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Abstract: This editorial introduces the latest research advances in the special issue on catchment
management and reservoir operations. River catchments and reservoirs play a central role in water
security, community wellbeing and social-economic prosperity, but their operators and managers
are under increasing pressures to meet the challenges from population growth, economic activities
and changing climates in many parts of the world. This challenge is tackled from various aspects in
the 27 papers included in this special issue. A synthesis of these papers is provided, focusing
on four themes: reservoir dynamics and impacts, optimal reservoir operation, climate change
impacts, and integrated modelling and management. The contributions are discussed in the broader
context of the field and future research directions are identified to achieve sustainable and resilient
catchment management.

Keywords: adaptive management; catchment modelling; integrated management; reservoir operation

1. Introduction

Catchment management and reservoir operation play a central role in water security, community
wellbeing and social-economic prosperity. Building reservoirs, which can store water during wet
periods and release it during dry periods, is an ancient approach to supply water to meet the ever
growing municipal, industrial and agricultural demands and to protect communities and cities from
flooding. Reservoirs are estimated to contribute directly to 12–16% of global food production as
they provide irrigation for 30–40% of a total of 268 million hectares of irrigated lands worldwide [1].
Nowadays, however, many reservoirs have to meet new demands in hydropower generation and
environmental flow regulation. For example, hydropower from reservoirs is the main source of
renewable, clean energy, and it accounts for about 19% of the world’s electricity supply and 97% of all
electricity generated from renewable sources [1,2]. Reservoir operation and management have to be
considered in the context of a system of systems to address the different, often conflicting, needs of
various stakeholders and their interdependency in the catchment and beyond.

The management of river catchments and reservoirs is now under increasing pressure from
population growth, economic activities and changing climate means and extremes in many parts
of the world. By the year 2050, the world population is expected to increase to nine billion and
agricultural production will need to increase by 70% to cope with the population increase and rising
food consumption [3]. This poses a huge challenge for land expansion and water withdrawals for
irrigation from reservoirs. Further, the total world energy consumption has been projected to rise from
549 quadrillion British thermal units (Btu) in 2012 to 815 quadrillion Btu in 2040, an increase of 48% [4],
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of which an increasing proportion will be generated from renewable sources, including hydropower.
According to the United Nations estimates, climate change could lead to an increase of 20% in water
scarcity in the coming decades [5]. The above-mentioned factors place an increasing pressure on the
effective management of surface water resources and environments. Adaptive management of river
catchments and reservoirs is crucial to guarantee sustainability in the water-energy-food-environment
nexus, which may become a major problem for sustainable development by 2050 [6,7].

Adaptive management of river catchments and reservoirs requires an in-depth understanding of
the various hydrological processes and the impacts of future uncertainties, and then the development of
robust, sustainable solutions to meet the needs of various stakeholders and the environment. Research
shows that small perturbations in precipitation frequency and/or quantity can result in significant
impacts on the discharge [8], and modest changes in natural inflows result in large changes in reservoir
storage [9]. Further, the changes in the hydrologic cycle will affect energy production and water
management adaptation strategies should be developed [10]. Climate change may confound water
resources planning because of the deep uncertainty in the local effects [11] and the system robustness
and resilience need to be fully understood [12]. Under deep uncertainty, the adaptive operational
approach may prove a reliable and sustainable overall management strategy [13].

To tackle the huge challenges in moving towards adaptive catchment management, a special
issue on adaptive catchment management and reservoir operation was proposed to review the latest
developments in cutting-edge knowledge, novel methodologies, innovative management options
and case studies in the field of water resources and catchment management. The main research
of the special issues focuses on the following four themes: reservoir dynamics and their impacts
on the sediment concentration in the reservoir and river, optimal operation of reservoirs, climate
change impacts and integrated catchment modelling and management. These themes are covered by
the 27 papers included in this special issue, as introduced in Section 2. This special issue will help
researchers and practical engineers understand the current challenges in catchment and reservoir
management and the current state-of-the-art knowledge and technologies employed to tackle these
challenges. It will encourage managers and operators to use advanced tools for better planning and
management of catchments and reservoirs, and thus improve the sustainability and resilience of water
resources systems.

2. Overview of The Special Issue

2.1. Reservoir Dynamics and Impacts

The construction of dams interrupts the natural continuity of rivers; this not only alters river
hydrology, hydraulics and aquatic ecology in the catchment, but also makes the reservoir itself a
complex system in which various processes need to be better understood. The studies in this special
issue provide an enhanced understanding of the processes within a reservoir and at the catchment
scale that could be used to improve catchment and reservoir management.

The sediment deposition within reservoirs has been a key issue that affects reservoir capacity
during the design life time. In China, 8 billion m3 of storage capacity of 20 large reservoirs has been lost
due to sedimentation, which is 66% of the total reservoir capacity of these reservoirs [14]. The research
topics in this special issue range from the loads of the sediments and the distribution of sediments in the
reservoir to the sediment flushing efficiency of the reservoir. Ezz-Aldeen et al. [15] assessed the annual
runoff and sediment loads of the Dokan Dam watershed using the Soil and Water Assessment Tool
(SWAT) and identified the basins with a high sediment load per unit area. Chen and Tsai [16] proposed
a two-dimensional bed evolution model to estimate the sediment distribution, bed evolution within
a reservoir. He [17] and He et al. [18] quantified the effects of near-bed concentration on sediment
flux after the construction of the reservoir. To reduce the sediments, Esmaeili et al. [19] studied the
effects of water and discharge manipulation and the construction of an auxiliary channel on sediment
flushing efficiency with a three-dimensional numerical analysis.
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The construction of dams poses risks to the deterioration of upstream and downstream riverine
and riparian ecosystems as they can affect the flow regimes, sediment transport, biogeochemical cycle,
and downstream water temperature. Marcinkowski et al. [20] quantified the long-term downstream
effects of the Siemianówka Reservoir on the river’s flow regime, including the flow duration and
recurrence of floods and droughts, and concluded that the upstream dam is the main driver inducing
the deterioration of the anastomosing stretch of downstream. Jiang et al. [21] investigated the effects
of the impoundment and the operation of the Jinghong Reservoir on downstream thermal regimes
through a three-dimensional hydro- and thermodynamic model. Yang et al. [22] evaluated the impacts
of water transfers on nitrogen (N) and phosphorus (P) uptake in the inner protection zone of the
receiving reservoir of the largest inter-basin water transfer project in China, i.e., the South-to-North
Water Transfer Project in China.

Recent research has confirmed that reservoirs emit a significant amount of greenhouse gas
emissions, but one of the challenges is how to accurately quantify greenhouse gas emissions from
individual reservoirs. Chen et al. [23] used two artificial neutral networks to estimate the total carbon
dioxide emissions from the world’s reservoirs and concluded that the models can be used to predict
CO2 emissions from new reservoirs.

2.2. Optimal Reservoir Operation

The optimal design and operation of reservoirs has long been studied, but challenges remain
in many areas, such as improving the search efficiency, balancing objectives and increasing system
resilience, which are addressed in this special issue.

In addition to reliability and risk, there is a need to consider the performance of reservoirs from
other aspects, such as vulnerability and resilience [24]. Paseka et al. [25] considered the resilience
and robustness of the reservoir as key criteria to address the uncertainties from a range of future
climate scenarios, and demonstrated an optimal design approach using a multipurpose reservoir with
a number of objectives, including downstream environmental flow, water supply and hydropower
generation. Chen et al. [26] suggested that vulnerability, which is quantified as the expected violation
of the generation yield, should be considered in the optimal scheduling of hydropower generation.

In order to restore the natural stream flows and reduce the negative impacts of reservoirs,
the optimal operation of the reservoirs should consider social-economic and ecological objectives.
Liu et al. [27] developed the hedging rules to consider economic and ecologic objectives during
reservoir operation. Zhou et al. [28] demonstrated how the joint operation of several reservoirs
can effectively reduce the flood damage in several areas downstream.

New optimisation algorithms have been developed to improve the search efficiency and solution
quality when optimising complex, large water resources systems. Wen et al. [29] proposed an improved
differential evolution algorithm to solve the optimal operation model of the long-term scheduling
of large-scale cascade hydropower stations. Uysal et al. [30] used probabilistic streamflow forecasts
with a lead time of 48 hours to improve real-time flood control solutions. In the short-term operation
of hydropower plants, Ji et al. [31] proposed a new progressive optimality algorithm to consider the
interactions between two cascaded reservoirs. Bhatia et al. [32] used time-varying hedging policies
to improve the reservoir performance, which significantly reduced the water shortage ratio and
vulnerability in the case of Hemavathy Reservoir in Southern India.

2.3. Climate Change Impacts

Understanding the river runoff uncertainty is essential for the better adaptive management
of water resources under changing environments. For the changes of historical runoff,
Ye et al. [33] proposed two methods to study the quantitative relationship between daily and monthly
flow duration curves. Kinouchi et al. [34] quantified the basin-scale seasonal rainfall and elucidated
the quantitative relationship with existing climate indices. For the change of runoff in the future,
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Zhu et al. [35] investigated the variations of future climate and water resources availability in the Biliu
River basin in the northeast China based on the downscaled climate data.

The impacts of climate change on water systems have gained a lot of attention in the past
decades [36]. Abera et al. [37] assessed existing and future hydropower operation at the Tekeze
Reservoir in the face of climate change. Jiang et al. [38] built a system dynamics model to simulate the
evolution of the land and water resource systems in Heilongjiang Province under different climate,
economic and policy scenarios.

2.4. Integrated Modelling and Management

Integrated catchment management has long been promoted for sustainable resource management.
It recognises the complex relationships between hydrological, ecological and socio-economic systems
within a catchment, and seeks to integrate different systems, models and stakeholders for water
management. Zhao et al. [39] integrated a 1D water quality model and an environmental fluid
dynamics model to assess the environmental capacity in the Huangshi Reservoir basin, which helped
to determine the reduction targets to achieve the water quality requirements in the reservoir.
An integrated model was also developed to investigate the flood risk of a key water infrastructure—the
South-to-North Water Diversion project in China—and key model parameters were identified by
Jin et al. [40]. Tian et al. [41] revealed that the joint operation of surface water and groundwater
reservoirs is key to achieve balance among the agricultural water demand, ecological water demand
and groundwater sustainability.

The impact of flooding has to be considered from an integrated perspective.
Choi et al. [42] conducted a multi-scale analysis to investigate the relationships among the
bitterling and mussel communities, lentic habitat structures and channel characteristics, and provided
new insights into flood and sediment management at the catchment scale. The integration is also
required at the stakeholder level. Indeed, effective cooperation among stakeholders was demonstrated
to have a significant impact on water resource allocation in the Hanjiang River Basin through a game
theory-based bi-level optimisation model [43].

3. Conclusions

The research articles included in this special issue addressed the challenges in catchment and
reservoir management and proposed new methods, models and tools for a wide range of contemporary
issues in the following themes: reservoir dynamics and impact analysis of dam construction, optimal
reservoir operation, climate change impacts on hydrological processes and water management,
and integrated catchment management.

With a better understanding of the interdependency and complexity of various processes and
systems in a catchment, the utilization of water resources must be considered from an integrated
perspective, including the integration of physical, chemical and ecological processes; integration of
information and communications technology (ICT) and infrastructure [44]; and cooperation between
institutions and stakeholders. Meanwhile, growing populations and economic activities increase
the demands on food, energy and water, and their nexus needs to be addressed in the context of
deep uncertainty arising from climate change [7,45]. To achieve sustainable and resilient catchment
management, significant efforts are required from the research and practical communities to develop
integrated models, new artificial intelligence tools, and robust and adaptive management options to
meet the needs of various stakeholders and the environment.
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Abstract: Dokan is a multipurpose dam located on the Lesser Zab River in the Iraq/Kurdistan region.
The dam has operated since 1959, and it drains an area of 11,690 km2. All reservoirs in the world suffer
from sediment deposition. It is one of the main problems for reservoir life sustainability. Sustainable
reservoir sediment-management practices enable the reservoir to function for a longer period of time
by reducing reservoir sedimentation. This study aims to assess the annual runoff and sediment loads
of the Dokan Dam watershed using the soil and water assessment tool (SWAT) model to evaluate
the relative contributions in comparison with the total values delivered from both watershed and
Lesser Zab River and to identify the basins with a high sediment load per unit area. These help in the
process of developing a plan and strategy to manage sediment inflow and deposition. The SUFI-2
program was applied for a model calibrated based on the available field measurements of the adjacent
Derbendekhan Dam watershed, which has similar geological formations, characteristics and weather.
For the calibration period (1961–1968), the considered statistical criteria of determination coefficients
and Nash–Sutcliffe model efficiency were 0.75 and 0.64 for runoff while the coefficients were 0.65
and 0.63 for sediment load, respectively. The regionalization technique for parameter transformation
from Derbendekhan to Dokan watershed was applied. Furthermore, the model was validated based
on transformed parameters and the available observed flow at the Dokan watershed for the period
(1961–1964); they gave reasonable results for the determination coefficients and Nash–Sutcliffe model
efficiency, which were 0.68 and 0.64, respectively. The results of SWAT project simulation for Dokan
watershed for the period (1959–2014) indicated that the average annual runoff volume which entered
the reservoir was about 2100 million cubic meters (MCM). The total sediment delivered to the
reservoir was about 72 MCM over the 56 years of dam life, which is equivalent to 10% of the reservoir
dead storage. Two regression formulas were presented to correlate the annual runoff volume and
sediment load with annual rain depth for the studied area. In addition, a spatial distribution of
average annual sediment load was constructed to identify the sub basin of the high contribution of
sediment load.

Keywords: Dokan Dam; runoff; sediment load; SWAT

1. Introduction

Most of the dams, storage schemes, and different hydraulic structures around the world suffer
from sedimentation problems. For dams and reservoirs, this effect is mainly concerned with the design
capacity and operation schedule. The main source of reservoir sediments is the main river flow in
addition to the runoff water, carrying the sediment load from watersheds and valleys surrounding
the reservoir.

Water 2018, 10, 858; doi:10.3390/w10070858 www.mdpi.com/journal/water8
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After a long period of dam operation, it is usually necessary to evaluate the current storage
capacity of the reservoir relative to that in the design stage. The runoff and sediment load delivered to
the reservoir could be estimated based on measured values of continuous river flow. Schleiss et al. [1]
highlights and discusses the main matters concerning reservoir sedimentation. The reservoir
sedimentation problem should be considered from the early stages of planning design and operation.
In addition, the sedimentation process can create problems downstream from the dam which should
also be considered in the planning and design stages.

Physically based models are usually used in cases where runoff and sediment load data records
are not available. These models are of two types, which are referred to as single storm models
and continuous simulation models. The Areal Non-Point Source Watershed Environment Response
Simulation (ANSWERS) is developed by Beasley et al. [2]; and the European Soil Erosion Model
(EUROSEM) was improved by Morgan et al. [3]; all of those models mentioned are examples
of the former models. Examples of the latter are the spatially distributed erosion and sediment
yield component, chemicals, runoff and erosion from agricultural management systems CREAMS
(Science and Education Administration; Department of Agriculture, Washington, WA, USA) which
are proposed by Knisel [4]; the SHESED model (the hydrologic and sediment transportation model
of hydrological modeling system (SHE)) which is proposed by Wicks and Bathurst [5]; and the soil
and water assessment model (SWAT) that was developed by Arnold et al. [6]. The SWAT model is
the most commonly used model and, for this reason, a number of researchers have modified this
model for different purposes (see [7,8]). Durao et al. [9] estimates the transported nutrient load in the
Ardila River watershed in Spain by applying the SWAT model in order to identify the contribution
of this load to the whole watershed. The model is applied to simulate long-period data; the real
daily precipitation data is considered for the period 1930–2000. The considered flow data for model
calibration and validation extend from 1950 to 2000, and nutrient data stretch from 1981 to 1999.
The results indicate that the main source of diffusion prolusion comes from the main tributaries of
Spain. Wang et al. [10] tests the possible conservation practices within a rangeland watershed using
the agricultural policy/environmental extender (APEX). The model is calibrated and validated for
both flow and sediment yield for the Cowhouse Creek watershed in north Texas. The analysis of the
scenario extends from 1951 to 2008. It shows that a significant reduction reaches to 58.8% of overland
sediment losses from the area covered by a range brush to range grass. This reduction is due to the
replacement of shrub species with herbaceous species within the subareas. Samaras and Koutitas [11]
evaluates the effect of land-use changes in a watershed on coastal erosion for a selected area in north
Greece. They apply both the SWAT model and a shoreline evolution model, a shoreline evolution
model, for this purpose. The simulation is applied before and after land use change using three
formulas of sediment transportation. The result indicates that a reduction in crop/land use cover from
23.3% to 5.1% leads to a reduction in both watershed sediment yield and sediment discharge at the
outlet by (56.4%) and (26.4 to 12.8%), respectively. This study can be considered as a suitable tool and
guide for future work in the same field. Samaras and Koutitas [12] studies the effect of climate change
on sediment transport and morphology. The study is applied to a selected sandy coast area and its
watershed in North Greece. Both SWAT models are implemented for the watershed and PELNCON-M
is implemented for the coastal area to achieve the study aims. Two scenarios are employed; the first
one is considered to be an extreme rise in the precipitation depth on the watershed, and the second
one is considered to be an extreme rise in waves in the coastal area. Results of the first scenario shows
a significant effect on erosion, sediment transport, sediment yield and discharge at the watershed
outlet, while the second scenario indicates a lower effect on the coastline variation. Arnold [13]
developed the SWAT + CUP model ( SWAT Calibration and Uncertainty Programs, Swiss Federal
Institute of Aquatic Science and Technology, Zurich, Switzerland), which provides a semi-automatic
tool for decision-making for the SWAT model by applying both manual and automated calibration
and incorporating both sensitivity and uncertainty analysis. A number of previous studies [14–17]
were applied using the SWAT model to estimate runoff, sediment yield and/or other soluble materials
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for ungagged watersheds based on neighboring or similar property watersheds. Another technique is
used for flow and erosion, and sediment transport is the distributed mode. Juez et al. [18] simulates
the hydro-sedimentary response of the Western Mediterranean catchment to a representative rainfall
storm. The simulation combines the distributed flow surface model with the empirical model for
infiltration, the Soil Conservation Services Model (SCS), and the erosion model, which is the Hillslope
Erosion Model (HEM), considering water depth and flow as a 2D model. The present model is a tool
for analyzing the hydro-sedimentary process at a temporal and special scale.

Most countries in the Middle East suffer from water shortage problems, where the annual
allocation per capita does not exceed 500 m3 [19]. For this reason, water is essential to life,
socioeconomic development, and political stability in this region. Future prospects are negative;
therefore, this problem is expected to be more chronic and severe in future [20]. Iraq used to be
considered to be a relatively rich country in terms of its water resources, until the mid-1970s, because
of the presence of the Tigris and Euphrates Rivers [21]. Due to regional and internal problems in Iraq,
the estimation of the overall water required is about 75–81 billion cubic meters (BCM) [22], while the
available quantity is 59–75 BCM and will drop to 17.61 BCM in 2025 [23]. In view of this situation, it is
very important to know the actual storage capacity of the reservoirs—which are unknown now—so
that prudent water resources planning can be done. The sedimentation rate of several reservoirs was
recently investigated in Mosul and Dohuk. This is the third reservoir to be dealt with in Iraq. The bed
of the Dokan Dam reservoir (located in the northeast of Iraq) is surveyed by Hassan et al. [24], and this
studied the bed sediment using 32-bed samples distributed spatially over the reservoir. The results
indicate that the bed sediments of the reservoir are composed of silt (48%), clay (23%), gravel (15%)
and sand (14%).

All reservoirs in the world suffer from sediment deposition. This is one of the main problems for
reservoir life sustainability. Sustainable reservoir sediment-management practices enable continued
reservoir functioning for a longer period by reducing reservoir sedimentation. Iraq suffers from water
shortage problems, especially after the construction of a series of storage reservoirs in source countries
(Turkey, Syria and Iran), so the evaluation of the actual live storage capacity of dams is important
for the prudent management of the operation schedule. The aim of this study is to assess the annual
runoff and sediment loads of the Dokan Dam watershed (ungagged area) using a SWAT model set-up
based on the parameter transformation technique of the modeling-gauged Derbendekhan watershed
to learn the hydrological behavior of the area and to assess its contribution to the total values pouring
into the reservoir. Moreover, the set-up model helps us to find the spatial distribution of erosion and
annual sediment yield for the sub basins. This will help us to find the sub basins with a high sediment
yield and evaluate effective factors for them. These assessments help in the process of developing a
plan and a strategy for managing the sediment inflow and deposition.

2. Study Area

2.1. Location and Topography

The considered study area is the watershed of the Dokan Dam reservoir, situated in the northeast
of Iraq (Figure 1). Dokan dam is a concrete arch dam located in the Lower Zab River, about 65 km
southeast of Sulaimaniyah city and 295 km north of Baghdad, the capital city of Iraq. The dam height
is about 116 m at maximum river depth, having a total storage capacity of 6.87 × 109 m3 (6.14 × 109 m3

live storage and 0.73 × 109 m3 dead storage) at normal operation level of 511 m.a.s.l. [22]. The dam
has been built to serve irrigation, power generation, water supply and flood control needs. Due to the
limited observed data of flow at the Dokan Dam watershed and the unavailability of sediments load
data, the second watershed considered for this research is the Derbendekhan Dam watershed; it is the
nearest watershed to the study area. The properties of the Dokan and Derbendikhan watersheds are
shown in Table 1. The digital elevation model (DEM) with 30 m resolution is considered to identify the
watershed boundary, classification of overland and channel flow, slopes and other properties.
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Figure 1. Topographic map of the watershed areas of the Dokan and Derbendekhan Dams and their
locations in Iraq.

Table 1. Properties of the Dokan and Derbendekhan watersheds.

Watershed
Area
(km2)

Max.
Elevation
(m.a.s.l)

Min.
Elevation
(m.a.s.l)

Average
Slope (%)

Maximum
Annual

Rain (mm)

Minimum
Annual

Rain (mm)

Dokan Dam 11,690 3557 489 26.5 1125 182
Derbendekhan Dam 15,280 3332 375 23.3 970 174

2.2. Soil Type and Land Use

The exposed rocks at the Dokan and Derbendekhan watershed areas are mainly limestone
and minor exposures of dolomitic limestone, dolomite, and Quaternary alluvial deposits [25,26].
Based on the Reconnaissance Soil Map of the three Northern Governorates, Iraq [26] and the Food and
Agriculture Organization of the United Nations (FAO) soil map [27], both watersheds are located on a
common extended type of soil classification. Samples for different soil classes were taken depending
on the soil map of the study area. A map of soil types is prepared for this study as a shape file for
each watershed to be used in the SWAT model (see below for model details). The soil samples analysis
includes grain size distribution in different types, organic matter content and hydraulic conductivity.
The analysis of soil samples indicates that the area generally consists of four major soil types. Most of
the area (85.6%) is covered by gravelly sandy mud; 6.9% is gravelly mud; and 7.5% of two types of
muddy gravel (the main differences between the two types are the percent of gravel, which is 74% and
56% for types 1 and 2, respectively). Figure 2 shows the shape file of soil type considered in the SWAT
model for the Dokan watershed.

The land use map for the years (1976–1979) [28] and available satellite image (NASA’s Landsat
GeoCover, 2007, with a spatial resolution of 14.25 m) indicates that the winter plants and pastures
represent the main part of the land use map of the studied area. This depends on rainfall as a main
source of irrigation water. The other parts are forests, vegetables and urban areas (villages). The land
use change is limited (see Table 2). This is mainly due to the geological nature of both watersheds.
In addition, the topography of the area does not enhance any changes. It is noteworthy to mention that
rain is the main source of irrigation. For these reasons, the land cover did not change widely through
the study period since the operation of the dam from the year 1959 to the year 2014. The Dam and the
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studied watershed are located away from the main cities, so changes in the urban and rural areas are
limited. Table 2 shows the percentage of different land use cover for the two periods of the available
land use map.

Figure 2. Soil type classification of the Dokan Reservoir watershed.

Table 2. Percentages of different land use types for two years of the studied period.

Year Winter Plant and Pasture Forest Vegetables Urban Area (Village)

1976–1979 77.3 22.0 0.5 0.2
2007 82.7 15.6 1.6 0.1

Due to the small difference between the percentage of land cover for the two available years,
a map of land use for the study area is prepared as a shape file (Figure 3). The area consists of four
types of land use/cover. Winter plants (pasture) and forests of different types of trees cover the main
part of the study area, while the remaining small area is planted with vegetables near the reservoir
boundary and/or in urban areas (villages).

Figure 3. Land use and land cover classification of the Dokan Reservoir watershed.

3. Applied Model

The soil and water assessment tool (SWAT) is a physically based continuous simulation model for
short or long times that can be applied to large river basins and complex watersheds. It was developed
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by the US Department of Agriculture, Agricultural Research Service [6]. The model is an efficient
tool to estimate the flow and sediment load in addition to different chemical and nutrient materials.
The model divides the watershed into sub basins based on their DEM date and hydrological response
units (HRU); each unit has the same soil type, land use and land slope.

The hydrological simulation is based on the topographical terrain, soil type, land use and
hydrological data of daily precipitation, maximum and minimum temperature, wind speed,
relative humidity and solar radiation. The flow can be estimated based on a water balance equation;
this equation is simulated in the SWAT model by different modular: the land phase and routing
phase [14]. For the land phase, the soil water balance calculation is based on the following form [29]:

SWt = SW0 +
t

∑
i=1

(Rday − Qsur − Ea − wseep − Qqw) (1)

where,

SWt: Water content of the soil (mm);
SW0: Initial water content (mm);
Rday: Depth of precipitation (mm);
Qsur: Equivalent depth of surface runoff (mm);
Ea: Evapotranspiration depth (mm);
wseep: Depth of water seepage out of considered surface profile (mm);
Qqw: Equivalent depth of return flow (mm).

The Penman–Monteith method is considered for potential evapotranspiration estimation.
The required input data to estimate the potential evapotranspiration (PET) using the Penman–Monteith
method are daily solar radiation, air temperature, relative humidity and wind speed. The formula of
this method considers three effective factors for evapotranspiration, which are the required energy to
sustain evaporation, the required strength to remove the water vapor and the aerodynamic in addition
to resistance of the surface. The Penman–Monteith method is in the following form [29]:

λE =
Δ(Hnet − G) + ρair·cp·[eo

z − ez]/ra

Δ + γ·
(

1 + rc
ra

) (2)

where,

λE: Latent heat flux density (MJ/m2/day);
E: Evaporation rate (mm/day);
Δ: Saturation vapor pressure-temperature slope (de/dt) (kPa/Co);
Hnet: Net radiation (MJ/m2/day);
G: Density of heat flux to the ground (MJ/m2/day);
ρair: Density of the air (kg/m3);
cp: Specific heat at constant pressure (MJ/kg/day);
eo

z: Saturated vapor pressure of air at height z, (kPa);
ez: Water vapor pressure of air at height z (kPa);
λ: Psychrometric constant (kPa/Co);
rc: Resistance of plant canopy (s/m);
ra: Diffusion resistance of the air layer (s/m).

Also, the different parameters of land management are recognized based on soil type, land use
and land cover. The soil water content and soil infiltration can be estimated by two methods based
on the available data, either by the Green–Ampt infiltration equation or curve number methods.
The Green–Ampt equation requires rainfall data of a sub daily interval, which is not available in Iraqi
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weather stations, so the curve number method is utilized throughout this work using the following
form [29]:

Qsur f =

(
Rday − 0.2S

)2(
Rday + 0.8S

) (3)

where,

Qsur f : Equivalent depth of surface runoff (mm);
Rday: Rainfall depth of the considered day (mm);
S: Retention parameter (mm).

The value of S can be estimated by the following equation [29]:

S = 25.4
(

1000
CN

− 10
)

(4)

where, CN is the curve number of that considered day.
The second process includes the estimation of soil erosion from the overland due to rainfall

detachment and surface runoff in addition to channel erosion and deposition. The sediments, routing in
both the overland and channel flow, are estimated based on rainfall data, soil properties, land use/land
cover and topography. The maps of soil type and land use are required with the digital elevation model
(DEM) data to identify the topography of the watershed and to classify it into overland and channel
sediment flow. The modified universal soil loss equation (MUSLE) is considered in the following
form [29]:

sed = 11.8 ×
(

Qsur f ·qpeak·arehru

)0.56
KUSLE·CUSLE·PUSLE·LSUSLE·CFRG (5)

where,

sed: Yield of sediment for the considered storm or day (ton.);
Qsur f : Volume of surface runoff (mm/ha);
qpeak: Greatest surface runoff rate (m3/s);
arehru: Hydrologic response unit area (ha);
KUSLE: Soil erodibility factor of Universal Soil Loss Equation (USLE);
CUSLE: Cover and management factor of USLE;
PUSLE: Soli practice factor of USLE;
LSUSLE: Topographic factor of USLE;
CFRG: Factor of coarse fragment.

4. Model Calibration and Validation

4.1. Runoff and Sediment Load Calibration

Although the mathematical and conceptual models are considered widely in hydrological studies
to simulate different events, such as runoff flow, sediment and both suspended and dissolved
material transport, they still require calibration with measured values to ensure the accuracy of
the model outputs.

Two types of dataset are prepared to be applied to SWAT model. The metrological (climate) data
include daily precipitation, maximum and minimum temperature, wind speed, relative humidity
and solar radiation; hydrometric data are also present. The second dataset is the topography data,
which includes the DEM map.

In view of the limited available measurements of flow and unavailable sediment records of the
Dokan Dam watershed, the available data of the Derbendekhan Dam watershed (the adjacent watershed
to Dokan, Figure 1), were considered for both flow and sediment model calibration. Due to the similarity
in the geological formation, soil type, land use, topographical and watershed characteristics (Table 1),
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the parameters of the calibrated watershed can be transformed to an ungauged watershed model [17].
To calibrate the results of the SWAT model for both runoff and sediment, the SWAT-CUP software
is applied. It is an efficient tool to adjust different parameters of the SWAT model to obtain optimal
local results and create an uncertainty analysis of SWAT model parameters to provide an easy and
quick method of calibration and standardized calibration [30]. The considered software for the model
is the Sequential Uncertainly Fitting version 2 (SUFI-2, Swiss Federal Institute of Aquatic Science and
Technology, Zurich, Switzerland). In this program, all the uncertainty parameters can be used in the model
calibration, including uncertainly in driving variables, parameters of the conceptual model and considered
data [30]. Different statistical criteria can be considered in the model objective function to evaluate model
performance, such as the determination coefficient, Nash–Sutcliff model efficiency, root mean square error
and Chi-square. The determination coefficient is considered to be effective criteria to obtain the optimal
values of flow and sediment concentration between the observed and measured data.

The SWAT project for the Derbendekhan watershed is set-up including the required DEM data,
soil type land use, as shown in Figures 1–3, respectively, and meteorological data based on the nearest
stations to the area as shown in Figure 1. The monthly average flow rate data at Derbendekhan station
are considered for model calibration. To obtain an enhanced calibration of the model and for more
understanding of the model’s performance, the monthly recorded flow data are separated into base flow
and surface runoff [14]. The recursive digital filter technique [31] is used to obtain a monthly separation
based on the original daily separation technique. The separated monthly runoff from the total flow as
measured values is applied in SUFI-2 to calibrate the model parameters. The statistical criterion of the
determination coefficient is used as an objective function criterion. Besides this, the Nash–Sutcliffe model is
employed to evaluate the model performance. For monthly runoff flow, the highest obtained values are 0.75
and 0.64 for the coefficient of determination and Nash–Sutcliffe model, respectively. The model uncertainty
was measured using two factors: the P-factor reflects the percentage of measured data bracketed by 95%
prediction uncertainty (95PPU). This means that one minus the P-factor represents the presence of poorly
simulated values. The R-factor is another measurement of model uncertainly equal to the average thickness
of the 95PPU band divided by the standard deviation of measured data. For the runoff calibration period,
the P-factor is 0.78 and the R-factor is 1.27. Figure 4 shows the observed and simulated runoff at the
Derbendekhan watershed outlet and the uncertainty band (95PPU) for the period (1961–1968).

Figure 4. Monthly observed and simulated runoff at the Derbendekhan outlet and 95PPU for the
period 1961–1968.

The available measured sediment concentration data of the Diyala River at Derbendekhan station,
as presented by Assad [32], were utilized to calibrate the SWAT model parameters for the same period
of runoff flow calibration. Figure 5 shows the measured and optimal simulated values of sediment
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load concentration at Derbendekhan outlet. The same statistical criteria are implemented, and the
optimal resultant values are 0.65 and 0.63 for determination coefficient and Nash–Sutcliffe model
efficiency, respectively, while the P-factor and R-factor equal to 0.68 and 2.27 respectively.

Figure 5. Observed and simulated sediment concentration for period (1961–1968) at the Derbendekhan watershed.

The most effective parameters are selected for the runoff and sediment model calibration as
proposed by [28] in addition to other parameters. The resultant best-fitted values (optimal values) of
the parameters and the considered range are shown in Table 3. Parameters listed in Table 3 are also
mentioned in other previous literature [14,33].

Table 3. The range, optimal (fitted) values and sensitivity analysis of considered parameters.

Parameter Description Min_Value Max_Value Fitted_Value

V_GWQMN.gw Threshold depth in shallow aquifer (mm). 0 2 1.698
V_CH_COV1.rte Channel erodibility factor. 0.05 0.6 0.38715
R_USLE_K(..).sol USLE, equation soil erodibility (k) factor. −0.8 0.8 −0.1168
R_LAT_SED.hru Sediment conc. In lateral and ground flow. 0 5000 2525

R_SPCON.bsn
Linear par. for calculating max. amount of
sediment that can be re-entrained during
channel sediment routing.

0.0001 0.01 0.008743

V_SPEXP.bsn
Exponential Par. for calculating max. amount
of sediment that can be re-entrained during
channel sediment routing.

1 2 1.549

V_GW_REVAP.gw Groundwater “revap” coefficient. 0.02 0.2 0.07166
V_ALPHA_BF.gw Base flow alpha factor (days). 0 1 0.555
V__CH_COV2.rte Channel cover factor. 0.001 1 0.281719
V_GW_DELAY.gw Groundwater delay (days). 0.02 0.2 0.07166
R_SOL_BD(..).sol Moist bulk density. −0.5 1 −0.3755

R_USLE_C(..)plant.dat Min value of USLE-C factor for land
cover/plant. −0.5 0.5 0.151000

R_CH_N2.rte Manning’s “n” value for the main channel. −0.5 0.5 −0.279
R_USLE_P.mgt USLE, support practice parameter. 0 1 0.941
R_SOL_K(..).sol Saturated hydraulic conductivity. −0.5 0.5 0.177
R_CN2.mgt SCS runoff curve number. −0.2 0.2 0.198
R_SOL_AWC(..).sol Available water content of the soil layer. −0.5 1 0.5005

Note: R: Relative, V: Replace. (..) for different soil or plant type.

4.2. Runoff Validation

A SWAT model project is set-up for the Dokan Dam watershed, the main part of the study area.
The limited recorded data of the monthly flow rate at the outlet of the Dokan watershed and the
absence of any sediment load measurements leads to utilizing the regionalization technique to transfer
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the effective parameters from the adjacent gauged (Derbendekhan) watershed. Due to its similarity
in geological formation, soil type, land use, watershed characteristics and weather data, the effective
hydrological parameters obtained from the Derbendekhan (gauged) watershed can be transformed to
the Dokan (ungauged) watershed. The process of parameter transformation is called regionalization.
There are a number of presented methods for the regionalization of the watershed hydrological
parameters: Kokkonen [34] applies the regression approach, while Parajka et al. [35] employs kringing
and a similarity approach and Heuvelmans et al. [36] investigates the application of artificial neural
nets and other methods. Since the Derbendekhan watershed is adjacent to the Dokan watershed
(Figure 1), and the physical, topographical properties and rainfall are similar (Table 1) along with
the geological formation, land use/land cover, and soil type, both watersheds have similar flow and
sediment parameters. In this case, the effective parameters can be transformed from a donor watershed
to an ungauged watershed. The fitted values of the Derbendekhan parameters calibrated by the SUFI-2
program are transferred to the Dokan watershed SWAT project. The SUFI-2 program is implemented
for the calibration, uncertainly analysis and regionalization of the considered parameters of the SWAT
model for the Debendekhan watershed for runoff and sediment load of concentration. Here, the SUFI-2
algorithm is used for the calibration, validation and measurement of the uncertainty for input data,
model and sensitive parameters. The degree of uncertainty is measured by two values: P-factor and
R-factor. The percent of measured values bracketed by 95% prediction uncertainly represent (95PPU),
which is the P-factor while the ratio of 95PPU thickness divided by standard deviation of measured
values is equal to the R-factor. When the simulated values are exactly the measured ones, the value of
P-factor equals 1 and the value of R-factor equals zero [37].

Based on the transformed parameters, the simulated runoff flows are compared with measured
values at the Dokan watershed outlet after the separation of the base flow for the period 1961–1964
(Figure 6) to evaluate the effectiveness of the transformation of the hydrological parameters. For the
validation period of runoff, the obtained values of the determination coefficient and Nash–Sutcliffe
model efficiency are 0.68 and 0.64, respectively, indicating that the transformation process is successful.
The P-factor and R-factor for the model uncertainty also indicate a reasonable model performance:
the P-factor is 0.71 and R-factor is 0.97.

Figure 6. Monthly observed and simulated runoff at the Dokan outlet and 95PPU for the
period 1962–1965.

5. Results and Discussion

After Durbendekhan SWAT project calibration for runoff and sediment data, the best-fitted values
of the hydrological watershed parameters are transformed by the regionalization technique to the
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Dokan SWAT project, the main project of the study. The sensitivity analysis is also studied for the
most effective parameters on both the runoff and sediment load. The sensitivities are accomplished to
identify the effective parameters on runoff and sediment load values for the watershed. The parameter
sensitivity is estimated in the SUFI-2 model based on the multiple regression system presented by
Abbaspour [38] to evaluate the effect of the considered parameter value (bi) on the objective function
(g); its sensitivity is in the following form:

g = α +
m

∑
i=1

βibi (6)

This formula calculates the average changes in the objective function due to the change in a given
parameter while other parameters are changing. The comparative significance and sensitivity of each
parameter are estimated based on the statistical criteria of the t-stat and p-value. The t-stat value is
obtained from the coefficient of a parameter in the multiple regression analysis divided by its standard
error. If the coefficient value is large in comparison to the standard errors, this mean that the parameter
is sensitive. The p-value can be obtained by comparing the t-stat value with the student’s distribution
table [37]. The p-value of each term test is the null hypothesis, in which the coefficient is not affected.
If the p-value is less than 0.05, it indicates that the null hypothesis can be rejected. The t-stat and
p-values of different effective parameters are shown in Table 4. The parameters are arranged from low
to high sensitivity, i.e., from low t-stat value or high p-value. The result of the test indicates that the
soil water content, soil curve number at normal conditions (CN2) and the soil saturated hydraulic
conductivity are the most effective parameters while threshold depth in a shallow aquifer, the channel
erodibility factor and soil erodibility (k) factor in USLE have the lowest effect on runoff and sediment
load simulation.

Table 4. Effective parameters arranged from low to high sensitivity based on t-stat and p-value.

Parameter Absolute t-Stat p-Value

GWQMN.gw 0.61 0.54
CH_COV1.rte 0.62 0.54
USLE_K(..).sol 0.77 0.44
LAT_SED.hru 0.78 0.43
SPCON.bsn 0.92 0.36
SPEXP.bsn 0.97 0.33
GW_REVAP.gw 0.98 0.33
ALPHA_BF.gw 1.20 0.23
CH_COV2.rte 1.25 0.21
GW_DELAY.gw 1.25 0.21
SOL_BD(..).sol 1.34 0.18
USLE_C(..)plant.dat 1.96 0.05
CH_N2.rte 2.08 0.04
USLE_P.mgt 3.69 0.03
SOL_K(..).sol 9.34 0.02
CN2.mgt 11.57 0.01
SOL_AWC(..).sol 16.05 0.00

Note: (..) for different soil or plant type.

The model is applied for the study period to estimate the runoff and sediment load reaching
the Dokan Reservoir. The considered years of simulation have begun since the operation of the dam
in 1959 to the year of the bathometry survey (2014) carried out by [39]. The resultant annual runoff
volume that enters the Dukan Reservoir from the HRUs ranges from 300 to 4600 MCM (Figure 7),
depending on rainfall intensity, depth and distribution through the rainy season. The runoff average
volume from the watershed represents 35% of the live storage capacity of the dam, indicating that
watershed runoff makes a significant contribution to reservoir inflow.
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The SWAT model is an efficient tool to estimate the runoff hydrograph, but, in some hydrological
studies, such as scheduling reservoir operations to supply the demand rate, the assessment of water
resource income only is required. A regression formula is determined based upon the input–output
data of SWAT model of the study area. This is a simple and quick tool to correlate the annual runoff
depth with annual rainfall with good correlation (R2 = 0.9) results without the need for more detailed
input data as required in SWAT projects. The relationship used is in the following form:

RunAnn = 0.075 × R1.21
Ann − 1.92, R2 = 0.90 ( f or RAnn > 16 mm) (7)

where

RunAnn: Annual runoff depth mm);
RAnn: Annual rainfall depth (mm).

Figure 7. Annual runoff volume and sediment load delivered to the Dokan Reservoir for the
period 1959–2014.

The formula is suitable when the annual runoff depth is greater than 15 mm to avoid negative
runoff; this value is already much lower than the minimum historical recorded value.

The sediment load delivered to the Dokan reservoir is also estimated based on MUSLE
programmed into the SWAT model for each single storm. The results are presented here annually.
The average annual sediment load concentration is 650 mg/�. This concentration can be considered
relatively low in comparison with other locations or measurements in the region as proposed by [40,41]
as well as the worldwide rate [42]. This is due to the nature of the rocks of the area and the effect
of plant cover, such as winter pasture and plants and some forest trees throughout the region which
reduce the detachment of soil particles transported with runoff flow. The estimated annual sediment
load delivered to the Dokan reservoir from the watershed ranges from 3.6 to 0.16 × 106 ton for studied
period, Figure 7. The average annual value is 1.63 × 106 ton.

The sediment trap efficiency of the reservoir is estimated based on the method presented by Garg
V. and Jothiprakash V. [43]. This depends on reservoir storage capacity and annual inflow. The trap
efficiency of the Dokan reservoir changes through the study period from 1 to 0.985.

Based on the results obtained from the simulation model, the estimated sediment load volume
deposited in the reservoir for the considered period is about 10% of the dead storage capacity.
This value is for the watershed only, which is considered a reasonable value and does not affect
the designed project life. However, the Lesser Zab load should be also considered to evaluate the total
amount of sediment load delivered and deposited within the reservoir. The total amount of sediment
deposited in the Dokan reservoir for the period (1959–2014) is 209 MCM [38]. This means that the
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sediment load delivered into the reservoir from the watershed based on simulated results is about
34% of the total sediments deposited within the reservoir, which mean that the watershed sediment
contribution is an effective value.

Due to the huge amount of data required, including topographical, metrological and hydrological
data, different maps of soil, and land use to estimate the sediment load based on the applied model,
a simple regression formula is used. It is based on simulated values to correlate the sediment load per
unit area of the Dokan watershed with annual runoff depth in the following form:

SedAnn = 0.056·R1.195
Ann − 7.33, R2 = 0.97 ( f or RAnn > 60mm) (8)

where

SedAnn: Annual sediment load per unit area, (ton/km2);
RAnn: Annual rainfall depth (mm).

The formula is suitable when the annual runoff depth is greater than 60 mm; this value is already
lower than the minimum historical recorded value in Dokan area.

A special distribution map of average annual sediment yield per unit area of sub basins is also
prepared (Figure 8a). It can be noticed that the annual sediment load contribution ranges from 13 to
950 ton/km2 approximately. The rate of erosion and sediment yield depends on a number of factors:
topography, soil type, land cover and rainfall intensity. Comparing the sub basins of different soil
types and land uses, in both the annual sediment yield map (Figure 8a) and the sub basin slope map
(Figure 8b), it can be noticed that the most effective factor for the sediment yield is the land slope rather
than other factors. This can be clearly noticed in that some basins have the same soil type and land use
but a higher slope gives higher sediment yield. Sub basins having an average slope between 25 to 45%
represent the area of high sediment yields from 400 to 950 t/km2; however, when the sub basin slope
is less than 20%, the sediment yield per unit area is reduced to about 40 t/km2.

(a) (b)

Figure 8. (a) Spatial distribution of average annual sediment load for the Dokan watershed sub basins;
(b) average slope of sub basins.

This map is a tool that can enable decision-makers to apply a suitable method to reduce the
erosion load, especially from high erosion rate areas. Depending on the selected area, the treatment
may include practicing strip planting, terracing, or contour forming to reduce the effect of slope on
surface runoff flow velocity, erosion and sediment transport capacity.
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6. Conclusions

The soil and water assessment tool (SWAT) model is applied to assess the runoff and sediment
delivered from the Dokan Dam watershed. Due to the limited recorded flow data and the absence of
sediment measurements data at a station near the inlet of Dokan Reservoir, the model is calibrated
for both runoff and sediment load for the Derbendekhan watershed adjacent to the Dokan watershed.
The regionalization technique is employed to transfer the calibrated parameters of the SWAT project
from a gauged (Derbendekhan) to an ungauged (Dokan) watershed. The resultant monthly runoff
flow for the Dokan SWAT project is based on transformed parameters which were compared with
measured values to evaluate the regionalization technique and model performance. The determination
coefficient (R2) and Nash–Sutcliffe model efficiency (Eff.) are 0.68 and 0.64, respectively, indicating a
reasonable model performance with this technique. The average watershed contribution for annual
runoff represents 35% of the dam life storage; this percentage is considered effective in the dam
operation schedule. The total sediment load delivered to the Dokan reservoir from the watershed for
the studied period is about 72 MCM. This load forms about 10% of the dead storage capacity of the
reservoir. Generally, the total sediment load delivered and deposited in the reservoir for the period
of dam operation is considered acceptable within the allowed limits. The map of special distribution
of annual sediment load yield per unit area of each sub basins is presented; the average slopes map
reflects a good agreement with the map of annual sediment load yield in comparison to other effective
factors to be considered. This indicates that the land slope is the most effective factor on erosion and
sediment transport. This can be used for soil conservation treatment to reduce the erosion rate.
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Abstract: Control of reservoir sedimentation in order to ensure their sustainable use has drawn
attention among water engineers and water resource managers. Several methods have been proposed,
but most of the developed methodologies are incapable of modelling bed evolutions, while at the
same time, compute sediment flushing efficiency. In this study a two-dimensional bed evolution
model is proposed to estimate sediment distribution, bed evolution and sediment flushing efficiency
of reservoirs. A-Gong-Dian reservoir, in southern Taiwan, is used as an illustrative example. Typhoon
events were used to verify the proposed model. Simulations were conducted for one and two-day
storm events under return periods, 2, 5, 10, 25, 50, 100, and 200-year. The results indicated that the
average sediment flushing efficiency of the shaft spillway under one and two-day storms were close,
58.50% and 59.39%, respectively. These results were similar to observed laboratory tests experiments,
where an efficiency of 65.34% was obtained. This study suggests that the applied model could be
adopted to ensure the sustainable use of reservoirs, and also to find an optimal area for the location
of a shaft spillway pipe. Therefore, the proposed model could serve as a reference to the reservoir
management personnel.

Keywords: two-dimensional bed evolution model; sediment flushing of empty storage; shaft spillway
pipe; sediment flushing efficiency

1. Introduction

Reservoirs are often affected by accelerated sediment deposition rates and has shortened the life
of reservoirs by more than 65% in China alone [1]. As a result, the economic value of such projects
has severely declined. Not only do they influence the life of reservoirs, they also pose safety hazards,
as illustrated by [2]. Their sustainability is strongly dependent on how well the rate of sediment
deposition is reduced and on the techniques of managing the reservoirs. Several techniques are
available for their management, amongst which are mechanical excavation, dredging (conventional
dredging, dry excavation), and hydraulic desilting. For an exhaustive review of the different techniques,
the reader is referred to [3], who explored sustainable sediment management in reservoirs based on
experience from five continents. Mechanical excavation and dredging boats, however, are associated
with higher costs when compared to hydraulic desilting, and are often plagued by subsequent disposal
problems. Hydraulic desilting employs stream power and hydraulics to cut down sediment deposits
downstream. Flushing out sediments in reservoirs has been shown to cut costs [4], despite the large
amount consumed by the flushing operations. Emamgholizadeh and Samadi [5] classify flushing
into two, complete (also termed empty) and partial drawdown flushing. These, in turn, include
hydro-suction, sediment sluicing, sediment bypass, density current venting, and hydraulic flushing
through the reservoir, used independently or in combination [6]. The efficiency of sediment flushing
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depends on the geometry of the reservoir, sediment particle size, characteristics of sediments deposited,
flow discharge, and flow depth. Several authors have argued that the efficiency of sediment flushing is
influenced by the ratio of storage volume to incoming runoff [7], which should be less than 0.05 [8]
for this technique to work. Moreover, we did not evaluate this threshold in this study, since the
reservoir under investigation already applied hydraulic sediment flushing. Madadi, et al. [9] managed
to improve flushing efficiencies by up to 280% through reconfigured reservoir bottom outlets in
laboratory experiments.

Effective management of reservoirs system require a model that can predict future behaviour
and response to perturbation [10], and all of the models are developed through experiments and
depending on the status quo, they may grow in complexity to include conceptual frameworks,
computer calculations, numerical simulations, and physical scale modelling [11]. Physical models
have been applied to study the process and efficiency of sediment flushing in a reservoir. Although
they have been successfully used to understand and reproduce to some extent complex physical
processes that occur in nature, and have contributed significantly in hydraulic construction designs,
they are relatively costly and time consuming [12]. More recently photogrammetry-based surveys
using unmanned aerial systems have been used to evaluate flushed sediments [13–15]. Moreover,
such techniques can only compute the amount of flushed sediments only when the reservoir is dry
(i.e., empty), and subsequent images are necessary to compute the Digital Elevation Models (DEMs)
of difference, from which the flushing efficiencies may be computed. Network-based programming
techniques have also been employed in multi-reservoir systems [16], though their core emphasis is on
determining empty flushing of sediments.

Given the recent advances in computational power, multi-dimensional models have increased
the capability of assessing sedimentation problems and the multi-dimensional models have been
extensively adopted in engineering application and analysis. For models to be adopted, they
should reflect the physical characteristics of the reservoir and complexity in question. Numerical
sediment transport models are available in one, two, and three dimensions. The widely used
models, however, are one- (1D) and two-dimensional (2D) models when compared to the high
computer intensive three-dimensional (3D) models. Examples of 1D sediment transport models are
HEC-6 [17], HEC-RAS [18], and FLUVIAL-12 [19,20]. Castillo, Carrillo, and Álvarez [7] employed
four complementary methods, which included 1D model, to determine sedimentation and flushing
in a reservoir These models are capable of simulating longitudinal flows in rivers, moreover, they
run short in the simulation of sediment transport and bed evolution in reservoirs. To be applied
in sediment flushing, several assumptions should be made, thus, compromising the accuracy and
efficiency in reservoir management. In such situations, reservoirs are narrow in shape, flow highly
channelized, while closely following the thalweg [12]. However, most reservoir pools are wide and
have no single clear flow direction, and they often constitute complex topography and geometry. As a
result, multi-dimensional models are used. Olsen [21] used a depth-averaged 2D model to study the
flushing process in a water reservoir in Nepal. Besides two-dimensional models, three-dimensional
models have also been applied to study sediments in reservoirs. Olsen and Skoglund [22] applied a 3D
model to calculate the sediment deposition in a hydropower reservoir, and also in a sand trap. Fang
and Rodi [23] used a 3D model to simulate flow and sediment transport in the Three Gorges Project
(TGP) reservoir in Yangtze River. Khosronejad, et al. [24] used a three-dimensional finite volume
model to study the effects of various parameters on the quantity of sediment that was released from a
reservoir in the reservoir flushing process.

Although the above models could estimate sediment erosion and deposition, bed evolution in a
reservoir, and the efficiency of flushing, we have not found a model that is capable of combining all of
these key reservoir management strategies in a single package. In addition, the above stated models
require suspended sediment concentration, and sediment yield hydrograph into the reservoir, which
are not easily obtained. Consequently, rating curves of discharge and suspended sediment transport
rate are used, and these are associated with high errors [25]. Incorrect estimation of sediment inflow
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into reservoirs especially during flood events, will eventually lead to inefficient flushing of sediments
and to misleading bed evolution in the reservoirs. It is therefore imperative to develop models that
are highly efficient in estimating inflow hydrographs and sedigraphs, in turn, correctly estimating the
amount of sediments to be flushed, while estimating the resultant bed evolution. A two-dimensional
bed evolution model having these capabilities is developed and applied in this study. The upstream
boundary condition hydrographs of inflow discharge and suspended sediment concentration for the 2D
dimensional bed evolution model were calculated by the Physiographic Soil Erosion and Deposition
(PSED) [26]. The PSED model can accurately estimate discharge hydrographs, concentration of
suspended sediment hydrograph and suspended sediment transport rate from a watershed.

2. Numerical Model

The depth-averaged two-dimensional bed evolution model is divided into three parts: (1) water
flow calculations; (2) sediment transport calculations; and, (3) bed elevation variation calculations.

2.1. Governing Equations for Water

The depth-averaged continuity and momentum equations are given below:
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in which t is time; x and y are horizontal Cartesian coordinates; h is the depth; u and v are depth-average
flow velocities in x and y directions; H is water surface elevation; g is gravitational acceleration; ρ is
density of flow; ε is the depth-average kinematic eddy viscosities of water; and, τbx and τby are bed
shear stresses τb in x and y directions, τb = ρghS f , S f is the friction slope.

The depth-average kinematic eddy viscosities of water can be approximated and expressed as [27]:

ε =
κ

6
u∗h (4)

in which κ is the von Karman constant, and κ = 0.4 is chosen in this study. u∗ is the shear velocity and
u∗ =

√
ghS f .

2.2. Governing Equations for Sediment Transport with Source Terms

The convective-diffusive equation of suspended sediment, can be expressed as [28]:
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where C is the depth-averaged volumetric concentration of suspended sediment; qse and qsd are the
entrainment and deposition terms of river bed, respectively. According to Itakura and Kishi [29],
the entrained rate of channel bed can be expressed as:
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in which s = (ρs − ρ)/ρ is the submerged specific gravity of the sediment; ρs is density of the sediment;
d is diameter of the sediment; ωs is fall velocity of the sediment; and, τ∗ is non-dimensional bed shear
stress, τ∗ = u∗2/sgd.

The deposition rate of suspended sediment can be expressed as:

qsd = ωs Ca (7)

where, Ca is the concentration of sediment near the channel bed. Ca can be estimated from the
volumetric concentration of suspended sediment obtained at 0.05 depth from the channel bed. Using
the exponential law, the volumetric concentration of suspended sediment may be expressed as [30]:

Ca =
Pe

[ 1 − exp (−Pe) ]
C (8)

where Pe is the Peclet’s number, which may be expressed as ωsh/ε.
An extensively used bed load transport formula is the Meyer Peter and Muller formula (MPM) [31].

Moreover, Wong and Parker [32] amended the MPM formula, and more accurate estimates of bed
load transport rate were obtained. Nonetheless, since the original MPM formula is relatively easy
to apply when establishing a numerical model, bed load transport was calculated using the original
MPM formula in this study.

(
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3
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1/3
(
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γ

)2/3
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where γ and γs are the specific weight of water and the specific weight of sediment, respectively; qb is
the bed load transport rate per unit width of bed; kn is Strickler’s roughness coefficient, which can be
represented as the reciprocal of Manning’s roughness coefficient; and, k′ = 26/d1/6

90 , d90 is the size of
sediment in the unit of meter for which 90% of the material is finer.

2.3. Governing Equations for Bed Variation

The bed evolution due to sediment transport rate is not equal throughout an alluvial river.
The continuity equation for bed elevation variations can be written as [33,34]:

∂ z
∂ t

+
1

1 − λ

[
∂ qbx
∂ x

+
∂qby

∂y
+ (qse − qsd)

]
= 0 (10)

where z is the channel bed elevation; λ is the porosity, λ = 0.245 + 0.0864/dm
0.21, dm is the mean

sediment diameter [35]; and, qbx and qby are the components of qb in x and y directions, respectively.

2.4. Numerical Scheme

MacCormack explicit finite-difference method [36] is adopted and is divided into predictor and
corrector steps. The forward finite-difference is used to discretize the predictor step while the backward
finite-difference is used to discretize the corrector step.

The forward finite-difference is used to compute the water depth h by the continuity equation
(Equation (1)) and the u and v are computed by the momentum equations (Equations (2) and (3)).
The predicted value may be written as:
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i,j + Ω′

h f (11)
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v∗i,j = vn
i,j

hn
i,j

hn+1
i,j

+ Ω′
v f (13)

The superscript * denotes the predicted value; the superscript n and n + 1 refers to the variables at
the known and unknown time levels; the subscript i and j denote the grid in x- and y-directions; and,
Ω′

h f , Ω′
u f and Ω′

v f are the functions of the known value of variables h, u, v at the time level n.
The backward finite-difference is used to calculate the water depth h by the continuity equation

(Equation (1)) and the u and v are computed by the momentum equations (Equations (2) and (3)).
The corrected value may be written as:
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The superscript ** denotes the corrected value; Ω′
hb, Ω′

ub, and Ω′
vb are the functions of the known

value of variables h, u, v at the time level n.
The value of the variables at the unknown time level could be calculated by the predicted and

corrected values that may be written as:
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Bed Evolution Model—MacCormack Explicit Finite—Difference Method

The explicit finite-difference method is used to discretize the suspended sediment concentration
convection-diffusion equation (Equation (5)) and the continuity equation for bed elevation variations
(Equation (10)) to calculate the volumetric concentration of suspended sediments and bed elevation.
The volumetric concentration of suspended sediments C is calculated by:

Cn+1
i,j =

Cn
i,j hn

i,j

hn+1
i,j

+ Ω′
c (20)

where Ω′
c is composed of the known value of variables h, u, v, C at the time level n.

The bed elevation may be written as:

zn+1
i,j = zn

i,j + Ω′
z (21)

where Ω′
z is composed of the known value of variables h, u, v, C at the time level n.

3. Study Area

A-Gong-Dian Reservoir (Figure 1) is used as an illustrative example in this study. This reservoir,
located in Kaohsiung City, (southern Taiwan), collects water from Joushui River and Wanglai River.
The total watershed area is 29.58 with 12.81 km2 (43%) from Joushui River watershed and 16.77 km2

(57%) from Wanglai River watershed. The length of the dam is 2.38 km, making it the longest dam
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in Taiwan. Its major purpose is flood control, while other uses, such as irrigation, water supply,
and tourism benefit.

The elevation of the dam top, design water level, and maximum water level are 42, 37, and 40 m,
respectively. The reservoir was completed in 1953. However, since its completion, large amounst of
green-grey clay and yellow silty clay from the upstream watersheds of Joushui and Wanglai rivers
have been washed into the reservoir and severe sedimentation has been observed [37]. The effective
reservoir capacity was slashed from 20.5 to 5.9 million cubic meters in 1996. In order to revamp the
reservoir, the A-Gong-Dian reservoir improvement project was implemented in 1997. Large-scale
sediment flushing of the reservoir was executed and 11.6 million cubic meters of sediments were
dredged, and the reservoir reached empty storage. The reservoir improvement project involved
dam improvement, conduit spillway reconstruction, water intake tower reconstruction, trans-basin
waterway, etc. It was finally completed in 2005, and re-opened in June 2006. The shaft spillway
pipe (Figure 2) has been operated ever since, for the period 1 June to 10 September annually, which
corresponds to the wet season in this region.

Although its design capacity storage is 20.5 million cubic meters, currently, the effective storage
capacity is 16.69 million cubic meters, and the total water storage is 45 million cubic meters.
The reservoir adopts a shaft spillway pipe having a 2.8 m diameter to reduce the pipe top elevation to
27 m. Based on hydraulic model test, flow discharge of the shaft spillway pipe can be expressed by
Equations (22) and (23) [37]:

Free overfall Qout = 34.12(Hs − 27)1.5, Hs ≤ 28.57 m (22)

Pipe flow Qout = 17.63(Hs − 14)0.5, Hs > 28.57 m (23)

where Hs is water level in the reservoir, Qout is the releasing discharge. The maximum releasing
discharge of pipe flow for the shaft spillway pipe is 89.90 m3/s when the water level reaches the 40-m
design maximum flood retention level.

 

Figure 1. A-Gong-Dian Reservoir watershed and its river system.
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Photograph by Southern Region Water Resources Office, 
WRA, MOEA, 2004  

Photograph by Southern Region Water Resources Office, 
WRA, MOEA, 2004 

Figure 2. Shaft spillway pipe.

4. Methodology

In order to understand the sedimentation pattern, distribution of sediments into the A-Gong-Dian
reservoir, bed evolution within the reservoir, and the sediment flushing efficiency of an empty storage
operation of the shaft spillway pipe during a flood season, a depth-averaged two-dimensional bed
evolution model was developed and applied. The upstream boundary condition hydrographs of
inflow discharge and suspended sediment concentration for the two-dimensional bed evolution model
were calculated by the PSED model [26,38].

The PSED model can accurately estimate discharge hydrographs, sediment hydrograph,
suspended sediment transport rate, and sediment yield from a watershed. In this model, GIS is
used to partition the river catchment into computed river cells and land cells, according to the spatial
distribution of the physiographical characteristics, such as topography, landform, and vegetation
distribution in the watershed. Due to the complex nature of these earth features, a large amount of data
is often generated. With the assistance of GIS, the PSED model can handle enormous hydrologic and
physiographic datasets, simulating the physical erosion process without the need for simplification.

Computations were done for the storage region between Sin-Jian Bridge of the Wanglai river and
the Peng-Lai Bridge of the Joushui river, which is about 5 km long. Cross-sections were measured by
the Southern Water Resources Bureau in 2008, and the measured elevations are shown in Figure 3.
The study area was discretised into 26,251, squared, Δx = Δy = 10 m, computational cells and the time
step was 0.05 s (Δt = 0.05). Conducted field experiments have shown the average sediment particle
size to be 0.015 mm, while the Manning’s roughness coefficient was 0.028. The initial water depth
condition was 0.1 m, while velocity and sediment concentration were 0 for each computed grid.

Figure 3. Bed elevation in storage area of A-Gong-Dian reservoir.
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The hydrograph boundary conditions of inflow discharge and suspended sediment concentration
for the typhoon event and design rainfall of one- and two-day storms under various return periods
(2, 5, 10, 25, 50, 100, 200-year) for the depth-averaged two-dimensional bed evolution model were
simulated and calculated by the PSED model.

5. Results and Discussions

5.1. Analysis of the Sediment Flushing Efficiency of an Empty Storage

Reducing sediment deposition to increase flood control volume is crucial for Agongdian reservoir.
Therefore, sediment flushing of empty storage by a shaft spillway pipe is operated during the wet
period to decrease the sediment deposition within the reservoir bed. To understand the sediment
flushing efficiency of empty storage by a shaft spillway pipe under one-day and two-day storms of
various return periods, the operations for sediment flushing of the empty storage were simulated
using the depth-averaged two-dimensional bed evolution model, and the results are shown in Tables 1
and 2.

The results indicate that the average sediment flushing efficiency for one-day and two-day storms
are close, 58.50% and 59.39%, respectively. For the simulated storms, the lowest efficiencies are 58.16%,
58.62% (200-year return period), and the highest efficiencies are 58.98%, 60.19% (10-year, 2-year return
period). The simulation results are close to 65.34% [39], which agree well with the efficiency obtained
from the hydraulic model test in the laboratory. The results show that the two-dimensional bed
evolution model can reasonably simulate sediment flushing of empty storage by a shaft spillway pipe,
as sediment flushing efficiency reached up to 60%.

Table 1. Empty flushing efficiency in one-day storms under different return periods.

Return Period
(Year)

Sediment Yield of
the Watershed (m3)

Sediment
Deposited in the
Reservoir (m3)

Sediment
Flushing by Shaft

Spillway (m3)

Sediment
Flushing

Efficiency (%)

2 201,341 83,154 118,187 58.70
5 280,522 116,875 163,647 58.34
10 331,857 136,121 195,736 58.98
25 375,159 156,963 218,196 58.16
50 427,718 176,549 251,169 58.72
100 464,325 193,141 271,184 58.40
200 498,867 208,575 290,292 58.16

Table 2. Empty flushing efficiency in two-day storms under different return periods.

Return Period
(Year)

Sediment Yield of
the Watershed (m3)

Sediment
Deposited in the
Reservoir (m3)

Sediment
Flushing by Shaft

Spillway (m3)

Sediment
Flushing

Efficiency (%)

2 284,238 113,155 171,083 60.19
5 397,096 159,791 237,305 59.76
10 471,082 189,846 281,236 59.70
25 541,196 220,050 321,146 59.34
50 625,933 255,506 370,427 59.18
100 701,485 287,889 413,596 58.96
200 775,718 320,992 454,726 58.62

5.2. Analysis of Sediment Delivery Behaviour in Reservoirs

Sediment flushing efficiency is related to the life and function of the reservoir. Therefore, this topic
of great importance for reservoir management. In addition, it is necessary to carry out the analysis from
sediment transport into the reservoir to bed evolution during the process of flooding and sediment
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flushing. Management of reservoirs does not only entail improving the flushing efficiencies, but in
depth investigations are needed to understand the whole process from catchment erosion, to sediment
transport and bed evolution, and finally to the removal of the sediments. To understand the whole
complex process of sediments transport during heavy storms or floods in a reservoir, the severe storm
event typhoon Morakot, which hit Taiwan in 6 to 10 August 2009, was numerically simulated to
estimate the variations of water depth, suspended sediment concentration, sediment delivery, and bed
evolution. Results are shown in Figures 4–6. Figure 4 show water depth variation in the reservoir at
36, 60, 72, 84, 96, and 120-h, while Figure 5 show distribution of suspended sediment concentration,
and Figure 6, bed evolution.

 
(a) (b)

Figure 4. Cont.
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(c) (d)

 
(e) (f)

Figure 4. (a) Water depth in the reservoir at t = 36 h; (b) Water depth in the reservoir at t = 60 h;
(c) Water depth in the reservoir at t = 72 h; (d) Water depth in the reservoir at t = 84 h; (e) Water depth
in the reservoir at t = 96 h; and, (f) Water depth in the reservoir at t = 120 h.
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(a) (b)

 
(c) (d)

Figure 5. Cont.
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(e) (f)

Figure 5. (a) Distribution of suspended sediment concentration at t = 36 h; (b) Distribution of suspended
sediment concentration at t = 60 h; (c) Distribution of suspended sediment concentration at t = 72 h; (d)
Distribution of suspended sediment concentration at t = 84 h; (e) Distribution of suspended sediment
concentration at t = 96 h; and, (f) Distribution of suspended sediment concentration at t = 120 h.

 
(a) (b)

Figure 6. Cont.
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(c) (d)

 
(e) (f)

Figure 6. (a) Bed evolution in the reservoir at t = 36 h; (b) Bed evolution in the reservoir at t = 60 h; (c)
Bed evolution in the reservoir at t = 72 h; (d) Bed evolution in the reservoir at t = 84 h; (e) Bed evolution
in the reservoir at t = 96 h; and, (f) Bed evolution in the reservoir at t = 120 h.
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Water depth is shown to initially increase in Figure 4 while flow entered the reservoir, and after t
= 72-h it began to gradually decrease as the inflow discharge became less than the releasing discharge
of the shaft spillway. Figure 5 shows the distribution of suspended sediment concentration. The results
show muddy water into the reservoir and convection-diffusion of sediment in the reservoir. In addition,
the high bed shear stress that was caused by the increased velocity entrained more sediments into the
flow, thus the high turbid flow in the reservoir. Sediment concentration reached more than 70,000 ppm
and the high turbid flow was released by the shaft spillway pipe, and the siltation in the reservoir was
due to the unreleased turbid flow.

Figure 6 shows both the erosion and the deposition depth during typhoon Morakot. Erosion
is seen to be more dominant at the thalweg (>0.5 m), and is more apparent at the erosion ditch that
is generated between Joushui river and the shaft spillway. This could be attributed to the high flow
velocity, resulting from the shaft spillway pipe, and the steep slopes around this area. Moreover, a not
significant erosion ditch is seen between the Wanglai river and the shaft spillway pipe. Deposition is
prevalent from the 60th hour, especially downstream of the Wanglai river, greater than 0.5 m, and is not
severe from the Joushui side as it hardly reaches 0.25 m. It is worth mentioning that the downstream
of Wanglai river where it joins the reservoir is wider (Figure 2) when compared to the Joushui river,
hence the flow velocity is greatly reduced and it increases the rate of sediment deposition. Part of the
sediments deposited in the reservoir could not be flushed out by the shaft spillway pipe, resulting in
erosion-deposition interplay.

Final bed evolution under the different return periods of one and two-day storms, with a total
simulation time of 120 h is shown in Figures 7–13. Similar patterns of erosion and deposition are seen
with the different return periods; moreover, these intensify with increasing the return period. There is
a significant erosion ditch (>1 m) from the Joushui river down to all around the shaft spillway pipe.
The maximum deposition area in the north-eastern of the shaft spillway pipe is mainly due to the
non-significant erosion ditch that is seen between the Wanglai river and the shaft spillway pipe. Hence,
if the shaft spillway pipe were shifted to the applicable distance in the north-eastern direction, it will
improve the probability of forming an erosion ditch between Wanglai river and the shaft spillway.
There would be two significant erosion ditches formed to enhance flushing.

 

Figure 7. Bed evolution in the reservoir during a two-year return period, t = 120 h.
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Figure 8. Bed evolution in the reservoir during a five-year return period, t = 120 h.

 

Figure 9. Bed evolution in the reservoir during a 10-year return period, t = 120 h.
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Figure 10. Bed evolution in the reservoir during a 25-year return period, t = 120 h.

 

Figure 11. Bed evolution in the reservoir during a 50-year return period, t = 120 h.
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Figure 12. Bed evolution in the reservoir during a 100-year return period, t = 120 h.

 

Figure 13. Bed evolution in the reservoir during a 200-year return period, t = 120 h.
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6. Conclusions

A model is developed and applied to the simulation of sediment erosion/deposition and sediment
distribution within a reservoir, and to simulate the flushing efficiency of a shaft spillway pipe.
Hydrograph boundary conditions of inflow and suspended sediment concentration of one-day and
two-day storms of different return periods, (2, 5, 10, 25, 50, 100, 200-year), were computed by the 1D,
PSED model. Based on the results, the following conclusions may be drawn.

The average efficiency of the empty flushing by a shaft spillway pipe under one- and two-day
storms of various return periods were almost similar, 58.49% and 59.39%, respectively. These results
were found to be adequate as the efficiency was almost 60%. The overall simulation results are close to
65.34%, which is the efficiency that is obtained from a hydraulic model test in a laboratory.

Bed evolution in the reservoir was significantly driven by flow velocity under empty flushing by
the shaft spillway pipe after the rainfall had stopped. A significant erosion ditch was generated after
96 h of simulation time between Joushui river and the shaft spillway pipe. At the end of the simulation
time, no erosion ditch was developed from the Wanglai river due to the relatively wider cross section
and low flow velocity. The shaft spillway could not completely flush out the sediments that were
deposited; as a result, bed evolution was a mixture of erosion and deposition. Similar patterns of
erosion and deposition were observed for the selected storm, typhoon Morakot, and the design rainfall
events under different return periods.

A common observation was the significant erosion ditch that formed between the Wanglai river
and the shaft spillway pipe that enhanced flushing. From our findings, we propose a relocation of
the shaft spillway pipe towards the north-eastern direction. Shifting the pipe to this direction could
improve the probability of forming the erosion ditch between Wanglai river and the shaft spillway.
Two significant erosion ditches would improve the empty flushing efficiency even further.
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Abstract: The regime of sediment transport in the Jingjiang Reach has significantly changed from
quasi-equilibrium to sub-saturation since the impoundment of the Three Gorges Dam (TGD),
and vertical profiles of suspended sediment concentration (SSC) have changed accordingly. Vertical
profiles of SSC data measured at three hydrological stations in the Jingjiang Reach (Zhicheng, Shaishi,
and Jianli), before and after the impoundment of TGD, were collected and analyzed. Analytic results
indicate a remarkably large concentration in the near-bed zone (within 10% of water depth from the
river-bed) in a sub-saturated channel. The maximum measured concentration was up to 15 times
the vertical average concentration, while the ratio in quasi-equilibrium channel was less than four
times that. Concentrations normalized with reference concentration at the same height, and may
decrease with increasing values of suspension index (settling velocity over shear velocity). In addition,
concentration near the water surface may be larger than concentration in the near-bed region when
the suspension index is smaller than 0.01. Sediment flux transported in the near-bed zone may be
up to 35% of the total sediment flux in unsaturated flows. The relationship between deviations of
estimating sediment flux when ignoring the near-bed concentration and discharge in flood season
and non-flood season are different in unsaturated and quasi-equilibrium channels. Analysis indicates
that, in the quasi-equilibrium channel, more attention should be paid to near-bed concentration
during non-flood season, the same as measurements during flood season with larger discharge.

Keywords: sediment regime; suspended sediment concentration; vertical profiles of concentration;
Jingjiang River Reach; Yangtze River

1. Introduction

The majority (>90%) of river-borne flux is closely associated with sediment [1]. A significant
proportion of sediments are transported in suspension, as the bed load at river mouths is often less
than 1% of the total solid transport [2].

Various vertical profiles of suspended sediment concentration (SSC) have been observed by
field observation. For example, these profiles include linear type including linear or quasi-linear
(with different gradients), parabolic curve, and mixed linear type [3,4]. For different linear types,
the difference between concentration on the water surface and concentration near the bed varies.
For linear type, the difference of concentration in the vertical direction increases with increasing
slope, and the rate of variation in a vertical direction is constant. Furthermore, the linear types can be
observed in estuaries with smaller concentrations [3]. For the parabolic type, the rate of variation in a
vertical direction varies, and exists in a relatively larger concentration in the near-bed region. For the
parabolic type, the concentration in the near-bed region is a kind of tailing phenomenon, and this kind
of vertical profile can be observed in tide water [3]. Various theories, i.e., gravity, diffusion, mixing,
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energy dissipation, and stochastic models have been applied to simulate the vertical distribution of
SSC [5,6]. And various efforts have been focused on the temporal and spatial variation of SSC by
field survey, especially the near-surface and near-bed concentration [7,8]. Zuo et al. [3] pointed out
that larger concentrations in the near-bed region may be caused by flocculate, saline water and tidal
wave. Based on observation in the Jingjiang River Reach after Three Gorges Dam’s impoundment,
vertical profiles of SSC in channels with a changed sediment regime have revealed a remarkably large
concentration in the near-bed region [9]. This indicates that, a larger concentration in the near-bed
region can also be observed in a reservoir down-channel [9]. Erosion downstream is a living topic
coping with sediment trapping in reservoirs. Varied sediment transport regimes and sediment-related
problems in the middle reach (Jingjiang Reach, China) have a profound morphological impact on the
lower reach, that is, navigation, pollutant and deposition in channels and ports, water and sediment
management in stem channels, social and economic problems and so on [10]. Various studies focus on
the changed sediment regime and its influences on the channel downstream (i.e., [11–13]). However,
the characteristics of the distinct larger near-bed concentration and its effects on the river reach have
not been widely analyzed.

Thus, the study aims to analyze the changed vertical profiles of SSC with changed sediment
regimes. Based on vertical profiles of concentration, detailed characteristics of the tailing phenomena
are analyzed. Then, the effects of high concentration in the near-bed region on sediment flux are
estimated. Finally, the vertical distribution of suspended sediment concentration and its effects after
dam operation are compared with data before operation.

2. Materials and Methods

2.1. Study Area and Data

The Yangtze River (YR) is the largest and longest river in China, and the third largest river in the
world. The length of the YR is approximately 6.3 × 103 km, and the drainage area is approximately
1.8 × 106 km2.

The Three Gorges Dam (TGD) is located at the exit of the upper YR, Yichang in Hubei province [14].
The dam is 185 m high and the storage capacity of the reservoir is 3.9 × 108 m3. The main purposes of
the project are flood control, power generation and navigation. It started to impound water in 2003.
After 2003, bedload and suspended load from the upper drainage area of the YR are trapped in the
reservoir of the TGD. For suspended sediment load (SSL), more than 70% may be trapped during the
first 10 years of operation, and approximately half of the SSL may be trapped during the operation over
40–100 years; the ratio may decrease to 15% and 10% after 80 years and 100 years, respectively [15].
Therefore, the SSL entering the middle and lower channel decreases, which leads to erosion of river
reach down the dam [16]. During the operation of the TGD, the downstream channel erosion was
extensive, and riverbed incision was accelerated [17].

The Jingjiang River is the river reach between Zhicheng and Chenglingji stations, with another
two controlling stations of Shashi and Jianli (Figure 1). The length of the Jingjiang River Reach is
approximately 348 km, and it is 64 km downstream from the TGD. The length of the upper and the
lower part of the Jingjiang River Reach are approximately 172 km and 176 km, respectively [18,19].
During the operation of the TGD, the flow regime and sediment regime of the Jingjiang River Reach
have changed [14].

Data measured at these three gauges in the Jingjiang Reach before and after the operation of TGD
are collected (Table 1). Observed data are the vertical profiles of concentrations, discharges, wetted area,
water depth, temperature, water stages, velocities and corresponding gradations. Data are measured
by the Jingjiang Hydrology and Water Resources Surveying Bureau (JHWRSB), and published by the
Yangtze River Water Resources Commission (YRWRC).
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Figure 1. Sketch of the Yangtze River and Jingjiang River Reach.

Table 1. Statics of data measured at the Jingjiang River Reach.

Stations Measured Year Groups

Zhicheng 1996, 1998, 2002 55
Shashi 1996, 1998, 2010, 2011, 2012, 2013 130
Jianli 1986, 1998, 2002, 2010, 2011, 2012, 2013 180

Vertical profiles measured before and after 2010 are different. For data measured before dam
operation, there are only five measuring points in each vertical line. Typical vertical profiles of data
measured before dam operation may be described with relative heights (y/H) of 0.94, 0.8, 0.6, 0.2,
and 0.04 (data measured 24 September 2002, at Zhicheng station with distance left of 700 m), where y
is the distance of each measured point from the riverbed (m), and H is the averaged water depth (m) of
this vertical line. This means that the near-bed region (less than 10% depth) has one measuring point.

