and lean practices. While these practices offer long-term benefits, they
often require significant upfront investments. Future research could develop detailed cost–
benefit analyses and financial models to help organizations understand and manage these
trade-offs, ensuring that sustainable and lean practices are economically viable. Moreover,
a total integration of HOQ into economic and environmental performance enhancement
projects could be explored in future studies. Also, direct and indirect potential negative
impacts associated with deployed improvement propositions and lean tools due to their
characteristics and dynamic production process would be among intriguing future research
topics. Furthermore, the WID and VSM could be comparatively studied to assess their
effectiveness in waste identification and process illustration.

In conclusion, while this study significantly contributes to integrating sustainability,
lean management, MCDM, and outdoor wood furniture manufacturing, several limita-
tions provide fertile ground for future research. By addressing these limitations, future
studies can enhance the integrated framework’s robustness, applicability, and practical
relevance, contributing to more sustainable and efficient manufacturing practices across
various industries.

5. Conclusions

Market research [15–18] indicates that the global outdoor wood industry is extensive
and encompasses highly complex production processes. Identifying lean wastes within
these complex processes is challenging. Furthermore, selecting the appropriate lean tools
to address the identified lean wastes complicates the process even further. Therefore, this
study aims to identify lean wastes in the production process of wooden park/garden
benches at a company manufacturing outdoor wooden furniture and to prioritize the lean
tools that can be applied to these wastes.

The main findings of this study can be summarized as follows:
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• The proposed systematic approach has demonstrated its merit in identifying the
system’s problematic components and selecting appropriate tools to tackle them.

• The resilience and effectiveness of the VSM, Fuzzy QFD, and FMEA methodologies
are universal and multi-sectoral, and these tools can be co-deployed synergistically.

• The use of fuzzy sets in the decision-making process has been proven effective in
eliminating uncertainty associated with economic and environmental performance.

• Within this study’s scope, 13 lean failure modes (LFMs) related to fundamental wastes
were identified. The identified LFMs were analyzed using the FMEA technique, and
the RPN values of all failure modes were greater than 100. Consequently, lean project
proposals were developed for all LFMs.

• Among the eighteen lean tools selected for use in lean projects, the following were
prioritized: Implement Kaizen and continuous improvement (LT17) with a score of
256.02, upgrade machinery for energy efficiency (LT15) with a score of 206.25, Just-
In-Time (JIT) (LT10) with a score of 205, optimize production processes with lean
methodologies (LT12) with a score of 202.5, implement cost reduction strategies (LT18)
with a score of 186.25, Total Productive Maintenance (TPM) (LT4) with a score of 170,
Invest in Automation (LT8) with a score of 165, and Andon (LT9) with a score of 152.5.

• Regarding improvements in sustainability-related KPIs, economic sustainability
showed the following ranges of improvement: Cycle Time improved by 0.09–25.00%,
Changeover Time improved by 5.00–60.00%, Up Time improved by 11.76–25.00%,
Down/Idling Time improved by 1.89–66.67%, OEE improved by 11.76–19.23%, First
Pass Yield improved by 1.01–3.33%, and Production Cost Per Batch improved by
0.67–42.50%. Environmental sustainability KPIs showed improvements in Energy
Efficiency by 1.82–25.00% and Solid Waste Amount by 14.29–50.00%.

• Following the application of lean tools and techniques to the production process,
Total Lead Time improved by approximately 38.46%, Total Value-Added Time im-
proved by approximately 22.05%, Total Non-Value-Added Time enhanced by 47.64%,
Number of Workers Required improved by 14.29%, and Total Inventory improved by
approximately 57.31%.

In conclusion, this study addresses the challenges of identifying and eliminating lean
waste in manufacturing outdoor wooden furniture within the sustainability framework.
The results obtained through this approach not only guide the identification and elimination
of lean wastes from a sustainability perspective but also serve as a guide for decision
making in fuzzy environments. This study is a valuable resource for practitioners and
academics investing in lean management, sustainability, the outdoor furniture sector, and
multi-criteria decision making.
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Abstract: Supply chain diversification (SCD) is widely acknowledged as a crucial strategy
for sustainable supply chain management. However, its influence on environmental, social,
and governance (ESG) performance remains unclear. This study will explore the impact
of SCD on ESG performance and uncover the underlying mechanisms drawing on the
structure–conduct–performance (SCP) paradigm. To achieve this, we employ a multidi-
mensional fixed effects model for empirical analysis utilizing panel data from China’s
A-share listed companies from 2010 to 2023. The findings reveal that SCD enhances ESG
performance. For large-scale enterprises or those engaged in highly competitive or high-
pollution industries and labor-intensive or capital-intensive sectors, as well as those that are
located in the eastern and central regions, the positive impact of SCD on ESG is relatively
more pronounced. The mechanism analysis shows that green innovation and digital trans-
formation act as mediators through which SCD drives ESG improvements. Furthermore,
environmental uncertainty (EU) positively moderates the relationship between SCD and
ESG performance. These insights provide a guiding framework, rich in theoretical depth
and practical significance, for enterprises committed to developing sustainable supply
chains and pursuing long-term outstanding performance within complex and dynamic
market environments.

Keywords: supply chain diversification; ESG; listed company; sustainable development

1. Introduction

Given the increasingly severe global climate change and environmental issues, promot-
ing sustainable development has become a global goal [1]. Corporate sustainability requires
the coordinated development of economic, environmental, and social dimensions [2,3].
ESG (environmental, social, and governance) encompasses a company’s responsibilities
to improve their environmental, social, and governance performance [4]. Among these
dimensions, the environmental aspect includes carbon footprint management, resource
management, and climate change, among other aspects [5]. The social dimension includes
employee rights, community engagement, and diversity and inclusion, among other as-
pects [6]. The governance dimension encompasses internal corporate governance [6],
corporate behavior, and employee relations, among other aspects [7]. These dimensions
have become key indicators for measuring corporate sustainability capabilities [8–10]. An
increasing number of investors, consumers, and policymakers are also adopting ESG as
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a critical basis for assessing the long-term value of enterprises [4,11,12]. According to
the Global Sustainable Investment Review 2022 report released by GSIA, the value of
sustainable investment assets reached USD 30.3 trillion in 2022. Therefore, determining
how to enhance corporate ESG performance has become crucial for companies to maintain
competitiveness and achieve sustainable development.

However, enterprises often face internal constraints, such as limited technological
and financial resources, when improving their ESG performance [4,13,14]. Simultane-
ously, environmental turbulence [15] also hinders the stability of resource acquisition for
enterprises. The supply chain network is a critical channel for companies to access re-
sources [16]. Supply chain diversification (SCD) emphasizes building multi-source supplier
networks and diversified customer relationships, helping companies to break free from
reliance on single resource pathways and enhancing the resilience and resource acquisition
capabilities of supply chains [17,18]. Consequently, it may allow companies to improve
their ESG performance. In practice, exemplary cases include Apple, which launched a
supplier clean energy program and successfully reduced its carbon dioxide emissions by
18.5 million metric tons in 2023. IKEA, by implementing a customer diversification strategy,
not only effectively met the consumption demands of different regional markets but also
actively promoted the adoption of sustainable lifestyles. Therefore, exploring the driving
mechanisms of ESG performance from the perspective of SCD is of significant importance.
However, existing research primarily focuses on the role of internal resource allocation
in improving ESG [19,20], while the potential contribution of external-level SCD to ESG
performance has not been sufficiently explored.

Based on these considerations, this study addressed the following three research ques-
tions: (1) How does SCD affect ESG performance? (2) Do corporate green innovation and
digital transformation serve as mediating mechanisms in the relationship between SCD
and ESG performance? (3) How does environmental uncertainty influence the relationship
between SCD and ESG performance? To answer these questions, we used panel data from
Chinese A-share listed companies from 2010 to 2023 as our research sample. Through theo-
retical and empirical analyses, we aimed to reveal the impact of SCD on ESG performance
and the related mechanisms.

Our study makes several contributions to the literature on supply chain management
and sustainable performance. First, in response to one study [21] that considered the
research on ESG in supply chain management to be insufficient, this study explores the
intrinsic relationship between SCD and ESG performance from the perspective of SCD.
It addresses whether and how SCD drives ESG performance, providing a new perspec-
tive and theoretical foundation for ESG research in supply chain operations management.
Second, based on the SCP framework, this study reveals the critical mediating roles of
green innovation and digital transformation in the relationship between SCD and ESG
performance. This finding not only deepens the understanding of the mechanisms through
which SCD impacts ESG performance but also offers theoretical guidance for companies on
achieving sustainable development through green innovation and digital transformation
in supply chain practices. Finally, this study explores the moderating role of environ-
mental uncertainty in SCD’s influence on ESG performance and further investigates the
heterogeneous effects of SCD on ESG performance. This finding uncovers the boundary
conditions of external environmental factors influencing the effectiveness of SCD, enriches
the theoretical discussion on the relationship between environmental dynamics and ESG
performance in supply chain management, and provides practical insights for companies
on how to optimize supply chain strategies to achieve ESG goals under varying levels of
environmental uncertainty.
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The following sections are organized as follows: Section 2 is a literature review.
Section 3 provides the theoretical basis and research hypotheses. Section 4 details the
methodology and the data analysis. The results are presented in Section 5. Section 6
discusses the findings and their implications.

2. Literature Review

2.1. The SCP Paradigm

The SCP paradigm posits that the external structural features of an industry influence
the formulation of organizational strategies, leading to rational, planned actions that moti-
vate organizational conduct [22]. These approaches significantly impact an organization’s
pursuit of good performance [23–25]. The SCP framework originally stemmed from indus-
trial organization theory and was later incorporated into research areas such as strategic
management and supply chain management. For example, Ralston et al. [26] employed the
SCP framework to argue that supply chain integration, as a critical structural feature, leads
to quick-response strategies, thereby positively impacting firm performance. Mackelprang
et al. [27] used the SCP framework to confirm that suppliers’ innovation strategies enable
companies to respond to industry structures, consequently affecting financial performance.
Morgan et al. [28] applied the SCP framework to verify the positive influence of resource
commitment and sustainable supply chain management on operational performance, while
Vu and Ha [29] confirmed the relationship between diversification and corporate perfor-
mance based on the SCP framework. Grover and Dresner [30], based on the SCP framework
and competitive dynamics, investigated the relationships between political actions in sup-
ply network resources, supply chain strategies, and firm performance, while Hou et al. [16]
employed the SCP framework to investigate the impact of green supply chain knowledge
networks on ESG performance.

In this study, the SCP paradigm serves as an appropriate framework to identify the
relationship between SCD and ESG. SCD involves the diversified layout of enterprises in
terms of suppliers, customers, logistics channels, and other aspects [17]. This diversification
may alter the position and structure of enterprises within the supply chain network [31],
and it can, thus, be regarded as a form of market structure. The network structure may
determine the allocation of organizational resources [22], thereby influencing the selection
and direction of corporate behaviors, ultimately affecting performance [16]. Based on this
logic, considering that SCD, as a market structure, may influence corporate technological
transformation behaviors, and that green innovation and digital transformation are cru-
cial technological pathways for enhancing ESG performance [6,32,33], this study employs
the SCP paradigm to explain how SCD affects corporate ESG performance through both
green innovation and digital transformation behaviors. Additionally, the SCP framework
emphasizes that environmental conditions directly impact market structure and competi-
tion [30]. Environmental uncertainty encompasses the volatility and complexity of market
demand, technological advancements, supplier relationships, and other environmental
factors, which collectively determine the strategic choices and responsive behaviors of
enterprises [34]. Therefore, we also incorporate environmental uncertainty into the research
framework as an external shock variable to analyze the impact of the SCD structure on
corporate ESG performance under conditions of market environmental uncertainty.

2.2. Influence of SCD on Enterprise Performance

SCD is a strategic structure that enables enterprises to avoid over-dependence on a
small number of suppliers or customers for purchasing or sales [35,36]. As key stakeholders,
suppliers and customers significantly influence corporate economic and environmental
outcomes. SCD enhances corporate competitiveness, improves supply chain adaptability,
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boosts economic performance, and supports environmental sustainability. For instance,
Lin et al. [35] demonstrated that SCD can provide firms with valuable social capital and
knowledge resources, enhancing their earning capacity, while Wang et al. [17] highlighted
that SCD effectively mitigates the negative impacts of supply chain disruptions on orga-
nizational performance. Similarly, Feng and Wang [36] found that SCD enhances a firm’s
dynamic capabilities, contributing positively to digital transformation efforts. Addition-
ally, Sharma et al. [37] emphasized the role of stakeholder participation in sustainability
practices, noting that while supplier involvement improves environmental performance,
customer involvement does not significantly impact either environmental or economic out-
comes, while Lin and Zhu [38] demonstrated that SCD in the renewable energy sector can
enhance the total factor productivity of enterprises. However, SCD also has challenges. A
more diversified supply chain can increase complexity, requiring firms to invest additional
resources in management, which may negatively affect their overall performance [39].

2.3. Factors Influencing ESG Performance

The existing literature examines the factors influencing ESG from internal and external
perspectives. From an internal perspective, corporate strategy plays a pivotal role in
shaping ESG. For instance, Rajesh et al. [40] emphasized the importance of corporate social
responsibility strategies as key indicators of ESG scores. In addition, firm characteristics are
crucial determinants of ESG. These characteristics include non-financial attributes such as
corporate structure [14], corporate culture [41], and human and intellectual resources [21],
as well as financial attributes such as free cash flow and idle resources [8]. Finally, corporate
governance is another vital aspect of ESG. Key factors identified in the literature include
board diversity [42], managerial myopia [43], and executive compensation structures [44],
all significantly influencing ESG.

With regard to external influencing factors, the formulation and implementation of
policies and regulations play a pivotal role in shaping corporate behavior, not only through
direct regulatory measures or subsidies but also by providing substantive guidance that
influences ESG. Studies have shown that tax incentives [45], green financial reforms [46],
and environmental tax laws [47] have positive impacts on ESG outcomes. Recent research
has also highlighted the influence of public environmental awareness on ESG, with He
et al. [48] demonstrating that media coverage significantly enhances corporate ESG ratings.

Moreover, given the growing body of literature on ESG research, growing scholarly
attention has been paid to ESG in supply chain operations management, which is the
most relevant to our study. In Table 1, we summarize the relevant literature on supply
chain operations management and ESG. Past scholars have primarily focused on the
impact of supply chain digitalization [13,49–51], intelligent supply chains [52], supply
chain networks [53], green supply chain knowledge networks [16], and supply chain
finance [54] on ESG performance.

Overall, investigating the impact of SCD on ESG is particularly urgent in current
research. Firstly, the existing literature indicates that while SCD enhances corporate com-
petitiveness and supply chain resilience, it also negatively affects management costs and
complexity. This uncertainty makes the relationship between SCD and ESG worthy of
in-depth exploration. Secondly, prior studies on the influencing factors of ESG have pri-
marily focused on internal corporate characteristics and external policies and regulations.
Although research on ESG in supply chain operations management has gradually gained
attention, many scholars emphasize the impact of technologies (such as supply chain
digitalization) on ESG. In contrast, SCD focuses on the diversity of supply chain structures
and resource allocation; however, how SCD affects ESG still lacks systematic discussion.
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Table 1. The literature on ESG-related antecedents in supply chain management.

Reference Theory Independent Variable Key Findings

Tian et al. [13] Stakeholder theory Supply chain digitalization

Supply chain digitalization improves
ESG by enhancing internal operational
efficiency, increasing inter-firm trade

credit, and strengthening
external oversight

Shen et al. [50] None Supply chain digitalization

Supply chain digitalization can alleviate
financing constraints and improve

corporate governance, thereby
enhancing ESG

Zhu and Zhang [51] None Supply chain digitalization

Supply chain digitalization can enhance
ESG performance by strengthening

corporate governance, improving total
factor productivity, and alleviating

financing constraints

Chen et al. [49] None Supply chain digitalization

Supply chain digitalization significantly
promotes corporate ESG by reducing

information asymmetry and alleviating
financing constraints

Qiao et al. [52] Resource orchestration theory Smart supply chain
Smart supply chain practices stimulate

corporate social responsibility (CSR)
disclosure, thereby enhancing ESG

Yang et al. [53] None Supply chain network
Peer companies within the supply chain
network can significantly enhance the

ESG performance of the target company

Hou et al. [16]

Knowledge-based theory, social
network theory, and dynamic
capabilities theory, Structure–

conduct–performance framework

Green supply chain knowledge
network

The green supply chain knowledge
network fosters corporate green

technology innovation and enhances
ESG performance, with knowledge
integration capability exhibiting a

positive moderating effect

Wang et al. [54] None Supply chain finance
Supply chain finance can alleviate

financial constraints and strengthen
oversight to enhance ESG

Our research Structure–conduct–performance
framework Supply chain diversification

SCD can enhance green innovation and
digital transformation, thereby

strengthening ESG performance.
Environmental uncertainty (EU)

positively moderates the relationship
between SCD and ESG performance

In response to the aforementioned research gaps, firstly, our study will construct a
theoretical framework model based on the SCP framework to examine the impact of SCD on
ESG. Secondly, we will empirically test the effect of SCD on ESG performance and further
analyze the heterogeneous effects under different scenarios. Thirdly, we will explore the
potential pathways through which SCD influences ESG, revealing the intrinsic mechanisms
and boundary conditions related to this impact. Lastly, based on the research findings, we
will provide practical guidance for enterprises on how to enhance sustainability through
SCD strategies.

3. Hypothetical Development

3.1. SCD and ESG Performance

The SCP framework suggests that organizations adopt strategies in response to the
market, thereby altering corporate conduct and impacting performance [22]. Diversification
is crucial in enhancing an enterprise’s competitive advantage [55]. SCD is regarded as a
strategic structure in supply chain management [56]. This strategy drives firms to establish
supply chain relationships with a larger number of suppliers and customers, which is cru-
cial for complementary resources and capabilities, as well as effective governance within

134



Systems 2025, 13, 266

the company [57]. It facilitates corporate learning and assimilating diverse human, tech-
nological, and knowledge resources, along with sustainable development strategies from
suppliers and customers [36,58,59], which are then applied to corporate ESG management
practices. Moreover, ESG performance is positively correlated with the ESG performance
of firms upstream and downstream of the supply chain. Outstanding ESG performance by
one party may encourage partners to follow suit, thereby driving the entire supply chain
toward a more sustainable direction [53]. Additionally, supplier diversification enables
firms to select suppliers with superior social responsibility performance [58] that typically
possess advanced environmental technologies and can provide more eco-friendly raw
materials [60]. Based on this, we posit the following hypothesis:

H1: SCD has a positive effect on ESG performance.

3.2. The Mechanism of Green Innovation

Based on the SCP framework, we believe that SCD influences corporate green in-
novation, thereby promoting ESG. Specifically, the reasons are as follows: First, SCD
increases opportunities for firms to acquire innovation, innovation knowledge, and talent
resources [36,61]. These resources help firms to integrate and reconfigure technologies and
knowledge from different fields, thereby enhancing their willingness to engage in green
innovation. Second, SCD provides a foundation for external suppliers and customers to
participate in product development. External resources and knowledge from the supply
chain positively impact corporate green product innovation [62], and both customer and
supplier involvement positively influence green product innovation [63]. This increases
a firm’s motivation to pursue green innovation. Finally, SCD offers firms more varied
choices for suppliers and partners, forming a closer supply chain network. This network
structure positively affects a firm’s ability to acquire resources and enhances green innova-
tion outcomes [64]. By utilizing green innovation, firms can reduce energy consumption
and carbon emissions [65], thereby mitigating negative environmental impacts in their
production processes and positively influencing their ESG [6,32]. Based on this, we propose
the following hypothesis:

H2: SCD improves ESG performance by promoting the GI.

3.3. The Mechanism of Digital Transformation

Based on the SCP framework, the impact of SCD on corporate digital transforma-
tion is complex and multidimensional. First, SCD enables firms to obtain more digital
technologies and resources from external suppliers and customers, thereby achieving op-
timal resource allocation and complementarity. This provides resource support for the
digital transformation of corporations [36]. Second, the increased complexity of supply
chain relationships due to SCD drives firms to leverage digital technology in supply chain
management. The use of digital technologies helps to reduce information asymmetry and
transaction costs, enhances information transparency, and improves corporate governance
and social responsibility [33]. Additionally, digital technologies can enhance the visibility
and traceability of the supply chain [7], enabling firms to monitor and manage carbon
emissions more effectively, thereby strengthening corporate sustainability [66]. Finally,
by adopting digital operations, firms can reduce information barriers [19,67], enhance
operational speed and efficiency, reduce labor costs [68], and enhance customer service to
improve ESG performance. Based on this, we posit the following hypothesis:

H3: SCD enhances ESG performance by promoting DT.

135



Systems 2025, 13, 266

3.4. Moderating Role of Environmental Uncertainty

The SCP framework is also used to explain how the external environment is a criti-
cal factor influencing corporate strategy and performance [22,69]. A high environmental
uncertainty implies frequent changes in the external environment, under which the ad-
vantages of SCD become more pronounced, as it can enhance a firm’s adaptability and
reduce risks [35]. Firms often prefer to acquire more social capital and knowledge through
SCD in highly uncertain environments [35]. When a firm has high relational capital, its
partners are more willing to engage in resource acquisition and knowledge exchange to
overcome uncertainties in the external environment [70]. Similarly, Zhang et al. [71] ar-
gued that in highly uncertain environments, firms must obtain more external resources
and engage more frequently in information and knowledge exchanges with partners to
improve their performance. Additionally, in highly uncertain environments, suppliers’ and
customers’ involvement in a firm’s green product innovation has a positive impact [63].
Companies can enhance their social and environmental performance by strengthening
cooperation with suppliers and customers and meeting market demands in more socially
and environmentally friendly ways [72]. Based on this, we posit the following hypothesis:

H4: EU positively moderates the relationship between SCD and ESG performance.

Figure 1 presents the theoretical model of this study.

Supply Chain 
Diversification ESG Performance

Digital transformation

Green innovation

Environmental 
uncertainty

H4

H1

H2    H3 H2    H3

 

Figure 1. Conceptual framework.

4. Data and Methods

4.1. Data and Sample

China was selected as the sample for this study for the following reasons: First, as a
significant participant in the global economy, the extensive and complex nature of China’s
supply chains provides rich data and cases spanning multiple industries, allowing us to
comprehensively analyze the specific impacts of SCD strategies on the ESG of enterprises in
different sectors. Second, in recent years, the Chinese government has introduced numerous
policies focusing on ESG issues and promoting sustainable development, providing strong
support for corporate practices. Finally, China has continuously explored diversification paths
in the face of uncertainty in the global trade environment and supply chain risks. This process
not only challenges traditional management models but also fosters many innovative cases
with notable achievements in ESG, offering valuable lessons for global enterprises.

This study selected China’s A-share listed companies data from 2010 to 2023 for the
following reasons: Prior to 2010, ESG disclosure by Chinese listed companies was mainly
voluntary, resulting in relatively low levels of ESG disclosure and standardization. In
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2010, the Ministry of Finance of the People’s Republic of China, along with four other
ministries and commissions, jointly issued the “Application Guidelines for Enterprise
Internal Control No. 4: Social Responsibility”, which, for the first time, incorporated social
responsibility covering aspects such as environmental protection and employees’ rights
into the enterprise internal control system. This policy shifted ESG disclosure in China
from principled advocacy to operational norms. Therefore, selecting 2010 as the starting
point allowed for acquiring richer and more accurate data, providing a solid foundation
for the large-scale panel data analysis conducted in this study. Additionally, extending
data collection to 2023 could clarify the latest developments in corporate ESG practices,
thereby ensuring the timeliness and practical relevance of research results. Therefore, this
study obtained SCD, ESG performance, and control variable data for China’s A-share
listed companies and their top five suppliers and customers from 2010 to 2023 through the
CSMAR and Wind databases.

After manual collation, the companies listed in the financial sector were excluded,
and samples with abnormal operations, such as ST and *ST companies, were removed. In
addition, samples with missing key variables were eliminated, resulting in a final dataset of
35,316 observations from 4598 firms. In this study, all continuous variables were Winsorized
at the 1% and 99% quantiles to reduce the errors caused by extreme values.

4.2. Variable Measurement

Regarding the dependent variables, this study used the Huazheng ESG rating index
to measure the ESG performance of enterprises [19]. The Huazheng Index, drawing on
internationally recognized methodologies and practical experience, as well as integrating
China’s national conditions and capital market characteristics, encompasses 16 themes with
more than 40 minor indicators across the three dimensions of environmental, social, and
corporate governance. It is one of the most reliable datasets currently available for assessing
the ESG performance of Chinese listed companies [73]. The rating score ranges from 1 to 9,
and we use the average of the four quarterly scores to measure ESG performance.

Regarding the independent variable, we used the average sum of supplier and cus-
tomer diversification to measure SCD based on relevant studies [17,36]. Specifically, sup-
plier diversification was measured via the inverse index of the purchase ratio of the top
five suppliers, while customer diversification was quantified via the inverse index of the
sales ratio of the top five customers. The rationale for adopting this method was that
suppliers and customers are two core components of a firm’s supply chain, and the average
of supplier and customer diversification can more comprehensively capture the level of
diversification in both upstream and downstream aspects of the supply chain [74]. The
equation for calculating supplier (customer) diversification is presented in Equation (1):

Supplier(customer)diversification = −
5

∑
j=1

(
Procurementi,j,t

(
Salesi,j,t

)
Procurementi,t(Salesi,t)

)
(1)

For the mechanism variables, we adopted the natural logarithm of the total number of
green patent applications plus one as a proxy variable for green innovation [75]. Patent
data provided a more accurate and quantifiable measure of innovation output, and patent
applications reflected the extent of a company’s commitment to green innovation. Second,
we used the digitization transformation word frequency from the CSMAR database to build
indicators for enterprise digital transformation [75]. The word frequency in the annual
report can reflect the strategic characteristics and future prospects of the enterprise and, to a
large extent, the business philosophy followed by the enterprise and the development path
under the guidance of this concept [33]. We added one to the counted word frequencies
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and then applied the natural logarithm to measure the degree of digital transformation
within the enterprises.

Regarding the moderating variable, since the coefficient of variation in enterprise
market sales is less susceptible to managerial manipulation, it is a more reliable and objec-
tive indicator of external environmental constraints [76]. Therefore, we adopted industry-
adjusted market environmental uncertainty for assessing environmental uncertainty [34,77].
The specific calculation formula is shown in Equation (2):

EU(Zi) =
√

∑5
t−1 (zi − z̄)2/5/z̄ (2)

where Zi is the market environmental uncertainty for firm i in year t, while z̄ is the five-year
mean.

Regarding the control variables, based on previous studies [10,17,35,36], this study
controlled for factors that may influence both the independent and dependent variables.
These variables include firm-specific characteristics, corporate governance variables, etc.
Additionally, we controlled for individual, year, and industry-level fixed effects in our
regression models. Table 2 provides definitions and measurements of all variables.

Table 2. Variable definitions.

Type Variable Name Symbol Variable Measurement

Dependent variables ESG performance ESG Huazheng ESG rating index

Independent variables Supply chain diversification SCD (supplier diversification + customer diversification)/2

Mechanism variable
Green innovation GI Ln (total number of green patent applications + 1)

Digital transformation DT Ln (digital transformation word frequency + 1)

Moderating variables Environmental uncertainty EU
Measured by the coefficient of variation of

industry-adjusted firms’ sales revenue over the past
5 years.

Control variables

Company size Size Ln (total assets)

Total leverage ratio Lev Total liabilities/Total assets

Listing age ListAge Ln (2023-year of listing + 1)

Cash holdings Cash (Monetary funds + trading financial assets)/
Total assets

Number of board members Board Ln (number of directors)

Proportion of independent
directors Indep Number of independent directors/

Total number of board members

Ownership nature Soe 1 for state-owned holding enterprises and 0 for others

Cash equivalents Liqui Short-term investments/Total assets

Management fee ratio Mfee Administrative expenses/revenue

Fixed assets ratio Fixed Net fixed assets/total assets

4.3. Modeling

For model selection, the Hausman tests confirmed that the fixed-effect models were
appropriate for our analyses [78]. We established a linear model with high-dimensional
fixed effects of individual, year, and industry to examine the impact of SCD on ESG
performance. The regression model is shown in Equation (3):

ESGi,t,k = α0 + β1SCDi,t,k + ∑ βjXi,t,k
+ μi + δt + γk + εi,t,k (3)

In this model, ESGi,t,k represents ESG performance, SCD represents supply chain
diversification, Xi,t,k represents a set of control variables, i represents the individual firm, t
represents time, k represents industry, α0 represents the intercept of the model, β represents
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the regression coefficients of the relevant variables, and ε represents a random disturbance
term. Additionally, μi represents individual-specific fixed effects, δt represents year fixed
effects, and γk captures industry-specific fixed effects.

5. Empirical Results

5.1. Summary Statistics

The descriptive statistics are presented in Table 3. The mean ESG performance score for
the dependent variable was 4.155, indicating an intermediate level of ESG performance for
the entire sample, with a standard deviation of 0.934, indicating a relatively large variation
in ESG scores, reflecting differences in ESG practices between companies. The closer the
independent variable SCD is to 0, the higher the diversification degree. The minimum value
of SCD is −0.897, the maximum value is −0.033, and the average value is −0.340, indicating
that the diversification degree of the supply chain is generally low. To address concerns about
multicollinearity, we calculated the VIF values for all variables. The highest observed VIF
value was 2.683, indicating that multicollinearity was not a significant concern.

Table 3. Descriptive statistics.

Variable N Mean SD Min Max VIF

ESG 35,316 4.155 0.934 1.000 6.750 -
SCD 35,316 −0.340 0.169 −0.897 −0.033 1.076
Size 35,316 22.200 1.288 18.96 26.44 1.740
Lev 35,316 0.407 0.204 0.008 0.999 2.683

ListAge 35,316 2.033 0.931 0.000 3.434 1.575
Cash 35,316 0.216 0.152 0.012 0.841 1.693
Board 35,316 2.269 0.254 1.609 2.996 1.157
Indep 35,316 0.385 0.075 0.231 0.615 1.055

Soe 35,316 0.290 0.454 0.000 1.000 1.360
Liqui 35,316 0.069 0.203 −0.602 0.613 2.343
Mfee 35,316 0.084 0.065 0.007 0.502 1.219
Fixed 35,316 0.202 0.150 0.001 0.708 1.631

Spearman’s correlation tests were conducted for all variables, with the results pre-
sented in Table 4. The table reveals a positive correlation between SCD and ESG perfor-
mance, suggesting that SCD has a favorable effect on ESG performance.

Table 4. Results of phase relationship analysis.

Variable ESG SCD Size Lev ListAge Cash Board

ESG 1
SCD 0.132 *** 1
Size 0.202 *** 0.230 *** 1
Lev −0.124 *** 0.136 *** 0.485 *** 1

ListAge −0.131 *** 0.151 *** 0.451 *** 0.379 *** 1
Cash 0.156 *** −0.072 *** −0.230 *** −0.451 *** −0.324 *** 1
Board −0.059 *** 0.056 *** 0.238 *** 0.174 *** 0.226 *** −0.118 *** 1
Indep 0.078 *** 0.019 *** −0.069 *** −0.065 *** −0.078 *** 0.028 *** −0.195 ***

Soe 0.029 *** 0.040 *** 0.345 *** 0.269 *** 0.426 *** −0.132 *** 0.279 ***
Liqui 0.147 *** −0.091 *** −0.356 *** −0.619 *** −0.349 *** 0.211 *** −0.186 ***
Mfee −0.142 *** −0.031 *** −0.347 *** −0.233 *** −0.053 *** 0.072 *** −0.020 ***
Fixed −0.081 *** −0.053 *** 0.119 *** 0.104 *** 0.136 *** −0.364 *** 0.117 ***

Indep Soe Liqui Mfee Fixed
Indep 1

Soe −0.163 *** 1
Liqui 0.070 *** −0.253 *** 1
Mfee 0.027 *** −0.085 *** 0.058 *** 1
Fixed −0.044 *** 0.166 *** −0.400 *** −0.082 *** 1

Note: *** p < 0.01.
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5.2. Baseline Regression Results

Table 5 presents the results of the main regression analysis. Column (1) contains no
control variables, and column (2) lists the regression results with control variables. The
results show that the regression coefficient for the relationship between SCD and ESG is
0.203 (p < 0.01), supporting H1. Column (3) presents the effect of customer diversification
(CD) on ESG. The regression coefficient for CD is positive and significant at the 1% level,
indicating a positive effect on ESG. Column (4) shows the effect of supplier diversification
(SD) on ESG. The regression coefficient for SD is positive at the 10% significance level,
suggesting that SD has a positive influence on ESG.

Table 5. Results of main regression.

Variable
(1) (2) (3) (4)

ESG ESG ESG ESG

SCD 0.208 *** 0.203 ***
(2.958) (2.972)

CD 0.152 ***
(2.824)

SD 0.084 *
(1.690)

Size 0.243 *** 0.245 *** 0.246 ***
(13.574) (13.761) (13.827)

Lev −0.654 *** −0.654 *** −0.653 ***
(−9.026) (−9.030) (−8.995)

ListAge −0.242 *** −0.241 *** −0.240 ***
(−12.594) (−12.560) (−12.504)

Cash 0.132 ** 0.131 ** 0.128 **
(2.038) (2.020) (1.982)

Board −0.186 *** −0.186 *** −0.186 ***
(−7.919) (−7.900) (−7.898)

Indep 0.382 *** 0.383 *** 0.381 ***
(5.298) (5.309) (5.287)

Soe 0.057 * 0.056 * 0.056 *
(1.851) (1.830) (1.828)

Liqui 0.157 *** 0.156 ** 0.156 **
(2.585) (2.566) (2.557)

Mfee −1.100 *** −1.089 *** −1.098 ***
(−7.762) (−7.676) (−7.736)

FIXED −0.123 −0.120 −0.117
(−1.332) (−1.298) (−1.260)

_cons 4.226 *** −0.073 −0.149 −0.195
(176.433) (−0.181) (−0.373) (−0.488)

Firms/Year/Ind
FE Yes Yes Yes Yes

N 35,316 35,316 35,316 35,316
R2 0.565 0.587 0.587 0.587

Note: the t-statistics with individual cluster-robust standard errors are in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.

5.3. The Mediation Mechanism Model

We use the three-step method to test the mediation mechanism [79] and construct the
regression model as shown in Equations (4) and (5):

Mi,t,k = α0 + β1SCDi,t,k + ∑ β jXi,t,k + μi + δt + γk + εi,t,k (4)

ESGi,t,k = α0 + β1SCDi,t,k + β2Mi,t,k + ∑ β jXi,t,k + μi + δt + γk + εi,t,k (5)
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where Mi,t,k represents green innovation and digital transformation. The other parameters
are the same as those in Equation (3).

We combined Equations (3)–(5) to test the mechanisms. The regression results are
presented in Table 6. Column (1) and (2) reveal that the estimated coefficient of SCD is
positive and significant, indicating that SCD notably enhances ESG performance through
green innovation, thereby supporting H2. Column (3) and (4) reveal that the estimated
coefficient of SCD is positive and significant at the 1% level, implying that SCD significantly
promotes ESG performance through digital transformation, thus supporting H3.

Table 6. Results of the mediation and moderating effects.

Variable
(1) (2) (3) (4) (5)
GI ESG DT ESG ESG

SCD 0.160 ** 0.196 *** 0.289 *** 0.196 *** 0.145 *
(2.344) (2.870) (3.626) (2.861) (1.960)

GI 0.041 ***
(5.561)

DT 0.025 ***
(3.382)

EU −0.048 ***
(−7.504)

SCD×EU 0.057 *
(1.866)

Size 0.361 *** 0.228 *** 0.210 *** 0.238 *** 0.251 ***
(17.785) (12.724) (10.263) (13.196) (13.106)

Lev 0.007 −0.653 *** −0.198 ** −0.649 *** −0.576 ***
(0.108) (−9.032) (−2.414) (−8.944) (−7.603)

ListAge −0.061 *** −0.240 *** 0.175 *** −0.246 *** −0.239 ***
(−3.166) (−12.503) (7.902) (−12.829) (−11.210)

Cash −0.140 ** 0.138 ** −0.247 *** 0.138 ** 0.132 *
(−2.332) (2.137) (−3.435) (2.136) (1.928)

Board 0.015 −0.187 *** 0.099 *** −0.189 *** −0.163 ***
(0.645) (−7.947) (4.283) (−8.019) (−6.488)

Indep 0.078 0.377 *** −0.166 ** 0.386 *** 0.330 ***
(1.162) (5.244) (−2.373) (5.354) (4.211)

Soe 0.083 *** 0.053 * −0.049 0.058 * 0.028
(2.732) (1.729) (−1.513) (1.894) (0.627)

Liqui 0.054 0.156 ** −0.027 0.158 *** 0.172 ***
(0.952) (2.557) (−0.411) (2.596) (2.642)

Mfee 0.279 ** −1.112 *** −0.135 −1.096 *** −1.121 ***
(2.117) (−7.865) (−0.896) (−7.738) (−7.412)

Fixed −0.014 −0.123 −0.544 *** −0.110 −0.108
(−0.154) (−1.333) (−5.203) (−1.186) (−1.107)

_cons −6.994 *** 0.217 −3.242 *** 0.009 −0.275
(−15.440) (0.540) (−7.046) (0.023) (−0.641)

Firms/Year/Ind
FE Yes Yes Yes Yes Yes

N 35,278 35,278 35,316 35,316 29,697
R2 0.762 0.588 0.821 0.588 0.613

Note: the t-statistics with individual cluster-robust standard errors are in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.

5.4. The Moderating Mechanism Model

To investigate how EU moderates the influence of SCD on ESG performance, we
formulated the regression model presented in Equation (6):

ESGi,t,k = α0 + β1SCDi,t,k + β2SCDi,t,k × EUi,t,k + β3EUi,t,k + ∑ β jXi,t,k + μi + δt + γk + εi,t,k (6)

Here, EUi,t,k represents environmental uncertainty. The meanings of the other param-
eters are the same as those in Model (3).

Column (5) of Table 6 presents the regression results for the moderating effect of EU.
The coefficient of the interaction term was 0.057, being statistically significant at the 10%
level. The moderating effect of EU is depicted in Figure 2. Calculating the slope, the results
indicate that when EU is in the high-score group, the relationship between SCD and ESG
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is positive and significant (β = 0.212, t = 2.765, p < 0.01). In contrast, when EU was in the
low-score group, the relationship between SCD and ESG was not statistically significant
(β = 0.078, t = 0.892, p > 0.1). These findings support H4.

Figure 2. The moderating effect of EU.

5.5. Robustness Test

We employed several robustness-testing methods to ensure the reliability of the results.
First, to eliminate the possibility of generating chance findings in this study, we changed
the ESG measurement method to use the annual total score of the Huazheng ESG rating,
and the results presented that the conclusion was not reliant on a single measurement
methodology. The results are shown in column (1) of Table 7.

Second, we employ the inverse sum of the Herfindahl–Hirschman Index for the largest
customer and supplier as an alternative SCD metric [35] to enhance robustness. The
regression results are shown in column (2) of Table 7.

Third, to eliminate the potential distortion of data caused by the pandemic, the
applicability of the research findings under normal economic conditions was ensured. We
removed post-2020 data, restricted the sample period to 2010–2019, and then re-ran the
regression analysis. The results are presented in column (3) of Table 7.

Fourth, to mitigate the impact of inter-industry variations, the analysis is concentrated
on a single sector to validate the robustness of the conclusions within that specific industry.
We retained only the data from the manufacturing industry and conducted the regression
again; the result is shown in column (4) of Table 7.

Fifth, considering that the impact of SCD on ESG performance may exhibit a time lag,
we conducted a regression analysis with SCD lagged by one period, following the method
of a previous study [80]. The results presented in column (5) of Table 7 indicate that the
one-period-lagged SCD has a positive effect on ESG performance at a 10% significance
level, which further validates the robustness of the benchmark test.
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Table 7. Robustness test.

Variable
(1) (2) (3) (4) (5)

ESG ESG ESG ESG ESG

SCD 0.165 ** 0.205 ** 0.264 *** 0.208 ** 0.137 *
(2.575) (2.020) (2.860) (2.277) (1.761)

Size 0.209 *** 0.243 *** 0.249 *** 0.252 *** 0.190 ***
(9.964) (11.409) (9.336) (10.643) (9.296)

Lev −0.397 *** −0.745 *** −0.432 *** −0.625 *** −0.834 ***
(−5.557) (−8.853) (−4.222) (−6.625) (−10.064)

ListAge −0.130 *** −0.230 *** −0.308 *** −0.307 *** −0.105 ***
(−4.408) (−9.735) (−9.829) (−12.539) (−4.798)

Cash −0.185 *** 0.111 0.216 ** 0.112 0.239 ***
(−3.138) (1.460) (2.558) (1.419) (3.396)

Board −0.045 ** −0.189 *** −0.195 *** −0.181 *** −0.207 ***
(−2.142) (−6.802) (−5.988) (−6.480) (−8.147)

Indep 0.154 ** 0.345 *** 0.273 *** 0.384 *** 0.524 ***
(2.346) (3.932) (2.798) (4.506) (6.814)

Soe −0.137 *** 0.010 0.085 0.050 0.078
(−5.627) (0.254) (1.176) (1.172) (1.630)

Liqui −0.016 0.144 ** 0.294 *** 0.168 ** 0.129 *
(−0.280) (2.041) (3.372) (2.216) (1.904)

Mfee −0.452 *** −1.281 *** −0.492 *** −1.283 *** −1.637 ***
(−2.953) (−7.851) (−2.795) (−6.338) (−10.609)

Fixed −0.064 −0.125 0.112 −0.069 −0.274 ***
(−0.697) (−1.153) (0.908) (−0.643) (−2.761)

_cons 2.020 *** −0.092 −0.231 −0.177 0.891 *
(4.392) (−0.194) (−0.385) (−0.335) (1.938)

Firms/Year/
Ind FE Yes Yes Yes Yes Yes

N 35,316 25,093 23,752 22,353 22,353
R2 0.587 0.589 0.685 0.577 0.610

Note: the t-statistics with individual cluster-robust standard errors are in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.

Sixth, double machine learning was capable of more effectively addressing endogene-
ity issues, high-dimensional data, and complex nonlinear relationships, thereby validating
the reliability and robustness of the regression analysis results. We further utilized double
machine learning methods, including Random Forest, Gradient Boosting, Lasso Regression,
Support Vector Machine, and Neural Networks, to estimate the impact of SCD on ESG. The
results are presented in columns (1) to (6) of Table 8. The findings show that the coefficients
for SCD estimated using each of these algorithms are significant at the 1% level, further
confirming the robustness of our research findings.

Table 8. Double machine learning test.

Variable
(1) (2) (3) (4) (5) (6)

ESG ESG ESG ESG ESG ESG

θ0
0.248 ***
(0.044)

0.361 ***
(0.047)

0.392 ***
(0.048)

0.579 ***
(0.038)

0.198 ***
(0.046)

0.462 ***
(0.028)

DML
model RF GBDT RR SVM Lasso NN

Control Yes Yes Yes Yes Yes Yes
Firms/Year
/Ind FE Yes Yes Yes Yes Yes Yes

N 35,316 35,316 35,316 35,316 35,316 35,316
Note: standard error are in parentheses; *** p < 0.01.

