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Marecos and João Afonso

Installation and Use of a Pavement Monitoring System Based on Fibre Bragg Grating Optical
Sensors
Reprinted from: Infrastructures 2023, 8, 149, https://doi.org/10.3390/infrastructures8100149 . . 59
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Tomás-Martı́nez

Estimation of Pavement Condition Based on Data from Connected and Autonomous Vehicles
Reprinted from: Infrastructures 2024, 9, 188, https://doi.org/10.3390/infrastructures9100188 . . 82

Hong Zhang, Yuanshuai Dong, Yun Hou, Xiangjun Cheng, Peiwen Xie and Keming Di

Research on Asphalt Pavement Surface Distress Detection Technology Coupling Deep Learning
and Object Detection Algorithms
Reprinted from: Infrastructures 2025, 10, 72, https://doi.org/10.3390/infrastructures10040072 . . 94

Taraneh Askarzadeh and Raj Bridgelall

Cost Efficiency and Effectiveness of Drone Applications in Bridge Condition Monitoring
Reprinted from: Infrastructures 2025, 10, 63, https://doi.org/10.3390/infrastructures10030063 . . 113

Quentin Lecuru, Yannic Ethier, Alan Carter and Mourad Karray

Assessment of Anisotropy in Cold In-Place Recycled Materials Using Shear Wave Velocity and
Computed Tomography Analysis
Reprinted from: Infrastructures 2025, 10, 115, https://doi.org/10.3390/infrastructures10050115 . 138

Melissa R. Frey, Sarah L. Williams, Wil V. Srubar III and Cristina Torres-Machi

Characterization and Evaluation of Agar as a Bio-Based Asphalt Binder Alternative
Reprinted from: Infrastructures 2025, 10, 223, https://doi.org/10.3390/infrastructures10090223 . 162

Freddy Richard Apaza, Vı́ctoriano Fernández Vázquez, Santiago Expósito Paje, Federico

Gulisano, Valerio Gagliardi, Leticia Saiz Rodrı́guez and Juan Gallego Medina

Towards Sustainable Road Pavements: Sound Absorption in Rubber-Modified Asphalt
Mixtures
Reprinted from: Infrastructures 2024, 9, 65, https://doi.org/10.3390/infrastructures9040065 . . . 192

v



Gul Badin, Naveed Ahmad, Ying Huang and Yasir Mahmood

Evaluation of Pigment-Modified Clear Binders and Asphalts: An Approach towards
Sustainable, Heat Harvesting, and Non-Black Pavements
Reprinted from: Infrastructures 2024, 9, 88, https://doi.org/10.3390/infrastructures9050088 . . . 213

Safa Ghazzawi, Hassan Ghanem, Jamal Khatib, Samer El Zahab and Adel Elkordi

Effect of Olive Waste Ash as a Partial Replacement of Cement on the Volume Stability of Cement
Paste
Reprinted from: Infrastructures 2024, 9, 193, https://doi.org/10.3390/infrastructures9110193 . . 236
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Preface
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ongoing transformation of road infrastructures. We would also like to sincerely thank the authors for

their high-quality contributions and the reviewers for their careful and constructive feedback.
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Editorial

Editorial for “Sustainable and Digital Transformation of
Road Infrastructures”

Hugo M. R. D. Silva * and Joel R. M. Oliveira

Department of Civil Engineering, Institute for Sustainability and Innovation in Structural Engineering, University
of Minho, Campus de Azurem, 4800-058 Guimarães, Portugal; joliveira@civil.uminho.pt
* Correspondence: hugo@civil.uminho.pt

Road infrastructure is increasingly recognized as a critical asset for economic devel-
opment, social cohesion, and territorial connectivity. However, it is under unprecedented
pressure from climate change, resource scarcity, environmental constraints, and rapidly
evolving societal expectations. Traditional construction materials, design approaches,
and maintenance practices—mostly dependent on non-renewable resources and periodic
inspections—are increasingly recognized as insufficient to ensure the long-term sustainabil-
ity, resilience, and efficiency of road networks [1]. As a result, the transformation of road
infrastructure is now widely understood to be a dual process in which sustainability and
digitalization must evolve together rather than independently or sequentially [2].

Recent research has focused on reducing the environmental footprint of road con-
struction and maintenance by adopting circular economy principles, using renewable or
waste-derived materials, and optimizing life-cycle performance [3,4]. As a result, there
is a growing amount of attention being paid to bio-based binders, alternative aggregates,
recycled materials, and innovative mix designs to reduce dependence on petroleum-based
products and minimize greenhouse gas emissions. These approaches are increasingly
supported by experimental and field evidence, showing that environmental benefits can
be achieved without compromising performance, durability, or safety [5,6]. The rele-
vance of these developments is reinforced by broader concerns about bio-sustainability,
biodiversity protection, and the responsible use of natural resources within transport
infrastructure systems [7].

Climate change has emerged as a significant challenge with respect to the performance
of road infrastructure. Increased temperature variability, more frequent extreme-weather
events, and altered loading conditions require pavement structures and materials that can
maintain functionality in more aggressive and uncertain environments. Recent studies have
focused on performance-based design, advanced material characterization, and resilience-
oriented assessment frameworks that explicitly account for climatic effects throughout
the infrastructure life cycle [8,9]. These advances can help give rise to more robust design
decisions, extend service life, and reduce long-term maintenance and adaptation costs.

Alongside material and structural innovation, the digital transformation of road in-
frastructure is rapidly reshaping how assets are monitored, managed, and maintained.
Advances in sensing technologies, data acquisition systems, and communication networks
enable the continuous collection of large volumes of data on traffic, environmental condi-
tions, and structural responses [10]. When combined with artificial intelligence, machine
learning, and advanced data analytics, these technologies support a shift from reactive
to predictive and preventive maintenance strategies, improving resource efficiency and
enhancing the long-term performance of road assets [11,12].

Infrastructures 2026, 11, 12 https://doi.org/10.3390/infrastructures11010012
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Recent advances in automated inspection, computer vision, and intelligent monitor-
ing systems further illustrate this transition. Applications such as image-based distress
detection, connected-vehicle data, fiber-optic sensing, and remote inspection platforms
demonstrate how digital tools can enhance safety, reduce inspection costs, and increase
temporal and spatial resolution in infrastructure condition assessment [13,14]. Notably,
these approaches directly contribute to sustainability objectives by optimizing mainte-
nance interventions, reducing unnecessary material consumption, and minimizing traffic
disruptions throughout infrastructure’s life cycle.

From a broader perspective, the transformation of road infrastructure is closely tied
to ongoing shifts in mobility and energy. The electrification of transport, particularly in
freight corridors, requires integrated planning to align road infrastructure development
with energy supply, charging infrastructure deployment, and traffic demand [15]. This need
highlights the growing interdisciplinary nature of road infrastructure research, integrating
materials engineering, data science, transportation planning, and energy systems.

More recently, the concept of digital twins has gained prominence as a unifying
framework for infrastructure management. By integrating sensing, modeling, simulation,
and decision-support tools into a single digital environment, digital twins lead to more
informed, transparent, and adaptive management strategies [16,17]. Within the broader
vision of Construction 5.0, these approaches emphasize not only efficiency and automation
but also resilience, sustainability, and human-centered decision-making.

Beyond technological and material innovation, the effective implementation of sus-
tainable and digital road infrastructure increasingly depends on broader institutional and
societal frameworks. Public procurement, standardization, and technical specifications,
as key enablers of change, have recently been attracting an increasing amount of atten-
tion. Moving beyond decision-making processes that are predominantly based on initial
cost or isolated performance indicators, there is a clear need for more holistic assessment
frameworks that explicitly value durability, life-cycle performance, resilience to climate
change, circularity, recyclability, and environmental protection, including biodiversity con-
siderations. Such approaches also create opportunities for innovation-driven markets, skill
development, and new forms of employment, reinforcing the societal dimension of infras-
tructure sustainability [18]. While these aspects were not the primary focus of this Special
Issue, they are essential conditions for translating scientific advances in sustainability and
digitalization into real-world impacts and long-term public value.

In parallel, emerging modeling approaches at the molecular scale are beginning to
provide deeper insight into aging mechanisms, material interactions, and durability phe-
nomena in paving materials. Although still in the early stages of practical application, these
approaches offer promising pathways to explaining how processes at the microscale influ-
ence macroscopic performance, surface characteristics, and long-term behavior, thereby
supporting the development of more durable, sustainable, and resilient materials [19,20].
Such perspectives are expected to become increasingly relevant in future research.

The themes addressed in this Special Issue align closely with current international
research agendas and policy frameworks. European strategies, including the Green Deal,
the Circular Economy Action Plan, and the Sustainable and Smart Mobility Strategy [21,22],
along with global perspectives from organizations such as the World Bank, OECD, PIARC,
and FHWA, consistently emphasize the need for sustainable, resilient, and digitally enabled
transport infrastructure [23–27]. The recent launch of the HORIZON-CL5-2026-01-D6-07
call further confirms the strategic relevance and timeliness of research on the sustainable
and digital transformation of road infrastructure [28].

The contributions collected in this Special Issue reflect these broader trends and offer
concrete examples of how research is addressing pressing global challenges. The authors

https://doi.org/10.3390/infrastructures110100122
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of recent studies have advanced sustainable pavement materials by developing bio-based
binders and incorporating alternative or recycled constituents, thereby reducing envi-
ronmental impacts while maintaining functional performance [29,30]. In parallel, other
contributions have demonstrated how digital technologies—such as embedded sensing
systems, data-driven monitoring, and artificial intelligence—enable more efficient, scalable,
and predictive approaches to infrastructure condition assessment and maintenance [31,32].
At a more integrative level, the inclusion of a review on cognitive digital twins within
the Construction 5.0 paradigm highlights how sustainability, digitalization, and human-
centered decision-making can be jointly addressed in road infrastructure management [33].
Collectively, these contributions reinforce the view that future progress in road infrastruc-
ture engineering will depend on integrating sustainability principles, digital technologies,
life-cycle thinking, climate resilience, and societal considerations. Thus, this Special Issue
offers a snapshot of an evolving research landscape rather than a closed body of work.

Given the pace of technological development and the ongoing urgency of sustain-
ability and climate challenges, the editors anticipate that these themes will remain highly
relevant in the near future. Preparing a second edition of this Special Issue is therefore
timely, offering an opportunity to capture emerging advances, particularly in areas such as
biosustainable materials, digital twins, resilience assessment, societal impact evaluation,
and data-driven infrastructure management.

The editors are grateful to the authors for their contributions, the reviewers for their
thorough and helpful feedback, and the Infrastructures editorial team for their support. We
hope that this Special Issue will advance research, policy, and practice in road infrastructure
toward greater sustainability, digital intelligence, and resilience.

Author Contributions: Conceptualization, all authors; writing—original draft preparation, all au-
thors; writing—review and editing, all authors. All authors have read and agreed to the published
version of the manuscript.

Conflicts of Interest: The authors declare that they have no conflicts of interest.
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Abstract: With the movement of the construction industry towards Construction 5.0, Digital
Twin (DT) has emerged in recent years as a pivotal and comprehensive management
tool for predictive strategies for infrastructure assets. However, its effective adoption
and conceptual implementation remain limited in this domain. Current review works
focused on applications and potentials of DT in general infrastructures. This review
focuses on interpreting DT’s conceptual foundation in the flexible pavement asset context,
including core components, considerations, and methodologies. Existing pavement DT
implementations are evaluated to uncover their strengths, limitations, and potential for
improvement. Based on a systematic review, this study proposes a comprehensive cognitive
DT framework for pavement management. It explores the extent of enhanced decision-
making and a large-scale collaborative DT environment. This study also identifies current
and emerging challenges and enablers, as well as highlights future research directions to
advance DT implementation and support its alignment with the transformative goals of
Construction 5.0.

Keywords: Digital Twins; pavement management; PMS; road pavement maintenance;
Construction 5.0; asset management

1. Introduction

The construction industry exhibits lower productivity than other sectors, primarily
due to factors such as the slow adoption of technologies [1,2]. According to a recent in-
dustrial survey report, construction was identified as one of the least digitised industries
considering assets, usage, and workers [3]. Industry 4.0 technologies have contributed
to the digital transformation of many sectors, including construction. Industries 2.0 and
3.0 focused on mechanisation and automation of manufacturing processes, respectively,
whereas the fourth industrial revolution relied on digitalisation, automation, big data, and
innovative processes [4]. Industry 4.0’s recent focus is building interconnected environment
applications to operate and maintain assets efficiently [5]. However, the proposed evolution
to Industry 5.0 is based on combining collaborative human and machine intelligence. This
aims for more informed decisions and integrated sustainable systems [4,6]. Furthermore,
the connection between the physical and digital worlds is moving beyond current digital
enablement and toward digital control [7]. This vision integrates the creativity of humans
with intelligent machines and digital systems to collaborate productively [8,9]. For the
construction industry, moving toward construction 5.0 involves incorporating advanced
technologies to address the complexities of current infrastructure management, i.e., road

Infrastructures 2025, 10, 64 https://doi.org/10.3390/infrastructures10030064
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pavement assets. This includes autonomous collection systems, realistic asset state pre-
diction, and intelligent decision support systems. Currently, Construction 4.0 aims to
enhance industry productivity and enable cooperation with assets by the help of technolo-
gies [10,11]. These technologies include Digital Twins (DTs), Artificial intelligence (AI),
Internet of Things (IoT), Building Information Modelling (BIM), and Geographical Informa-
tion Systems (GIS). Its applications expand across different phases of the construction assets,
including operation and maintenance [6]. AI enables predictive analytics and recognition
techniques, and IoT provides real-time data collection through facilitated communication
between devices and cloud networks. Moreover, BIM involves modelling information
that enriches 3D models for standardised lifecycle data management, and GIS supports
spatial and temporal data analysis and visualisation. DTs are a virtual representation of
a physical entity that enables real-time monitoring and lifecycle analysis of its mirrored
entity [12–14]. However, DT leverages the combined capabilities of different technologies
for comprehensive and enhanced data-informed management. Construction 4.0 and 5.0
within a broad industrial revolution timeline are presented in Figure 1 below.

Figure 1. Industrial revolutions and Construction adoption timeline.
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The global DT market is expected to have 50% compound annual growth, reaching
184.5 USD billion by 2030 [15]. In this market, built environments, including intelligent
buildings, smart cities, energy, etc., form around 20% of the overall value [16]. Smart
city DT solutions alone will reach $5.9 billion by 2029, and most IoT-based platforms will
achieve DT capability [17]. Despite this significant growth in the DT market, the growth
of the DT concept, and digitalisation in the construction industry, the development and
implementation of mature DTs remain limited and in their early stages [18–21]. Although
examples are being developed in some applications, it is still in the prototype stage [20–23]
and, in some areas, lacks the complete concept of DT adoption [21,24]. For instance, most
examples of asset management are limited to information collection or virtual models,
with less attention paid to road assets [25,26]. However, the barriers towards its efficient
adoption in the construction industry include a lack and fragmented comprehension of DT
concepts [24], absence of clear vision, and standardised DT implementation [27,28], which
results in interoperability, data integration, and management issues [20]. Moreover, the
limited prototypes and holistic frameworks, as well as the complexity of developing and
maintaining DTs, have created more barriers. This is also due to a shortage of specialised
digital skills in the construction industry [19,20,25].

For road pavement infrastructure management, DTs could enable predictive mainte-
nance, proactive management of resources, and extended asset life [20,25,26]. Despite its
numerous advantages, it is not yet well-developed and lacks full design considerations
and implementation.

Existing road pavement infrastructure encounters several challenges, from adapting
to growing demands and priorities of maintaining and improving service to expanding
its lifespan. Pavement assets are the main contributors to energy consumption and emis-
sions [29]. Its management is critical for the safe and efficient movement of users and the
economy, and it must be managed efficiently [30]. Its operation and maintenance phase
is usually a point of concern due to the cruciality of any possible improvement [31]. The
following sections present an overview of flexible pavement management and the emerging
solution of DTs.

1.1. Flexible Pavement Assets

Across industries, different maintenance strategies, planning, and implementation
approaches are used. These approaches are corrective, reactive, preventive, condition-
based, predictive, and prescriptive. Corrective approaches implement actions only when
a part of the system fails. Preventive focuses on actions at a pre-defined set of times [32].
Condition-based assessments rely on evidence of asset deterioration or deviation from
normal service levels [33]. The predictive approach predicts ahead of time whether the
asset is going towards damage [34]. DTs can improve different interventional methods,
from current preventive and reactive strategies to predictive and cognitive approaches,
such as predictive and prescriptive maintenance. Figure 2 shows the developed industrial
and technological evolution of maintenance strategies.

The flexible pavement asset consists of multiple structural layers. Its evaluation
focuses on structural and functional aspects and is impacted by operational and environ-
mental factors. Structural refers to the pavement’s ability to withstand service conditions,
such as resistance to deformation and cracking under continuous cycles of loads. This is
assessed through field and laboratory testing and mechanistic modelling. Onsite structural
evaluation is based on data derived from non-destructive testing (NDT) methods such as
the Falling Weight Deflectometer (FWD) and traffic speed deflectometer [35]. In addition,
inspections and measurements of structural cracking, rutting, or pothole distress are used
as metrics for structural integrity, as they reflect subsurface failures. Ground penetration
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radar (GPR) is another onsite effective method for detecting pavement subsurface failures.
The functional performance refers to the pavement’s surface smoothness and conditions,
presenting ride quality and roughness, i.e., surface cracks, potholes, and skid resistance.
The severity and intensity of these conditions can be detected by visual inspection ac-
tivities or through measuring methods, i.e., ride quality testing methods. On the other
hand, structural and functional factors interact in terms of their development mechanisms,
i.e., excessive rutting is a factor that causes crack formation. Moreover, environmental
conditions, i.e., moisture and temperature, drive material interaction within pavement
layer performance. This can cause or accelerate damage development under different
operational loads, primarily due to the asphalt material’s viscoelastic and plastic material
mechanics. For example, pavement cracking and deformation are influenced by load pat-
terns, loading speed, temperature differentials, material properties, aging, thermal stress,
moisture, and wheel–surface contact stresses [36–38]. Performance and driving factors are
crucial for effective pavement state prediction and management. However, in pavement
maintenance, interventional decisions use predefined thresholds, such as quality metrics, to
trigger maintenance. This is often after significant damage has occurred [30]. Maintenance
decisions also depend on the broader context and factors, including network conditions,
environmental factors, treatment costs, service levels, and user risks.

Figure 2. Maintenance and intervention approaches.

1.2. Pavement Management Systems

The pavement management system (PMS) was introduced in the early 1970s by the
American Association of State Highway and Transportation Officials (AASHTO) [39].
PMS is “a set of defined procedures for collecting, analysing, maintaining, and reporting
pavement data to assist the decision-makers in finding optimum strategies for maintaining
pavements”. In 1989, the Federal Highway Administration (FHWA) required related
agencies to implement PMS by 1993 [40]. Over time, various organisations developed
systems using different performance indicators and data standards. This results in PMS
being a broad term for various systems. Some examples of these systems are PMS, PAVER,
Pavement Information and Needs System (PINS), and Rural Infrastructure and Pavement
Management System (RIPPS). For instance, road, bridge and culvert data were incorporated
into a holistic system called the highway asset management system (HAMS) [41]. The U.S.
Army Corps developed the PAVER system and adopted the pavement condition index
(PCI) as a quality metric [42]. The RIPPS focuses on managing pavement for low-volume
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rural roads. Maintenance management systems (MMSs) are subsystems that focus on the
function and effectiveness of the maintenance activities [43]. However, PMSs and MMSs
are the most used systems in highway management [44].

Performance rating indices are used to rank the health of pavement, such as PCI,
International Roughness Index (IRI), Present Serviceability Index (PSI), and Present Ser-
viceability Rating (PSR) [45]. These rating indicators are measured or derived based on
road segment evaluation processes using inspecting and testing survey data. However, IRI
is the most employed within PMS [42]. The overall process of PMS involves data collection,
evaluation and prediction to identify current or future deterioration trends.

1.2.1. Data Collection

Data collection is commonly based on manual pavement surface inspections, which
are costly, labour-intensive, time-consuming, prone to errors, and reliant on expert evalua-
tion [44,46,47]. Surveys involve onsite manual measurements and collect photos to report
pavement conditions. This extends intervals of updating data and reduces the efficiency
of maintenance planning and forecasting its status [42]. Therefore, some agencies have
adopted specialised vehicles equipped with sensors, such as lasers, cameras, and deflec-
tometers. However, this resulted in expensive processes and equipment [48]. Moreover,
this process resulted in issues like data inconsistency and disruption of traffic flow [47] and,
furthermore, the inability to cover the extended pavement area due to time and budget
constraints [49], in addition to the limitation of using these expensive methods for relatively
small municipalities due to insufficient budgets [50].

Recently, data collection has undergone a significant evolution with new tools and
low-cost automated methods [51]. Image processing and AI detection methods for pave-
ment images, such as using deep learning (DL) algorithms, have shown promising re-
sults [46,50,52,53]. These tools have improved the surface data collection performance of
PMS [48]. Furthermore, the Machine Learning (ML) evolution has elevated processes to
further severity measurements for various defect types, as in [54,55]. Moreover, there is a
growing use of smartphones and unmanned aerial vehicles (UAVs) to collect pavement
data. However, different subsystems and processes were developed separately, and PMSs
also developed various subsystems used to support road management. Therefore, the data
types and standards variability posed a limitation in the integration process, which resulted
in a fragmented management approach [56]. PMSs have no centric dataset and lack smart
capabilities in managing data [2]. Currently, to manage road asset conditions spatially and
prioritise their interventions, most agencies have adopted global positioning systems (GPS)
and GIS [57].

1.2.2. Pavement Performance Modelling

Prediction modelling is used to plan maintenance and optimise preventive mainte-
nance schedules through existing statistical and empirical models. Models used are either
developed for pavement design or using survey data to estimate the asset deterioration
trends statically. Generally, prediction modelling can be classified as data-driven and
physics-based models. Physics-based models, known as purely mechanistic models, rely
on experimental structural response data such as stress and strain. Data-driven models
include deterministic, empirical or statistical models, i.e., regression models. In addition,
Mechanistic-empirical (ME) models incorporate some experimental response parameters
in statistical form. Data-driven models rely on mathematical relationships between vari-
ables [58]. The modern form is ML models. On the other hand, Probabilistic models, such
as Bayesian and Markov, are models that involve probability prediction to account for
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uncertainty [58]. They need extensive computational resources, work with limited data,
and lack quantitative correlation [59].

Statistical models rely on time-independent data processing, which limits their predic-
tion due to the incremental form of pavement deterioration [60]. These traditional models
have different well-known limitations, such as data sensitivity, requiring structured and
high-quality data, relying on assumptions for data preparation [61]. Moreover, they cannot
account for complex and highly nonlinear relationships, i.e., pavement material interaction
physics [62], in addition to randomness issues and limited prediction accuracy when a
more extensive dataset or number of predictor variables is used [61,63,64].

The nonlinearity of ML models outperforms other methods in terms of accuracy
and big datasets. It can predict patterns and deal effectively with multiple factors and
randomness issues [51]. However, model knowledge is capped to a limited training dataset
and requires high-quality training data. Moreover, it is prone to overfitting as it performs
well on training data while poorly generalising to new data. It also lacks interpretability [62],
which leads transport agencies to adopt other deterministic approaches due to ML model
challenges for decision-makers [51,65]. For instance, Austroads, an Australasian head
organisation of road transport agencies, in their last deterioration models reports, stated
that most road agency members prefer to use deterministic models such as ME models
over ML [65,66]. They noted that the ME model is more stable and reflects the explanatory
deterioration of pavement. Moreover, it can be incorporated into the existing PMS [65].
Although ML provides robust models, overfitting and its limited transferability to other
data, along with the black-box interpretability and complex implementation, are the main
issues of its adoption in PMSs [59,67]. However, ME models have led to the advancement
in pavement design [58], and they are more accurate than pure empirical models. The data-
driven models often lack the physical interaction of the underlying pavement mechanics,
which limits their accuracy in complex pavement systems [67]. However, ME models are
data-driven models developed and validated through a one-time validation process and
require continuous calibration [68]. Austroads deterioration models for thin pavements
are based on a multi-variate nonlinear ME model [65]. The models were developed from
data between 1994 to 2018. The fit of models (R2) was only 0.23 for the roughness [67] and
0.5 for the rutting [65]. They indicated the need for calibration for local use conditions.

Using design ME models for analysing existing in-operation pavement involves
critical assumptions, as these models were developed from pavement data in different
environmental conditions and converted mixed vehicle classes as input [69]. This, in
addition to relying on assumptions about the loads the asset handles, which can differ
significantly from actual in-situ conditions [70], can lead to misrepresentation of asset
performance. In pavement design, ME models use various traffic inputs for future scenario
analysis. This can cause contradictions between existing and designed asset performance.
Additionally, using these models for predictions during operation relies on estimated
traffic loads and constant operation loads and patterns assumptions over the pavement’s
service life [70]. This often overlooks traffic patterns, operational changes, and various
overloading scenarios. Traffic loading is a critical factor for pavement response, and it
can change significantly over time. For instance, the FHWA technical report states that
substantial traffic volume changes occurred over time at specific sites, often due to major
road construction projects or events that alter traffic patterns [71].

1.3. Digital Twin for Pavement Management

Due to the limitations of data-driven models in capturing complex degradation and
the lack of actual operational conditions, it is suggested that blending the strengths of
these models could enhance accuracy [59]. The ME, as a simple blend, outperforms previ-
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ous methods in pavement design [58]. The current PMS struggles with data integration,
and limited predictive performance hinders predictive maintenance adoption [2,51,72].
Fragmented processes hinder efficient management and timely interventions, highlighting
the need for a technology-driven PMS [51]. The DT concept uses multi-modelling with
multi-sources lifecycle data, including live asset data, to improve modelling and integrate
processes [2,73]. Predictive methods can enhance interventions, cut emissions, and improve
operation and maintenance planning [26,74,75], necessitating frameworks for DT [20,21,24].

However, accelerated digitalisation and unstandardised DT adoption have led to
misconceptions in some construction applications. Some technology integration works
incorrectly labelled their efforts as DT, presenting it as a trendy term for traditional mon-
itoring or modelling. This misrepresentation hinders the full implementation of true
DTs, resulting in low maturity levels of DTs [76,77], along with unrealistic expectations of
DT [78], and lack of focus on its purpose [19]. Opoku et al. [79] reviewed drivers of DT
adoption in construction, highlighting enhanced predictive maintenance as a key success
factor, demonstrating the expected added value in DT development.

Recent advancements in sensing and technologies for pavement have led to the emerg-
ing development of real-time monitoring, such as non-destructive methods, i.e., [35,80,81],
and recent imagery-based AI defect detection, in addition to instrumented pavement
through embedded sensing technologies, as in [82–84]. This allows dynamic evaluation
of the underlying structural state of the asset for monitoring applications and capturing
pavement response, i.e., stress, strain, moisture, and temperature. DTs and these real-time
monitoring, i.e., Structural Health Monitoring (SHM), share various similarities. However,
SHM provides periodical data collection or real-time monitoring for insights through-
out parameter change reflection. Its advancement can enable mature implementation
techniques for DTs [25]. DT integrates data processing and optimises employed sensing
and monitoring capabilities for broader and more efficient data queries [20]. It expands
SHM to simulate and predict changes for the long term, considering the entire life cycle
and examining what-if scenario analysis [25,85]. These capabilities of DT are seen as an
extension of the SHM and an expansion of its functions [19]. DT’s uniqueness lies in
interconnecting previously unconnected systems. This implementation required focus and
holistic understanding for successful pavement DT that effectively incorporated suitable
and mature monitoring methods.

Recent Reviews of DTs in Transportation

Conceptual DT architecture, the three-dimensional framework, was initially presented
in three main components by Grieves [86]: a physical entity, a virtual entity, and a connec-
tion between them. However, with the expansion of DT adoption and the need to align
with recent technology and applications, the five-dimensional (5D) conceptual DT model
was proposed by Tao in 2018 [87]. The new conceptual model added data and service
components for broader applicability. The 5D model was referenced in DT development
for the mesostructure of asphalt mixture material [88], where virtual moulding of material
samples was applied.

However, in transportation engineering, the previous reviews of DT focused on its gen-
eral applications for maintenance [89], applications in road and railway networks [26], and
broad technologies used for infrastructure life phases [90]. Other transportation reviews
were conducted for BIM and DTs in the overall digitalisation process [91], autonomous
vehicles and transportation operations [92], transportation safety, mobility, and environ-
mental impact [93]. Furthermore, the very recent reviews still focus on applications of DTs
for transportation infrastructure management [20], and evaluate general levels of adoption
of all transport sectors [94].
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For road pavement, in particular, a review focused entirely on data acquisition sys-
tems and only for bridge roads [95], general DT applications in road pavement with no
framework provided [96], and pavement sensing technologies for DT development focused
on sensing methods, including the asset construction phase, with no technical framework
provided [25]. Reviews on the transportation asset DTs are summarised in Table 1 below.

Table 1. Recent reviews on DTs in transportation engineering.

Work Year Review Focus

[96] 2024 Explore DT applications in road pavement management.

[93] 2024 Transportation DTs for safety and mobility applications and
architecture for a transportation DT (TDT).

[20] 2024 Overall Digital Twins of transportation
infrastructure management.

[92] 2024 DT-ITS core considerations, progress, services development of
DT-ITS concerning architectures.

[94] 2024 Transportation Operation and Maintenance adoption and
general asset management framework.

[97] 2023 BIM applications in civil engineering using new Information
and Communication Technologies (ICTs).

[24] 2023 Transportation infrastructure management DT concept
definition, life cycle application, and technology.

[98] 2022 Predictive maintenance transportation motor vehicles.
[26] 2022 DT rail and road infrastructure networks.
[91] 2022 BIM and digital twins in the digitalisation of transportation.
[95] 2022 Digital twins of road bridges inspection.

[90] 2022 Underground infrastructure construction and Operation &
Maintenance (O&M) on locating and mapping technology.

[89] 2020 General DT applications for maintenance.

Nevertheless, none of these works explored the structure and requirements of DT archi-
tecture, particularly for flexible pavement assets. Although one presented a framework [94],
it remains a broad framework focused on general transportation assets, particularly re-
garding fleet and logistics aspects. Moreover, the work evaluated road transport DTs,
focusing on applications such as autonomous vehicles, simulating vehicle operations, and
operation safety. Furthermore, the developed framework is broad and generic. Therefore,
it is unsuitable for pavement asset use, especially given flexible pavement assets’ com-
plex nature and management requirements. Thus, relying on this can pose challenges in
implementation if asset-specific aspects are overlooked. Potential critical oversights and
effects in pavement context are analysed in Table 2. A DT framework for practical adoption
remains underdeveloped.

Current works neglect DT structure and design specific to asset needs for a compre-
hensive framework. Additionally, no enhanced cognitive DT framework or the potential of
new construction 5.0 advancements have been proposed. Literature shows DT applications
and potentials without attention to demonstrating their value for specific assets. This gap
hinders pavement management in adopting DTs.

Therefore, in assessing the current proposed DT works for road pavement throughout
the DT concept and structure, core considerations will uncover the current state of knowl-
edge, outline the requirement for the actual implementation of cognitive pavement DT, and
outline a framework that integrates possible solutions. This will also identify current gaps
and direct future research. This research raised the following questions:

• What are the components and critical considerations of digital twins (DTs) in the
pavement assets; their current maturity, and the gaps for cognitive DT capabilities?
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• What are the required framework elements, processes, and methods for developing
predictive cognitive DT for pavement that enable enhanced decision-making and
support the Construction 5.0 paradigm?

Table 2. Flexible pavement critical aspects and potential challenges of the generalised framework
adoption.

Aspect
General Framework

Possible Assumptions
Asphalt Pavement
Asset Criticality

Challenge/Effect

Modelling material
behaviour

Not available (analytical
only)/Elastic assumptions

Account for asphalt responses
(i.e., viscoelastic/plastic

response, time &temperature
dependency, stress

dependency response)

Unrealistic behaviour,
inaccurate deterioration,

overlooking temperature/load
type or pattern)

Lifecycle/Simulation
data input

Constant loads of opera-
tional/environmental

data

Sensor data preparation
(time-based loading,

distributed temperature,
overloading, etc.)

Inaccurate distress prediction
(i.e., deformation),

degradation rates, scenario
analysis (i.e., event-

impact scenario)

Integrated
predictive model

techniques
One modelling approach

Combine underlying physics
of asset material response

and facilitate

Enhanced accuracy and less
computational cost

allow faster and
long-term predictions.

Continuous model
updating and

validation

One-off model
development and training

Periodic data-driven update
(simulation progress, survey

data, sensor response
for validation)

Updated knowledge of
deterioration mechanisms,

long-term prediction

Sensor data
Place on critical

points/represent
the structure

Rely on physics-based virtual
sensors, validation study

sections, incorporate
users/mobile feeder

Unapplicable due to linear
horizontal nature/

network level

The main objective of this research is to review the concept of DT in other industries,
where it originated, and examine the literature on pavement asset DTs. This will clarify
the current conceptual ambiguities of DT and the core requirements in this asset context.
This research leverages the existing literature on DTs related to pavements. It discusses the
context of flexible road pavements, mainly focusing on DT definition, the interconnected
relationships among its required components, and the considerations needed for pavement
assets. It will assess the developed pavement DTs to establish the foundation for the
advanced adoption of cognitive DTs. Subsequently, this study will propose a holistic
framework, outline the necessary considerations of potential decision systems for cognitive
level DTs, propose conceptual collaborative DTs for the Construction 5.0 vision, and identify
gaps and future needs for its comprehensive implementation.

1.4. Research Structure

The structure of this paper is divided into three sections. The first section presents
the introduction, pavement management and gap, and methodology. Section 2 includes
key features and considerations of the DT concept and discusses and analyses the de-
veloped pavement DT works. Section 3 addresses key points of cognitive pavement DT
requirements, proposes a DT framework, highlights potential solutions and challenges,
and summarises research gaps and future directions. The overall paper design is illustrated
in Figure 3.
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Figure 3. Summary of the paper’s section structure.

1.5. Methodology

This narrative systematic review presents core research questions and specific objec-
tives. The methodology leveraged multiple databases such as Scopus and Google Scholar to
extract articles related to the subject areas. Additionally, this work focused on good-quality
peer-reviewed articles, conferences, seminars, and books. The search was performed in the
databases between January and November 2024. The review encompasses various papers
in the last ten years that introduced and explored the core concept and implementation
of DTs across different industries, where the DT concept initially developed. This broader
perspective helped establish a foundational understanding of DTs before narrowing the
focus to pavement DTs works.

For the pavement-related DT works search, the fields “title”, “abstract”, and “key-
words” were used as “Digital Twin” AND “road pavement” OR “flexible pavement” OR
“pavement maintenance”. To avoid literature that focused on transportation operations
such as mobility and automated vehicles, generic words alone, such as “road” and “in-
frastructure”, were not used. The search was limited to works done between 2018 and
November 2024, as DT applications in the civil and construction industry are relatively
recent, and no DT or works related to road pavement were found in prior time.

The resulting papers passed a screening process considering the function of their titles.
This was followed by an assessment of the abstract to filter works beyond the focus of this
paper. The introduction section was reviewed for those not reflecting a clear scope in their
work titles or abstracts. In this process, the focus of the filtering stage considered proposed
DT works for road pavement, particularly flexible pavement assets only. In addition, this
included works developed for various asset managing aspects such as data collection and
sensing, evaluation, modelling, or decision-making, while proposed as DT-based. This
allowed for a focused analysis of relevant information that addressed the research needs
and aligned with the research objectives. The initial search resulted in 28 papers on DT for
pavement management articles. The 28 papers were filtered out based on review criteria
into 22 final papers, shown in Figure 4. The selection methodology is presented in Figure 5.
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Figure 4. Selected pavement DT articles over publishing years.

 

Figure 5. Paper selection and filtration procedures.

2. Digital Twins and Pavement Management Digital Twins

2.1. Digital Twins Concept

The DT concept was established in 2003 when the base for NASA product lifecy-
cle management (PLM) was introduced in terms of virtual and physical spaces [86,99].
Afterwards, NASA, in 2010, published a technology roadmap [100], which provided a
technical definition and revealed its key features [101]. Industries such as aerospace and
manufacturing have adopted the concept and contributed to the design of the framework
of DT in their sector. Therefore, the applications originated and were designed to meet
their sector’s standards and needs.

Different definitions were introduced of DTs. DTs are complex simulations built upon
historical and real-time data designed to replicate the condition of a physical object [102].
They are also defined as a representation of a physical product that utilises data from the
physical element or system to mimic real-world behaviour in the corresponding virtual
counterpart [103]. The virtual space is reinforced by modelling and simulation tools,
sensor data, and databases to enable more integrated and remote management. Another
common definition indicates that DTs incorporate various physics, probabilistic analyses,
and scales [2]. In most definitions, the simulations revealed the ability to analyse what-if
scenarios of asset response under specific conditions. This is enabled by the connection
and information exchange between components [101]. The benefit of a twin is achieved
using actual operational data and integration of multiple data sources, as well as data
exchange between the digital and physical spaces. The conceptual DT concept is illustrated
in Figure 6.

15



Infrastructures 2025, 10, 64

Figure 6. DT Conceptual model.

2.2. Civil Assets DT Core Considerations

DT core characteristics include the physical product lifecycle data of the asset, syn-
chronisation of data [104], types of data connections between physical and virtual spaces
(unidirectional or bidirectional flow) [105], visualisation, use of sensor data, and advanced
analytical or simulation techniques [106]. In the context of construction industry assets,
Oditallah et al. [74] defined the DT as “a virtual copy of a physical asset, process, or
system of assets that comprise the twin purpose-related lifecycle data, reasonable data
exchange and synchronisation, analytical or simulation models, and intelligent techniques
to model real-world conditions and responses of the physical entity”. This definition
highlights the adoption of DT characteristics that fit the purpose of twinning. It empha-
sises purpose-related lifecycle data, applicable data exchange and synchronisation, and
modelling real-world data or conditions. The key characteristics of DTs are summarised in
Figure 7.

Figure 7. Characteristics of DT.

2.2.1. Connectivity

DT requires a data link to connect its digital and physical counterparts, facilitating
data transfer between entities. The nature and frequency of connectivity depend on the
specific application or service. A DT utilises the best available data, sensor readings, and
other pertinent information to replicate its physical counterpart accurately. Connectivity
encompasses the data transfer rate (e.g., real-time, near real-time, or periodic) and the
connection type between the linked environments, whether unidirectional or bidirectional.
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Connectivity requirements need to align with data updates to specific objectives of the
developed twin [26]. For instance, in autonomous vehicle operations, DTs require real-time,
bidirectional connectivity to provide immediate feedback, influencing vehicle performance
in response to environmental and operational changes. In contrast, for pavement health
monitoring, real-time data and bidirectional connectivity are not as important. In this
context, DTs primarily evaluate asset conditions and provide maintenance recommen-
dations based on periodic assessments, rather than real-time interventions. Therefore,
the emphasis is on long-term asset management and its responses instead of immediate
operational changes, with actual data from the physical asset being more significant than
real-time updates.

Bidirectional connectivity allows virtual actions, such as activating or deactivating
physical components, to impact the physical asset. This is typically in mechanical or
electrical systems such as production lines, where actuators can be controlled. For passive or
non-mechanical assets, as in structural elements, the existence of bidirectional connections
is often unnecessary. However, the feedback from the virtual space to the physical system
may involve rescheduling maintenance or triggering manual interventions. Feedback and
decision-making can affect the physical environment by either automated decisions or
manual responses [107].

2.2.2. Modelling

Modelling and simulation are fundamental elements of DT systems. It can enable
detailed visualisations, what-if scenario analysis, and solution validation. As a unique
feature of DTs, accurate and continuously growing prediction models form the founda-
tion for enhanced decision-making. Analytical modelling encompasses statistical models,
including ML models, physics-based numerical models, and other intelligent techniques.
However, the value lies in integrating multiple approaches and diverse data sources, par-
ticularly operational data from the physical asset and lifecycle data. Hybrid modelling,
combining both approaches, is often used to leverage the advantages of each. Physics-based
modelling can capture materials or internal structures in complex conditions to provide
high predictive accuracy.

2.2.3. Data

Data representing the whole lifecycle of an asset are essential for linking assets and
their operational activities for enhanced decision-making [108]. To support the DT’s
objectives, data such as geometrical and material properties related to the DT process
can be incorporated [109]. In addition, operational and lifecycle data can be used for
various processes within the DT. Material data can be used to model and understand the
behaviour of asset response and affect informed decisions such as treatment type selection.
Data on asset conditions, historical interventions, and design can also validate predicted
conditions in the DT, and, furthermore, establish relationships between status change rates
and operational data.

A DT typically consists of several data subsystems, such as asset inspection data,
to process and reflect the asset’s condition over time. Sensor data are used directly for
monitoring or modelled to derive additional parameters for modelling, simulation, and
visualisation. For example, raw vibration data may be used to derive internal forces that
are more relevant for DT prediction purposes. The use and management of such data must
align with the designed DT’s functions.

2.2.4. Interpretation, Services, and Feedback

DTs can interpret the results in the context of the service required. This could include
alerts and notifications triggered by predefined thresholds of predicted state. Current
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condition assessments using collected raw data or processed outputs can also be considered
in the provided service. Decision support systems (DSS) can analyse the outcomes of related
DT components and trigger recommendations based on monitored or predicted parameters.
Some DSS and advanced knowledge-based systems incorporate advanced ML models or
reinforcement learning to optimise planning decisions [110,111]. However, integrating
DSS creates an intelligent layer and elevates the cognitive level of the DT framework.
This enhances reliability and efficiency for managed assets and enables collaboration
between machines and operators, reinforcing the vision of Construction 5.0 and elevating
the maturity toward a truly cognitive DT. General Electric highlighted that a knowledge
base system component incorporates data analysis and domain expertise and optimises
DTs with industry best practices.

The visualisation rate of state updates is directly reflected by the data transfer rate
and modelling or analysis practices. On the other hand, the required type and frequency of
visualisations depend on the application’s goal and purpose, as well as the needed system
interactivity. Visualisation plays a role in data and output of modelling and simulation,
such as investigating trends, identifying potential issues, and evaluating results in various
scenarios. This is useful in complex systems where real-world activities are modelled
over shorter timeframes. Real-time visualisation is essential when immediate responses
are required. For instance, in traffic management or autonomous vehicle systems, high-
frequency data updates require real-time responses and instant decisions. In contrast,
health monitoring for pavement shows gradual increment changes and does not require
continuous real-time updates. The periodic assessments can be adequate, allowing slower
modelling and visualisation rates for long-term assessment systems. However, accuracy in
visualising asset degradation can be more critical in this case. Precise feedback obtained
from DTs not only benefits its performance but also reinforces the asset lifecycle outcomes
for future asset development.

Overall, as connectivity determines the type of connection and the data rate, the
visualisation and modelling requirements, along with feedback mechanisms, influence the
connectivity design. Considering the core function and dependency in the DT structure.
The role, relationships and criticality between its components are essential. The required
service and the DT’s primary purpose form the DT pyramid’s foundation. This determines
the needed modelling and simulation types, along with the necessary connectivity and
visualisation. This structure specifies what data will be generated, how they will be utilised
for the intended purpose, and how DT outcomes will be interpreted and integrated. Thus,
Figure 8, shown below, describes the DT’s base, which guides the dependency of other
functional components.

2.3. Road Pavement DTs Discussion

The research on pavement DTs focuses on sensors for automating surface data collec-
tion and analysing defects. A group of works integrates these data into static 3D models
using BIM and other spatial visualisations, while others apply real-time sensor data for
monitoring and decision-making. Additionally, some studies aim to enhance virtual asset
presentations and a few focus on updating 3D models to reflect surface condition changes
for improved asset representation.

2.3.1. Pavement Surface Prediction DTs

Yu et al. [112] proposed DT to predict the highway pavement performance and im-
prove its current preventive maintenance. Sensors were used to collect pavement surface
current conditions. The prediction model learning process used ANN, random forest
(RF), ridge regression (RR), and support vector regression (SVR). This involved utilising
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asset-related data, such as maintenance data and traffic flow. Data were visualised spatially
using a BIM 3D model based on predicted data for support planning maintenance.

Figure 8. Digital Twin component’s dependency pyramid.

Similarly, Consilvio et al. [113] provided architecture for the pavement DT, in which
computer vision-based algorithms were utilised to evaluate pavement condition collection.
Both Consilvio and Yu [112] involved other existing asset data, such as maintenance records,
performance indicators, and BIM model visualising for decision support. Consilvio used an
AI-based clustering method to filter road sections based on the severity of their condition.
However, these works overlooked the accounting for the structural aspects of pavement
or real operational data contribution, and the focus was confined to surface conditions
only. Although ML predictive capabilities to forecast health metrics were used, this use
has been long-standing; for instance, Marcelino et al. [60] employed a Boosting-based
learning algorithm (TrAdaBoost), while other work compared five ML techniques [114].
Consequently, DT works could not address the added value of DT over the traditional ML
models used. Nevertheless, reflecting predicted performance indices on a static 3D model
does not constitute an entire DT. DTs should offer the expected enhanced precision and
more cognitive service than traditional ones.

As a vision for futuristic road performance modelling, a proposed conceptual frame-
work for DTs is presented by Kaliske et al. [115]. Their work proposed interactions of
roads, tyres and vehicles as innovative technologies for vehicle–tyre interaction. The work
introduced a potential contribution for tyre–road sensor data in monitoring road damage or
changes in friction conditions. Although the work highlights the physics-based simulation
data, their conceptual work proposal focused on the vehicle–tyre simulation perspectives
only and road asset was not discussed. Ficara et al. [116] deployed a system that relies on
edge cloud services to detect pavement anomalies. The work used statistical analysis based
on the surface conditions and collected data from the crew and road users’ vehicles. Road
user video data were processed based on AI screening. The work suggests improvement in
planning the manual collection of data based on the road user’s preliminary data.
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2.3.2. Sensing and Monitoring DTs

Barisic et al. [117] proposed a DT focusing solely on the thermal state of asphalt
pavement. Specifically, temperature data were collected over the years using several in-
strumented highway sections and modelled for continuous condition monitoring. Another
study used sensor data to propose a strain monitoring framework based on strip sensors
under vehicle loads, which is used to assess the developed road pavement distress [118].
Data of loading variation were tested to assist, validate, and predict the measured strain
scenarios using ML models. These works considered limited sensor data, neglecting other
factors that involve pavement performance. Steyn et al. [119] used sensors for environmen-
tal monitoring data, asset imagery data, and camera data for vehicle counting. Point cloud
data were derived from images of the demonstrated local road DT, in addition to road
surface texture and temperature. The authors reported that acquiring the environmental
parameters for monitoring supports management in the maintenance decisions of the
roads. However, the role of collected real-time data and the use of environmental data
were not discussed in their work. In addition, the work focused on collecting sensor data
and no prediction techniques were used. Similarly, Meža et al. [120] proposed a DT of
pavement for modified material structure and their work used point cloud scan data for
road pavement model generation and visualisation. Data from temperature and moisture
sensors, pressure pads, strain and deformation sensors were all mapped in a digital BIM
model using the Common Data Environment (CDE) platform. The work reported that
integrating the asset model with sensor data provided insight into the overall structural
health of the monitored road. However, the data were mapped into the digital model for
monitoring, and no modelling to predict structural measures was presented.

Digital Twin Box is a group of tools that was deployed in work to introduce DT for
monitoring [121]. It comprises a GPS device, 360 camera, and IoT sensors for collecting data
such as humidity and temperature. The work collected video data for the identification
and tracking of objects in the road environment. The work considered DT development
by linking real-time data to accessible cloud services for monitoring services. As in the
previous works [117–120], these efforts focused on integrating sensor data into digital
models as a support decision tool. Although sensor data integration is essential in DT,
this part alone cannot comprehensively reflect the entire physical asset state. These works
have not shown how these data contributed to the developed system. Instead, they solely
presented IoT data on static digital models rather than establishing predictive analyses of
asset deterioration based on actual leveraged data.

2.3.3. Surface Defect Detection, Visualisation, and As-Built Digitisation

For data collection automation, ML was frequently implemented for defect detection.
Wang et al. [122] used imagery data for automated detection of distress and to assess
the current condition of pavements. In their work, the ML training process involved
multiple integrated data to build an enhanced detection model, which was described as a
DT. Similarly, Sierra et al. [123] presented a road pavement twin based on the reality capture
model. UAV images were used to detect current irregular surfaces and damages to the
pavement and to detect surface defects in the captured model. In another work, laser scans
were used to collect point cloud data and visualise the current pavement surface [124]. The
collected 3D point cloud data were processed into a model and then used for surface-level
flatness analysis and detection of defects. Collecting the current condition for pavement
management is a promising aspect for feeding DT models, as in [122–124]. However, these
data reflect the point-of-time conditions and are limited to surface status only. Therefore,
it has contributed to automated defect classification. Its novelty lies in predicting current
situations of surface conditions rather than predicting future asset status.
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To manage the collected data for decision-making, a work implemented a DT for
pavement based on BIM and GIS [125]. In their work, pavement surface data were collected
using sensors, and the data were converted into a performance index. Road sections were
modelled in BIM and georeferenced to GIS data. Similarly, Bosurgi et al. [126] used a BIM
platform to manage the condition and quality information of pavement surveys. Another
work proposed a framework for PMS in a systematic workflow containing data acquisition
to support decision-making [72]. The framework shown in Figure 9 outlines automated
road distress detection and 3D distress quantification by embedding data information into
GIS. This work also aimed to use defect data on spatial platforms for collaboration as in
previously mentioned works. Road agencies usually adopt spatial presentation and GIS
for enhanced data management. These mentioned works proposed high-level frameworks
that lack enhanced or advanced modelling and simulation for what-if scenarios.

 

Figure 9. Systematic workflow for a Pavement Management System (PMS) [72].

Other works focused on the modelling of existing pavement assets. These works
aimed to detect defects using ML, create 3D models, and reflect the conditions detected
in the developed model. For instance, Cao et al. [127] developed an interactive system to
present pavement cracks in 3D visualisation, where the crack boundary is detected and
extracted based on a 3D crack edge feature algorithm. Data were acquired based on camera
and laser scan sensors. The twin here is presented to replicate the existing shape and type
of defects on the 3D model. This allowed the visualisation of pavement surface defects to
reflect the conditions of road assets and help in decision-making and maintenance planning.
Wang et al. [122] constructed a 3D model based on field-captured reality data and used
deep-object detection algorithms for pavement distress detection. The authors integrated
data by leveraging a lightweight engine used to graphically represent five distresses. Their
proposed framework is shown in Figure 10. Cao’s interactive system [127], along with
this work, are promising enablers for visualisation aspects in DT, presenting updated
visualisation capability of updated site data; however, it is not an entire DT system.
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Figure 10. Pavement distress detection and rendering framework [122].

Furthermore, D’Amico et al. [128] used the existing road pavement condition database
to develop a BIM model for that asset. The model was replicated based on two surveys
carried out in their study. The collected data included point clouds, GPR scans and GPS
records. The author used parametric elements in BIM that can adapt their model features
to the information collected for road conditions. The processed data were integrated
and adapted as 3D polylines extracted from the surveys, as shown in Figure 11. The
proposed method used data to visualise the current road surface conditions. Bertolini
et al. [129] introduced an approach that involves scanning the pavement surface to identify
irregularities that may correspond to specific types of pavement distress. GPR surveys
were utilised to generate multiple datasets, aiding in the detection of subsurface pavement
failures. They followed a method based on a grid system for surface-level defects and
3D voxels for the subsurface. Although no prediction of the future status of pavement
assets was achieved in these works [128,129], it is a promising method for visualising
functionalities in DT. As DT is supposed to replicate the defect on the 3D model to reflect
its status and future status, these approaches potentially benefit DT.

Other works on pavement DTs focused on creating the digital model of pavement
assets. This also allowed the building of the pavement model surface, including its de-
formations and irregularities in terms of pavement layers. Forming the 3D model of an
existing road can establish a DT base. This can indeed, along with previously mentioned
works, be useful for visualisation in DTs. For instance, Fox-Ivey et al. [130] proposed a DT
model using a 3D scanning and positioning system for inspection and damage detection. To
develop a digital model of an existing asset, Jiang et al. [131] mapped collected data to build
a digital surface model (DSM). Then, fitting processes for horizontal and vertical alignment
and cross-section generation were implemented (Figure 12). Similarly, Pan et al. [132]
utilised a 3D point cloud segmentation process to acquire semantic information using 3D
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deep learning models. The process involved clustering the point cloud and alignments
fitting based on polynomial approximation. The points extracted and segmentation of
road surfaces were converted to detailed components using two effective deep learning
models, KPConv and Superpoint Transformer. The fitted curves were then used to separate
road surface points into lanes, shoulders, and central medians. The authors reported that
the work offers the base model of physical assets, which potentially can be expanded to
complete DTs. An illustration of the process is shown in Figure 13.

Figure 11. Proposed visualisation of the current road surface conditions [128].

 

Figure 12. Generating a digital model for existing infrastructure highway workflow [131].
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Figure 13. Hierarchical relationships among various components [132].

2.3.4. Developed Pavement DTs Summary

The discussed works have used various tools and approaches in their studies. Table 3
summarises and presents the data acquisition methods, approaches used, platforms or
integration strategies utilised, and types of output feedback.

Table 3. Developed DT methodologies.

Work

Methodologies

Data Acquisition Model Type/
Development/Approaches

Platform/Integration
Strategies/Tools

Interaction Type/
Output/Feedback

[112] Vehicle-line scan,
Accelerometer

ML-Prediction:
multi-ANN, XGBoost, etc.

BIM software (Autodesk
Revit)/CDE,

Visual programming

3D model-Roughness
IRI index visualisation

[117]
Set-temperature sensors

(profile), weather
station sensors

Statistical prediction,
numerical analysis/

validation
Analytical/numerical software Real-time

temperature prediction

[118] Strain sensor Physics-based model Numerical analysis
software (LS-DYNA) Strain, load prediction

[119]
Smartphone, UAV camera,

CVV camera, infrared,
LiDAR, temperature

Depth map modelling,
multi-view stereo

(MVSNet)
Cloud IoT platform 3D model/real-time

data streaming

[120]
Embedded (temperature,
humidity, displacement,
pressure, stress, strain)

3D BIM model
Centralised data management,

visualisation and
collaboration platform

3D model/real-time
data streaming

[121] Camera/Video,
GPS, Gyroscope

Object detection model
(SSD MobileNet V2) Open-source cloud computing

Real-time
data streaming,
object detection

[127] LiDAR, Camera
3D Object crack

segmentation (CNN), 3D
feature extraction

Python-ML platform
(TensorFlow software)

As-is 3D crack
visualisation

[122] UAV-Camera
Object Detection (cracks,

potholes) based
on (YOLOv5)

Photogrammetry/mapping
software, Game engine,
real-time 3D platform

As-is distress
visualisation

[123] UAV-Camera Object segmentation crack
(U-Net, VGG-16)

Reality modelling
(ContextCapture software) Distress detection

[124] 3D LiDAR, GIS Point cloud processing,
parametric modelling

Bridge/road software (Civil
3D), plugin-integrated

visualisation (Leica’s toolset
for Revit), 3D Surveying
software (Cyclone 3DR)

As-built 3D
model/virtual

assessment (flatness
or distortion)
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Table 3. Cont.

Work

Methodologies

Data Acquisition Model Type/
Development/Approaches

Platform/Integration
Strategies/Tools

Interaction Type/
Output/Feedback

[125] Camera, GPS camera Spatial data analytics BIM modelling, GIS software 3D model
GIS integration

[126] NA 3D object -inspection,
lifecycle data integration BIM Infra software 3D Model-based data

[116]
Smartphone

sensors/camera/GPS,
edge computing

NA Cloud-based storage/services/
query platform

Condition indicators
visualisation

[72] Camera, LiDAR, GIS Image processing,
data analysis

GIS, point cloud
computing software

Distress detection,
quality index
visualisation

[113]
UAV camera, GPS, Light
Detection and Ranging,

survey data

Parametric modelling,
computer vision-based

algorithms, AI clustering
decision optimisation

Cloud computing platform.
Game engine, real-time

3D platform

Mapped/visualised
data support

decision system

[128]
GPR, Light Detection and

Ranging,
Laser Profiler

3D data processing,
Parametric modelling

Design/visualisation software
(civil, infra)

As-is 3D pavement
model/distress

visualisation

[129]
Equip vehicle-laser
Measuring System,

GPR surveys

Point cloud process-
ing/reasoning/Cells and

voxels classification,
visualisation

Specialised point cloud
computing software

As-is Surface reproduc-
ing/subsurface distress

visualisation

[130]
GPS/GNSS, 3D

scan-integrated inertial
measurement
units (IMUs)-

Geo-referencing, 3D points
cloud processing LDTM software, Cad viewer As-is 3D

surface modelling

[131]
Existing Map database,
aerial images, derived

point cloud
3D data processing

3D modelling, point cloud
processing software,
visual programming

3D model element re-
construction/digitising

[132] 3D Point cloud data
Deep

learning-segmentation,
elements fitting

Point cloud processing
software, Algorithm-Python

3D Design element re-
construction/digitising

The analysed literature reveals that current implementations often fail to fully adopt
the DT concept. This is seen in the limited inclusion of in-service behaviour of modelled
assets and the absence of enhanced predictive techniques over already existing ones. This
hinders the realisation of DT’s full benefits. The proposed frameworks mainly focus on the
automated detection and extraction of defects, considering the functional aspects based
on surface conditions. Although the proposed work is not the entire DT, it has valuable
contributions toward its full development.

The literature has different viewpoints proposing the conceptual structure of DTs for
pavement management. Nevertheless, the predictive and analytical capabilities of the DT
concept remain key components. This includes advanced decision support system (DSS)
models, which have not been fully integrated into the DT framework to propose cognitive
and reliable decisions and continuously learn and share knowledge for asset management.
The developed DT works in the literature have been classified into different categories
based on their focus and contribution area in Table 4. In this table, ’X’ is used to indicate
which focus category is associated with each work.

However, cognitive DT implementation is intended not only to facilitate services
related to current and future asset status assessment; it further optimises the accuracy of the
overall reflected performance. Figure 14 illustrates the expected services of Pavement DT.
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Table 4. Developed DT’s focus and contribution areas.

Work

Category

Current
Condition
Detection

3D Model
Creation/

Visualisation

Support
Monitoring

Data

Analytical
Prediction/Decision

Support

[116] X
[112] X
[72] X

[128] X X
[115] X
[117]
[124] X X
[119] X
[113] X X
[122] X
[127] X X
[131] X
[122] X X
[130] X
[123] X
[120] X X
[126] X
[118] X
[125] X
[129] X X

X denotes that the feature is applicable to the corresponding work.

Figure 14. Conceptual services of Pavement DT.

3. Advancing Toward Cognitive Pavement DT

The framework design aims to bridge the asset needs from an operational point of
view to provide a starting point for effective pavement DT development. The following
discussion includes considering actual operational conditions, integrating multi-modelling
methods, and defining visualising aspects in the context of DT structure and flexible pave-
ment needs. This would advance the developed framework toward full DT implementation
for construction 5.0 environments.
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3.1. Operational Data, Asset Databases and Performance Modelling

Actual operational data and incorporated material modelling in DT are key for en-
hancing the prediction of pavement actual performance. Service condition data, such
as temperature and operational data, i.e., load frequencies, speed, and overloading, are
essential in performance degradation. However, sensors and weather station data can
be leveraged and calibrated based on formulas and models, such as models developed
in [133–135]. This will allow DT to account for in-service assets’ actual temperature and
moisture levels. Moreover, other existing pavement lifecycle data can be acquired using
asset databases, such as LTPP, which can facilitate actual data for analysis and prediction.
The existing databases, i.e., PMS data, involve the asset structure data, i.e., layer thick-
nesses and material test data under various environmental conditions. This would yield
insightful contributions to the enhanced prediction of DTs. Regarding operational loading
data, Weigh-In-Motion (WIM) data, which is sensor data, classifies stream traffic loads and
presents the weight of vehicles, loading speed, actual repetition of each type, and other
detailed traffic. These data can be modelled in time series form and leveraged to present
specific site operations characteristics. When sensors are absent, they can also undergo
metamodeling approaches to estimate other network pavement loads. This connection
between the actual site environment and the operational scenario in the virtual space can
enable predictive DT. Sensor systems can rely on WIM or similar camera-based systems and
embedded sensors for temperature or leveraging weather station data within the asset zone.
These data can be employed in DT modelling, prediction, and decision selection processes.

Other data, such as existing maintenance records and detected surface condition data,
can be integrated into DT using data inquiry and management methods, i.e., SQL databases.
Surface condition automated methods, i.e., cameras and laser sensors, can be used for
frequent inspections, where acquired data can be classified based on AI detection and stored
for further prediction operations. Recent works proposed systems adaptable to vehicles
to be used as collectors. These potentials are supported by edge computing technologies
that use cloud models and access various data and computing resources. It is possible that
future integration of autonomous vehicles can help to capture road surface data over time
and analyse them based on edge computing. This includes sensing technologies developed
that can be leveraged for structural testing through advanced non-distractive methods.
These data, i.e., deflection responses, can be acquired from road vehicle users to indicate
the structural health of pavement and used in calibration and validation processes in the
DT modelling component.

One of DT’s challenges is determining data updating and connectivity aspects. The
structural health of infrastructure assets changes slowly. Data collection is periodically
based on the rate of deterioration and frequency of decisions needed. Therefore, periodical
use of the continuously collected data can be used to update the periodical modelling. This
can be done by segregating and redistributing the newly available operational data to fit
the modelling frequency.

In terms of predictive modelling, data-driven models within DT, such as ML models,
can predict pavement temperature at various depths using other environmental factors
and weather sensors. Moreover, at the pavement performance modelling stage, data such
as traffic, axle load, etc., which are collected from WIM and integrated asset databases,
require data modelling in DT functionalities. For instance, predicting traffic flow at a given
time of the day or under extraordinary event changes for what-if scenario analyses. For
performance prediction, the physics-based models can contribute to forming enhanced
hybrid models such as surrogate models. Physics-based models can incorporate material
characteristics for response prediction. This considers operational and environmental
conditions leveraged from the physical pavement to forecast degradation based on the
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physics law of the pavement, i.e., viscoelastic response. Continuous prediction results can
be incorporated into ML models to facilitate faster and generalised predictions of pavement
for decisions. This overall process involves the lifecycle data for accurate prediction and
predictive DT. Furthermore, NDT devices are used to gather structural performance data
and can be adapted to validate and optimise the performance models in DT. For instance,
various works, as in [35,136–141], used ML to establish a model based on simulation data
for structural analysis using NDT data and optimise its performance. These surrogate
models open a window for further innovative modelling in DTs.

3.2. Intelligent Decision-Making Support Systems

Enhanced performance prediction in the DT approach allows a precise decision-
making process. Furthermore, integrated DSS can automate plan prediction based on
advanced knowledge models and optimise decisions based on incorporated industry
best practices. This decision model can leverage performance modelling outputs, other
system and asset inputs, asset operation and maintenance policies, and best practice
considerations to inform optimised decisions. Its cognitive feature can adopt budget
limitations, intervention factors, treatment costs, etc., [142]. This is essential to close the DT
feedback loop and achieve a cognitive level. ML models in DSS can guide, support and
optimise decisions and elevate the practice to a prescriptive maintenance approach [143],
which predicts and prescribes maintenance actions. For instance, reinforcement learning
is frequently used to optimise planning decisions [110,111,144]. This allows the cognitive
DT to be optimised for continuous learning over time. In this context, various works
developed decision models: Georgios et al. [145] used a decision tree to provide repair
strategy, defect cause and treatment based on distress type, severity, and budget; Philip and
AlJassmi [146] adopted Bayesian Belief Networks (BBN) to produce optimal sustainable
decisions; and Abu Dabous et al. [147] proposed multi-criteria decision analysis (MCDA)
based on multi-quantitative evaluation, while another work adopted a risk assessment
BBN model trained to expand its knowledge domain over time [148].