For data measured after dam operation, there are seven points in each vertical profile, with typical
relative heights (y/H) of 0.98, 0.8, 0.4, 0.2, 0.1, 0.0307, 0.0061 (data measured 11 July 2011, at Jianli
station with distance left of 1170 m). The two near-bed points are measured with distance of 0.5 m and
0.1 m from the bed, respectively.

2.2. Equations to Estimate the Effects of Near-Bed Concentration on Sediment Flux

The sediment load by the two near-bed points are compared with the total sediment load of the
local vertical profile,

R0 =
Qsv(7) − Qsv(5)

Qsv(7)
× 100% (1)

where Qsv(7) and Qsv(5) are vertical sediment flux by seven points and upper five points, respectively.
The result of ignoring these two points can also be estimated. The deviation ratio of sediment

transport rate by omitting the two near-bed points can be calculated by forms as:

R =
Qs(7) − Qs(5)

Qs(7)
× 100% (2)

where Qs(7) and Qs(5) are sediment flux by seven points and five points, respectively. Qs(5) is estimated
with two measured near-bed points being omitted artificially. For the cross-sectional estimation,
there are only several vertical profiles. The delta-shaped area between the left bank and the first vertical
line from the left bank is also considered. The delta-shaped area between the right bank and the last
vertical line from the left bank is not considered due to the difficulty of identifying the right bank.

The specific values of data measured during pre- and post-operation may vary in different vertical
lines, but the differences are limited. These vertical profiles measured before dam operation missed
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the near-bed region due to what has been done after operation. They are interpolated and extended to
the near-bed region, with minimum relative height (y/H) of 0.006.

3. Results

3.1. Distinct Non-Uniform Vertical Distribution

3.1.1. Comparing with Vertical-Averaged Concentration

In order to describe the vertical profiles of SSC, the vertical profiles are compared with vertical-
averaged concentration. The relative height of the vertical coordinate is expressed as y/H, in which y
is the distance of each measured point from the riverbed (m), and H is the averaged water depth (m)
of this vertical line. The relative concentration in the horizontal coordinate is expressed as Si/Savg,
where Si is the measured concentration of the vertical profile (kg/m3), and Savg represents the vertical
averaged concentration (kg/m3). The minimum distance of measuring points from the riverbed can be
named as the reference height, and the corresponding concentration is the reference concentration.

Figure 2 compares the vertical distribution of sediment concentrations in the Jingjiang Reach before
and after the TGD impounded water in 2003. Figure 2 shows that, after the dam operation, measured
vertical profiles of suspended sediment at these two gauges show a distinctly high concentration in
the near-bed zone.
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Figure 2. Vertical distributions of sediment concentrations at Shashi and Jianli hydrological stations;
data measured before (a) and after (b) the Three Gorges Dam (TGD) operation in 2003. Si is the
measured concentration of the vertical profile (kg/m3), and Savg represents the vertical averaged
concentration (kg/m3).

For data measured after operation, the minimum relative height of measured points from
the riverbed (y/H) is approximately 0.0051. The maximum relative concentrations (Si/Savg) are
approximately 14.45 (Jianli) and 15.05 (Shashi). This kind of distinctly high concentration in the
near-bed zone can be named as “tailing phenomena”. It indicates that more sediment is transported
in areas near the riverbed; the measured two near-bed points make it much worse. According to the
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data, average concentrations of these two near-bed points may account for up to 1.86 times of vertical
averaged concentration at Shashi hydrological station, and 2.73 times at Jianli hydrological station.

For data measured before operation, the minimum relative height of measured points from the
riverbed (y/H) is approximately 0.014 (0.3 m from the riverbed). The maximum relative concentrations
(Si/Savg) are approximately 3.62 (Jianli) and 2.30 (Shashi). The maximum relative concentrations
(Si/Savg) for Zhicheng station is approximately 2.76. For Zhicheng station, there are no data measured
after the dam operation. Thus, data measured at Zhicheng are not included in Figure 2. Data measured
before dam operation can be viewed as short-tail tailing phenomena.

Relatively high concentrations near the bed region have also been pronounced. Relatively larger
near-bed concentrations can also be observed in the estuary of Yangtze River, Qiantangjiang River
and Taizhou sea area [20,21]. Figure 3 illustrates relative concentrations (Si/Savg) measured at several
regions, which also demonstrated a kind of tailing phenomena. Relative concentration (Si/Savg)
is estimated with measured concentration over vertical averaged concentration, as in Figure 2.
Data measured at Yangtze Estuary are drawn from Zhang [20], data measured at Wuhan and Jiujiang
River Reach are drawn from Tang et al. [22], and data at Oujiangkou and Taizhou sea areas are
drawn from Dong et al. [21]. The maximum relative concentration (Si/Savg) is approximately 4.3,
and the minimum relative height of measured points from the riverbed (y/H) is approximately 0.03.
Therefore, this kind of vertical profile can be viewed as short-tail tailing phenomena. The tailing
phenomena which is much apparent in the Middle Jingjiang River Reach can be viewed as long-tail
tailing phenomena. The near-bed concentration of the S-type vertical distribution is also relatively
larger [23]. The tailing phenomena in the estuary area can be observed during tide periods and
non-flood seasons [20].
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Figure 3. Vertical distribution of sediment concentration measured at different regions. Data at
Yangtze Estuary are drawn from Zhang [20], data at Wuhan and Jiujiang River Reach are drawn
from Tang et al. [22], data at Oujiangkou and Taizhou sea area are drawn from Dong et al. [21], and data
at silty coast are drawn from Xia et al. [24]. Si is the measured concentration of the vertical profile
(kg/m3), and Savg represents the vertical averaged concentration (kg/m3).

3.1.2. Comparing with Near-Bed Point

In order to highlight the concentration near the bed, the vertical profiles of suspended sediment
load are compared with concentration of the near-bed point. The horizontal coordinate is Si/Sia,
where Sia represents the measured concentration of the near-bed point (kg/m3). Only data measured
after the operation are analyzed.

According to Si/Sia, the concentration near the bed is not absolutely larger than that of upper
points, as shown in Figure 4. Vertical profiles can be grouped into two kinds: the first one is profiles
in which concentration of the near-bed point is the largest (Type I), and the second one is profiles
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in which maximum concentration occurred in the near-bed region (Type II). All the vertical profiles
observed in Zhang [20], Tang et al. [22], and Dong et al. [21] can be grouped as Type I with short-tail.

Figure 4 illustrates the vertical profiles measured after dam operation at Shashi and Jianli stations.
For data measured after operation, approximately 27% of vertical profiles can be grouped as Type II
(Jianli), and the ratio for Shashi station is approximately 48% (Table 2). The suspension index (ω/u*) in
Table 2 is estimated with settling velocity (ω) over shear velocity (u*). According to Table 2, vertical
profiles of Type I have a relatively larger chance of occurring in flood season, while vertical profiles of
Type II have a relatively larger chance of occurring in non-flood season.
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Figure 4. Vertical concentrations comparing with near-bed point concentration at Shashi (a) and Jianli
(b) hydrological stations (data measured after dam operation). Si = measured concentration of the
vertical profile (kg/m3), and Sia = measured concentration of the near-bed point (kg/m3).

Table 2. Characteristics of vertical profiles of Type I and Type II measured at Shashi and Jianli
hydrological stations (after dam operation).

Stations

Type I Type II

Flood Season Non-Flood Season Flood Season Non-Flood Season

Amount
of Group

Range
of (ω/u*)

D50

(mm)
Amount
of Group

Range
of (ω/u*)

D50

(mm)
Amount
of Group

Range
of (ω/u*)

D50

(mm)
Amount
of Group

Range
of (ω/u*)

D50

(mm)

Shashi 33 0.16–95.38 0.01 17 2.09–108.89 0.06 20 0.16–1.37 0.03 25 1.84–95.67 0.07

Jianli 47 0.14–76.15 0.06 29 2.38–61.64 0.10 10 0.13–32.58 0.06 19 1.38–63.92 0.10

For Type I, five typical profiles are shown in Figure 5a, and five typical profiles of Type II are
shown in Figure 5b. This shows that the concentrations of the near-bed region of Type I vary with
different coefficients (ω/u*). For type II, the vertical distribution of concentration is much more
complex, while concentration with relative height less than 0.04 is relatively large.

Figure 6 illustrates the vertical distribution of Si/Sia with different (ω/u*). In order to make it
more readable, the coefficient in Figure 6 is (ω/u*). It shows that, the concentration of Si/Sia at the
same relative height decreases with increasing coefficients (Figure 6a). When the coefficient decreases
to less than 0.01, vertical profiles of Type I change to Type II (Figure 6b). One thing that should be
pointed out is that lines in Figure 6 are estimated with data measured in flood seasons with Type I
at Shashi station. The lines may vary with different data adopted, but the rules are the same: the
concentration of Si/Sia at the same relative height (y/H) decreases with increasing coefficient (ω/u*),
and Type I may change to Type II with a coefficient less than 0.01.
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3.2. Effects on Sediment Flux

Suspended sediment transport is the most significant factor influencing estuaries in emorpho-
dynamics, yet it is often one of the largest unknowns. As to sediment trapped by the TGD and
changed sediment regime, the vertical distribution of suspended sediment varies in the Jingjiang River.
The estimation of sediment flux of the Jingjiang River may also be influenced, which is important to
navigation, channel management of the whole river system, and so on.

The tailing phenomena means that, sediment concentration within 10% of water depth from
the river-bed cannot be ignored, otherwise it may lead to different results when estimating erosion
or deposition by sediment-transport balance methods and volume methods. Thus, the effects of
remarkably larger concentration in the near-bed region are analyzed.

3.2.1. Vertical Sediment Flux

In Figure 7, the Bi is the lateral distance of measured vertical lines from the left bank, and Bavg is
the maximum width of the cross section. The maximum width of the cross section is assumed to be
the maximum lateral distance from the left bank, namely the distance of the last vertical profiles from
the left bank. It shows that these two kinds of vertical profiles may occur in the whole lateral cross
section. The maximum R0 value is larger than 47%. The average ratios for these two, type profiles at
Shashi station are 18% (Type I) and 13% (Type II). The average ratios for these two, type profiles at
Jianli station are 22% (Type I) and 18% (Type II). Table 3 indicates that the R0-values for non-flood
season are relatively larger than those of flood season.
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Figure 7. Lateral distribution of contribution ratios of the two near-bed points, (a) for Shashi
hydrological station, and (b) for Jianli hydrological station. R0 = contribution ratio of the two near-bed
points, Bi = lateral distance of measured vertical lines from the left bank, and Bavg = maximum width
of the cross section.

Table 3. Vertical averaged R0-values of data measured after TGD dam operation.

Stations
Type I Type II

Flood Season Non-Flood Season Flood Season Non-Flood Season

Shashi 15.67 21.28 12.51 14.10
Jianli 19.57 27.70 16.94 19.61

Figure 8 indicates that the R0 value may increase with increasing particle size and ω/u*.
Zhang [20] also pointed out that the near-bed concentration may affect the estimated sediment

load when A = ω/(βku*) > 0.15, where ω is the settling velocity of uniformed particles, k is the Karmen
coefficient, u* is the shear velocity of approaching flow, and β is a coefficient for non-uniform sediment.
When suspension index A = ω/(βku*) equals two, suspended sediment may concentrate in an area with
a distance of 0.2 times the water depth from the riverbed, and the ratio of near-bed transportation over
the total transportation (R) is approximately 30% [20]. Tang et al. [22] pointed out that, the near-bed
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concentration may be more apparent when ω/(ku*) > 5. The values of ω/u* are 0.06, 0.8 and 2 (with
k = 0.4 and β = 1) by Zhang [20] and Tang et al. [22], respectively. For data illustrated in Figure 8,
the values of ω/u* range from 0.001 to 0.201. Zhang [20] also pointed out that the tailing phenomena is
more apparent with larger values of relative particle size (Di/Dm, particle-size over averaged particle
size) of non-uniform sediment. The ratio (R) is approximately 25% when Di/Dm > 3 [20].
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In total, initiation of motion, suspension threshold, and the vertical distribution of sand concentration
in the water column all need to be determined for an accurate estimate of sediment transport.

3.2.2. Sectional Sediment Flux

Due to the larger contribution ratio of the two near-bed points (R0) in Figure 7, the contributions
on sectional sediment flux can also be estimated. Figure 9 shows that, if the two near-bed points are
not included, the sediment flux may be underestimated by approximately 40%. During flood season,
the R-value may increase with increasing discharge, while the largest R-value may occur by measures
in non-flood season. In total, the larger average R-value for flood season at Shashi station may be
caused by larger discharge (Table 4).
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Table 4. Sectional averaged R-values of data measured after TGD dam operation.

Stations Total Flood Season Non-Flood Season

Shashi 10.21 14.88 4.36
Jianli 17.56 13.10 24.24

This described situation may result in the different erosion amounts by sediment-transport
balance method and volume method [25]. Yuan et al. [26] showed that, the contribution ratio by the
near-bed concentration varies by different hydrological years and river reach. For a certain hydrological
station, the contribution ratios may also vary with the inflow condition. Therefore, the impact of
high concentration near the bed surface must be given more attention in the future, especially during
non-flood season and flood season with larger discharge.

The influence of near-bed concentration on estimating the annual deposition by the sediment-
balance method has also been analyzed by various studies [26,27]. Based on hydrology data and
geometry data measured between 2002 and 2008, contributions of factors that may cause differences
were distinguished. For the Yichang–Zhicheng River Reach, there are three kinds of factors that may
contribute to deposition estimation with sediment-balance method, namely, sand dredging in the
channel, the near-bed concentration, and non-balanced water runoff. For the Zhicheng–Shashi River
Reach and Shashi–Jianli River Reach, there are four kinds of contributing factors, namely, sand dredging
in the channel, the near-bed concentration, non-balanced water runoff, and simplified measurement.

Figure 10 illustrates the contribution ratios of different factors. The two ratios in Figure 10 are the
contribution ratio by near-bed concentration over the total influencing factors, and contribution ratio by
total influencing factors on the total deposition estimation. It shows that, for estimating the deposition
with sediment-balance method, the contribution by near-bed concentration cannot be ignored, with ratios
of 12%, 9% and 18%, respectively. As to its large magnitude of total deposition, the net deposition caused
by near-bed concentration is 1.267 × 107 m3, 9.80 × 109 m3 and 2.303 × 107 m3, respectively.
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Dam construction has primarily contributed to sediment zonation (with different patterns of
size distribution) weakening in the Jingjiang reaches (from Yichang to Chenglingji) over the last
half-century [28]. The percentage of finer grouped particles (diameter less than 0.01 mm) decreased
from 60% (2002) to approximately 40% (2008), and the medium sediment diameter increased from
0.052 mm (2002) to 0.081 mm (2008) [29]. The operation of the TGD and the ensuing decline of SSC
was the main reason for the coarsening of the bed sediment in 1977–2003, especially at Shashi station
(located 173 km downstream from Yichang station) [28]. It indicates that the coarser particulates had
settled in the reservoir, and the river channel between Yichang and Shashi stations was badly eroded by
clean water from the reservoir [28]. The coarser eroded sediment gradually settled along the channel
between Shashi and Hankou stations due to the decrease in slope and current [28].

4. Discussion

Based on data measured after dam operation, the vertical profiles of SSC in the starved channel
show a distinct tailing phenomena. Furthermore, it also influences the estimation of sediment flux.
Data measured before dam operation are also collected to make a comparison, between both the
vertical distribution and effects on sediment flux estimation.

4.1. Comparing with Data Measured Before Dam Operation

4.1.1. Vertical Profiles of SSC

Tailing phenomena can also be pronounced, however, the tailing phenomena is much more
limited (relative concentration of 3.6 for Jianli and 2.3 for Shashi, as shown in Figure 5), the same as
verticals by Zhang [20], Tang et al. [22], and Dong et al. [21]. Thus, vertical profiles before operation
can be termed as short-tailing.

For data measured before operation, more data are measured in flood season. Approximately
20% (Jianli, Shashi, and Zhicheng stations) of vertical profiles can be grouped as Type II. In total,
the occurring frequency of Type II increased after the operation of the TGD, especially at Shashi station
(Table 5). In addition, the value of (ω/u*) increases dramatically.

Table 5. Characteristics of vertical profiles measured at Shashi and Jianli hydrological stations before
TGD dam operation.

Stations
Flood Season Non-Flood Season

Amount of Group Range of (ω/u*) Amount of Group Range of (ω/u*)

Shashi 27 0.08–0.46 9 0.23–1.34
Jianli 53 0.02–0.78 22 0.05–12.12

Based on theoretical analysis, Zhang and Tan [30] stated that, if the concentration of coarser
particles (eight times the finer particles) is larger than 33.5 kg/m3, the vertical distribution of
concentration for finer particles may be different from that of the distribution of uniform particles,
with dSf/dy > 0 (Figure 11). It also stated that this kind of distribution of particles finer than 0.01 mm
can be observed in Tongguan and Huayuankou stations, Yellow River.

Figures 12 and 13 illustrate the coarseness of suspended sediment and bed load before and after
dam operation. For Shashi station, the percentage of particles coarser than 0.008 mm increases after
the dam operation (Figure 12). For Jianli station, the percentage of particles coarser than 0.062 mm
increases after the dam operation (Figure 12). The coarsening of bed materials after operation is
apparent, especially at Shashi station (Figure 13). The coarsened suspended sediment and bed materials
lead to the occurrence of remarkably large concentration in the near-bed region.
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Figure 13. Bed load of Shashi (a) and Jianli (b) hydrological stations. Data in (a) were measured 9 July
1986 at Xinchang hydrological station, and 6 June 2013 at Shashi hydrological station; data in (b) were
measured 26 May 1986 and 13 March 2013 at Jianli hydrological station.

4.1.2. Sediment Flux

The interpolation made for data measured before dam operation has extended five point profiles to
seven point profiles (with almost the same relative height of data after operation). Then, the deviations
of flux estimation can also be calculated during the cross-sectional estimation. The maximum ratio
may be nearly 35% (Figure 14). The maximum R-values may have occurred during non-flood season,
and more attention should be paid on measuring during non-flood season (Table 6). The variances

55



Water 2017, 9, 986

of R-value before and after dam operation are almost the same. However, the R-values during flood
season may remain constant with increasing discharge for data measured before operation.
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Figure 14. Deviation ratio of sediment transport rate by data measured before TGD dam operation.
The two ellipses indicate non-flood season and flood season, respectively. R = contribution ratio of the
two near-bed points on vertical sediment flux.

Table 6. Sectional averaged R-values of data measured before TGD dam operation.

Stations Total Flood Season Non-Flood Season

Zhicheng 23.50 21.04 25.86
Shashi 7.43 8.81 6.04
Jianli 32.95 17.96 45.93

During the estimation of sectional averaged sediment flux, there is an assumption that may lead to
uncertainties of estimation. For data measured before operation, the extension and interpolation may
also lead to uncertainties. This kind of discrepancy can be verified by comparison between estimated
and measured sectional discharge and concentration, as shown in Figure 15.
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Figure 15. Comparison between measured and calculated sectional discharge (a) and concentration (b).

4.2. Contribution of Large Floods

The characteristics of suspended sediment concentration and yield at the event scale have been
widely analyzed in various environments worldwide [31–33]. Floods are relevant for most of the
suspended sediment load [34]. While sediment transport by floods correlated with flood regime,
different flood regimes lead to different sediment transportation. For instance, analysis of a typical
agro-catchment of the Loess Plateau shows that, the contribution of accumulative total sediment yield
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by the different flood regimes to the summed sediment yield of all of the examined 158 events are 4%,
13%, 6%, 21%, and 56% for Regimes A to E, respectively [35]. Thus, the flood regimes are analyzed and
shown in Figure 16.
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Figure 16. Sediment regimes of floods occurring before and after the operation of the TGD, the Jingjiang
River Reach. (a) for Shashi Hydrological Station, and (b) for Jianli Hydrological Station, S = average
concentration, and S* = average carrying capacity.

Measured data during flood period, such as the floods in 1998, 2013 and 2012, show an
over-saturated state, and after the peak flood, the regime may change to pre-equilibrium or starved
(Figure 16, Table 7). Figure 16 shows that, the relationships between discharge and concentration
measured in floods with high discharges are different from those of floods with low discharges.

Shifts in the discharge-rating curves after three extreme flood events have also been observed by
Whitaker et al. [36]. This indicates that the Jingjiang Reach of the YR has changed its sediment regime
from pre-equilibrium to starved of sediment because of the operation of the TGD, and the flood regime
may be different from the normal sediment regime. Shifts in the discharge-rating curves caused a
period of channel instability [36]. Higher suspended sediment concentration may reduce the channel
capacity and lead to channel erosion [37]. Finally, the fluvial erosion intensity during flood seasons is
highly correlated with a corresponding incoming sediment coefficient [19].

The 1998 flood is the largest flood in the YR’s history since China’s economy entered the high-
speed development period at the beginning of the 1980s, and it caused severe damage to the basin,
causing losses exceeding 2 × 1010 RMB (Chinese currency) [38]. The higher water levels also led
to overbank flows in the middle Yangtze River [39]. The sediment flux during this flood has been
estimated [40]. The water stage in the 1998 flood was higher than that in the 1954 flood, despite the
smaller total discharge during the 1998 flood.

Table 7. Characteristics of major floods in China in 1998 (Data adapted from Zhou and Chen [41]).

Stations
Flood Volumes 109 m3 Maximum Peak Flow Discharge Maximum Flood Stage

In 30 Days In 60 Days Discharge (m3/s) Date Stage (m) Date

Yichang 137.9 254.5 63,600 16/8 54.49 16/8
Shashi – – 53,700 17/8 45.22 17/8
Jianli – – 45,200 17/8 38.31 17/8

Luoshan – – 68,600 27/7 34.95 20/8
Hankou 175.4 336.5 72,300 19/8–20/8 29.43 20/8
Jiujiang – – – – 23.03 2/8
Datong 202.7 395.1 82,300 – 16.32 2/8
Nanjing – – – – 10.14 29/7
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The variability in the relationship between sediment concentration and water discharge (namely
hysteretic patterns) has been used to explain the variability of sediment sources from one flood to
another [42]. Whitaker et al. [36] compared the estimated sediment yield for an unsampled flood
event, a single-event surrogate SSC–Q rating curve, and a long-term SSC–Q rating curve. Analysis
revealed that, the long-term SSC–Q rating curve is estimated to be approximately 37% greater than the
single-event SSC–Q estimates, which indicates a high degree of uncertainty. Analysis shows a high
variability in the rating curve between similar floods [36]. Thus, large floods may also contribute to
the occurrence of remarkably large concentration in the near-bed region (Type I), and the deviation of
estimated sediment flux with sediment-balance method.

4.3. Connection with Dongting Lake

Reservoir sedimentation would disrupt previous flow and sediment delivery systems [43],
especially channels down the dam. The TGD is the world’s biggest dam built on the largest river in
China, the YR [14]. With impoundment of the TGD, channel reach downstream of the reservoir has
adjusted to a changed flow and sediment situation, especially in the Jingjiang reach [29,44].

The Dongting Lake is connected with the Jingjiang River Reach with three distributaries’ channels
and one outlet. It receives water from the main stream of the Yangtze River via three distributaries’
channels, and it discharges into the main stream of the Yangtze River at Chenglingji (the outlet
of Dongting lake, Hunan Province, China). The annual runoff received from the Yangtze River is
approximately 92.3 km3 through the Sankou distributary channels [45]. Li et al. [46] pointed out that,
the channel changes serve as the primary factor in facilitating the decrease in the discharge diversion
ratio, but not the main factor for the decreased amount of the discharge diversion. The occurring
frequency of Type II increases after the operation of the TGD, especially at Shashi station, while two
of the three distributary channels (Songzikou, Jingzhou City, Hubei Province, China and Taipingkou,
Jingzhou City, Hubei Province, China) are located in the reach of upper Shashi station. Thus, vertical
profiles of Type II may contribute to this relationship with much concentration transported into
the lake.

4.4. Uncertainties

Turbidity monitoring is developed and applied attempting to better predict the continuous
variability of suspended sediment concentration during a flood event, and in turn the total sediment
yield [47,48]. The accurate in situ quantification of suspended sediment concentration is essential for
model calibration and to identify sediment pathways and sediment flux [49].

The two near-bed points are measured with distances of 0.5 m and 0.1 m from the bed, respectively.
As to the near-bed measuring, the small distance from the riverbed may be doubtful, as it is difficult
to distinguish the riverbed. Equipment used in the field survey includes real-time kinematic Global
Navigation Satellite System (RTK–GNSS), Total Station, vessel-mounted Acoustic Doppler Current
Profilers (ADCP), Digital Level, Laser Particle Size Analyzer (LPSA), and so on. All the equipment
and criteria have been strictly handled and executed by professional surveyors in JHWRSB. Several
standards from the technical manual by JHWRSB [25] are listed in Table 8.

The main advantage of a RTK–GNSS survey is that it is faster, cheaper and easier to use during the
surveying phase than classical topographic surveying [50]. Pagliari et al. [50] compared the differences
between coordinates of the ground-controlled points estimated using RTK–GNSS, and those computed
from the classical topographic measurements, during processing photogrammetric block. It pointed
out that a RTK–GNSS survey may be sufficient to determine the requested tolerance [50]. Thus, in
recent years, miniaturized components (GNSS receivers) have been adopted in field surveys [51].
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Table 8. Instruments, methods and criteria adopted in the field survey.

Measuring Instruments or Methods Criteria or Error

Positioning of
instrument

Total station
Digital Level

Positioning error:
±0.3 m (vertical), ±1.5 m (vertical lines)

Vertical lines for
measuring velocity

RTK–GNSS (antenna
and receiver)

Position errors of antenna: 0.5◦ RMS (orientation) and 0.5–3 m RMS (position).
Position errors of receiver: ±10 mm + 1 ppm (horizontal), ±20 mm + 1 ppm
(vertical), where ppm means additional error per km of baseline.

Velocity Acoustic Doppler
Current Profilers (ADCP)

The deviation between each measured discharge and the averaged discharge
should be less than ±5%, otherwise, data should be re-measured.

Water depth ADCP

Verified with fish lead.
Frequency: 600 KHz
Sounding range: 0.7–75 m
Velocity measurement: ±20 m/s
Resolution: 0.1 cm/s

Sampling
Suspended
sediment

Bottom-touched
automatic-closing sampler

The dropping speed of the sampler is reduced when approaching the riverbed.
The sampler may close automatically when it is brought into contact with
the riverbed.

Suspended
sediment gradation Sieving method

Field (2 mm, 5 mm, 10 mm, 25 mm, 50 mm, 75 mm, 100 mm, 150 mm, 200 mm,
250 mm, and 300 mm)
Lab (0.002 mm, 0.004 mm, 0.008 mm, 0.016 mm, 0.032 mm, 0.062 mm,
0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm)

Near-bed
concentration

Double-checked after
sampling and

grain-size analysis

The measured concentration is reliable when the vertical profiles of
concentration of particles with d50 < 0.062 mm has no changing point in
near-bed region.
Otherwise, related measurements should be omitted.

ADCP is relatively easy to use, enables gathering various data types at once, can be
attached to a RC platform, and has rapid three-dimensional flow structure measuring [52,53].
However, disadvantages of ADCP include snap-shot measurement of flow-change to errors, being
time-consuming over large areas, and not being able to measure flow or depth in depths under
0.2 m [53]. As it is rather expensive, ADCP is relatively adopted to measure flow structure,
flow discharge, bathymetry, bed load discharge, suspended load and channel change in field
surveys [53]. Zhang et al. [54] pointed out that the error of ADCP in measuring cross-sections in the
middle and lower YR channel is ±1% and the random uncertainty is 2–5%, and the integrated system
(GPS and ASCP) delivered positioning with <15 cm accuracy vertically and <30 cm horizontally.

For sediment grain-size analysis, the results from LPSA and sieving are comparable when particles
have a spherical shape [55]. Using a sieving method for coarser particles is more acceptable than for
finer ones [55]. A sieving method is used in field surveys by JHWRSB [25]. According to the backscatter
intensity of ADCP beams, suspended sediment concentration can also be estimated with inversion [56].

A major focus of research has been the development and application of turbidity monitoring,
in an attempt to better predict the continuous variability of suspended sediment concentration during
a flood event, and in turn the total sediment yield [47]. The concentration by sampling can be validated
by echo intensity of the ADCP for future analysis.

5. Conclusions

The sediment regime of the Jingjiang Reach of the Yangtze River has changed dramatically
because of the operation of the TGD. Based on vertical distribution data at the three controlling
stations (Zhicheng, Shashi, and Jianli) on the Jingjiang Reach, the characteristics of remarkably large
concentration in near-bed region and its implications are analyzed in this study. Our conclusions can
be summarized as:

(1) In sub-saturated channels, vertical distribution of suspended sediment concentration (SSC) is
characterized by a remarkably large concentration in the near-bed zone (within 10% of water
depth from the river-bed). The maximum measured concentration may be up to 15 times of
vertical average concentration, while the ratio in quasi-equilibrium channels is less than four.
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(2) Concentrations normalized with reference concentration at the same height may decrease with
increasing values of suspension index (ω/u*). Additionally, concentration near water surface
may be larger than concentration in near-bed region when suspension index is smaller than 0.01.

(3) After the dam operation, ignoring the near-bed concentration may cause up to 35% deviation
when applied to estimate the sediment flux in the unsaturated flows. Deviations may increase
with increasing discharge in flood season, while the maximum value may occur in non-flood
season. Deviations in quasi-equilibrium channel may not increase with increasing discharge in
flood season, while the maximum value may also occur in non-flood season. Deviations may
increase with increasing particle size and suspension index.

Analytic results indicate that, in sub-saturated channels, more attention should be paid to
near-bed concentration during non-flood season, the same as measurements during flood season
with larger discharge.
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Abstract: The sediment regime in the Jingjiang river reach of the middle Yangtze River has been
significantly changed from quasi-equilibrium to unsaturated since the impoundment of the Three
Gorges Dam (TGD). Vertical profiles of suspended sediment concentration (SSC) and sediment
flux can be adopted to evaluate the sediment regime at the local and reach scale, respectively.
However, the connection between the vertical concentration profiles and the hydrologic conditions of
the sub-saturated channel has rarely been examined based on field data. Thus, vertical concentration
data at three hydrological stations in the reach (Zhicheng, Shashi, and Jianli) are collected. Analyses
show that the near-bed concentration (within 10% of water depth from the riverbed) may reach up
to 15 times that of the vertical average concentration. By comparing the fractions of the suspended
sediment and bed material before and after TGD operation, the geomorphic condition under which the
distinct large near-bed concentrations occur have been examined. Based on daily discharge-sediment
hydrographs, the reach scale sediment regime and availability of sediment sources are analyzed.
In total, remarkable large near-bed concentrations may respond to the combination of wide grading
suspended particles and bed material. Finally, several future challenges caused by the anomalous
vertical concentration profiles in the unsaturated reach are discussed. This indicates that more detailed
measurements or new measuring technologies may help us to provide accurate measurements,
while a fractional dispersion equation may help us in describing. The present study aims to gain
new insights into regime change of sediment suspension in the river reaches downstream of a very
large reservoir.

Keywords: sediment regime; suspended sediment concentration; vertical profiles of concentration;
the Jingjiang River Reach; the Yangtze River

1. Introduction

Characteristics of the sediment regime are one of the most important factors that control the
processes in the transportation and sedimentation zones of a fluvial system [1]. Changes in the
sediment regime cause not only varied fluvial evolution processes but also the inner physical processes
of sediment suspension. Using a reach scale, the sediment regime of a river reach can be expressed
as the suspended sediment load (sediment flux). Regarding the physical processes of suspension on
a local scale, they may be related to the vertical profiles of suspended sediment concentration (SSC),
which are essential for estimating sediment flux, and also numerical simulation [2]. Thus, a large
number of researchers have paid, and are paying, attention to the vertical concentration profiles.
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During the early stage of physical or analytical analyses, many studies have investigated steady and
equilibrium sediment transport [3]. For equilibrium sediment transport, traditional advection-diffusion
equation (ADE) theory and the improvements (including sediment turbulent diffusion coefficient,
vertical flow velocity distribution, and suspension index) are widely used [4,5]. For calculating profiles
of SSC, numerical models produce good results for uniform sediments in equilibrium situations [6,7].
However, this is not the case for non-uniform sediments in equilibrium situations, not to mention
non-uniform sediments in non-equilibrium situations [6,7]. For instance, Nicholas et al. [8] compared
observed flow widths with results from a theoretical model developed for non-equilibrium (aggradation)
conditions. Analysis results illustrated that models derived for equilibrium conditions may have limited
utility in non-equilibrium situations, despite their widespread use to date [8].

In the non-equilibrium condition, the deviations of the vertical profiles of SSC from the local
equilibrium state are different from those of the equilibrium state [9,10]. For hydraulic engineers,
the vertical concentration profiles are essential for estimating erosion and deposition using the
sediment balanced method, and also for estimating sediment-associated contaminants [11,12].
For geomorphologies, non-equilibrium suspended sediment transport (SST) is one of the key processes
driving the channel evolution by erosion or deposition [13]. Thus, various approaches have been
employed in non-uniform sediments in non-equilibrium sediment transport. However, most of
these analyses are based on flume data or theoretical analysis [14,15]. The connection between the
hydrologic condition of the non-equilibrium channel and the vertical concentration profiles has rarely
been examined based on field data [16].

The regime of sediment transport in the Jingjiang river reach (JJRR, about 102 km downstream of
the Three Gorges Dam (TGD)) has been significantly changed from quasi-equilibrium to sub-saturation,
as the impoundment of the TGD. More and more researchers are focusing on the changed sediment
regime of the sub-saturated channel in the reach scale. However, field observation has revealed
frequent occurrences of remarkable large concentrations in the near-bed zone by extending the vertical
measuring to the near-bed zone (i.e., with a distance of 0.1 m from the riverbed). Thus, it is also
necessary to analyze the changed sediment regime in the local scale. The contribution of the remarkable,
large, near-bed concentration on the sediment flux in the unsaturated channel has been analyzed [17].
Here, this paper aims to evaluate the changed sediment regime of the JJRR from both a local-scale view
(vertical concentration profiles) and a reach-scale view (sediment flux). It also helps one to understand
the connection between the concentration profiles (local-scale) and the hydrologic conditions of the
sub-saturated channel.

Firstly, the vertical profiles of SSC are analyzed by their characteristics, hydrodynamic
conditions, and geomorphic conditions to exhibit the changed sediment regime at the local scale.
Secondly, the temporal variation of sediment flux is analyzed with the cumulative anomaly method to
exhibit the changed sediment regime at the reach scale. Thirdly, the relationship between SSC and
discharge is analyzed with the method of the sediment rating curve (SRC), which is used to investigate
the conditions for the occurrence of the remarkable large near-bed concentration. Finally, the challenges
that may be caused by the remarkable, large, near-bed concentration are discussed.

2. Study Reach, Data, and Methodology

2.1. The Study Reach

The length of the Yangtze River (YR) is 6.3 × 103 km, and the drainage area is 1.8 × 106 km2

(Figure 1). The TGD, located at the end of the upper reach of the YR, controls a drainage area of
1.0 × 106 km2. The dam is 185 m high, and storage capacity of the reservoir is 3.93 × 104 Hm3.
The main purposes of the project are flood control, power generation, and navigation.

The JJRR (between Zhicheng and Chenglingji stations) is about 60 km downstream from the
Yichang hydrological station. There are five hydrological stations in the JJRR: Zhicheng, Shashi
(Jing 45), Xinchang (Jing 84), Jianli, and Chenglingji (Figure 1b). Moreover, there are three distributary
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channels on the reach through which YR delivers water and sediment into Dongting Lake, Songzikou,
Taipingkou, and Ouchikou. The river reach can be divided by Ouchikou into the upper and lower
sub-reaches (Figure 1b). The lengths of these two sub-reaches are 172 km and 176 km, respectively.

 
(a) 

 
(b) 

Figure 1. Sketch of the YR (a) and JJRR (b); (b) is drawn from [17].

2.2. Data

Both daily data and field surveyed data were used in the present study.
Daily discharge and suspended sediment load (SSL) are measured and published by the Yangtze

River Water Resources Commission (YRWRC). Data at three stations (Zhicheng, Shashi, and Jianli)
in 1987–2014 were obtained from yearbooks. Distances of these three stations downstream from the
Yichang station are 60 km, 157 km, and 300 km, respectively.

Field surveyed data were provided by the Jingjiang Hydrology and Water Resources Surveying
Bureau (JHWRSB), YRWRC. Data include vertical concentration, sediment gradation, and corresponding
velocities. Table 1 manifests the years of measurement and the numbers of vertical profiles.
Profiles measured before and after 2010 are different. Before 2010, there are five measuring points in each
vertical profile. The normalized depths are approximately 1.0H, 0.8H, 0.4H, 0.2H, and 0.1H (H is the water
depth of the vertical line, in meters), respectively. After 2010, there are seven measuring points in each
vertical profile. The normalized depths of the upper five points are approximately 1.0H, 0.8H, 0.4H, 0.2H,
and 0.1H, respectively. The other two points were measured in the near-bed region with constant distances
from the riverbed of 0.5 m and 0.1 m.
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For profiles measured at Shashi station, measured flow depths range from 2.09 m to 19.7 m,
and the normalized depths of these two near-bed points are approximately (0.02–0.2)H. For profiles
measured at Jianli station, measured flow depths range from 2.13 m to 21.2 m, and the normalized
depths of these two near-bed points are approximately (0.0047–0.047)H.

Table 1. Statistics of data measured at the JJRR (following [17]).

Stations Observation Year No. of Verticals

Zhicheng 1996, 1998, 2002 55
Shashi 1996, 1998, 2010, 2011, 2012, 2013 130
Jianli 1986, 1998, 2002, 2010, 2011, 2012, 2013 180

Equipment adopted in the field survey includes global navigation satellite system (GNSS, antenna,
and receiver), total station, vessel-mounted acoustic Doppler current profilers (ADCP), digital level,
GPS, and laser particle size analyzer (LPSA) [17]. All of this equipment has been strictly examined by
professional surveyors. According to the technical manual by JHWRSB, several technical standards
and criteria are illustrated, as follows:

(1) Water depth is measured with ADCP, and verified with fish lead.
(2) ADCP is applied to measure the flow twice. The deviation between each measured discharge

and the average discharge should be less than ±5%. Otherwise, the data should be re-measured.
(3) Vertical lines for measuring the velocity are positioned with a real-time kinematic (RTK) GNSS.
(4) Suspended sediments are sampled with samplers in the field, and its grain-size distributions

are analyzed by the sieving method. All the sampling procedures should be finished within
dozens of minutes, and sieving analyses should be finished following the manual operation.
For all the five points measured before 2010 and the upper five points measured after 2010,
the sampler shown in Figure 2a is adopted. For the two near-bed points measured after 2010,
bottom-touched automatic-closing samplers shown in Figure 2b,c are adopted. With this kind
of sampler (Figure 2b,c), the distances of the two near-bed points from the riverbed can be
ensured. However, the potential disturbance on the riverbed when settling the sampler may still
be questionable. Therefore, except a slowed down settling velocity of the sampler, the near-bed
concentrations may be double-checked after sampling and grain-size analyses. The assumption is
that the measured concentration is reliable only if the vertical concentration profiles of particles
finer than 0.062 mm have no abrupt changing point in the near-bed region [17]. Thus, bed materials
can be distinguished from suspended sediments, which may be caused by disturbance during the
sampling processes.

(a) 

Figure 2. Cont.

66



Water 2018, 10, 329

Figure 2. Samplers for suspended sediment in the field survey; (a) is the sampler with fish lead,
and (b,c) are the samplers for sampling suspended sediment at the two near-bed points (different
camera angles).

2.3. Methodology

Methods of cumulative anomaly and SRCs are applied to investigate the changed sediment
regime of un-saturated channel in reach scales. ADEs and the sediment-balance method are adopted
to evaluate new challenges for the non-saturated channel.

2.3.1. Cumulative Anomaly

The cumulative anomaly has been widely applied to detect the trends and stages of time series [18].
For time series, the cumulative anomaly (Xt) for data point xi can be expressed as:

Xt =
t

∑
i=1

(xi − xm) 1 ≤ t ≤ n xm =
1
n

n

∑
i=1

xi (1)

in which xi is the value of the time series; xm is the mean value of the series xi; and n is the length of
the time series.

The mass curve of cumulative anomaly values describes the change process of a particular
parameter by comparing it with the mean value of that parameter over the whole study period [18].
For instance, if the observed data of a given year is greater than the overall mean, the anomaly values
will be positive and the mass curve will rise.

2.3.2. SRCs

The SRC is defined as the statistical relationship between SSC (kg·m−3) and discharge. SRCs are
normally used to describe the flow-sediment relationships in river systems for various purposes [19].
The method is often applied to estimate the SSC or SSL in ungauged regions [20].

The power function of SRC is usually expressed as one of the following two formats:

SSC = eQ f (2)

log(SSC) = log(e) + flog(Q) (3)

in which Q is the discharge (m3·s−1), and e and f are the sediment rating coefficient and exponent,
respectively. Linear regression, i.e., Equation (3), is often used to derive the values of the rating
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coefficient e and exponent f from empirical data (e.g., [21]). The e-parameter contains information on
the conversion of Q into SSC, namely, the erosion severity index [22]. A high value of the e-parameter
indicates easily-erodible materials and high loads of transported materials [20]. The exponent
f -coefficient corresponds to the erosive power of the river and the influence on the sediment
supplement. High values of the f -coefficient indicate a slight increase in discharge would significantly
enhance the erosive power of the river [20]. Moreover, the f -coefficient is also related to climate, channel
morphology, the grain-size distribution of sediments, and erodibility within the river basin [22].

2.3.3. ADEs

Three equations are adopted to evaluate the challenge in simulating the vertical concentration
profiles in the unsaturated channel: the Rouse Equation, the Han Equation, and the fADE. These three
equations may represent typical concentration profiles in equilibrium transport, non-equilibrium
transport, and non-Fickion suspension in the non-equilibrium condition, respectively.

By assuming Fick’s first law for sediment diffusion in turbulence, the diffusion theory of sediment
suspension can be expressed with traditional ADE model. The equation for equilibrium sediment
transport can be expressed as:

ωS + εsy
∂S
∂y

= 0 (4)

in which S is the sediment concentration (W·L−3), y is the vertical coordinate (L), ω is the sediment
settling velocity (L·T−1), and εsy is the sediment turbulent diffusion coefficient in the y direction (L·T−1).

By replacing εsy with the fluid eddy viscosity and assuming εm = κu∗(1 − y/H)y based on
the Karman-Prandtl logarithmic velocity profile, Rouse et al. [4] obtained the analytical vertical
concentration profile:

S
Sa

=

[ H
y − 1
H
a − 1

] ω
κu∗

(5)

in which Sa is a reference concentration at a given height above the river bed (W·L−3), α is the reference
height (L), H is the flow depth (L), κ is von Karman’s constant, and u∗ is the shear velocity (L·T−1).
The frictional flow velocity can be calculated as u∗ =

√
τb/ρ, in which τb is the near-bed shear stress

and ρ is the water density. The Rouse equation, Equation (5), has been widely used for decades.
However, its drawbacks are obvious: the concentration is calculated as zero at the water surface
and infinity at the river bed. These drawbacks are caused by implicit assumptions, equilibrium
sediment transport, and Fick’s first law. Extensive efforts have been put forward to improve the
equation [10,23–25].

The assumption of equilibrium sediment transport limits its application in the field in which the
sediment regime is far from equilibrium [26]. Among others, Han et al. [9] have modified Equation (4)
to meet the non-equilibrium condition:

ωS + εsy
∂S
∂y

= qs (6)

in which qs is the net flux due to the imbalance between downward sediment settling and upward
turbulent dispersion. Han et al. [9] obtained the solution of Equation (6):

S
Sa

=

[ H
y − 1
H
a − 1

] cω
κu∗

(7)

in which c is non-equilibrium coefficient defined as a function of the degree of saturation c = 1− f
(

S̄
S∗

)
.

S is the depth-averaged sediment concentration (kg·m−3), and S∗ is the depth-averaged sediment
capacity. If the saturation degree S̄

S∗
= 1, c = 1; if S̄

S∗
< 1, c > 1, which means the flow is unsaturated
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with sediment; and if S̄
S∗

> 1, c < 1, which indicates an super-saturated flow. The von Karman’s
constant κ is usually given a value of 0.408 for an unstratified flow.

According to Fick’s First Law, particles may make “local” jumps, as most particle jumps induced
by turbulence are constrained to a small distance (Δy) in a given Δt according to the Central
Limit Theorem (CLT), and Δy is characterized by the length of Representative Elementary Volume
(REV) [27,28]. However, modern observations of coherent structures in turbulence have proven that
high-speed currents may intermittently sweep the bed, carry much sediment, and eject directly into
the upper part of the water column [27,29]. The non-Fickion suspension indicates that particles may
make many “nonlocal” jumps in burst-like suspension events [27]. The non-Fickion suspension in
non-equilibrium sediment suspension can be described by a fractional advection-dispersion equation
(fADE) [27]:

ωS + εsy
∂aS
∂ay

= qs (8)

in which α is the order of the fractional derivative (0 < α ≤ 1); εsy (Lα·T−1) is the depth-averaged
diffusivity expressed as follows:

εsy =

∫ H
0.01H κu∗(1 − y/h)ydy

0.99H
= 0.175κu∗H (9)

We assume:
qs = −c0s (10)

in which c0 is called the non-equilibrium coefficient, and c0 is a function of (S/S∗):

c0 = f (S − S∗) (11)

in which S∗ is the sediment transport capacity of flow; if S = S∗, then c0 = qs = 0, which means the
flow reaches equilibrium; if S < S∗, then c0 > 0 and qs < 0, which means the flow is unsaturated with
sediment; and if S > S∗, then c0 < 0 and qs > 0, which means flow is supper-saturated with sediment.

The analytical solution of Equation (8) is obtained:

S
Sa

= Ea

[
−ω + c0

εsy
(y − a)α

]
(12)

in which Ea() is called Mittag-Leffler function (y ≤ a ≤ H), which can be calculated by series expansion
or the MATLAB open-source code.

2.3.4. Contribution of Near-Bed Concentrations on SST Rate

The SST rate can be estimated with measured vertical concentration profiles, and the deposition/
erosion amount of the channel can be estimated by the sediment balance method. Changed vertical
concentration profiles in the unsaturated channel lead to new challenges in field surveying and
estimating the SST rate. The field survey should be conducted according to its new characteristic
(as extended measuring of near-bed zone by JHWRSB). The effect of the changed vertical concentration
profiles on the SST rate can be estimated by evaluating the contribution of two near-bed concentrations
on the SST rate:

R =
Qs(7) − Qs(5)

Qs(5)
× 100% (13)

in which Qs(7) and Qs(5) are cross-sectional SST rates by seven points and, artificially, by five points,
respectively. The cross-sectional sediment flux can be estimated with all measured vertical profiles.
The delta-shaped area between the left bank and the first vertical line from the left bank is also
considered [17]. The delta-shaped area between the right bank and the last vertical line from the left
bank is not considered due to the difficulty of identifying the right bank [17].

69



Water 2018, 10, 329

3. Change of the Sediment Regime

Vertical concentration profiles and SST rates are analyzed to evaluate the sediment regime of local
and reach scales, respectively. Then, sediment rating curves are analyzed to investigate the availability
of sediment for suspension from the riverbed.

3.1. Vertical Profiles of SSC

3.1.1. Remarkable Large Concentrations in the Near-Bed Zone

e depth-averaged concentration Savg (kg·m−3) is calculated as Savg = 1
H
∫

Sidy, in which Si is
the measured concentration at each point in a vertical line (kg·m−3) and y is the vertical axis of
the Cartesian coordinate system. The coordinate origin is located on the riverbed. To present the
deviation of the near-bed concentration from the average, the relative concentration is defined as
Sa/Savg, in which Sa is the measured concentration at the reference height. The reference height is the
minimum distance of measuring points from the river bed. The reference height a equals 0.4–0.5 m for
profiles measured before 2010, while the value is 0.1 m for profiles after 2010.

Figure 3 shows the typical vertical profiles measured at Shashi station before and after the
impoundment of TGD. The relative concentrations (Sa/Savg) of these four vertical profiles are 2.47, 4.1,
2.10, and 1.52, respectively. Thus, remarkable large concentrations can be observed in the near-bed
zone. The remarkable large near-bed concentration is defined by comparison to the vertical average
concentration. This can be observed in vertical concentration profiles with large or small measured
near-bed concentrations (3.01 kg·m−3 for Figure 3a and 0.041 kg·m−3 for Figure 3b).

The statistic characteristics of hundreds of vertical profiles are summarized in Table 2. Before TGD
operation, the maximum relative concentrations (Sa/Savg) are 2.76 (Zhicheng), 2.30 (Shashi),
and 3.62 (Jianli), respectively. After TGD operation, the maximum relative concentrations (Sa/Savg)
are 15.05 (Shashi), and 14.45 (Jianli), respectively. The average relative concentrations before TGD are
1.35 (Shashi) and 1.57 (Jianli), respectively. These values jump to 3.22 (Shashi) and 4.89 (Jianli) after
TGD, respectively. Thus, both the average and maximum values of relative concentrations (Sa/Savg)
increase significantly after the impoundment of the TGD.

Relatively high concentrations near the bed region have also been pronounced in the estuary of
YR, Qiantangjiang River, and the Taizhou sea area [30–33]. The near-bed concentration of the S-type
vertical distribution is also relatively large [34]. However, the relative concentrations are relatively
small (shown in Table 2). The maximum relative concentration (Sa/Savg) is approximately 4.3, and the
minimum relative height of measured points from river bed is approximately 0.02. In total, the tailing
phenomena in the unsaturated channel are much more apparent.

 

Figure 3. Cont.
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Figure 3. Typical measured vertical profiles of SSC and vertical averaged concentration in the JJRR,
measured at Shashi hydrological station before (c,d) and after 2010 (a,b).

The coarsening of suspended sediment can be revealed by mean diameters of vertical profiles
(shown in Table 2). For vertical lines measured at Jianli station, the average mean diameters after TGD
range from 0.0087 mm to about 0.22 mm, while the values before TGD may range from 0.0037 mm to
0.07 mm. For vertical lines measured at Shashi station, the average mean diameters after TGD change
from 0.0058–0.027 mm to 0.0098–0.224 mm. Thus, the coarsening process of suspended sediment after
TGD operation is apparent, especially at Shashi station.

Both of the near-bed SSC and sediment flux are connected with hydrodynamic conditions [35].
Thus, hydrodynamic parameters (depth, velocity, and vertical average concentration) are also
summarized in Table 2. The values of ω/u∗ vary dramatically (shown in Table 2). Remarkable large
values of ω/u∗ indicate that relatively coarser particles may be suspended with a small bed shear
velocity. Tang et al. [32] pointed out that the near-bed concentration may be more apparent when
(ω/κu∗) > 5. Therefore, larger values of log(ω/u∗) in non-equilibrium channels contribute to remarkable
large concentrations in the near-bed zone.

Normally, concentration at the water surface should be smaller than that at the riverbed.
This means that the concentration gradient (estimated with d(Si − Si−1)/d(yi − yi−1)) should be
negative. However, the occurrence of vertical concentration profiles with positive gradients increases
(Table 3). For data measured before TGD, about 20% (Zhicheng, Shashi, and Jianli stations) vertical
concentration profiles are characterized with positive gradients. For data measured after TGD, about
28–47% (Shashi and Jianli) of vertical concentration profiles are characterized with positive gradients
(Table 3). The differential equation for vertical SSC distribution of non-uniform particles indicates
that the concentration of finer particles group near the surface may be greater than that near the bed
with wide grading non-uniformed suspended sediment [36]. Moreover, concentration gradients may
be positive when the diameter of coarser particles is about eight times that of finer particles [36].
This indicates wide grading sediment particles in the non-equilibrium channel contribute to the
remarkable large near-bed concentration.
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Table 3. Characteristics of vertical profiles with positive and negative gradations at Shashi and Jianli
hydrological stations.

Stations

Post-Reservoir Pre-Reservoir

Negative Positive Negative Positive

No. of Verticals D50 (mm) No. of Verticals D50 (mm) No. of Verticals No. of Verticals

Shashi 50 0.01–0.06 45 0.03–0.07 29 7
Jianli 76 0.06–0.10 29 0.06–0.10 60 15

3.1.2. Coarsening of Suspended and Bed Materials

Relatively large concentrations in the near-bed zone in estuary areas can be observed during
tide periods and non-flood seasons [30]. Thus, the hydrologic condition (suspended sediment and
bed materials) under which the remarkable large concentrations in the near-bed zone may occur is
also analyzed.

With the operation of TGD, both the suspended and bed materials become much coarser, except
for the dramatic decrease of the annual suspended sediment load (SSL) [37]. The temporal variation
of suspended sediment size in the downstream channel may exhibit some complex processes [38].
This means that the saturation recovery process of fine sediments that responds to changing
hydraulic conditions is different from that of the coarser one. Additionally, under non-uniform
and non-equilibrium conditions, suspended sediment dynamics require a relatively large distance
or time to approach equilibrium [13]. Thus, the variation trend of non-uniform sediment varies in
different river reaches.

The mean diameter of SSC measured at Yichang station decreases from 0.009 mm (before
impoundment) to 0.005 mm (2003–2008) [37]. Size distributions of suspended sediment and bed
materials in the JJRR are shown in Figures 4 and 5. For Zhicheng station, the proportion of grouped
particles with diameters of 0.008–0.062 mm increases, while the proportions of finer (<0.008 mm) and
coarser (0.062–0.5 mm) groups decreases. For Shashi station, the non-uniform sediment becomes a
kind of wide grading (as shown in Figure 4b), as the proportion of grouped particles with diameters
finer than 0.008 mm decreases and the proportion of grouped particles with diameters coarser than
0.062 mm increases. The mean diameter measured at Jianli station decreases from 0.009 mm (before
impoundment) to 0.045 mm (2003–2008) [37]. This indicates that the coarser particles (>0.062 mm)
around Shashi station have recovered by bed erosion. When flow transports the reach around Jianli
station, the change of coarser particles (>0.062 mm) is much more apparent. Thus, wide grading
suspended sediment at Shashi and Jianli stations may contribute to the remarkable large concentration
in the near-bed zone.

d d

Figure 4. Cont.
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d

Figure 4. Volume fractions of suspended sediment measured at Zhicheng (a), Shashi (b), and Jianli
(c) stations.

The variations of volume fractions of bed materials indicate a remarkable coarsening process
in the JJRR, especially the river reach of Zhicheng–Shashi (Figure 5). Zhang [30] pointed out that
concentrations in the near-bed zone are more apparent with larger values of relative particle size
(Di/Dm, particle-size over averaged particle size) of non-uniform sediment. Thus, the lifting and
suspension of wide grading bed materials may also contribute to the remarkable large concentration
in the near-bed region of the non-equilibrium channel.

d

d d

Figure 5. Cumulative volume fractions of bed materials measured at Zhichegn (a), Shashi (b),
and Xinchang (c) stations.
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3.2. Temporal Change of SSL

At the reach scale, the changed sediment regime can be described with temporal and spatial
variations of SSL. The temporal and spatial variations of water runoff have also been analyzed to make
a comparison. The temporal variation of water runoff and SSL show a decreasing trend, especially the
SSL (Figure 6).

Figure 6. Temporal variation of water runoff and SSL in the JJRR.

Figure 7 shows the mass curves of cumulative anomaly of annual runoff and SSL at the three
stations (1987–2014). It shows that the water runoff and SSL show an increasing trend before
2000–2001 and then a decreasing trend after 2000–2001. Three Gorges Reservoir (TGR) was launched to
construct in 1994, and TGD was completed and firstly impounded water in June 2003. The TGR started
to operate regularly in June, 2006 and became fully operation in 2008. The other changing points of
water runoff are 1993, 2005, and 2010, which are in accordance with the operation of TDR. The changing
point of 1997 may be caused by the great 1998 flood, which was the highest in recorded history.

Figure 7. Cont.
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Figure 7. Mass curves of anomalies of runoff and SSL at Zhicheng (a), Shashi (b), and Jianli (c) hydrological
stations (1987–2014).

Thus, after 2005, both the runoff and SSL are less than the long-term average value.

3.3. Availability of Sediment Sources

The availability of weathered sediments in the unsaturated channel can be revealed by rating
parameters. Thus, the SSC–Q rating curves with data measured before and after TGD operation at the
JJRR is adopted to investigate the hydrological condition.

According to data measured in 2013, values of the f -parameter are 2.27 (Shashi) and 1.67 (Jianli),
respectively, and values of the log(e)-parameter are −7.70 (Shashi) and −10.70 (Jianli), respectively
(Figure 8). The long-term average values by Yang et al. [39] are illustrated as data before dam
operation (Figure 8). The long-term average values of the log(e)-parameter and the f -parameter for
Xinchang station are −1.92 and 1.17, respectively, and the values for Jianli station are −0.97 and 0.96,
respectively [39]. Historical data adopted in the analysis of Yang et al. [39] were measured at four
stations: Yichang (1950–1985), Xinchang (1956–1984), Jianli (1954–1986), and Chenglingji (1951–1982).
According to Figures 6 and 7, parameters by Yang et al. [39] may represent the hydrological conditions
during the period before the changing point. Thus, with the operation of TGD, the values of the
f -parameter increase while the values of the log(e)-parameter decrease.

(a) (b) 

e f

Figure 8. Coefficients and exponents of sediment rating curves (a) for log(e) and (b) for f ; solid lines
are data drawn from Yang et al. [39].

Instantaneous SST rates are not only a function of the transport capacity of a river, but also of
sediment availability [22]. For sediment rating parameters estimated through regression analysis,
the e-coefficient is an erosion severity index in the river channel and is associated with the availability
of weathered sediments in the basin area [22]. A high e-value indicates that this area is characterized
with easily erodible materials and high loads of materials transported by runoffs [20]. The exponent
f -coefficient corresponds to the erosive power of the river and the influence on the sediment supply
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from the entire basin surface. High values indicate a considerable increase in erosive power and
sediment-carrying capacity with an increase in river discharge [20]. Thus, a slight increase in discharge
enhances the erosive power of the river significantly. For the JJRR, the increased value of the
f -parameter indicates a considerable increase of erosive power and sediment-carrying capacity with an
increase in river discharge. A decreased value of the log(e)-parameter indicates a decreased availability
of suspended sediments in the river channel.

The saturation recovery process in the JJRR can be described with Figures 4 and 5, while the
changed interactions between suspended sediment and bed material can be explained by the changed
values of rating curves’ coefficients (Figure 8).

For river reaches around Zhicheng station, coarsening of bed material is obvious. As to its limited
distance from the TGD dam (60 km), the saturation recovery process of suspended sediment is limited.

For river reaches around Shashi station, coarsening of bed material is also obvious. Finer-grouped
suspended sediments (particles with diameter < 0.008 mm) are transported from the upper river reach
instead of local bed materials. Coarser suspended particles (with diameter of 0.062–0.05 mm) have
recovered, which are eroded from local bed materials as an increased value of the sediment rating
exponent (f -parameter).

For river reaches around Jianli station, the coarsening of the bed material is limited. The coarsening
of suspended sediment is obvious, especially after flooding (Figure 9). Coarser suspended particles
(with diameter of 0.062–0.05 mm) may come from the erosion of the local river bed and transportation
from upper reaches by an increased value of the f -parameter.

The variability in the relationship between the sediment concentration and water discharge
(namely hysteretic patterns) has also been used to explain the variability of sediment sources from
one flood to another [40]. Whitaker et al. [41] compared the estimated sediment yield for an
un-sampled flood event, a single-event surrogate SSC–Q rating curve, or a long-term SSC–Q rating
curve. Analysis revealed that the long-term SSC–Q rating curve estimates approximately 37% higher
than the single-event SSC–Q estimates, which indicates a high degree of uncertainty. Analysis shows a
high variability in the rating curve between similar floods [41]. This is the reason for erosion during
the flood season.

d d

Figure 9. Cumulative volume fractions of suspended sediment at 2016: (a) measured in July 2016 and
(b) data measured in September 2016.

4. Future Challenges

4.1. Accurate Measuring in Field Surveys

Accurate measurement of vertical concentration profiles is important for investigating the vertical
distribution of SSC and the accurate estimation of sediment transport. For the field survey in the
JJRR, the two near-bed points are measured with constant distances of 0.5 m and 0.1 m from the bed,
respectively. However, the small distances may be doubtful due to difficulties in distinguishing the
bed material and suspended sediment, especially when the bed is disturbed during settling sampling.
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Equipment and criteria adopted in the field survey have been described in detail in the Methodology
section, and their availability and methods of improvement with regard to accuracy in the future
are discussed.

The availabilities of ADCP and GNSS have been certified by field surveys conducted by other
researchers. The error of hydrologic measurement with ADCP is ±1%, and the random uncertainty is
2–5% for measuring cross-sections in the middle and lower YR channel [42]. The integrated system
(GPS and ADCP) delivers positioning with <15 cm accuracy vertically and <30 cm horizontally [42].
For GNSS, the differences between coordinates of the ground control points estimated using
RTK–GNSS, and those computed from the classical topographic measurements during processing
of the photogrammetric blocks have been analyzed by Pagliari et al. [43]. It was pointed out that an
RTK–GNSS survey may be sufficient to reach the requested tolerance [43]. GNSS receivers have been
adopted in field surveys in recent years, as their main advantages are of being faster, cheaper, and easier
to use during the surveying phase than classical topographic survey [43,44]. For sediment grain-size
analysis, the results by LPSA and sieving methods are comparable when particles are spherical [45].
Sieving methods for coarser particles are more acceptable than for finer ones [45]. Thus, the sieving
method adopted by JHWRSB for fine suspended particles needs further verification.

In total, various efforts have being applied to measure the SSC profiles in field surveying, including
methods and instrumentation [46–48]. Some new field instrumentation, including magnetic tracers,
drone-based or plane-based topography surveys, and video analysis by spectral cameras can also be
used to measure sediment transport and morphology evolution in future field surveys [49]. Except for
these new instruments, already existing instruments can also be used with more details. For instance,
ADCPs are increasingly used to measure the three-dimensional velocity distribution and sediment
transport by measuring the Doppler shift in the backscattered signals from an array of acoustic
beams [49,50]. According to the backscatter intensity of ADCP beams, SSC can also be estimated with
inversion [51].

4.2. Describing Vertical Concentration Profiles

The vertical distribution of SSC needs to be described accurately for an accurate simulation
of channel migration, i.e., a one-dimensional simulation for the transport of sediment mixture in
non-equilibrium conditions [52]. Thus, finding a proper way to describe the vertical concentration
profiles of the unsaturated channel is one of the key problems for hydraulic researchers [53].

Measured sediment profiles are compared with calculations by three equations, i.e., the Rouse
Equation (Equation (5)), the Han Equation (Equation (7)), and the new fADE (Equation (12)). Figure 10
indicates the Rouse Equation is not applicable in the non-equilibrium reach. Compared to the Rouse
Equation, the Han Equation for non-equilibrium, sediment-laden flow performs better in the upper
part of a vertical but underestimates the concentration near the river bed, i.e., within 10% of the water
depth. The fADE is able to characterize the dynamics of the non-equilibrium sediment suspension in
“starving” river reaches.

No doubt, Equation (7) for non-equilibrium conditions can offer a better description of sediment
profiles in river reaches with unsaturated or oversaturated flows. The inaccurate prediction is partly
due to our poor understanding of the mechanism of sediment suspension, i.e., the spatially-stochastic
transport behavior in sediment dispersion. For the changed sediment regime of the JJRR, more efforts
are required to improve the description of vertical profiles of SSC, especially the physical processes.
Additionally, “nonlocal” jumps in burst-like suspension events indicate that bursting eddies may
sweep particles from the water bottom and directly eject them to the upper part of water bodies,
which may lead to ecological-related problems. The ecology consequences include water quality of
the riverine ecosystems, as nutrients and pollutants are often closely connected with sediments [49].
The three outlets (Songzikou, Taipingkou, and Ouchikou) have a special setting of the surface water
system between YR and Dongting Lake, and the three diversion channels could interact directly with
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the lake. Thus, it may also have a profound impact on the biological connection between the main
stream and the downstream lakes of Poyang and Dongting.
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w
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w u
d
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w u
d

Figure 10. Comparison between measured and calculated vertical profiles of suspended sediment
concentration. Data in (a) were measured on 10 August 2011 at Shashi station, data in (b) were measured
on 26 September 2013 at Shashi station, and data in (c) were measured on 27 November 2017 at
Jianli station.

4.3. Estimating SST Rate

Measuring and describing the vertical SSC profiles accurately is also imperative to the
quantification of the SST rate [2]. If near-bed concentrations are not measured or simulated correctly,
the estimation of the SST rate may also be influenced.

Figure 11 shows the estimated contributions by two near-bed points. Both of these two extremely
large ratios (larger than 60%) occurred at Jianli station in 1996. For these two sections, the estimated
sectional average velocities are different from measured data with a large deviation. This indicates
that the assumption for Equation (13) is not adoptable in these two cross-sections. Thus, these two
sections are excluded from discussion. Figure 11 shows that, if the near-bed concentrations are not
included, the sediment flux may be underestimated by approximately 23.5% (Zhicheng), 9.35% (Shashi),
and 18.68% (Jianli), respectively. Thus, for the unsaturated JJRR, sediment concentration within 10% of
the water depth from the riverbed cannot be ignored. Otherwise, it will lead to underestimated
results when calculating the erosion/deposition of the JJRR by the sediment-transport balance method
and volume method. Additionally, an underestimated SST rate at Zhicheng station may also lead to
overestimated sedimentation in the TGR, which is important for the water storage capacity of the
reservoir. The reservoir’s functions of water supply, energy production, navigation, flood control,
and increased maintenance costs are correlated with the reservoir’s water storage capacity [49].
Thus, underestimated sedimentation at Zhicheng station may also affect the reservoir’s waterway
systems, hydraulic schemes, intakes and outlets, and flow regulation [49].
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Figure 11. Contribution of the near-bed load on sediment flux.

Fortunately, the influence of near-bed concentration on estimating sediment flux can also
be verified by comparing the estimated deposition with the sediment-balance method and the
geometric method.

Based on the hydrology data and geometry data measured in 2002–2008, contributing factors
that may cause deviation during estimating deposition were distinguished [54,55]. Yuan et al. [53]
pronounced that the contribution ratio by near-bed concretion varies in different hydrology years and
river reaches (Table 4). For a certain hydrological station, the contribution ratios may also vary with
the inflow condition. In total, they partially verified the reliability of measured vertical concentration
profiles by comparing contribution ratios.

When suspension index A = ω/(βku∗) = 2.0, suspended sediment may concentrate in areas with a
distance of 0.2 times of the water depth from the riverbed, in which β is a coefficient for non-uniform
sediment [30]. The near-bed concentration may affect the estimated sediment load only if A > 0.15 [30].
If A = 2.0, the ratio of near-bed transportation over the total transportation is approximately 30% [30].
The values of ω/u∗ with data measured after TGD in Table 2 are much larger than the criteria by
Zhang [30], and a large contribution of the near-bed transportation over the total transportation in
Figure 11 can be certified. The ratio of the near-bed transportation over the total transportation is
approximately 25% when Di/Dm > 3, in which Di/Dm is the particle size the over average size [30].
The wide grading distribution of SSC after TGD (as shown in Figures 4 and 5) also indicates a
large contribution to the total transportation. Thus, the potential doubt that refers to difficulties in
distinguishing bed material and suspended sediment can partially be certified. Moreover, the impact
of a remarkable large near-bed concentration must be given more attention in the future, especially at
river reaches around Shashi station.

Table 4. Contribution by various factors on sediment flux 1.

River Reach
Total Sediment
Flux 2 (104 m3)

Contribution by
Near-Bed Concentration

Contribution by Other Factors

Sediment Flux (104 m3) Ratio (%) Sediment Flux (104 m3) Ratio (%)

Yichang–Zhicheng 10,275 1267 12.33 2047 19.92
Zhicheng–Shashi 11,242 980 8.72 4317 38.40

Shashi–Jianli 12,840 2303 17.94 1494 11.64
1 Data drawn from Yuan et al. [53] and Duan et al. [54]; 2 total sediment flux is estimated with the geometry method.

In total, fluvial and dynamic characteristics of distinct, large concentrations in near-bed regions
may affect sediment flux, erosion/deposition estimation, sediment rating curve, and the channel
geometry followed. This brings river engineers a lot of new problems, i.e., degradation of navigation,
and dramatic bank erosion [56]. Additionally, the estimation of erosion in the JJRR has a profound
impact on the hydrologic connection between the middle YR and Dongting Lake [57].
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5. Conclusions

Sediment regime of the JJRR has changed dramatically with the operation of TGD. Based on daily
and vertical concentration data at the three hydrological stations (Zhicheng, Shashi, and Jianli) in the
JJRR, the sediment regime and its potential challenges are analyzed in this study. The conclusions can
be summarized as follows:

(1) In the unsaturated JJRR, measurements have revealed anomalous vertical profiles of SSC, as the
near-bed concentrations normalized with the vertical average concentration are dramatically
larger than that of the pre-equilibrium channel. The near-bed concentration (within 10% of the
water depth from the river bed) may reach up to 15 times that of the vertical average concentration
in the non-equilibrium channel.

(2) In the unsaturated JJRR, the combination of wide grading suspended sediment and coarsened
bed materials in non-equilibrium channel contribute to a remarkably large concentration in
the near-bed zone. For the river reach around Shashi station, the remarkably large near-bed
concentration is more apparent.

(3) More detailed measurements or new measuring technologies may assist in the accurate
measurement of vertical concentration profiles. A fractional dispersion equation may help
to provide accurate descriptions. The outcomes can provide useful information for modeling the
morphologic change of the JJRR.
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Abstract: The catchment of the Dashidaira reservoir located on the Kurobe River has high sediment
yield. Because of the sufficient available amount of water in the catchment during flood events,
the free-flow sediment flushing operation with full water-level drawdown is employed every year
to preserve the effective storage capacity of the Dashidaira reservoir. This paper focuses first on
the numerical simulation of a previously conducted free-flow flushing operation in the Dashidaira
reservoir using the available in situ obtained data. Afterwards, to improve the flushing efficiency,
the effects of water and discharge manipulation and the construction of an auxiliary channel on the
total volume of the flushed sediment were studied. A fully 3D numerical model using the finite
volume approach in combination with a wetting/drying algorithm was utilized to reproduce the
flow velocity field and simulate the movable bed variations. The outcomes revealed that increasing
the average free-flow discharge during the free-flow stage by approximately 56%, in the form of
multiple discharge pulses, can enhance the flushing efficiency by up to 13%, and the construction of
an auxiliary channel in the wide midstream of the reservoir can locally increase the sediment erosion
from this area.

Keywords: reservoir flushing; numerical simulation; flushing efficiency; Kurobe River

1. Introduction

Dams interrupt the natural continuity of sediment transport through rivers, which results in
sediment deposition in the reservoir behind the dam [1]. In a global context, sediment deposition is
a challenging issue for the long-term utilization of dam reservoirs [2]. It is estimated that 0.5% of total
storage volume of the reservoirs is lost annually in the world because of the sedimentation [3]. The loss
of effective reservoir storage volume due to sediment deposition reduces the effective lifespan of dams
and decreases reservoir functionality for flood control purposes, hydropower generation, irrigation
and water supply, thereby generating a substantial economic loss [1,4,5]. Diverse measures, including
sediment dredging, density current venting, bypassing, flushing, sluicing and upstream sediment
trapping, have been used to control progressive sedimentation in reservoirs to prolong their life [1,6].
Among these measures, drawdown flushing (i.e., free-flow sediment flushing) plays a major role in
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reservoir storage capacity restoration and conservation since it is an efficient hydraulic technique
for sediment removal [7]. Free-flow sediment flushing involves a complete lowering of the water
level by opening low-level outlets to temporarily establish riverine flow (i.e., free flow) through the
outlets. The accelerated flow erodes a channel through the deposits and flushes out both fine and
coarse sediments [4,5,7]. However, only few experimental studies have focused on flushing channel
formation [8], and detailed explanations of flushing channel formation and evolution in prototype
reservoirs are scarce [9].

In Japan, the sediment yield coming from the catchments is generally high due to the geologically
young mountains, steep slopes, flashy flow regimes, and frequent landslides, especially in the
mountainous areas. Thus, a large amount of sediment is transported in Japanese rivers, and the
sediment inputs in the reservoirs fed by these rivers are high. Kurobe River, located in the Toyama
prefecture, is one of the most important rivers in Japan because of the cascade reservoir system
along this river and the considerable amount of electricity generated by water from these reservoirs.
Therefore, the reservoir owners are interested in implementing the applicable measures for increasing
the sediment removal from these reservoirs especially from the specific areas, which encounters the
excess deposition problems.

To optimize the sediment management strategies in reservoirs that feature conditions that change
from shallow to deep areas and that also contain sandbars, numerical models that are more complicated
than the simple one-dimensional (i.e., 1D) models should be used [10]. Advanced two-dimensional
(i.e., 2D) numerical models have been employed to solve practical problems in rivers (e.g., simulation
of morphological bed changes in river meanders) [11]. Nevertheless, 2D and quasi three-dimensional
(i.e., 3D) numerical models are not able to directly simulate a complex 3D flow field that includes
secondary currents. However, these phenomena contribute significantly to the natural sediment
transport processes [12]. Thus, the application of 3D numerical models is essential if the velocity
variation over the flow depth, i.e., helical flow, plays a major role in sediment transport (e.g., in channel
bends). 3D numerical models were used by various researchers for simulating the flow field and
sediment transportation in the dam reservoirs [13,14]. As for sediment flushing from reservoirs, a 3D
numerical model has been shown to perform better than a 2D one in simulating the bed deformation,
notably in channel bends [15]. Recently 3D numerical models were applied to investigate the sediment
dynamics inside the reservoirs during a flushing operation at the both lab scale (e.g., [15,16]) and the
full scale (e.g., [17–19]).

A Computational Fluid Dynamic (CFD) software package called SSIIM (Simulation of Sediment
Movements In water Intakes with Multiblock Option) was utilized in this study. The SSIIM
program implements a 3D numerical model of the flow field by solving the mass and momentum
conservation equation in three dimensions using different turbulence closure approaches [20]. SSIIM
was successfully applied to model the 3D flow field under various hydraulic and geometric boundary
conditions [21]. SSIIM was also used for coupled computation of the flow and sediment field
in physical model and prototype-scale studies by various researchers [22–28]. Recently, this CFD
program was used with enhanced grid generation features to simulate the sedimentation and flushing
channel evolution in reservoirs [19,29,30]. Nevertheless, it should be noted that simulation of
a sediment-flushing event in a steep full-scale reservoir, such as the Dashidaira reservoir, is complex
owing to the rapid variation of hydraulic boundary conditions and riverbed materials even in short
distances. In addition, numerical studies focusing on potential measures for increasing the sediment
flushing efficiency in a full-scale reservoir are scarce.

In the present study, the SSIIM model was employed to simulate the 2012 free-flow sediment
flushing operation in the Dashidaira reservoir using the field-measured data. To do this, the sensitivity
analysis of computed Total Volume of Flushed Sediments (i.e., TVFS) as a result of changes in the
selected empirical parameters together with assessment of morphological bed changes was performed
and subsequently model was calibrated. Because of the interest to increase the Flushing Efficiency
(i.e., FE), when it is defined as the ratio of the flushed sediment volume to the used water volume,
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various scenarios, such as using additional artificial discharge during the free-flow state, increasing
the water-level drawdown speed, and the construction of an auxiliary longitudinal channel, were
numerically modeled to investigate how they affect the morphological bed changes in specific zones
of the reservoir and whether they increase the Flushing Efficiency. To provide a more detailed and
quantitative insight on morphological bed changes, the Bed Changes Index (i.e., BCI) is introduced
and subsequently calculated bed changes were compared for each scenario with a reference case
(e.g., calibrated case) to figure out the performance of each scenario. Moreover, the optimum
relationship between the flushing efficiency and the amount of water used for flushing was established
under the mentioned scenario conditions.

2. Study Case Description

2.1. Site Background

The Kurobe River originates from Washiba Mountain with an elevation of 3000 m, located in the
northern Japanese Alps, and flows into Toyama bay in the Japan Sea (Figure 1a) [31]. The catchment
area of the river is 682 km2, and the length of the river is 85 km. The bed slope is steep and varies
between 1% and 20%. In the catchment area of the Kurobe River, the average rainfall and total sediment
yield are 4000 mm and 1.4 × 106 m3/year, respectively, which are both among the highest in Japan [32].
Dashidaira dam, with a height of 76.7 m, was constructed in 1985 by Kansai Electric Power Company
in the Kurobe River and has a power of 124 MW. The average bed slope of the reservoir is about 2.2%
and also the gross and effective storage capacities are 9.01 and 1.66 million m3, respectively [7,32].
The mean annual sediment load and the ratio of the total storage to the mean annual runoff in the
Dashidaira reservoir are 0.62 × 106 m3 and 0.00674, respectively [33]. The Dashidaira dam is one of
the first dams in Japan constructed with sediment-flushing facilities. The first flushing operation in
the Dashidaira reservoir was performed 6 years after the dam construction in 1991. Subsequently,
the accumulated distorted sediments within 6 years were diffused to the downstream and estuary zone
with many negative environmental implications. After that, the flushing operation is performed every
year during the first major flood event in the rainy season to reduce negative environmental impacts
on the downstream areas of the dam since aquatic animals have been adapted to the perturbation
caused by floods. A flood not only provides enough energy to transport the flood-born sediments
through the reservoir, but also scour the previously deposited sediments from the reservoir.