143



Systems 2025, 13, 266

Finally, we further employed the sensitivity analysis method proposed by [81] to
systematically examine the robustness of the baseline results under potential omitted
variable interference. This method assumes that the omitted variable has n times the
explanatory power of the comparison variable. Considering the firms’ listing age had
already been controlled for in the baseline model and that it was naturally correlated with
potential omitted variables. Therefore, we chose listing age as the comparison variable for
the sensitivity analysis. Figures 3 and 4 present the comparison results between the omitted
variable and the comparison variable “ListAge”. The results show that when the strength
of the omitted variable is three times that of “ListAge”, the regression coefficient remains
positive (t-value = 1.95, p < 0.1). This indicates that even in the presence of omitted variables,
as long as their impact on firm ESG performance does not exceed three times that of the
comparison variable “ListAge”, the baseline regression results will not be significantly
affected. In fact, firm age is an important factor influencing firm ESG performance, and the
likelihood of omitted variables having an impact strength more than three times that of
firm age is low. Thus, the reliability of the baseline regression results is validated.

Figure 3. Sensitivity analysis coefficients.
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Figure 4. Sensitivity analysis t-value.

5.6. Endogeneity Test

We employed three methods for endogeneity testing. First, this study may face the
issue of reverse causality, where firms with better ESG performance tend to have higher
levels of SCD. To address this issue, we employed Two-Stage Least Squares (2SLS) method
to mitigate potential endogeneity concerns [80]. The SCD of other firms in the same indus-
try and year likely influences the SCD of the focal firm but does not directly affect its ESG
performance, which satisfies the conditions for using an instrumental variable. Therefore,
we employed the average SCD value of other firms within the same industry and year as an
instrumental variable (SCD_IV1) and conducted regression. Columns (1) and (2) of Table 9
report the regression results obtained using the 2SLS method. The first-stage regression
results show that the estimated coefficient of the instrumental variable is significantly
positive, confirming its relevance. Additionally, the regression results passed the weak
instrumental variable test and the underidentification test, indicating that the selection of
the instrumental variable is reasonable. The second-stage regression results demonstrate
that the coefficients of SCD, after fitting with exogenous variables, are significantly pos-
itive at the 5% levels This finding suggests that after addressing endogeneity using the
instrumental variable, SCD still significantly enhances ESG performance.

145



Systems 2025, 13, 266

Table 9. Endogeneity test.

Variable

2SLS Heckman Two-Step Method PSM
(1) (2) (3) (4) (5)

SCD ESG ESG_Dum ESG ESG

SCD_IV1 0.896 ***
(28.852)

Mandatory 0.731 ***
(15.548)

IMR −0.655 *** −0.655 ***
(−8.807) (−8.807)

SCD 0.355 ** 0.200 *** 0.203 ***
(2.391) (2.751) (2.971)

Size 0.034 *** 0.278 *** 0.277 *** 0.102 *** 0.243 ***
(16.888) (26.269) (17.791) (4.122) (13.535)

Lev −0.001 −0.709 *** −0.925 *** −0.165 * −0.651 ***
(−0.088) (−10.354) (−8.652) (−1.797) (−8.987)

ListAge 0.011 *** −0.210 *** −0.233 *** −0.168 *** −0.241 ***
(4.423) (−18.579) (−13.717) (−7.508) (−12.545)

Cash −0.028 ** 0.557 *** 0.531 *** −0.075 0.133 **
(−1.982) (8.539) (5.207) (−1.028) (2.052)

Board 0.005 −0.223 *** −0.215 *** −0.082 *** −0.185 ***
(0.790) (−7.696) (−4.877) (−3.014) (−7.877)

Indep 0.051 *** 0.885 *** 1.263 *** −0.202 ** 0.377 ***
(2.967) (10.478) (9.487) (−2.057) (5.234)

Soe −0.019 *** 0.185 *** 0.124 *** −0.019 0.055 *
(−3.923) (7.239) (3.404) (−0.435) (1.794)

Liqui −0.022 * 0.490 *** 0.405 *** −0.011 0.160 ***
(−1.721) (7.906) (4.327) (−0.167) (2.620)

Mfee 0.069 ** −0.922 *** −1.346 *** −0.492 *** −1.098 ***
(2.150) (−6.518) (−6.257) (−3.037) (−7.746)

Fixed −0.040 ** −0.082 0.356 *** −0.259 *** −0.123
(−2.453) (−1.043) (2.912) (−2.591) (−1.331)

Constant −0.830 *** −1.124 *** −5.808 *** 3.329 *** −0.066
(−18.020) (−4.246) (−16.506) (5.810) (−0.163)

Kleibergen-Paap
rk LM 823.414 ***

Cragg-Donald
Wald F 6177.117 ***

Stock-Yogo [16.380]
Firms/Year/Ind

FE Yes Yes Yes Yes Yes

N 35,221 35,221 31,000 30,588 35,278
R2 0.150 0.187 0.612 0.587

Note: the t-statistics with individual cluster-robust standard errors are in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.

Second, this study employed the Heckman two-stage model for bias correction to mitigate
the selection bias caused by the endogenous selection behavior of firms’ SCD. In the first
stage, whether a firm’s ESG exceeded the annual industry average (ESG_Dum) was used as
the dependent variable, and whether a firm was mandated to disclose a social responsibility
report or sustainability report (Mandatory) was introduced as an exogenous explanatory
variable. If a firm was required to disclose a report in a specific year, Mandatory was assigned
a value of 1; otherwise, it was 0. A probit regression model was used for estimation, yielding
the inverse Mills ratio (IMR) as the self-selection parameter. The IMR was then included as an
additional control variable in the second-stage model for re-estimation, and the results are
shown in columns (3) and (4) of Table 9. In the first stage, Mandatory is significantly positively
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correlated with ESG_Dum at the 1% level, indicating that firms voluntarily disclosing social
responsibility reports are more likely to have higher ESG performance. The selection of the
exogenous variable is reasonable and aligns with theoretical expectations. In the second stage,
the coefficient of IMR is significantly negative, and the regression coefficient of SCD on ESG is
0.200 (p < 0.01). The results demonstrate that after controlling for sample self-selection bias,
the positive impact of SCD on ESG remains.

Third, this study employed the propensity score matching (PSM) method for robust-
ness testing to thoroughly investigate the potential impact of sample selection bias on the
research conclusions. First, the sample was divided into two groups based on the annual
industry average level of SCD, with samples above the average assigned to the treatment
group and the rest assigned to the control group. Second, a series of matching variables
were selected to filter the sample. Third, the one-to-one nearest neighbor matching was
used to pair each treatment group sample with the most similar control group sample.
Finally, regression analysis was conducted on the matched sample firms. Figure 5 shows
the distribution differences of the matching variables before and after matching. The
matching results indicate that the standardized bias of the covariates is below 5%, meaning
that most control variables passed the balance test. Column (5) of Table 9 presents the
regression results for the PSM subsample, with a regression coefficient of 0.203 (p < 0.01),
demonstrating that the findings of the baseline regression are robust.

Figure 5. Distribution of standard deviation.

5.7. Heterogeneity Analysis

The empirical tests in the preceding section sufficiently demonstrated that SCD can
significantly enhance ESG. However, they have not revealed whether this positive effect is
heterogeneous across different types of enterprises. To gain a deeper understanding of the
heterogeneous effects of SCD on ESG, we conducted analyses from the perspectives of firm
characteristics, industry characteristics, and regional heterogeneity.

First, heterogeneity analysis based on firm size was performed. Large enterprises
typically possess more resources, such as capital, technology, and talent, while small and
medium-sized enterprises (SMEs) may have limited resources, making it challenging to
effectively manage diversified supply chains and potentially increasing operational risks
due to SCD. In this study, the sample was divided into large enterprises and SMEs based
on the median firm size within each year and industry for group testing. The results, as
shown in column (1) of Table 10, indicate that the regression coefficient of SCD on ESG
for the SMEs group is 0.155 (p < 0.1). Column (2) of Table 10 shows that the regression
coefficient of SCD on ESG for the large enterprise group is 0.214 (p < 0.05). These results
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suggest that the positive impact of SCD on ESG is more pronounced in large enterprises. A
possible explanation is that large enterprises generally have stronger market influence and
resources, as well as mature supply chain management systems, enabling them to optimize
supply chain structures to enhance ESG performance.

Table 10. Heterogeneity analysis of firms and industries.

Variable
(1) (2) (3) (4) (5) (6)

ESG ESG ESG ESG ESG ESG

SCD 0.155 * 0.214 ** 0.115 0.201 ** 0.176 ** 0.345 **
(1.703) (1.969) (1.228) (2.069) (2.245) (2.497)

Size 0.209 *** 0.355 *** 0.240 *** 0.257 *** 0.260 *** 0.200 ***
(6.029) (11.118) (10.023) (10.117) (12.314) (5.568)

Lev −0.649 *** −0.727 *** −0.676 *** −0.657 *** −0.668 *** −0.605 ***
(−6.441) (−5.870) (−6.782) (−6.695) (−7.889) (−4.211)

ListAge −0.349 *** −0.087 ** −0.223 *** −0.249 *** −0.232 *** −0.269 ***
(−12.942) (−2.325) (−8.065) (−9.396) (−10.503) (−6.467)

Cash 0.059 0.150 0.197 ** 0.037 0.233 *** −0.110
(0.732) (1.314) (2.285) (0.400) (3.106) (−0.851)

Board −0.164 *** −0.189 *** −0.160 *** −0.169 *** −0.179 *** −0.196 ***
(−5.181) (−5.339) (−4.818) (−4.829) (−6.576) (−4.403)

Indep 0.343 *** 0.332 *** 0.415 *** 0.344 *** 0.319 *** 0.535 ***
(3.500) (3.177) (4.125) (3.242) (3.821) (3.977)

Soe 0.045 0.079 ** −0.006 0.098 ** 0.077 ** 0.034
(0.869) (2.017) (−0.135) (2.358) (2.210) (0.550)

Liqui 0.104 0.158 0.209 *** 0.141 0.120 * 0.251 **
(1.288) (1.566) (2.587) (1.618) (1.668) (2.168)

Mfee −1.026 *** −0.983 *** −1.022 *** −0.895 *** −1.076 *** −1.178 ***
(−5.935) (−3.327) (−5.508) (−4.301) (−7.074) (−3.080)

Fixed −0.093 −0.167 −0.258 ** −0.089 −0.186 −0.091
(−0.769) (−1.084) (−2.102) (−0.707) (−1.623) (−0.654)

_cons 0.776 −2.989 *** −0.114 −0.430 −0.447 0.915
(1.056) (−4.068) (−0.214) (−0.742) (−0.946) (1.125)

Firms/Year/Ind
FE Yes Yes Yes Yes Yes Yes

N 17,457 17,522 17,725 16,642 25,290 9854
R2 0.630 0.597 0.637 0.629 0.601 0.581

Note: the t-statistics with individual cluster-robust standard errors are in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.

Second, we performed heterogeneity analysis of the degree of industry competition
degree. Industry competition may affect companies’ willingness and capability to disclose
ESG information. In a fiercely competitive market, firms are more inclined to leverage
external resources to address such challenges to maintain their competitiveness within the
supply chain or defend against attacks from competitors. To explore how the degree of
industry competition differentially impacts the effect of SCD on ESG, we used the Herfind-
ahl Index to assess the intensity of competition in the market and divided the sample into
low-competition and high-competition groups based on the annual industry median. The
results show that, as presented in column (3) of Table 10 for the low-competition group,
the coefficient of the impact of SCD on ESG is 0.115 (p > 0.1), while in column (4), for the
high-competition group, this coefficient is 0.201 (p < 0.05). A possible reason for this is that
enterprises in highly competitive industries typically face stronger market supervision and
reputational risks. To maintain their competitive advantage, these enterprises may be more
proactive in enhancing their ESG performance through SCD.
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Third, heterogeneity analysis based on high-pollution enterprises was performed.
High-pollution enterprises typically face stronger environmental pressures and regulatory
requirements, making them more inclined to improve their environmental performance
through SCD to comply with regulations and mitigate environmental risks. To test this
effect, we categorized enterprises into high-pollution and non-high-pollution groups based
on the CSMAR database. As shown in column (5) of Table 10, the regression coefficient of
SCD on ESG for the non-high-pollution group is 0.176 (p < 0.05). Column (6) of Table 10
indicates that the regression coefficient of SCD on ESG for the high-pollution group is 0.345
(p < 0.05). The results suggest that the positive impact of SCD on ESG is more pronounced
in high-pollution enterprises. A possible explanation is that high-pollution enterprises
are typically subject to stricter environmental regulations and greater pressure to reduce
emissions. They may be more inclined to replace high-pollution suppliers, introduce clean
energy suppliers, or seek to collaborate with diversified suppliers, thereby reducing their
environmental impact and enhancing their ESG performance.

Fourth, industry heterogeneity analysis based on production factor intensity was per-
formed. We categorized the sample into labor-intensive, capital-intensive, and technology-
intensive industries for regression analysis. As shown in column (1) of Table 11, the regression
coefficient of SCD on ESG for the labor-intensive group is 0.252 (p < 0.1). Column (2) of
Table 11 shows that the regression coefficient of SCD on ESG for the capital-intensive group is
0.267 (p < 0.05). Column (3) of Table 11 shows that the regression coefficient of SCD on ESG for
the technology-intensive group is 0.143 (p > 0.1). The results suggest that the positive impact
of SCD on ESG is more pronounced in labor-intensive and capital-intensive enterprises. A
possible explanation is that labor-intensive enterprises often face more labor-related issues,
and SCD can help these enterprises to better manage social responsibilities, for instance, by
selecting compliant suppliers or promoting labor standards within the supply chain, thereby
enhancing ESG performance. Capital-intensive enterprises tend to rely on substantial capital
investments, typically exhibit constrained organizational agility due to the inherent rigid-
ity of their operational and financial structures. SCD can mitigate the risk of supply chain
disruptions and improve efficiency, thus boosting ESG performance. Technology-intensive
enterprises depend on advanced technologies and innovation, and there is limited scope and
demand for SCD, thus having an insignificantly impact on ESG performance.

Finally, based on the geographical location of enterprises, we categorized the sample
into enterprises in the eastern, central, and western regions for testing. Table 11 presents
the empirical results from columns (4) to (6), showing that SCD positively impacts ESG
performance for enterprises in the eastern and central regions, while no significant effect
is observed for enterprises in the western region. A possible explanation is that the
eastern and central regions have higher levels of economic development, more advanced
infrastructure [82], and greater resource allocation toward technological innovation and
green development. These factors make it easier for enterprises in these regions to adopt
advanced technologies and management practices when implementing SCD strategies,
thereby promoting higher ESG performance.
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Table 11. Analysis of industrial and regional heterogeneity.

Variable
(1) (2) (3) (4) (5) (6)

ESG ESG ESG ESG ESG ESG

SCD 0.252 * 0.267 ** 0.143 0.193 ** 0.560 *** 0.003
(1.670) (2.124) (1.464) (2.383) (3.098) (0.018)

Size 0.216 *** 0.236 *** 0.266 *** 0.236 *** 0.273 *** 0.272 ***
(4.949) (7.042) (9.881) (10.865) (5.536) (5.095)

Lev −0.612 *** −0.381 *** −0.817 *** −0.679 *** −0.446 ** −0.608 ***
(−3.855) (−2.874) (−7.610) (−8.033) (−2.132) (−2.707)

ListAge −0.151 *** −0.293 *** −0.282 *** −0.253 *** −0.231 *** −0.169 ***
(−3.139) (−7.394) (−10.105) (−11.233) (−4.141) (−2.687)

Cash −0.044 0.046 0.178 ** 0.126 * 0.311 * −0.173
(−0.293) (0.337) (2.008) (1.692) (1.837) (−0.804)

Board −0.146 *** −0.184 *** −0.192 *** −0.185 *** −0.146 ** −0.232 ***
(−3.166) (−3.921) (−5.857) (−6.504) (−2.365) (−3.556)

Indep 0.331 ** 0.426 *** 0.347 *** 0.465 *** 0.096 0.315
(2.109) (3.185) (3.466) (5.508) (0.509) (1.453)

Soe 0.030 0.075 0.037 0.063 0.074 −0.032
(0.549) (1.300) (0.759) (1.623) (1.174) (−0.419)

Liqui 0.054 0.350 *** 0.057 0.146 ** 0.217 0.192
(0.406) (3.072) (0.648) (2.037) (1.421) (1.050)

Mfee −0.568 −1.388 *** −1.074 *** −1.137 *** −0.804 * −1.252 ***
(−1.532) (−4.740) (−5.587) (−6.920) (−1.926) (−3.077)

Fixed −0.396 ** 0.012 −0.221 −0.148 −0.108 −0.219
(−2.081) (0.080) (−1.550) (−1.352) (−0.438) (−0.944)

_cons 0.255 0.072 −0.383 0.110 −0.840 −0.778
(0.261) (0.095) (−0.636) (0.225) (−0.764) (−0.636)

Firms/Year/Ind
FE Yes Yes Yes Yes Yes Yes

N 7692 9496 17,293 25,554 5015 3746
R2 0.636 0.603 0.590 0.580 0.594 0.613

Note: the t-statistics with individual cluster-robust standard errors are in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.

6. Discussion and Implications

6.1. Discussion

Based on the SCP framework, in this study, a model was designed to examine the
impact of SCD on ESG and its potential mechanisms. Based on the empirical results, sev-
eral important conclusions were drawn. First, the findings indicate a positive correlation
between SCD and ESG. These results are consistent with those reported in the literature.
As Zheng et al. [83] suggested, customer concentration negatively impacts ESG. Wen
et al. [80] posited that customer concentration is negatively correlated with suppliers’ CSR
performance. Furthermore, Richard et al. [61], working from a resource-based perspective,
demonstrated that supplier diversification is a valuable resource for procurement organiza-
tions to create competitive advantages. Our findings also support this view, confirming
that SCD can enhance ESG.

Second, the mechanism analysis reveals that green innovation and digital transfor-
mation play significant roles in the relationship between SCD and ESG, consistent with
previous research. Specifically, SCD facilitates technological exchange and cooperation
among different suppliers, enhancing enterprises’ ability to produce green products [63],
and green innovation can significantly improve a company’s ESG. Furthermore, Feng and
Wang [36] argue that SCD can promote corporate digital transformation. Zhao and Cai [33]
and Qi et al. [84] suggest that digital transformation has a positive effect on improving a
company’s ESG.
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Finally, this study indicates that environmental uncertainty plays a positive moderat-
ing role between SCD and ESG. This finding aligns with prior research [85], who suggest
that under higher environmental uncertainty, companies increase their corporate social
responsibility practices to reduce enterprise risks. Similarly, managers may be more willing
to increase ESG engagement during periods of high uncertainty, and economic policy
uncertainty positively impacts ESG [12].

6.2. Theoretical Implications

This study makes several significant contributions to the theoretical research on cor-
porate supply chain management and ESG performance. First, our research introduces
the SCP framework into the study of ESG performance and expands supply chain-level
factors as antecedents affecting ESG performance, providing a new perspective for enter-
prises to enhance their ESG performance through supply chain management. This differs
from previous studies that explored various factors influencing ESG performance from
the perspectives of resource-based theory [14,86], stakeholder theory [8,87], institutional
theory [88], and resource dependence theory [89]. Based on the SCP framework, this study
discusses how the structural characteristics and resource effects of SCD can change corpo-
rate conduct and, therefore, affect ESG performance. It also conducts comparative analyses
across firm characteristics, industry characteristics, and different regions. This responds
to the call for research on how sustainable supply chain management at the supply chain
level can influence ESG [21]. To the best of our knowledge, this study is one of the first
to explore ESG performance from the perspective of the SCP framework, expanding the
theoretical horizons of ESG research.

Second, based on the SCP framework, we constructed a theoretical framework of
“supply chain diversification (Structure)–green innovation and digital transformation
(Conduct)–ESG Performance (Performance)”. The findings not only explain how SCD
affects ESG performance but also expand research on the antecedents of ESG performance.
On the one hand, previous literature suggests that SCD can increase corporate access to
external resources [35,36], and our study supports this view, confirming that SCD can
enhance the resource effect of enterprises. On the other hand, previous studies have argued
that ESG is influenced by internal strategic factors, corporate characteristics, corporate gov-
ernance, board diversity [4,14,90], and external industry competition environments [91]. In
contrast, we considered how SCD at the structural level affects corporate green innovation
and digital transformation conduct, in turn influencing ESG. This enriched the research on
the mechanism of SCD and the influencing factors of ESG, offering new perspectives on
how enterprises can achieve ESG goals through managing sustainable supply chains.

Finally, we explored the boundary relationship of environmental uncertainty. The
existing literature primarily considers the direct impact of environmental uncertainty on
ESG [11,34]. However, there is less focus on how environmental uncertainty, as a moderat-
ing variable, influences the impact of supply chain structure on corporate non-financial
performance. This study confirms that environmental uncertainty enhances the effect of
SCD on ESG. This finding provides theoretical insights for formulating effective sustainable
supply chain management strategies to enhance ESG in uncertain environments.

6.3. Management Implications

These findings have significant implications for guiding enterprises in formulating
supply chain strategies and enhancing sustainable performance. Firstly, senior execu-
tives and operations managers should fully recognize the strategic value of SCD, reduce
dependence on traditional linear supply chains, and rationally build diversified supply
chain networks based on business needs and strategic objectives to gain external resources
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through collaborative partnerships with diverse stakeholders. Simultaneously, ESG goals
should be integrated into the risk assessment and incentive mechanisms for supply chain
partners, promoting sustainable procurement and collaborative innovation, enabling long-
term improvements in ESG performance.

Secondly, enterprises should prioritize green innovation and digital technologies when
implementing SCD strategies. On one hand, to ensure sustainable development, enter-
prises should actively engage suppliers and partners with green innovation advantages
across various fields, establishing cross-industry green innovation collaboration networks.
Through joint research and development, sharing green technology resources, and other
approaches, they can jointly explore green innovation solutions for energy conservation,
emissions reduction, resource recycling, etc., thereby stimulating green innovation vitality
across different supply chain sectors. Simultaneously, by leveraging the abundant resources
and market channels brought by SCD, enterprises can accelerate the transformation and
application of green innovation achievements. On the other hand, enterprises should
accelerate the deep integration of digital technologies with supply chain operations and
management. By embedding technologies such as RFID, IoT, and blockchain into supply
chains, they can ensure the transparency and traceability of ESG data, not only enhancing
stakeholder trust but also better meeting regulatory requirements. Additionally, enterprises
can further enhance the application of artificial intelligence to support demand forecast-
ing and supplier evaluation. By integrating these digital technologies, enterprises can
improve supply chain visibility and sustainability, enhance resource resource allocation
efficiency, and strengthen environmental governance capabilities, thereby providing robust
technological support for ESG goals.

Lastly, the implementation of SCD strategies could be adapted for different types of
enterprises. From a market environment standpoint, in situations of high environmental
uncertainty, enterprises can establish dynamic risk assessment mechanisms and implement
SCD strategies at appropriate times to mitigate supply chain risks and effectively promote
ESG practices. Regionally, enterprises located in China’s eastern region can leverage their
strong economic foundation and open the market environment to further enhance ESG
performance by exploiting the advantages of SCD. From an industry standpoint, enterprises
in highly competitive industries should utilize SCD to integrate resources from various
stakeholders and strengthen collaboration with upstream and downstream partners to
improve ESG performance. Enterprises in high-pollution industries should treat SCD as a
critical opportunity for ESG transformation, increasing investments in clean technologies
and environmental protection equipment and encouraging upstream and downstream
suppliers to jointly reduce pollutant emissions, thereby achieving sustainable production.
Enterprises in capital-intensive industries should focus on the in-depth integration of SCD
and ESG and increase investments in technology and equipment for green supply chain
construction to enhance the stability and sustainability of the supply chain. Enterprises in
labor-intensive industries should diversify supply chains to strengthen cooperation with
suppliers, promote social responsibility management in the supply chain and improve
employee satisfaction and loyalty, laying a solid foundation for their own sustainable
development. From the perspective of enterprise characteristics, large scale enterprises and
those with high capital intensity should fully leverage their resource and scale advantages
to guide supply chain partners in adopting ESG principles, formulate and improve industry
standards, and enhance the overall sustainability of the industry.

6.4. Limitations and Future Research

This study has some limitations. First, it primarily focuses on listed companies in
China’s A-share market, which may limit the universality of the conclusions. Future
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studies could include samples from more countries or regions, which would help us to
understand the relationship between SCD and ESG performance more comprehensively.
Second, although this study considers green innovation and digital transformation as
potential mechanisms, there may be other unidentified mediating variables. Finally, the
role of environmental uncertainty as a moderating variable has only been preliminarily
verified. However, future research could delve deeper into the specific impact of economic
policy uncertainty on the relationship between SCD and ESG.
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Abstract: In this study, we conceptualize the demands imposed on emergency supply
chains during extraordinary emergency events as “stress” and develop a scenario-based
stress evolution (SE) analytical approach in emergency mobilization decision-making.
First, we characterize emergency supply chain stress by uncertainty, abruptness, urgency,
massiveness of scale, and latency. Leveraging lifecycle theory and aligning it with the
event’s natural lifecycle progression, we construct a dual-cycle model—the emergency
event-stress dual-cycle curve model—to intuitively conceptualize the SE process. Second,
taking China’s emergency medical supply chain as an illustrative example, we employ set
theory to achieve a structured representation of emergency supply chain stress evolution
(ESCSE). Third, we propose a novel ESCSE modeling methodology based on stochastic
Petri nets and establish both an ESCSE model and a corresponding isomorphic Markov
chain model. To address parameter uncertainties inherent in the modeling process, the
fuzzy theory is integrated for parameter optimization, enabling realistic simulation of
emergency supply chain stress evolution dynamics. Finally, the SE of the ibuprofen supply
chain in Beijing during the COVID-19 pandemic is presented as a case study to demonstrate
the working principle of the model. The results indicate that the ESCSE model effectively
simulates the SE process, identifies critical states, and triggers actions. It also reveals the
evolution trends of key scenario elements, thereby assisting decision-makers in deploying
more targeted mobilization strategies in dynamic and changing environments.

Keywords: emergency supply chain stress evolution (ESCSE); scenario modelling; stochastic
Petri net; emergency mobilization; emergency medical supplies

1. Introduction

In recent years, many countries have faced serious challenges in emergency sup-
ply and crisis management. These challenges stem from large-scale and unconventional
emergencies, including global health crises such as COVID-19 and monkeypox, as well as
natural disasters like the Australian bushfires and the Türkiye–Syria earthquake. Emer-
gency supplies serve as essential material guarantees throughout the entire emergency
response process, playing a critical role in safeguarding the lives of rescue workers and the
general public during such crises.

The physical reserves and production capacity reserves of emergency materials belong
to stock reserves, which can only solve the resource supply problems in the early stages of
extraordinary emergencies. In the event of large-scale disruptions, the demand for certain
emergency materials increases in a stepwise and exponential manner [1]. The existing

Systems 2025, 13, 423 https://doi.org/10.3390/systems13060423
157



Systems 2025, 13, 423

social stockpiles fall far short of meeting this massive demand [2], necessitating the need
to ensure supply through emergency production. A review of past emergency responses
consistently shows that the volume of emergency supplies produced through emergency
manufacturing significantly exceeds that obtained from stockpiles. This highlights the
crucial importance of emergency production as the primary source of supply during
unconventional emergencies.

Under normal circumstances, enterprises adjust their production scales based on
market demand and typically refrain from expanding output blindly. However, when an
emergency event occurs, firms may be mobilized to revise production plans, resulting in
increased output. As the foundational unit of modern production systems, the supply
chain plays a critical role in enabling sustained and stable supply. Only by leveraging
supply chain structures can emergency production be effectively scaled up to meet surging
demand promptly.

Recent extraordinary emergencies have shown that unpredictable disruptions in
emergency material supply chains can lead to severe supply–demand imbalances. These
events have exposed both the vulnerability of such supply chains and the weaknesses
in coordinated scheduling mechanisms. Therefore, this study takes the supply chain of
emergency materials as the research object, paying particular attention to the supply and
demand balance of emergency materials under extraordinary emergencies.

Current research on emergency supply chains primarily focuses on four key ar-
eas: supply chain risk management [3–5], supply chain design [6–10], supply chain
optimization [11–16], and supply chain performance evaluation [17–22].

Studies on supply chain risk management center around risk identification and risk
assessment. Risk identification involves detecting all potential risk points that may af-
fect the operation of enterprises and the supply chain, including internal risks such as
equipment failures and production accidents, as well as external risks like natural dis-
asters, cyberattacks, and transportation incidents. Risk assessment typically evaluates
risks based on their probability of occurrence and severity of impact, which information is
used to prioritize risk management efforts. Commonly adopted methods include Bayesian
analysis, bow-tie analysis, probability/severity matrices, event tree analysis (ETA), failure
mode and effects analysis (FMEA), hazard and operability studies (HAZOP), and Ishikawa
cause-and-effect diagrams [3]. In the domain of supply chain design, researchers construct
supply chain networks using mathematical tools under constraints such as time [6,8,10],
humanitarian behavior [8], cost [7,10], and disruption scenarios [9]. Research on sup-
ply chain optimization typically focuses on specific problems and defines optimization
objectives to develop quantitative models. The research on supply chain design and op-
timization is basically interrelated. Based on the analysis of real influencing factors, the
optimization objectives are centered around time [11,13], cost [12,15], reliability [14,16],
path selection [13], etc., and mathematical models are designed and developed. Researchers
often consider the uncertainty of parameters in the modeling process and establish robust
optimization models for a solution. Research on supply chain performance evaluation
mainly emphasizes the identification of influencing factors and the analysis of their effects
on overall performance [17–22].

Although these research areas have become relatively mature, they all focus on specific
segments or aspects of the emergency supply chain, and a holistic analysis of supply–
demand imbalances across the entire lifecycle of an emergency event is lacking. Research
on supply chain risk management and performance evaluation tends to emphasize the
identification of risk points, the probability of disruptions, and the identification and
performance of influencing factors. However, in practice, decision-makers often have
limited capacity to predict low-probability but high-impact events. Regardless of the source
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of disruption, the critical issue lies in understanding and managing the consequences.
Regardless of the cause of a disruption, its impact does not depend on the cause, and the
mitigation measures adopted are typically similar across scenarios [3].

Studies on supply chain design and optimization often abstract key constraints and
define optimization objectives, which provide valuable direction for improving supply
chain performance. Nevertheless, due to the limitations of mathematical modeling methods,
such approaches frequently rely on simplified assumptions, making it difficult to exhaust
the factors that need to be considered. Consequently, these models may not adequately
account for the full range of factors influencing supply chain dynamics during emergency
events. Research on supply chain performance evaluation also has the same problem of
not fitting the actual complex system environment of emergencies.

In the international context, the term humanitarian supply chain is often used in a
manner similar to emergency supply chain [12,14], as both focus on rapid response and
efficient distribution of critical materials during disruptive events to mitigate disaster
impacts and ensure that basic needs are met. The methodologies applied in studying
both systems are largely similar, and some studies even treat them as interchangeable.
However, other research distinguishes between the two, primarily based on decision-
making complexity: emergency supply chains are government-led, whereas humanitarian
supply chains involve multi-stakeholder coordination among governments, businesses, and
civil society organizations [23]. This study specifically addresses the supply of emergency
materials during extreme and unconventional emergencies. As noted earlier, in such
scenarios, emergency supplies are primarily sourced through urgent production. Therefore,
the focus of this research is on emergency supply chains, in contrast to humanitarian supply
chains, which often rely on broader mobilization efforts such as social donations.

Building upon the above analysis, this study conceptualizes the demand within
emergency supply chains as a form of “stress”. Adopting a scenario-based response
framework, we examine the evolution of this stress throughout the entire lifecycle of an
emergency event. This approach enables a more macro-level analysis of the emergency
supply chain system. The primary objective of this research is to analyze the trend and law
of the evolution of stress in emergency supply chains and to propose robust methods for
accurately identifying its causes and influencing factors. We contend that this perspective
is of substantial significance for enhancing emergency capacity building, strengthening
mobilization capabilities, and quickly responding to the challenges brought by emergencies.

The remainder of this paper is organized as follows. Section 2 presents a compre-
hensive literature review. Section 3 constitutes the theoretical core of this study, where
we propose a novel concept of stress in emergency supply chains, analyze its sources and
characteristics, and construct an emergency event-stress dual-cycle curve model based
on lifecycle theory. Section 4 introduces a method for structuring the evolution process
of emergency material supply chain pressure proposed using set theory, with a detailed
application and analysis based on China’s emergency medical supply chain. In Section 5,
we propose a new ESCSE (emergency supply chain stress evolution) modeling method·
based on stochastic Petri nets. We develop both the ESCSE model and a corresponding
isomorphic Markov chain model. To address inherent parameter uncertainty in the mod-
eling process, we incorporate fuzzy theory to optimize parameters and enable realistic
simulation of stress evolution dynamics. Section 6 demonstrates the application of the
proposed model using the case of the ibuprofen supply chain in Beijing. Finally, Section 7
summarizes the conclusions and outlines potential directions for future research.
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2. Literature Review

2.1. Research on Supply Chain Pressure

At present, there is no universally accepted definition of “supply chain stress”. Existing
research reveals two primary interpretations of the concept. The first interpretation draws
on the psychological concept of “stress”, defining supply chain stress as a form of pressure
or heightened awareness induced by external environmental changes, which compels
supply chain management to adapt [24–26]. The second interpretation is adapted from the
idea of stress testing in the financial sector, treating supply chain stress testing as a tool for
risk assessment; under this view, supply chain stress is considered a collection of factors
that may lead to disruptions or disorder within the supply chain [4–10].

Studies aligned with the first interpretation are mainly related to issues of corporate
competitiveness. For instance, Zhu Qinghua et al. [24] identified the key drivers of green
supply chain management pressure/dynamics among Chinese manufacturing enterprises
through survey analysis, offering theoretical guidance for the early-stage adoption of
green supply chain practices domestically. Qu Ying et al. [25] used statistical methods to
rank the influencing factors of green supply chain management, pinpointing the strengths
and weaknesses in implementing green strategies within China’s manufacturing sector.
Similarly, Huang Wei et al. [26], based on survey data from 1268 Chinese enterprises,
found that supply chain stress under globalization pressures promoted the entry of foreign
enterprises into domestic supply chains, thereby enhancing corporate motivation to fulfill
social responsibility.

The second interpretation draws inspiration from the idea of stress testing in the
financial sector and applies it to the domain of supply chain risk management. Stress
testing, originally developed as a quantitative risk assessment technique for extreme events
in the financial sector, assesses the impact of macroeconomic shocks on the entire economic
system by simulating extreme market scenarios and examining the robustness of key
financial variables. Scholars have adapted this core idea to analyze how changes in external
or internal conditions affect supply chain operations, thereby advancing the study of stress
testing within supply chains.

In related theoretical studies, several scholars have explored supply chain risk manage-
ment from the perspective of stress testing. Yao Weixin et al. [27] proposed a stress-testing
approach for extreme supply chain risks by analyzing the unique risk transmission mech-
anisms within supply chains. Furthermore, Yao Weixin et al. [28] conceptualized stress
testing as a proactive measure and positioned the design and construction of resilient supply
chains as essential responses to extreme events. They highlighted the necessity of resilience
and outlined key design principles. Specifically, they proposed core strategies for enhanc-
ing supply chain resilience, including improving responsiveness, increasing flexibility,
maintaining appropriate inventory buffers, establishing a multi-layered defense structure,
adopting multi-sourcing, and implementing demand postponement. Cannella et al. [29]
conceptualized supply chain stress testing as the simulation of sudden and severe demand
fluctuations and assessed how collaborative practices and smoothing replenishment rules
could mitigate the bullwhip effect, stabilize inventories, and enhance both supply chain
performance and customer service levels. Lan Luo [30,31] proposed a predictive global
sensitivity analysis approach to construct a quantitative tool for supply chain stress testing.
By establishing a multi-tier supply chain network linear programming model, this method
simulates scenarios involving node disruptions caused by emergency events. Ivanov and
Dolgui [32] advocated for the systematic review and stress testing of supply chain resilience,
proposing the use of digital supply chain twins as a tool for conducting comprehensive
stress tests. Building on this foundation, Ivanov [33] moved beyond the traditional focus
on “recovery capability” and introduced a new framework centered on “adaptive surviv-
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ability”, further elaborating on the feasibility of applying digital twins for supply chain
stress testing and resilience analysis.

In addition, on 18 April 2022, the SAIC Motor Corporation conducted stress testing on its
vehicle, parts, and logistics enterprises, focusing on supply chain security, logistics assurance,
and closed-loop production management. This initiative aimed to validate the enterprises’
readiness for the resumption of operations under COVID-19 disruptions, identify strengths
and weaknesses, and provide support for the gradual recovery of production capacity [34].

Among the aforementioned studies, research related to the first interpretation pri-
marily relies on survey data and expert consultations, making the findings subject to a
certain degree of subjectivity due to limitations in sample size. Research aligned with the
second interpretation has effectively demonstrated, from both theoretical and practical
perspectives, the applicability of stress-testing concepts within the field of supply chain
risk management. However, fundamental aspects such as the basic theories of stress, its
evolutionary patterns, and transmission mechanisms have yet to be systematically explored.
Consequently, the theoretical foundation and implementation frameworks for supply chain
stress testing still require long-term, comprehensive research.

This study focuses on the emergency supply chain under the context of extraordinary
emergency events, where extreme disruptions lead to significant supply–demand imbal-
ances. In this regard, we revisit the original meaning of “stress” as defined in the field of
physics and conceptualize the demand borne by the emergency supply chain as a form of
stress. A detailed discussion of this conceptualization is provided in Section 3.2.

2.2. Supply Chains for Emergency Medical Supplies

Research on emergency medical supply chains remains relatively limited. Existing
studies can largely be categorized into two streams: (1) research focusing on the manage-
ment of emergency medical supply chains and (2) decision-support studies for emergency
medical supply responses from a supply chain perspective.

In the field of emergency medical supply chain management, a common method-
ological approach is the construction of mathematical models for problem analysis. Many
researchers leverage the SEIR epidemiological model and its variants to investigate is-
sues such as equilibrium optimization [35], resource allocation [29,36], stockpiling strate-
gies [37], and demand forecasting [35,38]. For example, Sun et al. [35] integrated a three-tier
emergency medical supply chain model with embedded resilience features and the SEIR
model, developing a bi-objective mixed-integer programming model aimed at minimiz-
ing expected total supply chain costs while maximizing demand fulfillment rates. Their
study explored supply chain network design that balances cost efficiency with resilience.
Paul et al. [38] coupled a generalized infectious disease spread model (SEITRS) with a
multi-tiered supply chain model to build an integrated system dynamics model. Using
representative datasets from the 2013–2014 U.S. H1N1 influenza pandemic, they analyzed
how pharmaceutical shortages impact key epidemic parameters, revealing that drug supply
chains significantly affect epidemic dynamics.

Similarly, Büyüktahtakın et al. [36] embedded logistics considerations within a spa-
tially explicit SEIR model, proposing an epidemic–logistics hybrid optimization framework
that simultaneously addresses the spatial spread of infectious diseases and emergency
resource allocation, thereby suggesting optimal intervention strategies. Queiroz et al. [39]
systematically analyzed the impacts of epidemics on supply chains, applying optimization
techniques and SEIR-based models to study both conventional resource allocation and
pandemic-specific medical supply distribution, and proposed a framework for operations
and supply chain management during the COVID-19 pandemic. Paul et al. [40], focusing
on pharmaceutical supply chain management under conditions of deep uncertainty, found
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that proactive ordering and tier reduction strategies can significantly mitigate epidemic
impacts, based on an extended shortage model integrated with their previous work [38].
Liu and Zhang [41] combined an SEIR-based demand prediction mechanism with a hybrid
0–1 integer programming logistics system to propose a dynamic resource allocation model,
addressing transportation decisions across hospitals, distribution centers, and pharmaceu-
tical manufacturers through the stages of forecasting, planning, execution, and adjustment.
Huo et al. [37] considered both temporal and spatial dimensions in modeling demand
fluctuations for masks induced by epidemic spread, proposing strategies for establishing
and rotating emergency stockpiles of medical supplies.

Research specifically addressing decision support for emergency medical supply re-
sponses from a supply chain perspective is relatively sparse. The existing literature focuses
on areas such as information collection during public health emergencies [42], decision-
support system development [43], and supply chain decision-making under psychological
biases [44]. Anparasan et al. [42] highlighted that developing countries often lack ro-
bust decision-support capabilities for infectious disease outbreaks and compiled detailed
time-series datasets from the cholera outbreak following the 2010 Haiti earthquake to aid
the development of descriptive and prescriptive models. Govindan et al. [43] proposed
a fuzzy inference system (FIS)-based decision-support framework that uses physicians’
knowledge to classify individuals by infection status, aiming to better manage medical
supply chain demand and thus curb the spread of viruses. Shi et al. [44] investigated
how overconfidence and other psychological biases among emergency decision-makers
impact supply chain operations, offering insights into the linkage between cognitive biases
and medical resource allocation strategies, thereby supporting governmental emergency
response planning. Song Y. et al. [45] proposed a modeling and analysis approach for
emergency scenario evolution systems based on Generalized Stochastic Petri Nets (GSPNs),
aiming to enhance scenario-based response decision-making capabilities in emergency
management.

Notably, most existing studies address isolated problems—such as resource allocation [29,36],
stockpiling [37], and demand forecasting [35,38]—without accounting for the complex and
interdependent nature of challenges that public health emergencies pose to emergency
medical supply chains. Unlike natural disasters, accidents, or social security incidents,
public health emergencies caused by epidemic outbreaks have distinct characteristics:
unpredictable cycles and scales; compound transmission, where supply chain disruptions
are entangled with virus spread through human mobility; and simultaneous breakdowns
of supply, demand, and logistics infrastructures [46].

A retrospective analysis of emergency supply challenges during the COVID-19 pan-
demic reveals that surging demand for medical supplies quickly overwhelmed existing
supply capacities. Public fear—amplified by media reports and social contagion—triggered
speculative demand characterized by panic buying and hoarding. This behavior reflects a
self-feedback loop in which perceived scarcity drives excessive consumer response, further
exacerbating actual shortages and disrupting supply chain stability. Public fear and media
influence led to panic buying and hoarding behaviors, further inflating demand. Oppor-
tunistic profiteering exacerbated resource imbalances and drove up prices, highlighting
inefficiencies in resource allocation. These realities underscore the need for governments to
engage in comprehensive emergency mobilization efforts encompassing potential demand
assessments [47], rapid capacity expansions [48,49], efficient resource allocation [50], and
media control strategies [51]. Thus, to enhance the responsiveness and resilience of emer-
gency medical supply chains, it is critical to address overarching strategic issues through a
more integrated and macro-level decision-making framework.
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3. Fundamental Theories of Stress Evolution in Emergency Supply Chains

3.1. Distinction Between Traditional Commercial and Emergency Supply Chains

Traditional commercial supply chains are essentially functional network structures
that deliver products to consumers—from raw material procurement to the production of
intermediate and final goods—with the ultimate goal of generating profit under normal
operating conditions. Emergency supply chains, in contrast, are transformed from regular
supply chains and operate under crisis conditions. They are state-driven and focus on
national economic infrastructure to maximize time efficiency and minimize disaster losses.
These chains include government-led planning, management, and control, forming a
virtual dynamic supply chain alliance. Essentially, they represent the supernormal supply
of emergency materials. This results in significant differences between the two types of
supply chains, which can be summarized in the following aspects.