Considering Construction 5.0 principles and focus, DSS integration is a significant step
in aligning the future cognitive DTs with its goals. In addition to advancing DT maturity,
it combines automation with skilled human oversight. This can enhance the intelligence,
connectivity, and collaborative aspects for the next evolution in construction. DSS in a DT
can interpret and present complex data in a more accessible way to support teamwork in
digital systems for optimised outcomes. Furthermore, the continuous learning ability of
reinforcement learning helps knowledge-based systems adapt. These systems can plan,
facilitate and automate routine decisions, which allows expert humans to focus more on
critical and strategic decisions. In addition, the recent generative AI has a promising role
in enabling workers to gain real-time insights. This facilitates complex DT functionali-
ties and translates insights into plain language, bringing human creativity and machine
cognition closer.

3.3. Visualisation & Data Integration

The DT visualisation interface can help to clearly understand the actual state as
visual information about defects. This plays a fundamental role in the route causing the
deterioration mechanisms. Visualisation in the pavement asset context can be divided into
macro and micro levels. The macro level refers to the visualised conditions in terms of
performance indices. This data visualisation helps spatial-based investigation for planning
interventions. Micro visualisation can involve pavement structure geometry changes,
surface, and appearance degradation, reflecting the nature and severity of defects. It can
be used to determine deterioration mechanisms and their interaction to support decisions.
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Although some developed DT works presented in the previous discussions are promising
methods for micro-scale visualisation, further visualisation methods for DTs are required.

Operable platforms and tools that handle Application Programming Interfaces (API)
can facilitate data exchange between different systems, leveraging various data sources
and model results among multiple applications and platforms, and GIS adds a spatial
context to asset visualisation. BIM models also provide 3D adaptable models rich with
information. Simulation model visualisation is also essential for generating and updating
visualised assets. Designed DT could involve multiple types of visualisations for short and
long-term decisions.

3.4. DT Platforms

Industrial platforms are enablers for DTs and serve as ecosystems for various indus-
tries’ applications. Examples include the Siemens Xcelerator Platform, Microsoft Azure DTs,
and IBM DT Exchange. These cloud-based platforms provide tools to create comprehensive,
integrated digital environments. However, other DT-enabled platforms were explicitly
developed for the construction industry, such as platforms or CDEs. For instance, Bentley’s
iTwin platform supports reality capture to create a digital context and integrates iTwin IoT
for analysing sensor data. Autodesk Tandem focuses on the construction and operational
phases of assets. Similarly, Trimble Connect CDE provides DT capabilities by integrating
with field data and offering real-time project analytics.

These platforms are centralised environments to store and manage all relevant as-
set data. This includes the development of dashboard visualisation, date information,
cloud-based simulations, predictive models, and other data sources. These technologies
and processes enable DT to control the integration of multi-modelling and analytics ap-
proaches based on various cloud-based services and data storage throughout APIs. Thus,
a well-designed visualisation helps understand current and projected asset conditions.
Furthermore, it allows integrated workflows with GIS and DSS systems to ensure compre-
hensive decision-making.

3.5. Integrated & Collaborative DTs

An integrated collaborative DT is a system of interconnected DTs communicating and
sharing data to support more comprehensive decisions. In this concept, each DT holds
its functions and purposes, such as pavement management DT, traffic management DT,
road users service DT, and autonomous vehicle DT. However, they also share essential
data across the network as needed. When requested through data protocols, data from
one twin can directly benefit or inform the processes of another. For instance, a DT of road
traffic can share data about traffic flow and density, helping pavement DT with periodical
asset assessment. This includes transferring data from one twin, i.e., traffic DT, for what-
if analysis in pavement DT. Similarly, pavement DT can feed road traffic DT with any
predicted hazards that could affect the traffic in the future, helping adjust routes based
on current or future conditions. Furthermore, an autonomous vehicle twin system can
provide pavement DT with surface-related data, tyre contact data, and defect location.
Combining such structural data-sharing and protocols in a collaborative environment
can be systematically achieved. However, sharing data protocols and security issues
can be an issue in its adoption. Figure 15 illustrates conceptual data-sharing actions
between several DT systems, and Figure 16 illustrates pavement DT within an integrated
DT collaborative environment.
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Figure 15. DT data sharing environment.

Figure 16. Illustrated pavement DT within an integrated DT collaborative environment.

The proposed federated DT system, Twins Chain, a possible term, can also improve
resource efficiency by reducing the redundancy of duplicating data collection or analysis
efforts by an isolated DT system. This would save computing power, data storage, and
cloud service interruptions. This collaborative approach also aligns with the Construction
5.0 vision for sustainable, intelligent systems for adaptive management of construction
resources. It also provides a conceptual step toward standardisation for centric transport
DTs, allowing shared access and collaboration across disciplines to realise the concept of
smart city DTs.

3.6. Proposed Cognitive Pavement DT Framework

Prior analysis and discussion sections put forward a map considering all required data,
possible models, and support components of a cognitive DT for pavement management.
This outlines the most effective architecture framework for road pavement based on DT
structure and pavement-developed systems. The conceptual framework in Figure 17
consists of a skeleton equipped with different tools and technologies.
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Figure 17. Proposed Cognitive Pavement DT Framework.

The system utilises data from multiple sources, including sensors on user vehicles,
existing databases, and surveying technologies, to collect physical asset condition data.
It employs cloud-edge services for data detection, analysis, and classification, which
are used in different functional units within the proposed system. The framework also
incorporates data preparation and management processes within dedicated data collection
and management layers.

The proposed DT framework integrates multisource data, including processed data
on operational, environmental, and surface conditions. A processing unit organises opera-
tional data into time-series sets (e.g., traffic load, asset temperature, and material proper-
ties) for physics-based and ML model predictions. These models use a multi-modelling
approach with surrogate models, enabling advanced analysis, what-if scenarios, and visual-
isation. This framework can potentially bridge the existing gap in the literature concerning
discussed works. It incorporates the DT concept’s multi-modelling feature to improve
pavement systems’ predictive modelling. This enhancement facilitates superior forecasting
and enables more informed decision-making. Thus, it highlights the additional value of
the DT approach in comparison to traditional practices.
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A DSS combines predicted and existing asset data to inform and optimise planning,
incorporating classified surface conditions from processed field data. The framework relies
on cloud-based dashboards, CDEs, or DT platforms for seamless integration and user
interaction. This dynamic, cognitive DT evolves by updating surrogate models and DSS
knowledge. This can be leveraged based on reinforced learning DSS, improving predictions
as new data become available, and enhancing decisions as more properties and practices are
provided throughout the asset’s service life. In contrast to the discussed foundational level
of previously developed DTs, comprehending processes within the presented pavement
framework encompasses all required management components. This includes data collec-
tion, detection of current conditions, and an enhanced approach to future state predictions.
This framework integrates actual asset operational data and proposes sensing pathways, in
addition to intelligent decision-making systems with continuous learning features inherent
in the DT concept, allowing prediction models and decision experts to grow for ongoing
improvements in DT performance. Such advancements will effectively bridge the current
adoption gap and align with future industry 5.0 requirements during implementation.

However, the proposed architecture has potential challenges. Data integration (e.g.,
multi-sensor data) and managing diverse data types (e.g., sensors, databases, surveys)
impose technical difficulties. In addition, the suggested continuous real-time physics-
based and ML models require significant processing power. This could demand excessive
computational power and cap its implementation. Furthermore, model calibration for
ensuring surrogate models and DSS adapt to changes can be a challenge. These, in addition
to high digital skills, are required in its full implementation.

Implementing the proposed DT framework in real-world projects will validate model
accuracy and potentially refine system integration. It will also identify further practical
challenges and assess how well the DT framework adapts to real-world conditions.

3.7. Research Gaps and Future Recommendations

This work comprehensively reviewed, analysed and discussed possible solutions
and technologies for a holistic framework of pavement DTs. To advance to practical
implementation and operate the proposed frameworks, real-world case implementations to
validate and refine system architecture and focus on facilitating the technical challenges are
needed in the future. Some of the key research gaps and future research recommendations
are as follows:

• To advance the current underdevelopment practice of DTs, implementation should
align with the proposed DT concept. The structural aspect of the asset and actual oper-
ational conditions need to be incorporated. Furthermore, the predictions and decision
processes of pavement DTs need improvements. Simulation is a core feature of the DT
fundamentals. However, it is not mentioned in most developed works. Methods for
integrating modelling and simulation for advanced analytical modelling and what-if
scenario functionalities require further research. Physics-based simulations, such as
the finite element method, and other model updating and optimisation techniques
outlined in the proposed framework require further investigations. In addition, real
case implementation as proof of concept is required for physics-based methods and
ML hybrid integration. This considers real asset operational and lifecycle data to
overcome current limitations and achieve improved prediction in growing DT. This
work recommends further exploring and assessing these hybrid simulation methods
incorporating real-life data.

• Visualisation tools are critical in predicting complex systems for user-friendly use,
interpreting findings and making informed decisions through intelligent systems. It is
a conjunction of all data types, from simulation, modelling, and decisions to asset state
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visualisation as proposed in the proposed framework. A few works have developed
virtual models that replicate assets and visualise current defects and surface conditions,
which are proposed in the literature. However, there is a need for methods to reflect
further predicted data and conditions for the future state of the asset, in addition to
developing visualisation components for users within DT platforms to align with full
DT capabilities.

• DT depends on leveraging remote actual data from the physical asset. Recent NDT
methods, i.e., [80], used 3D-digital image correlation to the in situ testing based on
vehicle tyre load deflections, or a Laser dynamic deflectometer (LDD) to capture the
deflection as the vehicle moves [81]. A work presented tyre–pavement interaction
to provide data potentially helping road damage analysis [115]. However, these
approaches imply collecting actual data and asset responses based on on-road vehicles,
as highlighted in the asset response sensor data in the proposed framework. This
significant research direction on the future of non-destructive sensing enables the
enhanced asset status prediction of future DT implementation.

• Cognitive DT implementation involves a complex and wide range of data parameters
and information. This can also challenge the traditional decision-making processes due
to their complexity and numerous dependencies. Therefore, optimising these decisions
would require advanced self-learning DSS for managing, interpreting, and optimising
detailed and complex datasets. Consequently, more sophisticated DSSs are required to
facilitate the effective implementation of DTs and adapt for Construction 5.0.

• The reliance of DTs on existing asset data highlights the critical importance of struc-
tured databases, such as LTPP. However, this presents other challenges due to the
lack of digitised data records in integrating data within DTs. The solution for data
operability, security, and existing database use requires developing innovative meth-
ods to facilitate their implementation. Therefore, interoperability and data security
solutions must be addressed, and cloud service solutions in integrated diverse data for
modelling, storing, and visualising need to be explored. This will help move toward a
sustainable digital built-in shared environment across multiple sectors.

• In the current literature, there is an absence of works investigating the cost and
environmental considerations of DT implementation for asset management. This
includes human–machine relations, trust, connection, and sustainability factors within
infrastructure asset DTs for Construction 5.0 readiness. In addition, it is essential to
understand the factors that influence the adaptation and adoption of DT systems.
These required contributions will impact the successful deployment of DTs.

4. Conclusions

This research provides a crucial step in developing a comprehensive DT framework ca-
pable of meeting DT requirements, enhancing status prediction, and incorporating growing
knowledge DSS to achieve cognitive systems aligned with the Construction 5.0 principles.
This paper reviewed the concept of DT structure, outlined critical considerations, and
assessed existing DT implementations for pavement assets. The review spanned various
aspects, highlighted current gaps, and proposed asset-specific needs and required compo-
nents with recent advancements that could facilitate DT implementation. The redeveloped
cognitive DT framework will foster its implementation in the management of pavement
infrastructure, including integration of decision systems and prediction improvement from
advanced technologies and profound DT concept realisation to enhance the overall DT
efficiency. Research gaps to fully implement the proposed framework were also presented.

The review revealed that the existing literature on pavement DTs lacks a full DT
concept presentation, which includes enhanced predictive capabilities, efficient use of actual
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operational data, intelligent DSSs, and the incorporation of what-if scenario modelling.
Most studies emphasise surface condition data with a significant focus on digital models or
assessing present conditions rather than extending to fully predictive DTs.

The proposed framework in this work addresses the gap between current practice and
the true concept of DTs. This was achieved by addressing the added value of DTs over the
previously developed practices. It adopted the full DT concept’s features, incorporating a
multi-modelling approach and actual physical asset-handled data to improve predictive
modelling, and comprised comprehensive components, including specific asset needs
and growing predictive capabilities. This was through advanced DSS incorporation to
facilitate data interpretation and growing models to expand knowledge and practices of
actions, adding the cognition layer to the current developed DT maturity. In addition,
this work proposed collaborative DTs for optimising and standardising smart city-scale
DT implementation potentials. This enhances decision-making and optimises planning
strategies while aligning with Industry 5.0. This research contributes to the design of DTs for
pavement infrastructure, enabling predictive and cognitive systems. While existing systems
do not fully address the concept of true DTs, the proposed cognitive DT implementation
needs to overcome some identified gaps. However, implementing DTs remains challenging
due to their complexity and lack of standardised processes. Moreover, data interoperability
related to multi-sensor and source data fusion and security poses significant challenges,
particularly for large-scale DT applications.
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Abstract: Today, everything is connected, including the exchange of data and the generation of new
information. As a result, large amounts of data are being collected at an ever-increasing rate and in
a variety of forms, a phenomenon now known as Big Data. Recent developments in information
and communication technologies are driving the generation of significant amounts of data from
multiple sources, namely sensors. In response to these technological advances and data challenges,
this paper proposes a Big Data system architecture for paved road monitoring and implements part
of this architecture on a section of road in Portugal as a case study. The challenge in the case study
architecture is to collect and process sensor data in real time, at a rate of 500 records per second,
producing 15 GBytes of data per day, using a real-time data stream for real-time monitoring and a
batch data stream for deeper analysis. This allows users to obtain instant updates on road conditions
such as the number of vehicles, loads, weather, and pavement temperatures on the road. They
can monitor what is happening on the road in real time, receive alerts, and even gain insight into
historical data, such as analysing the condition of structures or identifying traffic patterns.

Keywords: Big Data; Big Data architecture; fibre-optic sensors; monitor road health; real-time
monitoring; batch monitoring

1. Introduction

The demonstration approach has been around for a long time, but recent developments
in computing have allowed huge amounts of data to be processed to anticipate, understand,
and predict behaviours through data patterns [1].

Collecting data from sensors embedded in structures such as roads allows us to
demonstrate their behaviour when they undergo deformation caused by constant strain.
This usage of Big Data falls under the domain of the Internet of Things (IoT). The use
of computer technology makes it possible to collect a huge volume of data generated by
sensors, transform it, and store it in such a way that it can be analysed, visualised, and
fed into intelligent algorithms that can predict road behaviour over time. IoT is seen as a
network of sensors embedded in roads, which is a significant source of Big Data.

Monitoring of transport infrastructure is very important in predicting ageing and loss
of performance [2]. It is imperative that this prevention be as effective as possible to ensure
the safety and comfort of those who use them every day.

Based on the ontology proposed by [3], it is assumed that there are currently two types
of monitoring systems: dynamic and static, regardless of the type of road and pavement
used. It is difficult to place static embedded systems on unpaved roads, although dynamic
systems can be used. On paved roads, regardless of the type of pavement, both monitoring
systems are viable. It is important to note that the most traditionally used monitoring
system is visual inspection, which is a dynamic system performed by humans. Dynamic
road monitoring systems are mobile systems capable of monitoring multiple locations and
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roads, whereas static monitoring systems are limited to a single monitoring location, often
embedded within the road.

A literature review revealed several data collection technologies that are applicable to
road monitoring systems:

• Digital cameras (dynamic): To capture images of roads and analyse the surface road
conditions, the cameras should be mounted on a vehicle [4–6].

• Smartphones (dynamic): Use of smartphones with an accelerometer and Global Posi-
tion System (GPS) attached to a vehicle, such as a car or bicycle, and comparing the
vibration with the vehicle’s speed to detect irregular road surfaces [7–17].

• Wireless and high-precision sensors (dynamic): To capture the roughness of the road
surface, for example, use noise sensors and vibration sensors [18,19].

• Radio Frequency (RF) sensors (static): Based on wireless sensors embedded on the
road, this could include an RF transmitter and an RF reader installed in vehicles to
capture the data [20].

• Fibre optic sensors (static): To accurately measure road stresses, capture the vibrations
felt on the road, allowing the identification of the vehicle’s weight and the damping
effect [21,22].

• Temperature sensors (static): Capturing temperature variations provides insights
about road surface stress [23].

• Strain gauge sensors (static): To measure the deformations and stress on the road [24,25].
• Temperature, strain, and inclinometer sensors (static): To measure the thermal curling

on the concrete pavement slab [26].
• Temperature, Strain, and Pressure Cells (Static): To measure the conditions of airport

pavements [27].
• Geophones (static). To measure road deflection [27].
• Ground-penetrating radar (static): The radars were installed at different depths, with

their antennas suspended above the road surface to monitor road conditions [28–31].
• Mechanical systems sensors (static). Integrates mechanical, sensor, and electronic

elements on a small chip: It allows you to collect and analyse temperature, humidity,
and deformation [32].

• Smart Rocks (static): It is a device that integrates different sensors, including piezoresis-
tive stress and strain sensors, as well as a triaxial accelerometer for direct measurement
of 3D stress, strain, and acceleration on the SmartRock surface [33].

• Distributed Acoustic Sensing (static): It is used to measure seismic signals propagating
over long distances using fibre-optic cables. The technology was capable of measuring
small deformations when a sensor fibre is coupled to the system and road noise over
long distances [34].

Our study uses static Fibre Optic Sensors not to analyse the road surface but rather its
internal structural layers and the deformation within them. To achieve this, it is necessary
to design an architecture for collecting, preparing, storing, analysing, and utilising (big)
data to support road monitoring while also taking into account issues such as data security
and privacy.

In general, the aforementioned case studies either lack descriptions of the architecture
used to deploy the proposed solutions or provide very limited detail. Data collection,
processing, and subsequent analysis are considered essential for pavement monitoring
systems, but most studies do not describe this component [35]. However, one study stands
out by introducing a cloud-based architecture for monitoring cyber-physical systems. Its
primary aim is to automate the transmission of data generated by IoT devices to the
cloud. Within the cloud environment, the data are analysed and stored using blockchain
technology to ensure authenticity and integrity [36]. The authors argue that this architecture
constitutes a suitable cloud-based solution for modern monitoring systems and can serve
as a reference model for future research.

Therefore, this paper presents a more versatile architecture capable of accommodating
the requirements of road monitoring systems, whether they are cloud-based or not. A com-
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prehensive Big Data Systems Architecture (BDSA) is proposed, integrating several layers
and components for data collection, storage, processing, analysis, and distribution. This
integrated environment facilitates informed decision-making and predictions regarding
structural behaviour.

The aim of this paper is to describe the use of the BDSA in a case where it was
installed on a real road section to validate a specific set of components within the BDSA.
This study covers the use and testing of different layers of the BDSA and some of its
specific components, covering the entire data lifecycle from data collection to analysis
and visualisation. It also introduces and models the necessary data structures to support
storage and processing within a (Big) Data Warehouse.

Methodologically, this work was carried out following the research methodology of
Design Science Research [37]. The validation of the proposed system was achieved by
developing a prototype of a Big Data System designed for monitoring a road section.

The remainder of this paper is structured as follows:

• Section 2 explores the evolution of Business Intelligence and Big Data Analytics,
considering the concept of Big Data.

• Section 3 introduces the BDSA and outlines its architecture for road monitoring. It
details the various layers and emphasises the selected layers and components for
implementing the proof-of-concept.

• Section 4 presents a comprehensive account of the implementation process, encom-
passing (Big) Data Warehouse modelling, along with associated tasks such as data
integration, cleansing, transformation, loading, and data analysis and visualisation.

• The results, which show the importance of using a BDSA, are presented in Section 5.
• Finally, in Section 6, we offer concluding remarks and provide insights into

future directions.

2. Business Intelligence and Big Data Analytics Evolution

In recent years, successive advances in digital technologies have triggered important
changes in organisations, their strategies, and business models. In this way, digital has
become an integral part of companies’ daily lives, becoming an unavoidable reality that
increasingly contributes to their success [38].

Therefore, over the last years, the interest in Analytics and Big Data has increased
considerably [39], particularly after 2012, as can be seen in Figure 1. This may be due to the
consequent skyrocketing growth in the volume of data generated by companies, requiring
new tools and technologies able to process and analyse large datasets. Now it becomes
relevant to carry out a retrospective analysis of the evolution of Business Intelligence (BI)
and (big) Data Analytics to reach the current reality, the Big Data era.

Figure 1. Interest in Analytics and Big Data.

According to IBM, BI is software that considers business data and presents it in user-
friendly visualisations such as reports, dashboards, charts, and graphs, allowing business
users to access different types of data and enabling analysis of this information to gain a
better insight into company performance. Organisations can use the knowledge gained
through BI and data analysis to improve business decisions, identify problems or issues,
spot market trends, and find new revenues or business opportunities [40]. Although this is
a broader definition, the emphasis is maintained on data processing capabilities to provide
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useful information and knowledge to improve the business, i.e., BI is a set of strategies and
technologies that companies may use to analyse business information and transform it into
practical knowledge that serves as a basis for commercial, strategic, and tactical decisions.

(Big) Data Analytics can be explained as the use of advanced analytical techniques
on diverse (big) data sets that include structured, semi-structured, and unstructured data
from different sources and of different sizes and whose size or type exceeds the ability of
traditional relational databases to capture, manage, and process the (big) data with low
latency [40]. A more detailed definition of Big Data can be achieved, such as high-volume,
high-velocity, and/or high-variety information assets.

Given that sources of Big Data are becoming more complex than traditional data
because they are being driven by Artificial Intelligence (AI), mobile devices, social media,
and the IoT, and much of that Big Data are generated in real-time at a very large scale
(for example, data originates from sensors), it is extremely necessary to adopt Big Data
Analytic tools capable of providing insights to perform better and faster decisions, to
model and predict future outcomes, and to improve business intelligence. The key asset
is still information and data processing for supporting the decision-making process and
enhancing the business.

In this context, an evolution from BI and Analytics (BI&A) to Big Data Analytics
can be observed in terms of support technologies and development frameworks. This
evolution is addressed in the work of [41], which makes a retrospective characterisation of
the BI&A itself and shows what changes for Big Data. According to these authors, Business
Analytics (BA) is understood as the main analytical component of BI; some authors refer
to BA as a system that offers advanced techniques for the reporting of data, an evolution
of BI [42], while Big Data are used to describe data sets so large and complex that they
require advanced technologies for data storage, management, analysis, and visualisation.
Therefore, Big Data Analytics offers new research directions for BI&A.

The BI&A evolution over time is divided into four eras: BI&A 1.0, BI&A 2.0, BI&A 3.0,
and BI&A 4.0, with applications and emerging research areas with different data sources,
as can be seen in Figure 2 [41–43]:

• BI&A 1.0 refers to the first era of Business Intelligence and Analytics, in which data
were essentially structured and came from multiple data sources. Data warehouses
(DW) are a creation that dates back to this era and play a crucial role in it, as they
serve as the basis for integrating and consolidating company data. DW schemas
also prove essential to organising and structuring data effectively by developing
Extract, Transform, and Load (ETL) mechanisms to extract data from various sources,
transform it into a suitable format, and load it into the DW.

• Online Analytical Processing (OLAP) and reporting tools are used in BI&A 1.0 to
explore and analyse data, providing interactive environments with intuitive graphs
and enabling ad-hoc querying processing, complemented by statistical methods and
data mining algorithms for advanced data analytics.

• BI&A 2.0 represents the next phase, where data collection expands beyond structured
sources. In this era, data are collected from websites using cookies and server logs,
allowing companies to gain insight into user needs and preferences. The focus shifts to
text and web analytics, involving techniques such as web intelligence, web analytics,
text mining, web mining, social network analysis, and spatio-temporal data analysis.
These methods help extract meaningful information from unstructured data, enabling
businesses to identify new opportunities and make data-driven decisions [41].

• In BI&A 3.0, the emergence of mobile devices takes centre stage. Due to the pro-
liferation of mobile phones, tablets, sensor-based devices, Internet-enabled devices,
barcodes, and radio tags, the IoT has become a significant source of data. And con-
sequently, this era generates a vast amount of detailed data from various devices
and sensors, which can be leveraged to gain new insights. The mobile device and
IoT ecosystem create opportunities for businesses to understand user behavior, pref-
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erences, and real-time interactions, enabling personalised experiences and targeted
marketing efforts.

• BI&A 4.0 is the AI era, in which the focus will shift from descriptive analysis to
prescriptive and predictive analysis. Given the exponential development of AI and
the improved predictive analytics—smarter; faster; and more actionable—enabled by
AI techniques and their consequent capabilities to handle large amounts of data in
real-time; delivering results with high accuracy [44]; due to the high potential of AI to
transform business; the impact of Analytics 4.0 is likely to be significantly larger and
more disruptive than previous technology transitions [43].

Figure 2. Interest in Analytics and Big Data, adapted from [41].

3. Big Data System Architecture

The emergence of IoT devices, namely sensors, and their availability to connect with
each other to generate an intelligent network for the constant exchange of information has
generated a new concept for dealing with data called Big Data. This required the adoption
of proper technologies to fulfil the data collection, storage, processing, and analysis needs.

Thus, in order to monitor road pavements, Figure 3 shows the proposed BDSA as well
as its main layers and components. The components tested in the case study presented in
this paper are highlighted in the figure.

The BDSA is divided into seven layers, each of which includes components. Each
layer is represented by a grey rectangle, while white rectangles are used to specify the
components. Data flows between layers are also represented in this figure and go from
data collection to data visualisation.

The first layer of the BDSA is the Data Sources, which can include road sensors,
monitoring cameras, and traffic control system data, among others. These data sources
are responsible for collecting relevant information about traffic and roads. The variety of
data sources implies that the data can be collected in various formats, namely structured,
unstructured, or semi-structured data.

The second layer is Data Processing, where raw data are analysed and transformed
into more useful and meaningful information. In this stage, techniques such as data
cleansing, standardisation, and enrichment can be applied, as well as Machine Learning
algorithms for more advanced data processing and transformation.

After processing, the data are directed to the storage layer, where it is stored in a
structured manner and made accessible for future queries. This layer may involve the
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use of databases or distributed storage systems like Hadoop’s Distributed File System
(HDFS), Google’s Big Table, or Amazon’s S3 in a Big Data context. The main challenge
at this layer is to efficiently store massive volumes of data in a way that allows for fast
retrieval and analysis.

Figure 3. BDSA for Roads Monitoring, adapted from [45].

Once the data are stored, the Big Data Analytics layer involves the analysis of this
data. This usually involves Data Visualisation, AI to model predictions about health roads,
Reporting, Ad-Hoc Querying (ideal for exploratory interactive data analysis), and a Struc-
tured Query Language (SQL) Query Engine (used for routine reporting and transaction
processing). The goal here is to derive insights, trends, and patterns from the stored data
presented through graphs, tables, or other forms of visual representation. This allows
external apps or users, such as road engineers or traffic authorities, to easily access and
interpret the information obtained from road monitoring.

The fifth layer is the Data Publisher, which is responsible for publishing the data
and the analysis results to external systems, i.e., applications. These could be databases,
other Big Data systems, or Application Program Interfaces (APIs). This layer ensures that
the results of the Big Data processing system are widely available to be used by other
components of the broader technology ecosystem.

The layer entities represent the consumers of the insights derived from the analytics
layer and can be humans or machines. Humans, like road engineers or traffic authorities,
are looking for important insights in dashboards or reports. Machines can consume this
data to drive decision-making or automation.

Finally, the Security, Administration, and Monitoring layer cuts across all the previous
layers. It involves ensuring the security of the data and the Big Data System itself, adminis-
tering the system (e.g., managing user access, allocating resources), and monitoring the
system (e.g., tracking performance, identifying, and handling failures). These aspects are
critical for the Big Data System’s overall integrity, reliability, and performance.

The BDSA is a layered architecture that provides a logical separation of concerns,
where each layer has a specific role and interacts with the layers above and below it.
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This helps build a scalable, robust, and capable architecture capable of handling Big Data
processing and storage demands.

In the next section, we will use some layers and components to instantiate a case study
to monitor a real road section.

4. A Case Study

4.1. Case Study Contextualisation

Having proposed a Big Data System and its BDSA for road monitoring, it is now
important to implement it, a task that will validate some layers and components of the
architecture.

The case study was carried out on a section of road in northern Portugal called IC5,
where the sensors used to collect data are optical sensors that allow strain and temperature
data to be collected, as it is a static installation. This location was chosen for its proximity
to a power source and internet infrastructure.

These sensors generate data with a measurement frequency of 500 records per second,
which is equivalent to 15 Gigabytes per day. This huge volume of data has to be collected,
prepared, and analysed and it is impossible to use conventional technologies. Therefore,
the Big Data System for Road Monitoring was adopted. In this installation, not all the
layers and components proposed in Figure 3 were used, but the layers and components
used are justified, serving to evaluate the proposed architecture.

The first step was to install the sensors embedded in the pavement in the IC5 road
section. The installation took place on two one-way lanes, the right lane for slow, heavy
traffic and the left lane for fast, light traffic. Two channels were installed in each lane: the
right lane has Channel A with seven strain sensors and one for temperature measurement,
and Channel B with fifteen strain sensors and one for temperature measurement. The left
lane is a replica of the right lane, and the channels are designated D and E. Each channel
was embedded perpendicularly into the two-lane road with a distance of three metres
between channels A and B, the same distance for channels D and E (see Figure 4).

One of the system’s requirements is to be able to monitor traffic in real-time, called
real-time processing. It is responsible for collecting and processing data at high speeds
while also making it available in a visualisation tool, i.e., a dashboard. In addition to the
dashboard, it is also able to show a table containing logs of alarming events for registry
vehicles with very low speed, excessive speed, or excessive weight, as well as low or high
temperatures. The other system requirement is to support batch processing; it is responsible
for collecting and transforming data, but the storage phases are more complex and apply
to a larger volume of historic data (see Figure 5).

Figure 4. Installation of IC5 road section sensors.
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Figure 5. Architecture data flow.

Therefore, some layers and components of the BDSA proposed in Figure 3 were used,
as shown in Table 1.

Table 1. Layers, components, and technologies from BDSA are used.

Layer Component Technology

Data Source IoT
Sensor Optical FBG (Strain and Temperature static
sensors with Optical Interrogator and
Catman®Easy software)

Data Preparation
ETL Python script (Z-score algorithm and others)

Streaming ETL Catman®Easy software (filters, functions
and scripts)

Data Storage

Real Time Storage Catman®Easy software (internal database to store
real time data and alerts)

Data Lake Delta Lake (HDFS)

Data Warehouse Hive (HDFS)

Big Data Analytics Data Visualisation Catman®Easy software (Real time monitor)
Tableau (Batch time monitor)

Entities Users Road engineers and/or Traffic authorities

4.2. Real-Time Processing

The first step in real-time processing is to collect the data directly, seamlessly, and
with minimal delay from the sensors. The data acquisition software needs to identify and
categorise the different channels and sensors so the collected data are correctly organised
for further analysis and interpretation.

Following the data collection step, it enters the data processing phase. Data filtering
tasks are important in order to exclude outliers, anomalies, and other values that fall
outside user-defined checks. Ensuring the time synchronisation of readings from different
sensors is also essential to maintaining a logical stream of values. Furthermore, some form
of event detection and subsequent application of mathematical functions are needed in
order to convert the signal data into valuable information (e.g., to calculate vehicle speed
and weight, to obtain the time of occurrences, etc.).
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This data are stored in a real-time way to keep the transformation conducted and
calculations made in the data, as well as to register the events.

Finally, the data reaches the data visualisation phase, where it is presented in a variety
of visual representations, including graphs, tables, and digital indicators, in a way that a
regular user can easily and quickly interpret the information. Moreover, in case an event
has exceptional parameters that break user-defined limits, it has to be registered along with
its information, and a system response may be triggered (e.g., sending a push notification
or communicating the incident via email).

Catman® Easy software ensures all these requirements are covered. It identifies the
channels and sensors as well as their information while also allowing the user to configure
some settings (e.g., sensor name, sampling rate, sensor type/role, etc.) and associates the
streams of collected data to each sensor while quickly processing them and saving them in
real-time storage. The data processing capabilities include filters, functions, and scripts
executed in near real-time in order to derive insights. For instance, it is able to count the
daily number of vehicles that have passed and calculate the approximate speed and weight
they were going while encountering low to no performance issues. It also offers a vast
variety of data visualisation tools and a panel that allows free use of them to create real-time
dashboards, enabling dynamic data visualisation and analysis.

In order to analyse this data in real-time, a dashboard for each lane was developed. In
Figure 6, the left lane’s dashboard is presented, displaying the maximum values measured
in channels D (indicated by the yellow line) and E (indicated by the blue line) over a
two-minute interval in the top graph. The bottom section features two graphs: on the
left, the D channel (depicted by yellow bars) with seven sensors, and on the right, the E
channel (represented by blue bars) with fifteen sensors. Additionally, on the right side of
the dashboard, you can find information about road and air temperatures, a list of vehicles
that have passed, and the speed of the last vehicle.

Figure 6. Real-time dashboard.

In the main graph of the dashboard, the peaks of the lines show the strains measured
when the vehicle wheel axles pass over the sensors. In this example, we can see the passage
of a heavy vehicle with five axles and the passage of a light vehicle with two axles.
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Several calculations are executed in the monitoring process. For example, when a
vehicle axle traverses the D channel, the time t1 of this occurrence is recorded. Subsequently,
when the same axle traverses the E channel, located three metres ahead of the D channel,
the time t2 is recorded. In this way, it is possible to calculate the speed of a vehicle and to
determine the number of vehicles that have passed through by detecting the axles that pass
through the two channels at the same speed and with a certain cadence, regardless of the
number of axles in the vehicle. Since we know the distance d between channels is three
meters, we can successfully calculate the speed and multiply it by 3.6 to convert the value
from m/s to km/h; see Formula (1).

s =
d

t2 − t1
× 3.6 (1)

The real-time monitor includes alerts to facilitate the detection of specific events, e.g.,
a vehicle exceeding the speed limit, which then trigger appropriate actions. These actions
serve as effective measures to respond to these specific events in a timely manner, ranging
from drawing attention to the dashboard with sound effects, pushing notifications, or
sending emails to remote users (see Figure 7).

Figure 7. Real-time alerts.

It is worth noting that the sensor values are reset to zero on a weekly basis to enhance
data visualisation’s user-friendliness and simplicity. This reset is particularly beneficial
as the stabilised values of the sensors, even within the same channel, can initially exhibit
significant dispersion. However, it is important to emphasise that the original sensor values
are stored in real-time, and they are indispensable for conducting further studies on the
road structure’s health.

4.3. Batch Processing

We started by defining the technological infrastructure needed to support the BDSA.
To perform this, we created a technological cluster consisting of four computers, one master,
and three workers. These machines run on the Ubuntu operating system, Hadoop to
manage the distribution of computing in the cluster, and HDFS to manage the data files
and ensure that no information are lost during the storage process.

Hadoop was selected because it facilitates the creation of this type of machine cluster
using less expensive and sophisticated hardware, as well as the existence of a wide range
of programmes and technologies compatible with the Hadoop platform and, consequently,
with HDFS.

One example is Spark, a distributed computing framework that we use to process the
data because it is faster than Hadoop’s data processing component, MapReduce, for certain
types of processing when performing in-memory operations and reusing data in multiple
processing steps. It provides a fast and general-purpose cluster computing system, and it is
well-suited for processing large volumes of data, including sensor data, in parallel across a
cluster of machines.

Spark can distribute data processing tasks across a cluster of machines, enabling
efficient processing of large datasets like what can be found in this project, and cache data
in memory, leading to faster iterative processing and reduced data access latency. What
more is, it offers a wide range of data transformation operations (e.g., filtering, mapping,
and aggregating) through its RDD (Resilient Distributed Dataset) and DataFrame APIs
and supports machine learning, graph processing, and SQL queries, enabling complex
analytical tasks on sensor data.
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We used a data lake to ingest and store the data, specifically the Delta Lake solution
with its three layers, Bronze, Silver, and Gold [46]. Delta Lake is an open-source storage
layer that brings ACID (atomicity, consistency, isolation, and durability) transactions to
Apache Spark and big data workloads. It is built on top of existing storage systems like
HDFS and provides data reliability, consistency, and performance improvements for data
lakes. Other features include allowing for schema evolution over time, making it easier
to adapt to changes in sensor data formats without disrupting downstream processes;
tracking historical versions of data, enabling audit trails and the ability to revert to previous
data states; employing optimisations like compaction and indexing to improve query
performance on large datasets; and the time travel feature permitting the query of previous
data versions, aiding historical analysis and debugging.

When used with HDFS to process and store sensor data, Spark and Delta Lake together
provide a robust and scalable solution for managing sensor data at scale. Spark’s distributed
processing capabilities enable efficient data analysis and transformation, while Delta Lake’s
ACID transactions and versioning features ensure data reliability and consistency, making
it well-suited for managing sensor data in dynamic and evolving environments.

In the Gold layer of Delta Lake, we use the Hive database to implement a (Big) Data
Warehouse to store data ready for analysis and visualisation. Apache Hive is a data
warehousing and SQL-like query language tool built on top of Hadoop that allows the
management and querying of structured data stored in HDFS using familiar SQL syntax
and defining schemas for the data using the Data Definition Language (DDL), making it
possible to impose structure on sensor data. Other capabilities include support for various
data processing operations like filtering, aggregation, and transformation using SQL-like
syntax, query optimisation mechanisms to improve query performance, making it suitable
for querying large volumes of data, and the possibility of integrating with Tableau, a
popular data visualisation tool that enables users to create interactive dashboards.

The data flow used is shown in Figure 5. This is explained in more detail below, and
it is an ETLT (combination of ETL and ELT), i.e., extraction, transformation, loading, and
transformation phases. The data are generated by sensors at a frequency of 500 readings per
second, although it should be noted that this frequency can be set to a higher (max. 1000) or
lower value. The value of 500 has been set in order to be able to measure the passage of the
wheels over the sensors, but it is a value that can still be adjusted. The main transformation
at this stage is to eliminate data that does not register vehicle passages, as over time
there are periods when there are no vehicles on the road and the sensors are constantly
generating data.

To detect vehicle passages, in this case called peaks, the z-score peak detection algo-
rithm is used, with the definition of a threshold that defines the value from which the
z-score must correspond to a peak. This algorithm is based on the principle of dispersion,
according to which if a new data point is above the threshold, i.e., within a certain num-
ber of standard deviations from an average value, the algorithm classifies this point as a
peak [47]. The z-score is given by the Formula (2).

z − score =
(x − mean)

standard deviation
(2)

where x is the value measured by one sensor, i.e., A1, channel A sensor 1, the mean and
standard deviation are calculated over all the values obtained by one sensor, e.g., sensor A1.
The calculated z-score, together with the threshold, makes it possible to identify peaks and
then the passage of a vehicle wheel over the sensor. This is calculated for all 44 sensors.
The data are reduced in the time interval of 2 s before the peak and 2 s after the peak, which
corresponds to 2000 lines of data per axle pass; the data that does not represent peaks
is discarded.

These data are ingested in the Bronze Layer of Delta Lake as raw data.
The data in the Bronze layer is transformed and stored in the Silver layer by transforming:
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• Column names—the column names of the generated data are very complex; making
them difficult to handle in processing scripts. The solution is to rename the column
names to a simple name.

• Numerical values—numerical values had a comma as a decimal separator; and this
caused problems in handling these values in the processing scripts. The solution is to
replace the commas with dots.

• Dates—the dates (timestamps) of the generated data were in Unix TimeStamp format
and have been converted to DateTime format.

The next step is to transform the data from the Silver layer to the Gold layer. The
Gold layer contains highly structured data that has undergone additional processing and
aggregation from the Silver layer to answer specific business questions. From the Silver
layer to the Gold layer, the data goes through a process of identifying vehicle classes, using
machine learning algorithms to classify vehicles by axle pass and registered weight, as well
as calculating vehicle speed and aggregating external data on weather in relation to road
conditions (dry, wet, with a probability of ice or snow). The Gold layer implements a (Big)
Data Warehouse with a dimensional data model, i.e., a constellation of three stars. This
model makes it possible to answer questions relevant to the perception of road monitoring
and to use algorithms to model the state of the road. The dimensional model developed for
this project, see Figure 8, has three star schemas with different levels of aggregation:

• Passages Management—records vehicle passes; their class; speed; measured load;
temperature and atmospheric conditions; date; and location.

• Temperature Management—records the temperatures measured at a location; date
and time.

• Cargo Management—records the loads measured by the sensors at a given location;
date; and time.

Figure 8. Dimensional Model.

The dimensional model allows you to answer analytical questions to better understand
the evolution of the road condition. Here are some examples of such questions:
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1. What are the loads recorded over a period of time at a given location?
2. Does the condition of the road—dry; wet; ice; or snow—affect the average speed

recorded?
3. What is the frequency of passages recorded over the hours of a day in a month?
4. How has traffic developed in recent years, by type of vehicle and location?
5. Does the recorded temperature affect the value recorded on loads?
6. What is the average speed of heavy vehicles on working days in the current month at

a particular location?
7. What type of vehicles travel at weekends to a particular location?
8. What is the maximum vehicle speed recorded? On what date? Where?

An example of a dashboard created using Tableau that can be used to view the passage
of vehicles is shown in Figure 9a. It is possible to select the date and location to be displayed.
This can range from a few hours of a day to several days, weeks, even months or years.
This visualisation allows comparison with other values, for example, passages of vehicles
from 15 June 2023 (blue color) can be compared with those from 13 June 2023 (orange color).
In the visualisation, there is a graph of the number of vehicles per class on the left and a
graph of the number of vehicles per road lane on the right. If you select one of the bars in
the graph, for example, Class2 in the graph on the left (where is the hand symbol), a new
view appears; see Figure 9b. In this case, it is a display of the loads and speeds registered
by vehicles of that class over the time selected above.

a) 

b) 

Figure 9. Cont.
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c) 

Figure 9. (a) General Dashboard (b) Vehicles passage details (c) One Passage details.

By selecting one of the points on the graph, in this case a vehicle (where is the red
circle), you can see a 3D graph showing the vehicle passing in the lane through the channel
with more sensors (B or E); see Figure 9c. You can also see the recorded temperature and
the weather forecast for that location, day, and time. The 3D view allows you to see and
analyse where the left and right wheels of the vehicle passed on the road. In this case,
they passed close to sensors B3 and B13. It can be seen that when the wheel does not pass
directly over a sensor, the readings are very different. The figure also shows the effect of
loads on the road. The supporting structure of the road suffers permanent deformations,
increasing the possibility of degradation. This set of visualisations allows you to answer
the analytical questions 1, 3, 4, 6, and 7.

5. Results

The monitoring system developed is capable of successfully capturing, preprocessing,
and storing data from optical strain and temperature sensors.

The real-time processing can reliably collect data continuously, with an uptime rate of
nearly 100%. The only interruptions in data flow occur during maintenance or calibration
processes, both of which do not occur frequently. Additionally, there is a brief downtime of
approximately one second during the weekly sensor reading reset. The users can access
the visualisations remotely, and the system runs smoothly with no performance issues.

The batch processing needs more pre-processing to collect the data and effectively
filter out a substantial portion of noise, resulting in a data volume reduction of approx-
imately 2% of the original raw data, i.e., the system can reduce 15 GB of daily data to
less than 300 MB. These data are ingested into the HDFS so that they can be used by
the distributed storage system. The next steps would involve completing the analysis
performed with the Spark scripts to generate additional Delta tables (with three layers:
Bronze, Silver, and Gold) and finalising the configuration of the HIVE database in the Gold
Layer. Furthermore, establishing a connection to Tableau would enable more immersive
visualisations and dashboards.

Although the system is online and capable of storing and pre-processing sensor
data, its potential was not fully explored due to several obstacles encountered during
the solution’s development. These obstacles included several challenges in the selection,
installation, and configuration of the tools to be integrated into the system, as well as time
constraints for accumulating a substantial volume of sensor data required for building
comprehensive historical analyses and predictive analyses.
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However, following the BDSA allowed us to understand which layers and components
were used (and used well) and also which components were not used, allowing us to
prioritise the implementation of missing layers and components. In this particular case, the
missing layers and components are:

• Big Data Analytics layer—it is important to implement all the missing components; in
particular artificial intelligence; to predict road degradation.

• Data Publishers layer—to enable data sharing through a machine interface.
• Entities layer—to implement applications that can use the data and also allow external

applications to access the data.
• Security, administration, and monitoring layer—when implementing the missing func-

tionality; especially when enabling data sharing; it becomes important to ensure data
security and protection; so this is a layer that needs to be managed and implemented
whenever necessary.

6. Conclusions

This paper presents a proposal for a BDSA for road monitoring. Some specific layers
and components have been integrated into two data flows: real-time and batch processing,
from data collection to data analysis and visualisation to validate the system.

The case study presented showed how these technologies complement each other,
with the overall objective of supporting the decision-making process. For this purpose,
a section of road in Portugal was selected to install static Fibre Optical Sensors and all
the necessary technological infrastructure to collect, process, store, and analyse the data
collected, both in real-time and batch processing.

The case study implementation covered the layers of Data Source (sensors and web
services for collecting weather data), Data Preparation (ETL for batch data and streaming
ETL for real-time data), Data Storage (Real-Time storage, Data Lake, and (Big) Data Ware-
house), and Big Data Analytics (data visualisation). It was possible to verify that the data
stream was normal, that the selected technologies worked together, and that no integration
or interoperability problems were identified.

In addition to the technical accomplishments outlined above, it is crucial to recognise
the unique experimental environment in which the case study was undertaken. In addition
to the technical achievements described above, it is crucial to acknowledge the unique
experimental environment in which the case study was conducted. The journey from
concept design to proof of concept was marked by several external factors that inevitably
affected the pace and nature of this work, namely the reliance on third parties for sensor
configuration, computer installation and configuration, permissions, etc., which posed
unforeseen challenges and sometimes slowed progress.

In the future, it is expected that other components of the BDSA will be tested, as well
as other technologies to be used. Some technologies will have to be chosen, and others can
be replaced over time as more promising ones emerge. The challenge is to be able to store
the volume of data generated to provide a history of at least five years.

Finally, in the BDSA Big Data Analytics layer, when we have a considerable data
history, the AI component will be implemented and tested so that the solution will become
an Adaptive Big Data System, combining predictive and optimisation algorithms to monitor
and predict the health of roads to ensure their proper functioning.
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Abstract: The evolution of technological tools, namely affordable sensors for data collection, and the
growing concerns about maintaining roads in adequate conditions have promoted the development
of continuous pavement monitoring systems. This paper presents the installation and use of an
innovative pavement monitoring system, which was developed to measure the effects of vehicle
loads and temperature on the performance of a pavement structure. The sensors used are based on
fibre Bragg grating optical technology, collecting data about the strains imposed in the pavement
and the temperature at which those measurements are made. The site selection for the system’s
installation and the essential installation details to ensure successful data collection are addressed. A
calibration procedure was implemented by performing falling weight deflectometer tests and passing
preweighed heavy vehicles over the sensors. In addition to validating the system installation, the
results obtained in the calibration confirmed the importance of adequately choosing the distance
between sensors. Differences of 50 mm in the position of the load may cause differences of about
20% to 25% in the resulting strains. These results confirmed the importance of increasing the
sensor concentration in wheel paths. Furthermore, for loads between 25 kN and 65 kN, raising the
temperature by 8 ◦C caused an increase of about 20% in the horizontal tensile strains measured in
the pavement. In summary, it was possible to conclude that this innovative system is capable of
capturing the effects of temperature and vehicle speed on the response of the pavement, which may
be considered an advantage of this type of monitoring system when compared to those that are only
used to determine the loads applied to the pavement or to characterise the type of vehicle.

Keywords: road pavements; monitoring; fibre-optic sensor; fibre Bragg grating (FBG); strains

1. Introduction

Roadways are essential infrastructures for the development of any country, represent-
ing a large part of the investment made in public assets. Due to the growing population
and consequent goods consumption, transportation needs, especially on highways, are also
increasing, demanding a higher investment in constructing and maintaining this essential
infrastructure [1]. The preservation of road pavement state depends on several factors, in-
cluding its design process, composition, and sound maintenance and rehabilitation policies.
These policies are even more critical with the growing concern for sustainability.

During their lifecycle, many road pavements have to support loads significantly higher
than those for which they were designed, which leads to faster degradation than initially
expected [2]. Ai et al. [3] studied the influence of various factors such as axle configuration,
axle load, speed, and temperature on different types of asphalt pavements with specific
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vehicles, showing that pavement strains increased with increasing temperature and axle
load. Combining these effects leads to fatigue damage of the surface layers, decreasing the
structure’s lifetime.

Thus, improved road monitoring techniques are necessary to ensure traffic safety
and quality throughout the pavement lifecycle [4]. Some of the main road pavement
distresses can be assessed through visual inspection. However, the extensive length of
any road network hinders this task, making it difficult to correctly and timely determine
the pavement condition. Thus, structural health monitoring techniques can be used to
save human resources. One advantage of these techniques is the possibility of obtaining a
real-time understanding of road conditions by collecting data on the structural integrity of
the entire infrastructure and not just of its upper layers [5].

Over recent decades, various monitoring methods have been applied to road pave-
ments, potentially analysing parameters such as strain, stress, temperature, moisture, and
deflection. In 1991, Sebaaly et al. [6] applied different types of sensors (pressure cell, strain
gauge, moisture sensor, and transverse vehicle location sensor) to evaluate the effect of
passing trucks. In Huff et al. [7], the response given by piezoelectric sensors was studied to
obtain dynamic pavement deflection data. During one year of monitoring, Bayat et al. [8]
also used strain gauges and temperature sensors on a test track to measure strains in-
duced by both the temperature and the application of different vehicle loads. Also, in the
work presented by Duong et al. [8], an asphalt pavement section subjected to heavy traffic
(around 4500 trucks per day) was instrumented with strain gauges, geophones and temper-
ature probes and monitored continuously for 18 months, concluding that temperature and
the degree of bonding between the various pavement layers play a significant role in the
response given.

More recently, optical sensors with FBG technology have been used instead of strain
gauges in different structural monitoring systems, including pavements, because they
present several advantages compared to other measuring systems. Liu et al. [9] tested
the dynamic strain response of different asphalt pavement structures according to the
base course. The sections were instrumented with FBG sensors, and the results generated
exciting conclusions, including that the loads’ position significantly influences the peak
value of dynamic strain response. In the study presented by Kara De Maeijer et al. [2],
focusing on heavy-duty pavements, a prototype monitoring system based on FBG sensors
was installed on a CyPaTs test track and in the port of Antwerp. This system comprised a
series of sensors that captured strain and temperature information between four asphalt
layers to better understand how these layers respond under heavy loads. The sensors
were applied prior to the laying of the asphalt layers. The results proved the potential of
this solution to monitor pavement responses and demonstrated the best procedures for
applying the sensors on the pavement.

Tan et al. [10] compared the results obtained with FBG sensors and strain gauges to
improve the optical sensors’ calibration method. By monitoring the dynamic response in
three-point bending tests on small beams, the tensile strain of the beam bottom given by
the strain gauge was compared with the theoretical results and the results given by the
FBG sensors. According to specific and well-defined loading conditions, it was possible to
relate the peak values between the two technologies and calibrate the equation obtained
for the FBG sensors.

Over the past few years, temperature compensation in FBG sensors has been exten-
sively studied using solutions based on distributed optical fibre sensors. The studies that
have been conducted prove the importance of the temperature effect on FBG sensors, high-
lighting the need for this process to be performed with caution using different techniques
and ways of combining optical sensors [11–14]. Wang et al. [15] performed laboratory tests
on samples to propose a method to improve the temperature compensation, considering
the interfacial interaction between the structure and the bonded FBG according to different
temperature and loading conditions. Leal-Junior et al. [16] developed an FBG sensor based
on a single polymer diaphragm for measuring pressure and temperature and compared
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the results obtained with a transient heat conduction model. This study concluded that
the root mean square error was higher in the presence of variation in both parameters, the
error being 3.88 ◦C and 5.13 kPa for temperature and pressure, respectively.

Han et al. [17] studied the deformation compatibility between the embedded strain
sensor and asphalt layer, concluding that it is the key to ensuring the precise measurement
of mechanical response. However, good deformation coordination may be difficult to
maintain under different environments due to the viscoelasticity of asphalt mixture. They
concluded that strain sensors with stiffness moduli similar to the asphalt layers are recom-
mended in the dynamic response monitoring of pavement structures. Similar conclusions
were obtained by Liu et al. [18] in a study where FBG sensors were compared to resistive
sensors through laboratory and finite element modelling processes. They also observed
that FBG sensors are more appropriate to measure horizontal strains when compared to
resistive sensors.

The work discussed in the present manuscript aims to present an innovative pavement
monitoring system based on FBG optical sensors implemented on a highway section in
Portugal. This solution allows real-time monitoring of the mechanical conditions of the
structure, measuring the effects of each traffic load on the pavement near the bottom of the
asphalt layer, where cracking problems usually begin. This information was unavailable
through other existing monitoring solutions and is essential to improve our knowledge
regarding the causes of pavement distress. The subsequent data collection and analysis
will help in scheduling future maintenance procedures. Over the last few months, several
steps were carried out to prepare for the installation of the monitoring system. These steps
included defining the system’s architecture, selecting the type and quantities of sensors, the
laboratory calibration of the sensors (by performing four-point bending and wheel tracking
tests) [19], and validation of the installation procedures in a small trial section built at the
National Laboratory of Civil Engineering.

2. Characteristics of Optical Sensors

2.1. Fibre Bragg Grating Sensors

In the second half of the twentieth century, the development of optical technology
and its sensors revolutionised the telecommunications industry due to its enormous ad-
vantages over the dominant technologies. As time went by, and the level of knowledge
of the technology increased, its application was extended to several areas, including the
monitoring of structures [20].

The various characteristics of fibre-optic sensors make their use in pavement monitor-
ing a very suitable solution. These include immunity to electromagnetic fields, high sensi-
tivity, small size, and resistance to harsh environments when adequately protected [5,15].
Fibre Bragg grating sensors are one type of sensor based on fibre optics and are incredibly
reliable [21]. The multiplexity of this technology is another feature differentiating FBG
sensors because several Bragg wavelengths can be defined for numerous sensors placed
in series on a single fibre-optic cable. In this situation, only the spectral band of each
sensor must be respected so that the reflected signals do not cross. This feature allows a
single optical fibre over tens of meters, instrumented with many sensors, which can even
measure several parameters in addition to deformation (strains) and temperature, such as
acceleration and pressure [16,22].

However, in addition to being expensive, the sensors and the optical fibre become
fragile if not adequately protected. It is expected that these disadvantages will tend to
disappear or become less relevant as technology evolves.

This type of sensor is created by exposing a portion of optical fibre a few millimetres
long to a UV laser beam. The marking will change some of the optical characteristics of the
fibre, with great importance for the refractive index. This change in the refractive index
will cause only a portion of the incoming light to be reflected (based on the new refractive
index), creating a characteristic wavelength for each sensor [23].
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When the fibre-optic cable is stretched or compressed, the characteristic Bragg wave-
length of the reflected light will change. This value is read by a piece of equipment called
an interrogator, which recognizes the characteristic wavelength and the new characteristic
Bragg wavelength. The interrogator then converts the wavelength variation into length
units, and it is possible to interpret the variation in fibre length or strain.

This technology has the characteristic that only the Bragg wavelength defined within
a narrow spectrum will be reflected and received by the interrogator, causing the other
signals from other sensors with different wavelengths to propagate along the optical fibre
with only residual variations [5].

For the sensor to function, it is essential that the marking remains intact, not disturbing
the defined Bragg wavelength. Equations (1)–(4) [20,24,25] can be used to calculate the
strains imposed by the external deformations and temperature variations when using FBG
sensors. Equation (1) proves that the central wavelength of the reflected signal corresponds
to the Bragg condition:

λ = 2 × neff × Λ, (1)

where λ is the Bragg wavelength, neff is the effective refractive index, and Λ is the mi-
crostructure period. The parameters neff and Λ are susceptible to external disturbances such
as temperature and deformation, and changes in these indicators will determine changes
in the Bragg wavelength.

Equation (2) translates the strain variation due to an external deformation:

Δλ1

λ1
=

Δλε

λ1
= (1 − Pe)× ε, (2)

where Δλε is the wavelength due to the deformation, ε is the longitudinal deformation, and
Pe is the effective photo-elastic constant from the fibre’s core.

Equation (3) translates the variation in wavelength due to temperature variations:

Δλ2

λ2
=

ΔλT
λ2

= (α + ξ)× ΔT, (3)

where ΔλT, ΔT, α, and ξ are, respectively, the wavelength variation due to temperature, the
temperature variation, the coefficient of thermal expansion, and the thermo-optic coefficient
related to the change in refractive index with temperature.

Equation (4) represents the junction of the deformation and temperature effects in an
FBG sensor.

Δλ

λ
=

Δλε

λ1
+

ΔλT
λ2

= (1 − Pe)× ε + (α + ξ)× ΔT. (4)

These sensors cannot distinguish whether wavelength changes occur due to temper-
ature or external load effects (deformations), so it is necessary to decouple both effects.
Therefore, specific procedures have been created to compensate for the effect of temperature
on strain measurements. Typically, an additional FBG temperature sensor is installed (only
affected by temperature) in a series with FBG strain sensors, and its results are used as
input for a temperature compensation algorithm.

Consequently, it is possible to particularise the deformation caused only by external
loads in the FBG sensor by knowing the combined effect of load and temperature de-
formation in the sensor and compensating for the component corresponding only to the
temperature deformation. However, calibration is essential to ensure the quality of the
results obtained by these sensors.

2.2. Fibre Bragg Grating Coating and Protection

The literature review demonstrated that one of the main difficulties in using FBG
sensors is ensuring the correct stress transmission between the asphalt material and the
sensors. Nevertheless, many solutions to overcome this problem have been developed in
the last few years.
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For example, Kara De Maeijer et al. [26] tested two ways to apply FBG sensors on
asphalt layers. The first consisted of implementing sensors on prefabricated asphalt samples
in the base layer, and the second consisted of installing the same sensors directly on
the surface of the previously mentioned asphalt layer. The survival rate of the sensors
was 100%, indicating that these methodologies can be applied in monitoring heavy-duty
asphalt pavements.

Xiang and Wang [27] took a different approach concerning the FBG sensor coating
by developing an asphalt mastic containing an FBG sensor inside to monitor distributed
strains in beams. The theoretical analysis of strain transmission was used to improve the
encapsulation design and reduce measurement error. The prototype was also tested at
standard temperature and traffic loads, indicating that the proposed solution obtained
satisfactory laboratory and in situ results.

Zhou et al. [24] developed an FBG sensor packaged in fibre-reinforced polymer for
3D structural strain monitoring, with optimised dimensions according to the road struc-
ture. Comparisons of the actual results with the simulations proved that the developed
FBG sensor provided effective and reliable information about the strain distribution on
the pavement.

The approach used in the current work consisted of initially performing laboratory
tests on beams and slabs with FBG sensors with different encapsulations and resins from
which the sensors’ readings were calibrated. The laboratory study also defined the solution
for installation on the actual pavement. Therefore, a fibreglass rod was instrumented with
a series of FBG sensors and used as a support for the optic cable, and the set was then
inserted in a groove cut in the pavement that was subsequently filled with an appropriate
resin (QuiniResin Fix) [28] selected during the laboratory work. This approach for the
post-installation of FBG sensors in road pavements, transversally to the traffic direction
and embedded in a fibreglass rod (for protection), can be considered an innovative solution
since no other similar application has been found in the literature, namely, in a recent
review on this subject [29].

3. Methods for Developing the Pavement Monitoring System

3.1. Data Acquisition System (Interrogator)

The optical interrogator is a piece of equipment essential for operating the monitoring
system with FBG sensors and can perform static (e.g., temperature) or dynamic (e.g., traf-
fic load) measurements. This optoelectronic device works as a measurement unit/data
acquisition system, reading the signals reflected by the FBG sensors.

A single device can receive data from dozens of FBG sensors due to the multiplexing
characteristic of the technology and the various reading channels of the device. This feature al-
lows the same device to collect data on different parameters, even at different acquisition rates.
A BraggMETER interrogator (Figure 1) was used in the present work, with a maximum acqui-
sition rate of 1000 readings per second. Additionally, this type of FBG technology presents a
very high resolution/repeatability (<1.5 pm) and stability/reproducibility (5 pm) [23].

The Catman data acquisition program is the native software used by this equipment.
This tool is used to visualise and analyse the information collected by the interrogator
from the various sensors. The analysis can be performed in real time or post-processing.
The adaptability of the software to the needs of each situation is a critical factor for its
use, as it is possible to customise it according to the objectives of each use through the
creation of different graphs, tables, and other forms of visualisation. Nevertheless, other
data processing and analytical tools can also be used for the same purpose [30].
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Figure 1. Optical interrogator used in the present work.

3.2. Pavement Monitoring System Architecture

After defining the sensor technology to be used and identifying some of the main
challenges that its installation would involve, the monitoring system’s architecture was
defined, covering features such as:

• The type of information to be collected (which determines the type of sensors to be used);
• The location of the sensors;
• The use of protection, coatings, or resins;
• The application procedures;
• The interrogator connection to the communication network infrastructure.

Given the strength and flexibility of fibreglass rods, this material was used to protect
the optical sensors’ physical integrity. Thus, the rod (with a circular cross-section) was
machined to create a notch where the fibre-optic cable containing the sensors would be
inserted and then glued with a resin suitable for this purpose, as illustrated in Figure 2. A
diameter of approximately 4 mm was chosen for the fibreglass rod. The fibre-optic cable
had a diameter of approximately 125 μm.

Figure 2. Fibreglass rod and fibre-optic cable cross-section.

The number of sensors each fibreglass rod would have, the respective spacing between
the sensors, and the number of rods to be installed in the pavement section were defined
according to the specific characteristics of the pavement of this project’s selected site. Thus,
two types of rods were defined according to the number and spacing of sensors. The
first type comprised fifteen strain sensors and one temperature sensor, and the second
type included seven strain sensors and one temperature sensor. In order to monitor the
performance of two traffic lanes and the measurement of the traffic speed, each lane was
instrumented with two fibreglass rods (i.e., one of each type).

In order to increase the valuable information obtained from the monitoring system and
optimise its cost, each traffic lane was instrumented with one of the rods with more sensors
and another with fewer sensors. Each lane should have at least two rods to determine
the speed of the passing vehicles. Furthermore, one of these rods should comprise many
sensors to cover the lateral distance more efficiently and allow a better understanding of
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the transversal strain distribution resulting from the pavement response when subjected to
vehicle loads.

The following criteria were taken into account to choose the spacing between the sensors:

• Each traffic lane is about 3.35 m wide;
• The width of a heavy vehicle is approximately 2.55 m;
• The average width of one heavy vehicle tyre is about 30 cm.

In order to obtain a better characterisation of the loads and consequent strains regis-
tered in the pavement, through the analysis of the transversal strain basins, a higher density
of FBG sensors was considered for the positions corresponding to the common pavement
wheel path.

Figure 3 schematically shows the final architecture of each type of instrumented rod
used in the pavement monitoring system.

(a)

(b)

Figure 3. Architecture of the monitoring system with the position of each FBG sensor (in mm): (a) rod
B with fifteen strain FBG sensors and one temperature FBG sensor; (b) rod A with seven strain FBG
sensors and one temperature FBG sensor.