2.2. Field Data Organization

The bathymetric survey for measuring the bed levels is performed regularly by the reservoir
owners before and after the annual flushing operation in the Dashidaira reservoir. The measured bed
levels before the flushing operation in June 2012 and the locations of cross-sections A-A to L-L, which
were used for further assessment of bed variations caused by the flushing, are shown in Figure 1b.
The approximately 2-km length of the reservoir has been divided into three areas, namely, areas I,
II and III, to analyze the study outcomes based on the generally similar types of bed materials in each
area. In area I, the bed material is coarse (e.g., gravel), while in downstream half of area II and the
area III, the bed material transitions to finer sediments (e.g., fine sand and even mud). Besides, temporal
variation of the water level and discharge magnitudes are recorded at the dam site during the flushing.
The inflow discharge and water level fluctuations during the 2012 flushing operation, in which the major
sediment inflow was a wash load (i.e., transported without deposition in the reservoir), are illustrated
in Figure 1c. After the start of the operation, the preliminary drawdown occurred from 8 to 24 h, and
the free-flow state occurred from 24 to 38 h. The water level drawdown from the beginning of the
operation to the free-flow state was approximately 25 m. Furthermore, based on the available onsite
samples, seven sediment sizes ranging between 316 and 0.37 mm were considered to be representative
grain sizes for the bed of the reservoir. Table 1 shows the average sediment size distribution in different
cross-sections prior to the flushing operation. The large sediment sizes in cross-section L-L despite the
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size reduction in sections immediately upstream can be attributed to the last flushing operation process,
in which closing the bottom outlets during the water level recovery stage causes the transported large
sediments to deposit nearby the dam. During the 2012 flushing operation of the Dashidaira reservoir,
the total volume of the eroded sediment from the reservoir was equal to 408,700 m3.

(a) (b)

 
(c) (d)

Figure 1. (a) Site map of the Kurobe River showing the location of the Dashidaira reservoir [31];
(b) Measured bed topography of the Dashidaira reservoir before the flushing operation in June 2012 and
locations of the cross-sections A-L for further assessment of the bed variations in the upstream
(i.e., area I), midstream (i.e., area II), and downstream (i.e., area III) portions of the reservoir; (c) Water
level and discharge rates during the flushing operation in June 2012; (d) Onsite view of the dead zone
area during the 2012 flushing operation (the dead zone area has been shown with ellipse dashed line
and arrows show the flow direction).

The thalweg of the river channel exists close to the right bank of the wide middle area (i.e., area II)
and subsequently fine sediments deposited along the left bank, indicated with an ellipse dashed line
in Figure 1d, were not removed effectively during the flushing operation. Therefore, fine sediments
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have been accumulated and consolidated that may contain the degraded organic matters. The area
highlighted by the ellipse dashed line is hereafter called the dead zone. Dam owners are interested
in removing the accumulated sediments from this zone by annual flushing operation to prevent the
formation of consolidated and distorted fine sediments and also to keep the effective storage capacity
as much as possible.

Table 1. Average sediment size distribution in the specified cross-sections shown in Figure 1b. Cs. is
an abbreviation for Cross-section.

Sediment Size
(mm)

Cs.
A-A
(%)

Cs.
B-B
(%)

Cs.
C-C
(%)

Cs.
D-D
(%)

Cs.
E-E
(%)

Cs.
F-F
(%)

Cs.
G-G
(%)

Cs.
H-H
(%)

Cs.
I-I
(%)

Cs.
J-J
(%)

Cs.
K-K
(%)

Cs.
L-L
(%)

316 2 0 0 0 0 0 0 0 0 0 0 0
118.3 74 0 0 0 0 0 0 0 0 0 0 40
37.4 6 73 75 70 69 4 1 0 0 0 0 30
11.8 4 7 6 8 13 14 5 0 0 0 0 16
3.7 3 14 11 14 12 25 18 0 0 0 0 3
1.2 5 4 1 3 2 23 21 0 6 13 0 1
0.37 6 2 7 5 4 35 55 100 94 87 100 10

3. Numerical Model

3.1. Flow Field Modeling

The fully 3D numerical model SSIIM solves the continuity equation together with Reynolds-
averaged Navier-Stokes equations in three dimensions and within non-orthogonal coordinates to
compute the water motion for turbulent flow [20].

The finite-volume approach is applied as a discretization method to transform the partial
differential equations into algebraic equations. The convection term in the Navier-Stokes equation is
solved using the second-order upwind scheme [15,20]. The Reynolds stress term is modeled using the
standard k-ε turbulence model with constant empirical values [34].

The unknown pressure field in the Reynolds-averaged Navier-Stokes equations is calculated by
employing the semi-implicit method for pressure-linked equations [35]. An implicit free-water surface
algorithm was used in the computations and was based on the pressure gradient between a cell and the
neighbor cells. Then, the free-water surface is computed using the local elevation difference between
a cell and the neighboring cells [19].

∂p
∂xi

= ρg
∂z
∂xi

(1)

where p is the pressure, xi is the special geometrical scale, ρ is the water density, g is the acceleration
due to gravity and z is the water-level elevation.

Because the water level in all cells is unknown, an iterative method was used. Additionally,
because a number of neighbor cells were used to compute the water elevation differences for each cell,
different values appeared for the water elevation difference depending on the number of neighboring
cells used in the computation. Therefore, a weighted average of these values was applied. The weighted
average coefficient for each neighboring cell (ai) is a function of the Froude number, the flow direction
and the location of neighboring cells:

ai =

⎧⎪⎨⎪⎩
min(2 − Fr; 1.0) f or w > −0.1 and Fr < 2.0
w2(Fr − 1.0) f or w < −0.5 and Fr > 2.0

0.0
(2)

with:

w =

→
r ×→

u∣∣∣→r ∣∣∣× ∣∣∣→u ∣∣∣ (3)
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where Fr is the Froude number, w is the dot product of
→
r and

→
u , is

→
r the direction vector

pointing from the center of a cell to the center of the neighbor cell aimed to take into account the
upstream/downstream effect and

→
u is the velocity vector of the cell. This coefficient is then used for

discretizing the following equation [19]:

8

∑
i=1

aizp =
8

∑
i=1

ai

(
zi +

1
ρg

(pp − pi)

)
(4)

where zp is the water level elevation in the cell, zi is the water level elevation in the ith neighbor cell,
pp is the pressure in the cell and pi is the pressure in the ith neighbor cell.

This implicit and iterative approach is a robust and stable method that can also be used in
connection with estimates of the sediment transport and morphological bed changes under unsteady
flow conditions. The use of an implicit discretization scheme allows large time-step sizes to be
employed in the model [23].

In the SSIIM model, the grid is non-orthogonal, unstructured and adaptive, and it moves vertically
with changes in the bed and free-water surface elevation. During the computations, only the water body
is modeled. The water surface is recomputed after each time step, and the employed wetting/drying
algorithm enables the model to have a varying number of grid cells (e.g., in the vertical and lateral
directions) with respect to the water depth in the computational domain using Equation (5) [36].
The wetting/drying algorithm causes the cells to dry up and disappear from the computational
domain if the water depth is smaller than a user-defined lower boundary. If the water depth becomes
greater than the lower boundary in the dry area, this algorithm regenerates a cell. This approach makes
it possible to have a dynamic grid that can move in the lateral direction, allowing changes in the bed
and water level to be accurately modeled.

n = nmax

(
depth

depthmax

)p
(5)

where n is the number of grid cells in the vertical direction, nmax is the maximum number of grid cells
in the vertical direction, and p is a user-defined parameter for the number of grid cells.

The Dirichlet boundary condition (logarithmic velocity distribution) was used for the water
inflow, whereas the zero-gradient boundary condition was specified for the water outflow and the
sediment concentration calculation. For the boundary condition at the bed and walls, where there
is no water flux, the empirical wall law introduced by Schlichting (1979) was utilized [20,37]. Also,
bed roughness in the form of dunes and ripples is taken into account using an empirical formula
introduced by Van Rijn, which employs the characteristics of sediment size distribution and bed form
height within the computational domain [20,38].

3.2. Sediment Transport Modeling

The sediment transport computation for simulating the morphological changes is divided into
suspended sediment and bed load transport. The suspended sediment transport is calculated by
solving the transient convection-diffusion equation.

∂c
∂t

+ Uj
∂c
∂xj

+ w
∂c
∂z

=
∂

∂xj
(ΓT

∂c
∂xj

) (6)

where Uj is the water velocity, w is the fall velocity of the sediments, c is the sediment concentration
over time t and spatial geometries (i.e., x and z), and ΓT is the turbulent diffusivity. To compute the
equilibrium suspended sediment concentration, used as the boundary condition in the cells close to
the bed, an empirical formula developed by Van Rijn is used [39]:
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Cbed = 0.015
di
a

[
τ−τc,i

τc,i

]1.5

(
di

[
(ρs−ρw)g

ρwν2

]1/3
)0.3 (7)

where a is a reference level set equal to the roughness height, di is the diameter of the i-th fraction, ν is
the kinematic viscosity, τ is the shear stress, τc,i is the critical shear stress for di, which was calculated
from the Shield’s curve, and ρw and ρs are the density of the water and sediment, respectively.

In the SSIIM model, the bed load can be simulated using the Van Rijn formula or alternatively
by the Meyer-Peter-Müller (MPM) formula [40,41]. The MPM formula is appropriate for steep rivers,
which mainly transport coarse sediments close to the bed:

qb,i =
1
g

⎡⎢⎢⎣ρwgrI − 0.047g(ρs − ρw)d50

0.25ρw
1
3

(
ρs−ρw

ρs

) 2
3

⎤⎥⎥⎦
3
2

(8)

where qb,i is the sediment transport rate for the i-th fraction of the bed load per unit width, d50 is the
characteristic sediment size (median sediment size), r is the hydraulic radius, and I is the slope of the
energy line. The Van Rijn formula has been used to simulate a wide variety of sediment transport
issues in both physical model and prototype scales:

qb,i

di
1.5
√

(ρs−ρw)g
ρw

= 0.053

[
τ−τc,i

τc,i

]1.5

di
0.3
[(

(ρs−ρw)g
ρwν2

)]0.1 (9)

The model accounts for side slope effects by utilizing a reduction function of the critical shear stress
for incipient motion by introducing the formula of Brooks together with a sand slide algorithm [20,42].
The sand slide algorithm corrects the bed slope if it exceeds a defined critical angle of repose of the
sediments during excessive erosion and thereby accounts for side bank erosion. In fact, the implemented
sand slide algorithm acts as a limiter when erosion continues and the bed slope increases [26].

4. Numerical Simulations

4.1. Model Setup and Calibration

The computational grid was constructed based on the bathymetric surveys before the flushing
(Figure 1b). The mesh cell sizes in the streamwise and transversal directions were 10–20 m and
5–10 m, respectively. The bed material density was assumed to be 2650 kg/m3. The water levels and
inflow discharge fluctuations, which were employed as the hydrodynamic boundary conditions in the
simulations, are shown in Figure 1c. In addition, a non-uniform bed material size distribution with
spatially varying fractions was introduced to the model by using the seven representative sediment
sizes shown in Table 1. More specifically, the computational domain was divided into a number of
small segments, and each segment had its own non-uniform grain size distribution. Because the
wash load, by its definition, is transported without deposition through the reservoir, its effect on the
simulation of the flushing process was neglected in the computations.

For calibration purposes, a reference case was first established, assuming general values for
the empirical parameters in the SSIIM model. Due to the good performance of the MPM bed load
sediment transport formula for flushing simulations of Alpine reservoirs revealed by Haun et al. with
conditions almost similar to those of the Dashidaira reservoir (e.g., steep slopes and a wide variety
of sediment size distributions) [29], this sediment transport formula was selected for the reference
case and subsequently for the sensitivity analysis and model calibration. Then, the sensitivity of the
computed TVFS to changes in the empirical parameters was investigated. The computed TVFS was
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compared with the measured TVFS (i.e., 408.7 × 103 m3), and if it was larger than 75% compared to
the measured one, it was considered a model case for further assessment. Then, the final simulated
bed topography pattern was compared, both qualitatively and quantitatively, with the measurements.
A qualitative assessment was performed to check whether the erosion in area I, where the coarser
sediments exist, could be captured, and a quantitative assessment was conducted to measure the
deviation of the simulated bed levels from the measured ones. Therefore, Mean Absolute Error (MAE)
of the simulated bed levels after the flushing operation was calculated. Table 2 summarizes the
results of the TVFS sensitivity analysis for the major selected empirical parameters. Also, variations
in the MAE of the simulated bed levels for each case have been calculated. The TVFS increased with
increasing the active layer thickness and water content but decreased with increasing the critical angle
of repose. When a larger amount of bed materials can be eroded during one time step (i.e., a thicker
active layer), a higher volume of erosion from the deposits is expected. A higher water content in the
sediment deposits (e.g., 50%), which decreases the submerged density of the bed material, is assumed
to lead to greater sediment entrainment. A higher critical angle of repose retains a steeper side bank
of the flushing channel after each time step, resulting in further deepening of the channel, which
is not an efficient approach for increasing the TVFS in the numerical model. In contrast, the lateral
development of the flushing channel (i.e., channel widening), which is favorable for increasing the
TVFS, can be achieved using a lower critical angle of repose. The roughness, active layer thickness,
water content of the bed material, and critical angle of repose were after the calibration set to 0.5 m, 1 m,
40% and 32 degrees, respectively, because the application of these values can result in a reasonable TVFS
and accuracy (i.e., 313.0 × 103 m3, and 1.8 m) and can also satisfy the mentioned qualitative criteria.

Table 2. Sensitivity analysis of the TVFS in reference case with respect to the selected empirical
parameters along with variation of the MAE of simulated bed levels for each case.

Parameter
Active Layer Thickness (m)

Water Content of the Bed
Material(%)

Critical Angle of Repose
(Degree)

0.3 0.45 0.85 50 43 38 33 34 35

TVFS (×10−3 m3) 261.6 290.5 299.8 369.1 306.2 316.8 311.0 302.7 284.5
MAE (m) 2.17 1.73 1.95 2.25 2.10 1.75 1.98 1.54 1.98

4.2. Evaluation of the Flow Field and Morphological Bed Changes in the Reservoir

Figure 2 shows the computational grid adjustment at the beginning (i.e., t = 10 h; Figure 2(a1)) and
during the free-flow conditions with a low water head in the reservoir (i.e., t = 32 h; Figure 2(a2)), and
corresponding surface water velocity field (i.e., Figure 2(b1,b2)). The cells with a smaller water head than
a specified value were removed from the computational domain due to the employed wetting/drying
algorithm. The grid adjustment also reveals that the flow was deflected to the right-hand side of area II
during the free-flow conditions; consequently, the flushing channel location was close to the right bank.
Figure 2(b1) shows that a complex flow field with a strong reverse flow pattern and water stagnant
zone develops in the lower half of the reservoir. This can be attributed to the complex geometry of the
computational domain, the variation in flow depths from shallow conditions in the upstream areas to
deep conditions in the downstream areas, and the existing bed roughness of the computational domain.
In addition, Figure 2(b2) shows the water flow concentration in the flushing channel when the water
level is lowest in the reservoir. During the free-flow condition, as shown in Figure 2(b2), the velocities
rise to approximately 4.5 m/s, and supercritical flows are likely to develop in several zones of the
flushing channel. However, the 3D numerical model can capture the complex characteristics of the
flow field in channel bends (i.e., erosion along the outside of the bend and deposition along the inside)
and reproduced the non-symmetrical velocity profile over the width and the tilting the lateral water
surface at the apex of the channel bend [43]. As can be observed from Figure 2(b1,b2), the wet area of
the computational domain contains the water body and the corresponding surface velocity vectors so
that it is distinguished from the dry area without surface velocity vectors. An approximately 2-m-thick
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deposit along the left bank of the dead zone, shown in Figure 1d, can be attributed to the reverse flows
that developed beside the bank of the reservoir during the drawdown stage as shown in Figure 2(b1)
and that transported suspended fine materials into the stagnant water zone.

 
(a1) (a2)

(b2)

Figure 2. Computational grid (a1) at the beginning of the drawdown stage (t = 10 h) and (a2) during
the free-flow condition in the Dashidaira reservoir (t = 32 h); corresponding surface velocity fields:
(b1) at the beginning of the drawdown stage (t = 10 h) and (b2) during the free-flow condition (t = 32 h).
The illustration on the right in (b1) shows the reverse flow domain and stagnant water zone.

Figure 3a illustrates the measured bed topography after the 2012 flushing operation in comparison
with the simulated final bed topography after the flushing operation using the MPM and Van Rijn
formulas (Figure 3b,c, respectively). To provide more quantitative insights into the simulated final bed
topography after the flushing operation the BCI is defined as follows:

BCI =

n
∑

i=1
(zi_ms − zi_re f erence)

n
(10)

where zi_ms is the measured or simulated bed level after the flushing operation at each grid node and
zi_reference is the measured or simulated reference bed level at the corresponding node, which is used for
comparison purposes to provide information about erosion or deposition over a specific zone of the
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computational grid. Furthermore, n is the number of grid nodes considered for comparison purposes.
Positive and negative values of BCI represent depositional and erosional conditions, respectively.
In other words, BCI reveals the average change in the bed level of each target zone and readily
indicates the dominant morphological process (i.e., erosion or deposition) in the zone compared to the
reference case.

 
(a) (b)

(c)

Figure 3. (a) Plan view of the measured bed topography after the 2012 flushing operation; Plan view of
the simulated bed topography using (b) the MPM formula and (c) the Van Rijn formula.

BCI parameter was extracted in different areas of the reservoir using the measured bed levels
after flushing and for calculations based on the MPM and Van Rijn bed load sediment transport
formula when the measured bed levels before flushing (Figure 1b) are considered as reference case.
In the upstream area I, the measurements reveal an average erosion value of 2.03 and simulated
bed levels via MPM and Van Rijn formula in the calibrated case show average erosion value of
1.61 and 0.15 m, respectively. In this area, the performance of the MPM formula was better than
Van Rijn formula in prediction of the morphological bed changes. In the wider midstream segment
(i.e., area II), the measurements using the BCI parameter reveal an average erosion value of 0.67 m
whereas simulated bed levels via MPM and Van Rijn formula show average erosion value of 1.59 and
3.11 m, respectively. The predicted morphological bed changes in this area obtained using the MPM
formula were less overestimated than those obtained using the Van Rijn formula. In the area close to
the dam (i.e., area III), the results of the simulations showed a narrower flushing channel compared to
the measurements, regardless of the sediment transport formula used [43].

5. Discussion

5.1. Hydrodynamic Scenarios and Their Impacts on the Bed Morphology and Flushing Efficiency

5.1.1. Discharge Scenarios

One of the feasible scenarios in the Dashidaira reservoir is the introduction of an Additional
inflow Discharge during the Free-flow stage of the flushing operation (i.e., the ADF scenario).
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The additional discharge could be supplied from reservoirs located upstream of the Dashidaira
reservoir. This additional inflow could enhance sediment entrainment by increasing the average flow
velocity and bed shear stress in the Dashidaira reservoir. The ADF scenario is currently applicable,
and preliminary tests for this scenario are being implemented in the Dashidaira reservoir.

Figure 4a shows the additional inflow that could be supplied in different ADF scenarios, and
Figure 4b shows the discharge rates and original water level (i.e., Q and h, respectively) together with
modified discharge rates under different ADF scenarios in the Dashidaira reservoir. Under the different
ADF scenarios, the original boundary conditions of the water level (i.e., recorded during the 2012 flushing
operation) have been retained, but the original boundary conditions of the discharge during the free-flow
stage of the 2012 flushing operation change depending on which ADF scenario is used. For instance,
ADF 110 indicates that 110 m3/s of additional inflow discharge has been added to the original discharges
during the free-flow stage of the 2012 flushing operation. With an original TVFS value equals to
313.0 × 103 m3 in the reference case (i.e., resulting bed topography after simulation of 2012 flushing),
the TVFS increased to 356.0 × 103 in the ADF 75 scenario, 396.1 × 103 in the ADF 110 scenario, and
425.0 × 103 m3 in the ADF 170 scenario. The effects of introducing constant additional discharges under
various ADF scenarios on the FE and the TVFS are illustrated in Figure 4c. The horizontal axis shows
the ratio of average discharge during the free-flow stage using different ADF scenarios (i.e., Q2) to the
average discharge during the free-flow stage when no additional discharge is introduced in the reference
case (i.e., Q1). FE2 and FE1 are the flushing efficiencies when an ADF scenario is employed and when
no additional discharge is employed in the reference case, respectively. The TVFS increases when the
discharge increases during the free-flow stage. The FE values reached approximately −6.5% when
the ADF 60 scenario was used. In this case, the increase in the flushed sediment volume was smaller
than the increase in the used water volume according to the FE definition. Under the ADF 75, 90, and
110 scenarios, both the FE and TVFS increased with increasing average discharge during the free-flow
stage. Then, the FE variation trended downward until a stable level was reached for the ADF 150 and
ADF 170 scenarios. In contrast, the TVFS continued to increase. Under the given conditions, increasing
the discharge magnitude during the free-flow condition can increase the TVFS, but this increase is not
proportional to the discharge increase that causes the decrease in the FE for some cases. According to
the diagram shown in Figure 4c, when the average discharge during the free-flow stage increased by
approximately 56% under the ADF 110 scenario, (i.e., Q2/Q1 = 1.56), the FE increased approximately
by 5%. Under these conditions, the total used water volume for the flushing operation increased by
approximately 21%. In Table 3 the average bed level changes compared to the reference case using the
BCI parameter in the upstream, midstream and downstream areas have been revealed for the ADF 75,
ADF 110, and ADF 170 scenarios. As shown in Figure 4c and Table 3, introducing additional discharge
increases the erosion in all areas by between 3% and 36% depending on the additional discharge, but
the effect in the areas close to the dam (i.e., areas II and III) is more pronounced. Instead of adding
a constant discharge to the original discharge values during the free-flow condition in the reference
case, another scenario (i.e., the PDF scenario) using the same additional water volume over a shorter
duration and in the form of discharge pulses was tested. The PDF scenario was introduced to determine
whether changing the characteristics of the additional inflowing water (e.g., the discharge intensity)
markedly affects the quantity of flushed sediments and the bed changes in specific zones of the reservoir.
The concept of the PDF scenario has been illustrated schematically in Figure 4d. It should be noted that
before the flushing operation, area III was mainly covered with fine materials. During the simulation of
the flushing operation, eroded coarser materials from area I were deposited in the lower parts of area III
due to the reduced bed shear stress. Thus, introducing an additional discharge during the free-flow
condition can contribute to flushing the deposited sediments out of this area.
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(a) (b)

(c) (d)

Figure 4. (a) Constant additional discharge rates used for different ADF scenarios in the Dashidaira
reservoir. These additional rates are added to the original discharge rates shown in Figure 1c;
(b) Modified hydrodynamic boundary conditions for different ADF scenarios in the Dashidaira
reservoir; (c) Non-dimensional curves showing the relationships among TVFS, FE, and the water
discharge used under different ADF scenarios compared to the reference case; (d) Schematic figure
illustrating the PDF scenario with a variable discharge pulse in the second half of the free-flow stage.

Because the best FE correlation was found for the ADF 110 scenario as shown in Figure 4c, the total
volume of the additional water used during the 18 h of the free-flow stage was calculated, and this
additional water volume was introduced into the model in the form of two discharge pulses, the first
one in the first half of the free-flow stage (i.e., P1) and the second one (i.e., P2) in the second half. More
specifically, in the PDF scenario, a constant 110 m3/s discharge pulse within 8 h in the first half of the
free-flow flushing (i.e., P1 110 8) and a second discharge pulse with variable magnitude and duration
in the second half (i.e., P2 Q2 t2) were introduced for further assessments.

In Figure 5, the bed changes with and without the introduction of the additional discharge
(i.e., the reference case, ADF 110, and ADF 170) have been plotted at the cross-sections A-A, E-E,
F-F, H-H, K-K, and L-L. As can be observed from Figure 5(f1,f2), instead of erosion, deposition occurs in
cross section L-L. At the end of free-flow stage during the flushing process, bottom outlets are closed
and water level starts to increase beside the dam while it is still low in the upstream portions of the
reservoir and free-flow condition exists. In such a condition, the induced bed shear stress is reduced
noticeably in areas close to the dam. Therefore, the eroded large size sediments are still transported
towards downstream but they are deposited close to the dam without chance to flush. Table 3 reveals
that the introduction of an additional discharge during the free-flow condition, in ADF scenarios, has
a marginal effect on the erosion of coarser sediments in area I. This pattern can be attributed to the
major role of the water-level drawdown stage in the initial development and evolution of the flushing
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channel, as revealed by experimental and numerical model studies by Esmaeili et al. and Kantoush
and Schleiss [30,44]. Notably, from the reservoir entrance up to the cross-section A-A, the BCI values
showed 0.04, 0.06, and 0.10 m of erosion under ADF 75, 110, and 170 scenarios compared to the simulated
bed levels after 2012 flushing operation. Because the BCI values indicate overall deposition in area I,
the eroded coarser bed materials from the area upstream of section A-A are likely deposited again
after passing the cross-section A-A as a result of the increasing flow depth and the consequent velocity
reduction. This process prevents the smaller grain size bed materials underneath from being eroded.
However, if the deposition of coarser materials occurs in the main flushing channel, the erosion will
increase, even with a smaller additional discharge (e.g., in the ADF 75 scenario) due to an increase in the
bed shear stresses in the channel. In addition, the inflowing discharge during the free-flow condition is
concentrated in the central flushing channel, which mainly contributes to a slow widening and deepening
of the existing channel. This widening and deepening process is more effective in areas covered by finer
sediments (e.g., areas II and III). Thus, use of the 170 m3/s of additional inflow during the free-flow stage
may result in a further increase in the flushing channel width and depth in the lower part of area II and
throughout area III.

(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure 5. Cont.
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(d1) (d2)

(e1) (e2)

(f1) (f2)

Figure 5. Measured bed levels before flushing along with the simulated bed levels after flushing in the
reference case and under the ADF 110, ADF 170 and WDS −3.5 scenarios at (a1,a2) cross section A-A;
(b1,b2) cross section E-E; (c1,c2) cross section F-F; (d1,d2) cross section H-H; (e1,e2) cross section K-K;
and (f1,f2) cross-section L-L. Locations of the cross sections can be found in Figure 1b. Mea. and Sim.
are abbreviations for Simulated and Measured, respectively.

Also, the resulting BCI parameter for the PDF scenario has been shown in Table 3. Using the PDF
scenario not only enhanced the TVFS by increasing the erosion from areas II and III but also increased
the erosion of coarser material from area I when the second discharge pulse was sufficiently high
(i.e., PDF P1 110 8-P2 183.5 6). These increases can be attributed to the transport of already eroded
coarser materials from area I to farther downstream areas due to a higher induced bed shear stress.
Increasing the TVFS under the PDF scenarios, can increase the FE about 13% compared to the reference
case. Nevertheless, due to the further deposition of sediments eroded from the head of the reservoir in
the dam vicinity, the bed level changes appear to be marginal compared to the ADF 110 scenario when
the second discharge pulse is high. Figure 6 shows the bed changes in different cross-sections in area I
under the PDF P1 110 8-P2 183.5 6 scenario compared to the bed changes using the ADF 110 scenario
to quantitatively show the advantageous performance of the PDF scenario in eroding the coarser bed
materials in area I. However, the use of ADF or PDF scenario does not affect the main flushing channel
location close to the right bank in area II. Consequently, the deposited bed materials close to the left
bank in area II (i.e., the dead zone) still cannot be effectively removed.
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Table 3. Average bed level changes in different areas of the reservoir under different ADF, PDF, and
WDS scenarios. For ADF and WDS scenarios, the simulated bed levels after 2012 flushing operation
were used as the reference case to extract the BCI parameter, whereas for PDF scenario the simulated
bed levels under the ADF 110 scenario were used as the reference case.

Scenario ADF 75 ADF 110 ADF 170

Area I II III I II III I II III
BCI (m) 0.32 −0.47 −0.54 0.06 −0.49 −0.55 0.20 −0.76 −0.90

TVFS (×10−3 m3) 356.0 396.1 425.0

Scenario PDF P1 110 8-P2 137.5 8 PDF P1 110 8-P2 157 7 PDF P1 110 8-P2 183.5 6

Area I II III I II III I II III
BCI (m) −0.01 −0.09 −0.21 0.02 −0.04 −0.20 −0.09 0.01 0.04

TVFS (×10−3 m3) 426.2 417.3 410.9

Scenario WDS −0.5 WDS −2.5 WDS −3.5

Area I II III I II III I II III
BCI (m) 0.03 −0.14 0.02 0.10 −0.13 −0.23 −0.08 −0.33 −0.22

TVFS (×10−3 m3) 322.8 331.9 378.9

(a) (b)

(c) (d)

(e)

Figure 6. Measured bed levels before flushing and the simulated bed levels after flushing under the ADF
110 and PDF P1 110 8-P2 183.5 6 scenarios at (a) cross section A-A; (b) cross section B-B; (c) cross section
C-C; (d) cross section D-D; and (e) cross section E-E. Locations of the sections can be found in Figure 1b.
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5.1.2. Water Level Scenarios

Dominant role of the water-level drawdown stage in scouring the flushing channel has been
already highlighted in physical model studies [30,44]. Therefore, another feasible scenario for the
Dashidaira reservoir is increasing the Water-level Drawdown Speed (i.e., the WDS scenario). A target
limb during the second half of the drawdown stage (i.e., between t = 12 and 20 h after starting the
flushing) in the water-level variation curve is selected. Then, the original water-level drawdown rate
is increased significantly for 1 hour at the beginning of the target limb (i.e., between t = 12 and 13 h
after starting the flushing). Afterwards, the original drawdown rates remain unchanged during the
remaining time (i.e., from t = 13 until t = 20 h). As a result, introducing an extra drop in the water
level (e.g., 0.5, 2.5, and 3.5 m) for one hour while the original discharge rates remain unchanged causes
the water velocity to increase abruptly, which acts as a strong driving force over the bed materials.
For example, the WDS −0.5 scenario represents an extra 0.5-m drop in the water level at the beginning
of the relevant limb (i.e., between t = 12 and 20 h). This scenario can be created via gate operations
during a flushing event (e.g., a temporary increase in the gate opening speed) or with modification
of the bottom outlet geometry to increase the discharge capacity of the bottom outlets, which can
contribute to a faster drawdown process. Figure 7a illustrates the original water level and discharge
rates, together with water-level modifications, during the target limb for three different WDS scenarios
in the Dashidaira reservoir.

(a) (b)

Figure 7. (a) Utilized water levels and discharge rates for different WDS scenarios; (b) Non-dimensional
curves showing the relationship among TVFS, FE, and Δh under different WDS scenarios compared to
the reference case.

The effects of introducing a faster drawdown of the water level on the FE and the TVFS under
various WDS scenarios are shown in Figure 7b. The horizontal axis shows the ratio of the extra imposed
water level drop (i.e., Δh2) to the original one (i.e., Δh1) at the beginning of the target limb during
the drawdown stage. On the left vertical axis, FE2 represents the flushing efficiency when a WDS
scenario is employed, and FE1 represents the flushing efficiency when the original water level of the
2012 flushing operation is applied. All calculated and presented values are relative to the reference case
(i.e., the 2012 flushing operation). As shown in Figure 7b, the FE variations are overall directly related
to the variations in Δh2/Δh1. However, removing the coarser material from the far upstream area of
the reservoir requires a high extra drop in the water level (i.e., a high Δh2/Δh1). Moreover, in some
cases, increasing Δh2/Δh1 results in lower TVFS and FE values because coarser eroded material moves
from upstream areas to downstream areas and is deposited on finer materials in the deeper areas.
If the driving forces produced by the extra drop in the water level are not strong enough to remobilize
the newly deposited coarser sediments overlying finer sediments, the erosion of finer fractions may
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be lower, resulting in lower TVFS values and consequently lower FE2 values. Table 3 also shows the
average BCI values in the upstream, midstream and downstream areas of the Dashidaira reservoir
after the application of the WDS −0.5, WDS −2.5, and WDS −3.5 scenarios. As shown in Table 3,
compared to the reference case with the TVFS of 313.0 × 103 m3, the TVFS increases slightly when
the magnitude of the extra drop in the water level is small (e.g., 0.5 m in the WDS −0.5 scenario).
When the extra drop in the water level is larger (e.g., 2.5 m), the TVFS increases but not remarkably.
Although the water-level decrease can enhance the relative roughness (i.e., the ratio of the roughness
height to the water depth), this increased roughness is not high enough to lead to the erosion of the
coarser materials in the upstream areas. Thus, the main effect is limited to the finer materials in the
WDS −0.5 and WDS −2.5 scenarios. Due to the larger extra water level drop in the WDS −3.5 scenario,
higher bed erosion occurs over the entire reservoir, including the upstream areas covered with coarser
materials. In Figure 5, the bed changes in different cross-sections located in areas I, II, and III under the
WDS −3.5 scenario are compared to the bed levels in the reference simulations.

Although a marked drop in the water level enhances the sediment erosion from the entire reservoir
area and increases the FE more than 20% as shown in Figure 7b, the flushing channel location remains
close to the right bank in area II, and the deposits along the left bank (i.e., the dead zone) are not
effectively removed. However, constraints imposed by the gate facilities for safe and quick opening,
and existing risks regarding the side bank failures are necessary to be assessed carefully.

5.2. Auxiliary Channel Scenario

According to the literature, construction of longitudinal channels in the wide areas of the reservoir
has been proposed for affecting the scouring pattern [4]. Thus, a potential scenario for improving
the erosion in the dead zone area of the Dashidaira reservoir is the application of a longitudinal
auxiliary (i.e., secondary) channel in the dead zone to act as a side channel beside the main channel.
In this scenario, the flushing flow is partly diverted from the main channel into the auxiliary channel
and enters the main channel again at a confluence further downstream of the diversion point. Thus,
the morphological processes occur along two flushing channels in area II. In contrast to the discharge
and water-level scenarios, which affect the hydrodynamic characteristics within the entire reservoir
during the flushing operation, auxiliary channel scenario influences the hydrodynamic characteristics
in a specific segment of the reservoir. Thus, the auxiliary channel scenario may be more useful for
resolving the issue of ineffective sediment scouring within the dead zone area in the reservoir.

The presence of two flushing channels in area II is better than just one in terms of several aspects.
First, erosion occurs in two flushing channels instead of one, which means that flushing occurs over
a longer channel (i.e., larger area). Consequently, higher TVFS and FE values are expected. When
a longitudinal auxiliary channel is not used, the flushing channel merely develops along the river
thalweg (i.e., pre-existing flushing channel). The flushing channel attracts the entire flow, and the
channel mainly deepens, which is not an effective approach for increasing the TVFS and FE. Second,
a remarkable amount of previously unerodible sediments can be eroded from the dead zone following
the construction of a longitudinal auxiliary channel.

The schematic illustration showing the location of the applied auxiliary channel and also the
surface velocity vectors in different stages of the flushing using an auxiliary channel are shown in
Figure 8. The location of the entrance of auxiliary channel was selected in a place where a portion of
the flushing flow can be easily diverted into the channel (Figure 8a). In addition, in the numerical
model, side banks of the auxiliary channel were implemented along the existing grid lines in the
selected area of the dead zone. The depth and length of the channel were set to be 2.5 and 403 m,
respectively. As shown in Figure 8b, the auxiliary channel deflects a portion of the water flow towards
the dead zone, and the remaining flow continues its original path close to the right bank of area II
along the original thalweg of the main flushing channel. At the beginning of the drawdown stage
(i.e., t = 10 h) in Figure 8c, the incoming flow is mainly deflected towards the auxiliary channel. At the
middle of the drawdown stage (i.e., t = 16 h), the flow bifurcates completely, with a major portion of
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the incoming flow being deflected towards the main channel and a smaller portion being deflected
towards the auxiliary channel, as shown in Figure 8d. After erosion of the existing sandbar, between
the main and auxiliary channel, and the consequent water exchange between the channels due to the
small water level fluctuations during the free-flow stage, the water flow is distributed over a wider
flushing channel. These conditions continue during the free-flow stage (i.e., t = 32 h), as shown in
Figure 8e. More specifically, using a longitudinal auxiliary channel along the dead zone develops
another thalweg away from the main flushing channel thalweg by attracting a portion of the incoming
flow and preventing the entire flow from heading towards the right bank of area II.

 

(a) (b)

(c) (d)

(e)

Figure 8. (a) Schematic illustration of the concept of longitudinal auxiliary flushing channel in the dead
zone area of the Dashidaira reservoir; The surface velocity field in different stages using an auxiliary
flushing channel: (b) before onset of the drawdown stage (i.e., t = 5 h); (c) at the beginning of the
drawdown stage (i.e., t = 10 h); (d) at the middle of the drawdown stage (i.e., t = 16 h); and (e) during
the free-flow condition (i.e., t = 32 h).

Figure 9a illustrates the plan view of the final bed morphology in the scenario with an auxiliary
longitudinal channel in the dead zone of area II. Utilizing this scenario increases the TVFS to
340.0 × 103 m3, compared to the 313.0 × 103 m3 of the reference case. In Figure 9b–d, the final
bed levels in different cross-sections of area II are shown after the flushing operation and are compared
to the bed levels in the reference case. One can clearly see that the bed levels decreased noticeably along
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the thalweg of the auxiliary flushing channel and meanwhile the channel widened. Both deepening
and widening process of the auxiliary channel contributes in increasing the TVFS and subsequently
the flushing efficiency.

(a) (b)

(c) (d)

Figure 9. (a) Plan view of the final simulated bed levels using an auxiliary flushing channel along
the dead zone of area II. Measured bed levels before flushing and simulated ones after flushing in
the reference case along with simulated ones using an auxiliary flushing channel, at the location of
(b) cross section F-F; (c) cross section G-G; (d) cross section H-H. Location of the cross sections can be
found in Figure 1b.

6. Conclusions

The following results were obtained from the present work:

• Both the MPM and Van Rijn formulas yielded satisfactory performances in the simulation of bed
changes in specific segments of the reservoir during the flushing operation (e.g., MPM formula in
the upper half of the reservoir and Van Rijn formula in the vicinity of the Dam). These sediment
transport formulas have been developed empirically to calculate the sediment transport for a given
set of sediment sizes and hydrodynamic boundary conditions. However, the bed sediment size
distribution, bed roughness, and hydrodynamic boundary conditions change dynamically during
the free-flow flushing process. Such significant changes cannot be handled by empirical sediment
transport formulas due to their inherent limitations. Nevertheless, the MPM bed load sediment
transport formula qualitatively and quantitatively performed better than the Van Rijn formula
for the entire reservoir. The MPM formula was able to achieve TVFS values that were more
than 75% that of the measured TVFS values. Due to the application of the empirical formulas,
the alluvial roughness also could not be estimated appropriately, which further magnifies the
mentioned inability of the sediment transport formulas to accurately represent the morphological
bed changes.

• For the Dashidaira reservoir, introducing an artificial additional discharge during the free-flow
stage is practically feasible since this discharge can be supplied from upstream reservoirs.
In addition, because this additional discharge is introduced when the flushing gates are fully
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opened and the water level is low, this discharge can be passed through the bottom outlets if
its value is less than the maximum capacity of the outlets. Additional discharge has two major
effects: first, it increases the induced bed shear stress and bed erosion and supplies an additional
driving force to transport eroded sediments farther downstream in the reservoir and flush them
out from the reservoir; second, it causes the water level to increase in the downstream river
channel, which can be beneficial from an environmental point of view because it washes away
fine materials from the downstream channel terraces (thereby preventing river channel clogging).
However, it was found that introducing the extra discharge in the form of two discharge pulses
with a larger discharge pulse in the second half of the free-flow stage more efficiently increases
the FE ratio and the bed degradation in the upstream areas covered with coarser materials.
The numerical outcomes showed that introducing approximately 21% more water from upstream
reservoirs (i.e., an approximately 56% increase in the average free-flow discharge) can enhance
the FE by approximately 5−13% compared to the reference case (i.e., the 2012 flushing operation),
depending on how this additional discharge is delivered.

• The construction of an auxiliary longitudinal flushing channel in the dead zone area of the
Dashidaira reservoir causes a portion of the flushing flow to deviate from the main channel into
the auxiliary channel and to enter the main channel again via a confluence downstream of the
diversion point. The non-diverted flow continues along its original path along the thalweg of the
main flushing channel and the diverted flow towards the auxiliary channel scour the deposited
sediments from the targeted dead zone in the reservoir. The flushing processes associated with
the auxiliary longitudinal channel result in a flushing channel that is overall longer and wider.
Hence, the FE is higher by as much as approximately 9% compared to the reference case.
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Abstract: Most European riverine ecosystems suffer from the negative influence of impoundments
on flow regime. Downstream effects of dams lead to a number of environmental and socioeconomic
risks and, therefore, should be thoroughly examined in specific contexts. Our study aims to quantify
the downstream effects of the Siemianówka Reservoir (Upper Narew, Poland), using statistical
analysis of key elements of the river’s flow regime, such as the flow duration and recurrence of
floods and droughts. In a comparative study on control catchments not influenced by impoundments
(the Supraśl and Narewka Rivers), we revealed the following downstream effects of the analyzed dam:
significant shortening of spring floods, reduction of the duration and depth of summer droughts,
decrease of the maximum discharge, and homogenization of the discharge hydrographs. Although
we determined a significant decrease in the duration of summer floods in the “before” and “after”
dam function periods, we showed that this issue is regional, climate-related, and replicated in control
catchments, rather than an evident downstream effect of the dam. We conclude that significant
hydrological downstream effects of the Siemianówka dam–reservoir system could have been the
main driver inducing the deterioration of the anastomosing stretch of the Narew River downstream
of the dam.

Keywords: Siemianówka; hydrology; Narew River; dam; reservoir; discharge; flow regime

1. Introduction

The vast majority of rivers in the northern hemisphere have been segmented by dams, which poses
the risk of significant deterioration of downstream riverine and riparian ecosystems [1]. The influence
of dams on river systems is reportedly several times greater than, for example, the influence of climate
change [2]; therefore, the analysis of downstream effects of dams (reservoirs) remains an important
issue in international scientific literature [3–5]. Based on the modification of river discharge on an
hourly and daily basis, seasonal changes of flow regimes [6,7], and water temperature modification [8]
in impounded rivers, dams can be considered a key element affecting the hydrology of downstream
reaches of rivers.

Dams negatively influence all elements of riverine ecosystems. First and foremost, downstream
effects of dams induce sediment transport and river channel sedimentation/erosion balance [9].
Changes of the river channel caused by sediment trapping by dams and reservoirs affect the
distribution of flow velocities and induce incisions in river channels [10]. Changed water exchange and
in-stream biogeochemical cycles affect the water quality of impounded rivers [11]. The changes in the
longitudinal connectivity of river reaches and unstable flow regime and water temperature affect fish
communities [12,13]. The alteration of the river baseflow due to the operation of the dam negatively
affects macroinvertebrate communities by changing their trophic structure [14]. The changed flow
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regime, including modified inundation periods and seasons, also affects the riparian vegetation [15].
Complex interactions of riverine ecohydrological processes affected by dams need to be addressed
in river management strategies [16] because observed and documented downstream effects of dams
influence the broad spectrum of the anthroposphere, challenging livelihoods and economies [17].

Large dams have significant downstream effects [3,4,13,16,18–20] and are thus more frequently
studied than small ones [8,21]. However, small- and medium-sized dams and associated reservoirs
influence the vast majority of the world’s rivers [1]. The role of these dams in shaping the global
environment remains widespread and locally critical.

In Europe, north-east Poland is known for its high environmental awareness; the area is home to
four national parks, five landscape parks, and multiple environmental reserves. Nearly 56% of the
area of the Podlaskie Voivodeship province—the highest rate among all regions of the country—is
covered under the EU environmental conservation program Natura 2000. The cultural landscape,
consisting of a mixture of agricultural land, forests, wetlands, and settlements, is called the “Green
Lungs” of Poland. The core of this unique region is the Narew River, which remains the backbone
of local agricultural and environmental issues. Part of the middle reach of the Narew River formed
the continent’s unique anastomosing system of river branches [22,23], which was the main reason for
establishing a national park in this region. The uppermost reach of the Narew River was dammed
in 1990 when the Siemianówka Reservoir (SR) was constructed. Since then, specific studies have
revealed changes in discharge and water-level dynamics [24–28] and biodiversity [29–32] of the
riverine ecosystem. These changes have been attributed to the SR. Some observed biogeochemical
changes in the downstream anastomosing river system have also been attributed to the dam [33]. The
most recent negative hydrological and geomorphological changes of the anastomosing stretch of the
Narew River are thought to be accelerated by the downstream effects of the SR [23]. However, no
comprehensive long term data-supported hydrological research on the downstream effects of the SR
has been conducted so far.

A dataset of more than 20 years of hydrological discharge data for the Narew River after the SR
was established is available. Therefore, we aim to conduct a data-based and statistically supported
assessment of the river’s flow regime based on comparative before–after control–impact comparisons.
We investigated the impact of the reservoir construction on the flow regime of downstream reaches of
the Narew River. Statistical analyses of the precipitation pattern, daily discharge records (minimum,
maximum, 1st, 2nd, and 3rd quartile), and occurrence and recurrence of floods and droughts
were conducted for two different time periods: 1951–1989 (pre-dam) and 1990–2012 (post-dam).
Our study provides hydrological evidence of the influence of the SR downstream of the Narew
River; thus, we open new avenues for the interpretation of biological, ecological, hydrological, and
geomorphological research.

2. Materials and Methods

2.1. Study Area

The study area, the Upper Narew Catchment (NE Poland), is the sub-catchment of the largest
Polish river basin, namely, the Vistula (Figure 1). The analyzed catchment covers an area of 6656 km2

(of which 17% belongs to Belarus). The region was formed by glacial erosion and accumulation in the
Pleistocene. It is characterized by a flat relief with an average elevation of 152 m above sea level.
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Figure 1. Case study location: Siemianówka Reservoir (SR) and Upper Narew River Catchment,
and location of water gauges used to record the data used for the analysis.

The climate of the Upper Narew Catchment is continental; it is influenced by cold polar air
masses originating in Russia and Scandinavia. This is reflected in the mean annual air temperature,
which equals 7.1 ◦C, and annual magnitude of air temperature changes that can reach up to 55 ◦C
according to the data of the Institute of Meteorology and Water Management-National Research
Institute (IMGW-PIB). Mean annual sums of precipitation oscillate at about 600 mm. Land cover in
the Upper Narew Catchment is dominated by agriculture (53%) with arable lands (39%) and pastures
(14%) [34]. Urban and settled areas cover less than 3% of the catchment. Dominant types of soil are
pure and loamy sands; very heavy impermeable soils (clay, clay loam, and silt loam) are rare [34].
The topographical setting of the catchment determines the typical lowland character of the river valley,
which in primeval conditions was supposed to be exposed to regular and long-lasting inundation,
most frequently during the early spring snowmelt season. The rivers of this region of Europe are
subject to thaw floods, which are considered to be the most important regular extreme phenomenon
shaping riparian wetlands, including the anastomosing channel of the Narew downstream of the
SR [22]. Substantially lower rain-event driven floods occur occasionally in the summer season.

The Upper Narew Catchment, being a part of the Narew Basin, is surrounded by multiple
environmental protection sites, including national parks and Natura 2000 sites (Birds and Habitat
Directive; Figure 1). Among the protected areas in the catchment, the Narew National Park (NNP),
Upper Narew Valley Refuge Special Area of Conservation (SAC), and Upper Narew Valley Special
Protection Area (SPA) are the most important due to their location in an area downstream of
the SR. All three protected areas embrace unique wetland habitats shaped by and dependent on
regular inundations.

2.2. Siemianówka Reservoir

The SR has a total capacity of 79.5 million m3 and was created through dam construction in
the course of the River Narew, (432 km, measured from the outlet). The first construction started in
1977, whereas the complete filling dates back to 1992 when the SR became entirely operational [35].
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The dimensions of the reservoir are as follows: 11 km length, 0.8 to 4.5 km width, 2.5 m mean
depth, 7 m maximum depth, and 1050 km2 catchment area. The reservoir and dam were created for
multiple purposes including the enhancement of local tourism and recreation, energy production,
flood protection, fishing, and irrigation of agricultural lands [36]. According to reservoir management
instructions [35], one of the main objectives is to increase the low flow during the summer season in
the Narew to maintain biological life, and to mitigate high peak flow to reduce flood risk in the valley
during the spring season. Reference catchments used as control sites in our research, that is, from the
Narew River down to the Narewka gauge station, and from the Supraśl River down to the Fasty gauge
station (Figure 1; Table 1), are located in the same region. Their physiographic features are similar to
the analyzed catchment of the Narew River.

Table 1. Gauge stations in the Upper Narew Catchment. The asterisk ‘*’denotes catchments of major
tributaries of the Narew River, which are used as references in this study.

Gauge Station River Flow Data Availability Catchment Area (km2)

Narewka * Narewka 1951–2013 590.4
Bondary Narew 1963–2013 1094.6
Narew Narew 1951–2013 1978.0
Suraż Narew 1951–2013 3376.5
Fasty * Supraśl 1975–2013 1818.0

Strękowa Góra Narew 1951–2012 6656.0

2.3. Hydrometeorological Analysis

This study used daily precipitation records from 20 meteorological stations for the period
1951–2012 for the analysis. Daily flow records for six gauge stations covering different time periods
(Table 1) were subjected to a statistical analysis. Both meteorological and hydrological data were
acquired from the IMGW-PIB. Whilst four flow gauge stations (Bondary, Narew, Suraża, and Strękowa
Góra) are located on the Narew River and are used for direct dam impact assessment, the remainig
two (Narewka and Fasty, located on the Narew tributaries and not influenced by the dam) constitute
control stations to eliminate potentially wrong inferences due to the climate impact on the flow
regime. To assess the significance level of the precipitation trend, the non-parametric Pettitt's test [37]
was applied, with a significance level of p ≤ 0.05. This test provides the assessment of the null
hypothesis H0, implying that the data are homogeneous throughout the period of observation. Pettitt’s
test was reported in the literature to be sufficient for detecting break points in a set of long-term
observations [38,39]. In addition, flow-duration analysis was conducted, yielding the annual minimum;
maximum; and 25, 50, and 75 percentile discharge for all gauge stations. Statistical analysis of flow data
homogeneity based on Pettitt’s test was conducted to indicate significant breakpoints and timescale
trends to assess the impact of dam construction on the flow regime.

Additionally, flow-duration curves (FDCs) have been created for every gauge station to express the
overall regime change in the analyzed time frame. The FDC is a plot that shows the percentage of time
during that discharge in a stream is likely to equal or exceed some specified value of interest. In this
study, the flow datasets for each gauge station were divided into two subsets (pre-dam, until 1988;
and post-dam, since 1989) for which FDCs were created separately. Finally, temporal patterns of floods
and droughts were analyzed. We applied standard thresholds of river discharge assessment, such as
the median of the highest annual discharges (MHQ, proxy for a bankfull discharge) and average
lowest discharge (ALQ), both from multi-year records, for flood and drought analysis, respectively.
The study calculated the number of days with discharge higher than MHQ and lower than ALQ for
selected gauge stations to reveal whether the occurrence and recurrence of floods and droughts, that is,
extreme hydrological phenomena critical for the functioning and preservation of anastomosing river
branches and related biocenoses, have maintained trends similar to pre-establishment of the dam
or have changed. For a comprehensive view on the aspect of floods and drought distribution and
frequency, we analyzed these phenomena in for all years considered (1951–2013) and separately for
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summer (May–October) and winter (November–April). In addition, we analyzed floods and droughts
of the Narew River for the period from 1975 to 2013 because reference data for the SR were available.
This approach allowed us to draw conclusions on the importance of the length of the river discharge
dataset with respect to its usefulness for before–after control–impact studies of downstream effects of
dams, which has already proven to be a critical issue in downstream effect analysis [40].

3. Results

3.1. Precipitation

The rainfall statistics (Figure 2) based on Pettitt’s test clearly indicate a moderate increasing trend
over the last 60 years with some wetter and drier periods. Over the period analysed, no statistically
significant differences in monthly sums of precipitation were detected between the results from 20
stations analysed (statistics available in the Supplementary material, Section 1). Average annual
precipitation sum within the Upper Narew catchment in the years 1951–2012 equalled 598 mm.
The total annual precipitation was slightly higher in 1970–1980 than in 1951–1969 or 1981–2012.
This pattern was significantly broken in 2010 due to an extremely wet year with flooding across Poland;
however, the pattern appears to be continuing in recent years. This characteristic precipitation pattern
is a crucial result, and in addition to dam construction, it needs to be taken into account as a potential
key controlling factor with respect to further interpretation of flow regime changes.

 

Figure 2. Total annual precipitation for the time period 1951–2012 in the Upper Narew Catchment.
“mu” stands for the average value at each time period. The black arrow indicates the year the SR
started operation.

3.2. Discharge

3.2.1. Minimum Discharge

The analysis of the annual minimum discharge pattern based on Pettitt’s test indicated diverse
results for each gauge station. No significant trend was detected in the analyzed period for the Fasty
(Figure 3A) and Narewka (Figure 3B) gauge stations located on the tributaries of the Narew River,
where the influence of the SR on the flow regime was not an issue. In contrast, characteristic trends and
breakpoints were noted for gauge stations located along the Narew River. However, due to different
occurrence times, the detected trends were most likely driven by varied factors. For the Bondary
gauge station (Figure 3C), located immediately downstream of the SR, one significant break point
occurred in 1994, indicating an average increase of 60% between the separated time periods. Moving on
further downstream of the Narew gauge station (Figure 3D), two significant breakpoints were detected
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(1971 and 1994). During the first time period (1951–1971), the annual minimum flow was 1.6 m3·s−1,
increasing from 1972 to 1993 by 87%, and increasing yet again in 1994–2013 by 17%. The Suraż
gauge station (Figure 3E) recorded trends identical to those at Narew but of lower magnitude in the
corresponding time periods (an increase of 71% from 1972 to 1993 and of 14% from 1994 to 2013). Whilst
the first increase of the annual minimum flow is most likely related to the precipitation increase, as the
occurrence of both coincide in time, the latter is most likely due to reservoir operation. The Strękowa
Góra gauge station (Figure 3F), which is located in the most downstream part of the catchment seems
to reflect only precipitation-driven changes of the minimum flow pattern, which increased from 1972
to 1987 by 55% and decreased by 11% from 1988 to 2012. This indicates that the dam impact subsides
at some point of the Narew River between the Suraż and Strękowa Góra gauge stations.

Figure 3. Annual minimum discharge for selected gauge stations of the Upper Narew Catchment:
(A) Fasty, (B) Narewka, (C) Bondary, (D) Narew, (E) Suraż, and (F) Strękowa Góra. “mu” stands for the
average value of each time period. The black arrow indicates the year the SR started operation.

3.2.2. First Quartile Discharge

The analysis of the first quartile flow, which represents the median of the lower half of the dataset
indicates moderate changes. At the three gauge stations (Fasty, Narewka, and Bondary; Figure 4A–C,
respectively), no significant trend was recognized during the analyzed period. In the case of minimum
flow, a similar response was observed at the Narew (Figure 4D) and Suraż gauge stations (Figure 4E).
An increase occurred in 1970, with rates reaching 71% and 60% at the Narew and Suraż gauge stations,
respectively. Taking into account the time of appearance, this correlates with the break point of the
precipitation pattern shift observed in 1970. It is similar to the response of the minimum flow pattern,
with one major exception: it did not subside after 1980 when the precipitation decreased. Considering
changes detected at the Strękowa Góra gauge station (Figure 4F), the flow trends precisely follow the
precipitation pattern, increasing at first by 50% in 1972–1987, and finally decreasing by 11%.
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Figure 4. Annual first quartile discharge for selected gauge stations in the Upper Narew Catchment:
(A) Fasty, (B) Narewka, (C) Bondary, (D) Narew, (E) Suraż, and (F) Strękowa Góra. “mu” stands for the
average value of each time period. The black arrow indicates the year the SR started operation.

3.2.3. Second Quartile Discharge

The analysis of the second quartile flow, which simply represents the median of the observed
dataset, indicated no significant trends for the two gauge stations (Fasty and Bondary; Figure 5A,C).
Two characteristic patterns were observed at the remaining gauge stations. First, at the Narewka
(Figure 5B) and Strękowa Góra (Figure 5F) gauge stations, we observed two significant breakpoints of
the trend reflecting variation in precipitation from 1970 to 1980. Second, at the Narew (Figure 5D) and
Suraż (Figure 5E) gauge stations, we observed one significant trend shift in 1970. Regarding the rates of
increase, the highest rate was noted at the Narew and Suraż gauge stations (64% and 60%, respectively)
and a significantly lower one was detected at the Fasty and Strękowa Góra gauge stations (42% and
34%, respectively). The decreasing trends observed at the latter two gauge stations reached 10%.
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Figure 5. Annual second quartile discharge for selected gauge stations of the Upper Narew Catchment:
(A) Fasty, (B) Narewka, (C) Bondary, (D) Narew, (E) Suraż, and (F) Strękowa Góra. “mu” stands for the
average value of each time period. The black arrow indicates the year the SR started operation.

3.2.4. Third Quartile Discharge

The analysis of the third quartile flow, which represents the median of the higher half of the
dataset, indicates diverse changes. No significant alteration of the trend during the analyzed period
was detected at the three gauge stations (Fasty, Bondary, and Strękowa Góra; Figure 6A,C and F).
Identical changes were observed at the Narewka (Figure 6B) and Narew (Figure 6D) gauge stations,
accurately reflecting the precipitation pattern, which increases in 1970 (by 42%) and decreases in 1983
(by 15%). The flow pattern at the Suraż gauge station (Figure 6E) seems to have partial fluctuations
in precipitation, because the increase date coincides with the time in both cases. However, there is a
disagreement in the subsidence seen in total precipitation, which is not visible in the flow alteration
noticed around 1980.
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Figure 6. Annual third quartile discharge for selected gauge stations of the Upper Narew Catchment:
(A) Fasty, (B) Narewka, (C) Bondary, (D) Narew, (E) Suraż, and (F) Strękowa Góra. “mu” stands for the
average value of each time period. The black arrow indicates the year the SR started operation.

3.2.5. Maximum Discharge

The changes in the annual maximum flow trends in the analyzed period seem to be the most
conspicuous. Among the investigated gauge stations, two indicated no significant trend changes (Fasty
and Narewka; Figure 7A,B). However, an explicit decrease was noted at the remaining four stations.
Although the direction of change is consistent, the time of occurrence differs. This proves that the
driving force of such change is not homogenous at all stations. In particular, it is most probable that the
shifts occurring in 1988 at the Bondary (Figure 7C), Narew (Figure 7D), and Suraż (Figure 7E) gauge
stations are caused by the dam construction. A substantial decrease was detected in all cases, reaching
67%, 52% and 33% at the aforementioned gauge stations, respectively. Although the decrease (by 43%)
was also noted at the Strękowa Góra gauge station (Figure 7F), the time of the breakpoint occurrence
(1983) suggests that it is most likely driven by precipitation decrease.
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Figure 7. Annual maximum discharge for selected gauge stations of the Upper Narew Catchment:
(A) Fasty, (B) Narewka, (C) Bondary, (D) Narew, (E) Suraż, and (F) Strękowa Góra. “mu” stands for the
average value of each time period. The black arrow indicates the year the SR started operation.

3.3. Flow-Duration Curve

The results indicating the change in the FDC prove the undeniable impact of reservoir construction
on the flow regime of the Narew River. The alterations at the Fasty (Figure 8A) and Narewka (Figure 8B)
gauge stations exclusively reflect climate-driven changes because both are located at the Narew
tributaries, which are not impacted by the dam construction. Figure 8A,B show that the shape of
the curve remains similar during pre- and post-dam periods; only a regular shift (overall decrease)
in magnitude is detected in all exceedance probability intervals. In contrast, such a shift does not
occur for gauge stations located directly on the Narew River (Figure 8C–F). Instead, a flattening of the
curve is observed at all gauge stations during the post-dam period, leading to varying intersections
of the curves at different exceedence probability points. The response is homogenous at all gauges,
indicating that the daily streamflow decreases in the lower percentiles (i.e., higher flow) and increases
in the higher percentiles (i.e., lower flow). Moving from upstream (Bondary) to downstream (Strękowa
Góra), the magnitude of change seems to decline gradually, whereas the curve intersections shift to
lower percentiles.

115



Water 2017, 9, 783

 
Figure 8. The changes in FDCs at selected gauge stations of the Upper Narew Catchment: (A) Fasty,
(B) Narewka, (C) Bondary, (D) Narew, (E) Suraż, and (F) Strękowa Góra. The discharge is presented on
a logarithmic scale.

3.4. Ocurrence and Recurrence of Floods and Droughts in Different Seasons

The analysis of temporal trends of floods and droughts revealed significant changes in the
ocurrence and recurrence of these extreme phenomena (Figures 9 and 10). In the period “before” the SR
was established, the frequency of years without flooding (daily average discharge higher than MHQ)
reached only 0.1 (floods did not occur in 4 out of 39 analyzed years). In the period “after” the SR was
established, the frequency of years without flooding and higher than the applied threshold reached 0.3
(floods did not occur in 7 out of the 23 analyzed years). The longer inundation periods observed in the
Narew River Valley in the past, mainly in March and April, which were assessed using records from
the Suraż gauge station, are most likely related to the unmanaged flow regime, which is affected by
snowmelts and thaws. Although the annual recurrence of floods tends to decrease on the regional scale
(a statistically significant decrease was recorded both for Narew in Suraż and the reference catchment
Narewka in Narewka; Figure 10G,T), the decrease of the spring thaw flood recurrence and duration
is statistically significant only for Narew (Figure 10I,L vs. Figure 10V,Z). This observation leads to
the conclusion that the SR has a significant and considerably high influence on the recurrence and
duration of floods for the Narew River: (1) the contemporary recurrence of Narew floods on the annual
basis is 34% lower than before the SR was established; and (2) the contemporary duration of spring
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thaw floods declines by 56%, from an average of 26 days to 15 days before and after the SR started to
operate, respectively.

 

Figure 9. Matrix presenting the occurrence and duration of floods (blue) and droughts (red) of the
Narew River at the Suraż gauge station.

The detection of a significant difference of the flood duration (decline) in Narewka (reference
catchment) between the whole year (Figure 10T) and summer (V-X; Figure 10U) leads to the conclusion
that the operation of the SR does not significantly reduce summer flooding. In terms of flooding,
the flow regime of the other reference catchment (Supraśl River, Fasty gauge station) does not show
significant changes throughout the analyzed years (Figure 10Y–Z). Despite the fact that the recurrence
and duration of flooding generally decreases with respect to the whole year from 1951–2013, for both
summer–autumn and winter–spring phenomena, the before–after comparison is not statistically
significant (p values range from 0.188 to 0.608).

The SR has a completely different influence on the low flow of the Narew River. On the
regional scale, the duration and recurrence of droughts lower than the applied threshold tends to
significantly increase (e.g., in the reference catchments of Narewka and Supraśl; Figure 10M–O and P–S,
respectively). In contrast, both the short- (1975–2013) and long-term (1951–2013) horizon recurrence
and duration of droughts decrease in the case of the Narew downstream SR, similar to short-term
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observations presented by Romanowicz and Osuch [28]. A statistically significant decline of the
drought frequency was recorded in summer (May–October; Figure 10B,E), winter, and in the long term
(whole year; Figure 10A,C), which is an important downstream effect of the SR. Although no statistical
significance was revealed in the case of Narewka when comparing the durations of droughts before and
after the establishment of the SR (Figure 10M–O), we observed a significant increase in the recurrence
and duration of droughts in the case of the Supraśl River (Figure 10P,R). Discrepancies in the statistical
significance of the before–after regime of floods and droughts between short-term (Figure 10D,J) and
long-term analyses (Figure 10A,G) prove that using short sets of data to reveal flow regime changes
due to dams may lead to wrong interpretations, as also shown by Huh et al. [40]. Different conclusions
drawn by Mioduszewski et al. [27] and Cygan et al. [24] confirmed the hypothesis of Huh et al. [40]
who stated that the use of too short a series of discharge records may lead to wrong conclusions about
the influence of dams on the flow regime of a particular river. Considering the presented data, one
can conclude that the reduction of the recurrence and duration of droughts remains the most notable
and unilateral downstream effect of the SR on the flow regime of the Narew River. In combination
with the interpretation of floods, we conclude that the SR supports the significant homogenization of
the Narew River’s discharge, which likely has important consequences for downstream riverine and
riparian ecosystems.

Figure 10. Comparison of the “before” (1951–1988/1975–1988) and “after” (1989–2013) durations of
droughts (Q < ALQ; orange/yellow) and floods (Q > MHQ; blue/dark blue) for Narew–Suraż (A–L),
Narewka–Narewka (MNO–TUV), and Supraśl–Fasty (PRS–YXZ). (A–C,G–I,M–O,T–V) represent data
from 1951 to 2013. (D–F,J–L,P–S,Y–Z) reflect data from 1975 to 2013.

4. Discussion

4.1. Hydrological Aspects

The results show that the SR altered the flow regime of the Narew River. Although the influence
of the SR operation on the average and median flows is not significant compared with studies of
Mioduszewski et al. [27] and Cygan et al. [24], and as presented by Kiczko et al. [26]—strongly
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depends on the river stretch, we revealed the influence of the SR on the extreme flow of the Narew
River. Marcinkowski et al. [23] investigated seasonal changes in water flow and indicated that average
flows are lower in April but higher in February and March, which is determined by dam operations,
in which water is released from the reservoir in advance of the spring thaw to prevent flooding in
municipalities close to the reservoir (see Supplementary material, Section 2).

A temporal precipitation increase recorded in the past (1970–1980) was taken into account in
addition to the construction of the SR, as one of the most crucial factors altering the river flow regime,
which was also observed by Mioduszewski et al. [27]. The impact of precipitation fluctuations is clearly
visible in Figures 5B,F and 6B,D, which show that the temporal increase of the median flow precisely
follows the precipitation pattern.

Marcinkowski et al. [41], by means of a hydrological model and nine General Circulation
Model–Regional Climate Model (GCM–RCM) runs, evaluated pure effect of climate on water resources
for the Upper Narew catchment for the 2020–2050 time horizon. They postulated that the median of
projected changes in water yield, i.e., the portion of precipitation that reaches the stream, indicate an
average annual increase of 9%. Notably, they observed the most pronounced increase in winter, and a
substantially lower increase in other seasons. Given the fact, that the SR controls the release of water,
storing most of it during the spring season, the increased flow caused by climate change might be
significantly suppressed.

The differences observed for the recurrence and duration of droughts between the Narew River
and reference catchments of Narewka and Supraśl may result from land-use changes [28]. However,
the aspects of land use in Narew and the analyzed reference catchments are controlled by similar
drivers originating from environmental policies (e.g., the Common Agricultural Policy of the EU,
responsible for subsidising grassland farming in valuable riparian wetlands). Hence, completely
antagonistic trends of the recurrence and duration of droughts of the Narew River compared with
control catchments, also reported by Romanowicz and Osuch [28], tend to be a clear flow-regime
change attributed to the SR’s operation. This downstream effect of the SR can be considered positive,
both from environmental and socioeconomic perspectives. Higher water levels during droughts are
likely to prevent desiccation, which may reduce CO2 emissions from drained wetlands in some areas
of the valley. However, so far, no links have been found between increasing river water levels during
droughts and rising groundwater levels in the valley [27,42], indicating that it may be difficult to
mitigate general groundwater decline in the area with an appropriate water spill control from the SR.
Hence, the role of the SR in improving downstream habitat quality by decreasing the frequency of
deep droughts and increasing the water levels in the river appears to be negligible. On the other hand,
the lack of long droughts in recent years could also be considered as less stressful for the riverine
ecosystem. One might suspect that if this stress factor occurs repeatedly over time, biota would have
to adapt to this phenomenon, and species with higher resistance to this stress factor would become
more abundant in the ecosystem. However, so far, not much is known about the role of droughts as an
ecosystem stress factor influencing the specific and unique biodiversity of river systems.

The proven and evident reduction of the spring thaw flood duration and frequency that can be
attributed to the operation of the SR in the analyzed years along with recent milder winters and less
snow accumulation than before [42] can contradict the environmental effects of wetland restoration.
Bush encroachment in open areas of Narew Valley wetlands, which was reported to be successfully
mitigated by birch removal [43], can continue because lowered and shortened inundation allows the
re-establishment of young birch stands and feedbacks with evapotranspiration [44]. Hence, shrub
removal, although so far successful and important, appears in this case to be a measure tackling the
result of the process rather than affecting the process of bush encroachment itself.

4.2. Hydromorphological Aspects

Results of the reconnection of abandoned side arms and anabranches of the Narew River in the
NNP area appear to be contradicted by the operation of the SR as well. Although sidearm reconnection
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projects implemented in the Narew Valley were reported to have positive environmental effects [45],
one could suspect that facing a continuing trend of high flow reduction attributed to the function of
the SR, managing appropriate levels of sidearm connectivity to the main river channel in the future
will remain a challenging task. In addition to negative responses of biota to river maintenance work
performed in the Narew River System [46], flow-regime changes remain an important issue to be
addressed in future river management strategies and also within the NNP.

The NNP, located downstream of the SR, has been facing the loss of anabranches in recent
decades [23]. It has been recognized that the highly variable flood-prone flow regime characterized by
the occurrence of seasonal high discharges is one of the most crucial factors for global anastomosing
rivers to persist [47,48]. Frequent or high-magnitude flooding is assumed as a precondition for
avulsion and the eventual formation of new channels. The SR-induced decrease of the magnitude
and duration of floods can, therefore, be deemed as one of the factors, among others recognized by
Marcinkowski et al. [23], speeding up the gradual extinction of the valuable anastomosing character
of the Narew River. It is critical to address this issue in any amendments to contemporary water
management instructions governing the flow regime of the Narew River.

4.3. Ecological Aspects

Another crucial factor responsible for anabranch loss was reported by Marcinkowski et al. [23]
and relates to the uncontrolled expansion of Common Reed (Phragmites australis) in the NNP in recent
decades. As reported by Próchnicki [49], the analysis of aerial imagery revealed a two-fold increase
of the reed share in the valley vegetation between 1987 and 1997. It was justified by the overall
shift in management strategies and cessation of floodplain mowing, which was very popular until
1980 in this region. However, as recognized in other studies, it could also be determined based on
water-level changes. These water-level changes could reflect intensification of drainage and land
reclamation directly within the river valley, but—noteworthy—could also result from the SR operation.
Stromberg et al. [50] stated that aquatic plant species have been observed to increase in association
with riverine alterations such as river channelization, stabilized water levels, reduced frequency
of inundation, and altered timing of water and sediment flow. Moreover, Galatowitsch et al. [51]
showed that the intensive invasion of Phragmites australis in the Platte River (Nebraska, USA) was
caused by changes of the natural flow regime after the catchment has been highly altered by water
development for irrigation and hydropower production. They stated that rapid expansion of reed
followed the significant decrease of the flood flow. Therefore, it is highly probable that the invasion
of Common Reed in the NNP, which coincides with the construction of the SR, might be caused
by SR-induced flow regime changes, in addition to positive correlations of reed expansion and the
cessation of mowing. Reporting downstream effects of the SR on the flow regime of the Narew River,
and considering a number of environmental issues examined in the Narew Valley in recent years,
similarly to Romanowicz and Osuch [28] we stress that further research is critically needed to reveal the
influence of the SR-induced flow regime change on biota and biocoenosis of this area in a site-specific
context. Based on the knowledge of the response of riparian environments to reservoir-influenced flow
regime changes [1,3,4,6,7,50,51], we stress that keeping the status quo with respect to the regulation of
river discharge by the SR can eventually result in irreversible changes of the downstream environment
of the Narew River and its valley, such as the deterioration of the main objects of environmental
conservation of the NNP related to a functioning anastomosing river channel. Considering the results
of Piniewski et al. [52], and given the findings presented in this paper, we also stress that the SR-induced
flow regime changes of Narew are likely to be more unilateral and stronger than the ones resulting
from prospective climatic changes.

Now that 25 years have passed since the first spill of water was released from the fully filled
SR, and given that data-based quantification of the influence of the SR on the Narew River flow
regime allows drawing comprehensive and statistically relevant conclusions, the environmental
management of the area should anticipate SR-induced flow regime changes of the Narew River.
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Although not many studies present acceptable solutions allowing functioning dam-reservoir systems
and sustaining resilient anastomosing rivers downstream, we hope that our findings will allow other
researchers to view environmental factors of the Narew River and its valley with a different perspective.
This perspective should emphasize flow-regime alteration as potentially a critical aspect, followed by
the response of ecosystems.

4.4. Implications for Management

In view of our results, all considerations concerning instructions for water release and water
management in lowland reservoirs, in particular those relating to the SR, gain new meaning and should
be revisited. The observations of Kiczko and Napiórkowski [53] and Kiczko et al. [54], addressing the
need for anticipation of environmental issues in water management measures implemented at the
reservoir, should be used to provide answers to new management questions, such as ‘How should
water release from the reservoir be managed in order to keep the level of habitat degradation risk as
low as possible?’ and ‘Is optimization of water release possible when limitations originate from both
environmental and agricultural requirements?’.

Finally, a possible negative influence of the SR on downstream environments should be revisited
in terms of gains and losses. Although the reservoir itself provides new habitats for birds, remains an
important local attraction for recreational fishing, and provides some hydropower energy, it is necessary
to calculate environmental and socioeconomic benefits and trade-offs of the SR. This calculation
should anticipate actions related to environmental restoration in the Narew Valley and declining
areas of valuable habitats downstream, because they might result from the negative influence of the
downstream effects of the SR. Revealing the full set of benefits and losses associated with the function
of the dam is expected to support (economically) decisions on the maintenance of the dam or on its
removal in the future. Observing quick and positive responses of river systems to dam removals [5]
fosters hope that there is still a chance to preserve Europe’s unique anastomosing system before its
complete degradation, which appears to result partly from the operation of the SR, by managing the
landscape of the Narew Valley.

5. Conclusions

(1) The SR impact on the flow regime differs among gauge stations and indicators. The most
significant and direct change was observed for extreme flow (minimum and maximum) of three
subsequent gauges (Bondary, Narew, and Suraż). In each of them, a substantial decrease of high flow
and an increase of low flow were detected. The quartile discharge alteration was more blurred and
seems to be rather climate change-affected, reflecting precipitation pattern fluctuations.

(2) The SR has a significant and considerable influence on the recurrence and duration of floods
of the Narew River: (1) the contemporary recurrence of Narew floods on an annual basis is 34% lower
than before the SR was established; and (2) the contemporary duration of spring thaw floods has
declined by 56%, from an average of 26 days before to 15 days after the SR has started to operate.

(3) An overall and significant increase in low flow was noted along the course of the Narew River
downstream of the SR (in particular, at the Suraż gauge station), while a significant increase in the
frequency and duration of droughts was detected in reference catchments of Narewka and Supraśl.
However, the role of the SR in improving the quality of downstream riparian habitats tends to be
insignificant, because the continuously reported trend of groundwater-level decline in the valley seems
not to be reversed once the SR has been established.

(4) The significant change in floods and the flood–drought balance revealed in this study and
attributed to the function of the SR poses a great threat with respect to the extinction of anabranches
depending on the regular occurrence of high flow. This conclusion needs to be accounted for in the
future management of the most valuable anastomosing stretch of the river in the NNP.

(5) The flow regime of rivers in control catchments (Narewka and Supraśl) reflects exclusively
temporal changes of precipitation. The flow regime of the Narew River downstream of the SR from
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1951 to 2013 presents different dynamics. Flow regime alterations of the Narew River observed for
neighboring gauges—that is, the decrease of the duration and extent of spring flooding, increase of
low flow, and altered flow durations—can be attributed to the operation of the SR. This observation
is contradictory to several previous hydrological studies [24,27], which might have drawn wrong
conclusions on the small (or even lack of) influence of the SR on the flow regime of the Narew based on
the analysis of too short a data series. However, our observations on the influence of the SR on the flow
regime of the Narew River confirm some of the previous suspicions and hypotheses of hydrologists
working with limited sets of data [28] and environmentalists tackling biocoenosis of the area [42,55,56].

(6) With respect to the presented conclusions, some changes of riparian and riverine ecosystems
of the Narew River and its valley attributed to climate change, land-use modification, or a switch in the
role of riparian vegetation in water consumption, and reported in numerous scientific studies, require
revision in terms of considering the SR as the dominant factor inducing the flow regime of the Upper
Narew River.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/10/783/s1,
Figure S1: Monthly precipitation sum for 20 gauging stations in the Upper Narew catchment, Figure S2: Flow
regime in Suraż gauging station 1951–2012. A—1st quartile monthly discharge, B—median monthly discharge,
C—3rd quartile monthly discharge, Table S1: T test results of statistical significance of monthly precipitation sum
between meteorological stations in the Upper Narew catchment.
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Abstract: Reservoirs change downstream thermal regimes by releasing water of different
temperatures to that under natural conditions, which may then alter downstream biodiversity
and ecological processes. The hydropower exploitation in the mainstream Lancang-Mekong River
has triggered concern for its potential effects on downstream countries, especially the impact of the
released cold water on local fishery production. However, it was observed recently that the annual
water temperature downstream of the Jinghong Reservoir (near the Chinese border) has increased by
3.0 ◦C compared to its historical average (1997–2004). In this study, a three-dimensional (3D) model
of the Jinghong Reservoir was established to simulate its hydro- and thermodynamics. Results show
that: (1) the impoundment of the Jinghong Reservoir contributed about 1.3 ◦C to the increment of
the water temperature; (2) the solar radiation played a much more important role in comparison
with atmosphere-water heat exchange in changing water temperatures; and (3) the outflow rate
also imposed a significant influence on the water temperature by regulating the residence time.
After impoundment, the residence time increased from 3 days to 11 days, which means that the
duration that the water body can absorb solar radiation has been prolonged. The results explain the
heating mechanism of the Jinghong Reservoir brought to downstream water temperatures.

Keywords: tropical reservoir; heating impact; Langcang-Mekong River

1. Introduction

The riverine environment can be influenced by reservoirs and dams, as well as their operations
in many forms, including the changing of riverine thermal regimes and downstream water
temperatures [1–3]. The health, distribution, and functions of aquatic creatures can be influenced by
water temperatures [4–7], so the extensive construction of dams worldwide has long drawn attention
to potential effects of damming on downstream thermal regimes [2,8].

Generally, the impact degree of a dam on downstream thermal regimes is decided by its mode
of operation and specific mechanism of water release [9]. Many large dams release water from
deep portals which are located under the thermocline, namely the hypolimnetic layer of a reservoir.
As a result, the cold water is released to the downstream thermal regimes [2,10–12]. This case was
rarely reported, but some small dams release water from above the thermocline, namely the epilimnetic
layer, so temperatures of the downstream water increase [7].

In addition to annual water temperature, reservoirs also influence seasonal thermal patterns of
downstream water. In general, in large reservoirs, the moderate temperatures of downstream water in
spring and summer are lower than those in winter when the seasonal fluctuations decrease, while they
also display a delay of maxima in comparison with natural rivers [2]. Such phenomena were observed
at many dams and reservoirs across the world, such as the Dartmouth Dam on the Mitta Mitta River
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and Burrendong Dam on the Macquarie River, located in Australia [13,14], the regulated Lyon River
located in Scotland [15], and the Hills Creek Dam on the Willamette River, located in America [16].