1. Level of risk

The context of emergency supply chains is typically linked to sudden, unforeseen
events. These events are characterized by randomness and high destructiveness, and
when they affect any part of the supply chain, they often lead to disruptions or varying
degrees of fluctuations. For example, Hurricane Katrina in 2005 severely damaged trans-
portation infrastructure, energy facilities, and communication systems across the U.S. Gulf
Coast [52]. The initial natural disaster was compounded by secondary effects—including
widespread flooding, the collapse of local healthcare systems, and outbreaks of water-
borne diseases—all of which significantly disrupted emergency supply chain operations.
Such compound risks amplify uncertainty and response complexity in emergency supply
chains. In contrast, traditional commercial supply chains typically operate under relatively
stable conditions, where companies at each node forecast market demand and develop
corresponding production and ordering plans.

2. Demand characteristics

Traditional commercial supply chains operate in stable environments, where demand
is forecastable based on historical trends, allowing for planned production and procurement.
In contrast, emergency supply chains face abrupt shifts in demand. Items that are ordinary
commodities under normal conditions may become critical resources once a crisis emerges.
Consequently, demand can surge unpredictably(as shown in Figure 1), accompanied
by high uncertainty, urgency, and a lack of discernible patterns. These characteristics
impose substantial challenges on emergency supply chains in terms of responsiveness
and coordination.

3. Objectives

Traditional commercial supply chains primarily aim to maximize economic profit. In
contrast, emergency supply chains focus on meeting urgent demand efficiently, reflecting
weak economic orientation. Their core objective is the rapid delivery of critical supplies
within limited timeframes. This is evident in several ways: First, governments regulate
prices to prevent inflation during crises. Second, authorities may initiate emergency
production protocols, supported by incentives such as “supply first, payment later” or
post-crisis subsidies. Third, participating firms often align their actions with corporate
social responsibility, adjusting production from profit-driven goals to utility maximization
under emergency conditions.

Traditional commercial supply chains operate under market-driven frameworks,
where firms independently make production and sales decisions, and resource alloca-
tion is guided by competition, autonomy, and pre-established agreements.
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Figure 1. Supply and demand diagram for the supply chain of emergency supplies in the event of a
supernormal emergency.

4. Regulatory mechanisms

In contrast, emergency supply chains are primarily directed by state authorities and
function as mechanisms for resource allocation and production mobilization within a regu-
lated economic coordination framework. In addition to commercial actors, the government
plays a central role in coordinating the supply of critical goods. Depending on the nature
and scale of the emergency, supply chain operations may involve joint efforts by multiple
public sector agencies—including, but not limited to, emergency management departments,
transportation authorities, healthcare institutions, and energy regulators. In the case of
large-scale disasters, national armed forces, reserve troops, and civil defense organizations
may be rapidly deployed to participate in emergency mobilization, thereby ensuring the
efficient operation and responsiveness of the emergency supply chain.

5. Inventory strategies

Commercial supply chains adopt lean inventory models to reduce costs and improve
efficiency. In contrast, emergency supply chains operate within a far more volatile and un-
certain external environment, where internal supply network structures are highly suscep-
tible to disruption or distortion during crisis events. As a result, material reserves emerge
as a critical component and one of the primary sources for emergency supply provisioning.

Under such conditions, material reserves are not only indispensable but also sized
strategically. Maintaining an appropriate level of safety stock becomes a critical buffer to
absorb supply–demand shocks, mitigate lead-time uncertainties, and ensure continuity of
relief operations. The scale of these reserves must be calibrated based on risk exposure,
response time requirements, and supply chain criticality to balance cost and preparedness.

6. Stages

Traditional commercial supply chains are primarily driven by economic interests,
with a core focus on production and sales activities. These supply chains typically operate
in stable environments and do not exhibit pronounced cyclical fluctuations. In contrast,
the emergency supply chain operates across distinct temporal phases that correspond
to the evolution of crisis events. Specifically, the supply chain is often segmented into
three phases—pre-incident, during-incident, and post-incident—based on the timing of
the emergency event. This tripartite classification is consistent with widely accepted
frameworks in modern emergency management and supports more effective planning and
resource allocation across distinct response phases.
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7. Delivery cycle

In traditional commercial supply chains, the operating environment tends to be sta-
ble, allowing for clearly defined and predictable delivery cycles. In contrast, emergency
supply chains are typically activated in response to sudden-onset events and are primarily
coordinated by government authorities. Within this context, supply chain actors operate
under a task-oriented framework, where timeliness of emergency material delivery takes
precedence over adherence to fixed delivery schedules. As a result, emergency supply
chains lack standardized delivery cycles and must remain highly responsive and flexible in
their operations.

3.2. The Concept of Emergency Supply Chain Stress (ESCS)

Although the explicit introduction of the concept of stress in management studies lacks
a documented origin, its conceptual roots can be traced back to the late 19th century, during
the latter phase of the Industrial Revolution. In Frederick Taylor’s theory of scientific
management, the term “stress” was not directly employed; however, the imposition of
time quotas and standardized procedures effectively created a model of efficiency-driven
pressure, reflecting an early form of operational stress.

In the 1930s, the Hawthorne experiments conducted by Elton Mayo and his team
unveiled a nonlinear relationship between the physical work environment and psycho-
logical stress, which subsequently laid the theoretical foundation for the development
of role stress models. Beginning in the mid-20th century, with the rise of organizational
behavior and human resource management as distinct research domains, scholars began to
explicitly examine stress within managerial frameworks. Within this context, stress has
been broadly conceptualized as the physiological or psychological responses elicited by
changes in workplace conditions or organizational factors. These responses may exert
either beneficial or detrimental effects on employees’ mental and physical health.

Contemporary research in this field predominantly focuses on three key dimensions:
identifying sources of stress, defining performance-related stress thresholds, and designing
effective intervention strategies. These areas form the core of stress-related inquiry in
management, reflecting the interdisciplinary integration of psychological theory within
organizational contexts.

While the concept of stress has been addressed within the field of management, its
application has largely been confined to organizational behavior and human resource
management, where it primarily draws upon theoretical and empirical developments from
psychology and medicine. This study posits that the notion of “load-bearing limits” in
physics offers a conceptually robust framework for analyzing emergency material supply
under sudden-onset events. Fundamentally, such scenarios involve abrupt changes in
external conditions—most notably, surges in emergency material demand—which exert
pressure on the emergency supply chain. This type of systemic response to fluctuating
demand conditions closely parallels the definition of stress in the physical sciences, where
external forces induce strain on a structure or system.

Building upon the above insights, this study critically examines and integrates concep-
tualizations of stress across multiple disciplines and introduces the concept of stress into
the context of emergency material supply chains. In this framework, emergency supply
chain stress (ESCS) is defined as the level of demand exerted on the supply chain during
the onset of an emergency event. Notably, this type of demand differs fundamentally
from that in traditional commercial supply chains, which are typically governed by market
mechanisms and driven by the goal of profit maximization. Instead, it refers specifically to
demand arising under a regulated economic framework, where the timeliness of supply is
the primary objective in responding to emergencies.
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3.3. Sources and Characteristics of Stress in Emergency Supply Chains
3.3.1. Underlying and Direct Sources of Stress

This study posits that the fundamental source of stress within emergency supply
chains lies in the urgent production demands triggered by crisis scenarios. These demands
exert direct pressure on the emergency supply chain, compelling it to unlock latent capacity
and convert this potential into extraordinary supply capabilities. Its direct sources can be
grouped into three categories:

First, external pressure from government authorities. When unconventional emergen-
cies occur, existing reserves and routine production capacities are often insufficient to meet
the sharply increasing demand for medical and emergency supplies. In response, govern-
ments initiate emergency production, exerting pressure on the emergency supply chain
through administrative mandates during crises and economic incentives or regulations
in normal times. The degree of stress varies across mobilized entities, corresponding to
differing intensities of government mobilization.

Second, external pressure from the general public. Social pressure on emergency
supply chains is exerted via non-governmental organizations, individual citizens, and
media groups. These actors disseminate information regarding supply needs and short-
ages, thereby intensifying public scrutiny and applying pressure on government response
mechanisms, resource allocation strategies, risk communication, and the performance of
enterprises in fulfilling their social responsibility during emergencies.

Third, internal pressure from enterprises responsible for emergency supply. In normal
circumstances, these enterprises operate within the national economy with profit as their
primary objective while also bearing social responsibilities. With the growing emphasis
on corporate social responsibility (CSR), many enterprises increasingly view emergency
response as part of their civic duty. When crises occur, CSR acts as an internal driver,
prompting enterprises to impose pressure on themselves to mobilize resources and fulfill
emergency obligations.

3.3.2. Characteristics of Stress in the Emergency Supplies Supply Chain

1. Uncertainty and suddenness

The formation and operation of emergency supply chains are fundamentally driven
by internal supply–demand dynamics, wherein supply is closely guided by demand in a
continuously evolving process. Stress arises from urgent, crisis-induced needs, making its
emergence sudden and uncertain.

A striking example is the catastrophic flooding of the Yangtze River Basin in the
summer of 1998—the most severe since 1954—which also triggered record-breaking floods
in the Nenjiang and Songhua River basins. The disaster caused extensive damage to
agriculture and industry across the affected regions, posing serious threats to lives and
property. In response, China’s National Economic Mobilization Office launched a dedicated
mobilization campaign to establish field hospitals aimed at supporting epidemic prevention
and medical services for flood relief forces and disaster-affected civilians. The operation
unfolded in three distinct phases:

• Preparation phase (24 days): Information was gathered to assess the scope of needs,
and a comprehensive mobilization plan was developed.

• Implementation phase (15 days): Establishment of an interim command structure;
integration of mobilized personnel from different units into field medical support
teams; deployment of transport units to deliver essential items to the front line, such
as containers, field rations, medicines, and fuel.

• Recovery phase (4 days): Inventory of mobilized resources; dismantling, transport,
and return of equipment; operational summary and return of personnel to their units.
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The operation resulted in the establishment of fully functional field hospitals, which
conducted over 10,000 on-site consultations, providing timely and efficient medical support
to both frontline personnel and local residents.

2. Timeliness

In sudden disasters, time is the most critical factor. The availability of emergency
supplies directly determines the effectiveness of response operations. Stress in emergency
supply chains is thus highly time-sensitive. For example, the widely recognized “golden
72 h” post-disaster period is crucial for rescue. Globally, rescue efforts within this window
have proven most effective. However, during the 2008 Wenchuan earthquake, China’s tent
stockpile was exhausted within 48 h. This sudden shortfall underscored the urgent need
for emergency production to supplement depleted reserves and ensure adequate shelter
provision for the disaster-stricken areas.

3. Huge volume

The operating environment of emergency supply chains is complex. When extreme
shocks overlap across different scenarios, demand for certain supplies can surge dra-
matically, resulting in significant stress on the emergency supply chain, manifested by
overwhelming volumes. For instance, in early 2020, the outbreak of COVID-19 led to an
explosive demand for face masks. However, China’s face masks faced severe shortages
due to insufficient routine stockpiles, technological constraints, and delayed production
recovery during the Spring Festival period.

4. Latency

Following the onset of an emergency event, there is often a delay in information
transmission. The acquisition and dissemination of emergency supply–demand informa-
tion tend to lag, and the inherent uncertainty of such events further amplifies this lag.
As a result, it becomes difficult to determine real-time demand accurately, leading to a
time-lagged manifestation of ESCS.

3.4. Causes and Evolutionary Mechanisms of ESCS
3.4.1. Causal Analysis of ESCS

The core driver of emergency supply chain operations is the dynamic interplay be-
tween supply and demand. Rather than operating as a static system, the emergency supply
chain continuously adjusts to close supply–demand gaps, functioning as a complex and
adaptive system. Specific shocks or compound disruptions can simultaneously impact both
the demand and supply sides, with stress propagating along the supply chain through
successive tiers as a result of imbalances in supply and demand( shown as Figure 2). Both
internal and external shocks to the emergency supply chain generate new constraints for
the system. For example, earthquakes may damage production facilities, disrupt transport
through road destruction, and impair communication across nodes. Moreover, earthquakes
may trigger secondary disasters such as landslides or mudflows, which intensify ESCS.

Figure 2. Schematic diagram of stress generation.
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3.4.2. Mechanisms of Stress Evolution in Emergency Supply Chains

Mechanisms refer to the internal functioning of system elements and the rules govern-
ing their interactions to fulfill specific functions under certain conditions. In emergency
supply chains, stress evolution reflects pressure fluctuations before and after emergency
events. In current research, scholars often divide the traditional lifecycle of an emergency
event into five phases: latency, indication, development, decline, and extinction [53].

This section builds upon the research on traditional event evolution mechanisms,
analyzing the stress evolution mechanisms from a lifecycle perspective. Based on ESCS
characteristics and the roles of emergency actors, this paper defines five phases: latency,
triggering, formation, outbreak, and relief. Emergencies evolve through a multi-stage
lifecycle, with each stage exhibiting distinct characteristics and varying levels of impact. The
stress on emergency supply chains—from the triggering to the relief—persists throughout
the entire lifecycle. Therefore, it is necessary to analyze these two aspects in conjunction, as
illustrated in Figure 3.
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development 
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phase

extinction 
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times
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phase relief phase 
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Figure 3. Emergency event-stress dual-cycle curve model.

In Figure 3, the dashed line represents the evolution cycle of ESCS, while the solid line
represents the lifecycle of an emergency event. Before point A, the stress intensity is equal to
the regular demand level within the supply chain and fluctuates due to market adjustments.
Between points A and B, the supply chain experiences a shock, triggering the onset of
stress, which gradually increases. The triggering period here is relatively short, possibly
lasting several hours or days, corresponding to the warning phase of the emergency event.
The further point A shifts to the right, the longer the latent period of stress, indicating more
obvious signs of the event. As time progresses, the event transitions from the warning
phase to the development phase. Point C represents the moment of an extreme shock,
which causes a sudden surge in demand and a corresponding jump in stress intensity to
point E. Point C and point E are located at the same time coordinate to emphasize the
suddenness and hugeness of the shock event, e.g., an earthquake, which can cause massive
damage in minutes or even seconds, resulting in an immediate and dramatic increase in
supply chain stress. At this point, there is a significant supply–demand gap for emergency
supplies, requiring immediate mobilization of emergency reserves and the organization
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of emergency production efforts. Point D marks the intersection between the intensity of
the threat and the stress intensity. The stress intensity at point E exceeds that at point D
due to the amplification effects of three direct sources of pressure—government agencies,
the general public, and the enterprises responsible for emergency supply. These pressures
may cause the stress intensity to exceed the actual demand for emergency supplies at that
moment. Point F indicates that emergency mobilization efforts are beginning to work
to reduce the gap between supply and demand and reduce the intensity of the pressure
by providing extraordinary supply capacity. It is noteworthy that point F represents the
actual peak of stress intensity. This is because stress can only be mitigated through the
enhancement of supply capacity via mobilization efforts, which are inherently delayed
relative to the onset of the emergency event. Consequently, even after point E—where the
event occurs—the stress intensity continues to rise until the mobilization strategies begin
to take effect at point F. At this point, the emergency supply chain stress transitions into
the de-escalation phase. As stress is alleviated, the intensity of the event’s threat gradually
decreases, and the event enters the decline phase, ultimately moving toward extinction.

4. Structured Description of the Evolution of Emergency Medical
Supply Chain Stress (EMSCS)

The evolution of supply chain stress constitutes a complex system characterized by
a multi-attribute set structure. Given that emergency supply chain stress evolves within
the highly uncertain context of extraordinary emergencies, single-indicator approaches
are often insufficient for capturing its dynamics in quantitative research. To address this
limitation, this study adopts a scenario–response analytical framework. Through multi-case
analysis, we extract both internal and external attributes of extraordinary emergencies,
integrating theoretical insights with practical relevance. Set theory is employed to en-
able a structured representation of the evolutionary process of emergency supply chain
stress, allowing for a clearer understanding of the interrelations and mechanisms among
these attributes.

Although the generalized structure of emergency supply chains may vary across
different categories of materials, the methodological approach to structured description
remains consistent. To demonstrate the applicability of this method, this study focuses on
the case of China’s emergency medical supply chain, providing a detailed methodological
application and analysis.

4.1. Multiple Case Studies

To enhance the generalizability and continuity of the research findings, a multi-case
study approach—one that permits cross-case comparisons—should be adopted. This
methodology involves the use of multiple data collection techniques across different en-
tities (such as individuals, groups, or organizations) to investigate a given phenomenon
within its natural context [54]. Applying a multi-case study to analyze and structurally char-
acterize the attributes of emergency events provides valuable insights into the evolutionary
patterns of emergency medical supply chains. This approach contributes significantly to a
deeper and more systematic understanding of how such supply chains respond and adapt
under stress [55].

4.2. Case Selection

To ensure the generalizability of the conclusions, it is essential to select cases that
encompass diverse types of emergency event, as well as multiple instances of the same cat-
egory of extraordinary public health emergencies. This allows for both within-case analysis
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and cross-case comparative analysis, thereby enhancing the robustness and applicability of
the research findings.

4.3. Case Analysis and Processing

The principles guiding the analysis and processing of cases are as follows:

• Information is screened and organized around the core themes of event progression,
the evolution of emergency supply chain stress, and the formulation of emergency
response decisions.

• Collected data are categorized and analyzed accordingly, followed by a systematic
consolidation of the findings.

4.4. Case Analysis Findings

The ultimate goal of examining the evolution of stress within emergency medical
supply chains is to enhance the prevention, response, and mitigation of the adverse impacts
caused by unconventional public health emergencies. Through multiple case analyses,
it has been identified that the evolution of such stress is influenced by a wide array of
interrelated attributes and demonstrates significant extensibility across events.

The roles played by different attributes vary throughout the progression of an emer-
gency. To better capture the structural logic underpinning this complexity, this study
categorizes the identified attributes and proposes a generalized structured framework for
stress evolution in emergency medical supply chains as follows:

Stress Evolution in Emergency Medical Supply Chains = {{Evolution Type (ET)}, {Key
Attributes (KA)}, {Secondary Attributes (SA)}, {Environment Attributes (EA)}, {Hazard
Assessment Attributes (HA)}}; it is defined as follows:

ET = gradual or radical;
KA = {KA1, KA2, KA3, ..., KAm}. The elements in the key attributes are the key factors

in the evolutionary process that sway the degree of stress evolution;
SA = {SA1, SA2, SA3, ..., SAn}. Elements in the dependent attributes have an influence

on the evolution of stress and the creation of hazards, assisting the key attributes in
portraying the event;

EA = {EA1, EA2, EA3, ..., EAk}. Elements in environmental attributes are those that
shape the development and evolution of events by influencing key and subordinate attributes;

HA = {HA1, HA2, HA3, ..., HAj}, Elements in the Hazard Assessment Attributes refer
to the attributes used to estimate the hazards caused by evolution,

where m, n, k, j ∈ N.
To construct a generalized and structured representation of the stress evolution within

emergency medical supply chains, this study systematically reviewed and validated key
information drawn from several major public health emergencies. These include the
emergencies in the supply chain for masks and thermometers during the 2003 SARS
outbreak, the disinfectant supply chain during the 2009 H1N1 influenza outbreak, the mask
supply chain at the onset of the COVID-19 pandemic in late 2019, and the antipyretic and
analgesic drug supply chain during the normalized phase of the COVID-19 pandemic in
late 2022.

This paper focuses on two representative cases to illustrate the process of event
presentation, chronological analysis, and structured description of stress evolution: the
mask supply chain during the initial outbreak of COVID-19 in late 2019 and the ibuprofen
supply chain during the normalized response phase of the pandemic in late 2022.

1. Stress Evolution of the Mask Supply Chain During the Initial COVID-19 Out-

break in China (Late 2019)
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Event introduction: The COVID-19 outbreak on 27 December 2019 marked the most
rapidly spreading, widely affecting, and difficult-to-control public health emergency in
China since the founding of the People’s Republic. Given that masks serve both as personal
protective equipment and as a source control measure, demand surged dramatically in a
short period. The stress evolution of the mask supply chain during this period thus serves
as a representative case for studying the dynamics of emergency medical supply chains
under extreme conditions.

Event overview: The stress evolution of the mask supply chain in early 2020 spanned
over two months and is categorized as a gradual-type emergency. The evolution was
primarily driven by the outbreak of COVID-19, the skyrocketing demand for masks, gov-
ernment interventions, and fluctuations in supply. Key influencing factors included the
rate of virus transmission, the speed of information dissemination, the volume of mask
demand, the intensity of emergency mobilization, and the supply capacity. The progression
of stress evolution could be gauged by indicators such as the spatial spread of the virus, the
proliferation of rumors, and the implementation of emergency mobilization. Meanwhile,
the supply–demand balance, price fluctuations, and public sentiment served as evaluative
metrics for the impact of supply chain stress.

Structured description of events: Mask Supply Chain Stress Evolution (2020) = {{grad-
ual}, {COVID-19 outbreak, surging mask demand (healthcare relief organizations, COVID-
19 virus-infected, economically motivated stakeholders, uninfected individuals seeking
protection), government intervention, mask supply}, {virus transmission rate, informa-
tion dissemination speed, mask demand volume, emergency mobilization intensity, mask
supply volume}, {pandemic spread, rumor proliferation, emergency mobilization prac-
tices (guiding the resumption and expansion of production, official information disclosure
and expert science communication, crackdowns on counterfeit masks and price gouging),
regional public mask-wearing mandates }, {supply–demand relationship, mask prices,
social opinion}}.

2. Stress Evolution of the Ibuprofen Supply Chain Following the Normalization of

COVID-19 Control Measures in China (Late 2022)

Event introduction: On 11 November 2022, China’s Joint Prevention and Control
Mechanism of the State Council announced 20 new measures to further optimize COVID-19
control, signaling a proactive and adaptive shift in public health policy both domestically
and internationally. Subsequently, on December 7, a follow-up set of targeted adjust-
ments, commonly referred to as the “New Ten Measures”, was released to further ease
restrictions [28]. These policy relaxations led to a rapid increase in population mobility.
Coupled with the high transmissibility of the Omicron variant, this triggered a surge in
demand for antipyretic and analgesic medications, and the ibuprofen supply chain emerged
as a representative case of stress evolution in emergency medical supply systems.

Event overview: The stress evolution of the ibuprofen supply chain lasted nearly two
months and is classified as a gradual-type event. Key drivers included policy changes
in epidemic prevention and control, a sharp increase in ibuprofen demand, government
interventions, and supply fluctuations. The pace of virus transmission, speed of infor-
mation dissemination, volume of demand, mobilization efforts, and production capacity
collectively influenced the dynamics of stress development. The spread of infection, dis-
semination of misinformation, and implementation of emergency response measures were
critical indicators for tracking the evolution process. Meanwhile, supply–demand imbal-
ances, drug price surges, and shifts in public sentiment served as key metrics for assessing
the consequences of supply chain stress.

Structured description of events: Ibuprofen Supply Chain Stress Evolution (Late
2022) = {{gradual}, {epidemic control policy adjustments, surging ibuprofen demand (large
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enterprises and institutions, individuals infected with Omicron, economically motivated
stakeholders, panic-infected), government intervention, ibuprofen supply}, {virus trans-
mission rate, information dissemination speed, ibuprofen demand volume, emergency
mobilization intensity, ibuprofen supply volume}, {infection spread, rumor proliferation,
emergency response implementation (supply chain stabilization and expansion, expert-led
rumor clarification and positive public guidance, crackdowns on hoarding, penalties for
price gouging)}, {supply–demand dynamics, ibuprofen pricing, public sentiment}}.

A comprehensive structural framework for the stress evolution of emergency medical
supply networks during major public health emergencies can be developed by analyzing
exemplary cases. This framework, which is constructed as follows, encapsulates the
essential elements and dynamics of such crises:

Emergency Medical Supply Chain Stress Evolution = {{gradual}, {triggering events,
demand surge (bulk procurement organizations, infected individuals, profit-oriented stake-
holders, panic-driven consumers), government intervention, supply}, {virus transmission
speed, information dissemination rate, demand volume, emergency mobilization inten-
sity, supply volume}, {event progression, rumor proliferation, emergency response imple-
mentation (capacity expansion, public opinion management, enforcement against illegal
practices)}}, {supply–demand dynamics, pricing, public sentiment}}.

To facilitate a more comprehensive analysis of the formation, escalation, and dissipa-
tion of supply chain stress and to reveal the underlying patterns governing its evolution,
this study integrates the concept of the emergency supply chain stress lifecycle. Based on
this, a systematic diagram of the stress evolution process in emergency medical supply
chains is developed and illustrated in Figure 4.

 

Figure 4. Systematic map of stress evolution process in the emergency medical supplies supply chain.
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5. Stochastic Petri Net Model Construction for Stress Evolution of
Emergency Medical Supply Chain

Through the structured analysis of stress evolution in emergency medical supply
chains, this evolution can be viewed as a complex system involving numerous components
characterized by stochastic behavior and dynamic interactions. Petri nets are particularly
well-suited for modeling and analyzing such complex systems, as they offer a graphical
framework that integrates data flow, control flow, and state transitions. In a Petri net,
transitions represent the changes between different system states, while places denote these
states before and after the transitions.

Therefore, this study employs the Petri net methodology proposed by Carl Adam Petri
in 1962 to model the stress evolution in emergency medical supply chains. This approach
enables a clear simulation of the system’s dynamic processes and current state, thereby
facilitating both system evaluation and the identification of improvement strategies [56].

We begin by using a stochastic Petri net to mathematically characterize the system.
Building on the isomorphism between the reachability graph of the Petri net and the state
space of a Markov chain, we then analyze the interrelationships among key components
involved in the stress evolution process.

A stochastic Petri net is typically represented by a six-tuple, denoted as SPN = (P,T;
F,W,M,λ ) , where

• P = {P1, P2, . . . Pn}(n > 0) is a finite set of places;
• T = (t1, t2, . . . , tm) is a finite set of transitions;
• F ⊆ P × T ∪ T × P is a set of directed arcs from places to transitions;
• W : F → N+(N+ = {1, 2, 3, . . .}) denotes the arc weight function;
• M : F → {1, 2, 3, . . .} represents the set of markings;

λ = {λ1, λ2, . . . , λk} is the set of average firing rates associated with the transitions.
The modeling process proceeds as follows:

Step 1: SNP Modelling.
Based on the evolution process of emergency medical supply chain stress propagation

illustrated in Figure 4, a corresponding stochastic Petri net (SPN) model is developed
following the steps described above, as shown in Figure 5. The model in Figure 5 consists
of 23 places and 15 transitions.

Figure 5. SPN model for stress evolution in the supply chain of emergency medical supply.

In Figure 5, the specific definitions of each place and transition within the model are
detailed in Table 1.
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Table 1. Definition of symbols in the SPN model of stress evolution in the supply chain of emergency
medical supplies.

Place Attribute State Transition Meaning of Change

P1 Purchase restrictions t1 Environmental developments
P2 Related policy restrictions t2 A series of chain reactions
P3 Socio-emotional impact t3 Spread of viruses
P4 Shock events t4 Information dissemination
P5 Increased turnover t5 Demand surge
P6 Misinformation generation t6 Bulk purchasing
P7 Spread of infectious diseases t7 People rush to buy
P8 Spread of rumors t8 Imbalance between supply and demand
P9 Bulk purchasing organizations t9 Government intervention
P10 Economic stakeholders t10 Emergency mobilization
P11 People infected with the virus t11 Public opinion control
P12 Panic infected t12 Capacity enhancement
P13 Large customer order generation t13 Punishment of unruly behavior
P14 Retail disorder t14 Supply and demand docking
P15 Insufficient supply t15 Supply and demand balancing
P16 Setting up a special team

P17
Experts to dispel rumors and provide

positive guidance

P18

Replenish and fix the chain (stabilize
production, reach production, change
production, increase production, and

expand production)

P19
Investigating and dealing with typical

hoarding and sales shyness
P20 Demand for hoarding subsides
P21 Increase in supply
P22 Prices stabilize
P23 Sufficient supply

Step 2: Generation of the Reachability Graph.

Based on the SPN model shown in Figure 5 and the transition firing rules, the initial
marking of the stochastic Petri net is defined as M1 = (1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
indicating that one token is initially placed in each of the places P1, P2, and P3. By ana-
lyzing the enabled transitions under this marking, different subsequent markings (states)
of the SPN can be derived. The full set of reachable markings, denoted as [M0>, is listed
as follows:

M2 = (0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); M3 = (0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0); M4 = (0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); M5 = (0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0); M6 = (0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); M7 = (0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,
0,0,0,0,0,0); M8 = (0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0); M9 = (0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,
0,0,0,0,0,0,0); M10 = (0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0); M11 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0); M12 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0); M13 = (0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,1,1,0,0,0,0); M14 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0); M15 = (0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,0,1,0,1,0,0); M16 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0); M17 = (0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,1,1,0,0); M18 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0); M19 = (0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0); M20 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0); M21 = (0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).

In a time-continuous SNP, a random delay exists between the moment a transition
becomes enabled and the moment it fires. This delay can be modeled as a continuous
random variable, x, which follows an exponential distribution. The average firing rates
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of transitions t1, t2, ..., t15 are denoted by λ1, λ2, ..., λ15. By representing the transitions
between different markings using directed arcs, a continuous-time Markov chain (CTMC)
structurally isomorphic to the SPN model can be derived, as illustrated in Figure 6.

Figure 6. Markov chain isomorphic to the SNP model.

Step 3: Solve for the Probability of Stability.

Let P(Mi), i ∈ {1, 2, ..., 21} denote the steady-state probability of marking Mi in the
equilibrium state of the corresponding Markov chain, which also represents the probability
of Mi in the steady-state of the SPN model. The following system of equations can thus
be established: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1P(M1) = λ15P(M21)

λ2P(M2) = λ1P(M1)

λ3P(M3) + λ4P(M3) = λ2P(M2)

λ4P(M4) = λ3P(M3)

λ3P(M5) = λ4P(M3)

λ5P(M6) = λ3P(M5) + λ4P(M4)

λ6P(M7) + λ7P(M7) = λ5P(M6)

λ7P(M8) = λ6P(M7)

λ6P(M9) = λ7P(M7)

λ8P(M10) = λ6P(M9) + λ7P(M8)

λ9P(M11) = λ8P(M10)

λ10P(M12) = λ9P(M11)

λ11P(M13) + λ12P(M13) + λ13P(M13) = λ10P(M12)

λ12P(M14) + λ13P(M14) = λ11P(M13)

λ11P(M15) + λ13P(M15) = λ12P(M13)

λ11P(M16) + λ12P(M16) = λ13P(M13)

λ13P(M17) = λ12P(M14) + λ11P(M15)

λ12P(M18) = λ13P(M14) + λ11P(M16)

λ11P(M19) = λ13P(M15) + λ12P(M16)

λ14P(M20) = λ13P(M17) + λ12P(M18) + λ11P(M19)

λ15P(M21) = λ14P(M20)
21
∑

i=1
P(Mi) = 1

(1)

Although the evolution of supply chain stress involves a certain degree of fuzziness
and uncertainty, such uncertainties typically concentrate around a single focal point (λi

point), rather than being distributed across multiple points simultaneously. Therefore,
triangular fuzzy numbers are introduced to represent the fuzzification of the transition
firing rate,λi. Let λ̃ =

(
λ̃1, λ̃2, . . . , λ̃15

)
denote the fuzzy set of transition firing rates, where
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λ̃i = (ai, bi, ci) satisfies that 0 < ai ≤ bi ≤ ci is a fuzzy number and μλi(x) : R → [0, 1] is

the triangular membership function of
∼
λi, defined as follows:

μλi(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x − ai
bi − ai

, ai ≤ x ≤ bi

ci − x
ci − bi

, bi ≤ x ≤ ci

0, others

(2)

The α-level cut set of λ̃i is denoted as(shown as Figure 7)

Aαi = [ai + (bi − ai)α, ci − (ci − bi)α] (3)

Figure 7. The α-level cut set of a fuzzy number.

The α-level cut set of the quadratic operations of fuzzy numbers X and Y can be
expressed as

Set X(α) = [X(α)
d , X(α)

u ], Y(α) = [Y(α)
d , Y(α)

u ], α ∈ [0, 1]

X(α) + Y(α) = [X(α)
d + Y(α)

d , X(α)
u + Y(α)

u ];

X(α) − Y(α) = [X(α)
d − Y(α)

u , X(α)
u − Y(α)

d ];

X(α) · Y(α) = [X(α)
d · Y(α)

d , X(α)
u · Y(α)

u ];

X(α)/Y(α) = [X(α)
d /Y(α)

u , X(α)
u /Y(α)

d ]

i f 0 /∈ [Y(α)
d , Y(α)

u ]

(4)

Following the algebraic operations of fuzzy numbers described above, the system of
Equation (1) is solved to obtain the steady-state probability distribution. The defuzzifica-
tion is then performed using the centroid method to derive the precise reliability value,
representing the likelihood of the emergency medical supply chain being in each steady
state during its pressure evolution. Based on this steady-state probability distribution, the
decision-making processes at various stages of the pressure evolution can be optimized,
thereby mitigating the adverse impacts of major public health emergencies. This anal-
ysis provides valuable theoretical guidance for improving the efficiency of emergency
decision-making in such events.
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6. Evolutionary Simulation Analysis of Supply Chain Stress

6.1. A Case Study of Ibuprofen in Beijing During the COVID-19 Pandemic

This study simulates the evolution of supply chain stress by using the ibuprofen
supply chain in Beijing during the COVID-19 pandemic as a representative example. In the
post-29 April 2020 phase, when China entered a stage of normalized epidemic prevention
and control, the ibuprofen supply chain—serving as a prototypical emergency medical
supply chain—underwent a nationwide wave of stress evolution at the end of 2022.

On 11 November 2022, the Standing Committee of the Political Bureau of the CPC
Central Committee introduced twenty optimization measures, including the removal of
the “close contact” classification, signaling a major policy shift in COVID-19 control. From
4 December 2022 to 20 January 2023, Baidu search data showed a sharp spike in interest
in “ibuprofen”, reflecting soaring public demand. In response, Beijing implemented ten
targeted measures on 7 December to ensure access to essential medications. This led
to widespread panic buying, pharmacy and online shortages, rising hospital visits, and
increased drug prices. On 8 December, at the 23rd National Conference on Respiratory
Diseases, Academician Zhong Nanshan called for a rational public response to the Omicron
variant, emphasizing its reduced pathogenicity despite high transmissibility. Increased
human mobility has led to a significant increase in the number of infections, and official
published data are shown in Figures 8 and 9.

Figure 8. Number of new confirmed cases nationwide.

On 14 December, the Ministry of Industry and Information Technology (MIIT)
launched an emergency initiative to ensure the production and supply of critical medical
materials. A task force was established to mobilize local joint prevention and control
mechanisms, accelerate pharmaceutical production, and compile a whitelist of key man-
ufacturers. Major online pharmacies were directed to urgently develop digital platforms
for medication access. On that day alone, 14 major manufacturers produced 28.25 million
boxes of adult ibuprofen, while Beijing reported a cumulative allocation of 4.7 million
tablets and 1.5 million bags (granules) of ibuprofen since December 11.
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Figure 9. Trends in the number and rate of positive nucleic acid tests for novel coronaviruses in the
national reporting population.

On 16 December, the MIIT expanded efforts to boost production by mobilizing phar-
maceutical companies in Shanxi, Sichuan, Jiangsu, and Hubei to support Beijing’s medical
supply demands. In parallel, platforms such as Ali Health and JD Health were tasked with
piloting targeted drug distribution systems in Shijiazhuang and Tianjin for home-based
COVID-19 patients. The China National Machinery and Equipment Tendering Center was
commissioned to solicit internet platforms capable of delivering urgently needed medica-
tions with precision. The Ministry of Transport urgently coordinated logistics support from
China Post, SF Express, and other carriers. Regulatory authorities intensified oversight of
major pharmaceutical wholesalers, cracking down on price gouging and hoarding. The
National Administration of Traditional Chinese Medicine issued home-use guidelines to
promote rational medication use and alleviate pressure on healthcare facilities.

On 18 December, the Joint Prevention and Control Mechanism of the State Coun-
cil issued a “Daily Dispatch Plan for the Production and Supply of Medical Materials”,
implementing a whitelist system and designating key suppliers. Special commissioners
were dispatched to ibuprofen raw-material manufacturers, covering over 80% of domestic
production capacity. The Ministry of Commerce accelerated the redirection of antipyretic
drug exports to the domestic market, while the MIIT facilitated the conversion of Shandong
Xinhua Pharmaceutical’s export production lines to domestic supply.

On 20 December, the State Administration for Market Regulation announced the
second batch of typical law enforcement cases related to the pandemic, reporting
307 investigations and 92 concluded cases involving illegal pricing, with fines totaling
CNY 2.581 million. The National Medical Products Administration also held a press
conference to address concerns regarding ibuprofen production and registration.

By 21 December, the number of manufacturers of ibuprofen (for adult use) had in-
creased to 64, with key enterprises reaching a daily output capacity of 81 million tablets.
Between December 14 and 22, national media intensively covered the supply chain efforts,
publishing over 80 original reports and more than 200,000 reposts across major websites
and social media platforms.

On 29 December, the combined daily output of ibuprofen and paracetamol—two key
antipyretic and analgesic drugs—reached 201 million tablets, a 4.1-fold increase compared
to December 16. That evening, China Central Television (CCTV) aired a segment titled
“Multi-Agency Efforts to Secure Medical Supply Chains”, while the Xinhua News Agency
released two in-depth reports with a combined readership exceeding one million views.
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Additional coverage was released the same night by Economic Daily, People’s Daily Online,
The Paper, and other major outlets.

On 6 January 2023, due to overtime production by several enterprises, the combined
daily output of ibuprofen and paracetamol reached 285 million tablets, surpassing their
approved capacity.

By 15 January, the MIIT confirmed that, based on a comprehensive analysis of produc-
tion, supply, inventory, and demand data, the supply of these two critical medications had
stabilized and was considered sufficient to meet national needs.

6.2. Scenario Analysis and Discussion

In this scenario analysis, the average transition rates (λ1, ..., λ15) were parameterized
concerning the evolution of ibuprofen supply chain stress at the end of 2022, as discussed in
the previous section. Since the onset of the COVID-19 pandemic in late 2019, the ibuprofen
supply chain stress latency phase has been longer, largely due to lockdown measures,
public fear, and purchasing restrictions. Consequently, the average implementation rate for
the first transition, λ1, was set to 100.

Based on the previous section’s discussion on the implementation of China’s
“20 Measures” and Beijing’s localized “10 Measures” for epidemic prevention and con-
trol, the surge in media coverage surrounding ibuprofen, and mobilization efforts by
national government agencies to coordinate its supply, combined with fluctuations in
Baidu Search Index data for the keyword “ibuprofen”, the average implementation rates
of transitions t2, ..., t13 were assumed to be λ2 = 0.5, λ3 = 1, λ4 = 1, λ5 = 22, λ6 = 4, λ7 = 1,
λ8 = 3, λ9 = 6, λ10 = 4, λ11 = 9, λ12 = 3, λ13 = 2, λ14 = 5, and λ15 = 11, respectively.

Considering the inherent uncertainties associated with the activation of transitions
during the evolution of emergency medical supply chain stress—though such activations
generally converge around a specific inflection point (denoted as Point λi)—a triangular
fuzzy number approach was adopted. Specifically, a ±15% fuzzification was applied
to parameters λ1, . . ., λ15, thereby generating a fuzzy set of transition activation rates:
λ̃ =

(
λ̃1, λ̃2, . . . , λ̃15

)
.

According to the arithmetic rules of fuzzy numbers, variable α is defined over
the interval (0, 1) with an increment of 0.1. Equation System (1) was then solved
under these conditions, and the resulting computational outcomes are presented in
Appendix Tables A1 and A2. Scenario analysis enables the exploration of different evolu-
tionary states, and in this paper we carry out scenario simulation analyses by varying the
average implementation rate of variations related to the chain reaction of shock events,
drug procurement, and emergency mobilization.

6.2.1. Scenario 1: Variations in the Cascade of Shock Events (λ2: Chain Reaction, λ3: Virus
Transmission, λ4: Information Dissemination)

Assuming all other rates (λ1, λ3, λ4, . . ., λ15) remain constant, the average transition
rate λ2 is gradually increased from 0.1 to 3. The resulting equilibrium states of the supply
chain evolution are illustrated in Figure 10. Similarly, holding λ1, λ2, λ4, . . ., λ15 constant
while increasing λ3 from 0.1 to 3 yields the results shown in Figure 11. When λ1, λ2, λ3,
λ5, . . ., λ15 are fixed and λ4 is varied over the same range, the corresponding evolution
outcomes are presented in Figure 12.

The probability convergence trends shown in Figures 10–12 suggest that as the average
transition rates λ2, λ3, and λ4 increase from 0.1 to 3, the probability of a sharp rise in public
demand for ibuprofen, p(M8), also increases. This pattern reflects how policy adjustments,
increased population mobility, and the spread of misinformation can trigger rapid chain
reactions in emergency supply chains.
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Figure 10. Equilibrium results of SCSE under λ2 variations.

Figure 11. Equilibrium results of SCSE under λ3 variations.

Figure 12. Equilibrium results of SCSE under λ4 variations.

Interestingly, an inverse dynamic can be observed between the probability of virus
transmission, p(M4), and rumor propagation, p(M5). In the latent phase of supply chain
stress, the occurrence of a triggering shock event can rapidly activate and convert latent
stress into stress, where the virus spread and public sentiment tend to influence each other
in opposite directions.
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To mitigate supply chain stress during major public health emergencies, it is essential
for governments to strengthen emergency response mechanisms and enhance the design
and implementation of contingency plans. Rapid response capabilities are critical to
alleviating pressure across the supply chain. During the stress formation phase, timely
and accurate dissemination of epidemic-related information—particularly in the early
stages—is key. Controlling misinformation and managing public sentiment effectively can
help reduce social panic and slow the development of supply chain stress.

6.2.2. Scenario 2: Variations in Pharmaceutical Procurement (λ6: Bulk Purchasing, λ7:
Panic Buying)

Assuming that all other parameters (λ1, . . ., λ5, λ7, . . ., λ15) remain constant, the
average transition rate λ6 is incrementally increased from 1 to 20. The corresponding
equilibrium outcomes of the system’s evolution are shown in Figure 13. Similarly, holding
λ1, . . ., λ6, λ8, . . ., λ15 constant, increasing λ7 from 1 to 20 yields the results depicted in
Figure 14.