As shown later, these fibreglass rods instrumented with FBG sensors were installed in
a groove cut in the pavement. The width of the groove and the resin used to fill it were
defined in previous phases of the project, both in the laboratory and in the intermediate
physical model installed at the National Laboratory of Civil Engineering (LNEC) facilities.
Thus, the groove in the pavement section would have a width of 1 cm, and the resin chosen
to fill it was the QuiniResin Fix, which is a high-performance polymer adhesive used in
various highway applications (filling of grooves, sealing of cracks, bonding of several
elements) [28].

3.3. Site Selection for Pavement Monitoring System Installation

The site selected to implement the pavement monitoring system (Figure 4) is located
in the country’s northeast on the IC5 highway, which belongs to the Portuguese national
road network.

This site would have to meet several criteria given the stated objectives and character-
istics of the monitoring system, among which the following can be highlighted:

• Easy access and connection to an electrical power supply;
• Access to an underground infrastructure to route the fibre-optic cables;
• Presence of a roadside technical cabinet nearby to install the interrogator;
• Access to a communication network in the technical cabinet to transfer the data

collected in the interrogator to an external database.

An additional advantage of the selected site is being relatively close to an assistance
and maintenance road administration centre, allowing easy and quick access to the equip-
ment should any operation be necessary.

The location where the monitoring system was installed has a three-lane carriageway,
two lanes in the uphill gradient direction and one in the downhill gradient direction. The
monitoring system was installed in the two uphill lanes to compare the strains measured
in a fast (left) and a slow (right) traffic lane, as shown in Figure 5.
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Figure 4. Location selected for the installation of the monitoring system.

Figure 5. Schematic representation of the monitoring system location with the position of the
instrumented fibreglass rods.

Considering that heavy vehicles generally circulate in the slow lane, the monitoring system
would be used to compare the effects of different loads and speeds on pavement performance.

3.4. Pavement Monitoring System Installation

The research carried out in the laboratory at an early stage of this work was essential
to identify the potential problems that could be faced in this application. Thus, on the one
hand, the design of the monitoring system should ensure the mechanical strength necessary
to withstand the vehicle loads and, on the other hand, the system should be able to assure
an efficient transmission of strains/stresses between the pavement, the filling resin, and
the instrumented rod. Therefore, the monitoring system was installed according to the
recommendations from the laboratory study and the small trial performed at the national
civil engineering laboratory. The details of the installation are given below.

First, two grooves were made in the pavement with a depth of approximately 14 cm
and 3 m apart (Figure 6), where four instrumented rods of the monitoring system were
later installed. Rods A1 and A2, with seven strain sensors, were installed in the first groove,
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while rods B1 and B2, with fifteen strain sensors, were installed in the second groove, as
shown in Figure 5.

(a) (b) (c)

Figure 6. Initial phases of the pavement monitoring system installation: (a) markings for the precise
positioning of the system; (b) the process of cutting the grooves; (c) visual inspection of one of
the grooves.

The groove depth was defined to install the sensors near the bottom of the asphalt
layers where the maximum tensile strains causing fatigue cracking occur. The distance
between the two grooves is essential to assess the traffic speed by knowing the elapsed
time between the consecutive strain peaks measured in rod A and B sensors due to traffic.
The selection of a smaller distance would have reduced the reliability of speed calculation,
while higher distances could have caused some data loss due to vehicles changing lanes
(e.g., during overtaking manoeuvres).

As mentioned previously, the width of the grooves was already set at 1 cm, as well as
the type of resin that would be used to fill them after installing the instrumented rods. The
cutting of the pavement grooves was performed without water to ensure the resin perfectly
adhered to the groove and the instrumented rod. Furthermore, after the dry cutting, the
groove was cleaned using an air blast to apply the resin on a dry surface free of dust and
dirt, ensuring the best performance of the resin.

After cleaning the grooves, the four instrumented rods and their fibre-optic cables
were installed. Considering that the grooves were cut across the entire width of both traffic
lanes, two distinct rods were positioned in each groove (one on the fast traffic lane and the
other on the slow traffic lane). Thus, it was necessary to overlap the fibre-optic cables of
the rods on the fast (left-hand side) lane over the rods on the slow (right-hand side) lane
and join the four cables on the right-hand side of the road.

In order to ensure that the fibreglass rod would not move during the resin application,
several plastic fixing pieces were developed by the system supplier. These pieces were
built to fit the groove width and were fixed to the rod (Figure 7) to prevent it from rotating
or moving once laid, thus ensuring the sensors would be installed in the expected position.

As can be observed in Figure 8, the four cables were routed through auxiliary grooves
made in the shoulder towards the corrugated pipe that connects to the technical cabinet
where the interrogator was located.

After the instrumented fibreglass rods and cables had been positioned correctly in
the grooves, the resin was prepared by mixing two components: a polymer compound
and a hardener. Filling the grooves with resin (Figure 9a) was simple since this material
has good workability and can be handled at ambient temperature. Special care was taken
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when overlapping fibreglass rods A2 and B2 with the cables from fibreglass rods A1 and B1,
placing enough resin among them to avoid future interference in the strains to be measured
on the slow (right-hand side) traffic lane.

Figure 7. Positioning of the fixing pieces in the instrumented rods.

(a) (b)

Figure 8. Installation details: (a) groove made on the road shoulder to protect the cables; (b) intro-
duction of the cables on the corrugated pipe that connects to the technical cabinet.

(a) (b) (c)

Figure 9. Final phases of pavement monitoring system installation: (a) filling of the grooves with
resin; (b) FBG sensor signal strength confirmation; (c) rectification of the resin used in the grooves.
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The relatively low ambient temperature influenced the resin curing time, extending
the time available for mixing, handling, and applying the resin. Therefore, filling the
grooves with resin did not present any particular problems.

After filling the grooves with resin, the four cables were routed into the technical
cabinet through a corrugated pipe and connected to the optical interrogator. The technical
cabinet is linked to the assistance and maintenance road administration centre through
an Ethernet connection, assuring the data transmission into a server for collection and
subsequent analysis. Once the connection of the optical cables was finished, the first tests
were carried out by the FBG sensors’ supplier (HBK company) with a portable interrogator
(Figure 9b), which confirmed the excellent signal strength of the forty-four strain sensors
and four temperature sensors.

The last step of the installation was the resin rectification (Figure 9c) to level the
pavement surface where the two grooves were made before reopening both lanes to regular
traffic. Naturally, the resin only reached the necessary hardening point for traffic reopening
after a few hours due to the low ambient temperature, increasing the duration of the entire
installation process. The monitoring system installation took about nine hours to complete.

3.5. Pavement Monitoring System Calibration

The data collection process began after the monitoring system based on FBG sensors
was installed. After a few initial adjustments, the system continuously picked up the pave-
ment’s strain data. Due to the high sampling rate (i.e., equal to or higher than 500 samples
per second) required to record all the relevant information from dynamic loads applied
on the pavement, a vast amount of data was generated that needed to be filtered, treated,
and analysed.

Regarding the analysis, knowing that pavements are structures whose behaviour is in-
fluenced by various factors, a proper calibration procedure should be carried out to validate
the information provided by the monitoring system and understand the performance of
the pavement. This calibration procedure aims to analyse the behaviour of the pavement as
a whole and, in particular, the most influential factors, such as the magnitude and position
of the surface applied loads and the pavement temperature. Therefore, calibration tests
were performed with a falling weight deflectometer (FWD) and based on heavy vehicles of
known weights passing over the monitoring system.

3.5.1. Calibration with Falling Weight Deflectometer Tests

The first calibration tests were performed using the falling weight deflectometer
(FWD), as shown in Figure 10. The main objective of these tests was to analyse the
behaviour of the pavement at different temperatures and for different load levels.

(a) (b)

Figure 10. Falling weight deflectometer: (a) view of the entire equipment; (b) carrying out a test.
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Five test campaigns were carried out throughout the day at different temperatures in
this first type of calibration. Each test campaign included six positions per rod, twelve in
total, where the equipment plate was laid (Figure 11). Four increasingly higher loads were
applied in each position, according to the weight falling height.

Figure 11. Scheme of each load application position in the FWD calibration tests (in mm), with letters
A to L representing the load application points during the tests.

The tests were performed on both instrumented rods (A2 and B2) installed on the slow
(right-hand side) lane to allow the traffic to circulate in the other lane. With this procedure,
it was possible to understand if the higher number of sensors in rod B2 could provide more
reliable results.

3.5.2. Calibration for Heavy Vehicles Passing with Known Loads

In addition to the tests performed with the FWD, the calibration process also aimed to
study the effect of heavy vehicle loads on the pavement’s behaviour. This task used two
trucks with known weights (Figure 12).

(a) (b)

Figure 12. Heavy vehicles used in the calibration tests: (a) Heavy Vehicle 1; (b) Heavy Vehicle 2.

Thus, knowing the weather conditions observed during the calibration test, it is possible
to establish a relationship between the strains measured on the pavement and the weight of
each vehicle. Vehicles 1 and 2 had a total weight of 29.66 tons and 15.66 tons, respectively.

3.6. Analysis of the Results Obtained during the Monitoring System Calibration

The interpretation of the results obtained during the system calibration depended
on the synchronisation of data obtained by different means (e.g., FWD results and strain
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measurements in the sensors) and the subsequent data analysis to be performed. The four
instrumented rods were divided into four channels to facilitate data analysis.

The Catman software (catmanEasy version 5.6.1.12) was used to visualise the real-time
strains in the FBG sensors and collect the on-site data, subsequently analysed using Matlab
(version R2023a Update 3) and Microsoft Excel (for Microsoft 365 MSO version 2211 Build
16. 0. 15831. 20098) software.

The falling weight deflectometer test results and the corresponding FBG strains reg-
istered in the monitoring system were analysed to determine the amplitude of the peak
strains corresponding to each load application. Temperature also plays a critical role in this
analysis. The distance of each sensor to the FWD plate centre was estimated by knowing
the position of the equipment in each load application, which was then used to obtain the
transverse strain basins and understand the pavement behaviour.

The calibration tests performed with heavy vehicles were used to assess parameters
such as the vehicle’s speed and obtain strain basins in both transverse and longitudinal
directions due to the dynamic effect of the moving loads.

The pavement response under different types of axle loads is another variable that
will be addressed in the results section by analysing the strain peaks caused by the passage
of single- and double-wheeled axles.

4. Results and Discussion

4.1. Falling Weight Deflectometer Test Results
4.1.1. Sensor Sensitivity

The position of each sensor in the pavement was determined during the installation,
considering the distance between the pavement marking and the beginning of the instru-
mented rod and the internal distance among the sensors specified in Figure 3. Thus, based
on the position at which the FWD loading plate was located (Figure 11), it was possible to
estimate the distance between the centre of the plate and the FBG sensors. Consequently,
Figure 13 compares the maximum strain values measured when applying the 25, 35, 45,
and 65 kN loads at horizontal distances of 1 cm and 6 cm from a specific sensor (measured
from the centre of the FWD plate).

Figure 13. Influence of the distance from the load to the sensor on the measured strains.

Increasing the distance between the load and the sensor by 5 cm causes a reduction
in the maximum strain of between 20% and 25%. The results show that the pavement
response, measured by the sensors’ horizontal strains, is very sensitive to the distance from
which the load is applied. Thus, the number of sensors included in the instrumented rods
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(and the consequent internal distance) will be critical in detecting the accurate peak strain
values resulting from each vehicle load application on the pavement.

Furthermore, it is possible to observe that a linear relationship exists between the
strain and the load, which is discussed later in this manuscript.

4.1.2. Temperature Influence

Several FWD tests were performed during a significant part of the day to evaluate the
influence of ambient and pavement temperature on the strain level measured by the FBG
sensors embedded in the pavement under different weather conditions. This information is
essential for asphalt pavements since they exhibit viscoelastic behaviour and are susceptible
to temperature and loading frequency.

Figure 14 presents the maximum strain values measured by the monitoring system
in sensor 5 of rod A2 for FWD tests performed in position E (Figure 11) to exemplify
the strain variation with temperature. The horizontal distance between sensor 5 of rod
A2 and the FWD load application point E is approximately 2 cm. The lowest pavement
temperature registered by the monitoring system during the FWD calibration tests was
25 ◦C, measured at 11:00 a.m., and the highest temperature registered during those tests
was 33 ◦C at 4:30 p.m. Thus, Figure 14 compares the maximum strain values measured
when applying the 25, 35, 45, and 65 kN loads at two testing temperatures (i.e., 25 ◦C and
33 ◦C) measured by the FBG temperature sensor of the monitoring system.

Figure 14. Influence of pavement testing temperature on the measured strains.

Pavements can accumulate large amounts of thermal energy from solar radiation,
which may cause significant daily and annual temperature variations that influence pave-
ment performance. This study measured a pavement temperature variation of 8 ◦C at a
depth of about 13.5 cm from 11:00 a.m. to 4:30 p.m.

The load influence on the maximum strain values measured by the monitoring system
was fitted through linear equations at both test temperatures. On average, for loads between
25 kN and 65 kN, the mentioned temperature rise of 8 ◦C caused an increase of about 20.3%
in the horizontal tensile strains measured in the pavement. Therefore, FBG sensors are
sensitive to pavement performance changes at different temperatures.

4.1.3. Relationship between Loads and Strains

All the loads (25, 35, 45, and 65 kN) applied in the twelve positions shown in Figure 11
were analysed for all the FWD test repetitions carried out throughout the day to study the
evolution of the pavement strains with increasing loads.
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Figure 15 shows the peak strain values measured by the monitoring system for six
loading positions when the highest pavement temperature was recorded. Figure 15a
concerns the loads applied on positions D, E, and F of rod A2, while Figure 15b concerns
the loads applied on positions G, H, and I of rod B2.

(a) (b)

Figure 15. Strain results obtained in the fifth FWD test campaign: (a) loads applied on positions D, E,
and F; (b) loads applied on positions G, H, and I.

As can be concluded from the results shown in Figure 15, there is an evident linear
variation in the strains with the load applied in all situations. However, the distance from
the centre of the loading plate to the closest sensors varies, influencing the evolution of the
strain values obtained for the different loads. The load applied in position G is very close to
the vertical alignment of sensor 2 on rod B2, while the distance of the closest sensor to the
centres of the load in positions H (sensor 5) and I (sensor 7) is 3 cm and 4 cm, respectively.
Many factors influence the strains recorded in pavements due to their complex behaviour,
and sensors placed in diverse pavement locations may present different strain values under
similar loading conditions. Nevertheless, a decrease in the strain value measured in the
sensor is generally associated with a higher distance to the centre of the load, as can be
seen in the three mentioned positions and as previously discussed.

Although it is possible to see a linear relationship between load and strain, positions E
and F showed a marginal increase between the various loads applied. This result can be
explained by the horizontal distance from the load application point to the closest sensor
of rod A2. In position D, the load centre is vertically aligned with sensor 4; position E
represents a distance of 15 cm between the centre of the plate and sensor 5; finally, position
F represents a distance of 21 cm between the centre of the plate and sensor 6. Despite the
slight variation in the strains measured for the last two positions, they always increase with
the load applied on the pavement surface, which is satisfactory. The results highlight the
importance of the distance between the sensor and the position where the load is applied if
the load value is to be estimated.

4.1.4. Transverse Strain Basins

The loading effect of traffic on road pavement, also simulated by the FWD tests, causes
changes in its stress and strain state response noted up to a certain distance from the load
application position. Therefore, the multiple sensors of the monitoring system were used
in this work to evaluate the transverse strain basins resulting from loads applied by the
falling weight deflectometer in specific positions.

Initially, Figure 16a represents the strain variation over time measured in sensor 2
of fibreglass rod A2 for a 65 kN load applied with the FWD in position B (14 cm apart).
Figure 16b shows a similar result registered in sensor 5 of fibreglass rod B2 for the same
load applied in position H (2 cm apart).
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(a) (b)

Figure 16. Strain variation over time measured by the monitoring system for a 65 kN load applied by
the FWD: (a) sensor 2 of fibreglass rod A2; (b) sensor 5 of fibreglass rod B2.

The dynamic effect of the falling weight load on the pavement response is evident in
these results because FBG sensors could register the strains caused by the several rebounds
of the weight on the pavement. The maximum strain recorded in sensor 2 of rod A2 was
145 με, while the maximum strain measured in sensor 5 of rod B2 was 182 με. The smaller
distance between the loading position H and sensor 5 justifies the increased strain values
measured in that sensor. Thus, on average, the fibreglass rods with fifteen sensors (B1 and
B2) are expected to measure higher peak strain values than those with seven sensors (A1 or
A2) because the distance from a random traffic load position to the nearest sensor will be
statistically lower when using more sensors in the monitoring system.

Subsequently, Figure 17 presents the maximum strain values measured in all the FBG
sensors of each rod (A2 and B2) for the 65 kN load applied in positions B and H, respectively.
The points represent the strain values registered in each sensor, and the line connecting
these points can be described as the transverse strain basin.

Figure 17. Comparison between the transverse strain basins measured by fibreglass rods A2 and B2

(with seven and fifteen sensors, respectively) for a 65 kN load applied by the FWD.
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In fibreglass rod A2 (in brown), with seven sensors, only sensor 2 (the second value
from the right-hand side) recorded tensile (positive) strains because it was nearest to the
load application point. The adjacent sensors (1 and 3) registered compression strains be-
cause they were 36 cm and 64 cm away from the load application point. These compression
strains are expected to occur adjacent to the tyre loads in the bottom part of the asphalt
layers, as described by Sudarsanan and Kim [31].

Regarding fibreglass rod B2 (in green), with more sensors, three sensors (4, 5, and
6) registered tensile (positive) strains. The difference that an increase in the number of
sensors causes in the results, namely in the strain basin shape, is significant, improving the
understanding of the actual pavement response to load applications. In this case, sensor 4
was 13 cm away, sensor 5 was 2 cm away, and sensor 6 was 17 cm away from the centre of
the loading plate. The shorter distance between sensors 4, 5, and 6 of rod B2 also allowed a
more precise definition of the strain peak than rod A2 (sensor 2), measuring a strain value
24% higher than rod A2.

The higher number of sensors included in rods B1 and B2 will be of great value in
the comprehensive characterisation of the pavement performance over time. The more
detailed strain basins also allow a better understanding of the compressive (negative)
strains generated in the regions surrounding the loaded area of the pavement, which is not
adequately characterised by the rods with fewer sensors due to the higher distances among
the sensors. However, those rods with fewer sensors are essential to evaluate the traffic
speed, as explained later in this manuscript, which affects the pavement response.

4.2. Results from the Dynamic Loading Effect of Heavy Vehicles
4.2.1. Strains Caused by Heavy Vehicles

Figure 18 shows the strains caused by the passage of Heavy Vehicle 1, registered in
sensor 6 of rod B1. This vehicle has a total mass of 29.66 tons, distributed over three axles
(a single-wheeled front axle and two double-wheeled rear axles).

Figure 18. Strain record of the passage of Vehicle 1 over sensor 6 of rod B1.

As can be seen from the graph, the front axle caused more significant strain than the
rear axles, which may be related to the higher load distribution enabled by the rear axles
that are close to each other and both of which possess a double-wheeled configuration,
thus assuring a larger contact area between the tyres and the pavement and a lower stress
applied to the surface. Among the rear axles, the last axle also caused peak strains higher
than the first one, which is explained by the viscoelastic behaviour of the asphalt pavement,
where the time between loads of both axles is not enough to allow the pavement to fully
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recover from the deformation (strain) imposed by the first axle before the load of the second
axle is applied.

The vehicle speed calculation (Figure 19) considers the distance between the two
instrumented rods (3 m) and the time it takes for one axle to be recorded by rod A1
(first peak in the graph) and rod B1 (second peak), which in this case is 0.204 s. Thus, as
demonstrated in Equation (5), the speed of this truck (Vehicle 1) was 52.9 km/h.

s =
Δd
Δt

=
3 m

0.204 s
= 14.7 m/s= 52.9 km/h (5)

Figure 19. Overlapping of the strain signals registered by two sensors from rods A1 and B1 during
the passage of Vehicle 1.

Figure 20 shows the strains caused by Heavy Vehicle 2 in one of its passages over
the monitoring system and registered by sensor 3 of rod B2. These graphs can be used to
estimate the distance between the vehicle’s axles after computing the vehicle speed.

Figure 20. Strain record of the passage of Vehicle 2 over sensor 3 of rod B2.

Using the same method presented previously in Figure 19 for Vehicle 1, the average
speed of Vehicle 2 was calculated to be approximately 9.8 km/h. At that speed, it took
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about 1.74 s for the first and second axles to cross the same instrumented rod. Therefore,
these values make it possible to determine that the distance between the first and second
axles of Vehicle 2 is 4.74 metres.

This vehicle did not carry any significant load, which may explain that, unlike Vehicle
1, there was no increase in the strains from the first to the second rear axle. Furthermore,
the vehicle’s low speed (circulating in a protected area) allows the pavement to recover
from the deformation caused by the passage of the previous axle. In addition, as in Vehicle
2, the rear axles are double, leading to better weight distribution and consequently, the
peak strains measured when those axles pass over the system are significantly lower than
those observed for the front axle.

4.2.2. Influence of the Type of Axle on the Strain Lateral Distribution

Both heavy vehicles have three axles (one front and two rear axles), and in both
situations, the two rear axles are double-wheeled, and the front axle is simple. Thus, this
analysis was only performed for Vehicle 2. Although the actual weight of each axle was
unknown, the total weight of this vehicle was 15.66 tons.

Figure 21 presents the maximum strains recorded by the monitoring system when
the front single-wheeled axle and first rear double-wheeled axle of Vehicle 2, respectively,
passed over the fifteen sensors of fibreglass rod B2.

(a) (b)

Figure 21. Transverse variation in maximum strains recorded on rod B2 due to the dynamic loading
effect of Vehicle 2: (a) single-wheeled front axle; (b) double-wheeled rear axle.

As observed in these graphs, it is possible to identify the sensors most loaded by both
wheels and determine the lateral distribution of the vehicle loads. In this case, sensors 2
and 3 of Figure 21a relate to the left wheel, and sensors 11 and 12 to the right wheel of the
front axle. This single-wheeled axle produced positive strains in an area with a radius of
approximately 15 cm (spacing between the two sensors).

The first rear axle of this heavy-duty vehicle is shown in Figure 21b. By comparison
with Figure 21a, it is possible to understand the different pavement behaviour under these
double-wheeled axle loads. This axle type causes four sensors to register positive strain
values for each set of wheels, resulting in an approximately 60 cm diameter area of tensile
strain under the wheels. The increased load distribution area justifies the significantly
lower strain values registered for the rear axle.
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4.2.3. Transverse and Longitudinal Deformation Basins

An overview of the horizontal strains measured in the transverse direction caused by
the three axles of Vehicles 1 and 2 is shown in Figures 22 and 23.

Figure 22. Strain distribution over time in all sensors of rod B1 during Vehicle 1 monitoring.

Figure 23. Strain distribution over time in all sensors of rod B2 during Vehicle 2 monitoring.

The 3D graph allows a global visualisation of the information collected in all FBG
sensors of each rod (B1 and B2), providing a more comprehensive perspective of the strains
imposed in that pavement section over the period during which the vehicle passage was
recorded. This type of analysis focuses more on evaluating the loading effect of the passing
vehicle on the pavement response according to the observed weather conditions.

In this graph, it is possible to observe the compressive (negative) strains generated in
the areas adjacent to those loaded by the vehicle wheels. On the other hand, comparing

78



Infrastructures 2023, 8, 149

the deformation (strain level) before and after the front axle loads are applied, it is clear
that the pavement deformation imposed by these loads has a delayed recovery, typical of
asphalt materials, due to their viscoelastic nature.

Figure 23 shows the difference in the results obtained between axles with single and
double wheels, with a considerably higher loaded area in the rear axles of the heavy vehicle.
Despite circulating over the monitoring system with a much lower load than Vehicle 1,
Vehicle 2 caused significantly higher strains in all axles. As previously demonstrated, its
speed was much lower, influencing the results obtained by the monitoring system. Slower
loading frequencies result in a lower stiffness modulus of the asphalt layers, which implies
the development of higher strain levels within the pavement structure. Furthermore,
Vehicle 2 circulated in the slow traffic lane, whose pavement may have a lower bearing
capacity than the fast traffic lane (where the passage of Vehicle 1 was registered), as usually
occurs due to the increased damage caused in the pavement by heavy and low-speed loads
typically passing in the slow traffic lane.

This analysis with 3D graphs may be a valuable tool in studying pavement perfor-
mance evolution over time. Furthermore, it can be used to analyse the effects of different
axle and vehicle configurations on pavement behaviour, including the effect of pavement
temperature and vehicle speed, and help improve the pavement performance models used
to schedule pavement maintenance operations.

5. Conclusions

The process of installing a continuous pavement monitoring system based on FBG
optical sensors presented here, along with a series of calibration tests performed in the
following weeks, allowed some conclusions regarding its operation to be drawn:

• The type of sensors used in this work is very accurate; slight differences in the position
of the load (in the order of 50 mm) may cause significant differences (20% to 25%) in the
strains obtained for the same load, justifying the shorter distances (150 mm) between
the sensors used in two of the instrumented rods, namely near the wheel tracks;

• One of this technology’s critical issues is the temperature calibration of the sensors, as
they are susceptible to temperature variations. However, a calibration factor can be
applied to each sensor to correct the readings using the software (Catman) provided
by the supplier of the sensors. Moreover, it was observed that a temperature rise of
8 ◦C increased the measured tensile strains by about 20%;

• The FWD tests performed with different loads for calibration of the monitoring system
showed that a linear relationship could be established between the applied load and
the strains obtained, which will be used in the future to analyse the data gathered
from this monitoring system, to estimate the loads applied to the pavement surface;

• The effects of the type and number of axles of each vehicle on the response of the
pavement at each load application were analysed in this work, using 3D representa-
tions of the strains over time; the fibreglass rods instrumented with 15 strain sensors
were essential for the accurate representation of this information, yielding reliable
knowledge of the pavement behaviour;

• The rods instrumented with 15 strain sensors provide a more comprehensive analysis
of the transverse variation in the strains in a pavement section, which can be associated
with the temperature data measured by the specific sensors installed for that purpose
to assess the evolution of the pavement performance over its lifecycle, generating
valuable information to develop pavement performance models.

The main limitation of this study is the lack of universality among the calibration
results due to restrictions in the time available to perform the tests, as these experiments
demanded the road’s closure, which could only be possible during a short period. Thus,
only four FWD loads could be applied to the pavement in each testing location, and the
temperature variations only represent a small spectrum of the whole range values observed
in this location in a day or a year.
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Briefly, this monitoring sensor technology will be used as a monitoring technology to
assess pavement performance by measuring variations in the pavement response to load
application during the different seasons and throughout the pavement’s life. Nevertheless,
at this stage of software development, using the collected traffic data to estimate the average
load per vehicle is still not viable with this system.
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Abstract: Proper road network maintenance is essential for ensuring safety, reducing transportation
costs, and improving fuel efficiency. Traditional pavement condition assessments rely on special-
ized equipment, limiting the frequency and scope of inspections due to technical and financial
constraints. In response, crowdsourcing data from connected and autonomous vehicles (CAVs) offers
an innovative alternative. CAVs, equipped with sensors and accelerometers by Original Equipment
Manufacturers (OEMs), continuously gather real-time data on road conditions. This study evaluates
the feasibility of using CAV data to assess pavement condition through the International Roughness
Index (IRI). By comparing CAV-derived data with traditional pavement auscultation results, various
thresholds were established to quantitatively and qualitatively define pavement conditions. The
results indicate a moderate positive correlation between the two datasets, particularly in segments
with good-to-satisfactory surface conditions (IRI 1 to 2.5 dm/km). Although the IRI values from CAVs
tended to be slightly lower than those from auscultation surveys, this difference can be attributed to
driving behavior. Nonetheless, our analysis shows that CAV data can be used to reliably identify
pavement conditions, offering a scalable, non-destructive, and continuous monitoring solution. This
approach could enhance the efficiency and effectiveness of traditional road inspection campaigns.

Keywords: pavement; road maintenance; International Roughness Index; connected and autonomous
vehicles

1. Introduction

The proper maintenance of road networks is crucial for preserving and enhancing
citizens’ quality of life [1,2]. Otherwise, the costs associated with the transportation of
goods and people would increase due to poor road conditions, which lead to higher fuel
consumption and, consequently, increased greenhouse gas emissions. Additionally, poor
pavement conditions pose significant dangers to road users, cause greater tire wear, and
can damage vehicles [3,4].

Therefore, it is essential for highway authorities to develop a pavement management
system to analyze the lifecycle of road infrastructure and create optimal pavement condi-
tions. This requires evaluating pavement condition and developing predictive models to
understand how pavement deterioration will evolve [5].

In this context, the Spanish Highway Administration, like many national highway
agencies, has implemented a pavement management system designed to effectively and
efficiently manage road maintenance. This system facilitates the creation of inventories, the
maintenance of a database for surveys and inspections, and the assessment of pavement
condition using various indices. There are, however, areas for improvement regarding
the availability of information on pavement condition, as auscultation systems require
significant investment. Additionally, while visual inspections are necessary before making
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decisions, they may introduce variability in assessments. Exploring the use of evolutionary
models to predict pavement condition, estimate pavement life, and determine the optimal
timing for interventions could further enhance management efficiency and effectiveness.

As a result, according to the Spanish Road Association, Spanish roads are in a “poor”
state of conservation, nearing the “very poor” threshold [6]. One out of thirteen kilometers
of the Spanish road and highway network shows significant deterioration in over 50% of
the pavement surface, featuring potholes, rutting, and longitudinal and transverse cracks.
This lack of maintenance is severely impacting Spanish road infrastructure, with a 36% loss
in asset value between 2001 and 2017 for national roads and a 38% loss for regional and
local roads. This progressive deterioration leads to uncomfortable driving conditions, road
safety issues, inter-territorial and European competitiveness losses, exponential increases in
pavement repair costs, higher vehicle maintenance costs, and increased pollutant emissions.

Current methods for evaluating pavement condition involve conducting inspections
with specialized equipment to assess pavement condition and driving comfort [7–10]. Due
to economic and technical constraints, administrations cannot cover the entire road network
on an annual basis. This typically results in detailed data collection only for high-volume
roads, with less attention given to lower-priority roads.

Despite advancements in image processing and specialized vehicle instrumenta-
tion [11–16], a significant gap exists in terms of scalability and continuous monitoring
across all road types. The current methods, including those based on image processing,
are limited by their dependency on equipment setup, cost, and infrequent data collection
cycles. Additionally, the reliance on specific vehicles or routes further restricts the ability to
gather consistent, real-time pavement data.

An alternative to these instrumented vehicles is crowdsourcing data from connected
and autonomous vehicles (CAVs). Original Equipment Manufacturers (OEMs) integrate
sensors, accelerometers, and mobile network connections in vehicles, providing a data
source on current road conditions. Integrating and utilizing vehicle data have enabled
the assessment of road markings, traffic signs, and crash mitigation through surrogate
safety measures [17–21]. In pavement condition evaluation, vehicles use a system that
leverages individual wheel speed through rotational sensors combined with transmission
information to provide data on ride quality or comfort [22]. This information can be used
to estimate the International Roughness Index (IRI) using a fleet of crowdsourced vehicles.

Unlike auscultation methods, whose results depend significantly on the path of the
specialized equipment at the time of measurement and have very low data collection
frequency, data from CAVs constitute a more reliable type of real-time road condition
information, with data from hundreds or thousands of vehicles at each road point.

Thus, this study fills the gap by leveraging crowdsourced data from CAVs to provide
continuous, scalable, and cost-effective pavement monitoring. The novelty of this approach
lies in its ability to utilize data from a vast fleet of vehicles, offering higher data frequency
and broader network coverage than traditional methods.

2. Materials and Methods

This study aims to analyze the relationship between International Roughness Index
(IRI) data obtained from pavement assessments made via specialized equipment and IRI
values derived from data collected by Connected and Autonomous Vehicles (CAVs) to
explore the feasibility of using the latter for assessing the roughness of rural roads.

To achieve this objective, this study will first provide a description of available rough-
ness data, identifying the specific road where these data were collected. Next, a descriptive
and graphical analysis of IRI values obtained from both pavement assessments and CAVs
will be conducted to assess their initial correlation.

Following the descriptive analysis, a statistical analysis using paired sample tests will
be performed by matching IRI data from both sources at each kilometer and hectometer
point along the road. The null hypothesis for this statistical test assumes there is no
difference in means between the two datasets, subject to prior evaluation of data normality.
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Finally, this study proposes establishing various thresholds to quantitatively and
qualitatively determine pavement conditions based on data collected from connected and
autonomous vehicles.

2.1. Road Segment

The road section used for the development of this study is a segment of road N-310,
from station 144 + 990 (San Clemente) to station 198 + 710 (Villanueva de la Jara), in the
province of Cuenca (Spain).

This road segment is a two-lane rural road with a total cross-section width of 10 m
composed of asphalt pavement. The width of each lane and shoulder is 3.5 m and 1.5 m,
respectively. Specifically, along this segment, there are a total of six traffic-counting stations
(see Table 1). The Average Annual Daily Traffic (AADT) along this road segment in 2021
ranged from approximately 1000 to 3000 vehicles per day.

Table 1. Annual Average Daily Traffic (AADT) on the road segment in question in 2021 [23].

Start Station Final Station Length (m) AADT (veh/day)

144 + 990 154 + 140 9150 1993
154 + 140 158 + 960 4820 1819
158 + 960 174 + 158 15,198 1379
174 + 158 180 + 950 6792 3224
180 + 950 191 + 280 10,330 2680
191 + 280 198 + 710 7430 1026

2.2. Auscultation Data

The pavement condition data were provided by the Highway Department of Castilla–
La Mancha, a division of the Highway Administration of the Spanish Ministry of Transport
and Sustainable Mobility.

The field data were collected on 15 June 2023. Specifically, the following variables
were obtained: (i) section identifier (IdSection), (ii) highway (IdRoad), (iii) initial station
(PKIHito and PKIDist), (iv) final station (PKFHito and PKFDist), (v) right wheel track IRI
(IRI_der), (vi) left wheel track IRI (IRI_izq), and (vii) average IRI (IRI_med).

In addition to these data, another set of georeferencing data were provided, with the
following information: (i) section identifier (IdSection), (ii) highway (IdRoad), (iii) initial
station (PKIHito and PKIDist), (iv) final station (PKFHito and PKFDist), and (v) UTM
coordinates (UTMx and UTMy). From these data, IRI values could be assigned to the
highway and the corresponding measurement unit, as the data related to the station points
might not be sufficiently accurate. In short, IRI data are available every hectometer.

2.3. Data from Connected and Autonomous Vehicles

Data regarding pavement condition from connected and autonomous vehicles were
downloaded on the same day as the pavement assessment, specifically on 15 June 2023.
These data were provided by NIRA Dynamics, which manages a vehicle fleet consisting of
close to two million cars around the world.

These vehicles are equipped with software that collects real-time data from the existing
onboard sensors. Thus, the vehicles serve as a continuous sensor of infrastructure condi-
tions whenever they travel on it with the minimum sample size required to ensure that
the measurement is not biased by a single vehicle. For this study, data from the connected
vehicles were collected not only on the specified day but also aggregated over a 30-day
period to provide a more comprehensive overview. This product is called the long-term
value of road roughness.

Original Equipment Manufacturers (OEMs) integrate enhanced sensors, accelerome-
ters, and mobile connections into vehicles to provide a rich data source on current road
conditions. Wheel speed is leveraged through rotation sensors in combination with drive-
train information to assess pavement quality across vehicle fleets. These measurements are
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processed through NIRA Dynamics’ sensor fusion algorithms, which uses the calibration
data to translate raw sensor outputs into roughness indicators, including the International
Roughness Index (IRI). This method ensures that the IRI values are consistent with standard
pavement assessment methodologies.

Data provided by the supplier were aggregated into segments of approximately
20 m based on mapping from navigation and mapping companies. Once a segment was
obtained, it was georeferenced and assigned to the road under study. Specifically, the
data structure available for each road segment includes (i) segment identifier (IdSection),
(ii) International Roughness Index (IRI) value in dm/hm (IRI), (iii) UTM coordinates of
points within the segment (geometry), (iv) UTM coordinates of the starting point of the
road segment (GeometryInitialPoint), and (v) UTM coordinates of the endpoint of the road
segment (GeometryFinalPoint). As with the auscultation data, a value of IRI per hectometer
was available.

3. Results

3.1. Descriptive Analysis

Table 2 presents a statistical summary of the IRI data obtained, expressed in dm/hm.
As can be seen, the mean IRI value obtained from the data recorded by the CAVs (IRI_cavs)
closely resembles, in overall terms, the mean IRI from auscultations (IRI_med), calculated
as the average of the maximum and minimum values. However, the positional parameters—
minimum value, maximum value, and percentiles—indicate that the minimum IRI values
(IRI_min) dataset is the most similar to the distribution of the IRI_cavs data.

Table 2. Statistical summary for IRI.

IRI_cavs
IRI_auscultation

IRI_max IRI_min IRI_med

Average 1.70024 2.04155 1.56469 1.80170
Standard deviation 0.55467 0.64284 0.44336 0.51644

Min. 0.86038 0.86000 0.74000 0.83000
25th percentile 1.32116 1.57750 1.27000 1.43000
50th percentile 1.56672 1.95000 1.49000 1.74250
75th percentile 1.94227 2.39250 1.76000 2.07500

Max. 4.19950 5.46000 4.29000 4.47500

To further explore the aforementioned points, density distributions of all the IRI
datasets are represented (Figure 1). Firstly, it is noteworthy that all the distributions exhibit
positive skewness, meaning the data cluster at lower IRI values, with a tail towards higher
values. This suggests that the mean values of the datasets are higher than the median or the
50th percentile (see Table 2). Additionally, it can be observed that the density curve most
similar to that described by the IRI_cavs data is that of the minimum values obtained from
auscultation (IRI_min). However, in the tail of the distribution, the IRI dataset from CAVs
(IRI_cavs) more closely resembles the distribution of the mean auscultation data (IRI_med).

Nevertheless, similarity between distributions does not necessarily imply a higher
correlation between the datasets, especially considering that the data are actually paired by
the location of the observations.

Figure 2 includes the correlation matrix between the different IRI datasets analyzed,
as well as the corresponding scatter plots comparing the IRI values from CAVs with those
from the other datasets. As expected, the correlations between the auscultation datasets
are strong (>0.8). Regarding the correlation between IRI_cavs and IRI from auscultation, it
is noteworthy that they are very similar across all the datasets considered. However, the
correlation between IRI_cavs and the datasets of minimum and mean IRI is very similar
(>0.5), despite identifying earlier that the density distribution most similar to the IRI_cavs
data was that of the minimum auscultation values.

85



Infrastructures 2024, 9, 188

Figure 1. Density distribution of IRI datasets.

 
(a) (b) 

 
(c) (d) 

Figure 2. Correlation analysis: (a) IRI_cavs and IRI_med, (b) IRI_cavs and IRI_med, (c) IRI_cavs and
IRI_med, and (d) correlation matrix.

Additionally, a scatter plot was created, which includes the point density in the rep-
resented region (see Figure 3). Specifically, only the relationship between IRI_cavs and
IRI_min is represented, which is indicative of the other cases. As observed, most observa-
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tions are situated between values of IRI of 1 dm/hm and 2.5 dm/hm, and these values
appear to concentrate very close to the line representing IRI_cavs = IRI_min. Specifically,
the values obtained from vehicles seem slightly lower than those obtained from auscul-
tation, particularly as the IRI value increases (see Figure 2). This phenomenon could be
explained by the behavior of road users, who tend to avoid the most deteriorated parts
of the road. Given that these parts usually correspond to lane-centered driving and that
auscultation methods try to trace this trajectory, it was expected that the values of the rough-
ness data obtained from CAVs would be slightly lower than those of the data obtained via
auscultation, mainly as users’ discomfort increases.

Figure 3. Point histogram.

3.2. Statistical Analysis

This section aims to determine whether IRI data from Connected and Autonomous
Vehicles (CAVs) can be considered equivalent to those obtained through auscultation
methods. For this purpose, the chosen statistical test is the paired samples comparison.
The primary aim of this type of test is to compare IRI values obtained from auscultation
and those derived from CAVs for each hectometer point.

Specifically, to determine the statistical test to be applied, it is necessary first to
evaluate the normality of the data. As mentioned during the descriptive analysis, all
the datasets exhibit strong positive skewness. Therefore, according to the results of the
Shapiro–Wilk test, it cannot be confirmed with 95% confidence that the datasets follow a
normal distribution, as the p-values are less than 0.05 (Table 3).

Table 3. Assessment of data normality: Shapiro–Wilk test.

IRI_cavs IRI_med IRI_min IRI_max

W 0.876208 0.917700 0.893479 0.920585

p-value 4.959857 ×
10−20

2.608296 ×
10−16 1.298214 × 10−18 5.271826 × 10−16

This implies that the paired data test using the usual t-test cannot be performed.
Thus, the following alternative tests were proposed: (i) the Wilcoxon signed-rank test and
(ii) the Kruskal–Wallis test. Both these tests are non-parametric and therefore require fewer
assumptions compared to the t-test for dependent samples. Specifically, the Wilcoxon test
checks whether the mean values of two dependent groups differ significantly from each
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other. On the other hand, the Kruskal–Wallis test determines whether the medians of two
or more groups are different.

Tables 4 and 5 present the results of the Wilcoxon signed-rank test and the Kruskal–
Wallis test, respectively, conducted for each pair of datasets. As a result, at a 95% confidence
level, neither of the null hypotheses of the considered tests can be confirmed. There-
fore, we concluded that the IRI data from CAVs are not equivalent to the data obtained
through auscultation.

Table 4. Wilcoxon test.

IRI_cavs and
IRI_med

IRI_cavs and
IRI_min

IRI_cavs and
IRI_max

W 49,426 50,286 28,106
p-value 1.705195 × 10−8 6.959174 × 10−8 5.549335 × 10−32

Table 5. Kruskal-Wallis test.

IRI_cavs and
IRI_med

IRI_cavs and
IRI_min

IRI_cavs and
IRI_max

W 20,068,770 12,903,457 99,849,646
p-value 7.470667 × 10−6 0.000328 1.644166 × 10−23

Despite not being equivalent, a relationship between both datasets could be established
to, for example, estimate auscultation data using the IRI values from CAVs.

3.3. Proposal of Thresholds for Pavement Evaluation

Considering that it is not possible to assert, with a 95% confidence level, that the
IRI values obtained from connected and autonomous vehicles (CAVs) are similar to those
obtained from auscultation equipment, the relationship between IRI_cavs and IRI_min was
analyzed in greater depth since there exists a moderate correlation between both datasets.

The qualitative evaluation of pavement condition established by the Spanish Highway
Administration based on the IRI value for conventional road network routes served as the
basis for this assessment (see Table 6).

Table 6. Qualitative levels of pavement condition according to the Spanish Highway Administration.

Pavement Condition IRI (dm/hm)

Very good IRI ≤ 1.5
Good 1.5 < IRI ≤ 2.0

Satisfactory 2.0 < IRI ≤ 2.5
Fair 2.5 < IRI ≤ 3.0
Poor 3.0 < IRI ≤ 4.0

Very poor >4.0

Using these qualitative pavement condition levels and the IRI_min value, the IRI data
from CAVs were classified into different subsets, with each subset’s outcome represented in
a box–whisker plot (see Figure 4). As pavement condition worsens, the mean and median
values of the IRI_cavs subset increase, demonstrating a clear relationship between the
IRI value obtained from CAV data and pavement condition. It is important to note that
most available IRI_cavs values range between 1.0 and 2.5 dm/hm; hence, for pavement
conditions rated as fair, poor, or very poor, variability is quite high. A larger volume of
data is needed to study these pavement condition levels in greater detail.

Additionally, the confusion matrix generated when classifying pavement condition
based on the variables IRI_cavs and IRI_min was estimated. To achieve this, the number of
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thresholds previously shown in Table 6 was reduced due to the low representativeness of
levels associated with high IRI values, resulting in the thresholds presented in Table 7.
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Figure 4. Box–whisker diagrams for IRI_cavs according to pavement condition level.

Table 7. Qualitative levels of pavement condition (adaptation from Spanish Highway Administration).

Pavement Condition IRI (dm/hm)

Good IRI ≤ 2.0
Fair 2.0 < IRI ≤ 3.0
Poor IRI > 3.0

Table 8 shows the confusion matrix considering the IRI values obtained from ausculta-
tion to be true. Each row of the matrix sums to 100%, indicating for a given IRI_min thresh-
old the proportion of data classified into the proposed thresholds according to IRI_cavs.
Notably, more than 80% of the data classified as corresponding to good pavement condition
according to IRI_min were similarly classified according to IRI_cavs. However, 50% of the
data evaluated as corresponding to fair pavement condition according to IRI_min were
classified as corresponding to good condition according to IRI_cavs, potentially leading
to inadequate pavement management. These results were anticipated based on Figure 3
and the statistical analysis, suggesting that the thresholds used to determine pavement
condition from auscultation-derived IRI values may differ from those for CAV-derived
IRI values.

Table 8. Confusion matrix according to the qualitative levels defined by the Spanish Highway
Administration.

IRI_cavs

Good Fair Poor

IRI_min
Good 82.18% 16.26% 1.56%
Fair 47.14% 38.57% 14.29%
Poor 20.00% 20.00% 60.00%

Thus, new thresholds were calibrated to determine pavement conditions based on the
IRI values from vehicles. The objective function was designed to maximize the values on
the diagonal of the confusion matrix, with fixed IRI_min thresholds according to Table 7
and varying IRI_cavs thresholds. As a result, the thresholds presented in Table 9 were
obtained. The updated confusion matrix is shown in Table 10, indicating that approximately
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70% of the data were appropriately classified. However, we recommend recalibrating these
thresholds and validating the results with a larger dataset that includes a greater range of
pavement condition levels, particularly with data on pavements in poor condition.

Table 9. Qualitative pavement condition levels according to IRI_cavs.

Pavement Condition IRI (dm/hm)

Good IRI ≤ 1.75
Fair 1.75 < IRI ≤ 3.5
Poor IRI > 3.5

Table 10. Confusion matrix considering the thresholds defined in Tables 7 and 9 for IRI_min and
IRI_cavs, respectively.

IRI_cavs

Good Fair Poor

IRI ≤ 1.75 1.75 < IRI ≤ 3.5 IRI > 3.5

IRI_min
Good IRI ≤ 2.0 70.82% 28.73% 0.45%
Fair 2.0 < IRI ≤ 3.0 24.29% 70.00% 5.71%
Poor IRI > 3.0 20.00% 20.00% 60.00%

4. Discussion

This study delves into the potential of using data from connected and autonomous
vehicles (CAVs) to assess pavement condition, specifically through the International Rough-
ness Index (IRI). The results presented here contribute to understanding how CAV data
can complement or even substitute for traditional manual survey methods in pavement
management systems.

4.1. Comparison of IRI Data Sources

The moderate positive correlation observed between the IRI values derived from CAVs
and those from manual surveys underscores the utility of CAV data in assessing pavement
conditions. However, the discrepancies between the datasets, particularly noticeable
at higher IRI values, suggest the need for cautious interpretation. Variations can arise
from differences in measurement precision, vehicle-sampling biases, and environmental
factors affecting data collection. For instance, while CAVs provide extensive coverage
across road networks, variations in vehicle speeds and path selections may influence the
accuracy and representativeness of the data, especially in segments with more severe
pavement degradation.

These practical considerations indicate that while CAVs offer a valuable and scalable
alternative for road condition monitoring, their results should be carefully interpreted,
particularly in the case of severely deteriorated roads where traditional methods might still
provide a more precise evaluation.

4.2. Data Distribution and Pavement Condition

The density distributions of the IRI datasets, which skew towards lower values,
predominantly align with segments categorized as “Very Good” to “Satisfactory” according
to established thresholds. This distribution pattern reflects the suitability of CAV data for
identifying well-maintained pavement sections but highlights the need for increased data
sampling in poorer conditions. This expansion would enhance the robustness of correlation
analyses across a broader spectrum of pavement states, thereby improving the reliability of
condition assessments.

From a road maintenance perspective, these results suggest that CAV-derived data could
be integrated into existing pavement management strategies to provide continuous updates
on well-maintained roads, with additional efforts required for roads in poorer condition.
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4.3. Implications for Pavement Management

Integrating CAV data into pavement management systems offers several operational
advantages. By providing real-time and continuous data streams, CAVs enable timely
updates on pavement conditions without the logistical and cost constraints associated with
periodic manual surveys. This capability enhances the scalability and efficiency of mainte-
nance planning and decision-making processes, potentially reducing operational costs and
minimizing disruptions to road users. Furthermore, the comprehensive coverage provided
by CAVs facilitates a more equitable distribution of monitoring efforts across entire road
networks, ensuring that critical maintenance needs are identified and addressed promptly.

These practical implications underscore the potential for road authorities to adopt
CAV-based systems as part of a proactive maintenance strategy, allowing for more efficient
resource allocation and timely intervention before road conditions worsen.

4.4. Practical Considerations and Recommendations

The establishment of distinct IRI thresholds for CAV-derived data has proven to
be effective in categorizing pavement conditions into qualitative states. However, this
study highlights the importance of refining these thresholds through extensive validation
exercises involving diverse pavement conditions and geographic contexts. Such validations
are crucial for ensuring the accuracy and applicability of CAV data in supporting informed
decision-making by road authorities and stakeholders. Moreover, advancements in sensor
technology and data analytics present opportunities to enhance the precision and reliability
of CAV-based pavement assessments, warranting continued research and innovation in
this field.

While CAV data offer several advantages, practical limitations remain, particularly re-
garding real-time applications. Variability in data due to vehicle behavior—such as changes
in driving patterns to avoid road defects—and environmental conditions like weather can
introduce noise into data, making calibration essential to minimize these influences.

4.5. Future Research Directions

Future research efforts should focus on addressing several key areas to further advance
the integration of CAV data into pavement management:

• Enhanced data sampling—increasing the diversity and volume of CAV data collected,
particularly in segments exhibiting greater pavement deterioration, to improve the
robustness of correlation analyses.

• Validation and calibration—conducting extensive validation studies across varied
environmental and traffic conditions to refine and validate proposed IRI thresholds
derived from CAV data.

• Sensor technology advancements—exploring advancements in sensor technologies
and data-processing algorithms to enhance the accuracy, reliability, and real-time
capabilities of CAV-based pavement assessments.

• Lifecycle analysis—developing predictive models that leverage CAV data to forecast
pavement deterioration and optimize maintenance strategies over the lifecycle of
road infrastructure.

In conclusion, while CAV data have substantial potential for revolutionizing pavement
management practices, further research efforts are essential to address relevant technical,
methodological, and operational challenges. By advancing these fronts, the transportation
sector can leverage CAV technologies to achieve more sustainable, cost-effective, and
resilient pavement management solutions in the future.

5. Conclusions

This study presents an analysis of the relationship between International Roughness
Index (IRI) values obtained through auscultation methods and those gathered by Connected
and Autonomous Vehicles (CAVs). The most noteworthy conclusions are as follows:
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• The density distributions of the IRI datasets exhibit positive skewness, with obser-
vations predominantly clustering at lower IRI values. Thus, expanding the dataset
to include higher IRI values would refine the correlation analysis between the two
datasets, particularly under poor pavement conditions.

• The results of the correlation analysis indicate there is a moderate positive correla-
tion between IRI values recorded by connected and autonomous vehicles and those
obtained through manual surveys

• The majority of observations fall within an IRI range of 1 dm/km to 2.5 dm/km, sug-
gesting road segments with a surface roughness level ranging from “Very Good” to
“Satisfactory” based on thresholds established by the Spanish Highway Administration.

• IRI values derived from vehicles are slightly lower than those obtained through
manual surveys as IRI values increase. This could be attributed to driver behavior,
where drivers tend to avoid more deteriorated paths, resulting in non-centered lane
travel.

• Despite not being directly comparable to auscultation data, the IRI values from con-
nected and autonomous vehicles can be used to establish distinct IRI thresholds to
qualitatively assess pavement condition.

• The confusion matrix obtained (see Table 10) indicates that the defined IRI thresholds
from connected and autonomous vehicles effectively identify pavement condition.

• Considering that IRI values from connected and autonomous vehicles aggregate
data from hundreds or thousands of vehicles, they are deemed highly reliable for
initial pavement condition assessments. Thus, employing IRI data from these vehi-
cles presents a cost-effective and non-destructive alternative to traditional methods,
potentially enhancing and optimizing conventional field data collection campaigns.
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Abstract: To address the challenges posed by the vast scale of highway maintenance in
China and the high costs associated with traditional inspection vehicles. This study focuses
on a routine maintenance project for national and provincial roads in Shanxi Province, with
an emphasis on the selection and design of hardware for lightweight, portable pavement
inspection devices. A monocular camera was used to capture pavement surface images,
resulting in a dataset of 85,511 training samples. Additionally, the YOLOv5 object detection
algorithm, combined with convolutional deep learning techniques, was employed to
classify and identify pavement surface distresses in the collected images. Through multiple
iterations of model tuning and validation, the proposed detection system achieved a
false negative rate of 1.13%, a recall rate of 97.35%, and a precision rate of 98.30%. Its
high accuracy provides a technical reference for the development and design of portable
pavement distress detection devices.

Keywords: pavement engineering; asphalt pavement maintenance; pavement surface
inspection; deep learning; object detection

1. Introduction

By the end of 2024, the total highway mileage in China had reached 5.4368 million
kilometers, with 99.9% of this network being maintained. Over the past several years, the
scope of road maintenance has consistently expanded, demonstrating a steady upward
trend. However, large-scale specialized inspection equipment faces significant limitations
in terms of detection costs, data acquisition, and processing, creating a major bottleneck
in road maintenance management. Additionally, China’s extensive rural road network
remains largely underserved by maintenance interventions due to inspection constraints.
To address these challenges, this project aims to develop a compact, portable, and cost-
effective device for the rapid collection, detection, and assessment of road conditions. The
system will also facilitate timely data processing and analysis, ensuring a continuous flow
of data to support informed decision-making in road maintenance management.

In the 1970s, the French road management authorities developed the GERPHO sys-
tem. In the 1980s, a Japanese research team designed the Komatsu system, which was
based on analog video technology [1]. By the 1990s, American researchers had introduced

Infrastructures 2025, 10, 72 https://doi.org/10.3390/infrastructures10040072
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the Pavement Condition Evaluation Service (PCES) system, utilizing a line-scan digital
camera for pavement distress detection [2,3]. Compared to its predecessors, the PCES
system enabled simultaneous image acquisition and processing. However, its function-
ality was limited, as it was unable to distinguish between different types of pavement
distresses [4]. During the same period, rapid advancements in Charge-Coupled Device
(CCD) image sensor technology led a Canadian company to develop the Automatic Road
Analyzer (ARAN) system [5]. Despite its innovations, the ARAN system faced high hard-
ware costs and lacked synchronization between pavement data collection and distress
identification [6,7]. Since the early 21st century, 3D laser scanning technology has rapidly
evolved. Researchers have integrated this technology into pavement distress detection
systems, such as the DHDV system in the United States, which achieved true automation in
detecting pavement distresses. However, its high hardware requirements and maintenance
costs have hindered widespread adoption [8]. More recently, studies have utilized 3D
point cloud data and YOLOv5 detection models to identify various types of pavement
distresses, including longitudinal cracks, transverse cracks, alligator cracks, and potholes.
Notable contributions in this field include the work of Ravi Radhika and Ayman Habib
from the United States [9], as well as Sami Abdullah from Australia and Sakib Saadman
from Bangladesh [10–13]. Early pavement distress detection methods predominantly relied
on traditional texture feature extraction techniques, such as Local Binary Patterns (LBP)
and Gabor filters, which often yielded suboptimal performance in practical applications. In
contrast, recent advancements in deep learning technologies have enabled the direct learn-
ing of feature representations from data, significantly improving the accuracy of pavement
distress identification. By applying deep learning-based image processing algorithms to
pavement images, researchers can accurately detect and localize distresses. The detected
distress regions can then be segmented to extract geometric features such as area, length,
and width. Statistical analysis of all detected distresses allows for the calculation of the
distress rate (DR) for the evaluated road section, ultimately leading to the derivation of
the Pavement Condition Index (PCI). Several other scholars have also made significant
contributions to pavement distress detection [13–18].

In comparison to foreign countries, China’s development of automatic pavement
inspection technology began relatively late. However, since the early 21st century, advance-
ments in hardware capabilities and significant progress in image processing technologies
have enabled substantial achievements by domestic research institutes and universities.
Several Chinese scholars have conducted extensive research on automatic pavement in-
spection systems, making significant contributions to image processing techniques for
pavement images. Their work has greatly advanced the application of digital image pro-
cessing technology in road inspection [19–21]. In China, pavement inspection technologies
are primarily classified into four categories: deep learning-based methods, 3D laser-based
techniques, vibration signal-based detection, and pavement texture analysis [21–28].

With the advancement of the 2025 initiative, the digitalization, informatization, and
automation of road maintenance have been rapidly progressing. In recent years, a variety
of lightweight inspection devices have emerged on the market. Companies such as Baidu,
Qianxun, and Shanghai Tonglu Cloud, as well as universities including Tongji University
and Southeast University, have actively engaged in research and development. The hard-
ware used in these devices is largely similar, with most relying on monocular cameras,
stereo cameras, or industrial cameras to capture road surface data. The collected images
are subsequently processed for various recognition tasks to generate pavement inspection
data. This study aims to develop a pavement distress detection system by selecting suitable
hardware components and utilizing a monocular camera. An enhanced YOLOv5 algo-
rithm is adopted as the target detection model, incorporating convolutional deep learning
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techniques to classify pavement distress images captured by the monocular camera. By
constructing a distress dataset and conducting debugging, validation, and comparative
experiments, the proposed model undergoes training and technical validation. Ultimately,
the system facilitates the extraction of key physical characteristics of pavement distresses,
including length, width, and area, thereby achieving accurate pavement distress detection.

2. Hardware Selection and Algorithm Principles

2.1. Hardware Selection

Based on the demand assessment, the hardware platform must meet the following
requirements: (1) The CPU should have a minimum of four cores. (2) The encoding and
decoding capabilities must support the processing of two channels of 4K 30 fps video
streams. (3) The system should be equipped with at least 8 GB of RAM. (4) A minimum of
two USB 3.0 ports should be available. (5) The platform must support hard disk read/write
operations and include an HDMI interface for display connectivity.

2.1.1. Hardware Platform

A comparative analysis was performed on several embedded platforms from NVIDIA,
including the TX2 and Jetson Xavier, as well as processing platforms such as Raspberry
Pi, BeagleBone, and Huawei, as shown in Figure 1. Initially, considering both processor
performance and physical size, the TX2 was deemed too large, while platforms such as
the Raspberry Pi lacked sufficient computational power and stability. As a result, the
Jetson AGX Xavier platform was selected for this study. However, due to its high cost,
future iterations of the system may consider adopting the Xavier NX series to optimize
cost control.

 

Figure 1. Nvidia Xavier platform.

Considering the installation environment, the camera will be mounted on a data
collection vehicle. The vertically installed lens is typically positioned 1 to 3 m above the
ground, while the side-mounted lens is generally placed 1 to 10 m from the guardrail.
Given these conditions, a short-focus lens with a focal length of 8 mm is selected for the
pavement camera.

Currently, positioning systems include GPS, BeiDou, Galileo, and GLONASS. The
full deployment of the BeiDou satellite network in China provides robust support for
positioning-related equipment and significantly improves location accuracy. In crack
detection, the algorithm must accurately determine the location of detected pavement
distresses, enabling detailed analysis of distress distribution across entire road segments.
These data are crucial for effective road maintenance planning and decision-making. To
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ensure high-precision positioning, the system will employ a multi-system, multi-frequency
positioning board that supports BeiDou navigation to further enhance accuracy.

2.1.2. Camera Selection

Industrial cameras are available with various interface types, including USB, Ethernet
(GigE), CameraLink, IEEE 1394, and CoaXPress. When conducting outdoor data collec-
tion, industrial cameras offer superior resistance to environmental variations, dust, and
vibrations, ensuring greater reliability in complex conditions. To achieve a 1 mm crack
resolution over a 4 m wide pavement section, a minimum of 4000 pixels is required. Since
pavement inspection typically focuses on a single lane per capture, a 2D area-scan camera
is preferred over a line-scan camera.

Industrial camera sensors are typically classified into two types: CMOS and CCD,
with CMOS sensors becoming increasingly prevalent. Additionally, industrial cameras use
two exposure methods: (1) Global Shutter, which captures the entire image simultaneously;
and (2) Rolling Shutter, which exposes different rows at different times, potentially causing
distortion when capturing moving objects. Given the vehicle’s motion speed, the image
capture response time must be as fast as possible, and the exposure time should be mini-
mized while ensuring image clarity. Therefore, a global shutter CMOS camera is selected
to guarantee distortion-free imaging.

FLIR offers both global shutter and rolling shutter cameras, such as the Flea3 USB3
series. However, these cameras have a resolution range limited to 1K to 2K pixels. In
contrast, the ORYX 10GigE can capture 4K resolution, 12-bit images at over 60 FPS, but it
uses a GigE interface.

In contrast, the Huarui A7A20MU30 from Zhejiang Dahua Technology achieves 4K
resolution with a USB 3.0 interface, global shutter, and C-mount compatibility. It sup-
ports the USB3 Vision protocol and the GenICam standard, and features a pixel size of
3.45 μm × 3.45 μm. A USB-interface camera was selected for its plug-and-play functional-
ity, which facilitates rapid prototype development and allows for easy future upgrades with
similar or higher-performance cameras. Consequently, the Dahua 4K industrial camera
was chosen for this study (as shown in Figure 2).

 

Figure 2. 4K industrial camera.

2.1.3. Positioning System

Currently, positioning systems primarily include GPS, GNSS (Global Navigation
Satellite System), Galileo, and GLONASS. With the full deployment of the BeiDou satellite
network in China, it provides substantial support for positioning-related equipment and
significantly improves location accuracy. For crack detection, the algorithm requires precise
geolocation of identified distresses, enabling detailed analysis of distress distribution
across entire road segments and offering essential data for road maintenance decision-
making. To enhance the reliability and accuracy of detection data, this study selects a
high-precision, multi-system, multi-frequency positioning board that supports dual-mode
BeiDou + GPS positioning. This module features low power consumption and a compact
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size (as shown in Figure 3), making it easy to integrate into vehicle-mounted and other
automated inspection systems.

Figure 3. Gradation curves.

2.1.4. Movable Central Control System

The data acquisition platform functions as the central control and operation hub
for the automated inspection system (as shown in Figure 4). It integrates a positioning
data processing module, power module, display unit, and an embedded core processing
platform, while incorporating a high-capacity 1 TB solid-state drive (SSD) to support
large-scale 4K image data storage.

 
Figure 4. Movable central control system.

The device housing has been modified to include connection ports, ensuring efficient
interconnectivity among all components. The display unit supports touchscreen operation
and is equipped with customized software that includes functionalities such as algorithm
parameter configuration, algorithm encapsulation and execution, result visualization, im-
age list display, and processing progress tracking. Additionally, the system supports
large-panel display operation for pavement distress detection, thereby significantly enhanc-
ing workflow efficiency for maintenance personnel.

2.1.5. Car Triangular Bracket

To facilitate the integration and utilization of various modular components within
the pavement distress detection system—including the solid-state storage drive—and to
ensure seamless interface connectivity, signal transmission, and external data output, a
custom-designed mechanical enclosure was developed to house all system components in
a unified structure.

A dedicated hard drive support and fixation bracket was designed, featuring a tripod
with suction cups for stability. The industrial camera and high-resolution lens are screw-
mounted onto the bracket, which is securely positioned in a triangular configuration at the
rear of the vehicle (as shown in Figure 5). A balancing mechanism is incorporated between
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the camera and the mounting structure, enabling the camera to capture pavement images
at a fixed angle relative to the vertical axis, ensuring optimal image acquisition.