As the upstream part of the Lancang-Mekong River, the Lancang River is the largest international
river in Southern Asia [17]. Since the 1950s, to fully exploit the river’s resources, the Chinese
government has come up with proposals concerning damming of mainstreams on the Lancang
River [18]. At present, six large dams have been put into operation along the mainstream of the
Lancang River. These dams include Nuozhadu, Manwan, Gongguoqiao, Dachaoshan, Xiaowan,
and Jianghong dams (ranging from upstream to downstream), wherein the Nuozhadu Reservoir
was recently put into operation in 2015 [19]. The cascade of dams is constructed with the primary
purpose of hydropower generation. According to the hydropower development plan by Huaneng
Lancang River Hydropower Company, the hydropower installed capacity will reach 30.0 GW in
the Lancang mainstream by 2020 [19]. Nevertheless, the potential hydrological and environmental
effects of reservoir impoundment and water release have drawn more attention to downstream
countries [17,20–22]. Among these potential effects, altered downstream water temperature has
become an important focus as it plays a significant role in influencing the combination of structure,
growth, reproduction, distribution, and stream productivity of aquatic organisms [23], in addition
to which fish in freshwater serve as the major protein source for local animals which live in
downstream countries [19]. In view of those deep and large dams located along the Lancang River,
the low-temperature outflow has drawn major concern. In addition, the Nuozhadu Dam is equipped
with a multi-level stop log door so as to moderate the downstream water temperature to a pre-dam
level [24]. Nevertheless, after the impoundment of six large reservoirs, the water temperatures
downstream of the Jinghong Reservoir (the most downstream one of the cascade dams) increased,
rather than decreased, in all seasons, which is against what has been observed in other large dams.
In other words, the upstream multi-level intake structures could probably be unnecessary. As numerical
modeling is a powerful and useful tool, we applied it in investigating the reasons why the Jinghong
Reservoir had a unique heating impact on downstream water.

Some one-dimensional (1D) models are applicable to simulate the vertical distribution of
the water temperature and chemical/biological materials in a lake or reservoir through time [25].
In general, these models are established under the one-dimensional assumption. Specifically speaking,
variations in the lateral directions are relatively small in comparison with those in the vertical
directions [26] and are widely used because they are fast enough to facilitate long-term simulation
and have performed well in simulating the seasonal and inter-annual variations of lake water
temperatures [27]. These models include the bulk model of Kraus and Turner [28], DYRESM [29],
PROBE [30], the Hostetler Model [31,32], SEEMOD [33], LIMNMOD [34], MASAS and CHEMSEE [35],
Minlake [36], GOTM [37], SIMSTRAT [38], LAKE [39,40], CLM4-LISSS [41], and WRF-Lake [42].

Although 1D lake models are more efficient in computation, under certain conditions (such as long,
deep reservoirs) water mass exchange in both vertical and longitudinal directions and temperature
gradients may be important [25]. Thus, many two-dimensional (2D) models have been developed
through the integration of the reservoir, with the aim to reach the motion equations with lateral
averaging [43]. Laterally averaged 2D models are applicable to modeling of long and relatively
narrow reservoirs with no or negligible lateral inflow or outflows. These models include the model of
Box Exchange Transport Temperature and Ecology of Reservoirs (BETTER) [44]; the Computation of
Reservoir Stratification (COORS) model [45]; the Laterally Averaged Reservoir Model (LARM) [46];
the model of Generalized Longitudinal-Vertical Hydrodynamics and Transport (GLVHT) [47],
which was developed from LARM; the CE-QUAL-W2 developed through GLVHT expansion to include
water quality constituents [48]; the Laterally-Averaged Hydrodynamics Model (LAHM) [43]; and the
MIKE21 Flow Model, developed by Danish Hydraulic Institute (DHI) Water and Environment [49–52],
which is widely applied. In addition to the laterally-averaged models, vertically-averaged 2D models
are also applied when vertical flow variations are not as important as the lateral case, e.g., when the
water is shallow [53–55]. These models include the North Sea Model [56], the Tokyo Bay Model [57],
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the Haringvliet Model, and the depth-averaged mathematical model developed by McGuirk and
Rodi [55].

Despite the extensive use of 1D and 2D models, the limit in one-dimensional or vertical and
lateral averaging has long been realized and the needs for 3D modeling of lakes and reservoirs
have raised more discussion [58–61]. In the past decades, the complex water quality models and
3D hydrodynamic models have been developed thanks to the high-performing super computers
at a reasonable cost, as well as the efficient numerical algorithms [62]. The mentioned models
include the Curvilinear-grid Hydrodynamics model in three dimensions (CH3D) [63], the Estuarine,
Coastal, and Ocean Model (ECOM) [64]; the Environmental Fluid Dynamics Code (EFDC) [65];
the CE-QUAL-ICM model [66]; the model of Water Quality Analysis Simulation Program (WASP) [67];
the Delft3D-FLOW model [68]; the Row-Column AESOP (RCA) model [69]; and the MIKE 3 model by
DHI Water and Environment [70].

In order to analyze the complex 3D hydrodynamic and thermodynamic processes more deeply,
it is necessary to establish 3D models. Nevertheless, researchers have so far rarely established 3D
models for simulation of the environmental and thermal results of damming along the Lancang
River [19] in view of the high cost of computation and the lack of observational data. Nowadays,
with computational resources and enough pre-dam and post-dam measurement data, we are capable
of conducting 3D simulations at the Jinghong Reservoir. The Delft3D-FLOW model was selected for
the simulations as it has been widely used around the world and evidence proves that it can simulate
sediment transport, flows, water quality, waves, morphological developments, and ecological courses
in coastal regions, rivers, and lakes [71–78]. After model calibration, the 3D model of the Jinghong
Reservoir was used to simulate the thermodynamic and hydrodynamic situations in the reservoir,
as well as the related outflow. The research also carried out some numerical experiments to analyze
the heating impact brought by the Jinghong Reservoir to downstream water.

2. Study Area

The Jinghong Reservoir system is located in the lower reaches of the Lancang River, which is,
in general, a south-flowing river in southwestern China, and called the Mekong River when entering
Laos (Figure 1). This system is defined by the Nuozhadu Dam (22◦38′ N, 100◦26′ E), the Jinghong Dam
(22◦03′ N, 100◦46′ E), and the 105-km long water body between the two (i.e., the Jinghong Reservoir).
The Jinghong Dam went into service in 2009 with a height of 108 m, while the Nuozhadu Dam was
put into operation in 2015 with a height of 262 m. The Jinghong Reservoir is a long and narrow
channel-shaped reservoir with a length of 105 km and an average width of 312 m. It has a normal
water level of 602 m above sea level, a maximum depth of 70 m and a total reservoir capacity of
1.14 billion m3. Since the operation of the reservoir, the water surface area has increased from 12.7 km2

to 32.8 km2. The mean annual inflow is about 1674 m3 s−1. A tropical reservoir, the Jinghong Reservoir,
has a perennial mean air temperature reaching 22.2 ◦C at the Jinghong Dam.
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Figure 1. Location and topography of the Jinghong Reservoir system.

2.1. Observation Data

The two hydrological stations involved in the study area are the Nuozhadu Hydrological Station
(NHS) and the Yunjinghong Hydrological Station (YHS), both located on the right bank of the river,
with the former 5 km downstream of the Nuozhadu Reservoir, and the latter 3 km downstream of
the Jinghong Reservoir. Both NHS and YHS are located at the riverine section of the water body,
and the fully mixing assumption can be applied. Accordingly, point-measured water temperature can
be used as an indicator of the cross-sectional water temperature. To measure the water temperature,
water pressure, and air pressure, a Hobo Onset U20-001-02 water level data logger (U20 hereafter) is
adopted at each hydrological station on an hourly basis throughout the study period. The water level
at each station is computed by:

Pwater = Ptotal − Pair = ρwatergHU20, (1)

where Ptotal (Pa) is the U20-measured pressure underwater (water pressure and air pressure), Pair (Pa)
is the U20-measured atmospheric pressure by the river bank, Pwater (Pa) is the pressure of pure water,
and HU20 is the depth of the U20, from which water levels are computed. The discharge at YHS is
further computed using its rating curve obtained from the Water Resources Department of Yunnan
Province, China [79].

2.2. Observation Data Analysis

2.2.1. Comparison with Historical Water Temperature

To illustrate the annual variations of water temperature at NHS and the Jinghong Reservoir, in situ
observations were conducted (Figure 2). Water temperatures almost changed synchronously at the
two sites throughout the year, with NHS always displaying a lower temperature (a mean difference

128



Water 2018, 10, 951

of 2.2 ◦C) than the other. This systematic temperature difference reflected the latitude difference
between the two sites as water flowed south, a phenomenon not observed at reservoirs flowing in
other directions. According to a study on the Cougar Reservoir (an eastern-flowing reservoir in the
U.S.), the peak of outflow water temperature lagged about 2 months behind that of inflow, but the
inflow and outflow temperatures shared the same maximum and minimum values [80], indicating no
large amount of energy was taken in, or lost, as the water body flowed into the reservoir.

Figure 2. Comparison of observed water temperature data and historical averaged data at YHS.
The temporal resolution of the observation data is daily.

Obtained and averaged from 1997 to 2004 at YHS, historical water temperature observations
(Figure 2) were shown to range between 13.7 and 23.1 ◦C annually. However, after the impoundment
of the Jinghong Reservoir, the water temperature range was changed to between 19.8 and 25.0 ◦C,
with the annual variation reduced from 9.5 ◦C to 5.2 ◦C. This reduction in annual variation mainly
resulted from a 6.1 ◦C increase in the minimum temperature. Overall, the annual average water
temperature rose from 19.2 ◦C to 22.8 ◦C after impoundment.

2.2.2. Discharge and Water Temperature

Observed water temperatures at YHS were compared with outflow rates from the reservoir in
Figure 3. As they were inversely correlated, the discharge rate of the Jinghong Dam could also be
a potential factor behind the water temperature alteration.

Figure 3. Comparison of the observed YHS water temperature and the YHS discharge rate.
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3. Methods

3.1. The Delft3D-FLOW Model

The numerical hydrodynamic modeling system—the Delft3D-FLOW model—was developed by
Deltares [68], a Dutch-based research institute. The Delft3D-FLOW software used for this study
is based on Fortran and acquired from Delft3D website (https://oss.deltares.nl/web/delft3d/).
With Delft3D-FLOW, the 2D (based on averaged depth) and 3D shallow water equations that were
unsteady could be solved. The equation system comprises momentum equations in the horizontal
plane, the continuity equation and the transport equations of conservative elements [68]. The basic
equations are retained in their original form and are not changed in this study, which are introduced
briefly as follows.

As for the hydrodynamic equations, Delft3D-FLOW is used for the solution of the Navier-Stokes
equations with regard to a fluid which is incompressible under the assumption of Boussinesq and
the shallow water environment [81]. In the equation of vertical momentum, the accelerations in the
vertical direction are omitted, leading to the equation of hydrostatic pressure. Vertical speeds are
computed according to the continuity equation in 3D models. The set of partial differential equations,
together with a proper set of boundary and initial situations is solved via a mesh with finite differences.
Delft3D-FLOW uses orthogonal curvilinear Cartesian coordinates (ξ, η) in the horizontal direction.
Two different vertical grid systems are offered by Delft3D-FLOW, vertically: the Cartesian Z coordinate
system (Z-model) and the σ coordinate system (σ-model). The σ coordinate system was first introduced
by Phillips [82] and it is applied in this research.

To obtain the continuity equation with averaged depth, the continuity equation shall be integrated
for incompressible fluids (∇•→u = 0) based on the total depth, wherein the conditions of the kinematic
boundary on the bed level and at the water surface are taken into account. It is expressed as follows:
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where ζ (m) is the water level on a number of horizontal planes of reference (datum), the coefficients√
Gξξ and

√
Gηη (m) are used for transformation from curvilinear coordinates to rectangular

coordinates, t (s) is the time, d (m) is the depth under a number of horizontal planes of reference
(datum), U (m s−1) is the depth-averaged speed in ξ-direction, V (m s−1) is the depth-averaged speed
in η-direction, and Q (m s−1) is the contributions made for each unit area because of the withdrawal or
release of water, evaporation and precipitation.

The momentum equations in ξ-direction and η-direction are expressed as follows:
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where u, v, and ω (m s−1) are speeds in ξ, η, and σ-directions. f (s−1) is the Coriolis parameter
(inertial frequency), ρ0 (kg m−3) is the referential density of water, Pξ and Pη (kg m−2 s−2) are the
gradient-based hydrostatic pressure in ξ-direction and η-direction, Fξ and Fη (m s−2) are the imbalances
existing in horizontal Reynold’s stresses in the ξ-direction and η-direction, νV (m2 s−1) is the vertical
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eddy viscosity, Mξ and Mη (m s−2) are source or sink of momentum in the ξ-direction and η-direction.
Reynold’s stresses Fξ and Fη are simulated on the basis of the concept of eddy viscosity [83]. The eddy
viscosities in vertical and horizontal directions are as follows:

vH = v3D + vback
H ;vV = νmol + max

(
v3D, vback

V

)
, (5)

where v3D is the viscosity computed with the 3D k-ε closure scheme, vback
H is the user-defined

background horizontal viscosity, vback
V is the user-defined background vertical viscosity, νmol (m2 s−1)

is the kinematic viscosity (molecular) coefficient of water.
Transport of heat and matter is simulated by an equation of advection diffusion in three coordinate

directions, and is expressed as follows:
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where c (kg m−3) is the concentration of mass, DH (m2 s−1) is the total diffusion coefficient in the
horizontal direction, DV (m2 s−1) is the diffusion coefficient in the vertical direction, λd (s−1) is the first
order decay course and S (kg m−2 s−1) is the source and sink terms in the unit area generated from the
withdrawal or release of water and/or heat exchange on the free surface. The diffusion coefficient in
the horizontal direction is user-specified, whereas the coefficient in the vertical direction is computed
as follows:

DH = DSGS + DV + Dback
H ;DV =

νmol
σmol

+ max
(

D3D, Dback
V

)
, (7)

where DSGS is the 2D part of diffusion based on the turbulence model of sub-grid scale, Dback
H is the

user-defined eddy diffusivity in the horizontal direction, Dback
V is the eddy diffusivity in the vertical

direction, σmol is the Prandtl-Schmidt number for molecular mixing, and D3D is the diffusion due to
turbulent eddy viscosity [68].

3.2. Model Set-Up

3.2.1. Grid Coverage

Along the river flow direction, the upper boundary of the model is set to the Nuozhadu
Hydrological Station, whereas the lower boundary of the model is set to the Jinghong Dam.
With a longitudinal length of about 95 km, the model covers most parts of the Jinghong Reservoir.
The computational grid of the Jinghong Reservoir hydrodynamic model is shown in Figure 4.
Grid density varies with topography, i.e., in order to increase the computation accuracy, finer horizontal
grids have been placed at the part of the reservoir close to the Jinghong Dam, resulting in a total of
about 11,000 horizontal grid cells per layer. Meanwhile, for the vertical direction, the σ coordinate
system (σ-model) is applied, with the reservoir discretized into 40 vertical layers, with each layer less
than 2 m in thickness.
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Figure 4. Horizontal discretization (about 11,000 horizontal grid points) and bathymetry of the
Jinghong Reservoir with local enlargements at the site of (a) the Simao Harbor, and (b) the Jinghong
Dam. We set 590 m above sea level as the datum (0 m) in the model so as to keep the water level
a positive value through simulation period. Grid points with the riverbed higher than 590 m have
a negative bathymetry value.

3.2.2. Boundary Conditions

The upper boundary is set at the water level at NHS and the lower boundary is set at the discharge
rate downstream of the Jinghong Dam. The terrain data is extracted from a digital elevation model
(DEM) with a spatial resolution of 25 m × 25 m.

3.2.3. Meteorological Data and Model Flow Chart

Restrained by the poor data availability, the simulation only covers a period from 20 December 2014
to 22 May 2015. The computational time step is set to 1 minute to meet the demand of numerical stability,
as well as computational efficiency.

Meteorological data for this study, which is obtained from the Jinghong National Meteorological
Station (Figure 5), is not readily available. As a result, such data is only gathered for a relatively short
period, from 20 December 2014 to 20 May 2015, which also defines the study period for this research.
These data include local air temperature data, relative humidity data, and solar radiation data with
a temporal resolution of 1 day. We acknowledge that it would be better if a full year simulation could
be conducted. However, due to solar radiation data availability, 5-month simulation is the best we can
practice at the current stage. Similar simulations with temporal coverage of less than 1 year can also be
found in the literature [84–86].
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Figure 5. Daily meteorological data (1 January 2015 to 20 May 2015) measured at the Jinghong
National Meteorological Station: (a) air temperature, (b) solar radiation, and (c) relative humidity.
Water temperature data is measured at the NHS and YHS station: (d) water temperature at NHS,
(e) water temperature at YHS, and (f) discharge at YHS.

A flowchart illustrating the Jinghong Reservoir hydrodynamic model is shown in Figure 6.

Figure 6. Flowchart of the Jinghong Reservoir model set-up.
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3.3. Model Calibration and Validation

The warm-up period of this study occurs from 22 December 2014 to 31 January 2015.
For the purpose of verifying the hydro-dynamic condition of this simulation, the simulated water

levels were firstly calibrated against measurements. As the model output temporal resolution was
10 minutes, the hourly average for simulated water levels was calculated for comparison. Data on
2 days’ on-site observed water levels at Simao Harbor were provided by field experiment. The best
match of the model output and measured data (Figure 7) were achieved by applying critical parameters,
as shown in Table 1.

Figure 7. Comparison between simulated and measured water levels at Simao Harbor. Simulated water
levels are plotted on an hourly average.

Five main parameters were calibrated by Chanudet et al. (2012): the Chezy’s coefficient,
which represents the roughness at the water bottom, background horizontal and vertical eddy viscosity,
and background horizontal and vertical eddy diffusivity. The studied range of Chezy’s coefficient can
be referred to Chow (1959), while the range of the background eddy viscosity and diffusivity can also
be referred to in previous studies [87–89].

Table 1. Parameters studied for the calibration of the Jinghong Reservoir model and their chosen value.

Parameter Studied Range Chosen Value

Chezy’s coefficient 10–100 m
1
2 s−1 65 m

1
2 s−1

Background horizontal eddy viscosity 1 × 10−6–1 m2 s−1 5 × 10−4 m2 s−1

Background horizontal eddy diffusivity 1 × 10−6–1 m2 s−1 1 × 10−4 m2 s−1

Background vertical eddy viscosity 1 × 10−10–1 m2 s−1 1 × 10−6 m2 s−1

Background vertical eddy diffusivity 1 × 10−10–1 m2 s−1 1 × 10−6 m2 s−1

The focus of the calibration then shifted to outlet water temperatures downstream the Jinghong Dam.
As YHS was within 3 km downstream of the Jinghong Reservoir in the riverine section of the water body,
the simulated outlet water temperature was compared with the measured water temperature at YHS for
calibration, with the difference between the two shown in Figure 8. The simulated results were in good
agreement with measurements, with the absolute error limited to 1.5 ◦C.
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Figure 8. Outlet water temperature difference between the simulation results (CTL) and measurements
at YHS.

Compared with measurements, the Jinghong Reservoir model produced good simulations
of water temperatures. Nevertheless, since insufficient observations of the water velocity fields
were available, no comparison concerning water velocity was carried out either for calibration or
for validation.

3.4. Numerical Scenario Setups

As presented in Section 2.2, three main issues are ought to be found out through numerical
modeling: the impact of impoundment of Jinghong Reservoir; the contributing factor to water
temperature increment; and the relation between outflow rate and outflow temperature from Jinghong
Dam. The wind speed and relative humidity were precluded as the driving forces and several
numerical experiments were performed (Table 2).

Impact of Impoundment of the Jinghong Reservoir

A control run (CTL) was set up as described in Sections 3.2 and 3.3.
S1 (i.e., scenario 1) was set up to examine the impact of the impoundment of the Jinghong

Reservoir, in which the Jinghong Dam was removed and the water body returned to the natural
river conditions. A depth-averaged two-dimensional flow model with the same horizontal grid
discretization was set up, with the upper boundary condition as described in Section 3.2.2, the Q-H
rating-curve adapted as the downstream boundary condition and the atmospheric data as for CTL.

Contributing Factors

To examine the contribution of solar energy to the increase of water temperatures, S2 was imposed
with no solar radiation. To further evaluate the impact of heat exchange with the overlying atmosphere
on water temperature, atmosphere-water heat conduction, together with solar radiation was turned
down in S3.

Outflow Rate and Outflow Temperature

Different scenarios were further established so as to investigate the relationship between the
outflow rate and the outflow water temperature at the Jinghong Dam. The water temperature measured
at YHS was constantly higher than the one measured at NHS, suggesting that the water parcel
experienced an energy absorption process travelling from NHS to YHS. In addition to the rate of
energy transfer, the amount of energy absorbed by the water parcel was also determined by the
duration of the absorption process. The outflow rate directly affected the time during which the water
parcel absorbed energy. In order to measure the duration of the energy absorption process, the tracer

135



Water 2018, 10, 951

function of the model was enabled. The duration of energy absorption is represented by the resident
time of the tracer. Different scenarios were established to assess the relationship among the outflow
rate, resident time, and inflow-outflow temperature difference. In addition, for the sheer size difference
between the Nuozhadu Reservoir (upstream) and the Jinghong Reservoir (downstream), the Jinghong
Reservoir’s outflow rate was determined by the outflow rate of the Nuozhadu Reservoir. To further
simplify the simulation, an assumption was made that the Jinghong Reservoir’s inflow rate is equal its
outflow rate. The inflow water temperature at the upper boundary was set to the same as for CTL.
The simulation duration remained the same as CTL.

The real outflow rate for the Jinghong Reservoir ranged from 536 to 3398 m3 s−1 and with an
annual average of 1674 m3 s−1 in 2015. Eight scenarios were established to examine the effect of outflow
rates of the Jinghong Dam, with outflow rates prescribed from 500 to 4000 m3 s−1, with 500 m3 s−1 as
intervals. The eight scenarios had been denoted as F1–F8 in the study.

Table 2. An overview of numerical experiments.

Experiments
The Jinghong

Reservoir
Solar

Radiation
Atmosphere-Water

Heat Exchange
Outflow Rate

(m3 s−1)
Tracer

CTL ON ON ON Real OFF
S1 OFF ON ON Real OFF
S2 ON OFF ON Real OFF
S3 ON OFF OFF Real OFF
F1 ON ON ON 500 ON
F2 ON ON ON 1000 ON
F3 ON ON ON 1500 ON
F4 ON ON ON 2000 ON
F5 ON ON ON 2500 ON
F6 ON ON ON 3000 ON
F7 ON ON ON 3500 ON
F8 ON ON ON 4000 ON

4. Results and Discussion

4.1. Thermal Structure of the Jinghong Reservoir

Covering a distance of 105 km, the Jinghong Reservoir has a water depth roughly increasing
along the direction of the river flow. The thermal structure along the reservoir from 10 km down
the Nuozhadu Dam to the Jinghong Dam (about 90 km) is shown in Figure 9 (3 days corresponding
to different months were selected for demonstration). Generally, the water temperature was almost
homogeneous during the cool season from December 2014 to February 2015. As the air temperature
increased from February on, a warmer water layer appeared at the surface, which eventually developed
into a weakly stratified thermocline at the depth of approximately 5 m by the end of May 2015.
Unlike many natural lakes, which experienced overturn in early spring, no overturn was observed
during the study period at the Jinghong Reservoir, as it was a tropical one and the surface water
temperature never went below 4 ◦C.

During the study period, only weak stratification was observed in the Jinghong Reservoir in May
with the surface-bottom temperature difference reaching only 3 ◦C. In comparison, much stronger
stratifications were reported at other deep reservoirs along the Lancang River after impoundment.
For example, the Nuozhadu Reservoir (upstream reservoir to the Jinghong Reservoir) experienced
a surface-bottom temperature difference of 10 ◦C in summer and the largest temperature difference
in the Xiaowan Reservoir even reached 14 ◦C [90]. One main reason is the depth difference between
these reservoirs. The Jinghong Reservoir is 70 m deep, while the Nuozhadu and Xiaowan Reservoirs
are much deeper, each more than 200 m. By preventing solar radiation and wind-driven eddy
penetration, large water bodies in these two deep reservoirs retard heat transfer and are difficult
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to reach a homogeneous temperature. Another reason is the water exchange index, or the α index,
which is a widely used approach [91] in identifying reservoir thermal structures, defined by:

α =
w
v

, (8)

where w (m3) is average annual inflow and v (m3) is the total capacity of the reservoir. When α ≤ 10,
the reservoir is stably stratified; when 10 < α < 20, the reservoir is unstably stratified; when α ≥ 20,
the reservoir is mixed. The α index of the Jinghong Reservoir is much higher compared with that
of the other two (Table 3). The large quantity of annual inflow (~25 times that of reservoir capacity)
serves as a major disturbance, leaving the water body well mixed.

Table 3. The α index of three major reservoirs along the middle and lower reaches of the Lancang River
and their thermal structure type according to the index.

Reservoir Name
Average Annual Inflow

(billion m3)
Total Capacity

(billion m3)
α Index Type

Xiaowan 38.2 15.1 2.5 Stably stratified
Nuozhadu 55.5 23.7 2.3 Stably stratified
Jinghong 58.0 1.1 25.4 Mixed

Vertically, the water columns along the reservoir showed almost no stratification regardless of
their location and depth. The water temperature difference between surface and bottom was less
than 1 ◦C in the first 40 km along the reservoir in all simulated time, while its maximum of 3 ◦C was
reached at the Jinghong Dam in May. Longitudinally, water surface temperature rose as the river
flowed southward, with its value down the Nuozhadu Dam increasing from around 18.5 ◦C all the
way down the river, to approximately 22 ◦C before the Jinghong Dam. Temporally, water temperature
changed in accordance with air temperature. When the air temperature was lower than the water
temperature in January and February, the water temperature experienced a drop, while when the air
temperature was higher than the water temperature from March to May, the water temperature rose.
However, the water temperature variation also increased longitudinally, with the variation down the
Nuozhadu Dam being only 0.5 ◦C and reaching 3 ◦C at the Jinghong Dam.

Figure 9. Cont.
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Figure 9. Simulated water temperature profile along the reservoir on (a) 15th March, (b) 15th April,
and (c) 15th May of 2015.

4.2. Impact of Solar Radiation and Air Temperature

The absorption of solar radiation and atmosphere-water heat conduction are the two main heat
exchange mechanisms governing a water body and the environment. Therefore, the contribution to
water temperature alteration provided by solar radiation and atmosphere-water heat conduction can
be revealed by comparing the model results of S2 and S3. By removing solar radiation, scenario S2,
a notable water temperature drop with a mean value of 3 ◦C compared with CTL (Figure 10) has been
observed. In fact, the water temperature simulated by S2 is rather close to the one measured at the
NHS with a mean difference of only 0.4 ◦C. This indicates that the water parcel does not take in or emit
substantial energy while traveling from the NHS to YHS. By further neglecting atmosphere-water heat
conduction, S3 produces similar water temperature profiles to the ones of S2. The mean simulated
temperature in these two scenarios differs about 0.3 ◦C, which suggests that the solar radiation, rather
than the atmosphere-water heat conduction, plays the dominant role in altering water temperature.
Moreover, the difference between S2 and S3 (S2 minus S3) varies with season. The difference reached
its maximum (about 0.8 ◦C) in January and February when air temperature was significantly lower
than the water temperature, signifying the water energy loss to the atmosphere. However, in May,
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when air temperature was substantially higher than the water temperature, the difference is positive
(about 0.2 ◦C), indicating the overlying air heats up the water body.

Figure 10. Simulated water temperature by CTL, S2, and S3 at the YHS. The measured water
temperature at the NHS and air temperature at the Nuozhadu Dam are shown for reference. The vertical
blue line indicates the boundary of the period when air temperature was significantly lower than water
temperature at the YHS.

The difference between the simulated water temperature in scenarios CTL and S3 at the YHS
was taken as the total impact of solar radiation and air temperature and the weekly contribution
(percentage) of both factors were evaluated (Figure 11). Overall, the solar radiation’s contribution to
the water temperature increment was 106.7%. However, the contribution of air temperature was −6.7%,
which suggests that atmosphere-water heat conduction has a decreasing effect on water temperature
during the study period. In addition, it is worth observing that the contribution of air temperature
is largely dependent on the air-water temperature difference and may vary with simulation periods.
When the air temperature was significantly lower than the reservoir water temperature in January and
February 2015 (left side of the vertical blue line in Figure 10), its contribution could reach as much as
−24%. When the air temperature approached and eventually exceeded the water temperature, the air
temperature’s contribution to the water temperature increment, became more significant.

Figure 11. Respective contributions of solar radiation and atmosphere-water heat exchange to the
water temperature at the YHS on a weekly scale. Negative contribution values mean that the factor
had a decreasing effect on water temperature. Contribution values are computed based on the extent
of water temperature changes, taking the water temperature difference between CTL and S3 as 100%.
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4.3. Impact of Outflow Rates

A negative correlation between outflow rates and outflow temperature has been observed in
Section 2.2.2. For reservoirs with small capacities, a negative relationship between outflow rates and
outflow temperature has been reported [92,93]. To further analyze the impact of outflow rates, we carried
out eight scenario experiments with different outflow rates ranging from 500 to 4000 m3 s−1.

One and a half period of the tracer concentration has been designed so as to easily differentiate
the respective peak concentration value from outflow, which would increase the readability of the
residence time. However, the temporal length of the period is not much restrained, as long as it
is longer than the longest residence time studied and shorter than the simulation period, it would
be sufficient in explaining the problem. Using seven different concentrations instead of a single
concentration would also increase the readability. Additionally, under different scenarios, the diffusion
effect is also associated with the residence time. By using seven different concentrations, the tracer
effect could be observed from both temporal and amplitude points of view.

Outflow rates regulate the residence time of the reservoir. By definition, the residence time refers
to how long a parcel, starting from a specific location within a water body, will remain in the water
body before exiting [94]. Generally, the residence time decreases as the outflow increases, which results
in a shorter duration available for the water parcel to interact with heat sources/sinks (mainly solar
radiation and ambient). Thus, its temperature would result closer to the one of the upstream water
body. Residence time has been widely used to describe the variability of the lake thermal structure,
isotopic composition, alkalinity, dissolved organic carbon concentration, elemental ratios of heavy
metals and nutrients, mineralization rates of organic matter, and primary production [95–100].

The tracer methodology mentioned in Section 3.4 was applied to measure the residence time in
different scenarios. The tracer was released at the Nuozhadu Reservoir with cyclical concentration
peaks ranging from 1 to 7 mg m−3 at 1 mg m−3 intervals (Figure 12a). Tracer concentrations at the
YHS were recorded. We computed the residence time by:

Tre =
1
2
[(to1 − ti1) + (to7 − ti7)] , (9)

where Tre is the residence time,ti1 is the time of inflow tracer peak of 1 mg m−3, ti7 is that of 7 mg m−3,
to1 is the time of outflow tracer peak corresponding to ti1 and to7 is that corresponding to ti7. When the
outflow rate was extremely high at 4000 m3 s−1, the residence time was only about 4 days. On the other
hand, when the outflow rate was relatively low at 1000 m3 s−1, it took about 11 days for a water parcel to
exit the water body. Generally, the residence time decreased exponentially with the outflow rate and the
two variables were highly correlated with a correlation coefficient (R2) of 0.9999 (Figure 12b).

Afterwards, the simulated outflow water temperature at the YHS was averaged during the
study period. We used the temperature difference, the averaged outflow temperature minus the
averaged inflow temperature, to indicate the temperature changes under different scenarios (F1–F4).
Results based on the eight scenario experiments suggested that water temperature difference and
outflow rate were also exponentially correlated with an R2 of 0.9997 (Figure 13a). Thus, water
temperature difference increased linearly with residence time with an R2 of over 0.9977 (Figure 13b).

To sum up, in the case of the Jinghong Reservoir, outflow rates regulate the residence time.
The larger residence time means that the water body is able to absorb more solar energy and,
thus, gain a larger temperature increment. Nevertheless, this conclusion is only valid under
certain conditions: On one hand, the solar radiation and the atmosphere play a positive role in
regulating water temperature; on the other hand, the reservoir capacity is relatively small (for example,
the discharge/capacity ratio is larger than 20) so that the outflow rate is able to strongly influence the
outflow temperature. The Jinghong Reservoir matches both requirements mentioned above.
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Figure 12. (a) Tracer concentration variations at the YHS corresponding to various outflow rates (F2,
F4, F6, and F8 are demonstrated in the figure); and (b) the exponential relationship between residence
time and outflow rate of the Jinghong Reservoir.

Figure 13. Cont.

141



Water 2018, 10, 951

Figure 13. (a) Relationship between outflow rate and water temperature difference (outflow minus
inflow); and (b) relationship between residence time and water temperature difference at the YHS.

4.4. Impact of the Impoundment

In order to examine the overall impact of the impoundment of the Jinghong Reservoir,
we established scenario S1, where the Jinghong Dam was removed and the reservoir recovers to the
pre-damming state. During the study period, the water temperature for CTL warmed up by about 3 ◦C
on average. However, when the reservoir returned to the natural river state, the temperature increment
was not as significant as for the post-impoundment, with an increment of only 1.7 ◦C, which was
about half the case during the reservoir’s operation (Figure 14). That is to say, the impoundment of the
Jinghong Reservoir alone can explain nearly half (1.3 ◦C) of the water temperature increment from
the NHS to the YHS. Based on the findings of Section 4.3, after the impoundment, the residence time
extended from 3 days to 11 days. The period available to absorb solar radiation has been prolonged.
Thus, a higher water temperature increment is reached.

Figure 14. Simulated water temperature during the study period by CTL and S1 at the YHS,
and measured water temperature at the NHS and historical water temperature (1997–2004) at the YHS.

5. Research Limitations

Though thorough investigation has been conducted, research limitations due to data availability
are not ignorable. Firstly, no continuously measured water temperature data on the Lancang River can
be found in the previous studies. Therefore, we conducted a field measurement so as to obtain the
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water temperature information from November 2014 to February 2016. On the other hand, we only
obtained daily solar radiation values from January 2014 to May 2015. Therefore, the study period
has been greatly shortened. However, the focus of this study is the explanation of the phenomenon,
and a study duration shorter than a full year would not undermine its credibility.

In addition, the influence of the operation rules of the dam have not been directly assessed in this
research. In this study, the operation rules have been lumped inside the outflow rate, which is only
juxtaposed with outflow water temperature so as to indicate the relation among the two. In which way
the operation rules would be most favorable to the downstream environment will be another direction
of study in our future research.

6. Conclusions

The temperature characteristics of a river are important due to their strong influence on
environmental conditions and aquatic creatures. The impact of reservoirs on downstream water
temperature has triggered researchers’ concerns worldwide as reservoirs usually release water from
deep outlets, in most cases, resulting in a cold water thermal regime downstream. However, the water
temperature downstream of the Jinghong Reservoir has increased by 3.0 ◦C annually compared with
historical conditions, according to the observational data. In this study, a Jinghong Reservoir 3D
model was established using the Delft3D-FLOW model to explore the unique heating processes of the
Jinghong Reservoir on water temperature.

The simulated water temperatures at the outlet showed good agreement with measurements at
the Jinghong dam. Comparing the actual operation scenario (CTL) with the pre-damming scenario (S1),
it was indicated that the impoundment of the Jinghong Reservoir could explain 1.3 ◦C (about a half) of
the water temperature increase compared to historical values, while the rest might be an accumulated
effect by the impoundment of the upstream cascade reservoirs.

Further, this study examined the major factors (solar radiation, atmosphere-water heat conduction)
which can potentially influence the water temperature. Numerical experiment results show the
contribution of solar radiation to the water temperature increment is up to 106.7%, which consists
in the dominating factor. On the other hand, the contribution of the air temperature to the water
temperature increment is about −6.7%, which implies that the atmosphere-water heat conduction
would result in a decrease of the water temperature during the study period.

Experiment results with different outflow rates (F1–F8) showed that the outflow rate could
substantially influence the outflow water temperature because of the variations in the residence time.
The residence time is determined by the outflow rate; higher residence time means that the water body
absorbs more solar energy and results in a larger temperature increment. After the impoundment
of the Jinghong Reservoir, the residence time extended from 3 days to 11 days. The prolonged solar
radiation absorption duration is the main reason for its temperature raise.

In conclusion, the Jinghong Reservoir alone could not fully explain the temperature increases
compared to historical data since this is also dependent on the accumulated effect by the cascade of
dams along the mainstream Lancang River. In the future, a model of the entire cascade of reservoirs
should be implemented, in order to improve the assessments of water temperature in pre-dam and
post-dam eras.
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Abstract: Inter-basin water transfer projects are designed to relieve water scarcity around the world.
However, ecological problems relating to reductions in protection zone functions can occur during
inter-basin transfers. This paper uses the largest inter-basin water transfer project in the world,
namely, the South-to-North Water Transfer Project (SNWTP) in China, as an example to analyze the
variation of Miyun Reservoir’s inner protection zone functions when water is transferred. Specifically,
a riparian model (RIPAM) coupled with remote sensing data were used to calculate the nitrogen (N)
and phosphorus (P) losses due to plant uptake, and these results were validated by in situ survey
data. Then, correlations between water levels and N and P removal were analyzed. The results show
that water table disturbances resulting from elevated water levels strongly influence the growth of
plants and have obvious negative impacts on N and P removal in the inner protection zone. With
the implementation of the middle route of the SNWTP, the water level of Miyun will rise to 150 m in
2020, and subsequently, the total net primary productivity (NPP) could decline by more than 40.90%
from the level in 2015, while the N and P uptake could decline by more than 53.03% and 43.49%,
respectively, from the levels in 2015, according to the modeling results. This will lead to declines in
the inner protection zone’s defense effectiveness for N and P interception and increases in risks to the
security of water resources. The results of this study provide useful knowledge for managing the
defense function of the terminal reservoir’s inner protection zone and for ensuring that water quality
is maintained during the diversion process.

Keywords: protection zone; nutrient uptake; NPP; South-to-North Water Transfer Project; Miyun Reservoir

1. Introduction

Inter-basin water transfers can relieve water scarcity and are a popular water-resource topic.
To date, many famous projects have been built to alleviate uneven water resource distributions, such as
the Central Arizona Project, the Colorado River Projects and California North-to-South Water Transfer
Project in the United States [1,2], the Siberian Rivers Diversion in Russia [3], the Snowy Mountains
Scheme in Australia [4], the National River Linking Project in India [5], and the South-to-North Water
Transfer Project (SNWTP) in China [6]. However, inter-basin water transfers usually are associated
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with complex environmental changes [7–11], just as Davies et al. [7] proposed: “Any transfer of water
within or between basins will have physical, chemical, hydrological and biological implications for
both donor and recipient systems, as well as for their estuaries and local marine environments.”
Therefore, the environmental responses to inter-basin water transfers should be studied.

Numerous ecological changes during inter-basin water transfers have been proposed, including
the introduction of nonindigenous species, secondary salinization, disturbances in water chemistry
and quality, changes in hydrologic regimes, and alterations of habitats [8,11–18]. The major concerns
of these studies were about the protection of water source regions and transfer canals so as to ensure
water safety. However, more attention should be devoted to the problems faced in receiving areas of
inter-basin water projects because artificial projects can raise the water level of a receiving area and
flood its drinking water protection zones, which may result in a decline of surface water quality.

Drinking water protection zones have been established by law to maintain the quality of surface
waters and aquatic ecosystems [19,20]. They consist of the following three parts: inner, middle, and
outer protection zones [20]. The inner protection zone is located near the drinking water source, and
its boundaries are closely related to the riparian buffer boundaries. The middle protection zone runs
along the inner protection zone and covers certain buffer areas. The outer protection zone covers the
remaining catchment area not covered by the inner protection zone and middle protection zone [19,20].
Among them, the inner protection zone is known for its ability to control non-point source pollution
(NPS) by intercepting and retaining excess particulates and dissolved nutrients originating from the
surrounding uplands. Plants in the inner protection zone play a significant role in nitrogen (N) and
phosphorus (P) cycling, and they can reduce N and P concentrations in soils [21,22].

The absorption of nutrients by plants largely depends upon vegetation production and other
environmental factors [23]. Even small changes in the water level may induce detectable changes in
vegetation production and associated N and P removal efficiencies [24,25]. When an inter-basin water
transfer project is implemented, significant amounts of water will be diverted to the terminal reservoir.
The elevated water level will flood the current riparian buffer, and a new one will form with a new
vegetation circumstance. Such variations have the potential to render the riparian buffer ineffective
at intercepting NPS and may change the inner protection zone from a nutrient sink into a nutrient
source [26]. However, though studies on the responses of riparian vegetation to flooding have been
done in natural lakes and rivers with some success [27,28], the impacts of inter-basin water transfers on
the N and P uptake functions of a terminal reservoir’s protection zone have not yet been investigated.

In this study, we use the SNWTP in China, which is the largest inter-basin transfer project in
the world, as an example to assess the impacts of water transfers on N and P uptake in a terminal
reservoir’s inner protection zone. The total N and P losses due to plant uptake were calculated by
the combined use of an N and P model and remote sensing data, and then, the relationship between
the water level and N and P removal was examined. Finally, the potential risks posed by water level
fluctuations and associated impacts on N and P uptake in the inner protection zone were evaluated.

2. Materials and Methods

2.1. Study Area

The SNWTP in China consists of three routes (i.e., the eastern, middle, and western routes)
(Figure 1); each route covers a distance of more than 1000 km, and in total they deliver 44.8 billion m3

of fresh water per year to northern China. It is the largest inter-basin transfer scheme in the world;
therefore, it is often taken as an example of inter-basin transfers and has been intensively studied in
terms of the ecological and environmental consequences since it was proposed [12,13,29–34].
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Figure 1. Schema of the South-to-North Water Transfer Project in China and land use information for
the terminal Miyun Reservoir of the middle route.

Along the middle route, the Miyun Reservoir serves as the terminal point and stores surplus
water transferred from the Dangjiangkou Reservoir. The middle route of the SNWTP was implemented
in 2014. Surplus water is lifted 133 m in elevation so that it can enter the Miyun Reservoir through the
Jingmi diversion canal with the help of nine pumping stations. The Miyun Reservoir is situated in
the mountainous area of Miyun County, and the reservoir extends from 116◦47′ E to 117◦05′ E and
from 40◦26′ N to 40◦35′ N (Figure 1). It has a large water surface area of 188 km2 and a watershed
area of 15,788 km2; the total storage capacity is 4.375 billion m3. The study area features a temperate
continental monsoon climate, with a mean annual precipitation amount of 628 mm and mean annual
air temperature of 11.3 ◦C. There is an uneven seasonal distribution of precipitation, and more than
70% of the annual precipitation occurs between June and September. The main land use types are
dry land, woodland, grassland, water bodies, flood land, and residential land (Figure 1). The inner
protection zone along the Miyun Reservoir mainly consists of the area encompassed by the highway
surrounding the reservoir and other nearby water zones as designated by the government.
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The Miyun Reservoir is the main surface drinking water source for Beijing, and it has played
an important role in the social and economic development of the capital [35]. Issues related to water
quality in the reservoir have been receiving increasing attention. The upper catchment of the Miyun
Reservoir has exhibited eutrophication trends in recent years [36]. Thus, there is an urgent need to
strengthen the management of water protection zones. The water level of the Miyun Reservoir was
136 m in 2016. With the implementation of the middle route of the SNWTP, the capacity of the terminal
reservoir will be increased from 1.2 billion m3 to 2 billion m3 in 2020, which will raise the water level
to 150 m. The transferred water will inundate part of the original inner protection zone. Vegetation in
the remaining part will likely be affected by the rising water level, and these changes could pose water
quality risks for the terminal reservoir.

2.2. Simulation of N and P Uptake

The effects of water level variation on the inner protection zone’s defense functions were evaluated
through modeling the N and P removal of vegetation during five years (1999, 2000, 2009, 2010, and
2015). The Miyun Reservoir began to receive transferred water in 2015, so we chose 2015 as the current
year. In the following years, its water level will increase to 150 m, which is almost equal to the water
level in 1999; hence, we chose 1999 as the objective year for reference. Besides, the difference of water
levels between 1999 and 2000 was quite significant (149 m in 1999 and 142 m in 2000), as well as the
difference between 2009 and 2010 (137 m in 2009 and 134 m in 2010), so these years were chosen
as typical years. N and P losses were calculated by coupling remote sensing data with a RIPArian
Model (RIPAM, EcoHAT, Beijing, China). RIPAM couples simple process-based modules and remote
sensing data to estimate soil denitrification rates, soil nitrogen emissions, phosphorus removed by
soil erosion, and nitrogen and phosphorus removal by vegetation uptake [37–40]. The framework of
RIPAM that relates to N and P uptake is shown in Figure 2, and its main functions and parameters are
listed in Table 1.

 

Figure 2. Framework of the N and P uptake simulation. IPAR: the amount of photosynthetically active
radiation intercepted by plants; LAI: leaf area index; NPP: net primary productivity; NDVI: normalized
difference vegetation index.
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Table 1. Functions and parameters related to N and P uptake in the RIPAM model.

No. Module Name Equations Reference

1 NPP simulation
NPP = GPP − Ra
GPP = ε × IPAR × f1(T) × f2(β)
Ra = GPP × (7.825 + 1.145Ta)/100

GLO-PEM model
[41]

2 NPP allocation

FB = dBL/dt + dFlit/dt
BL = LAI/SLA
RB = Kra(NPP − F B)
WB = NPP − FB−RB)

ForNBM model
[42]

3 Nutrient absorption
Xuptake = min(X avail, Xdem

)
Xdem = (1 − Kretra) × folX × FB + XW × WB + Xr × RB
Xdem = NPP × Xcont

ForNBM model
[42,43]

4 Litterfall
decomposition Flit =

⎧⎨⎩
afhFB, Tair > Tfall, deciduous species
FB, Tair < Tfall, deciduous species
afsFB, evergreen species

ForNBM model
[42]

Annotation: NPP: net primary productivity (g C·m−2); GPP: gross primary productivity (g C·m−2); Ra: primary
production for autotrophic respiration (g C·m−2); IPAR: the amount of photosynthetically active radiation
intercepted by plants (MJ·m−2); ε: the real efficiency of radiation utilization (g C·MJ−1); f1(T) is a function of
temperature stress; f2(β) is a function of water stress; FB: the NPP foliage obtains (g C·m−2); BL: the foliage
biomass (g·m−2); Flit: the leaf litter (g C·m−2); t: the time step (month); SLA: specific leaf area; RB: the NPP
roots obtain (g C·m−2); Kra: return coefficient of leaf nutrients, constant; WB: the NPP wood obtains (g C·m−2);
Xuptake: the nutrient uptake rate (g·m−2); Xavail: the amount of available nutrients (X = N or P) (g·m−2); Xdem:
the nutrients demanded by biomass growth (g·m−2); Kretra: the dimensionless foliage nutrient re-translocation
proportion (Kretra = 0.35 for this study); folX: the nutrient (X = N or P) concentration of the foliage (g·g−1); Xw: the
nutrient concentration of the wood (g·g−1); Xr: the nutrient concentration of the roots (g·g−1); afh: the coefficient
for deciduous species; afs: the coefficient for evergreen species; Tair: air temperature (◦C); and Tfall: the threshold
temperature for deciduous species litter (◦C).

In other published papers [37–40], the RIPAM model was tested in the Guanting Reservoir,
and the simulations of net primary productivity (NPP), NPP allocation, and nutrient uptake all had
considerable accuracy during the growing season (take N uptake rates for example, its R2 value is 0.95).
Since the Miyun Reservoir and Guanting Reservoir are located within a distance of less than 100 km and
their geographical conditions and climate are similar [36,39], we adopted the model parameters of the
Guanting Reservoir to apply to the Miyun Reservoir [37,39,44]. The database required included remote
sensing data, meteorological data, and in situ survey data. Remote sensing data and meteorological
data were used to drive the RIPAM model and simulate NPP and N and P uptake. In situ survey
data were used to validate the simulation results. The relationship between water levels and N and P
uptake in the inner protection zone were analyzed by implementing zonal statistics. Then the impacts
of N and P uptake were evaluated due to rising water levels.

2.3. Multi-Source Data for Driving the RIPAM

Input data for the RIPAM model included meteorological data, remote sensing data, and soil data
(Table 2). (1) The daily meteorological data in July of 1999, 2000, 2009, 2010, and 2015 were collected
from the national basic weather station at Miyun Reservoir; (2) The remote sensing data included
Landsat data and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)–Global
Digital Elevation Model (GDEM) data. Five time series of Landsat images in July or August of 1999,
2000, 2009, 2010, and 2015 were collected to infer land surface parameters. ASTER–GDEM was used
to calculate the contour map with intervals of 10 m, and the whole study area was zoned into the
following four belts: 130–140 m, 140–150 m, 150–160 m, and 160–170 m; (3) Soil data were derived
from the Second National Soil Survey results and field investigations in the study area. All data
were reproduced at 30 m × 30 m spatial resolutions and projected to Albers by using the World
Geodetic System-84 (WGS 84) datum. Some data were resolved by using ENVI4.8 (Harris Corporation,
Melbourne, FL, USA), ArcGIS10.1 (Environmental Systems Research Institute, Redlands, CA, USA),
or programs written in IDL (Interactive Data Language).
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Table 2. Information for the multi-source data.

Data Type Data Name Resolution Data Source

Meteorological data

Precipitation, wind speed, air pressure, air
temperature, daily max/min temperature,
relative humidity, sunshine duration, sun
radiation, surface temperature

- National basic weather station
(http://data.cma.cn/)

Remote sensing data
Digital elevation model (DEM) 30 m ASTER-GDEM

(http://www.gscloud.cn/)

Albedo, NDVI, LAI, land use, vegetation
coverage, land surface temperature (LST) 30 m Landsat

(http://www.gscloud.cn/)

Soil data Bulk density, soil texture, soil nutrient
content (TN, NO3-N, NH4-N), pH - Second National Soil Survey

field investigations

2.4. In Situ Survey Data for Validation

In practice, biomass is seldom estimated over a large scale. In the present paper, biomass data
in situ were collected at the times of Landsat image capture (from 5 to 20 July 2015) within the inner
protection zone. The whole zone can be classified into the following three phases: reservoir, terrestrial,
and water phase. The water phase is located between the low-water mark and the reservoir bank,
the riparian phase contains the zone between the low-water mark and high-water mark, and the
remainder is the terrestrial phase. Several 90 m × 90 m quadrants were selected in each phase,
and Figure 3 shows some examples of the in situ quadrants. The location of each quadrant was
recorded with the Global Positioning System (GPS) to integrate field and Landsat data. The harvesting
method [45] was used to measure the average biomass density of grasses and shrubs. In each quadrant,
we selected 36 sample areas of 1 m × 1 m for grass or nine sample areas of 5 m × 5 m for shrubs, and
the average biomass density was calculated. Forest biomass was estimated using diameter–height
models [46] based on the sample trees. In this study, 39 quadrants were selected for the analysis.

Figure 3. Examples of the in situ quadrants in different phases. (a) Quadrants selected in the terrestrial
phase; (b) quadrants selected in the water phase; (c) quadrants selected in the reservoir phase.

The average biomass density of each quadrant was calculated, as shown in Table 3. Additionally,
the data were converted into N and P uptake by using a simple ratio coefficient to validate the accuracy
of the RIPAM model (see Section 3.4 for more details).

154



Water 2018, 10, 178

Table 3. Information for the biomass density of each quadrant. Quadrants 1–11 were selected in the
terrestrial phase; quadrants 12–20 were selected in the water phase; quadrants 21–39 were selected in
the reservoir phase.

Quadrant ID
Biomass Density

(g·m−2)
Quadrant ID

Biomass Density
(g·m−2)

Quadrant ID
Biomass Density

(g·m−2)

1 1222.13 14 172.35 27 4699.23
2 1114.83 15 188.35 28 3139.40
3 773.61 16 171.57 29 4275.75
4 1321.03 17 192.58 30 13,825.23
5 1375.40 18 184.78 31 10,893.78
6 1185.17 19 177.98 32 7510.89
7 1332.65 20 142.32 33 12,186.66
8 1453.43 21 5291.21 34 10,159.57
9 859.52 22 3275.53 35 11,741.42
10 1001.63 23 1796.98 36 12,123.08
11 1488.09 24 2043.25 37 5930.64
12 172.73 25 1528.09 38 10,361.92
13 152.52 26 2679.09 39 7192.59

3. Results

3.1. NPP Distribution and Variation

The NPP of Miyun’s inner protection zone during the growing season of 1999, 2000, 2009, 2010,
and 2015 was simulated by the RIPAM model. According to previous research in this study area [47],
it is changes in water level but not climate or land use that influence the condition of vegetation in
the inner protection zone. The total NPP of the whole zone amounted to 8454.96 t in 1999, 11,922.37 t
in 2000, 17,271.43 t in 2009, 13,653.78 t in 2010, and 14,306.82 t in 2015. The spatial distribution and
average NPP value during these five years are shown in Figure 4a–f. Higher values were mainly
located in the northern part of the study area, where the values were more than 100 g C·m−2, while the
NPP of the vegetation surrounding the reservoir was relatively low. The numerical growth of the NPP
was significant in the northwestern and southwestern parts of the study area. As the water level rose,
the average NPP value showed a decreasing trend, with values ranging from 98.66 g C·m−2 in 2015 at
a water level of 133 m to 75.10 g C·m−2 in 1999 at a water level of 149 m (Figure 4f). The average water
level in 2009, 2010, and 2015 was 135 m, and the average total NPP was 102.02 g C·m−2. The average
water level in 1999 and 2000 was 145 m, and the corresponding average total NPP decreased to
83.40 g C· m−2, which amounts to a decline rate of 18.26%.

Figure 4. Cont.
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Figure 4. Spatial distribution of NPP in Miyun’s inner protection zone during different years.

3.2. Spatiotemporal Variation of N and P Uptake

The RIPAM model was used to simulate the spatial distribution of N and P uptake in the inner
protection zone during the growing season of 1999, 2000, 2009, 2010, and 2015. Total N uptake of the
whole zone amounted to 0.57 t in 1999, 0.74 t in 2000, 0.86 t in 2009, 0.78 t in 2010, and 1.22 t in 2015,
while total P uptake of the whole zone amounted to 3.79 t in 1999, 5.93 t in 2000, 6.96 t in 2009, 6.33 t in
2010, and 6.71 t in 2015. The spatial distribution of N uptake for each year is shown in Figure 5a–e.
The modeling results show that plants located in the western and northern parts of the study area
had a stronger ability to absorb N; average monthly N uptake rates in the inner protection zone were
around 2.62 g·m−2. The western part is mountainous, and the major land cover is forest. For the
northern part, which has a vast area of grassland, N consumption by plants was relatively weaker,
except for dry land, which had higher values. In addition, areas adjacent to the water body displayed
a consistently low ability to consume N. The statistics in Figure 5f show that the average N removal
due to plant uptake increased from 1999 to 2015. This result is consistent with the NPP data. The value
of N consumed by plants increased from 1.80 g·m−2 in 1999 to 3.83 g·m−2 in 2015.

The spatial distribution of P uptake for each year is shown in Figure 6a–e. The results show
that plants located in the northwestern, northeastern, and southwestern parts of the study area had
a stronger ability to absorb P; average monthly P uptake rates in the inner protection zone were around
0.041 g·m−2. These three areas are all mountainous, and the major land cover is forest. For the northern
part, which has a vast area of grassland, the ability of plants to consume P was relatively weaker.
Also, areas adjacent to the water body displayed a consistently low ability to consume P. The statistics
in Figure 6f show that average P removal due to plant uptake increased from 1999 to 2015. This result
is consistent with the NPP and N uptake data. The value of P increased from 0.026 g·m−2 in 1999 to
0.046 g·m−2 in 2015.
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Figure 5. Spatial distribution of the N uptake rate in Miyun’s inner protection zone during different years.

Figure 6. Cont.
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Figure 6. Spatial distribution of the P uptake rate in Miyun’s inner protection zone during different years.

3.3. Negative Relationship between the Water Level and N and P Uptake

Water table dynamics strongly influence the N and P removal rates by plants [25] in the
inner protection zone and are impacted by both landscape and stream water levels directly [48].
By overlaying the contour map on the spatial distribution of N and P removal by plants and
implementing zonal statistics (130–140 m, 140–150 m, 150–160 m, and 160–170 m), we found that the N
and P uptake increased synchronously with the elevation gradient (Figure 7a,b). The mean N and P
uptake were generally low between elevations of 130–160 m, where values for N varied from 16.44 t
to 124.74 t and values for P varied from 16.44 t to 124.74 t. Meanwhile, the values were higher at
160–170 m, where the mean consumed N increased from 124.74 t to 427.20 t and the mean consumed P
increased from 124.74 t to 427.20 t. Thus, the uptake of N and P by vegetation presented a positive
correlation with elevation.

Figure 7. Zonal statistics for N (a) and P (b) consumed by plants during different years. The water
level of each year is shown in parentheses following the year.
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The amount of N and P removal by plants was also influenced by the water level. The lowest
water level appeared in 2015, and the absorption of N and P by plants was strong in all elevation zones
during this time. In 2009 and 2010, the water levels were similar, and the vegetation exhibited a similar
N and P uptake capacity. The water level in 1999 was significantly higher than that in 2000, and the N
and P uptake capacity of vegetation in 1999 was obviously lower than that of 2000. Thus, the increased
water level had an obvious negative impact on N and P removal in the inner protection zone.

The response lines associating elevation with N and P uptake in Figure 7 can be classified into the
following two categories based on the water level: high-level periods with an average water level of
145 m (1999, 2000) and low-level periods with an average water level of 134 m (2009, 2010, and 2015).
The trend-line slopes of N and P uptake responses to different water levels are shown in Figure 8a,b.
The slopes of N and P uptake during high-level periods were 0.145 and 0.0014, respectively, whereas
they were 0.102 and 0.0009 during low-level periods, respectively. This shows that the N and P removal
capacity of vegetation is more sensitive and weaker in high-level periods than in low-level periods.
Therefore, the water levels of the reservoir along with the landscape have a significant impact on
nutrient interception in the inner protection zone.

Figure 8. The distribution of N (a) and P (b) uptake rate responses to different water levels.

3.4. Validation of N and P Uptake Based on In Situ Survey Data

Generally, there are correlations between vegetation biomass density and N and P uptake and
biomass can be used as a surrogate for nutrient removal potential [49,50]. To validate the accuracy
of the RIPAM model, we converted the biomass density to N and P uptake by using a simple ratio
coefficient. Xiao [51] did research on the ratios between biomass and N and P uptake for woodland
areas in the Miyun Reservoir watershed, and the average ratio between biomass and N uptake was
0.00487, while that between biomass and P was 0.000579 [51]. For grasslands, Song [52] found that the
ratios between biomass and N and P uptake were 0.0152 and 0.0012, respectively [52]. In this study,
39 quadrants were selected (shown in Section 2.4), and the N and P uptake rate of each quadrant was
obtained by multiplying the biomass density with the corresponding correlation as follows:

Xuptake = Biomass × Xrate, (1)

where Xuptake refers to the N or P uptake rate of each quadrant (g·m−2), Biomass is the biomass density
of each quadrant (g·m−2) (Table 3), and Xrate is the ratio between the biomass and N and P uptake
according to Xiao [50] and Song [51]. It should be noted that the Xrate is varied with elevation and
water level. Because of the limitation of the measured data, we used a fixed N or P uptake rate here
and this would influence the results.

As each quadrant had a size of 90 m × 90 m, which corresponds to 3 pixels × 3 pixels in the
RIPAM model, the average value of each 3 pixel × 3 pixel region in the simulated N and P uptake
data was calculated. Then, scatter diagrams of N and P uptake between the RIPAM model and in
situ quadrants were obtained, and linear regression was applied to the simulated data and in situ
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survey data (Figure 9a,b). We found that the R2 and relation coefficient for N uptake were 0.88 and
0.78, respectively; the R2 and relation coefficient for P uptake were 0.82 and 0.6, respectively. Both were
a good fit. This shows that the two simulations both had considerable accuracy.

Figure 9. The N (a) and P (b) uptake rate of quadrant scatter diagrams between the RIPAM model and
in situ survey.

4. Discussion

4.1. Reason for the Decline of N and P Uptake

As mentioned in Section 3.3, water level dynamics can have obvious negative impacts on N and P
uptake. The growth conditions are a primary influencing factor for nutrient uptake by plants. For vegetation
in the inner protection zone, soil moisture is no longer a limiting factor to its growth. In high-water-level
periods, prolonged inundation may cause mechanical injury to plants and adversely affect the growth of
vegetation. Additionally, high soil moisture will have more inhibitory effects than stimulatory effects on
vegetation development. These both will lead to low NPP [24,28].

According to the theory described above, NPP in the inner protection zone was evaluated zonally.
It was found that the variation trend of NPP was similar with that of the N and P uptake by plants during
the five years that were analyzed (Figure 10a,b). Generally, there was a rising trend in NPP with increasing
altitude. The NPP increased slowly from 130 m to 150 m, with mean values varying from 149.43 t to
2780.30 t. At an altitude of 160 m, there was a decline in the NPP. Then, it rose exponentially from 160
m to 170 m, whereby the mean NPP increased from 2301.45 t to 6604.80 t. The NPP was also influenced
by the water level. The mean NPP in each elevation zone was higher during the low water level years
(corresponding to 2009, 2010, and 2015) than that during the high water level years (corresponding to
1999 and 2000). This can be explained by the differences in the vegetation distribution, which were driven
largely by the tolerances of species to specific geomorphic processes. As shown in Figure 1, grasslands and
dry lands are the dominant land use types at elevations of 130–160 m; they both are home to herbaceous
species and are easily influenced by elevated water tables or flooding. Meanwhile, forests, which are the
dominant land use type at 160–170 m, are less affected.

Figure 10. (a) Zonal statistics for NPP in different years and (b) NPP responses to different water levels.
The numbers in parentheses following the years are the water level of each year.
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4.2. Prediction of the Inner Protection Zone’s Defense for N and P Interception

With the implementation of the middle route of the SNWTP, the storage capacity of the Miyun
Reservoir is expected to increase from 1 billion m3 to 2 billion m3, and the water level will rise to 150 m
in 2020, which is higher than the level in 1999. According to the contour map, the extent of the inner
protection zone will decrease to 122.23 km2, which is less than 56% of the area in 2015, and changes
will be especially prominent in the northern floodplain, which represents one of the most important
sections that curtails N and P losses to the water source from the upstream watershed.

The rest of the zone will also be influenced by the elevated water tables. According to the formula
in Figure 10b, NPP will decrease, especially for vegetation at elevations of 130–150 m, which is sensitive
to flooding. The total NPP will likely be less than the amount of 8454.96 t detected in 1999 when the
water level was 149 m, and it is predicted to decline by more than 40.90% compared to the level in 2015.
According to the formulas in Figure 8a,b, N and P uptake will be less than the amounts of 0.57 t N
and 3.79 t P detected in 1999, and each will decline by more than 53.03% and 43.49%, respectively,
compared to the levels in 2015. Thus, the ecological functions of the original inner protection zone will
be impaired and this will lead to a decline of the inner protection zone’s defense effectiveness in terms
of N and P interception.

Although some studies indicate that transferred water is safe and has little impact on the trophic
state of the receiving water [14], its ecological effectiveness as a nutrient sink providing pollution
control and sediment retention will be impacted if the extant inner protection zone is damaged.
The inner protection zone may even be turned from an NPS sink to an NPS source [26]. This could pose
risks to the security of the water resource. Thus, vegetation cover in the extant inner protection zone of
the terminal reservoir will need to be restored if the protection zone is to maintain its usual effectiveness.

5. Conclusions

As the end point of the middle route of the South-to-North Water Transfer Project (SNWTP),
the Miyun Reservoir is the most important water source for Beijing. Importantly, water quality in
the reservoir can have a direct impact on the wellbeing of people in Beijing and therefore warrants
protection. In particular, steps will need to be taken to avoid eutrophication problems. This study used
the RIPAM model to simulate N and P uptake by plants in Miyun Reservoir’s inner protection zone
during five years (1999, 2000, 2009, 2010, and 2015), and the results were validated by in situ survey
data (R2 of N uptake was 0.88, and R2 of P uptake was 0.82). The correlations between the water level
and the N and P uptake capacities showed that water table dynamics strongly influence the N and P
removal by plants; thus, variations in the water level can have obvious negative impacts on N and P
removal in the inner protection zone.

With the implementation of the middle route of the SNWTP, the water level of the Miyun Reservoir
will rise to 150 m in 2020, and the total NPP is predicted to decline by more than 40.90% compared to
the level in 2015; additionally, the N and P uptake is predicted to decline by more than 53.03% and
43.49%, respectively, compared to the levels in 2015. This will lead to a decline in the inner protection
zone’s defense effectiveness in terms of N and P interception and pose risks to the security of the water
resource unless steps are taken to avoid such negative consequences. In summary, this study provides
useful knowledge for assessing the risks of nutrient removal reductions in a terminal reservoir from
a large inter-basin water transfer project before its implementation.
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20. Brenčič, M.; Prestor, J.; Kompare, B.; Matoz, H.; Kranjc, S. Integrated approach to delineation of drinking
water protection zones. Geologija 2009, 52, 175–182. [CrossRef]

162



Water 2018, 10, 178

21. Sabater, S.; Butturini, A.; Clement, J.-C.; Burt, T.; Dowrick, D.; Hefting, M.; Matre, V.; Pinay, G.; Postolache, C.;
Rzepecki, M. Nitrogen removal by riparian buffers along a European climatic gradient: Patterns and factors
of variation. Ecosystems 2003, 6, 0020–0030. [CrossRef]

22. Correll, D. Buffer zones and water quality protection: General principles, Buffer zones: Their processes and
potential in water protection. In Proceedings of the International Conference on Buffer Zones, Harpenden,
Hertfordshire, UK, September 1996; pp. 7–20.

23. Klemas, V. Remote sensing of riparian and wetland buffers: An overview. J. Coast. Res. 2014, 297, 869–880.
[CrossRef]

24. Nilsson, C.; Svedmark, M. Basic principles and ecological consequences of changing water regimes:
Riparian plant communities. Environ. Manag. 2002, 30, 468–480. [CrossRef]

25. Liu, X.; Vidon, P.; Jacinthe, P.A.; Fisher, K.; Baker, M. Seasonal and geomorphic controls on n and P removal
in riparian zones of the US Midwest. Biogeochemistry 2014, 119, 245–257. [CrossRef]

26. Schilling, K.E.; Li, Z.; Zhang, Y.-K. Groundwater–surface water interaction in the riparian zone of an incised
channel, Walnut Creek, Iowa. J. Hydrol. 2006, 327, 140–150. [CrossRef]

27. Džubáková, K.; Molnar, P.; Schindler, K.; Trizna, M. Monitoring of riparian vegetation response to flood
disturbances using terrestrial photography. Hydrol. Earth Syst. Sci. 2015, 19, 195–208. [CrossRef]

28. Kozlowski, T.T. Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetlands 2002.
[CrossRef]

29. Stone, R.; Jia, H. Going against the flow. Science 2006, 313, 1034–1037. [CrossRef] [PubMed]
30. Zhang, J.; Meng, F.; Lu, Y.; Jing, Y.; Zhang, H.; Zhang, B.; Zhang, C. Ecological assessment of lakeshore

wetland rehabilitation on eastern route of south-to-north water transfer project. Front. Environ. Sci. Eng. China
2008, 2, 306–310. [CrossRef]

31. Cheng, S.; Song, H. Conservation buffer systems for water quality security in south to north water transfer
project in China: An approach review. Front. For. China 2009, 4, 394–401. [CrossRef]

32. Gu, W.; Shao, D.; Jiang, Y. Risk evaluation of water shortage in source area of middle route project for
south-to-north water transfer in China. Water Resour. Manag. 2012, 26, 3479–3493. [CrossRef]

33. Liang, Y.-S.; Wang, W.; Li, H.-J.; Shen, X.-H.; Xu, Y.-L.; Dai, J.-R. The South-to-North water diversion project:
Effect of the water diversion pattern on transmission of oncomelania hupensis, the intermediate host of
Schistosoma japonicum in China. Parasites Vectors 2012, 5, 52. [CrossRef] [PubMed]

34. Barnett, J.; Rogers, S.; Webber, M.; Finlayson, B.; Wang, M. Sustainability: Transfer project cannot meet
China’s water needs. Nature 2015, 527, 295–297. [CrossRef] [PubMed]

35. Li, X.-S.; Wu, B.-F.; Zhang, L. Dynamic monitoring of soil erosion for upper stream of Miyun reservoir in the
last 30 years. J. Mt. Sci. 2013, 10, 801–811. [CrossRef]

36. Jiao, J.; Du, P.; Lang, C. Nutrient concentrations and fluxes in the upper catchment of the Miyun reservoir, China,
and potential nutrient reduction strategies. Environ. Monit. Assess. 2015, 187, 110. [CrossRef] [PubMed]

37. Dong, G.; Yang, S.; Gao, Y.; Bai, J.; Wang, X.; Zheng, D. Spatial evaluation of phosphorus retention in riparian
zones using remote sensing data. Environ. Earth Sci. 2014, 72, 1643–1657. [CrossRef]

38. Wang, X.; Mannaerts, C.M.; Yang, S.; Gao, Y.; Zheng, D. Evaluation of soil nitrogen emissions from riparian
zones coupling simple process-oriented models with remote sensing data. Sci. Total Environ. 2010, 408,
3310–3318. [CrossRef] [PubMed]

39. Wang, X.; Wang, Q.; Yang, S.; Zheng, D.; Wu, C.; Mannaerts, C.M. Evaluating nitrogen removal by vegetation
uptake using satellite image time series in riparian catchments. Sci. Total Environ. 2011, 409, 2567–2576.
[CrossRef] [PubMed]

40. Wang, X.; Yang, S.; Mannaerts, C.M.; Gao, Y.; Guo, J. Spatially explicit estimation of soil denitrification rates
and land use effects in the riparian buffer zone of the large Guanting reservoir. Geoderma 2009, 150, 240–252.
[CrossRef]

41. Prince, S.D.; Goward, S.N. Global primary production: A remote sensing approach. J. Biogeogr. 1995, 22,
815–835. [CrossRef]

42. Zhu, Z.X.; Arp, P.A.; Meng, F.R.; Bourque, C.P.A.; Foster, N.W. A forest nutrient cycling and biomass model
(FORNBM) based on year-round, monthly weather conditions, part 1: Assumption, structure and processing.
Ecol. Model. 2003, 169, 347–360. [CrossRef]

43. Arp, P.A.; Oja, T. A forest soil vegetation atmosphere model (ForSVA) 1. Concepts. Ecol. Model. 1997, 95,
211–224. [CrossRef]

163



Water 2018, 10, 178

44. Zhang, L.-T.; Li, Z.-B.; Wang, S.-S. Spatial scale effect on sediment dynamics in basin-wide floods within a
typical agro-watershed: A case study in the hilly loess region of the Chinese loess plateau. Sci. Total Environ.
2016, 572, 476–486. [CrossRef] [PubMed]

45. Husson, E.; Lindgren, F.; Ecke, F. Assessing biomass and metal contents in riparian vegetation along
a pollution gradient using an unmanned aircraft system. Water Air Soil Pollut. 2014, 225. [CrossRef]

46. Kachamba, D.J.; Orka, H.O.; Gobakken, T.; Eid, T.; Mwase, W. Biomass estimation using 3D data from
unmanned aerial vehicle imagery in a tropical woodland. Remote Sens. 2016, 8, 968. [CrossRef]

47. Yang, S.; Bai, J.; Zhao, C.; Lou, H.; Zhang, C.; Guan, Y.; Zhang, Y.; Wang, Z.; Yu, X. The assessment
of the changes of biomass and riparian buffer width in the terminal reservoir under the impact of the
South-to-North water diversion project in China. Ecol. Indic. 2018, 85, 932–943. [CrossRef]

48. Jung, M.; Burt, T.; Bates, P. Toward a conceptual model of floodplain water table response. Water Resour. Res.
2004, 40. [CrossRef]

49. Rheinhardt, R.; Brinson, M.; Meyer, G.; Miller, K. Integrating forest biomass and distance from channel to
develop an indicator of riparian condition. Ecol. Indic. 2012, 23, 46–55. [CrossRef]

50. Jiang, F.Y.; Chen, X.; Luo, A.C. A comparative study on the growth and nitrogen and phosphorus uptake
characteristics of 15 wetland species. Chem. Ecol. 2011, 27, 263–272. [CrossRef]

51. Xiao, Y. Study on the Adjustment and Control Mechanism of Forest to Nonpoint Source Pollution in Beijing
Mountain Area. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 29 June 2008.

52. Song, X. Study on the Variation of N, P, K Nutrients Pool of Different Type of Alpine Meadow in Eastern
Qilian Mountains. Master’s Thesis, Gansu Agricultural University, Lanzhou, China, 10 June 2008.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

164



water

Article

Estimating Carbon Dioxide (CO2) Emissions from
Reservoirs Using Artificial Neural Networks

Zhonghan Chen, Xiaoqian Ye and Ping Huang *

Department of Environmental Science, School of Environmental Science and Engineering,
Sun Yat-sen University, Guangzhou 510275, China; chenzhh43@mail2.sysu.edu.cn (Z.C.);
yexqian@mail2.sysu.edu.cn (X.Y.)
* Correspondence: eeshping@mail.sysu.edu.cn or pinghuang43@foxmail.com; Tel.: +86-132-4974-8826

Received: 3 November 2017; Accepted: 28 December 2017; Published: 1 January 2018

Abstract: Freshwater reservoirs are considered as the source of atmospheric greenhouse gas (GHG),
but more than 96% of global reservoirs have never been monitored. Compared to the difficulty and
high cost of field measurements, statistical models are a better choice to simulate the carbon emissions
from reservoirs. In this study, two types of Artificial Neural Networks (ANNs), Back Propagation
Neural Network (BPNN) and Generalized Regression Neural Network (GRNN), were used to predict
carbon dioxide (CO2) flux emissions from reservoirs based on the published data. Input variables,
which were latitude, age, the potential net primary productivity, and mean depth, were selected by
Spearman correlation analysis, and then the rationality of these inputs was proved by sensitivity
analysis. Besides this, a Multiple Non-Linear Regression (MNLR) and a Multiple Linear Regression
(MLR) were used for comparison with ANNs. The performance of models was assessed by statistical
metrics both in training and testing phases. The results indicated that ANNs gave more accurate
results than regression models and GRNN provided the best performance. With the help of this
GRNN, the total CO2 emitted by global reservoirs was estimated and possible CO2 flux emissions
from a planned reservoir was assessed, which illustrated the potential application of GRNN.

Keywords: CO2; reservoirs; general regression neural network; back propagation neural network

1. Introduction

Since the problem of greenhouse gases (GHGs) emissions from hydroelectric reservoirs was
first addressed in the publication in 1993 [1], it has been the focus of research around the world [2],
especially in Canada [3,4], Brazil [5], and the United States [6,7]. Over the past two decades, a growing
amount of work has documented reservoirs’ roles as GHG sources [8,9], after extensive research was
carried out in various reservoirs. However, the magnitude of global flux of GHG from reservoirs
is still highly debatable [10]. According to the current estimations of global carbon dioxide (CO2)
emissions, the hydroelectric reservoirs were responsible for emitting 48 Tg C yr−1 as CO2 [11], while
Demmer et al. [12] estimated that GHG emissions accounted for 36.8 Tg C yr−1 as CO2 ignoring the
types of reservoirs. These estimates corresponded roughly to 2% of global carbon emissions from
inland waters that reported a flux of 2100 Tg C yr−1 as CO2 [13]. Although there was a minor difference
between the estimated global CO2 flux from hydroelectric systems and all reservoir systems, any
significant difference between the areal emissions of CO2 from hydroelectric and non-hydroelectric
reservoirs was not detected by statistical analysis [12]. Depending on reservoir type, GHG emissions
from reservoirs are related to various factors, which is crucial for understanding the mechanism and
the control over GHG emissions. In a single reservoir system, both depth and temperature might be
the important predictors of carbon emissions, and also reflect the spatial and seasonal variability [5,14].
GHG emissions tend to decrease with the increase of reservoirs’ latitude and age [11]. Considering
the internal source of carbon emissions, the initial organic carbon in the flooded area is another key
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factor, especially in the young reservoirs [15,16]. Besides, the GHG emissions are also related to dam
operation regime [5] and water quality, such as pH [17] and Chlorophyll-a [18,19].

Despite significance and uncertainty, there is still a lack of measured CO2 emissions from
reservoirs in many regions, which leaves a critical gap in the global CO2 budgets. To resolve
this problem, statistical models are the appropriate methods to extrapolate the flux of reservoirs
without measured data and then derive regional or global estimations relying on a limited number
of measurements [20]. One of the most common models is the statistical regression model, which
can demonstrate the relationship between CO2 emissions and one [9] or several [11,16] factors by the
regression equations. Other models that can identify more complex non-linear responses, such as
Random Forests [6] and Monte Carlo simulation [21], were also used to elucidate the relationship
between CO2 emissions and the factors of environment or dams, and also to predict CO2 emissions
from other under-sampled reservoirs in the nearby geographic region. Unlike these models with the
inputs of environmental factors, a mathematical model with the theory of Self-Organized Criticality
(SOC) was employed to extrapolate values from one reservoir to another directly without any other
features [22]. These pioneering models showed a low degree of precision and regional limitations;
therefore, developing and optimizing models of reservoir CO2 emissions is still one of the future
research directions [6,12].

Artificial neural networks (ANNs) were frequently being used for the simulation of both water
quality [23,24] and GHG emissions caused by energy consumption [25,26], and showed great potential
for prediction. However, few research has been conducted to simulate GHG emissions from reservoirs
using ANNs. Actually, ANNs have several advantages that are suitable for this study. ANNs
have robust learning and generalization ability, after simulating the learning and decision-making
process of human beings. Therefore, ANNs can describe the linear or non-linear relationships
precisely even with limited input variables [27,28] and identify complex patterns in dataset without
adequate understanding of the interaction among variables [24]. Besides this, because the learning
mechanism in ANNs is non-parametric, the structure and distribution of data are not limitations [29].
The precision of fitting by ANNs largely depends on the quantity and quality of data [30]. CO2

fluxes have been measured in at least 229 reservoir systems in the world until 2016 [12], which
supplies the sufficient amount of data for ANNs. Besides, many commonly employed techniques for
measurement focus on quantifying the diffusive flux of gases across the air–water interface, which
is suitable for CO2 because of its solubility [12]. There are some other key factors that affect model
performance, such as the architecture selection and parameter settings [28]. However, it is difficult to
reach any conclusion of which model architecture is absolutely suitable to a particular circumstance.
Therefore, ad hoc approaches, such as a trial-and-error approach, might be acceptable to determine
the parameters, following the principle that the optimal network structure generally keeps a balance
between generalization ability and network complexity [31].