Figure 13. Equilibrium results of SCSE under λ6 variations.

Figure 14. Equilibrium results of SCSE under λ7 variations.

As illustrated by the convergence trends in Figures 13 and 14, when the average
transition rates λ6 and λ7 rise from 1 to 20, the probability of a surge in ibuprofen demand
across society, p(M8), increases. Concurrently, the probability of retail disorder, p(M9), de-
creases in the case of increased bulk purchasing but increases when panic buying intensifies.
These findings indicate that during the pressure formation phase of the emergency medical
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supply chain, large-scale procurement by enterprises and panic buying by the public can
both contribute to a supply–demand imbalance, resulting in widespread drug shortages.

Notably, once bulk procurement surpasses a critical threshold, it becomes a major
source of supply chain pressure. To alleviate such pressure, government authorities should
consider implementing bulk procurement control mechanisms. These measures could
prioritize pharmaceutical supply to healthcare institutions while temporarily restricting
non-medical entities from engaging in large-scale purchasing during periods of heightened
drug scarcity. This would allow a greater proportion of the pharmaceutical supply to flow
into the retail sector, ensuring that individuals with mild symptoms have timely access
to medications, ultimately reducing the progression of mild cases into severe ones and
helping to contain the overall spread of the epidemic.

6.2.3. Scenario 3: Variations in Emergency Mobilization Measures (λ11: Public Opinion
Management, λ12: Capacity Expansion, λ13: Enforcement Against Malpractice)

Assuming all other parameters (λ1, . . ., λ10, λ12, . . ., λ15) remain constant, the average
transition rate λ11 is increased from 1 to 20. The resulting evolutionary equilibrium out-
comes are shown in Figure 15. Similarly, when λ1, . . ., λ11, λ13, λ14, λ15 are held constant
and λ12 is increased from 1 to 20, the corresponding results are displayed in Figure 16.
Finally, increasing λ13 from 1 to 20 while keeping λ1, . . ., λ12, λ14, λ15 constant yields the
outcomes presented in Figure 17.

Figure 15. Equilibrium results of SCSE under λ11 variations.

Figure 16. Equilibrium results of SCSE under λ12 variations.
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Figure 17. Equilibrium results of SCSE under λ13 variations.

As demonstrated by the convergence trends in Figures 15–17, increasing the imple-
mentation rates of emergency mobilization parameters—namely, public opinion guidance
(λ11), capacity expansion (λ12), and law enforcement against hoarding and price goug-
ing (λ13)—from 1 to 20 consistently enhances the probability of a stable supply–demand
equilibrium, p(M20). This suggests that these emergency response efforts—such as posi-
tive media guidance, supply chain reinforcement, and strict punishment of opportunistic
behaviors—play equally critical roles in relieving pressure during the peak phases of a
medical supply chain crisis.

To accelerate the mitigation of supply chain stress, it is imperative for government
authorities to proactively promote expert-led dissemination of authoritative and reassuring
information, organize rapid production shifts and capacity expansions across the medical
supply sector, and intensify regulatory oversight of the pharmaceutical market. Through a
three-pronged strategy—effective public communication, robust supply chain mobilization,
and stringent legal enforcement—societies can stabilize drug prices, curb irrational demand,
and facilitate a new equilibrium in the supply and demand of essential medical resources.

7. Conclusions

This study introduces a novel concept—emergency supply chain stress—and system-
atically explores its sources and characteristics. Anchored in lifecycle theory, the evolution
of such stress is categorized into five distinct stages: the latent stage, the triggering stage,
the formation stage, the outbreak stage, and the mitigation stage. Using the emergency
medical supply chain as a representative case, the study provides a structured description
of the stress evolution system, identifying and clarifying the interactions between internal
and external factors throughout the evolutionary process.

Building on this foundation, a stochastic Petri net model is developed to mathe-
matically capture the dynamics of emergency supply chain stress. The model integrates
key contextual elements of China’s infectious disease transmission patterns, emergency
medical supply and demand dynamics, resource allocation decisions, and emergency
mobilization mechanisms.

This research offers a new analytical lens for studying issues related to emergency
supply chains and provides a foundation for further model development. With an improved
understanding of stress evolution in emergency supply chains, future research can focus
on developing stress-testing tools to better evaluate the performance of such systems,
design mobilization strategies, and test their effectiveness. These efforts can contribute
to the formulation of more robust emergency response plans and enhance preparedness
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for large-scale, unconventional emergencies. Further studies may also explore supply
chain resilience and system security to strengthen the overall capacity of emergency supply
chain systems.

Nevertheless, this study has certain limitations. As the introduction of the “stress”
concept into emergency supply chains represents a novel approach, further validation
using a broader range of emergency material categories is required. Additionally, emerging
mobilization strategies may arise in future emergency scenarios, necessitating continu-
ous model refinement and expansion through the application of text-driven modeling
techniques.
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36. Büyüktahtakın, İ.E.; des-Bordes, E.; Kıbış, E.Y. A New Epidemics–Logistics Model: Insights into Controlling the Ebola Virus
Disease in West Africa. Eur. J. Oper. Res. 2018, 265, 1046–1063. [CrossRef]

37. Huo, J.Z.; Zhang, J.W.; Xu, S.Y. Analysis of Strategic Reserve and Rotation Policy of Emergency Medical Supplies: Taking Masks
as an Exampl. Shanghai Manag. Sci. 2023, 45, 43–49.

38. Paul, S.; Venkateswaran, J. Impact of Drug Supply Chain on the Dynamics of Infectious Diseases. Syst. Dyn. Rev. 2017,
33, 280–310. [CrossRef]

39. Queiroz, M.M.; Ivanov, D.; Dolgui, A.; Fosso Wamba, S. Impacts of Epidemic Outbreaks on Supply Chains: Mapping a Research
Agenda amid the COVID-19 Pandemic through a Structured Literature Review. Ann Oper Res 2022, 319, 1159–1196. [CrossRef]

40. Paul, S.; Venkateswaran, J. Designing Robust Policies under Deep Uncertainty for Mitigating Epidemics. Comput. Ind. Eng. 2020,
140, 106221. [CrossRef]

41. Liu, M.; Zhang, D. A Dynamic Logistics Model for Medical Resources Allocation in an Epidemic Control with Demand Forecast
Updating. J. Oper. Res. Soc. 2016, 67, 841–852. [CrossRef]

42. Anparasan, A.A.; Lejeune, M.A. Data Laboratory for Supply Chain Response Models during Epidemic Outbreaks. Ann. Oper.
Res. 2018, 270, 53–64. [CrossRef]

43. Govindan, K.; Mina, H.; Alavi, B. A Decision Support System for Demand Management in Healthcare Supply Chains Considering
the Epidemic Outbreaks: A Case Study of Coronavirus Disease 2019 (COVID-19). Transp. Res. Part E Logist. Transp. Rev. 2020,
138, 101967. [CrossRef]

44. Shi, W.Q.; He, J.; Wang, M.Y. System dynamics model of emergency medical materials supply chain considering decision maker’s
overconfidence bias. J. Saf. Environ. 2023, 23, 1545–1555. [CrossRef]

45. Song, Y.; Xu, H.; Fang, D.; Sang, X. Modelling and Analysis of Emergency Scenario Evolution System Based on Generalized
Stochastic Petri Net. Systems 2025, 13, 107. [CrossRef]

46. Ivanov, D. Predicting the Impacts of Epidemic Outbreaks on Global Supply Chains: A Simulation-Based Analysis on the
Coronavirus Outbreak (COVID-19/SARS-CoV-2) Case. Transp. Res. Part E Logist. Transp. Rev. 2020, 136, 101922. [CrossRef]
[PubMed]

47. Zhang, M.; She, L.; Geng, B. Research on the Similarity of the Structured Emergency Events Based on Scenario. Chin. J. Manag.
Sci. 2017, 25, 151–159.

48. Gong, L.; Zhang, J.; Li, B. Research on Post-Disaster Emergency Material’s Mobilization Production Considering Raw Material
Supply. Xitong Gongcheng Lilun Yu Shijian/Syst. Eng. Theory Pract. 2018, 38, 2600–2610.

49. Ling-jun, G.; Ji-hai, Z. Multi-Objective Emergency Production Assignment Model Based on NSGA-II. Oper. Res. Manag. Sci. 2019,
28, 7.

50. Gong, L.; Zhang, J. System-Dynamics-Based Emergency Transportation Strategy Analysis for Oil Products. Xitong Gongcheng
Lilun Yu Shijian/Syst. Eng. Theory Pract. 2017, 37, 2256–2267.

51. Liu, M.P. Research on Mechanism Construction of Collaborative Governance of Online Public Opinion on Major Emergencies.
Truth Seek. 2022, 64–76, 111.

52. Daniels, R.; Kettl, D.; Kunreuther, H. On Risk and Disaster: Lessons from Hurricane Katrina; University of Pennsylvania Press:
Philadelphia, PA, USA, 2006; ISBN 978-0-8122-1959-3.

188



Systems 2025, 13, 423

53. Jie, G.; Licheng, Y.; Zixu, S. Crisis Management Based on Science and Technology Perspective and Double-Cycle Theory. Sci.
Technol. Prog. Policy 2020, 37, 8–13.

54. Benbasat, I.; Goldstein, D.K.; Mead, M. The Case Research Strategy in Studies of Information Systems. MIS Q. 1987, 11, 369–386.
[CrossRef]

55. Guo, C.; Song, Y. A New Stochastic Petri Net Modeling Approach for the Evolution of Online Public Opinion on Emergencies:
Based on Four Real-Life Cases. Systems 2024, 12, 333. [CrossRef]

56. Lin, C. Stochastic Petri Nets and System Performance Evaluation; Tsinghua University Press: Beijing, China, 2005. (In Chinese)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

189



Article

The Impact of Dual-Channel Investments and Contract
Mechanisms on Telecommunications Supply Chains

Yongjae Kim

College of Business, Hankuk University of Foreign Studies, 107, Imun-Ro, Dongdaemun-Gu,
Seoul 02450, Republic of Korea; y.kim@hufs.ac.kr

Abstract: This study examines how contract structures influence coordination and innova-
tion incentives in dual-channel telecommunications supply chains. We consider a setting
where a mobile network operator (MNO) supplies services both directly to consumers and
indirectly through a mobile virtual network operator (MVNO), which competes in the retail
market. Using a game-theoretic framework, we evaluate how different contracts—single
wholesale pricing, revenue sharing, and quantity discounts—shape strategic decisions,
particularly in the presence of investment spillovers between parties. A key coordination
problem emerges from the externalized gains of innovation, where one party’s investment
generates value for both participants. Our results show that single wholesale and revenue
sharing contracts often lead to suboptimal investment and profit outcomes. In contrast,
quantity discount contracts, especially when combined with appropriate transfer payments,
improve coordination and enhance the total performance of the supply chain. We also find
that innovation led by the MVNO, while generally less impactful, can still yield reciprocal
benefits for the MNO, reinforcing the value of cooperative arrangements. These findings
emphasize the importance of contract design in managing interdependence and improving
efficiency in decentralized supply chains. This study offers theoretical and practical impli-
cations for telecommunications providers and policymakers aiming to promote innovation
and mutually beneficial outcomes through well-aligned contractual mechanisms.

Keywords: dual-channel supply chain; telecommunication market; supply chain
coordination; technological innovation; investment spillover

1. Introduction

From a supply chain perspective, in telecommunications, the relationship between a
mobile network operator (MNO) and a mobile virtual network operator (MVNO) provides
a unique market structure. Unlike the traditional supply chain structure that follows a
wholesale–retail–consumer sequence, the relationship between these two partners repre-
sents a cooperative dynamic where the MNO becomes a supplier to the MVNO, and the
bargaining power of the supplier (MNO) is dominant. Simultaneously, it constitutes a
dual-channel supply chain structure where the MNO and the MVNO compete in the retail
market. Governments in many countries are encouraging MVNOs to participate in the
telecommunications market to promote competition and moderate market concentration.
The market share of MVNOs varies by country, ranging from 0.9% to 47.5%. Notably,
Germany (47.5%), Denmark (33.5%), and Canada (28.8%) have substantial MVNO market
shares. As of 2019, the average market share of MVNOs across 36 OECD countries stood at
11.7% [1]. The number of MVNOs also varies by country, with the United States having
over 200, while Germany, Japan, and the United Kingdom each have around 100 MVNOs
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operating. These MVNOs often offer more competitive pricing to customers compared to
MNOs, making them appeal to price-sensitive consumers [2].

To stimulate competition in telecommunications markets characterized by oligopolis-
tic structures with only three to four operators per country, governments around the world
have consistently pursued strategies to foster the sustained growth of MVNOs. Key ele-
ments of various policy approaches include designating MNOs as mandatory wholesale
providers and compelling them by law to enter into wholesale agreements with MVNOs.
In some countries, such as Austria, Japan, Spain, and South Korea, the government inter-
venes by setting the pricing of wholesale services between MNOs and MVNOs, rather
than leaving it to voluntary negotiations between operators. This approach promotes
transparency and equitable access to wholesale services, ultimately aiming to invigorate
market competition.

While not widely disclosed in individual agreements, the contractual arrangements
between MNOs and MVNOs can be broadly categorized into three main types, as classified
by [3]. The first type is called the “Retail-Minus” contract, where the wholesale price is
established by applying a fixed discount rate to the MNO’s retail price, excluding avoidable
costs. This approach is akin to the “single wholesale price” contract format, where the rates
for voice and data services are specified and used to establish wholesale prices. The second
widely employed approach is “Revenue Sharing”, wherein MNOs and MVNOs divide the
revenue generated by an MVNO according to a predetermined percentage. This method
ensures proportional sharing of revenues between the two parties. The third approach,
adopted in certain countries such as Japan, involves “Quantity Discount” contracts, where
bulk discounts are negotiated between operators. This strategy often hinges on the volume
of services exchanged and can lead to cost savings for MVNOs based on the quantity of
services they purchase.

Another concern facing MNOs within the framework of the dual-channel supply
chain is the incentive for investment when such a market structure is in place [4,5]. The
market structure of MNOs and MVNOs differs from the traditional addition of a direct
channel (online) to the retail channel (brick-and-mortar). Instead, the crucial difference
is that it involves the emergence of another retail channel alongside the MNOs’ existing
direct channel. From the perspective of MNOs, investments in innovation typically aim to
maximize their profits through enhancements in network quality and speed and launching
next-generation communication services, such as 5G, 6G, satellite communication, and
AI-based network technologies, and so on. However, in a dual-channel supply chain, the
investments made by the supplier (MNO) can lead to spillover effects on the retailer’s
(MVNO) demand and revenue. There are arguments that this dynamic, where MVNOs
also reap the rewards of investments, can lead to concerns and dampen the enthusiasm
of MNOs for investment in future innovation. In innovation investment, a spillover effect
refers to the impact or influence that one party’s innovation efforts have on the other party
within a supply chain or a collaborative setting [6,7]. It represents how an investment made
by one participant affects the performance, decisions, or outcomes of the other participant
in the supply chain, often in terms of increased demand, efficiency, or profitability. This
effect can be either positive, where the innovation benefits both parties, or negative, where
it may create challenges or conflicts. Therefore, spillover effects are crucial to understanding
the coordination within supply chains involving innovation investments.

Based on the example above, this study was conducted under the premise of a formed
dual-channel supply chain rather than a choice of supply chain channels. We mainly explore
effective contract mechanisms among the contracting parties while considering the spillover
effects of investment for innovation on supply chain coordination. First, we examine
efficient wholesale contract methods that facilitate coordination between the two supply
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chain partners who maintain a cooperative relationship while simultaneously competing in
the retail market, taking into account the characteristics of the telecommunications market.
We also investigate the resulting changes in the profitability of the market participants
and the supply chain. Furthermore, regarding the spillover effects of innovation, this
study inherently addresses the spillover of MNO (supplier) investments given the tens of
billions of dollars of substantial annual investments made by MNOs in reality. In addition,
we analyze the impact on supply chain profitability when retailers engage in innovative
activities such as launching new services (e.g., partnerships with Over-the-Top (OTT)
providers) or investing in enhancing their own services.

Our model consists of three main aspects: First, we analyze a situation where two com-
panies are either centralized or in a parent–subsidiary relationship, with perfect monitoring
between contracting parties. This serves as the benchmark case for our analysis. Second,
we incorporate three contract models commonly observed in the current market, including
single wholesale price contracts, revenue sharing contracts, and quantity discount contracts,
among others. By comparing these contract models with the benchmark case, we analyze
the changes in the profit functions of the contracting parties, the expected profits of the
entire supply chain, and overall efficiency. This allows us to examine more realistic and
efficient contract mechanisms between the business partners in a dual-channel supply chain
among the various contract options available. Third, we examine the spillover effect of
self-initiated investments for innovation on both the MNO and the MVNO and investigate
the coordination dynamics between these two partners when investment decisions are
under consideration.

This study makes several contributions to the literature on dual-channel supply chain
coordination in the telecommunications sector. First, it demonstrates that implementing
quantity discount mechanisms alongside innovation investments can significantly enhance
the overall supply chain performance. Such coordination not only improves the alignment
between suppliers and retailers but also protects the supplier’s returns by mitigating the
negative effects of investment spillovers. In addition, we show that innovation investments
by the retailer—enabled through spillovers—can positively affect the entire supply chain,
providing reciprocal benefits to the supplier.

Unlike prior studies that primarily focus on single-channel coordination or channel
selection with multiple retailers, our research emphasizes the contractual dynamics be-
tween the supplier (MNO) and a single retailer (MVNO), particularly in the context of
innovation-driven investments such as 5G, 6G, satellite communication, and AI-based
network technologies. This focus allows us to highlight the unique coordination challenges
arising when the supplier bears the innovation cost. Moreover, while much of the existing
literature limits itself to price and profit optimization, our work explores a broader range of
contract mechanisms and considers the investment incentives of both parties. By doing so,
we offer a more comprehensive view of supply chain coordination that reflects the strategic
interests of telecommunications stakeholders.

The organization of this paper is as follows. Section 2 studies previous studies related
to our research and emphasizes the unique aspects of this study. Section 3 describes
the dual-channel supply chain contract models. In Section 4, we study the coordination
within a dual-channel supply chain without investment for innovation. Section 5 explores
coordination while considering the spillover effects of investment. Section 6 concludes our
study with a discussion of its limitations and potential research directions.

2. The Related Literature

Earlier studies, such as the work conducted by [8], primarily focused on the contract
mechanisms and coordination among supply chain partners. Subsequent research has
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seen active analyses of various contract types and market structures, including single-
price contracts [9], flexible contracts [10], revenue sharing contracts [11], and quantity
discount contracts [12]. Comprehensive reviews of this body of research can be found in
references such as [13,14]. In the context of dual-channel supply chain coordination, a range
of contract types has been explored to foster cooperation among suppliers and retailers
in decentralized settings. For instance, ref. [15] shows the effect of the channel structure
of the supply chain and channel coordination through the channel-adding Pareto zone
concept. Ref. [16] examined the coordination structures within decentralized supply chains,
finding that contracts involving wholesale and direct channel prices benefited retailers, but
proposed complementary contracts such as two-part tariffs for mutual benefit. Ref. [17]
introduced a two-way revenue sharing contract tailored to dual-channel supply chains,
combining traditional revenue sharing with a reverse revenue sharing contract. Similarly,
ref. [18] proposed contracts for managing manufacturer–retailer competition, investigating
their impact on the pricing and recycling rates in closed-loop supply chains. They also
introduced reverse revenue sharing by allowing manufacturers to share cost savings.
Ref. [19] found that cost sharing contracts encouraged improvements in retailer services
and discouraged price competition. Ref. [20] explored revenue and profit sharing contracts
in non-cooperative and cooperative game structures, highlighting their effectiveness in
different customer scenarios. For a comprehensive review of this body of research, we refer
to [21].

Among various contract mechanisms, quantity discount contracts have been particularly
effective in achieving supply chain coordination. Ref. [22] introduced linear quantity discount
contracts designed to manage manufacturer–retailer competition. These contracts proved
effective in supply chain coordination, albeit resulting in reduced retailer profits compared
to those in decentralized scenarios. Ref. [23] employed hybrid mechanisms that combined
quantity discounts and franchise fees to mitigate conflicts within dual-channel supply chains,
yielding benefits across the entire supply chain when the expected profits aligned with those
in decentralized settings. It is noteworthy that the above diverse contract types and coordina-
tion mechanisms may not entirely align with the realities of the MNO and MVNO contract
relationships we examine in this study. For instance, the application of two-way revenue
sharing or profit sharing concepts may not be feasible from the perspective of MNOs, which
often hold negotiating leverage and significant revenue disparities. Additionally, the unique
characteristics of service-based industries can make it challenging to implement concepts
such as closed-loop supply chains and return policies. While the research [22] shares some
similarities with our study, our research differs in that we focus on the contractual relation-
ships between suppliers and retailers, particularly in cases involving MNO investments for
innovation. Unlike scenarios involving channel selection and multiple retailers, our study
considers the coordination aspects when innovation-driven investments are made by MNOs,
highlighting this as a key different aspect.

Despite growing interest, the interface between investment for innovation and supply
chain management remains an understudied domain. Ref. [24] investigated a scenario
where a supplier invested in process innovation to improve product quality and increase
consumer value. They examined three supply contracts and showed that the revenue
sharing contract was capable of achieving the optimal innovation levels and channel coor-
dination. Ref. [25] explored how cost sharing concepts within supply chains could increase
innovation investments upstream. Their research demonstrated that such contracts ef-
fectively encouraged innovative investments by upstream partners. Ref. [26] examined
the innovation and retail channel dynamics in a dual-channel supply chain. The find-
ings suggested that retailer benefits could result from a supplier’s entry into the retail
sector, as this motivated the supplier to make cost-reducing investments. This, in turn,
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led to lower wholesale prices and improved the profits for both parties. Ref. [27] ex-
plored that innovators might strategically outsource to competitor CMs, aiming for market
leadership in cases of technical innovations and introducing innovation uncertainties for
non-technical innovations. Ref. [28] explored the collaborative innovation within supply
chains, specifically focusing on products co-developed by an upstream supplier and a
downstream manufacturer. Their study showed that when the manufacturer possessed
sufficient resources, they were inclined to invest in new product development, whereas
the supplier did not share the same inclination. This work emphasized the significance of
innovation driven by manufacturers and highlighted the necessity of factoring in prod-
uct the profit margins when engaging in collaborative innovation efforts. Recent studies
have investigated innovation spillovers in supply chain settings from various perspectives.
Ref. [29] provides empirical evidence that knowledge spillovers from customers signifi-
cantly enhance supplier innovation, particularly under geographic proximity. Ref. [30]
further confirms that buyer innovation positively affects supplier innovation, especially
in long-term buyer–supplier relationships, though technological proximity shows limited
moderating effects. While these studies deepen our understanding of the effects of spillover
on innovation outcomes, our research is distinct in its focus on the coordination within a
dual-channel supply chain involving innovation investments. Specifically, we investigate
how contractual mechanisms can address both channel conflict and investment spillovers,
facilitating strategic alignment between mobile network operators (MNOs) and mobile
virtual network operators (MVNOs). While there are similarities with [24], their research
primarily centered on single-channel coordination utilizing the Hoteling model, setting it
apart from our study.

Research on the contract mechanisms between MNOs and MVNOs has been con-
ducted in both economics and the telecommunications industry. Ref. [31] analyzed the
legitimacy of MVNO market entry and the changes in the profits of each party when these
companies compete in the telecommunications market. Ref. [32] investigated situations
where facility-based vertically integrated firms compete independently with rivals on the
broadband access market, studying the impact of government regulations. They argued
that under regulatory conditions where the government sets wholesale prices, there is
a reduction in firms’ investment incentives, and competing firms providing wholesale
services tend to overinvest when creating new value-added services. Similarly, ref. [33]
studied how the entry of MVNOs and regulatory access policies affect MNOs’ investment
behavior, utilizing data from 58 MNOs across 21 OECD countries. Their findings sug-
gested that mandated access provision is associated with a reduced intensity of MNO
investments, emphasizing the importance of addressing the investment incentives when
granting access to MVNOs. In addition, refs. [34,35] used non-cooperative game theory to
analyze the equilibrium wholesale prices between MNOs and MVNOs, considering the
market conditions. A noteworthy distinction of our research is that it extends beyond the
mere computation of wholesale prices and profit functions and instead explores a range
of contractual mechanisms. Furthermore, our study is conducted with a particular focus
on the interests and profitability of telecommunication supply chain stakeholders, as well
as the perspective of investment incentives. These factors set our research apart from the
aforementioned studies.

3. The Model

We explore a dual-channel supply chain structure where a supplier (MNO) distributes
products both directly to customers through their own direct channel and indirectly through
an MVNO. These channels are labeled as the “direct” and “indirect” channels correspond-
ingly. The MNO sets a wholesale price, denoted as w, for selling products to the retailer
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and sets the direct retail price, labeled as ps, in the direct channel. The retailer decides on
the retail price, denoted as pr, in the indirect channel. Table 1 summarizes the notation of
the variables.

Table 1. Notation for variables.

Variables Description

w The unit wholesale price offered by the MNO to the MVNO

ps The retail price of the direct channel

pr The retail price of the indirect channel

Ds Demand from the direct channel

Dr Demand for the indirect channel

a Customer preference for the direct channel ( 1
2 < a < 1)

b Cross-price elasticity (0 < b < 1)

c The operating cost of the telecommunication service

x Investment level for innovation

πs The supplier’s (MNO’s) profit

πr The retailer’s (MVNO’s) profit

We have employed prior research as the foundation for formulating the linear demand
functions for both channels [36–39]. Specifically, we assume that the market demand in
both the direct and indirect channels responds to price changes and is influenced by the
level of investment made by the supplier. In the market composed of an MNO and an
MVNO, we also assume that the products are homogeneous, but the customer demand
varies in response to differences in price.

Ds = aA − ps + b(p r − ps) + γx
Dr = (1 − a)A − pr + b(p s − pr) + γx

Let Ds represent the demand from the direct channel and Dr represent the demand for the
indirect channel. Parameter A characterizes the baseline demand, and a (0 < a < 1) represents
the level of customer preference for the MNO’s direct channel. In the telecommunications
market, which is typically a direct channel leading market, we assume a > 1

2 . Correspondingly,
1 − a characterizes the degree of customer preference for the indirect channel. The precise
value of the initial market potential A is not a critical factor in our analytical model. The
primary findings of our paper remain robust, even if the scale of the baseline demand is
adjusted. Thus, for analytical tractability and without loss of generality, we standardize the
value of A to one, aligning with the methodology of [36,37,40–42].

We also assume that the price elasticity coefficients for Ds and Dr are both set to one,
according to [43].

The cross-price elasticity is denoted as b(bs = br = b), where 0 < b < 1. A value of b =
0 would imply that the two markets operate independently, while b = 1 would indicate perfect
substitutability. In the telecommunications context, services such as voice and data are similar,
so we assume b is strictly between 0 and 1. Given the consumer loyalty and pricing differences
between MNOs and MVNOs, it is reasonable to expect that b remains closer to 0 than to 1.
Furthermore, we represent the increase in demand due to investment in technological innovation
as γx [26,28,32]. While the increases in demand for the indirect and direct channels may differ,
assuming the sale of products with the same attributes, we set γs = γr as the initial assumption
and subsequently analyze cases where these parameters differ.
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The MNO incurs a quadratic network investment cost associated with investments in
innovative services, such as enhancing speed, improving data quality, or adding additional
features. This cost function is represented as C(x) = k x2

2 , where it satisfies the conditions

C(0) = 0, dC(x)
dx > 0 and dC2(x)

dx2 > 0 ([44,45]).
With the above notation, the supplier’s profit is determined by

πs = (ps − c)Ds + (w − c)Dr − k
x2

2
(1)

and the profit of the retailer is determined as

πr = (pr − w)Dr (2)

where w is the wholesale price charged by the MNO.
In the telecommunications market, the marginal operating cost (c) approaches zero,

while the investment costs for new services and innovations can be substantially high.
Therefore, we assume that the demand in the indirect channel is (1 − a) � c.

If the dual-channel supply chain undergoes vertical integration, the profit of the
centralized dual-channel is given by

πI = (ps − c)Ds + (pr − c)Dr − k
x2

2
(3)

Regarding investments in innovation, we assume that a significant amount of capital
is invested over an extended period. Investment decisions must be made many years
before final products are launched on the market. Therefore, the sequence of events in
our model is as follows: First, the supplier selects the investment level x. Second, the
supplier determines the retail price (ps) of their own direct channel and the wholesale
price (w). Third, the retailer, based on the wholesale price and the direct channel’s retail
price, determines the indirect channel’s retail price (pr). We employ a backward induction
approach to obtaining equilibrium for both the supplier and the retailer. Figure 1 shows a
conceptual diagram summarizing the relationships among the contract types, coordination
outcomes, and investment returns.

Figure 1. Conceptual diagram from contract type to coordination outcome and investment return.

4. The Equilibrium and Coordination Analysis Without
Innovation Investment

Before discussing the investments made by the supplier (MNO), this section focuses
on the equilibrium and coordination within the supplier-driven dual-channel supply chain.
We evaluate the system-wide profit, which refers to the aggregated profit of all firms
involved in the supply chain under coordinated decision-making. This concept is widely
used in the literature on supply chain coordination as a normative benchmark [46,47]. First,
we consider a centralized system where all decision-making is consolidated to maximize the
entire channel’s profit. Under this centralized system, the vertically integrated organization
manages both the retail price (pr) and the direct channel’s price (ps). Next, we explore a
decentralized system within the Stackelberg game, with the supplier in a leading role. In
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this decentralized case, both the MNO and the MVNO make choices to maximize their
expected profits.

4.1. A Centralized Dual-Channel Supply Chain

We first examine a benchmark model where both the direct channel and the indirect
channel are centralized within the supply chain. The profit function (πc) for each channel,
considering the demand for both channels, is as follows:

πc = (ps − c)[ a − ps + b(p r − ps)] + (pr − c)[1 − a − pr + b(p s − pr)] (4)

The profit-maximizing prices (ps) and (p r) and the expected profit (πc) are as follows:

Proposition 1. In a centralized dual-channel supply chain, the optimal price in each channel and
maximized profit is given by

ps =
a + b + (1 + 2b)c

2(1 + 2b)

pr =
1 − a + b + (1 + 2b)c

2(1 + 2b)

πc =
1 − 2(1 − a)a + b(1 − 2c)2 − 2(1 − c)c

4(1 + 2b)
.

From Proposition 1, we obtain the prices and profit for the benchmark case in the
centralized dual-channel system. Next, we explore a decentralized system employing three
different kinds of contracts. We consider a contract as coordinating the dual channel if
the equilibrium outcomes of this contract are equivalent to those in the benchmark case.
In addition, to ensure both channels have positive demand, we assume a > 1 − a >> c,
as mentioned in Section 3. In the telecommunications market, significant infrastructure
investments are made, while the marginal operating cost for services approaches zero.

4.2. A Decentralized Dual-Channel Supply Chain

Suppose that the MNO and the MVNO decide on a single wholesale price contract.
The MNO determines the profit-maximizing wholesale price in the indirect channel and the
retail price in its own direct channel; afterwards, the MVNO chooses the selling price in their
indirect channel. The MNO’s profit, π

wp
s , and the MVNO’s profit, π

wp
r , are given as follows:

π
wp
s = (ps − c)[ a − ps + b(p r − ps)] + (w − c)[1 − a − pr + b(p s − pr)] (5)

π
wp
r = (pr − w)[1 − a − pr + b(p s − pr)]. (6)

To obtain the MNO and the MVNO’s decisions in equilibrium, we solve through a
backward induction approach. If the wholesale price of the MNO exceeds the MVNO’s
retail price, the retailer cannot make any profit and therefore ceases to participate in the
retail market. This condition arises when 1 − a < c, indicating that the demand in the direct
channel approaches one, while the demand in the indirect channel nears zero. Consequently,
when 1 − a > c, a dual-channel wholesale price contract becomes feasible, and we can
determine the following supply chain decisions and profits in equilibrium.

π
wp
s =

1
4(1 + b)

(
(a + b − c − 2bc)2

1 + 2b
+

(1 − a − c)2

2

)
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π
wp
r =

(1 − a − c)2

16(1 + b)

Second, suppose that the MNO and the MVNO agree to a revenue sharing contract.
We denote the initial wholesale price as w0. In addition, let the supplier’s share in a revenue
sharing contract be denoted as ‘s’ and the retailer’s share be ‘1 − s’. The MNO’s profit, πrs

s ,
and the MVNO’s profit, πrs

r , are given by

πrs
s = (ps − c)[ a − ps + b(p r − ps)] + (spr + w0 − c)[1 − a − pr + b(p s − pr)] (7)

πrs
r = [(1 − s)pr − w0][1 − a − pr + b(p s − pr)]. (8)

Applying the same procedure, we obtain the following decisions and profits in equilibrium.

πrs
s =

1
4(1 + b)

(
(a + b − c − 2bc)2

1 + 2b
+

(1 − a − c)2

2 − s

)

πrs
r =

(1 − a − c)2(1 − s)
4(1 + b)(2 − s)2

When the sharing ratio is s = 0, we observe the same results as those for the single
wholesale price contract. However, when the sharing ratio is s = 1, the retailer’s profit
becomes zero, leading to non-participation in the market, which is close to the centralized
dual-channel structure, as outlined in Proposition 1.

Third, suppose that the MNO and the MVNO enter into a quantity discount contract.
The initial wholesale price is denoted as wI , and it results in a discount of δ based on
the quantity ordered by the MVNO. The wholesale price is wd = wI − δDr, where Dr

represents the MVNO’s order quantity. The MNO’s profits, π
qd
s , and the MVNO’s profits,

π
qd
r , are calculated as follows:

π
qd
s = (ps − c)Ds +(wd − c)Dr

= (ps − c)[ a − ps + b(p r − ps)]

+(wI − δDr − c)[1 − a − pr + b(p s − pr)]

(9)

π
qd
r = [pr − (wI − δDr)][1 − a − pr + b(p s − pr)]. (10)

By following the same procedure, we derive the following profits in equilibrium.

π
qd
s =

1
4(1 + b)

(
(a + b − c − 2bc)2

1 + 2b
+

(1 − a − c)2

2 − δ − bδ

)

π
qd
r =

(1 − a − c)2(1 − δ − bδ)

4(1 + b)(2 − δ − bδ)2

When the discount parameter is δ = 0, we have the same outcomes as those for the
single wholesale price contract. However, when the discount parameter is δ ≥ 1

1+b , the
retailer cannot generate a positive profit. Therefore, we consider δ < 1

1+b as a condition for
maintaining the dual-channel structure. For instance, if the cross-price elasticity is b = 0.7,
the maximum discount value for δ should be less than 58%.
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Proposition 2. In the dual-channel supply chain, the prices in both the direct and indirect channels,
the wholesale price, and the profits in equilibrium under the single wholesale contract, the revenue
sharing contract, and the quantity discount contract are presented in Table 2.

Table 2. The equilibrium prices and profits for the decentralized supply chain based on the contract types.

Single Wholesale Price Revenue Sharing Quantity Discount

w 1−a+b+(1+2b)c
2(1+2b)

(1−s)(2(1+b)(1−a+b+c+2bc)−(2−a(2+3b)+b(4+b+c+2bc))s)
2(1+b)(1+2b)(2−s)

2a−2(1+b+c+2bc)+b(a+b)δ+(2+b)(1+2b)cδ
2(1+2b)(−2+δ+bδ)

ps
a+b+(1+2b)c

2(1+2b)
a+b+(1+2b)c

2(1+2b)
a+b+(1+2b)c

2(1+2b)

pr
3−a(3+4b)+c+2b(3+b+2(1+b)c)

4(1+b)(1+2b)

2+b(4+b)−a(2+3b)
1+2b +bc− 1−a−c

2−s
2(1+b)

3 + c + 2b(3 + b + 2(1 + b)c)− 2d − b(6 + c + b(5 + b + 3c + 2bc))δ
−a(3 + 4b − (1 + b)(2 + 3b)δ)

2(1+b)(1+2b)(2−δ−bδ)

Ds
2a+b+ab−2c−3bc

4(1+b)
a(2+b+s)+b(1−3c−s+2cs)−c(2−s)

2(1+b)(2−s)
2a+b+ab−2c−3bc−(1+b)(a−c−b(1−2c))δ

2(1+b)(2−δ−bδ)

Dr
4−6a+5b−7ab−2c−3bc

4(1+b)
2−3a+3b−4ab−c−2bc− b(1−a−c)

2−s
2(1+b)

2−3a+3b−4ab−c−2bc− b(1−a−c)
2−d−bδ

2(1+b)

πs 1
4(1+b)

(
(a+b−c−2bc)2

1+2b + (1−a−c)2

2

)
1

4(1+b)

(
(a+b−c−2bc)2

1+2b + (1−a−c)2

2−s

)
1

4(1+b)

(
(a+b−c−2bc)2

1+2b + (1−a−c)2

2−δ−bδ

)
πr (1−a−c)2

16(1+b)
(1−a−c)2(1−s)
4(1+b)(2−s)2

(1−a−c)2(1−δ−bδ)

4(1+b)(2−δ−bδ)2

As illustrated in Table 2, in the supplier-led dual channel, all three contract types have
the same retail price in their own direct channel. However, the wholesale price is different
among the three contract types. In the single wholesale price contract, the MNO sets w
to maximize the profits in both channels, and the MVNO also sets its retail price, pr, to
maximize its profits. Similar to the single channel, double marginalization also occurs
in dual-channel supply chains. In the case of the revenue sharing contract, the MNO
initially sets a lower w0 (in extreme cases, w0 ∼= c, and with a low s, the indirect market
becomes the MVNO’s monopoly market) and takes a share of the revenue generated by the
MVNO’s sales. In the quantity discount contract, the MNO starts with a higher initial wI

(in extreme cases, wI ∼= pr, making the indirect market the MNO’s monopoly market) and
offers linear discounts based on the MVNO’s order quantity. The main difference is that
revenue sharing is based on the realized profit, which allows the MVNO to set its retail
price arbitrarily, while the outcome depends on the sharing ratio. In contrast, the quantity
discount relies on the expected profit, as opposed to the realized profit, which results in
differences. In other words, from the MNO’s perspective in a single channel, a quantity
discount contract represents a stable contract, while revenue sharing may yield varying
realized profits depending on the uncertainties in demand.

Furthermore, dual-channel contracts exhibit distinctive characteristics compared to
those of single-channel contracts. The marginal expected profit of the indirect channel in the
revenue sharing contract, as the demand increases, is ∂πs

∂Dr
= spr + w0 − c, and it becomes

a function depending on the MVNO’s retail price. In contrast, for the quantity discount
contract, the marginal expected profit of the indirect channel is ∂πs

∂Dr
= w − 2δDr − c. This

equation depends on the difference between the retailer and supplier prices and the cross-
price elasticity parameter, β, and is considered throughout the contract. It implies that in
addition to the indirect channel retail price, the entire supply chain, including the supplier’s
direct channel, should be considered. In dual-channel quantity discount contracts, there
is more room for coordination between the MNO and the MVNO. In markets led by the
supplier, the discount parameter can be set to reduce the retailer’s profit to zero in extreme
cases. In single-channel contracts, both contract types depend on the retailer’s price, making
them equivalent in terms of their effects. In dual-channel contracts, the quantity discount
contract, which affects the relationship between the direct and indirect channels, may be a
more favorable environment for coordination. The majority of the literature reports that
competition between the online direct channel and the conventional retail channel results
in channel conflict. However, from a supply chain coordination perspective, the quantity
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discount contract, with its consideration of both the direct and indirect channels, offers a
more favorable environment for coordination.

Moreover, for the quantity discount contract, it is possible to determine the value of
δ that equals the performance in the centralized case, with the centralized dual channel
(πc = π

qd
s + π

qd
r ). At the point where δ = 1

1+b , the entire supply chain profit is maximized.
In contrast, for revenue sharing, only when the sharing ratio is s=1 does it align with the
centralized πc, in which case the retailer exits the market, indicating lower overall efficiency
compared to that for the quantity discount contract.

Proposition 3. When a > 1
2 and 1 − a > c, the quantity discount contract effec-

tively coordinates the dual-channel supply chain. The contract parameters and profits
are presented in Table 2. Specifically, the quantity discount contract with δ = 1

1+b and

w = 2a−2(1+b+c+2bc)+b(a+b)δ+(2+b)(1+2b)cδ
2(1+2b)(−2+δ+bδ)

perfectly coordinates the dual-channel supply chain.

When the profit of the supply chain is maximized at δ = 1
1+b , in this scenario, the

MVNO’s profit approaches zero, and the MNO’s profit aligns with the centralized case. This
indicates that the quantity discount contract has limitations for the retailer, as it brings in
lower profits compared to those for a single wholesale contract. However, considering that
the overall performance of the supply chain is higher than that for a simple single wholesale
price contract, applying a transfer payment mechanism by the MNO can coordinate the
entire supply chain. Therefore, the quantity discount contract, when combined with a
proper transfer payment, can achieve perfect coordination, benefiting all firms with a Pareto
improvement. In the case of revenue sharing, while it is not as straightforward as a quantity
discount, by setting the sharing ratio to below 1 and implementing a transfer payment
mechanism, it is possible to enhance the overall performance of the dual-channel supply
chain compared to that with a single wholesale price contract.

Theorem 1. When a > 1
2 and 1 − a > c, both a quantity discount contract with δ = 1

1+b − ε and
a revenue sharing contract with the sharing parameter s approaching 1 can effectively coordinate
the dual-channel supply chain, and this creates a Pareto improvement zone. For both contract types,
a transfer payment exceeding the MVNO’s profit with a single wholesale price contract is required
to achieve this coordination.

4.3. A Numerical Example

For a direct channel where the demand is a = 0.7, the price elasticity is b = 0.5, and the
operating cost is c = 0.1, under a single wholesale price contract, the MNO’s profit is 0.1230,
the MVNO’s profit is 0.0035, and the total profit is 0.1265. Under a revenue sharing contract
with a sharing ratio of s = 0.9, the MNO’s profit is 0.1288, the MVNO’s profit is 0.0011,
and the total profit is 0.1299. For the quantity discount contract with a discount factor of
δ = 0.625, the MNO’s profit is 0.1292, the MVNO’s profit is 0.0007, and the total profit is
0.1300. In both cases, the quantity discount and revenue sharing contracts outperform the
single wholesale price contract in terms of their overall efficiency.

Figure 2a illustrates how the total profit of the supply chain for each contract relation-
ship changes with increasing operating costs, while Figure 2b represents the effect of an
increase in the preference of the customer for the direct channel (a) on the total supply
chain profit for each contract type.
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Figure 2. The performance of the decentralized dual-channel supply chain depending on the contract
type with the x-axis representing cost in (a) and customer preference in (b).

The efficiency of the single wholesale price contract is the lowest (black line), followed by
that of the revenue sharing contract with s < 1 (blue line). The quantity discount contract with
δ = 1

1+b − ε (green line) demonstrates the highest performance in terms of profit.