 

Figure 5. Vehicle-mounted triangular bracket.

2.2. Algorithm Principle and Selection

The computational principles employed in this study primarily include deep learning
theory and object detection algorithms.

2.2.1. Data Collection

The core principle of deep learning is to extract hierarchical feature representations
through layered networks, which enables the learning and abstraction of complex features.
Convolutional Neural Networks (CNNs) are widely used in image classification and object
detection tasks. Their architecture is primarily composed of three components: the input
layer, hidden layers, and output layer.

In this study, a CNN-based model is employed for training, which consists of two main
stages. The first stage is the forward propagation phase, during which data flows from
lower-level to higher-level representations. The second stage is backpropagation, in which,
if the predicted results deviate from the expected outcomes, the error is propagated back-
ward from higher to lower layers, facilitating model optimization and improved accuracy.

2.2.2. Object Detection Algorithms

Object detection algorithms can be broadly classified into two types. The first type
consists of Region Proposal-based methods, such as R-CNN, Fast R-CNN, and Faster
R-CNN, which follow a two-stage approach. These methods first generate region proposals
using heuristic techniques, such as Selective Search or a CNN-based Region Proposal
Network (RPN). Classification and regression are then performed on these proposals. The
second type includes one-stage methods, such as YOLO and SSD, which directly predict
object categories and locations using a single CNN network. A typical object detection
model consists of a feature extraction backbone and a classification-detection network. The
design of the backbone network is crucial in determining how features are fused across
different network layers. With advancements in deep learning, backbone networks are
continuously optimized to enhance feature extraction.

The YOLOv5 network, a representative one-stage detection model, comprises four
main components: the input layer, backbone network (Backbone), feature fusion network
(Neck), and output layer (Prediction). Compared to other models, YOLOv5 offers superior
efficiency and speed, making it particularly well suited for high-frequency pavement
distress detection. The architecture of YOLOv5 is shown in Figure 6. This study will
perform a comparative analysis to select the optimal YOLOv5 model and integrate deep
learning techniques to enhance the accuracy and robustness of pavement distress detection.
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Figure 6. The network structure of YOLOv5.

YOLOv5 offers several backbone network architectures with varying depths, including
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. These four structures are governed by
two key parameters: model depth and the channel width between layers. The number of
model parameters increases progressively from YOLOv5s (the smallest) to YOLOv5x (the
largest). Specific parameter settings and channel configurations are provided in the Table 1.

Table 1. Parameters and parameters of backbone networks at each level.

Backbone
Network

Model Depth
The Width of the

Interstory Passage
Parameter Size/KB

YOLOv5s 0.33 0.5 14,468
YOLOv5m 0.67 0.75 42,367
YOLOv5l 1.0 1.0 93,086
YOLOv5x 1.33 1.25 173,370

Using the same Cross Stage Partial (CSP) structure for comparison, the YOLOv5s net-
work includes one residual block, while YOLOv5m utilizes two residual blocks, YOLOv5l
employs three residual blocks, and YOLOv5x incorporates four residual blocks at the same
locations. This design effectively controls the network’s depth. Additionally, the network
width in YOLOv5 is regulated by adjusting the number of convolutional kernels at different
stages. Taking the Focus structure as an example, YOLOv5s uses 32 convolutional kernels,
YOLOv5m increases this to 48, YOLOv5l to 64, and YOLOv5x to 80.
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3. Research on the Construction of Disease Datasets and Scheme Design

3.1. Construction of Road Disease Detection Dataset

In this study, the pavement distress detection dataset was constructed with a strict
proportional division into a training set, validation set, and test set. By collecting real-time
traffic photos on the road after the equipment is assembled, the dataset can categorize
pavement distresses into five types: transverse cracks, longitudinal cracks, alligator cracks,
potholes, and patched areas. A total of 85,511 pavement images were collected from actual
road surfaces, and 14,641 valid samples were selected to build the dataset. The training and
test sets were split into a 9:1 ratio, resulting in 13,388 images for training and 1253 images
for testing. Additionally, during training, a validation set was extracted from the training set
at a 9:1 ratio to update the model weights, resulting in 1338 validation images. Annotated
examples of pavement distresses in the dataset are illustrated in Figure 7.

   
(a) (b) (c) 

  
(d) (e) 

Figure 7. Legend of the road disease dataset: (a) Transverse crack disease (b) Longitudinal crack
disease (c) Two reticular fissure diseases. (d) Four pit diseases (e) Repair disease.

3.2. Model Training Design
3.2.1. Platform Environment Deployment

In this study, the YOLOv5 object detection algorithm was trained using a self-
constructed pavement distress dataset and applied to identify distress types on actual
road surfaces. The platform and development environment consist primarily of a Linux-
based system and the Python programming language.

3.2.2. Dataset Preparation

The YOLOv5 network does not directly read dataset images and annotations, as this
may result in insufficient memory when processing a large number of images. To address
this issue, the dataset and annotation files are first stored in a designated directory during
training. The image filenames, labels, and bounding box coordinates are then extracted
into a single text file, which YOLOv5 reads in batches. This approach prevents memory
overflow and enhances data loading efficiency.
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During the preprocessing stage, training images are stored in the JPEGImages directory,
while annotation files are placed in the Annotations directory. The voc_label.py script is
employed to automatically divide the dataset into training and validation sets, generating
a labels directory. Within this directory, all annotation data are recorded in text files,
including image filenames, label names, and bounding box coordinates (upper-left and
lower-right points).

Before training, the dataset parameters must be modified in the test.yaml file. These
parameters include the file paths for the training and test datasets, the number of classes,
and the class names, which are provided as a string array. The structure of each dataset is
illustrated in Figures 8–11 the following figure.

 
Figure 8. The CrackForest dataset.

 
Figure 9. The 4K dataset.
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Figure 10. The 4K fixed-size split dataset.

 
Figure 11. The 4K arbitrarily cropped dataset.

3.2.3. Training Parameter Adjustments

Before initiating training, the YOLOv5 algorithm provides configurable network
parameters, including the number of training iterations, the batch size for image loading
per training step, the configuration file for the backbone network, and the input image size.

3.3. Methods for Analyzing Test Results

In this study, recall, precision, and the false-negative rate are used as evaluation
metrics for pavement distress detection. True Positive (TP) refers to a correctly predicted
positive instance, True Negative (TN) to a correctly predicted negative instance, False
Positive (FP) to a negative instance incorrectly predicted as positive, and False Negative
(FN) to a positive instance incorrectly predicted as negative.
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(1) Recall detection rate

Recall is the ratio of correctly identified instances to the total number of instances that
should be identified in the dataset.

Recall = TP/(TP + FN) (1)

(2) Precision detection rate

Precision is the ratio of correctly identified instances to the total identified instances.

Precision = TP/(TP + FP) (2)

(3) False-negative rate

The false-negative rate is the ratio of incorrectly unidentified instances to the total
number of actual samples.

FNR = FN/(TP + FN) (3)

(4) Test results

Figure 12 shows the detection results of YOLOv5 networks under different backbone
networks.

  
(a) (b) 

  
(c) (d) 

Figure 12. Detection results of different models of YOLOv5: (a) YOLOv5s, (b) YOLOv5m,
(c) YOLOv5l, (d) YOLOv5x.
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4. Analysis of Asphalt Pavement Surface Damage Detection Technology

4.1. Demonstration and Analysis of the Experimental Results of Object Detection Algorithm

The initial validation experiment in this study aimed to assess the feasibility of the
algorithm. This experiment compared the detection performance of the instance segmenta-
tion algorithm Mask R-CNN and the object detection algorithm YOLOv5 using the same set
of pavement images. Mask R-CNN performs instance segmentation by first locating objects
with bounding boxes and then conducting pixel-wise classification within each bounding
box to segment the target objects. In contrast, YOLOv5, as an object detection algorithm,
only locates objects using bounding boxes without performing pixel-level segmentation.

As shown in Figure 13, the results of the validation experiment indicate that Mask
R-CNN exhibits significant deviation in the bounding box localization stage, leading to
inaccuracies in the segmentation phase, where it struggles to fully segment the cracks.
In contrast, YOLOv5 effectively locates pavement cracks and correctly identifies them
individually, demonstrating its suitability for pavement distress detection.

(a) (b) (c) 

Figure 13. Comparison of Mask-RCNN and YOLOv5: (a) Original images, (b) Mask-RCNN,
(c) YOLOv5.

Through four rounds of experimental validation, this study found that the algorithm’s
generalization ability is directly related to the size of the dataset. Based on these findings,
the final validation phase focused on significantly expanding the pavement distress dataset
while ensuring consistent categorization.
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During the validation process, pavement distresses were strictly classified into five
categories: transverse cracks, longitudinal cracks, alligator cracks, potholes, and patched
areas. The dataset was divided into training and validation sets in a 9:1 ratio, resulting in a
total of 13,388 image samples for training.

As shown in Figure 14, the results from the four validation experiments demonstrate
clear and accurate distress localization and classification. These findings confirm that
the YOLOv5 algorithm achieves a high level of model fitting and generalization when
applied to a comprehensive pavement distress dataset. Statistical analysis reveals an overall
false-negative rate of 1.13%, a recall rate of 97.35%, and a precision rate of 98.30%.

 
(a) (b) 

 
(c) (d) 

Figure 14. The results of the fourth verification: (a) Crack disease, (b) Reticular fissure diseases, (c) Pit
diseases, (d) Repair disease.

The training results of the YOLOv5 object detection model developed in this study
are shown in Figure 15. It can be observed that, during the 200-step iterative process, the
GIOU loss and other loss functions exhibit a gradual decrease, while accuracy and recall
steadily increase, eventually converging to stable values.
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Figure 15. Model training results.

4.2. Analysis of Camera Calibration Algorithms

The calibration images captured for the experiment are shown in Figure 16. Among
the 28 images used in this study, the position and angle of the calibration board vary across
images, effectively covering the entire field of view of the camera. This diverse positioning
strategy significantly reduces calibration errors.

Figure 16. Images used for camera calibration.

First, a corner detection algorithm was applied to identify the subpixel locations of all
corner points in each image. The yellow rectangular box represents the origin corner point,
while the green markers indicate the subpixel coordinates of each detected corner. Using
the complete set of corner point data from all images, the camera’s intrinsic and extrinsic
parameters, as well as distortion coefficients, were optimized using Zhang’s calibration
method, the least squares method, and the Levenberg–Marquardt (LM) algorithm. The
3D spatial positions of the monocular camera and all calibration boards are illustrated in
Figure 17.
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Figure 17. Three−dimensional spatial position of the monocular camera and the calibration plate.

4.3. Measurement Index Table

After obtaining the accurate intrinsic and extrinsic camera parameters, along with the
distortion coefficients, an index table can be established. Since this process involves only
matrix operations, no additional errors are introduced, and the index table’s error remains
consistent with the calibration error of 0.52 pixels.

Given that the camera has a 4K resolution with 3000 × 4096 pixels, the index table
contains data for approximately 12 million points, fully representing the physical spatial
information of the captured image, as illustrated in Figure 18. Each entry in the index
table stores four key pieces of information for each pixel: its corresponding physical
length, width, diagonal length, and area, as shown in Figure 19. Ultimately, the index
table comprises 48 million precise parameters, which serve as a reference for subsequent
pavement distress geometric measurement algorithms.

 

Figure 18. Index table.
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Figure 19. Four parameters for each pixel.

4.4. Analysis of Broken Geometry Information Measurement Algorithm

Due to the irregular geometric shape of pavement distresses, this study first calculates
the length and then derives the average width. However, the accuracy of the distress
skeletonization algorithm directly affects the width measurement error. To obtain the
actual physical length of the distress, the binarized mask image must be processed into
a skeletonized image, which consists of a single-pixel-wide representation of the distress
region. The skeletonized image must be continuous and free of discontinuities or noise
artifacts to ensure the most accurate length estimation.

The skeletonization algorithm used in this study is a lookup table-based method that
iteratively applies logical operations to the outermost white pixels of the distress region.
The algorithm determines whether a pixel belongs to the skeleton based on its relationship
with neighboring pixels. If the pixel is part of the skeleton, it is retained; otherwise, it
is removed. This process ultimately reduces the distress mask to a single-pixel-wide
skeletonized representation.

This study categorizes pavement distresses into four major types: simple cracks, alli-
gator cracks, potholes, and patched areas. Among these, potholes and patched areas are
excluded from the length and width calculations. The study further classifies simple cracks
and alligator cracks into six subtypes, as illustrated in Figure 20. Simple cracks are subdi-
vided into transverse cracks, longitudinal cracks, diagonal cracks, and herringbone cracks,
while alligator cracks are divided into simple alligator cracks and complex alligator cracks.

  
(a) (b) 

Figure 20. Four parameters for each pixel: (a) Simple cracks, (b) Reticulated cracks.

Figure 21 presents the skeletonized images extracted from the six types of pavement
distress masks using the lookup table method. As shown in the figure, the width varies
across different regions of the distress masks; however, the lookup table method accu-
rately identifies the primary direction of distress propagation. Furthermore, the extracted
skeleton images remain continuous, without disruptions or artifacts, ensuring that length
calculations are not affected by noise or distortions. With a well-defined skeleton image,
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the index table can be used to retrieve the physical length corresponding to each pixel
position, and these values are summed to obtain the actual physical length and average
width of the distress region.

  
(a) (b) 

Figure 21. Four parameters for each pixel: (a) Simple cracks, (b) Reticulated cracks.

In summary, the distress geometry measurement algorithm enables the precise extrac-
tion of physical spatial parameters based solely on the calibration-generated index table
and the semantic segmentation-derived distress mask, providing an effective method for
measuring pavement distress geometries in real-world conditions.

5. Conclusions

(1) Through the hardware selection and design process, a lightweight and portable
pavement distress detection device was assembled, offering an efficient and practical
solution for on-site pavement inspection.

(2) By integrating the YOLOv5 object detection algorithm with convolutional deep learn-
ing techniques, a model was trained using 85,511 pavement sample images. The
final statistical results show an overall false-negative rate of 1.13%, a recall rate of
97.35%, and a precision rate of 98.30%, demonstrating the model’s high accuracy
and reliability.

(3) Algorithm validation and analysis confirmed that the distress geometry measurement
algorithm can accurately extract physical spatial parameters using only the calibration-
generated index table and the semantic segmentation-derived distress mask. The
study concludes that the developed pavement distress detection device has significant
potential for practical engineering applications.

6. Prospect

(1) This study utilizes a monocular camera, which effectively identifies two-dimensional
pavement distresses, such as transverse and longitudinal cracks, alligator cracking,
block cracking, and patched areas. However, it currently lacks the capability to
accurately detect three-dimensional distresses, such as potholes and subsidence. In
the future, a stereo camera system could be implemented, incorporating existing
equipment algorithms and advanced technical approaches to enable comprehensive
pavement distress detection.

(2) This study focuses solely on pavement distress detection for asphalt surfaces. Given
the distinct differences between cement and asphalt pavement distresses, future
research could explore established distress recognition methodologies to develop an
automated detection system for cement pavement distresses.
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Abstract: Bridges are an integral and important part of road networks, but monitoring their
condition using traditional methods is expensive, dangerous, and laborious. This study ex-
amines the rapidly emerging field of drone-based transportation asset monitoring, focusing
on analyzing the cost efficiency and effectiveness of drone applications in bridge condition
monitoring. This research innovated a multi-dimensional framework that highlights the
transformative role of drone technology in enhancing inspection accuracy, safety, and cost
savings. Using statistical models and Monte Carlo simulations, the framework provides
an extensive cost–benefit analysis to inform drone investment decisions. A case study
demonstrates the utility of the framework in quantifying costs and benefits. Furthermore,
a sensitivity analysis evaluates how variations in drone costs, driven by technological
progress, can potentially influence adoption of the technology.

Keywords: autonomous aircraft; data mining; asset management; drone-based monitoring;
cost-efficient bridge inspection; Monte Carlo simulation

1. Introduction

The American Society of Civil Engineers (ASCE) reported that the United States has
more than 617,000 bridges, many exceeding 50 years in age, with 42% requiring repairs
and 7.5% classified as structurally deficient [1]. This situation highlights the critical need
for effective condition monitoring to maintain structural integrity. Many organizations use
traditional monitoring methods that are often expensive and time-intensive, increasing
interest in more innovative and efficient solutions. Unmanned aerial vehicles (UAVs), or
drones, are increasingly adopted across industries for their ability to efficiently cover and
assess large infrastructure areas, providing comprehensive visual data often missed in
manual inspections [2]. These capabilities accelerate evaluations and offer a cost-effective
alternative to traditional approaches.

Drones provide valuable capabilities for bridge monitoring but also have notable
limitations. Drone condition monitoring faces challenges, such as battery life constraints,
adverse weather conditions (wind, rain, fog), and GPS signal interference, which affect
flight stability and data accuracy. Restricted airspace regulations and data processing
complexities further hinder deployment. Advancing battery technology, sensor durability,
and regulatory frameworks are crucial to enhancing the reliability of inspections [3].

The American Association of State Highway and Transportation Officials (AASHTO)
categorized bridge inspections into eight types: initial, routine, damage, in-depth, fracture-
critical, underwater, routine wading, and special inspections. Routine inspections, the most
common type, primarily rely on visual methods to identify defects. While drones enhance

Infrastructures 2025, 10, 63 https://doi.org/10.3390/infrastructures10030063
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routine inspections with their broad coverage, they are less effective at tasks requiring
direct physical interaction, such as inspection of internal structural elements. Drones are
also unsuited for underwater inspections and cannot detect fractures due to their lack of
tactile assessments or advanced nondestructive testing [4].

Drones are particularly effective at inspecting steel and concrete structures. However,
they face challenges in navigating tight spaces, capturing specific angles, and detecting
subtle color changes in steel bridges. Drones cannot assess the subsurface conditions of
composite and timber bridges [5]. These limitations highlight the importance of considering
both inspection types and bridge materials when implementing drone technology for
monitoring purposes. Hence, the most effective application of drones lies in the routine
inspection of concrete and steel bridges, which is the scope of this study’s focus.

The main contribution of this study is a framework and methodology to evaluate the
costs and benefits of drone-based condition monitoring (D-BCM) relative to traditional-
based condition monitoring (T-BCM) of linear transportation assets. The proposed frame-
work aims to help organizations make informed decisions regarding the adoption of
drone technology by providing insights into its economic viability, potential benefits, and
associated risks.

The rest of this paper proceeds as follows. Section 2 reviews the literature on drone
technology, remote sensing technologies, and quantitative modeling. Section 3 presents
the data mining workflow and defines all of the variables utilized in the study. Section 4
defines the mathematical models, outlining the methodology used to quantify the costs
and benefits of D-BCM. Section 5 presents the results and discusses their implications for
stakeholders. Section 6 concludes the research and suggests directions for future work.

2. Literature Review

Recent research highlights the significant benefits of drone technology in bridge
inspection and monitoring. Perry et al. (2020) demonstrated the efficiency and accuracy of
drones in assessing structural damage, improving both visualization and quantification [6].
Hubbard and Hubbard (2020) investigated the safety advantages of drones, quantifying
these benefits through worker compensation rates and survey data from a state Department
of Transportation case study [7]. Azari, O’Shea, and Campbell (2022) introduced a sensor-
equipped drone prototype that enhances data collection and management processes for
bridge inspections [8].

Song, Yoo, and Zatar (2022) have developed iBIRD, a web-based tool for manag-
ing drone-assisted bridge inspections, featuring 3D modeling and report generation [9].
Dorafshan and Maguire (2018) demonstrated drones equipped with self-navigation and
image processing, enabling the creation of accurate, autonomous 3D models for damage
identification [10]. Chen et al. (2019), however, point out the limitations of image-based
methods in areas lacking distinct features [11]. Addressing environmental challenges,
Aliyari et al. (2021) performed a hazard analysis of drone inspection risks under harsh
conditions, focusing on human performance impacts, including drone pilots [12].

Dorafshan et al. (2017) demonstrated the effectiveness of drones in detecting damage
on concrete and steel bridges, with results comparable to human inspections and the
added advantage of real-time feedback [13]. They argued that current drone technology
primarily serves as an assistive tool, improving the speed, cost efficiency, and safety of
bridge inspections while eliminating the need for traffic closures [13]. Hubbard et al.
(2020) investigated the role of drones in enhancing bridge inspection safety [7]. The study
surveyed bridge inspectors and developed a benefit–cost methodology based on worker
compensation rates to assess the safety benefits of drones. Although both studies recognize
the cost and time efficiencies of drones, they lacked detailed quantification of these benefits.
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The present study fills these research gaps by developing a comprehensive framework to
quantify the benefits and costs of using drones in bridge condition monitoring.

3. Data

The next subsections discuss the data mining workflow, define the variables in the
framework, and explain the methods of quantifying the costs and benefits, data analysis,
uncertainty management, and related simulations.

3.1. Data Mining Workflow

Figure 1 illustrates the data mining and analytical workflow for quantifying variables.
The workflow starts by identifying the cost and benefit components of D-BCM. It then
models these aspects for both drone-based and traditional methods, incorporating direct
and indirect factors before formulating the overall cost–benefit structure.

Figure 1. Workflow for quantifying the variables.

Monte Carlo simulation (MCS) serves as a probabilistic forecasting tool, selecting
values from a user-defined probability distribution to assess multiple model scenarios [14].
The workflow compiles data by categorizing variables as either stochastic or deterministic.
Statistical models and goodness-of-fit tests fit appropriate distributions to the data. Given
database uncertainties, stochastic variables undergo MCS, and results are compared with
empirical data to validate accuracy. Additionally, the case study utilizes sensitivity analysis
and scenario forecasting for future drone pricing trends.

3.2. Variables

Table 1 presents all of the variables used in the cost and benefit models of this study,
including their descriptions, categories, and classification as either stochastic or determinis-
tic. It also details the time frame associated with each variable, the cost for deterministic
variables, and the corresponding data sources.
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The framework classified the variables into deterministic and stochastic categories
based on the databases and their nature to provide a clear overview of the economic factors
considered.

Drone Price. For monitoring linear assets, multicopters are preferred, with quad-
copters accounting for the majority and hexacopters making up the remaining 40% [3].
Among drone manufacturers, DJI currently leads the industry, holding over 70% of the
global drone market, as reported by CNBC [23]. Aside from any governmental restric-
tions on manufacturing origin, key considerations when selecting a drone for inspections
include flight time, camera quality, weather stability, obstacle detection capabilities, and
industrial-grade features [24]. Inspectors commonly use optical cameras, thermal cameras,
and LiDAR systems based on specific inspection requirements. The present study focuses
on concrete and steel bridge inspections, where cameras are the most suitable payload.
Table 2 provides a summary of suitable drones and their payload specifications.

Standardized Battery Price. D-BCM necessitates multiple battery replacements. The
price of drone batteries varies based on type (LiPo or Li-ion), the number of batteries
required, drone brand, and battery life. While some drones require only one battery, others
may need up to six. This variability makes it challenging to directly compare prices. Thus,
for a clear comparison of drone batteries, standardization becomes essential. This formula
converts the raw battery cost into a standardized cost per flight hour.

SBP =

(
BP × NBP

FT
60 × cc

)
(1)

where FT is the battery flight time and CC denotes the estimated number of charge cycles
(approximately 300) before the LiPo battery degrades by retaining 80% of its original
capacity [25,26]. The lifespan of a Skydio X2 battery is one year or 200 battery cycles [27].
BP is the price of the battery, and NBP is the required number of batteries for each drone.

Post-Processing Time. A significant benefit of D-BCM is that it not only decreases
the duration of inspections but also reduces the need for extensive crew and time spent
on inspection vehicles. The Minnesota Department of Transportation (MnDOT) provided
inspection time data for both traditional and D-BCM [16].

Table 2. Recommended drones and their payload for D-BCM.

Drone Price Flight Time
(Min)

Built-In Payload Extra Required Payload
Data

Source

DJI Mavic 3 Pro USD 2199 to USD
3299 43

Hasselblad: 4/3 CMOS, 20 MP
Medium Tele: 1/1.3-inch

CMOS, 48 MP Tele: 1/2-binch
CMOS, 12 MP

-

[28]

DJI Air 3 USD 1099 to USD
1550 46

Wide-Angle:
1/1.3-inch CMOS

Effective Pixels: 48 MP
Medium Tele:

1/1.3-inch CMOS
Effective Pixels: 48 MP

-

DJI Phantom 4 Pro USD 1599 to USD
1699 30 1” CMOS

Effective Pixels: 20 MP -

DJI Matrice 600 Pro USD 5000 to USD
6000 32 -

Zenmuse (Z) X3: 1/2.3”
CMOS/12 MP photos and 4K

video at 30 fps:
USD 500–USD 700

ZX5 and X5R: USD 1400–USD
1600/USD 3000

ZX7: USD 2700–USD 3000
Z30: USD 2500–USD 4000
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Table 2. Cont.

Drone Price Flight Time
(Min)

Built-In Payload Extra Required Payload
Data

Source

DJI Matrice 300 RTK USD 13,000 55 Infrared Sensing System

ZH20 series: hybrid
multi-sensor camera USD 5000

to USD 10,000
ZP1: full-frame sensor camera:

USD 8000
[28]

MATRICE 210 RTK
V2

USD 10,000 to
USD 15,000 34 -

Z30: USD 2500–USD 4000
ZX4S: USD 600–USD 800

ZX5S: USD 1900–USD 2200
ZX7: USD 2700–USD 3000

ZXT2

Skydio 2+ USD 5000 27

Camera: Sony IMX577 CMOS
sensor and Qualcomm

RedDragon™ QCS605: 12 MP
photos,

4K60 HDR video/45 MP

-

[27]

Skydio X10 USD 15,000 40
Narrow camera: 64 MP
1” wide camera: 50 MP

Radiometric thermal:
640 × 512 px

-

Parrot Anafi USD 7000 32

Vertical camera,
ultra-sonar/2 × 6-axis IMU,

2 × 3-axis accelerometers,
2 × 3-axis gyroscopes, 4K video,

thermal

- [29]

Yuneec H520E USD 2500 28 -

E90 Camera: 1-inch CMOS
sensor, 20 MP resolution. USD

1299–USD 1499
E50 Camera: USD 1200

CGOET Camera: USD 1900

[30]

Elios 3 USD 5000 12

Visual camera and onboard
LED lighting capable of 4K

UHD videos. CMOS Effective
Pixels: 12.3

- [31]

DJI Inspire 3 USD 16,500 28 X9-8K Air - [32]

AUTEL EVO 2 PRO
RTK

USD 1500–USD
3000 40 1-inch CMOS - [33]

Annual Maintenance and Unexpected Repair Cost. In alignment with other elec-
tronic devices, the values for AMP and URC are 10% and 2% of the drone price [18,19].

Software Cost. Effective D-BCM relies on specialized software for flight planning,
photogrammetry, real-time monitoring, and data management. Manufacturers equip many
drone models with proprietary software for flight planning and real-time monitoring,
often including it in the package at no additional cost. Advanced cataloging systems,
incorporating photogrammetric 3D models of bridges, enable precise identification and
examination of specific bridge sections within inspection images [34]. Table 3 consolidates
data from various DOT reports, showcasing commonly used software solutions and their
associated costs in this field.

Table 3. Software cost used by DOTs for D-BCM.

Software Price Range DOT

Photogrammetry

Pix4D V4.8.2 USD 32–USD 291/month [16,35–38]

Agisoft Metashape V2.1.2 USD 179–USD 3500 (one-time) [38–40]

AutoCAD V25.0 USD 40/month [16,36]

ContextCapture V20 USD 3900/year [16,41]

Data Management

Airdata UAV V1.34.7 Free to USD 300/year -

Dronelogbook V10.0.6 USD 10/month -

Intel Insight V10.1 USD 99/month [16]
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Insurance Cost. According to a DroneDeploy survey, most drone service providers
choose liability insurance coverage of USD 1 million [42]. The insurance costs database
lists 12 drone insurance companies for USD 1 M coverage.

Inspection Time Saving Percentage. Table 4 details the inspection durations for each
method and lists the corresponding bridge sizes in feet [16].

Table 4. Comparison of inspection hours for D-BCM and T-BCM.

T-BCM D-BCM BS (Feet)

TBILT TABI TUBIV TBILT TABI

8 8 0 4 4 505

4 4 0.5 1 1 2740

4 4 0 4 4 45

8 8 0 4 4 1887

24 24 3 20 20 635

8 8 0 2 2 214

8 8 0 6 6 3360

12 12 0 6 6 160

4 4 0.5 3 3 1914

4 4 1 4 4 2100

8 8 0 4 4 2769

Under-Bridge Vehicle Operation. Maintenance inspections for various bridge types
require access to the upper or lower bridge areas, often utilizing under-bridge inspec-
tion vehicles. These specialized vehicles, equipped with articulated booms (sometimes
extendable to three or four booms for enhanced reach), are available in self-propelled,
truck-mounted, and trailer-mounted configurations [43]. Organizations typically rent these
vehicles daily due to their high costs, often including operator services. This case study
evaluates the costs associated with T-BCM by considering distinct vehicle types, their rental
costs (including operators), and usage probabilities using data from MnDOT. Table 5 details
vehicle categories, costs, and probabilities.

Table 5. Inspection vehicles for T-BCM, their associated costs, and usage probabilities.

Vehicle with
Operator

Probability Daily Rental (USD) Type of Inspection

Snooper Truck 30% USD 3000 Under-bridge access.

Bucket Truck 40% USD 700
Mainly used for overhead inspections where direct
access is required at a certain height. Effective for

bridge superstructure elements.

Scissor Lift 15% USD 500

Where vertical elevation is required without the
need for lateral movement.

Primarily used for low-height under-bridge areas
or decks.

Boom Lift 25% USD 1000
For both vertical and horizontal movement,

facilitating access to difficult areas of a bridge,
especially for superstructure elements.

Reduced Lane Closure. T-BCM often requires lane or road closures, increasing costs
and disruptions. Temporary traffic control measures must comply with the Manual on
Uniform Traffic Control Devices (MUTCD) and local standards. Using equipment like
UBIVs requires lane closures, incurring traffic control costs ranging from USD 500 to USD
2500 daily. Drone inspections reduce reliance on such equipment, minimizing lane closures
and associated direct and user costs. Table 6 presents the direct costs associated with
various road closure types, based on data sourced from MnDOT [16].
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Table 6. Direct costs per day for various road closure types.

Category Cost (USD)

Misc. Traffic Control (Ped. Only, etc.) USD 500

Low Speed Lane/Shoulder Closure USD 2000

Mobile Lane/Shoulder Closure USD 1500

High Speed Lane/Shoulder Closure USD 2500

4. Methodology and Modeling

Several cost components collectively shape the economic landscape of D-BCM. As
technology progresses, components, such as drone hardware, software algorithms, and op-
erational expenses, experience fluctuations. This study categorizes costs into eight groups:
drone components, ground infrastructure, personnel, maintenance, IT infrastructure, data
processing, insurance, and deployment. The cost model integrates these elements to quan-
tify total costs (Ctotal), covering acquisition, maintenance, infrastructure setup, personnel
expenses, software, data processing, insurance, and regulatory fees. This structured ap-
proach ensures transparent and systematic evaluation of the financial feasibility of D-BCM.

The following cohesive financial model consolidates these varied costs:

Ctotal =
8

∑
i=1

Ci (2)

C1 = NDP × DP + NPP × PP + NSBP × SBP (3)

C2 = GCS + GL (4)

C3 = TBILT + (TABI × NABI) + (P + NP ) + TP (5)

C4 = AMC + URC (6)

C5 =
(

NSo f t × CSo f t

)
+ CStorage (7)

C6 = PPE × NPPE × TPPE (8)

C7 = LI + IE × NIE (9)

C8 = RE × NRE (10)

The total benefits (Btotal) are the sum of contributions from various direct and indirect
benefits, as follows:

Btotal =
5

∑
i=1

Bi (11)

B1 = TBILT + (NTABI × TABI) (12)

B2 = (UBIV × TUBIV × NUBIV) + (CUBIV × NUBIV) + PUBIV (13)
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B3 = NI × CTM (14)

Crew time savings (B1) result from the reduced workforce required for drone-based
inspections compared with traditional methods. High-definition drone cameras minimize
the need for roles, such as BILT and ABI, where costs depend on the number of inspectors
and their durations. Operational vehicle cost savings (B2) stem from decreased reliance on
UBIVs. These savings include costs for fuel, wages, operational hours, maintenance, and
infrastructure expenses for vehicle facilities. Additionally, drones equipped with advanced
sensors and cameras replace specialized inspection tools like gauges or ultrasonic testing
devices, leading to tool cost savings (B3).

B4 = ISE + RISKFI (15)

RISKFI = (VSL × PF) + (VSI × PI) (16)

Drone-based inspections offer significant indirect benefits, including cost savings from
enhanced safety (B4). For example, drones reduce reliance on costly safety equipment like
harnesses and scaffolding. Drones also lower the risk of injuries or fatalities, which are more
common in traditional methods due to hazardous conditions, fatigue, and extended work
hours. This reduced risk translates into lower insurance premiums and fewer injury-related
costs. PF and PI are, respectively, the likelihood of fatality and injury during inspection.
According to the United States Department of Transportation (USDOT), the value of a
statistical life primarily finds application in health economics, transport economics, and
environmental economics [44].

B5 = LCC + TCCTotal + VOC + RISKAccident (17)

Drones minimize the need for lane or track closures during inspections (B5), reduc-
ing labor, equipment, and permit costs associated with disruptions. This accounts for
direct lane closure costs, travel time costs, vehicle operation costs, and accident risks. By
avoiding closures and delays, drones enhance operational efficiency and reduce public
inconvenience.

TTC = DV × VTTS × AVOR (18)

VOC = OP × AMTD (19)

where DV is the average delay. Wisconsin Department of Transportation (WisDOT) data
indicate that vehicles on major highways endure an average delay of 10 min (or 0.1667 h)
due to lane closures. In contrast, those on minor roads experience a five-minute delay
(or 0.0833 h) [45]. The value of travel time savings (VTTS) refers to the benefits provided
by reductions in the amount of time spent riding in a vehicle [46]. The values are based
on USDOT hourly VTTS values of USD 17.00/person-hour for personal journeys and
USD 31.90/person-hour for business trips. Accounting for the customary distribution of
88.2% personal and 11.8% business travel, the result is a blended rate of USD 18.76/person-
hour [22]. Considering the average vehicle occupancy rates (AVOR) of 1.48 persons per
vehicle during weekday peak times and 1.58 persons per vehicle in off-peak times [22], the
TTC values become USD 5.10/vehicle and USD 2.75/vehicle, respectively.

Furthermore, data from the FWHA specify an average traffic volume of 1500 vehicles
per hour on major highways during peak hours and 500 vehicles per hour on minor roads
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in off-peak times [21]. This results in an aggregate TTCTotal of USD 6915 per hour for major
highways at peak times and USD 1235 per hour for minor roads during off-peak hours.

5. Results and Discussion

5.1. Variables and Scenarios

This case study implements MCS using well-defined stochastic models to account
for uncertainties in cost and benefit estimation for D-BCM. Because actual probability
distributions for these variables may be incomplete due to limited observational data,
statistical distribution fitting techniques model their variability. The selection of probability
distributions is based on empirical data, industry reports, and expert judgment.

This study tests several statistical models to determine the best-fit distributions for
each variable. Right-skewed distributions (such as log-normal, gamma, or Weibull) model
cost-related variables based on their potential for extreme values and increasing costs
over time. Normal and uniform distributions model benefit-related variables under the
assumption of symmetrical variability. Goodness-of-fit tests (such as the Kolmogorov–
Smirnov test, the Anderson–Darling test, and the Akaike Information Criterion) validate
the distributions, ensuring that the simulated data closely match observed real-world
distributions.

After defining the probability distributions, the Monte Carlo model randomly sam-
pled from these distributions over 10,000 iterations, generating a large set of potential
outcomes. This process quantified uncertainty and risk in D-BCM implementation, offering
a probabilistic assessment instead of a single deterministic estimate. The model assumes
independence among most cost and benefit factors, except where empirical data suggest
correlation.

To strengthen the MCS, empirical distributions derived from actual data are compared
to simulated distributions, ensuring accurate representation of stochastic variability. This
enhances the reliability of the cost–benefit analysis for decision making. Figure 2 presents
the results of the 10,000 MCS trials, displaying the mean, standard deviation (SD), and
probability distribution type for each variable.

As mentioned earlier, AMC and URC, expressed as percentages of the drone price,
are represented using mean and standard deviation within a log-normal distribution to
capture their skewed nature. However, due to limited data, full probability distributions
could not be derived from VO and LCC. Instead, these variables are treated as discrete
probabilities rather than continuous distributions, ensuring that the model incorporates
uncertainty without overfitting to insufficient or unreliable data. Table 7 presents these
three variables along with their statistical details.
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Figure 2. Comparing actual and simulated distributions of stochastic variables and their distribution
type, mean, and SD.

Table 7. The stochastic variables of D-BCM and their distribution statistics.

Variable μ σ Distribution

AMC and URC 1202.17 3151.33 Log-Normal

VO 3588 2705 Probability

LCC 1391 1133 Probability

The sensitivity analysis of drone price uses trends in smartphone pricing as a bench-
mark for predicting drone price evolution. It assumes drones might adopt a similar
price trajectory as smartphones, based on technological progress and market penetration.
Figure 3 presents historical smartphone pricing trends from the application to smartphones
report [47].
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Figure 3. Changes in smartphone price over time.

In the short term (2023–2028), the present study predicts that drones will advance
in AI, autonomy, and navigation as FAA regulatory updates enable more beyond visual
line of sight operations. Energy storage may improve slightly, and consumer drones will
likely become more user-friendly, differentiating them from commercial models. Following
smartphone pricing trends, drone prices may increase by a mean of 40% with a 20%
variance.

In the midterm (2028–2033), further AI developments and automated fleet manage-
ment are anticipated, boosting drone adoption for inspections and logistics. This study
expects the consumer drone market to stabilize with standardized technology and pricing,
leading to a +70% mean price change and a +10% variance. In the long term (2033+),
universal regulations and advanced AI autonomy will enable complex operations and
broader applications, with the market maturing into diverse offerings. Analysts forecast
a mean price change of −20% and a variance of −5%. Figure 4 illustrates these trends,
showing higher prices in the short term and midterm and balancing in the long term with
stable, diverse options for varied needs.

Figure 4. Histograms of sensitivity analysis of DP.
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5.2. Stochastic Investment Costs

This case study models the investment cost (DI) using the following equation:

DI = DLog

(
μDP, σ2

DP

)
+ DLog

(
μPP, σ2

PP

)
+ TP + C2 + SD + RE (20)

Here, DI represents the distribution of I, derived from 10,000 MCS. Figure 5 illustrates
the empirical distribution of I, revealing a mean cost of USD 18,788.63, a median cost of
USD 15,483.40, and a mode of approximately USD 8124.33. The standard deviation of
USD 11,214.13 indicates significant cost variation, with half of the values between the 25th
percentile (USD 12,272.6) and the 75th percentile (USD 21,362.03). The histogram displays
68% and 95% confidence intervals, highlighting likely cost boundaries. The right-skewed
distribution suggests costs are more concentrated near the mode but with occasional spikes
in the longer tail. Most costs fall below USD 30,000, aligning with the median and providing
stakeholders with reliable cost expectations.

Figure 5. Distribution of investment cost.

5.3. Stochastic Cost and Benefits per Inspection

The present research used stochastic variables to model the costs per inspection for
both D-BCM and T-BCM. For D-BCM, inspection costs (DCS) depend on inspection time,
data processing, and battery price, with deterministic inputs, such as wages for BILT, ABI,
and PPE, calculated as

DCS = DW(λSBP, kSBP) +
(

DW
(
λTPPE , kTPPE

)× PPE
)
+
(

DG

(
μITSP , σ2

ITSP

)
× (BILT + ABI)

)
(21)

For T-BCM, inspection costs (DB) account for stochastic UBIV costs and deterministic
variables, calculated as

DB = ∑i∈{1,4,5} Bi + P
(

μUBIV , σ2
UBIV

)
(22)

The analysis used MCS to compare cost distributions for both methods. Figure 6
shows the results, with D-BCM demonstrating a median cost of USD 1770, significantly
lower than T-BCM’s USD 7216. Quartile values reinforce this trend; D-BCM costs remain
below T-BCM across all percentiles, peaking at USD 4870 compared with USD 9716.
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Figure 6. Distribution of D-BCM and T-BCM cost per inspection.

The standard deviation for D-BCM is USD 653.85, indicating more consistent costs
than T-BCM with USD 1258.37. Kurtosis values highlight differences in distribution shapes,
with D-BCM showing a leptokurtic distribution (3.01), while T-BCM displays a platykurtic
one (2.39). The 95% confidence interval further emphasizes the advantage of D-BCM, with
costs likely between USD 532.81 and USD 3117.12 compared with between USD 5216.5 and
USD 9716.5 for T-BCM.

The findings illustrate the financial superiority of D-BCM, offering lower and more
predictable costs. Hence, adopting D-BCM can provide substantial savings, particularly for
large-scale or recurring inspections.

5.4. Net Saving

The net savings distribution (DNS) reflects the cost difference between T-BCM and
D-BCM, calculated as

DNS = DB − DCS (23)

MCS reveal an average net savings of USD 5043 per inspection, with a median of
USD 4935. Most outcomes fall between the first quartile (USD 3997) and the third quartile
(USD 5983), with a maximum saving of USD 9271. Variability, indicated by a standard
deviation of USD 1435.83, remains moderate. The dataset exhibits a skewness of 0.243 and
a kurtosis of 2.5, indicating a slightly right-skewed distribution with fewer outliers. The
95% confidence interval, ranging from USD 2512.42 to USD 7912.54, highlights consistent
financial advantages of drone-based methods.

5.5. Net Present Value

The net present value (NPV) distribution (DNPV of First Inspection) for the first inspection
combines investment, cost, and benefit distributions:

DNPV of First Inspection = (DI + DCS)− DB (24)

The first inspection yields a median NPV of −USD 11,538, with a significant stan-
dard deviation of USD 13,157.72 and a left-skewed distribution (skewness: −4.03). The
95% confidence interval (−USD 43,833 to −USD 4275) confirms predominantly negative
NPVs initially. Annual NPV analysis for 10 inspections shows a shift to positive returns,
calculated as

DNPV = (DI + (DCS × 10) + (D V × 12))− (DB × 10) (25)

The average annual NPV increases to USD 31,600, with reduced variability (SD: USD
12,849.6) and a symmetric distribution (skewness near zero). The confidence interval (USD
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45,481 to USD 64,569) emphasizes the long-term financial benefits of D-BCM, highlighting
their cost-effectiveness as cumulative inspections offset initial expenses. Figure 7 compares
the distribution of NS, NPV of the first inspection, and NPV of the 10th inspection.

Figure 7. Distribution of (a) NPV of the first inspection, (b) net saving, (c), and NPV of the 10th
inspection.

5.6. Benefit–Cost Ratio

Figure 8 compares the benefit–cost ratio (BCR) distribution (DBCR of first Inspection) for the
initial and 10th inspections, calculated as

DBCR of First Inspection = DB/(DI + DCS) (26)
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DBCR = (DB × 10)/(DI + (DCS × 10) + (D V × 12)) (27)

Figure 8. The BCR distribution of (a) the first and (b) the 10th inspections.

In the first inspection, the distribution is unimodal with a slight rightward skew, as the
mean (0.38) exceeds the median (0.37), with a skewness of 0.31. Most values cluster near
the mean within the 68% interval, while the 95% interval captures broader variability. The
model aligns well with observed data, as shown by the red curve matching the median.

The distribution for the 10th inspection shows a similar unimodal shape but with
increased skewness (0.89), as the mean (1.87) surpasses the median (1.79). Greater variability
is evident, with a standard deviation of 0.60 compared with 0.13 for the first inspection.
The 95% interval expands from [0.13, 0.68] to [0.91, 3.28], indicating growing uncertainty
over time.

The skewness and variability of the BCR increase from the first to the 10th inspection,
reflecting greater potential for high or varied BCR values. This trend suggests that repeated
inspections yield a broader range of benefit–cost outcomes, driven by changes in costs,
benefits, or both.

5.7. Cost–Benefit Measures

The NPV calculates the difference between current benefits (Bi) and costs (Ci) over
a specific timeframe, indicating cost effectiveness. A positive NPV signifies profitability,
while a negative value suggests otherwise. Among multiple alternatives with positive
NPVs, the option with the highest value yields the greatest return. The NPV formula is

NPV = ∑Y
i=1

Bi − Ci

(1 + r)i (28)

Here, r is the discount rate, i is the year, and Y is the total payback period. Bi includes
benefits, such as reduced lane closures, improved safety, and cost savings from T-BCM.
Costs (Ci) are derived as

∑Y
i=1 Ci = I + CS + CV + C4 (29)

where I is the investment cost (C1 + C2 +TP + CSD), CS is the inspection cost ((C3 − TP) +

C6 +SBP), and CV is the monthly deployment cost (CV = C5 + C7).
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The BCR measures the ratio of benefits to costs. A BCR above 1 indicates cost effec-
tiveness, with higher values denoting greater returns. For multiple alternatives, the option
with the highest BCR is preferred. The BCR formula is

BCR =
∑Y

i=1
Bi

(1+r)i

∑Y
i=1

Ci
(1+r)i

(30)

The USDOT (2023) recommends using a real discount rate of 7% per year to discount
monetized benefits and costs to their present value, excluding inflation effects [22]. This
case study adopts a 10-year duration, reflecting the anticipated operational lifespan of
current drone technologies [48].

5.8. Case Scenario

This scenario assumes an eight-hour traditional inspection time. The simulation
identified a 75% reduction in inspection time (ITSP), reducing drone-based inspection
time to two hours. Table 8 shows that the initial costs for D-BCM are USD 14,605.99
compared with USD 1528.78 for T-BCM. The NPV for the first inspection is negative (−USD
9011.45), and the BCR is 0.44, indicating non-cost-effectiveness at the outset. However, the
cumulative NPV turns positive after the second inspection, as shown in Table 9.

Table 8. NPV and BCR of the first D-BCM (snapshot: September 2023).

Investment
Cost Area Cost (USD) Costs Area Time Cost (USD) Benefits Area Time Cost (USD)

Drone 5000 SBP 2 h 22.62 TBI 8 h 960

Payload 1850.99 CostSoft 1 month 260 TABI 8 h 1200

Training Pilot 2575 LI 1 month 126.16 UBIV 1 h 1056.82

GCS 5000 BILT 2 h 300 LCC 1 h 1850

Memory Card 180 ABI 2 h 240 RiskFI 1 day 431.5

Registration
Cost 5 PPE 4 h 480 ISE 1 inspection 275

CostStorage 1 month 100 TTC 1 h 1235

VOC 1 h 115

Total 14,605.99 1528.78 7123.32

NPV −9011.45

BCR 0.441488785

Table 9. The payback inspection and return rate.

Payback Inspection Cumulative NPV Return Rate

1 −9011.45 −61.72%

2 −3416.91 −23.40%

3 2177.63 14.92%

4 7772.17 53.23%

5 13,366.71 91.54%

6 19,961.25 136.64%

7 26,555.79 181.75%

8 33,150.33 226.86%

9 39,744.87 271.97%

10 44,755.41 306.51%

The analysis evaluates 10 inspections annually over a 10-year period with 3% and
7% discount rates. The five-year lifespan of drones requires two investments. At both
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rates, the first-year NPV is USD 39,797, with BCRs of 2.27 for investment years and 4.23 for
subsequent years (Tables 10 and 11).

Table 10. NPV and BCR analysis for a 10-year time horizon at a 7% discount rate.

Year Project Year
Discounted
Investment
Cost at 7%

Discounted
Monthly

Costs at 7%

Discounted
Mainte-

nance Costs
at 7%

Discounted
Costs per

Inspection
at 7%

Discounted
Benefits per
Inspection

at 7%

Discounted
NPV at 7%

BCR

2023 0 14,605.99 5833.92 570.00 10,426.20 71,233.20 39,797.09 2.26

2024 1 0 5452.26 532.71 9744.11 66,573.08 50,844.00 4.23

2025 2 0 5095.57 497.86 9106.64 62,217.83 47,517.76 4.23

2026 3 0 4762.21 465.28 8510.88 58,147.50 44,409.12 4.23

2027 4 0 4450.66 434.85 7954.09 54,343.46 41,503.85 4.23

2028 5 10,413.86 4159.50 406.40 7433.73 50,788.28 28,374.78 2.26

2029 6 0 3887.38 379.81 6947.41 47,465.68 36,251.07 4.23

2030 7 0 3633.07 354.96 6492.91 44,360.45 33,879.50 4.23

2031 8 0 3395.39 331.74 6068.14 41,458.37 31,663.09 4.23

2032 9 0 3173.26 310.04 5671.16 38,746.14 29,591.67 4.23

Table 11. NPV and BCR analysis for a 10-year time horizon at a 3% discount rate.

Year Project Year
Discounted
Investment
Cost at 3%

Discounted
Monthly

Costs at 3%

Discounted
Mainte-

nance Costs
at 3%

Discounted
Costs per

Inspection
at 3%

Discounted
Benefits per
Inspection

at 3%

Discounted
NPV at 3%

BCR

2023 0 14,605.99 5833.92 570.00 10,426.20 71,233.20 39,797.09 2.26

2024 1 0 5664.00 553.39 10,122.52 69,158.44 52,818.52 4.23

2025 2 0 5499.02 537.27 9827.69 67,144.12 51,280.12 4.23

2026 3 0 5338.86 521.63 9541.44 65,188.46 49,786.52 4.23

2027 4 0 5183.36 506.43 9263.54 63,289.77 48,336.43 4.23

2028 5 12,599.25 5032.39 491.68 8993.73 61,446.38 34,329.32 2.26

2029 6 0 4885.81 477.36 8731.77 59,656.68 45,561.72 4.23

2030 7 0 4743.51 463.46 8477.45 57,919.11 44,234.68 4.23

2031 8 0 4605.35 449.96 8230.53 56,232.14 42,946.29 4.23

2032 9 0 4471.21 436.85 7990.81 54,594.31 41,695.43 4.23

Figures 9 and 10 highlight the cost advantage of D-BCM, which consistently out-
performs traditional methods. The savings grow significantly under a 7% discount rate,
demonstrating greater cost efficiency for D-BCM over time.

Based on the 15-year changes in drone prices discussed earlier, this scenario adjusts
drone prices in the investment component every five years. Additionally, the model re-
simulates all stochastic variables every five years using MCS to generate new random
values. However, benefits, costs, and inspection durations—eight hours for T-BCM and
two hours for D-BCM—remain constant. Table 12 presents the sensitivity analysis of NPV
and BCR values, highlighting the financial feasibility of drone investments. A negative
NPV and a BCR below one indicate that the initial investment may not yield immediate
returns.
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Figure 9. Ten-year NPV projection comparing 3% and 7% discount rates.

Figure 10. Comparative 10-year cost analysis of T-BCM and D-BCM at 3% and 7%.

Table 12. Statistics of sensitivity analysis (USD).

DP NPV BCR Investment
Costs Monthly Costs

Maintenance
Costs

Short Term 10,363.19 −15,245.725 0.318445 20,784.19 505.31 380

Midterm 12,365.81 −19,180.20417 0.270812 24,751.81 466.51 851

Long Term 5911 −10,765.20083 0.398206 16,382 468.57 199.5

Table 13 highlights the downward trend of NPV over time. This suggests limited
gains initially but improved outcomes with sustained drone use. The sixth year shows a
significant dip, with the midterm drone purchase yielding a more negative NPV, reducing
profitability. However, in the long term, the NPV improves and the BCR approaches 0.4,
driven by lower drone prices.
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Table 13. NPV analysis of DP scenario at a 7% and 3% discount rate (USD).

Calendar Year NPV Discounted at 7% NPV Discounted at 3%

2023 33,209.83 33,209.83

2024 50,461.70 52,421.37

2025 47,160.46 50,894.54

2026 44,075.20 49,412.17

2027 41,191.77 47,972.98

2028 29,636.14 35,855.38

2029 35,937.18 45,167.22

2030 33,586.15 43,851.67

2031 31,388.93 42,574.44

2032 29,335.45 41,334.41

2033 25,592.53 36,802.86

2034 25,920.51 39,414.47

2035 24,224.78 38,266.47

2036 22,639.98 37,151.92

The 15-year sensitivity analysis of drone prices provides insight into the economic
impact of adopting drone technology. Although initial investments may not yield imme-
diate profits, consistent benefits and long-term cost reductions can make the initiative
economically viable. Hence, balancing upfront costs with long-term gains and strategic
opportunities is essential.

6. Conclusions

This study develops a quantitative framework to evaluate the cost efficiency and
effectiveness of drone-based condition monitoring (D-BCM) compared to traditional bridge
inspection methods (T-BCM). By integrating Monte Carlo simulation (MCS) and proba-
bilistic modeling, the analysis captures the stochastic nature of cost and benefit variables,
providing a data-driven foundation for decision making in drone adoption in infrastructure
monitoring.

The findings show that while initial investments in drones, software, and training may
be substantial, long-term savings in operational costs, inspection time, and safety-related
expenses outweigh these costs. D-BCM significantly reduces lane closures, workforce
requirements, and reliance on under-bridge inspection vehicles (UBIVs), making it a cost-
effective alternative for transportation agencies. Monte Carlo results confirm the financial
sustainability of drone investments, indicating that technological advancements and market
trends will likely lower acquisition and operational costs over time, further enhancing
economic feasibility.

Despite these advantages, drones cannot fully replace traditional inspection methods
due to their inability to perform tactile, subsurface, or underwater assessments. Addi-
tionally, airspace regulations, operator training, and data processing challenges must be
addressed for seamless integration into routine infrastructure monitoring.

Future research should explore AI-driven automation, advanced sensor technologies,
and regulatory frameworks to enhance drone efficiency and expand applications in bridge,
highway, and railway asset management. Further validation through real-world pilot
studies and comparative analyses across multiple infrastructure types would strengthen
the generalizability of the findings.

By providing a rigorous cost–benefit analysis, this study supports informed decision
making for policymakers, transportation agencies, and industry stakeholders, enabling
strategic investments in drone technologies to improve the efficiency, safety, and sustain-
ability of infrastructure inspections.
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Abstract: Pavement materials like hot mix asphalt (HMA) and cold recycled mixes (CRMs)
are typically considered isotropic. This study evaluates the anisotropy of a cold in-place
recycled (CIR) material using the shear wave velocity (Vs) parameter. The piezoelectric
ring actuator technique (P-RAT) is utilized to assess the Vs parameter in three directions in
CIR slabs. Similarly, the ultrasonic pulse velocity (UPV) technique is employed to measure
P-wave velocities. Both methods evaluate mechanical properties in multiple directions.
Complex modulus tests are conducted to link velocities results to |E*| modulus. Finally,
computed tomography (CT) scans are performed on the specimens in order to evaluate
anisotropy resulting from aggregate alignment. The Vs obtained using P-RAT and the
Vp from UPV indicate anisotropy, as the wave velocities differ across the three directions.
Differences range from 0.6 to 11.6% in Vs, influenced by measurement location. UPV results
are analysed in relation to the |E*| modulus master curves, demonstrating that the first
peak arrival time for the P-wave corresponds with the master curve. CT scan analysis
reveals that the aggregates tend to be more aligned in the direction of the compacting
wheel’s displacement, which also highlights anisotropy.

Keywords: anisotropy; shear wave velocity (Vs); cold recycled asphalt material; frequency
analysis; CT scan

1. Introduction

Cold recycled materials (CRMs) have been employed for several years in the reha-
bilitation of pavement. They offer an economical and ecological way of renewing upper
layers through cold in-place recycling (CIR) techniques or of correcting deeper default by
using full-depth reclamation (FDR). However, the evolutive mechanical properties of CRMs
make their behavior difficult to precisely analyze over time. For instance, CIR materials are
composed of 100% reclaimed asphalt pavement (RAP), to which a binder in the form of
asphalt emulsion or foamed asphalt is added to enhance mechanical resistance. At early
ages, considering actual humidity and added water during mixing, CIR mixtures contain a
great amount of water. While curing, the water content in the mixture decreases, resulting
in an increase in the stiffness of the material. The cure brings the CIR behavior closer to
that observed in hot mix asphalt (HMA). The characterization of CRMs is of interest and is
covered by many researchers. It appears that, as with HMA, CRMs are typically regarded
as isotropic. While a few studies have evaluated the validity of this assumption in HMA,
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as of the time of writing this article, no studies have specifically addressed this hypothesis
for CRMs.

However, the compaction process may result in a stress-dependent anisotropy in
the material, as the aggregates are rearranged in a specific manner to reach the targeted
void ratio. This anisotropic behavior observed in both HMA and CRM could impact the
methodology and interpretation of laboratory testing in academic research and quality
control. Indeed, some measurements depend on what is being measured and the nature of
the test being performed, as well as the way it is performed, thus, the characterisation of
anisotropy has practical implications.

2. Objectives

The main objective of this study is to demonstrate the applicability of the shear wave
velocity (Vs) parameter to evaluate the anisotropic behavior of a CIR material using the P-
RAT. It is compared with the UPV technique. Also, the relationship between the anisotropic
behavior and the orientation of the aggregate obtained by 3D image analysis is evaluated.
The final objective here is to link the wave velocity results with the complex modulus.

3. Background

Numerous studies have been carried out on CRMs to improve the global knowledge,
either to better understand compaction and mixing temperature [1–3] or to evaluate the
influence of components on the mechanical behavior of the mix [4–6]. These studies use
mechanical testing methods. As such, the complex modulus test (E*) is used to evaluate
the dynamic modulus, for both CRMs [5,7,8] and HMA [9–11]. These previous studies
have focused specifically on the anisotropic behavior of HMA. However, pavement is often
regarded as an isotropic material, implying that the mechanical properties of the material
are identical in all directions.

In the field of geotechnical engineering, two types of anisotropy are generally con-
sidered [12,13]. Inherent anisotropy is directly linked to the materials and the manner
of their constitution (gravity, natural deposition, for instance). Induced anisotropy, on
the over hand, is stress-dependent and related to external actions. According to Masad
et al. [14], Underwood et al. [15], Bhasin et al. [16], and Alanazi et al. [17], the two types
of anisotropy exist in bituminous materials, as they are bound granular materials. The
inherent anisotropy would be related to aggregate orientation, aggregate contacts, and air
void distribution and orientation. The use of CT scanning provides means to evaluate this
anisotropy in HMA [16–19] and granular materials [20]. The orientation and distribution of
aggregates in HMA has been evaluated by Hassan et al. [18] and Huang et al. [19] and an
orientation perpendicular to the direction of compaction was observed. Quinteros et al. [20]
quantified the anisotropy with the particles orientation.

Bhasin et al. [16] showed that bitumen mastic also presents a perpendicular orientation
to compaction direction and that the addition of coarse aggregate tends to modify this
preferential orientation. This would possibly lead to induced compaction anisotropy.
Alanazi et al. [17] showed that anisotropy decreases as compaction increases and that the
compaction method influences the anisotropy.

The induced anisotropy would be considered as a damaged-induced anisotropy, as
the accumulation of damage modifies the structure of the specimen. This anisotropy occurs
when tested under confinement pressure, for instance. Underwood et al. [15] and Alanazi
et al. [17] show that as the confinement pressure increases, the anisotropy evolves, as the
air void and aggregates contacts are modified. However, in these studies the anisotropy
was evaluated by a ratio of radial and axial strains, and the deformations were found to be
quite high and, therefore, away from the small strain domain.
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Underwood et al. [15] show that HMA exhibits directionally dependent properties, es-
pecially in the case of compression tests. The testing temperature influences the anisotropic
behavior. Alanazi et al. [17] confirm these findings, and also show that a greater nominal
maximal aggregate size increases the anisotropy. Moreover, for a similar mixture, a greater
air void ratio results in a more pronounced anisotropy. The following studies did not
described anisotropy as inherent nor induced. Pham et al. [9] investigated the behavior
of HMA and warm mix containing RAP. They determined that complex Poisson ratio
can be considered as transverse isotropic. Di Benedetto et al. [10] studied the complex
modulus and Poisson ratio in three dimensions of HMA. The modulus in the three direc-
tions exhibited a difference of up to 25%. With regard to the complex Poisson ratio, the
difference could reach up to 100%, but the authors mentioned that this measurement is
delicate. They concluded that the specimens can be considered as orthotropic. Nguyen
et al. [11] conducted E* tests on specimens cored from a slab in three directions. This
allowed them to compare E* and ν* in these three directions. The 2S2P1D model for the
three directions gave identical parameters, with exception of E00, E0 ν00, and ν0. Differences
in the value of E* and ν* in the three directions show anisotropy in the mix. The normalized
curve of E* and nu* can be considered as identical. Benedetto et al. [21] highlighted that
specimens compacted with a slab compactor and with a shear gyratory compactor (SGC)
exhibited anisotropic behaviors, but with inverted characteristics. A wave-based method
was employed to evaluate the compressive velocity (Vp) in three directions. In considering
the axis along which the compaction energy is applied (Z), the transverse axes (X and Y),
and the compressive velocity (Vp axis) in the aforementioned direction, it can be observed
that for the cylinder specimen, VpX and VpY are equal and lower than VpZ. In contrast, for
the slab specimen, VpX and VpY remain equal but higher than VpZ.

3.1. Wave-Based Methods

Wave-based methods are non-destructive and, for most of them, non-intrusive. These
methods have been used to characterize various construction materials, such as concrete,
soils, or bituminous materials. Mechanical wave-based methods employ compression or
shear waves for testing. The ultrasonic pulse velocity (UPV) method, such as the portable
ultrasonic non-destructive digital indicating tester (PUNDIT), is extensively used and
primarily relies on compression waves, although shear waves may be used occasionally [22].
In this method, sensors are placed on opposite ends of the material being tested. These
sensors transmit and receive signals that propagate through the material. By measuring the
travel distance and flight time of the signals, the velocity of the waves can be determined.
This method operates in the temporal domain.

To obtain the time of flight, the arrival time of the received signal is compared to a
reference time of the emitted signal. However, there is no consensus regarding the precise
method for obtaining this time of flight [23,24]. Indeed, one can choose to set the reference
time of the emitted signal at the first arrival or at the maximum peak of it. As well, one
can choose to set the arrival time of the received signal at the first arrival, first peak, or
maximum amplitude peak [22,25–29]. Figure 1 shows an example of such a dilemma.
Depending on which of the precedent is chosen, the time of flight drastically changes, along
with the wave velocity. Moreover, the near-field effect can occur when using S-wave [30].

Wave-based methods require signal processing, so time-domain methods such as UPV
provide a straightforward and convenient solution, rendering them attractive as initial
approximations. However, when it comes to characterizing materials and monitoring
the evolution of mechanical parameters, the requisite level of precision may warrant the
utilization of more intricate techniques, such as frequency-domain methods.
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Figure 1. Example of input signal and received signal.

Unlike time-domain methods that concentrate on analyzing temporal signals,
frequency-domain methods involve decomposing the signal into multiple harmonics using
discrete Fourier transform. This decomposition allows for extracting valuable information
such as the frequency spectrum, resonant frequency, and even the phase shift [22,30,31].
Although these methods entail more calculations, their signal processing is objective and
offers means of verification.

3.2. The P-RAT

The piezoelectric ring actuator technique (P-RAT) method, developed at Sherbrooke
University, was initially used for geotechnical applications [30,32]. It is based on the cross-
correlation method, which determines the shear wave velocity by comparing the emitted
and received signal at different frequencies. The P-RAT method uses spectral analysis of
elastic shear waves propagating in a specimen. Back calculations provide the shear wave
velocity Vs instead of the phase velocity Vph, which is obtained via the cross-correlation
method and correction of phase-shift produced by emitter–receiver sensors. Unlike the
phase velocity, which varies with frequency, the shear wave velocity is an intrinsic material
parameter that should remain constant irrespective of the frequency.