In this study, we make the first attempt to simulate the CO2 flux emission from reservoirs by ANNs,
back propagation neural network (BPNN) and general regression neural network (GRNN), based on
the published data from various types of reservoirs with a global distribution. The input variables of
models is selected through both the correlation analysis and domain knowledge. The rationality of
selected sets of inputs is tested by sensitivity analysis. The model parameters selection are described
in detail and the model performance is evaluated using statistical indices. Since the models have
the ability to predict CO2 fluxes from a reservoir without measurements, the global fluxes of CO2

emissions from reservoirs can be estimated. Besides this, the possible magnitude of CO2 emissions
from a planned reservoir can also be assessed by models based on some reservoirs’ features, which
gives guidance for dam’s construction.
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2. Materials and Methods

2.1. Data Collection

In this study, most CO2 emission fluxes from reservoir surface were based on data collection
by Barros et al. [11] in 2011 and Deemer et al. [12] in 2016. CO2 emission monitoring data from
reservoirs in some latest literature were also assembled. Some essential parameters about reservoirs
and monitoring were collected from the relevant literature and part of missing values were completed
from Global Reservoir and Dam (GRanD) database [19]. Another important parameter, the primary
productivity of potential vegetation (NPP0) in the reservoir’s location, was extracted from the map
of the human appropriation of net primary production (HANPP) [32]. In cases where more than one
study measured CO2 fluxes from the system in the same year, the arithmetic mean of these parameters
was used for statistic, and CO2 fluxes from same reservoir measured in different years were kept at the
original values. Therefore, 277 data sets were collected based on the studies in 235 reservoirs, and the
information of data set can be found in supplementary Table S1.

In total, we assembled 10 parameters of 235 reservoirs with a global distribution, including
latitude (Lat), age, chlorophyll-a (Chl-a), water temperature (WT), mean depth (MD), residence time
(RT), dissolved organic carbon (DOC), total phosphorus (TP), the potential net primary productivity of
the area (NPP0), and CO2 flux. CO2 flux was used as the output of models in this study. The statistical
parameters including minimum value, maximum value, mean value, median, standard deviation, and
variation coefficient are given in Table 1.

Table 1. The statistical parameters for data sets.

Parameters Unit Min Max Mean Median SD VC

Lat ◦ −42.93 68.00 31.96 38.17 26.36 0.83
Age yrs 1.00 95.00 39.09 36.00 24.55 0.63

Chl-a μg L−1 0.20 137.50 12.03 4.13 24.78 1.96
WT ◦C 6.30 35.00 17.88 17.40 5.52 0.30
MD m 0.30 400.00 26.58 15.00 40.26 1.52
RT days 1.25 13,140.00 665.75 180.00 1689.54 2.54

DOC mg L−1 1.25 30.00 4.79 3.82 4.01 0.84
TP μg L−1 1.40 500.00 62.61 29.00 96.89 1.55

NPP0 mg C m−2 d−1 151.90 3200.68 1529.21 1574.50 604.70 0.40
CO2 flux mg C m−2 d−1 −356.00 3800.00 400.90 254.75 569.89 1.42

Note: SD, the standard deviation; VC, the coefficient of variation; Lat, latitude; Chl-a, chlorophyll-a; WT, water
temperature; MD, mean depth; RT, residence time; DOC, dissolved organic carbon; TP, total phosphorus; NPP0,
potential net primary productivity.

2.2. Input Variables and Data Processing

The selection of a set of appropriate input variables is the precondition of developing a satisfactory
ANN for prediction [31]. There are two basic principles for selection: one is the confirmation
of input–output relationship, and the other is the independence among input variables [26].
This characteristic of independence is very important since correlated data can provide redundant
information, which increases the likelihood of overfitting and the difficulty to find optimal weights [31].
There are two general categories of techniques, model-free and model-based approaches, to examine
the relationship between alternative inputs and outputs, such as the correlation analysis and the
stepwise analysis [31]. In this study, the correlation analysis, sensitivity analysis, the availability of
data, and domain knowledge are combined to select an optimal set of input variables for models.

Since the variables have different units, the variables should be scaled to a uniform range before
passing them through the ANNs to avoid convergence problems and extremely small weighting
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factors [33]. There are no fixed rules for the standardization in literature. In this study, normalization
was done by the following equation:

Y = (ymax − ymin)

(
x − xmin

xmax − xmin

)
+ ymin (1)

where, Y denotes the data value after normalization, xmax and xmin are the maximum and the minimum
values of each variable, and ymax and ymin denote the boundary values of the specific range, which are
1 and −1 respectively in this study.

The complete CO2 emissions data set comprises 235 reservoirs in 21 countries. In this study, 70%
of samples with the whole selected input variables were randomly chosen to build and train models,
while the remaining data was used to test the models.

2.3. Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) are the abstract computational models that follow the behavior
of the human brain. ANNs have been used widely for prediction and forecasting in the environmental
area, because they are believed to approximate any finite non-linear function with high accuracy [34].
Traditionally, ANNs are divided into feed-forward and recurrent networks. Feed-forward architectures,
which have many types, such as Multilayer Perceptions (MLP) and Radial Basis Function (RBFNN),
are the most popular architectures used in researches [31]. In feed-forward ANNs, the input signal
propagates through network in a forward direction, from the input layer to the hidden layer and then
to the output neurons [33]. Among many types of feed-forward networks, BPNN and GRNN were
chosen for this study.

2.3.1. Back Propagation Neural Networks (BPNNs)

Back Propagation Neural Networks (BPNNs) are typical multi-layer perceptron neural networks
(MLPs) with error back-propagation (BP) algorithm for network learning [34]. BPNNs are organized as
hierarchical networks with several layers including an input layer, hidden layer(s), and an output layer.
Generally, it is believed that BPNNs with one hidden layer are able to describe any finite non-linear
relationship with acceptable performance [35]. Each layer has several neurons that transmit input
values and process to the next layer by a set of weights (Figure 1). In each neuron, the sum of the
products of input variables and their weights is transformed to an output value by an activation
function. In this study, the classical tansig function was selected as the activation function from the
input layer to the hidden layer (Equation (2)). The purelin linear function was applied from the hidden
layer to the output layer (Equation (3)). There is a wide variety of algorithms available for training a
network and adjusting its weights, and Levenberg–Marquardt algorithm (LMA) was used in this study.

Xj = tansig
(
∑m

i=1 xiw′
ji+b′j

)
(2)

Y = ∑n
j=1

(
Xjw

′′
j +b′′

)
(3)

where, m and n are the numbers of neurons in the input and hidden layers, respectively. xi is the
values of the input variables; Xj is the result obtained by activation function (tansig) from the input
neurons; w′

ji is the connection weight between the ith input neuron and jth hidden neuron, and w′′
j is

the connection weight between the jth hidden neuron and the output neuron; b′j and b′′ are the bias for
the jth hidden neuron and the output neuron, respectively.

The reason for selecting BPNN is that it is the most commonly used for simulation among ANNs.
Besides, the BP algorithm can efficiently minimize network error by dynamically searching for the
optimal weights. The optimal number of hidden nodes for BPNN was selected by trying different
integers in a reasonable range separately, which created the balance between complexity and accuracy.
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Figure 1. Architecture of Back-Propagation Neural Network (BPNN).

2.3.2. General Regression Neural Networks (GRNNs)

Unlike BPNNs, General Regression Neural Networks (GRNNs) do not rely on iterative procedures
for their training but rely on a standard statistical technique called kernel regression [36]. GRNNs
consist of four consequent layers, namely input, pattern, summation, and output layers (Figure 2).

Figure 2. Architecture of General Regression Neural Network (GRNN).
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In the first (input) layer, the input units pass input variables to pattern layer through input weights.
In the second (pattern) layer, each neuron presents a training pattern, and the similarity between input
patterns is calculated using a distance function (Equation (4)). The third (summation) layer consists
two different types of summation, including single division and summation units. Each neuron in the
pattern layer is connected to both S-summation and D-summation neurons in the summation layer.
The S-summation neuron calculates the sum of the weighted responses in pattern layer, whereas the
D-summation neuron computes the unweighted output neuron in the pattern layer. The final (output)
layer just divides each S-summation neuron on D-summation neuron and represents the network
prediction (Equations (5)) [37,38].

Dj
(
x, xj

)
= ∑m

i=1

( xj − xji

σ

)2
(4)

Y =
∑n

j=1 yjexp
[−Dj

(
x, xj

)]
∑n

j=1 exp
[−Dj

(
x, xj

)] (5)

where, m and n are the number of elements of an input vector and the number of training patterns,
respectively. D is the Gaussian function. The term of

(
xj − xji

)
denotes the difference between the ith

training data xji and the point of estimation xj. σ is the spread (smoothness) parameter whose optimal
value can be experimentally evaluated. yi represents the weight relationship between ith neuron in the
pattern layer and the S-summation neuron in the summation layer.

The GRNN method was also selected because of its fast learning and convergence to the optimal
regression surface [39]. Besides, it has another advantage that the network architecture is fixed and
only one single parameter named spread needs to be optimized [39]. Different values of spread were
also tried separately for each GRNN model in this study.

2.4. Statistical Regression Models

The performance of ANNs was compared with those of the multiple linear regression model
(MLR) and multiple non-linear regression model (MNLR). These models had the same inputs as ANNs
and were developed and tested using the same data. The MLR is shown in Equation (6). To identify a
suitable MNLR, the various numerical transformations were tried, such as reciprocal, logarithm, and
square root (Equation (7)).

Y = α0 + α1x1 + αx2+ . . . + αmxm (6)

Y = β0 + β1 f1(x1) + β1 f2(x2) + . . . + βm fm(xm) (7)

where, xm is the input, αm is the coefficients of first degree inputs, fm represents the transfer function
for the input, and βm is the coefficients of transferred input.

2.5. Performance Metrics

The results of created models were analyzed using multiple performance metrics. The root mean
squared error (RMSE) and the mean absolute error (MAE) measure residual errors, which show the
difference between the modeled and observed values. The determination coefficient (R2) is identical to
the square of the correlation coefficient (R) in some cases, which evaluates the degree of variability that
can be explained by the model. Nash–Sutcliffe efficiency (NSE) [40] is a popular likelihood function
to define the goodness of fit between monitoring data and model outputs. Smaller RMSE and MAE
values and larger R2 and NSE values indicate better model performance.
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3. Results

3.1. Alternative Input Variable Selection

The original input dataset was selected through the results of Spearman’s correlation analysis
between the CO2 flux and other nine variables of these reservoirs. Spearman correlation coefficient
was selected because the data of CO2 flux was not normally distributed (Kolmogorov-Smirnov test,
p < 0.001), even after several different attempts at transformation. Some reservoirs were measured
many times in different years, which means these reservoirs have more than one set of data with the
same parameters except age and CO2 flux. Therefore, Spearman correlation analysis between CO2

flux and age was carried out by the original values, while Spearman correlation analysis between
CO2 flux and other parameters (Lat, Chl-a, WT, MD, RT, DOC, TP, and NPP0) was made based on the
arithmetic mean.

Based on the results of correlation analysis (Table 2), the variables that have the high absolute
value of correlation coefficient and low value of significance coefficient were age, mean depth, and
NPP0. Moreover, latitude was reported as a key factor in previous studies [8,11] and the available
sample size is sufficient. Therefore, latitude is also considered as an input and tested the rationality by
sensitive analysis. Since they are obviously independent, it is unnecessary to analyze the correlation
among these parameters. Consequently, the four features were chosen as alternative input variables of
the models for CO2 prediction. Only the reservoir data where the four parameters’ records are effective
and available were used, otherwise, this set of data would be removed. After deleting the invalid data,
a dataset containing 251 sets of data was selected for simulation.

Table 2. Spearman correlation coefficient between CO2 flux and parameters used in present study.

Variables n Correlation Sig. Variables n Correlation Sig.

Lat 236 −0.025 0.69 RT 98 0.055 0.59
Age 266 −0.307 0.00 DOC 51 0.129 0.36

Chl-a 69 −0.115 0.35 TP 47 0.005 0.98
WT 158 −0.118 0.13 NPP0 234 0.153 0.02
MD 217 −0.151 0.02

Note: (1) n, the number of samples; Correlation, Spearman Correlation; Sig., Significance coefficient. (2) Latitude
was calculated by the absolute value. (3) Bold font: correlation is significant at the 0.05 level (two-tailed).

3.2. Model Parameters Selection

A three-layer BPNN model was used in this study. To determine the topology of the network,
diverse numbers of hidden nodes that range from 1 to 15 were tried for the BPNN, and their
performance was compared by RMSE. The BPNN with nine hidden neurons showed the best fit
performance (RMSE = 399.01 mg C m−2 d−1). As a result, the topology of BPNN used in this study
has four input neurons, nine hidden neurons, and one output neuron.

For the GRNN model, the spread constant was attempted by comparing the RMSE values obtained
for each model with different spread constant varies from 0.1 to 1. The RMSE is lowest at 0.1 spread
constant (RMSE = 279.69 mg C m−2 d−1).

3.3. Model Performances

Among 251 sets of data, 175 (about 70%) sets are selected randomly for training, and the rest
(76 sets) are testing data. The statistical parameters of CO2 flux for training and testing are given in
Table 3.
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Table 3. The statistical parameters for CO2 flux in training and testing phase.

Statistical Parameters Unit Training Set Testing Set

n 76 175
Min mg C m−2 d−1 −325.90 −356.00
Max mg C m−2 d−1 3776.00 3800.00

Mean mg C m−2 d−1 390.82 486.40
Median mg C m−2 d−1 243.29 312.03

SD mg C m−2 d−1 549.75 664.02

The statistical performance measures for MLR, MNLR, BPNN, and GRNN are presented in Table 4
for both training and testing data sets. The GRNN model achieved the best performance in both
training and testing phase according to mean performance statistics.

Table 4. The performances of each model during training and testing phases.

Model
Training Data Set Testing Data Set

RMSE MAE R2 NSE RMSE MAE R2 NSE

MLR 476.42 313.22 0.25 0.25 625.36 429.96 0.12 0.11
MNLR 417.26 282.00 0.43 0.42 529.53 391.46 0.40 0.36
BPNN 396.59 268.53 0.52 0.48 505.43 395.33 0.47 0.42
GRNN 272.50 147.62 0.76 0.75 418.48 295.34 0.61 0.60

Note: (1) The unit of RMSE is mg C m−1 d−1; the unit of MAE is mg C m−1 d−1. RMSE, root mean squared
error; MAE, mean absolute error; NSE, Nash–Sutcliffe efficiency; MLR, multiple linear regression; MNLR, multiple
non-linear regression; BPNN, Back Propagation Neural Network; GRNN, Generalized Regression Neural Network.

The observed and predicted CO2 flux values by MLR, MNLR, BPNN, and GRNN models in
training and testing stages are plotted in Figure 3. Comparisons among three models above indicate
that GRNN generally gives better accuracy than the BPNN, MNLR, and MLR models. This can also be
clearly observed from the fit line equations.

The equations of MLR and MNLR are shown in Equations (8) and (9) respectively.

CO2flux = 678.70 − 6.34 · |Lat| − 5.71 · Age + 0.42 · NPP0 − 2.21 · MD. (8)

CO2flux = 471.21 − 3763 ·
(

1
|Lat|

)
− 168.97 · ln(Age) + 61.23 · ln(NPP0)− 2.04 · MD. (9)
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Figure 3. Comparison between CO2 flux and predicted using MLR, MNLR, BPNN, and GRNN.
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3.4. Sensitivity Analysis

Sensitivity analysis was applied to identify whether the selected set of inputs is suitable and which
of them is the most important one in simulating CO2 flux. We built new models based on different
combination of input variables and compared their RMSE and R2 values. These four sets of inputs
were made up by omitting a parameter on each run. It was obvious that the omission of the most
important parameter could have the highest influence on model performance, which was reflected in
higher RMSE values and lower R2 values [41]. Results of sensitivity analysis are presented in Table 5.
The results demonstrated that the performance of the models with four input variables is better than
other models’, and the latitude parameter is an essential input for GRNN, BPNN, and MNLR.

Table 5. Results of sensitivity analysis for GRNN, BPNN, MNLR, and MLR in the testing phase.

Model
RMSE (mg C m−2 d−1) R2

GRNN BPNN MNLR MLR GRNN BPNN MNLR MLR

All 418.48 505.43 529.53 625.36 0.61 0.47 0.40 0.12
Skip MD 432.14 552.55 530.95 629.10 0.59 0.35 0.39 0.11

Skip NPP0 463.63 567.08 532.26 635.25 0.52 0.38 0.38 0.09
Skip Age 462.65 519.62 535.68 633.44 0.57 0.45 0.39 0.10
Skip Lat 469.06 555.51 628.93 620.69 0.51 0.32 0.11 0.13

4. Discussion

4.1. Comparison of Results Obtained by Models

The results of the training and testing phase in models indicated that ANNs performed superior
to the regression models. The GRNN model was found to have preferred accuracies over the BPNN
model, while MNLR was superior to MLR in predicting CO2 emission from reservoirs.

This outcome is consistent with other relevant literature, for example, MLR, MNLR, and GRNN
models were used to forecast GHG emissions at national level and the results showed that the GRNN
model gave the most preferable results [25]. When Firat et al. [42] predicted the scour depth around
circular bridge piers based on the data from various studies, the GRNN model performed superior to
BPNN and MLR. Among different types of ANNs, BPNN often shows a fair performance because the
best model could be obtained by iterant parameters adjustment after calibration in the models [43].
However, the problem of overtraining often accompanies accuracy, because a large number of weights
and biases is generated from many iterations [34]. In contrast, GRNN is a one-pass learning network,
which does not require an iterative strategy as in BPNN. Therefore, GRNN can avoid this problem of
overfitting to a large extent. Meanwhile, the problem of initial values determination and local minima
often occurs in training stage of BPNN, while this problem does not exist in the GRNN procedure [44].
Thus, the GRNN can be preferred over the BPNN.

The regression lines in Figure 3 showed the same tendencies that the slopes were less than 1 and
the slops in testing phases were less than ones in corresponding training phases. The first tendency
reflects the problems of underestimation for high values of CO2 flux in training and testing data sets,
which is general in statistical prediction models [24,45]. Because the inputs cannot totally explain the
outputs especially for extreme values, this tendency can also partly attribute to the non-homogeneous
nature of data. Since CO2 fluxes were measured from various reservoirs in different years, the lower
slope in testing phases is due to the differences in training and testing data ranges. As listed in Table 3,
the median and standard deviation of the testing data set were higher than those of the training
data set.

In previous studies, St. Louis et al. [8] made a unary regression analysis between CO2 and age
based on datasets of 15 reservoirs (R2 = 0.35), and Deemer et al. [12] built the relationship between
CO2 and mean annual precipitation based on datasets of 31 reservoirs (R2 = 0.11). Barros et al. [11]
used the multiple regression analysis to describe the relationship between three dependent variables
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(age, latitude, and DOC) and CO2 flux based on datasets of 73 reservoirs (R2 = 0.40). Compared
with these regression models, our GRNN showed higher R2 in both training (R2 = 0.61) and testing
(R2 = 0.76) phases. The superior performance benefits from not only the advantages of GRNN, but also
the larger database. Besides, without a testing process in the previous regression models, it is difficult
to evaluate their generalization ability and apply in other reservoirs credibly. This study demonstrates
that GRNN models could be an appropriate approach for prediction CO2 emissions from reservoirs in
other study systems.

4.2. Sensitivity Analysis

The results of sensitivity analysis demonstrated that the input variables of NPP0, age, and depth
is the best set for MLR, which conformed to the results of Spearman correlation analysis. Moreover,
the results also emphasized the importance of the latitude parameter in ANNs and MNLR that aim
to fit non-linear functions, which proved the rationality of the selection of input variables. However,
the significant relationship between latitude and CO2 flux was not reflected adequately in the results
of Spearman correlation analysis. The possible reason is that the relationship between latitude and
CO2 flux is non-linear. Consequently, the use of non-linear statistical dependence measures is more
appropriate for determining inputs to ANN models [31].

4.3. Application of Established Model

4.3.1. Estimation of the Global Magnitude of the CO2 Fluxes from Reservoirs

With the help of this GRNN, global magnitude of CO2 emissions from documented reservoirs
can be estimated. This estimation was based on the GRanD, which contains 6862 records of reservoirs
updated in 2011 [19], and HANPP [32]. We selected latitude, the year of construction and the average
depth from GRanD and extracted NPP0 from HANPP following the site of these reservoirs.

To predict CO2 fluxes from global reservoirs by the tested GRNN, the confidence interval should
be given together. However, ANNs are black box models that cannot be described as particular
equations. Therefore, the potential predictive confidence interval was given based on the statistical
analysis between observed and predicted CO2 fluxes in testing phase. The methods to calculate
confidence interval are as follows [46]: (a) the errors between observed and predicted values in testing
phase were calculated; (b) the Bootstrap samples were created by resampling from the errors on 100,000
replicates; (c) the medians of Bootstrap error samples are computed; (d) the 1 − α Bootstrap Pivotal
Confidence Intervals (CIs) for median of errors are estimated by Equation (10):

Cn =
(

2θ̂ − θ̂∗ ((1 − α/2)B), 2θ̂ − θ̂∗ ((α/2)B)
)

(10)

where, θ̂ is an estimator of parameter θ; θ̂∗ ((α/2)B) is the α/2 sample quantile of Bootstrap θ̂ samples.
In this study, parameter θ is median of errors between observed and predicted values; α is 0.05, which
means 95% confidence level. Bootstrap samples of medians were generated by Matlab R2013a.

After inputting the variables, the absolute values of latitude, the age of reservoirs in 2011, NPP0,
and the average depth, we got the CO2 emission fluxes from 6862 reservoirs in 2011. Because 95%
CI of error from GRNN is (−68.11, 60.86), these fluxes were updated into intervals for subsequent
estimations. Then we multiplied these fluxes, corresponding area, and the number of days in a year
that CO2 can diffuse on the surface of reservoirs. Considering the influence of seasonality, especially the
ice cover, we made an assumption that the temperate reservoirs which located higher than 30◦ N or 30◦

S latitudes are ice-free for 200 days on average. This refers to the one of the study in St. Louis et al. [8],
since only this study takes ice cover into account among pervious estimations listed in Table 6. As a
result, we estimate that global reservoirs emit 40.03 Tg C yr−1 as CO2 (5th and 95th confidence interval:
32.03–47.18 Tg C yr−1 as CO2).
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Compared to previous estimations with the same magnitude of area (Table 6), our estimation is
moderate and more fairly accurate. However, the CO2 flux estimated by St. Louis et al. [8] is larger,
which might be caused by the overestimation of global reservoirs’ area and the young age of sampled
reservoirs. Only three tropical reservoirs with the average age of 7.70 years were used to estimate CO2

fluxes from all tropical reservoirs. The estimation by Hertwich [16] is also a little larger, because CO2

flux is multiplied by an uncertainty factor of 2. The previous estimations derived from the product
of the average of CO2 flux in database multiplied with the global surface area of reservoirs, while
the estimation in this study took into account the annual-scale flux variability of a special reservoir
and the difference in geographical position among global reservoirs. However, further refinement is
still required for more precise estimates. Since there are no real data of time-series, this model cannot
predict potential CO2 fluxes in long temporal scale. The cause–effect relationships between water
quality and CO2 flux received little attention in this study because of the limited data. The direct and
indirect influences from ice cover especially in the boreal region should be fully studied and accurately
calculated in future estimations.

Table 6. The global CO2 flux estimates and parameters of estimations.

Studies Sample Size Type of Dataset Method
Area

(105 km2)
CO2

(Tg C yr−1)

This study 251 All reservoirs Individual 1 4.47 40.03 3

Previous studies

Deemer et al. [12] 229 All reservoirs Average 2 3.1 36.8
Hertwich [16] 142 Hydroelectric Average 2 3.3 76

Barros et al. [11] 85 Hydroelectric Average 2 3.4 48
St. Louis et al. [8] 19 All reservoirs Average 2 15.0 272.2

Note: (1) 1 Individual method, calculated by the sum of CO2 flux from each individual reservoir; 2 Average method,
calculated by the multiplication of average CO2 flux of database and total reservoirs area. (2) 3 The 95% confidence
interval is (32.03, 47.18) Tg C yr−1.

4.3.2. Estimations of CO2 Emissions from a Planned Reservoir

Considering the input variables of this GRNN, the possible CO2 emission flux during a fixed
period of time from a proposed reservoir with planned location and depth can be estimated by this
model. Therefore, it is possible to give guidance for dam construction. A hypothetical case, which
was not based on any actual events, was used to show this potential utilization of GRNN in this
study. We assumed that a reservoir would be constructed, and the geographical coordinates could be
selected from 23.5◦ N to 26.4◦ N with the same longitude (115◦ E), and the mean depth could vary
from 5 m to 34 m. The possible CO2 fluxes emission from this reservoirs in the first 20 years with
different features were shown in Figure 4. Although the construction of reservoirs should consider
many realistic questions, the possible carbon emissions from new reservoirs might also be used as an
important index of reservoir construction in the future.
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Figure 4. CO2 emissions from reservoirs with different locations and depths in the first 20 years.

4.4. Future Research Directions

In this study, ANNs were built based on the data of gross CO2 emissions from existing reservoirs,
ignoring the potential CO2 emissions from that land before impoundment, which might overestimate
greenhouse effect from reservoirs. Recent study shows that the net carbon emissions from reservoirs
are determined by different types of areas before flooding and provides a simple approach to quantify
the net CO2 emissions [47]. Future studies are therefore necessary to simulate and predict net CO2 flux
emits from reservoirs. Moreover, the combination of classification and regression machine learning
can be a promising approach.

As the first attempt to apply ANNs to GHG emissions from reservoirs, CO2 emission was chosen
to simulate because of the quantity and quality of the monitoring data. However, CH4 is a more
powerful GHG than CO2 [12]. Unlike CO2 emissions, CH4 emissions from reservoirs are new and
anthropogenic [47]. Therefore, CH4 footprint should be simulated and the magnitude needs to be
estimated based on various released pathways in the future.

5. Conclusions

In this study, ANNs (GRNN and BPNN) and multiple regression models (MNLR and MLR) are
applied to predict CO2 emissions from reservoirs based on data records collected from published
various field studies. Input variables used in models were selected by both Spearman correlation
analysis and domain knowledge. The performance of models and observation was compared and
evaluated by the indexes of RMSE, MAE, R2, and NSE. It appears that the performance of ANNs is
superior to the one of regression models. The GRNN’s performance is better than BPNN’s, while
MNLR is superior to MLR. Sensitivity analysis of these four models confirmed that latitude-value
is an important parameter in predicting CO2 flux. The results demonstrate that GRNNs have great
potential to estimate CO2 emission from reservoirs when it is hard to acquire the monitoring data.
The statistical models deserve more attention, because they are effective tools to assess global GHG
emissions from reservoirs and provide new insights into the consideration of reservoir’s construction

177



Water 2018, 10, 26

during the planning stage. However, since the accuracy and generalization of statistical models largely
depend on the measured data, more monitoring will be required in global reservoirs systematically.
For example, the global CO2 flux can be predicted in a longer time scale with the data of continuous
monitoring on special reservoirs located in different latitude. Moreover, the mechanism models should
be built to understand the relationship between CO2 emission and other environmental factors clearly
in the future.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/10/1/26/s1,
Table S1: CO2 emission measurements and other data of reservoirs analyzed in the paper.
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Abstract: This paper presents and assesses a new approach to decision-making methods for the
design of new reservoirs due in times of decreasing water resources. The methods used in this
case are decision theory, Resilience and Robustness method. The methods have been selected
primarily to analyze different design parameters of a new dam, mainly dam heights leading to
different reservoir volumes. The study presents a novel approach to the optimal design of a
multipurpose reservoir that would provide enough water for downstream environmental flow,
residential and industrial water supply, agricultural water supply, and hydropower generation in the
current conditions of climate uncertainty. Uncertainties are interpreted as possible future changes
in the climate system using outputs from regional climatic models. In the case study, a simulation
model was developed which is able to quantify long-term water balance and use this data to quantify
resilience and robustness of its water supply. The simulation model was correlated to the GANetXL
software in order to perform Genetic Algorithms based optimization of the reservoir’s operation.
The simulation–optimization model was then applied to a real-life case study in the Czech Republic,
in the Morava River Basin where a new dam with the multipurpose reservoir is planned to be built
in the future. The results obtained in this way were analyzed in detail to identify the overall best
solution consist of dam height and the total reservoir monthly outflow and new operational rules for
the analyzed multipurpose reservoir.

Keywords: design and operation of the multipurpose reservoir; water deficit; reservoir simulation
model; climate change; multi-objective optimization NSGA II; resilience and robustness; costs and
benefits; water energy

1. Introduction

In Czechia, climate change has caused change of the hydrological cycle due to redistribution of
precipitation during the hydrological year in the last decade. This phenomenon results in more frequent
occurrences of extremes in the form of floods and droughts. But the most urgent problem is that the
values of the long-term mean flows are decreasing in rivers as well as the yield of groundwater sources.

Moreover, the years 2015 and 2017 were considered extremely dry in many regions of Czechia.
It is becoming a trend of the last couple of years that meteorologists start to call the previous year as
the warmest year in the history of meteorological measurement, this confirms WMO Statement on the
State of the Global Climate 2017 [1].

The above-mentioned factors create pressure on the effective management of the surface water
resources which will become stronger as well as the Czech Republic is sometimes called “roof of
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Central Europe”, as there is no major inflow to the territory, but only outflows. The limited availability
of water resources in this country requires the government to prepare new climate change adaptations
and focus on increasing the retention capacity of water in the landscape, long-term water management
planning, and environmental politics on global level.

The government of the Czech Republic has issued several documents on adaptation strategies
to climate change [2–5], which have been developed by the research institutes: VÚV TGM, v.v.i;
EKOTOXA s.r.o.; ČHMÚ in cooperation with Ministry of the Environment of the Czech Republic.
These documents indicate many measures to achieve the objectives of protection against the negative
impacts of drought namely adaptive measures leading to saving drinking water, increasing of
water retention capacity of the soil, stabilizing of water regimes in river basins, restoration of small
water reservoirs and increasing their reliability, optimization of the existing reservoir volumes, and
importantly, identification of other locations suitable for new water reservoirs and strategic technical
option is allocating new water resources like open water reservoirs. Under conditions of climate
change uncertainties currently there are several locations surveyed in the process of feasibility studies.
These new multipurpose reservoirs will be primarily ensuring drinking water supply, keep ecological
flows in the rivers, ensuring water supply for industry and agriculture, and may help to resist the
drought problems.

The overall objective of this paper is to introduce a novel approach to the multipurpose reservoir
design. The evolutionary multi-objective optimization method was utilized to find the optimal design
parameter values of the dam, mainly dam height leading to different reservoir volumes. For the design
of dam height and reservoir management, a new level so-called water excess level (I) and the critical
threshold level (II) were introduced. In order to complete the main goal, it is necessary that the design
must follow the individual objectives:

(a) the goal is to apply a suitable metric which is defined by the resilience of reservoir storage capacity
and find optimal economic solutions (to maximize resilience and benefits from the reservoir)
using the multi-objective optimization method with required robustness,

(b) the objective of this method is to analyze a range of the dam heights and volumes of the
multipurpose dam in conditions of uncertain climate change on the basis of given future
climate scenarios using hydrological outputs from 15 regional climate models and potential
demand scenarios.

This new approach responding to the actual demands of water under climate change can be a
benefit for the design of the multipurpose reservoir under similar conditions. The methods are applied
and tested on the case study in the Hanusovice dam profile.

2. Background

In the Czech Republic water reservoirs have always been designed according to the historical
hydrological or generated time series. Czech National Standard [6] classifies open water reservoirs
based on their strategic importance. Strategic classification is evaluated by temporal reliability RT
which is defined as the ratio of the months without fault and the number of all months for the given
time series [7,8]. The class A is the most strategic (A ≥ 99.5% RT) and D is the least strategic (D ≥ 95.0%
RT). The water deficit is defined when the active storage capacity is in an unsatisfactory state. Water
supply reservoirs have generally been designed and operated by a set of predetermined rules, not
taking into consideration climate uncertainty. These rules were formulated based on hydrology,
the ability of storage capacity, and yield criteria. Reliability has been the main objective in the sense of
achieving the long-term target demand and the prevention against floods. The practice for the design
and operation of the reservoir used reliability and the concepts of resilience, which experimental
setting is different, were not used. The problem is that this approach does not take into consideration
the consequences of possible future hydrological and climate changes when there is an increased
social demand, increased needs of agriculture, and long-term decreasing flows. Climate change is
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creating a potentially large range of uncertainty of possible futures that could threaten the reliability of
water supplies.

When modeling water resources systems, we need to determine reliability, vulnerability, resilience,
and risk. First Kritskiy and Menkel [7] described the definition of evaluation criteria of water resources;
reliability. Hashimoto et al. [8] were among the first to propose the use of the terms of water resource
system performance evaluation. These performance criteria refer to (i) how probable is it that a
system can get into a unsatisfactory or failure state (reliability), (ii) how severe the consequences of
failure might be (vulnerability), and (iii) how quickly it can bounce back, which is the recovery from a
failure (resilience) [8]. Using multi-objective linear programming, the trade-offs between reliability,
vulnerability, and resilience were researched in water supply reservoir operation in a previous study [9].

Resilience for water resources has generally been quantified as the duration of time (maximum or
average) when temporary restrictions are in place due to low supply availability. But its calculation is
varied in the literature. Relationships among resilience, reliability, and vulnerability of water supply
using many-objective analysis were explored in a past paper [10]. For example, resilience was used
as a performance criterion metric [11], in a past work [12] resilience is calculated as the average
duration of time when a system is under a temporary restriction, or in another previous work [13]
resilience was calculated as a fraction of the total future time a system is under an unsatisfactory
state. Roach [14,15] characterized and tested several potential resilience metrics and looked for the
resilience of the water system and robustness of the water supply based on adaptation strategies.
Watts et al. [16] and Amarasinghe et al. [17,18] have undertaken studies on the resilience of water
supply systems. The reservoir resilience as a function of time (static and dynamic) for a multipurpose
reservoir operation was compared a past study [19]. The resilience along with robustness to system
design wastewater treatment plant control were used previously [20].

The risk and uncertainty were first described by Knight [21], who was the first to distinguish
between risk and uncertainty. The risk assessment and risk analysis for water management purposes
were described by Kaplan in [22]. Uncertainties used in hydrology have been presented by Beven
and Binley [23]. Uncertainties can be categorized by the generation of multiple future scenarios
that represent alternative likely conditions under different assumptions [24]. Uncertainties are the
factors which can affect reservoir design or operation, as well as the accuracy of results. Uncertainty
analysis focusing on reservoir capacity performance with various sizes and types of input uncertainties
were tested for the design of the active storage capacity and reliability in the articles [25–28].
Based on the achieved results it is possible that both values active storage capacities and reliability,
determined without considering input data uncertainty, may be undervalued. This can lead to failure
of storage capacity.

Using Monte Carlo experiments the Markov model reproduced relationships between resilience
and reliability for a wide class of water supply systems and provided a general theoretical foundation
for understanding the trade-offs among reservoir system storage, yield, reliability, and resilience [29].
In a past paper [30] the behavior of statistical performance indices (reliability, resilience, and
vulnerability for a multipurpose storage reservoir) using simulations Monte Carlo on a real reservoir
in India was performed, and it was confirmed that traditional reliability for reservoir design and
operation cannot completely describe the strengths and weaknesses of a given issue. A past paper [31]
showed the optimized operation of the largest multipurpose reservoir in Vietnam using the complex
evolution algorithm and the MIKE 11 simulation model. The optimization puts focus on the trade-off
between flood control and hydropower generation for the reservoir operation in the flood season and
the reservoir level at the beginning of the dry season. In another past paper [32] a novel multi-objective
optimization modeling framework for the operation of multipurpose simple reservoirs was presented.
This model uses genetic algorithms as optimization techniques. The main objective function minimizes
the cost of the annual water shortage for irrigation and the secondary objective maximizes energy
production. A previous work [33] presents an evolutionary multi-objective optimization approach
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NSGA-II for the study of multiple water usages in multiple interlinked reservoirs. The case studies
involve, primarily, the objectives of power generation and navigability on the river.

One of the newest statistical concepts could be used to evaluate results under uncertainty is
robustness. Robustness can be defined as the degree to which a water supply system performs at a
satisfactory level across a range of future scenarios or conditions [34]. One of the types of satisficing
criteria may be based on the proportion of possible future conditions under which system performs
correctly. Developing robust long-term water resources plans described by the above definition have
generally been assessed previously [35]. The robustness water resources system under deep uncertainty
has been used in many other cases and the results from past papers [20,36–42] show that the using of
the robustness concept is beneficial for the analysis of results under uncertainty.

For the case study, the optimizing method Non-dominated Sorting Genetic Algorithm II (NSGA
II) described previously [43] was used. The NSGA II was successfully used in handling multi-objective
optimization problems in water management in several past works [44–50]. The NSGA II was
developed from the multi-objective algorithm NSGA [51], which was formulated based on the
suggestions made by Goldberg in 1989 [52]. The relation between risk, reliability, water shortages, and
hydropower energy in an open reservoir using the NSGA II optimization was tested previously [53].
The NSGA II algorithm and reservoir simulation model were applied in GENetXL [54]. The GENetXL
was presented by a simple water supply hypothetical reservoir operation model with two objectives:
maximize yield and maximize recreational benefit, and a large combinatorial optimization problem of
pump scheduling in water distribution systems.

There is not much research on optimal reservoir design and management under uncertainty.
In the world, complex water management planning and optimization of extensive water resources
systems in the context of climatic uncertainties are mostly solved [40,55–61]. Given that case studies of
water management systems are solved complexly and on a large scale on the other hand, we focus on
the individual study in small scale but in more detail. A solution, in the sense of the whole reservoir
capacity under climate change, has not been well-studied as an individual target in the design of
reservoirs. In addition, the increasing water demand and distribution of water are not sufficiently
safeguarded today. Current issues lead to use the uncertainty of climate change, multi-objective
optimization, and concepts of resilience and robustness. All of these creating optimal effective design
and new operational rules of a multipurpose water reservoir.

3. Case Study

The case study is based on the intended profile in Hanusovice in the Czech Republic, 200 km east
of the capital city Prague, see Figure 1. The new dam is planned in the Morava River Basin, maintained
by the manager of the Morava River Basin, State Enterprise (PMO), and the Krupa River is the main
inflow into the reservoir. The long-term mean river flow Qa is 2.12 m3 s−1. The elevation volume and
area curves for a given profile were determined by a digital terrain model using GIS software. In this
software, Figure 1 has been also generated showing one of the possible new dam locations.
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Figure 1. The locality of the plan reservoir to be built in the future.

Hydrologic data in the form of water inflows were derived from 15 regional climate models for
the period 2015 to 2100. These are scenarios with a resolution of 25 km × 25 km which are controlled
by one of the four global climate models. The results of the climate models are based on the IPCC
SRES AR4 [62], only for the conservative emission scenario A1B which represents a very fast future
economy growth and development of new technologies with a balance in the use of all fuels as energy
sources. In the paper, each regional model represents 1 input of climate scenario. Data were taken from
the project RSCN VUV [63]. The data were modified from hydrometric profile Morava/Raskov to
hydrometric profile Krupa/Habartice using the analogy method for the river flows were determined.

Total water demand was determined as a sum of the QECO (ecological outflow to the river),
QWS:drink (drinking water supply), and QWS:ind.+agric. (water supply for industry and agriculture).
QECO = 0.54 m3 s−1 and is constant for all months, QWS:drink. and QWS:ind.+agric. are based on 25% of
total current demand for the part of the Olomouc Region from the plan for the development of water
supply [64]. Mean annual demand was divided to monthly demands, see Table 1. Potential monthly
redistribution of water demand was set according to the data from the PMO.

Table 1. Potential monthly water demands.

Demands [m3 s−1] January February March April May June July August September October November December

QECO 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54
QWS:drink. 0.54 0.56 0.56 0.58 0.58 0.60 0.56 0.55 0.55 0.56 0.55 0.53

QWS:ind.+agric. 0.35 0.35 0.36 0.37 0.38 0.40 0.40 0.40 0.38 0.36 0.35 0.35
Total Demand 1.43 1.45 1.46 1.49 1.50 1.54 1.50 1.49 1.47 1.46 1.44 1.42
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The permanent storage capacity VP was simplified and evaluated to height 15.0 m and corresponds
to 0.44 mil. m3. The flood storage capacity VF was calculated for flood hydrograph Q10.000. The Klemes
method [65] was used to transform the controlled flood and to evaluate VF. The total flood storage
capacity VF = 7.72 mil. m3. The safety reserve 2.0 m was used to prevent overflow of the dam.

The location of the power plant is situated just below the dam and water supply for industry
and agriculture is taken downstream the power plant, while drinking water supply is taken in the
reservoir itself.

For the case study, an earth dam was used. Parameters of the dam body are; width of the dam
crown is 5.0 m, bottom length is 100.0 m, an upstream slope is 1:3, downstream slope is 1:2, and terrain
slopes are 1:1 (left side) and 1:1.8 (right side). The height of dam was calculated ranging from 80.0 to
100.0 m.

The target levels of resilience were set for three targets the duration of the longest water deficit
period is up to 3 months (main target), up to 5 months, and 0 months. Two target levels of robustness
80% and more and 90% and more were tested.

All prices in Equations (4)–(6) corresponded to the present trade prices in Euro. The PRICEWATER
was 0.245 € m−3 charged by PMO last year and the PRICERED,ELE was 0.10 € kWh−1. The discount
rate r according to a past paper [66] for 2015–2044 is presumed 0.035, 2045–2089 is presumed 0.03, and
2090–2100 is presumed 0.025. The total coefficient of efficiency η for the calculation of the energy from
the hydropower in Equation (7) is 0.80. The cost of the dam ZCU in Equation (10), respectively (9),
is around 26.2 € m−3 for the earth dam in this location.

The following configuration of parameters NSGA II optimization in GENetXL was used.
Population size was 100 genes. The number of generations was 200. Selection the crowded tournament
was set up. The crossover was set up the simple one point and the rate was 0.90. Mutation type was
set up as simple with mutation rate 0.05. The number of chromosomes (decision variables) was 12 for
i = 1, . . . , 12 months of year with boundary conditions QEXC,i ∈ 〈0.0 m3 s−1; 2.0 m3 s−1〉.

4. Methodology

4.1. Problem Formulation

Where designing the new multipurpose dam, the objective functions have to be defined to satisfy
all requests at the same time and lead to a new approach for using a multi-objective optimization.

The resilience of storage capacity must be set to a target level to be considered as acceptable under
given future climate scenarios and water demand scenario, as well as robustness. That means if the
target levels of resilience and robustness are satisfactory then the designed solutions are acceptable.

In the analysis, 12 decision variables were created. Each of them was described as month excess
water QEXC that was added to the total water demand.

In total, two objective functions were used, net present value and resilience. The results obtained
from the 12 decision variables for four chosen climate scenarios. Then the robustness was evaluated
based on decision variables and resilience.

4.2. Resilience and Robustness

In this case every kind of potential resilience (RES) [month] metrics, defined previously [14], were
tested, and finally, was traditional metric of resilience was selected with the duration of the longest
water deficit period:

RES = max(duration of water deficit), (1)

The robustness (ROB) [%] is defined in this case as the percentage ratio of future supply and
demand scenarios [36,39]:

ROB =
SA
ST

× 100, (2)
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where SA is the number of scenarios in which the reservoir simulation model performs at an acceptable
level of resilience and ST is the total number of scenario combinations of supply and demand.

4.3. Costs and Benefit

One of the objectives is to minimize the cost of dam construction and maximize benefits from
the dam. This is expressed by the net present value (NPV) [€], which is calculated according to the
following Equation (3):

NPV = ∑T
t=1

(
BENWS:drink,t

(1 + r)t−1 +
BENWS:ind.+agric.,t

(1 + r)t−1 +
BENHPP,t

(1 + r)t−1

)
− CDAM, (3)

where BEN [mil €] are benefits from the utilization of water for hydropower and sales of water, CDAM
is the cost of the dam construction, r is discount rate and t = 1, . . . , T for T = 86 (the total number of
years until 2100).

We have three possible benefits: drinking water supply Equation (4), water supply for industry
and agriculture Equation (5), and benefits from hydropower plant Equation (6):

BENWS:drink,t = ∑n
i=1(QWS:drink,i)× PRICEWATER, (4)

BENWS:ind.+agric.,t = ∑n
i=1

(
QWS:ind.+agric.,i

)
× PRICEWATER, (5)

BENHPP,t = EHPP,t × PRICERED,ELE, (6)

where QWS:drink.,i is drinking water for residential water supply and QWS:ind.+agric.,i is water for industrial
and agricultural water supply; PRICEWATER is the price for water consumption. PRICERED,ELE is the
redemption price of electricity from the hydropower according to the Czech Energy Regulatory Office,
i = 1, . . . , n for n = 12 (number months of the t-year) and EHPP,t [Wh·month−1] is generated energy
from hydropower for a year Equation (7):

EHPP,t = ∑n
i=1(ρ × g × QHPP,i × Hi × η)× Δt, (7)

where ρ is density of water, g is gravity, Hi is the height of water level in given i-month, η is total
coefficient of efficiency, i = 1, . . . , n for n = 12, Δt is one year and QHPP,i [m3 s−1] is flowed through a
hydropower in given i-month and is calculated according to the Equation (8):

QHPP,i = QECO,i + QWS:ind.+agric.,i + (QEXC,i), (8)

where QECO,i is ecological outflow for downstream environmental flow, QWS:ind.+agric.,i is water supply
for industry, and QEXC,i is the water excess for hydropower and to a river in given i-month.

The last parameter of Equation (3) is CDAM [€], which describes the cost of the dam construction
and is determined by following Equation (9):

CDAM = VDAM × ZCU, (9)

where VDAM is the volume of the dam structure and ZCU [€m−3] is the cost of the dam calculated
according to Czech property valuation decree [67]:

ZCU = ZC × K5 × Ki, (10)

where ZC is a cost according to the type of material of the dam and K are coefficients according to the
location of the dam.
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4.4. Reservoir Simulation Model

A reservoir simulation model was created based on emptying and filling of reservoir storage
capacity. The newly introduced water excess level (I) and critical threshold (II) were used to calculate
the resilience. This principle can be described by the inequality (11) which proceeds from the mass
balance equation [68]:

Water lvl.(0) ≤ ∑n−1
i=0 (QOUT,i − QIN,i)Δt+(QOUT,i+1 − QIN,i+1)Δt ≤ Water lvl.(I), (I I), (I I I), (11)

where QIN,i [m3 s−1] is inflow water to the reservoir for i = 0, . . . , n−1. QIN,i is generated by future
scenarios of regional climate models from [63]. QOUT,i [m3 s−1] is the reservoir outflow for i = 0, . . . , n
− 1. The QOUT,i is formulated by the sum of the QECO,i, QWS:drink.,i, QWS:ind.+agric.,i, and QEXC,i (water
excess for hydropower). Δt is the time step of calculation (one month). For i = 0 it is necessary to enter
the initial condition (full active storage capacity). Inequality (11) is limited from the left side by water
level (0) which characterizes full active storage capacity and from the right as active storage capacity
divided by level (I–III) as shown in Figure 2. Each level of active storage capacity is characterized by
given outflow QOUT,i.

Figure 2. The scheme of the model set up.

The resulting scheme of dam water storage in Figure 2 shows variants of water levels, where
VF is flood storage capacity, VA is active storage capacity, VP is permanent storage capacity, and VD
characterizes dead storage capacity.

When the current step i emptying and filling of storage capacity is going up from level (0–III)
in (11), then the QOUT,i [m3 s−1] is equal to the QIN,i, [m3 s−1] otherwise new operating rules and
restrictions are created according to the following control Equations (12)–(14):

0–I: QOUT,i = QECO,i + QWS:drink,i + QWS:ind.+agric.,i + QEXC,i, (12)

I–II: QOUT,i = QECO,i + QWS:drink,i + QWS:ind.+agric.,i, (13)

II–III: QOUT,i = QECO,i + (QWS:drink,i)× 0.7 +
(

QWS:ind.+agric.,i

)
× 0.3, (14)

As mentioned above, the water level (0) which characterizes full active storage capacity and water
level (III) is empty active storage capacity. The volume between levels I–III is set up 11.6 mil. m3.
This volume corresponds to three months of estimated total demand. The volume between levels II–III
correspond to the total demand in given month of the year.

When the volume of water is between level I–II, water excess QEXC,i is null. When the volume
of water drops down the critical threshold (II) the deficit begins. At this moment, the restriction of
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reservoir management by priority roles begins. The main rule is to guarantee QECO and next rule is to
ensure QWS:drink. and QWS:ind.+agric. in the ratio of 70:30, see Equation (14).

4.5. Optimization Method

For the case study, the model in cooperation with the NSGA II algorithm was used in order to
create decision variables population of an excess of water QEXC,i.

The key parameters for NSGA II are possible decision variables, dam heights and analyzes
of reservoir performance across all climate scenarios in the simulation model. Data output of the
optimization method are presented in a form of Pareto sets showing relations between net present
value and resilience of the reservoir.

5. Result and Discussion

The obtained relation between resilience and NPV in the form of Pareto sets is in Figure 3. For each
dam height, 15 climate scenarios from 2015 to 2100 were used from [63] for the planned profile.

Figure 3. The Pareto optimal sets for resilience vs. NPV for varying dam heights and all scenarios.
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Then each obtained point of these Pareto optimal sets presents the best solution and same a
possible value of excess water QEXC (decision variables) or the total reservoir outflow QOUT. All these
values can be applied to the design and operation of the dam.

Figure 3 shows increasing resilience (short deficit) in relation to reducing NPV. That means less
resilient solution (longer deficit duration) representing higher NPV (higher benefits of the dam). Pareto
sets are relatively flat (only slightly curved), this is mainly due to the setting of present prices for
electric power and water supply. It could be expected that future water price increasing would make
the Pareto sets more curved because the benefits will increase. Another factor that influences the shape
of the Pareto sets could be the dam type.

As it can be seen from Figure 3, the results are better for the lower dam heights, as there are
lower costs for construction of the dam. It is obvious that the increasing dam height increases the
cost for construction of the dam, but benefits are lower than costs. Lower dam heights bring better
results. In addition, building a bigger dam generally induces higher environmental costs, but it was
not considered in this case study due to the difficult price quantification

Only Pareto points with 0, 3, and 5 months of resilience, for the lower suitable dam heights of
the 80 m, 85 m, and 90 m and only 4 from 15 climate scenarios with different mean annual flows Qa:
as (Sc1) the most water (Qa = 2.29 m3 s−1), as (Sc2) more water (Qa = 2.17 m3 s−1), as (Sc3) less water
(Qa = 2.09 m3 s−1), and as (Sc4) the least water (Qa = 1.84 m3 s−1) were chosen, see Figure 4.

Figure 4. The Pareto optimal sets from four selected climatic scenarios for resilience vs. NPV.
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Figure 4 shows the Pareto sets for lower dam heights of Figure 3 and only for selected climate
scenarios Sc1, Sc2, Sc3, and Sc4. It is clear, that the more water scenarios (Sc1 and Sc2) produce higher
the NPV, because the benefits are higher for the same cost and RES.

Figure 5 specifically shows the relation between the present value of benefit PV(benefit) and the
present value of cost PV(cost) for the selected four climate scenarios with different mean annual flows
Qa, resilience of the dam from 0 to 5 months and heights of dam 80, 85, and 90 m. As mentioned above,
Figure 5 confirms that the more water scenarios (Sc1 and Sc2) cause higher the NPV (higher benefit)
than less water scenarios (Sc3 and Sc4).

Figure 5. The relations between PV (benefit) and PV (cost) for selected climate scenarios.

Lower points in Figure 5 are the points for the most resilient design of the dam (RES = 0 months)
and the lowest benefits. The higher points refer to the lowest resilience (RES = 5 months) and the
highest benefits.

The points in Figures 4 and 5 mark the selected results which were chosen for testing of robustness.
The results were in the form of decision variables (QEXC) achieved by optimization for four climatic
scenarios. Then the decision variables were tested in the reservoir simulation model for 15 climatic
scenarios and different dam heights variants to determine the resilience. After that robustness
evaluation was finally made. The robustness was calculated as the fraction number of scenarios
with RES = 3 months or less (5 months or less, 0 months) and the total number of climate scenarios,
according to Equation (2). In Table 2, we can see the resulting robustness, and NPV for the points from
Figures 4 and 5 (RES = 0, 3, and 5 months or less).
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Table 2. Robustness for selected points.

Height 80.0 m Height 85.0 m Height 90.0 m

CDAM [mil. €] 91.05 106.03 122.51
VA [m3] 34,480,000 44,940,000 57,270,000

RES [month] Scenario: Sc1 Sc2 Sc3 Sc4 Sc1 Sc2 Sc3 Sc4 Sc1 Sc2 Sc3 Sc4

0
ROB [%] 66.7 73.3 - - 66.7 73.3 80.0 93.3 66.7 66.7 80.0 93.3

NPV [mil. €] 151.4 147.3 - - 138.0 137.2 134.3 132.2 123.5 123.4 121.6 118.5

3
ROB [%] 53.3 73.3 80.0 - 60.0 66.7 73.3 93.3 66.7 - 73.3 93.3

NPV [mil. €] 151.0 149.7 147.8 - 137.9 138.1 137.1 132.5 123.5 - 122.8 118.6

5
ROB [%] - 60.0 60.0 - - - - 80.0 - - 66.7 -

NPV [mil. €] - 150.9 149.8 - - - - 134.3 - - 123.1 -

In Table 2 we can see, if the decision variables for the less water scenarios (Sc3 and Sc4) are
selected, than robustness for given solutions will be higher, because decision variables (QEXC) were
lower than decision variables from the more water scenarios. According to Table 2, it is obvious
that one of the best results is for the decision variables in Sc3, resilience RES ≤ 3 months, robustness
ROB ≥ 80.0%, and then the dam height is 80.0 m. The average NPV is 147.8 mil. €, the cost of the
construction of dam is 91.05 mil. €, and the benefits from the hydropower and water supply are on
average 238.8 mil. €. The active storage capacity VA is 34.48 mil. m3 and total volume of the dam is
42.63 mil. m3.

Another optimal solution is for the decision variables in Sc4, RES ≤ 3 months and ROB ≥ 90.0%,
and then the dam height is 85.0 m. The average NPV is 132.5 mil. €, the CDAM = 106.03 mil. €, and the
BEN are on average 238.5 mil. €. The VA is 44.94 mil. m3 and total volume of the dam is 53.09 mil. m3.
If we compare chosen results cost for construction, the dam in more robust solution will be about
15 mil. € (16.5%) more expensive than a less robust solution. Benefits are 0.3 mil. € (0.1%) lower and
the NPV is lower about 15.3 mil. € (11.5%).

The results of the decision variables in form monthly water excess for hydropower QEXC and
following the total reservoir outflow QOUT for each month and for ROB = 80.0% and 90.0% are
presented in Table 3.

Table 3. Selected optimal results of the monthly water excess QEXC and the total reservoir monthly
outflow QOUT for two target levels of ROB.

January February March April May June July August September October November December

ROB ≥ 80%
(h = 80 m)

QEXC [m3 s−1] 0.93 1.12 0.06 0.00 0.13 0.00 0.00 0.01 0.00 0.00 0.00 0.02
QOUT [m3 s−1] 2.36 2.57 1.52 1.49 1.63 1.54 1.50 1.50 1.47 1.46 1.44 1.44

ROB ≥ 90%
(h = 85 m)

QEXC [m3 s−1] 0.18 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.02
QOUT [m3 s−1] 1.61 1.46 1.46 1.50 1.50 1.54 1.50 1.49 1.47 1.46 1.53 1.44

In Table 3 we can see that for ROB ≥ 80%, the dam height is only 80.0 m and water excess QEXC,
and thus total reservoir outflow QOUT are higher than for the ROB ≥ 90%.

The decision variables (water excess QEXC) could increase in the future by the rise of water and
electricity prices. The question is what the future evolution of water and electricity demand will
be. The model is using only the long-term scenarios for hydrology changes and current prices for
water and electricity. There is a huge amount of uncertainties in the prediction of water and electricity
demands as well as market prices of these commodities in the upcoming decades. Thus, in future,
it would be useful to add several future demands or socioeconomic scenarios. It should be noted that
the climate scenarios in this study are based on only one conservative emission scenario A1B. Further,
it could be very interesting to test the robustness effect on several percentage sets of an increase in
water and electricity demand and increase in water and electricity prices for a given result.

6. Conclusions

This article describes a new possible attitude to support decision-making in the future for a
new reservoir management within a decrease water resources scenario. A simulation model has
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been coupled with a cost model and an NSGA II multi-objective optimization algorithm to quantify
resilience and robustness under a range of uncertain future climate supply scenarios and one possible
demand scenario. The results obtained lead to the following key conclusions:

• The analysis of the different dam heights produced different recommendations for the
multipurpose reservoir design. This approach has recommended a specific design of the dam
height of 80 m for ROB = 80% and RES = 3 months or 85 m for ROB = 90% and RES = 3 months.

• As a result, recommended dam height, and also recommended total reservoir monthly outflows
that, in combination with the control equations, determine new operational rules of a multipurpose
water reservoir.

• The new operating rules have been created: The water management in the reservoir should be set
according to the current month and recommended reservoir monthly outflows QOUT in Table 3.
In the case of dry periods when the water level falls below level (I) or more as it is shown in
Figure 1, the QOUT have to be restricted according to the control Equation (13) or (14).

• All potential resilience metrics are based on those in a past paper [14] which were tested in this
analysis and gave similar shapes of Pareto sets, and therefore, the traditional metric of resilience
with duration of the longest water deficit period was selected.

• The model clearly shows that the higher dam heights increase the cost for construction of the
dam, but the benefits are lower than costs, therefore the results are better for lower dam height.

• Although, in the summer months, due to the higher water demands and lower flow in the river,
the water excess is minimal or null, the minimal demand is guaranteed for targets resilience
and robustness.

• A more robust solution generally produced lower benefits respectively lower NPV due to a lower
water excess. Under the current conditions, it may seem as little profitable, but in the future, with
the development of climate change uncertainty, the price of water is expected to increase, and the
benefits will be higher.

• The key conclusions, based on the results obtained, serve only as recommendations, but a final
decision on the safeness and economy of a new reservoir is on-site of decision-makers.

Based on the case study including climate scenarios, we can recommend using the created
universal model considering drought prevention. This new approach to design and operation of the
multipurpose reservoir in conditions of uncertain climate change has been tested on the case study
and can be applicable to cases in similar conditions with the problem of decreasing water sources.
However, several points of the methodological section are specific to the case study and cannot be
generalized to all dams.
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Prostředí. 2015. Available online: https://www.mzp.cz/C1257458002F0DC7/cz/narodni_akcni_plan_
zmena_klimatu/$FILE/OEOK-NAP_cely_20170127.pdf (accessed on 3 April 2018).

5. Czech Government Document: Strategie Přizpůsobení se Změně Klimatu v Podmínkách ČR. Ministerstvo
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6. Czech Technical Standard ČSN 75 2405 Reservoir Storage Capacity Analysis, ICS 93.160. Available online:
http://seznamcsn.unmz.cz/Detailnormy.aspx?k=69792 (accessed on 3 April 2018).

7. Kritskiy, S.N.; Menkel, M.F. Water Management Computations; GIMIZ: Leningrad, Russia, 1952. (In Russian)
8. Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, resiliency, and vulnerability criteria for water resource

system performance evaluation. Water Resour. Res. 1982, 18, 14–20. [CrossRef]
9. Moy, W.-S.; Cohon, J.L.; ReVelle, C.S. A Programming Model for Analysis of the Reliability, Resilience, and

Vulnerability of a Water Supply. Water Resour. Res. 1986, 22, 489–498. [CrossRef]
10. Zhang, C.; Xu, B.; Li, Y.; Fu, G. Exploring the relationships among reliability, resilience, and vulnerability of

water supply using many-objective analysis. J. Water Resour. Plan. Manag. 2017, 143. [CrossRef]
11. Matrosov, E.S.; Padula, S.; Harou, J.J. Selecting portfolios of water supply and demand management

strategies under uncertainty-contrasting economic optimisation and “Robust decision making” approaches.
Water Resour. Manag. 2012, 27, 1123–1148. [CrossRef]

12. Paton, F.L.; Dandy, G.C.; Maier, H.R. Integrated framework for assessing urban water supply security of
systems with non-traditional sources under climate change. Environ. Model. Softw. 2014, 60, 302–319.
[CrossRef]

13. Fowler, H.J.; Kilsby, C.G.; O’Connell, P.E. Modeling the impacts of climatic change and variability on
the reliability, resilience, and vulnerability of a water resource system. Water Resour. Res. 2003, 39, 1222.
[CrossRef]

14. Roach, T. Decision Making Methods for Water Resources Management Under Deep Uncertainty.
Ph.D. Theses, University of Exeter, Exeter, UK, 2016.

15. Roach, T.; Kapelan, Z.; Ledbetter, R. Comparison of Info-gap and Robust Optimisation Methods for Integrated
Water Resource Management under Severe Uncertainty. Procedia Eng. 2015, 119, 874–883. [CrossRef]

16. Watts, G.; Christierson, B.; Hannaford, J.; Lonsdale, K. Testing the resilience of water supply systems to long
droughts. J. Hydraul. 2012, 414–415, 255–267. [CrossRef]

17. Amarasinghe, P.; Liu, A.; Egodawatta, P.; Bernes, P.; McGree, J.; Goonetilleke, A. Quantitative assessment of
resilience of a water supply system under rainfall reduction due to climate change. J. Hydraul. 2016, 540,
1043–1052. [CrossRef]

18. Li, Y.; Lence, B.J. Estimating resilience for water resources systems. Water Resour. Res. 2007, 43, W07422.
[CrossRef]

19. Simonovic, S.P.; Arunkumar, R. Comparison of static and dynamic resilience for a multipurpose reservoir
operation. Water Resour. Res. 2016, 52, 8630–8649. [CrossRef]

20. Sweetapple, C.; Fu, G.; Butler, D. Reliable, Robust, and Resilient System Design Framework with Application
to Wastewater-Treatment Plant Control. J. Environ. Eng. 2017, 143, 04016086. [CrossRef]

21. Knight, F. Risk, Uncertainty and Profit; Hart, Schaffner & Marx: Boston, MA, USA; Houghton Mifflin Co.:
Boston, MA, USA, 1921.

22. Kaplan, S. Risk Assessment and Risk Management—Basic Concepts and Terminology. Risk Management: Expanding
Horizons in Nuclear Power and other Industries; Hemisphere Publ. Corp.: Boston, MA, USA, 1991; pp. 11–28.

23. Beven, K.J.; Binley, A.M. The future of distributed models: Model calibration and uncertainty prediction.
Hydrol. Proceaaes 1992, 6, 279–298. [CrossRef]

24. Mahmoud, M.; Liu, Y.; Hartmann, H.; Stewart, S.; Wagener, T.; Semmens, D.; Stewart, R.; Gupta, H.;
Dominguez, D.; Dominguez, F.; et al. A formal framework for scenario development in support of
environmental decision-making. Environ. Model. Softw. 2009, 24, 798–808. [CrossRef]

194



Water 2018, 10, 1110

25. Marton, D.; Paseka, S. Uncertainty Impact on Water Management Analysis of Open Water Reservoir.
Environments 2017, 4, 10. [CrossRef]

26. Marton, D.; Starý, M.; Menšík, P. Analysis of the influence of input data uncertainties on determining the
reliability of reservoir storage capacity. J. Hydrol. Hydromech. 2015, 63, 287–294. [CrossRef]

27. Marton, D.; Starý, M.; Menšík, P.; Paseka, S. Hydrological Reliability Assessment of Water Management
Solution of Reservoir Storage Capacity in Conditions of Uncertainty. In Drought: Research and Science-Policy
Interfacing; CRC Press Taylor & Francis Group: Leiden, The Netherlands, 2015; pp. 377–382. ISBN 978-1
-138-02779-4.

28. Paseka, S.; Marton, D.; Menšík, P. Uncertainties of reservoir storage capacity during low water period.
In Proceedings of the SGEM International Multidisciplinary Geoconference: Hydrology and Water Resources;
STEF92 Technology Ltd.: Sofia, Bulgaria, 2016; pp. 789–796, ISBN 978-619-7105-61-2.

29. Vogel, R.M.; Bolognes, A. Storage-reliability-resilience-yield relations for over-year water supply systems.
Water Resour. Res. 1995, 31, 645–654. [CrossRef]

30. Jain, K.S.; Bhunya, K.P. Reliability, resilience and vulnerability of a multipurpose storage reservoir.
Hydrol. Sci. J. 2008, 53, 434–447. [CrossRef]

31. Ngo, L.L.; Madsen, H.; Rosbjerg, D. Simulation and optimisation modelling approach for operation of the
Hoa Binh reservoir, Vietnam. J. Hydrol. 2007, 336, 269–281. [CrossRef]

32. Villa, I.R.; Rodríguez, J.B.M.; Molina, J.L.; Tarragó, J.C.P. Multiobjective Optimization Modeling Approach
for Multipurpose Single Reservoir Operation. Water 2018, 10, 427. [CrossRef]

33. Scola, L.A.; Takahashi, R.H.C.; Cerqueira, S.A.A.G. Multipurpose Water Reservoir Management:
An Evolutionary Multiobjective Optimization Approach. Math. Probl. Eng. 2014, 2014, 638259. [CrossRef]

34. Groves, D.G.; Yates, D.; Tebaldi, C. Developing and applying uncertain global climate change projections for
regional water management planning. Water Resour. Res. 2008, 44, W12413. [CrossRef]

35. Herman, J.D.; Zeff, H.B.; Reed, P.M.; Characklis, G.W. Beyond optimality: Multistakeholder robustness
tradeoffs for regional water portfolio planning under deep uncertainty. Water Resour. Res. 2014, 50, 7692–7713.
[CrossRef]

36. Beh, E.H.Y.; Maier, H.R.; Dandy, G.C. Adaptive, multiobjective optimal sequencing approach for urban water
supply augmentation under deep uncertainty. Water Resour. Res. 2015, 51, 1529–1551. [CrossRef]

37. Haasnoot, M.; Kwakkel, J.H.; Walker, W.E.; Maat, T.J. Dynamic adaptive policy pathways: A method for
crafting robust decisions for a deeply uncertain world. Glob. Environ. Chang. 2013, 23, 485–498. [CrossRef]

38. Jeuland, M.; Whittington, D. Water resources planning under climate change: Assessing the robustness of
real options for the Blue Nile. Water Resour. Res. 2014, 50, 2086–2107. [CrossRef]

39. Paton, F.L.; Maier, H.R.; Dandy, G.C. Including adaptation and mitigation responses to climate change in
a multiobjective evolutionary algorithm framework for urban water supply systems incorporating GHG
emissions. Water Resour. Res. 2014, 50, 6285–6304. [CrossRef]

40. Roach, T.; Kapelan, Z.; Ledbetter, R.; Ledbetter, M. Comparison of Robust Optimization and Info-Gap
Methods for Water Resource Management under Deep Uncertainty. J. Water Resour. Plan. Manag. 2017, 143.
[CrossRef]

41. Whateley, S.; Steinschneider, S.; Brown, C. A climate change range-based method for estimating robustness
for water resources supply. Water Resour. Res. 2014, 50. [CrossRef]

42. Borgomeo, E.; Mortazavi-Naeini, M.; Hall, J.W.; Guillod, B.P. Risk, Robustness and Water Resources Planning
Under Uncertainty. Earth’s Future 2018, 6. [CrossRef]

43. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T.; Amrit, P.; Meyarivan, T. A Fast Elitist Non-Dominated Sorting
Genetic Algorithm for Multi-Objective Optimization: NSGA-II; Schoenauer, M., Deb, K., Rudolph, G., Yao, X.,
Lutton, E., Merelo, J.J., Schwefel, H.-P., Eds.; Parallel Problem Solving from Nature PPSN VI; Springer:
Berlin/Heidelberg, Germany, 2000; pp. 849–858.

44. Kollat, J.B.; Reed, P.M. Comparing state-of-the-art evolutionary multiobjective algorithms for long-term
groundwater monitoring design. Adv. Water Res. 2006, 29, 792–807. [CrossRef]

45. Nicklow, J.; Reed, P.; Savic, D.; Dessalegne, T.; Harrell, L.; Chan-Hilton, A.; Karamouz, M.; Minsker, B.;
Ostfeld, A.; Singh, A.; et al. State of the art for genetic algorithms and beyond in Water resources planning
and management. J. Water Resour. Plan. Manag. 2010, 136, 412–432. [CrossRef]

46. Tukimat, N.N.A.; Harun, S. Optimization of water supply reservoir in the framework of climate variation.
Inter. J. Softw. Eng. Appl. 2014, 8, 361–378. [CrossRef]

195



Water 2018, 10, 1110

47. Fu, G.; Kapelan, Z.; Kasprzyk, J.R.; Reed, P. Optimal Design of Water Distribution Systems Using
Many-Objective Visual Analytics. J. Water Resour. Plan. Manag. 2013, 139. [CrossRef]

48. Perelman, L.; Ostfeld, A.; Salomons, E. Cross Entropy multiobjective optimization for water distribution
systems design. Water Resour. Res. 2008, 44. [CrossRef]

49. Zheng, F.; Simpson, A.R.; Zecchin, A.C. An efficient hybrid approach for multiobjective optimization of
water distribution systems. Water Resour. Res. 2014, 50. [CrossRef]

50. Yang, G.; Guo, S.; Liu, P.; Li, L.; Liu, Z. Multiobjective Cascade Reservoir Operation Rules and Uncertainty
Analysis Based on PA-DDS Algorithm. J. Water Resour. Plan. Manag. 2017, 143. [CrossRef]

51. Srinivas, N.; Deb, K. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms.
Evol. Comput. 1994, 2, 221–248. [CrossRef]

52. Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley Publishing
Company: Reading, MA, USA, 1989; ISBN 0-201-15767-5.

53. Marton, D.; Kapelan, Z. Risk and reliability analysis of open reservoir water shortages using optimization.
Procedia Eng. 2014, 89, 1478–1485. [CrossRef]
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Abstract: The construction of dams and operation of reservoirs have a significant impact on the
interruption of aquatic and riparian ecological systems, by altering natural stream flows in river
courses. Recently, the ecological requirements are included as an additional objective in reservoir
operation in order to restore the natural stream flows and reduce the negative impacts of reservoir
operations on ecosystems that rely on the natural flows. The key challenge involving ecological
requirements is to balance the ecological and economic objectives by operation rules, on the basis
of quantitatively identifying the objective of ecological flows required to maintain the natural flow
regime for ecosystem. This study develops a piecewise-linear multi-objective hedging rule (PMHR)
for reservoir operations, with ecologic flow objectives represented by 33 hydrologic parameters
from the indicators of hydrologic alteration (IHA). Variables of the PMHR are obtained through
optimization using a vector evaluated genetic algorithm. The results show that the PMHR improves
the ecological water releases without reducing economic water supplies in the case river in the context
of hydrological uncertainty. It can offer technological references for improving the utility of water
resource management under competitive conditions of water resources.

Keywords: natural flow regime; multi-objective model; uncertainty; genetic algorithm

1. Introduction

For decades, dams have been built and operated mostly for economic purposes that require a
reliable water supply for human needs, such as hydropower electricity, irrigation, living and industry
water supply, and navigation. Water withdrawn for increasing economic demands has led to conflicts
between human water use and ecosystem water needs [1–3]. The operation of dams leads to negative
effects on aquatic and riparian ecosystem systems [4–6]. The alteration of the flow regime caused
by reservoir operation is recognized as a major driving factor that threatens the integrity of the river
ecosystem [7–11]. Bunn and Arithington reviewed the studies focused on the relationship between
hydrological flow regime and river ecosystems, and illustrate four critical negative impacts of the
alteration: (1) alteration of the magnitude of flow as the determinant of physical habitat and biotic
composition; (2) alteration of the timing and frequency of peak flow as key factors of the life history
of aquatic species; (3) destruction of the patterns of longitudinal and lateral connectivity for riverine
species; and (4) the extinguishing of extreme low flow avoidance, meant to prevent the invasion of
exotic species [12].

How to balance the trade-off between humans and ecosystems has been discussed for decades
regarding integrated river basin management [13–16]. Many investigations have been conducted to
address the conflicts between environmental flow release and the economic water supply over the past
decades. To evaluate the ecological objective for aquatic and riparian ecosystems’ sustainability, four

Water 2018, 10, 865; doi:10.3390/w10070865 www.mdpi.com/journal/water197



Water 2018, 10, 865

kinds of approaches are often applied, including (1) estimating the minimum flow requirement for
downstream habitats to maintain the survival of specific species [17–19]; (2) determining a flow regime
based on fish diversity information [20]; (3) providing a regime-based, prescribed flow duration curve
that considers floods and droughts for species and morphological needs [21–23]; and (4) minimizing
the degree of flow alterations in order to maintain the stability of river ecosystems and population
structures of species [16,24–26]. In these studies, it is can be found that the adopted ecological
objectives have been shifted from an emphasis on a minimum flow requirement or single species to the
development of a regime-based comprehensive approach. With the first two methods mentioned above,
the flow fluctuation, which decides the ecological integrity, is generally neglected. Therefore, ecologists
currently prefer to recommend the last two methods, in which the ecological integrity can be sustained
by accounting for the functional and structural requirements for aquatic and riparian ecosystems.

Suen and Eheart proposed a multi-objective model based on the ecological flow regime paradigm,
which incorporates the intermediate disturbance hypothesis to address the ecological and anthropic
need [16]. Their study uses parts of the Taiwan Eco-Hydrology Indicators System (TEIS) as the
criteria to represent ecosystem objectives. Lane et al. proposed a multi-step re-operation methodology
to address environmental flow requirements and human water use objectives [23]. This model
summarizes the environmental flow requirements on the basis of empirical streamflow thresholds for
the maintenance of an ecosystem with geomorphic functions. Using a one-dimensional water routing
model by the Water Evaluation and Planning System (WEAP), the model develops an alternative
reservoir rule curve and suggests the new timing of releases to sustain key ecological and geomorphic
functions. Generally, these studies have used a monthly-based interval and have therefore failed to
reflect important hydrological factors with daily variations, which may play an important role for
sustaining the health of an ecosystem [7,27–29]. Chen et al. proposed a time-nested approach, in order
to scale down the decision variables from a monthly to a 10-day basis, and further to a daily basis
for reservoir operations [30]. They used a daily flow hydrograph as a constraint in the optimization
model. However, the model was extremely complex, with 730 decision variables, leading to a high cost
of calculation in the optimization process. Considering daily scale indicators in reservoir operations,
such as the timing and frequency of peak flow, the rising and falling rates requires a large number of
decision variables in the optimization process, and lead to a computing-heavy task.

It has been noted that involving a set of fixed operation rules in reservoir modelling can reduce
the number of decision variables as well as the computational costs [31]. Standard operating policy
(SOP) and hedging rules (HR) are the most commonly used rules in reservoir operations. SOP,
which is the traditional and simplest operating rule, releases water as close to the delivery targets
as possible in order to meet the demands of the current stage [32]. By contrast, HR prefers to keep
a certain proportion of available water in the reservoir, in order to minimize the possible losses
caused by water shortages in the future. Usually, SOP is recommended only if the objective function
is linear, while the hedging rules have been proven to be a more efficient way to optimize the
reservoir operations when the supply benefits are nonlinear [33,34]. In real operations, the trade-off
analysis of multiple objectives is often complicated with nonlinear systems and uncertain inflow
conditions [35–37]. Therefore, HR is often used to cope with uncertain future inflows among different
nonlinear objectives in practice [38]. Taghian et al. employed HR to achieve the optimal water
allocation, in order to reduce the intensity of severe water shortages [39]. A hybrid model was
developed to simultaneously optimize both the conventional rule curve and the hedging rule. Shiau
developed a parameterization–simulation–optimization approach for optimal hedging for a water
supply reservoir by considering the balance between beneficial release and carryover storage value.
The proposed methodology was applied to the Shihmen Reservoir in northern Taiwan to illustrate
the effects of derived optimal hedging on reservoir performance in terms of shortage-related indices
and hedging uncertainty [40]. Yin et al. used a typical approach that uses three limit curves to divide
the reservoir storage and the reservoir inflow into several zones [24]. A series of water supply rules
and water releasing rules were derived by the actual reservoir storage and the reservoir inflows to
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provide the water supply and to satisfy the ecological needs of seasonally variables, such as base flows,
dry season flow recessions, high-flow pulses, etc. However, daily interval variations were not exactly
considered in the above-mentioned studies.

Accounting for the daily variation of downstream flows, Yang et al. proposed a set of linear rules
to generate daily reservoir releases, with the aim of satisfying the needs of ecological assessment [20].
This method can explicitly engage flow regime variation based on real-time inflow information [41],
while short-term inflow information becomes crucial for reservoir operation when daily scale ecologic
indicators are considered. However, the proposed operation rules were based on traditional operation
curves for flood control and ecologic objectives, without further considerations regarding the balance
between consumptive water supply and ecological flow needs. Moreover, the ecologic objective in
this paper was calculated by seven indicators, including Q3 and Q5, the average discharges in March
and May, respectively; Q3day min and Q7day min, which represent the annual minimum average of three-
and seven-day discharges; Q3day max, which is the annual maximum average 3-day flow; and Dmin,
representing the Julian date of the annual minimum daily flow. Further information, such as the
changing trends of daily flow and the statistics of daily flow reversals, are required to establish a more
comprehensive function for the ecological objective.