5. The Impact of Coordination on Investment and Spillover

In this section, we examine how investment for innovation is influenced by the coordi-
nation effect and how innovation investment affects the retailer in terms of spillover effects.
As described in Section 3, the increase in demand caused by the investment is represented
as γx. While the demand increases in the direct channel and the indirect channel may differ,
for the sake of this analysis, we assume γs = γr because both channels sell a homogeneous
product of the same nature. This assumption also aids our understanding of the pure
effects of the investments made by both the MNO and the MVNO on each channel.

First, the MNO determines its investment level. As in the previous section, the supplier
then determines the wholesale price and the retail price of its own direct channel using the
following objective function:

πsI = (ps − c)Ds + (w − c)Dr − k
x2

2
(11)

In this scenario, the MVNO’s profit function remains unaffected. First, we analyze
the centralized case as a benchmark model. Then, we proceed to analyze the coordination
effect and the spillover effect when the supplier invests in innovation. In Section 5.3, we
explore the case where the retailer is the innovator.

5.1. A Centralized Dual-Channel Supply Chain with Investment

First, we examine a centralized case as the benchmark model, where both channels
are centralized. The profit function for each channel, considering the increase in demand
resulting from investment in innovation, can be expressed as follows:

πcI = (ps − c)[ a − ps + b(p r − ps) + γx] + (pr − c)[1 − a − pr + b(p s − pr) + γx]− k
x2

2
(12)

The prices (p*
s and p*

r) and the resulting profit (πcI) that maximize revenue can be
determined as follows:

Proposition 4. In a centralized case, the optimal investment level and price in each channel, in
addition to the maximized profit, are
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x∗cI =
(1 − 2c)r
2(k − γ2)

p*
s = c +

1
4

[
(1 − 2c)k

k − γ2 − 1 − 2a
1 + 2b

]

p∗r = c +
1
4

[
(1 − 2c)k

k − γ2 +
1 − 2a
1 + 2b

]

πcI =
1
8

[
(1 − 2a)2

1 + 2b
+

(1 − 2c)2k
k − γ2

]
.

5.2. A Decentralized Dual-Channel Supply Chain with Supplier Investment

Based on the results from the previous section, we next evaluate the single whole-
sale price contract with the quantity discount contract that allows for the most effective
coordination. The procedure begins with the supplier selecting the level of innovation
investment, denoted as x. Afterwards, the sequence of events follows the same procedure
as that outlined in the preceding section. The MNO’s profit, π

wp
sI , and the MVNO’s profit,

π
wp
rI , in a single wholesale price contract are given by

π
wp
sI = (ps − c)[a − ps + b(p r − ps)+γx] + (w − c)[1 − a − pr + b(p s − pr) + γx]

−k x2

2
(13)

π
wp
rI = (pr − w)[1 − a − pr + b(p s − pr) + γx]. (14)

To find the decisions of the MNO and the MVNO in equilibrium, we solve through
backwards induction. Compared to the case without investment, the MNO’s optimal
retail and wholesale prices in the presence of investment for innovation increase by rx

2

(ps =
a+b+c+2bc

2(1+2b) + γx
2 , w = 1−a+b+(1+2b)c

2(1+2b) + γx
2 ). Consequently, we can obtain the profits of

both the MNO and the MVNO as follows:

π
wp
sI =

1
8(1 + b)(1 + 2b)

[1 − 2a + 3a2 + 2b + 2a2b + 2b2 − 2c − 2ac − 8bc − 4abc − 8b2c + 3c2 + 10bc2

+8b2c2 + 2(1 + 2b)(1 + a + b(2 − 4c)− 3c)γx − (1 + 2b)
(

4(1 + b)k + (3 + 4b)γ2
)

x2]

π
wp
rI =

(1 − a − c + γx)2

16(1 + b)
.

The MVNO benefits from the MNO’s investment, and its profit increases compared to

that in the scenario where no investment takes place ( (1−a−c)2

16(1+b) ). For instance, if an MNO
invests in a communication infrastructure with a doubled download speed, it becomes
reasonable for the MNO to raise the direct channel price and generate additional profit.
Meanwhile, an MVNO pays a higher wholesale price (w) but can also increase its retail
price and profit because of the spillover effect. The retailer can also take an additional profit
margin resulting from the supplier’s investment. As illustrated in Figure 2, it is possible to
determine the supplier’s optimal investment level.

xwp*
sI =

(1 + a + b(2 − 4c)− 3c)γ
4(1 + b)k − (3 + 4b)γ2 .

Comparing the profit-maximizing investment levels in both centralized and decentral-
ized scenarios, as expected, the investment level is always lower for the single wholesale
price contract (x*

cI > x*
sI).
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Next, consider the relationship between investment for innovation and the quantity dis-
count contract. The supplier profits, π

qd
sI , and the retailer profits, π

wp
rI , are calculated as follows:

π
qd
sI = (ps − c)[a − ps + b(p r − ps) + γx]

+(wI − δDr − c)[1 − a − pr + b(p s − pr)] + γx − k x2

2

(15)

π
wp
rI = [pr − (wI − δDr)][1 − a − pr + b(p s − pr)]. (16)

After obtaining the MNO and the MVNO’s decisions in equilibrium, the profits are as
follows:

π
qd
sI =

1
4(1 + b)(1 + 2b)(2 − δ − bδ)

[1 + 2b + 2b2 − 2c − 8bc − 8b2c + 3c2 + 10bc2 + 8b2c2 − b2δ − b3δ

+2bcδ + 6b2cδ + 4b3cδ − c2δ − 5bc2δ − 8b2c2δ − 4b3c2δ + a2(3 + b(2 − δ)− δ)

+2(1 + 2b)(1 + 2b − 3c − 4bc + (1 + b)(c − b(1 − 2c))δ)γx
−(1 + 2b)

(
2(1 + b)(2 − δ − bδ)k + (3 − δ + b(4 − 3δ − 2bδ))γ2)x2 − 2a

(
1 + bδ + b2δ

+(1 + 2b)c(1 − δ − bδ) + (1 + 2b)(1 − δ − bδ)γx)]

π
wp
rI =

(1 − a − c + γx)2(1 − δ − bδ)

4(1 + b)(2 − δ − bδ)2 .

As Figure 2 illustrates, the MNO’s profit function is strictly concave, allowing us to
determine the optimal investment level for the supplier, given by

xqd*
sI =

(1 + a + 2b − 3c − 4bc − (1 + b)(a − c + b(1 − 2c))d)γ
2(1 + b)(2 − d − bd)k − (3 − d + b(4 − (3 + 2b)d))γ2 .

This demonstrates that the MVNO’s profit increases as x increases.

Proposition 5. The equilibrium prices in both the direct and indirect channels, the wholesale
price, the investment level, and the profits in the decentralized dual-channel under single wholesale
price contracts and quantity discount contracts, along with a comparison with the centralized
dual-channel scenario, are presented in Table 3. As seen in Figure 3a, when a supplier makes

an investment, the profit from a quantity discount contract (black line) is higher than that
from a single wholesale price contract (blue line). The supplier’s optimal investment level
can also be determined, and the optimal investment level for a quantity discount contract
is higher compared to that for the single wholesale price contract (xqd*

sI > xwp*
sI ). Figure 3b

illustrates the retailer’s profit and highlights the spillover effect of innovation on the retailer.
An interesting finding is that under the quantity discount contract, the spillover effect
appears to be less influenced by the discount parameter δ.

Figure 3. The profit changes with innovation investment depending on the contract type.
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Let us evaluate the performance of the entire supply chain. We find that with the
appropriate parameter settings for the quantity discount, as indicated in Theorem 1, we
can achieve profits equivalent to those in a centralized dual channel setting. Due to
tractability issues, it is challenging to express the optimal conditions analytically. However,
a numerical investigation shows noteworthy insights. For instance, consider a scenario
where the demand for the direct channel is a = 0.7, the cross-price elasticity is b = 0.7, the
operating cost is c = 0.1, the innovation coefficient is k = 0.1, and the increase in demand
due to investment is r = 0.1. In such a case, the total profit ties with that of the centralized
dual channel, reaching 0.097 when applying the quantity discount contract with an optimal
investment level of x = 0.444. Notably, the optimal investment level remains the same in
both cases. In contrast, under the single wholesale price contract, the optimal investment
level decreases to x = 0.405. Consequently, the profit for the entire supply chain diminishes
to 0.095, indicating lower efficiency compared to that in the previous two scenarios. Figure 3
illustrates the performance of each supply chain. The appropriately coordinated quantity
discount contract (blue line), with the parameters, demonstrates a performance close to
that of the centralized dual channel (dashed line).

Theorem 2. A quantity discount contract coordinates the dual channels with the supplier’s invest-
ment for innovation, leading to a Pareto improvement zone. Through the quantity discount contract,
the supplier achieves an equivalent investment level to that in the centralized case, effectively
addressing the spillover effect of the investment.

From the MNO’s perspective as the supplier, there may be concerns about the spillover
effect of investment on the MVNO. However, it is shown that the profit of the entire
supply chain can be increased through an appropriate quantity discount mechanism and
investment, surpassing the level achievable by a simple single wholesale price contract as
shown in Figure 4. This implies that a high level of coordination can compensate for the
spillover effect of innovation, and it is observed that the MNO’s optimal investment level
also increases.

Figure 4. The supply chain performance with innovation investment depending on the contract type.

The analysis shows that coordination mechanisms—particularly quantity discount
contracts—enhance the supplier’s incentives to invest in innovation. In the absence of coor-
dination, the supplier tends to underinvest due to its concerns about value appropriation
by the retailer. However, coordination helps align the supplier’s investment incentives
with the overall efficiency of the supply chain by ensuring a more equitable distribution
of the innovation gains. This results in improved profitability for both the MNO and the
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MVNO, as the supplier captures a larger share of the returns while the retailer benefits
from positive demand spillover.

5.3. A Decentralized Dual-Channel Supply Chain with Retailer Investment

Let us assume that the retailer makes an investment in launching new services (e.g.,
partnerships with OTT providers) or innovative customer services. In this case, it is
supposed that this investment affects the indirect channel’s demand while not impacting
the direct channel. Following the same analysis as that in the previous sections, it is
observed that the retailer’s investment level results in lower ps and w values compared
to those for the supplier’s investment. However, the retailer sets higher ps and w values
when no investment is made. An essential point to note is that when the retailer invests in
its indirect channel, it seems that only the demand in the indirect channel increases. Still,
since there is an upstream supplier, the MNO, even in the indirect channel, there is also
a spillover effect on the supplier. Therefore, from the supplier’s perspective, having an
innovative retailer can provide similar benefits, leading to a desire to engage in transactions
with such partners. Although the demand increase seems to be selfish, it affects the other
party as well. It is also possible to determine the optimal investment level, denoted as x*

rI :

x*
rI =

(1 − a − c)γ
8(1 + b)k − γ2 .

The value of x*
rI is lower than the supplier’s optimal level of investment. Nonetheless,

the MNO’s profit also increases with the MVNO’s investment.
When the MVNO undertakes innovation, the resulting improvements in demand

also extend upstream, generating positive spillover effects for the MNO. This mutual
spillover dynamic highlights the potential for shared value creation within the dual-channel
structure. Contractual coordination that accounts for these interdependencies can further
encourage innovation efforts from both parties. Ultimately, such coordination fosters a
more synergistic and strategically aligned relationship between the MNO and the MVNO.

We analyzed cases where the increase in demand for the MNO, γs, does not equal
the increase in demand for the MNO (γs 	= γr). For instance, when γs > γr, the spillover
effect on the retailer was lower than that in symmetric cases (γs = γr). However, this
difference in the parameter values does not invalidate the implications of Proposition 5; it
merely shows a minor variation. In addition, it is noteworthy that while the assumption is
unrealistic, we conducted an additional analysis in a scenario where the MNO’s investment
had no effect on the demand in the indirect channel. In this case, the MNO’s investment
still leads to an increase in wholesale prices and direct channel retail prices, which, in turn,
affects the retailer’s indirect channel prices, causing them to rise. However, it is proven
that the increase in demand in the direct channel does not have an effect on the MVNO’s
profit in this scenario.

6. Conclusions

This study examined how contract design and investment spillover effects jointly
influence the coordination and performance in dual-channel supply chains, with a focus on
the telecommunications industry. Grounded in the supplier-dominated market structure
often observed in mobile network operations, the model captures the strategic interac-
tion between a mobile network operator (MNO) and a mobile virtual network operator
(MVNO). The analysis centers on how investment in innovation by one party—particularly
the supplier—can generate externalities that affect the other party’s performance, a phe-
nomenon defined here as an investment spillover effect.

206



Systems 2025, 13, 539

A key contribution of this work is the demonstration that quantity discount contracts
can serve as an effective coordination mechanism in the presence of investment externalities.
Compared to single wholesale price contracts, quantity discounts align the investment
incentives better and enhance supplier profitability while maintaining competitive pricing
on the retail market. In particular, this form of contract improves the joint profitability—
interpreted as the system-level efficiency—by internalizing the externalities that arise
from unilateral investment. These findings support the broader view that contractual
mechanisms are not merely tools for setting prices but also function as strategic governance
instruments in supply chains.

The results also reveal asymmetry in the spillover dynamics: supplier-led investments
tend to generate stronger system-wide gains, while retailer-led investments yield more
limited indirect benefits to the supplier. This asymmetry underscores the need for contract
structures that address such imbalances, especially in sectors like telecommunications,
where one party holds significant infrastructure and bargaining power.

Nevertheless, several simplifying assumptions in the model may limit the general-
izability of the results. First, the assumption of product homogeneity abstracts from the
practical differentiation strategies employed by MVNOs—such as customized pricing,
bundling, or branding—that may influence the consumer demand across channels. Second,
the model presumes symmetric and complete information between contracting parties,
whereas in practice, strategic intentions and investment priorities may not be fully observ-
able or shared. Third, the analysis is based on a bilateral MNO-MVNO relationship, while
actual markets typically involve multiple players engaging in competitive and regulatory
interactions. While these assumptions facilitate analytical tractability, relaxing them would
allow for richer and more realistic insights. Future research could address these limitations
by incorporating competitive market structures, asymmetric information, and dynamic
investment behavior. In particular, analyzing the impact of regulatory interventions—such
as mandated access, pricing controls, or innovation subsidies—could yield valuable im-
plications for both policymakers and industry stakeholders. Lastly, although Theorems 1
and 2 are based on numerical observations due to analytical intractability, they are logically
consistent within the model’s framework and serve as theoretically grounded hypotheses
that can be tested in future empirical or simulation-based studies.

These findings also carry practical implications. For policymakers, contract design may
serve as an indirect yet powerful policy lever to enhance investment incentives and promote
market efficiency. For firms operating in capital-intensive and innovation-driven sectors,
aligning the contract terms with spillover realities is critical for achieving sustainable
collaboration and mutual profitability.
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Abstract: The manufacturing supply chain has been exposed to natural disasters and
geopolitical risks whose impacts, such as disruptions in the supply of materials and parts,
can be devastating. In recent years, the data space has become more widely implemented,
and it is expected to be used as a platform for widespread collaboration between companies.
This article discusses how companies participating in the manufacturing supply chain
cooperate to recover from disruption and mitigate risks using a data space platform and a
flexible manufacturing system. Employing enterprise architecture modeling, we explore a
comprehensive strategy for enhancing the resilience of a data space-based manufacturing
supply chain. The proposed strategy adopts a comprehensive approach to addressing
physical security and cybersecurity risks from a security perspective. By combining enter-
prise architecture modeling with the Unified Architecture Framework and conducting a
scenario-based simulation, we discovered that an alternative manufacturing process with a
flexible method in the data space can be a key security control measure for mitigating the
risk associated with parts supply. The results of the alternative manufacturing simulation
show that flexible manufacturing using BJT and MIM methods elicits better performance
in terms of parts production volume and cost compared with conventional methods. The
proposed method and the findings of this study contribute to consolidating a profound
understanding of security and the mitigation of disruptive situations in a data space-based
manufacturing supply chain.

Keywords: data space; system security engineering; alternative manufacturing; enterprise
architecture modeling; manufacturing supply chain

1. Introduction

The manufacturing supply chain is becoming increasingly vulnerable to natural disas-
ters and geopolitical risks, which can result in several challenges, including disruptions in
the supply of raw materials and intermediate components [1,2]. A single company cannot
adequately address such severe situations. Consequently, there is an increasing emphasis
on the establishment of collaborative networks among supply chain stakeholders [3]. Such
collaborative efforts are deemed crucial in the management of challenging circumstances.

The concept of smart manufacturing has been proven to enable flexible responses
to changes in demand by leveraging technologies such as artificial intelligence (AI), the
Internet of Things (IoT), robotics, Additive Manufacturing (AM) [4,5], and the data space
as a data-sharing and collaboration platform [6]. In 2021, to maintain harmony with society,
Industry 5.0 was proposed to complement Industrie 4.0. Industry 5.0 is an extension of
Industrie 4.0, incorporating three visions—sustainability, resilience, and human-centric
nature—as well as the use of data communication in the data space and simulations of

Systems 2025, 13, 676 https://doi.org/10.3390/systems13080676
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social impact to achieve the aforementioned visions [7,8]. The challenges posed by increas-
ingly complex social issues and the difficulty of ensuring the resilience of supply chains
are examples of the opportunities that Industry 5.0 could address. The recent challenges
encountered worldwide, including geopolitical conflicts and natural disasters, have caused
disruptions in the parts manufacturing supply chain, raising concerns regarding the stable
supply of products. In response to the increased risk of disruptions in the manufacturing
supply chain, attempts have been devoted to clarifying the dynamic behavior of manufac-
turing supply chain systems using numerical simulation methods. Wofuru-Nyenke et al.
conducted a review on this topic [9]. Özbayrak et al. defined the manufacturing supply
chain system (MSCS) and demonstrated the effectiveness of information-based inventory
management in response to fluctuations in demand [10].

A data-sharing and collaboration mechanism between companies has been developed
to address issues that prove difficult for a single company to tackle. The International
Data Space Association (IDSA) in Germany has developed technology for creating a data-
sharing platform (data space) that enables the sharing and linking of mutual data to link
the upstream and downstream of the supply chain and provide a connector that enables
collaboration among companies [6]. The concept of data sharing in a data space necessitates
a reliable mechanism, data governance, and data reliability. The Gaia-X and IDS (Interna-
tional Data Space) concepts of rule formation and mechanisms offer a promising approach,
as they deviate from conventional centralized data control mechanisms. Although the
data-sharing scope remains limited, the mechanism functions holistically [11]. As a use
case for the data space, Catena-X proposes services that contribute to the visualization of
CO2 emissions throughout the automotive industry supply chain [12].

As the supply chain becomes increasingly globalized, it becomes vulnerable to disrup-
tions. Thus, the perspective of supply chain security and resilience must be considered. The
data space is a system that upholds data sovereignty, and many use cases have been devel-
oped as data-sharing and collaboration mechanisms while ensuring the safety of participants.
However, when defining an architecture for deploying such a system in the manufacturing
supply chain, the concerns of supply chain stakeholders need to be considered.

This study aims to elucidate the structure of collaborative manufacturing from a safety
perspective to enhance resiliency. The manufacturing supply chain was explored from
the perspective of security via enterprise architecture (EA) modeling. First, a strategy for
enhancing security and resilience in the EA framework was explored. Second, based on the
strategy, a manufacturing supply chain system that employs the data space was introduced
to achieve flexible manufacturing while ensuring security and resilience for businesses
engaged in the data space under conditions of unstable supply chain dynamics. To validate
the effect of the concept, a comparative study of multiple manufacturing process candidates
was conducted using resilience evaluation metrics. The research questions proposed in this
study are as follows:

[RQ1] If partial disruption in the manufacturing supply chain occurs, what framework
and capabilities are required to be able to accelerate recovery as mitigation? Refer to the
results in Section 4.2.2.

[RQ2] What metrics will be used to evaluate the results of temporary risk mitigation?
Refer to the results in Sections 4.3.2 and 4.3.3.

Enterprise architecture modeling encourages us to understand how enterprises work
together in a data space-aided manufacturing supply chain. Enterprise architecture mod-
eling offers us a holistic understanding of the whole supply chain structure and ways to
mitigate the risks of supply chain disruption.

Based on enterprise architecture (EA) modeling and the evaluation of effectiveness
measures, this study contributes to defining a plan for how products are manufactured and
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delivered using a data space under conditions of disruption. EA modeling explains how
risks and capabilities are linked in data space-based supply chains. This knowledge proves
how alternative manufacturing processes show improved performance due to collaboration
in a data space. This study contributes to assisting decision-makers in providing options
for understanding stability and reducing problems in manufacturing supply chains.

The rest of this paper is organized as follows. Section 2 describes the role of system
security engineering in supply chain management (SCM). It presents an overview of the
definition of resilience, the responsibility of systems engineering, and Gaia-X, a typical data
space framework. Section 3 describes the modeling method of EA and the scenario-based
evaluation model. Section 4 explains the modeling results. The diagrams are described
from the viewpoints of security management concepts and resilience, and resilience metrics
are defined. Section 5 discusses the results and the limitations of this study. Section 6
presents the conclusions and provides recommendations for future research.

2. Background and Literature Review

Supply chain resilience has long been a subject of research. In recent years, com-
prehensive system structures have begun to be revealed through systems engineering
initiatives. Section 2 explains supply chain initiatives in system security engineering (SSE)
and resilience engineering (RE). It also offers clear background information by explaining
the recently emerging concept of a data space. Next, in Section 2.4, we will review previous
studies on the progress and challenges of resilience in supply chains, thereby clarifying the
focus of our research.

2.1. System Security Engineering in Supply Chain Management

System Security Engineering (SSE) is a specialized discipline that focuses on ensuring
that systems can operate effectively under anomalous and disruptive conditions, includ-
ing those originating in cyber-contested environments [13] (pp. 190–191). SSE applies
the principles of systems engineering to evaluate security threats, address system vulner-
abilities, and manage security risks across the entire system life cycle. This integrated
approach blends technology, management practices, and operational guidelines to ensure
that adequate protections are in place to safeguard the system and its critical assets.

The scope of SSE encompasses threats from various sources, including external factors,
such as cyberattacks, theft, power interruptions, and denial-of-service attacks, as well as
internal risks caused by user actions, system misuse, or malicious behavior. Such disrup-
tions may be intentional, such as those caused by intelligent adversaries, or unintentional,
resulting from errors or system failures. To mitigate such risks, SSE incorporates physical
security measures, including surveillance, access control, anti-tampering technologies, and
protective barriers, as well as cybersecurity principles, such as the confidentiality, integrity,
and availability of information assets.

SSE practitioners require expertise in areas such as security architecture, threat as-
sessment, vulnerability testing, and supply chain risk management. To support effective
implementation, frameworks such as those outlined in the National Institute of Standards
and Technology Special Publications, NIST SP 800-160 Vol. 1 [14] and Vol. 2 [15], can guide
the integration of cybersecurity into systems engineering processes. These guidelines,
which align with ISO/IEC/IEEE 15288 (2023) [16], highlight the inter-relationship between
systems engineering and SSE, offering detailed methodologies for embedding security into
technical processes. For instance, NIST SP 800-160 includes structured examples, such as
the breakout of technical SSE processes that outline specific roles, activities, inputs, and
outcomes to ensure the seamless integration of security measures.
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In the context of supply chain security, NIST defines “supply chain” and “cybersecurity
risks throughout the supply chain” as follows. The term “supply chain” refers to the
linked set of resources and processes between and among multiple levels of an enterprise,
each of which is an acquirer that begins with the sourcing of products and services and
extends through the product and service life cycle. Given this definition, “cybersecurity
risks throughout the supply chain” refers to the potential for harm or compromise that may
originate from suppliers, their supply chains, their products, or their services. Cybersecurity
risks throughout the supply chain are the results of threats that exploit the vulnerabilities
or exposures in products and services that traverse the supply chain or threats that exploit
vulnerabilities or exposures in the supply chain (NIST SP 800-161r1, [17]).

Here, the fundamental requirements for improving the resilience of supply chains as
a system of systems (SoS) by maintaining supply chain security are identified. Next, we
explore resilience in systems engineering.

2.2. Resilience in Systems Engineering

Resilience engineering is defined in a systems engineering handbook [13] (pp. 180–
184) as “an approach that provides the required capability when facing adversity,” and
“resilience directs the focus of systems engineering to the ability of the system to deliver
capability under adverse conditions.” Additionally, the handbook suggests that the tax-
onomy of resilience comprises two layers. The first layer represents the objective category,
which includes Avoid, Withstand, and Recover from adversities. The second layer repre-
sents the means category, which includes Agility, Evolution, Graceful degradation, Re-architect,
Robustness, and Tolerance.

Resilience engineering focuses on ensuring that systems deliver the required capabili-
ties under adverse conditions. Resilience emerged in systems engineering around 2006 and
gained popularity by 2010; it frequently includes survivability but emphasizes functional-
ity over maintaining structure. Traditional system design focuses on normal conditions,
whereas resilience prioritizes performance under conditions of disruption.

Nemeth and Hollnagel [18] investigated the general functions of social resilience,
distinguishing between the proactive and reactive aspects. They suggested that risk assess-
ment, prediction, prevention, and mitigation measures are proactive functions, whereas
impact assessment, response to and recovery from situations, and evaluation are consid-
ered reactive functions. They emphasized the importance of integrating the proactive and
reactive functions to ensure a comprehensive approach to social resilience [18] (p. 7). Key
aspects include the following three items: “defining essential system capabilities,” “identi-
fying adverse conditions,” and “designing systems to maintain functionality.” Resilience
values adaptability and functionality over preserving the original architecture. It shifts the
focus to ensuring a reliable performance in complex, unpredictable environments.

When a system is faced with adversity, a system transitions through various states,
ranging from fully capable to minimally acceptable, with intermediate states, such as
partially capable or damaged [13] (p. 181). These transitions are categorized into three types:
robustness, where the system maintains its current capability; tolerance, where capability
degrades to a lower level; and recovery, where capability improves, potentially returning to
full functionality. Effective system design should incorporate principles to manage these
transitions and ensure context-fit behavior. In this study, we mainly focus on a proactive
approach in the case of an emergent situation of manufacturing supply chains.

2.3. Data Space

This section describes the data space being built in the European Union (EU). After
Industrie 4.0, issues such as the pursuit of productivity, reductions in greenhouse gas
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emissions, and supply chain stabilization could no longer be addressed by a single company.
Thus, the European Commission has turned to proposing the standardization of data that
are widely shared across industries and the specific operation of a data space with high
reliability and flexibility in Gaia-X [19].

The data spaces being proposed by the European Commission include industry, green
deal, and mobility. In the industrial data space, data collaboration related to development
and production is promoted among enterprises, focusing on the manufacturing industry,
and manufacturing innovation is realized using digital technology. Herein, the background
to the establishment of Gaia-X, as well as its vision and strategy, is described based on a
Gaia-X white paper [19]. Gaia-X is an initiative aiming to develop an open software layer
that can implement control, governance, and common policies and rules to achieve the
transparency, sovereignty, and interoperability of data and services. Cloud players can use
it to implement the open software layer and its associated policies and rules.

The digital economy is enabled by shared data spaces and reliable cloud-based services.
A wide range of players, from innovative start-ups to established small, medium, and large
enterprises, require a level playing field to benefit from the economies of scale and scope
that can be achieved through regional cooperation in the EU. Thus, Gaia-X is necessary for
industrial collaboration.

The architecture of the Cloud Federation is explored, including (1) developing on-
tologies and application programming interfaces to improve data interoperability and
(2) ensuring the interconnectivity of the data space and other aspects of the Cloud Fed-
eration architecture. In addition, Gaia-X is developing over 40 use cases in areas such as
manufacturing, smart housing, and mobility to build prototypes and begin operations by
early 2021. In the future, as the main field in the digital dispatch race becomes the use of
data at the edge created by social and industrial infrastructure, it is expected that attention
to distributed data governance models, such as Gaia-X, will further increase [20–22].

Specific use cases are proposed, motivated by the need to address various opportu-
nities and challenges, such as resource-recycling economies, supply chain stability, and
smart manufacturing. A typical example is resource recycling, CO2 emission visualiza-
tion, and battery traceability of the automotive supply chain using Catena-X, where data
sharing among related participating organizations is essential. End users, governments,
and participating organizations exist as related stakeholders, and the framework aims to
address stakeholder concerns [12,23]. When the manufacturing supply chain suffers from
disruptions, which is the subject of this study, it is believed that risk can be avoided or
minimized through collaboration between participating organizations in a data space.

2.4. Literature Review of Interoperable System in Supply Chain

The applications of IoT devices and mechanisms are areas of major interest to re-
searchers in production management. Trappey et al. [24] summarized standards and
patents regarding IoT devices. In addition, there are critical technologies that exist for
Industie 4.0 and Industry 5.0. Menanno et al. [25] studied how radio frequency identification
(RFID) could help track food products more effectively. They showed that it could im-
prove operations in a supply chain that is always producing the same amount of products.
Pohlmeyer et al. [26] suggested a system that uses the Digital Product Passport to strictly
enforce product traceability and contribute to sustainability. Mitra et al. [27] obtained
quantitative data from over 500 respondents which revealed the positive impacts of various
factors on IoT adoption and the transformative potential of IoT in enhancing operational
efficiency. These technologies have been developed to trace products within the supply
chain and share data. However, to keep the supply chain resilient, we need a way to share
supply chain logistics data safely and flexibly.
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Hause et al. [28] regard the supply chain as one of the most complex SoSs and at-
tempted to construct logical architecture that responds to the concerns of stakeholders
through enterprise architecture modeling of the supply chain. They adopted a security
perspective for the purpose of developing a risk control plan. Although they mentioned
the security risks of the supply chain, they mainly focused on the established and stan-
dard structure of the supply chain. Hosseinni et al. [29] proposed a systemic approach
for supply chain resilience evaluation by using the Bayesian network. They concluded
that supply chain resilience is composed of a surplus inventory, capacity flexibility, and
back-up suppliers. Alexopoulos et al. [30] used a metric known as POC (Penalty of Change)
to probabilistically evaluate supply chain disruptions based on an estimation model and
certain scenarios. Using this model, managers can develop preliminary plans. This study
adopted a predictive approach for investment. However, under the collaborative network
based on the data space, a flexible supply chain with a quick decision-making process is
crucial. Bakopoulos et al. [31] proposed an architecture that addresses resilience using the
data space. However, the system proposal still needs to be examined in relation to system
security engineering. To identify and address risks, it is necessary to analyze the entire
surrounding supply chain. Table 1 lists a summary of the aforementioned studies regarding
the digitally enhanced supply chain.

Table 1. Studies on supply chain resilience and digital solutions in supply chain (SC).

Author Field and Method Key Findings Limitations

Menanno (2023) [25] VCOR and PMS for RFIDs in
the SC.

RFIDs in the agri-food
industry are influenced by
specific organizational
procedures.

KPI analysis was limited to a
restricted material flow. It did not
include economic analysis.

Pohlmeyer (2024) [26]
A data ecosystem with a
Digital Product Passport for
traceability in the SC.

The findings support a
sovereign data ecosystem
enhancing eco-efficiency
and sustainability.

It lacks real-world validation and
implementation. Data sharing is
hindered by confidentiality
concerns and errors.

Mitra (2024) [27] Structural Equation Mode for
IoT in the SC.

Quantitative data from over
500 respondents indicate
positive impacts and reveal
the transformative potential of
IoT in enhancing
operational efficiency.

Geographical limitations affect
the generalizability of the
findings. Potential bias in the
literature review may influence
the results.

Hause (2024) [28] Enterprise architecture
modeling of the SC with UAF.

It provides strategic and
operational views to define
procedures and elements.
Robust risk management
is investigated.

The focus is on the established
supply chain network. Digital
technology is limited.

Hosseini (2022) [29]
Novel measurement method
using Bayesian networks for
the SC.

The metric can serve as a KPI
for analyzing disruption
impacts on the SC.

The metric is applicable only to
directed graphs without cycles,
limiting its broader application.
The measure does not consider
recovery processes, which are
crucial for resident systems.
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Table 1. Cont.

Author Field and Method Key Findings Limitations

Alexopoulos (2022) [30]
Resilience qualification of the
plastic parts SC by using POC
(Penalty of Change).

3D printing (AM) and
injection molding
are compared.

The POC metrics can be used in
decision-making for the initial
investment.

Bakopoulos (2024) [31]
A value chain planning
approach with POC metrics
for a SC using the data space.

A framework for resilient
manufacturing value chains is
proposed, leveraging data
space technology.

Decision-making is often delayed
due to reliance on industrial
experts. The current architecture
is inflexible, hindering structured
integration of planning solutions.

The motivation of this study is to provide methodologies for making comprehensive
and flexible decisions under disruptive situations immediately. We aim to understand the
structure of supply chains based on the data space, identify risks, and verify resilience
capability under unexpected situations by utilizing data spaces from security and resilience
perspectives. An enterprise architecture modeling approach allows us to capture the risks
facing the manufacturing supply chain using a data space. Finally, the comparative analysis
and sensitivity study enable us to select the optimal configuration, using the updated data
from each candidate, which incorporates alternative manufacturing.

3. Research Methodologies

Modeling the structure of enterprises of the manufacturing supply chain as an archi-
tecture provides a comprehensive understanding of security (2.1) and resilience (2.2) issues.
This paper provides strategies and practical knowledge for decision-making by comparing
and evaluating the adequacy of measures to deal with supply chain disruptions using
effectiveness indicators obtained through modeling.

3.1. Enterprise Architecture (EA) Modeling: Theoretical Background

The EA methodology described in the international standard ISO/IEC/IEEE 42020
(2019) [32] “software, systems, and enterprise architecture processes” is adopted in this
study. This standard defines six architectural processes and their objectives. In this study,
we focus on Clauses 8 and 10. We start from the architecture conceptualization process
(Clause 8) which characterizes the problem space and determines suitable solutions that
address stakeholder concerns, achieve architecture objectives, and meet the relevant re-
quirements. Thereafter, we move on to Clause 10, architecture elaboration.

In the architecture elaboration process, planning EA efforts involves selecting ap-
propriate views to ensure coherence and completeness. The planning and preparation
process helps identify suitable views for various EA and non-EA efforts. An example of
a non-EA effort is a solution architecture, which addresses specific real-world problems.
The architecture modeling approach supports the conceptualization and evaluation of the
candidate architecture. It aligns with the architecture elaboration process in ISO/IEEE/IEC
42020 (2019) [32], where models and views are developed to form the architecture de-
scription. ISO/IEEE/IEC 21839 (2019) [33] defines an SoS as “a set of systems or system
elements that interact to provide a unique capability that none of the constituent systems
can accomplish alone”.

To maintain the original capability of the manufacturing supply chain, three phases
(robustness, tolerance, and recovery) exist, as described in Section 2.2. It is necessary to
identify and evaluate their vulnerability to external threats, and a system that improves
the flexibility of supply chains and promotes reconfiguration using data spaces needs to
be developed to secure the manufacturing supply chain. Concurrently, it is imperative to
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address the risk of cybersecurity in systems by leveraging data spaces in the robustness
phase. In the tolerance to recovery phase, the acquisition of services to enhance resilience
and augment its capacity is crucial. The efficiency of these services or recovery processes
should be determined using evaluation metrics. To the best of our knowledge, no other
study has applied EA modeling to examine security and resilient views of manufacturing
supply chains that are firmly linked with data spaces.

The enterprise architecture (EA) process—covering analysis, design, planning, and
implementation—relies on modeling to visualize systems and raise abstraction levels. This
aids early-stage verification and gives designers a broad view of business and organiza-
tional aspects. EA models, kept abstract, can be adapted to various supply chain designs.
System modeling also clarifies architecture, supports decision-making, and ensures trace-
ability, helping identify the effects of changes in complex systems.

Theoretical foundations for conceptual modeling include ontological, epistemological,
linguistic, and pragmatic principles [34]. A conceptual model depicted by diagrams
facilitates the communication and understanding of the system models [35].

The Unified Architecture Framework (UAF; Object Management Group) can be used
to model the enterprise architecture and link it to the operational performers in the en-
terprise [36–38]. System modeling effectively promotes decision-making by clarifying
logical feasibility and trade-offs by holistically expressing a systematic architecture. As
traceability is ensured, it is possible to identify the scope of the impact of partial changes to
complex systems. The UAF facilitates the modeling of an SoS holistically and strategically.
Its description employs the UAF modeling language (UAFML), which is based on UML
2.5.1 and System Modeling Language (SysML) [39]. UAFML expression contributes to
expressing diagrams using predefined terms and maintaining the reproducibility of archi-
tectures. Furthermore, it facilitates abstract representations that can be reused for similar
architectures in different domains. We used the UAF to model an SoS (System of Systems)
that defines supply chain structure and behavior and elucidates its security and resilience.
The architecture is expressed as a diagram from each viewpoint, and each element is kept
traceable with consistency. Appendix B lists the defined words and descriptions which are
defined in the UAFML and used in each diagram in this study.

3.2. Overview of Methodology

The methodology adopted for this study is described in Figure 1, and it has two steps:
The first step is the execution of enterprise architecture modeling to capture a holistic struc-
ture, identify problems, and obtain strategies to ensure the resilience of a system of systems.
The second step involves validation from an economic and productivity viewpoint.

3.2.1. (Step 1) Enterprise Architecture Modeling of System of Systems

System modeling effectively promotes decision-making by clarifying logical feasibility
and trade-offs by holistically expressing a systematic architecture. As traceability is ensured,
it is possible to identify the scope of the impact of partial changes to complex systems.
The architecture is expressed as a diagram from each viewpoint, and each element is kept
traceable with consistency.

The first step is composed of the following process.

(1) Capture issues and opportunities in the supply chain (Sections 4.1.1 and 4.1.2):

A Strategic Motivation (St-Mv) Diagram of the UAF [37] is utilized to define the supply
chain system of systems. It is imperative to define the enterprise motivation model to
enforce the supply chain from a strategic perspective.

(2) Define capabilities to develop or obtain a resilient manufacturing supply chain
(Section 4.1.3):
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Capabilities are linked with challenges and Opportunities.

(3) Extract risks in view of SSE and RE (Section 4.2.1):

Subsequently, as part of SSE, risks inherent in the system are identified by referencing
NIST [17] and OMBOK [40].

(4) Define logical architecture of data space-based supply chain (Section 4.2.2):

These risks are mapped to the SoS being targeted in this study to gain an overview.
This activity employs the resource taxonomy diagram (Rs-Tx [37]).

(5) Define MOP (Measure of Performance) and MOE (Measure of Effectiveness)
(Section 4.2.3):

Based on the holistic understanding of the relationship between system elements
and risks, a security taxonomy diagram (Sc-Tx) [37] is formulated to visualize the ca-
pabilities that need to be obtained for risk mitigation, as well as the risks that threaten
these capabilities.

Enterprise architecture modeling activities facilitate the articulation of measures to
address supply chain breakdown risks stemming from the environment surrounding the
supply chain.

Figure 1. An overview of the flow of the methodology used in this study.

3.2.2. (Step 2) Validation: Parts Supply Disruption and Alternative Manufacturing

In the process of architecture elaboration, the quantitative approach entails the mod-
eling and evaluation of the MOE. A methodology for assessing the effectiveness and
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performance of an SoS is proposed [41]. This methodology applies the UAF to calculate
metrics and employs a description of the systems in the UAF. The MOE of an SoS is the
metric of Capability. Moreover, the MOE is defined using the measure of performance
(MOP) of a system in an operational process that is logically constructed. We can evaluate
the resilience of manufacturing supply chains in terms of economic and effectiveness as-
pects by using the security taxonomy diagram of the UAF, which describes the relationship
between the corresponding system, the MOP of the system, constraints, and the MOE,
which functions as a metric for evaluating capability. To obtain knowledge about the risk
mitigation strategy, a sensitivity analysis is conducted.

In this study, the risk mitigation scenario (Section 3.3) is based on the manufacturing
supply chain using the data space and alternative manufacturing. The formulation of the
MOPs and MOEs are described in Section 3.5 for the cost and performance analysis.

In this step, the scenario-based evaluation of the MOEs is examined. The viability
of alternative manufacturing methods as countermeasures in a critical situation can be
evaluated with MOEs regarding economical aspect and productivity.

The second step is composed of the following process.

(1) Collect data from service provider (Section 4.3.1)

In this study, we focus on the manufacturing of impellers made of stainless steel.
The price of manufacturing with each method is collected from the currently available
cloud-based manufacturing service data.

(2) Execute cost and productivity analysis (Section 4.3.2)

From the perspective of alternative manufacturing performance, production volume is
estimated using Equation (1), and cost estimates for each method are derived from Equation (2).

(3) Execute sensitivity analysis (Section 4.3.3)

The sensitivity of MOPs (production volume and cost) to each parameter is examined
based on a perturbation of one day or +10% or −1 day, especially for the recovery date
t2–t1.

3.3. Disruption and Alternative Manufacturing Scenario

The scenario-based disruption model of a manufacturing supply chain using a data
space is shown in Figure 2. Under normal operation, the parts manufacturer constantly
provides parts. After a certain disruptive event (e.g., the termination of material supply
due to a regional war or a large areal earthquake) at t1, the parts supplier cannot maintain
its production capability and needs time to recover. In this case, the parts supplier seeks out
solutions to resume operations with minimal delay while concurrently exploring options
to maintain supply chain continuity during the shutdown period. Manufacturers that offer
contract manufacturing are listed in the data space, and contracts are established with them
to outsource manufacturing for a specified period until recovery.

After confirming the manufacturing agreement, the contract manufacturer starts
to prepare manufacturing at t2, shown by the light-green bar in Figure 2. Then, the
contract manufacturer starts alternative manufacturing at t2 until the full recovery of the
original manufacturer (t3). During the period of alternative manufacturing by the contract
manufacturer (dal = t3 − t2), they provide parts at the volume of Tp [parts/day]. The time
t1, t2, and t3 represent the following timings: t1: disruption event; t2: the start of alternative
manufacturing; t3: the end of alternative manufacturing and the recovery of the original
manufacturing. dpr is the duration of selection and preparation of manufacturing (from t1

to t2). dre represents the duration of recovery (from t1 to t3). ddl is the duration of delivery
of the first lot of parts. dat is the duration of alternative manufacturing.
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Figure 2. The scenario of alternative manufacturing and the number of manufacturing parts available
with the original and alternative manufacturing systems.

3.4. Evaluation of Alternative Manufacturing Performance

Tp represents the daily production performance of alternative manufacturing during
the period of alternative manufacturing (from t2 to t3). In this scenario, the total produc-
tion volume of alternative manufacturing (nal) is one MOE used to determine resilience
performance and is formulated as shown in Equation (1).

nal = ∑t3
t=t2

Tp (1)

Equation (2) represents the calculation formulation of unit cost of parts. The total cost
integrates the values of the initial cost (loaded per single part), the material cost including
the residuals, and the operational cost (Cop). The BTF (Buy-to-Fly) ratio (γ) denotes the
ratio of the weight of the material obtained to the material used in the part. The BTF
ratios for aircraft metal parts are referenced from Rupp et al. [42], with machining-based
methods having a BTF ratio (γ) of up to 30. In contrast, AM has a lower BTF ratio due
to the additive processes, with a typical BTF ratio (γ) for PBF assumed to be 1.4 in this
scenario. Material cost (CM) refers to the current market price of materials [43–45]. COP

represents the operational cost, including worker wage and administrative expenses, other
subsidiary materials, and electricity divided into the number of parts manufactured in a
single batch process. The mold for MIM is one example of the initial additional cost (Cin).