In the P-RAT configuration, piezoelectric transducers are used. They are composed
of a metal cylinder fitted inside a piezoelectric ring using epoxy. The piezoelectric ring
is welded on each side to a shield wire, which transfers the electrical pulses of varying
forms and parameters to the ring. Due to the piezoelectric nature of the ring’s material,
these pulses induce radial deformation of the rings. This enables the generation of shear
waves. Two transducers are used at a time, with one serving as emitter and the other as the
receiver. The signals are analyzed with a dedicated Labview program, and the shear wave
velocity (Vs) is obtained. Details may be found in Karray et al. [30] and Lecuru et al. [33,34].

P-RAT has been successfully used to characterize CIR material at young age [33,34],
due to its use of mechanical shear waves that do not propagate into water. P-RAT appears
to be suitable for such utilization. Moreover, P-RAT has been employed to characterize
soils [30,32] and concretes at an early age [35–37]. Elbeggo et al. [32] demonstrated the
robustness of the P-RAT in clays, by using different actuators and different set-ups in two
distinct laboratories. Finally, the use of P-RAT focuses on very small strain, allowing the
operator to consider the test as being performed in the elastic domain [38]. The P-RAT’s
transducers characteristics and the methodology of the test allows measuring Vs in different
directions on a single specimen, if the shape of the specimen permits it.
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4. Materials and Methods

The study is composed of three different parts. The first part consists of Vs measure-
ment in sections of a slab in three directions with the P-RAT and UPV techniques. The
second part consists of conducting complex modulus tests on cylinders cored from these
slab sections. Finally, the third part consists of performing CT scans on the same cylinders
to evaluate the aggregates orientation. Figure 2 displays a schematic representation of the
experimental campaign, with a detailed description of each part in the subsequent sections.

 

Figure 2. Schematic of the experimental campaign.

4.1. Materials Used and Specimens

The tested specimens are two CIR materials slabs. The first one is composed of 100%
RAP material (0–10 mm) with 2% added bitumen in the form of asphalt emulsion, 6% added
water, and 1% cement. The second slab is composed of 100% RAP material (0–20 mm) with
2% added bitumen in the form of asphalt emulsion (CSS-1, from McAsphalt, Toronto, ON,
Canada) and 2% added water. All the mentioned percentages are related to the mass of
RAP. The components were stored at room temperature and the RAP was not oven dried.

The slabs were compacted with a LPC French wheel compactor, following the proce-
dure, although in the case of CIR materials, no metal wheel was used. The slab dimensions
are 600 × 400 × 130 mm and 500 × 180 × 110 mm for slab 1 and slab 2, respectively. Slab 1
and slab 2 were cured in an oven at 40 ◦C for 25 and 10 days, respectively. After curing,
the slabs were left in a freezer for 24 h to facilitate the cutting process. The slabs were cut
in 15 sections of 105 × 105 × 130 mm and 4 sections of 110 × 140 × 110 mm blocs for
slab 1 and slab 2, respectively. Figures 3A and 3B present schematic views of slab 1 and
slab 2, respectively.

The sections are referred to by the name of the slab and the number of the section,
according to Figure 3. Section 4 from slab 2 is referred to as Slab2_4, for instance. Some
sections were also covered with a bitumen mastic on each side to assess the improvement
in contact and its influence on the P-RAT measurement. The bitumen mastic was made of
1
4 bitumen (PG 58S-28) for 3

4 sand (concrete sand), by mass.
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Figure 3. Schematic view of: (A) slab 1; (B) slab 2; (C) real specimens after curing and cutting, slab 2.
The sections are identified by their numbers.

Four cylinders of diameter 75 mm were cored from the sections of slab 2 in direction 3,
as E* tests are usually performed with cylindrical specimens with a 1

2 diameter to length
ratio. The four cylinders are designated specimens Slab2_1C to C_Slab2_4C, according to
the section from which they were cored from.

Slab 1 was compacted to a targeted void ratio of 20%.
The bulk density was calculated according to LC-26-040 [39] by volumetric means

due to the void ratio being larger than 10%. There is a lack of materials on the edge of
the sections/cylinders due to cutting process. Therefore, the bulk densities are underes-
timated, and the resulting air void ratios are overestimated. The 3D analysis provides
the air void ratio, without considering the edges of the specimens. The bulk density of
specimen Slab2_2 to Slab2_4, their estimated void ratio, and calculated void ratio with 3D
analysis are presented in Table 1. Due to damages on specimen Slab2_1C, no 3D analysis
was performed.
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Table 1. Information on sections of slab 2.

Method Specimen Slab2_1C Slab2_2C Slab2_3C Slab2_4C

LC 26-040
Volumetric bulk
density (g·cm−3) 1.910 1.940 1.985 1.900

Air void ratio (%) 24.1 22.9 21.1 24.5

Three-dimensional
analysis

Air void ratio (%) N.A. 17.2 16.5 17.1

Calculated bulk
density (g·cm−3) N.A. 2.084 2.102 2.086

4.2. P-RAT Anisotropy Measurements

The tests were conducted uniformly across all tested sections. The objective of the
study is to evaluate the anisotropic behavior of the CIR material. To this end, each block
was tested in 3 different directions (dir. 1, dir. 2, and dir. 3), according to Figure 3.

Different pairs of transducers were used in this study. As shown in Lecuru et al. [33],
the dimensions of the transducer do not influence the results significantly, although for
smaller transducer size, wave diffraction can occur if the aggregate diameter exceeds the
transducer wavelength [37]. Still, three main different transducer pairs were used in this
study for control purposes and to ensure reproducibility. The designation of the transducers
refers to the outer–inner diameter, namely 19–16 mm, 26–22 mm, and 36–31 mm. The inner
stones of the transducers are made of four-quarter aluminum cylinders. Other transducers
were used in the case of slab 1, mostly for testing newly made transducers or enhanced
former transducers. Some of the transducers are encased in a plastic capsule, which
mitigates the stress on the transducer during testing.

Transducers are positioned with care, ensuring that they are correctly aligned with
one another. One transducer, acting as the emitter, is connected to a signal generator,
Handyscope HS3 100 MHz (TiePie Engineering, Sneek, The Netherlands). The second
transducer, acting as the receiver, is connected to another entry of the same apparatus,
which also act as an oscilloscope. An amplifier, 7602M from Krohn-Hite (Brockton, MA,
USA), is used on the generator side. The Handyscope is operated by a personal computer
on which one can observe the emission and the reception signals. The form, amplitude,
and frequency of the input signal are selected on the computer.

A single pair of transducers was used at a time, a rubber band was used to hold the
transducer onto the specimens. Each pair was positioned in the same location, at the center
of the surface. If the contact at this spot is insufficient to ensure optimal signal quality, the
transducers are repositioned a few millimeters away. For repeatability and control concerns,
signals of different shapes and frequencies are used when testing the specimen with a
given transducer pair. To remove potential noise in an individual signal, the signals are
sent eight times and stacked. Every specimen was tested at room temperature, and under
the same conditions. A total of 1334 and 703 signals, without considering the stacking
steps mentioned earlier, were collected for slab 1 and slab 2, respectively, considering all
pairs of transducers used. Finally, these signals are then analyzed with a dedicated P-RAT
software (version 2) developed in LabView (National Instruments, Austin, TX, USA) with
the aforementioned concept obtained from Sherbrooke University [30].

4.3. UPV

The PUNDIT PL-200 device (ScreeningEagle, Zurich, Switzerland) is a device mainly
employed in the monitoring of concrete materials via UPV. The Pundit device was used
to monitor the P-wave and the S-wave in the tested specimens. To ensure good contact
between the specimens and the sensors, coupling media was used as recommended by
the PUNDIT supplier. The sensors used for the generation and reception of P-waves and
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S-waves have a resonant frequency of 54 and 250 kHz, respectively. Each sensor was
manually held in place to ensure a sufficient contact with the tested specimen, and the
sensors were kept aligned. The results have been analyzed in the Pundit software (PL-Link,
version 3).

To obtain the S-wave flight time, one has to compare the received P-wave signal with
the received S-wave. Indeed, even with a dedicated S-wave sensor, a weaker P-wave
is generated. The following study investigates three different configurations regarding
the arrival time of the received signal: first arrival, first peak, and second peak. There is
no information on the nature of the input signal generated by the Pundit PL-200 device.
Therefore, the flight time of either the P-wave or the S-wave is taken as shown in Figure 1,
as instructed by the Pundit method.

4.4. Complex Modulus E*

The linear viscoelastic behavior of the cored cylinder was evaluated by dynamic
tension–compression tests. Sinusoidal cyclic axial loads were applied with a hydraulic press
(MTS) in a controlled deformation mode. The amplitude of the deformation was selected to
be around 50 μm/m. The cylinders were glued to metallic caps using epoxy and equipped
with three extensometers of 50 micrometer in the axial direction and temperature probes.

Specimens Slab2_3C and Slab2_4C were tested at 1, 0.3, 0.1, 0.03, and 0.01 Hz at 40,
30, 20, 10, 0, −10, and, −20 ◦C; and 25, 15, 5, −5, −15, −25, and −35 ◦C for specimen
Slab2_3C and with the last array of temperature for Slab2_4C. The experimental results
were analysed using the 2S2P1D model, which is a linear viscoelastic model composed of
two springs, two parabolic elements, and one dashpot [9–11,40,41]. More details can be
found in the mentioned references. The following equation is used to calculate the complex
modulus E*:

E*
2S2P1D(ω) = E00 +

E0 − E00

1 + δ(jωτE)
−k + (jωτE)

−h + (jωβτE)
−1 (1)

where ω is the angular frequency; j is the imaginary unit; k, h, δ are constant (0 < k < h < 1);
E00 is the static modulus, when ω tends to 0; E0 the glassy modulus, when ω tends to
infinite; β, parameter linked with η, the dynamic viscosity of the dashpot, η = (E0 − E00)
βτE; τE, the characteristic time values. The characteristic time values vary with the chosen
temperature T and the shift factor aT, τE(T) = aT(T) × τ0E.

4.5. Computed Tomography Scan (CT-SCAN) and 3D Image Analysis

CT scans were performed to assess any specific particles orientation in the mix. The
XTH-225 device from Nikon (Tokyo, Japan) was used for specimen Slab2_3C while a
FF35 from Comet Yxlon was utilized for specimens Slab2_2C and Slab2_4C. CT scans
were conducted with a voltage of 210 kV and a current of 210 μA for specimen Slab2_3C,
and a voltage of 209 kV and a current of 108 μA for specimens Slab2_2C and Slab2_4C.
Two distinct scanning devices were utilized for availability concerns. The 3D specimens
were analysed with Dragonfly software, version 2023 (Comet Technologies Canada Inc.,
Montréal, QC, Canada). The cubic voxel size was 68.63 μm for specimen Slab2_3C and
30.75 μm for specimens Slab2_2C and Slab2_4C.

The 3D images data set size was first reduced to remove parts affected by artefacts,
such as cone beam artefacts at the upper and lower parts of the data set. Then the data set
was filtered to ease the segmentation process. Mainly, a smoothing filter was applied to
reduce noise within the images, and a radial basis function (RBF) filter was used to mitigate
greyscale variation across the images due to beam hardening and the cylindrical shape of
the specimens. Granular materials were segmented and labelled individually with the tools
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offered by Dragonfly software, version 2023. During the segmentation process, some errors
can be introduced, mostly due to the spatial and the contrast resolution of the voxels. For
instance, a voxel can be labelled as “aggregate” though it could be “bitumen mastic”. But,
in the present study, it does not impact the aggregate orientation as aggregates composed
of few voxels were not considered in the final analysis.

The orientation of the longest axis of a labelled particle was evaluated with 2 parame-
ters, Φ and θ angles, θ being the angle between the X axis and the projection of the longest
axis in the X–Y plane; and Φ the angle between the longest axis and Z axis, as shown in
Figure 4.

Figure 4. Parameter Φ and θ schematic definition, ORS Dragonfly.

Air voids were also segmented, in order to calculate the air void ratio of the tested
specimens by comparing the labeled void voxel to the global voxel count. A contrast-limited
adaptive histogram equalization (CLAHE) filter was applied to enhance the contrast in the
data set, when required.

5. Results and Analysis

In this section, the results concerning anisotropy are presented first. Vs results obtained
with the P-RAT in the slabs are analysed and the particles orientation of aggregates is
presented. UPV results are discussed. Afterward, the results of the complex modulus are
presented, and a comparison with wave velocities is made.

5.1. P-RAT Shear Wave Velocity (Vs) Results

Figure 5 illustrates the effects of bitumen mastic on two signals. In both cases, the
presence of a P-wave is observed, but it is more pronounced in the case of the mastic
interface. However, the signal is clearer. The P-RAT transducers are designed to generate
mainly shear waves. Due to the size of the specimen and the quality of the contact, in
order to obtain a signal at the receiver end, it is sometimes necessary to amplify the emitted
signal, generating larger deformation of the piezoelectric ring. Such amplification tends to
generate more P-wave. It has been observed that in the case of the bitumen interface, the
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P-wave amplitude is higher than the S-wave one compared to the case without mastic. The
arrival times of the wave, calculated from the P-RAT Vs measurement are 0.294 and 0.309
ms for the signals with and without bitumen mastic, respectively. Figure 5C,D display an
example of the P-RAT analysis. See Karray et al. [30] for more details.

 

Figure 5. Vs measurements using P-RAT and influence of the bitumen mastic interface; temporal
signal (A,B); P-RAT analysis (C,D); frequency decomposition (E,F) without and with bitumen mastic,
respectively. Section Slab2_3, dir. 2, 26–22 mm transducers, DSA-10 kHz-12 V signal.
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The difference between Vs values in section Slab2_3 with and without mastic is 1.5,
2.7, and 1.3% for directions 1, 2, and 3, respectively. It was more convenient to lay the same
thickness of mastic on the ends of Section 3 in directions 1 and 3 (2 mm on each face) than
in direction 2. Indeed, the upper part surface of the slab is uneven, resulting in a thicker
layer of mastic. This explains the higher difference observed in direction 2. P-RAT testing
with various pairs of transducers have demonstrated that the mastic used to improve the
interface gives Vs values of approximately 300 m·s−1. In the case of a mastic interface, the
S-wave propagates slower in the mastic layer, reducing the overall Vs. The actual Vs of the
specimen can be calculated as the thickness of the mastic layer and the Vs values of the
mastic used are known. In the following Figures, Vs depicted as “with mastic” display the
corrected Vs values.

Regarding slab 2, for direction 2, only section Slab2_1 was monitored with the
36–31 mm transducer pair. The surface of the three other sections were too rough to
allow for a proper contact of this larger size of transducer. The same situation occurred
for specimens of Slab 1, preventing the acquisition of Vs results in its direction 2. Vs mea-
surements in the tested section of slab 1 and in the four sections of the slab 2 are presented
in Figures 6 and 7, respectively. Each point represents the mean value of all measured
signals. As mentioned in the P-RAT measurement section, several signals of various shapes
and frequencies were sent for repeatability and control issues. For example, “Vs values in
Direction 1 19–16 mm” is the mean value of all five treated signals (after stacking) for the
19–16 mm transducer pair in direction 1.

 

Figure 6. Shear wave velocity with respect to direction for tested sections of slab 1. Sections with
* have also been tested with a bitumen mastic interface. The relative differences between mean Vs

are displayed.
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Figure 7. Shear wave velocity with respect to direction for tested sections of slab 2. Sections with
* have also been tested with a bitumen mastic interface. The relative differences between mean Vs

are displayed.

To simplify the text, Vs values for directions 1, 2, and 3 are referred to as Vs1, Vs2, and
Vs3 respectively. Tables 2 and 3 presents the relative standard deviation between the pairs of
transducers for a single direction in the same section for slab 1 and slab 2, respectively. The
maximum standard deviation in regard to the mean Vs values are 3.1 and 1.8% in slab 1 and
slab 2, respectively. In a previous study, the mean standard deviation among different pair
of transducers was approximately 2% [34]. It shows good reproducibility of the measure.
More transducer pairs were utilized to evaluate Vs in slab 1’s sections, which explains the
higher standard deviation in slab 1 compared to slab 2. As mentioned in Lecuru et al. [33],
the different sizes of actuators do not influence significantly the values, as shown by the low
differences presented in Tables 2 and 3. Naji et al. [37] showed that the size of aggregates
can generate wave diffraction, depending on the size of the P-RAT transducer used. Wave
diffraction influences the propagation of shear waves in the tested specimen, therefore, it
influences the shear wave velocity. The results obtained herein using transducers of various
dimensions do not demonstrate systematically higher or lower values of Vs, depending on
the dimension of the transducer, compared with the average values.

A trend emerges from the curves of Figures 6 and 7. Especially away from the end of
the slabs, Vs2 values are systematically greater than Vs3 and Vs1, and Vs3 is greater than Vs1.

In Figure 6, there is an axial symmetry relative to the middle tendency in the Vs values
for sections Slab1_6–Slab1_7 and Slab1_9–Slab1_10. The same symmetry is observed in
Figure 7, in Vs values for sections Slab2_2 and Slab2_3, and somewhat for sections Slab2_1
and Slab2_4. It is expected, as the tested specimens are pieces of a slab, that section Slab2_2
and Slab2_3 should be compacted in the same state, as should section Slab2_1 and Slab2_4.
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Table 2. Minimal Vs values, maximal Vs values, and relative standard deviation (σ%) for the pairs of
transducers in slab 1.

Section Vs1 (m·s−1) Vs3 (m·s−1)

Min. Max. σ% Min Max σ%

Slab1_2 407.5 417.9 1.8% 408.0 408.0 N.A.

Slab1_2 mastic 388.4 401.9 1.4% 401.4 420.9 1.7%

Slab1_5 401.6 418.8 2.1% 395.6 407.4 1.2%

Slab1_5 mastic 387.2 411.7 3.1% 393.8 398.5 0.6%

Slab1_6 388.5 406.0 1.9% 388.4 398.1 1.4%

Slab1_7 380.8 406.9 2.9% 418.6 435.0 1.6%

Slab1_7 mastic 378.9 403.9 2.5% 415.8 432.7 1.7%

Slab1_8 N.A. N.A. N.A. 415.0 423.9 1.1%

Slab1_9 389.0 410.3 2.5% 413.1 420.3 0.9%

Slab1_10 387.3 408.2 2.4% 383.0 396.6 1.5%

Table 3. Mean Vs values and relative standard deviation (σ%) among the three pairs of transducers
in slab 2.

Section Vs1 (m·s−1) Vs2 (m·s−1) Vs3 (m·s−1)

19–16 26–22 36–31 19–16 26–22 36–31 19–16 26–22 36–31

Slab2_1 440.7 440.9 448.3 474.3 482.2 475.2 450.8 444.5 443.2

σ% 1.0% σ% 0.9% σ% 0.9%

Slab2_2 429.1 418.5 426.2 467.9 475.4 N.A. 455.4 450.9 454.5

σ% 1.3% σ% 1.1% σ% 0.5%

Slab2_3 429.2 425.6 424.2 478.8 473.1 N.A. 451.8 444.8 461.3

σ% 0.6% σ% 0.8% σ% 1.8%

Slab2_3
mastic

417.0 422.2 421.4 465.6 461.2 465.6 450.3 443.2 445.0

σ% 0.7% σ% 0.5% σ% 0.8%

Slab2_4 433.2 426.2 432.3 465.6 465.1 N.A. 444.3 446.0 452.8

σ% 0.9% σ% 0.1% σ% 1.0%

Vs1 and Vs3 are higher in Slab1_5 than in Slab1_10. This may be because Slab1_5 is
located at the corner of the sample. Vs1 is higher in Slab1_2 and Slab1_5 than in Slab1_6
to 10. Slab1_1 to 5 are along the side of the sample. It can be assumed that the edges
of the mold create a confinement in the materials during compaction. The confinement
might induce a better aggregate contact, resulting in a higher Vs value. This confinement
is greater in direction 3 than in direction 1, due to the dimension of the mold, which is
smaller in direction 3 than in direction 1. This confinement becomes more homogeneous in
sections Slab2_1, Slab2_4, and Slab1_5, which explains the closeness of Vs1 and Vs3 values
in these sections.

The difference between Vs1 and Vs3 values could also be explained by the nature of the
S-waves and the way the slabs are compacted. The compacting wheel moves in direction 1
and, therefore, the aggregates tend to move along. This movement can result in friction
between the aggregate in a perpendicular direction, i.e., direction 3. In S-waves, the local
displacement of matter is perpendicular to the direction of wave propagation.
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The relative differences between mean Vs values in the different direction are presented
in Figures 6 and 7. Concerning slab 2, the maximum relative differences are 7.6, 11.1, 11.6,
and 8.1% for sections Slab2_1, Slab2_2, Slab2_3, and Slab2_4, respectively. In order to
compare these values with the literature, Equation (2) is used to estimate the equivalent
modulus [22]:

Vs =
1

cos
( ϕ

2
)
√

|E*|
2ρ(1 + ν)

(2)

With the phase angle φ, the bulk density ρ (kg·m−3), the Poisson ratio ν, Vs the shear
wave velocity (m·s−1), and E* the complex modulus (Pa).

The maximum relative differences in modulus for the aforementioned specimens are
15.9, 23.4, 24.6, and 16.8%, respectively. The relative differences values observed in the
literature for HMA range from 10 to 50% [10,11,42]. As explained earlier, the anisotropy is
influenced by many parameters, which explains the wide array of values in the literature.

The maximum value always appears between Vs2 and Vs1, and the symmetric trend is
respected. Although no analysis of variance was performed, it can be assumed that the Vs

values in the three directions are different in each section, except for Vs1 and Vs3 in sections
Slab2_1, Slab1_5, Slab1_6, and Slab1_10. The symmetry of the results demonstrates the
consistency of the results, and the systematic differences observed implies anisotropy in
the tested CIR.

5.2. UPV Test Results

The results of UPV tests are presented in Figure 8 for the P-wave. Although the choice
of arrival time configuration is not obvious, the first peak (bold line in Figure 8) tends to
depict a similar behavior to what is observed in P-RAT test results (Figure 7). A trend
emerges among the sections monitored with P-wave. The axial symmetry relative to the
middle observed for P-RAT analysis occurs here as well. For sections Slab2_2 and Slab2_3
(i.e., in the middle of the slab), Vp in dir. 2 is higher than in the other two directions.
The opposite happens in sections Slab2_1 and Slab2_4. The relative difference between
Vp values in a same section are displayed in Figure 8. The difference between Vp values
can reach up to 12.8% in the case of section Slab2_3. The relative differences are lower
in sections Slab2_1 and Slab2_4, for every arrival time setup. This reduction in relative
difference between the edges of the slab and the inner parts was also observed in Vs values
obtained with P-RAT. The boundaries conditions applied by the metallic mold in the outer
sections of the slab may impact the compaction of the mix and may cause anisotropy.

The analysis of the UPV S-wave is more difficult. As mentioned earlier, to obtain
the S-wave flight time, one must compare the received P-wave signal with the received
S-wave. In the tested sections, the distinction between the P-wave and the S-wave was not
readily apparent, and this can can lead to erroneous assumptions regarding the location of
the first and second peaks. It was almost impossible to determine where the first arrival
of the S-wave was. Figure 9 presents examples of P- and S-wave signals to illustrate the
difficulties mentioned before. In the case of section Slab2_4 in direction 3, two different
S-wave signals give different results. Due to these erratic results, and their inconstancy
even for a same specimen in the same direction, S-wave UPV results are reported as
Supplementary Materials.
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Figure 8. PUNDIT P-wave results in three directions for each section of slab 2 in three arrival setups.
The relative differences between mean Vs values are displayed.

 

Figure 9. UPV P- and S-wave signals comparison in different directions and sections of slab 2.
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5.3. Complex Modulus

This section presents the results of the complex modulus measurements. It should
be noted that specimen Slab2_3C has been tested twice. The master curves of specimens
Slab2_3C 1 and 2 and Slab2_4C are plotted in Figure 10. Table 4 compiles the 2S2P1D
parameter used for the analysis of the experimental results.

 

Figure 10. Master curve of cylinder cored in direction 3 for section Slab2_3 and Slab2_4 at a reference
temperature of 20 ◦C. The calculated complex modulus from UPV tests are also plotted.

Table 4. The 2S2P1D parameters.

E00 E0 ν00 ν0 k H δ τ β C1 C2

MPa MPa (Tref)

Slab2_3C 1 20 7500 / / 0.170 0.475 2.56 0.2 (10.93) 5000 20.00 159.12

Slab2_3C 2 32 7200 / / 0.170 0.490 2.69 1.1 (4.96) 5000 24.02 158.55

Slab2_4C 22 7675 / / 0.161 0.450 2.85 1.1 (4.96) 5000 23.47 159.08

The specimens were equipped with a chain to measure radial deformations, but
the results obtained were erratic and did not follow the usual trends that appear in the
literature. It is assumed that the applied strain was too small to obtain enough amplitude
in the transverse direction. The strain measured by the chain was mainly noise, rather than
actual displacement. The results are not presented for this reason.

It appears that there is a reduction in the modulus for specimen Slab2_3C when
performing the second tension–compression test. Although the strain amplitude was small,
some damage can be induced to the specimen.

The results from UPV testing were converted into modulus, with the following equa-
tion [22]:

Vp =
1

cos
( ϕ

2
)
√

|E∗|(1 − ν)

ρ(1 + ν)(1 − 2ν)
(3)
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and considering the following parameters: the phase angle φ = 20◦ (from E* tests), the bulk
density ρ = 2000 kg·m−3 (from measurement), and the Poisson ratio ν = 0.3 (assumed).
Their |E*| moduli are plotted along the master curve, at a reference temperature of 20 ◦C,
considering the frequency of the UPV sensor used, 50 kHz for P-wave. The moduli for the
different arrival time setups, i.e., first arrival of the signal, first peak, and second peak (see
Figure 1) are plotted. The relative differences between the experimental |E*| modulus
and the UPV modulus calculated from the aforementioned arrival time configurations are
35, 2, and 30%. It appears that the first peak arrival time configuration of P-wave fits the
master curve.

Mounier et al. [22] and Larcher et al. [26] observed differences between the UPV
modulus and 2S2P1D model, considering the arrival of the wave at the first arrival of the
signal, from 5 up to 30% and 12%, respectively. Both studies point out the importance of
accuracy in measuring the arrival time of the wave.

Mean P-RAT Vs values in dir. 3 for Section 3 and 4 are 452.6 and 447.7 m·s−1, respec-
tively. Their equivalent |E*| modulus considering φ = 20◦, ν = 0.3, and ρ presented in
Table 1 are 1057 and 990 MPa for sections Slab2_3 and Slab2_4, respectively. These moduli
come from a group shear wave velocity and, therefore, are not bound to frequency. There-
fore, these moduli cannot be plotted in the master curve. In a previous study by Lecuru
et al. [34], moduli calculated from Vs results obtained with P-RAT tests were compared
with indirect tensile strength modulus (ITSM) test results. They demonstrated consistency,
for a similar CRM mix.

For Vp, the first peak arrival time configuration appears to be the one to consider. It
was mentioned earlier that Vp results obtained with this particular configuration show
a similar trend to the one observed for P-RAT Vs results. This gives greater confidence
regarding anisotropic results in the mix.

5.4. Three-Dimensional Image Analysis Results

For the analysis of the 3D images, the particles were segmented and then individually
labelled, as shown in Figure 11. Among all labelled particles, any larger than 1 mm3 were
selected for analysis according to the Dragonfly analysis, corresponding to 6778, 4698, and
4364 particles in specimen Slab2_2C, Slab2_3C, and Slab2_4C, respectively. It appears that
smaller labelled particles tend to be spherical, and the analysis attributes arbitrary values
of phi and theta angle of 0◦ or 90◦ to them. Specimen Slab2_1C was destroyed during a
tension compression test and was not scanned.

Figure 12A–C presents the results of the angular orientation analysis for specimens
Slab2_2C, Slab_3C, and Slab2_4C, respectively. The axis systems in Figure 12 are the same
as that presented in Figure 3.

In each specimen, the particles tend to be oriented in the dir. 1 dir. 2 plane rather than
the dir. 3 axis (phi values) as 48.4, 52.3, and 49.8% of the aggregates are enclosed in the 60
to 90◦ range for specimens Slab2_2C, Slab2_3C, and Slab2_4C, respectively.

For the theta analysis, i.e., the orientation in the dir. 1 dir. 2 plan, three sets of data are
considered and are represented in Figure 12A–C. The aggregates aligned with dir. 1 are
enclosed in the bins from 60 to 120◦ plus 240 to 300◦ (orange dashes); the aggregates aligned
with dir. 2 are enclosed in the bins from 330 to 30◦ plus 150 to 210◦ (orange triangles); the
rest are considered as the cross direction (orange dots).
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Figure 11. Individually labelled particles bigger than 1 mm3 (each color represents a particle),
specimen Slab2_3C, ORS Dragonfly.

For each specimen, the aggregates tend to be more oriented in dir. 1 than in dir. 2. As
the compactor wheel is moving along the dir. 1 axis, it is expected that aggregates would be
more aligned in this direction. However, a non-negligible part of the aggregates is aligned
in the dir. 2 axis and in a cross direction of dir. 1 and dir. 2 axes.

The phi and theta angles are bound to the axis system of the Dragonfly software.
An axis swap enables the user to evaluate the orientation of aggregates from different
perspectives. Figure 13 presents the results of phi and theta angle analysis in, accord-
ing to Dragonfly, the XZY (Y and Z axis swapped) and YZX configuration. The default
configuration (XYZ) is presented in Figure 12B.

In Figure 12B, the particles tend to be oriented in the dir. 1 dir. 2 plane rather than dir.
3 (phi values) and more aligned in dir. 1 (theta values). In Figure 13, view (A), the particular
orientation is not as straightforward. Considering the phi values, more aggregates are
enclosed in the 30◦ to 60◦ area and less in the 60◦ to 90◦ area, compared to views (A) and (C).
There is a slight increase in the 0◦ to 30◦ area, but not as much as expected if we consider
a preferential orientation of the aggregates in dir. 1. Regarding the theta values, there is
no particular orientation in dir. 2, dir. 3, nor in the cross direction. In Figure 13, view (B),
particles tend to be oriented in the dir. 1 dir. 3 plane rather than dir. 2 and more aligned in
dir. 1.
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Figure 12. Particles orientation in specimens Slab2_2C (A), Slab2_3C (B), and Slab2_4C (C). Phi and
theta values.

156



Infrastructures 2025, 10, 115

Figure 13. Particles orientation in specimen Slab2_2C for 2 configurations; (A) XZY, phi calculated
regarding dir. 1 axis; (B) YZX, phi calculated regarding dir. 2 axis.

Displaying 3D orientation in a 2D representation has always been challenging. How-
ever, the results indicate that the aggregates in the three tested specimens tend to be aligned
in dir. 1, which corresponds to the direction of the compacting wheel. However, the
different points of view for specimen Slab2_3C confirm that a non-negligeable portion of
the aggregates are aligned in dir. 2 and dir. 3. This preferential orientation shows that
compaction has induced anisotropy in the tested CIR.
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In the case of clays, Vs is higher when propagating in the direction of the main
axis orientation of particles [13,43]. The same phenomenon can be observed in granular
materials such as micas [12]. This is the result of inherent anisotropy. However, clays and
micas are characterized by their flat and elongated geometry, which is not the case of the
aggregates composing a CIR mix.

In the case of the tested CIR, Vs is higher in dir. 2, followed by dir. 3, then dir. 1.
Although the preferential orientation tends to be in dir. 1, Vs1 is the smallest. It can be
assumed that compaction induces inherent anisotropy and that induced anisotropy, as
defined in the background section, is not relevant in the case of wave propagation where
strains are small [14,15,17], although the compaction generates some confinement due to
the edges of the mold, which then become the inherent (natural) state of the material after
unmolding. Wave propagation is, as mentioned earlier, impacted by the orientation of
particles, but also by the contacts between them. However, in HMA and CIR mixes, the
bitumen mastic plays a role in the stiffness of the material and, therefore, the alignment of
aggregate alone is not sufficient to fully understand the differences in the measured Vs in
the three directions. Finally, the air voids orientation and distribution could also provide
useful information, although it has not been evaluated in this study.

6. Conclusions

A non-destructive method using shear wave velocity was used in the study. The
P-RAT was used to measure Vs in the three directions of a CIR slab cut in sections. For
comparison purposes, UPV measurements were also performed. Cylinders cored from
the section in direction 3 were tested by dynamic tension–compression test to evaluate
the complex modulus. Finally, CT scans were performed on the cylinders to evaluate the
orientation of the aggregates. Anisotropy was witnessed for both approaches.

• Vs measurements with P-RAT show a systematic anisotropy in the two tested slabs.
Different sizes of P-RAT transducers were used and the variability was low. Vs in the
direction of compaction is higher than Vs in the orthogonal direction of displacement
of the compacting wheel, which is higher than Vs in the direction of the compacting
wheel; Vs2 > Vs3 > Vs1. Differences between Vs values range from 0.6 to 11.6%. Vs

values on the outer sections of the slabs tend to be closer to one another compared to
the middle section. The difference in wave velocities is explained by the compaction
method and the dimensions of the mold, which generate uneven confinement in
the mix.

• UPV results with PUNDIT also show anisotropy. UPV Vp values are different in every
direction, and the same axial symmetry relative to the middle of the slab was observed
as in P-RAT results. Vs values from UPV were trickier to obtain, as the arrival time
of the wave is hard to determine. Various setups of arrival time were then tested. Vs

from P-RAT and Vp from UPV results are consistent one with each other.
• E* results are consistent in the tested specimens, and they were modelized with the

2S2P1D model. Moduli from UPV were plotted in the master curve and the proper
arrival time setup were determined to be the first peak for P-wave.

• CT scans highlighted a preferential orientation of the aggregate in the direction of
the movement of the compacting wheel, dir. 1. However, a non-negligible part of the
aggregates is oriented in the two other directions.

This study was focused on a two CIR mixes with a single method of compaction due
to the high quantity of signal collected. Future work should focus on determining the
influence of the degree of compaction as well as the method of compaction, such as SGC
and slab compactor, on the anisotropy of CIR materials. Vs measurements would benefit
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from the analysis of contacts between aggregates. Finally, the evaluation of the anisotropy
in CIR mixes while curing and in the long term could be achieved with the P-RAT and Vs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/infrastructures10050115/s1, Figure S1: PUNDIT S-Wave results
in 3 directions for each section of slab 2; Table S1: Standard deviation of UPV Vs values in each
direction for every section of Slab 2.
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Abstract: Over 90% of roads in the United States are surfaced with asphaltic materials that
use petroleum-based asphalt binders, a material with high negative environmental impacts
and costs. Biopolymers are a sustainable alternative, as they are sourced from renewable
materials and offer the potential to reduce carbon footprint. However, their performance
and durability in construction applications remain insufficiently understood. This study
analyzes the potential of agar, a biopolymer extracted from red seaweed, to serve as a direct
and sustainable replacement for asphalt binders. The study characterizes the rheological
properties and durability of agar-based binders and the mechanical and microstructural
properties of composites. The study found that agar-based binders exhibited resistance to
fungal deterioration, adequate stiffness to resist rutting at temperatures up to 80 ◦C, and
potential for energy efficiencies associated with lower mixing and compacting tempera-
tures. Results indicate that agar-based composites illustrate many properties in line with
those of traditional engineering materials. Overall, these results suggest that agar-based
materials exhibit promising fresh-state and biodeterioration resistance properties to serve
as a sustainable alternative to traditional, petroleum-based asphalt binders.

Keywords: pavements; asphalt; agar; biopolymers

1. Introduction

Within the built environment, petroleum acts as the primary material source for
a vast spectrum of materials, including plastics such as polyvinyl chloride and high-
density polyethylene, adhesives (e.g., polyurethane, epoxies, poly(vinyl acetate), silicones),
and binders used for asphalt for roadways, roofing, coatings, and waterproofing. Over
90% of the roads in the United States are surfaced with asphaltic materials comprising
aggregate and a petroleum-based binder [1]. The sourcing and widespread use of non-
renewable petroleum-based materials is problematic in multiple facets. The accelerated
depletion of non-renewable crude oil has led to limited material availability, with the
literature estimating that current petroleum reserves will only last for approximately 46
more years [2]. Petroleum-based materials are also associated with negative environmental
impacts due to petroleum sourcing, refining, and manufacturing.

With continued shifts toward more sustainable practices, the construction indus-
try has begun investigating bio-based asphalt binders created from renewable biomass
sources. Bio-oils have been produced from various organic materials, including swine
manure [3] and oils from waste cooking, vegetables and wood [4,5]. These studies, however,
have mainly focused on modifying traditional asphalt binders (i.e., <10% replacement). To
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meet the global environmental need for sustainable and resilient construction materials, the
transportation industry must begin to shift to direct alternatives (i.e., 100% replacement)
for petroleum-based materials.

One algae-derived biopolymer that may be well suited as an alternative material for
asphalt binder is agar. Agar is a linear polysaccharide composed of agarose and agaropectin
extracted from red seaweed belonging to the Rhodophyceae class. Agar gels form via
hydrogen bonding between agarose molecules, resulting in a transparent, thermoreversible
material that exhibits hysteresis, gelling at temperatures between 38 and 45 ◦C and melting
between 85 and 90 ◦C [6].

Agar has been investigated as a stabilizing material to improve the engineering
properties of geotechnical materials. Smitha et al. [7] investigated the behavior of silty sand
treated with 0.5, 1, and 2% agar biopolymer at multiple curing time periods and noted a
significant increase in cohesion with an increase in biopolymer content and curing time.
Chang et al. [8] evaluated the use of agar and gellan gum biopolymer with both clayey
and sandy soil and noted significant improvements in composite compressive strength as
compared to unmodified soil samples. Authors note that this is due to the ability of the
biopolymers to coat aggregate surfaces, fill pore spaces, and improve particle to particle
contact. Khatami and O’Kelly [9] evaluated sand combined with 1, 2, and 4% agar by
weight and noted an increase in compressive strength from 150 kPa to approximately
500 kPa. Work completed by Fatehi et al. [10] evaluated agar biopolymer combined with
both sand and soil and found that biopolymer use can improve the compressive strength by
115%. Verma et al. [11] evaluated the use of xanthan gum and agar to stabilize municipal
solid waste fines and noted that agar produced a denser profile than xanthan gum and
produced better mechanical performance. Kantesaria et al. [12] investigated the use of 2%
agar in expansive soil. In SEM testing, agar biopolymers coated soil particles and connected
aggregate that was not initially in contact.

Although biopolymers like agar are promising material alternatives for petroleum-
based materials, they are largely underutilized in civil engineering applications due to
uncertainty regarding long term performance and durability [13]. Additionally, there is
a lack of systematic methodology available for predicting performance, reporting ma-
terial characteristics, and ultimately incorporating biopolymer materials into pavement
design [14].

The objective of this work is to study the suitability of high concentration agar gels
as a direct replacement material for traditional petroleum-based materials used in the
construction industry. To achieve this goal, this research follows a three-step approach.
First, this study used technical testing standards of asphalt to measure the rheological
properties of agar-based binder samples. Second, the study analyzed the durability of
agar as an alternative binder. Finally, we evaluated the microstructure and mechanical
properties of agar-based composites for use in pavement structures.

2. Materials and Methods

Agar powder, reagent-grade limestone (calcium carbonate, CaCO3) with a particle
size < 250 μm, lab-grade glycerol, and Ottawa sand were supplied by Sigma Aldrich (St.
Louis, MO, USA), Research Products International (Mt Prospect, IL, USA), Fisher Scientific
(Waltham, MA, USA), and Gilson (Middleton, WI, USA), respectively. Fungal cultures were
supplied by the American Type Culture Collection (ATCC, Manassas, VA, USA).

The aggregate used in agar-based composites mixtures was supplied by the Colorado
Department of Transportation (CDOT). This aggregate was chosen for this analysis because
it represents a commonly used and accepted aggregate for civil engineering applications.
This aggregate was collected as a “belt cut” from a Coloradan asphalt manufacturing plant.
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In this sampling method, the aggregate was collected randomly from the conveyer belt of
an asphalt plant prior to being mixed with any asphalt binder [15].

Table 1 summarizes the methods used to characterize: (i) the rheological properties
and (ii) durability of agar-based binder samples; and (iii) the microstructure and mechanical
properties of agar-based composites.

Table 1. Methods used to characterize agar-based binders and composites.

Characteristics of Interest Methods

Rheological properties of agar-based binder
Rotational Viscosity (ASTM D4402)

Dynamic Shear Rheometry (ASTM D7175)
Penetration (ASTM D5)

Durability of agar-based binder
Thermogravimetric Analysis (TGA)

Biodeterioration Resistance (ASTM G21)
Moisture Sorption Characteristics (ASTM D570)

Mechanical and microstructural characterization of
agar-based composites

X-Ray Tomography Testing
Compressive Strength Testing

Resilient and Elastic Moduli Characterization

2.1. Sample Preparation

Two sets of samples were prepared for this study. One set of 12 samples, described
below as “binder testing samples”, were used to characterize the rheological properties
and durability of agar-based binder. This testing informed the design of the experimental
plan used to characterize the mechanical and microstructural characterization of agar-
based composites. This plan, referred to as “composite testing samples”, explored eight
different sample types. The characteristics of each of these sets are described below. Several
replicates were tested for each sample type, as described in each of the methods used and
the results section.

2.1.1. Binder Testing Samples

A total of twelve samples were prepared to characterize the rheological properties and
durability of agar-based binder (Table 2). The number of replicates used in each of the tests
is specified in the test description and results section.

Table 2. Sample nomenclature and mixture formulations for binder testing.

Sample
Deionized
Water (mL)

Agar (g) Glycerol (mL) Limestone (g)

A5-C 200 10 - -
A5-G 200 10 3.2 -
A5-L 200 10 - 30

A5-GL 200 10 3.2 30
A7.5-C 200 15 - -
A7.5-G 200 15 4.8 -
A7.5-L 200 15 - 30

A7.5-GL 200 15 4.8 30
A10-C 200 20 - -
A10-G 200 20 6.4 -
A10-L 200 20 - 30

A10-GL 200 20 6.4 30

Samples were prepared at three agar concentrations (i.e., 5, 7.5, and 10% w/w relative
to deionized water) without and with glycerol and without and with limestone additives.
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As these are relatively high agar concentrations and agar materials have a high degree of
crystallinity and rigidity [16], glycerol was investigated due to reported plasticizing effects
on agar [17]. In order to increase the dimensional stability of agar-based materials, ground
limestone was investigated as a filler material. Limestone was explored as a filler material
because it is widely available and already utilized in the construction industry (i.e., crushed
for use as a subbase material, ground for use as a raw material in cement production).

A subset of samples contained glycerol (40% w/w of agar), limestone (15% w/w), or
both glycerol and limestone, resulting in a total of twelve samples. Mixture formulations are
summarized in Table 2. The sample naming convention is the letter A (for agar) followed
by the %w/w agar-to-water concentration. Sample additives are denoted by a C (for control
formulations without glycerol or limestone), G (for glycerol), and L (for limestone). For
example, sample A7.5-GL indicates a 7.5% agar-to-water concentration with glycerol and
ground limestone.

To prepare samples, 200 mL of deionized water was added to 500 mL media bottles.
The appropriate amount of agar powder (i.e., 10, 15, or 20 g) was dissolved at ambient
laboratory conditions (22 ± 2 ◦C) under continuous agitation using a magnetic stir bar.
The appropriate amount of glycerol or limestone was then added and the sample was
agitated until all constituent materials were well dispersed. The media bottles were then
placed in an SK101C Yamato autoclave (Santa Clara, CA, USA) and heated to 100 ◦C for
20 min. After autoclaving, individual media bottles were placed in a heated water bath at
90 ± 5 ◦C until sample molding or testing.

2.1.2. Composite Testing Samples

The properties of composites were evaluated in samples comprising 5% w/w agar
combined with a typical aggregate mixture specified for use in Coloradan pavement
materials. The amount of agar (i.e., 5% w/w agar) used in composite testing was informed
by the results obtained in the binder testing. Composite properties were evaluated at
two binder ratios (i.e., mass ratios of 0.2 and 0.5) with and without two filler materials
(i.e., limestone powder, Ottawa sand). This resulted in a total set of eight composite
sample types.

Table 3 outlines the composite formulations of these eight samples, designed by mass
ratios. The mass ratio of graded aggregate and reinforcing materials (i.e., cumulative
mass of aggregate, limestone, and Ottawa sand) was kept constant at a ratio of 1.0 for all
composites to maintain overall sample ratios and allow for better comparability between
sample types. Sample subsets reinforced with limestone or sand fillers were prepared at
constant mass ratios of 0.05 and 0.2, respectively, and the mass ratio of graded aggregate
varied from 0.75 to 1.0. Composites were prepared at two mass ratios of 5% w/w agar
binder, namely 0.2 and 0.5. The sample naming convention is as follows: C for control
samples (i.e., formulations with only aggregate), L for limestone-containing samples, S
for Ottawa sand-containing samples, and LS for limestone- and Ottawa sand-containing
samples. The letter designation is followed by the mass ratio of agar binder (i.e., 0.2 or 0.5).

After autoclaving, the media bottles were removed and the appropriate amount of
gelled agar was weighed out to reflect the mass ratios (i.e., 0.2 or 0.5) outlined in Composites
prepared with limestone or Ottawa sand filler were mixed by hand into the agar for
approximately 1 min until filler materials were well dispersed. The appropriate amount of
aggregate (i.e., 0.75, 0.80, 0.95, or 1.0 mass ratio) was weighed and mixed with agar-based
materials in Hobart mechanical mixer for approximately 1 min. Sample mixtures were
compacted into 2 inches cube molds in three layers and tamped by hand after the addition
of each layer. Samples were allowed to gel for approximately 30 min and then removed
from molds.
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Table 3. Mass ratios of constituent mix components for agar-based composites.

Subset Sample Name
5% w/w Agar

Binder
Aggregate Limestone Sand

Control
C-0.2 0.20 1.00 - -
C-0.5 0.50 1.00 - -

Limestone filler
L-0.2 0.20 0.95 0.05 -
L-0.5 0.50 0.95 0.05 -

Sand filler
S-0.2 0.20 0.80 - 0.20
S-0.5 0.50 0.80 - 0.20

Limestone and sand filler
LS-0.2 0.20 0.75 0.05 0.20
LS-0.5 0.50 0.75 0.05 0.20

Composites were acclimated at ambient laboratory conditions (i.e., 22 ± 2 ◦C) until
reaching constant mass, defined as less than 1% change in composite mass in a 24 h period.
Since the mechanical properties of agar-based composites have been shown to improve
with dehydration to a dry state [13], the composites were acclimated to constant mass to
replicate the best conditions for loadbearing or structural applications and to ensure all
samples were at a consistent, reproducible moisture state.

2.2. Rheological Properties of Agar-Based Binder

Standard asphalt binder testing methods were implemented to compare the engineer-
ing properties of agar with those of asphalt. This methodological approach was chosen
to allow for direct comparison to a reference petroleum-based material used in civil en-
gineering applications. Rotational viscosity (RV), dynamic shear rheometry (DSR), and
penetration testing were conducted on agar-based materials. RV and DSR results were
subsequently compared to performance-grade (PG) specifications [18] and penetration
results were compared to penetration-grade specifications [19].

2.2.1. Rotational Viscosity

The rotational viscosity (RV) of fresh-state agar-based materials was measured accord-
ing to a modified ASTM D4402 procedure [20]. The procedure was modified by using
a rotational rheometer instead of a Brookfield viscometer and lowering the testing tem-
perature from 135 ◦C to 80 ◦C. The performance-grade (PG) specification [18] utilizes an
RV testing temperature of 135 ◦C to mimic the conditions of asphalt during construction.
However, prolonged incubation of fresh-state agar at temperatures above 80 ◦C has been
shown to impact structural and mechanical properties of agar gels [21]. Thus, RV was
measured at 80 ◦C in order to represent agar temperature compatibility and preparation
temperatures more accurately.

Fresh-state samples were immediately loaded into an MCR 301 rotational rheometer
(Anton Paar, Graz, Austria) with 25 mm diameter stainless steel parallel plate geometry
and a sample gap of 1.0 mm. The top plate was cross-hatched to minimize slip. After
equilibration at 80 ◦C for 15 min, a constant shear rate of 20 s−1 was applied for 3 min.
Three consecutive RV measurements were recorded at 1 min intervals for each sample.
These data were averaged to yield final reportable RV values. Each sample was tested
in triplicate.

The RV of asphalt binders is typically characterized to predict the workability at
specific handling, mixing, and application temperatures to ensure that the mixtures can
be properly mixed and compacted to the required pavement density and smoothness [20].
To this end, asphalt mixtures with inadequate workability are often difficult to compact
properly, resulting in a lower pavement strength, higher air void content, reduced moisture
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resistance [22], and loss of service life [23]. Results were compared to PG specifications that
require a RV < 3 Pa·s [18].

2.2.2. Dynamic Shear Rheometry

A dynamic shear rheometer (DSR) was used to determine the high-temperature
rheological properties and rutting behavior of agar-based materials. The complex modulus
(G*), phase angle (δ), and rutting factor were determined using an MCR 301 rotational
rheometer (Anton Paar, Graz, Austria) with 25 mm diameter stainless steel parallel plates.
The rutting factor was calculated at various testing temperatures as denoted in Equation (1).
The units of the rutting factor will be given by G*, which in the case of this study was
measured in kPa.

Rutting Factor =
G∗

sin(δ)
(1)

Cross-hatched top and bottom plates were used to minimize slip. The testing tempera-
ture ranged from 10 to 80 ◦C using a heating rate of 2 ◦C/min.

Freshly prepared agar samples were poured into 55 mm diameter molds to create
disk-shaped samples with a depth of approximately 5 mm. After gelling for 30 min at
ambient laboratory conditions (22 ± 2 ◦C), samples measuring 25 mm in diameter and
1 mm in thickness were taken from the center for testing. Beginning at the lowest testing
temperature (i.e., 10 ◦C), samples were acclimated at the testing temperature for 20 min
and then subjected to oscillatory shear flow at 12% strain amplitude and a rotational
frequency of 10 rad/s. These parameters were chosen in order to reflect standard unaged
asphalt binder rheological testing protocol (i.e., ASTM D7175) [24]. A constant axial force of
0.5 N was applied to account for thermal expansion and contraction. Each sample was
tested in duplicate.

To compare the performance of agar-based samples with traditional asphalt binders,
the rutting factor obtained from the DSR testing was compared with the requirements
in asphalt performance-grade specifications [18]. The rutting factor, calculated from the
complex modulus (G*) and the lower phase angle (δ) (i.e., G*/sin(δ)), measures the ability
of binders to be both stiff and elastic to maintain shape and recover in response to repeated
traffic loading [25]. A higher complex modulus (G*) and a lower phase angle (δ) are
advantageous, resulting in the maximization of the rutting factor. To ensure adequate
rutting performance, specifications [18] require the rutting factor to exceed 1.00 kPa at
the upper pavement design temperature for unaged binders. Agar-based materials were
compared to this specification.

2.2.3. Penetration

Penetration was determined according to ASTM D5 [26] using a Universal Penetrome-
ter (Humboldt, Elgin, IL, USA). Fresh samples were poured into seamless tin cups mea-
suring 80 mm in diameter and 50 mm in depth, covered, and stored for less than 24 h in
refrigeration at 4 ± 2 ◦C until testing in order to prevent desiccation. Samples were then
submerged in a 25 ◦C water bath for 30 min prior to testing, and they remained immersed
in 25 ◦C deionized water for the duration of testing to ensure temperature stability. Results
were compared to penetration grading standards (ASTM D946), which specify accept-
able penetration grades in bins that range from 40 to 300 for unaged asphalt binders [19].
Triplicate penetration readings were collected for each sample.

Penetration is a measurement of binder consistency, and lower penetration values
typically correspond to stiffer material behavior while higher penetration values typically
correspond to softer material behavior [19]. Traditional asphalt binders with softer con-
sistency characterized by high penetration values (i.e., 200 to 300) are typically used in
cold climates to combat pavement cracking. Conversely, binders with low penetration
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(i.e., stiffer consistency) are typically used in warmer climates where a binder is expected
to resist permanent deformation at high temperatures [27].

2.3. Durability of Agar-Based Binder

Durability was evaluated in terms of thermal stability (i.e., thermogravimetric analy-
sis), fungal biodeterioration, and moisture sorption characteristics. These durability metrics
were chosen based on the common limitations of biopolymers and bio-based materials
noted in the literature. Thermal, moisture, and biodeterioration durability are some of
the leading durability concerns that impose challenges in accepting and implementing
bio-based materials in widespread industrial applications [28]. Relatedly, the undesirable
hydrophilic behavior of biopolymers can provide pathways of moisture for the introduc-
tion of harmful microorganisms leading to biodeterioration [28]. The aforementioned
mechanisms can negatively impact the appearance and mechanical properties of bio-based
materials as well as impact human health and the service life of built infrastructure these
materials are integrated into.

2.3.1. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) was performed with a TA Discovery 5500 (TA
Instruments, New Castle, DE, USA). Agar samples were poured into 55 mm diameter
molds to create disk-shaped samples with a depth of approximately 10 mm. After gelling
for 30 min at ambient laboratory conditions (22 ± 2 ◦C), samples were placed in incuba-
tion at 30 ◦C until samples reached constant mass (i.e., <1% change in mass in 1 h). A
10–20 mg sample was collected from the center of the dehydrated agar sample and placed
in a platinum pan. Testing was conducted using continuous nitrogen gas flow at a rate of
10 mL/min. Samples were acclimated at 30 ◦C and then heated to 950 ◦C using a heating
rate of 10 ◦C/min. The temperature and sample weight loss were recorded for analysis.
Each sample was tested in duplicate.

2.3.2. Fungal Biodeterioration

Resistance to fungal biodeterioration was determined according to ASTM G21 [29].
The following fungal strains were used to create the testing spore solution at a concen-
tration of 1,000,000 ± 200,000 spores/mL: Aspergillus brasiliensis (ATCC 9642), Penicillium
funiculosum (ATCC 11797), Chaetomium globosum (ATCC 6205), Trichoderma virens (ATCC
9645), and Aureobasidium pullulans (ATCC 15233).

Nutrient-salt agar solutions were prepared according to ASTM G21. Solutions were
poured into sterile Petri dishes measuring 150 mm in diameter and 15 mm in depth and
allowed to gel. Agar samples to be tested for fungal resistance (summarized in Table 2)
were poured into 55 mm diameter sample molds to create disk-shaped samples with a
depth of approximately 10 mm. Samples were allowed to gel for approximately 30 min at
ambient conditions (22 ± 2 ◦C) and then placed on the top surface of the nutrient-salts agar
plates. Each nutrient-salts agar and agar test sample were inoculated by spreading a spore
solution over the entire exposed surface with a sterile cell spreader. A negative control
(i.e., blank nutrient-salts agar plates without a sample, denoted B-) and a positive control
(i.e., nutrient-salts agar plates with sterilized cellulose paper, denoted C+) were also pre-
pared to validate the experiment. Samples were sealed with parafilm and incubated at
30 ◦C for 28 days. Photos and observations were recorded every 7 days.

Biodegradation is a biochemical process where microorganisms metabolically degrade
complex materials into natural compounds such as water, CO2, and biomass. The ASTM
G21 [29] procedure is designed to provide an environment where heterotrophic microor-
ganisms are provided with all the necessary components for growth (e.g., moisture, salts,
minerals) except for excess organic carbon. At the end of the 28-day testing period, samples
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were visually examined and evaluated by using a rating of 0–4 based on the percentage of
sample area covered in fungal growth. This rating system is shown in Table 4. All samples
were tested in triplicate.

Table 4. Rating system used for the evaluation of agar-based material fungal resistance.

Rating Observed Growth on Specimens

0 None
1 Traces of growth (<than 10% of sample area)
2 Light growth (10–30% of sample area)
3 Medium growth (30–60% of sample area)
4 Heavy growth (60% to complete coverage)

2.3.3. Moisture Sorption

The moisture sorption properties of agar-based materials were determined according
to a modified ASTM D570 procedure [30]. The procedure was modified minimally by
lowering the conditioning temperature from 50 ◦C to 30 ◦C. Fresh agar samples were poured
into 55 mm diameter molds to create disk-shaped samples with a depth of approximately
10 mm. After gelling for 30 min at ambient laboratory conditions, samples were weighed to
determine the fresh sample mass and then conditioned in incubation at 30 ◦C until reaching
constant mass, defined as <1% decrease in mass in a 24 h period.

Moisture sorption testing was conducted in 20 ± 2 ◦C distilled water. At various inter-
vals, samples were removed from the distilled water, the surface moisture was removed,
and the mass of each sample was recorded. Sample masses were recorded every 24 h until
the sample reached constant mass. The moisture content was calculated according to:

Moisture Content (%) =
mi − mc

mc
·100% (2)

where mi is the incremental sample mass and mc is the conditioned sample mass.
After reaching constant mass in immersion testing, samples were reconditioned in

incubation at 30 ◦C until again reaching constant mass, cooled for approximately 1 h, and
reweighed. The percentage of matter lost, MLoss, during immersion was calculated for each
sample according to:

MLoss (%) =
mc − mrc

mc
·100% (3)

where mrc is the sample mass after reconditioning. Each sample was tested in triplicate.

2.4. Mechanical and Microstructural Characterization of Agar-Based Composites

This work investigates the properties of composites comprising 5% w/w agar com-
bined with a typical aggregate mixture specified for use in Coloradan pavement materials.
The microstructure (i.e., porosity, pore network characteristics) of agar-based composites
were evaluated by non-destructive X-ray tomography testing, a procedure used by other
researchers to investigate composites in pavement applications [31,32]. Mechanical proper-
ties were evaluated through unconfined compressive strength testing and data was further
processed to obtain sample stress–strain curves and calculate the modulus of elasticity and
resilience. Results are compared to traditional engineering materials and other bio-based
composites in the literature.

2.4.1. X-Ray Tomography

The porosity of agar-based materials was not evaluated using typical water displace-
ment methods (i.e., ASTM D7063 [33], ASTM C642 [34]) due to the hydrophilicity of
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agar-based materials that could alter the sample properties. X-ray tomography was chosen
as a non-destructive alternative to evaluate the aggregate packing structure and sample
porosity. Three-dimensional visualization of the internal structure of agar-based composites
was obtained through X-ray tomography testing using a ZEISS Xradia 520 Versa system
(ZEISS, Jena, Germany). The source voltage was set to 140 kV and the power to 10 W. An
optical magnification of 0.4× and an HE3 filter were used to produce images. Agar-based
composites prepared for X-ray tomography analysis are shown in Figure 1.

 
Figure 1. Representative images of samples prepared for X-ray tomography testing: (A) control
samples; (B) limestone-reinforced samples; (C) sand-reinforced samples; and (D) limestone- and
sand-reinforced samples.

X-ray tomography is conducted by projecting a cone beam of X-rays onto a sample
and capturing projections on a detector. The sample is mounted between the X-ray source
and detector and is rotated throughout testing to create renderings of 2D “slices” of the
sample [35]. Upon completion of X-ray tomography testing, 2D slices are “stacked” and
processed to create a 3D reconstruction of the sample. The X-ray density captured by the
detector is related to the physical density of the sample, as denser objects appear brighter
in readings. Due to this premise, X-ray tomography is frequently applied to identify pore
spaces in samples and to quantitatively analyze the spatial distribution and size of pores.
This method has been applied to cement [36], concrete [37], and asphalt [31,32].

X-ray tomography analysis of pores requires processing to segment images at delin-
eation thresholds. Dragonfly 2022.2 software was used to create 3D reconstructions and
segment images of agar-based composites to produce volumetric data. The volume of
air voids (i.e., pores) in samples was determined by splitting the image pixel intensity at
the Otsu threshold [38] two times. The first split segmented data into dense particles (i.e.,
aggregate) and less dense components (i.e., binder, filler, and voids). The second split,
conducted on the foreground (i.e., other or binder, filler, and voids) segmented data into
binder and filler versus pores. The segmentation process is illustrated in Figure 2.
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Figure 2. Segmentation processing implemented to analyze the porosity of agar-based composites:
(A) X-ray tomography of the sample; (B) sample split at Otsu to segment particles (orange) from
less dense components (blue); and (C) binder and air voids split at Otsu to segment binder and filler
(orange) from voids (blue). Scale bar = 1 cm.

The volume percentage of pores in samples was determined by comparing the volume
of segmented air voids against the total sample volume. Segmented sample data were
further processed to create volume thickness maps of the pore space in order to analyze the
pore sizes and distribution. Volume thickness mapping is an image processing technique
based on a sphere fitting method that creates a “map” by identifying the diameter of the
largest sphere that can be bounded within the region of interest and assigning distance
values with color values [39]. This technique was applied to the region of pores segmented
from the internal structure of agar-based composites to provide a colorized map of the
internal pore network.

X-ray tomography testing requires the determination of a representative volume
element (RVE), namely the minimum volume required for scanning that represents the
bulk properties of the sample. In order to understand impacts from sample size scaling, the
volumetric porosity was measured from the reconstruction of the entire tested composite
(i.e., 50 mm × 50 mm × 25 mm sample) as well as from a smaller internal cross-section
sampled from the center of the tested composite (i.e., 25 mm × 25 mm × 15 mm). Volume
thickness maps were created based on reconstructions of the smaller internal cross-section.

2.4.2. Unconfined Compressive Strength

The unconfined compressive strength of agar-based composites was obtained using
an Instron Universal Testing Machine and a constant axial extension rate of 0.1 mm/s. Prior
to compressive strength testing, the average height (i.e., as an average of all 4 sides) and
surface area (i.e., top and bottom) were measured using calipers. The compressive strength
was calculated by dividing the maximum compressive load by the average sample test
area (AAvg). Stress–strain curves were calculated from compressive strength data using the
following equations:

Stress (σ) =
F

AAvg
(4)

Strain (ε) =
ΔL
L0

(5)

where F represents the compressive force applied during testing (kN in this study), L0

represents the average height of the sample prior to testing (m in this study), and ΔL
represents the change in sample length during testing in the linear elastic regime.

2.4.3. Modulus of Elasticity and Resilience

Stress–strain curves derived using Equations (4) and (5) were used to calculate the
modulus of resilience (Ur) and modulus of elasticity, or Young’s modulus, (E) for agar-based
composites. The modulus of elasticity is a material parameter of stiffness that quantifies the
amount of stress a material can withstand per unit of strain before deforming plastically. E
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can be found by calculating the ratio of stress to strain in the linear elastic portion of the
stress–strain curve (i.e., the slope of the linear region) and is quantified as:

E = σ/ε (6)

The modulus of resilience (Ur) characterizes the strain-energy per unit volume of a
material within the elastic range and quantifies the amount of energy a material can absorb
without deforming plastically (i.e., permanently). The term “resilience” is used to indicate
the ability of a material to absorb and release the energy in this range [40]. Generally, Ur

(measured in J/m3) is defined as the area under the elastic portion of the stress strain curve.
For uniaxial stress, this can be quantified according to:

Ur =
1
2

σ ε (7)

The elastic portion of each stress–strain curve was found by fitting a line through
two points: The data point representing 40% of the maximum stress and the elastic limit,
defined as 80% of the maximum stress. Using data from a linear fit (red line in Figure 3)
corrects for the initial curved portion of the stress–strain curve that forms due to surface
irregularities [41]. An illustration of this method is shown in Figure 3, with the modulus of
resilience shown in gray.

Figure 3. Illustration of methodology used to calculate the modulus of elasticity (E) and modulus of
resilience (Ur—shown in gray).