The purpose of this study is to develop practical hedging rules for reservoir operation with
economic and ecologic objectives, which will be able to reflect daily interval variations and engage the
real-time daily inflow forecast and storage information simultaneously into decision-making. In this
paper, piecewise-linear hedging rules are proposed in order to generate the daily release for ecological
and economic objectives, through which the parameters are optimized based on historical and synthetic
streamflow series. In additional, the objective of ecological flow requirements is quantified by 33
hydrologic parameters from Indicators of Hydrologic Alteration (IHA). The proposed methodology
is applied to a realistic reservoir as a performance test. The rest of this paper is organized as follows.
Section 2 briefly introduces the structure of the model. Section 3 presents a real world case study of
Baiguishan reservoir, China. Section 4 compares the proposed HRs with SOP and analyzes the value
of forecast information. Finally, conclusions are drawn in Section 5.

2. Methodology

The framework of the method for optimizing the reservoir’s target water levels and flows released
to the economic and ecological objectives is shown in Figure 1. It is composed of the following
three steps: (1) generating daily water release based on daily inflow and pre-defined hedging rules,
(2) multi-objective optimization for releasing water to economic and ecologic objectives, (3) Monte
Carlo simulation and probability analysis to identify the variations of the optimal water release in
various hydrological years.

The aim of this framework is to identify a set of practical operating rules for water release. A set
of pre-defined, piecewise-linear hedging rules are used to generate water release under the conditions
of various inflow and water levels of the reservoirs. A multi-objective genetic algorithm is then applied
to optimize the parameters of the rules’ curves iteratively, by balancing the economic and ecological
objectives of water release. The statistical characteristics of the parameters are obtained through Monte
Carlo simulations, in which the historical and synthetic daily inflows are used as the inputs.
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Figure 1. Process diagram for optimizing the operating rules.

2.1. Pre-Defined Piecewise-Linear Hedging Rules

In this paper, piecewise-linear hedging rules considering both economic and ecological objectives
are pre-defined for the dry and wet seasons separately. As shown in Figure 2, zones 1–3 represent
the rules in the dry season, and zones 4–6 stand for the rules during the wet season. Red lines show
the maximum and minimum water level of different periods following the traditional operation rules
currently used by the reservoir.
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Figure 2. Release functions in different zones characterized by seasons.

For the dry season, daily water release for economic objectives can be defined as a set
of piecewise-linear hedging rule functions incorporating actual storage and future inflow while
considering the effect of daily inflow forecast [42], as follows:⎧⎪⎨⎪⎩

Wt = Dt Lt ≥ WL1

Wt = Min(Dt, Max(MinW1, aS1 × It + bS1 × Lt−1 + cS1)) WL2 ≤ Lt < WL1

Wt = MinW1 Lt < WL2

(1)

where Wt is the water release for economic objective of day t; Dt is the target release for economic
objective of day t; It is the inflow of day t; Lt and Lt−1 are water levels of day t and day t − 1,
respectively; WL1 and WL2 stand for upper and lower limits of the water level, respectively; MinW1

represents the minimum release for the economic objective of day t; aS1, bS1, and cS1 are the coefficients
of the linear functions of hedging rules.

Specifically, when the actual water level (Lt) is higher than the upper limit (WL1), it implies that
the stored water is enough to defend the area from droughts in the future. In this case, the economic
water release Wt can be described as the amount of water that is needed (Dt). When the actual water
level (Lt) is between the upper limit (WL1) and the lower limit (WL2), it means that there is insufficient
storage to defend against future droughts, and thus the water release Wt can be described as a linear
function related to the forecasted inflow and current water level. When the current water level is lower
than the lower limit (WL2), it means that storage is rare and there is a huge drought risk in future.
In this case, Wt is defined as a fixed minimum value, representing the minimum or basic water release
to the economic system.

Similar to Equation (1), the daily water release for an ecologic objective is defined as follows:⎧⎪⎨⎪⎩
Rt = Min(MaxR1, Max(MinR1, aE1 × It + bE1 × Lt−1 + cE1)) Lt ≥ WL1

Rt = Min(MaxR1, Max(MinR1, aE2 × It + bE2 × Lt−1 + cE2)) WL2 ≤ Lt < WL1

Rt = MinR1 Lt < WL2

(2)

where Rt represents the ecological water release of day t; aE1, bE1, cE1, aE2, bE2, and cE2 are the
parameters of the HR, which will be obtained through the optimizations illustrated in Figure 1; MaxR1

and MinR1 are the maximum and minimum water release that need to be optimized, respectively.
Similarly, economic and ecological water releases in wet seasons can be defined as follows:⎧⎪⎨⎪⎩

Wt = Dt Lt ≥ WL3

Wt = Min(Dt, Max(MinW2, aS2 × It + bS2 × Lt−1 + cS2)) WL4 ≤ Lt < WL3

Wt = MinW2 Lt < WL4

(3)
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⎧⎪⎨⎪⎩
Rt = Min(MaxR2, Max(MinR2, aE3 × It + bE3 × Lt−1 + cE3)) Lt ≥ WL3

Rt = Min(MaxR2, Max(MinR2, aE4 × It + bE4 × Lt−1 + cE4)) WL4 ≤ Lt < WL3

Rt = MinR2 Lt < WL4

(4)

where WL3 and WL4 are the upper and lower limit, respectively; MaxR2 and MinR2 are maximum and
minimum water release to be optimized, respectively; and aS2, bS2, cS2, aE3, bE3, cE3, aE4, bE4, and
cE4 are the parameters of the HR during wet seasons.

Consequently, the decision variables consist of the following three parts: (1) water level limits
(WL1 and WL2 in dry seasons and WL3 and WL4 in wet seasons); (2) ecological and economic hedging
coefficients (aE1, bE1, cE1, aE2, bE2, cE2, aE3, bE3, cE3, aE4, bE4, cE4 aS2, bS2, cS2, aS4, bS4, and cS4);
and (3) maximum and minimum water release (MinW1, MinW2, MinR1, MinR2, MaxW1, MaxW2,
MaxR1, MaxR2).

2.2. Ecological Objective

The ecological objective is to minimize reservoirs’ alterations on rivers’ natural flows, which have
been adapted to by aquatic and riparian species over thousands years of evolution by maintaining the
stability of ecosystems and population structures of species. The Indicators of Hydrologic Alteration
(IHA) program, proposed by Richter, has been adopted to represent the ecological objective in this
paper [4]. It contains 33 hydrologic parameters involving five groups of characteristics, including (1)
the magnitude of monthly stream flow; (2) the magnitude of annual extreme flows at different time
durations; (3) the timing of annual extreme flows; (4) the frequency and duration of high and low
pulses; (5) the rate of change.

For each eco-hydrological indicator, a spectrum of values could be set as the target range, which
could reflect the changes of environmental flow regime that a species can adapt to. If the actual value
of an indicator falls in that range, it means that the alteration of the natural flow regime is acceptable
by the aquatic or riparian species. Those acceptable ranges of all the indicators have been investigated
by many researchers [9], among which the findings by Richter et al. are mostly widely applied through
the range of variability approach (RVA) [4]. RVA is an efficient and convenient method to evaluate the
degree of flow regime alteration. According to Richter and in this paper, the 25th and 75th percentiles
of the historical annual value of the indicators are set as the upper and lower limits of the target range
of environmental flow regime, respectively.

Here, let fi(r) represent the effect function of the i-th indicator of IHA. In addition, ihai(r) represents
the value of the i-th indicator. fi(r) equals 0 if ihai(r) falls in the target range, which implies that the
ecological release and flow alternation compared to the natural flow regime are acceptable. When the
value of the indicator falls outside of the target range, fi(r) is calculated as the distance from the target
range, as follows:

fi(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ihaip75 ≤ ihai(r) ≤ ihai p25

(
ihai(r)−ihai p25
ihai p25−ihai p75

)2 ihai(r) ≥ ihai p25

(
ihaip75−ihai(r)
ihai p25−ihaip75

)2 ihai(r) ≤ ihaip75

(5)

where r is the series of ecological water release generated by Equations (2) and (4); ihaip25 and ihaip75

are the upper and lower limits of the annual values of the indicators, respectively; and ihai(r) represents
the value of the i-th indicator. The ecological objective can be calculated by the sum of the 33 indicators
of the IHA, as

f1 =
33

∑
i=1

fi(r) (6)

The value of f 1, the range of which is greater than zero, represents the ecosystem objective to be
minimized in the multi-objective optimization model.
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2.3. Economic Objective

The economic objective is represented in a target-hitting form, in which the water demands
of agriculture, industry, and domestic water use are considered. For equalizing the water supply
shortages across time intervals throughout the year, the economic objective is employed through
quantifying the water supply deficits, as follows:

f2 = −g(w) = f (w) =
T

∑
i=1

(
di − wi

di
)2 (7)

where T is the total number of time periods; di is the economic water demand of the i-th day, including
the water demands of agriculture, industry and domestic sectors; and wi is the water supplied in the
i-th day. The value of f 2, range from 0 to 1, and represents the economic objective to be minimized in
the multi-objective optimization model.

2.4. Constraints

Constraints within the optimization model are set as follows.
(1) Water balance constraint:

Vi = Vi−1 + IiΔt − qiΔt − Ei (8)

where Vi and Vi−1 represent the reservoir storage available at the end of the i-th day and i − 1 day,
respectively; Ii is the inflow of the i-th day; qi is the total release during the i-th day; and Ei is the
evaporation of the reservoir in the i-th day.

(2) Reservoir storage capacity constraint:

Lmin
i ≤ Li ≤ Lmax

i (9)

where Lmin
i and Lmax

i are the minimum and maximum water level limits at the end of the i-th day,
respectively; and Li is the water level of the i-th day.

(3) Initial and end storage constraint:
Considering the initial water storage of next year, here we set up initial storage and end storage

equally as
V0 = Va (10)

where V0 is the initial storage of the reservoir and Va is its end storage.
The multiple objectives of the model are set to meet both the ecosystem and human demand,

which can be expressed as follows:
Obj. Min{f 1(r), f 2(w)} (11)

2.5. Vector Evaluated Genetic Algorithm

This multi-objective model is solved by the vector evaluated genetic algorithm (VEGA). Different
from the standard procedure of a genetic algorithm, VEGA focuses on the optimization of several
objectives [43]. Through the VEGA, the initial population is divided into a number of objectives, and
the elite of each group is selected for the next generation while the others are put in crossover and
mutation pools. A population with a higher fitness value has a greater probability of persevering to
the next generation. The procedure of VEGA is presented in Figure 3.
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Figure 3. Procedure of the vector evaluated genetic algorithm (VEGA).

3. Results

3.1. Study Site

The Baiguishan Reservoir, which is located on the Shahe River (Figure 4) in the Huaihe River
Basin in China, was selected as a case study to test the proposed model. It is a multipurpose reservoir
serving as a water supply, flood control, a source of recreation, and ecologic purposes, with a total
storage of 0.92 billion m3. Historical daily inflow series from 1976–2005 were used to design the
operation rules. Affected by pacific monsoons, 80% of the rainfall to the reservoir occurs in summer,
and this divides the year of operation into two seasons, including the dry season (16 September–20
June) and the wet season (21 June–15 September). The maximum water level used in the current
operation is 103 m and 105.9 m in the dry and wet seasons, respectively; the minimum water level is
limited to 92 m.

Baiguishan Reservoir

Huaihe River Basin

Figure 4. Location of the Baiguishan Reservoir.

3.2. Ecological Management Target Range

Generally, IHA should be calculated based on historically natural flow without intervention.
In this paper, the ecological objective is defined based on the historical inflow data of the Baiguishan
Reservoir instead, due to the lack of historical daily hydrologic data for the Shahe River before the

204



Water 2018, 10, 865

1950s—in other words, when the stream flow had not yet been altered by human beings in China.
For each eco-hydrological indicator, the target range was calculated by the values of the 25th and
75th percentile of the historical series. Table 1 shows the ecological target ranges calculated by data
from 1976–2005. Moreover, the expected value and the standard deviation (SD) are investigated for
further discussion.

Table 1. Ecological target ranges and statistical analysis of eco-hydrologic indicators.

No. Indicator Unit
Ecological Target Range Statistical Analysis

P25% P75% Expected SD

IHA1 October m3/s 19.81 8.21 17.88 20.91
IHA2 November m3/s 20.52 4.26 12.68 11.3
IHA3 December m3/s 20.71 5.02 11.41 9.03
IHA4 January m3/s 14.59 6.6 9.05 6.33
IHA5 February m3/s 17.25 5.02 11.44 7.62
IHA6 March m3/s 21.48 2.57 13.5 9.11
IHA7 April m3/s 17.81 2.16 11.57 10.8
IHA8 May m3/s 23.1 8.2 17.36 17.06
IHA9 June m3/s 36.65 9.09 24.4 17.86

IHA10 July m3/s 38.91 15.97 36.42 42.28
IHA11 August m3/s 48.18 19.29 39.97 32.7
IHA12 September m3/s 25.75 7.79 21.18 20.34
IHA13 1day-min m3/s 2.56 0.3 0.63 1.43
IHA14 3 day-min m3/s 3.19 0.24 0.85 1.97
IHA15 7 day-min m3/s 3.56 0.29 1.15 2.21
IHA16 30 day-min m3/s 7.28 0.84 2.84 3.36
IHA17 90 day-min m3/s 10.08 0.91 6.68 5.15
IHA18 1 day-max m3/s 435.98 66.1 286.19 260.18
IHA19 3 day-max m3/s 329.97 55.33 205.25 192.94
IHA20 7 day-max m3/s 219.25 49.42 141.09 133.33
IHA21 30 day-max m3/s 81.72 31.73 67.62 50.98
IHA22 90 day-max m3/s 51.79 23.8 41.1 24
IHA23 Zero days days 93 6 44.1 63.79
IHA24 Base flow / 0.24 0.03 0.05 0.1
IHA25 Date of max / 276.2 122 274.93 61.4
IHA26 Date of min / 260 159.6 222.9 117.792
IHA27 Low count / 12 4 4.55 3.25
IHA28 Low duration days 16 7.22 22.94 23.62
IHA29 High count / 13 2 7.69 3.6
IHA30 High duration days 28.75 6 15.77 18.58
IHA31 Fall rate / 0.52 0.19 0.63 0.39
IHA32 Rise rate / −0.11 −0.18 −0.76 0.62
IHA33 Reversal / 135 81 121.8 32.62

In Table 1, eco-hydrological indictors are ordered from IHA1 to IHA33. IHA1–IHA12 are the
annual mean values of monthly flow from January to December. IHA13–IHA22 are the annual mean
values of the maximum or minimum t-day (t = 1, 3, 7, 9, 30, 90) flows. IHA23 and IHA24 are the
number of zero flow days and the base flow, respectively. IHA25 and IHA26 are the Julian date of each
annual one-day maximum and minimum, respectively; IHA27 and IHA29 are the number of high or
low pulses, respectively, within each year (days); IHA28 and IHA30 are the mean duration of high or
low pulses, respectively, within each year; IHA31 and IHA32 are the means of all positive and negative
differences between consecutive days, respectively; and IHA33 is the total number of reversals [4].

3.3. Pareto-Optimum Solutions

To deal with the trade-off between economic and ecological objectives, VEGA with a population
size of 1000 was adopted to solve the model within one year. With the series of daily inflow from
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1976–2005, a Pareto-optimal frontier for every year can be obtained. Using three typical years (frequency
= 25%, 50%, 75%) as examples, after running 100 generations, the algorithm is stopped; the result of the
Pareto-optimal frontiers of the typical years is shown in Figure 5. Each individual solution represents
one possible trade-off between the economic and ecological objectives with different inflow scenarios.
Here, a frequency of 75% means the annual runoff for the year will be exceeded in 75 years out of 100.
In Figure 5, each frontier solution is calculated by a searching direction in the genetic algorithm, and
prioritization between the objectives is decided by the decision-maker. For example, for the scenario of
frequency being 75%, the solution at point A represents an emphasis on the ecological objective, while
the solution at point D represents an emphasis on the economic objective. Solutions at points B and C
are the destinations with two sub-population evolution directions, which represent the trade-offs of
the two competitive objectives.

 

Figure 5. Trade-offs between economic and ecosystem objectives.

The corresponding decision variables of points A, B, C, and D are presented in Table 2.

Table 2. Decision variables of points of A, B, C, and D of the year with 75% frequency.

Pt. MinW1 MinR1 MaxW1 MaxR1 aE1 bE1 cE1 aS1 bS1 cS1 SL1 MinW2

A 5.14 3.14 8.09 729.09 0.6 0.44 2.89 0.7 −0.95 1.89 102.51 5.13
B 5.9 5.58 8.03 764.83 0.93 −0.35 1.83 0.74 0.99 0.82 102.99 5.33
C 5.48 1.71 8.09 705.23 0.62 −0.8 1.83 0.32 0.05 4.81 102.99 5.66
D 5.35 2.72 8.09 732.35 0.47 0.38 2.32 0.4 −0.07 2.61 102.55 5.4

Pt. MinR2 MaxW2 MaxR2 aE2 bE2 cE2 aS2 bS2 cS2 SL2 aE3 bE3

A 8.09 8.06 712.42 0.35 0.01 2.5 0.52 −0.95 0.61 97.72 0.2 −0.7
B 6.5 8.09 714.88 0.79 −0.01 2.5 0.63 −0.7 3.09 98.03 0.34 0.83
C 7.6 8.1 776.57 0.82 0 1.08 0.76 0.16 3.69 99.14 0.83 0.1
D 5.53 8.07 737.35 0.63 −0.45 2.55 0.47 0.17 2.45 98.49 0.51 0

Pt. cE3 aS3 bS3 cS3 SL3 aE4 bE4 cE4 aS4 bS4 cS4 SL4

A 5.06 0.79 0.23 1.03 103.44 0.15 −0.97 3.58 0.05 −0.39 2.19 96.99
B 3.77 0.04 0.38 4.64 102.71 0.71 −0.08 2.77 0.49 −0.05 3.99 98.17
C 1.54 0.66 −0.38 2.65 102.97 0.49 −0.78 2.92 0.77 −0.44 1.26 97.09
D 2.04 0.48 0 2.13 62.4 0.23 −0.18 1.27 0.13 0.22 0.74 97.65
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3.4. Monte Carlo Simulation

In the above section, we use the inflow data of a given year to demonstrate the efficiency of the
model by generating a set of optimized parameters. However, the obtained optimal parameters for
the piecewise-linear multi-objective hedging rule (PMHR) are not applicable for other streamflow
conditions. To obtain the optimal PMHR in the context of hydrological uncertainty, a Monte Carlo
simulation is applied in this section to deal with different inflow conditions, rather than the inflow of
one year.

Based on 29 years of historical hydrological data, a synthetic daily inflow for 100 years was
generated, according to the statistical characteristics of the 29-year inflow. To be more specific, the
annual mean discharge of these 100 years were obtained by a P-III curve based on samplings from the
29-year historical inflow from 1976–2005. The daily inflow of a synthetic year was decomposed from
its annual discharge, according to the historical daily inflow of the year in which the frequency is equal
to the synthetic year. The statistical properties of the historical and synthetic flow series is shown in
Table 3. Here, the coefficient of variation (CV) is defined as the ratio of the standard deviation to the
mean. It reflects the extent of variability in relation to the mean of inflow. The deviation coefficient (CS)
is measured as the ratio of the difference between the mean and median value of standard deviation.
It reflects the skewness of the mean of the inflow.

Table 3. Statistical parameters of the historical inflow series and the synthetic flow series.

Average Annual Discharge Cv Cs

historical inflow series 24.37 0.33 0.83
synthetic flow series 18.70 0.40 0.74

In this paper, the main purposes of synthetic inflow generation are (1) to generate more input
scenarios that are close to the historical inflow for the Monte Carlo simulation of the optimal operation
model, and (2) to test the effectiveness of the model under the typical frequency of these inflow
scenarios. The synthetic flow series can be seen as the input series of a mathematical experiment, while
results and discussions are mostly based on the synthetic flow series.

For 100 years of daily inflow data, the optimization model is applied 100 times, and 100 sets of
Pareto-optimal frontiers and 100 sets of optimized parameters are calculated correspondingly. In this
way, through a Monte Carlo simulation, each set of the optimized parameter forms a possible operation
rule for the case reservoir. These 100 groups of parameters represent the optimal operation rules
under 100 various inflow scenarios. For each Pareto-optimal frontier, the expected and median values
represent the entire probability distribution under different conditions. By using the expected and
median values of parameters as the operation rules, optimal economic and ecological water release
can be derived under any inflow conditions for decision-makers.

Searching directions used to obtain points B and C in Figure 5 are applied in the model with
100 years’ synthetic daily inflow. In this way, 200 groups of optimal decision variables with different
searching directions (similar to the method used to obtain points B and C) are obtained. For each
searching direction, we calculated the expected and median values of the optimal decision variables
(PMHRB and PMHRC), which represent the optimal operation rules for the case reservoir. Table 4
shows the statistical values of the optimal parameters for 100 years.
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4. Discussion

To test the effectiveness and the robustness of the proposed model, PMHRB and PMHRC in
Table 4 were used to generate the economic and ecological water release by which the corresponding
objectives were derived. Using the 100 years of synthetic inflows generated in Section 3.4, the economic
and ecological water release processes, as well as the corresponding objectives under different inflow
scenarios by the two PMHR rules, were calculated. For comparative study, the economic and ecological
water release and their objectives were calculated by the traditional and simplest operating rule SOP,
which meant releasing water as close to the delivery targets as possible in order to meet the demand.

4.1. Economic Versus Ecological Objectives under Different Inflow Scenarios

To demonstrate the effectiveness of the HR rules comparing with the SOP rule, the values of
economic and ecological objectives optimized by the PMHRB, the PMHRC, and the SOP are compared
in Table 5.

Table 5. Comparison of economic and ecological objectives.

No. Frequency Rules
Economic Objective Ecological Objective

Expected Median Expected Median

1 95%
SOP 0.99 238.65

PMHRB 0.57 0.58 17.89 20.38
PMHRC 0.6 0.64 88.02 229.25

2 90%
SOP 1.00 165.64

PMHRB 0.89 0.83 12.86 11.97
PMHRC 0.92 0.95 43.29 61.25

3 75%
SOP 1.00 148.68

PMHRB 0.90 0.82 7.15 10.1
PMHRC 0.95 0.97 13.43 21.36

4 50%
SOP 1.00 114.05

PMHRB 0.99 0.99 3.53 7.23
PMHRC 1.00 1.00 4.97 18.08

5 25%
SOP 1.00 193.8

PMHRB 0.99 0.99 3.77 6.37
PMHRC 1.00 1.00 2.66 7.23

6 10%
SOP 1.00 137.92

PMHRB 1.00 0.99 5.21 3.81
PMHRC 1.00 1.00 28.01 52.21

According to Equations (5) and (6), the range of ecological objectives is greater than or equal to 0,
and a greater value means a less satisfied ecologic objective. According to Equation (7), the range of
economic objectives is from 0 to 1, where a greater value means a higher water supply deficit. With the
annual inflow data ranging from a frequency of 10% to 95%, two objective values are compared, as
shown in Table 3.

The SOP can satisfy almost all of the economic water demands under a majority of scenarios,
but with a greater alteration to the natural flow regime. For the water supply objective (economic
objective), the SOP guarantees meeting 100% of the water demands, except in extremely dry years
(frequency = 95%). At the same time, the corresponding ecologic objective is greater than 100, which
implies a highly altered flow regime. Meanwhile, PMHRB and PMHRC are able to effectively improve
the ecological objective by decreasing the ecologic objectives to the range of 2.66–52.21, and satisfy the
economic water demands in wet years (frequency < 50%). In dry years, PMHRB and PMHRC have to
reduce the water supply for human demand in order to meet the demands of the ecosystem. For a
typical dry year (when the inflow frequency is 75%), PMHRB and PMHRC each reduce nearly 10% of
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the water supply for human demands in order to balance the ecological objective. When it comes to
the extreme dry year (frequency > 95%), PMHRB and PMHRC each reduce about 50% of human water
supply to meet the demands of ecosystem.

4.2. Ecological Release

Under the synthetic inflow conditions, the processes of ecological release in a typical dry year
(75% frequency), generated by three rules (SOP, PMHRB and PMHRC), were compared, as shown in
Figures 6 and 7. The processes generated by the expected values of PMHRB and PMHRC are shown in
Figure 6; processes generated by the median values of PMHRB and PMHRC are shown in Figure 7.
Compared to the SOP, the ecological release processes generated by PMHRB and PMHRC are closer to
the natural inflow process. The similarity of the ecological water release process to the inflow process
can be quantified by the correlation coefficient. The higher the correlation coefficient is, the closer
the release is to the inflow of the reservoir. This means that the smaller hydrologic alteration is made
through reservoir operations. Using Figure 6 as an example, the correlation coefficient of the inflow
and water release under the SOP is 0.54, while the correlation coefficient of inflow and water release
under the PMHRB and PMHRC are 0.81 and 0.66, respectively.

 
(a) 

 
(b) 

Figure 6. Comparison of release processes between different operating rules, calculated by expectation.
(a) Comparision of release process of natural flow, PMHRB and SOP; (b) Comparision of release process
of natural flow, PMHRC and SOP.

210



Water 2018, 10, 865

 
(a) 

 
(b) 

Figure 7. Comparison of release processes between different operating rules, calculated by median
values. (a) Comparision of release process of natural flow, PMHRB and SOP; (b) Comparision of release
process of natural flow, PMHRC and SOP.

4.3. Monte Carlo Simulation Key Indicators Analysis

Figures 6 and 7 demonstrate that reservoir water release alters the flow regime of the river course.
This will threaten fish communities and the integrity of river ecosystems downstream. Compared to
the operation results under the SOP, the ecological release under the PMHRB and the PMHRC can
recover the altered flow regime significantly.

The most altered IHA indicators under the SOP are in Table 6, as well as the indicators under
PMHRB and PMHRC. The upper and lower limits (25% and 75% frequency of natural distribution,
respectively) of each indicator are also listed for reference. If the value of indicators falls within the
range of the upper and lower limits, it means a more acceptable ecological condition for sustainability
(as the bold number in Table 6).
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4.4. Extended Analysis: Impact of Long-Term Forecast Information

In this section, the impacts of using long-term annual forecast inflows in an operation are discussed
preliminarily. We suppose that the annual forecast information, which simply indicates the inflow of
the next year and is either larger (wet year) or smaller (dry year) than the average level, is known in
advance. Thus, the synthetic inflows used by the Monte Carlo simulation can be divided into two parts:
the inflow in wet years and the inflow in dry years. By using the inflow of wet or dry years instead
of all the synthetic inflows, the parameters of PMHR can be optimized in two groups: parameters
adapted to wet years and parameters adapted to dry years. The expected value of these parameters
can be used for wet and dry years, respectively.

Figure 8 shows the environmental flow release using rules in both wet and dry years with
long-term forecast information, as well as the release using rules of all possible hydrological years
without long-term forecast information. Figure 8a presents the results of a typical wet year (frequency
= 25%), in which the correlation coefficient between the water release process and the inflow process is
0.95 with forecast information, but 0.90 without forecast. Figure 8b presents the results of a typical dry
year, in which the correlation coefficient is 0.66 with forecast information and 0.61 without forecast
information. This indicates that the PMHR combined with forecast information is able to improve the
restoration of an ecological flow regime compared to one without the forecast.
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(a) 

 
(b) 

Figure 8. Comparison of ecological releases, between those with and without a long-term forecast.
(a) Comparison of wet years; (b) Comparison of dry years.
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5. Conclusions

This study adopts the restoration of natural stream flows as an objective of reservoir operation.
An optimization model is proposed by using piecewise-linear multi-objective hedging rules (PMHR)
to balance the ecological objective of recovering the natural flow regime and the economic objective
of satisfying human consumptive water demand. The proposed model can reflect the daily interval
variations of the flow by engaging real-time daily inflow forecasts and storage information into
decision-making. The parameters of the PMHR were optimized, and Pareto frontiers were discovered
by a vector evaluated genetic algorithm. A Monte Carlo simulation was used to deal with inflow
uncertainty during real operation.

The results of Baiguishan Reservoir show the balance between ecological and economic objectives.
With the consideration of ecological objectives, the ecological release of a reservoir was restored,
reflected by the decrease of IHA to different degrees. To deal with inflow uncertainty, synthetic
inflow was generated and used in a Monte Carlo simulation under uncertain hydrological conditions.
To test the effectiveness of the model, a set of typical frequency inflows was selected for analysis. The
model with PMHR has improved the ecological objective and guaranteed the water supply under
most of the hydrological conditions in the case reservoir. The alteration degree of the hydrologic
indicators, which has been seriously altered, was recovered into the acceptable range. The impact
of involving long-term hydrologic forecast information on improving reservoir operation is also
demonstrated by the comparisons of two hydrological conditions (wet and dry years) in the case
reservoir. The application of forecast inflow information can obviously improve the scheme of
ecological water release.
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Abstract: Long-term scheduling of large cascade hydropower stations (LSLCHS) is a complex
problem of high dimension, nonlinearity, coupling and complex constraint. In view of the above
problem, we present an improved differential evolution (iLSHADE) algorithm based on LSHADE,
a state-of-the-art evolutionary algorithm. iLSHADE uses new mutation strategies “current to
pbest/2-rand” to obtain wider search range and accelerate convergence with the preventing
individual repeated failure evolution (PIRFE) strategy. The handling of complicated constraints
strategy of ε-constrained method is presented to handle outflow, water level and output constraints in
the cascade reservoir operation. Numerical experiments of 10 benchmark functions have been done,
showing that iLSHADE has stable convergence and high efficiency. Furthermore, we demonstrate the
performance of the iLSHADE algorithm by comparing it with other improved differential evolution
algorithms for LSLCHS in four large hydropower stations of the Jinsha River. With the applications
of iLSHADE in reservoir operation, LSLCHS can obtain more power generation benefit than other
alternatives in dry, normal, and wet years. The results of numerical experiments and case studies
show that the iLSHADE has a distinct optimization effect and good stability, and it is a valid and
reliable tool to solve LSLCHS problem.

Keywords: energy; hydropower stations; differential evolution algorithm; optimal scheduling;
ε-constrained method

1. Introduction

Hydropower has a significant share on the total energy consumption as it is renewable, clean,
and cheap. Therefore, many countries have been working on the development of the utility
of hydropower [1], and many hydropower plants have been put into operation in the past few
decades [2–6]. Large cascade hydropower stations (LHS) play an increasingly important role in energy
production. Many scholars have conducted a lot of research on the water resources management of
LHS. Zhou et al. [7] proposed a joint optimal refill rules for cascade reservoirs to solve the conflict
between the flood control and refill operation. The energy storage operation chart combined with
discriminant coefficient method was put forward by Jiang [8], which was successfully applied to
cascade reservoirs of Li Xianjiang River in southwest China. Regarding the input (e.g., inflow)
imprecision and uncertainties, Chen et al. [9–12] analyzed the influence of the uncertainty in water
resources management and the distribution of flood forecasting error. Djebou et al. [13,14] presented
the interactions between these hydrologic factors that interplay at the watershed scale using the
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entropy-based index. Aiming to determine the optimal strategy that hedges the risk of energy shortfall,
Xu et al. [15] develops a multi-objective stochastic programming model for informing hedging decisions
for hydropower operations. Due to complex hydrodynamic relation, various complex constraints
and diversified interest demand, the long-term scheduling of large cascade hydropower stations
(LSLCHS) has developed into a multi-dimensional, non-convex and non-linear optimization problem.
Correspondingly, optimization of LSLCHS has become a fairly challenging theoretical and practical
problem, which is urgent for optimization techniques and constraints treatment [16–18]. Over many
years, to solve this problem, various optimization algorithms have been applied. Usually there are two
categories of methods: traditional optimizers and modern heuristic algorithms. Traditional optimizers
include linear programming (LP) [19,20], nonlinear programming (NLP) [21,22], dynamic programs
(DP) [23,24], progressive optimality algorithm (POA) [25,26], etc. These algorithms have rigorous
mathematical foundations but low convergence efficiency. They suffer from curse of dimensionality.
Modern heuristic algorithms use intelligent strategies to guide search to better areas, such as particle
swarm optimization (PSO) [27,28], genetic algorithm (GA) [29], cultural algorithm (CA) [30], binary
artificial sheep algorithm (BASA) [31], ant colony optimization (ACO) [18,32], etc. Compared with
traditional optimizers, modern meta-heuristics are significantly more flexible and have high search
efficiency as the meta-heuristics are inspired by different nature principles from biology, ethology,
or physics. However, the common heuristic algorithms have some disadvantages such as premature
convergence because of local fast convergence, and bad local search capability owing to many global
searches. Moreover, they lack effective measures to handle complex constraints, making it difficult to
be applied to solve complex optimal problems with high dimensions such as LSLCHS.

Differential evolution (DE) is a simple yet practical modern heuristic algorithm for global
optimization over continuous spaces introduced by Price and Storn [33]. The DE algorithm has been
used in many practical cases [34,35] and gradually become more popular. Similar to all other modern
heuristic algorithms, the evolutionary process of DE uses mutations, crossover, and selection operators at
each generation to reach the global optimum. The performance of DE basically depends on the mutation
strategy, the crossover operator. Besides, the intrinsic control parameters (population size NP, scaling
factor F, the crossover rate Cr) play a vital role in balancing the diversity of population and convergence
speed of the algorithm. Therefore, Brest et al. [36] proposed a self-adaptive DE (jDE), in which both F
and Cr are applied at random with probability τ1 and τ2. SaDE is proposed by Qin et al. [37] adaptively
adjusts its trial vector generation strategies and control parameters simultaneously by learning from the
previous search. JADE [38] is a well-known, effective DE variant which employs a control parameter
adaptation mechanism and puts forward mutation strategy “current-to-pbest/1”, differential evolution
with composite trial vector generation strategies, control parameters (CoDE) [39], differential evolution
with ensemble of parameters and mutation strategies (EPSDE) [40]. Success-History-based Adaptive DE
(SHADE) [41] is an improved version of JADE which uses a different parameter adaptation mechanism.
LSHADE [42] further extends SHADE with Linear Population Size Reduction (LPSR), which continually
decreases the population size according to a linear function. In addition, LSHADE is the best
ranked DE algorithm on CEC2014 Competition on Real-Parameter Single Objective Optimization [43]
(see http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014/-CEC2014.htm).

To avoid premature convergence and to accelerate convergence, we present an improved version
of the LSHADE algorithm in this paper, called iLSHADE. The main improvement of iLSHADE is
that a new mutation strategy “current to pbest/2-rand” is put forward for wider search range to
improve search ability and prevent individual repeated failure evolution (PIRFE) strategy applied in
the population evolution process. Finally, iLSHADE is applied to LSLCHS in Jinsha River combined
with the improved constraints handling technique. Results of the study demonstrates its superiority in
dealing with LSLCHS problem.

The remainder of this paper is organized as follows: Section 2 introduces the formulation
of LSLCHS problem. In Section 3, a brief view of DE framework and improvement strategies of
iLSHADE is presented. Section 4 presents numerical simulation experiment of iLSHADE. In Section 5,
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implementation of iLSHADE in LSLCHS is shown in detail. In Section 6, iLSHADE is applied to solve
LSLCHS, and the results are analyzed. Finally, conclusions are summarized in Section 7.

2. Optimization Model

The primary objective of LSLCHS problem is to maximize the total power generation of LHS
over the whole operation periods, while subjecting to kinds of equality and inequality constraints.
The objective formula and constraints are described as follows.

2.1. Objective Function

obj = max∑M
i=1 ∑T

t=1 NitΔt, Nit = Ai HitQit (1)

where obj is the total power generation of LHS over the whole operation periods, M is the number of
hydro plants; T is the whole periods; Ai is output coefficient of the i-th hydro plant; Δt shows interval
of scheduling term; Nit, Hit and Qit denote output, pure water head and water discharge through
hydro-turbine of the i-th hydro plant in the t-th period, respectively. Moreover, Hit is calculated by
upstream water level, trail water level and head loss shown in formula (8).

2.2. Constraints

In the process of long-term optimal dispatch, various complex equality and inequality constraints,
such as water level, output, and hydraulic connection, should be considered for restricting the total
power generation optimization. The constraints of LHS are described as follows:

1. Water balance constraint.

Vi,t+1 = Vi,t + (Ii,t − Qi,t − Si,t)Δt,
Ii,t = qi,t + Qi−1,t + Si−1,t

(2)

Vi,t is reservoir storage of the i-th hydropower station at the beginning of period t, Ii,t is inflow, qi,t
stands for local inflow and Si,t is deserted outflow.

2. Hydraulic connection.

Zdown
i,t =

{
F(Qi,t + Si,t) without backwater effect,

F(Qi,t + Si,t, Zi+1,t) with backwater effect.
(3)

where Zi,t stands for upstream water level, Zdown
i,t is trail water level. Function F represents the

hydraulic connection between upstream and downstream hydropower stations. Generally, the trail
water level is a function of outflow. However, when the hydropower station is located at the backwater
region of its downstream hydropower station, the upstream water level of the downstream hydropower
station must be taken into consideration in the function.

3. Water level constraint.
Zmin

i,t ≤ Zi,t ≤ Zmax
i,t (4)

|Zi,t − Zi,t+1| ≤ ΔZi (5)

Zmin
i,t and Zmax

i,t are the upper and lower water level limits and ΔZi is the maximum amplitude of water
level variation.

4. Power generating constraint.

Nmin
i,t ≤ Ni,t ≤ Nmax

i,t (Hi,t) (6)
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Nmax
i,t (Hi,t) represents the maximum output. The maximum output is a function of pure water head.

Nmin
i,t is the lower output limit, which is generally called Guaranteed output.

5. Outflow constraint.
Qmin

i,t ≤ Qi,t + Si,t ≤ Qmax
i,t (7)

Qmax
i,t is the maximum outflow limit and Qmin

i,t is the minimum outflow limit.

6. Water head equation.

Hi,t = (Zi,t + Zi,t+1)/2 − Zdown
i,t − Hloss

i,t (Qi,t) (8)

Hi,t stands for the pure water head. Zdown
i,t is trail water level described in formula (3). Hloss

i,t (Qi,t)

represents water head loss, which is a function of outflow through hydro-turbines.

7. Boundary condition.
Zi,0 = Zbegin

i , Zi,T = Zend
i (9)

where Zbegin
i and Zend

i are initial water level and terminal water level of the i-th hydro
plant, respectively.

3. Overview of iLSHADE

3.1. DE

DE is a group-based evolutionary algorithm. It is used to solve the following continuous domain
global optimization problem:

minimize f (
→
x ),

→
x = (x1, . . . , xD)

xi ∈ [xi, xi] ∀i ∈ {1, . . . , D}, − ∞ < xi < xi < +∞
(10)

where f (
→
x ) is continuous fitness evaluation function, D is the dimension of the problem. DE has three

control parameters that need to be set before the calculation: F is scaling factor, CR is crossover control
parameter, and NP is population size. The framework of DE is as follows (Figure 1):

Figure 1. Pseudocode of DE.

The mutation strategy in original DE is “rand/1”, which is expressed in formula (11):

→
v i,G =

→
x r1,G + F · (→x r2,G −→

x r3,G) (11)

220



Water 2018, 10, 383

Other common DE mutation strategies are as follows:

• “rand/2”:
→
v i,G =

→
x r1,G + F · (→x r2,G −→

x r3,G) + F · (→x r4,G −→
x r5,G) (12)

• “best/1”:
→
v i,G =

→
x best,G + F · (→x r1,G −→

x r2,G) (13)

• “best/2”:
→
v i,G =

→
x i,G + F · (→x best,G −→

x i,G) + F · (→x r1,G −→
x r2,G) (14)

• “current to best/1”:

→
v i,G =

→
x i,G + F · (→x best,G −→

x i,G) + F · (→x r1,G −→
x r2,G) (15)

where the indexes r1 − r5 represent the random and mutually different integers generated within
the range {1, NP}, and also different from index i.

→
x best,G is the best individual in a current

generation. Each strategy has a different ability to maintain the diversity of the population, which may
increase/reduce the rate of convergence in the process of evolution.

3.2. iLSHADE

An improved LSHADE (iLSHADE) with new mutation strategy “current to best/2-rand” and the
PIRFE strategy is proposed. The details of these strategies and algorithm procedure are shown below.

3.2.1. Mutation Strategy “Current to pbest/2-rand”

The mutation strategy “current to pbest/1” was proposed by in the framework of JADE (which is
expressed in formula (16)).

→
v i,G =

→
x i,G + Fi · (→x pbest,G −→

x i,G) + Fi · (→x r1,G −→
x r2,G) (16)

In Equation (16), the individual
→
x pbest,G is randomly selected from the top N × p(p ∈ [0, 1])

members in the G-th generation. “current to pbest/1” depends on the control parameter p to balance
exploitation and exploration (small p behaves more greedily).

→
x i,G and

→
x r1,G are selected from P in

the same way as in Equation (12), while
→
x r2,G is randomly chosen from the union P ∪ A, of the current

population and the archive. We present an improved mutation strategy “current to pbest/2-rand”
to improve the search range based on mutation strategy “current to pbest/1”, which is expressed
as follows:

→
v i,G =

→
x i,G + Fi · (→x pbest,G −→

x i,G) + Fi · [(→x r1,G −→
x r2,G) · randi + (

→
x r3,G −→

x r4,G) · (1 − randi)] (17)

where randi is a uniformly distributed random number between [0,1].
→
x i,G,

→
x r1,G and

→
x r3,G are

selected randomly and different within the range {1, NP} from P in the same way as in formula (16),
while

→
x r2,G and

→
x r4,G is randomly chosen from the union, P ∪ A, of the current population and the

archive. The two mutation strategies are illustrated in Figure 2.
As seen in Figure 2a,

→
v i,G is the mutation individual generated for individual

→
x i,G. According to

the principle of vector addition, the position of
→
v i,G changes with the associated mutation factor Fi,

and its position only exists on this “Search Line”. Mutation strategy “current to pbest/2-rand” uses
randi and linear combination of (

→
x r1,G −→

x r2,G) · randi + (
→
x r3,G −→

x r4,G) · (1 − randi) to expand the
search range. By the varying value randi,

→
v i,G can search anywhere in the shaded triangle area with

the change of the Fi and randi (see Figure 2b). Obviously, the search range of “current to pbest/2-rand”
is much larger than that of “current to pbest/1”.
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Figure 2. Illustration of the DE mutation strategy in two dimensions.

3.2.2. The PIRFE Strategy

The PIRFE strategy is proposed to avoid individuals in a local optimum lead useless evolution.
When an individual falls into a local optimal, it is extremely difficult to produce an effective mutation
to jump out of the local optimal. The individual failing evolution number (IFEN) is defined to
record the number of individual failing evolution, and it is initialized to zero.

→
x i,G generates

→
u i,G

through mutation and crossover. If
→
x i,G+1 produces a failing evolution and

→
x i,G+1 is better than

→
u i,G+1, IFENi,G+1 is equal to IFENi,G plus one, otherwise IFENi,G+1 will reset to zero. IFENi,G+1 is
illustrated as follows:

IFENi,G+1 =

{
0 if

→
u i,G+1 is better than

→
x i,G+1

IFENi,G + 1 otherwise
(18)

If
→
x i produces failing evolutions for IFENi generations, and IFENi is more than limit evolution

generations (see formula (18)),
→
x i falls into local optimal. The LEG represents the largest evolution

generation allowing failure evolutions. In the next evolutionary process, we should avoid involving→
x i.

→
x i should be replaced by a new individual randomly selected in population. The framework of

the PIRFE strategy is as follows (Figure 3):

Figure 3. Pseudocode of PIRFE strategy.
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3.2.3. Control Parameters Assignments

SHADE maintains a historical memory with H entries for both DE control parameters CR, F, MCR
and MF. The scaling factor F ∈ [0, 1] controls the magnitude of the differential mutation operator and
CR ∈ [0, 1] is the crossover rate. In the beginning, the contents of MCR,k, MF,k (k = 1, · · · , H) are all
initialized to 0.5. In each generation G, the control parameters CRi and Fi used by each individual xi are
generated by randomly selecting an index ri from [1, H], and then applying the formulas (19) and (20):

CRi =

{
0 if MCR,ri = ⊥
randni

(
MCR,ri , 0.1

)
otherwise

(19)

Fi = randci
(

MF,ri , 0.1
)

(20)

In case a value for CRi outside of [0, 1] is generated, it is replaced by the limit value (0 or 1) closest
to the generated value. When Fi > 1, is truncated to 1, and when Fi ≤ 0, formula (20) is repeatedly
applied to generate a valid value. These manners are determined according to the procedure for
JADE [38]. In formula (19), if MCR,ri has been assigned the “terminal value” ⊥, CRi is set to 0.

In each generation, in formula (17), CRi and Fi values that succeed in generating a trial individual→
u i,G better than the parent individual

→
x i,G are recorded as SCR, SF. At the end of the generation,

the contents of memory are updated as follows:

MCR,k,G+1 =

⎧⎪⎨⎪⎩
⊥ if MCR,k,G = ⊥ or max(SCR) = 0
meanWA(SCR) if SCR �= ∅

MCR,k,G otherwise
(21)

MF,k,G+1 =

{
meanWL(SF) if SF �= ∅

MF,k,G otherwise
(22)

An index k (1 < k < H) determines the position in the memory to update. At the beginning of the
search k is initialized to 1. k is incremented whenever a new element is inserted into the history. If > H,
k is set to 1. In generation G, the k-th element in the memory is updated. In the update formula (21)
and (22), when all individuals in generation G fail to generate an individual better than the parent,
i.e., SCR = SF = ∅, the memory is not updated. Also, the weighted mean meanWA(SCR) is computed
according to formula (23) by Peng et al. [44]. The weighted Lehmer mean meanWL(SF) is computed
using the formula below, and as with meanWA(SCR):

meanWL(SF) = ∑|SF |
k wk·S2

F,k/∑|SF |
k wk·SF,k (23)

meanWA(SCR) = ∑|SCR |
k=1 wk · SCR,k (24)

wk = � fk/∑|SCR |
k=1 � fk (25)

where � fk =
∣∣∣ f (

→
u i,G)− f (

→
x i,G)

∣∣∣. In the same paper, they also proposed a restart strategy for
JADE [38].

LSHADE put forward a new method of NP setting—LPSR which reduces the population linearly.
The population size at generation 1 is Ninit, and the population at the end of the run is Nmin. After each
generation G, the population size in the next generation, NG+1 is computed according to formula (26):

NG+1 = round[((Nmin − Ninit)/MAXNFE) · NFE + Ninit] (26)

If Nmin is set to the smallest possible value, the evolutionary operators can be applied in the case
of iLSHADE, Nmin = 6 because the mutation strategy “current to pbest/2-rand” showed as formula
(17) requires 4 individuals. NFE is the current number of fitness evaluations, and MAXNFE is the
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maximum number of fitness evaluations. Whenever NG+1 < NG, the (NG − NG+1) worst-ranking
individuals are deleted from the population. Similarly, the external archive size |A| is set to Ninit
multiplied by a parameter rarc, |A| = round(Ninit × rarc). In addition, external archive A is same as
population, whenever |A|G+1 < |A|G, the (|A|G − |A|G+1) worst-ranking individuals are deleted from
the A. The p value for “current to pbest/2-rand” in each generation G is computed as follows:

p = (pmax − pmin) · rand(0, 1) + pmin (27)

where rand(0, 1) returns a uniformly distributed random number in [0, 1], p is a random value in
[pmax, pmin]. Finally, the pseudo-code of the iLSHADE algorithm is given in Figure 4.

Figure 4. Pseudocode of iLSHADE.

4. Numerical Experiment

The iLSHADE algorithm was tested in both low and high dimension on a set of 10 benchmark
functions demonstrated in Table 1. Table 1 indicates benchmark problems with different structures
and characteristics. In the table, “O-V” means the optimum fitness and “O-S” stands for the optimum
solution. f1, f2, f3, f5 and f6 are unimodal optimization problems to evaluate the convergence, while f4,
f7, f8,f9 and f10 are multimodal optimization problems with a huge number of local optima to test the
convergence precision [18].
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Table 1. Details of benchmark problems.

Benchmark Function Name Domain O-V O-S

f1 = ∑n
i=1 x2

i Sphere [−100, 100]n 0 {0, 0, · · · , 0}
f2 = ∑n

i=1 |xi|+ ∏n
i |xi| Schwefel (2.2) [−100, 100]n 0 {0, 0, · · · , 0}

f3 = ∑n
i=1

(
∑i

j=1 xj

)2
Schwefel (1.2) [−100, 100]n 0 {0, 0, · · · , 0}

f4 = ∑n−1
i=1

[
100

(
xi+1 − x2

i
)2

+ (xi − 1)2
]

Rosenbrock [−30, 30]n 0 {0, 0, · · · , 0}

f5 = ∑n
i=1

(⌊
xj + 0.5

⌋)2
Step [−100, 100]n 0 {0, 0, · · · , 0}

f6 = ∑n
i=1 ix4

i Quartic [−1.28, 1.28]n 0 {0, 0, · · · , 0}
f7 = ∑n

i=1 −xi sin
(√|xi|

)
Schwefel (2.26) [−500, 500]n −418.9n *

f8 = ∑n
i=1

[
x2

i − 10 cos(2πxi) + 10
]

Rastrigin [−5.12, 5.12]n 0 {0, 0, · · · , 0}
f9 = −20 exp

(
−0.2

√
1/n∑n

i=1 x2
i

)
− exp(1/n cos(2πxi)) + 20 + e

Ackley [−32, 32]n 0 {0, 0, · · · , 0}

f10 = 1 + ∑n
i=1

x2
i

4000 + ∏n
i cos

(
xi√

i

)
Griewank [−600, 600]n 0 {0, 0, · · · , 0}

Note: * (420.9876, 420.9876, . . . , 420.9876).

The iLSHADE is compared to DE and other improved DE like LSHADE, JADE, CoDE and jDE.
The number of function evaluations is used to appraise the convergence. These experiments are
made on a personal computer, Windows10, Intel(R) Core(TM) i7-5500U CPU@ 2.40GHZ, RAM 8.00 GB.
The dimension of benchmark functions is D = 10 in low dimension and 30 in high dimension, and 51 runs
of an algorithm were needed for each function. The maximum number of objective function evaluations
is D × 10,000. The optimal values are known for all benchmark functions.

In the experiments, the parameters in LSHADE, JADE, CoDE, jDE and DE were kept unchanged
refer to [33,36,38,39,42], and the parameter setting in the iLSHADE is same as LSHADE except the
following parameters:

• Using “current to pbest/2-rand” mutation strategy,
• The p value for mutation strategy is computed as pG = rand[pmin, pmax], where pmin = 2/NP is

set such that when
→
x pbest,G is selected, at least 2 individuals are needed, and pmax = 0.25.

• Initial population size Ninit = 15log(D)
√

D, the control parameter of external archive size rarc = 2.
• Historical memory size H = 6; set a final pair of parameters MF[H] = 0.2 and MCR[H] = 0.8, other

MF values are initialized to 0.5 and other MCR are initialized to 0.8.
• PIRFE parameter LEG = 50.

The aggregate results of statistical testing (+, −, ≈) on 10 functions are shown in Tables 2 and 3.
The symbols +, −, ≈ indicate that a given algorithm performed significantly better (+), significantly
worse (−), or not significantly different better or worse (≈) compared to iLSHADE using the Wilcoxon
rank-sum test [45] (significantly, p < 0.05).
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Table 2. Experimental results of 10 test functions in low dimension.

f
LSHADE

Mean
(Std Dev)

JADE
Mean

(Std Dev)

CoDE
Mean

(Std Dev)

jDE
Mean

(Std Dev)

DE
Mean

(Std Dev)

iLSHADE
Mean

(Std Dev)

f1
0.00 × 100

(0.00 × 100) ≈
8.61 × 10−36

(7.18 × 10−36) −
5.93 × 10−38

(7.34 × 10−38) −
1.15 × 10−38

(1.18 × 10−38) −
2.73 × 10−46

(1.42 × 10−45) −
0.00 × 100

(0.00 × 100)

f2
6.49 × 10−49

(4.38 × 10−48) −
8.75 × 10−20

(4.68 × 10−20) −
7.88 × 10−22

(6.58 × 10−22) −
1.38 × 10−22

(1.01 × 10−22) −
8.03 × 10−25

(1.65 × 10−24) −
3.36 × 10−64

(2.05 × 10−63)

f3
1.10 × 10−91

(5.90 × 10−91) −
2.81 × 10−35

(2.75 × 10−35) −
2.43 × 10−39

(4.02 × 10−39) −
1.24 × 10−40

(1.79 × 10−40) −
4.58 × 10−45

(2.03 × 10−44) −
0.00 × 100

(0.00 × 100)

f4
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
1.47 × 10−05

(1.96 × 10−05) −
7.39 × 10−03

(9.11 × 10−03) −
7.82 × 10−02

(5.53 × 10−01) −
0.00 × 100

(0.00 × 100)

f5
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100)≈
0.00 × 100

(0.00 × 100)

f6
0.00 × 100

(0.00 × 100) ≈
1.40 × 10−71

(3.27 × 10−71) −
6.47 × 10−71

(1.52 × 10−70) −
1.40 × 10−72

(3.66 × 10−72) −
8.39 × 10−88

(4.17 × 10−87) −
0.00 × 100

(0.00 × 100)

f7
−4189.83

(2.73 × 10−12) ≈
−4189.83

(2.73 × 10−12) ≈
−4189.83

(2.73 × 10−12) ≈
−4189.83

(2.73 × 10−12) ≈
−4189.83

(2.73 × 10−12) ≈
−4189.83

(2.73 × 10−12)

f8
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
3.06 × 100

(2.47 × 100) −
0.00 × 100

(0.00 × 100)

f9
3.72 × 10−15

(9.55 × 10−16) ≈
3.86 × 10−15

(6.90 × 10−16) −
4.00 × 10−15

(2.37 × 10−30) −
3.93 × 10−15

(4.93 × 10−16) −
3.93 × 10−15

(4.93 × 10−16) −
3.72 × 10−15

(9.55 × 10−16)

f10
0.00 × 100

(0.00 × 100) ≈
2.42 × 10−12

(6.51 × 10−12) −
0.00 × 100

(0.00 × 100) ≈
3.22 × 10−04

(2.28 × 10−03) −
8.58 × 10−02

(6.17 × 10−02) −
0.00 × 100

(0.00 × 100)

− 2 6 6 7 8

+ 0 0 0 0 0

≈ 8 4 4 3 2

Table 3. Experimental results of 10 test functions in high dimension.

f
LSHADE

Mean
(Std Dev)

JADE
Mean

(Std Dev)

CoDE
Mean

(Std Dev)

jDE
Mean

(Std Dev)

DE
Mean

(Std Dev)

iLSHAD
EMean

(Std Dev)

f1
1.12 × 10−90

(6.44 × 10−90) −
0.00 × 100

(0.00 × 100) ≈
9.85 × 10−19

(7.04 × 10−19) −
4.31 × 10−41

(4.35 × 10−41) −
9.34 × 10−44

(2.74 × 10−43) −
0.00 × 100

(0.00 × 100)

f2
2.09 × 10−42

(1.03 × 10−41) −
4.11 × 10−27

(4.89 × 10−27) −
4.01 × 10−12

(1.34 × 10−12) −
3.48 × 10−24

(1.96 × 10−24) −
1.16 × 10−05

(8.17 × 10−05) −
4.88 × 10−58

(1.55 × 10−57)

f3
3.85 × 10−81

(1.74 × 10−80) −
3.58 × 10−49

(7.53 × 10−49) −
4.22 × 10−19

(3.41 × 10−19) −
7.27 × 10−43

(1.05 × 10−42) −
1.16 × 10−46

(6.85 × 10−46) −
0.00 × 100

(0.00 × 100)

f4
1.40 × 10−25

(9.70 × 10−25) −
1.85 × 10+01

(1.01 × 10+01) −
1.82 × 10+01

(3.29 × 100) −
1.15 × 10+01

(8.23 × 100) −
2.62 × 100

(2.60 × 100) −
0.00 × 100

(0.00 × 100)

f5
0.00 × 100

(0.00 × 100) ≈
1.96 × 10−02

(1.39 × 10−01) −
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
4.22 × 100

(7.61 × 100) −
0.00 × 100

(0.00 × 100)

f6
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
2.35 × 10−33

(2.93 × 10−33) −
1.79 × 10−69

(3.86 × 10−69) −
1.74 × 10−59

(1.10 × 10−58) −
0.00 × 100

(0.00 × 100)

f7
−12,569.49

(1.82 × 10−12) ≈
−12,567.16

(1.64 × 10+01) −
−12,569.49

(1.82 × 10−12) ≈
−12,569.49

(1.82 × 10−12) ≈
−11552.14

(3.68 × 10+02) −
−12,569.49

(1.88 × 10−05)

f8
1.74 × 10−16

(6.35 × 10−16) +
0.00 × 100

(0.00 × 100) ≈
8.38 × 10−12

(9.18 × 10−12) +
4.83 × 100

(3.86 × 100) −
3.62 × 10+01

(1.44 × 10+01) −
3.16 × 10−11

(1.66 × 10−10)

f9
4.00 × 10−15

(2.37 × 10−30) ≈
4.76 × 10−15

(1.46 × 10−15) −
2.74 × 10−10

(1.08 × 10−10) −
5.60 × 10−15

(1.77 × 10−15) −
2.64 × 10−01

(5.21 × 10−01) −
4.00 × 10−15

(2.37 × 10−30)

f10
0.00 × 100

(0.00 × 100) ≈
1.55 × 10−03

(3.81 × 10−03) −
3.05 × 10−17

(1.08 × 10−16) −
0.00 × 100

(0.00 × 100) ≈
7.99 × 10−03

(1.46 × 10−02) −
0.00 × 100

(0.00 × 100)

− 4 6 7 7 10

+ 1 1 1 0 0

≈ 5 3 2 3 0
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1 Simulation in low dimension.

Table 2 summarizes the experimental results in low dimension. It shows that iLSHADE eventually
converges to optimum for 8 test functions except f2 and f9. Moreover, iLSHADE significantly
outperforms JADE, CoDE, jDE, DE. Compared to LSHADE, iLSHADE beats LSHADE on two test
functions f2 and f3. Especially in f3, only iLSHADE converges to the global optimal value. Overall,
iLSHADE performs better than other algorithms on low dimension optimization problems.

2 Simulation in high dimension.

The experimental results in high dimension are summarized in Table 3. iLSHADE eventually
converges to optimum for 7 test functions except f2, f8 and f9. iLSHADE performs the best in f2

and f9, although it does not converge to the global optimal. While on f8, JADE performs the best.
The proposed algorithm is not good as expected. Above all, iLSHADE has an obvious advantage over
other algorithms on high dimension optimization problems.

To sum up, iLSHADE is suitable for both low dimension and high dimension, meaning that the
improvement proposed in this paper is effective.

5. Implementation of iLSHADE for LSLCHS

5.1. Solution Structure and Initial Population

To handle constraints and calculate objective function, solution structure for the LSLCHS
comprises a group of monthly water levels as the decision variables shown as follows.

X =

⎡⎢⎢⎢⎢⎣
X1

X2

...
XM

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
x1

1, x1
2, · · · x1

T
x2

1, x2
2, · · · x2

T
...

xM
1 , xM

2 , · · · xM
T

⎤⎥⎥⎥⎥⎦ (28)

where M is the number of hydropower stations, T (12 month in a year) is the number of intervals.
In algorithms relying on heuristic search, initial population is an important issue to convergence speed
and population diversity. The iLSHADE has a large initial population size based on LPSR and ensures
the diversity of the population by random initialization.

5.2. Constraint Handling

It is multiple and complicate for flow constraint, power generating constraint, amplitude of
water level variation and hydraulic connection of cascade. The handling measure currently used
for water balance constraint, water level constraint and boundary condition is often corrected to the
boundary [18,46]. It has defects such as: (1) The direction of the entering feasible domain is relatively
simple and centered on the boundary because of the excessive attention to the rapid into the feasible
area; (2) When there are multiple feasible domains, it is easy to ignore small feasible areas;

The ε-constrained method is first proposed by Takahama et al. [47], which relaxes the greed of the
feasibility criterion to the constraint conditions. The ε value is set as threshold value in ε-constrained
method. In general, constrained optimization maximum problems can be mathematically formulated
as follows:

max f
(→

x
)

,
→
x = (x1, . . . , xD) (29)

subject to

⎧⎨⎩ gi

(→
x
)
≤ 0 i = 1, 2, · · · , m

hj

(→
x
)
= 0 j = 1, 2, · · · , n

(30)
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where gi

(→
x
)

is inequality constraints, m is the total number of inequality constraint. hj

(→
x
)

is equality

constraints and n is the total number of equality constraints. The value of constraint violation ϕ
(→

x
)

can be calculated in the following formula (30), and ϕ
(→

x
)

of infeasible solutions is bigger than 0.

ϕ
(→

x
)
= ∑m

i=0 max
(

0, gi

(→
x
))

+ ∑n
j=1

(∣∣∣hj

(→
x
)∣∣∣, 0

)
(31)

When the constraint violation values of both solutions are smaller than ε value, the one with
better objective function value is selected. Otherwise, the one with smaller constraint violation value is
selected. Overall, when any of the following conditions are met,

→
x i is superior to

→
x j:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f
(→

x i

)
< f

(→
x j

)
, if g

(→
x i

)
≤ ε ∩ g

(→
x j

)
≤ ε

f
(→

x i

)
< f

(→
x j

)
, if g

(→
x i

)
= g

(→
x j

)
g
(→

x i

)
< g

(→
x j

)
, otherwise

(32)

and the final effectiveness of e-constrained method strongly depends on the control method of ε value.
Takahama et al. [47] proposed the following method,

ε(0) = ϕ
(

Pθ
0

)
(33)

ε(t) =

{
ε(0)(1 − t/Tc)

cp 0 < t < Tc

0 t > Tc
(34)

where Pθ
0 is the top θ-th individual in the initial population, cp is a control parameter. If the number

of iterations t is less than a given threshold value Tc, the ε value declines in an exponential way.
Otherwise, ε is set to 0 (see formula (33) and (34)).

The ε-constrained method can expand search space, avoid the constraint correction for unfeasible
solutions and enable to search infeasible region that is around feasible region. However, the constraints
consist of flow, power generating and amplitude of water level. Operating water level in LSLCHS
problem is multiple and complex. Their units are not integrated, and the physical quantities
corresponding to the same level of different reservoirs are different. To solve the above problems,
we proposed ε-constrained in cascade reservoir operation method (ε-CRO) with unify different
physical quantities constraint violation. The ε-CRO chooses water to unify different physical
quantities constraint violation because all constraints can be converted to outflow constraint and
flow accumulated over time as water. The feasible range of outflow Qi,t is expressed in formula (35)
and (36).

Qi,t+1 = min

⎧⎪⎪⎨⎪⎪⎩
Qmax

i,t+1(
V(Zi,t)− V(Zmin

i,t+1)
)

/Δt

(V(Zi,t)− V(Zi,t − ΔZi))/Δt

(35)

Qi,t+1 = max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Qmin
i,t+1

Ii,t +
(

V(Zi,t)− V(Zmax
i,t+1)

)
/Δt

Ii,t + (V(Zi,t)− V(Zi,t + ΔZi))/Δt

Qmin N
i,t+1

(36)

where Zi,t represents the i-th reservoir water level at the -th period, Z(V) is the relationship between
water level and storage. Qi,t+1 and Qi,t+1 stand for the minimum and maximum outflow under all
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constraints. Qmin N
i,t+1 is the outflow for guaranteed output and Δt stands for time horizon. The value of

constraint violation in LSLCHS problem ϕCRO

(→
x
)

can be calculated as follows:

ϕCRO

(→
x
)
= ∑M

i=1 ∑T
t=1

[
max

(
0, Qi,t − Qi,t+1

)
+ max

(
0, Qi,t+1 − Qi,t

)]
(37)

εCRO(0) and εCRO(t) are calculated like in [47] except θ = 0.5, cp = 1 and Tc = 0.5 ∗ MAXNFE.

6. Case Study

6.1. Description of Case Study

The Jinsha River, the upper stretch of the Yangtze River, is 2290 km long with a 485,000 km2

basin area flowing through the provinces of Qinghai, Sichuan, and Yunnan in western China (See in
Figure 5). Along the river, there are four large hydropower stations with large installed capacity, huge
regulating storage and high water head. The total installed capacity of the four large hydropower
stations is twice more than the Three Gorges Project (the largest hydropower station in the world).
The main parameters of these hydropower stations are listed in Table 4.

Figure 5. The location of the Jinsha River Basin in China.

Table 4. The main parameters of four large hydropower stations in Jinsha River.

Parameter Wudongde Baihetan Xiluodu Xiangjiaba

Adjustment ability Season Annual Annual Season
Regulating storage (billion m3) 2.60 10.40 6.46 0.90

Hydro plant discharge range (m3/s) [49,400, 906] [49,700, 905] [43,700, 1500] [49,800, 1500]
Upriver water level range (m) [975, 945] [825, 765] [600, 540] [380, 370]

Installed capacity (MW) 12000 16000 13860 6400
Normal water level (m) 975 825 600 380

6.2. Results and Analysis

In the case, the four large hydropower stations are all taken into consideration. According to
historical runoff from 1959 to 2014 in the basin, three typical years are chosen to be the inflow conditions:
wet year (historical runoff of 1999), normal year (2008) and dry year (1969). Simulation results of
iLSHADE are compared to LSHADE, JADE and CoDE in three typical years. The initial water level
and terminal water level of all the hydropower stations are set to the normal water level. The schedule
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period consists of 12 intervals with one month for each interval. In addition, the parameters in all
algorithms are the same as those mentioned in Section 4. The maximum evaluation time is set to 40,000.

Table 5 represents that iLSHADE gains the best benefit of power production in three typical
years. The convergence process of different algorithms in dry year is shown in Figure 6. Compared to
LSHADE, JADE and CoDE on average optimal benefit of 51 independent simulations are illustrated
in Table 5, iLSHADE increases the power production by 2.02, 4.04, 2.39 (108 KWh) in wet year, 3.03,
7.37, 3.76 (108 KWh) in normal year, 3.48, 5.68, 1.96 (108 KWh) in dry year. Obviously, the proposed
iLSHADE is superior when solving LSLCHS problem by obtaining the maximal benefit of power
production efficiently. In particular, the standard deviation of 51 independent simulations in iLSHADE
is 0.02 in wet year, 0.01 in normal year, 0.01 in dry year, which shows that the convergence stability
of iLSHADE is better than other algorithms. Meanwhile, it can be seen easily from Figure 6a that
iLSHADE can avoid premature convergence effectively, at the same evaluation times keep a fast
convergence speed compared to LSHADE, CoDE and JADE. Figure 6b depicts that the ϕCRO

(→
x
)

of
iLSHADE and LSHADE frequent changes and always lower than εCRO(t), until evaluation times is
greater than Tc, ϕCRO

(→
x
)

is limited to 0.

Table 5. Results of 51 independent simulations on generated energy optimization (108 KWh).

Method
Wet Year (1999) Normal Year (2008) Dry Year (1969)

Max Mean Std Max Mean Std Max Mean Std

iLSHADE 2425.03 2425.01 0.02 2268.13 2268.11 0.01 1814.36 1814.35 0.01
LSHADE 2423.86 2422.99 0.48 2266.88 2265.08 0.94 1812.64 1810.87 0.99

Diff 1.17 2.02 1.25 3.03 1.72 3.48
JADE 2424.43 2420.97 1.32 2267.51 2260.74 2.43 1814.00 1808.67 2.234
Diff 0.6 4.04 0.62 7.37 0.36 5.68

CoDE 2423.39 2422.62 0.30 2265.62 2264.35 0.64 1813.08 1812.39 0.39
Diff 1.64 2.39 2.51 3.76 1.28 1.96

Figure 6. Convergence process of different algorithms.

The monthly reservoir water levels and outflow, as well as the optimal schedule result of
Wudongde, Baihetan, Xiluodu and Xiangjiaba result in normal year obtained by iLSHADE are shown
in Figure 7. Due to sufficient inflow, the cascade reservoir does not need to release storage capacity
to meet the constraints of minimum outflow limit during the dry season from January to March.
The inflow of Wudongde is very low in April, so the cascade reservoir needs to release storage capacity
to meet the constraint requirements. As one of the upstream reservoirs, Wudongde first lowers the
water level. To reduce the water spillage before flood season, Baihetan will lower its water level below
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the flood control level in advance and impound some water at the last period. Xiluodu and Xiangjiaba
lower the water level in the last period. During the impoundment period, Wudongde and Baihetan
store water to normal water level before Xiluodu and Xiangjiaba in October. In this way, the water in
upstream reservoirs can utilize the downstream high hydraulic head to generate more electric power.

Figure 7. Optimal results in normal year by month.

Furthermore, the historical runoff data from 1959 to 2014 are selected for long sequence calculation.
The parameters in all algorithms are the same as those mentioned in Section 6.2 and the maximum
evaluation time is set to 40,000. The average adding annual power production that iLSHADE compares
to LSHADE, JADE and CoDE is presented in Figure 8. It can be seen clearly from Figure 8 that
iLSHADE is superior compared to other algorithm in solving the LSLCHS problem with different
types of historical runoff from 1959 to 2014.

Figure 8. Historical runoff data from 1959 to 2014 for the annual power production increase that
iLSHADE compares to LSHADE, JADE and CoDE.
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According to the above analysis, proposed iLSHADE is superior when solving LSLCHS
problem in different types of runoff by obtaining the maximize benefit of electric power production.
All these experiment results fully demonstrate that iLSHADE is a competitive method to solve the
LSLCHS problem.

7. Conclusions

An iLSHADE algorithm with new mutation strategy “current to pbest/2-rand” and PIRFE
strategy has been developed in this paper to solve the LSLCHS problem. The significant modifications
are mainly focused on preventing premature convergence and accelerating convergence. To verify
the performance of iLSHADE, numerical simulation in both low and high dimension on a set
of 10 benchmark functions has been done. Compared with other improved differential evolution
algorithms, iLSHADE obtains better performance with all ten functions in the low dimension and nine
functions in the high dimension. This indicates that the proposed new mutation strategy “current
to pbest/2-rand” and PIRFE strategy in iLSHADE enhance the performance of original algorithm
LSHADE effectively. Then iLSHADE is applied to solve LSLCHS problem for four large hydropower
stations in Jinsha River. Compared to LSHADE, JADE and CoDE on average optimal benefit,
iLSHADE increases the power production by 3.03, 7.37, 3.76 (108 KWh) in a normal year. In particular,
the standard deviation of 51 independent simulations in iLSHADE is far lower than other algorithms.
Moreover, according to its successful simulation performance with the historical runoff data from
1959 to 2014, iLSHADE can obtain better schedule results with lager generation benefits and better
convergence property compared to LSHADE, JADE and CoDE. Above all, iLSHADE is a valid and
reliable tool in solving the LSLCHS problem. Future research should consider the iLSHADE algorithm
combined with other methods when solving multi objective scheduling problems in LSLCHS problem.
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Abstract: The purpose of a flood control reservoir operation is to prevent flood damage downstream
of the reservoir and the safety of the reservoir itself. When a single reservoir cannot provide enough
storage capacity for certain flood control points downstream, cascade reservoirs should be operated
together to protect these areas from flooding. In this study, for efficient use of the reservoir storage,
an optimal flood control operation model of cascade reservoirs for certain flood control points
downstream was proposed. In the proposed model, the upstream reservoirs with the optimal
operation strategy were considered to reduce the inflow of the reservoir downstream. For a large
river basin, the flood routing and time-lag cannot be neglected. So, dynamic programming (DP)
combined with the progressive optimality algorithm (POA) method, DP-POA, was proposed. Thus,
the innovation of this study is to propose a two-stage optimal reservoir operation model with a
DP-POA algorithm to solve the problem of optimal co-operation of cascade reservoirs for multiple
flood control points downstream during the flood season. The upper Yangtze River was selected
as a case study. Three reservoirs from upstream to downstream, Xiluodu, Xiangjiaba and the Three
Gorges reservoirs (TGR) in the upper Yangtze River, were taken into account. Results demonstrate
that the two-stage optimization algorithm has a good performance in solving the cascade reservoirs
optimization problem, because the inflow of reservoir downstream and the division volumes were
largely reduced. After the optimal operation of Xiluodu and Xiangjiaba reservoirs, the average
reduction of flood peak for all these 13 typical flood hydrographs (TFHs) is 13.6%. Meanwhile,
the cascade reservoirs can also store much more storm water during a flood event, and the maximum
volumes stored in those two reservoirs upstream in this study can reach 25.2 billion m3 during a flood
event. Comprising the proposed method with the current operation method, results demonstrate
that the flood diversion volumes at the flood control points along the river decrease significantly.

Keywords: optimal flood control operation; cascade reservoirs; dynamic programming with
progressive optimality algorithm (DP-POA); the upper Yangtze River Basin

1. Introduction

For safety of lives and property from risks related to floods, proper planning of relevant
applications is important for development [1–13]. To date, dams have become numerous and have
had a profound effect on social and economic development. As of 2007, China was the world’s leader
in the construction of large dams [14]. Reservoirs are often operated with a number of purposes

Water 2018, 10, 1250; doi:10.3390/w10091250 www.mdpi.com/journal/water235



Water 2018, 10, 1250

related to environmental, economic and public services. Generally, these purposes include flood
control, hydropower generation, navigation, sediment control, water supply, recreation, and fisheries,
among which flood control is the most significant function for many of the reservoirs [15].

The main purpose of flood control is to prevent flood damage downstream of the reservoir and
the safety of the reservoir itself. The key variables governing the operation of flood control reservoirs
are the available storage capacity and the expected inflow magnitude from an incoming flood [15].
Some of the research on multi-reservoir flood control operations is for design of the reservoirs [16],
in which the objective functions are the minimum of the initial investment cost and potential flood
damage costs. Until now, most of the research on multi-reservoir flood control operation concerns
minimizing the maximal water level for the dam itself or the releases at the downstream flood control
points, such as the research carried out by Lee et al. [17], Qi et al. [18] and Chen et al. [11]. The other
aspect for multi-reservoir flood control operation is to address the conflicts between flood control and
conservation. A great number of research works on dynamic control flood limiting water level have
been carried out in recent years to balance the conflict between flood control and conservation, such as
the work done by Li et al. [19], Chen et al. [20], and Zhou et al. [9,21].

Accordingly, releases are restricted by the maximum allowable non-damaging channel capacity at
the downstream flood control points [15]. Sometimes the available storage capacity of one reservoir
is not enough to protect the flood control points downstream. In this situation, more reservoirs are
needed to work together to protect these flood control points from flooding, especially the downstream
control points with great importance. Thus, a new optimal reservoir operation model, which can make
efficient use of reservoir storage to protect downstream flood control points from flooding during
the flood season is needed. He et al. [22] studied the flood control operation of Jinsha River cascade
reservoirs combined with the Three Gorges for flood control of the Chenglingji areas downstream
based on the equal water storage method, in which the optimal operation technique was not considered.
The storage capacities of these reservoirs are underutilized. Zhou et al. [9] proposed a virtual reservoir
approach that aggregates multi-reservoir systems into a virtual reservoir for flood control decision
making. However, in their method, two reservoirs were taken as a virtual reservoir, which cannot
reflect the hydraulic connection between reservoirs. Therefore, in this paper, a two-stage optimal
operation of cascade reservoirs for flood control of multiple areas downstream, which considers the
optimization and hydraulic connections among cascade reservoirs, was proposed.

Take three reservoirs, as shown in Figure 1, for example. A, B, and C are three reservoirs from
upstream to downstream, and points 1, 2, and 3 are three flood control points downstream of the
reservoirs, whose locations can also be seen in Figure 1. Points 1 and 2 are protected by Reservoirs A
and B. Point 3 is protected by Reservoirs A, B and C, since Reservoir C cannot have enough capacity
for flood control of Point 3. Reservoirs A and B can help Reservoir C realize the flood control by
minimizing the inflow of Reservoir C. Therefore, two objective functions are needed. For Reservoirs A
and B, the objective function is to minimize the inflow of Reservoir C; for Reservoir C, the objective
function is to minimize the excess flood volumes diverted to the floodplain at point C.

Figure 1. Diagram of dams and flood control points.
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In addition, usually the optimal flood control reservoir operation model for a large river basin
does not consider the flood routing during the processes for obtaining the optimal solution. When the
river basin is large, these factors cannot be ignored. Since the Muskingum method was used for flood
routing [23–25], the delayed time is usually considered, which causes the time-lags issue during the
optimal processes [10]. In this case, the number of decision variables and constraints is increased
exponentially, and it is difficult for a single traditional optimization method or modern intelligence
algorithm to tackle the time-lags problem [10]. In the broad area of reservoir operation, development
and use of prescriptive models based on optimization techniques have been extensively used [26,27].
An adaptive optimal algorithm also should be considered for the large river basins with flood routing
and time-delayed issues.

There are various studies on optimal operations of single reservoir and multi-reservoir systems
for flood control in the literature [9,28–30]. The dynamic programming (DP) method is the most widely
used optimization technique for reservoir operation. It also has been used for reservoir operation
by [31–34]. DP can be used for solving problems containing discrete variables, non-convex,
non-continuous, and non-differentiable objective functions. However, the “curse of dimensionality”,
the phenomenon that when the number of reservoirs rises, the computation scale of DP
increases exponentially, limits its application of DP. To deal with the dimensionality problems,
modified DP algorithms, such as discrete differential dynamic programming (DDDP) [35–37],
dynamic programming successive approximation (DPSA) [38,39] and the progressive optimality
algorithm (POA) have been widely used for finding the optimal or near-optimal reservoir release
hydrographs for flood control [40].

The POA, proposed by Howson and Sancho [41], was used to resolve the nth single reservoir
operation problems, which divides the multi-stage problem into multiple two-stage sub-problems.
Turgeon [42] used the principle of progressive optimality to minimize the total production cost of a
multi-dimensional and multistage optimization problem. Guo et al. [43] applied the POA algorithm
to solve the joint operation of the multi-reservoir systems of the Three Gorges and the Qingjiang
cascade reservoirs. However, the disadvantages of the POA method are that the initial solutions have
great influence on the final optimal results. In this study, a combined algorithm of DP and POA was
proposed to solve the problem of flood routing and the influence of initial solutions.

The objective of this study was, therefore, to establish an optimal flood control operation model of
cascade reservoirs for multiple flood control points downstream. The objective of the whole model is
to minimize the flood diversion volumes at the flood control points. An adaptive combined algorithm
is also proposed to solve the problem of flood routing. The upper Yangtze River, China, was selected
as a case study. Three reservoirs were considered in this study.