CU =
Cin
nal

+ γCM + COP (2)

where

nal: total manufacturing volume during alternative manufacturing [parts].
Tp: daily performance of alternative manufacturing [parts/day].
Cu: unit cost of parts during alternative manufacturing [USD/parts].
Cin: initial additional cost of alternative manufacturing [USD].
γ: BTF ratio, which is the ratio of total material weight and used material weight in parts [-].
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CM: cost of used material [USD/kg].
Cop: operational cost for single parts [USD/parts].

3.5. Sensitivity Analysis

Sensitivity analysis is a standard method used to check the uncertainty in the output
of a mathematical model. In this study, a one-at-a-time (OAT) sensitivity analysis was
conducted by varying each input parameter individually while keeping the others fixed.
Specifically, each parameter was perturbed by +10%, or just one day short for preparation
day perturbance for dpr, from its nominal value, and the corresponding changes in the
model output were evaluated. This approach allowed for a straightforward assessment of
the relative influence of each parameter on the simulation results.

4. Results

4.1. Conceptualization of Security and Resilience Strategy

Figure 3 shows the comprehensive strategy used to ensure the security and resilience
of the supply chain. This strategy was derived from the principles of Industrie 4.0 [4] and
Industry 5.0 [7,8]. The overarching vision encompasses the manufacturing supply chain’s
resilience, sustainability, human-centered nature, and efficiency, which are prerequisites for
achieving security and resilience.

Figure 3. The strategy for pushing the supply chain toward a stable and robust manufacturing supply
chain (St-Mv). The words in angle quotes are defined in [39].
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4.1.1. Enterprise Goals

A. Resilience

In the EA process, the first step in setting goals is to clarify the relationship between
the <<Challenge>> that impacts the current supply chain, the <<Driver>> that motivates
the enterprise, and the <<Opportunity>> that enables the <<EnterpriseGoal>>. Resilient
Supply Chain, as an enterprise goal, is described in the top and middle rows of Figure 3. The
manufacturing supply chain circumstances have been identified as <<Driver>> elements
of Natural Disaster, Pandemic, War, Conflict, and Economic Friction. The supply chain faces
the <<Challenge>> of Overcoming supply chain disruption. This <<Challenge>> comprises
two elements: collaboration of participants in the manufacturing supply chain and immediate
recovery of manufacturing (top right in Figure 3). Considering the above situation, we
set the resilient supply chain as the first enterprise goal. As explained in Section 2.2,
Resilience Engineering, the three elements of withstand, continue, and recover are defined
as <<EnterpriseObjective>>.

B. Sustainability

The second goal is to establish a sustainable supply chain (middle left in Figure 3).
The supply chain shall produce less waste and consume minimal energy and materials.
Sustainability, along with resilience, is an important pillar of Industry 5.0. The <<Driver>>
elements are Carbon Neutral, Circular Economy Action, and Circular Economy Regulations.

C. Human-Centric Nature

The third goal is the human-centric supply chain (bottom left, Figure 3). This is the third
vision of Industry 5.0. Workers in the subsystem of the supply chain maintain their human
rights and well-being. This is the <<Driver>> of the Regulations of the due diligence for human
rights and the General Data Protection Regulation (GDPR) [46].

D. Maximize Efficiency

The fourth goal is to maximize efficiency (bottom center, Figure 3). In a stable situation,
the supply network is optimized to deliver products with maximum efficiency. This is
the goal of Industrie 4.0, and it employs approaches to automate and improve supply
chain efficiency.

4.1.2. Opportunities

The <<Opportunity>> that achieves the four goals is located in the middle right part of
Figure 3. As enabling technologies for Industrie 4.0 and Industry 5.0, smart manufacturing
technologies, and specifically the technologies described in Figure 3, are included. The
data space framework is explained in Section 2.3. As mentioned above, Gaia-X has been
launched and is being vigorously promoted, particularly in Europe, and there is room for
utilizing smart manufacturing technologies, such as AI, the IoT, Robotics, and AM.

4.1.3. Capability Identification of a Secure and Robust Manufacturing Supply Chain

To realize a stable and robust supply chain, it is necessary to clarify the capabilities
required to execute the enterprise strategy. The first step is to identify the current supply
chain capabilities and determine the required capabilities. A traditional manufacturing sup-
ply chain aims to deliver products on time, in an effective manner, and maintain the quality
of the products. It has the <<Capability>> elements of effective product supply, such as
Supplier Assurance, Parts Assurance, Product Transportation, Product Manufacturing, Parts In-
ventory, Parts Supply, and Resource Procurement. In the Data space-based manufacturing supply
chain, additional capabilities are required to enhance its recovery capabilities and ensure
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the continued supply of goods, such as Data Trust, Transportation Recovery, Manufacturing
Recovery, Flexible Manufacturing, and Continuity of Business (<<Capability>> elements).

Data Trust and Flexible Manufacturing were introduced as <<Capability>> elements,
and their derivation is explained in Figure 4. Collaboration of participants and Immediate
manufacturing recovery are defined as <<Challenges>> to overcome. It is possible to address
these elements using the Data space framework and Additive Manufacturing (AM), respectively,
compared to other candidate technologies, aiding the recent Industrie 4.0 and Industry 5.0.
As described in Section 2.3, the data space framework is a mechanism that ensures secure
data exchange between participating companies in the data space, and it is a basis for
collaborative activities. Thus, Data Trust is one of the crucial capabilities of the data space.
In addition, as pointed out by Eyers et al. [47] and Jimo et al. [48], AM can be employed
for flexible production by providing data to three-dimensional printers as an AM system
located on site. Thus, it can impact Flexible Manufacturing.

Figure 4. Gaining capabilities to overcome supply chain disruption.

4.2. Structural Overview of Supply Chain with Data Space
4.2.1. Investigation of Security in Manufacturing Supply Chain

The security perspectives of a manufacturing supply chain incorporated with the data
space are investigated. This step includes identifying risks, affected assets, and security
controls. Based on the NIST SP 800-161r1 [17] and Operations Management Body of Knowledge
(OMBOK) [40], the potential harm of cybersecurity risks throughout the supply chain is
extracted (Figure 5). This taxonomy is at a conceptual level, and more specific events
should be described as subordinate concepts in each case. We extracted and described
the risks that have been made concrete in light of the subject of this study. From the NIST
SP 800-161r1 [17], Resource Depletion, Supplier Failure, Lack of Cooperation, and Data Leak
are identified for consideration in this study. From OMBOK [40], the <<Risk>> of Loss of
Business Opportunity is identified, as shown in the bottom row in Figure 5.
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Figure 5. Risk taxonomy referred to from NIST [17] and OMBOK [39].

4.2.2. System of Systems of Supply Chain with Data Space and Risk Mapping

The <<Risk>> elements identified in Figure 5 affect the <<System>> elements that
comprise the SoS of the manufacturing supply chain and its <<Capability>> elements.
Figure 6 shows a resource taxonomy diagram that describes the relationship among the
<<System>>, <<Capability>>, and <<Risk>> elements. A conventional Manufacturing
supply chain System of Systems (upper center in Figure 6) is composed of the Material
Production System, Inventory, Transportation System, Parts Manufacturing System, and Product
Manufacturing System, as well as external environments, such as the Societal Environment
and Natural Environment. Hause et al. described the traditional supply chain with the UAF
diagram [28]. They addressed the security aspect in a traditional supply chain explored by
using the UAF.

We introduce the Data Space into the SoS (top right in Figure 6). As a subsystem of the
Data Space, the SCM Service Provider coordinates supply chain production to exhibit the
<<Capability>> of Flexible Manufacturing. Another role of the Data Space is to address the
<<SecurityRisk>> of a Data Leak, which will become the trigger of another <<Risk>> of
the Lack of Corporation (expressed in the middle right in Figure 6). The Lack of Corporation
affects the <<Capability>> of Continuity of Business (expressed in the top right in Figure 6).
One of the <<Risk>> elements, Lack of Cooperation, affects the Parts Manufacturing System
and impairs Manufacturing Recovery. Thus, it is necessary to mitigate the risk and utilize
a secure communication mechanism in the data space that guarantees data sovereignty
and security and does not interfere with each business. Using the data space allows for
responses to cybersecurity concerns and the facilitation of rapid data sharing between
companies in a secure environment through the IDS (International Data Space) safe data
communication mechanism [6]. The implementation of Connector technology facilitates the
secure exchange of information among companies operating within the data space. The
procedures and technologies for this information exchange are described in Bakopoulos
et al. [31] and the Gaia-X Architecture documents [11]. The next step of this study is to
elucidate the correlation between risks and capabilities, as illustrated in Figure 4. This will
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be followed by deriving metrics to address the identified risks and acquiring means to
verify the efficacy of these metrics.

Figure 6. Overall view of SoS and risk relations in resource taxonomy.

4.2.3. Measure of Effectiveness and Performance of Risk Mitigation

Figure 7 shows the traceability of the types of elements, <<Risk>>, <<Security Con-
trol>>, <<OperationalPerformer>>, and <<Capability>>, affected by supply chain disrup-
tion. Noteworthily, cybersecurity risks and information leaks may appear in an emergent
manner, thereby diminishing the propensity of participating companies to engage with the
data space. The role of ensuring data security in the data space, such as protecting from a
data leak, can be applied as a risk control measure.

<<SecurityControl>> alternative manufacturing is a method used for reducing the
number of nodes in the supply chain via local manufacturing and consuming materials and
parts during manufacturing; the application of AM has the potential to become an effective
option in that sense [48]. Participating in the data space and data-sharing mechanism is
essential for the temporal adoption of such alternative methods.

To evaluate the effectiveness of the SoS, the MOPs of the flexible manufacturing system
are linked rationally to the respective MOEs of Continuity of Business (i.e., Total Cost) and
Continuity of Product Supply (i.e., Duration of Alternative Manufacturing and Number of
Parts) by the behavior of <<Security Control>>, as shown in the top left side of Figure 7.
The MOPs of the flexible manufacturing system exhibit a relationship with the MOEs of
<<Capability>>, namely Continuity of Business and Continuity of Product Supply (top left
of Figure 6). The equations are investigated in the specific use case in Section 4.3.
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Figure 7. Relationship among supply chain risks, security controls, and affected capabilities.

4.3. Parts Supply Disruption and Alternative Manufacturing
4.3.1. Evaluation Result of Alternative Manufacturing Performance

Number of Parts during alternative manufacturing is an appropriate MOE of Continuity
of Product Supply in view of the security of the supply chain’s capability and resilience.
As an MOE of Continuity of Business, Parts Cost is appropriate as well. By simulating
the two MOEs, we are able to evaluate the effect of alternative manufacturing to make
better decisions.

Table 2 shows candidates for relatively small parts that would allow for a short-term
setup process for manufacturing. In the event of a supply chain disruption, it is assumed
that possible manufacturing alternatives will be identified through data space service
providers in a secure way. The data space offers a contract service for participants [11], and
the service enables the smooth start of business between participants. After the contract,
parts data and manufacturing information can be safely exchanged in the data space.

After selecting an alternative manufacturer, it is necessary to prepare for manufac-
turing. The preparation procedures for each manufacturing method and the operational
process refer to the literature [46,49]. Regarding the manufacturing preparation period,
adopting the jig preparation layout and CAD/CAM design period, we have assumed that
a minimum of two days is required, with one day secured for equipment layout, enabling
startup three days later. For BJT, we have assumed that a trial run will be conducted before
molding, debinding, and sintering, and the associated costs have been included in the
initial costs.
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Table 2. Candidate methods of alternative manufacturing.

Manufacturing Method Description

MIM

Metal Injection Molding (MIM) is a manufacturing process that combines
the design flexibility of injection molding with the strength and integrity
of metal. It is ideal for producing small, complex, high-volume metal parts

with tight tolerances. Feedstock made by mixing metal powder with
binder is injected into a mold to produce a molded body (green body). The

green body undergoes a debinding and sintering process to become a
metal part. It is necessary to prepare the mold.

CNC

Computational Numerical Control Machining is a manufacturing process
in which pre-programmed computer software controls the movement of
tools and machinery. It is widely used to produce precise and complex
parts from various materials such as metals, plastics, and composites.

CNC can be utilized for both prototyping and mass production.

PBF-LB

Laser Beam Powder Bed Fusion is an Additive Manufacturing process
used to produce metal parts directly from a digital model. PBF-LB is ideal
for complex, low-volume parts and rapid prototyping, especially when

traditional tooling is impractical.

BJT

Binder Jetting Technology (BJT) is an Additive Manufacturing process in
which a liquid binding agent is selectively deposited onto a bed of metal

powder to form parts layer by layer. After curing, the green body
undergoes a debinding and sintering process similar to MIM.

Regarding manufacturing capacity, sintering is a batch process, and the daily produc-
tion capacity is limited by the number of parts that can be loaded into the sintering furnace,
which is the bottleneck in both MIM and BJT. In MIM, the cycle time for one shot required
for molding is typically 60–90 s. Assuming two parts are molded per shot and 480 shots
per day, 960 molded parts can be produced. Subsequent processes include degreasing and
sintering. Assuming a sintering capacity of 100 parts per batch per furnace, this is based on
the Nabertherm VHT 80/15 MIM furnace (two batches per day) [50] with a 60% loading
rate. Assuming a degreasing cycle of 8 h, a sintering cycle of 12 h, and a manufacturer
with two furnaces, continuous operation of two batches per day results in a throughput
of 600 degreased parts and 400 sintered parts per day. The maximum daily production
capacity of the process is 400 parts. This is the same for BJT, with the sintering process
being the bottleneck process.

Additionally, the time taken for CNC processing is the bottleneck factor. For PBF-LB,
the number of parts that can be produced is determined by the number of parts that can be
placed within the build area. Parts are fixed to the build plate (bottom surface) and can
only be arranged in a single layer, so the number of parts per batch directly corresponds to
the production capacity.

Regarding additional costs for this specific parts manufacturing process, in the MIM
case, initial investment is required for mold design and manufacturing. Mold costs and
preparation time depend on the complexity of the shape, but we have adopted the esti-
mated values from Asami et al. [51]. In the CNC case, since it can accommodate flexible
manufacturing, large initial investments such as molds are not required. However, in some
cases, special small-scale additional investments may be necessary for fixed jigs; we have
assumed that dedicated jigs would be prepared and included them in the additional cost.
For PBF-LB and BJT, we have added costs for minor jigs, but these have little impact on the
final price. These costs are allocated equally to the parts produced during the alternative
manufacturing period (dal).
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A case study is currently underway to verify the manufacturing process of an im-
peller [52], a part used in industrial pumps that is composed of stainless steel and evaluated
in a previous study [42]. This assertion is founded upon existing manufacturing informa-
tion, and the temporal requirements for manufacturing preparation are presumed to fall
within the prevailing range. Although the impeller is utilized as a model example, the
daily production volume may fluctuate depending on factors such as the dimensions of
the component. Subsequently, a sensitivity analysis will be conducted to ascertain how
alterations in these parameters influence the MOE. The results of this analysis will identify
the factors that are sensitive to changes.

In this study, we focus on the manufacturing of impellers of stainless steel (Figure 8).
The price of manufacturing with each method was obtained from currently available cloud-
based manufacturing services [53] to represent the actual manufacturing service, along
with specific examples calculated from the literature and online services (Appendix B).

The higher the BTF ratio, the more excess material is generated and discarded during
processing. MIM and BJT use little material, so the amount of material input matches the
amount used in the parts, resulting in γ = 1. In the case of CNC, complex shapes like the
impeller in this case generate a lot of material that needs to be removed and discarded. In
this calculation, the amount of material input is ten times the number of parts produced,
resulting in γ = 4.47 [42]. In the case of PBF-LB, γ = 1.41 [42], and operational costs include
labor costs. These vary significantly depending on the country and service provider.

Figure 8. The design of impeller parts for this study [52], with a volume of 31.0 [cm3] (scale = 1.0).

Cost information was collected from publicly available online platforms operated
by contract manufacturers [53] that offer cloud-based production services and cost esti-
mation tools. This selection was made to reflect realistic and practical solutions in the
context of cloud manufacturing. It is acknowledged that manufacturing costs can vary
significantly depending on region, company, and market conditions. Therefore, while the
data provide valuable insights into current practices, they are not intended to represent
universally applicable or reproducible benchmarks. Instead, they serve as demonstrative
examples to support the feasibility and relevance of the proposed approach. Cost estima-
tion comes from the calculated by estimation tool [53]. The calculation results are presented
in Appendix B. Table 3 shows the parameters for estimating the productivity and cost for
each manufacturing method.
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Table 3. Parameters of each manufacturing method for estimation of alternative manufacturing.

MIM CNC PBF-LB BJT

Additional Cost [USD] 50,000 1 100 100 100
Operational Cost [USD] 1.3 16 140 18

Material Cost [USD/kg] 3 49.5 4 22 106 62
BTF ratio (γ) 1.0 4.47 2 1.41 2 1.0

Preparation [day] 45 1 2 3 7
Capacity [parts/day] 400 50 30 400

1. Mold cost [51]; 2. BTF ratio [42]; 3. Appendix B; 4. MIM material cost [43], CNC [44], and PBF-LB [45].

4.3.2. Cost and Productivity Analysis

From the perspective of alternative manufacturing performance, production volume
is estimated using Equation (1), and cost estimates for each method are derived from
Equation (2). Based on the calculation formula described in Section 3.5, we estimated the
production volume and unit cost under the specified conditions. Figure 9 illustrates the
number of parts that can be manufactured within the alternative manufacturing period for
each method. The duration until recovery from disruption (dre) is shown on the horizontal
axis. During the initial termination period, the daily production volume is zero due to
manufacturing preparation; however, manufacturing begins after the preparation period
for each method.

a b

Figure 9. Relationship between duration until recovery (dre) and MOEs. (a) Number of total parts in
alternative manufacturing. (b) Unit cost of parts.

The results shown in Figure 9a,b reveal that MIM requires a long preparation period,
resulting in a slow launch of manufacturing. However, the high productivity of MIM
results in a lower unit cost of parts in the end. Table 4 shows the number of parts and the
unit price of the parts manufactured using alternative manufacturing methods when the
recovery date of the original manufacturing method is set to t3 = 60. During the relevant
period, BJT has the highest number of manufactured parts, followed by MIM, CNC, and
PBF-LB. On the other hand, MIM has the lowest cost, followed by BJT, CNC, and PBF-LB. In
addition to the stainless steel impeller, aluminum parts that were investigated in a previous
comparative study of PBF-LB and CNC [54] are analyzed under the assumption that all
parts can be manufactured using each alternative manufacturing method. The weight and
BTF ratio of CNC are varied. As a result, there is no significant change in the overall trend
of parts costs. Furthermore, assuming that differences in parts do not affect the number of
days required for each process, the total production volume remains constant.
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Table 4. Total production volume and unit cost of 60 days of alternative manufacturing for each
manufacturing method.

Parts Property BTF (γ) Unit Cost [USD/parts] 1

Type Material Weight [kg] MIM CNC PBF-LB BJT MIM CNC PBF-LB BJT

Impeller SUS316L 0.25 1 4.47 1.41 1 23.1 56.1 316.7 51.2
Holder A7075-T6 0.63 1 5.9 1.41 1 13.4 55.6 285.0 38.0
Clamp A7075-T6 0.022 1 8.6 1.41 1 11.8 66.4 281.7 36.7
Guard A7075-T6 0.0025 1 7.9 1.41 1 11.0 63.6 280.3 36.1
Housing A7075-T6 0.063 1 11.7 1.41 1 13.4 78.8 285.0 38.1

Total Number of Parts [parts]

6000 2900 1710 21,200
1. Material cost of aluminum for CNC rod [55] and powder [56].

4.3.3. Sensitivity Analysis Results

The sensitivity of MOEs (production volume and cost) to each parameter is examined
for the impeller parts under conditions of change of 10% at dre = 60 (after 60 days, the
original manufacturing has recovered). The manufacturing preparation period is varied
with single day. This reveals the sensitivity of the total production volume of parts to
the duration of preparation and the production capacity. Moreover, it demonstrates the
sensitivity of the unit cost of parts.

The increase in the manufacturing preparation time or the decrease in the production
capacity (orange bar) contributes to the increase in the total parts volume in Figure 10.
MIM shows high sensitivity to the manufacturing preparation time because of its high
production capacity and slow start of manufacturing.

a b

Figure 10. The results of the sensitivity analysis. (a) The production volume of parts; (b) the unit cost
of parts.

Regarding the cost sensitivity in Figure 10, the sensitivity of each method differs in
terms of the factor with the largest impact. For MIM, initial and material costs are sensitive.
For CNC, material costs have a significant impact, while operating costs are sensitive for
PBF-LB. In the case of BJT, material and operating costs have the same level of influence.

5. Discussion

5.1. Architecture Definition and Elaboration

Bakopoulos et al. [31] proposed the use of Gaia-X as a digital-twin value chain. They
used PoC (Penalty of Charge) metrics to predict the resiliency of the potential supply
chain structure. They state that companies can access Resilience Assessment Services and
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Reconfiguration Services by connecting to Gaia-X. However, they do not address the risks
associated with collaboration between a large number of companies or the operation of
collaborative manufacturing. This study employed the UAF diagram (Figure 6) to map
risks across the entire supply chain, identify relationships between risks and elements, and
propose alternative manufacturing mechanisms as risk mitigation measures. Although
this approach is expected to mitigate risks through collaboration, enhancing cybersecurity
capabilities is also crucial. The emergence of the data space, as represented by Gaia-
X, provides a framework of security and leads to the acquisition of more participants.
With more participants, the coordination of manufacturing becomes more flexible, and a
virtuous cycle begins to turn. In general, the SoS is classified into four types according to the
attributes of their governance: directed, acknowledged, collaborative, and virtual [57]. In
this sense, the data space-based manufacturing supply chain can behave as a collaborative
SoS. There has been no quantitative evaluation of the benefits of participating in a data
space, and we believe that the proposed architecture can be utilized as a useful reference of
the collaborative supply chain. This will promote rapid decision-making in situations that
require resilience under a collaborative SoS.

By utilizing the data space, it is possible to quickly identify suppliers with the appropri-
ate facilities and capabilities in a short period of time, enabling continuous manufacturing
using alternative methods with minimal additional investment and lead time. Once the
existing supply chain is restored, it will be possible to end this temporary situation and
return to the original production system. This kind of temporal solution is viable for
short-term contract manufacturing based on the data space.

Gaia-X is a mechanism that enables small and medium-sized enterprises (SMEs) in
Europe to enter the market as service providers by establishing the necessary environment.
This allows them to enter the market with relatively low barriers to entry, eliminating the
need for large-scale infrastructure investments. However, it will be difficult for Gaia-X
to be recognized as a business opportunity unless large enterprises adopt it. Therefore,
widespread adoption and participation from the entire industry are key. SMEs operat-
ing as manufacturing service providers face the challenge of demonstrating competitive
advantages, such as cost efficiency and rapid deployment, in the data space.

This real-time decision support system enables flexible manufacturing adjustments
at a low cost by providing options other than experience-based decisions. However, it is
considered necessary to ensure appropriate operation and training, as there is a possibility
that decisions may be made that result in high costs if the recovery period is misjudged.

5.2. Evaluation of Alternative Manufacturing

For the evaluation of MOE, Equation (2) assumes the case of alternative manufacturing.
The initial investment is not included as capital investment. Only auxiliary materials and
jigs that must be prepared individually are required. This makes it possible to minimize
the cost of mitigation to resilience. By using the proposed set of flow and equations, it
becomes possible to appropriately evaluate the costs of flexibly manufacturing AM and
other technologies to effectively enhance resilience.

MIM and CNC are conventional and highly mature in parts manufacturing. When
adopting MIM, a new mold should be prepared for the alternative manufacturing term. The
residual duration of alternative manufacturing is short. The time it takes to fabricate a new
mold needs to be taken into account when employing MIM as an alternative manufacturing
method. The mold preparation period generally lasts a long time, contingent upon the
specific geometry and dimensions. Consequently, the duration of the production volume
recovery phase in an alternative manufacturing system prior to the restoration of the
original manufacturing system is short, and it is not considered viable. Additionally, the
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fabrication of new molds for such temporal manufacturing should be avoided, as this
would necessitate the storage of molds and thus excess investment. However, if a sufficient
period of alternative manufacturing can be obtained, profitability will be enhanced. Similar
to other AM methods, PBF requires a short design time and a similar production time.
Because it can only build a small number of parts per time, it is not extremely profitable [58].
Note that BJT has a lower technical readiness level than PBF [59]; therefore, the time
required for parts manufacturing design is longer than that of PBF, and the duration of
production is slightly shorter. However, because it can produce numerous parts at a time,
it is highly profitable.

The findings of this study indicate that in collaborative manufacturing with the data
space, AM technologies such as BJT and flexible manufacturing methods such as CNC
are useful options in cases where immediate recovery for continuity of manufacturing is
a main concern. Even in relatively short-term manufacturing periods of several months,
MIM offers significant cost advantages. This is because MIM allows for the transfer of mold
amortization costs to parts, enabling the production of large quantities of parts even in short
periods. However, mold preparation takes one to two months, and in this study, it was
set at 45 days. This preparation period cannot be replaced by alternative manufacturing
methods, so it is important to note that MIM is not a viable option if the goal is to minimize
production downtime.

The sensitivity analysis results indicate that production volume is highly sensitive
to the manufacturing preparation period, with shorter lead times enabling higher total
production volumes. Parts costs vary depending on the manufacturing method, although
both parts costs and operational costs have significant influences. The sintering process is a
bottleneck for MIM and BJT productivity. Developing a temperature profile that allows
for shorter sintering times and increases the number of parts that can be input per batch
or the number of furnaces can improve performance. The insights gained from this study
contribute to the flexible selection of alternative manufacturing methods by leveraging
the data space. Alternative manufacturing methods offer significant advantages, such as
the ability to flexibly respond to design changes and shape modifications, for example,
by utilizing AM. Although AM is generally considered expensive, it offers flexibility for
temporary manufacturing.

From a practical standpoint, manufacturing enterprises should proactively engage in
data space-based collaboration platforms to prepare for potential supply chain disruptions.
Specifically, SCM service providers can implement real-time simulation tools, as proposed
in this study, to evaluate alternative manufacturing agents based on updated data such
as material costs, labor availability, and preparation time. For example, in the event of a
sudden disruption event induced by regional war, the system enables rapid selection and
activation of Additive Manufacturing methods like PBF or conventional CNC depending
on cost and time constraints. This approach allows companies to maintain operational
continuity and minimize financial losses.

The reliability and integrity of the data space must be guaranteed by the data space
mechanism to achieve the engagement of enterprises. The information required is the
MOPs presented in this study, with particular emphasis on the critical information of the
preparation period for manufacturing launch, material costs, and labor costs. MIM and BJT
have high sensitivity to the preparation period, while CNC is more practical for reducing
material costs. Additionally, PBF could be an effective option by reducing operational costs.

The proposed architecture, while demonstrated in the context of manufacturing supply
chains, is inherently modular and scalable. Its credibility with data space mechanisms
and service-oriented architecture allows for adaptation to more complex supply chains
involving multiple tiers, multifunctional corporations, and cross-border operations. For
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instance, in sectors such as aerospace or pharmaceuticals, where traceability, compliance,
and rapid reconfiguration are critical, the architecture can be extended by incorporating
domain-specific data protocols and governance models. Moreover, the collaborative SoS
framework supports integration across heterogeneous systems, making it suitable for
diverse industrial ecosystems.

5.3. Limitations

This study has some limitations. AM technologies (PBF-LB and BJT) are still under
development, so the performance properties or costs may be changed. The main reasons
for this are that AM technology is flexible in terms of free-form shapes and adjustable in
terms of production volume but has limitations in terms of applicable materials and sizes.

The proposed architecture is versatile and offers a high level of deliverability. The
subsequent systems engineering phase, i.e., the design definition process, should be under-
taken when contemplating specific implementation. However, this study does not address
this aspect.

Simulation results are dependent on the underlying conditions. We covered gen-
eral conditions with the currently available information. However, the key to increasing
the resilience of the manufacturing supply chain to disruptions is to rapidly share and
respond to ever-changing conditions, such as regional differences, distance effects, and
manufacturing capacity, at any given time. Active data exchange is necessary among partic-
ipating companies in the data space. This article does not provide measures to encourage
companies to share their data. Further refining of the architecture model is necessary to
increase motivation.

5.4. Next Steps and Recommendations

In terms of further research to improve supply chain security and resilience, the
following actions are recommended for future works. (1) Defining a detailed system
architecture as a model-based systems engineering architecture by utilizing SysML is a
useful way to implement the system of systems. In particular, EA modeling and real-world
data-sharing processes should be the main focus. (2) Investigating the mechanisms in
the data space based on this architecture and defining the data to be provided and the
protocols should be carried out. Furthermore, evaluating the impact of product shortage
and localized supply chain disruptions is also crucial. The flexible manufacturing system
and the sustainable manufacturing system have been introduced as measures to mitigate
risk, and there is a possibility that they will correlate and exhibit emergent behavior.

6. Conclusions

A previous study by Hause et al. [28] analyzed the security of a typical manufacturing
supply chain and examined how to address risk using an enterprise architecture modeling
approach. In contrast, this study examines a manufacturing supply chain that can be
flexibly recombined based on the data space. This approach increases supply chain security,
ensures data security, enables quick decision-making in disruptive situations, and facilitates
the development of appropriate strategies. While Alexopoulos et al. [30] proposed a
probabilistic measure for initial investment decisions, this study introduces a decision-
making instrument for the immediate and timely reconfiguration of the supply chain.

This study examines a data space-based manufacturing supply chain from the per-
spectives of security and resilience. The risk of a data leak triggers the loss of collaboration
without the data transaction secured by the connector technology. However, by adopting
the data space for the manufacturing supply chain, the participants are able to collaborate
in a secure environment. Utilization of the evaluation method proposed in this study
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facilitates the assessment of the effectiveness of alternative manufacturing methods and
the selection of candidate manufacturing methods under the appropriate SoS. Cooperation
between companies participating in the manufacturing supply chain can improve profits
in situations where the supply chain is partially disrupted.

The adoption of the UAF facilitates a comprehensive understanding of the relationship
between the risks and capabilities of the constituent elements of the manufacturing supply
chain system. We found that the lack of cooperation among the accompanied companies in
the SoS induces a risk of a loss of business opportunity, affects the parts manufacturing
systems, and impairs the manufacturing system’s recovery. Thus, it is necessary to mitigate
the risk and utilize a secure communication mechanism in the data space to guarantee data
sovereignty and security and prevent interference with each business.

In the case where the manufacturing capacity during normal operation is reduced due
to a disruptive event, we proposed a system in which the SCM service provider evaluates
and selects alternative manufacturing candidates and decides on an alternative agent based
on the simulation with updated information in the data space. In addition, it is necessary
to achieve the start of manufacturing using alternative manufacturing agents in a short
period until the original manufacturing system recovers and fills in the partial gaps. The
ability to quickly alternate chain coordination by utilizing updated manufacturing data
and to start manufacturing in a short preparation period is an important capability.

This article makes two contributions to the existing literature. First, it defines the
architecture of a manufacturing supply chain that incorporates the data space as an SoS
and comprehensively elucidates the relationship between the risks and capabilities of its
elements. Second, it extracts the risks of the supply chain and indicates that utilizing SCM
service providers in the data space and flexible manufacturing methods like Additive Man-
ufacturing as mitigation methods can address such risks from the perspectives of security
and resilience. As we look to the future, we will be implementing the logical architecture
into a system through the pursuit of practical system architecture implementations and
specific forms of services that promote inter-company communication. At the same time,
we will focus on integrating architectures that balance sustainability and resilience.
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Appendix A. Predefined Words in UAF Models

In this study, UAF diagrams are based on the UAFML rule. Table A1 describes the
diagrams, and Table A2 details the terminations.
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Table A1. Types of diagrams in UAF [37].

Diagram Figure Description

Strategic Motivation
Diagram (St-Mv) Figures 3 and 4

Assemble Strategic Drivers—for enterprise
transformation that deal with national,
department, community, joint, coalition,
business, technology, or other kinds of
considerations [37] (p. 24).
Capture Enterprise Challenges and
Opportunities—Identify challenges,
opportunities, and concerns that pertain to
enterprise transformation efforts. [37] (p. 24).

Security Taxonomy Diagram (Sc-Tx) Figures 5 and 7

Establish security taxonomy to define the
hierarchy of kinds of security and protection
assets and asset owners that mitigate
threats. [37] (p. 90).

Resource Taxonomy Diagram (Rs-Tx) Figure 6
A set of resource performers are described,
including any that have been preliminarily
identified. [37] (p. 65).

Table A2. Predefined terminology in UAFML [39,60].

Terminology Extension Figure Description

ActualEnterprisePhase Instance specification Figure 3 An individual that describes the phase of an
actual enterprise endeavor. [39] (p. 50).

EnterpriseVision Class Figure 3
Describes the future state of the enterprise
without regard to how it is to be
achieved. [39] (p. 42).

EnterpriseGoal Class Figure 3

A statement about a state or condition of the
enterprise to be brought about or sustained
through appropriate means. An Enterprise
Goal amplifies an Enterprise Vision, i.e., it
indicates what must be satisfied on a
continuing basis to effectively attain the
Enterprise Vision. [39] (p. 41).

EnterpriseObjective Class Figure 3

A statement of an attainable, time-targeted,
and measurable target that the enterprise
seeks to meet in order to achieve its
goals. [39] (pp. 41–42).

MotivatedBy Dependency Figures 3 and 4
A tuple denoting the reason or reasons one
has for acting or behaving in a particular
way. [39] (pp. 36–37).

ImpactedBy Abstraction Figure 4
A dependency relationship denoting that a
Capability is affected by an Opportunity. [39]
(p. 35).

Enables Dependency Figure 3

A dependency relationship denoting that an
Opportunity provides the means for
achieving an Enterprise Goal or
objective. [39] (p. 35).

Challenge Class Figures 3 and 4

An existing or potential difficulty,
circumstance, or obstacle that will require
effort and determination from an enterprise
to be overcome so they can achieving their
goals. [39] (p. 33).
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Table A2. Cont.

Terminology Extension Figure Description

Opportunity Class Figures 3 and 4

An existing or potential favorable
circumstance or combination of circumstances
which can be advantageous for addressing
enterprise Challenges. [39] (p. 38).

Driver Class Figure 3
A factor which will have a significant impact
on the activities and goals of an
enterprise. [39] (p. 34).

Risk Class Figures 5 and 6

A type that represents a situation involving
exposure to the danger of Affectable
Elements (e.g., Assets, Processes,
Capabilities, Opportunities, or Enterprise
Goals) where the effects of such exposure can
be characterized in terms of the likelihood of
occurrence of a given threat and the potential
adverse consequences of that threat’s
occurrence. [39] (p. 186).

SecurityRisk Class Figures 5 and 6

The level of impact on enterprise operations,
assets, or individuals resulting from the
operation of an information system given the
potential impact of a threat and the
likelihood of that threat occurring. [NIST SP
800-65]. [39] (p. 141).

System Class Figure 6

An integrated set of elements, subsystems, or
assemblies that accomplish a defined
objective. These elements include products
(hardware, software, firmware), processes,
people, information, techniques, facilities,
services, and other support elements
(INCOSE SE Handbook V4, 2015). [39]
(p. 110).

Technology Class Figure 6

A subtype of ResourceArtifact that indicates
a technology domain, i.e., nuclear,
mechanical, electronic, mobile telephony,
etc. [39] (p. 127).

Capability Class Figures 4, 6 and 7

An enterprise’s ability to achieve a desired
effect realized through a combination of
ways and means (e.g., Capability
Configurations) along with specified
measures. [39] (p. 40).

OperationalPerformer Class Figure 7
A logical entity that is capable of performing
operational activities which produce,
consume, and process resources. [39] (p. 68).

SecurityControl Class Figure 7

The management, operations, and technical
control (i.e., safeguard or countermeasure)
required to protect the confidentiality, integrity,
and availability of the system and its
information [NIST SP 800-53]. [39] (p. 133).

OperationalRole Property Figure 7

The usage of an Operational Performer or
Operational Architecture in the context of
another Operational Performer or
Operational Architecture. Creates a
whole-part relationship. [39] (p. 69).
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Table A2. Cont.

Terminology Extension Figure Description

Affects Dependency Figure 7 A dependency that asserts that a risk is
applicable to an asset. [39] (p. 173).

Mitigates Dependency Figure 7

A tuple relating security control to a risk.
Mitigation is established to manage the risk
and could be represented as an overall
strategy or through techniques (mitigation
configurations) and procedures (security
processes). [39] (p. 183).

Exhibits Abstraction Figure 7
A tuple that exists between a Capable Element
and a Capability that it meets under specific
environmental conditions. [39] (p. 61).

Satisfy - Figure 7 A stereotype of the SysML relationship in the
requirement diagram [60].

Appendix B. Estimation Result of Online Parts Manufacturing

To confirm the online manufacturing service price, the impeller model (SUS316L)
is examined in the CraftCloud [53], providing the unit cost for each number of orders.
Figure A1 shows the result of prices for CNC, PBF-LB, and BJT.

Figure A1. Impeller manufacturing price based on cloud service with the number of parts–orders [53].
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Abstract: By weaving together cutting-edge AI robotics, resilient global supply chains,
universal school enrollment, and dynamic public–private energy investments, this study
unveils a powerful, integrated blueprint for driving environmental sustainability in the
21st century. In doing so, the study employed advanced machine-learning techniques—
specifically, it introduced an ANN-enhanced wavelet quantile regression framework to
uncover the multiscale determinants of China’s ecological footprint. Leveraging quarterly
data from 2011/Q1 through 2024/Q4, it reveals dynamic, quantile-specific relationships that
conventional approaches often miss. The result from the study demonstrates that robotics,
supply-chain integration, public–private energy investments, gender-parity enrolment,
and economic growth each exert a positive—and often escalating—upward pressure on
the nation’s ecological footprint over short, medium, and long horizons, with the strongest
effects in high ecological footprint contexts. The study proposes a significant, tailor-made
policy based on these findings.

Keywords: AI robotics; global supply chains; socio-economic factors; public–private energy
investments; environmental sustainability

1. Introduction

China’s ecological situation presents a complex interplay between rapid economic
growth and environmental challenges. Over the past decades, China’s pro-growth agenda
has propelled it to become the world’s second-largest economy, accompanied by significant
reductions in poverty and advancements in industrialization and urbanization [1]. How-
ever, this rapid development has also led to substantial ecological degradation, including
air and water pollution, habitat loss, and greenhouse gas emissions. According to reports,
China’s economic growth has been coupled with environmental concerns, where the pace
of economic expansion has sometimes outpaced environmental protection measures [2,3].
In response to these challenges, China has implemented rigorous measures aimed at curb-
ing environmental degradation and promoting sustainable development. These include
stringent environmental regulations, investment in renewable energy sources such as solar
and wind power, and initiatives to enhance energy efficiency across industries. Despite
these efforts, China faces significant hurdles in achieving carbon neutrality by 2060, as
outlined in its climate goals. Challenges include balancing economic growth with envi-
ronmental protection, addressing regional disparities in environmental standards, and
transitioning away from coal dependency, which remains a cornerstone of its energy land-
scape [4,5]. These complexities underscore the need for sustained policy innovation and
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international cooperation to navigate the path towards environmental sustainability and
carbon neutrality.

Global supply chain management (GSCM) refers to the interconnected network of
suppliers, manufacturers, distributors, and retailers across international borders. It plays
a crucial role in modern economies by enabling the efficient production and distribution
of goods worldwide. However, the expansion of global supply chains has significant
environmental implications. The integration of complex logistical operations often leads to
increased transportation activities, which contribute to carbon emissions and air pollution.
According to [6], GSCM activities have been associated with rising carbon dioxide emis-
sions due to increased freight transport and energy consumption in logistics operations.
This underscores the environmental challenges posed by globalized trade and supply chain
dynamics [7]. Moreover, the environmental impact of GSCM extends beyond greenhouse
gas emissions. Ref. [8] notes that global supply chains contribute to biodiversity loss
and habitat destruction through land use changes associated with industrial agriculture
and deforestation for raw material extraction. These activities not only degrade natural
ecosystems but also threaten biodiversity and ecosystem services essential for global eco-
logical balance. The complex interplay between economic imperatives and environmental
consequences highlights the urgent need for sustainable supply chain practices.

The measurement of artificial intelligence (AI) by the number of robots installed
reflects a growing trend in industrial automation aimed at enhancing productivity and
operational efficiency. As AI-driven robots become increasingly integrated into manufac-
turing, logistics, and service sectors, their environmental impact comes under scrutiny [9].
The deployment of robots often leads to increased energy consumption, primarily from
electricity, which can contribute to carbon emissions and environmental degradation. This
phenomenon is exacerbated in regions where electricity generation relies heavily on fossil
fuels. Studies suggest that the lifecycle of AI robots, from production to disposal, poses
significant challenges in managing electronic waste (e-waste) and minimizing ecological
footprints [10]. Efforts to mitigate the environmental impact of AI robots include advance-
ments in energy-efficient technologies, the adoption of renewable energy sources, and
improvements in waste management practices. Initiatives such as recycling programs for
electronic components and regulatory measures promoting sustainable manufacturing play
crucial roles in addressing these challenges [11]. By integrating sustainable practices into
the design, operation, and disposal of AI robots, industries can mitigate their environmental
footprint while harnessing the benefits of technological innovation for economic growth
and competitiveness [12].

Public–private investments in energy represent collaborative efforts between govern-
mental bodies and private enterprises to fund and develop energy infrastructure projects.
While these investments aim to enhance energy security, expand access to clean energy, and
stimulate economic growth, they also exert significant environmental impacts [13]. The
construction and operation of energy facilities funded through these initiatives often in-
volve land use changes, resource extraction, and energy-intensive processes that contribute
to environmental degradation. Studies underscore the dual challenge of meeting energy
demand while mitigating ecological impacts, emphasizing the importance of integrating
sustainable practices into energy development strategies [14,15]. The environmental impli-
cations of public–private investments in energy vary by project and location. For instance,
large-scale renewable energy projects, such as solar and wind farms, can reduce reliance
on fossil fuels and lower greenhouse gas emissions. However, these initiatives may also
disrupt ecosystems, affect biodiversity, and require extensive land use, particularly in
sensitive habitats [16]. Balancing energy development with environmental conservation re-
quires careful planning, environmental impact assessments, and regulatory frameworks to
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ensure sustainable outcomes. By prioritizing renewable energy sources, promoting energy
efficiency measures, and fostering stakeholder engagement, public–private partnerships
can contribute to both energy security and environmental sustainability [17].