Mechanical characterization results were analyzed through Scheirer Ray Hare (SRH)
statistical techniques using a 95% confidence interval. SRH is a non-parametric equivalent
of two-way ANOVA. This statistical methodology was chosen because the assumptions
of parametric testing through ANOVA could not be met (i.e., normality). The two factors
considered were (i) binder content (i.e., 0.2 or 0.5) and (ii) aggregate and reinforcement
material composition (i.e., control, limestone-reinforced, sand-reinforced, or limestone- and
sand-reinforced). Sample data determined to be statistically significant (i.e., p value ≤ 0.05)
were further analyzed in post hoc testing to highlight statistically significant pairwise
comparisons. A Dunn’s multiple comparison test was applied post hoc to compare
pairwise differences.

3. Results and Discussion

3.1. Rheological Properties of Agar-Based Binder
3.1.1. Rotational Viscosity

The results of rotational viscosity (RV) measurements for the agar-based materials are
displayed in Figure 4. The PG specification [18] dictates an RV threshold of <3 Pa·s for
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asphalt binders, represented by a dashed line in. The RV of A5, A7.5, and A10 samples
ranged from 1.03 to 2.01 Pa·s, 8.08 to 10.64 Pa·s, and 23.16 to 32.23 Pa·s, respectively. All A5
agar-based materials passed RV standards set by the PG specification for asphaltic binders,
while all A7.5 and A10 agar-based materials exceeded current RV standards. Typically,
higher RV asphalt binders are used in warmer climatic regions and lower RV binders are
used in colder climatic regions [25].

Figure 4. Rotational viscosities (RV) of agar-based materials with no additives (C), glycerol (G), and
limestone (L). Error represents ± one standard deviation of triplicate measurements.

Results obtained in this study suggest that agar-based materials, if used in flexible
pavement applications, may be better suited for warm-climate applications where a stiff
material response is beneficial. However, workability of an asphalt mix is not merely a
function of asphalt binder RV. Additional factors such as binder lubricity and the type,
shape, texture, gradation, and porosity of aggregate in a mixture have been shown to
greatly influence the workability of an asphalt mixture [42].

As expected, RV of agar-based materials increased as the agar concentration increased.
Similar trends in increasing viscosity of higher-concentration agar were noted in work by
Fernandez et al. [43] and Yu et al. [44] using a parallel plate rheometer and a rotational
viscometer, respectively. Notably, the inclusion of glycerol (40% w/w of agar) and limestone
(15% w/w of agar) additives did not significantly impact the RV of agar-based binders.
No significant trend in RV measurements was observed relative to the addition of each
additive and the values of the glycerol- and limestone-containing samples are similar to
their respective controls.

Glycerol is one of the most widely used plasticizers for biopolymers due to excellent
compatibility with biopolymer chain structures [17]. Glycerol molecules occupy intermolec-
ular spaces between biopolymer chains, which in turn decreases attractive intermolecular
forces and increases chain mobility [45]. However, it might be possible that a higher ad-
dition of glycerol is needed to observe a measurable plasticizing effect in the agar-based
binder formulations investigated herein. For example, Yang and Paulson reported that
the lowest effective glycerol concentration was 60% w/w for gellan films [46]. As further
discussed in the fungal resistance and moisture sorption results, higher amounts of glycerol,
however, would likely have a greater negative effect on the ability of agar-based materi-
als to resist fungal biodeterioration and hydrolytic degradation, indicating a trade-off in
fresh-state workability performance and long-term durability.

The RV results suggest that applications of agar-based materials would necessitate
minor modifications to traditional placement protocol for asphalt binders. Typical hot
mix asphalt is mixed at temperatures between 140 and 180 ◦C before being transported
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to a construction site, placed, and compacted. The PG specification utilizes an RV testing
temperature of 135 ◦C to mimic the conditions during construction. The lower temperature
compatibility (i.e., 80 ◦C) of agar-based materials indicates the possibility of mixing and
compacting agar mixes (i.e., agar-based binders and aggregate) at a lower temperature than
typical hot mix asphalt. Implementation of lower placement temperatures corresponds
to a reduction in material embodied energy as well as improved environmental safety. A
mixing temperature reduction of 40 to 60 ◦C has been shown to reduce energy consumption
of pavement construction by up to 40% [47]. Additionally, a lower placement temperature
allows for quicker reopening of newly paved infrastructure to traffic and a longer paving
season [48].

3.1.2. Dynamic Shear Rheometry

Dynamic shear rheometry (DSR) was performed to determine the complex modulus
(G*) and phase angle (δ) for agar-based materials at temperatures ranging from 10 to 80 ◦C.
These results are shown in Figure 5, with solid lines depicting complex modulus values
and dotted lines representing phase angles.
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Figure 5. Representative results from dynamic shear rheometry (DSR) temperature sweeps (top) and
rutting factor (bottom) for (A) 5% agar; (B) 7.5% agar; and (C) 10% agar specimens. Each sample was
tested in duplicate.

Agar-based materials retained high stiffness (i.e., G* > 7000 Pa) at test temperatures
and the phase angle was consistently between 15◦ and 30◦ for the formulations and tem-
peratures investigated herein. These results align with previous rheological studies on
1% and 1.5% agar and agar blends [49,50]. Agar gels retain strength at high temperatures
(i.e., 70–80 ◦C) analyzed in this study because it is below the temperature necessary
(i.e., ~85 to 90 ◦C) for agar to attain random coil formation to significantly alter the tight
3-D gel network [51].

In general, as the testing temperature increased, the complex moduli decreased while
the phase angle increased. Similar behavior has been observed in agar [52] and asphaltic
binders [53]. Compared to petroleum-based asphalt binders, agar-based materials exhibited
a higher complex modulus and a lower phase angle at PG testing temperatures. The phase
angle of petroleum-based asphalt binders is typically between 80 and 90 ◦C [54] indicating
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a highly viscous material response. The rheological response of agar-based materials
corresponds to stiffer material behavior, which may indicate superior binder resistance to
permanent deformation as compared to traditional binders.

Previous work with asphalt mastics has reported an increase in material complex
moduli with the use of filler materials like fly ash, stone and brick dust, and mineral
fillers [55]. In this work, no significant difference was observed relative to the addition
of limestone filler. Similarly to results obtained in rotational viscosity (RV) testing, no
significant trend was observed relative to the addition of glycerol or limestone. DSR results
for samples with glycerol validate the conclusions of RV data. A greater concentration of
glycerol and limestone may be necessary to significantly impact the rheological properties
of agar-based materials.

To compare the performance of agar-based samples with traditional asphalt binders,
rutting factor results for 60 ◦C and 80 ◦C are shown in Figure 6. These temperatures
were chosen as they closely resemble common upper pavement design temperatures for
high-temperature PG grading (i.e., 58 ◦C and 82 ◦C). In the current study, the rutting factor
calculated for agar-based binders at 60 ◦C and 80 ◦C ranged from 14.0 to 37.1 kPa and 6.9
to 15.6 kPa, respectively. These results suggest that all agar-based binder formulations
possessed adequate stiffness to resist early-age rutting at upper pavement design tem-
peratures less than 80 ◦C. Although these results point towards advantageous early-age
rutting properties, the relatively high magnitude of complex moduli and rutting factors
exhibited by agar-based binders may also indicate the possibility of low-temperature and
fatigue-induced crack propagation.
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Figure 6. Mean rutting factor (i.e., G*/sin(δ)) for agar-binders at (A) 60 ◦C and (B) 80 ◦C. Error bars
represent the high and low results for duplicate measurements.

3.1.3. Penetration

The results from penetration testing of agar-based materials binders are shown in
Table 5. All four of the A5 sample formulations (i.e., A5-C, A5-G, A5-L, A5-GL) and
both A7.5 sample formulations without limestone (i.e., A7.5-C, A7.5-G) exhibited a pen-
etration greater than 350. Due to limitations based on the geometry of the penetration
samples and apparatus, penetration measurements greater than 350 could not be accu-
rately measured. The lowest penetration measurement, 162, was observed in both the
A7.5-GL and A10-GL samples. Penetration measurements generally decreased as the agar
concentration increased.
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Table 5. Penetration results for agar-based binders in 0.1 mm. Error represents one standard deviation
of triplicate measurements.

Agar-to-Water
Concentration

C G L GL

5% Agar >350 >350 >350 >350
7.5% Agar >350 >350 225 ± 8 162 ± 12
10% Agar 211 ± 12 217 ± 2 167 ± 3 162 ± 8

The addition of glycerol minimally impacted penetration measurements for 10% agar
samples. The impact of glycerol was more pronounced in 7.5% agar samples with limestone
(i.e., A7.5-L as compared to A7.5-GL). The addition of limestone generally resulted in a
decrease in penetration, particularly for the A7.5 and A10 samples. These results were
expected as previous literature has reported a similar decrease in the penetration of asphalt
binders with the use of fillers like corn stalk fiber [56] and crayfish shell powder [57].

Traditional asphalt binders with high penetration values (i.e., softer consistency) are
typically used in cold climates to combat pavement cracking. Conversely, binders with
low penetration (i.e., stiffer consistency) are typically used in warmer climates where a
binder is expected to resist permanent deformation at high temperatures. Asphalt binders
with a penetration between 60 and 100 are mostly used in road construction, while asphalt
binders with a penetration between 120 and 150 are primarily used in pavements with
lighter traffic loading. Asphalt binders with penetration values between 200 and 300 are
used less frequently for seal coating or arctic applications [27].

Compared to traditional asphalt binders, agar-based materials exhibited relatively
high penetration values. However, these results illustrate a spectrum of binder consistency
that might be tailorable with agar concentration and the use of mineral fillers, like ground
limestone. Additionally, these measurements were obtained under the most conservative
conditions given that the agar samples were unaged and submerged in a 25 ◦C water bath
at the time of testing. Just as petroleum-based binders are known to stiffen with age due to
volatilization and oxidation [25], agar-based materials are expected to stiffen with age due
to dehydration of the hydrogel structure at ambient conditions.

3.2. Durability of Agar-Based Binder
3.2.1. Thermogravimetric Analysis

All agar-based material formulations were thermally stable up to 210 ◦C, followed by
a steep mass loss due to decomposition of agar and glycerol (Figure 7).

Similar thermal behavior for agar composite materials has been reported previ-
ously [58,59]. For the agar-based formulations containing limestone, a second steep mass
loss was observed beginning at 650 ◦C due to the decarbonation of limestone. Although
the thermal stability of agar-based materials appeared to be minimally affected by agar
concentration, the addition of both glycerol and limestone substantially impacted thermal
stability. Specifically, glycerol addition resulted in a decrease in thermal stability and
limestone addition resulted in an increase in thermal stability. The 5%, 7.5%, and 10% agar-
based binder control formulations retained 29.60%, 29.54%, and 30.59% of their original
mass, while limestone formulations retained 43.55%, 44.33%, and 39.45% of their original
mass, respectively.

TGA characterization enables direct comparison between traditional petroleum-based
construction materials and agar-based materials. Commonly used plastics including
polyethylene, polypropylene, polystyrene, and polyethylene terephthalate begin to ther-
mally degrade between 250 and 450 ◦C, with the maximum thermal degradation taking
place between 420 and 490 ◦C [60]. Petroleum-based asphaltic binders for roadway or roof-
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ing applications begin to degrade between 300 and 350 ◦C [61] and degradation continues
until the temperature reaches 500 ◦C, where typically less than 20% of the original mass is
retained [62]. Agar-based materials exhibit partial thermal degradation at lower tempera-
tures than petroleum-based materials and binders commonly utilized in the construction
industry (i.e., beginning at 210 ◦C versus 250–300 ◦C). However, these data suggest that
the addition of limestone filler can improve the thermal stability of agar-based materials
allowing for a tailor ability of thermal durability. Previous work on asphalt mastics with
additives including aluminum hydroxide, magnesium hydroxide, and limestone filler have
shown similar improvements in thermal stability with the addition of a material that is
inert until higher temperatures [61].

Figure 7. Representative results from thermogravimetric analysis for (A) 5% agar; (B) 7.5% agar; and
(C) 10% agar specimens. Each sample was tested in duplicate.

3.2.2. Fungal Biodeterioration

Photographs of a representative sample for each agar-based material formulation after
fungal resistance testing are displayed in Figure 8. The control agar samples exhibited
good fungal resistance and only traces of fungal growth (i.e., <10% of sample area) were
observed after 28 days. The fungal resistance of samples increased with the addition of
limestone whereas the addition of glycerol decreased fungal resistance.
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Figure 8. Representative photographs of agar-based materials subjected to ASTM G21 biodeteriora-
tion testing. Photos were taken at the end of a 28-day incubation period at 30 ◦C.

At 28 days, most samples without glycerol addition (i.e., C and L samples) were rated
as 1 (traces of growth). Contrastingly, the samples containing glycerol were rated in the
range of 2 (light growth) to 4 (heavy growth). The experiment was validated using both a
negative control (i.e., no sample) and positive control (i.e., cellulose). At 28 days, no growth
was observed on the negative control specimens (rating of 0), and full growth coverage
was observed on the positive control specimens (rating of 4).

Only traces of growth were observed on the samples without glycerol 28 days after
inoculation. Therefore, it was concluded that agar and limestone did not serve as a primary
carbon source for the growth of heterotrophic microorganisms, which is known to lead to
biodeterioration. Agar is used as a microbiology culture media because it is non-nutritive
for the vast majority of microorganisms making it a promising material candidate for
construction application. However, glycerol provided an effective carbon source for fungal
growth in samples containing it. Similar results were obtained by Nissa et al. [63], where
80% growth coverage (equivalent to ASTM G21 rating of 4) was observed on a starch-based
bioplastic containing glycerol after just 10 days of incubation.

Microorganisms have evolved to use the hydrocarbons in petroleum as a source of car-
bon which can lead to biodegradation, which can worsen physical and chemical properties
and reduced efficiency of petroleum products [64]. To combat potential biodeterioration,
chemical biocides are often introduced. Notably, the chemical substances used to combat
biodeterioration are often pollutive, mutagenic, and carcinogenic [65]. Comparatively, the
fungal resistance properties of agar-based materials would limit the use and necessity of
harmful biocides.

3.2.3. Moisture Sorption

The equilibrated moisture content of agar-based binders, calculated using
Equation (1), is shown in Figure 9A. In general, agar-based binders absorbed a large
percentage of moisture relative to the conditioned mass of samples (i.e., samples incubated
at 30 ◦C until constant mass). This behavior was expected due to abundant hydroxyl
functional groups (i.e., -OH) in polysaccharides like agar, and the hydrophilicity of hydro-
gels [66]. After sample conditioning, agar-based binders retained 5 to 23% of fresh-state
mass and upon immersion in distilled water, agar-based binders swelled to 55 to 97% of
fresh state mass.
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Figure 9. Equilibrium moisture content (A) and mass loss (B) of samples immersed in 20 ± 2 ◦C
distilled water. Error bars represent one standard deviation of triplicate measurements.

The equilibrated moisture content for control agar-based samples (Figure 9A) ranged
from 196% to 1682%, 268% to 1262%, and 275% to 868% for A5, A7.5, and A10 samples,
respectively. The maximum moisture content of control and glycerol dosed agar-based
binders decreased with an increase in agar-concentration. These experimental observations
are consistent with previous studies on the water holding capacity of agar hydrogels. The
swelling behavior of agar is highly dependent on the porous size between crosslinked bonds.
An increase in agar content results in a dense polymer network (i.e., decreased porous
space) which can hinder polymer mobility and decrease water holding capacity [52,67].

The use of glycerol decreased water sorption for samples herein. Consistently, samples
with glycerol absorbed less than comparative samples without glycerol (i.e., G and GL
compared to C and L, respectively). Previous work conducted on chitosan films have noted
similar decreases in water sorption with the use of glycerol [68]. It is hypothesized that
this behavior is due to the formation of bonds between biopolymers and glycerol, which
increases the network density. Additionally, glycerol molecules take up intermolecular
space which can decrease access to active sites for the biopolymers to bond with water.

Notably, the inclusion of limestone reduced the moisture sorption of agar-based
materials. These findings align with literature on hydrogel-based composites. Rigid fillers
can increase composite density and mechanical stability which can alter the swelling
capacity of hydrogels [69,70]. Similarly to glycerol findings, the decrease in moisture
sorption with the use of limestone filler may be due to a sort of barrier effect. The limestone
filler molecules can occupy intermolecular space and oppose moisture transport through
the material.

Sample deterioration (i.e., bath clouding, small sample fragments) was evident for
the agar-based materials containing glycerol. This observation was validated by mass
loss data obtained from re-conditioned sample masses using Equation (2) and shown in
Figure 9B. Agar-based binders with glycerol lost 19–22% more mass than samples without
glycerol. Similar mass loss due to glycerol leaching has been noted in previous work on
polymers [71,72]. Interestingly, agar-based materials with both glycerol and limestone only
lost 8–11% more mass than samples with only limestone. These results indicate that agar
sample formulations with limestone may have a stronger and more dense gel network
than formulations without limestone and may be more dimensionally stable and capable of
withstanding the stresses due to drying and shrinkage more successfully [51]. Conversely,
sample formulations with glycerol may be less apt at withstanding drying and shrinkage.

These findings substantiate a propensity for agar-based material to exhibit high mois-
ture sensitivity (i.e., high equilibrium moisture contents) and propensities for dimensional
change and deterioration due to wetting and drying (i.e., mass loss). The moisture sorp-
tion characteristics highlight an inherent weakness associated with biopolymers, namely
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hydrophilicity. Agar-based materials may be suitable for pavement applications if the
hydrophilic nature of agar is improved through physical or chemical modification. Without
treatment, agar-based materials are more appropriate for applications without significant
moisture exposure.

3.3. Mechanical and Microstructural Characterization of Agar-Based Composites
3.3.1. X-Ray Tomography

An example of X-ray tomography reconstruction of the cross-section sampled from
the center of the control section sample is illustrated in Figure 10. The figure provides an
image of the reconstructed sample and a volume thickness map of the segmented interior
pore network (i.e., top and bottom of figure, respectively). The volume thickness maps
use a color spectrum ranging from a dark navy to red or white with the navy coloring
representing the smallest measured distances between pores and a red or white color
representing the largest distance between pores, measured in mm.

Figure 10. X-ray tomography reconstructions and volume thickness map of pore network for control
composites with (A) 0.2 agar binder content and (B) 0.5 agar binder content. Sample porosity as %
volume is shown to the bottom left.

The porosity of agar-based composites ranged from 5.79 to 16.99% for control samples,
6.25 to 15.21% for limestone-containing samples (L), 3.39 to 9.92% for sand-containing
samples (S), and 5.60 to 16.55%, for limestone- and sand-containing (LS) samples. Com-
paratively, the measured porosity of agar-based composites is generally higher than the
porosity of traditional concrete and asphalt (i.e., 5–15% and 2–7%, respectively). However,
porosity measurements are within the same range as pervious concrete and porous asphalt
(i.e., 15–25% and 10–15%, respectively) [73,74].

Porosity measurements obtained from segmented reconstructions of the entire tested
composite (i.e., filled marker) and from a smaller internal cross-section sampled from the
center of the tested composite (i.e., unfilled marker) are shown in Figure 11. In general, the
porosity measured from the smaller segmented volume of the sample was slightly higher
than the porosity calculated based on the entire sample volume. The LS-0.2 sample (i.e.,
limestone- and sand-reinforced, 0.2 binder content) was the only sample that presented an
exception to this trend (i.e., porosity of the entire composite volume was approximately
equivalent to the porosity of the segmented composite volume).

The volume thickness maps derived from this test (e.g., Figure 10) was used to identify
the diameter of the largest sphere that can be bound within the segmented pore space of
composite reconstructions. The maximum diameter of pores in samples ranged from 1.4 to
2.1 mm for all agar-based composites, with the exception of S-0.5 and LS-0.5 composites.
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The maximum diameter of pores for these samples was larger and ranged from 3.1 to
3.6 mm. Detailed diameter data was processed in order to compute the 50th percentile
(i.e., median) pore diameter for each sample and results are illustrated in Figure 12.
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Figure 11. Porosity (% volume) of agar-based composites tested in X-ray tomography.
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Figure 12. Median pore diameter (mm) of agar-based composites based on volume thickness map.

Several trends are visible in the porosity measurements obtained. Firstly, an increase
in binder content led to an increase in the volume of pores (i.e., comparison of 0.2 and
0.5 binder content in Figure 11) and pore size (Figure 12). These results align with visual
observations of composites. Agar-based composites with a 0.5 binder content had visible
surface cracks concentrated between large aggregate particles (Figure 1). As biopolymers
dehydrate, shrinkage stresses draw aggregate particles towards one another and compress
the pore space of the composite [10]. The use of too much biopolymer in a composite
can result in increased internal stresses during dehydration, which can lead to particle
conglomeration and a sample structure with larger, more connected voids [75]. Porosity
data suggests that a 0.5 binder content (i.e., by mass) surpasses the optimal agar proportion
for the aggregate and filler compositions studied herein.

Second, porosity measurements indicate that the inclusion of sand led to a decrease
in the porosity of samples, evident by comparison of sand reinforced samples and control
samples. The porosity of sand reinforced samples with a 0.2 and 0.5 binder content was
2.4–4.5% and 6.9–7.1% lower than comparable control samples (i.e., C-0.2 and C-0.5),
respectively. Conversely, the porosity of limestone- and sand-reinforced samples was
greater than the porosity of samples with only sand (i.e., porosity of LS-0.2 and LS-0.5
samples was 1.8 to 2.2% and 6.6 to 6.8% higher than S-0.2 and S-0.5 samples, respectively).

2D cross-sections from X-ray tomography reconstructions (Figure 13) suggest that
a film or coating forms on the surface of aggregate particles. In these cross-sections, the
interparticle structure of samples is illustrated using a color map of segmented sample
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components. Dense particles (i.e., aggregate), less dense components (i.e., fine particles
and biopolymer), and pores are shown in black, blue, and yellow, respectively. These
results align with previous research, which has found that biopolymers like agar improve
composite mechanical properties by forming a connected film around the surface of par-
ticles [8,12]. When biopolymer composites are dehydrated, this thin film remains and
functions as a matrix for particles [8,75] improving interaggregate contact area [12,16],
sample density, and porosity [11]. In a dehydrated state, mechanical improvements of
biopolymer aggregate composites are primarily due to frictional forces in the sample rather
than adhesion or charge interactions related to the gel strength of agar [8]. Our work found
that sand reinforced samples demonstrated a condensed structure, evident by comparison
of panels A and B with panels E and F in Figure 13 (i.e., Comparison of C-0.2 and C-0.5
with S-0.2 and S-0.5). Samples with limestone did not demonstrate the same trend. Al-
though it appears the addition of limestone may have minimally improved the interparticle
structure of control composites (i.e., comparison of panels A and B with panels C and D),
the interparticle structure was largely similar to comparable control composites (i.e., large
pore spaces are present between dense particles).

p p

 

 

 

Figure 13. Representative cross-section of agar-based composites for (A) C-0.2; (B) C-0.5; (C) L-0.2;
(D) L-0.5; (E) S-0.2; (F) S-0.5; (G) LS-0.2; and (H) LS-0.5 samples. Dense aggregate, binder and fines,
and voids shown in black, blue, and yellow, respectively. Red scale bar represents 1 cm length.
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3.3.2. Unconfined Compressive Strength

The results for unconfined compressive strength testing of agar-based composites
are shown in Figure 14. Compressive strength results are within range of previous work
conducted on biopolymers composites. Work conducted by Khatami and O’Kelly [9] on
sand treated with 1, 2, and 4% agar found that the dehydrated (i.e., 30 days of acclimation)
compressive strength of samples ranged from 158 to 487 kPa. Similarly, Fatehi et al. [10]
reported unconfined compressive strengths as high as 225 kPa and 1800 kPa for agar
composites composed of sand and clays, respectively, and Chang et al. [8] reported an
unconfined compressive strength of 3190 kPa for agar and clay composites with thermal
treatment. Notably, experimental results noted are for agar composites with fine particles
(i.e., sand or clays) and not for composites with dense-graded, coarse aggregates.
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Figure 14. Compressive strength of agar-based composites. Error bars represent standard deviation
of five samples.

Compressive strength data were further analyzed as a response variable in Scheirer
Ray Hare (SRH) testing to determine the influence of binder content and aggregate and
filler composition. Results of SRH statistical analysis (Table 6) indicate that both binder
content (p = 1.29 × 10−6) and aggregate and filler composition (p = 0.0401) led to statistically
significant differences in composite compressive strength. The interaction between factors
was not statistically significant at a 95% confidence interval (i.e., p value > 0.05). A statis-
tically significant interaction would indicate that the analyzed factors have a combined
impact on the response variable that is not present in an analysis of each variable alone.
These results indicate that the binder content had the same effect on compressive strength
no matter the aggregate and filler composition used, and vice versa.

Table 6. Results for post hoc Dunn’s analysis used to evaluate the impact of aggregate composi-
tion on the compressive strength of agar-based composites. An asterisk (*) represents statistically
significant results.

Pairwise Sample Comparison Z p-Value

C-L −0.9564 0.338
C-LS −2.2570 0.024 *
L-LS −1.3007 0.193
C-S −2.5248 0.011 *
L-S −1.5684 0.117

LS-S −0.2679 0.789

Although the SRH test can indicate whether statistical differences exist in a group,
these results do not explicitly indicate which specific groups differ from one another. In
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order to determine pairwise differences, a Dunn’s test was applied to compare groups
in detail. As there are only two binder contents (i.e., 0.2 vs. 0.5 binder content) and
these sample types were determined to be significantly different in the SRH analysis, the
Dunn’s test was applied to analyze the impact of aggregate and filler composition on
compressive strength.

Results in Table 6 show that, of the six pairwise comparisons analyzed, the compres-
sive strength were statistically significant in two sample pairs (i.e., C-LS and C-S). This
indicates that the inclusion of sand in the aggregate and filler composition of samples led
to a statistically significant improvement in the compressive strength of agar-based com-
posites as compared to sample equivalents without sand (i.e., control samples, or limestone
reinforced). Statistical analysis indicates that unlike sand, the addition of limestone did not
lead to a statistically significant impact on the compressive strength of composites.

3.3.3. Modulus of Resiliency

The moduli of resilience of agar-based composites are shown in Figure 15. The
average modulus of resilience of samples ranged from 12,275 J/m3 (i.e., sample C-0.5) to
18,934 J/m3 (i.e., sample L-0.2).

These results align with findings in the literature. Namely, Cabalar et al. [76] reported
an increase in the modulus of resilience (i.e., energy absorption capacity increased) to
~4000 J/m3 for crushed rock stabilized with xanthan gum. Hamza et al. [75] found that
high plastic clays stabilized with agar illustrated a modulus of resiliency over 30,000 J/m3.
Results in this work are within reasonable range considering that the particle size in this
work is between that of the referenced literature.

Figure 15. Modulus of resilience of agar-based composites. Error bars represent standard deviation
of five samples.

The modulus of resilience results for agar-based composites were analyzed as a
response variable in SRH testing using a 95% confidence interval in order to determine
the influence of binder content and aggregate and filler composition. Results of SRH
statistical analysis are shown in Table 7. SRH testing indicated that the aggregate and
filler composition of composites did not lead to a statistically significant difference in
the modulus of resilience of composites (p value = 0.70256). Similarly, the interaction
between binder content and aggregate and filler composition was not statistically significant
(i.e., p value = 0.51246).
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Table 7. Results for Scheirer Ray Hare analysis used to evaluate modulus of resiliency results for
agar-based composites. An asterisk (*) represents statistically significant results.

Source of Variation df SS H p Value

Binder Content 1 1060.9 7.76 0.00533 *
Aggregate and Filler

Composition 3 193.0 1.41 0.70256

Interaction 3 314.3 2.30 0.51246
Residuals (Within Group) 32 3761.2

Although the compressive strength of agar-based composites was significantly im-
pacted by both experimental factors considered (i.e., binder content and the aggregate and
filler composition produced a p value ≤ 0.025), the binder content was the only statistically
significant factor for the modulus of resilience results (p-value = 0.00533). An increase in
binder content of composites from 0.2 to 0.5 led to a 33%, 34%, 10% and 20% decrease in
the average modulus of resilience for control, limestone reinforced, sand reinforced, and
both limestone- and sand-reinforced samples, respectively.

3.3.4. Modulus of Elasticity

The modulus of elasticity (E) for samples is illustrated in Figure 16. Previous work
conducted by Chang et al. [8] found the modulus of elasticity of 1% agar-treated clayey
soils to range from 188 to 270 MPa depending on thermal treatment. The magnitude
of difference in moduli results in this work was expected, as the agar-based composites
investigated in this work utilize much larger particles (i.e., coarse aggregate instead of
sand). A material with larger particles will often reflect a smaller modulus of elasticity due
to increased porosity and reduced interparticle bonding and load transfer efficiency.
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Figure 16. Modulus of elasticity of agar-based composites. Error bars represent standard deviation of
five samples.

Results were analyzed as a response variable in SRH testing using a 95% confidence
interval and results are shown in Table 8. Similarly to the modulus of resiliency, results
from this analysis indicate that only binder content (p = 3.0 × 10−5) led to statistically
significant differences in composite modulus of elasticity.
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Table 8. Results for Scheirer Ray Hare analysis used to evaluate modulus of elasticity results for
agar-based composites. An asterisk (*) represents statistically significant results.

Source of Variation df SS H p Value

Binder Content 1 2371.6 17.35 3.0 × 10−5 *
Aggregate and Filler

Composition 3 965.8 7.07 0.0698

Interaction 3 166.6 1.22 0.7485
Residuals (Within Group) 32 1826.0

4. Conclusions

This study evaluated agar-based binders as a direct alternative material for traditional
petroleum-based asphalt binders. In particular, the study analyzed the rheological proper-
ties and durability of agar-based binders, as well as the mechanical and microstructural
characterization of composites. Overall, this analysis is a step towards the practical adop-
tion of more sustainable practices in the construction industry. The experimental data
indicated the following conclusions:

• All 5% w/w agar-based binders passed the rotational viscosity (RV) threshold set
by the performance-grade (PG) specification (<3 Pa·s), while all 7.5% and 10% w/w
samples exceeded that same threshold. In general, agar-based binders exhibited more
viscous behavior than traditional asphalt binders. However, RV testing of agar-based
binders was completed at a lower temperature than stipulated by the PG specification
(i.e., 80 ◦C vs. 135 ◦C). The lower temperature compatibility of agar-based materials
indicates the possibility of lower mixing and compaction temperatures and an increase
in energy efficiency of production as compared to petroleum-based binder production.

• Dynamic shear rheometry (DSR) revealed that all agar-based binders in this study
exhibited adequate stiffness to resist early-age rutting at temperatures up to 80 ◦C.
Agar-based materials generally illustrated a higher complex modulus and lower phase
angle than traditional asphalt binders, which is advantageous for rutting. Relatedly,
the high magnitude of the complex moduli at testing temperatures might indicate the
possibility of low-temperature and fatigue-induced cracking.

• Penetration measurements performed on fully submerged, unaged agar-based binders
ranged from 162 to greater than 350. While penetration readings were generally higher
than those associated with traditional asphalt binders used in road applications, the
results indicated that penetration consistency might be tailorable with the use of
additives, such as ground limestone.

• Thermogravimetric analysis illustrated that all agar-based binders were thermally sta-
ble up to 210 ◦C. The onset of thermal decomposition occurs at a slightly lower
temperature for agar-based binders as compared to petroleum-based materials
(i.e., 210 ◦C vs. 250–300 ◦C).

• When subjected to ASTM G21 testing, agar-based binders without glycerol addition
exhibited improved resistance to biodeterioration as compared to a positive control
(i.e., cellulose). Samples with glycerol addition showed substantial growth, indicating
that glycerol served as an effective carbon source for the growth of heterotrophic
microorganisms.

• Moisture diffused rapidly in agar-based binders and the equilibrated moisture content
for agar-based samples relative to conditioned mass ranged from 196% to 1682%.
Relative to fresh-state sample mass, rehydrated agar-based binders swelled to between
55 and 97% moisture content. Limestone significantly reduced moisture sorption and
improved mass loss during testing. However, glycerol plasticizer was found to leach
from agar-based binder samples in isothermal sorption testing.
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• As shown in X-ray tomography, agar-based material-coated aggregate particles, re-
sulting in increased sample density and frictional contact between particles. Results
indicate there is likely the existence of an optimum aggregate composition and binder
content. Further, X-ray tomography illustrated the formation of large fractures due
to shrinkage stresses in samples with a 0.5 agar binder content. Coupled with results
from porosity measurements and mechanical data, this suggests that a 0.5 binder
content (i.e., by mass) surpasses the optimal agar proportion for the aggregate and
filler compositions studied herein.

• In microstructural evaluation, several trends are visible in porosity measurements.
The porosity of agar-based composites ranged from 5.79 to 16.99% for control samples,
6.25 to 15.21% for limestone-containing samples (L), 3.39 to 9.92% for sand-containing
samples (S), and 5.60 to 16.55% for limestone- and sand-containing (LS) samples. An
increase in binder content led to an increase in the volume of pores and pore size. The
inclusion of sand led to a decrease in the porosity of samples and porosity of sand
reinforced samples with a 0.2 and 0.5 binder content was 2.4–4.5% and 6.9–7.1% lower
than comparable control samples (i.e., C-0.2 and C-0.5), respectively. Conversely, the
porosity of limestone- and sand-reinforced samples was greater than the porosity of
samples with only sand.

• In mechanical characterization, the compressive strength of samples ranged from
431 to 780 kPa, 500 to 913 kPa, 699 to 1042 kPa, and 679 to 978 kPa for control,
L, S, and LS samples, respectively. The average modulus of resilience of samples
ranged from 12,275 J/m3 (i.e., sample C-0.5) to 18,934 J/m3 (i.e., sample L-0.2)
and the average modulus of elasticity ranged from 4.87 MPa (i.e., sample C-0.5) to
18.03 MPa (i.e., sample LS-0.2). The use of a higher biopolymer content led to in-
creased shrinking stresses and 0.5 binder content samples consistently illustrated
lower mechanical properties.

Results herein illustrate that agar-based materials are more stiff than traditional asphalt
binder materials, which may be problematic in regard to fatigue and low temperature
stresses that accumulate in pavement materials. The rigid characteristics of agar-based
materials indicate that these materials may perform adequately in regard to rutting, but
they do not have the same ability as traditional petroleum-based asphalt binders to relax
accumulated stresses.

Although this work highlights the benefits of agar-based material use (i.e., lower
temperature requirements, advantageous rutting characteristics, strong biodeterioration
resistance), portions of this work highlight inherent weaknesses associated with agar-
based materials that need further research for its large-scale implementation. Namely,
the moisture sorption properties of agar-based binders should be improved upon before
implementation of agar-based binders. Possible solutions to address the high hydrophilicity
and sensitivity to moisture of agar include physical (i.e., coatings, filler materials) and
chemical (i.e., crosslinking) modification methods. These solutions, recommended for
future research, could help expand the applicability of agar-based binders, which exhibited
high penetration values aligned with applications in arctic climates.

Additional economic analyses are also recommended to better understand the broader
implications of deploying agar-based binders. The literature includes large ranges of agar
production costs that are mainly due to differences in the material quality of biopolymer.
Utilizing the minimum unit cost found in the literature [77] (i.e., USD 2.21/kg) and the
cost of purchase in this study (i.e., USD 397/kg), which is larger than the ones found in
the literature, the cost of agar to prepare 5% w/w agar-based material could cost between
USD 0.42 and USD 75.14 per gallon. These results do not consider the cost of the water
source, long term maintenance, performance, and the environmental capital required to set
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up new forms of manufacturing/production. For reference, the cost of petroleum-based
binder is approximately USD 2 per gallon [78]. This price estimate represents an exorbitant
range and illustrates the need for future research on the economic costs associated with the
deployment of this solution.

Application-specific results from this work indicate that agar-based materials are
most appropriate for applications without significant moisture exposure. The moisture
sensitivity, dimensional instability, and relative rigidity of agar-based materials may make
it a less viable candidate for use as a surface pavement structure unless the hydrophilicity of
agar is reduced through physical or chemical modification. The use of agar-based materials
in the layers under a pavement surface course (i.e., base or subbase course) may be a more
appropriate application as these layers are designed to be rigid and less exposed to surface
moisture (i.e., they are protected by the surface course material).

Results from this work indicate that agar-based composites illustrate many properties
in line with those of traditional engineering materials. Although the mechanical properties
are lower than those of many typical engineering materials, results were in line with previ-
ous work on earthen material stabilization. Further, the porosity of agar-based composites
was similar to that of pervious concrete or porous asphalt. This research is promising but
highlights the need for additional work regarding optimization of binder and aggregate,
the largescale environmental and economic impacts, the long-term impact of moisture on
composite properties, and the evaluation of other durability mechanisms like UV.
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Abstract: In the last decade, various asphalt paving materials have undergone investigation for sound
attenuation purposes. This research aims to delve into the innovative design of sustainable road
pavements by examining sound absorption in rubber-modified asphalt mixtures. More specifically,
the impact of alternative sustainable materials on the sound absorption of asphalt mixtures across
different temperatures, precisely crumb rubber (CR) derived from recycling of end-of-life tires,
was investigated. The acoustic coefficient and its Gaussian fit parameters (Peak, BandWidth, and
Area Under the Curve) were evaluated. Five different types of asphalt mixtures were studied,
encompassing dense, discontinuous, and open mixtures with 0%, 0.75%, and 1.50% CR incorporated
through the dry process (DP). The results of sound absorption indicated a slight influence of crumb
rubber at temperatures ranging from 10 ◦C to 60 ◦C, particularly in mixtures with high void content.
On the other hand, as expected, the void content proved to be highly correlated with sound absorption.
These findings facilitated the establishment of predictive models that correlate acoustic absorption
spectra with the characteristics of asphalt mixtures. As a result, these models will be valuable in the
design of the next generation of sound-absorbing pavements.

Keywords: asphalt pavements; crumb rubber; sound absorption; impedance tube; sustainable road
pavements; acoustic absorption spectra; rubber-modified asphalt mixtures

1. Introduction

Noise pollution is one of the major environmental problems affecting populations
around the world. In the last decade, the increase in traffic has led to rising levels of noise
pollution [1–3]. This issue poses significant health problems for people living near roads.

To reduce traffic noise to acceptable thresholds, “sound-absorbing pavements” could
become one of the most effective alternatives. The majority of transportation modes con-
tribute to increasing noise pollution. This is particularly true for vehicle traffic on asphalt
pavements which predominantly accounts for elevated noise levels in urban environments.
The mechanisms that dominate noise generation and propagation are influenced by vibra-
tions of moving vehicles [4]. Researchers have investigated the interaction between tires
and pavement at speeds exceeding 40 km/h [5], demonstrating that it is the main source of
noise as opposed to aerodynamic and mechanical noise.

More specifically, the physical properties of tires and pavements are factors that
influence the generation of rolling noise. In recent decades, an extensive literature has
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been focused on tire characteristics such as tread shape, carcass, and stiffness patterns
and their effects on noise generation [6–8]. On the other hand, the impact of the physico-
mechanical properties of pavements on traffic noise reduction has been investigated, as well
as the effects related to surface texture, maximum aggregate size, layer thickness, drainage
capacity of the asphalt pavement [9], and other material properties, such as stiffness [10,11]
and the shape of the aggregates [12].

In addition, environmental effects, including climate change and changes in air temper-
ature, can significantly affect the stiffness of the asphalt mixture. This effect was measured
by [10], demonstrating that with an increase in temperature, the stiffness of the asphalt
mixture and its modulus decrease [10]. This phenomenon explains that temperature can
significantly influence the rolling noise absorption of a pavement. In the literature, it
has been reported that temperature changes can impact the noise generation in asphalt
pavements [13,14]. However, the effect of temperature on the sound absorption of asphalt
mixtures was unclear, and therefore the study of the sound absorption levels of specimens
at various temperatures is fundamental.

The increase in temperature at the pavement surface can rapidly transfer heat to the tire
tread, making the two stiffnesses similar to softening. Additionally, this aspect influences
the reduction of noise generated by tire vibrations at frequencies between 1000 Hz and
2000 Hz [15]. Some authors have tried to show that the generated traffic noise and its
propagation depend on the tire/pavement temperatures [16]. They recommend that noise
measurements should not be made if the air temperature is below 15 ◦C or above 35 ◦C
and propose a temperature correction of ±0.09 dB (A)/◦C considering a reference air
temperature of 20 ◦C [17–20] with noise being higher at 15 ◦C and lower at 35 ◦C. However,
given this variability, the level of noise absorption at different temperatures is still unclear
and further research is needed.

Other researchers have concentrated on the development of noise-reducing pavements
utilizing crumb rubber (CR) obtained from end-of-life tires (ELTs) as an alternative and
sustainable material, aiming to establish a quiet pavement variant using porous asphalt
(PA). The addition of rubber in the form of aggregates in the porous–elastic pavement
structure (PERS) achieves an attenuation of up to 8 dB (A) in the PA and 11 dB (A) in the
PERS, according to the proximity methodology test (CPX) [17]. The attenuation achieved is
relative to a dense pavement with a maximum aggregate size of 11 mm [21–23].

According to the literature, it is evident that the study of the effect of pavement
temperature on noise pollution is of great interest to researchers [17,24,25]. This holds
especially true for asphalt mixtures with rubber, as this material has been proposed as an
alternative sustainable noise-attenuating additive in asphalt pavements.

Therefore, this research aims to evaluate the effect of recycled tire rubber at the end
of its useful life as an alternative, sustainable, potential acoustic attenuator in asphalt
mixtures, as well as the influence of temperature on this attenuation. For this purpose, the
acoustic attenuation capacity has been evaluated by means of the absorption coefficient
(α). In addition, a fitting curve of Gaussian treatment has been made for the sound
absorption measurement. To this purpose, several experimental spectra were investigated.
The proposed approach allows the establishment of models relating the characteristics of
asphalt mixtures to their sound absorption. To achieve these objectives, several asphalt
mixtures were produced with different aggregate gradations and in various percentages of
crumb rubber (CR) (0.0, 0.75, and 1.50%) by the dry method according to the total weight
of the asphalt mixture. The acoustic performance of these mixtures was evaluated by
conducting an experimental laboratory activity by means of an impedance tube, which
made it possible to evaluate the sound absorption in different temperature conditions
(10 ◦C to 60 ◦C). Finally, predictive models of the sound absorption spectra of the materials
studied have been proposed.
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2. Methodology and Materials

The methodology of this research is based on the comparison of the sound absorption
of different categories of asphalt mixtures with and without the addition of crumb rubber
(CR) and the proposal of predictive models of this absorption through the characteristics
of the asphalt mixture and the temperature at which the absorption is measured. The CR
was added by dry process (DP) technology as a fraction of the fine aggregate during the
manufacture of the asphalt mixture. The CR has been incorporated by the dry process in
proportions of 0.0% (reference mixtures), 0.75%, and 1.50% by weight of the total asphalt
mixture. The asphalt mixtures are asphalt concrete (AC), stone mastic asphalt (SMA), and
béton bitumineux mince (BBTM).

An experimental investigation was carried out as reported in Figure 1. Firstly, the
asphalt mixture samples were manufactured in the laboratory and a characterization of
their volumetric properties (air void contents, maximum and apparent densities) was
carried out. Furthermore, non-destructive sound absorption tests were carried out using
an impedance tube. A thermostatic chamber was used for temperature control. Lastly, the
obtained acoustic results were treated by means of Gaussian fitting (GF) for each sound
absorption spectrum, evaluating several characteristics such as Peak (P) shape, Area Under
the Curve (AUC), and BandWidth (BW). This procedure was performed for five categories
of asphalt mixtures, proposed in this study. The results obtained have been statistically
treated, establishing models correlating the characteristics of asphalt mixtures and sound
absorption. According to these models, the air void content of the mixture is the most
influential factor affecting the absorption Peak, while the BandWidth and the Area Under
the Curve of sound absorption depend on both the voids in the mixture and the CR content.

 

Figure 1. Methodology, including manufacturing process, evaluation, and analysis.

2.1. Sound Absorption

In order to evaluate the sound absorption and assess the contribution of CR as an atten-
uating material at different temperatures of asphalt mixture samples, a 4206 Bruel & Kjaer
(B&K) impedance tube with frequency range of 100–1600 Hz was used. In this study, standard
normal incidence sound absorption spectra were measured on asphalt mix samples with
different crumb rubber contents and at different temperatures. Prior to the acoustic evaluation,
the samples were laterally coated with a thin Teflon film (polytetrafluoroethylene—PTFE),
as shown in Figure 2, to eliminate the clearance between the sample contour and the tube
walls [26]. The EN ISO 10534-1 [27] and EN ISO 10534-2 [28] standards describe the impedance
tube method and the transfer function technique (FFT). The signal emission equipment con-
sists of the PULSE multianalyzer system type 3560 B-T06, and a B&K 2716C amplifier. The
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two 4187 microphones [29] are placed along the length of the tube, which allows the sound
wave signals to be received. By means of the transfer functions (FFT), the sound absorption
coefficient (α) is determined with a frequency resolution of 1 Hz from a total of 100 averages
per sound absorption spectrum at the microphone positions [29].

 

Figure 2. Impedance tube and specimens of asphalt mixtures with PTFE on their lateral surface.

2.2. Sound Absorption Analysis by Gaussian Adjustment

Using the Gaussian fit (GF), three parameters were determined from the acoustic
response spectrum: Peak (P), BandWidth (BW), and Area Under the Curve (AUC). Based on
the parameters and the response spectrum analysis techniques, it is possible to characterize
the absorption by GF [30]. To explore the characteristics of the acoustic absorption spectrum,
Gaussian fits have been successfully used in the analysis of the acoustic response of various
materials [31,32]. All the fittings described in this subsection were carried out using the
software Origin 8.0. The values of these parameters (P, BW, and AUC) are based on the
general shape of the bell-shaped Gaussian function (Figure 3).

Figure 3. Geometric parameters for the characterization of the Gaussian fit.

In Figure 4, graph (a) shows a plot of the measured acoustic spectra for three types of
asphalt mixtures (AC, SMA, and BBTM) and graph (b) shows the corresponding schemes
of the parameters of the Gaussian fit: the fitted maximum Peak (P), the fitted BW, and the
fitted AUC for each type of asphalt mixture. The values characterized by the parameters
of the Gaussian fit were used to build correlation models with different volumetric char-
acteristics of the asphalt mixtures, such as air void content, densities, permeability, and
average depth of the surface texture. This analysis was established from consecutive and
statistically representative measurements for the different pavements built with the asphalt
mixtures studied.

Higher Gaussian adjustment parameters (P, BW, and AUC) are favorable for sound
absorption. The P is related to the maximum sound absorption. The BW parameter
could be related to sound absorption frequencies, as wider BandWidth allows a wider
frequency range of sound absorption. The AUC parameter seems to most likely relate to
the volumetric parameters, as its larger area would denote higher efficiency of the sound
wave absorption process through the interconnected voids in the asphalt mixture.

195



Infrastructures 2024, 9, 65

Figure 4. (a) Schematic of sound absorption spectra (ABS) for three types of asphalt mixtures,
(b) Schematic of the Gaussian fits describing the ABS for three types of mixtures.

2.3. Determination of Volumetric and Permeability Characteristics

Volumetric characteristics are properties measured after the compaction procedure
of asphalt mixtures. Density comprises two variants, (a) apparent density (Gmb) (g/cm3)
(EN 12697-6) [33] and (b) maximum density Gmm (g/cm3) (EN-12697-5) [34]. The Gmb is
the compacted density, including air voids obtained according to EN 12697-8 [33]. The
Gmm is a maximum value of the density that the mixture would have if it did not have
air voids, and it is obtained by the pycnometer method and is calculated according to EN
12697-5 [34]. Together, Gmb and Gmm allow the determination of the air void content Va in
(%) of a compacted asphalt mixture by the following expression:

Va =
Gmm − Gmb

Gmm
∗ 100 (1)

where: Gmm is the maximum density in g/cm3, Gmb is the compacted apparent density in
g/cm3.

Macrotexture is measured by the mean texture depth (MTD) through the volumetric
method of the sand patch test in mm. The procedure used for this work is based on EN
13036-1 [35] adapted to laboratory specimens. This method explains that the coarser the
texture, the smaller the circle that can be covered by spreading the standard amount of
sand. The calculation of the MTD value is expressed in Equation (2).

MTD =
4V

π·D2avg
(2)

where: V is the volume of the glass spheres in mL, Davg is the mean diameter of the sand
stain in mm.

The vertical permeability of asphalt mixture specimens was determined using the
standard EN 12697-19 [36]. This method measures the permeability in the vertical direction
by means of the time of drainage of a known volume of water through an asphalt sample.
It determines the interconnection of internal voids in draining asphalt mixtures using
Equations (3) and (4).

Qv =
(m2 − m1)

t
× 10−6 (3)
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where: Qv is the flow rate through the test tube (m3/s); m1 is the initial mass of the water
on the sample (g); m2 is the final mass of water (g); t is the time of water drainage (s).

Kv =
4·Qv·L
(h·π D2)

(4)

where: Kv is the vertical permeability (m/s), Qv is the vertical flow through the test sample
(m3/s), L is the thickness of the sample (m), h is the height of the water (m), and D is the
diameter of the sample (m).

2.4. Statistical Analysis

A statistical analysis was performed to evaluate the effect of temperature, CR content,
and volumetric properties of the asphalt mixtures (independent variables) on the Gaussian
fitting parameters of sound absorption, i.e., P, BW, and AUC.

Prior to this, a correlation analysis was carried out to check for possible links between
the independent variables, which could give rise to multicollinearity problems.

The Pearson correlation coefficient (r) has a range between [−1 and 1] [37]. The
higher the absolute value of the coefficient r, the stronger the relationship between the two
variables studied will be. Conversely, with values close to 0, the weaker the association
between the two variables will be. The Pearson correlation coefficient is calculated using
Equation (5).

r = ∑n
i=1 (xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(5)

where: n is the sample size, xi and yi are the ith sample points, and x and y are the
sample means.

The degree of correlation between volumetric characteristics, CR content, and sound
absorption measurement temperature was established according to Pearson’s correlation
grading rules (r) [37] which are shown in Table 1. The sign of the coefficient indicates the
direction of the relationship (positive or negative). A positive value (r) indicates that as one
variable grows so does the other, while a negative value (r) means the opposite trend.

Table 1. Degree of correlation by Pearson’s coefficient.

Classification Rules Degree of Correlation

r = 0 No correlation
0 < |r| ≤ 0.19 Very weak

0.20 < |r| ≤ 0.39 Weak
0.40 < |r| ≤ 0.59 Moderate
0.60 < |r| ≤ 0.79 Strong
0.80 < |r| ≤ 1.00 Very strong

|r| = 1 Monotonic correlation

On the other hand, the effects of volumetric characteristics, CR content, and temper-
ature on the peak Gaussian fit parameters P, BW, and AUC obtained from the acoustic
spectra have been evaluated by means of a multiple linear regression (MLR) analysis.
Linear models have been estimated to predict the coefficients of the Gaussian fit P, BW, and
AUC. The multiple linear regression model can be expressed as (Equation (6)):

y = β0 + β1x1 + β2x2 + · · ·+ βnxn (6)

where: y is the dependent variable (in this case P, BW, or AUC), x1 to xn are the independent
or predictor variables (in this case CR content, temperature, void content, average texture
depth, permeability, and apparent density), β0 is the y-intercept (constant term), and β1 to
βn are the regression coefficients estimated to improve the model fit.
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Air void content Va, CR content (%), and temperature (◦C) were considered as potential
predictors of Peak (P), BandWidth (BW), or Area Under the Curve (AUC) models, and
the ordinary least squares (OLS) regression technique was used to estimate the regression
coefficients. It is noteworthy that the type of mixture was not considered as a potential
predictor, since it is believed that the main differences among the mixtures can be captured
by variations in air void contents. The model estimation was carried out using “Statmodels”,
a Python library built specifically for statistical computing. A backward stepwise regression
approach was used, with a significance level of α = 0.01. First, all potential predictor
variables were included in the models excluding those that showed collinearity. Next,
non-significant predictors were excluded from the models and the regression analysis
was repeated. The procedure was stopped when the optimal model was identified after
selecting the most appropriate and significant variables. Furthermore, the goodness of fit
of the models was assessed by the coefficient of determination (R2).

2.5. Aggregates

The aggregates used in this research are porphyry (of magmatic origin), generally
used as a paving material for wearing courses in Spain. Due to the crushing process, the
aggregate has an angular shape, which allows for a good mineral skeleton. The gradation
of the aggregates is based on particle size curves according to articles 542, 543, and 544 of
PG-3 [38]. The grading curves of the crushed aggregate of the five different mixtures (AC,
SMA, and BBTM) are shown in Figure 5.

Figure 5. Aggregate gradation curves used in asphalt mixture design.

2.6. Crumb Rubber (CR)

Crumb rubber (CR) has been widely used in asphalt mixtures in several countries
all over the world. For this research, a maximum particle size of 0.6 mm has been used.
Table 2 presents the gradation curve of CR (EN 933-1, 2013). In this study, CR contents of
0% (reference), 0.75%, and 1.50% of the total weight of the asphalt mixtures were used.

Table 2. Gradation curve of Crumb Rubber (CR).

Sieve (mm) EN 933-1-13 2 1.5 1 0.5 0.25 0.125 0.063

Pass (%) 100 100 100 94.1 23.7 3.7 0.4

2.7. Asphalt Mixture Investigation: Laboratory Experimental Activity

In this research, five asphalt mixtures, and more specifically AC 16 S, SMA 8, SMA
11, BBTM and BBTM 11 B, were manufactured with three different CR contents: 0%,
0.75%, and 1.50%. All mixtures were initially defined on the basis of a previous research
work that demonstrated adequate mechanical behavior. For each mixture, six compacted
specimens were manufactured, according to the Marshall EN 12697-34 method [39]. A
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total of 90 specimens (5 mixtures for each of the 3 rubber contents for 6 specimens) were
implemented and tested for the study.

Table 3 shows the manufacturing characteristics of the different asphalt mixtures
studied in this research. The type of bitumen used is 50/70 asphalt binder according to
EN 1426-07 [40]. This binder has been used because it has a good affinity with rubber, as
widely demonstrated by previous works [26,41,42]. The samples were manufactured in the
laboratory in a cylindrical shape of 60 mm in height and 99.5 mm in diameter to facilitate
their accommodation in the impedance tube, which has an inner diameter of 100 mm.

Table 3. Manufacturing parameters.

Mixture
Max. Size

(mm)
Type of Mixture

CR
(%)

Binder Content (%)
MT
(◦C)

Digestion
Temperature

(◦C)

AC 16 S—REF 0.00 5.1
AC 16 S 16 AC 16 S—0.75% 0.75 5.3 170 160

AC 16 S—1.50% 1.50 5.5

SMA 8—REF 0.00 6.0
SMA 8 8 SMA 8—0.75% 0.75 6.1 170 160

SMA 8—1.50% 1.50 6.2

SMA 11—REF 0.00 6.0
SMA 11 11.2 SMA 11—0.75% 0.75 6.1 170 160

SMA 11—1.50% 1.50 6.2

BBTM 8 B—REF 0.00 5.0
BBTM 8 B 8 BBTM 8 B—0.75% 0.75 5.1 170 160

BBTM 8 B—1.50% 1.50 5.2

BBTM 11 B—REF 0.00 5.0
BBTM 11 B 11.2 BBTM 11 B—0.75% 0.75 5.1 170 160

BBTM 11 B—1.50% 1.50 5.2

Note: CR: Crumb Rubber. MT: Manufacturing Temperature.

The increase in binder viscosity with the addition of CR is a well-known effect [43].
The increase in viscosity is caused by the integration of the rubber into the mixture once
it comes into contact with the bitumen at high temperatures, resulting in an absorption
of the lighter fractions of the bitumen (digestion process). It is also due to the fact that
the (EN 12697-30, 2007) rubber increases in volume. This effect leads to a reduction of the
distance between the particles and an increase in viscosity of the binder. For this reason, the
manufacturing temperature of the mixtures with rubber has been set at 170 ◦C to facilitate
the digestion process and the mixing of aggregates, binder, and CR.

Regarding the manufacture temperature (MT) of the test specimens, the aggregates
were heated to 170 ◦C, and mixed with the crumb rubber for 30 s. The bitumen was then
added at 170 ◦C and mixed with the aggregates and CR for approximately 30 s. The
filler was then incorporated into the mixture and mixed for 120 s. The samples are then
thermally conditioned to start the oven digestion temperature (DT) process at 160 ◦C, prior
to the compaction process. The oven digestion time allows the asphalt mixtures to be kept
at a constant temperature for 90 min so that the crumb rubber can better integrate with
the bitumen and ensure proper digestion. Finally, all samples are compacted at 160 ◦C
in the Marshall impact compactor in accordance with EN 12697-30 with application of
75 blows/surface for AC mixtures and 50 blows/surface for SMA and BBTM mixtures.
Table 3 details the manufacturing parameters.

2.8. Thermal Conditioning for Absorption Measurement

For the evaluation of the influence of temperature on the sound absorption coefficients,
the asphalt mixture samples were thermally conditioned, and their temperature was
monitored using a FLIR C2 thermal imaging camera. The average surface temperature
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of the sample was obtained with the FLIR tools analysis software. All samples were
kept at an initial temperature of 10 ◦C, then conditioned per sample group until the
desired temperatures of 20, 30, 40, 50, and 60 ◦C were reached in the oven (Figure 6a).
The thermal conditioning is prolonged by 8 h for each temperature step. The effects
of different temperatures are controlled by ensuring that the specimens are thermally
stabilized before starting the test and confirming that there are no substantial variations
during the measurement. Figure 6b shows the temperature check of the specimens with a
thermographic camera.

  

Figure 6. (a) Sample conditioning oven, (b) Thermographic imaging (10 ◦C to 60 ◦C).

3. Results and Discussion

3.1. Volumetric Characterization, Permeability, and Macrotexture

The volumetric parameters of the reference asphalt samples without CR and the mix-
tures with CR were determined in the laboratory. The maximum density (Gmm), apparent
density (Gmb), air void content (Va), hydraulic permeability (Kv ), and mean texture depth
(MTD) were obtained from the asphalt samples after compaction.

The volumetric characterization results for each type of asphalt mixture are shown
in Table 4. From the results obtained, it can be seen that the reference mixtures (without
CR) have a higher maximum density (Gmm) verified for all five types of asphalt mixtures,
compared to the mixtures containing 0.75 and 1.50% CR. This is because the reference
sample does not contain crumb rubber and its maximum density is related to the specific
density of the aggregates and bitumen. However, the CR additions have a lower density
than the aggregates. Therefore, the reduction in maximum density in the mixtures with
CR is closely related to the presence of CR. This behavior of CR in asphalt mixtures was
extensively studied by Gallego et al. [44].

The presence of CR slightly influences the air void content in AC asphalt mixtures.
This could be due to its continuous particle size where the rubber can be better integrated
into the mixture mass. However, rubber appears to increase voids in the SMA 8 and BBMT
8 B mixtures. This is probably due to the strong mineral skeleton of these two mixture
types. It can be observed that the maximum aggregate size of 8 mm would be more affected
by rubber particles in the compaction stage. The percentage increase in the voids with
the addition of 1.50% CR was determined as follows: in AC16 it increases by 1.5% Va,
in SMA 8 by 38.4% Va, SMA 11 by 1.6% Va, in BBTM 8 by 10.40% Va, and BBTM 11 by
0.79% Va. The asphalt mixture exhibiting a significant increase in air void content is SMA 8
(38.4%). This is attributed to the expansion of the CR during the dry process of digestion.
The lowest effect of CR is seen in BBTM 11 (0.79%). The presence of CR mainly impacted
semidense mixtures with dimensions of the aggregate of 8 mm, while in the larger size of
the aggregate, there was no significant effect of CR. This is due to internal porosity of open
mixtures which allows the CR to swell and cover the internal pores without affecting it
significantly. The presence of rubber in the SMA 11 and BBTM 11 B mixtures does not seem
to generate as strong increases as in the SMA 8 and BBTM 8 B mixtures. This could be due
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to the size of the aggregate and the mineral skeleton it forms, which is smaller in the case
of the 8 mixtures and more vulnerable to distortion by the presence of CR particles.

Table 4. Manufacturing detail, volumetric characteristic, permeability, and texture.

Mixtures
CR
(%)

MT
(◦C)

DT
(◦C)

Gmb
(g/cm3)

Gmm
(g/cm3)

Va
(%)

Kv
(m/s)

MTD
(mm)

AC 16 S
0.00 160 170 2.406 2.540 5.27 *- 0.985
0.75 160 170 2.358 2.487 5.24 *- 0.955
1.50 160 170 2.295 2.424 5.35 *- 0.846

SMA 8
0.00 160 170 2.385 2.507 4.86 4.41 × 10−4 0.990
0.75 160 170 2.342 2.483 5.67 7.53 × 10−5 0.984
1.50 160 170 2.296 2.461 6.73 7.18 × 10−4 0.932

SMA 11
0.00 160 170 2.349 2.517 6.66 1.97 × 10−4 1.607
0.75 160 170 2.316 2.483 6.73 9.26 × 10−4 1.320
1.50 160 170 2.252 2.442 7.78 6.34 × 10−4 1.221

BBTM 8 B
0.00 160 170 2.210 2.650 16.61 2.98 × 10−4 2.975
0.75 160 170 2.136 2.591 17.56 1.98 × 10−4 2.573
1.50 160 170 2.117 2.592 18.34 1.93 × 10−4 1.934

BBTM 11 B
0.00 160 170 2.148 2.643 18.72 2.79 × 10−4 3.054
0.75 160 170 2.140 2.634 18.76 3.05 × 10−4 2.873
1.50 160 170 2.135 2.632 18.87 3.03 × 10−4 2.711

Note: CR: Crumb rubber, MT: Manufacturing temperature, DT: Digestion temperature, Gmb: Apparent density,
Gmm: Maximum density, Va: Air voids, Kv: Permeability, MTD: Mean texture depth, *-: Impermeable samples.

3.2. Sound Absorption Coefficient: Influence of Mixture Type, Temperature, and CR Content

In order to evaluate the influence of temperature on the sound absorption coefficient,
several measurements were made at the following temperatures: 10 ◦C, 20 ◦C, 30 ◦C, 40 ◦C,
50 ◦C, and 60 ◦C (±2 ◦C). The sound absorption evaluations were quantified through the
spectrum of the sound absorption coefficient (α) in the samples previously conditioned at
different temperatures. Figure 7 shows the sound absorption spectra for normal incidence
at 20 ◦C for all AC, SMA, and BBTM asphalt mixtures with 0%, 0.75%, and 1.50% CR,
at frequencies between 100 Hz and 1600 Hz. As shown in Figure 7, there is a strong
difference in sound absorption at 20 ◦C between the different asphalt mixtures, with the
BBTM mixtures having the highest sound absorption coefficient.

Figure 7. Sound absorption coefficient of the asphalt mixtures studied at 20 ◦C.

The behavior of the different sound absorption peaks might indicate that some asphalt
samples show better sound absorption within a specific low-frequency range from 400 Hz
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to 700 Hz. Experimental studies from different investigations on asphalt mixtures showed
similar sound absorption behavior at different frequencies [45,46], confirming that the
peaks of maximum sound absorption are associated with the low-frequency range.

In addition, as shown in Figure 8, as the temperature increases, the levels of the
maximum sound absorption coefficient also increase in the discontinuous BBTM mixtures.
However, the changes in the maximum absorption coefficient in the dense AC and SMA
mixtures due to the increasing effect of temperature are not evident.

Figure 8. Sound absorption coefficient of the asphalt mixtures studied at different temperatures.
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On the other hand, it is interesting to mention the behavior of the maximum sound
absorption recorded in the BBTM mixtures, which show a positive behavior of the spectra
and peaks of maximum sound absorption with slight shifts at higher frequencies. However,
it is necessary to conclude that for practical purposes the measurement temperature has
little influence, except for the BBTM mixture, where at 60 ◦C the sound absorption seems
to be approximately 10% higher than at 10 ◦C. As for the CR content, it seems to have little
influence on the sound absorption. The statistical significance of these variables will be
analyzed in the following section.