2. Optimal Flood Control Reservoir Operation Model

A two-stage optimal reservoir operation model was proposed. Take the three reservoirs for an
example, as shown in Figure 1. In the first stage, the optimal operation models of Reservoirs A and B
were established, in which the objective function is to reduce the inflow of the downstream reservoir.
In the second stage, the optimal operation model of Reservoir C is established, in which the objective
function is to minimize the highest water level and the flood diversion volumes at flood control point 3.

2.1. Optimal Operation in the First Stage

2.1.1. Objective Function

Take the three cascade reservoirs as an example. Reservoirs A and B are expected to store much
more water during the flood season and reduce the inflow of Reservoir C as much as possible. In other
words, the best situation is that the inflow of Reservoir C is as small as possible, after the utilization of
the two reservoirs upstream.

Thus, the objective function of Reservoirs A and B can be defined as:
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minF = min

{
T

∑
t=1

[Q′ (t) + q(t)]2
}

(1)

where Q′ (t) is the discharge of Reservoir B considering the flood routing along the river; and q(t) is
the discharge of the interval basin, which also includes the flow from other tributaries of the river.

2.1.2. Constraints for Model in the First Stage

Four constraints were considered in this study. The first one is water balance equation, which must
obey during the reservoir operation process. The second one is the constraint concerning water level,
which gives the allowable maximum and minimum water levels during the flood season. The third one
is the discharge limit, which gives the allowable maximum and minimum discharges during the flood
season. The fourth is the limit of the discharge for downstream flood control point, which protects
downstream areas from flooding.

(a) Water balance equation:

Vi,t = Vi,t−1 + (Ii,t − Qi,t)Δt (2)

where Vi,t is the reservoir storage at time t for the ith reservoir; and Ii,t and Qi,t are the inflow and
outflow at time t for the ith reservoir, respectively.

(b) Constraint of water level:
Zmin

i,t ≤ Zi,t ≤ Zmax
i,t (3)

where Zi,t represents the water level of the ith reservoir at time t; Zmin
i,t and Zmax

i,t represent the minimum
and maximum water level of the ith reservoir at time t, respectively.

(c) Constraint of reservoir discharge:

Qmin
i ≤ Qi,t ≤ Qmax

i (Zt) (4)

where Qi,t is the discharge of the ith reservoir at time t; Qmax
i (Zt) means the maximum discharge

ability corresponding to the water lever Zt at time t for the ith reservoir; and Qmin
i means the minimum

discharge for the ith reservoir. The maximum discharge ability is related to the water level, and the
reservoir discharge Qi,t cannot exceed the maximum discharge ability.

Besides Equation (4), the discharge variation between adjacent time periods should be also
considered by:

|Qi,t − Qi,t−1| ≤ ΔQi (5)

where ΔQi is the allowed discharge variation between adjacent time periods for the ith reservoir.
(d) Constraint of discharge for downstream flood control points

qj,t = Q′
i,t + Δqt ≤ qmax

j , j = 1, 2, 3 (6)

where qj,t is the discharge at time t for the jth flood control point downstream; Q′
i,t is the discharge

of the ith reservoir considering the flood routing at the jth flood control point; Δqt is the inflow in
the interval zone between the ith reservoir and the flood control point downstream; and qmax

j is the
allowed maximum discharge for the jth flood control point downstream.

2.2. Optimal Operation in the Second Stage

2.2.1. Objective Function

Flood control reservoir operation is generally a complex problem, which needs to consider the
safety of a reservoir and its upstream and downstream areas. This paper established a flood control
operation model aiming to control the highest water level of Reservoir C and reduce the flood diversion

238



Water 2018, 10, 1250

magnitudes of the downstream areas. Two objective functions were considered and given as follows.
When the release does not exceed the safety water level downstream, the highest water level of
Reservoir C is taken as an objective function. Although those reservoirs operate together, it is possible
that the water level at flood control points still exceeds the safety water level for a high return period
flood (e.g., 1000-year). In this situation, the objective function is to minimize the flood diversion
magnitude in the downstream areas. These two objective functions are given as follows.

(1) Minimize the highest water level to ensure the safety of the reservoir itself and its upstream areas

minF′
1 = min{maxZt}, t = 1, 2, · · · , Td (7)

where Zt is the water level at time t; and Td is the time duration for the flood control operation.
(2) Minimize the flood diversion magnitudes for downstream areas:

minF′
2 = min

{
Ts

∑
t=1

Δq(t) · Δt

}
(8)

where Δq(t) is the excess water volume into the flood diversion areas around the downstream control
site at time t; Δt is the interval time; and Ts is the time duration for flood diversion, when the water
level exceeds the safety water level downstream.

2.2.2. Constraints for the Model in the Second Stage

The constraints include the water balance, water level limits, reservoir discharge limits and
allowable discharges for downstream flood control points. Equations for the constraints are the same
as those in stage one (Section 2.1).

2.3. Optimization Algorithm

Considering the “curse of dimensionality”, the time-lag issue for multi-reservoir operations,
and the influence of the initial solutions, the dynamic programming combined with the progressive
optimality algorithm (DP-POA) method was proposed to find the optimal operation polices for
multi-reservoir systems, in which the DP method was used first, and the output of the DP method was
the input of the POA method. The skeleton of this algorithm is shown in Figure 2. The equations for
DP and POA methods are given below.
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Figure 2. The skeleton of the dynamic programming combined with progressive optimality
(DP-POA) algorithm.

2.3.1. Dynamic Programming (DP)

A multiple-period reservoir operation is formulated as a recursive function in DP:

max Gt(st) = gt(st, rt) + Gt+1(st+1)

s.t. st + qt = rt + st+1
(9)

where st, rt, and qt are storage, release, and inflow at period t, respectively; gt(st, rt) is single-period
utility function; and Gt(st) is the maximum cumulative utility from period t (current period) to period
T (end of the operation period). Equation (9) is a generalized formula that characterizes the reservoir
operations of hydropower, water supply, flood control, and so on.

2.3.2. Progressive Optimality Algorithm (POA)

POA often starts with an initial solution obtained by engineering judgment, heuristic search
algorithms and other methods. In this method, the initial solution was given based on the results of
the DP method. Then, POA solves all the two-stage optimization sub-problems in a serial way. For the
jth sub-problem, use Equation (10) to find an improved decision vector between stages j − 1 and j + 1.

F∗(Sj−1, Sj, Sj+1) = min
Sj∈Cj

{F(Sj−1, Sj) + F(Sj, Sj+1)} (10)

where Sj is the possible water level at the jth period, Cj is the set of water level at the jth period,
F(Sj−1, Sj) is the objective water level between stages j − 1 and j, F∗(Sj−1, Sj, Sj+1) denotes the optimal
objective water level between stages j − 1 and j +1.

3. Study Area

3.1. Introduction of Study Area

The upper Yangtze River is selected as a case study. The largest reservoir in China is created by
the Three Gorges Dam (TGD), which stores 39.3 billion m3 of water and has a surface area of 1045 km2.
The TGD is located on the Yangtze River, which is about 6300 km long and occupies 18.8% of China’s
land area. The function of the TGD includes flood control, power generation and navigation and so
on. Since the Yangtze River includes many devastating floods over the centuries killing thousands of
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people and causing millions of dollars in damage, among these functions, flood control is the most
important one.

Floods in the middle and lower reaches of the Yangtze River mainly stem from the upper region
of the Yichang gauging station, which is also the control site of TGD [44]. Usually the flood volume of
the upper Yichang site is about 50% of the total flow volume of the Yangtze River, about 90% of the
Jingjiang River reach that is part of the Yangtze River from the Zhicheng to Chenglinji gauging station
and regarded as the most key area for flood prevention [44–46]. The Three Gorges Reservoir (TGR),
which uses the available empty space of the reservoir to absorb the flood, can reduce the downstream
flooding around the Jingjiang River and Dongting Lake areas and guarantee the safety of the Jingjiang
River downstream when a 100-year flood occurs in TGD.

However, the flood control capacity of TGR with a capacity of 22.2 billion m3 is still not enough.
If a flood event throughout the Yangtze River Basin is to occur, the TGD cannot hold back floods
downstream of the dam (such as the 1954 flood that killed 30,000 people outright and more through
starvation and disease). Thus, more reservoirs located upstream are needed to help TGD reduce the
flood. The Xiluodu and Xiajiaba are two dams built in the Jinsha River, which is part of the Yangtze
River upstream as shown in Figure 3.

(a) 

(b) 

Figure 3. Locations of the dams, flood control points and gauging stations in the Yangtze River Basin.
(a) The upper Yangtze River Basin; (b) skeleton of the upper Yangtze River Basin.
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The Xiluodu dam, located on the upper reach of the Yangtze River between Yunnan and Sichuan
Provinces, is the third tallest arch dam in the world and a key component of the Jinsha River Project.
It is also the second largest dam in China, next only to the TGD in terms of size, construction cost and
generating capacity. The overall elevation of the dam crest is 600 m, with the concrete double-curvature
arch being 285.5 m high and 700 m long. The reservoir capacity is about 12.7 billion m3 with
4.7 billion m3 for flood control. The Xiangjiaba dam is located downstream of the Xiluodu dam,
which is only 157 km far from it. It is a large gravity dam on the Jinsha River. The flood control capacity
is 0.9 billion m3. The total flood control capacity of both of the two dams are nearly 5.6 billion m3.
The characteristics of the three dams are summarized in Table 1.

Five flood control areas considered in this study from upstream to downstream are Yinbin, Luzhou,
Chongqing, Jingjiang and Chenglingji. The Xiluodu and Xiangjiaba reservoirs need to protect the cities
Yibin and Luzhou from flooding, when the flood with a 20-year return period occurs, and protect the
city Chongqing from flooding, when the 50-year return period flood occurs. The Xiluodu, Xiangjiaba
and TGR operate together to protect the Jingjiang area from flooding, when a 100-year flood event
occurs. The design standard for the TGR is 1000 years corresponding to the water level of 175 m.
Therefore, the flood events with 50-year, 100-year and 1000-year return periods were considered in this
study. Three major cities from upstream to downstream (Yibin, Luzhou, and Chongqing) are located
along the Yangtze River. Among these cities, Chongqing is the most populous Chinese municipality,
and also the largest directly controlled municipality in China, and comprises 26 districts, eight counties,
and four autonomous counties. Yibin and Luzhou are two prefecture-level cities in the south-eastern
part of Sichuan province, China. Yibin is located at the junctions of the Min River and Yangtze Rivers.
Luzhou, situated at the confluence of the Tuo River and the Yangtze River, and is an important port on
the Yangtze River. According to the 2015 census, these three major cities have a total population of
about 41 million.

In recent years, the economy of the region around the Jingjiang River reach has continued to
develop. Concretely, the current agricultural acreage area and aquatic area are 37,000 and 6500 square
hectometers, respectively, while fixed assets in the district are valued at 9 billion yuan, and gross
domestic product is 8.7 billion yuan. This area has become an important grain, cotton, and aquaculture
base in China. Therefore, once a catastrophic flood occurred, the affected population is very large,
and the economic losses are extremely high. Another flood control points is Chenglingji station
which is the outlet of the Dongting Lake. There are many retention basins around the Chenglingji
station, which is home to a lot of people. According to the Chinese flood control regulations, as the
backbone of flood management measures for the mid-downstream Yangtze River Basin, the Three
Gorges Reservoir provides enormous benefits to flood control for the Yangtze River. The operation of
TGR has improved the flood control capacity of the Jingjiang River Reach downstream from 20-year to
100-year, and prevents devastating damage through combining the use of retention basins for the case
of floods of 100–1000 years’ frequency. Additionally, it also reduces the possibility of using retention
basins near the Chenglingji area to ensure the safety of life and property.

Table 1. Characteristics of the Xiluodu, Xiangjiaba and Three Gorges Dam (TGD).

Dam
Drainage Area

(104 km2)

Normal
Water Level

(m)

Flood Control
Water Level

(m)

Dead
Water Level

(m)

Regulating
Storage Capacity

(Billion m3)

Flood Control
Reservoir Capacity

(Billion m3)

Xiluodu 45.4 600 560 540 6.5 4.7
Xiangjiaba 45.9 380 370 370 0.9 0.9

TGD 100 175 145 145 16.5 2.2

3.2. Data of Study Area

The Xiluodu and Xiajiaba reservoirs can provide certain flood capacity to store the flood occurring
in the upper Yangtze River, especially the flood in the Jinsha River. However, under the condition
of preventing the downstream cities—Yibin, Luzhou and Chongqing—from flooding as shown in
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Figure 3, how to use the two reservoirs rationally and effectively to reduce the inflow of TGR is a
challenging task. In addition, besides those two reservoirs, how to use the flood capacity of TGR to
realize the flood control of the Jingjiang River downstream effectively is another important task. Thus,
since the flood control problems are much more complicated for cascade reservoirs with multiple flood
control points, judicious operation methods during a flood event are needed.

The gauging station used in this study is shown in Figure 3 as well. From Xiangjiaba to Yichang,
there are four main tributaries, namely Min, Tuo, Jialing, and Wu Rivers. The control sites for Min, Tuo,
Jiangling, and Wu Rivers are Gaochang, Fushun, Beibei, and Wulong, respectively. The Yangtze River
upper than Yibin is also named the Jinsha River, and the Yangtze River from Yibin to Yichang is also
named the Chuan River because these areas belonged to Sichuang Province before. There are three
flood control points located on the Chuang River reach, namely Yibin City, Luzhou City and Chongqing
City; and there are two flood control points located downstream of the TGD, namely Jingjiang and
Chenglingji areas. The Xiluodu and Xiangjiaba dams were employed to protect the cities of Yibin,
Luzhou, and Chongqing from flooding. The TGD combined with the two dams operated together to
guarantee the safety of the Jingjiang and Chenglingji areas.

Since the Xiluodu and Xiangjiaba dams are on the Jinsha River, the characteristics of the flood in
the Jinsha River were discussed. The runoff in the Jinsha River Basin mainly concentrate in the period
of June to October, which can account for 80% of the total annual runoff in the upper Jinsha River and
75% in the lower Jinisha River. The mean runoff and its percentage for each month at the Pingshan
gauging station in the Jinsha River are given in Table 2. It is indicated from Table 2 that the river flow
in July, August and September accounting for 54.0% of the total amount of the annual flow, and in
June to November accounting for 81.2%.

Table 2. Runoff and its percentage for each month at the Pingshan gauging station.

Months Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

Runoff (m3/s) 1660 1420 1350 1540 2320 5080 9580 10,200 10,000 6540 3450 2180
Volume (108 m3) 44.5 34.7 36.2 39.8 62.1 132 257 274 260 175 89.5 58.3
Percentage (%) 3.04 2.38 2.47 2.72 4.25 9.00 17.5 18.7 17.8 12.0 6.12 3.99

4. Application

4.1. Design Flood Hydrographs

During the flood control reservoir operation, usually the extreme or large flood events were
considered. Therefore, the input of the model is the T-year design flood hydrograph. One of the
methods to derive the design flood hydrographs (DFH) is the typical flood hydrograph (TFH) method
which has been widely used by practitioners [47,48]. The DFH can be obtained according to the
following steps.

Step 1: The annual maximum (AM) sampling method was used in this study, and the AM peak or
n-day volumes data were derived.

Step 2: The Pearson type three distribution was used to fit the AM data sets. The design flood
peak or volumes for certain return periods, such as 50 years, 100 years and 1000 years, were obtained.

Step 3: The typical flood hydrographs (TFH) were determined. Usually, the observed flood
hydrograph with highest peak or largest volume was selected as a TFH [49].

Step 4: The DFH was constructed by multiplying each discharge ordinate of the TFH by an
amplifier [12,13]. Certain amplitude method was used to make the flood peak or volumes of TFH
equaling to the design values. In this study, only the volume amplitude method was considered,
in accordance with the practical situation. Assume that the T-year design and observed n-day
flood volumes are WT

d and WO respectively, and the amplifier with return period T is defined as
kT, kT = WT

d /WO. The TFH was transformed to DFH by multiplying the parameter kT. However,
some other attributes, such as duration, were also considered for derivation of DFHs in some research
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works (e.g., Serinaldi and Grimaldi [50]; Vandenberghe et al. [51]; Gräler et al. [52]; Brunner et al. [53]),
which were not considered in this study. The design flood hydrographs (DHFs) for the whole season
can be obtained finally.

The floods in the years 1954, 1968, 1969, 1980, 1981, 1982, 1983, 1988, 1996, 1998, 1999, 2002 and
2010 were selected as TFHs in this study. Since the summer rainfall in the 1980s and 1990s is much
higher than in the previous decades, eight flood hydrographs were selected during these periods [54].
The 1954 and 1998 floods are two serious flood events that happened in the past 100 years, which should
be selected for flood control analysis. In the years of 1968 and 2002, the Wu River, which is a main
tributary of the upper Yangtze river, experienced a severe flood [55]. Thus, the flood hydrographs
of these two years were selected. In the year of 1969, extreme flood events happen simultaneously
on the three main tributaries: the Jinsha, Min, and Tuo Rivers. In the year of 2010, the entire Yangtze
River basin suffered from tremendous flooding, which led to the number of affected people as about
1.4 billion, and the direct economic loss of 197.6 billion Chinese yuan. According to the shape of these
flood hydrographs, they can be divided into 3 types, namely the long duration type, single flood
peak type and multiple flood peak type, which contain all the potential characteristics of flood events
occurring in the upper Yangtze River Basin. The floods of 1954, 1996 and 1998 show long duration,
which lasted for more than one month. For example, the 1954 and 1998 China floods lasted from
middle of June to the beginning of September. There is only one main flood peak in the years of 1980,
1981, 1982, 1999 and 2002. In addition, there are multiple flood peaks in the years of 1968, 1969, 1983,
1988 and 2010. All the selected THFs are shown in Figure 4.
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(a) 

(b) 

(c) 

Figure 4. All the typical flood hydrographs (THFs) used in this study. (a) Observed flood hydrographs
of the years 1954, 1996, and 1998; (b) observed flood hydrographs of the years 1980, 1981, 1982, 1999 and
2002; (c) observed flood hydrographs of the years 1968, 1969, 1983, 1988 and 2010.

The duration of the flood hydrograph plays a key role in determination of the DFH. In this
study, the hydrograph lasts for the whole flood season (1 June to 30 September) [56–58]. All typical
flood hydrographs mentioned above were used to derive the DFHs. The volume amplitude method,
namely the 30-day volume amplifier, was selected in this study to obtain the DFHs, in accordance
with practical use. In other words, the 30-day volume amplifier was employed for amplifying the
hydrograph of the whole flood season. Considering the length of the paper, only the design flood
hydrographs based on the TFH of 1954 were shown in Figure 5.
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(a) 

(b) 

(c) 

Figure 5. The 50-year, 100-year and 1000-year design flood hydrographs based on the typical flood
hydrograph of 1954. (a) 50-year; (b) 100-year; (c) 1000-year.

4.2. Optimal Reservoir Operation Results

4.2.1. Operation Results of the Xiluodu and Xiangjiaba Reservoirs

The Xiluodu and Xiangjiaba Dams were used to reduce the inflow of TGR, which is also an effective
method to alleviate the flood control burden of the Jingjiang and Chenglingji areas. A two-stage
optimization algorithm was employed to solve the optimization model of the Xiluodu and Xiangjiaba
cascade reservoirs, because of the “curse of dimensionality” and time-lag issue for multi-reservoir
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systems. First, the DP method was used to obtain the optimal solution set. Second, the output of the
DP method was the input of the POA method, which avoids the influence of initial solutions on the
optimal solutions. The years of 1954, 1968, 1969, 1980, 1981, 1982, 1983, 1988, 1996, 1998, 1999, 2002,
and 2010 were selected as TFHs. The real-time water level and discharge at each time period were
calculated by the flood hydrograph routing method.

Operation results of each DFH are given in Table 3, in which the inflow values of TGR and the
flood stored in the Xiluodu and Xiangjiaba Dams are shown. The flood reductions are also given
in Table 3.

As shown in Table 3, the Xiluodu and Xiangjiaba cascade reservoirs can obviously reduce the the
inflow of TGR. For the 1000-year design flood, amplified based on the TFH of 1998, the maximum
inflow of the Three Gorges decreased from 109,705.2 m3/s to 92,570.6 m3/s. The flood peak was
reduced by 17,134.6 m3/s and its corresponding reducing rate was 15.6%. The average reduction of
flood peak for all these 13 TFHs can reach 13.6%. Therefore, the decrease of the peak inflow can relieve
the flood control burdens of TGD. Additionally, the cascade reservoirs can also store much more water
during a flood event, and the maximum volumes stored in those two reservoirs upstream in this study
can reach 252.1 × 108 m3. It also can be seen from Table 3 that the two-stage optimization algorithm
has a good performance in solving the cascade reservoirs optimization model. Furthermore, when the
POA method was used in the second stage, the model shows higher efficiency. More water was stored
in the two reservoirs, and the inflow of TGR was further reduced. For instance, the maximum inflow
of the 100-year design flood based on 1998 TFH reduced to 59,905.7 m3/s in the first stage, and to
57,890.4 m3/s in the second stage.

Figure 6 presents the 1000-year design flood hydrographs of 1954, and the inflow of TGR after
the reservoir operation. The inflows regulated by the cascade reservoirs are much flatter with smaller
peak values, which means that the inflow is easier to control.

Figure 6. Design flood hydrograph of the year 1954, inflow of TGR and water levels of the Xiluodu
and Xiangjiaba Dams.
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4.2.2. Operation Results of the Three Gorges Reservoir

Considering the flood control in the middle and lower reaches of the Yangtze River, this paper
compared two operation methods, namely single reservoir operation model (TGR) and the cascade
operation model (Xiluodu, Xiangjiaba and TGR).

Tables 4 and 5 present the flood diversion volumes of each DFH at the Jingjiang and Chenglingji
flood control points, respectively, when different operation models were used. As shown in Table 4,
the flood in the Jingjiang area does not need to be diverged for all 50-year DFHs. That means both the
single and cascade models can ensure the water level of the Jingjiang area not exceeding the safety
water level, when a 50-year flood event occurs. For 100-year DHFs, the single model can protect the
Jingjiang areas from flooding for most of DFHs, except for the year of 1968, which means that when a
single reservoir is used, the 100-year flood control standard for the Jingjiang area cannot always be
guaranteed. When the cascade model used, there is no need to diverse the flood volumes and the
safety of this areas can be ensured for the flood events with the 100-year return period. Generally,
the differences between single reservoir operation model and the cascade models are not so obvious
for the 50-year and 100-year DFHs. But for the 1000-year DFHs, it is clear from Table 4 that the flood
diversion volumes obtained by the cascade operation model are less than those by the single reservoir
model. For example, for the 1000-year design flood amplified based on the TFH of 1988, the flood
diversion at the Jingjiang flood control point is 20.1 billion m3 calculated by the single operation model,
but reduced to zero when the Xiluodu and Xiangjiaba reservoirs were taken into accounts. It can be
seen from Table 5 that the volumes decrease significantly when the cascade reservoir models are used.
Tables 4 and 5 show that the cascade optimal operation model works better than single operation
model in reducing the flood diversion volumes in the Jingjiang and Chenglingji areas.

Table 4. Flood diversion volumes of each design flood hydrograph (DFH) at the Jingjiang flood control
point (billion m3).

TFH
Return Periods

(Year)
Without Operations

For the Jingjiang Area For the Chenglingji Area

Single Cascade Single Cascade

1954
50 4.8 0 0 0 0
100 8.4 0 0 0 0
1000 23.7 0 0 0 0

1968
50 17.0 0 0 0 0
100 24.0 4.2 0 4.2 0
1000 56.5 33.9 37.9 56.4 37.9

1969
50 12.6 0 0 0 0
100 17.7 0 0 0 0
1000 37.5 17.3 12.2 17.2 12.2

1980
50 8.5 0 0 0 0
100 11.1 0 0 0 0
1000 24.8 0 0 0 0

1981
50 14.0 0 0 0 0
100 18.5 0 0 0 0
1000 38.1 0 0 0 0

1982
50 8.3 0 0 0 0
100 11.3 0 0 0 0
1000 26.0 17.8 0 16.9 0

50 19.0 0 0 0 0
1983 100 25.5 0 0 0 0

1000 55.2 55.2 39.6 55.1 39.7

50 5.9 0 0 0 0
1988 100 10.5 0 0 0 0

1000 26.7 20.1 0 20.1 0
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Table 4. Cont.

TFH
Return Periods

(Year)
Without Operations

For the Jingjiang Area For the Chenglingji Area

Single Cascade Single Cascade

50 9.7 0 0 0 0
1996 100 15.9 0 0 0 0

1000 42.1 18.9 13.4 18.9 13.4

50 6.0 0 0 0 0
1998 100 12.9 0 0 0 0

1000 29.4 0 0 0 0

50 9.4 0 0 0 0
1999 100 15.2 0 0 0 0

1000 37.5 14.3 8.9 14.3 8.9

50 6.8 0 0 0 0
2002 100 9.8 0 0 0 0

1000 20.0 0 0 0 0

50 13.4 0 0 0 0
2010 100 17.2 0 0 0 0

1000 29.4 0 0 0 0

Table 5. Flood diversion volumes of each design flood hydrograph (DFH) at the Chenglingji flood
control point (billion m3).

TFH
Return Periods

(Year)
Without Operations

For the Jingjiang Area For the Chenglingji Area

Single Cascade Single Cascade

1954
50 31.2 35.4 26.4 9.6 4.0
100 37.1 45.3 36.6 19.3 13.7
1000 54.3 74.2 70.1 59.8 54.2

1968
50 59.9 73.5 63.8 64.5 59.0
100 69.8 88.4 80.8 79.7 78.4
1000 93.9 111.1 101.7 93.9 102.1

1969
50 37.7 50.0 38.8 33.2 28.3
100 45.2 61.7 50.5 50.5 45.6
1000 70.8 88.8 87.3 88.9 87.4

1980
50 28.7 35.7 26.0 12.1 6.6
100 36.2 46.1 35.9 23.5 18.0
1000 61.6 83.9 74.2 77.2 71.6

1981
50 39.8 49.4 38.8 20.5 14.4
100 46.3 59.1 48.2 35.8 30.3
1000 68.3 98.0 91.2 89.9 84.4

1982
50 28.9 35.1 25.6 14.8 3.7
100 35.5 43.2 34.3 24.6 13.6
1000 51.7 67.9 61.9 56.4 52.5

50 47.6 64.4 52.5 52.4 46.9
1983 100 55.5 78.9 69.9 72.5 66.9

1000 83.0 83.0 92.2 82.8 91.7

50 30.5 34.4 25.4 17.8 12.4
1988 100 34.4 41.1 33.6 30.3 24.8

1000 48.2 54.1 62.8 52.4 62.6

50 47.6 57.1 51.5 32.5 26.9
1996 100 54.0 68.0 63.9 43.7 38.1

1000 68.7 89.4 88.8 63.1 63.0

50 55.5 61.2 54.1 37.5 32.0
1998 100 62.0 73.7 68.1 51.9 46.4

1000 41.5 61.5 53.0 39.3 33.7
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Table 5. Cont.

TFH
Return Periods

(Year)
Without Operations

For the Jingjiang Area For the Chenglingji Area

Single Cascade Single Cascade

50 43.5 52.2 41.1 24.7 19.1
1999 100 50.6 62.3 52.9 42.6 37.1

1000 71.7 89.6 88.9 82.6 82.5

50 18.2 22.9 19.4 1.6 0.0
2002 100 20.8 27.1 24.0 5.6 0.1

1000 32.0 43.1 40.5 19.8 14.6

50 23.2 32.1 23.1 3.0 0.0
2010 100 27.9 39.3 29.3 9.0 3.3

1000 41.5 61.5 52.7 39.3 33.7

Table 6 gives the highest water level of TGR of each TFH with different return periods, for the flood
control of the Jingjiang area, and Table 7 for the flood control of both the Jiangjiang and Chenglingji
areas. Tables 6 and 7 illustrate that the highest water level of TGR generally is lower, when the cascade
optimal operation model was considered instead of the single operation model. For the cascade
optimal operation model considering the Jingjiang flood control point only, the highest water level
nearly reached 170 m for the 1000-year DFH amplified by three TFHs. For a 100-year design flood,
the maximum highest water level was 164.1 m, and the minimum was only 150.8 m. These results
indicate that when the cascade optimal operation model is in use, the safety of TGR can be ensured,
but the reservoir’s flood control capacity is underutilized only considering the Jingjiang flood control
area. Furthermore, as shown in Table 7, when both the Jingjiang and Chenglingji flood control points
were taken into account, the highest water level of TGR rises obviously, which proves that the flood
control capacity of TGR is further utilized. Thus, both the Jingjiang and Chenglingji flood control areas
can be protected in a practical flood control operation.

Table 6. The highest water level of Three Gorges Reservoir considering the flood control for the
Jingjiang area (m).

TFH 1954 1981 1998

Return Periods (Year) 1000 100 50 1000 100 50 1000 100 50

Single mode 175.0 159.3 153.9 174.4 166.1 163.9 174.7 160.7 153.4
Cascade mode 169.3 150.8 145.0 169.4 164.1 156.4 169.8 152.4 145.3
Comparison 5.7 8.5 8.9 5.0 2.0 7.5 4.9 8.3 8.1

Table 7. The highest water levelof Three Gorges Reservoir considering the flood control for the Jingjiang
and Chenglingji areas (m).

TFH 1954 1981 1998

Return Periods (Year) 1000 100 50 1000 100 50 1000 100 50

Single mode 175 175 175 175 175 175 175 175 175
Cascade mode 171.9 175 175 170.8 172.0 173.0 172.3 175 175
Comparison 3.1 0 0 4.2 3.0 2.0 2.7 0 0

Figure 7 presents the discharge and water level hydrographs of TGR calculated by single and
cascade optimal operation models, considering the flood control in the Chenglingji area, for the
1000-year design flood of the year 1954. This figure demonstrates that results obtained by the cascade
optimal operation model is generally better than that obtained by single operation, since the peak
value is much smaller and the discharge curve is much flatter. Especially, the highest water level of
TGR was also lower.
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Figure 7. Discharge and water level hydrographs of TGR obtained by single and cascade optimal
operation models for the 1954 DFH.

4.3. Comparisons with the Current Operation Rules of Xiluodu, Xiangjiaba and TGD in the Flood Season

To testify the feasibility of the cascade optimal operation model, this paper also compares the
optimal operation model with current operation method of these three dams, where the TFHs in use
are the same as those mentioned in Section 4.1 in this paper.

The flood diversion volumes at the Jingjiang and Chenglingji flood control points were calculated
by the optimal and current operation models, since the objective of the reservoir operation is to
minimize the flood diversion volumes at the control points. As shown in Tables 8 and 9, compared
with the current operation model, the flood diversion volumes calculated by the optimal operation
rules decrease significantly. From this point of view, the optimal model, which has the smaller flood
diversion volumes, performs better than the current operation model. For the 50-year and 100-year
design flood, when both of the two methods are used, the safety of the Jingjiang area can be ensured.
But for the 1000-year DFHs the cascade optimal operation method has a better performance than
the current used model, obviously. For instance, for the 1000-year design flood based on the TFH of
1999, the flood diversion volumes in the Jingjiang area obtained by the current operation method are
13.8 billion m3 (considering the Jingjiang flood control point only) and 18.2 billion m3 (considering
the Jingjiang and Chenglingji flood control points); while they are the optimal operation models
used, these diversion values can be reduced to 8.9 billion m3 for both of the flood control points.
This improvement is much more significant for the Chenglingji area. Generally, the cascade optimal
operation model can be with less flood diversion volumes than the current operation model for all
DFHs with different return periods. Hence, it can be concluded that the cascade optimal operation
model can improve the flood control capacity in the middle and lower reaches of the Yangtze River,
compared with the current operation model. All the results obtained by the two models do not consider
the uncertainties in flood control reservoir operation, which can be discussed in future research.
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Table 8. Flood diversion volumes of some design flood hydrographs at the Jingjiang flood control point
(billion m3).

TFH
Return Periods

(Year)
Without Operations

For the Jingjiang Area
For both the Jingjiang
and Chenglingji Areas

Current Optimal Current Optimal

1954
50 4.8 0 0 0 0
100 8.4 0 0 0 0
1000 23.7 0 0 5.7 0

1980
50 8.5 0 0 0 0
100 11.1 0 0 0 0
1000 24.8 0 0 4.1 0

1981
50 14.0 0 0 0 0
100 18.5 0 0 0 0
1000 38.1 0 0 5.2 0

50 9.7 0 0 0 0
1996 100 15.9 0 0 0 0

1000 42.1 18.7 13.4 22.8 133.8

50 9.4 0 0 0 0
1999 100 15.2 0 0 0 0

1000 37.5 13.8 8.9 18.2 8.9

50 6.8 0 0 0 0
2002 100 9.8 0 0 0 0

1000 20.0 0 0 2.8 0

Table 9. Flood diversion volumes of some design flood hydrographs at the Chenglingji flood control
point (billion m3).

TFH
Return Periods

(Year)
Without Operations

For the Jingjiang Area
For both the Jingjiang
and Chenglingji Areas

Current Optimal Current Optimal

1954
50 31.2 35.5 26.4 26.8 4.0
100 37.1 45.2 36.6 36.2 13.7
1000 54.3 75.1 70.1 65.3 54.2

1980
50 28.7 35.7 26.0 21.1 6.6
100 36.2 46.2 35.9 32.7 18.0
1000 61.6 84.2 74.2 69.5 71.6

1981
50 39.8 50.7 38.8 38.2 14.4
100 46.3 60.4 48.2 48.2 30.3
1000 68.3 99.2 91.2 86.4 84.4

50 47.6 57.1 51.5 49.8 26.9
1996 100 54.0 68.6 63.9 59.9 38.1

1000 68.7 89.8 88.8 74.0 63.0

50 43.5 51.9 41.1 41.5 19.1
1999 100 50.6 62.6 52.9 52.4 37.1

1000 71.7 90.4 88.9 79.4 82.5

50 18.2 23.7 19.4 17.8 0
2002 100 20.8 28.3 24.0 20.7 0.1

1000 32.0 44.8 40.5 32.3 14.6

Figure 8 displays the 1000-year design inflow flood hydrograph of 1954, in which one hydrograph
is operated by the current operation model and the other by the Xiluodu and Xiangjiaba cascade
optimal operation model. Figure 9 shows the discharge and water level curves of TGR obtained
respectively by current and cascade optimal operation models considering the flood control of the
Chenglingji area. It is obvious that when using the cascade optimal operation model, both the inflow
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and discharge hydrographs of TGR are flatter and have smaller peak values than those obtained by
the current model. For example, the maximum discharge value of 1980 DHF with the return period
1000 years reduces from 76,000 m3/s to 54,995 m3/s, which can ensure the safety of the Jingjiang
River reach. These results also indicate that the capacities of the Xiluodu and Xiangjiaba reservoirs
were further utilized when the cascade optimal operation model was used, which alleviates the flood
control burdens of TGR.

Figure 8. Inflow of TGR obtained by the two operation models for the 1000-year DHF amplified by the
1954 TFH.

Figure 9. Discharge and water level hydrographs of Three Gorges Reservoir (TGR) obtained by regular
and optimal operation models.

In order to further testify the reliability of the model, the historical observations, including the
flood hydrographs of the years 1954, 1968, and 1998, were considered in this section and taken as the
inputs of the current and optimal models. The highest water level of TGR routed by the proposed and
current models are shown in Table 10, which indicates that the highest water level of TGR generally is
lower based on the optimal model.

Table 10. The highest water level of TGR by two models (m).

TFH 1954 1968 1998

Cascade regular operation model 157.3 145.3 147.9
Cascade optimal operation model 148.8 145 145.2

Comparisons 8.5 0.3 2.7
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According to the comparisons given in Table 10, it can be seen that the cascade optimal operation
model can produce superior results to the current operation model. Therefore, the flood control
capacity of the middle and lower reaches of the Yangtze river can be enhanced. The cascade optimal
operation model built in this paper worked well in a multi-reservoir flood control operation system,
and can be considered in practical application.

5. Conclusions and Discussions

This study established optimal flood control operation models of cascade reservoirs for flood
control of multiple points downstream. The current multi-reservoir flood control co-operation models
mainly concern minimizing the maximal water level for the dam itself or the releases at the downstream
flood control points, or balancing the conflict between the flood control and conservation during the
flood season. In this study, a two-stage optimal operation model of cascade reservoirs was proposed
to ensure the safety of multiple downstream areas, in which the objective functions are to minimize
the inflow of the reservoir C downstream in the first stage and the water level or flood diversion
volume in the second stage. For a large river basin, the river reach is very long, the time-lag issue and
Muskingum flood routing along the river cannot be neglected. A DP-POA optimal algorithm was
proposed in this study for the establishment of the optimal model to avoid the curse of dimensionality
and influence of initial solutions. The upper Yangtze River was selected as a case study. The flood
capacity of TGR cannot hold back floods downstream, when extreme flooding occurred throughout
the whole upper Yangtze River Basin. Therefore, more reservoirs are needed to help TGR realize the
purpose of flood control. The two reservoirs, Xiluodu and Xiangjiaba located in the Jinsha River Basin,
were considered in this study to reduce the inflow of TGR. The main conclusions of this paper are
summarized as follows.

(1) The first innovation of this paper is the proposed two-stage optimal operation model with
different objective functions. In the first stage, the optimal operation model of Reservoirs A and B
was established to reduce the inflow of the downstream reservoir. In the second stage, the optimal
operation model of the reservoir downstream was established to minimize the highest water level
and the flood diversion volumes at flood control points. The second innovation of this paper is
the proposed DP-POA algorithm, which can solve the curse of dimensionality and influence initial
solutions effectively. The results of Figures 6 and 7 indicate that optimal reservoir operation processes
can be obtained. The Muskingum flood routing method combined with the time delay makes the
operation’s results much more objective. The two-stage optimization algorithm has a good performance
in solving the cascade reservoirs optimization model. When the POA method was used in the second
stage, the model shows higher efficiency as more water is stored in the two reservoirs and the inflow
of the reservoir downstream is further reduced.

(2) Based on the proposed model, the Xiluodu and Xiangjiaba Reservoirs can effectively reduce
the peak inflow and volumes of TGR. After the optimal reservoir operation of Xiluodu and Xiangjiaba,
the average reduction of flood peaks for all these 13 TFHs are 13.6%. Meanwhile, the cascade reservoirs
can also store much more water during a flood event, and the maximum volumes stored in those two
reservoirs upstream in this study can reach 25.2 billion m3 during a flood event.

(3) The cascade optimal operation model works better than the single operation model.
The highest water level of TGR is generally lower when the cascade optimal operation model is
considered instead of the single operation model. For the 1000-year DFHs, it is obvious that the flood
diversion volumes obtained by the cascade operation model are less than those by the single reservoir
model. After the optimal operation of cascade reservoirs, the peak value is much smaller and the
discharge curve is much flatter, which is beneficial for the flood control of the middle and lower reaches
of the Yangtze River.

(4) Compared with the current operation rules, the cascade optimal operation model can produce
a superior result to the current operation model. For the 50-year and 100-year design floods, when both
of the two methods were used, the safety of the Jingjiang area can be ensured. But for the 1000-year
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DFHs, the cascade optimal operation method has a better performance than the current one obviously.
For the 1000-year design flood amplified based on the TFH of 1999, the diversion values can decline to
8.9 billion m3 for both of the Jingjiang and Chengliangji flood control points, when the cascade optimal
operation model was used.

This paper only discussed the downstream flood control points that are protected by cascade
reservoirs upstream. The proposed work can give some guidance for real-time flood management.
Flood control reservoir operation rules can be developed based on the optimal results. In future,
more reservoirs, including cascade reservoirs and parallel reservoirs, will be considered, and a
more efficient algorithm will be proposed. Furthermore, the main purpose of this paper is to
discuss the protection of the flood control areas downstream based on the multi-reservoir systems.
The overtopping risk of the dam is not discussed in the paper.

In addition, many uncertainties also present in this complex problem have an influence on the
flood control reservoir operation. Shi et al. [59], Zhang et al. [60] and Chen et al. [61] indicated
that the most important uncertainty factor that affects the flood control reservoir operation was the
flood forecast error. The predicted flow is the input of the flood control reservoir operation model,
which has a great influence on the operation results. Besides flood forecast errors, Li et al. [19] and
Huang et al. [62] demonstrated that the uncertainties in flood hydrograph shape also had a significant
influence on the highest water level and maximum discharge. Besides these, Chen et al. [63] indicated
that the uncertainties in the discharge capacity curve and water level-storage curve also influenced
reservoir operation greatly. Onyutha and Willems [4] assessed the uncertainties in estimation of flood
quantiles and/or hydrographs, especially of very high return periods which is useful for various
types of risk-based water management applications related to floods. These uncertainties were
not considered in this deterministic modelling, because of the burden of the optimal calculation.
Stochastic frameworks, which can work better for these uncertainty problems, will be studied in the
future research.
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Abstract: Reliability and vulnerability (RV) are two very important performance measures but,
due to their stage-inseparable nature, they cannot be explicitly incorporated in stochastic dynamic
programming (SDP), which is extensively used in reservoir operation. With inflows described as a
Markov chain, a stochastic linear programming (SLP) model is formulated in this paper to explicitly
incorporate the RV constraints in the reservoir operation, aimed at maximizing the expected power
generation by determining the optimal scheduling decisions and their probabilities. Simulation
results of the SLP and SDP models indicate the equivalence of the proposed SLP and SDP models
without considering the RV constraints, as well as the strength of the SLP in explicitly incorporating
the RV constraints. A simulated scheduling solution also reveals a reduction of power generation
fluctuation, with the reservoir capacity emptied in advance to meet given reliability and vulnerability.

Keywords: stochastic linear programming; Markov chain; reliability; vulnerability; reservoir
operation; stochastic dynamic programming

1. Introduction

Generally being “high-dimensional, dynamic, nonlinear, and stochastic” [1], a water resource
system is difficult to optimize. To solve such a complex problem, many researchers have attempted a
variety of methods, mainly focused on models and algorithms, which are complementary in different
situations. As the most mature mathematical programming, linear programming (LP) and dynamic
programming (DP) provide two different ways of solving water resource planning problems. LP is
one of the most widely used mathematical programming methods owing to its strict mathematic
theory and general solution in hydropower management. Generally, a standard form is required for
an LP model to be solved by an efficient generic solver. Based upon Bellman’s optimality principle,
DP is only applicable to stage-separable processes and encounters difficulties of so-called “curse of
dimensionality” for exponential growth of variables in the growth of dimensionality.

Since randomness always accompanies the application of LP and DP, the stochastic characteristics
generally cannot be ignored. Moreover, the handling of random characteristics has a profound
influence on optimization or simulation performance. According to different treatments of stochastic
characteristics, the deterministic and stochastic models represent two patterns. The deterministic
model regards the stochastic hydrologic parameters as known quantities. This treatment reduces the
complexity of the model to some extent. Nevertheless, the simplification cannot retain all the essential
characteristics of the original data, and may lead to unsatisfactory results. Integrating the stochastic
information represented in different ways into an LP or DP model, a variety of stochastic models has
been developed.
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With the randomness involved, stochastic dynamic programming (SDP) has been so extensively
used in reservoir operation, and its selection of state and decision variables has brought different
models. Among them, Bras et al. [2] incorporated current hydrologic forecast information in an SDP
model. Stedinger et al. [3] incorporated available hydrologic information into an SDP decision model
by using the streamflow forecast as the hydrologic state variable. Kelman et al. [4] introduced sampling
stochastic dynamic programming (SSDP) to optimize water system operations on the Feather River in
California (USA) using multiple historical streamflow time series as scenarios to capture the variability
of streamflow processes by example. Another method to incorporate stochastic information into SDP
is Bayesian SDP. Karamouz and Vasiliadis [5] described streamflow with a discrete lag 1 Markov
process and updated the probabilities with new information; it showed that the forecast of the next
period’s flow as state variables performed better than that used for the forecast of the current period’s
flow. Xu et al. [6] proposed a new two-stage Bayesian stochastic dynamic programming model which
partitions the forecast horizon into two periods.

The SDP requires an objective and constraints to be stage-separable, which prevents it from
explicitly incorporating many performance criteria into its formulation. Chen [7] developed a fuzzy
dynamic programming approach by applying the fuzzy iteration model to evaluate the decisions at
each stage. In many cases, however, these criteria of a system are the most critical aspects that should be
considered. The fundamental performance indices include the mean, variance, and deficit of statistical
values. For example, the mean, variance of statistical power generations is used to evaluate the
performance of a hydropower station. Other evaluation indices have also been put forward, including
the robustness by Hashimoto et al. [8] and sustainability in a water resource system by Loucks [9]
and Sandoval-Solis [10]. Hashimoto et al., in 1982 [11], introduced systematically three criteria: the
reliability (how likely the system is to fail), vulnerability (how severe the consequences of failure may
be), and resilience (how quickly a system recovers from failure), abbreviated as RRV criteria.

The RRV criteria were the most widely used in different water resource systems. Moy et al. [12]
optimized these three measures and revealed relationships among them regarding a water supply
reservoir using multi-objective mixed-integer linear programming. Kundzewicz et al. [13] found
that conflicts between particular criteria might arise. In the literature of Zhang et al. [14], both
conflicting and synergetic relationships were found between reliability, vulnerability and resilience
using many-objective analysis. Based on the assumption of stationary hydrology, a joint analysis
of multi-criteria was carried out by Jain and Bhunya [15], in which the behavior of statistical
performance indices, namely the RRV, of a multipurpose storage reservoir was examined. They used a
probabilistic approach to interpret the behavior of these indices and computed several performance
indices for each sequence simulated by the Monte Carlo method and presented a framework for a
multi-criteria approach that computed all the relevant quantities for each time period in reservoir
design and management. The statistical behaviors of three indices were examined using input data
by the Monte Carlo method. Some researchers combined these three performances to evaluate
the performance of water resources systems. Loucks [9] combined RRV into an index to quantify
sustainability. After that, the sustainability index (SI) was utilized in Kay’s research [16] to help
identify decisions. New combinations of RRV, such as, a combined reliability–vulnerability index and
a robustness index were utilized via fuzzy set theory by Ibrahim El-Baroudy et al. [17]. The RRV or
sustainability index tend to be applied in the field of climate change on water resources systems [18,19].

The possibility of explicitly incorporating the RRV constraints into a stochastic linear programming
(SLP) has not been investigated in previous works, especially hydropower system operation.
Applications of the SLP in reservoir operation are not new, though only a small amount of literature
is available on the pure application of the SLP. Among the scarce previous literature, Loucks [20]
presented an SLP model, where the random and serially correlated inflows were described with a
first-order Markov chain. Lee et al. [21] developed a two-stage SLP model based on the form of a “fan
of individual scenarios” to coordinate the multi-reservoir operation. Using inflow scenarios generated
by a multivariate periodic AR(1) model considering serial and spatial connections, a stochastic
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model indicates its advantages over a deterministic model and its effectiveness in real-time operation.
Baliarsingh and Kumar [22] developed a form of stochastic linear programming in which the decision
variables were the joint probabilities of the reservoir release given an initial reservoir storage volume,
an inflow, and the final storage volume for a given time period. System performance was set as the
sum of squared deviations from target storage and target release.

In view of the lack of an SLP model which takes the reliability and vulnerability criteria into
consideration, this paper will explore the possibility to incorporate the constraints on reliability and
vulnerability (RV) into an SLP model to maximize the expected power generation in reservoir operation.
The model will introduce a new variable, namely, the probability of reservoir capacity at the end of the
time period when reservoir capacity at the beginning of the time period and inflow during the time
period have been given. The inflows will be described as a Markov chain because of their uncertainty.
The IBM CPLEX software (IBM, Armonk, NK, USA), a convenient and excellent LP solver, will be
employed to solve the SLP model, which is expected to have numerous combinations of discrete
representative values. Since both the SLP and SDP can handle the reservoir operation problem when
the RV constraints are not involved, their results will be compared to illustrate their equivalence in
this situation. This work will also investigate the capability of the SLP to explicitly incorporate the RV
constraints, showing its advantage over the SDP.

2. Problem Formulation

The problem is formulated to determine a closed-loop feedback operational policy that maximizes
the expected energy production while meeting the power yield with required minimum reliability
and maximum vulnerability. The inflows are described as a Markov chain and represented with
representative values and transition probability matrices. The conditional probabilities of final reservoir
volumes, given the initial volumes and representative inflows for each time period, as a variable to
be solved, are introduced. Simultaneously, a binary variable whose value can only be taken as 0 or 1,
representing whether the decision is made or not, is set as another variable to be solved.

2.1. Objective

Mathematically, the objective is to maximize the expected generation, expressed as

max
T

∑
t=1

∑
(i,k,l)∈Ω(t)

(Piklt · Giklt · Δt) (1)

where T is the number of the time period; t is the time period index; Δt is the time length in hours of
time period t; i is the index representing the discretization values of storage at the beginning of time
period t; k is the index representing the characteristic values of inflow during time period t; l is the
index representing the discretization values of storage at the end of time period t, and also the index
representing the value of storage at the beginning of time period t + 1; Piklt is the probability of being
at state (i, k) and making the decision (l) at the beginning of t, expressed as l = �(i, k, t), which stands
for the target storage at the end of time period t and is determined by the inflow k in t and storage i at
the beginning of t; Ω(t) is the feasible combinations of state and decision variables; and Giklt is the
power generation in GW produced in time period t,

Giklt = G
[
S(i)

t , Q(k)
t , S(l)

t+1

]
(2)

which is calculated with the approximate formula proposed in Wang’s paper [23],

Giklt = G
[
S(i)

t , Q(k)
t , S(l)

t+1

]
= η ·

[
hmin + α

√
0.5(S(i)

t + S(l)
t+1)

]
· min[Rt(i, k, l), Umax] (3)
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Here, η is the energy conversion factor used to convert m4/s into GW; hmin is the minimal water
head in m; α is a coefficient associated with the reservoir shape, which in this paper is determined
by solving

hmax
i = hmin

i + α · 3
√

Smax
i (4)

S(i)
t is the ith characteristic storage value in m3 at the beginning of t; S(l)

t+1 is the jth characteristic
storage value in m3 at the end of t, also the characteristic storage value in m3 at the beginning of
t + 1; Q(k)

t is the kth characteristic inflow value in m3/s in t; Umax is the outflow capacity in m3/s for
generation; and Rt(i, k, l) is the release in m3/s in time period t, determined by

Rt(i, k, l) =
1

Δt

[
S(i)

t − S(l)
t+1

]
+ Q(k)

t (5)

2.2. General Constraints

The constraints include the following:
(1) The joint probabilities for any time period must sum to 1.0,

∑
(i,k,l)∈Ω(t)

Piklt = 1(∀t) (6)

which means that the decision in time period t must be one of the feasible decisions.
(2) The probability transition satisfies

∑
(i,k)∈Ω(t)

Piklt · P[t]
kj = ∑

m∈Ω(t+1)
Pl,j,m,t+1 f or (l, j) ∈ Ω(t + 1) (7)

where P[t]
kj is the transition probability, defined as the probability that the jth characteristic inflow in

time period t + 1 occurs given that the kth inflow has been observed in time period t. This constraint
implies that any state in the next time period t + 1 is ruled by the decision and by the transition
probabilities in the current time period t.

(3) Decision uniqueness should be enforced on

∑
l∈Ω(t)

uiklt = 1 f or (i, k) ∈ Ω(t) (8)

and
Piklt ≤ uiklt f or ∀(i, k, l) ∈ Ω(t) (9)

where uiklt is a binary variable that decides whether or not decision l is made at state (i, k) in time
period t, which implies that only one of the optional target storage values at the end of a time period
must be selected given the state at the beginning of the time period.

2.3. Reliability and Vulnerability Constraints

Owing to the introduction of conditional probability variables, as well as to the expression of
reliability and vulnerability corresponding to the probability of meeting requirements and expected
violation, the two performances can be explicitly expressed in the SLP model.

2.3.1. Reliability

Reliability has been a primary performance metric in evaluating operational system stability.
In reservoir operation, reliability is measured by the probability of a system being in a satisfactory
state. In this paper, since joint probability variables have been introduced, the average value of the
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sum of all probabilities satisfying generation requirements is used to assess reliability performance
logically. The reliability performance should be no less than a preset percentage β, expressed as

1
T

T

∑
t=1

∑
(i,k,l)∈Θ(t)

Piklt ≥ β (10)

where Θ(t) is a subset of Ω(t) and consists of the feasible combinations (i, k, l) in time period t that
meet the generation yield, i.e.,

Θ(t) = {(i, k, l)|Giklt ≥ Y; Rt(i, k, l) ≥ 0} (11)

in which Y is the generation yield in GW. Here, the reliability is defined as the probability that the
generation yield is met.

2.3.2. Vulnerability

Reliability is without question a criterion that should not be ignored during water resources
system operation. Generally speaking, higher reliability of an operational system is always desired.
However, from the reliability criterion, we can only evaluate how much the system can operate to
fulfill the requirements. A failure cannot be avoided. When the failure occurs, to what extent the
damage can cause an unsatisfactory situation, or what the likely magnitude of such a situation is, is
always of concern. Similarly, the expected quantification of violations in all time periods is used to
quantify the vulnerability performance.

The vulnerability should be less than a preset value ν,

1
T

T

∑
t=1

∑
(i,k,l)∈Θ(t)

Piklt(Y − Giklt) ≤ ν (12)

where Θ(t) is the relative complementary set of Θ(t) with respect to Ω(t), ν is given before the
calculation which indicates how much the average power generation yield can violate. Here, the
vulnerability is defined as the expected violation of the generation yield when the violations occur.

3. Solution Procedure

Evidently, in view of the fact that the probability transition matrices for each time period can
be derived, objectives and constraints in the model are linear. It can therefore be solved using an LP
solver. Without considering the RV constraints, the SDP model is applied to obtain the optimal strategy
compared with the SLP model.

3.1. Inflow Description and Probability Transition Matrices

The reservoir inflow is described as a periodic first-order Markov chain. State and transition
probability are two critical concepts in a Markov chain for describing inflow in each particular time
period. The inflow is divided into m intervals for each time period, and each state is represented by
an average value Qk

t for each interval. Thus, the probability transition matrices P[t]
kj that are used to

describe the probabilities of a representative value Qj
t+1 in time period t + 1 given a representative

value Qk
t in time period t are derived by frequency analysis. The reservoir capacity discrete value takes

on arithmetic sequences between dead reservoir volume and maximum volume.

3.2. Solving the SLP Model

With the sets Ω(t), Θ(t), and Giklt predetermined, as well as inflow transition probability
P[t]

kj derived, the model becomes a mixed integer linear programming with objective (1) subject
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to (6)–(10) and (12). Owing to the existence of 0–1 binary variables uiklt, the model is complicated
to solve. However, benefiting from the standard mathematical form of linear programming and the
improvement of computer performance, many efficient and convenient solvers are available, including
CPLEX (IBM, Armonk, NY, USA), YALMIP (Johan Löfberg, Jekyll & Minimal Mistakes), and GUROBI
(GUROBI, Houston, TX, USA), which make solving large-scale optimization problems with thousands
of variables possible. In this work, the goal is to determine the following decision variables: the binary
uiklt and the probabilities Piklt.

3.3. Solving the SDP Model

Though it is very difficult, if not impossible, for the SDP to incorporate the RV constraints, the
SDP is actually very powerful in dealing with stochastic sequential decision-making process problems.
Here, a universal reservoir operation problem is formulated as an SDP model, where the state variables
are as follows: the storage St at the beginning of time period t and inflow Qt into a reservoir during
time period t; and the decision variables are as follows: storage values St+1 at the end of time period t.

The recursive equation is expressed as

ft(St, Qt) = max
St+1

[G(St, Qt, St+1) + E
〈Qt+1|Qt〉

ft+1(St+1, Qt+1)] (13)

where ft(St, Qt) is the maximum expected power generation corresponding to a set of St and Qt over
the remaining time periods of the time horizon; and G(·) is the immediate power generation in time
period t; E

〈Qt+1|Qt〉
is the conditional expectation operator over Qt+1 given Qt.

In order to obtain a stationary operation policy, a backward recursion should be implemented
in several cycles, starting with fT(ST , QT) = 0. The maximum expected benefit ft(St, Qt) over the
remaining time period from t to T is calculated for each given St and Qt. The aforementioned recursive
calculation continues until a convergent and stable policy is obtained.

4. Case Studies

The stochastic dynamic programming cannot explicitly incorporate the RV constraints.
The Xiaowan and Nuozhadu hydropower reservoirs in Yunnan Province, China, are used as case
studies to verify the effectiveness of the stochastic linear model in obtaining an operating policy and
the equivalence between the proposed SLP without RV constraints and the SDP model.

Using 56 years of one-third-monthly (at an interval about 10 days) historical inflows of Xiaowan
and Nuozhadu Reservoirs during 1953–2008 and also 1490 years of one-third-monthly inflows of
Xiaowan Reservoir simulated by AR(2), the representative inflows are divided into seven states, and
the 7 × 7-dimensional matrices representing the transition probability are calculated based on the
previously mentioned first-order Markov chain for each time period. Karamouz and Houck [24]
showed that 20 storage values could be adequate for a reservoir with storage capacity of up to 170% of
the mean annual flow. For convenience of calculation, a number of 21 representative discrete storage
values are set evenly.

In view of its rapid solving ability and language-support features, CPLEX12.6 (IBM, Armonk,
New York, USA) was employed to solve the SLP model in this work.

4.1. Comparison between the SLP and SDP Models without the RV Constraints

Without considering the RV constraints, the unknown decision variables uiklt and corresponding
decision probabilities Piklt can be derived by solving the SLP model. There are two ways to calculate
statistical values, one based on parameters and variables in the SLP model, and another one by
operation simulation with sample inflows following an optimal decision rule derived either from the
SLP or SDP results. Figure 1 shows the expected one-third-monthly power generations derived by
the SLP model, and the statistical annual power generation trajectory obtained by simulation based
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on SLP and SDP decisions. The results indicate that the expected generation trajectory calculated in
the SLP and the averaged generation trajectory when simulated based on the SLP and SDP solutions
are almost the same. The SDP has long been proven capable of producing the optimal decision rule,
which, then, can also be achieved by the SLP model.

a Xiaowan (56 years)

b Xiaowan (1449 years)

Nuozhadu (56 years)

one-third-month

one-third-month

one-third-month

Figure 1. Comparison of the expected results from stochastic linear programming (SLP) with the
simulated statistical results from the SLP and stochastic dynamic programming (SDP) models without
reliability and vulnerability (RV) constraints for annual power generation trajectory using: (a) 56 years
of one-third-monthly historical inflows of Xiaowan Reservoir; (b) 1449 years of one-third-monthly
simulated inflows of Xiaowan Reservoir; (c) 56 years of one-third-monthly historical inflows of
Nuozhadu Reservoir.
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Table 1 gives the statistical annual energy production when adopting different sample inflows,
namely 56 years of one-third-monthly inflows historically observed for Xiaowan and Nuozhadu
reservoirs and 1449 years of one-third-monthly inflows simulated for the Xiaowan Reservoir. Statistical
annual energy productions derived by simulating the SLP and SDP decision rules are almost identical,
either for the 56 years of historical inflows or the 1449 years of simulated inflows. Simulating the
decision rules, when employing the 56 years of historical inflows, gives averaged annual energy
productions approximately 0.2–0.3% greater than those theoretically determined in the SLP model.
The gap, however, can be reduced to within 0.007% by using the 1449 years of simulated inflows to
diminish the sample errors. It is thus concluded that the SLP and SDP models without considering
the reliability and vulnerability constraints can produce an identical solution to optimally operate
a reservoir.

Table 1. Annual energy production in GWh by the SLP model (SLPmod), and by simulation for the
SLP (SLPsim) and SDP (SDPsim) without RV constraints.

Calculation Ways Xiaowan His. Xiaowan Sim. Nuozhadu His.

SLPmod 23,504.5 24,389.7 26,619.8
SLPsim 23,568.3 24,391.4 26,684.2
SDPsim 23,568.6 24,390.5 26,684.1

4.2. Result of the SLP Model with the RV Constraints

With 1449 years of artificially generated one-third-monthly inflows of Xiaowan reservoir, the SLP
model is formulated and solved to evaluate the influence of the RV constraints on the behavior of
reservoir operation.

Table 2 presents the results detailed in each time period when parameters Y, β and v are set to 1.778,
0.98 and 0.01, respectively. Again, the expected energy production, the reliability and the vulnerability
at each time period are all calculated in two ways, one by the SLP model itself, and another one
through operation simulation following the optimal decision rule derived by the SLP model.

Table 2 shows that the power generation trajectory, reliability, and vulnerability in each time
period, by both the model and simulation, are very close, though the gap of vulnerability is slightly
larger relative to the other two indices. Similarity is also found in the cumulative power generation,
averaged reliability and vulnerability over a representative year. The closeness suggests that the
discretization resolution of both the storage capacity and the possible inflow is good enough for the
SLP model to obtain an optimal decision rule that can achieve what the SLP model expects for many
years of reservoir operation.

Changing the power generation yield Y, reliability β, and vulnerability ν will yield different
solutions by solving the SLP model, with some feasible and some infeasible. Table 3 gives five feasible
combinations of Y, β and ν, as well as the annual energy productions derived by the model itself and
by the operation simulation following the optimal decision rule. There is a very small gap between the
model and simulated results for cumulative power generation. As shown in Table 3, the model and
simulated results derived with 1449 years of simulated inflows are very close to each other.
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Table 2. Comparison of model and simulated (Sim) values of expected power generation (Exp. G),
reliability, and vulnerability for each time period with (Y, β, v) = (1.778, 0.98, 0.01).

Time Period
Exp. G (GWh) Reliability Vulnerability

Model Sim Model Sim Model Sim

1 565.52 565.91 1.000 0.999 0.0008 0.0005
2 521.67 521.77 1.000 0.997 0.0000 0.0007
3 528.33 528.44 1.000 0.999 0.0000 0.0006
4 518.05 518.17 1.000 0.999 0.0000 0.0006
5 492.88 493.01 1.000 0.983 0.0000 0.0012
6 513.34 513.50 1.000 0.998 0.0000 0.0006
7 518.37 518.54 1.000 0.990 0.0000 0.0009
8 531.56 525.57 0.963 0.946 0.0126 0.0242
9 549.91 550.26 1.000 0.994 0.0000 0.0006
10 575.74 576.35 0.999 0.995 0.0011 0.0006
11 578.61 579.10 0.998 0.967 0.0007 0.0040
12 607.22 609.45 0.988 0.977 0.0067 0.0098
13 547.20 543.84 0.921 0.912 0.0705 0.0702
14 570.52 572.71 0.980 0.948 0.0059 0.0085
15 616.19 623.16 0.931 0.951 0.0051 0.0082
16 643.97 644.45 1.000 0.968 0.0000 0.0059
17 673.59 667.30 0.965 0.966 0.0152 0.0100
18 767.28 774.60 1.000 0.996 0.0000 0.0006
19 746.00 745.96 1.000 0.954 0.0000 0.0170
20 825.48 814.86 0.948 0.948 0.0055 0.0220
21 809.98 806.48 1.000 0.983 0.0000 0.0046
22 851.21 855.25 1.000 0.984 0.0000 0.0066
23 864.13 858.83 0.961 0.946 0.0433 0.0343
24 857.16 847.16 1.000 0.978 0.0000 0.0087
25 888.24 890.25 1.000 0.979 0.0000 0.0083
26 902.43 901.37 0.948 0.944 0.0525 0.0306
27 890.18 889.46 0.989 0.939 0.0035 0.0230
28 906.55 915.71 0.943 0.944 0.0395 0.0349
29 865.72 856.29 0.999 0.987 0.0002 0.0013
30 802.89 808.26 0.982 0.963 0.0032 0.0071
31 674.16 670.77 0.910 0.940 0.0373 0.0497
32 583.68 586.13 0.966 0.963 0.0098 0.0056
33 555.31 553.79 0.936 0.936 0.0299 0.0325
34 591.11 600.74 0.955 0.992 0.0163 0.0037
35 588.57 588.92 1.000 1.000 0.0002 0.0000
36 596.25 596.50 1.000 0.999 0.0003 0.0007

Sum 24,118.998 24,112.841 - - - -
Avg. 669.97216 669.80115 0.97999 0.97118 0.01 0.01216

Table 3. Annual power generation (GWh) by the SLP model itself and by operation simulation with
different parameters.

No. Combinations (Y, β, ν) Model Simulation

1 (1.778, 0.98, 0.01) 24,119 24,112
2 (1.778, 0.98, 0) 24,169 24,167
3 (1.778, 0, 0.01) 24,196 24,183
4 (2.5, 0.7, 0.3) 24,076 24,061
5 (2.5, 0.6, 0.3) 24,258 24,247

Figure 2 shows the statistical results of the power generation trajectory by 1449 years of operation
simulations when the power yield Y, reliability β, and vulnerability ν are set to (0, 0, 0), (1.778, 0.98,
0.01), and (2.5, 0.7, 0.3), respectively. The results indicate that enforcing a power yield with certain
RV constraints will achieve a more even power generation over time despite less energy production
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occurring. By trial and error, the power yield can be improved from 1.778 GW to 2.5 GW only to the
detriment of the reliability by 28% = 98% − 70%. With the power yield and reliability set to 2.5 GW
and 70% respectively, the minimum vulnerability can be achieved at 0.3. It seems that in this case
study, the higher reliability also benefits a lower vulnerability.

Figure 3 shows the maximum, average and minimum of one-third-monthly storages in a
representative year, calculated by operation simulation with 1449 years of artificially generated inflows
for combinations (Y, β, ν) = (0, 0, 0), (1.778, 0.98, 0.01), and (2.5, 0.7, 0.3), respectively. Without
enforcement on the power yield and its reliability and vulnerability for (Y, β, ν) = (0, 0, 0), the SLP
model will derive an optimal decision rule that maximizes the energy production by keeping the
storage level as high as possible unless it is beneficial to empty the reservoir to alleviate spillages. With
a power yield Y = 1.778 GW, the reservoir is utilizing its storage during the dry seasons to achieve
a high reliability β = 98% and a low vulnerability ν = 0.01 to the detriment of energy production as
a whole. Comparing (b) and (c) in Figure 3, it is interesting to find that increasing the power yield
from 1.778 GW to 2.5 GW narrows the operational space of the reservoir, which operates in a smaller
corridor confined by the maximum and minimum storages.

Figure 2. Averaged power generation trajectory by simulation with (Y, β, ν) = (0, 0, 0), (1.778, 0.98,
0.01), and (2.5, 0.7, 0.3), respectively.
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Figure 3. Max, mean, and min storage trajectory for 1449 years of simulations.

5. Conclusions

This paper presents a stochastic linear programming (SLP) model with strength over SDP in that
it explicitly incorporates reliability and vulnerability (RV) constraints. The stochastic characteristics
of inflow are captured by Markov transition matrices. The IBM’s CPLEX LP solver (IBM, Armonk,
NK, USA) is employed to solve the SLP model, which, without enforcing the RV constraints, produces
solutions equivalent to those by the SDP model, which has long been proved effectively in reservoir
operation. With 1449 years of one-third-monthly inflows artificially generated by an AR(2) model, the
SLP model evinces its capability to take into account the RV constraints. The case studies also show
that a higher power yield can evidently result in difficulty to meet stricter reliability and vulnerability
requirements. Meanwhile, adding the RV constraints decreases the power generation, but can make
the power generation more reliable and less vulnerable.
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The proposed SLP model can also be used to conduct a tradeoff analysis among the power yield,
reliability and vulnerability. The performance resilience has a more complicated expression than the
reliability and vulnerability, and its possibility to be explicitly incorporated into the SLP model needs
to be investigated in future works.
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1 Institute of Hydraulic Engineering and Water Resources Management, University of Duisburg-Essen,
45141 Essen, Germany; Rodolfo.AlvaradoMontero@deltares.nl (R.A.-M.);
Dirk.Schwanenberg@kisters.de (D.S.)

2 Department of Civil Engineering, Anadolu University, 26555 Eskişehir, Turkey; asensoy@anadolu.edu.tr
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Abstract: Optimal control of reservoirs is a challenging task due to conflicting objectives, complex
system structure, and uncertainties in the system. Real time control decisions suffer from streamflow
forecast uncertainty. This study aims to use Probabilistic Streamflow Forecasts (PSFs) having a
lead-time up to 48 h as input for the recurrent reservoir operation problem. A related technique for
decision making is multi-stage stochastic optimization using scenario trees, referred to as Tree-based
Model Predictive Control (TB-MPC). Deterministic Streamflow Forecasts (DSFs) are provided by
applying random perturbations on perfect data. PSFs are synthetically generated from DSFs by a new
approach which explicitly presents dynamic uncertainty evolution. We assessed different variables in
the generation of stochasticity and compared the results using different scenarios. The developed
real-time hourly flood control was applied to a test case which had limited reservoir storage and
restricted downstream condition. According to hindcasting closed-loop experiment results, TB-MPC
outperforms the deterministic counterpart in terms of decreased downstream flood risk according to
different independent forecast scenarios. TB-MPC was also tested considering different number of
tree branches, forecast horizons, and different inflow conditions. We conclude that using synthetic
PSFs in TB-MPC can provide more robust solutions against forecast uncertainty by resolution of
uncertainty in trees.

Keywords: reservoir operation; multi-stage stochastic optimization; TB-MPC; flood control;
real-time control

1. Introduction

Reservoirs are one of the main components of integrated water resources systems. Their control
poses a challenging problem, since it must cope with different conflicting objectives as water supply,
hydropower, and flood control [1–5]. Operating with guide curves is a common practice in typical
reservoir operation [6–8]. These operating strategies however, rely on long term records that can
filter and underestimate extreme events such as drought and flood conditions [9]. Flood events strain
reservoir operators to refill and keep maximum water levels. In response to short-term fluctuations,
the operators need to anticipate actions and release the excess amount of water in order to have
sufficient flood storage volume in the reservoir [10]. However, the storage after the event must be
recovered in order to satisfy water supply during the following dry season [11]. Therefore, flood control
and water conservation require careful planned strategies for short-term operation. On the other hand,
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system optimization on this time scale becomes more complex due to the high-dimensionality,
non-linearity of the system, and dynamic structure of the control process.

In general, a reservoir operation is assumed to be a dynamic system in which the future states are
a function of the current states. Throughout optimization of sequential decision processes, Dynamic
Programming (DP) developed by Bellman [12] is an important milestone. The main problem can be
divided into sub-problems, separately solved successively over each stage to get an overall optimum
solution. Later, researchers contributed on this technique in different aspects such as using sampling
stochastic DP, incremental DP, stochastic dual DP [13–15]. Though the solution is well suited for highly
nonlinear, nonconvex problems, the main difficulty arises with the so-called “curse of dimensionality”.
This means more (exponentially growing) computational time with increasing dimensions of states,
decisions, and disturbances [12,16].

Operation of the reservoir system is an optimal control problem, thus an alternative solution is
proposed by adapting Model Predictive Control (MPC, also known as Receding Horizon Control) [17].
The concept has been tested in different application areas such as rivers, reservoirs, and irrigation
canals [18–20] in water resources management. The system is optimized for a forecast horizon by
solving an open-loop control problem simultaneously in every time step, then only the first time step
control value of the computed sequence is applied and the rest are discarded. At the next step, system
states are updated and the process is repeated again. This feedback mechanism is called closed-loop
optimization. In the real-world, the reservoir system is operated according to forecast based control
decisions, but updated to the realization of the disturbance (inflows). Thus, in the study closed-loop
experiments are preferred due to the feedback mechanism to mimic the real-world reservoir operation
decisions with respect to open-loop experiments.

MPC requires prediction of disturbance in the real-time control of a water structure, but streamflow
forecasts always bring along forecast uncertainty. In real-time forecasting applications, forecasts can
be biased and tend to over- or underestimate the actual streamflow [21] and it is hard to fully avoid
this [10]. In practice, there are several sources of uncertainty that reduce the accuracy of peak flow
estimation. Essentially, these are the hydrological forecast model structure [22], model external forcing
e.g., precipitation [23,24], model parameters [25], and initial conditions [26].

Although it is not possible to eliminate all types of uncertainties, one solution might be the
consideration of forecast uncertainty using ensemble forecasts in short-term operation. Labadie [16]
sorted the hindrances of reservoir system operations, among them he emphasized the need to
incorporate uncertainty and risk issues in optimization models. Recently, different researchers showed
how probabilistic flood forecasts are more robust and effective than the traditional deterministic ones;
correspondingly systems are improved by models that quantify forecast uncertainty [27–29].

In short-term management, Numerical Weather Prediction (NWP) based Ensemble Prediction
Systems (EPS) can provide probabilistic streamflow forecasts. The idea behind it is to represent future
states of the atmosphere by perturbing the initial conditions (uncertainty). Uncertainty becomes much
larger when managing small basins and small rivers [30]. In the case of non-availability or inadequacy
of the numerical weather forecast data, synthetic streamflow generation is a common practice for
reservoir simulation and optimization studies especially in hypothetical studies [28]. There are various
approaches to produce synthetic data e.g., the Thomas-Fiering model [28], Fractional Gaussian noise
model [31], artificial neural network [32] or hybrid models [33]. Among them, only a limited number
of studies [28,31] demonstrate the forecast uncertainty evolution process such that future periods have
larger uncertainty and that there is a correlation between uncertainties.

While MPC seeks optimum trajectories based on a single disturbance, i.e., the inflow into
a reservoir, its stochastic counterparts try to find an optimum solution for the entire ensemble
and incorporate forecast uncertainty. However, this might yield an infeasible solution due to the
burden of multiple disturbance in combination with hard constraints. An innovative technique to
deliberate ensemble forecasts with an adaptive control is proposed as Tree-Based MPC (TB-MPC) [34].
This approach reduces the number of ensemble members by its tree generation algorithms using all
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trajectories and then proper problem formulation is set by Multi-Stage Stochastic Programming.
The method is relatively new in reservoir operation [34–37], especially closed-loop hindcasting
experiments and its assessment is quite rare [24] in the literature.

This paper demonstrates a real-time flood control in consideration of streamflow forecast
uncertainty especially for limited storage multi-purpose reservoirs using synthetic ensemble inflows
and the mass-conservative TB-MPC method. While we focus on the trade-off between flood risks and
water conservation benefits, its implementations into the test case follow: (1) development of a novel
Probabilistic Streamflow Forecasts (PSFs) method to produce ensemble inflows, (2) the configuration of
an hourly (deterministic and stochastic) predictive reservoir optimization model, (3) testing of different
PSF scenarios in closed-loop hindcasting mode in comparison with deterministic counterparts (perfect
data and Deterministic Streamflow Forecasts, DSF) and (4) the assessment of TB-MPC model features
considering different number of tree branches, different inflow conditions, and different forecast
horizons in the area of interest.

In this study, the methodology is applied to the Yuvacik dam reservoir, fed by a catchment area of
258 km2 and located in Turkey, owing to its challenging operation due to downstream flow constraints.
The reservoir serves as a main water supply for Kocaeli province. First, a hydro-meteorological
rule based decision support system is developed for daily and hourly operation [38]. Later, it is
shown that underestimated daily inflow forecasts during a flood event operation in critical reservoir
level may result in underestimated spillage releases when using deterministic MPC [39]. Therefore,
the case establishes a precedent for similar relatively small reservoirs with multi-purpose operational
characteristics. At this point, this paper complements deterministic methods by PSF integrated
TB-MPC including forecast uncertainty.

2. Materials and Methods

Hindcasting experiments are the representation of a real-time system by an iterative process:
(i) MPC anticipates required spillages with the optimization model for a given time length (so-called
forecast horizon). (ii) The reservoir simulation model updates with actual inflows and anticipated
spillages from step (i) to find updated forebay elevations. (iii) This process is repeated every hour
(so-called receding horizon) until the whole hindcasting period (96 h in this study) has been completed.
The general methodology is outlined in Figure 1. We apply closed-loop hindcasting experiments by
the following three modes:

1. Perfect Hindcast Experiments: The flood hydrograph corresponding to a 100 years return period
(Q100) of the basin is utilized as perfect forecast data in deterministic MPC. This represents the best
solution since it exhibits the optimized releases and forebay elevations under perfect knowledge
of the future inflows, and it is evaluated as reference case for comparative analyses with forecast
based models.

2. Deterministic Hindcast Experiments: This represents the skill of single value DSF evaluation
by deterministic MPC. Randomly perturbed inflows in each receding horizon are employed
in deterministic MPC mode. The random perturbation having a forecast horizon up to 48 h is
updated in each hour.

3. Probabilistic Hindcast Experiments: This represents the skill of ensemble PSF evaluation by
multi-stage stochastic TB-MPC. Synthetically generated ensemble inflows in each receding
horizon are employed in stochastic MPC mode (Exp-A). This provides forecast uncertainty
consideration in the application. Moreover, features of TB-MPC are investigated with selection of
different forecast horizons, tree branching numbers, and different inflow conditions (Exp-B).
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Figure 1. The general framework of the experiments. DSFs stands for Deterministic Streamflow
Forecasts. PSFs stands for Probabilistic Streamflow Forecasts. MPC stands for Model Predictive Control.

2.1. Deterministic and Probabilistic Synthetic Streamflow Generation

Since forecast inflows include uncertainties, they can be represented by the relative inflow
forecasting error [10]. In this paper, we refer to them as DSF scenarios which are perturbed from
original flood hydrographs. While the DSF sequence is a single value, the PSFs are generated by
applying a dispersion around the DSF with a specified probability distribution (Figure 2). They are
eventually repeated in each time step (depending on selected receding horizon) to mimic a dynamic
real-time system.

Figure 2. Schematic of single time-step streamflow forecast uncertainty: (a) DSF schematization; (b) PSF
schematization. qk stands for observed inflow. ε stands for relative inflow forecasting error. q̂k stands
for DSF member. q̃k

j stands for jth PSF member. k stands for time index.

DSF is represented by random perturbation using relative inflow forecasting error (ε).

εk =
q̂k − qk

qk (1)
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DSF : q̂k = qk
(

1 + εk
)

(2)

where ε, q̂, q stands for relative inflow forecasting error, forecasted inflows, observed inflows,
respectively over a forecast horizon represented by k = 1, . . . , N time instants.

Even though a range of relative inflow forecasting errors can be detected in the literature [40],
acceptable ε during a flood forecasting is within a 0.15–0.30 interval in real-world hydrological
forecasting studies [4,10,41]. These studies cover different project scales and climatology. In this
study ε values are randomly selected from uniform distribution and range between −0.3 and 0.3 to
generate individual DSF values from observed inflows. Also, ε values change for each k time instant.