Based on the comprehensive analysis presented, this study aims to address critical
research inquiries pertinent to China, probing into the following key questions:

1. What is the effect of school enrollment on the ecological footprint?
2. What is the effect of AI robots on the ecological footprint?
3. What is the effect of global supply chain management on the ecological footprint?
4. What is the effect of public–private partnership investment in energy on the ecologi-

cal footprint?
5. What is the effect of economic growth on the ecological footprint?

These questions frame the investigation into the intricate relationships between tech-
nological advancements, economic strategies, and social dynamics, aiming to elucidate
their combined influence on environmental sustainability in the Chinese context.

1.1. Contribution of the Study
1.1.1. Contribution 1 (Linked to RQ3)

Despite a growing body of research identifying socioeconomic, institutional, and tech-
nological drivers of the ecological footprint, no study has investigated how global supply
chain management—encompassing procurement policies, logistics optimization, and sup-
plier engagement—shapes environmental outcomes. As the world’s second-largest econ-
omy and leading manufacturing hub, China’s supply chain strategies critically influence
its energy demand profile and decarbonization trajectory. By empirically linking supply
chain governance mechanisms with ecological footprint indicators, this study fills a pivotal
gap in the literature and equips policymakers with actionable guidance on embedding
sustainable trade and logistics practices within national energy and climate frameworks.

1.1.2. Contribution 2 (Jointly Linked to RQ2 and RQ4)

Second, by combining the study of advanced AI-driven robotics with the analysis of
public–private investment in energy infrastructure, this research breaks new ground: no
prior work has jointly assessed how these technological and financial mechanisms interact
to shape the ecological footprint. In isolating this intersection, we address a significant blind
spot in the environmental economics literature, where automation and collaborative energy
financing have typically been examined in isolation. By integrating these dimensions,
we inaugurate a fresh discourse on the synergies and trade-offs between cutting-edge
technology adoption and innovative funding models for clean energy, thereby equipping
scholars and policymakers with a novel framework to guide both empirical inquiry and
strategic decision-making.

1.1.3. Contribution 3 (Method; Supports All RQs, Especially Policy Targeting)

Third, methodologically, this study advances the field by integrating artificial neu-
ral networks with wavelet-based quantile regression to form an ANN–WQR framework.
Unlike traditional regression techniques, this approach nonlinearly maps complex relation-
ships while decomposing the time series into distinct frequency bands and quantile levels,
thereby uncovering how drivers influence the ecological footprint across short-, medium-,
and long-run horizons as well as at low, median, and high impact quantiles [18,19]. By
delivering scale and distribution-specific insights, the ANN–WQR method empowers
policymakers to design targeted decarbonization measures and allocate resources more
effectively, pinpointing the periods and risk segments where interventions will yield the
greatest environmental gains.
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The subsequent sections are organized as follows: Section 2 presents the theoretical
framework and literature review; Section 3 describes the data and methodology; Section 4
discusses the findings; and Section 5 concludes the study.

2. Theoretical Framework and Synopsis of Studies

2.1. Theoretical Framework

Ecological footprint analysis posits that the adoption of AI robots in production pro-
cesses can enhance resource efficiency—optimizing energy use, reducing material waste,
and streamlining logistics—thereby exerting a mitigating effect on environmental pres-
sure [10,20]. Similarly, sustainable global supply chain management—characterized by lean
transportation, circular procurement, and collaborative planning—attenuates ecological
impacts through lower emissions, reduced handling losses, and improved material recy-
cling [8,21]. In parallel, expanding school enrollment fosters human capital development
and environmental literacy; evidence suggests that higher enrollment rates correlate with
greater adoption of sustainable consumption patterns and more effective community en-
gagement in conservation initiatives, thus lowering per-capita ecological footprints [22,23].
Moreover, public–private partnerships in the energy sector mobilize private capital and
expertise to deploy renewable infrastructure—such as solar parks and wind farms—driving
down carbon intensity and curtailing ecological footprints more rapidly than reliance on
public financing alone [13,14].

Economic growth, meanwhile, operates as a dual force: it can scale up resource use
and enlarge ecological footprints, yet it also creates the fiscal and technological capacity
for cleaner production and structural transformation toward less resource-intensive indus-
tries [24–26]. Through a composition effect, growth fueled by AI-driven productivity gains
and a better-educated workforce can shift the economic mix toward high-value, low-impact
services and digital industries, thereby dampening environmental pressures. Concur-
rently, technique improvements—catalyzed by innovations financed via public–private
partnerships—enhance energy efficiency and resource productivity, offering pathways to
decouple GDP expansion from ecological degradation. This framework thus hypothesizes
both direct effects of AI robots, supply chain management, education, and energy invest-
ment on the ecological footprint, and indirect, growth-mediated channels that amplify or
attenuate these relationships.

2.2. Synopsis of Studies

The literature on drivers of the ecological footprint (EF) reveals a nuanced interplay
between technological innovation, investment flows, supply-chain practices, and economic
expansion. First, studies on robotics (ROBOT) consistently show that automation can
mitigate environmental pressures, though with important caveats. Ref. [10] employ both the
entropy method on global data (2010–2019) and SYS-GMM across 67 countries (1993–2019)
to demonstrate that greater robotic adoption is associated with a statistically significant
reduction in EF [1]. Similarly, Rasheed et al. (2024) use NARDL techniques for seven
Asian developing economies (1990–2020) and corroborate that robotics dampens ecological
impact [20]. However, as shown in [12], panel estimators in over 128 countries suggest no
clear directional effect, highlighting that context and model specification matter. In China,
Ref. [9] find a threshold relationship—robotics reduces EF up to a point, beyond which gains
plateau or reverse, while [27] apply neural network models to G20 data (1999–2018) and
detect no robust net effect. Collectively, these findings argue that robotics’ environmental
benefits hinge on the intensity of deployment, energy mix, and complementary policies
that guide green automation [20].
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Public–private investment in energy (PPE) exhibits similarly mixed outcomes. ARDL
analyses in Pakistan [28] and South Asia–Pacific [15] report that higher PPE inflows drive
up EF, suggesting that capital injections without stringent environmental safeguards may
lock in fossil-based infrastructure. By contrast, Ref. [14] use FMOLS for Pakistan (1980–2019)
and find that PPE actually decreases EF, implying that targeted investments in renewables
can deliver environmental dividends. Ref. [16] further illustrates this debate by showing
that in Bangladesh (1997–2019), PPE raises CO2 emissions—a proxy for EF—when directed
toward conventional power. Ref. [29] confirm in South Africa (1960–2020) that, absent
regulatory oversight, PPE tends to exacerbate ecological pressures. Together, these studies
underline that the sign of PPE’s effect on the environment depends critically on sectoral
allocation, financing terms, and the regulatory framework governing investment quality.

Global supply-chain management (GSCM) research paints a more consistently cau-
tionary tale regarding environmental impact. In emerging economies (1997–2020), QARDL
models by [6] reveal that intensified supply-chain activities amplify CO2 emissions—a
core component of EF—due to increased production and logistics emissions. Refs. [7,8]
confirm this pattern in global and Japanese contexts, respectively, albeit using different
methods and panel estimators. Recent WQQR analysis for the United States (2000 Q1–2022
Q4) by [21] also documents a robust positive relationship between GSCM and CO2 output.
These convergent findings highlight that, without green logistics, carbon pricing, and
optimized inventory practices, the integration of global value chains can substantially
heighten ecological burdens.

Finally, economic growth (EG) remains a powerful driver of EF across varied contexts.
Panel quantile regressions by [30] for OECD countries (2001–2020) show that growth
uniformly elevates EF across the distribution, though the effect size intensifies at higher
quantiles. ARDL estimations in China (1990–2019) by [31] and panel regressions covering
160 developing nations [32] both confirm that output expansion translates into greater
ecological impact. DOLS analysis for the G20 (Naseem et al., 2024) and the novel D2C
algorithm in Russia [26] similarly document a positive and significant EG–EF nexus. These
consistent results imply that, absent structural shifts toward low-carbon technologies and
efficiency gains, aggregate growth pressures will continue to push ecological footprints
upward. Table 1 presents a summary of the findings.

2.3. Gap in the Literature

While this literature is extensive, several limitations constrain inference and motivate
our study. Findings are highly model-dependent—ranging from SYS-GMM and FMOLS to
NARDL and panel estimators—yielding sign reversals for robotics (ROBOT) and public–
private energy investment (PPE) that reflect differences in identification, control sets, and
functional form (e.g., neglected nonlinearity and thresholds). Measurement choices also
blur comparability: many papers proxy ecological footprint (EF) with CO2 emissions,
overlooking land use, materials, and biodiversity components; GSCM is often captured by
coarse trade or logistics aggregates that omit procurement policies, supplier engagement,
inventory practices, and carbon pricing exposure; PPE metrics rarely disaggregate by
technology (renewables vs. conventional), financing terms, or regulatory quality, making
the environmental content of capital flows opaque. Cross-country panels mask contextual
heterogeneity in energy mixes, industrial composition, and policy regimes, while China-
focused evidence on supply-chain governance remains sparse. Dynamic features are
underexplored: most studies do not distinguish short-, medium-, and long-run responses or
distributional (quantile) heterogeneity, despite evidence of thresholds and plateau effects for
automation. Endogeneity—via reverse causality (e.g., EF shaping investment/technology),
omitted variables (energy prices, standards), and weak instruments—further limits causal
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claims. Finally, the literature seldom jointly models interactions among ROBOT, PPE, and
GSCM, precluding a coherent view of synergies and trade-offs. These gaps justify an
approach that (i) measures GSCM as governance and operational practices, (ii) separates
PPE by energy type and institutional quality, and (iii) traces scale- and quantile-specific EF
effects while explicitly testing technology–finance–supply-chain interactions.

Table 1. Summary of past studies.

Author(s) Nations Timeframe Method(s) Findings

AI Robot (ROBOT) and Ecological Footprint (EF)

[10] Global Economy 2010–2019 Entropy method ROBOT ↓ EF
[10] 67 countries 1993–2019 SYS-GMM ROBOT ↓ EF
[20] seven Asian developing countries 1990–2020 NARDL ROBOT ↓ EF
[12] 128 countries Undefined Panel Estimator ROBOT → EF
[9] China 2018–2022 Panel threshold ROBOT ↑↓ EF
[27] G20 countries 1999–2018 Artificial neural network ROBOT → EF

Public Private Investment in Energy (PPE) and Ecological Footprint (EF)

[28] Pakistan 1992–2018 ARDL PPE ↑ EF
[14] Pakistan 1980–2019 FMOLS PPE ↓ EF
[16] Bangladesh 1997–2019 FMOLS PPE ↑ CO2
[15] South Asia and the Pacific region 1990–2017 ARDL PPE ↑ EF
[29] South Africa 1960–2020 ARDL PPE ↑ EF

Global Supply Chain Management (GSCM) and Ecological Footprint (EF)

[6] 1997–2020 emerging
economies QARDL GSC ↑ CO2

[8] Undefined Global Undefined GSC ↑ CO2
[7] Undefined Japan SEM GSC ↑ CO2
[21] 2000Q1–2022Q4 United States WQQR GSC ↑ CO2

Economic Growth (EG) and Ecological Footprint (EF)

[30] OECD countries 2001–2020 Panel quantile regression EG ↑ EF
[31] China 1990–2019 ARDL EG ↑ EF
[32] 160 developing countries 2001–2022 Panel Regression EG ↑ EF
[33] G20 countries 1990–2020 DOLS EG ↑ EF
[26] Russia 1970–2017 New D2C algorithm EG ↑ EF

Note: ↓ decrease, ↑ increase, → direct relationship.

3. Data and Methods

3.1. Data

This study examines the drivers of the ecological footprint in China. Table 2 provides
an overview of the key variables used in our empirical analysis, detailing how each
is measured, its abbreviation, and its primary data source. The adoption of industrial
automation is captured by the annual number of industrial robots installed (ROBOT),
drawn from [34]. Global supply chain management (GSCM) is represented by a composite
index designed to reflect firms’ ability to coordinate logistics and procurement activities
across borders. Human capital is proxied by tertiary school enrollment expressed as a
gender parity index (SE), and investment in energy infrastructure is measured by the
monetary value of public–private partnership projects in energy (PPE), both sourced
from [35]. Environmental pressure is quantified via the ecological footprint in global
hectares per capita (EF), as reported by [36]. Finally, economic performance is captured by
real GDP per capita (EG), measured in constant 2015 U.S. dollars, also from [35]. The study
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data span from 2011Q1 to 2024Q1. All variables, except GSCM, have been logarithmically
transformed. Figure 1 presents the trend of the variables.

Table 2. Data source and measurement.

Variables Measurement Abbreviation Sources

AI Robot ** Annual industrial robots installed ROBOT [34]
Global supply chain management ** Index GSCM [37]

School enrollment ** School enrollment, tertiary (gross), gender
parity index (GPI) SE [35]

Public–private partnerships
investment in energy ** Current USD ($) PPE [35]

Ecological Footprint * Gha Per Capita EF [36]
Economic Growth ** GDP Per Capita Constant USD ($) 2015 EG [35]

Note: * denotes dependent variable, $ denotes United States dollar (USD), and ** denotes independent variables.

Figure 1. Trend of the variables.

Determinants of EF are theoretically and policy-relevant because they span the princi-
pal channels through which economies transform resource use and emissions across scale,
composition, and technique effects. AI-driven robotics can lower EF by raising process
and energy efficiency, improving defect rates, and enabling predictive maintenance, yet
may also induce rebound effects (higher output/throughput, energy-intensive data cen-
ters) and shift footprints upstream via equipment manufacture—making its net impact
contingent on the energy mix, deployment intensity, and complementary environmental
standards. GSCM governs Scope-3 pressures—procurement policies, logistics optimiza-
tion, inventory practices, and supplier engagement—thereby mediating embodied carbon,
material throughput, and transport emissions along global value chains; without green
logistics and carbon-aware sourcing, trade integration can magnify EF even when on-site
efficiency improves. School enrollment (human capital) influences EF through preferences
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and productivity: higher education can foster environmental literacy, compliance, and
innovation that reduce EF, but also raises lifetime income and consumption aspirations
that may expand material and energy demand, implying heterogeneous effects across
the income/consumption distribution. PPP-E shapes EF via the composition of energy
infrastructure and governance of capital: partnerships targeted to renewables, grids, and
storage can decouple growth from footprints, whereas PPPs that lock in fossil-based assets
increase EF; contract design, risk allocation, and regulatory quality determine which path
dominates. Finally, EG is the baseline macro driver of EF through scale effects, with poten-
tial mitigation via composition (structural change toward services/cleaning industry) and
technique (clean technologies, efficiency)—so its sign and magnitude depend on the speed
of decarbonization relative to output expansion.

3.2. Methods

The study fused the artificial neural network with the wavelet quantile regressions
(WQR) suggested by [38]. Let {Yt} and {Xt} be the original series. A three-level Maximal
Overlap Discrete Wavelet Transform (MODWT) suggested by [19] yields detailed coefficients

wY,j,t, wX,j,t = MODWT(Yt; J = 3), MODWT(Xt; J = 3) (1)

Aggregate into three bands h ∈ { Short, Medium, long } :

Y(h)
t = ∑

j∈Lh

wY,j,t, (2)

X(h)
t = ∑

j∈Lh

wX,j,t, (3)

where LShort = {1}, LMedium = {2}, LLong = {3}.
For each h and quantile τ, estimate

Q
Y(h)

t |X(h)
t
(τ) = αh(τ) + βh(τ)X(h)

t (4)

by solving (
α̂h(τ), β̂h(τ)

)
= arg min

a,b
∑

t
ρτ

(
Y(h)

t −
(

a + bX(h)
t

))
(5)

This yields β̂h(τ), its bootstrap SE, and p-value.
Normalize each band:

∼
Y
(h)

t =
Y(h)

t − min
(

Y(h)
)

max
(
Y(h)

)− min
(
Y(h)

) , (6)

∼
X
(h)

t =
X(h)

t − min
(

X(h)
)

max
(
X(h)

)− min
(
X(h)

) (7)

Fit a single–hidden-layer net with five neurons:

ˆ̂Y
(h)
t =

5

∑
k=1

vh,kσ

(
uh,k

∼
X
(h)

t + b(1)h,k

)
+ b(2)h . (8)

Rescale back:

Ŷ(h)
t =

∼̂
Y
(h)

t

[
max

(
Y(h)

)
− min

(
Y(h)

)]
+ min

(
Y(h)

)
, (9)
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and compute

MSEh =
1

Ntest
∑

t

(
∼
Y
(h)

t − Y(h)
t

)2

. (10)

4. Findings and Discussion

4.1. Descriptive Statistics

Figure 2 summarizes eight key univariate statistics for each of the six series—EF,
EG, GSCM, PPE, ROBT, and SE—using a common color scale (yellow = low values,
purple = high). Starting with location, EF and EG both sit at very low magnitudes (means of
1.23 and 9.14, medians 1.22 and 9.16), whereas PPE is by far the largest series (mean ≈ 21.11,
median 21.72) and SE the smallest (mean = median = 0.15). Dispersion follows suit: stan-
dard deviations run from only 0.02 in SE and 0.04 in EF, to 2.04 in PPE and 1.41 in GSCM.
Skewness reveals that GSCM is positively skewed (1.16), indicating occasional large spikes,
while PPE (−0.71), ROBT (−0.56), and SE (−0.33) exhibit moderate left-tail weight. Kurtosis
values above 3 for GSCM (3.32) and PPE (3.84) signal heavier tails than Gaussian, whereas
EG (1.85) and EF (1.82) are platykurtic. Finally, the Jarque–Bera statistics show that GSCM
(≈12.87) and PPE (≈6.36) most strongly reject normality at conventional levels (JB > 5.99 at
5%), with ROBT (5.36) borderline, while the other series remain closer to Gaussian behavior.
Overall, PPE dominates in scale and tail-risk, GSCM is the most skewed and heavy-tailed,
and EF, EG, and SE are comparatively well behaved.

Figure 2. Descriptive statistics.

4.2. Nonlinearity and Normality Test Results

Table 3 brings together a battery of univariate diagnostic checks on each of our six se-
ries to assess (Panel A) departures from Gaussianity and (Panel B) evidence of nonlinearity.
In Panel A, the robust Jarque–Bera and Bootstrap symmetry tests flag highly significant
departures from normality for GSCM, PPE and ROBOT, while EF and EG show weaker
evidence of skewness/kurtosis non-Gaussianity (their Jarque–Bera statistics fall below
conventional cut-offs, but their difference-sign and Mann–Kendall tests remain strongly
significant, indicating asymmetric distributional features and trends). Across all variables,
the Runs and Bartels tests are overwhelmingly significant, confirming serial dependence
and further refuting the iid–Gaussian assumption. Moving to Panel B, the Tsay and Keenan
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tests—both tailored to detect specific forms of threshold-type nonlinearity—only register
significance for ROBOT, suggesting that simpler nonlinear structures may be present there.
By contrast, the White neural network and Teraesvirta NN tests, which are more general
tests for neglected nonlinear dynamics, reject linearity at the 1 percent level for every series.
Taken together, these diagnostics tell us that none of our six drivers conforms to the twin
benchmarks of normal, linear behavior; instead, each exhibits at least some combination of
heavy tails, asymmetry, serial dependence, or richer nonlinear dependence that justifies
our use of wavelet-quantile and ANN methods.

Table 3. Diagnostic test results.

Panel A. Normality test results

Bartels test Robust
Jarque–Bera test

Test of
normality SJ test

Bootstrap
symmetry test

Difference
sign test

Mann–Kendall
rank test Runs test

GSCM −5.126 *** 25.642 *** 3.131 ** 4.473 *** 2.523 ** 3.908 *** −4.855 ***
EF −7.364 *** 2.6422 −0.881 1.1971 5.735 *** 7.767 *** −6.743 ***
EG −7.462 *** 2.5611 −1.877 −0.879 11.700 *** 10.820 *** −7.282 ***
PPE −6.880 *** 20.471 *** 4.150 *** −3.400 *** 0.229 −0.657 −6.203 ***
ROBOT −7.386 *** 3.7984 −0.53336 −3.649 *** 6.017 *** 9.252 *** −6.743 ***
SE −7.380 *** 2.4399 −1.7813 −0.214 4.358 *** 2.509 ** −7.012 ***

Panel B. Nonlinearity test results

Tsay Test White NN test Keenan test Teraesvirta NN
test

GSCM 2.004 9.941 **** 1.978 5.213 *
EF 0.060 29.08 *** 0.042 22.455 ***
EG 0.016 96.59 *** 0.001 92.151 ***
PPE 0.696 155.49 *** 0.607 144.21 ***
ROBOT 7.771 *** 62.027 *** 4.614 *** 62.315 ***
SE 0.413 159.97 *** 0.384 129.28 ***

Note: ***, ** and * denotes 0.01, 0.05 and 0.10 significance level, respectively.

4.3. Kernel Plot Results

Figure 3 presents the kernel plot of the studied variables. Panels (a) through (f) each
overlay the kernel-density estimates for the training sample (bottom ridge) and the held-out
testing sample (top ridge) of six variables—GSCM, ROBOT, EG, PPE, EF, and SE—using a
continuous hue scale to map density height to the variable’s value. Grey ticks along each
axis mark the individual observations, and faint vertical grid lines denote key quantiles. In
panel (a), GSCM exhibits a clear bimodal shape in both splits, with a dominant mode just
above zero and a secondary hump near +3, suggesting two distinct regimes in supply-chain
digitalization; the testing distribution closely mirrors the training but with slightly less
mass in the upper mode. ROBOT in panel (b) is largely unimodal and roughly symmetric
around 12–12.5 in both samples, indicating consistent robotics penetration, though test-set
values are marginally more concentrated. Panel (c) shows EG to be mildly right-skewed,
peaking near 9.2%, with both ridges almost superimposed—evidence of stable growth
dynamics across training and testing. PPE (panel d) stands out with a pronounced right
tail and peak around 21–22, reflecting occasional surges in public–private environmental
expenditure; the test ridge is slightly taller on the right, hinting at a few higher-expenditure
observations. EF (panel e) is centered near 1.25, with a slight left skew and broad shoulders,
indicating occasional dips in ecological footprint; again, the training set has somewhat
fatter tails than the test set. Finally, SE (panel f) is the narrowest of all, concentrated around
0.14–0.16, showing very little dispersion between the two samples and underscoring the
relative stability of social equity measures across periods. Overall, these kernel-density
plots reveal that—while most distributions remain remarkably similar between training

249



Systems 2025, 13, 691

and test—the tail behavior and modality can differ subtly, an important consideration when
fitting models to each variable.

Panel (a): Kernel Plot for GSCM Panel (b): Kernel Plot for ROMOT 

 
Panel (c): Kernel Plot for EG Panel (d): Kernel Plot for PPE 

Panel (e) Kernel Plot for EF Panel (f) Kernel Plot for SC 

Figure 3. Kernel density plot of EF, PPE, EG, SE, ROBOT, and GSCM.

4.4. ANN Models Results

Figure 4 presents the ANN’s hold-out predictions of ecological footprint (EF) by the
independent variables. Each panel plots the ANN’s hold-out predictions of EF against
the actual EF values. The 45◦ dashed line denotes perfect prediction. In the GSCM
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panel, the red points scatter widely around the line, yielding an RMSE of 0.0418 and an
R2 of only 0.2496—indicating that supply-chain digitalization alone explains about 25%
of the variation in EF. By contrast, SE achieves moderate accuracy (blue, RMSE = 0.0311,
R2 = 0.5978), suggesting a stronger but still incomplete linkage. EG (economic growth)
produces the tightest clustering along the 45◦ line (green), with the lowest RMSE (0.0172)
and highest R2 (0.9235), which implies that growth dynamics are the dominant predictor of
EF in this sample. PPE (public–private environmental expenditure) falls in between (purple;
RMSE = 0.0386, R2 = 0.3595), and ROBOT (robotics penetration) also performs very well
(orange; RMSE = 0.0180, R2 = 0.8764). Overall, EG and ROBOT each account for over 87% of
EF’s out-of-sample variance, SE about 60%, PPE roughly 36%, and GSCM only about 25%,
highlighting the relative predictive power of these drivers under the ANN framework.

Figure 4. ANN models: each predictor → EF.

4.5. ANN Wavelet Quantile Regression Results

Next, we used the ANN wavelet quantile regression (see Figure 5) to examine the
association. This approach helps in identifying the association between the variables with
a focus on various periods and quantiles.
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(a) EF vs. ROBOT 

(b) EF vs. GSCM 

(c) EF vs. PPE 

Figure 5. Cont.
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(d) EF vs. SE 

(e) EF vs. EG 

Figure 5. ANN wavelet quantile regression estimates. Note: ** and * denotes 0.05 and 0.10 significance
level, respectively.

Figure 5a presents the effect of ROBOT on ecological footprint (EF). In the short run,
robotics is positively associated with China’s ecological footprint: the wavelet–quantile co-
efficients rise from +0.060 at the 10th percentile (τ = 0.10), to +0.064 at the median (τ = 0.50),
and to +0.070 at the 99th percentile. At low EF quantiles (τ ≤ 0.20), the modest positive co-
efficient (~+0.060) reflects that when baseline energy use is low, early automation primarily
substitutes labor without expanding output, so the net energy increase remains limited [20].
Around the median, the positive effect grows as mid-level producers leverage robots to
ramp up throughput, drawing additional power for both machinery operation and auxil-
iary services. At the upper tail (τ ≥ 0.90), the largest short run coefficient (≈+0.070) occurs
because high footprint firms already operate near capacity, and any added automation
demands disproportionately more cooling, maintenance energy, and peak load electricity,
thus amplifying their footprint [11]. Over the medium horizon, robotics continues to have
a positive effect on EF, with coefficients rising to approximately +0.063 at low quantiles,
+0.066 at the median, and +0.071 at the top quantiles. Here, low EF units gradually expand
production lines around new robots—so even small initial deployments yield sustained
positive energy draws. Median producers reinvest early efficiency gains into complemen-
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tary processes (e.g., real-time analytics), further increasing electricity demand. Meanwhile,
high EF firms use medium term automation rollouts to scale up entire facilities, lock in
higher energy intensity capital stocks, and trigger larger supply chain emissions, driving
the continued upward shift in β (τ) with τ [39]. In the long run, the positive relationship
between robotics and EF persists: coefficients reach about +0.065 at low quantiles, +0.068
at the median, and peak at +0.074 for the highest quantiles. At lower EF states, long-term
diffusion of robotics spurs new plant constructions and grid upgrades, so even once modest
adopters remain on a permanently higher energy trajectory. Median tier firms, after sev-
eral investment cycles, adopt complementary technologies (e.g., AI driven HVAC control)
that cumulatively raise both direct and embodied energy use. Additionally, at the upper
tail, decades-long integration of robotics into every production stage—from raw material
handling through finished goods packaging—locks in very high energy intensities.

Figure 5b presents the effect of global supply chain management (GSCM) on ecolog-
ical footprint (EF). In the short run (level 1 band), GSCM is positively associated with
China’s ecological footprint only at the very lowest quantile. At τ = 0.01, the coefficient
is β ≈ +0.008 *, indicating that when EF is minimal, even early-stage improvements in
logistics coordination and supplier integration can temporarily boost energy and material
throughput (e.g., new shipment routes or ramped-up inventories) [7]. At τ = 0.05, all
three horizons show positive coefficients that now reach statistical significance: short-run
β ≈ +0.010 *; medium-run β ≈ +0.012 **; and long-run β ≈ +0.009 *. Beyond the bottom
10 percent (τ ≥ 0.10), the short-run effect remains small and insignificant (β ≈ 0), suggest-
ing that once basic supply-chain systems are in place, marginal GSCM upgrades do not
immediately alter ecological loads [40]. Over the medium and long horizons, the positive
GSCM–EF relationship resurfaces at higher quantiles. In the medium term, significant
returns around τ = 0.70 with β ≈ +0.015 *—reflecting how deeper supplier integration
and more frequent cross-border shipments lock in additional energy use for warehousing
and transport. In the long run, positive coefficients are significant from τ = 0.60 through
τ = 0.99, rising from ≈+0.013 * at the lower bound to ≈+0.028 ** at the upper tail. This
pattern indicates that in provinces where EF is already high, sophisticated just-in-time lo-
gistics, automated sorting centers, and expanded port infrastructures cumulatively increase
energy-intensive operations, magnifying environmental impacts over time [7].

Figure 5c presents the effect of public–private investment in energy (PPE) on ecological
footprint (EF). In the short run, PPP-backed energy investments in China are positively
related to the national ecological footprint, but the effect is generally insignificant at the
extreme low end (τ = 0.01, β ≈ +0.06, no star) and negligible (β ≈ +0.00–+0.01) across
τ = 0.05–0.80. Only at the very upper tail—when EF is already high—does PPE register
a modest but positive and significant effect (τ = 0.95–0.99, β ≈ +0.015–+0.020, * or **),
reflecting the one-off commissioning and start-up phase energy costs of new renewable
plants and grid upgrades in provinces with heavy baseline footprints [14]. Moving into the
medium term, the positive footprint increasing effect of PPE becomes statistically signif-
icant across a broad swath of quantiles. From the lower middle quantiles (τ = 0.10–0.50,
β ≈ +0.010–+0.020, **), PPP projects transition from pilot to commercial operation, de-
ploying commercial-scale turbines, transmission lines, and substations that draw both
embodied and operational energy. Moreover, at τ = 0.90 (β ≈ +0.018, *), high footprint
provinces—where large-scale PPP wind and solar farms dominate—experience notable
spikes in electricity consumption for maintenance and ancillary services, cementing a
positive medium run impact on EF [15]. By the long horizon, PPE’s influence on China’s
ecological footprint remains positive and significant at the extremes of the distribution, both
lowest (τ = 0.01, β ≈ +0.015, **) and highest quantiles (τ = 0.95–0.99, β ≈ +0.022–+0.025,
**). In low footprint settings, long-term PPP rollouts lock in new grid infrastructure and
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permanent plant operations, sustainably raising baseline energy use. At the upper tail,
decades long maturation of PPP pipelines—from mega solar parks in Xinjiang to strategic
interprovincial transmission corridors—ensures that renewable projects and their support
networks yield the largest positive cumulative EF increases where pressures were already
greatest [13].

Figure 5d presents the effect of school enrollment gender parity (SE) on ecological
footprint (EF). In the short run, increases in China’s tertiary school enrollment gender
parity index (SE GPI) are positively linked to the national ecological footprint across all
quantiles, with coefficients climbing from about +2.8 at the 1st percentile (when overall
EF is lowest) to +4.0 at the 99th percentile (when EF is highest) (all **). At low-footprint
conditions (τ ≤ 0.10), marginal gains in gender parity trigger modest expansions—such
as additional dormitory wings or improved sanitation blocks on university campuses—
so the immediate footprint rise is smaller (β ≈ +2.8), reflecting the relatively limited
scale of tertiary infrastructure at the outset [23]. By the median quantile (τ = 0.50), as
parity approaches balance nationwide, universities collectively upgrade energy-intensive
facilities—modern laboratories, high-capacity data centers for e learning, and enhanced
campus lighting—producing a larger positive effect (β ≈ +3.2). At the upper tail (τ ≥ 0.90),
where China’s overall EF is at its peak, further parity-driven infrastructure deployment—
such as 24-h computing facilities and expanded research complexes—yields the strongest
short-run footprint increase (β ≈ +4.0). Over the medium horizon, the positive SE GPI–EF
relationship persists across every quantile (**, τ = 0.01–0.99) but the coefficient gradient
moderates: β ≈ +2.9 at the lowest EF quantile, β ≈ +3.1–3.3 around the median, and
β ≈ +3.8 at the top quantile. As parity gains consolidate nationally over one to three
years, the initial burst of campus construction transitions into sustained operational energy
demands—ongoing maintenance of gender inclusive facilities, continuous server loads
for blended learning platforms, and expanded university transportation networks—so
each incremental rise in SE GPI translates into a uniformly positive yet quantile-sensitive
uplift in EF [41,42]. In the long run, the positive effect of SE GPI on China’s ecological
footprint stabilizes at β≈ +2.6 for the lowest quantile, β≈ +3.0 at the median, and β ≈ +3.7
at τ = 0.99 (all **). At low-EF states of national development—reflecting earlier phases
of tertiary expansion—the energy impact per parity improvement diminishes as campus
capacity reaches saturation.

Figure 5e presents the effect of economic growth (EG) on ecological footprint (EF). In
all three horizons, economic growth (EG) exerts a positive and highly significant (**) effect
on China’s ecological footprint across every quantile (τ = 0.01–0.99). In the short run, the
estimated coefficients start at roughly 0.17 at the 1st percentile and rise modestly to about
0.18 at the 99th percentile, indicating that even an incremental uptick in provincial GDP
yields an immediate increase in resource use and emissions [25]. At low footprint states
(τ ≤ 0.10), this reflects firms tapping existing energy-intensive production without major
new investment, while at the upper tail (τ ≥ 0.90), heavy industry clusters amplify that
effect through intensified operation of coal-fired plants and high-energy machinery [26].
Over the medium horizon, coefficients uniformly increase to approximately 0.18–0.21
across quantiles, with the median effect around 0.19. This stronger linkage emerges because
sustained growth in China typically translates into fresh capital expenditures on manufac-
turing lines, transport infrastructure, and urban construction—all of which lock in elevated
energy and material throughput for several years [43]. Lower quantile regions slowly build
out this infrastructure, mid-level provinces expand manufacturing capacities, and high
quantile areas see the largest rebound effect as robust demand spurs continual capacity
utilization. In the long run, EG’s footprint multiplier peaks—rising from about 0.20 at
τ = 0.01 to nearly 0.24 at τ = 0.99—underscoring how decades-long growth trajectories
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embed high carbon capital stocks, urbanization patterns, and consumption habits. The
Summary of ANN–WQR heatmaps is showed in the Table 4.

Table 4. Summary of ANN–WQR heatmaps.

Driver Direction Short-Run Medium-Run Long-Run
Distributional Emphasis
(Quantiles)

ROBOT Positive Positive Positive Positive
Broadly across τ; pockets of
stronger effects at mid–high τ in
long horizon

GSCM Positive Weak/near zero Positive (selective)
Positive (clearer,
especially
mid–high τ)

Signals at low τ ≈ 0.01–0.05 and
mid–high τ ≈ 0.50–0.95 depending
on horizon

PPE Mixed (context-
dependent)

Weak/negative at
very low τ (≈0.01),
otherwise small

Positive at mid τ

(≈0.20–0.50)
Positive at high τ

(≈0.90–0.99)
Tail emphasis: very low and very
high τ show clearer signals

SE Positive Positive Positive Positive
Significant across almost all τ;
strong cells at upper τ (e.g.,
τ ≈ 0.99)

EG Positive Positive Positive
Positive
(strengthens at
upper τ)

Broad distribution; strengthening at
τ ≈ 0.90–0.95 in long horizon

5. Conclusions and Policy Initiatives

5.1. Conclusions

Harnessing the power of AI, China’s digital supply networks and public–private part-
nerships are rewriting the rulebook on sustainable growth—turning data-driven efficiency
gains into real-world carbon reductions. By strategically aligning cutting-edge automa-
tion with collaborative investment models, these innovations open a new path toward
a greener, more resilient socio-economic future. This study applies an ANN-enhanced
wavelet quantile regression framework to uncover the multiscale determinants of China’s
ecological footprint. Leveraging quarterly data from 2011 Q1 through 2024 Q4, it reveals
dynamic, quantile-specific relationships that conventional approaches often miss. The
result from the study demonstrates that robotics, supply-chain integration, PPP energy
investments, gender-parity enrolment, and economic growth each exert a positive—and
often escalating—upward pressure on the nation’s ecological footprint over short, medium,
and long horizons, with the strongest effects in high-EF contexts.

5.2. Policy Recommendations

In provinces where ecological footprint levels are relatively low, China should expand
its existing Energy Conservation Law by mandating rapid energy-efficiency audits for new
robotic installations and renewable-project start-ups. Provincial regulators can require that
any automation or PPP-financed plant demonstrate real-time monitoring of peak electricity
draws and participate in demand-response programs operated by grid companies. In
high-footprint hubs such as Shanghai or Guangdong, authorities should enforce stricter
energy performance standards on new robotics deployments and campus expansions,
tying construction permits to guaranteed reductions in per-unit energy use during the
commissioning phase.

Over the next three years, aligned with China’s 14th Five-Year Plan goals for car-
bon intensity reduction, central and local governments should condition subsidies for
automation and PPP renewables on verified carbon-savings benchmarks. Firms that inte-
grate advanced logistics solutions must adopt the national Green Freight Demonstration
Program standards—using low-emission vehicles and optimized routing—to blunt any
unintended footprint increases. Universities expanding gender-balanced enrolment can
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tap dedicated funds from the Higher Education Green Development Initiative to co-finance
on-campus micro-grids and smart-meter installations, ensuring that higher enrolment does
not translate into proportionally higher energy consumption.

Looking further ahead, China should update its Renewable Energy Law and Industrial
Green Development Plan to include carbon intensity benchmarks for all new manufacturing
zones and energy projects. Regions rolling out full-scale robotics should be required to
demonstrate declining CO2 per unit of industrial output over a 5-year cycle. The national
rollout of the Emissions Trading Scheme can be refined to allocate allowances based on
these benchmarks, incentivizing grid upgrades, large-scale energy-storage deployments,
and low-carbon campus design (net-zero buildings and district energy systems).

5.3. Managerial Implications

For operations, supply-chain, and campus managers in China, the results translate
into a concrete playbook: before commissioning any new robotic line or PPP-financed
energy asset, run fast-track energy-efficiency audits, install granular sub-metering and
energy-management systems, and enroll facilities in demand-response with the local grid to
cap peak loads; in high-footprint hubs (e.g., Shanghai, Guangdong), make construction and
expansion permits contingent on verified reductions in energy intensity during ramp-up.
Over the next three years, design automation and renewables projects so that subsidy
eligibility is tied to third-party–verified carbon-savings benchmarks (robust M&V plans,
baseline setting, periodic re-certification). In logistics, adopt Green Freight standards—low-
emission fleets, route optimization, and load consolidation—to ensure GSCM upgrades
do not raise the footprint. Universities expanding enrollment should pair growth with
microgrids, smart meters, and real-time analytics to keep energy per student falling. For
the five-year horizon, set plant- and supplier-level carbon-intensity targets aligned with
forthcoming benchmarks, build allowance strategies for the national ETS, and prioritize
grid-interactive equipment, storage, and high-performance building design. Embed these
requirements in supplier contracts and PPP agreements, and create a sustainability PMO to
track multiscale KPIs (robotics, logistics, PPP capex, education infrastructure) and adjust
budgets/internal carbon prices as incentives evolve—protecting margins while meeting
the 2060 carbon-neutrality path.

5.4. Limitations and Future Suggestions

Despite the rich multiscale insights afforded by the wavelet–quantile ANN frame-
work, this study has several limitations that point to avenues for future work. First, by
focusing on quarterly, country-level data, we obscure important provincial and sectoral
heterogeneity; future research should leverage disaggregated panel data to tailor policies
to regional dynamics. Second, potential endogeneity between ecological footprint and key
drivers—such as economic growth or robotics adoption—is not fully addressed; applying
instrumental variables or local-projection quantile methods would help establish causal
links. Third, while ANNs enhance predictive accuracy, they reduce model interpretabil-
ity; integrating explainable AI techniques or simpler structure-learning algorithms could
clarify the mechanisms at play. Fourth, our driver set omits variables like energy prices,
technological spillovers, and behavioral interventions; expanding the covariate space and
allowing for interactive and nonlinear effects would yield a more holistic picture. Finally,
the choice of a single wavelet filter and fixed decomposition levels may influence results;
future studies might experiment with alternative filters, adaptive multiresolution schemes,
and higher-frequency data to better capture transient shocks. Addressing these gaps will
deepen our understanding of China’s eco-economic dynamics and support more finely
tuned policy designs on the path to carbon neutrality.
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Abstract: This study explores the readiness of Micro and Small Enterprises (MSEs) in
Mexico, specifically grocery stores, to implement the Virtual Value Chain (VVC) through In-
formation and Communication Technologies for Development (ICT4D). A mixed-methods
approach was used, combining diagnostic tools, structured surveys, and interviews. Quan-
titative data were analyzed using descriptive statistics, correlation analysis, and machine
learning to identify digital adoption patterns. The results indicate that limited technology
adoption remains the main obstacle to VVC integration. Significant associations were
found between digital engagement and the age and educational level of store managers.
Key digital gaps persist in inventory control, supplier coordination, and demand fore-
casting. Although machine learning models did not significantly outperform baseline
predictions on willingness to adopt technology, the findings emphasize the potential of
targeted training and accessible mobile solutions. The study proposes a new diagnostic
and predictive framework to assess VVC readiness in low-resource contexts. It shows
that ICT, when strategically aligned with business operations and paired with adequate
training, can enhance sustainability and livelihoods. Although the study is limited to one
geographic area and one business sector, it offers a foundation for scaling similar initiatives.
The findings support context-sensitive strategies and capacity-building efforts tailored to
the realities of MSEs in emerging economies.

Keywords: micro and small enterprises (MSEs); virtual value chains (VVC); grocery retail;
ICT for development; machine learning

1. Introduction

Micro and Small Enterprises (MSEs), especially family-owned ones, rely heavily on
the entrepreneurial and managerial skills of their owners [1]. In Mexico, enterprises are
classified by employee count and annual sales: micro-enterprises have 1–10 employees,
while small enterprises have 11–30 in commerce or services and 11–50 in manufacturing,
with annual sales limits of 4 million MXN for micro-enterprises and 4–100 million MXN for
small enterprises [2]. MSEs face challenges such as limited education, access to technology,
capital, and expertise, often needing external support [1,3,4]. Given their prevalence, the
study of MSEs is crucial to understanding economic development in emerging economies.

Approximately 90% of companies in Latin America are classified as micro firms,
mainly in the wholesale and retail sectors [5]. In 2020, Mexico had around 4.7 million micro
businesses. These firms contribute significantly to employment in commerce and services,
while large companies dominate manufacturing. However, despite their quantitative
importance, research on MSEs, particularly in commerce, remains limited, restricting our
understanding of their strategies compared to larger firms.
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Following COVID-19, over 50% of Mexican SMEs still relied on traditional sales
methods or short-term online strategies. For non-online SMEs, 35% emphasized digital
communication (social networks, search engines, ads), and 16% aimed to digitize customer
services [6]. Also, more than 60% of businesses in Mexico close within their first three
years, largely due to cash flow difficulties, according to the National Institute of Statistics
and Geography (INEGI). This evidence highlights persistent barriers to digital adoption,
which have become a critical factor in resilience and competitiveness in the post-pandemic
context [7].

Despite the growing body of research on Information and Communication Technolo-
gies (ICTs) and their role in development, few studies explore how MSEs adopt and benefit
from ICTs in their value chains. Existing ICT4D literature often focuses on larger firms,
overlooking MSEs, which face unique constraints in technology adoption. Moreover, the
Virtual Value Chain (VVC) remains underexplored in MSE contexts, particularly in Latin
America. This represents a clear research gap.