3.3. Gaussian Goodness of Fit

Gaussian goodness of fit was assessed using the R2 statistic (coefficient of determina-
tion) to check how well the normal distribution fits the observed data (sound absorption
spectra). Figure 9 presents an example of this procedure applied for the BBTM 11 B with
1.50% CR mixtures, showing excellent goodness of fit results.

Figure 9. Gaussian fitting applicated for sound absorption spectra.

Table 5 illustrates the goodness of fit performance of all the mixtures under study,
with values of R2 always greater than 0.92.

Table 5. Result for the goodness of Gaussian fitting.

Mixtures CR (%)
No.

Observations
R2 Adjusted R2 Result

AC 16 S
0.00 801 0.923 0.923 Accepted
0.75 801 0.966 0.966 Accepted
1.50 801 0.943 0.943 Accepted

SMA 8
0.00 801 0.986 0.984 Accepted
0.75 801 0.922 0.922 Accepted
1.50 801 0.984 0.985 Accepted

SMA 11
0.00 801 0.924 0.924 Accepted
0.75 801 0.941 0.940 Accepted
1.50 801 0.963 0.962 Accepted

BBTM 8 B
0.00 801 0.969 0.968 Accepted
0.75 801 0.958 0.958 Accepted
1.50 801 0.967 0.966 Accepted

BBTM 11 B
0.00 801 0.993 0.931 Accepted
0.75 801 0.989 0.989 Accepted
1.50 801 0.981 0.980 Accepted

3.4. Regression Models of Asphalt Mixture Characteristics as a Function of Gaussian Parameters

The obtained results presented in the previous section have been analyzed through
a statistical analysis. The first step consists in a correlation analysis, which is carried
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out to investigate and assess potential correlations between the independent variables to
prevent possible multicollinearity problems. To this purpose, the correlation between all
potential predictor variables has been examined in order to determine the relations and to
discard those that are correlated, thus avoiding multicollinearity problems in the predictive
models of this research. Figure 10 shows the correlation matrix in which the relations
between volumetric characteristics, temperature, and CR content, according to the Pearson
coefficient, are shown.

Figure 10. Pearson correlation analysis of temperature, rubber, and intrinsic parameters of asphalt
mixtures.

The volumetric characteristics of the asphalt mixtures (AC16, SMA 8, SMA 11, BBTM
8 b, and BBTM 11 B) taken into consideration are: air void content (Va), hydraulic perme-
ability (Kv), mean texture depth (MTD), and the apparent density of the mixtures (Gmb).
The maximum density Gmm has not been considered, as it depends on the void content
(Va) and the apparent density (Gmb) by Equation (1). The volumetric characteristics of the
mixtures have been found to be related to each other. However, the rubber content is only
moderately related to Gmb.

A high degree of correlation between the volumetric properties of the mixtures has thus
been found (Figure 10). More specifically, strong correlations have been found between the
Va and the MTD, the Kv, and the apparent density Gmb. It is believed that the phenomenon
of sound absorption is mainly due to the interconnected air voids within the mixture
structure. For this reason, it has been decided to keep the air void variable Va in the
predictive models and to remove MTD, Kv, and apparent density Gmb, in order to avoid
collinearity and thus facilitate the interpretation of the predictive models presented below.

Furthermore, it has been observed that CR content and temperature did not show
any strong correlation with the other variables, therefore they have been included in the
predictive models for P, BW, and AUC.

The regression models of the Gaussian parameters, i.e., Peak (P), BandWidth (BW),
and Area Under the Curve (AUC), are presented as a function of the air void content
(Va), the rubber content (% CR), and the temperature (◦C) at which the measurement is
made. It should be noted that the other volumetric properties (maximum density (Gmm),
apparent density (Gmb), hydraulic permeability (Kv), and mean texture depth (MTD)) were

204



Infrastructures 2024, 9, 65

not considered as potential predictors, as they exhibited a strong correlation with void
content as observed in Figure 10.

The results obtained were pre-treated for all the asphalt mixtures in Table 5 with
the Gaussian curve fitting detailed in Section 3.3. Several attempts were made for each
model, including the potential predictors (void content (Va), absorption (α) measurement
temperature, and CR content), Furthermore, the process was iterated to obtain optimized
models with statistically significant predictors. Tables 6–8 show the degrees of significance
of all predictor variables used for the prediction models. In the Peak (P) model it has been
observed that the CR content and temperature variables do not show high significance,
while, for the BandWidth (BW) and Area Under the Curve (AUC) models, only temperature
does not show significance.

Table 6. Peak (P) model.

Coefficients Statistics 95% Confidence Interval for β

β Standard Error t p-Value Lower Bound Upper Bound

Intercept −0.0301 0.028 1.055 0.292 −0.026 0.086
Air voids (%) 0.0708 0.002 44.611 <0.001 0.068 0.074
CR content (%) −0.0061 0.015 −0.396 0.693 −0.036 0.024
Temperature (◦C) 0.0005 0.001 0.919 0.358 −0.001 0.002
No. observations 540
R2 0.788
Adjusted R2 0.787

R2: Correlation coefficient, β: Estimated correlations coefficient, t: t-Student, p-value: Probability value.

Table 7. BandWidth (BW) model.

Coefficients Statistics 95% Confidence Interval for β

β Standard Error t p-Value Lower Bound Upper Bound

Intercept 416.770 11.341 36.748 <0.001 394.495 439.053
Air voids (%) −10.650 0.811 −13.126 <0.001 −12.242 −9.055
CR content (%) 79.450 7.864 10.103 <0.001 64.004 94.900
Temperature (◦C) −0.352 −1.180 0.239 −0.941 0.235
No. observations 540
R2 0.327
Adjusted R2 0.323

R2: Correlation coefficient, β: Estimated correlations coefficient, t: t-Student, p-value: Probability value.

Table 8. Area Under the Curve (AUC) model.

Coefficients Statistics 95% Confidence Interval for β

β Standard Error t p-Value Lower Bound Upper Bound

Intercept 18.504 2.931 6.314 <0.001 12.747 24.261
Air voids (%) 8.157 0.210 38.907 <0.001 7.745 8.569
CR content (%) −5.921 2.032 −2.914 0.004 −9.913 −1.929
Temperature (◦C) 0.1338 0.077 1.734 0.084 −0.018 0.285
No. observations 540
R2 0.740
Adjusted R2 0.738

R2: Correlation coefficient, β: Estimated correlations coefficient, t: t-Student, p-value: Probability value.

Once the significant predictor variables have been determined (see Section 2.4), the
results of the optimized models for Peak (P), BandWidth (BW), and Area Under the Curve
(AUC) based on the 540 data set (5 mixtures × 3 CR contents × 6 measurement temperatures
× 6 specimens) were obtained and are shown in Tables 9–11, respectively.

205



Infrastructures 2024, 9, 65

Table 9. Statistical parameters of the Peak (P) model.

Coefficients Statistics 95% Confidence Interval for β

β Standard Error t p-Value Lower Bound Upper Bound

Intercept 0.0424 0.020 2.164 0.031 −0.004 0.081
Air voids (%) 0.0708 0.002 44.720 <0.001 0.068 0.074
No. observations 540
R2 0.788
Adjusted R2 0.788

R2: Correlation coefficient, β: Estimated correlations coefficient, t: t-Student, p-value: Probability value.

Table 10. Statistical parameters of the BandWidth (BW) model.

Coefficients Statistics 95% Confidence Interval for β

β Standard Error t p-Value Lower Bound Upper Bound

Intercept 416.77 11.341 36.748 <0.001 394.495 439.053
Air voids (%) −10.65 0.811 −13.126 <0.001 −12.242 −9.055
CR content (%) 79.45 7.864 10.103 <0.001 64.004 94.900
No. observations 540
R2 0.325
Adjusted R2 0.322

R2: Correlation coefficient, β: Estimated correlations coefficient, t: t-Student, p-value: Probability value.

Table 11. Statistical parameters of the Area Under the Curve (AUC) model.

Coefficients Statistics 95% Confidence Interval for β

β Standard Error t p-Value Lower Bound Upper Bound

Intercept 18.504 2.931 6.314 <0.001 12.747 24.261
Air voids (%) 8.157 0.210 38.907 <0.001 7.745 8.569
CR content (%) −5.921 2.032 −2.914 0.004 −9.913 −1.929
No. observations 540
R2 0.738
Adjusted R2 0.737

R2: Correlation coefficient, β: Estimated correlations coefficient, t: t-Student, p-value: Probability value.

In the Peak (P) model in Table 6, the variables temperature and rubber content (CR)
were found to be non-significant and were therefore excluded from the model construction
(Table 9). The model has a coefficient of determination R2 = 0.788. The only significant
variable was air void content (Va), and the coefficient is positive, meaning that an increase
in air voids in the asphalt mixtures leads to a higher Peak (P) sound absorption. More
specifically, each one unit change in the air void content of the mixtures corresponds to an
increase in Peak (P) by a factor of 0.0708.

The fitted line and the relationship between air void content (Va) and Peak (P) are
shown in Figure 11, and the model can be expressed as Equation (7):

P = 0.0424 + 0.0708·(Va) (7)

It should be noted that the model obtained is valid in the range of air void content
considered in this study (4% < Va < 19%).

In the BandWidth (BW) regression model, two significant variables were identified,
Va and CR content (%). On the other hand, the temperature of the mixtures was found
to be non-significant as seen in Table 6 and was therefore excluded from the model in
Table 10. The coefficient of determination R2 of the model was quite low, equal to 0.325,
which means that the model can only explain 32.5% of the BW variability. The sign of the
air void content (Va) was negative (β = −10.648), which means that an increase in air voids
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produces a decrease in the BandWidth (BW). In other words, a narrower BW concentrates
more sound energy absorption in the frequencies that are most easily attenuated in the
network of tunnels formed by the interconnected voids.

Figure 11. Linear correlation analysis of void content (Va) and Peak (P).

On the other hand, the rubber content (CR) showed a positive coefficient, which means
that the addition of CR tends to increase the BW. That is, it widens the range of frequencies
of sound waves that are absorbed. Since the coefficient is high (β = 79.452) the effect is
noticeable despite the small range of variation in crumb rubber content.

Figure 12 shows a 3D visualization of the multiple regression model for a better
interpretation of the relationship between air voids, CR content, and BW. This model is
within the limits of the void contents studied in this project (Va > 5% and Va < 19%). This
relationship can be expressed as:

BW = 416.77 − 10.648·Va (%) + 79.452·CR content (%) (8)

Figure 12. Multiple linear correlation analysis of void content, CR content, and BandWidth (BW).

Finally, in the Area Under the Curve (AUC) model, two significant variables, Va and
CR content, were found. Again, temperature appears not to affect the acoustic response of
the asphalt mixture (Table 8), is not significant, and is excluded in Table 11 of the optimized
model. The coefficient of determination R2 of the model was equal to 0.74, representing a
strong relationship between the predictors and the dependent variable AUC. The coefficient
of the air void content (Va) was positive, meaning that an increase in air voids in the mixture
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results in an increase in the AUC. Each one-unit change corresponds to an increase in AUC
by a factor of 8.157, when the other predictor variable (CR content) is held constant [47–52].

On the other hand, CR content exhibited a negative coefficient, meaning that its effect
is to reduce AUC.

Figure 13 shows the combined effect of air void content Va and CR content on the
AUC. The model can be expressed as:

AUC = 18.504 + 8.157·Va(%)− 5.921·CR content(%) (9)

Figure 13. Multiple linear correlation between void content, CR content, and Area Under the Curve
(AUC).

The results revealed that the Peak (P) of the Gaussian curve associated with the sound
absorption is highly correlated and depends on the air voids (Va) of the asphalt mixture. In
other words, the results demonstrate that an increase in the porosity significantly improves
the acoustic absorption performance. This finding aligns with the results obtained by other
researchers [51]. More specifically, ref. [52] identified a linear relationship between the air
voids of the mixture and the sound absorption coefficient with R2 = 0.94.

Nevertheless, the Peak (P) does not stand as the unique variable delineating the acous-
tic response of asphalt mixtures. In addition, it was found that the CR had no significant
effect on the Peak (P) sound absorption of asphalt mixtures. Experimental laboratory ob-
servations reveal that both air voids (Va) and crumb rubber (CR) content exert discernible
influences on the Area Under the Curve (AUC). The AUC serves as a comprehensive metric
characterizing the acoustic response of asphalt mixtures across a spectrum of frequencies.
Despite the proclivity of Va to positively correlate with AUC, indicating an augmentation
in sound absorption properties, it is discernible that the introduction of CR marginally
attenuates AUC. Corroborating this, Shatanawi et al. [47] have asserted that CR does not
directly elicit an enhancement in sound absorption. Furthermore, the findings manifest
that CR particles induce alterations in the volumetric properties of the mixtures, thereby
influencing sound absorption characteristics.

The BandWidth (BW) provides information about the frequency-dependent variability
of sound absorption properties. Mixtures without CR exhibit a tendency to concentrate
absorption characteristics predominantly around the Peak, whereas with CR mixtures, the
acoustic response manifests heightened stability surrounding the Peak. Furthermore, it
is noteworthy that Va exhibits a reducing effect on the BW. Nonetheless, it is imperative
to underscore the relatively low coefficient of determination for the model (R2 = 0.325),
indicative of its limited reliability. Subsequent investigations are warranted to advance
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the comprehension of sound absorption properties inherent in sustainable road materials
integrated into asphalt mixtures, with a specific focus on rubber. This entails the conduction
of additional laboratory experiments and the exploration of materials aimed at amplifying
the sustainability quotient of road construction materials.

4. Conclusions

The current research entails the assessment of sound absorption implementing an
impedance acoustic tube for asphalt mixtures, both with and without crumb rubber (CR),
across varied temperatures. The study encompasses dense asphalt concrete (AC), discon-
tinuous stone matrix asphalt (SMA), and open-graded béton bitumineux mince (BBTM)
formulations, with CR content of 0%, 0.75%, and 1.50% incorporated through the dry
process (DP).

In-depth analyses of sound absorption spectra were conducted at diverse measurement
temperatures ranging from 10 ◦C to 60 ◦C. Gaussian curve fitting was employed to extract
parameters such as Peak (P), BandWidth (BW), and Area Under the Curve (AUC). The
primary objective of this research is to explore potential correlations between the intrinsic
characteristics of the asphalt mixtures and the Gaussian fit parameters derived from sound
absorption results.

The establishment of prediction models for Gaussian absorption parameters, grounded
in the distinctive features of the mixtures, allows the following conclusions:

• The Peak (P) absorption improves with the air void content (Va) in asphalt mixtures.
However, the rubber content (CR) and the temperature at which the measurement is
made do not seem to influence the Peak parameter. The model fit is R2 = 0.788.

• The air void content (Va) tends to reduce the BandWidth (BW), while the crumb rubber
content increases it. However, the model has limitations in terms of low goodness of
fit, with R2 = 0.325.

• Void content positively affects the Area Under the Curve (AUC). On the other hand,
rubber content slightly reduces the AUC. This model has a good fit with a coefficient
of R2 = 0.738.

Based upon the finding of this research and in the context of practical applications, it
can be asserted that:

• The main factor affecting the sound absorption is clearly the void content of the
asphalt mixture. The maximum sound absorption coefficient was obtained for as-
phalt mixtures with high air void content, in this research the discontinuous BBTM
open mixtures.

• Crumb rubber has limited influence on the sound absorption of AC and SMA mixtures.
In open-mixture-type BBTM it seems to slightly improve the sound absorption.

• The temperature (10 ◦C to 60 ◦C) has a limited influence on the results.

The novelty of this research is the formulation of models describing the acoustic
response of asphalt mixtures as a function of their volumetric characteristics and crumb
rubber content. The results of this work constitute a useful starting point for the develop-
ment and design of innovative sustainable sound-reducing pavements. However, there are
other variables that need to be analyzed to improve the accuracy of the presented models
and to gain a deeper understanding of this complex phenomenon. In this context, the effect
of pavement aging, the nature of the aggregates, and the incorporation of different additives
could be analyzed in future research. In addition, additional mixtures with a wider range of
air voids should be studied. Future further analyses, including the realization of full-scale
projects, would be crucial for the assessment of these technologies, which would allow for
the mitigation of road noise pollution.
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Abstract: Pavement construction practices have evolved due to increasing environmental impact
and urban heat island (UHI) effects, as pavements, covering over 30% of urban areas, contribute to
elevated air temperatures. This study introduces heat-reflective pavements, by replacing conventional
black bitumen with a clear binder and pigment-modified clear binders. Titanium dioxide white,
zinc ferrite yellow, and iron oxide red pigments are used to give asphalt corresponding shades. The
asphalt and bitumen specimens were subjected to thermal analysis in heat sinks, under varying solar
fluxes. The pigment dosage was maintained at 4%, according to the weight of the total mix, for all
pigment types. The samples were heated and cooled for 3 h and 2 h, respectively. Mechanical testing
was conducted to ascertain the impact of temperature variations on both the neat clear binder (C.B)
and pigmented C.B and asphalt mixture samples. Wheel tracking and dynamic modulus tests were
conducted to evaluate their performance under high temperatures. The results indicate that non-black
asphalt mixtures exhibit significant temperature reductions, up to 9 ◦C, which are further enhanced
by pigmented binders, up to 11 ◦C. It was found that asphalt with a clear or transparent binder
demonstrated lower temperatures and faster heat dissipation in extreme conditions. Moreover, C.B
asphalt mixtures displayed a rut resistance of 15%, with the pigmented C.B asphalt mixture showing a
remarkable rut resistance of 73%, outperforming conventional asphalt. Non-black mixtures, especially
C.B + zinc ferrite, showed improved resistance to permanent deformation in dynamic modulus tests.

Keywords: clear binder (C.B); UHI effect; pigmented binder; solar flux; non-black asphalt mixture;
rut resistance

1. Introduction

Pavement construction practices, using advanced and innovative materials and tech-
niques, have been on the rise in recent years. This is to lessen the impact of infrastructure
on adjacent areas and to address environmental issues [1]. It is becoming increasingly
common for natural ground surfaces to be covered by pavements; pavements typically
account for over 30% of typical urban areas [2]. Compared to natural ground surfaces, the
higher thermal inertia and lower evaporation rate of pavements contribute to the formation
of urban heat islands. This phenomenon results in air temperatures in urban areas typically
being higher than those of surrounding rural regions, with temperature differences ranging
from 10 to 21 ◦C [3,4].

Asphaltenes are a class of crude oil compounds that are black in color, contributing
to the dark appearance of traditional bitumen [5,6]. Conventional bitumen, which has
a high tinting strength, is responsible for the black color of asphalt [7]. Studies have
demonstrated that the dark color of asphalt is the leading cause of pavement high surface
temperatures [8–11]. Furthermore, hot pavements significantly intensify the urban heat
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island effect [3]. The U.S. Environmental Protection Agency (U.S. EPA 2008) has defined low-
temperature intensive or cool pavements as a range of established and emerging pavement-
related solutions and technologies. These innovative pavement solutions have the potential
to significantly lower pavement surface temperatures and, consequently, reduce the amount
of heat released into the atmosphere when compared to conventional pavements [12].
Implementing these alternative pavement materials and technologies has the potential to
mitigate the urban heat island effect and provide substantial environmental benefits.

The extent of UHI depends on various factors, such as time, city dimensions, weather
conditions, urban layout, surface material composition, vegetation, and human activi-
ties [13–15]. In pavement engineering, it is important to highlight that the thermal proper-
ties of materials, including pavements, are markedly influenced by solar radiation, leading
to absorbed, reflected, and stored energies [16]. Historically, numerous early studies have
focused on employing thermally optimized solutions for paving, such as utilizing clear or
colored materials and porous surfaces [17–19].

Several strategies for reducing the surface temperature of pavements have been devel-
oped to alleviate the urban heat island (UHI) effect. These strategies include heat-reflective
pavements with surface coatings, evaporative pavements with porous surface layers,
thermally modified pavements, and pavements with phase-change materials for heat stor-
age [20–25]. As a result of the utilization of transparent bitumen by the asphalt industry,
roads may be constructed in any color [26]. Producing colored asphalt mixtures for road
pavements is essential to meet environmental, aesthetic, and functional requirements [27].
There are three different processes through which transparent bitumen can be produced,
as follows:

• The modification of bitumen, by removing the asphaltene responsible for its dark
color [6];

• Synthetic binders produced using naturally transparent and special polymer materi-
als [28,29];

• Proper resins combined with bio-oils or organic, renewable raw materials from veg-
etable sources [27,28]. While these materials are not bituminous, they display rheolog-
ical properties similar to bitumen, making them appropriate for the construction of
roads [6].

The literature has also demonstrated that clear binders and asphalt made with clear
binders perform similarly to conventional bitumen and the corresponding asphalt mixtures
(HMA) [30,31]. In addition, a recent study shows that clear binders and corresponding as-
phalt can dissipate heat faster and absorb heat slower than conventional black bitumen [32].
Moreover, studies have also shown that traditional binders and asphalts, when mixed
with metal oxide pigments, increased the thermal conductivity of the pavement, which
resulted in a significant enhancement of the high-temperature performance of the wearing
course [33]. Furthermore, researchers have investigated the feasibility of utilizing innova-
tive mixtures of clear and colored materials on pavement surfaces to mitigate the UHI effect
by increasing the albedo and reducing the surface temperature [34–36]. It has been shown
that clear mixtures reduce the temperature significantly compared to conventional black
surfaces. It has also been shown that the surface color influences the thermal response and
that oxide-modified mixtures exhibit promising mechanical properties, suggesting that
they may be utilized in residential areas with low traffic [37]. Hence, altering the color of
conventional black binders to any non-black color, or solely using a colorless binder, could
result in durable and cooler pavement structures.

Colored asphalt pavements primarily include light-colored pavements and pigmented
pavements [27]. In the former approach, the aggregates are covered and bound using trans-
parent bitumen instead of traditional black bitumen. In areas with a significant landscape
or areas of historical and cultural significance, these types of transparent bitumen enhance
the natural color of mineral aggregates. In the latter type, transparent bitumen is blended
with pigments in asphalt mixtures or artificially colored aggregates are incorporated into
the mix to create a specific aesthetic feature [27].
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During hot and sunny seasons, colored pavements display higher reflectance char-
acteristics than traditional asphalt pavements [37]. Hence, those surfaces are less likely
to absorb solar radiation and remain cooler when exposed to sunlight. As a result, the
air temperature in the surrounding areas decreases, because less heat is transferred from
the pavement to the air [11,38]. These pavements are also highly reflective, reducing the
likelihood of overheating during the summer, which increases pavement durability and
reduces damage [39]. It has also been demonstrated that transparent bitumen can lessen
illumination needs, thereby decreasing electricity costs [27]. As part of an effective traffic
management program, colored asphalt pavements might also be used to identify bus lanes,
sidewalks, crosswalks, and pedestrian areas [30].

2. Objectives and Experimental Approach

This study aims to evaluate the thermal characteristics and structural performance of
various non-black asphalt binders and mixtures, compared to conventional black bitumen
and asphalt. Specifically, we aim to evaluate the heat conductions, absorption, and the
rate of heating and cooling of pigment-modified and unmodified clear binders (C.B.)
and asphalt mixtures, in comparison to conventional black bitumen and asphalt. The
structural performance will be assessed using wheel tracking and dynamic modulus tests.
Temperature measurements will be taken at five different depths for all the modified
and unmodified binders and asphalt to analyze their thermal characteristics. Solar flux
densities will be used to calculate the corresponding power and voltage applied to a silicon
plate heater. The temperature measurements are recorded using a highly sensitive data
acquisition system and highly calibrated thermocouples.

3. Materials and Methods

3.1. Binders and Aggregates

For this study, a clear asphalt binder (provided in Figure 1a [1]) was imported from
China, which comprises thermoplastic bicomponent resins, whose color ranged from straw
yellow to amber orange [1]. While locally manufactured conventional bitumen (ARL 60/70
pen grade) was used, which is the most used bitumen grade across the country. However,
in this study, it was only used for a comparison. Our recently published research provides
the conventional properties of both binders [32]. The aggregates used in this research were
obtained from the Margalla quarry source. The aggregates from this quarry are limestone
(basic) in nature [40], as calcium carbonate is a substantial portion of this quarry. The
thermal properties, like the thermal conductivity and specific heat of the various materials
used in this research, are summarized in Table 1.

(a) (b)

Figure 1. (a) Thin layer of CB poured onto steel surface [1]; (b) mid-point gradation curve.
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Table 1. Thermal properties of pigments and other materials.

Material
Specific Heat
(J kg−1K−1)

Thermal Conductivity
(W m−1K−1)

Iron oxide red (Fe2O3) 650 [41] 3 (800 ◦C) and 8 (200 ◦C) 15 at room temperature [42]
Titanium dioxide white (TiO2) 683–697 [43] 11.7 at 25 ◦C [43]
Zinc ferrite yellow (ZnFe2O4) 800 [44] 3.5–4.3 at 25–85 ◦C [45] 1–5 at room temperature [46]

Conventional asphalt 900 [9] 1.35 at room temperature [47] 0.8–2.0 [9]
Conventional bitumen 1850–3900 at 27–127 ◦C [48] 0.17–0.2 [49]

3.2. Pigments

For the thermal analysis, titanium dioxide white and zinc ferrite yellow were used.
However, iron oxide red was also used for mechanical testing, apart from titanium dioxide
and zinc ferrite. All these pigments were imported from China. The distinct properties of
all three types of pigments were extracted from their technical data sheets (TDSs) and are
provided below in Table 2.

Table 2. Distinct properties of pigments extracted from their technical data sheets.

Property Titanium Dioxide White Zinc Ferrite Yellow Iron Oxide Red

Heat stability (◦C) 900–930 260–300 350–400
Particle size 300 nm 0.1–0.6 μm 97% ≤ 45 μm

Particle shape Tetragonal Acicular Spherical
pH value 6.5–8.0 5–8 3–7

Density (g/cm3) 4.13 5.0–5.6 0.72–1.1
Chemical formula TiO2 ZnFe2O4 Fe2O3·H2O
Tinting strength % ≥175 95–110 95–105

Moisture at 105 ◦C, % 0.5 Max 0.5 Max 1.0 Max
Oil absorption (mL/100 g) 19~22 25–45 15–25
Matter soluble in water % 0.5 Max 0.5 Max 0.5 Max

3.3. Material Mixing

The national highway authority’s (NHA) Class-B mid-point gradation (provided in
Figure 1b) was followed to prepare the asphalt mixtures, which is the finer gradation for
the asphalt wearing course. The maximum particle size in this gradation is 12.5 mm (about
0.49 in). After using the Marshall mix design method, 4.4% of optimum binder content was
found for both the conventional and clear binder. Previous studies recommend a pigment
concentration of 3–5% for asphalt coloring purposes [50,51]; however, a mean value of 4%
was adopted in this study. Hence, a ratio of 4.4:4 was used to mix the binders with the
pigments to make the pigmented binder samples. This was achieved using a mechanical
stirrer, equipped with a simple fan blade configuration.

Similarly, 4% pigment, according to the weight of the total aggregate mix, was used
for the asphalt mixture preparation. It was also ensured that the job mix formula (JMF)
was not disturbed, so the 4% pigment weight was subtracted from all the sieve size
aggregates corresponding to their percentage in the total mix. The aggregates were heated
at 130–140 ◦C, before mixing them with the pigments. The pigments were then mixed with
the aggregates for 60 to 90 s. To prevent pigment lumps or accumulations, a minimum
mixing time of 10 to 15 s was ensured [52].

4. Experimental Setup

This study is broadly classified into two phases of laboratory testing. The first is
thermal testing, and the second one is mechanical testing.
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Thermal Testing Setup

During the design and manufacturing process, two aluminum heat sinks were de-
signed and manufactured; the larger heat sink was intended for asphalt mixture analysis,
while the smaller heat sink was designed for binder analysis. The walls of each heat sink
were 5 mm (about 0.2 in) thick. The heat sink walls were lined with fiber block insulation to
ensure a one-dimensional heat flow. A 5 mm thick piece of acrylic glass was also mounted
on the top of each heat sink and tightened with screws on each side. The base of each heat
sink was provided with two slots, measuring 1.5 mm (about 0.06 in) in depth, to enable
the temperature measurements. K-type thermocouples were positioned in these slots. To
provide heat, silicon plate heaters from Omega Engineering USA [52] were installed at the
base of the heat sinks, as the energy source. Aluminum tape was used to secure the heaters
and to ensure that the entire assembly was stable and airtight. K-type thermocouples were
placed at five different depths within the heat sinks to measure the temperature at various
locations within the specimens. The Agilent 34972A data acquisition system was used to
monitor and record the temperature at these thermocouples. A DC power supply (Keysight
U8032A) was used to supply power to the silicon plate heaters. A cotton covering was
applied to the extended portion of the fiber block insulation on the heat sinks to prevent
unwanted heat loss. This measure was taken to ensure the accuracy and reliability of the
temperature readings.

Under the Energy Sector Management Assistance Program (ESMAP), data was ob-
tained from the World Bank via ENERGYDATA.info [53]. Three flux densities of 800, 1000,
and 1200 W/m2 were selected for analysis. After converting the flux density to power using
Ohm’s law, the base area of the heat sink was considered to compute the corresponding
power. The conversion resulted in the respective voltage and current values for each flux.
A DC power supply was used to supply the corresponding power values (V × I) to the
heater and, then, to the asphalt binder/mixture sample.

The charge time was defined as three hours, during which the power was supplied.
The temperature was automatically recorded every 5 s during this period. The power
supply was disconnected after the 3 h charging period, and the temperature measurements
were continuously recorded during the following two hours, called the discharging period.
Analysis was conducted throughout the 5 h period, i.e., both the heating and cooling
cycles. To ensure consistency, the heating and cooling of the samples was performed in
identical conditions (room temperature). Table 3 shows the dimensions of the heat sinks,
the dimensions of the silicon heaters, and the locations of the thermocouples inside the
heat sinks.

Table 3. Heat sink and heater dimensions, along with thermocouple positioning.

Heat Sink

Dimensions
Internal Dimensions

(mm3)
External Dimensions

(mm3)
Heater Dimensions

(mm3)

Thermocouple Positioning (mm)

T1 T2 T3 T4 T5

Larger Heat Sink 100 × 100 × 50 110 × 110 × 55 100 × 100 × 1.5 Heat sink
base

0 10 30 50

Smaller Heat Sink 60 × 60 × 25 70 × 70 × 30 60 × 60 × 1.5 0 5 15 25

The flow chart in Figure 2 illustrates the steps involved in preparing the binders
and mixtures, installing the thermocouples, and applying the heat (power) to them. It is
important to note that all of the pictures do not reflect the preparation of one sample type;
however, the images are combined randomly to reflect the sequential steps. Furthermore,
Figures 3 and 4 depict the schematics of the laboratory setup and 3D views of both heat
sinks, respectively.
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Figure 2. Cont.
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(g) (h)

Figure 2. Steps involved in the preparation of binders and asphalt mixtures for thermal analysis.
(a) TiO2 being mixed with dry aggregates. (b) Binder poured into the TiO2 blended aggregates.
(c) Placement of a silicon heater at the base of the heat sink. (d) Heat sink inside the fiber block
insulation, with installed thermocouples and heater. (e) White pigmented (TiO2) clear binder poured
into a container. (f) TiO2-modified CB under experimentation. (g) Conventional asphalt inside the
large heat sink, with installed thermocouples and heater. (h) White pigmented asphalt mixture before
the start of the test.

Figure 3. Schematics of laboratory setup.
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Figure 4. Three dimensional views, with labeled dimensions (mm), of (a) larger heat sink, and
(b) smaller heat sink.

5. Results and Discussion

Eight combinations were prepared and evaluated for each of the three heat fluxes.
The first four samples were asphalt mixture samples, while the remaining four were
corresponding bitumen samples. It should be noted that all the tests were conducted
at room temperature and that the cooling of all the samples was accomplished through
natural convection.

5.1. Thermal Analysis of Asphalt Mixtures

Conventional asphalt, a clear binder (C.B), and the pigmented C.B-modified asphalt
(white and yellow) specimens were meticulously prepared and placed into a large heat sink
for thermal analysis. Each asphalt mixture was subjected to flux densities of 1200, 1000,
and 800 W/m2 for three hours (heating time). The specimens were subsequently allowed
to cool for two hours (cooling time). Before applying heat, the samples were cooled to room
temperature. During the 5 h temperature cycle, the heat storage and dissipation behavior of
the pigmented modified and clear binder asphalt mixtures were compared to conventional
black asphalt. The goal was to observe whether there was any enhancement in the heat
dissipation and diminutions in the heat storage behavior between the conventional and
modified asphalt mixtures.

Figure 5a–d shows the temperature curves for the five-hour test period of all four
asphalt mixtures at 1200 W/m2. T1-T5 represents the temperature at the five thermocouples
from the heat sink’s base to the top (50 mm), respectively. Also, the average curve “Avg”
was drawn, showing the average temperature of the entire 50 mm sample. As the heat
source is applied to the mixtures, the temperature increases w.r.t time. Figure 5a shows
three significantly different temperature readings at the five thermocouples. The T4 and T5
readings almost overlap until half of the heating time has elapsed. Similarly, there is no
significant difference in the temperature readings for T1 and T2 in the first 20 to 30 min.
The overlapping region indicates similar heat absorption at that specific time. However,
the temperature curve for thermocouple T3 significantly differs from the four neighboring
thermocouples. It is also worth noting that, although the curves are parabolic, they are
more inclined towards linear behavior. The maximum surface temperature of asphalt (T2)
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is close to 65 ◦C, which is almost the same as the actual pavement surface temperature
during peak summer [24], and the temperatures closer to 70 ◦C are responsible for the
UHI effect [54]. The higher temperature curves, seen in Figure 5a, also indicate lower
thermal conductivity and higher specific heat of conventional asphalt, which traps the
heat in the asphalt for extended periods, elevating the overall temperature of the structure.
The average “Avg” curve represents the average temperature of the 50 mm thick asphalt
mixture sample and, in the first case, it almost overlaps with the temperature curve for
T3. Hence, we can conclude that the average temperature of the 50 mm thick conventional
asphalt lies at a depth of 10 mm (about 0.39 in).

  
(a) (b) 

  
(c) (d) 

Figure 5. Heating and cooling temperature curves at 1200 flux for: (a) conventional asphalt mixture;
(b) asphalt mixture prepared with neat clear binder; (c) asphalt mixture prepared with titanium
dioxide-blended clear binder; and (d) asphalt mixture prepared with zinc ferrite-blended clear binder.

The heating trend is pretty much different in the rest of the three asphalt mixture
combinations, as seen in Figure 5b–d. Unlike conventional asphalt, the curves overlap
only between T3 and T4 during almost the whole first hour of heating. However, in part
(d) of Figure 5, there is no significant overlapping of the temperature curves. It means
that all the modified asphalt mixture combinations distribute the heat evenly down the
structure. Hence, the chances of heat accumulation are less. Moreover, the average curve
for all the modified combinations is just above the T3 curve; thus, the average temperature
of modified asphalt mixtures lies at a depth of less than 10 mm. This makes heat dissipation
easier and faster for these mixtures, than for conventional asphalt. It is also worth noting
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that the gap between the T2 and T5 curves, representing the surface and 50 mm (about
1.97 in) temperatures, respectively, is significant for all the modified combinations compared
to conventional asphalt. The gap between the T2 and T5 curves represents around a 4 ◦C
gap in the temperature for the traditional black asphalt, while it is 7–8 ◦C for the other
modified combinations. The maximum temperatures for all three combinations are around
52–53 ◦C in the modified mixtures. Therefore, it is easier for them to dissipate heat quickly.

Also, these combinations are less likely to participate in UHI augmentation, as their
maximum absorbed temperature is far less than 70 ◦C. Many researchers have studied
UHI mitigation by introducing pigments into asphalt mixtures. There was a maximum
difference of 11 ◦C and an average of 7.5 ◦C between yellow pigment-modified asphalt
pavement samples and conventional asphalt mixtures [55]. Similarly, pigments have also
been found to cool the internal structure and surface of the pavement, making solar heating
reflective coating layers (SHRCLs). Studies have reported a 10 ± 2.5 ◦C difference between
unmodified asphalt and SHRCL surfaces [56]. Also, the internal temperature of asphalt
was reduced by 11.5 ◦C and 13 ◦C with pigment G and pigment Y blends, respectively [35].

Figure 6a,b represents the mean temperature of all four asphalt mixture combinations
at 1000 and 800 W/m2. The starting temperatures of the titanium dioxide and zinc ferrite
C.B-modified samples are a little higher than room temperature; however, it does not affect
the objectives of this study, as we aim to observe the maximum temperature absorbed by a
sample at the end of the heating phase. Again, there is a massive difference between the
conventional and modified mixtures at the end of the heating phase. The pigmented C.B
mixtures have almost the same temperature throughout the heating and cooling phases
at both fluxes. However, the neat C.B. asphalt mixture temperature is between that of the
conventional and pigmented mixtures.

(a) (b)

Figure 6. Mean temperature of 50 mm thick asphalt mixtures at (a) 1000 W/m2 and (b) 800 W/m2.

5.1.1. Thermal Analysis of Binders

Like Figure 6, a similar discussion applies to Figure 7a–d, which illustrates the heating
and cooling behavior of conventional black bitumen, the neat clear binder, the titanium
dioxide-modified clear binder, and the zinc ferrite-modified clear binder, respectively.
Compared to Figure 6a, Figure 7a exhibits an almost identical pattern of overlapping
curves; however, in the second half of the heating phase, the average curve does not
overlap with T3, indicating a lower average temperature than the asphalt mixtures. The
“Avg” curve indicates the mean temperature of a 25 mm (about 0.98 in) thick binder sample,
which is close to the temperature at a depth of 6–7 mm. The most significant difference
between all four samples is the temperature gap between T1 and T2. Unlike conventional
asphalt, which allows the surface base of the heater to reach 72 ◦C (approx.), the C.B. and
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pigmented C.B. binder absorb and dissipate heat effectively, limiting T1 to 62 ◦C and below.
As an additional point of interest, both virgin binders (black and transparent) exhibit
similar temperature distributions between T2 and T5 (except for the actual temperatures).
However, both pigmented C.B binders resist heat transfer and storage at the bottommost
part (25 mm) of the sample. This could be attributed to the efficient heat dissipation
capability of the pigments. Overall, the lower specific heat and higher thermal conductivity
of pigments enable the corresponding samples to quickly dissipate heat back into the walls
of the container (environment). This results in the samples staying at lower temperatures
for an elongated period, thus decreasing the time required to cool down.

  
(a) (b) 

  
(c) (d) 

Figure 7. Heating and cooling temperature curves at 1200 flux for: (a) conventional black bitumen,
(b) neat clear binder, (c) clear binder-modified with titanium dioxide pigments, and (d) clear binder-
modified with zinc ferrite pigments.

The shape of the curves in Figure 7 appear to be more bent during the heating phase, as
opposed to the heating pattern of the asphalt mixture. Consequently, the change in heat over
time is not linear, since binders, being viscoelastic, are highly susceptible to temperature
changes [57]. The graphs demonstrate that the samples with pigment modifications tend
to retain heat more in areas close to the heat source, leading to a faster dissipation of
heat (when the heat supply is turned off). However, neat binders evenly distribute heat,
resulting in higher temperatures at the end of the heating phase. The cooling behavior in
almost all the graphs is identical; however, for conventional binders, T1 shows an abrupt
cooling pattern similar to that of heating.
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Figure 8a,b illustrates the mean temperature of all four binder combinations at 1000
and 800 W/m2. The starting temperature of the zinc ferrite C.B-modified sample is a little
higher than the other samples; however, it does not affect the objectives of this study, as we
aim to observe the amount of heat absorbed and dissipated at the end of the heating and
cooling phase, which is independent of a difference of 2–3 ◦C in the initial temperatures. As
is evident from the above comparison, there is a significant difference between the modified
and conventional binders in terms of the absorbed temperature at the end of the heating
phase. Pigmented C.B binders maintain, approximately, the same temperature at both flux
levels throughout the heating and cooling phases. However, the neat C.B temperature
is slightly higher than the pigmented binder temperature. On the other hand, the black
binder appears to have absorbed the maximum temperature. The results of a similar study,
in which the heat dissipation and energy storage capabilities of nano-modified binders
were studied using the same test conditions, also support our findings. Nano-modified
binders were reported to stay 8–10 ◦C cooler than unmodified binders [58].

(a) (b)

Figure 8. Mean temperature of 25 mm thick bituminous samples at (a) 1000 W/m2 and (b) 800 W/m2.

5.1.2. Heating and Cooling Trends

Another factor that requires discussion in this study is the variation in the heating rate,
in addition to the change in the elevated temperature. Since we are primarily concerned
with asphalt mixtures as the actual materials used for road paving, the scope of this analysis
is limited to asphalt mixtures only. We set a target temperature range of 45–50 ◦C (heating
time) and 50–45 ◦C (cooling time) for every sample. The calculations are shown for a flux
density of 1200 W/m2 for the heating and cooling phases, which is the extreme case in this
study. The heat maps show the time each sample took to attain the designated temperature.
As a point of clarification, both the heating and cooling rates were measured against the
average curve, which reflects the overall temperature of a 50 mm sample.

Figure 9a shows the variation in heat intensity over time and the time each sample
took to reach the designated temperature, i.e., 50 ◦C. The heat map of the heating time
(Figure 9a) shows that the conventional asphalt mixture reached the target temperature
in 0.4 h, while the neat clear binder took slightly less than twice the time to achieve
50 ◦C. Moreover, both C.B-pigmented asphalt mixtures took over an hour to attain the
target temperature. However, the titanium dioxide-modified mixture proved to be the
most resistant asphalt mixture to temperature absorption. Pigmented mixtures are highly
thermally conductive, so they conduct heat to the outside and take longer to reach the same
temperature. This property results in a faster heat dissipation rate in pigmented mixtures,
resulting in cooler pavement structures. In addition, it also contributes to reducing the UHI
effect and increasing the resistance to permanent deformation.
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(a) (b)

Figure 9. Heat map against Avg. curve of the asphalt mixtures, showing (a) heating time from
45–50 ◦C and (b) cooling time from 50–45 ◦C.

Similarly, Figure 9b shows the comparative cooling time of the asphalt mixture com-
binations. The time taken by all the mixtures (from 50 ◦C to 45 ◦C) was observed and
used to draw heat maps. Also, the heat maps indicate the change in temperature for each
mixture over time. The heat maps display a significant difference in the time taken by all
the asphalt mixtures to attain 45 ◦C. Conventional asphalt took almost 0.45 h to drop its
temperature to 5 ◦C. Similarly, asphalt prepared with a neat clear binder took nearly 0.35 h
to drop its temperature. Adding pigments to the C.B asphalt mixtures made the cooling
process even quicker. Hence, titanium dioxide C.B-prepared asphalt took the shortest time
to reduce its temperature, while zinc ferrite took around 0.31 h to drop to 5 ◦C. Therefore,
the heating and cooling analysis reflects the material’s thermal conductivity and specific
heat values (from Table 1). Consequently, non-black asphalt mixtures are preferred over
conventional asphalt due to their cooling behavior. Additionally, the cooling analysis has
demonstrated that pigmented asphalt mixtures conduct more heat and effectively dissipate
heat. This property could be directly attributed to UHI mitigation and a lower pavement
temperature. The heat energy dissipation, in a similar study, also reported 8% to 9% of heat
being dissipated by nano-modified bitumen, while the corresponding asphalt mixtures
dissipated 14–16% of the absorbed heat [58].

The rate of heating and cooling of the binder combinations was also studied apart from
observing the heating and cooling trends of the asphalt mixtures. Figure 10a demonstrates
the time all the four binder combinations took to get from 45 ◦C to 55 ◦C. The time at 45 ◦C
is considered the starting time, while the time corresponding to 55 ◦C is regarded as the
final time. As binders are more temperature sensitive, a temperature bracket of 10 ◦C was
considered to observe the heating and cooling time. The conventional binder reached the
target temperature in less than half an hour, while the neat clear binder took twice the
time, i.e., one hour. Adding pigments to the clear binder further increased the heating time,
making it more resistant to absorbing higher temperatures. There is no relatively significant
difference in the cooling time between the binders, as seen in Figure 10b. However, the
neat C.B and pigmented binders took less time than conventional black binders to cool
down from 55 ◦C to 45 ◦C.
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(a) (b)

Figure 10. Heat map against Avg. curve of bituminous binders, showing (a) heating time from
45–55 ◦C and (b) cooling time from 55–45 ◦C.

5.1.3. Heat Maps

Although previously discussed graphs present the temperature behaviors of different
asphalt binders and mixtures, it is essential to visualize the relative heating and cooling be-
haviors over time. Figure 11 illustrates the heat maps of all four combinations at 1200 W/m2,
and these graphs depict the temperature intensities of the average curves, which is the
overall temperature of the 50 mm (mixtures) and 25 mm (binders) thick samples. The most
significant difference, as seen in both the images in Figure 11a,b, for the asphalt mixtures
and bituminous binders, respectively, is the temperature intensity. However, in the asphalt
mixtures, the conventional black asphalt maintains the highest temperature level absorbed
for up to 20–30 min, even after turning off the power supply (cooling time). Moreover, at
45 ◦C and above, the temperature is expanded from the second to the fourth hour of the
test duration.

(a) (b)

Figure 11. Heat map showing the temperature variations over time for (a) asphalt mixtures and
(b) bituminous binders.

In contrast, apart from the much lower temperature intensities, the neat clear binder
and pigment-modified clear binder mixtures depict a higher temperature expansion for a
maximum of two hours. The pigment-modified mixtures have nearly the same temperature
pattern over the 5 h test cycle, except for titanium dioxide, which is more efficient during
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the cooling period. Furthermore, from the scale used, the difference in the maximum
absorbed temperature between the black and non-black mixtures is around 15 ◦C.

Maintaining the highest temperature absorbed during the start of the cooling period
can also be seen in the case of conventional black bitumen, as seen in Figure 11b. However,
the clear binder and pigmented clear binders showed immediate cooling after switching
off the power supply. The final cooling temperature is much higher for the clear and
pigmented binders than for black bitumen. The difference in the maximum temperature
between the black and non-black binders is also around 12–13 ◦C. The heat maps indi-
cate that conventional black asphalt stores the highest temperature and stays at elevated
temperatures for extended periods, which significantly aids the UHI effect [59].

5.2. Performance Analysis of Asphalt Mixtures

Performance tests were also performed in this study to observe the reflectance of ther-
mal enhancement on the functional/structural performance of the corresponding asphalts.

5.2.1. Rut Resistance of Asphalt

According to the BS EN 12697-25 [60] standard, the Cooper wheel tracking test (CWTT)
was performed to determine the resistance of various asphalt mixtures to permanent defor-
mation or rutting. A slab measuring 300 × 300 × 50 mm3 was prepared and compacted
using a Cooper roller compactor to perform the test. A wheel with a load between 700 and
740 N was used to pass each sample 10,000 times, and the rut depth was measured. A wheel
with a diameter of 8 inches and a thickness of 2 inches was used. In addition, the machine
ran at 26.5 rpm at 55 ◦C. Figure 12 shows the results of the CWTT. The rutting potential of
five asphalt mixture combinations was measured, including conventional black asphalt,
asphalt prepared with the neat clear binder, and pigment (red, white, orange)-modified
C.B asphalts.

Figure 12. Cooper wheel tracking test (CWTT) of asphalt mixtures at 55 ◦C.

From the graph (Figure 12), it is clear that the neat C.B asphalt and all pigmented C.B
asphalt mixtures demonstrated a significant increase in rut resistance over conventional
black asphalt. It is evident that the rut value has decreased by 5 mm, which means that the
rut resistance has increased. The maximum rut depth of around 5.8 mm was observed for
conventional asphalt. In contrast, rut depths of 5.1 mm, 5 mm, 3.5 mm, and 1.8 mm were
recorded for the neat C.B, iron oxide red, titanium dioxide white, and zinc ferrite orange
asphalt mixtures. Hence, it can be concluded that the maximum rut depth was observed
for conventional asphalt; however, the neat C.B, red, white, and orange-pigmented asphalt
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mixtures showed lesser rut depths. The zinc ferrite orange asphalt mixture was the most
resistant to ruts, followed by titanium dioxide. Furthermore, one of the objectives of
this research was to enhance the high-temperature performance by adding pigments and
replacing the black binder, which was also achieved during the thermal analysis.

As demonstrated by the permanent deformation analysis, the increase in stiffness
of the asphalt mixtures at higher temperatures indicates an improvement in the colored
binder’s elastic response. This improves the performance of the asphalt mixtures at high
temperatures. Additionally, the observed reduction in the pavement temperature, even by
as little as 5 ◦C, can notably enhance the dynamic stability and rut resistance of asphalt,
particularly as temperatures rise [61], apart from the reduction in heat islands. Furthermore,
the high viscosity of colored asphalt is identified as a contributing factor to increased rut
values [62]. This highlights the multifaceted nature of colored asphalt’s performance
characteristics.

5.2.2. Dynamic Modulus Test

Various asphalt mixtures, including conventional asphalt and asphalt mixtures pre-
pared with different combinations of clear binders (C.B) and pigments, namely, iron oxide
red, titanium dioxide white, and zinc ferrite orange, were tested for dynamic modulus to
determine their resistance to permanent deformation. A Superpave gyratory compactor
was used to prepare cylindrical specimens, with a diameter of 150 mm and a height of
170 mm. Moreover, 600 kPa of pressure at 160 ◦C was applied to achieve the specified
specimen height. From the compacted samples, specimens with a diameter of 101.6 mm
and a height of 150 mm were extracted. The dynamic modulus was measured at frequencies
ranging from 25 to 0.1 Hz, under various loading conditions, namely 1050, 525, 195, and
52.5 kPa. The AASHTO TP 62 [63] guidelines were followed for sample preparation and
testing. To account for the regional climatic conditions, the tests were conducted at both
40 ◦C and 55 ◦C. Figure 13 illustrates the dynamic modulus test results. Also, Figure 14
shows the five colored cylindrical samples before and after cutting.

(a) (b)

Figure 13. Dynamic modulus of asphalt mixtures at (a) 55 ◦C and (b) 40 ◦C.

The dynamic modulus directly indicates a material’s resistance to permanent deforma-
tion, commonly known as rut resistance [64]. It can be seen from the graph (Figure 13) that
the conventional asphalt has a lower dynamic modulus than asphalt mixtures prepared
with a clear binder only and those containing red iron oxide pigments, white titanium diox-
ide pigments, and orange zinc ferrite pigments, particularly at higher temperatures. The
dynamic modulus of pigmented asphalt mixtures appears to be higher for a range of fre-
quencies, indicating a better performance when compared to pigmented asphalt mixtures.
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(a) (b) 

Figure 14. Dynamic modulus samples (a) after core cutting and (b) before core cutting.

In particular, the zinc ferrite orange-pigmented clear binder (C.B) asphalt exhibits the
highest dynamic modulus and, therefore, the highest rutting resistance of all combinations.
Asphalt prepared with C.B modified with Fe2O3 takes second place, while TiO2+C.B-
pigmented asphalt takes third place. On the other hand, the neat clear binder (C.B) asphalt
exhibits the lowest dynamic modulus and rut resistance compared to the colored mixtures.
However, it still shows increased resistance than conventional black asphalt mixtures. It is
evident that the higher the value of dynamic modulus, the higher the resistance against
permanent deformation and vice versa, which means that it is a direct measure of rut
resistance [64].

All the mixtures generally exhibited a higher dynamic modulus at lower temperatures
(i.e., 40 ◦C). However, it was lower at higher temperatures (55 ◦C). This indicates that
asphalt is a highly temperature-dependent material, indicating greater rut susceptibility
at higher temperatures [65]. Overall, these dynamic modulus test results suggest that
the addition of pigments, specifically zinc ferrite orange, significantly improves asphalt
resistance to permanent deformation at higher temperatures, demonstrating the potential
benefits of these pigment additives when it comes to improving the durability and per-
formance of asphalt pavements. It is evident from these findings that pigment additives
are essential for enhancing rut resistance in asphalt pavements under a variety of climatic
conditions. These findings have significant implications for the design and construction of
asphalt pavements. Furthermore, it has also been reported that adding pigments to asphalt
mixtures improves the mixture’s high-temperature performance by reducing its surface
and internal temperatures, while not compromising its fatigue life [33].

5.3. ANOVA (Analysis of Variance) Analysis

Based on the thermal testing results, the ANOVA analysis in Table 4 shows significant
differences between conventional and other binders. The F-statistic indicates a statistically
significant difference between the binder groups compared to a p-value of 0 (rounded).
A significant F-statistic demonstrates different heating rates between the binder groups.
The ANOVA results do not explicitly provide statistics about the cooling behavior; if the
heating behavior differs significantly between the groups, we can infer that binders will
also display different cooling behavior. We can examine the ANOVA results between the
binder groups to understand how the clear binder (C.B) compares to the conventional
binder (conv. black asphalt). The thermal test results indicate that the clear binder is slower
to heat up than the conventional black asphalt (i.e., average for clear binder = 41.1069,
average for conv. black asphalt = 49.0344).
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Table 4. Statistical and ANOVA analysis of thermal testing.

Statistics

Groups Count Sum Average Variance

Conv. Black Asphalt 3601 176,572.9325 49.0344 69.7382
Neat C.B Asphalt 3601 155,958.9918 43.3099 54.0948

C.B + TiO2 3601 148,025.9923 41.1069 47.0287
C.B + ZnFe2O4 3601 148,432.8170 41.2199 46.0895

ANOVA Results for thermal testing

Source of Variation SS df MS F p-Value F crit

Between Groups 149,366.1305 3 49,788.7102 917.9705 0 2.6055
Within Groups 781,024.4668 14,400 54.2378

Total 930,390.5973 14,403

Similarly, conventional asphalt (conv. black asphalt) may also cool down slower than
clear asphalt, indicating a similar trend for cooling. These binder groups can be applied
differently in different scenarios because of their significant differences in heating and
cooling behaviors. A clear binder may be better than a conventional binder if slow heating
and rapid cooling rates are desired. Considering the specific temperature requirements
and performance expectations of various engineering projects, these findings can assist in
optimizing the selection of binder materials.

The ANOVA results for measuring the rut depth in Table 5, using a wheel tracker,
for the five binders (clear binder, red, white, yellow, and conventional) clearly show a
different rut depth for at least two binders. Statistically significant differences in the rut
depth of the binders are indicated by an F-statistic of 9.631 with a p-value of 6.271 × 10−6

(remarkably close to 0). Based on the small p-value, at least two binder groups perform
differently, suggesting that the null hypothesis should be rejected. As we intend to compare
the performance of the clear binder with that of the conventional binder, we will focus on
the two relevant groups of binders. The wheel tracking test result for the conventional
binder was 4.2781, while for the clear binder it was 3.7627. Compared to the conventional
binder, the clear binder performs better, on average, due to its lower average penetration
by the wheel tracker. Based on the ANOVA results, the clear binder performs significantly
better than conventional binders in terms of its structural performance.

Table 5. Statistical and ANOVA analysis of rutting test.

Statistics

Groups Count Sum Average Variance

Conventional 12 47.0586 4.2781 3.1557
Clear binder 12 41.3900 3.7627 2.4111
C.B + Fe2O3 12 42.6500 3.5542 2.1059
C.B + TiO2 12 27.3700 2.2808 1.0498

C.B + ZnFe2O4 12 15.8300 1.3192 0.3082

ANOVA Results for rutting analysis

Source of Variation SS df MS F p-value F crit

Between Groups 68.1594 4 17.0398 9.6311 0.0000 2.5463
Within Groups 93.7708 53 1.7693

Total 161.9301 57

The normal probability plot, as shown in Figure 15a, clearly shows that our sample
percentile is an evenly distributed pattern of data points compared to the conventional
binder. The data points follow some skewness for the initial points. Still, the remaining
points are perfectly normally distributed, which indicates a normally distributed dataset
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that validates the reliability of our analysis. Figure 15b–d shows the line fit plots of neat
C.B asphalt, C.B + ZnFe2O4, and C.B + TiO2 with conventional black asphalt. By observing
the line fit plots closely, it is clear that the conventional binder tends to attain higher
temperatures than the clear and pigmented binders and asphalts, indicating its ability to
dissipate heat faster.

(a) (b)

(c) (d)

Figure 15. (a) Normal probability plot. (b) Line fit plot for neat C.B asphalt. (c) Line fit plot for
C.B + ZnFe2O4. (d) Line fit plot for C.B + TiO2 with conventional black asphalt.

Table 6 shows the correlation matrix of all four binders, by showing the effectiveness
of the modified binders compared to the conventional black binder. The high correlation
coefficients observed, among the variables, indicate strong linear relationships between the
asphalt mixtures. By conducting correlation analysis, we aim to pinpoint which charac-
teristics of the modified binders, such as the pigment content or clear binder composition,
contribute most significantly to the observed differences in thermal performance com-
pared to conventional black asphalt. This understanding will provide valuable insights for
optimizing asphalt mixture design and performance in future applications.

Table 6. Correlation matrix of all four mixtures.

Conv. Black Asphalt Neat C.B Asphalt C.B + TiO2 C.B + ZnFe2O4

Conv. Black Asphalt 1
Neat C.B Asphalt 0.9994 1

C.B + TiO2 0.9976 0.9965 1
C.B + ZnFe2O4 0.9984 0.9978 0.9997 1
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6. Conclusions

This study aimed to introduce a clear binder and pigment-modified clear binders
to replace black bitumen in the asphalt mixture, with a non-black and solar-reflective
pavement surface that could help reduce the UHI effect. The following are the key findings
in this study:

• Asphalt prepared with neat C.B displayed an average 9 ◦C lower temperature than
the conventional black asphalt mixture. The temperature was further reduced by 2 ◦C
by adding pigments, resulting in an overall temperature difference of 11 ◦C.

• Significant temperature differences between black and non-black asphalt mixtures
were observed at 1000 and 800 W/m2, with gaps of 7 ◦C and 10 ◦C at 1000 flux and
2 ◦C and 5 ◦C at 800 flux, indicating a higher efficiency of non-black pavements at
extreme temperatures.

• The average temperature absorbed by the conventional black binder at 1200 W/m2

was just above 65 ◦C, while the neat clear binder displayed a 7 ◦C lower temperature.
Similarly, pigmented binders further lowered the temperature to 1–2 ◦C. At the lower
fluxes, i.e., 1000 and 800, the difference in the average absorbed temperature between
the black bitumen and clear binder (C.B, pigmented C.B) was 5–7 ◦C and 2–3 ◦C,
respectively.

• The neat C.B asphalt mixture took 75% longer to reach the target temperature than
conventional black asphalt, with the pigmented mixtures taking an additional 170%
(zinc ferrite mix) to 180% (titanium dioxide mix) longer. It indicates a higher resistance
to heat absorption and prolonged cooling.

• The cooling rate revealed that conventional asphalt took the longest (approx. 0.45 h)
to cool down to 45 ◦C, while the neat C.B mix took 27% less time (approx. 0.33 h) to
return to the target temperature. The pigmented mixture further lessened the cooling
time up to 33% (0.3 h) and 31% (0.31 h) for TiO2 and ZnFe2O4 mixtures, respectively.

• The heat maps indicated significant heat accumulation in conventional asphalt mix-
tures and binders over a wide period. However, the neat and pigment-modified C.B
mixtures appeared more relaxed over the entire heat cycle.

• The neat C.B asphalt mixture exhibited around 15% more resistance to rut depth than
conventional asphalt, with red, white, and orange-pigmented mixtures showing 20%,
43%, and 73% rut resistance, respectively.

• All the non-black mixtures performed slightly better than conventional black mixtures
in the dynamic modulus test. A maximum resistance to permanent deformation
of 15% was noted in the C.B + ZnFe2O4 mixture compared to conventional black
asphalt mixtures.

Overall, thermally conductive materials with a lower specific heat are preferred for
heat harvesting and cool pavement applications, since they enhance the efficiency of heat
transfer and storage. This helps harness thermal energy for various purposes, creating
more excellent surfaces and mitigating urban heat issues.

Thermal analysis, in this study, was carried out assuming fixed solar flux densities
(800, 1000, and 1200 W/m2) to simulate solar radiation; however, solar radiation varies
considerably over time and geographical locations. Moreover, despite the efforts to ensure
a one-dimensional heat flow and minimize transverse heat dissipation during the charging
phase, it is recognized that achieving perfect insulation and heat confinement within heat
sinks is challenging. This could introduce slight inaccuracies in the observed temperatures,
particularly at higher heat flux levels. Additionally, variations in sensor placement (i.e.,
inaccurate height, other than specified) could impact the reliability of our temperature
readings, or result in inaccurate temperature measurements at certain depths. Furthermore,
the continuous heat dissipation during the charging phase and subsequent cooling period
could slightly impact the observed maximum temperatures.

The authors recommend the strategic application of these mixtures in urban areas
with high percentages of paved surfaces, specifically in densely populated streets, from a
UHI mitigation perspective. They can be utilized in bicycle lanes, pedestrian walkways,
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tennis courts, running tracks, and bus stops, for thermal comfort. Colored pavements can
also reduce lighting requirements, so their application in tunnels is also suggested. From a
structural performance perspective, the authors suggest performing thermal analysis for at
least 1–2 ft2 slabs under direct sunlight over 24 h to compare the performance of asphalt
prepared with pigmented clear binders. After that, some correlations should be made for
future reference to lab tests. Additionally, the adhesion properties of C.B and pigmented
asphalt are worth investigating to understand their interaction and potential impact on
pavement performance. Moreover, investigating the cracking resistance of these mixtures to
assess their durability and long-term performance under various environmental conditions
would be an interesting study for the future. After all these findings, constructing test
tracks of up to a few hundred feet long of such materials for normal traffic to assess their
durability and rut resistance at higher temperatures would be worth testing before scaling
up to larger roadway constructions of such materials.
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Abstract: Over the last decades, concrete has been excessively prone to cracks resulting from shrink-
age. These dimensional changes can be affected by the incorporation of supplementary cementitious
materials. This work used olive waste ash (OWA), which could substantially tackle this problem
and achieve sustainability goals. For this issue, five cement paste mixes were prepared by replacing
cement with OWA at different percentages varying from 0 to 20% by weight with a constant increment
of 5%. The water-to-cement ratio was 0.45 for all mixes. Compressive strength and flexural strength
were investigated at 7, 28, and 90 days. In addition, three shrinkage tests (drying, autogenous, and
chemical) and expansion tests were also conducted for each mix and measured during 90 days
of curing. The experimental findings indicated that there was a loss in compressive and flexural
strength in the existence of OWA. Among all mixes containing OWA, the samples incorporating 10%
OWA exhibited maximum strength values. Furthermore, the chemical and autogenous shrinkage
decreased with the incorporation of OWA. However, the drying shrinkage decreased at lower levels
of substitutions and increased at higher replacement levels. In addition, there was a growth in
expansion rates for up to 10% of OWA content, followed by a decrease at higher levels (beyond 10%).
Additionally, correlations between these volumetric stability tests were performed. It was shown
that a positive linear correlation existed between chemical shrinkage and autogenous and drying
shrinkage; however, there was a negative relationship between chemical shrinkage and expansion.

Keywords: cement paste; olive waste ash; chemical shrinkage; autogenous shrinkage; drying
shrinkage; expansion; compressive strength; flexural strength

1. Introduction

Volume stability is an intrinsic engineering property that directly affects the service-
ability and long-term durability of various cement-based materials. This has motivated
researchers to widely focus their studies on the shrinkage performance of concrete struc-
tures, including chemical-, drying-, and autogenous-shrinkage as well as expansion. Thus,
concrete can expand or contract excessively in light of changes in the moisture content, tem-
perature, and chemical reactions [1–9]. By definition, drying shrinkage is the contraction
behavior of the concrete during the hardening period, which is likely to be associated with
the internal loss of water by evaporation [1]. It is affected by many parameters such as hu-
midity, the size of the specimen, water-to-cement ratio, and paste volume [1]. Autogenous
shrinkage is defined as a reduction in the dimensions (volume or length) of cementitious
materials without any transfer of moisture to the surrounding environment [2]. As cement
hydration progresses, the matrix enters the stage of self-desiccation independently of ex-
ternal conditions; therefore, this type of shrinkage can also be known as self-desiccation
shrinkage [3]. Chemical shrinkage is well-defined as the internal early change in the volume
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of cement-based materials due to the hydration process [4,5]. The cement composition is
the principal influence factor on the development of chemical shrinkage [6]. Three methods
are mainly applied to measure the chemical shrinkage rate: dilatometry, pycnometry, and
gravimetry [5]. The dimensional change that occurs when the specimen is exposed to excess
moisture or water is known as “expansion” [7]. Generally, the moisture content and the
change in temperature of the relative humidity have significant effects on the mechanism
of the expansion [8,9].

Extensive studies have assessed the effect of supplementary cementitious materials
(SCMs) on shrinkage magnitudes, and its trend has changed depending on the quantity
of the SCM included. It was displayed that concrete made with clay and limestone fines
presents high autogenous shrinkage strains compared to the control concrete [10]. The
influence of limestone fines (LF) replacing cement in both mortar and paste on the four types
of shrinkage has been examined as well [11–14]. The outcomes revealed an improvement
in chemical shrinkage for 15% of LF for both cement paste and mortar, and, for up to 10%
inclusion, an increase in autogenous shrinkage occurred [11–14]. However, the drying
shrinkage increased as LF content increased, and noticeable changes in expansion were
observed with replacements surpassing 15% of LF [11–14]. Moreover, it was stated that fly
ash replacing ordinary cement in concrete had a good performance in terms of lowering
drying shrinkage [15]. Another experimental work reported that in the presence of nano-
silica, the chemical shrinkage gradually rose in the first curing days [16]. The effects of
furnace bottom ash (FBA) used as a natural sand substitute on the drying shrinkage of
concrete were also investigated: the results indicated that as FBA content increased, the rate
of drying shrinkage increased [17]. Additionally, the normal cement was partially replaced
by combining fly ash (FA), blast furnace slag (BFS), and metakaolin (MK) to produce green
concrete with lower drying shrinkage, reducing structural cracking [18].

Lebanon is famous for its olive tree agricultural sector and the olive oil production
process, which produces huge amounts of olive oil residues. One of these wastes is
“pomace”, which is burned to obtain OWA. Actually, this local material contains complex
organic components that are difficult to decompose when disposed of in landfills, thereby,
causing harm to the ecosystem. The literature review presents a lack of using OWA as
a cement substitute in cement-based materials for volumetric change investigation for
sustainability purposes. Recently, OWA has been gaining increased interest in light of its
efficient properties and environmental friendliness, which is characterized by its pozzolanic
reaction, filler effect, and low-cost effectiveness [19,20]. In general, pozzolanic materials are
natural or industrial resources essentially consisting of silicon (SiO2) and aluminum (Al2O3)
oxides [21]. This material, when mixed with water, reacts with the hydrate products to
form a calcium–silicate–hydroxide (C-S-H) gel responsible for strength-development and
durability purposes. The stronger the pozzolanic action is, the more attractive it is for
diverse applications including building construction, soil stabilization, and production
of geopolymers. A previous study reported that OWA was beneficial in enhancing the
workability of cement paste [19]. Another research carried out on rammed earth blocks
showed that OWA possessed cementitious and pozzolanic behavior and improved its
mechanical performance [20]. Additionally, olive waste biomass ash could behave as a
filler in self-compacting concrete, resulting in a compressive strength similar to that of the
reference mix [21].

In addition to the described mechanical functionality of OWA, shrinkage parameters
using different levels were previously examined. A prior investigation was made on
non-structural recycled concrete with low replacement percentages of natural sand with
olive biomass bottom ash (0, 3, and 6%) yielding a higher drying shrinkage value [21]. On
the other hand, the paste expansion tended to drop with the addition of OWA at various
levels ranging from 3 to 15% [22]. Another assessment aimed to manufacture cement
mortar using different treated biomass bottom ash (BBA) [23]. The laboratory results
indicated that OWA contributed to the occurrence of high dimensional changes compared
to the control mix [23]. In self-consolidating concrete production, this effect could also be
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explained by the filler effect of the ash, which inhibited water evaporation [24]. On the
other hand, in brick manufacturing, the specimens made with 20% olive pomace bottom
ash (OPBA) exhibited the highest linear shrinkage [25]. Olive biomass bottom ash (BBA)
was used as an economic agent for expansive soil stabilization in the construction of road
embankments due to its capacity to reduce the expansion of soils [26]. Furthermore, BBA
was used in mortar specimens to examine its effect on mechanical performance using
varying factors [27]. These factors included the type and content of cement implemented
(515, 485, and 450 g/L) and the percentage of replacement of sand or cement with BBA (0,
10, and 20%). The findings indicated that the increase in BBA content decreased porosity,
density and compressive and flexural strengths. Also, the decline in porosity and density
was strongly correlated to the high absorption water of this ash [27]. Another study used
pomace and olive kernel as alternatives to cement with percentages of 10 and 30% by mass
to fabricate mortars with better stiffness [28]. Based on the evaluation tests, adding 10% of
these two alternatives approximately maintained the compressive strength of the control
mixture (around 50 MPa). Additionally, the influence of particle size was investigated.
As a result, after two hours of milling, the residual for ordinary cement on a 45 μm sieve
opening was 20%, and replacing cement with 30% of both agricultural wastes contributed
to a larger Blaine-specific surface relative to traditional cement [28]. Moreover, several
types of sustainable materials, such as rice husk ash (RHA) and OWA were simultaneously
applied to produce high-strength concrete [29]. The substitution levels of RHA used varied
from 0 to 25% with an increment of 5%, while OWA levels ranged from 0 to 7.5% with an
addition of 2.5%. The tests conducted included the slump test, compressive, splitting tensile,
flexural strength, modulus of elasticity, and bond strength. The outcomes emphasized that
replacing cement with 20% RHA and 5% OWA significantly enhanced all the mechanical
strengths due to the pozzolanic activity of these alternative materials [29]. A previous
study was conducted to fabricate self-compacting concrete with two green materials such
as sea sand powder (SS) and olive waste bottom ash (OW) instead of traditional filler
(limestone powder) [30,31]. To investigate the effect of OW filler on the performance of
concrete, different properties including compressive and tensile strengths as well as volume
stability were evaluated. As a result, OW contributed to a loss in compressive strength as
well as a decrease in workability; however, there was an augmentation in shrinkage values
mostly associated with the high porosity [30,31]. Table 1 provides a summary of the key
information from all prior studies using OWA or a combination with other SCMs.

To the best of the Authors’ knowledge, there is little information in the literature
about the influence of OWA as a partial cement replacement on the volume stability of
cement paste. For this purpose, five partial replacement compositions of 0, 5, 10, 15, and
20% of OWA were implemented in this research. The mechanical performance, including
compressive and flexural strength, was investigated. In addition, this paper provided
insights into how OWA impacted autogenous shrinkage, chemical shrinkage, drying
shrinkage, and expansion. The correlations between these volumetric stability parameters
were also elucidated. It is expected, at the end of this study, that the use of OWA could lead
to the development of sustainable infrastructures.

Table 1. Summary of previous studies using OWA with/without other SCMs.

References Materials (%) Tests Conducted Results

[21] OWA (0, 3, and 6%) replacing
natural sand

-Drying shrinkage for
non-structural recycled
concrete

-Higher drying shrinkage

[22] OWA (0 to 15% with a constant
addition of 3%) replacing cement

-Setting time
-Expansion for cement paste

-Increase in setting time, thus,
retarded hydration
-Gradual decrease in expansion
values with increasing OWA
content
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Table 1. Cont.

References Materials (%) Tests Conducted Results

[23] BBA replacing cement -Drying shrinkage for mortar -High dimensional changes
related to the increased porosity

[25] OPBA (0, 5, 10, 15, and 20% by
weight)

For clay bricks:
-Bulk density
-Linear shrinkage
-Water absorption
-Porosity
-Compressive strength
-Thermal conductivity

-Greater compressive strength in
the sample with 5% of OPBA (11.5
MPa)
-Highest linear shrinkage and
porosity as well as lowest density
for 20% OPBA sample
-Best thermal insulation

[26] BBA (0, 15, 50, and 100%) In soil stabilization for road
embankment

-Enhancement in mechanical
properties
-Reduction in soil expansion

[27] -BBA (0, 10, and 20%) replacing
cement and natural sand
-Two types of cement (CEM-I and
CEM-II)
-amount of cement (515, 485, and
450 g/L

For mortars:
-Compressive strength
-Flexural strength
-Density
-Porosity

-Decline in the mechanical
properties
-Decrease in density and porosity
due to high water absorption of
BBA

[28] Olive pomace and olive kernel
replacing cement with 10 and 30%
by mass

For cement mortars:
-Compressive strength
-influence of particle size
-Heat evolution
-Setting time

-Similar compressive strength to
that of the control mixture
-After two hours of milling, a
larger Blaine-specific surface
relative to traditional cement with
the addition of 30% of pomace
and olive kernel
-Greater heat evolution and
hydration

[29] -OWA (0, 2.5, 5, and 7.5%)
replacing cement
-RHA (0, 5, 10, 15, 20, and 25%)
replacing cement

For high-strength concrete:
-Slump test
-Compressive strength
-Splitting tensile strength
-Flexural strength
-Modulus of elasticity
-Bond strength

-Decrease in slump records and
workability
-Increase in compressive strength
by 58% for replacements of 20%
RHA with 5% OWA
-Improvement in all mechanical
strengths due to the pozzolanic
activity of these ashes
-Larger surface areas of binder,
thus, leading to high water
absorption
-Lower amount of pores related to
the densification of the matrix

[30,31] -SS filler (10 and 15% of total
aggregate content)
-OW filler (5, 10, and 15% of total
aggregate content)

-Compressive strength
-Volume stability

-Detrimental effect on workability
and compressive strength
-Increase in volumetric shrinkage
and porosity
-The usage of OW must be less
than 5%
-No segregation and bleeding in
OW mixes

2. Experimental Test

2.1. Materials

Ordinary Portland Cement CN PA-L 42.5-type obtained from Sabaa plant, Tripoli,
Lebanon and OWA with a density of 950 kg/m3 were used in this work. The OWA was
delivered from an olive press located in Zgharta, North Lebanon, and obtained after

239



Infrastructures 2024, 9, 193

burning large amounts of olive residue generated from the olive oil extraction in a boiler
for 8 h. The OWA was milled using a Los Angeles abrasion machine for two hours to
obtain finer particles. Finally, OWA was sieved through a No. 200 sieve. A brief description
of the process of olive waste ash OWA production is clarified in Figure 1. The chemical
composition and the particle size distribution of OWA are shown in Table 2 and Figure 2,
respectively. The chemical composition showed that OWA mainly consists of CaO (36.13%),
SiO2 (24.73%), and K2O (9.56%).

Figure 1. Process of OWA preparation.

Table 2. Chemical composition of OWA and cement.

Oxide SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O Na2O LOI Other

OWA 24.73 3.41 3.83 36.13 2.81 0.03 9.56 1.42 14.7 3.38

Cement 18.53 3.93 3.06 61.78 1.74 2.92 0.47 0.18 6.3 1.09

 

Figure 2. Particle size distribution of OWA and cement.
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2.2. Mixture Proportions

Five paste mixtures were prepared with five percentages of 0, 5, 10, 15, and 20% of
OWA replacing the cement. For each type of shrinkage test (chemical, drying, autogenous
shrinkage, and expansion), ten specimens were cast so the total number of specimens was
forty. The water-to-cement ratio used was 0.45. Table 3 summarizes all mixture proportions
and component amounts.

Table 3. Mix proportions and component quantities of paste.

Proportions Amount (kg/m3)

Paste
Code

Cement OWA W/C Ratio Cement OWA Water

P0% 1 0 0.45 1303.5 0.0 586.2

P5% 0.95 0.05 0.45 1260.0 66.2 566.9

P10% 0.9 0.1 0.45 1215.1 134.7 546.9

P15% 0.85 0.15 0.45 1168.5 205.6 526.2

P20% 0.8 0.2 0.45 1120.1 280.6 504.1

2.3. Testing Procedure and Specimen Preparation
2.3.1. Compressive and Flexural Strengths

To determine the compressive strength, 50 × 50 × 50 mm cubes were tested following
ASTM C109 guidelines [32]. According to the flexural strength evaluation, beams of
40 × 40 × 160 mm were used as per ASTM C348 standards [33]. The data were measured
at 7, 28, and 90 days.

2.3.2. Chemical Shrinkage

Chemical shrinkage was tested according to ASTM 1608 by measuring the internal
volume change in cement paste due to the hydration of the cementing materials [34]. The
equipment employed in this test was a graduated pipette of 2 mL, a bottle of 250 mL, a
spatula, and a rubber stopper. The procedure started by placing 30 g of each mix at the
bottom of the bottle corresponding to a depth of 1.8 cm. Then, the water was slowly added
to the top of the matrix until the bottle was filled. The pipette was inserted into the bottle
through the stopper, filled with water, and sealed at the top with a drop of oil to prevent
water evaporation, as seen in Figure 3. The reading of the drop in the level of water in
the pipette refers to the chemical shrinkage (change in volume) [35,36] and is computed
every one hour for the first 24 h and then every two days until reaching 90 days. Two
replicate samples were tested for each mix. The chemical shrinkage value was monitored
by calculating the average of two readings, with the first reading considered as zero. The
calculation of chemical shrinkage is expressed by the following equation:

ΔV/V = 3 ΔL/L (1)

where ΔV = change in volume in the pipette (mL), V = initial volume of the sample (mL),
ΔL = change in length in the pipette (μm), L = initial length of the sample (m).

2.3.3. Drying Shrinkage

Drying shrinkage was tested following ASTM C157 [37]. For this test, molds of
25 × 25 × 300 mm3 were used. After 24 h in the curing chamber (25 ◦C), the samples were
demolded, and two Demec points separated by a distance of 200 mm were placed on each
side of the specimen. The displacement of the Demec points was measured using a dial
gauge and the length was reported every 2 days for 90 days while the specimens were in
the chamber. The average of four readings from two replicated specimens refers to the
drying shrinkage (change in length). The specimens are shown in Figure 4.
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(a) (b) 

Figure 3. (a) Chemical shrinkage setup; (b) chemical shrinkage specimens.

  
(a) (b) 

Figure 4. Specimens for (a) drying shrinkage; and (b) autogenous shrinkage.

2.3.4. Autogenous Shrinkage

Paste specimens of 25 × 25 × 300 mm3 were tested according to ASTM C192 [38]. To
record autogenous shrinkage (starting after 24 h), each specimen was immediately covered
with a plastic bag as illustrated in Figure 4. After 24 h, the mean values of four readings
represent the starting point (reference data). The same process for measuring the drying
shrinkage records was employed for autogenous shrinkage.

2.3.5. Expansion

The specimens were cast in 25 × 25 × 300 mm3 molds. After 24 h, the formwork was
removed, and each specimen was totally immersed in water at a constant temperature
(20 ± 1 ◦C) as illustrated in Figure 5. The same procedure for monitoring the drying
shrinkage data was applied for monitoring expansion as well.
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(a) (b) 

Figure 5. (a) Expansion specimens; (b) strain gauge.

3. Analysis of the Results

3.1. Compressive and Flexural Strength

The effects of OWA induced at various percentages on compressive and flexural
strengths are indicated in Table 4. As can be seen from the results, as the curing time
increases, there is a significant increase in compressive strength values. For example, the
control mixture displays compressive strength values of 27, 47, and 50 MPa at 7, 28, and
90 days, respectively. However, the incorporation of OWA decreases these measurements
independently of the amount of OWA induced. More precisely, among all mixtures contain-
ing OWA, there is a negligible loss in compressive strength in the P10% sample with a rate
of 8%, displaying a magnitude of 46 MPa after 90 days of curing. Therefore, 10% of OWA
can be considered as the optimal substitution level. This behavior could be attributed to the
fact that the chemical composition—with 36.1% CaO and 24.7% SiO2—indicated that OWA
was a cementitious material with good pozzolanic properties; this leads to the formation of
additional C-S-H gel, which is the major contributor to strengthening the matrix [20,28].
Compared to the reference mixture, the decrease in compressive strength continues for the
addition of 15 and 20% of OWA, achieving drops of 38 and 59%, respectively. There are
two potential reasons for this: First, there was a decrease in hydrate products (C2S and C3S)
resulting from the loss of cement [20,28]. Second, the higher porosity took place with the
increase in OWA content [23,25].

Table 4. Compressive and flexural strengths of all cement pastes.

Paste
Compressive Strength (MPa) Flexural Strength (MPa)

7 Days 28 Days 90 Days 7 Days 28 Days 90 Days

P0% 27.2 47 50 2.6 3.7 4

P5% 23 31.5 32.2 2.4 3.4 3.6

P10% 25.4 42.5 45.4 2.5 3.6 3.8

P15% 23 28.7 31 2.3 2.6 2.8

P20% 14.4 18.9 20.3 2 2.3 2.5

The flexural strength results show an identical trend to the compressive strength
pattern. For instance, the 90-day flexural strength is 4 MPa for the paste without OWA.
The sample containing 10% of OWA displays the lowest rates of 3 and 5% after 28 and
90 days, respectively; however, this decline peaks with the addition of 20% of OWA,
achieving 37%. The causes of this negative effect of OWA are as follows: first, the reduction
in cement content in the matrix, and second, OWA seemed to weaken the bonding between
OWA and the cement particles associated with the augmentation of the number of voids in
the paste [27,29].
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3.2. Chemical Shrinkage

Figure 6 depicts the results for the chemical shrinkage (μm/m) measured over
90 days. The time immediately following placement (t = 0) is considered the starting
point for data collection. It is noteworthy that in the early period of curing, all curves
exhibit high chemical shrinkage. Conversely, during the late ages, there is no alteration
in chemical shrinkage values, which are observed in a steady state. These findings are
consistent with a prior study [16]. For instance, on day 1, the chemical shrinkage for P0%
was 0 μm/m, and this value rises to magnitudes of 660 and 811 μm/m at 28 and 90 days,
corresponding to an increase of 23%. As previously mentioned, chemical shrinkage is
referred to as the reduction in the total volume of hydrate products during the hydration
process of cement. With the increase in curing time, this decrease gradually progresses
during the hardening stages, thus leading to an increase in chemical shrinkage [12–14]. On
the other hand, it is noticed that 10% of OWA partially replacing cement extremely reduces
the chemical shrinkage to a measurement of 680 μm/m after 90 days of curing, showing a
great reduction rate of 16%. However, the samples containing different OWA content do
not show the same significant decline as observed in the sample P10%; for example, P5%,
P15%, and P20% show chemical shrinkage values of 740, 750, and 780 μm/m, respectively.
This slight drop is equivalent to 8, 8, and 3% compared to the control paste.

 

Figure 6. Chemical shrinkage of pastes with different levels of OWA measured over 90 days.

The efficiency of implementing OWA in cement paste was referred to as its potential
to reduce chemical shrinkage. This effect could be mostly explained by the fact that OWA
contains large amounts of SiO2, and Al2O3, indicating that OWA was likely linked to the
pozzolanic activity, as stated in the literature review [21,28,39]. Therefore, the decline in
chemical shrinkage could be attributed to two factors: first, the loss of cement in the paste,
thereby the reduction in clinker phases responsible for chemical shrinkage occurrence;
and second, the slower pozzolanic reactivity of OWA with the calcium hydroxide (CH)
obtained from cement hydration. The two factors formed a combined effect in delaying the
early-age hydration mechanism, therefore lowering chemical shrinkage measurements [23].
Specifically, among all mixes incorporating OWA, the mix containing 10% OWA shows
the optimal reduction level as this percentage indicates a good balance between the loss
of cement quantity replaced with OWA and the sufficiency of the pozzolanic reaction to
continuously form hydrate products, maximizing the decrease in chemical shrinkage.
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3.3. Drying Shrinkage

Figure 7 displays the drying shrinkage values of all specimens measured over
90 days. As a result, the curing time shows a major effect on the magnitude of drying
shrinkage [40,41]. For example, on day 1 after placing, P5% is recorded as 0 μm/m; then,
this value rises, reaching 1125 and 1850 μm/m at 28 and 90 days, respectively. Meanwhile,
the drying shrinkage rises by 64% from 28 to 90 days. In addition, the drying shrinkage
measurements show a logical variation with varying proportions of OWA. At lower substi-
tution levels of 5 and 10% of OWA content, the drying shrinkage exhibits a considerable
decrease, followed by a notable increase at higher levels of 15 and 20% of OWA content.
For example, after 90 days, the drying shrinkage for P0% is 2015 μm/m; then, this value
sharply drops to reach 1730 μm/m for 10% OWA content (P10%), achieving a decline of
14%. However, inducing higher percentages of OWA increases the drying shrinkage for
samples P15% and P20% to 2275 and 2350 μm/m, representing increases of 13% and 16%
over the same period, respectively.

 

Figure 7. Drying shrinkage of pastes with different levels of OWA measured over 90 days.

The test results demonstrate that the drying shrinkage behaved differently in the
existence of OWA [12,21]. These changes are attributed to a variety of factors like the
material’s stiffness, pore structure, and internal pressures. Thus, with the addition of 5 and
10% (low levels), the pozzolanic reaction of OWA might play a significant role in decreasing
this type of shrinkage. Hence, as additional C-S-H gel developed, the matrix became
denser, leading to a notable reduction in porosity, meaning that less water was needed for
evaporation when the paste dried, mitigating the drying shrinkage [41]. However, with
the addition of 15 and 20% (high levels), OWA might incompletely compensate for the
increased loss of cement amount, resulting in a rise in capillary pores, which facilitates the
loss of water [1,42]. Accordingly, the high and continuous evaporation of water within the
paste contributed to a reduction in the material’s stiffness and, consequently, a weakness in
resisting the internal pressures caused by moisture escape, leading to an amplification of
the deformation of the beam under drying conditions [17]. Furthermore, another relevant
explanation for the increase in drying shrinkage could be the disjoining pressure that exists
between the pores promoting the contraction of the solid body [9,22,43,44]. In light of the
above outcomes, it is highly recommended to avoid using high replacement levels in the
manufacturing of more durable cement-based materials, as well-demonstrated in a prior
study [23]. It is inferred that the optimal percentage of cement replacement with OWA can
be achieved at 10% due to its substantial effect on mitigating drying shrinkage, powerfully
adequate for improving long-term durability.
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3.4. Autogenous Shrinkage

The data for autogenous shrinkage of all cement pastes during 90 days are illustrated
in Figure 8. As seen from the curve, there is a considerable impact of the curing time on the
development of self-desiccation, particularly since all values increase as the curing time
increases [45,46]. For instance, P5% shows 0 μm/m on day 1 of curing; this value rises
to 600 and 950 μm/m at 28 and 90 days, respectively. In addition, incorporating OWA
improves the autogenous shrinkage of the paste at various OWA content. For instance,
after 90 days, P0% records the highest autogenous shrinkage value of 1125 μm/m. The
inclusion of 10% of OWA content ultimately reduces autogenous shrinkage to 788 μm/m,
showing a decrease of 30%. However, this drop is less pronounced with the incorporation
of 15 and 20% of OWA, showing magnitudes reaching 950 and 975 μm/m, respectively.
This is equivalent to a drop of 15 and 13% compared to the reference paste.

 

Figure 8. Autogenous shrinkage of pastes with different levels of OWA measured over 90 days.

Based on the findings, as autogenous shrinkage was directly dependent on the early-
age hydration mechanism, the drop in autogenous shrinkage values could be explained by
the fact that the additional OWA retarded the hydration process in the early stages, lowering
the magnitude of autogenous shrinkage [47,48]. In this context, the pozzolanic properties
of OWA potentially slowed the reaction between OWA and CH, reducing the early-age
hydration, and mitigating, by this action, the self-desiccation of the paste [20,48,49]. On the
other hand, the filler effect of OWA led to the refinement of the pores, which slowed down
the internal water movement into the paste, inhibiting by this behavior the development of
self-desiccation as the fine particles could accommodate the voids [19,21]. It is crucial to
note that OWA is an effective material in the improvement of the relative humidity, which
in turn helps the mix to reduce the self-desiccation changes [3,50–52]. As expected, at the
level of 10% OWA, there is a perfect balance between the reduced amount of cement and
the suitable percentage of OWA for pozzolanic reactivity, thus controlling the porosity in a
way to not be exceeded and maximizing the decrease in autogenous shrinkage. Accord-
ingly, it is recommended to use 10% to prevent the volumetric instability resulting from
autogenous shrinkage.

3.5. Expansion

Figure 9 presents the measurements for expansion of all the pastes with the varying
OWA content in μm/m measured over 90 days. As displayed, all mixes show a continuous
expansion along with the curing time. It can also be observed that the addition of up to 10%
increases the expansion values, while inducing 15% and beyond declines the expansion.
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For instance, the reference mixture (P0%) has an expansion level of 2075 μm/m at 90 days.
This value slightly rises for P5% and P10%, reaching 2250 and 2175 μm/m, corresponding
to a growth of 8 and 5%, respectively. Then, these magnitudes drop for P15% and P20%,
achieving 1900 and 1550 μm/m, respectively; this is equivalent to 9 and 25% increases
relative to the control paste.

 

Figure 9. Expansion of pastes with different levels of OWA measured over 90 days.

The different behavior of expansion in the presence of OWA was principally attributed
to the pozzolanic reactions of OWA. For OWA content up to 10%, the expansion occurred
because the amount of OWA induced was insufficient to react with CH resulting from
hydration This remaining quantity of CH could subsequently react with some available
constituents in OWA, contributing to the generation of expansive agents [53,54]. On
the contrary, exceeding 10% of OWA content led to a further reduction in expansion
measurements. This was mostly based on several reasons: First, the higher reduction
in CH, the less production of expansive agents, making the paste more stable against
expansion [55,56]. Second, this stability could also be the result of the filler effect of
OWA, allowing it to accommodate the expansion volume [19,49]. Finally, the chemical
composition of OWA also provided a reasonable indication of expansion performance.
Particularly, as OWA replacement levels increase, the quantity of CaO decreases, which
in turn affects the swelling of the specimens [57]. In addition, the limited quantity of SO3
present in OWA (below the 3.5% threshold) reacted with CaO to form small amounts of
ettringite, which is an expansive agent, which implied expansion limitations [58–60]. For
this reason, it was beneficial to use higher replacement levels of cement with OWA to
withstand expansion, showing a pronounced decrease in swelling. In particular, among all
mixes, the paste containing 20% OWA possesses the optimal percentage of replacement in
terms of lowering expansion.

3.6. Relationships between Length Change Parameters

Figure 10 displays the length change parameters (drying, autogenous, chemical shrink-
age, and expansion) among all mixes during the 90 days, which evolve in the early ages
and are prolonged for the long term [52,61]. It appears, from the obtained results, that OWA
substantially improves various types of shrinkage, which are key indicators of the durabil-
ity and serviceability of cement-based materials. The magnitude of each type of volumetric
stability parameter could be interpreted by the hydration process and the development of
pores within the blended cement paste [47,53]. This study reveals that drying shrinkage
records the highest volumetric variances compared to other types of shrinkage, reaching
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2350 μm/m in the P20% sample. This was primarily caused by moisture diffusion in drying
conditions and probably could last for future years after the curing of the paste [62–64]. This
type is the best criterion for longer durability and, thereby, the lifespan of the structure [65].

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 10. Length change in pastes containing (a) 0% OWA; (b) 5% OWA; (c) 10% OWA;
(d) 15% OWA; (e) 20% OWA.

Furthermore, two points can be observed in these figures: First, the chemical and
autogenous shrinkage are equal in the early ages (the first few days) [45]. Second, the
autogenous shrinkage values are higher than those for chemical shrinkage as time increases.
For instance, at 90 days, for 5% addition, the chemical and autogenous readings are 740
and 950 μm/m, indicating a difference rate of 28%, as seen in Figure 10b. The inclusion
of 10% OWA exhibits the lowest chemical and autogenous shrinkage values of 680 and
788 μm/m, respectively, as illustrated in Figure 10c. This is equivalent to a difference
rate of 16%. However, the incorporation of 15% OWA raises the difference rate to 27%, as
shown in Figure 10d. Similarly, the rate of difference between the chemical and autogenous
shrinkage is around 25% for P20% samples, as illustrated in Figure 10e. The cause of these
findings could be explained by the fact that both mechanisms are directly linked to the
hydration process and occurred in the early periods [45,66,67].

To further visualize the relationships of the shrinkage performance properties, a
regression equation is used to determine the coefficient of determination R2 as displayed in
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Figures 11–13 for days 1, 7, 28, and 90. As can be seen, a positive linear correlation exists
between chemical shrinkage and drying shrinkage, with a high R2 of 0.97, 0.99, 0.99, 0.97,
and 0.99 for P0%, P5%, P10%, and P20%, respectively. This is because the reduction in
volume resulting from the chemical reactions could induce additional internal stresses and
pores, leading to higher shrinkage as the paste dries [68–70].

 

Figure 11. Correlation between drying and chemical shrinkage for all levels of OWA.

 

Figure 12. Correlation between autogenous and chemical shrinkage for all levels of OWA.

Furthermore, there is a strong dependence between chemical and autogenous shrink-
age, showing a significant coefficient of correlation R2 equal to 0.96, 0.99, 0.99, 0.91, and 0.98
for P0%, P5%, P10%, P15%, and P20%, respectively. One possible explanation of this link is
that chemical shrinkage can be called “internal autogenous shrinkage” while autogenous
shrinkage can be referred to as “external chemical shrinkage” in some cases [63,67]. Hence,
in the early stage, after reaching the stiffening point and the formation of the structure,
the matrix enters the self-desiccation process due to the retention of moisture in the cap-
illary pores; in this case, both autogenous and chemical shrinkage cannot be considered
interchangeable [3,67,68].

Conversely, the expansion indicates an inverse relationship with chemical shrinkage,
as evidenced by a high R2. This correlation may be interpreted to mean that the chemical
shrinkage can continuously occur even if the paste is in an expansion state, especially when,
in both cases, the paste is still immersed in cured water [71]. Overall, it is fundamentally
justified that chemical shrinkage is the driving force for other types of shrinkage.
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Figure 13. Correlation between expansion and chemical shrinkage for all levels of OWA.

4. Conclusions

It is interesting to develop a sustainable management strategy to save natural resources
and promote their utilization in construction. To achieve this target, olive waste ash (OWA)
is used as a partial replacement for cement to test the volume stability parameters including
chemical, autogenous, and drying shrinkage as well as expansion. Based on this study,
several points can be outlined:

• The presence of OWA adversely affects the mechanical properties of the pastes. For the
addition of 10% OWA, the rate of reduction in both compressive and flexural strength
was around 8 and 5%, respectively, compared to the control mixture. Beyond this level,
at the 15 and 20% OWA levels, the compressive and flexural strengths significantly
decreased, reaching 59 and 36%, respectively, for P20% samples;

• OWA had a positive impact on chemical shrinkage. At day 90, the chemical shrinkage
P0% exhibited the highest level of chemical shrinkage. However, adding 10% of OWA
sharply reduced the chemical shrinkage to a rate of 16%. The drop in chemical shrink-
age was found to be less pronounced for the incorporation of 15% and 20% of OWA,
indicating a reduction of 8 and 3%, respectively, compared with the free OWA paste;

• The variation in drying shrinkage depended on the percentages of OWA content.
Hence, in the comparison with the control mix, the drying shrinkage ultimately
decreased, reaching a rate of 14% for P10% after 90 days of curing. However, there
was an increase in drying shrinkage for P15% and P20% at the rates of 13 and 16%
over the same period;

• Regarding autogenous shrinkage, there was a decrease in autogenous measurements
with varying OWA content. This drop was optimal for the incorporation of 10%,
showing a percentage of decline of 30%. On the other hand, this reduction was less
pronounced in the P15% and P20% mixes, which exhibited decreases of 15 and 13%
compared to the reference paste;

• The expansion behaved differently with varying OWA levels. Hence, P5% and P10%
exhibited a slight increase in expansion measurements, reaching rates of 8 and 5%.
Contrarily, a notable decrease was observed for P15% and P20%, achieving drops of 9
and 25% relative to the control paste;

• A positive linear relationship was observed between chemical shrinkage and drying
and autogenous shrinkage. In addition, a negative linear correlation was found be-
tween chemical shrinkage and expansion. These correlations confirmed that chemical
shrinkage was the driving force for the other types of shrinkage.
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These conclusions suggest that olive waste ash has a substantial impact on the shrink-
age and expansion of cement paste, highlighting its effectiveness as a partial replacement
for cement in the development of more durable and sustainable construction materials.
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Abstract: We present a comprehensive methodology for a two-step approach to address the task
at hand. The first step involves the optimal placement of charging stations, while the second step
focuses on determining the necessary capacity of the charging stations based on traffic factors. This
methodology is applicable to countries, states, or specific areas where the placement and optimization
of charging stations for truck road transport are being considered. We identify the key inputs required
for solving such a task. In the results section, we demonstrate the outcomes using a model example
for the Czech Republic.
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1. Introduction

This article is focused on developing a methodology for the placement of charging
stations for battery electric freight trucks (CHS). The specific task at hand involves designing
charging stations with parameters different from those used for personal transportation,
where demands on parking spaces and charging power of charging stands are lower, while
facilities and services are planned for a higher number of people. Principles for the planning
of public charging infrastructure for personal battery electric vehicles (BEV), including a
literature review, are discussed, e.g., in [1,2]. Detailed technical guidelines are provided
in [3].

Given that freight transportation entails distinct traffic patterns and typically covers
larger distances, the allocation problem for locating these charging stations becomes a novel
and specific challenge. Currently, almost no publicly accessible infrastructure for heavy-
duty electric vehicles is available in the European Union. The most advanced exception
is a 600-km road stretch between the Rhine-Neckar and Rhine-Ruhr metropolitan areas
in Germany, built to boost the logistical sector along one of the busiest freight routes in
Europe. Till the end of the year 2023, it is supposed to contain eight ultra-fast public
charging locations.

Considering the commitment of countries to reduce CO2 emissions, a shift in traction
within the freight truck industry can help achieve these goals. However, the “chicken-and-
egg” problem persists in implementing electric freight transportation. This problem arises
from carriers’ reluctance to invest in electric freight vehicles due to the lack of an adequate
charging network. Simultaneously, private operators hesitate to invest in charging stations
as there is currently no demand. Thus, the role of the government appears indispensable
in facilitating the establishment of charging stations. Since the impetus for change comes
from a higher level, namely the state, it is possible to plan and execute it optimally.

Consequently, in this case, the placement of charging stations should not be random,
based solely on available space, but rather systematically designed to ensure maximum
coverage of existing transportation flows in the automotive freight industry. This entails
locating the minimum number of stations with sufficient capacity to achieve the desired
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coverage. Recently, several studies have been published aimed at the design of future
charging infrastructure for electric road freight transport. Speth et al. [4] use traffic count
data as input and combine them with on-site queueing models to obtain a fast-charging
network in Germany with a 100 km distance between locations. Speth et al. [5] define a
network of stations on a European highway network based on synthetic transport flow data.
However, the location selection does not take into account the suitability of the location for
a charging area. We find it important to incorporate more inputs, including parking area
availability, power grid connection, and other aspects of the analysis.

To address the task at hand, we present a comprehensive methodology for a two-step
approach. The first step involves the optimal placement of charging stations in three
stages corresponding to the years 2025, 2030, and 2035. The first two stages are based
on the Alternative Fuel Infrastructure Regulation (AFIR) [6], which requires charging
stations for freight vehicles in urban nodes and at regular intervals along the TEN-T road
network. The last stage, corresponding to the original proposal of AFIR by the European
Commission [7,8] and the broadened version proposed by the European Parliament for
trilogue negotiations), concludes the basic coverage of the whole network.

The second step of the methodology focuses on determining the necessary capacity and
other parameters of the charging stations based on data related to traffic in the catchment
area, the specific electricity consumption of considered types of vehicles under the given
conditions, the ratio of BEV and the ratio of public charging, parameters of BEV, charging
outlets and data on the electrical network. Sources for this data depend on available
information in the investigated country/region. For the model example of the Czech
Republic discussed in Section 2.2, data on traffic were obtained from the national traffic
census [9], which provides traffic intensities of various types of vehicles (including five
different categories of freight vehicles above 3.5 t) on work/weekend days, day/night-time,
peak periods etc. This census data also includes geographic information on individual
segments, allowing for the computation of traffic output (vehicle-kilometers per day) on
main and other routes in catchment areas of particular stations, used subsequently for
the assessment of the number of charging vehicles and their output [10]. Further, the
document [11] provides data on daily, weekly, and yearly variations of traffic intensities.

To assess the specific electricity consumption of different types of vehicles in the
conditions of the Czech Republic, the set of open simulation programs SUMO (Simulation
of Urban Mobility), together with its extension PHEM, was used for modeling a substantial
part of the traffic network in the Czech Republic, simulation of traffic flows and calculation
of energy and fuel consumption for present types of vehicles and for various possible
future scenarios [12]. Other approaches can also be used, as described e.g., in [13]. The
assessment of spatial requirements was based on data from Technical Conditions 171 [14],
including dimensions of vehicles from considered categories and the norm [15] specifying
minimal distances between parked vehicles. The estimation of the ratio of BEV and the
need for public charging is based on scenarios discussed in studies [16,17] that also take
into account statistics of trip lengths in different countries. This ratio includes the fact
that vehicles use the energy earned from depot chargers to get to the highway network,
and vice versa; returning to the depot can be connected with a battery depletion even
below a level that is safe for travel on highways. Data on the electric network and available
capacity of transformer stations were obtained from electricity providers (ČEZ distribuce,
PRE distribuce, and EG.D.).

The proposed methodology determines the course of the required power, load dia-
grams, numbers and occupancy of charging outlets, and space requirements of the charging
infrastructure stations. It also evaluates free distribution capacity and specifies the choice
of the station battery. It is applicable to countries, states, or specific areas where the place-
ment and optimization of charging stations for truck road transport are being considered.
We identify the key inputs required for solving such a task. In the results section, we
demonstrate the outcomes using a model example for the Czech Republic.
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2. Methods

The conceptual design of truck charging stations presented in this paper consists of two
main steps: Expert design of the location of charging stations in the network (see Section 2.1)
and power and spatial needs calculation based on traffic demands for individual charging
stations (see Figure 1 and Section 2.2).

Figure 1. Architecture of the proposed methodology—Step 2: Calculation.

The fundamental aspect of a charging station is its location. In a given area, the
total traffic in all directions is considered. Free transformer capacity of the nearest very
high/high-voltage transformer station is then found.

The methodology uses vehicle categories monitored by the national traffic census [9].
The relevant categories for heavy road transport are SN, SNP, TN, TNP, and NSN; these
categories cover the categories N2 and N3 according to European directive 2007/46/ES.

2.1. Location of Charging Stations

The placement of charging stations is based on the legislative package of the European
Commission Fit for 55, in particular, the amendments to the legislation in the field of freight
transport on land communications, which obliges individual member states to create a
basic network of charging stations for freight transport. According to the proposal of
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the European Commission for the year 2021 [7], publicly accessible charging stations for
freight transport are to be deployed on the roads of the Core TEN-T network at maximum
distances of 60 km and in important urban nodes by the end of the year 2025. In the second
stage, by the end of the year 2030, charging stations on the Comprehensive TEN-T is to be
built at a maximum distance of 100 km, and the performances of the stations on the Core
TEN-T are to be strengthened. In the third stage, the performances of the stations on the
Comprehensive TEN-T network are also to be strengthened. The new version of AFIR [6]
accepted in 2023 requires the deployment of charging stations along at least 15% of the
length of the TEN-T road network till 2025 and 50% till 2027.

To satisfy the requirements as well as to cover the area, the target distances of ca. 50 km
are considered. We are convinced that we cannot rely on the expectation of a significant
breakthrough in the volume and mass capacity of charging cells in the near future, and a
higher density of charging stations is necessary to ensure truly safe charging for freight
transport throughout the country.

Besides the legislative conditions, the methodology is based on a detailed overview of
all rest stops on the European TEN-T network (in the considered country/region), including
stationing, the capacity of parking spaces for trucks and possibilities of its extension, the
connection of directions, the existence, the size and the possibility of extension of electrical
connection, distances from nearby charging stations, including those on other roads, and
the existence of facilities for the driver or the possibility of their additional construction.

Charging stations are lined up at indicated distances on the respective main roads,
with the lining up starting at the main communication hubs of city centers, especially
Prague and Brno. This also corresponds to the requirement of deploying charging stations
in important urban nodes in the first stage. Charging stations for the city center and the
first charging points of the TEN-T network are located on city bypasses. These stations
often overlap or are located at minimum distances. For example, Prague is the main
communication hub of the republic; the stations are located at the exits from Prague at
the rest stops on the D1, D11, D8, and D5 highways as Core TEN-T roads, as close as
possible to the Prague Ring Road D0. Additional charging stations on the Core TEN-T
follow every 50 km from these first charging stations. For the location of charging stations
on the TEN-T comprehensive, the length of the Prague Ring Road, approx. 88 km, must be
considered; the circuit is divided by stations into four approximately equal, 22 km long
sections. This distance must be taken into account when leaving the circuit on the radials
of the Comprehensive TEN-T network. The first charging stations on the Comprehensive
TEN-T starting from Prague are, therefore, approximately 30 km from the Prague Ring
Road. Furthermore, they are, of course, at distances of 100 and 50 km, respectively. On
the other hand, the stations have to cover the network up to the frontiers, facilitating the
transfer between neighboring countries (in any case, the distance of the last station from
the frontiers should be smaller than 30 km); in the model example of the Czech Republic,
this distance was minimized.

2.1.1. Phase 1: Urban Nodes and Core TEN-T

The location of charging stations on the Core TEN-T network (marked in blue) is based
on urban nodes where the charging stations (marked in red in Figure 2) are expected to be
built by 2025.

Due to the closeness of the deadline of the first phase, the uncertainty regarding the
supply of electric vehicles and their price, and the uncertainty regarding the availability and
price of electricity, it is proposed to split the construction of stations on the Core network
into the first two stages. Thus, in the first stage, a network of charging stations for Core
TEN-T would be built, but at distances of 100 km, which still meets the requirements of [6].
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Figure 2. Phase 1, Urban nodes (red) and basic coverage of the Core TEN-T (dark blue).

2.1.2. Phase 2: Densification of the Core TEN-T Network and Basic Coverage of the
Comprehensive TEN-T Network

For the second phase until 2030, the Core TEN-T network charging station distances
will be densified to 50 km. See in Figure 3. In addition, the construction of a network of
charging stations on the Comprehensive TEN-T is planned. Here, according to European
recommendations, the distances between stations should be a maximum of 100 km.

 

Figure 3. Phase 2, Densification of the Core TEN-T network (light blue) and basic coverage of the
Comprehensive TEN-T network (dark green).
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2.1.3. Phase 3 (Figure 4): Densification of the Comprehensive TEN-T Network, Additional
Coverage of the Czech Republic

For the third phase until 2035, the Comprehensive TEN-T network charging station
distances would be densified to 50 km to ensure truly safe charging for freight trans-
port throughout the entire territory of the Czech Republic, without the need to rely on a
significant breakthrough in the volume and energy density of traction batteries.

 

Figure 4. Phase 3, Densification of the Comprehensive TEN-T network (light green) and additional
coverage of the traffic network of the Czech Republic (orange).

2.2. Methodology of Choosing the Concept of Charging Stations for Road Freight Transport

This is the second step in the process. This step takes place after the task “Location of
charging stations in the network” described in Section 2.1 is completed. The schematics
of this step are described in Figure 1. The aim of this methodology is to systematically
establish suitable concepts of charging stations for road freight transport for the given
location of the charging station. The methodology will determine the course of the required
power, load diagrams, numbers and occupancy of charging outlets, and space requirements
of the charging infrastructure stations; it will evaluate free distribution capacity and specify
the choice of the station battery.

2.2.1. Input Parameters

The methodology assumes the following input parameters, and we provided the
sources which we used, for example, the case of the Czech Republic:

• Traffic intensity in the area on workdays [9],
• Data from Technical Conditions 189: daily, weekly, and yearly variations in traffic

intensity [11],
• Data from Technical Conditions 171: dimensions of vehicles in each category [14],
• Data from ČSN 73 6056: minimum distances between vehicles in each category in

perpendicular parking [15],
• Traffic output of main and other routes in the catchment area [10],
• Electricity consumption [12],
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• The ratio of battery electric vehicles (BEV) and the ratio of public charging, in the form
of scenarios (sets of parameters),

• Probability of overnight charging of BEV, if the vehicle arrives at night,
• BEV parameters: range, charging current of the traction battery in xC units, Current

stated in units of a multiple of the battery capacity.

The methodology assumes the following input parameters of the charging station:

• Selected power of charging outlets (e.g., 43, 170, 350 kW),
• Free capacity of the nearest transformer station (MVA),
• Distance to high-voltage power lines,
• High-voltage level,
• Dimensions of the charging stand structure.

2.2.2. Calculation

The basic time step in the calculation of daily courses of the quantities is 1 min. One
day corresponds to 1440 samples (discrete time intervals).

2.2.3. Load Diagrams

Daily, weekly, and yearly variations of traffic intensity are determined for each vehicle
category based on data from [11]. Based on daily traffic intensities corrected for weekly
and yearly variations and based on the number of charged BEVs in the catchment area of
the charging station, moments of arrival of individual vehicles at the charging station, the
required charging distance (Distance of BEV ride within its range and which corresponds to
the respective charge of the traction battery at the charging station), charge, charging current
and the duration of discharge are determined. The course of the power of individual BEVs
is summed up to determine the necessary momentary power and the reserved capacity
(Reserved capacity is the power determined as the energy per a period of 15 min divided
by 15 min). The results are determined for the worst-case day in the year. Figure 5 shows
an example of the course of the power required together with the reserved capacity during
the day in the given month.

Figure 5. An illustrative example of required power and reserved capacity of a specific charging
station of a specific month.

2.2.4. Occupancy

In each time step, it is found out which new vehicles have arrived to be charged, and
they are allocated to a charging outlet according to the required power. In the case of a lack
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of sufficient charging outlets of the required power level, a charging outlet is added. The
occupancy of charging outlets of each power level and the usability of the power of the
charging outlet is monitored.

2.2.5. Climatic Conditions

Temperatures measured at the meteorological station in the Clementinum, Prague, are
considered [18]. The average minimum values of average daily temperatures over the past
20 years are determined for each month in the year. It is assumed that the range of a BEV is
lower and the consumption is higher due to heating in lower temperatures. A decrease
in battery capacity is not considered; it is assumed that the station battery is placed in an
air-conditioned space.

Load diagrams (Figure 5) are determined for individual months in the year while
respecting climatic conditions. Occupancy calculation is done separately for each month
in the year. The highest occupancy of all months of the year is determined for each
15 min interval.

2.2.6. Estimation of Reserved Capacity

Values of reserved capacity for individual months (Figure 6) are determined. In the
case of variance of the parameters of the uniform distribution, the calculation is repeated.
Power and occupancy are calculated repeatedly, and the 90th percentile of the results
is determined. The reserved capacity for the worst-case day in the year is determined
and compared to the free distribution capacity in the very high/high-voltage transformer
station, which is closest in terms of power lines.

Figure 6. An illustrative example of occupancy of charging points of power levels of a specific
charging station in a specific month.

2.2.7. Station Battery

After evaluating the free distribution capacity, it is determined whether it is advan-
tageous to use a station battery in the given month. If the use of the station battery is
recommended, the basic parameters of the battery are designed.

2.2.8. Space Requirements

The calculation of space requirements is based on the dimensions of vehicles in each
category, the smallest distance between vehicles in each category, and the size of the
charging outlet structure. Only perpendicular parking is considered. The calculation
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does not include the space requirements of the high- and low-voltage substations, the
space for safe operation of the stands, the dimensions of the pavement and access roads,
and the turning envelope of the vehicles. The required area of parking is assigned to the
charging outlets of the given power level based on the knowledge of their occupancy
by each category of vehicle. A maximalist approach is considered when calculating the
parking area, going from the category with the largest vehicle dimensions to the smallest
ones. The area required for the charging stand is calculated from the knowledge of their
total number and the dimensions of their structures.

3. Results

After the two aforementioned steps, the following results are achieved.

3.1. Results of Location of Charging Stations (Step 1)

This section contains the results of the placement of charging stations for a model
example of the Czech Republic.

The phasing is proposed by authors and goes as follows:

3.1.1. Year 2025: Phase 1

Core TEN-T network with maximum distances of 100 km (near-term, uncertain BEV
availability) in significant urban nodes, see in Figure 7.

 

Figure 7. Map depicting 14 charging stations in Phase 1.

3.1.2. Year 2030: Phase 2 (Figure 3)

Core TEN-T network with maximum distances of 50 km.
Comprehensive TEN-T network with maximum distances of 100 km. See in Figure 8.
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Figure 8. Map depicting 35 charging stations in Phase 2.

3.1.3. Year 2035: Phase 3

Comprehensive TEN-T network with maximum distances of 50 km.
Coverage of the transport network in the Czech Republic outside the TEN-T network.
Determination of P [MW] and n_(≥350 kW) for each phase based on the methodology

results [19].
Phase 2 corresponds to the spacing requirements for charging stations (CHS) as

specified by AFIR for the Core TEN-T and Comprehensive TEN-T networks. Phase 3
introduces additional CHS beyond the requirements set by AFIR. See in Figure 9.

 

Figure 9. Map depicting 57 charging stations in Phase 3.

3.1.4. Charging Stations Overview

The following Table 1 summarizes the list of proposed charging stations for phases 1
to 3 described above.
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an
y

50
.2

07
2

14
.4

35
9

50
.1

34
0

14
.4

43
9

Pr
ah

a
Bo

hn
ic

e
5

0.
2

28
6

co
re

D
1

N
up

ak
y

49
.9

84
1

14
.6

03
8

49
.9

95
2

14
.6

36
6

Ř
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Bě
ch

ov
ic

e
39

0.
2

49
8

co
m

p
I/

35
C

hr
as

ta
va

50
.8

17
5

14
.9

49
8

50
.7

89
5

15
.0

53
1

H
rá

de
k

n.
N

is
ou

14
0.

2
10

9
co

re
D

1
H

um
po

le
c

49
.5

36
6

15
.3

32
4

49
.5

46
2

15
.3

37
6

H
um

po
le

c
17

0.
2

28
10

co
re

D
11

O
si

ce
50

.1
37

1
15

.6
99

0
50

.1
84

1
15

.8
23

5
H

ra
de

c
K

rá
lo

vé
5

1.
1

60
11

co
re

D
1

Br
no

49
.1

62
5

16
.6

61
5

49
.1

67
1

16
.6

31
3

K
om

ár
ov

5
1

12
2

12
co

m
p

D
35

O
lo

m
ou

c
49

.5
53

8
17

.2
28

2
49

.5
63

3
17

.2
04

3
H

ně
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ří

čí
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3.2. Results of Power and Spatial Needs (Step 2)
3.2.1. Scenarios

The calculation using this methodology was performed for the following scenarios:

• AFIR_EK: The scenario is determined by the requirements formulated in the original
proposal of AFIR by the European Commission [7] for CHS in the years 2025, 2030,
and 2035 (max charging power 350 kW).

• AFIR_EP: The scenario is determined by the requirements of AFIR broadened by a
proposal of the European Parliament for CHS in the years 2025, 2027, 2030, and 2032
(max charging power 700 kW; see report to [8] from February 2022).

• Industry baseline: The scenario is detailed in [16,17].
• EV-Leaders: The scenario is detailed in [16,17].
• Road-2-Zero: The scenario is detailed in [16,17].

Based on the data in [17,20,21] and expertly corrected based on [9], the shares of BEV
and public charging are determined for the Industry-baseline, EV-Leaders, and Road-2-
Zero scenarios for the observed stages and vehicle categories. The vehicle categories are
described in detail in [10]. The shares of BEV (ratio of traffic realized by BEV to the total
traffic) are presented in Table 2; the shares of public charging were expertly estimated to be
40% on average (distinguished for each vehicle category).

Table 2. The shares of BEV (ratio of traffic realized by BEV to the total traffic) for individual vehicle
categories and years.

Scenario
Vehicle Category
According to [10]

Vehicle Class
According to ECE

Year
2025

Year
2030

Year
2035

Industry
baseline

SN N2 0.3 3.0 9.7
SNP N2 + O 0.3 3.0 9.7
TN N3 0.4 3.7 11.7

TNP N3 + O 0.7 6.2 19.9
NSN N3 + O 0.7 6.2 19.9

EV-Leaders

SN N2 1.9 7.0 23.9
SNP N2 + O 1.9 7.0 23.9
TN N3 1.7 7.5 25.6

TNP N3 + O 1.0 9.5 32.5
NSN N3 + O 1.0 9.5 32.5

Road-2-Zero

SN N2 3.9 10.5 32.4
SNP N2 + O 3.9 10.5 32.4
TN N3 3.5 11.0 33.9

TNP N3 + O 1.7 12.9 39.9
NSN N3 + O 1.7 12.9 39.9

The distinction between AFIR_EK and AFIR_EP lies in the proposed maximum output
of a single charging station. However, the final compromise version [6] accepted in 2023
requires an individual power output of only 350 kW. In general, it denotes the Regulation
for the deployment of alternative fuels infrastructure, and it sets mandatory deployment
targets for electric recharging and hydrogen refueling infrastructure for the road sector, for
shore-side electricity supply in maritime and inland waterway ports, and for electricity
supply to stationary aircraft. The significant part of heavy-duty vehicles states: “Recharging
stations dedicated to heavy-duty vehicles with a minimum output of 350 kW need to be
deployed every 60 km along the TEN-T core network, and every 100 km on the larger
TEN-T comprehensive network from 2025 onwards, with complete network coverage to
be achieved by 2030. In addition, recharging stations must be installed at safe and secure
parking areas for overnight recharging as well as in urban nodes for delivery vehicles” [21].
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3.2.2. Parameters for Charging Stations

For each charging station and for all stations in our model example in the Czech
Republic, the following is determined:

• CHS Cap: Maximum monthly reserved capacity of the lines (MVA),
• Energy: Annual energy consumption (GWh),
• Techl./Park. Area: Required area of the charging technology and parking (m2),
• MissPark: Total missing parking area for all charging stations (m2),
• MissDistr: Power deficiency of the distribution network (MVA),
• Stat. Batt: Nominal energy of the station batteries of all charging stations (MWh),
• ChPts: Number of charging points for individual power levels.

The following result sets are listed in Table 3:

• AFIR_EK for power levels of charging stations at 170 and 350 kW,
• AFIR_EP for power levels of charging stations at 170 and 700 kW,
• Phase 1, according to the methodology for power levels of charging stations at 170

and 350 kW,
• Phase 2, according to the methodology for power levels of charging stations at 170

and 350 kW,
• Phase 3, according to the methodology for power levels of charging stations at 170

and 350 kW,
• Phase 3, according to the methodology for power levels of charging stations at 170,

350, and 700 kW,
• Verification calculation with 100% share of BEVs and 100% share of public charging

for power levels from the set {170, 350} or {170, 350, 700} kW.
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3.3. Graphical Results

This section contains selected results in graphical form.

3.3.1. Power Distribution Demands

Power distribution demands of AFIR_EK scenario depicted in Figure 10. In the
Figure 11 is depicted power distribution demands of Phase 3, and Figure 12 shows power
distribution demands of verification scenario with 100% share of electric trucks. Compari-
son of different scenarios is shown in the Figure 13.

Figure 10. Power distribution demands of AFIR_EK scenario.

Figure 11. Power distribution demands of Phase 3 EV_Leaders scenario according to the author’s
methodology.
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Figure 12. Power distribution demands of verification scenario of 100% share of electric trucks,
according to the author’s methodology.

 

Figure 13. Power distribution demands comparison of different scenarios according to the author’s
methodology with AFIR requirements.

3.3.2. Spatial Demands for Parking

Following charts show parking space demands for different scenario Figure 14 shows
demand for AFIR_EK scenario, Figure 15 shows demand for Phace3 and Figure 16 show
demand for of verification scenario of 100% share of electric trucks.
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Figure 14. Parking space demands of AFIR_EK scenario.

Figure 15. Parking space demands of Phase 3 EV-Leaders scenario according to the author’s
methodology.
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Figure 16. Parking space demands of verification scenario of 100% share of electric trucks, according
to the author’s methodology.

3.4. Comment on Numerical Results
3.4.1. Scenario AFIR_EK

In the year 2025, the distribution capacity is sufficient, and in one out of the total
of 14 CHS, it would be necessary to install a station battery with an energy capacity of
3.4 MWh. Sufficient parking areas are available.

In the year 2030, the distribution capacity would need to be increased by a total of
5 MVA for 2 CHS out of the total of 35. In 3 additional CHS, station batteries with a total
energy capacity of 20.2 MWh would need to be installed. Parking areas would need to be
increased by a total of 4865 m2 in five CHS.

In the year 2035, the distribution capacity would need to be increased by a total of
8 MVA for 3 CHS out of the total of 35. In 3 additional CHS, station batteries with a total
energy capacity of 29.5 MWh would need to be installed. Parking areas would need to be
increased by a total of 10,832 m2 in ten CHS.

3.4.2. Scenario AFIR_EP

In the year 2025, the distribution capacity is sufficient, and in one out of the total
of 14 CHS, it would be necessary to install a station battery with an energy capacity of
8.4 MWh. Sufficient parking areas are available.

In the year 2027, station batteries with a total energy capacity of 25.3 MWh would
need to be installed in three CHS. Parking areas would need to be increased by a total of
1928 m2 in five CHS.

In the year 2030, the distribution capacity would need to be increased by a total of
8 MVA for 2 CHS out of the total of 35. In 3 additional CHS, station batteries with a total
energy capacity of 50.5 MWh would need to be installed. Parking areas would need to be
increased by a total of 3947 m2 in five CHS.

In the year 2032, the distribution capacity would need to be increased by a total of
12 MVA for 3 CHS out of the total of 35. In 3 additional CHS, station batteries with a total
energy capacity of 67.3 MWh would need to be installed. Parking areas would need to be
increased by a total of 9088 m2 in nine CHS.
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3.4.3. Scenario INDUSTRY BASELINE According to the Methodology

In the year 2025, the distribution capacity is sufficient, and no CHS out of the total of
14 would require the installation of a station battery. Sufficient parking areas are available.

In the year 2030, the distribution capacity would need to be increased by a total of
2 MVA for 1 CHS out of the total of 35. In 2 additional CHS, station batteries with a total
energy capacity of 3.8 MWh would need to be installed. Parking areas would need to be
increased by a total of 4,79 m2 in seven CHS.

In the year 2035, the distribution capacity would need to be increased by a total of
15 MVA for 4 CHS out of the total of 57. In 3 additional CHS, station batteries with a total
energy capacity of 11.8 MWh would need to be installed. Parking areas would need to be
increased by a total of 18,004 m2 in 18 CHS.

3.4.4. Scenario EV-Leaders According to the Methodology

In the year 2025, the distribution capacity is sufficient, and in one out of the total
of 14 CHS, it would be necessary to install a station battery with an energy capacity of
0.01 MWh. Sufficient parking areas are available.

In the year 2030, the distribution capacity would need to be increased by a total of
5 MVA for 2 CHS out of the total of 35. In 3 additional CHS, station batteries with a total
energy capacity of 4.1 MWh would need to be installed. Parking areas would need to be
increased by a total of 7849 m2 in 8 CHS.

In the year 2035, the distribution capacity would need to be increased by a total of
37 MVA for 6 CHS out of the total of 57. In 6 additional CHS, station batteries with a total
energy capacity of 38.4 MWh would need to be installed. Parking areas would need to be
increased by a total of 39,634 m2 in 21 CHS.

3.4.5. Scenario Road-2-Zero According to the Methodology

In the year 2025, the distribution capacity is sufficient, and in one out of the total
of 14 CHS, it would be necessary to install a station battery with an energy capacity of
1.6 MWh. Sufficient parking areas are available.

In the year 2030, the distribution capacity would need to be increased by a total of
8 MVA for 3 CHS out of the total of 35. In 3 additional CHS, station batteries with a total
energy capacity of 17.5 MWh would need to be installed. Parking areas would need to be
increased by a total of 11,232 m2 in nine CHS.

In the year 2035, the distribution capacity would need to be increased by a total of
52 MVA for 7 CHS out of the total of 57. In 10 additional CHS, station batteries with a total
energy capacity of 76.2 MWh would need to be installed. Parking areas would need to be
increased by a total of 56,929 m2 in 24 CHS.

4. Conclusions

The article presents a methodology for the placement of charging stations specifically
designed for heavy-duty vehicles. The methodology provides detailed information regard-
ing the spatial distribution and power requirements of the stations. It can be applied in
any area where the necessary inputs are available. The study case presented in this article
focuses on the specific context of the Czech Republic, reflecting the reality of the country.

Results of the methodology presented in this paper are as detailed as possible, but
still, they are conceptual results, not covering such details as, e.g., which part of available
distribution power capacity is reserved for which purposes. Only the value of distribution
capacity in the area neighboring the respective charging station is evaluated.

Based on the results analyzed in detail in Section 3.4 Comment on Numerical Results,
the most feasible considered scenario is AFIR_EK. In the year 2035, the distribution capacity
would need to be increased by a total of 8 MVA for 3 charging stations out of the total
of 35. In 3 additional charging stations, station batteries with a total energy capacity of
29.5 MWh would need to be installed. Parking areas would need to be increased by a total
of 10,832 m2 in ten charging stations.
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AFIR_EP is the more demanding scenario with the necessary increasing the distribu-
tion capacity by a total of 12 MVA for 3 charging stations out of the total of 35 necessary
station batteries with a total energy of 67.3 MWh and parking places deficit of a total
9088 m2, in the year 2032.

Results of the author’s methodology presented in this paper compare three main
scenarios: Industry Baseline, EV-Leaders, and Road-2-Zero in the year 2025, 2030, and
2035. The Industry Baseline scenario is feasible without any modification of distribution
capacity or parking areas in 2025, but will require increasing to 2 MVA distribution capacity,
3.8 MWh station batteries, and 4479 m2 of parking areas in 2030, and increasing to 15 MVA
distribution capacity, 11.8 MWh station batteries, and 18,004 m2 of parking areas in 2035.

The EV-Leaders scenario will require building 0.01 MWh station batteries in 2025,
increasing to 5 MVA distribution capacity, 4.1 MWh station batteries, and 7849 m2 of
parking areas in 2030, and increasing to 37 MVA distribution capacity, 38.4 MWh station
batteries and 39,634 m2 of parking areas in 2035.

The most demanding Road-2-Zero scenario will require building 1.6 MWh station
batteries in 2025, an increase to 8 MVA distribution capacity, 17.5 MWh station batteries,
and 11,232 m2 of parking areas in 2030, and increasing to 52 MVA distribution capacity,
76.2 MWh station batteries, and 56,929 m2 of parking areas in 2035.

Author Contributions: Conceptualization, J.H., K.F., N.K., J.S. and H.O.; methodology, J.S., H.O., H.M.
and J.H.; software, H.O.; validation, J.H., J.S. and K.F.; formal analysis, J.H.; investigation, N.K.; resources,
H.B.; data curation, H.O. and J.S.; writing—original draft preparation, J.H.; writing—review and editing,
J.H.; visualization, J.S.; supervision, J.H.; project administration, H.B.; funding acquisition, H.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research has been supported by the grant TA ČR Théta Dynamické dobíjení TK
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