This study addresses the gap by asking: How does the adoption of the Virtual Value
Chain (VVC) influence the operational practices and digital development of Micro and
Small Enterprises (MSEs) in Mexico? By focusing on underrepresented grocery microen-
terprises, we contribute to ongoing ICT4D debates on digital inclusion, technological
capability building, and grassroots innovation.

This research develops and applies a methodology to diagnose the level of VVC
integration in MSEs. The methodology assesses essential factors to support these businesses
in improving operations and ensuring survival through digital development, focusing on
grocery stores in Pachuca, Hidalgo. Although the VVC concept is beneficial for enhancing
SME operations, it is underexplored in MSE contexts.

It is important to note that this study is limited in scope to grocery SMEs in Mexico.
These businesses primarily operate within downstream segments of the supply chain. The
analysis does not extend to the entire value chain, which remains beyond the focus of this
research.

This paper offers three main contributions to the ITD literature:

1. To the best of the author’s knowledge, this is the first known empirical study on VVC
adoption among MSEs.

2. It introduces an original instrument for assessing VVC stages in low-tech businesses.
3. It presents quantitative findings based on field data, analyzed through statistical and

machine learning methods.

Finally, the paper is organized as follows: Section 2 presents the literature review,
which covers the theoretical framework, including ICT for Development (ICT4D) and
the Virtual Value Chain, as well as an overview of MSEs worldwide, their challenges,
opportunities, and models. It also includes research on MSEs in Mexico and concludes with
field studies on Virtual Value Chains (VVC). Section 3 outlines the methodology, explaining
the context, instrument design, data collection, and analysis. Section 4 presents the results
and discussion, and Section 5 provides the conclusions.

2. Literature Review

In recent decades, research in Information and Communication Technologies for
Development (ICT4D) has explored how digital technologies can foster economic growth,
enhance social inclusion, and support human development in low-resource settings. ICT
has enabled small and medium enterprises (SMEs) to become more integrated and operate
more efficiently; however, developing economies rarely have access to these resources [8–10].

According to Heeks [11], the developmental impact of ICT depends not only on
access and infrastructure, but also on the relevance of these technologies to local needs
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and the capacity of organizations to absorb and integrate them. It also depends on social
responsibility rather than the type of technology used. This perspective is particularly
important in the context of Micro and Small Enterprises (MSEs), which often operate under
significant constraints in capital, knowledge, and digital skills.

ICT4D studies show that technology only makes a real difference when it matches
local needs and operates within existing social and institutional structures [12,13]. While
early ICT4D literature focused on large-scale infrastructure and e-government programs,
more recent studies have shifted attention to bottom-up, grassroots innovation, especially
among small firms and informal actors [14,15]. However, little research has addressed
issues related to small enterprises adopting ICT [16]. In these contexts, digital technologies
can enable new forms of value creation, participation, and resilience.

In the context of ICT4D, the VVC model offers a promising framework for examining
how MSEs in emerging economies can leverage ICTs to expand market access, optimize
operations, and strengthen customer relationships. The VVC, developed by Weiber and
Kollmann [17], provides a conceptual lens to understand how digital information can
be used not just to support traditional value chains, but also to transform and virtualize
business processes. Unlike the physical value chain, the VVC captures the generation,
processing, and distribution of digital content as a source of economic value. This includes
activities such as data collection, online interaction with customers and suppliers, and
digital service delivery. However, as noted by Thapa and Sæbø [18], empirical studies of
ICT use in underprivileged communities and among disadvantaged stakeholder groups
remain scarce.

This study positions itself at the intersection of ICT4D theory and VVC research,
aiming to investigate whether and how MSEs in Mexico, particularly grocery stores, are
adopting elements of the VVC in their daily operations. In doing so, it contributes to
ongoing scholarly debates on the developmental role of ICTs and addresses a critical
empirical gap in the literature.

As this study focuses on exploring the potential of MSEs in Mexico, the literature
review is divided into three sections: (1) MSEs worldwide, (2) MSEs in Mexico, and
(3) studies on the Virtual Value Chain. It is important to note that the academic literature
specifically addressing MSEs is limited. Therefore, selected studies on SMEs are included
when relevant, ensuring that their inclusion does not compromise the generalizability or
relevance of this research.

2.1. MSEs Worldwide

MSEs face challenges in adopting technologies. Bag and Pretorius [19] identified tech-
nology as a critical barrier, while Culot [20] emphasized data management and production
technologies. In Ethiopia, Abagissa [21] highlighted the need for education, credit, and
incentives. Funding constraints impact small service businesses [22]. Digitalization holds
transformative potential for regional development [23], and technologies like big data, IoT,
blockchain, and AI can enable supply chain digitalization in India [24].

In Latin America, Velázquez-Martínez and Tayaksi [8] linked supply chain manage-
ment to MSE productivity. Chatterjee [25] suggested blockchain and AI for post-COVID-19
performance in India, and Trinugroho [26] found that digital adoption improved business
in Indonesia. Mikhaylova et al. [27] examined digital strategies and Fintech, García-
Salirrosas [28] presented the PERVAINCONSA Scale for online retail metrics in develop-
ing countries, and Garay-Rondero [29] proposed a digital supply chain model for mass cus-
tomization.

The growing attention to the digital transformation of small businesses in emerging
economies aligns with current ICT4D discussions, particularly regarding how technological
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capabilities contribute to inclusive economic growth [11,12]. A key question in this debate is
whether ICTs directly drive development or whether they serve as enablers for operational
improvements that create competitive advantages, such as through the implementation
of VVC [11]. If ICTs are considered development drivers in themselves, then disparities
in access often reflect structural inequalities based on location, age, gender, and other
socio-economic factors. Nevertheless, most of these studies focus on SMEs or larger firms,
leaving a significant gap in our understanding of how microenterprises engage with and
benefit from ICT-based value creation.

2.2. MSEs in Mexico

In Mexico, most research on Small and Medium Enterprises (SMEs) has focused on
identifying challenges and success factors, while studies specifically addressing Micro and
Small Enterprises (MSEs) remain scarce and lack formal models. Tanoira and Valencia [30]
emphasize the importance of knowledge transfer in Yucatan’s support programs, noting
finance and sales as key weaknesses [31]. Aguilar [31] also cites customer acquisition,
staffing, and financial constraints as major issues. Hernández-Gracia and Duana-Avila [32]
call for stronger entrepreneurial orientation and financing access. Success factors include
economic knowledge and dynamism [33,34].

Digitalization strategies have been documented mainly for medium-sized enterprises,
while MSEs remain underrepresented in both academic studies and national innovation
policies. Mexican MSEs face ongoing challenges in innovation, operations, management,
marketing, and technology, with no comprehensive studies on their supply chain or tech-
nological needs.

2.3. Virtual Value Chain

Technology-based companies are well-positioned for growth in competitive markets.
Autio [35] suggests that small tech firms that leverage technology can be seen as smaller
versions of large companies. The Virtual Value Chain (VVC), introduced by Weiber and
Kollmann [17], allows companies to enhance their traditional market presence through
effective digital activities. The VVC involves similar activities to the traditional value chain
but uses digital information to unlock new market opportunities [17], as can be observed
in Figure 1. Global market access enables small companies to compete with large firms by
sharing information across suppliers, distributors, manufacturers, and retailers [36,37]. The
Internet supports this information exchange, bolstering B2B and B2C relationships [38].

The Virtual Value Chain (VVC) offers advantages such as increased efficiency, ease
in offering products and services, and better insights into customer needs [36,37]. It also
helps businesses predict trends [37]. However, challenges include the need for creativity,
flexible payment options, customer integration, and internet access [38]. Other issues
involve knowledge management [39], security and privacy concerns, cultural factors, and
complex software applications. Various case studies on VVC, as shown in Table 1, examine
methodologies across micro, small, and medium enterprises.

Table 1 shows that the studies primarily focus on SMEs, with sample sizes ranging
from 1 to 429 companies. Some studies aim to understand the client’s perspective, while
others explore factors influencing the Virtual Value Chain (VVC). Berrone [54] focuses on
MSEs, examining whether human capital, innovation, and the use of own capital affect
company performance. However, this study does not specifically address these factors in
the context of the VVC.
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Figure 1. Virtual Value Chain. Source: Weiber and Kollmann [17].

Table 1. Field studies in VVC.

Author Location Methodology Case Study Purpose

Hongmei and
Jincheng [40] Thailand Survey and analytic

hierarchy process Travel agencies (SMEs) Build a VVC for travel
agencies

Ramantoko et al. [41] Indonesia 340 questionnaires with
9 dimensions

SMEs in three different
regions in Indonesia.

Build a digital capability
model, using the value
chain analysis framework.

Corso et al. [39] Piedmont and
Lombardy

Questionnaire and
cluster analysis 127 Italian SMEs

Contribute to sustainable
organizations in terms of
technology

Piscitello and
Sgobbi [42] Prato Italy Empirical analysis and

interviewing
Textile industry (12
SMEs)

Examining whether the
industries are taking
advantage of the
e-business opportunities.

Arrifin et al. [43] Malaysia Focus Group Approach Cattle beef and halal
production (SMEs)

The effectiveness of VVC in
cattle beef production

Fromhold-Eisebith
et al. [44] Germany Workshop with 40

textile industries Textile industries
Enablers’ identification of
Industry 4.0 in the German
textile industry

Gyenge et al. [45] Hungary Surveys, clusters, and
discriminant analysis SMEs

Generate directions for
SMEs to benefit from
communications changes

Hermawan et al. [46] Indonesia Multivariate statistical
study

168 consumers of
online SMEs

To build an e-mail design
concept that elaborates the
physical and virtual value
chain.

Hu et al. [47] United States of
America

Text mining data
approach

0.72 million online
customer reviews

To understand the Virtual
Queue

Taherinia et al. [48] Iran
Factor analysis and
structural equation
modeling

50 experts in marketing,
management,
e-commerce, human
resources, and
managers in Iran

Evaluate factors that
influence the evolution of
VC.

Zumstein et al. [49] Switzerland Surveys and
descriptive statistics 365 online retailers

Compare practice before
and after the COVID-19
station.

Liu et al. [50] China
Collection, processing,
transmission, storage,
and feedback

1 company
Understand the path in the
Virtual Chain considering
digital technology.
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Table 1. Cont.

Author Location Methodology Case Study Purpose

Eng et al. [51] America, Europe,
Africa, and Asia

Surveys, interviews,
and hypothesis tests

500 companies of
different sizes that use
logistic apparel
retailers’ supply chains.

Understand ambidexterity
and wireless information
technology (IT) for
enhancing innovative
capacity.

García-Salirrosas
et al. [28]

Perú, México and
Colombia KMO and Barlett test

238 questionnaires
from users of online
clothing stores

Validate an instrument
design to measure Variable
Value perception, purchase
intention, trust, and
satisfaction.

Omoruyi and
Makaleng [52] South Africa Quantitative study and

SMART PLS 3.0 439 SMEs
To determine if the supply
chain has a disruption after
COVID-19.

Sharma et al. [53] India
30 experts from the
electronic
manufacturing of SMEs

Identify barriers for
SMEs in adapting to
the technologies of
Industry 4.0

Fuzzy analytic hierarchy
and PROMETHEE.

2.4. Research Gaps and Objectives

All previous studies have focused on the Virtual Value Chain (VVC) in SMEs, with
limited attention to MSEs or Mexico’s retail sector. García-Salirrosas [28] included Mexico
in their research alongside Peru and Colombia, concentrating on online clothing stores.
Gupta and Ramachandran [55] studied retailers in emerging economies, suggesting that
differences between traditional and tech-focused retailers require further investigation.
Others, such as Hwang and Kim [56] and Roth and Rosenzweig [57], highlighted a gap in
quantitative and empirical studies on the topic. Moreover, Sharma and Dutta [58] found that
the COVID-19 pandemic shifted retail strategies toward omnichannel models, requiring
technological convergence, customer focus, and internal reorganization. Compared to
previous studies, this study investigates the digital transformation and processes within
the VVC, particularly for MSEs in the retail sector.

Although digitalization has been highlighted as a key element of the ITC4D [11], most
frameworks focus on national or large-firm adoption, not the micro-level experiences of
small grocery businesses. The studies that examined grocery retailing within the Virtual
Value Chain (VVC) framework are scarce. This is particularly relevant given that digital
transformation has been shown to positively influence business models [59], and digitaliza-
tion further enhances that flexibility, enabling the company to better adapt to a changing or
uncertain environment [60]. Weyer [61] observed that, due to the broad spectrum of avail-
able technological innovations and the limited resources characteristic of small businesses,
it remains unclear which technologies should be prioritized or at which stages of the VVC
they should be implemented. Similarly, Bierganz [62], in his doctoral dissertation, analyzed
the challenges associated with leveraging the VVC in the UK grocery retail sector.

These gaps underscore the need to better understand how ICTs can promote develop-
ment at the microenterprise level. This research aims to diagnose MSEs, with a particular
focus on grocery stores in Mexico, to assess whether they are currently integrating tech-
nology into their business operations and whether they possess the necessary resources
to implement the VVC. Our review of the existing literature revealed a lack of studies
addressing the application of the VVC in the context of MSEs in Mexico, with emphasis on
the retail grocery sector. As our main contribution, we have developed diagnostic tools
and a survey instrument specifically designed to fill this gap. These tools not only support
the evaluation of technological adoption among Mexican MSEs but are also adaptable for
use in similar MSE contexts internationally.
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Based on the identified research gaps, the objectives of this study are captured in the
following research questions:

RQ1: Do grocery stores in Mexico possess sufficient technological advancements to imple-
ment VVC with their suppliers and customers?
RQ2: Is the ability to generate VVC positively correlated with the cultural and behavioral
issues of grocery store managers in Mexico?
RQ3: Given specific characteristics of grocery store managers, can we predict their willing-
ness to adopt technological changes?

3. Methodology

The scope of this research is restricted to grocery MSEs in Pachuca, Hidalgo, Mexico.
These enterprises represent downstream actors in the supply chain, and the study does not
attempt to cover the entire value chain.

In this study, the methodology developed by Sampieri [63] was adapted to answer
the research objectives, as detailed in Figure 2. Summarizing the methodology, from the
fundamental redefinitions of the final version, it begins with (1) designing the instrument,
followed by (2) data collection, and concludes with (3) data analysis and machine learning
predictions. Detailed measurements, estimation methods, and results are provided in the
subsequent subsections.

Figure 2. Methodology for study. Source: Adapted from Sampieri [63].

3.1. Design of the Instrument

This design was carried out in two phases. The first phase involved a qualitative
analysis, where the study context was reviewed, and 10 MSEs in the retail sector were
interviewed to understand their needs. The second phase consisted of a literature review
to identify the areas to be included in the survey.

3.1.1. Context of the Study

Pachuca de Soto, the capital of Hidalgo, Mexico, covers 20,813 km2 in the center-east of
the country. In 2022, Hidalgo’s economically active population was 1.46 million, with retail
trade accounting for 45.6% of economic units, 71.8% of which are in informal employment.
According to INEGI [64], there are 14,753 grocery stores in Hidalgo, with 1842 in Pachuca,
highlighting their economic significance.

Before the research, 10 businesses were visited for interviews and process observations.
Most were newly opened and financially unstable, facing challenges like low shelf fill levels
and disorganization. To remain competitive, they sourced products from wholesalers or
directly from large companies. Shelf organization was based on expiry dates but adjusted
for supplier requests. While some stores used computer systems and barcode readers,
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inventory tracking was often inaccurate. The customer base primarily consisted of local
residents, emphasizing the role of personal relationships in sales and payment methods.

Additionally, inconsistent order quantities made it difficult to predict supplier orders.
Most orders were placed in-store or via phone and WhatsApp, with store owners or
1–2 employees managing all operations. Due to a lack of financial support, they aimed to
minimize costs, sometimes renting taxis and vehicles to avoid stockouts. Suppliers often
faced difficulties finding parking for their vehicles. Figure 3 illustrates the supply chain,
while Table 2 summarizes grocery store operations.

Figure 3. Supply chain network diagram of a micro store. Source: Own elaboration.

Table 2. Details of company infrastructure, personnel management, technology development, and
procurement processes.

Dimension Area Description

Company infrastructure
Space 4 × 5 m2 or less, no additional space
Equipment refrigerators and shelves
Parking no parking area

Personnel management
Management the owner themselves or family members
Employment 1–2 external employees
Operations assistance from suppliers (e.g., to accommodate shelves, etc.)

Technology (ICT4D)

Inventory tracking
computers (<10% of stores),
barcode readers,
mobile phones for calls and SMS to suppliers

Payment electronic payment with credit card,
bank transfer

CRM mobile phones with Internet connection

Procurement

Sales tracking notebook for tracking sales (<15% of stores)
Purchase tracking no record of available stock quantity
Payment terms mostly defined by large-scale supplier companies
Products preferably more economical and fresh products

Supplier selection
preferably wholesalers
(e.g., Walmart, Sam’s, City Club, Central, etc.) or
large-scale enterprises (e.g., Bimbo, Coca-Cola, etc.)

Delivery terms
owned vehicles (e.g., automobiles or pick-up trucks),
rented vehicles (e.g., taxi) or
suppliers’ choice (e.g., truck, van, etc.)

3.1.2. Measuring Instrument

To design the survey, a literature review was conducted, particularly focusing on VVC,
identifying common areas across various studies. The survey was designed to evaluate
eight areas; the questions are presented in Appendix A:
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Profile: According to Piscitello and Sgobbi [42] and Gurdur [65], key variables include
name, number of employees, working hours, and turnover.

Managerial characteristics: Gurdur [65], Peutz and Post [66], and Bierganz [62] identi-
fied name, gender, age, education level, and adaptability to change as important variables.

Personal management: Hongmei and Jincheng [40] and Zumstein et al. [49] high-
lighted teamwork, adaptability to change, learning, and organizational culture as rele-
vant factors.

Company infrastructure: Merchán [67] emphasized the importance of shelf space,
inventory, and transportation (e.g., van, car, motorcycle, bicycle) for SMEs.

Procurement: Gurdur [65], Zumstein et al. [49], and Hongmei and Jincheng [40]
stressed the importance of information on top-selling products, inventory, daily sales,
demand planning, and access to supplier data.

Technology: Corso et al. [39], Piscitello and Sgobbi [42], Elkhouly et al. [68], and
Naimi-Sadigh et al. [69] identified key indicators such as internet access, Wi-Fi, sales and
inventory systems, and devices like computers and mobile phones [12].

E-commerce: Zumstein et al. [49], Gyenge [45], Elkhouly et al. [68], and Bierganz [62]
emphasized the significance of e-payment methods, websites, social media platforms,
telephone sales, and digital marketplaces.

Challenges to introduce technology: Winkler [70], Peutz and Post [66], and Wasan
et al. [71] identified challenges in technology adoption, including external support, gov-
ernment assistance, training, and issues related to payments and taxes. Additionally,
Heeks [11] emphasized that ICT4D outcomes are influenced by contextual factors such as
location, age, gender, and education level.

A self-administered questionnaire was chosen, and a pilot test was conducted with
30 randomly selected grocery stores. The survey achieved a Cronbach’s alpha value
of 0.8638, validating its reliability. The final version of the instrument is available in a
repository [72] under surveyfinalingles.docx.

3.1.3. Sample Size

To ensure a representative sample, the formula described by Devore [73] was used.
Inclusion criteria required grocery stores to be located in Pachuca, with respondents being
company owners and of legal age. The formula is presented in Equation (1).

n =
z2Nσ2

(N − 1)e2 + z2σ2 (1)

The sample size n was determined using the formula described by Devore [73], where
N is the population size (1842 grocery stores in Pachuca, according to INEGI [64], σ is the
standard deviation (typically assumed as 0.5 if unknown), z is the confidence level (1.96 for
95% confidence), and e is the acceptable error limit (5% for this study). Using (1), a sample
size of 233 enterprises was obtained.

The sampling procedure was conducted with the support of undergraduate students,
each of whom was assigned to distribute approximately 5 surveys. Students were instructed
to approach grocery microenterprises located near their place of residence and to select
stores in a non-systematic manner, avoiding repeated chains or pre-selected businesses.
This procedure introduced a convenience component but also incorporated a random-like
element at the local level, since students did not target specific stores a priori. In total,
233 surveys were distributed, of which 187 valid responses were obtained, corresponding
to a non-response rate of approximately 19.7%
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3.2. Data Analysis

Data analysis will be conducted in four steps: (1) data visualization using bar and
pie charts, (2) descriptive statistics for proportion inferences, (3) inferential statistics with
confidence intervals to estimate population fluctuations, and (4) relationship analysis
between variables using Pearson correlation, chi-square test of independence, and ANOVA.

3.2.1. Data Visualization

To better understand the collected data, visualizations were created using matplotlib in
Python 3.10. An example, shown in Figure 4, corresponds to question 32 in the survey. The
complete set of visualizations is available in the repository under surveyresults.docx [72].

Figure 4. Data visualization. Source: Own elaboration.

3.2.2. Descriptive and Inferential Statistics

The descriptive statistics using Minitab 19.0, for the 187 respondents, reveal the
following:

Profile: 60.96% of businesses have been operating for over 5 years (95% CI: 53.97,
67.95). 52.41% operate 8-12 h daily (95% CI: 45.25, 59.56).

Managerial characteristics: 33.16% of managers are aged 30-40 years (95% CI: 26.40,
39.91). 44.39% of managers have a high school education (95% CI: 37.26, 51.50). 47.06% of
respondents are men (95% CI: 39.90, 54.21), and 52.94% are women (95% CI: 45.78, 60.09).
62.57% are willing to implement changes (95% CI: 55.63, 69.50). 53.4% expect to make
changes within 6 months (95% CI: 46.32, 60.62).

Personnel management: 61% of businesses have staff (95% CI: 53.97, 67.95), with
60.42% having 2-5 employees (95% CI: 53.42, 67.44). 57.75% of employees collaborate (95%
CI: 50.67, 64.83), and 57.21% can adapt to changes in under 3 months (95% CI: 50.13, 64.31).
52.94% offer training (95% CI: 45.79, 60.10).

Company infrastructure: 33.16% organize shelves by product type (95% CI: 26.41,
39.90). 57.22% receive merchandise directly (95% CI: 50.12, 64.31), and 29.41% use their
own vehicles for transportation (95% CI: 22.88, 35.94). 77.01% have a car or small truck
(95% CI: 70.97, 83.04). 68.98% lack a loading area (95% CI: 62.35, 75.61).

Inventory: 47.06% lack additional storage space, and 68.98% do not forecast sales
(95% CI: 62.35, 75.61). 42.16% buy 10–30% of items from wholesalers. 55.1% do not track
inventory (95% CI: 48.49, 62.73).
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Technology: 60.43% have a cell phone (95% CI: 53.42, 67.44), and 36.90% have a
computer (95% CI: 29.98, 43.81). 67.91% have internet access (95% CI: 61.22, 74.61). 44.92%
lack a system for sales/inventory (95% CI: 37.79, 52.04), and 60.87% record sales manually
(95% CI: 53.42, 67.44).

E-commerce: 58.82% accept electronic payments (95% CI: 51.77, 65.87), 66.2% have
card terminals (95% CI: 59.53, 73.08), and 31.2% accept bank transfers (95% CI: 24.89, 38.21).
95.18% lack a website (95% CI: 92.11, 98.25), and 93.58% have never sold on platforms like
Rappi or Uber Eats (95% CI: 90.07, 97.09). 71.66% have never sold via WhatsApp, phone, or
Facebook (95% CI: 65.20, 78.12).

Challenges to introduce technology: 88.2% have never received government support
(95% CI: 83.62, 92.85). 51.33% do not need help digitizing (95% CI: 44.17, 58.50), while
48.66% do (95% CI: 41.50, 55.82). The most needed assistance is training (48.96%) and
infrastructure (47.92%).

3.2.3. Relationship Between Variables

The correlation matrix in Figure 5 highlights key relationships between demographic
factors and business attributes. Significant associations (p-value < 0.05) include a strong
link between Electronic Payment Methods and Educational Level, as well as between a
Computerized Inventory System and Educational Level. Although no high correlations are
found, ANOVA is used to explore the impact of the manager’s profile on these variables.
Additionally, one of the strongest correlations is observed between Sales on digital media
and Sales on social media.

Figure 5. Matrix correlation. Source: Own elaboration.

To address RQ2 (Is the ability to generate VVC positively correlated with the cultural
and behavioral issues of the MSE’s managers in Mexico?), a variance analysis (ANOVA)
was conducted, and the following relationships were tested:

Change vs. gender change and education level: ANOVA was applied to questions 5
(Gender, age, and educational level of the manager) and 6 from the database using Minitab
19). The results can be seen in Table 3. For the ANOVA, we tested the homogeneity of
variances assumption using Levene’s test (p = 0.997), which indicated that the groups did
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not differ significantly in variance. This confirmed that the assumption of homogeneity
was met, supporting the validity of the ANOVA results.

Table 3. Analysis of variance change vs. gender, age, and education level.

Source DF Adj SS Adj MS F-Value p-Value

Regression 8 3.5645 0.4456 1.97 0.052
Gender 1 0.5833 0.5833 2.58 0.110
Age 4 2.0771 0.5193 2.30 0.061
Educational
Level 3 1.2315 0.4105 1.82 0.146

Error 178 40.2323 0.2260
Lack-of-Fit 22 2.8146 0.1279 0.53 0.957
Pure Error 156 37.4177 0.2399
Total 186 43.7968

In addition to the parametric ANOVA, we performed a robustness check using a rank-
based factorial ANOVA (Conover–Iman approach). The response variable was transformed
into mid-ranks and analyzed with a three-factor General Linear Model in Minitab 19. The
results were consistent with the parametric ANOVA, showing no significant changes in
the interpretation of factor effects (Gender: p = 0.110; Age: p = 0.061; Educational Level:
p = 0.146). This analysis supports the robustness of our conclusions against violations
of normality assumptions. It is important to mention that this analysis was made in
every ANOVA.

The analysis indicates no statistically significant association between Educational Level
and the willingness to implement Change, with a p-value of 0.324, above the 0.05 alpha
level. Similarly, Change is not related to Gender, Age, or Educational Level at the 0.05 alpha
level. However, the p-value for Age suggests a potential trend that might become significant
with a larger sample size or different age group classification.

For electronic payments, ANOVA results show that only the manager’s educational
level affects the outcome, with a p-value of 0.00, as is observed in Table 4. Neither gender
nor age has an impact. The mean effects plot in Figure 6 reveals that managers with a
bachelor’s or graduate degree are more willing to adopt electronic payments

Table 4. Analysis of variance, electronic payment vs. gender, age, and educational level.

Source DF Adj SS Adj MS F-Value p-Value

Regression 8 6.0673 0.75842 3.44 0.001
Gender 1 0.0049 0.00493 0.02 0.881
Age 4 1.3911 0.34778 1.58 0.182
Educational
Level 3 4.7396 1.57986 7.17 0

Error 178 39.2268 0.22038
Lack-of-Fit 22 4.3914 0.19961 0.89 0.603
Pure Error 156 34.8354 0.2233
Total 186 45.2941

The analysis in Table 5 shows that both age and educational level significantly impact
the likelihood of having a computerized inventory system (Questions 5 and 26 are utilized
for this analysis), with p-values of 0.009 and 0.011, respectively. The main effects plot in
Figure 7 reveals that younger individuals are more likely to use technology frequently for
managing a computerized inventory.
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Figure 6. Main effect plot: electronic payment vs. educational level.

Table 5. Analysis of variance, computerized inventory vs. gender, age, and educational level.

Source DF Adj SS Adj MS F-Value p-Value

Regression 8 5.8838 0.7355 3.79 0
Gender 1 0.1924 0.1924 0.99 0.32
Age 4 2.7114 0.6779 3.5 0.009
Educational
Level 3 2.2185 0.7395 3.82 0.011

Error 178 34.5012 0.1938
Lack-of-Fit 22 6.2854 0.2857 1.58 0.057
Pure Error 156 28.2158 0.1809
Total 186 40.385

Figure 7. Main effect plot: computerized inventory vs. age and educational level.
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For sales on social media regarding payment vs. gender, age, and educational level,
Table 6 shows that none of the profile variables affect sales on social media platforms like
Facebook and WhatsApp. Questions 5 and 31 were used for analysis.

Table 6. Analysis of variance, sales on social media: payment vs. gender, age, and educational level.

Source DF Adj SS Adj MS F-Value p-Value

Regression 8 0.6252 0.07815 0.37 0.934
Gender 1 0.4952 0.495226 2.36 0.126
Age 4 0.0227 0.005664 0.03 0.999
Educational
Level 3 0.0568 0.018926 0.09 0.965

Error 178 37.3534 0.209851
Lack-of-Fit 22 5.9594 0.270882 1.35 0.15
Pure Error 156 31.394 0.201244
Total 186 37.9786

For sales on digital markets vs. gender, age, and educational level, in this case,
questions 5 and 32 were used. Again, the level of education is the only variable that affects
the outcome variable, as is observed in Table 7. Figure 8 shows that administrators with
postgraduate degrees are the most determined to make sales on platforms like Rappi,
Uber, etc.

Table 7. Analysis of variance, sales on digital markets vs. gender, age, and educational level.

Source DF Adj SS Adj MS F-Value p-Value

Regression 8 0.7281 0.09102 1.54 0.145
Gender 1 0.0127 0.01268 0.21 0.643
Age 4 0.0912 0.02281 0.39 0.818
Educational
Level 3 0.6514 0.21714 3.68 0.013

Error 178 10.5018 0.059
Lack-of-Fit 22 1.7416 0.07917 1.41 0.117
Pure Error 156 8.7602 0.05615
Total 186 11.2299

The analysis of the website variable, using questions 5 and 30, shows that both age
and educational level significantly affect the likelihood of having a website, with p-values
of 0.000 and 0.099, respectively, as is observed in Table 8. The main effects plot in Figure 9
reveals that managers with postgraduate degrees are most likely to have a website. A chi-
square test indicates that age is related to both the computerized inventory system and sales
on websites, while educational level is associated with the computerized inventory system
and sales on digital markets. Gender does not show a significant relation to any variable.
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Figure 8. Main effect plot: sales on digital markets vs. educational level.

Table 8. Analysis of variance, website vs. gender, age, and educational level.

Source DF Adj SS Adj MS F-Value p-Value

Regression 8 1.17406 0.14676 3.53 0.001
Gender 1 0.07372 0.07372 1.78 0.184
Age 4 0.88907 0.22227 5.35 0
Educational
Level 3 0.26492 0.08831 2.13 0.099

Error 178 7.39278 0.04153
Lack-of-Fit 22 2.33564 0.10617 3.27 0
Pure Error 156 5.05714 0.03242
Total 186 8.56684

Figure 9. Main effect plot: website vs. age and educational level.
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3.2.4. Prediction of VVC Adoption by MSEs

To provide greater methodological clarity, a brief overview of the machine learning
techniques employed is included here. Logistic Regression is a linear model commonly
used for binary classification tasks. K-Nearest Neighbors (KNN) classifies new observa-
tions based on their similarity to nearby cases in the dataset. Support Vector Machines
(SVMs) aim to find the optimal boundary that separates classes. Random Forest and Gra-
dient Boosting are ensemble methods that combine multiple decision trees to improve
prediction accuracy and reduce overfitting. Finally, neural networks are flexible models
capable of capturing non-linear relationships in the data. These techniques were selected
because they represent a balance of interpretability, robustness, and predictive power in
classification problems.

In this section, we detail the implementation of machine learning techniques to evalu-
ate whether it is possible to predict, based on certain managerial features, their willingness
to adopt a VVC. To address this, we first analyze the dataset obtained from the survey
using visualizations, descriptive statistics, and a correlation matrix. It is important to note
that the dataset is unbalanced, and since this is a binary classification problem, the F1 score
is the most suitable metric for evaluating the performance of the tested models.

A pipeline was used using scikit-learn [74], in order to evaluate if the use of machine
learning has value to predict if a manager adopts a VVC, and a set of baseline models was
used. Scikit-learn uses a dummy classifier with some easy strategies to generate predictions.
The most frequent strategy always predicts the most frequent class from the training set.
The stratified strategy generates predictions while respecting the class distribution of the
training set. The uniform strategy makes random predictions for each class with a uniform
distribution. Finally, the constant strategy always predicts a specific class, which must be
defined beforehand, in our case, the constant value of 1 in change label prediction.

The machine learning (ML) models used included Logistic Regression, K-Nearest
Neighbors, Support Vector Machine, Random Forest, Gradient Boosting, and a neural
network. Stratified random sampling was applied due to the unbalanced dataset, with an
80% training and 20% validation split. Cross-validation was performed using five folds.
Finally, hyperparameter optimization was conducted using Optuna [75].

The results shown in Figure 10 show the F1 Score values for both the training and
validation sets across different models, including the Dummy classifiers and ML algo-
rithms. In general, the baseline models exhibit consistently high performance in both the
training and validation sets, with an F1 Score close to 0.77 and a low standard error. This
suggests that these models are consistent, as they rely on trivial predictions. However, more
sophisticated models, such as Logistic Regression, K-Nearest Neighbors, Random Forest,
and neural networks, achieve similar or slightly better validation results. Notably, Random
Forest stands out with a validation F1 Score of 0.79, indicating superior generalization
performance compared to other algorithms. In summary, perhaps Random Forest appears
to be the most robust option, offering a good balance between a strong validation F1 Score
and a moderate standard error; some dummy models maintain good F1 Scores, and it is
thus concluded that, at least for this dataset generated, the use of ML models does not
notably increase the performance metric (F1 Score).
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Figure 10. Results of the ML models and the baselines.

4. Results and Discussion

Regarding the first research question (RQ1), which explores whether grocery stores in
Mexico possess the technological capabilities necessary to implement Virtual Value Chains
(VVCs) with suppliers and customers, the analysis of the collected data indicates that they
do not. Between 60.43% and 67.44% of stores only have access to a mobile phone, and
between 53.42% and 67.4% still record sales manually in notebooks, lacking clear insight
into their inventory levels. Only 18.43% to 30.77% of stores use an inventory system, which
makes it currently unfeasible to implement a demand forecasting system that would enable
timely orders from suppliers.

Between 50.12% and 64.31% receive products directly from suppliers; however, these
deliveries mostly consist of beverages and soft drinks, which account for only 17.39% of
their top-selling items. In contrast, their best-selling products, perishables (32.3%), are
typically self-procured and transported in store-owned vehicles. Additionally, while 54.03%
to 73.03% of stores have card payment terminals, only 31.2% accept electronic transfers.

The analysis revealed that most grocery stores lack the technological infrastructure
needed to implement a Virtual Value Chain. A majority of businesses rely on mobile phones
and manual sales recording, with only a small portion using inventory systems or accepting
digital payments beyond card terminals. This limited technological maturity constrains
both data generation (input) and information dissemination (output), two critical stages in
the VVC model.

The findings align with global challenges in digitalizing small retailers, particularly
in logistics and infrastructure [76]. However, the widespread access to mobile phones
presents a viable entry point for digital integration. Designing a user-friendly mobile app,
complemented by digital skills training (between 83.92% and 92.85% of managers have
never received any), could enable store managers to initiate VVC processes incrementally,
starting with inventory tracking and supplier communication. As Heeks [11] points out,
MSEs only require access to a mobile device to benefit effectively from ICT4D initiatives.

Despite these technological gaps, most micro-stores have been operating for more
than five years (60.96%), indicating strong market resilience. While large grocery chains
dominate urban areas, small stores remain competitive due to their flexibility: they sell
individual items, offer fresh and less-processed goods, remain open late, and are located in
convenient neighborhoods, factors that continue to attract customers. Future analyses will
examine the drivers that lead customers to prefer small stores over larger chains.
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Regarding the second research question (RQ2), the results suggest that the age and
education of store managers are significant determinants of digital tool adoption. Younger
and more educated managers are more likely to use digital platforms and engage with
external systems (e.g., delivery apps, websites), thus enabling data flow across the value
chain. In contrast, resistance among older managers, often due to a lack of training or fear
of technology, creates informational bottlenecks.

These behavioral barriers inhibit the input–mediation–output cycle of the VVC.
Without reliable digital data (input), insight generation (mediation) and online cus-
tomer/supplier interaction (output) are severely limited. These insights reinforce existing
ICT4D literature that highlights the critical role of local agency, digital literacy, and man-
agerial mindset [11,13].

These findings are consistent with Weyer [61], who argues that beyond resource
scarcity, managerial mindset plays a critical role in determining which technologies are
adopted and how effectively they are integrated into the value chain. In the context of
Mexican MSEs, a limited technological mindset hinders the transformation of traditional
supply chain operations into digital flows of information and value, the essence of the
VVC concept.

Finally, regarding the third research question (RQ3), machine learning models applied
to predict a manager’s likelihood of adopting digital tools yielded inconclusive results. The
lack of predictive power suggests that additional variables, such as managerial attitudes,
trust in digital systems, or prior exposure, may be necessary for accurate modeling. This
reinforces the complexity of behavioral dynamics in ICT adoption and indicates the need for
more qualitative or mixed-methods approaches in future studies, exploring dimensionality
reduction techniques or feature-label discrimination using covariance analysis to enhance
data quality and model performance.

5. Conclusions

This research demonstrates that while grocery MSEs in Mexico exhibit operational
resilience and social embeddedness, their potential for digital development through the
VVC remains largely untapped. Despite some progress in payment technologies, there
is a substantial gap in digitalizing supply chain operations, particularly in the areas of
inventory management, supplier coordination, and data-driven decision-making like de-
mand forecasting.

Our findings suggest that education and training are pivotal for enabling the VVC in
microenterprise contexts. A mobile-based application, combined with capacity-building
programs (over 80% of store managers have never received any form of technology train-
ing), could empower MSEs to engage more actively in digital value networks. Additionally,
community-based logistics models, such as shared delivery services or app-enabled cooper-
atives, may offer scalable solutions in low-resource environments [77,78]. These alternatives
align with the four key characteristics of ICT4D proposed by Heeks [11]: readiness, avail-
ability, sustainability (uptake), and impact.

This study contributes to ICT4D discourse by illustrating how VVC theory can be
operationalized in the context of urban retail microenterprises in Mexico. It highlights
the dual importance of technological enablers and behavioral readiness, bridging the gap
between macro-level ICT policy and micro-level business practice.
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Limitations of the Study and Future Research

The study is limited in geographic scope and does not incorporate consumer per-
spectives directly. Future work should explore how consumer trust, digital behavior, and
generational preferences shape the success of digitalization strategies. Factors such as per-
sonalized service, proximity, and product flexibility appear to contribute to their sustained
relevance [79].

Additionally, the sampling relied on surveys distributed by undergraduate students
to nearby grocery stores, which introduces a convenience component. Out of 233 surveys
distributed, 187 valid responses were obtained (a non-response rate of 19.7%). While this
dataset provides valuable insights, the findings should be interpreted with caution and
cannot be generalized to the more than 1,000,000 grocery stores that exist nationwide.
Future studies should aim to apply stricter random sampling methods across a wider
geographical scope.

Another limitation of this study is that the survey instrument did not incorporate
items related to policy and regulatory changes, which can play a significant role in shaping
MSEs’ supply chains. While the present research prioritized operational and technological
readiness, future work should integrate institutional and regulatory dimensions to provide
a more comprehensive understanding of the factors influencing VVC adoption.

Although this study employed machine learning techniques to explore managers’
willingness to adopt digital tools, the predictive power of the models was limited and
yielded inconclusive results. This indicates that additional variables, such as managerial
attitudes, trust in digital systems, or prior exposure to technology, may be required to im-
prove accuracy. Furthermore, while Artificial Intelligence (AI) was not fully implemented
in this study, we recognize its potential as a smart tool for future research. AI techniques
could support dimensionality reduction, feature-label discrimination, and advanced be-
havioral modeling to enhance the analysis of Virtual Value Chain adoption. Future studies
should explore these avenues to complement mixed methods approaches and strengthen
predictive insights.

While technology and digital services play a crucial role in shaping consumer ex-
periences and offer retailers the potential to enrich in-store engagement [80], a deeper
understanding of consumer preferences remains essential. In some cases, habitual shop-
ping practices and age-related factors prevent customers from feeling comfortable with
alternatives to face-to-face purchasing [81].

Ultimately, this research reinforces the idea that development through ICT is not solely
a matter of infrastructure, but of human capability, strategic design, and context-aware
innovation. In the case of grocery MSEs, ICT does not inherently lead to development;
however, when it is used to strengthen operations through the VVC, it can effectively
support their growth. Importantly, complex technologies are not always required; access to
a mobile phone, combined with proper training, can be sufficient to initiate meaningful
digital engagement.

Author Contributions: Conceptualization, E.S.H.-G. and S.D.; methodology, A.I.R.M., J.E.G.-R. and
E.S.H.-G.; software, A.I.R.M., J.E.G.-R. and E.S.H.-G.; validation, A.I.R.M.; formal analysis, E.S.H.-
G.; investigation, E.S.H.-G.; data curation, E.S.H.-G., J.E.G.-R. and S.D.; writing—original draft
preparation, E.S.H.-G. and J.E.G.-R. writing—review and editing methodology, A.I.R.M. and E.S.H.-
G.; visualization, E.S.H.-G.; supervision, E.S.H.-G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

278



Systems 2025, 13, 849

Data Availability Statement: The data are available at the repository https://doi.org/10.6084/m9
.figshare.25977001.v1 [65] and can be requested from the corresponding author when necessary.

Acknowledgments: We would like to thank Andrés Tellez for his valuable comments.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. Questions included in the survey.

Area Question

Profile

What is the name of your business?
How many personnel have you employed?
Please provide your working hours per day.
How much can your business earn monthly?

Managerial characteristics

Please provide your full name.
Please select your gender, age, and highest level of education.
Are you interested in making some changes in your business? If
so, how long does it take for you to get familiar with these
changes

Personnel management

Do your personnel collaborate with each other during work?
How long does it take for your personnel to adapt to a new
condition or a new decision in your business?
How long does it take for your personnel to learn and apply
new ways of doing operations?
Are your personnel act as a part of your business with others?

Company infrastructure

How do you manage space in your shelves?
Do you have a specific place for loading/unloading?
Which types of vehicles do you prefer when transporting your
products?

Procurement

Which products are sold more than others?
How much space do your stocks occupy in your store?
Do you know the average sales number for the next periods?
Do you inform your suppliers about your orders? /If so, in
which way?

ICT4D

Do you have a convenient internet connection in your store?
Do you have an IT/paper-based system to monitor your sales
and inventory?
Which devices do you use to track your orders?

E-commerce

Do you receive electronic payments from customers?
Do you have a website to introduce your business or to sell your
products online?
Do you sell your products via Facebook, WA, or other social
media channels?
Do you receive orders via phone calls?
Do you sell your products via digital marketplaces (e.g.,
Mercado Libre, Amazon, etc.)?

Challenges to introducing technology

Do you receive any financial/technical/educational support
from the government?
Do you need external support to engage with digitalization and
political changes?
Do you distribute products provided by NGOs?
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