We produce a set of synthetized members (ensembles, PSF) that are spread around single
valued DSF. Conventionally, uncertainty is defined by relative standard error which is expected
to be independent (also referred as white noise), usually Gaussian with zero-mean. Therefore, the error
pdf is assumed to be Ep ≈ N

(
0, σ2) for all time steps [21,28,42,43].

We introduced a forecast evolution process which is similar to that of Zhao et al. [28] with
increasing forecast uncertainty through the forecast horizon. Our implementation of correlation
between forecast errors however, is defined by the algorithm below. Synthetic PSFs are generated as
an empirical conditional distribution of the perturbed DSF. In other words, they have certain mean (μ)
from DSF and relative standard error (σ̂ = σ ∗ μ), considered as an uncertainty level.

We consider the following notation of probabilistic scenario in an ensemble forecast (PSF)
matrix as:

PSF =

⎡⎢⎢⎢⎢⎢⎢⎣
q̃1

1 q̃1
2 . . . q̃1

j . . . q̃1
M

q̃2
1 q̃2

2 . . . q̃2
j . . . q̃2

M
. . . . . . . . . . . . . . . . . .
q̃k

1 q̃k
2 . . . q̃k

j . . . q̃k
M

q̃N
1 q̃N

2 . . . q̃N
j . . . q̃N

M

⎤⎥⎥⎥⎥⎥⎥⎦ (3)

where N denotes the length of forecast data (so-called forecast lead-time), M denotes the number
of ensemble members, q̃k

j denotes an arbitrary ensemble member in matrix, and k, j correspond to
lead-time and ensemble member indexes, respectively

The procedure to generate synthetic PSFs is accomplished mainly in two successive steps:

1. In the initial time step, PSF (q̃1
j ) members are generated as:

q̃k
j = N ∼

(
q̂k, q̂k ∗ σ̂k

)
, k = 1 & j = 1, 2, . . . , M (4)

2. The PSF should be correlated with previous members, therefore, the differences between
successive DSF values (referred to k time instants for the same DSF sequence) are calculated,
then normally distributed errors having mean and standard error from the previous time step
are generated and added to the differences. Maximum function is added in order to eliminate
negative values, and the remaining PSF members (q̃) are formulated as:

q̃k
j =

(
q̂k − q̂k−1

)
+ max

(
N ∼

(
q̂k−1, q̂k−1 ∗ σ̂k

)
, 0
)

k = 2, . . . , N & j = 1, 2, . . . , M
(5)

According to intuition, a longer forecast lead-time results in a less reliable forecast. The level of
forecast uncertainty (in terms of relative standard error) is assumed to be the same for all members but
increasing towards the forecast horizon:

σ̂k−1 ≤ σ̂k ≤ σ̂k+1 (6)
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Uncertainty in the precipitation is typically much greater (even the largest source of uncertainty
from input data) compared to the other meteorological variables [44]. Since higher precipitation leads
to higher discharge data, total uncertainty of the forecast chain is expected to be higher during rainfall
events, and less during no rain condition. Therefore, this condition is considered in the application by
updated relative standard errors depending on DSF values as:

σ̂k =

{
σ̂k = σ̂k−1 i f q̂k ≤ q̂k−1

σ̂k > σ̂k−1 i f q̂k > q̂k−1

}
(7)

In the application, a cumulative forecast uncertainty (relative standard error of the final time step, σ̂N)
is selected beforehand and incremental standard error values are calculated for each time instant.
This is a posteriori information based on trial-and-error by the assessment of forecast uncertainty.

2.2. Deterministic Model Predictive Control (MPC)

Contrary to feedback controls where control actions are determined with the current state of the
system, MPC takes the future state of the system into account. MPC is commonly implemented by
having several components in a receding horizon strategy. These components are a system description
(model), a set of disturbances (water inflow into the system, water extractions etc.), objective and
physical or operational constraints to represent physical operational management objectives and
constraints of the system. Deterministic MPC considers a discrete time-dynamic system according to

xk = f
(

xk−1, xk, uk, dk
)

(8)

yk = g
(

xk, uk, dk
)

(9)

where x, y, u, d are, respectively, the state, dependent variable (output), control, and disturbance
vectors, f (.) and g(.) are linear or non-linear, time-variant vector functions representing an arbitrary
water resources model [45]. If being applied in MPC, Equations (8) and (9) are used for predicting
future trajectories of the state x and dependent variable y over a finite time horizon represented
by k = 1, . . . , N time instants, in order to determine the optimal set of control variables u by an
optimization algorithm. Under the assumption of knowing the realization of the disturbance dk

over the time horizon N, for example the inflows into the reservoir system
{

dk
}N

1
, the simultaneous

(or collocated) MPC [45] becomes:

min
u, x ∈ {0, . . . , T}

N−1

∑
k=1

J
(

xk, uk, dk
)
+ E

(
xN , uN , dk

)
(10)

s.t. : h
(

xk, yk, uk, dk
)
≤ 0, k = 1, . . . , N (11)

xk − f
(

xk−1, xk, uk, dk
)
= 0 (12)

where J() is a cost function associated with each state transition, E() is an additional cost function
related to the final state condition, and h() are hard constraints on control variables and states,
respectively. It receives a single disturbance vector, so that it might be either an observed or
deterministic forecast. In a simultaneous or collocated mode, the related process model (Equation (8))
becomes an equality constraint of the optimization problem at dedicated time steps in Equation (12) [46].
The optimization problem is solved using an efficient gradient-based optimizer such as the nonlinear
optimizers IPOPT [47] with MA27 solver of the HSL library in combination with adjoint modeling.
Adjoint modeling is essential for the efficient computation of the derivative of the objective function
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with respect to the controlled variables (dJ = d
(

xk, uk, dk
)

/duk). The model itself is implemented in
RTC-Tools [45].

2.3. Multi-Stage Stochastic Tree-Based MPC (TB-MPC)

In this part, the deterministic model is extended to a multi-stage stochastic optimization model.
The stochastic nature of inflows is reflected by a probabilistic forecasts ensemble, dk

j , where j denotes
the ensemble index (j = 1, . . . , M) and k denotes the time instant (k = 1, . . . , N). Hence, Equation (10)
is rearranged for J and E, then it becomes the probability-weighted sum of the objective function terms
of the individual ensemble. The formula is shown below as:

min
u, x ∈ {0, . . . , T}

M

∑
j=1

pj

N−1

∑
k=1

J(xk
j , uk

j , dk
j ) + E

(
xN

j , uN
j , dN

j

)
(13)

where pj stands for the probability of the ensemble member (equal for each one), M stands for the
number of the ensembles.

The key factor of the approach depends on the control variable (uk
j ) definition for setting up of a

stochastic optimization problem due to the limitation of the usable storage. A simple way would be to
find the control trajectory which is optimal for the whole ensemble (on average, worst case, chance
constrained, etc.). In case of an average definition, it might give feasible solutions on consideration
of the ensemble having small variations. However, if the operation of the reservoir system is highly
constrained due to a limitation of storage, the solution of the optimization can be dominated by these
constraints or it becomes infeasible.

To avoid this problem, multi-stage stochastic optimization is proposed and successfully applied
using scenario trees for disturbance, states, and control trajectories [34,48]. Thus, the approach becomes
adaptive, the control trajectory does take into account the resolution of uncertainty. This means
uncertainty is gradually resolved by showing tree branches at specific time instants along the forecast
horizon. While scenario reduction is employed in various ways and represented by a tree nodal
partition matrix P(j, k) ∈ Z

MxN , a recently proposed novel mass conservative approach which keeps
the probability-weighted sum of a quantity of the original ensemble is used in this study. Details are
available in [24,37]. We present the first implementation of the TB-MPC in application to a synthetically
generated ensemble streamflow forecast for a limited storage multi-purpose reservoir under flood case.

3. A Real World Test Case and Model Set-Up

3.1. Study Area

The proposed methodology was tested in the Yuvacik Dam reservoir, with a 258 km2

catchment area, located in the east part of Marmara Region, Turkey (Figure 3). The earth-filled
dam was constructed in 1999 for the water supply of Kocaeli city. An annual 142 hm3 of drinking,
domestic and industrial water for 1.5 million inhabitants should be supplied. The relatively limited
reservoir has an active storage capacity of approximately 51.2 hm3 at maximum operating level of
169.3 m whereas 169.8 m is the maximum water level. The spillway is controlled by four radial gates.
It should be noted that while a volume of 36.60 hm3 is stored between minimum operation level of
112.50 m and spillway crest elevation of 159.95 m, a volume of 14.60 hm3 is kept above spillway crest
elevation and behind the radial gates. On the other hand, a Dam Management System (DMS) which
has been developed as a part of a Supervisory Control and Data Acquisition (SCADA) system by the
reservoir operators provides data collection and transmission from automatic gauges.
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Figure 3. Yuvacık Basin DEM, station network and downstream region.

3.2. MPC Inputs

The maximum amount of water to be released during daily operation is set as 100 m3/s by the
regional water authority taking the drainage discharge conditions of the downstream canal and lateral
flows into consideration. The main reason for that is a 12 km long downstream reach that passes
from a narrow valley near a rural district and flows into the Marmara Sea after a sharp curvature by
a manmade channel next to industrial and urban areas. The dam is built to protect the downstream
region against extreme flood events, and the maximum spillway release is set to 200 m3/s during
hourly flood control. This value is the maximum allowable flood limit without severe damage in the
downstream. The operation of the dam is multi-purpose subject to two main objectives: (i) water
supply and (ii) flood control.

Since available data are insufficient to precisely assess extreme events [49], design flood
hydrographs are generally derived based on maximum instantaneous records at the dam site, selected
probability distributions using several parameters [50,51], and considered to be representative of
extreme conditions expected in the future. In the Yuvacik catchment, the annual peak flow values
over 19 years were statistically analyzed and it was detected that the series is in line with the Gumbel
dispersion function according to the DSI (State Hydraulic Works, the main governmental water
organization in Turkey) report [52]. The peak flow flood values are derived for different return periods
(Table 1).

Table 1. Flood hydrograph peak values.

Return Periods (Years) Project Value (m3/s)

5 208
10 297
25 410
50 506
100 597

The study adopted a 24 hourly flood hydrograph having an expected occurrence of 100 years
that is utilized as a perfect streamflow forecast (Q100 flood hydrograph) in the main test application.
The flood peak-occurrence time from the beginning is 6 h (i.e., the response time of the catchment to the
rainfall event) and the peak flow corresponds to 597 m3/s. The total flood volume equals to 17.1 hm3.
Being an extreme case, the peak flow of the selected flood hydrograph is three times greater than the
downstream channel capacity (200 m3/s). The hindcasting experiments were conducted in an arbitrary
year during a critical operation period (May) when the initial forebay elevation was high. The whole
closed-loop hindcasting period covers 96 h, from [1-May-2012 00:00:00] to [4-May-2012 23:00:00]. It is
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assumed that a 24-h long flood hydrograph occurs between [3-May-2012 00:00:00] and [3-May-2012
23:00:00]. Hourly forecast data are produced for 48 h lead-time. This means that in each 1 h, 48-h long
DSF data (with 1 member) and 48-h long PSF data (with M = 50 ensemble members) are generated
throughout the whole hindcasting period. Given the lack of probabilistic hydrological forecasts for
this case study, we decided to recreate the stochasticity by assuming a normally distributed noise
around the deterministic forecast. This in fact becomes an innovation on its own in the paper, since an
objective approach has not been reported in the literature before. Although it was desired to increase
the number of PSF members in order to cover much more possibilities, this ended up with the reverse
situation in the optimization model due to the high-dimensional data space. Different ensemble sizes
were also tried in the control model, and it was observed that increasing member number estimates
higher uncertainty range, 50 members are considered to provide enough spread to capture the major
uncertainties in the forecasts.

In this study, DSFs with error range between −0.3 and 0.3 and PSFs with final relative standard
error (σ̂48 = 0.2) are depicted with three different randomized scenarios (Sce-Q100a, Sce-Q100b and
Sce-Q100c). Here, a scenario corresponds to randomly generated and independent forecasting data
sets (both DSFs and PSFs) to be employed in the same hindcasting period. In each scenario, randomly
perturbed DSFs from perfect data are produced in each hour for a given lead-time and an error interval.
Then, similarly (in each scenario and in each hour), ensemble PSFs are produced from the mother DSFs
with a given uncertainty. Since the generated streamflows are produced in each hour, the receding
horizon is always set to one hour in all deterministic and stochastic MPC hindcasting experiments.
In terms of operational point of view, the control trajectory changes at each time step and is not a fixed
one for the complete event (it changes depending on the forecast and its uncertainty, as well as the
forecast horizon).

As explanatory example from two scenarios (Sce-Q100a and Sce-Q100b) is shown in Figure 4
for a lead-time of 48 h. Fifty members are generated for PSFs, but only two members (min and max
values) are given in the figure to show the uncertainty ranges (referred to uncertainty band). In the
figure, [T0] corresponds to “time zero” namely the starting time of the optimization. Two time instants
[T0: 01-May-2012 12:00:00] (Figure 4a) and [T0: 01-May-2012 13:00:00] (Figure 4b) are exampled here,
but the process is dynamically repeated in each one hour throughout the hindcasting period in
closed-loop experiments for each scenario. Finally, each scenario is composed of all generated
96 forecast sequences (both in DSFs and their PSFs) having a 48 h lead-time in the hindcasting period.

Figure 4. Graphical representation of the scenarios (Sce-Q100a and Sce-Q100b) for: (a) T0: 01-May-2012
12:00:00; (b) T0: 01-May-2012 13:00:00.
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Different inflow conditions such as Q25 and Q50 (from Table 1) are also tested under Section 4.3.3.
Characteristics of the PSF scenarios are presented with the performance assessment by using a mean
Continuous Ranked Probability Score (CRPS) which generalizes the Mean Absolute Error (MAE) in
the case of probabilistic forecasts (Supplementary Figure S1). Mean CRPS summarizes the quality
of a probability forecast into a number by comparing the integrated square difference between the
cumulative distribution function of forecasts and observations [24]. According to that, mean CRPS
increases with forecast lead-time, while each scenario shows a different performance. The scenario
number is not critical in the study because the focal idea is to develop an objective approach for
stochasticity of the flows, to use them in stochastic optimization set-up and to compare the results
with a deterministic equivalent. Thus, scenarios can be deliberated as different source based forecast
data sets.

An example of generated forecast data sets (Sce-Q100a) is given for different time steps shown by T0
in Figure 5. Similarly, [T0] corresponds to “time zero” namely the starting time of the optimization in
the figure. The red dashed line shows DSFs which are derived from a perfect forecast by 30% random
noise. Synthesized PSF data are shown in gray ink. While generating PSF, updated forecast data have
“different starting time” and “different duration to the peak flow” which affect the uncertainty band in the
end. For example, the starting time of the 01-May-2012 20:00:00 (fourth panel) and 02-May-2012 00:00:00
(fifth panel) have less duration to peak flow, thus they have higher dispersion at peak flow compared to
the last panel and subsequently uncertainty is kept high in the falling limb in the fourth and fifth panels.
However moving forward in time, the duration to peak flow at T0 decreases, so that the relative standard
error cannot increase too much due to the flow condition. That is the reason why the last panel has less
spread in the end. It is directly related to the approach used to generate the ensembles.

Contrary imperfect data (DSFs and PSFs), perfect forecast (shown in Figure 5 as a black line) is a
single chain and utilized in the initial MPC hindcasting experiment. This test allows the performance
of the developed real-time reservoir system control model to be assessed without forecast uncertainty;
as a result a sufficiently long forecast horizon is decided before starting imperfect forecast tests.
During TB-MPC hindcasting experiments, PSF data are converted to trees depending on the selected
branch numbers. Hereby, previously generated forecast data (from Sce-Q100a) PSFs with 50 members
(Figure 5) are transformed into optimization tree inflows with 16 branches (members) in Figure 6.
Thereby, the number of generated PSF data are limited by this reduction, but still capture the major
uncertainty, and the tree is used in the optimization algorithm.

Figure 5. Perfect forecast, DSF vs. PSF for different receding horizons (Sce-Q100a).
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Figure 6. PSF ensemble members (50 members) transformed into optimization trees (16 branches).

Assessment of an effective reservoir operation in the short term is done by quantifying the
minimization of downstream damage, the dam safety and maximization of the forebay elevation
at the end of the flood event [53]. Similarly, four objective criteria are used in this study to test the
experiments. These are:

• Forebay elevation at the end of a flood event: Forebay elevation should be same at the end of a
flood event in order to provide long term water supply targets,

• Flooding threshold value: Spillway discharges should be less than channel capacity, thus this
is considered as the flooding threshold value and the maximum discharge at the dam outlet
is checked,

• Total flood volume at the downstream area: The cumulative volume of the released flood water
(only above the maximum flood limit of 200 m3/s) should be zero for the best flood management,

• Flood storage index (FSI): It is essential to have enough flood pool in the reservoir to attenuate
the hourly extremes. To measure this, FSI is defined by the ratio of the total effective flood storage
over the total volume of storage corresponding to Flood Control Levels (FCLs) [4] as shown in
Equations (14) and (15) . The reservoir level should be kept at FCL as suggested to reserve space
for flood attenuation. FSI ranges between zero and one. While zero indicates the reservoir level is
always kept above FCL, one indicates operation is totally based on FCL. Higher FSI ensures more
reliable flood operation (under forecast uncertainty) by having a high empty reservoir volume
against flood risk.

FSIf =
∑N

k=1 vk
f

∑N
k=1 vk

FCL
(14)

vk
f =

{
vk

act i f vk ≤ vk
FCL

vk
FCL i f vk > vk

FCL
f or k = 1, 2, . . . N (15)

where vk
f is the effective flood storage, vk

FCL is the storage corresponding to FCL, vk
act is the actual

volume of the flood control pool; vk is the current storage by k = 1, . . . , N time instants. If vk

is below FCL, it is equal to the volume of the flood control pool; otherwise, it is the actual
available storage.
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While the “flooding threshold value” gives the maximum instantaneous damage in the
downstream, “total flood volume at downstream area” reflects the cumulative total penalty from the
target set point of operational constraint within a hindcast period. It is also important to note that the
perfect data based model results neglect uncertainty completely and serve as reference. Any deviation
from these results objectively presents the inefficiency of the DSF and PSF based model results.

3.3. Model Set-Up

The reservoir model is based on the continuity equation for the reservoir. The water balance
equation for a single reservoir can be arranged as:

sk = sk−1 + Δt
(

Qk
I − Qk

S − Qk
WS

)
(16)

where, s is the storage volume (m3), Δt is the time difference between kth and (k − 1)th time steps, QI ,
Qs , and QWS are the reservoir inflows, spillway flow and water supply (m3/s), respectively. Also,
forebay elevation, f b could be computed by:

f bk = fls

(
sk
)

(17)

where fsl is a piecewise-linear level-storage relation.
In order to satisfy physical conditions capacity curves, discharge limits, and boundary elevations

are introduced in constraints.

3.4. Physical and Operational Constraints

The constraints that form the equalities and inequalities are the continuity equation and the
physical boundaries. The continuity equation ensures a consistent mass balance definition, accordingly
residuum (rk) is introduced as an equality constraint and it must be zero as formulated below:

rk = sk − sk−1 − Δt
(

Qk
I − Qk

S − Qk
WS

)
= 0 (18)

The system’s physical limits should be met and they are defined as hard constraints. First, forebay
level physical constraints are defined as:

f bmin ≤ f bk ≤ f bmax (19)

where f bmin is the minimum reservoir elevation and f bmax is the maximum reservoir elevation. Beyond
the operational targets, the spillway discharge flow should be within physical limits depending on its
capacity curve and is defined as the constraint below:

Qsmin ≤ Qsk ≤ Qsk
max (20)

Qsk
max = fsdc

(
f bk

)
(21)

where Qsmin is the minimum spillway flow and is set to zero and Qsmax is the maximum allowable
spillway flow and it is determined by the spillway discharge curve ( fsdc) i.e., zero at spillway crest
elevation and variable above elevations depending on the current forebay elevation (as a function
of f b).

3.5. Objective Function

An objective function determines the target of the operation by its terms. These terms are
sometimes called soft constraints and an overall optimum of all terms is targeted. Optimization of a
multi-purpose reservoir is aimed to mitigate flooding while maximizing water benefit or hydropower
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assets as its own objective function. Controlled variables are the forebay elevation and spillway
discharges. The term sensitivity is set by the weights and the power of the equation. These weights are
case-specific and depend on the significance of the soft constraints. For example, in this study higher
penalizations are assigned for w3 and w4 in order to prevent downstream flooding and provide the
long term water supply target, respectively. The weights are determined by a trial-and-error approach.

A reservoir having a limited capacity should include the terms below for hourly management:

• Differences between optimized forebay elevation and maximum operating elevation are
minimized in Equation (22),

• Spillway discharges are minimized in Equation (23),
• Spillway releases above a specified discharge (200 m3/s) are constrained in Equation (24). This has

a high weight in order to prevent damage in the downstream,
• The case of a set point for forebay elevation is given i.e., a variable guide curve (it is the same for

each hour in a day) for long term targets [39], this term stands to minimize deviations from it in
Equation (25),

• Spillway discharges between two consecutive time steps are constrained by consideration of the
mechanical gate operation efficiency (against wear and tear) in Equation (26).

J1( f b) = w1

N

∑
k=1

(
fmax − f bk

)
(22)

J2(Qs) = w2

N

∑
k=1

(
Qsk

)
(23)

J3(Qs) = w3

N

∑
k=1

max
(

Qsk − Qset, 0
)2

(24)

J4( f b) = w4

N

∑
k=1

max
(

f bk − f bset, 0
)2

(25)

J5(Qs) = w5

N

∑
k=1

(
Qsk+1 − Qsk

)2
(26)

where, wj(j = 1, . . . , 5) stands for weights associated with each term (wj > 0), Qset stands for the
maximum channel capacity without downstream region flooding, f bset stands for the time-dependent
variable guide curve, and N stands for forecast horizon.

Finally, closed-loop optimization minimizes the main objective function (J), which equals the
summation of different objectives, in Equation (27) for optimum forebay elevations and spillway
discharges agreement with pre-defined constraints in Equations (18)–(21). Optimizations are conducted
in each hour (due to the selection of a one hour receding horizon in this study) for N forecast horizon
throughout the entire hindcasting period. Only the first value of the computed control sequence
(spillway discharge) is applied to the system and the rest is discarded. In the next time step, the state
(forebay elevation) is updated and the optimization is repeated with updated forecast data.

minJ( f b, Qs)
k ∈ {0, . . . , T} = J1 + J2 + J3 + J4 + J5 (27)

4. Numerical Experiments and Results

4.1. Deterministic MPC Hindcasts Using Perfect Forecasts

It is assumed that selecting a sufficiently long forecast horizon in the closed-loop mode provides
an approximately actual infinite horizon solution [54]. In the first trial, hindcasting experiments were
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employed using perfect forecasts with respect to different forecast horizons. The tests were conducted
for 6, 12, 18, 24, 36, and 48 h to estimate a sufficiently long forecast horizon, and named as PER6, PER12,
PER18, PER24, PER36, and PER48, respectively. The results of the experiments are presented in terms
of spillway discharges and forebay elevation in Figure 7. Short forecast horizons (such as 6 h and 12 h)
produce delayed releases which in return increase peakflow at the dam outlet. This is an important
indicator of flood risk assessment since higher discharges create a larger extension of damage in the
downstream area. Therefore, MPC needs a longer forecast horizon to handle the problem even with
perfect inflow forecasts. Forecast horizons of 18 h or longer provide downstream safety by reaching
reasonable maximum discharges under 200 m3/s limit at the outlet. Longer forecast horizons than
18 h e.g., 24, 36, and 48 h, result in a similar response. Therefore, the experiment results of PER24,
PER36, and PER48 overlap in the figure. According to the results, one can note that the mitigation of a
major flood even with maximum operating levels and 200 m3/s downstream channel constraint can
be achieved under perfect future knowledge of flood inflows at least 18 h beforehand.

Figure 7. Comparison of closed-loop MPC forecast horizon performance using perfect streamflow
forecasts: (a) Spillway discharge (m3/s); (b) forebay elevation (m).

4.2. Deterministic MPC Hindcasts Using DSFs

DSFs are produced as single forecast trajectories by adding random perturbations on observations,
thus they under/over-estimate the actual flood inflows. This situation becomes more significant for
the refilling season in spring when the initial reservoir forebay elevation is at a critical level. DSF data
based MPC hindcasting experiment results using Sce-Q100a data are presented in Figure 8. Likewise,
longer forecast horizons than 18 h e.g., 24, 36, and 48 h result in a similar response, thus the experiment
results of DSF24, DSF36, and DSF overlap in the figure. According to the results, spillway discharges
are greater than the upper limit of 200 m3/s and create flooding in the downstream. This is considered
as lower reliability compared to perfect data based experiments, and mainly attributed to the forecast
disturbance which introduces 30% bias to the control strategy. Longer forecast horizons (such as 18, 24,
36, 48 h) perform better and releases are shifted to earlier time steps. However, it is not possible to
mitigate the flood event even for forecast horizons longer than 18 h due to the given bias in the inflows
and the lack of uncertainty in the system optimization. Compared to perfect forecasts based MPC,
the variations in spillages are higher due to updated information for each receding horizon.

4.3. Multi-Stage Stochastic TB-MPC Hindcasts Using PSFs

In this part, hindcasting experiments are conducted by means of PSF data and multi-stage
stochastic optimization. TB-MPC uses scenario trees for disturbances (inflows), states (forebay
elevation) and control trajectories (spillway discharges) to form a related stochastic model. Definition
of the multiple stages at branching points using binary trees makes the process a multi-stage stochastic
optimization in TB-MPC. Hence, the results become more adaptive to the resolution of uncertainty
and have better expected performances.
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Figure 8. Comparison of closed-loop MPC forecast horizon performances with DSF (Sce-Q100a):
(a) Spillway discharge (m3/s); (b) forebay elevation (m).

MPC solves an open-loop optimization at every time instant along a forecast horizon and applies
only to the first control value to the system. Therefore, an example from a selected single case
[T0 = 2-May-2012 14:00:00] of open-loop optimization results is presented with spillway discharge
and forebay elevation in smooth trees (Figure 9). One can note that the use of binary trees splits
the stochastic variables into two trajectories at each specific branching point. The timing of specific
branching points is automatically defined due to the tree-reduction algorithm (check Section 2.3) when
the branch number and optimization forecast horizon have been fixed. In this study, 16 tree branches
were chosen based on the performance comparison (check Section 4.3.1) for the forecast horizon of 48 h
(check Section 4.3.2), thus branching points are fixed every 10 h by the tree reduction algorithm.
The root value is an optimal discharge for the entire control sequence considering uncertainty
resolution through the forecast horizon. Only single discharge data from a rooted tree of the open-loop
optimization is used in the simulation, and the process is shifted to the next time step. At the following
time instant, the optimization is reformulated with the updated initial reservoir level and updated
forecast data. After applying this procedure through the whole hindcast period (96 h), closed-loop
TB-MPC hindcasting experiment results (one single output) are obtained. These results are discussed
under the subsections of Section 4.3.

Figure 9. Open-loop optimization results of multi-stage stochastic optimization (from Sce-Q100a):
(a) Spillway discharge trees (m3/s); (b) Forebay elevation trees (m).

4.3.1. TB-MPC Hindcasts Considering a Different Number of Tree Branches

The number of tree branches used in TB-MPC is user-defined and there is no direct method to
select the most appropriate one. In this part, performances of TB-MPC hindcasting experiments using
Sce-Q100a data are conducted by selecting a different number of tree branches in each trial and the
results are compared with each other. According to TB-MPC methodology, total PSF members can
be reduced to 2x branches, e.g., 1, 2, 4, 8, . . . etc. [24]. Therefore, in this study 50 PSF ensembles were
reduced to six different branches (1, 2, 4, 8, 16 and 32) and tested in a hindcast test. The experiments
were done using Sce-Q100a PSF as input forecast data and comparison of the optimization results from

287



Water 2018, 10, 340

different tree branches numbers is given in Figure 10 in terms of spillway flows and forebay elevation.
This experiment shows the effects of the resolution of tree and correspondingly capturing forecast
uncertainty in stochastic optimization. If the forecast horizon is set to 48 h, we can get optimum
results after 16 branches as shown (Figure 10a) in terms of the spillway discharge. Since the results for
16–32 trees are exactly the same, they overlap with each other in the same figure. Although higher
resolution overestimates the inflows which increases the pre-releases, it is still able to restore the
forebay elevation target at the end of the flood event (Figure 10b).

Figure 10. Comparison of closed-loop MPC with different tree reduction branches for 48 h forecast
horizon (Sce-Q100a): (a) Spillway discharge (m3/s); (b) forebay elevation (m).

The computation time is given for different tree reduction branches in the hindcasting experiments
in comparison with deterministic MPC with DSF (Table 2). Note that this is the total time for the entire
hindcast period (96 h). The time spent in deterministic MPC is three times less than TB-MPC with
one tree branch which can be considered as the ensemble mean. This is mainly attributed to the tree
reduction process before the optimization of the model. However, the computation time increases as
long as higher tree branches are used in the model. Therefore, the tree number is fixed to 16 branches
for the following experiments of the study. These results are also valid for the remaining scenarios.

Table 2. Computation times in MPC hindcasting experiments. MPC stands for Model Predictive
Control. DSF stands for Deterministic Streamflow Forecast. TB-MPC stands for Tree-based MPC.

Hindcasting Experiment Total CPU Time (s)

MPC with DSF 151
TB-MPC with 1 tree branch 491

TB-MPC with 2 tree branches 551
TB-MPC with 4 tree branches 633
TB-MPC with 8 tree branches 677

TB-MPC with 16 tree branches 867
TB-MPC with 32 tree branches 1354

4.3.2. TB-MPC Hindcasts Considering Different Forecast Horizons

Figure 11 presents a comparative visualization of different hindcasting experiments with perfect
data and DSF under deterministic configuration and PSF under multi-stage stochastic TB-MPC for 18,
24, 36, and 48 h forecast horizons. Notice that deterministic methods have similar results for a longer
forecast horizon whereas TB-MPC start earlier pre-releases. This is mainly attributed to consideration
of uncertainty resolution through the forecast horizon in the decision mechanism. When the selected
forecast horizon increases in TB-MPC experiments, the uncertainty band in the PSF spread increases
and thereby much more water is evacuated from the spillway with the more conservative policy for
flood control. It is remarkable to note that even when a longer forecast horizon is selected, forebay
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elevations at the end of the flood event are always equal to the initial reservoir elevation. These results
are also valid for the remaining scenarios.

Figure 11. Comparison of deterministic (perfect and DSF) and stochastic (PSF) closed-loop MPC results
with different forecast horizons (Sce-Q100a): (a) 18 h; (b) 24 h; (c) 36 h; (d) 48 h.

4.3.3. Assessment of the Approach for Different Inflow Conditions and Scenarios

The hindcasting experiments having forecast horizons of 48 h were enriched with different
inflow conditions to check the robustness of the developed methodology. To that end, hydrographs
characterized by return periods lower than 100 years such as 25 and 50 years, which have peak
flows greater than the downstream channel capacity, were also used in the closed-loop hindcasting
experiments. All experiments were evaluated by forebay elevation at the end of the flood event,
the penalization of the flooding threshold value by the peak flow observed at the Yuvacık outlet,
the total flood volume at the downstream area, and FSI. Similar to the previous set-up, flood
hydrographs were independently utilized in each hindcasting test as perfect data, DSF and PSF
data sets were generated. The tests were also elaborately investigated with three different independent
scenarios (a,b,c) for each flow condition. The complete results belonging to the hindcasting experiments
are given in Supplementary Figures S2 and S3 for Q25 and Q50 scenarios, respectively. On the other
hand, deterministic (perfect and DSF) and stochastic (PSF) closed-loop MPC results from Sce-Q100a,
Sce-Q100b and Sce-Q100c are shown in Figure 12. It is notable that the stochastic set-up always
provides pre-releases and takes precautions against flood event. The deterministic model only takes
actions over several hours which is similar to the perfect data based reference model, but generates
much more spillage above the flood threshold compared to stochastic TM-MPC.

A brief summary of all inflow conditions for the three scenarios are given (Table 3) in terms
of peak flow values. Since perfect data based models can give the desired maximum spillway of
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200 m3/s for each condition, they are not shown in the table. According to results, there is always an
improvement in spillway discharges for different flows conditions of Q25, Q50 and Q100.

Figure 12. Comparison of deterministic (perfect and DSF) and stochastic (PSF) closed-loop MPC results
with different forecast scenarios for Q100: (a) Sce-Q100a; (b) Q100-Sceb; (c) Q100-Scec.

Table 3. Peakflow assessment of deterministic and stochastic closed-loop MPC results for different
inflow conditions with forecast horizons of 48 h.

Flood Hydrograph Scenarios
Peakflow at Yuvacik Outlet (m3/s)

Deterministic MPC Stochastic MPC

Q25

Sce-Q25a 243 231
Sce-Q25b 255 243
Sce-Q25c 248 243

Q50

Sce-Q50a 241 211
Sce-Q50b 245 200
Sce-Q50c 246 200

Q100

Sce-Q100a 242 200
Sce-Q100b 269 235
Sce-Q100c 278 233

Table 4 presents the total flood volumes at the downstream area calculated in the hindcasting
period. Compared to flooding threshold assessment, this indicator provides more insight into spillway
operation. The best management (zero volume) is possible by perfect data using a forecast horizon
of 48 h. Almost in all inflow cases and scenarios, the total flood volume decreases in the stochastic
mode. This change highlights the added value of the stochastic optimization in comparison to the
deterministic one especially for different forecast data sets (scenarios) and different flow conditions.
FSI values were also calculated for both DSF and PSF scenarios and results are presented in Table 5,
respectively. It is important to note that each FSI is calculated according to its own FCL i.e., FCL Q100 is
used for Q100 operation assessment whereas FCL Q50 is used for the Q50 based flood case. According
to this, TB-MPC stands as the more confident by higher FSI but also still can provide a high reservoir
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level at the end of the event without compromising water supply targets. For an uncertain future,
a higher FSI is more reliable and preferable with lower risk for water supply as well.

Table 4. Flood volume assessment of deterministic and stochastic closed-loop MPC for different inflow
conditions with forecast horizon of 48 h.

Flood Condition Scenarios
Total Flood Volume (1 × 106 m3)

Deterministic MPC Stochastic MPC

Q25

Sce-Q25a 0.507 0.302
Sce-Q25b 0.549 0.254
Sce-Q25c 0.438 0.271

Q50

Sce-Q50a 0.666 0.062
Sce-Q50b 0.471 0.004
Sce-Q50c 0.331 0.004

Q100

Sce-Q100a 0.690 0.004
Sce-Q100b 1.256 0.184
Sce-Q100c 1.018 0.127

Table 5. FSI value assessment of deterministic and stochastic closed-loop MPC according to Flood
Control Levels (FCLs) for different inflow conditions with forecast horizon of 48 h.

Flood Condition Scenarios
Flood Storage Index (FSI)

Deterministic MPC Stochastic MPC

Q25

Sce-Q25a 0.652 0.800
Sce-Q25b 0.659 0.990
Sce-Q25c 0.659 0.796

Q50

Sce-Q50a 0.566 0.723
Sce-Q50b 0.598 0.770
Sce-Q50c 0.606 0.758

Q100

Sce-Q100a 0.457 0.650
Sce-Q100b 0.463 0.645
Sce-Q100c 0.456 0.645

According to results, PSF based multi-stage stochastic MPC optimization has the advantage of
including forecast uncertainty in the optimization set-up. Also, the uncertainty in the flows can be
represented in the synthesized PSFs by developing the proposed error generation method. There
is always performance improvement in the TB-MPC model for flood flows of Q25, Q50, Q100 with a
forecast horizon up to 48 h with respect to (i) maximum discharge at the dam outlet (compared to
flooding threshold value), (ii) total flood volume at the downstream area and (iii) FSI, while keeping
the forebay elevation at the desired level for water supply at the end of the flood event. This shows
the added value of the approach and provides reasonable outputs compared to the deterministic
counterpart. The developed framework also indicates robust solutions against forecast uncertainty
along with a different independent hindcasting experiment assessment.

5. Conclusions and Outlook

This study shows the added value of stochastic optimization using a synthetic probabilistic
forecast generation and mass-conservative scenario tree reduction technique. TB-MPC provides
multi-stage stochastic optimization in comparison to its deterministic counterpart. According to
hindcasting experiments, our main conclusions are:

• Forecast uncertainty is indispensable especially for flood management. It is critical for those
cases in which wrong or poor decisions may result with loss of life and property. At this point,
considering uncertainty provides better management in terms of flood metrics without discarding
water supply purposes.
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• Independent closed-loop hindcasting experiment scenarios demonstrate the robustness of the
system developed against biased information (disturbances).

• Probabilistic data represent forecast uncertainty in comparison to deterministic equivalents. In this
study, a new synthetic streamflow generation method is proposed to represent forecast uncertainty
for reservoir optimization.

• The synthetic PSF generation model that considers the dynamic evolution of uncertainties is
valuable if hydrological model outputs driven by a rainfall and temperature forecast ensemble
are not available. This method is very advantageous from the operational standpoint, since it
does not require complex computations and is easy to implement while considering conditional
(flow dependent) increasing uncertainty through time. It is simple to formulate, comprehend,
and easy to repeat.

• Besides the ensemble generation, tree reduction parameters should be carefully investigated in
the problem definition phase. In the case of selecting a lower branch and forecast horizon than
required, TB-MPC results may converge to deterministic MPC results.

• The system was also tested against different inflow conditions which have greater flood value
than the downstream channel capacity. According to the results, the method provides reliable
results against different high flood conditions in the hindcasting experiments.

In future work, a hydrological model will be used, thus synthesized PSF might be derived from
perturbed hydrological model forcings such as precipitation and temperature. A comparison of these
results can contribute to improve synthetic ensemble generation and its consideration in TB-MPC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/10/3/340/s1,
Figure S1: mean CRPS of ensemble scenarios: (a) Sce-Q25; (b) Sce-Q50; (c) Sce-Q100, Figure S2: Comparison of
deterministic (perfect and DSF) and stochastic (PSF) closed-loop MPC results with different forecast scenarios
for Q25: (a) Sce-Q25a; (b) Sce-Q25b; (c) Sce-Q25c, Figure S3: Comparison of deterministic (perfect and DSF) and
stochastic (PSF) closed-loop MPC results with different forecast scenarios for Q50: (a) Sce-Q50a; (b) Sce-Q50b;
(c) Sce-Q50c.
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Abstract: Currently research on joint operation of a large reservoir and its re-regulating reservoir
focuses on either water quantity regulation or water head regulation. The accuracy of relevant
models is in need of improvement if the influence of factors such as water flow hysteresis and the
aftereffect of tail water level variation are taken into consideration. In this paper, given the actual
production of Pankou-Xiaoxuan cascade hydropower stations that combines two operation modes
(‘electricity to water’ and ‘water to electricity’), a coupling model of their short-term optimal operation
is developed, which considers Xiaoxuan reservoir’s regulating effect on Pankou reservoir’s outflow
volume and water head. Factors such as water flow hysteresis and the aftereffect of tail water level
variation are also considered to enhance the model’s accuracy. The Backward Propagation (BP) neural
network is employed for precise calculation of the downstream reservoir’s inflow and the upstream
reservoir’s tail water level. Besides, we put forth Accompanying Progressive Optimality Algorithm
(APOA) to solve the coupling model with aftereffect. An example is given to verify the scientificity
of the proposed model and the advantages of APOA. Through analysis of the model calculation
results, the optimal operation rules of the cascade reservoirs are obtained in terms of water quantity
regulation and water head regulation, which can provide scientific reference for cascade reservoirs’
optimal operation.

Keywords: reverse regulation; coupling model; aftereffect; accompanying progressive
optimality algorithm

1. Introduction

In the downstream of a large reservoir, the construction of a small re-regulating reservoir can not
only ensure the upstream hydropower station’s peak-regulating capability in the power grid, but also
exert a positive effect on downstream water supply, ecology, shipping, etc., spawning significant
comprehensive utilization benefits. Therefore, this kind of development mode has been widely
adopted in water conservancy construction across the world, e.g., the Three Gorges-Gezhouba cascade
reservoirs in China [1], the Xiaolangdi-Xixiayuan cascade reservoirs in China [2], the Bigge-Ahausen
cascade reservoirs in Germany [3], the Srinagarindra-Tha Thung Na cascade reservoirs in Thailand,
and so forth [4].

The downstream reservoir’s reverse regulation effect on the upstream reservoir is mainly
embodied in two facets: (1) water quantity regulation, i.e., using the downstream reservoir’s storage
capacity to optimize the upstream reservoir’s outflow; (2) water head regulation, i.e., controlling the
downstream reservoir’s water level to optimize the overall output given its backwater effect on the
upstream reservoir’s tail water level. To date, many scholars have studied the joint operation of a large
reservoir and its re-regulating reservoir. For example, Richter, B. D. proposed that the re-regulating
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reservoir can readjust the upstream reservoir’s outflow to eliminate the unnatural fluctuations caused
by hydropower operation, so that water discharge to the downstream channel can move in a way
much closer to natural flow, thus protecting the downstream ecological environment [5]. Bai, T. et al.
established a model of Xiaolangdi-Xixiayuan cascade hydropower stations’ joint peak-regulating
operation, which used Xixiayuan reservoir to regulate Xiaolangdi reservoir’s outflow volume,
thus alleviating the conflict between water regulation and power dispatching during Xiaolangdi
hydropower station’s operation process [6]. Taking the Three Gorges-Gezhouba cascade reservoirs as
an example, Cai, Z. et al. analyzed the law of the influence of Gezhouba reservoir’s water level on
the cascade hydropower generation during different operation states of the Three Gorges reservoir,
and obtained the control table of optimal water levels [7]. However, the above studies have only
considered either water quantity regulation or water head regulation. For instance, Bai, T. did not
consider Xixiayuan reservoir’s influence on Xiaolangdi reservoir’s tail water level in calculation. For
simplification, Cai, Z. used the ‘runoff operation’ hypothesis on Gezhouba reservoir, whose water level
stayed unchanged during calculation. So far, there has been no research that considers the combination
of water quantity regulation and water head regulation; hence the above models somewhat deviate
from the actual operation of cascade reservoirs, with limitations in their conclusions.

Additionally, in previous studies, to solve the cascade reservoirs’ short-term optimal operation
model, the calculation of such variables as downstream reservoir’s inflow and upstream reservoir’s
tail water level was often simplified (e.g., the upstream reservoir’s outflow was directly used as the
downstream reservoir’s inflow [8], the upstream reservoir’s tail water level was calculated via the
stage-discharge relation method [9], etc.). These simplifications neglect the impact of factors such as
water flow hysteresis and the aftereffect of tail water level variation, which makes model variables
deviate from reality and reduces model accuracy. Yet, in the study of reverse regulation, downstream
reservoir’s inflow and upstream reservoir’s tail water level are the key variables during calculation,
as they can reflect the connection of water quantity and water head between the upstream and the
downstream reservoirs. Therefore, it is important to accurately calculate these two variables. Research
about water flow hysteresis is focused mainly on flow travel time, which is generally treated as a fixed
value in primary studies [10]. In recent years, some scholars have proposed that flow travel time varies
dynamically with the change of upstream reservoir outflow [11]. Although this improvement takes into
consideration the influence of reservoir outflow’s rate on its travel speed, it is still regarded as a steady
flow without considering flow attenuation during travel. Consequently, there is still a certain deviation
between the study results and the actual situation. Apart from the stage-discharge relation method,
research on the variation rule of tail water level mostly adopts hydraulic methods that determine
reservoir tail water level by constructing and solving a hydrodynamic model of open-channel unsteady
flow [12,13]. However, hydraulic models are unsuitable for practical production due to their stringent
requirements for boundary condition data and slow calculation speed. Accordingly, to seek a universal
and efficient method for further exploration and accurate simulation of cascade reservoirs’ operation
process with various complex factors is of great significance in improving model accuracy.

Short-term optimal operation is mostly applied to reservoirs’ practical production. Therefore,
besides model accuracy, there is also high demand for solving methods of the model in terms of
computation time, calculation results, and so on. Among the many methods to work out reservoir
optimal operation models, Dynamic Programming (DP) is widely used thanks to its advantages
such as global convergence and high stability [14,15]. However, DP is restricted by the ‘curse of
dimensionality’ [16], which means that the amount of calculation increases exponentially with the
growing number of reservoirs. Moreover, the no-aftereffect condition is no longer satisfied in cascade
reservoirs’ short-term optimal operation when factors such as water flow hysteresis and the aftereffect
of tail water level variation are taken into account, which makes DP inapplicable. In this regard, Ji, C. et
al. tried to solve the model of cascade reservoirs’ short-term optimal operation with aftereffect by using
Multi-Stage Dynamic Programming (MSDP) [17]. This method has global convergence, but its problem
of ‘dimensionality curse’ is even more serious, which renders it inapplicable to practical production.
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Mei, Y. proposed Multi-Dimensional Dynamic Programming Approximation Algorithm [18], which
has a small amount of calculation, but may not produce the actual global optimal solution due to
approximation in the calculation process. Although modern intelligent algorithms, such as Genetic
Algorithm [19,20], Particle Swarm Optimization Algorithm [21,22], and Ant Colony Optimization
Algorithm [23,24], can solve problems with aftereffect in a short period of time, they tend to get stuck
in the local optimal solution. Until now, there has been no mature method that can fully meet the
requirements of actual production, so presently it is necessary to develop a method that can accurately
figure out the model’s global optimal solution in a relatively short time.

In view of the above problems in the study of short-term optimal operation of cascade reservoirs
under the effect of reverse regulation, this paper combines the two operation modes (‘electricity to
water’ and ‘water to electricity’) of Pankou-Xiaoxuan cascade hydropower stations to build a coupling
model of their short-term optimal operation, which considers both Xiaoxuan reservoir’s regulating
effect on Pankou reservoir’s outflow and the former’s backwater effect on the latter’s tail water level.
Through the BP neural network, factors such as water flow hysteresis and the aftereffect of tail water
level variation are studied. Furthermore, Accompanying Progressive Optimality Algorithm (APOA)
is put forward to solve the proposed coupling model, so as to provide scientific guidance for the
short-term optimal operation of cascade reservoirs under the effect of reverse regulation.

2. Coupling Model

2.1. Objective Function

The subject of this paper is Pankou-Xiaoxuan cascade hydropower stations located in Hubei
province in China. With an installed capacity of 500 MW, the Pankou hydropower station is an
important peak-regulating power station in the province. Its regular power operation is controlled by
Hubei Provincial Power Dispatching Center (a typical ‘electricity to water’ mode). With an installed
capacity of 50 MW, Xiaoxuan hydropower station, as the re-regulating hydropower station for Pankou,
mainly regulates Pankou’s outflow for power generation (a typical ‘water to electricity’ mode), which
is controlled by Han Jiang Hydropower Development Co., Ltd. (hereafter referred to as the Company,
Shiyan, China). Although the two hydropower stations have different dispatching superordinates,
they both belong to the Company as their decision maker. The Company hopes that through Xianxuan
reservoir’s reverse regulation over Pankou reservoir, the overall power generation efficiency of the
whole cascade hydropower stations can be improved. Long-term production practice has proved that
Xiaoxuan reservoir’s water level has a certain backwater effect on Pankou reservoir’s tail water level.
On one hand, while maintaining a high water level of Xiaoxuan reservoir is apparently beneficial
to its own power generation, it will raise the tail water level of Pankou reservoir, thus lowering its
productive water head and affecting its power generation efficiency, which means consuming more
water to complete the same power generation quota. On the other hand, Xiaoxuan reservoir can
operate at a low water level to enhance the power generation efficiency of Pankou hydropower station,
but at the cost of losing some of its own power generation benefits. Plus, when Pankou hydropower
station is in operation to regulate peak load, its outflow is so uneven that Xiaoxuan reservoir has to
re-regulate it to meet the demand for downstream ecological flow. Hence, for the economic operation
of the cascade hydropower stations, it is of crucial importance to determine the operation mode of
Xiaoxuan hydropower station that can reversely regulate Pankou reservoir’s outflow and water head
in a scientific manner.

Against the backdrop of coupling the two operation modes (‘electricity to water’ and ‘water to
electricity’), the aim of the cascade hydropower stations is to balance Pankou’s power generation
efficiency with Xiaoxuan’s generated energy. Accordingly, from the angle of the whole cascade
hydropower stations’ total energy, two optimization criteria—minimum energy consumption and
maximum generated energy—are integrated to develop the objective function in the coupling model of
Pankou-Xiaoxuan cascade reservoirs’ short-term optimal operation [25,26], as shown by Equation (1).
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Unlike the traditional objective function that involves water quantity, this one calculates water
energy, with Pankou’s power generation efficiency reflected by its hydroenergy consumption for
power generation (meaning that the less hydroenergy consumption, the higher its power generation
efficiency). In this way, the operation goals of both Pankou and Xiaoxuan are unified in the form of
energy, which avoids the emergence of a multi-objective problem. In addition, as the two optimization
criteria conflict with each other, the objective function is the subtraction of the former from the latter,
finally seeking the maximum power generation benefits of the whole cascade hydropower stations:

E = max
T

∑
t=1

[N2,t(q2,t, H2,t)Δt − 3600λ1,tq1,t(N1,t, H1,t)Δt] (1)

where E is the remainder of Xiaoxuan’s generated energy after deducting Pankou’s hydroenergy
consumption in the operation period, unit: kWh; T is the number of calculation periods over the
entire operation period; N2,t(q2,t, H2,t) is Xiaoxuan’s power output when its power generation flow and
water head are q2,t and H2,t respectively in period t, unit: kW, and is obtained according to the power
characteristic curve of its generator set; Δt is the length of the calculation period, unit: h, and Δt = 0.25
h; λ1,t is the energy efficiency coefficient of Pankou hydropower station in period t, unit: kWh/m3,
and its physical meaning is the amount of energy contained in every cubic meter of Pankou reservoir’s
water in period t; q1,t(N1,t, H1,t) is Pankou’s power generation discharge when its output and water
head are N1,t and H1,t respectively in period t, unit: m3/s, and is also obtained according to the power
characteristic curve of its generator set.

2.2. Constraint Conditions

Now that the coupling model combines the two operation modes, the constraint conditions must
contain particular constraints specific to these two modes, as shown by Equations (2) and (3), while
other regular constraints are expressed by Equations (4)–(10).

(1) Output command constraint

Because Pankou hydropower station operates in the ‘electricity to water’ mode, its output in each
period is already determined:

N1,t = Nt (2)

where Ni,t is the output of hydropower station i in period t, unit: kW (i = 1 for Pankou, i = 2 for
Xiaoxuan and the same hereafter); Nt is the output command from the superior dispatching center for
Pankou hydropower station in period t, unit: kW.

(2) Water level constraint at the end of the operation period

Because Xiaoxuan hydropower station operates in the ‘water to electricity’ mode, its water level
at the end of the operation period is already determined:

Z2,T+1 = Z2,end (3)

where Zi,t is the water level of reservoir i at moment t, unit: m; Z2,end is Xiaoxuan reservoir’s controlled
water level at the end of the operation period, unit: m.

(3) The upper and lower bounds of water level:

Zmin
i ≤ Zi,t ≤ Zmax

i (4)

where Zmax
i , Zmin

i are the upper and lower bounds of water level of reservoir i, respectively, unit: m.

(4) The upper and lower bounds of output:
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Nmin
i ≤ Ni,t ≤ Nmax

i (5)

where Nmax
i , Nmin

i are the upper and lower bounds of output of hydropower station i, respectively,
unit: kW.

(5) The upper and lower bounds of flow rate:

qmin
i ≤ qi,t ≤ qmax

i (6)

where qi,t is the power generation discharge of hydropower station i in period t, unit: m3/s, and in
this paper, it equals to reservoir outflow because water abandonment is not taken into consideration;
qmax

i , qmin
i are the upper and lower bounds of power generation discharge of hydropower station i,

respectively, unit: m3/s.

(6) Water balance constraint:

Vi,t+1 = Vi,t + 3600(Qi,t − qi,t)Δt (7)

where Vi,t, Vi,t+1 are the storage capacity of reservoir i at respectively the beginning and the end
of period t (i.e., moment t and moment t + 1), unit: m3; Qi,t is the inflow of reservoir i in period t,
unit: m3/s.

(7) Vibration zone constraint:
Ni,j /∈ [Nmin

i,j , Nmax
i,j ] (8)

where Ni,j is the output of generator unit j in hydropower station i, unit: kW; Nmin
i,j , Nmax

i,j are the upper
and lower bounds of the vibration zone of generator unit j in hydropower station i, unit: kW.

(8) Ecological flow constraint

To meet the demand for downstream ecological flow [27], Xiaoxuan reservoir’s outflow should
not be less than 16.7 m3/s:

q2,t ≥ qe (9)

where qe is the demand for downstream ecological flow, unit: m3/s, and qe = 16.7 m3/s.

(9) Auxiliary power constraint

To prevent the occurrence of inverse power transmission, when Pankou hydropower station halts
production, it is Xiaoxuan hydropower station that undertakes the auxiliary power supply mission for
the running of both stations:

N2,t ≥ Ns when N1,t = 0 (10)

where Ns is the auxiliary power need of the cascade hydropower stations, unit: kW, and Ns = 2000 kW.
The ecological flow constraint and the auxiliary power constraint can well reflect Xiaoxuan

reservoir’s regulation effect on Pankou reservoir’s discharge volume. Since the completion of Xiaoxuan
reservoir, Pankou reservoir no longer bears the task of downstream ecological water supply, and the
task of auxiliary power supply has been transferred to Xiaoxuan hydropower station. Therefore, when
Pankou hydropower station does not undertake peak-regulating tasks, all its generator units can stop
running instead of operating in the low efficiency zone just to meet the constraints of ecological flow
and auxiliary power supply.

3. Calculation of the Model’s Key Variables

Between the upstream and the downstream reservoirs, there is a certain hydraulic connection in
terms of water quantity and water head [28], as shown in Figure 1. Water quantity connection refers
to the upstream reservoir’s outflow turning into the downstream reservoir’s inflow after travelling
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through the interval river channel. Water head connection refers to that the downstream reservoir’s
backwater raises the water level of the interval channel, causing a jacking effect on the upstream
reservoir’s tail water level. Due to these two kinds of connections, the re-regulating reservoir can
adjust the upstream reservoir’s discharge volume and water head. Thus, the downstream reservoir’s
inflow and the upstream reservoir’s tail water level, which can respectively reflect these two types of
connections, become the key variables in the coupling model of Pankou-Xiaoxuan cascade reservoirs’
short-term optimal operation under the effect of reverse regulation. Computation of the key variables
has a critical influence on the model’s accuracy in that an error in their calculations will cause the
model’s results to deviate from reality, losing its instructive significance to practical production. Thus,
it is very important to calculate them accurately.

Outflow
Pankou

dam

Xiaoxuan
dam

Inflow

Interval 
inflow

Backwater surfaceNatural water surface

 

Figure 1. Schematic diagram of the cascade reservoirs’ hydraulic connection.

3.1. The Downstream Reservoir’s Inflow Considering Water Flow Hysteresis and Interval Inflow

In the cascade reservoirs, the downstream reservoir’s inflow is composed of the upstream
reservoir’s outflow and the interval inflow. The upstream reservoir’s outflow arrives at the downstream
reservoir with water flow hysteresis that mainly involves two parts. (1) It takes some time for the water
flow to travel from the upstream reservoir to the downstream reservoir. (2) During this travel process,
the upstream reservoir’s outflow, which is an unsteady flow, goes through not only displacement but
also attenuation to some degree [29]. Figure 2 illustrates the comparison between Pankou reservoir’s
outflow and Xiaoxuan reservoir’s inflow during a certain power generation process, from which it
can be seen that in contrast to Pankou reservoir’s outflow, Xiaoxuan reservoir’s inflow somewhat lags
behind and gets smoother. Water flow hysteresis makes it a complicated hydraulics problem as to
when and how Pankou reservoir’s outflow will reach Xiaoxuan reservoir.

 

Figure 2. Pankou’s outflow and Xiaoxuan’s inflow.

The dam sites of Pankou and Xiaoxuan are only 10.4 km apart, without any tributary in between,
and the interval catchment area is fairly small, so the interval inflow is often neglected in practical
production. However, long-term monitoring data show that on average Xiaoxuan reservoir’s inflow
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is slightly greater than Pankou reservoir’s outflow, so the existence of the interval inflow cannot be
ignored in order to improve the model’s accuracy. The interval inflow between Pankou and Xiaoxuan
is mainly formed by runoff generation and confluence in the interval basin, which largely depends
on the basin’s rainfall [30]. When the interval inflow is taken into consideration, the calculation of
Xiaoxuan reservoir’s inflow will become more complicated in that not only the evolution of water
current in the river but also the hydrologic cycle from precipitation to runoff is involved. Since the
physical mechanisms of these natural processes are not fully understood, it is difficult to accurately
simulate them. Hence in this paper, with masses of data, the BP neural network is used to figure
out the relationship between Xiaoxuan reservoir’s inflow and Pankou reservoir’s outflow as well as
the interval basin’s rainfall, so that the accurate value of Xiaoxuan reservoir’s inflow can be worked
out [31].

The BP neural network is a multilayer feedforward network trained by the error backward
propagation algorithm. As one of the most widely-used neural networks, it can approximate any
nonlinear function with any precision. Structurally, the BP neural network is divided into one input
layer, one output layer, and several hidden layers [32]. In the calculation of Xiaoxuan reservoir’s inflow,
the output layer is represented by Xiaoxuan reservoir’s inflow in the current period (Q2,t). As for
the input layer, Pankou reservoir’s outflow (q1,t~q1,t−4) as well as the interval basin’s precipitation
(Pt~Pt−4) in the current and the previous four periods are chosen as the primary data and screened by
the correlation coefficient method. It is demonstrated in Table 1 that the correlation coefficient between
Pankou reservoir’s outflow and Xiaoxuan reservoir’s inflow is smaller in the earlier period. For q1,t,
q1,t−1 and q1,t−2, their correlation coefficients with Q2,t are similar, whereas the correlation coefficients
of q1,t−3 and q1,t−4 with Q2,t are noticeably smaller. Therefore, q1,t, q1,t−1 and q1,t−2 are selected as the
input layer data. Compared with Pankou reservoir’s outflow, the interval basin’s precipitation has
a much smaller correlation coefficient, which changes little over time. Considering that the interval
inflow accounts for only a small portion of Xiaoxuan reservoir’s inflow, the precipitation Pt−1, with
the largest correlation coefficient with Q2,t in this regard, is selected as the input layer data. In 1989,
Cybenko, G. and Hornik, K. proved that the three-layer network (with one input layer, one output
layer, and one hidden layer) can simulate any complex nonlinear problems [33,34]. Therefore, one
hidden layer is set up whose node numbers are determined according to Equation (11) [35]:

h =
√

u + v + a (11)

where h is the number of nodes in the hidden layer; u is the number of nodes in the input layer; v is the
number of nodes in the output layer; a is an adjustment coefficient between 0 and 10, and according to
tentative calculation when a = 4 the neural network yields the best training results in this study.

After the structure of the neural network is established, the historical data of 2012–2016 are input
into the neural network for training. The neuron transfer function is a hyperbolic tangent function,
and after 10,000 times of training, the network is saved for later calculation of Xiaoxuan reservoir’s
inflow. Figure 3 shows the calculated Xiaoxuan reservoir’s inflow during the power generation process
mentioned before. Compared with the actual inflow, the inflow produced by the BP neural network
has a relative error of 1.11%, which is more accurate than that obtained by the translation method
(relative error: 3.84%), which only considers the travel time (i.e., Pankou reservoir’s outflow merely
translates into Xiaoxuan reservoir’s inflow).

Table 1. Correlation coefficients between input layer data and the output layer.

Input Layer Data q1,t q1,t−1 q1,t−2 q1,t−3 q1,t−4 Pt Pt−1 Pt−2 Pt−3 Pt−4

Correlation
Coefficient

0.91 0.89 0.88 0.83 0.79 0.19 0.20 0.19 0.19 0.18
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Figure 3. Calculation results of Xiaoxuan’s inflow.

3.2. The Upstream Reservoir’s Tail Water Level Considering the Influence of Dual Aftereffect Factors

During the operation of cascade reservoirs, under the backwater effect of the downstream
reservoir, the upstream reservoir’s tail water level is closely related to the downstream reservoir’s
water level. Different water levels of the downstream reservoir have different degrees of backwater
effect on the upstream reservoir’s tail water level. Figure 4 is the stage-discharge curve of Pankou
reservoir corresponding to different water levels of Xiaoxuan reservoir. Long-term practical production
shows that Pankou reservoir’s tail water level obtained by the stage-discharge relation method still
deviates from the actual value. This kind of deviation can be explained by two reasons. For one thing,
the tail water level-discharge curve is based on the assumption that the reservoir outflow is a steady
flow. However, in fact, it is an unsteady flow whose characteristics result in a certain aftereffect of
tail water level variation [36], that is, the tail water level in the current period is related to that in the
previous period. For another, it takes some time for Xiaoxuan reservoir’s backwater to reach Pankou
dam, meaning that Pankou reservoir’s tail water level in the current period is not necessarily influenced
by Xiaoxuan reservoir’s water level in the current period but the previous several periods [37], which
is another aftereffect of Pankou’s tail water level variation. Under the influence of such dual aftereffect
factors, Pankou’s tail water level in the current period is affected by three kinds of variables: Pankou’s
outflow in the current period, Pankou’s tail water level in the previous period, and Xiaoxuan’s water
level in the previous n (n is determined by the travel time of Xiaoxuan’s backwater) periods. As the
physical mechanism is very complicated, the BP neural network is again used for calculation.

 

Figure 4. Pankou’s stage-discharge curve.

Here, Pankou reservoir’s tail water level in the current period (DZ1,t) represents the output layer.
As for the input layer data, aside from Pankou reservoir’s outflow in the current period (q1,t) and its
tail water level in the previous period (DZ1,t−1), it is also needed to decide which periods of Xiaoxuan
reservoir’s water level are concerned. Similarly, Xiaoxuan reservoir’s water levels in the current and
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the previous four periods (Z2,t~Z2,t−4) are chosen as the primary data to be filtered by the correlation
coefficient method. From Table 2 it can be seen that the correlation coefficient between Xiaoxuan’s
water level and Pankou’s tail water level gradually decreases with time. For Z2,t, Z2,t−1 and Z2,t−2, their
correlation coefficients have little difference, while for Z2,t−3 and Z2,t−4 their correlation coefficients
are apparently smaller, which indicates that the time it takes for Xiaoxuan reservoir’s backwater to
reach Pankou is between 0 and 2 periods. Thus, Z2,t, Z2,t−1 and Z2,t−2 are selected as the input layer
data. The configuration of the hidden layer and the training parameters is similar to that described
in Section 3.1. After the training is completed, the network is saved for later calculation of Pankou
reservoir’s tail water level. Figure 5 shows the resulted tail water level variation of Pankou reservoir in
the same power generation process mentioned before. Compared with the actual variation, the results
of the BP neural network only produce a calculation error of 0.001 m, which is notably smaller than
the calculation error (0.027 m) produced by the stage-discharge relation method, thus proving the
advantage of the BP neural network.

Table 2. Correlation coefficients between input layer data and the output layer.

Input layer Data Z2,t Z2,t−1 Z2,t−2 Z2,t−3 Z2,t−4

Correlation
Coefficient

0.74 0.73 0.73 0.70 0.67

Figure 5. Calculation results of Pankou’s tail water level.

4. Model Solution

When factors such as water flow hysteresis and the aftereffects of tail water level variation are
taken into account, the decision variable (power generation flow) of the current period for the cascade
reservoirs is not only related to the state (reservoir water level) of this period but also the state of the
previous several periods. Since the ‘no aftereffect’ condition is not satisfied, the proposed model of
short-term optimal operation cannot be solved by DP. Although MSDP can deal with the problem
with aftereffect, it is restricted by a serious ‘curse of dimensionality’ [17]. The subject of this study is
taken as an example for further explanation. The short-term optimal operation of Pankou-Xiaoxuan
cascade reservoirs is an issue about the joint operation of two reservoirs. Nonetheless, as Pankou
hydropower station operates in the ‘electricity to water’ model, once the operation state of Xiaoxuan
hydropower station is determined, Pankou’s operation state will also be settled (by in-plant economic
operation calculation), which reduces the issue to an essentially one-dimensional problem. In this
one-dimensional scenario, suppose that the number of discrete points of the reservoir water level is
M and the number of interrelated periods is N (i.e., the state of the former N − 1 periods influences
the decision of the current period), then in each multi-stage calculation of MSDP there are MN+1

combinations of Xiaoxuan’s water level and the total amount of calculation is T·MN+1 with T times of
multi-stage calculation. Since the value of T·MN+1 grows exponentially with the increase in N, even
in a one-dimensional circumstance the dimensionality curse still emerges due to the interconnection
of N periods. As the number of dimensions increases to L (L > 1), the total amount of calculation
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will become T·(MN+1)L with (MN+1)L combinations of water level at each multistage, which is a more
serious problem of dimensionality curse. In view of this, we come up with an improved POA (i.e.,
APOA) to solve the model of the cascade reservoirs’ short-term optimal operation with aftereffect.

4.1. Basic Principle of APOA

POA is an improved DP that simplifies a complicated multi-stage decision problem into a series
of two-stage decision problems, considerably reducing the complexity and effectively mitigating the
dimensionality curse [38]. In contrast to POA, APOA has two facets of improvements.

(1) When Xiaoxuan hydropower station is being optimized, Pankou reservoir’s water level is
taken as the variable that spatially accompanies Xiaoxuan reservoir’s water level for calculation.
In each discrete computation where Xiaoxuan’s water levels in the current and the previous n periods
are known, the magnitude of Xiaoxuan’s backwater effect on Pankou’s tail water level is definite.
In addition, because Pankou’s tail water level in the previous one period is already known, in the
current period, Pankou’s tail water level is only related to Pankou’s outflow. Under the condition
of a definite output of Pankou hydropower station, its reservoir outflow can be obtained through
trial calculation. Its water level can then be figured out according to its inflow and outflow. Hence,
for each discrete water level of Xiaoxuan, there is only one corresponding water level of Pankou
and accordingly, one hydrograph of Pankou corresponding to each hydrograph of Xiaoxuan in the
operation period.

(2) In each two-stage calculation, the variables of the preceding related N − 1 periods are taken
as the temporally-accompanying variables of the current period for calculation. Considering the
interrelation of N periods, the decision of the current two-stage calculation is affected by those
decisions made in the previous N − 1 periods. APOA divides the problem with T periods into T − 1
sub problems, each of which includes two main calculation periods accompanied by N − 1 related
periods. As shown in Figure 6, in the calculation of period t and period t + 1, the state and the decision
of other periods (including the accompanying N − 1 related periods) are known, thereby effectively
tackling the aftereffect problem. In each two-stage calculation, there are M combinations of Xiaoxuan’s
water level and T − 1 times of two-stage calculation for one iteration, so the amount of calculation
is (T − 1)·M. If the precision requirement is satisfied after K times of iteration, the total amount of
calculation will be K·(T − 1)·M, evidently smaller than T·MN+1 produced by MSDP. As a result, APOA
can effectively alleviate the problem of dimensionality curse.

Figure 6. Schematic diagram of APOA.
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4.2. Calculation Procedure of APOA

The calculation procedure of APOA is detailed as follows:
Step 1: Determine the number of associated periods. Use the correlation coefficient method to

calculate the number of periods connected with the current period in terms of water quantity and
water head. If the first m periods are related to the current period in terms of Xiaoxuan reservoir’s
inflow and the first n periods are related to the current period in terms of Pankou reservoir’s tail water
level, then the number of the related periods can be calculated by Equation (12), where m = 2, n = 2
and N = 3 in this article:

N = max{m + 1, n + 1} (12)

Step 2: Train the BP neural networks. The BP neural networks are trained by inputting training
data, including the type of training data, starting and ending time, as well as the structure and
parameters of the neural networks, which are detailed in Sections 3.1 and 3.2. After the training is
completed, the neural network for calculating Xiaoxuan reservoir’s inflow (net1) and that for Pankou
reservoir’s tail water level (net2) are obtained.

Step 3: Set the initial solution. The selection of initial solutions has a major influence on the
convergence speed and computation time of APOA [39]. Long-term experience of the dispatchers
is often embodied in the operation rule of the hydropower station, according to which a relatively
optimal solution can be obtained. Thus, in this paper, such a solution is used as the initial solution.
It should be noted that in the initial solution, the initial water level of Xiaoxuan reservoir (Z0

2 = {Z0
2,1,

Z0
2,2, . . . , Z0

2,T+1}) is the most critical variable while that of Pankou reservoir (Z0
1 = {Z0

1,1, Z0
1,2, . . . ,

Z0
1,T+1}) is only the variable accompanying it.

Step 4: Optimize progressively. Carry out the optimization step by step from period 1 to period T.
When the calculation progresses to period t and period t + 1 (accompanied by the two related periods
of t − 2 and t − 1), fix Xiaoxuan reservoir’s water levels at all moments except that at moment t + 1
and calculate all the discrete points of its water level at that moment. Xiaoxuan reservoir’s inflow and
Pankou reservoir’s tail water level are calculated by the BP neural networks, as shown in Equation (13),
with Pankou reservoir’s water level acting as the variable accompanying Xiaoxuan’s water level. After
running through all the discrete points, select the optimal water level of Xiaoxuan reservoir (Z∗

2,t+1)
and correspondingly the optimal water level of Pankou (Z∗

1,t+1) at moment t + 1. Make Z1
2,t+1 = Z∗

2,t+1
and Z1

1,t+1 = Z∗
1,t+1.

Q2,t = net1(q1,t, q1,t−1, q1,t−2, Pt−1), Q2,t+1 = net1(q1,t+1, q1,t, q1,t−1, Pt)

DZ1,t = net2(q1,t, DZ1,t−1, Z2,t, Z2,t−1, Z2,t−2), DZ1,t+1 = net2(q1,t+1, DZ1,t, Z2,t+1, Z2,t, Z2,t−1)
(13)

Step 5: Iterative calculation. After Step 4 is executed, the first iteration completes and produces a
new solution Z1

2 = {Z1
2,1, Z1

2,2, . . . , Z1
2,T+1} accompanied by Z1

1 = {Z1
1,1, Z1

1,2, . . . , Z1
1,T+1}. Compare Z1

2
with Z0

2 in terms of the value of the objective function. If the difference between their values is less
than the calculation precision (ε), then the convergence condition is satisfied and Z1

2 (accompanied
by Z1

1) is the final solution. Otherwise replace the initial solution with Z1
2 and repeat Step 4 until the

convergence condition is satisfied.

5. Case Study

The Du River, the largest tributary of the Hanjiang River, is located across Shaanxi province and
Hubei province in China. Pankou-Xiaoxuan cascade hydropower stations, whose basic information is
listed in Table 3, lie in the upper reaches of the Du River, as shown in Figure 7. Under the ‘electricity to
water mode, Pankou hydropower station generates electricity in accordance with the daily instructions
(in the form of a 96-point load curve) from the superior dispatching center. In this paper, the operation
period is one day with 96 calculation periods lasting 15 min each. Considering the different conditions
among flood season, dry season, and transition season, 10 representative days are selected from each
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season of 2016–2017 for calculation. The results are analyzed in terms of model solving methods and
the patterns of reverse regulation.

Table 3. Parameters of Pankou-Xiaoxuan cascade hydropower stations.

Items Unit Pankou Xiaoxuan

Normal water level M 355 264
Dead water level M 330 261.3

Regulation volume 108 m3 11.2 0.0678
Regulation performance - annual regulation daily regulation

Installed capacity MW 500 50
Operation mode - ‘electricity to water’ ‘water to electricity’

Figure 7. The location of Pankou-Xiaoxuan cascade reservoirs.

5.1. Comparative Analysis of Model Solving Methods

Take 10 December 2016 as an example to develop the coupling model of Pankou-Xiaoxuan cascade
reservoirs’ short-term optimal operation and use DP, POA, MSDP and APOA, respectively, to work it
out. While water flow hysteresis and the aftereffect of tail water level variation are taken into account
in MSDP and APOA by using BP neural network to calculate Xiaoxuan reservoir’s inflow and Pankou
reservoir’s tail water level, the two factors are not considered in DP and POA where Pankou’s outflow
is directly taken as Xiaoxuan’s inflow and Pankou’s tail water level is obtained by the stage-discharge
relation method. The calculated results of each method are statistically summarized in Table 4, in which
the optimization margin refers to the ratio of the energy increase after optimization (the difference
between the two objective functions) to the actual generated energy.

Table 4. The statistics of calculated results.

Items Unit Actual DP POA MSDP APOA

Pankou’s hydroenergy consumption 103 kWh 1518.5 1519.4 1519.4 1518.9 1518.9
Xiaoxuan’s generated energy 103 kWh 267.7 297.5 297.5 307.4 307.4

Objective function 103 kWh −1250.8 −1221.9 −1221.9 −1211.5 −1211.5
Optimization margin % - 1.61 1.61 2.19 2.19

Computation time s - 673.10 86.56 9.43×105 156.37
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5.1.1. Comparative Analysis of the Objective Function Value of Each Method

MSDP has been theoretically proved to have global convergence, so on the premise of the same
calculation conditions (taking into account the water flow hysteresis, the aftereffect of tail water level
variation and the with same amount of discrete points), the objective function calculated by APOA
is compared with that calculated by MSDP in order to assess the calculated results of APOA. It can
be seen from Table 4 that for 10 December 2016, the objective function of APOA equals that of MSDP.
Among the other 29 representative days, there are 20 days where their objective functions are equal and
9 days where their objective functions are very close. According to the results of the 30 representative
days, the average optimization margin of APOA is 0.93%, only 0.03% less than that of MSDP, which
demonstrates the advantage of APOA.

Similarly, the comparative analysis of POA and DP can also illustrate the advantage of POA. It is
shown from Table 4 that the objective functions of DP and POA are different from those of MSDP and
APOA. This is due to their different calculation conditions. Thus, there is no point in comparing the
objective functions between the former two and the latter two. Instead, we make comparisons in terms
of the length of computation time and the calculation accuracy.

5.1.2. Analysis of Computation Time

In this case, the amount of calculation is T·M2 for DP and T·MN+1 for MSDP with the aftereffect
factors taken into consideration. With the number of discrete points M = 560 and the number of related
periods N = 3, the amount of calculation of MSDP is 313,600 times that of DP. However, Table 4 shows
that the computation time of MSDP is about 1400 times that of DP, far fewer than 313,600 times. This is
because MSDP imposes constraint on the feasible domain and leaves out those discrete points that do
not satisfy the constraints, saving a great deal of calculation time. Nevertheless, its computation time
of 262 h still cannot meet the efficiency requirement in practical production.

As an improved algorithm for alleviating the dimensionality curse of DP, POA is characterized by
an obviously smaller amount of calculation compared with DP, as demonstrated by the statistical results
from Table 4. Unlike the contrast between DP and MSDP, APOA has the same form of calculation
amount as POA (K·(T − 1)·M) despite considering aftereffect factors. No matter how the number of
iterations (K) may change, the change in the amount of calculation is linear rather than exponential,
so the amount of calculation for APOA and POA is in the same order of magnitude. Table 4 shows that
the calculation time of APOA is 156.37 s, which is 1.8 times that of POA but only 1/6000 that of MSDP.
This means that with the same calculation results, APOA substantially shortens the computation time
in comparison with MSDP, which can meet the efficiency requirement in actual production.

5.1.3. Analysis of Calculation Accuracy

The accuracy of calculation depends on how close the calculation result is to the actual process.
As is shown in Figure 8a, the outflow graphs of Pankou reservoir obtained by APOA and POA basically
coincide, with merely a slight difference that can be seen from the partially enlarged detail (the reason
will be analyzed in detail in Section 5.2). While the difference of Pankou’s outflow processes obtained
by the two methods is small, the calculated tail water level graphs differ distinctly, as is displayed
in Figure 8b. For POA, the shape of Pankou’s tail water level graph resembles that of the reservoir’s
outflow graph, with steep rises and falls. However, Pankou’s tail water level variation is a continuous
and slow process. The stage-discharge relation method used in POA only takes into account the impact
of Pankou’s outflow and Xiaoxuan’s water level in the current period and neglects the aftereffect of
tail water level variation, making the calculation results inconsistent with the reality. On the contrary,
the BP neural network used in APOA considers various factors that influence Pankou’s tail water level
and produces a relatively smooth graph, which tallies more with the actual situation. Therefore, APOA
has higher calculation accuracy than POA with respect to Pankou’s tail water level.

307



Water 2018, 10, 808

  
(a) (b) 

Figure 8. Comparison of Pankou’s calculated results between POA and APOA. (a) Pankou’s outflow
process; (b) Pankou’s tail water level process.

Next, we analyze from the angle of Xiaoxuan reservoir’s inflow. As the BP neural network
adopted in APOA takes water flow hysteresis into consideration, the corresponding inflow of Xiaoxuan
reservoir, as shown in Figure 9a, slightly lags behind and is smoother compared to POA. Due to water
flow hysteresis, Xiaoxuan’s operation strategy obtained by APOA, as signified by Xiaoxuan’s water
level process in Figure 9b and its output process in Figure 9c, also lags behind that obtained by
POA, especially around the periods when Pankou starts power generation. On that day, it is Pankou
hydropower station’s downtime until 6:30 when power generation begins, spurring an increase in its
outflow. In the calculation of POA, Pankou’s outflow is directly used as Xiaoxuan’s inflow, causing
Xiaoxuan to receive inflow at the exact moment and gradually increase its output as well as water level.
Yet actually, when Pankou starts operation, its generator units are at the climbing stage with a relatively
small outflow that travels a long time (about two periods) to reach Xiaoxuan. Accordingly, during
the two periods of 6:30–6:45 and 6:45–7:00 Xiaoxuan’s inflow is too little to keep the reservoir water
level rising while discharging water for power generation. Because of the low accuracy in calculating
Xiaoxuan reservoir’s inflow, the operation scheme produced by POA is against the natural law and
impractical in actual production. The calculation results of APOA, however, show that Xiaoxuan
reservoir’s water level does not rise until 7:00 when Pankou’s outflow from the previous two periods
has already got to Xiaoxuan. Therefore, Xiaoxuan does follow the rule of water balance, discharging
water for power generation and meanwhile raising reservoir water level. To sum up, owing to the
excellent performance of the BP neural network in the calculation of Xiaoxuan reservoir’s inflow, the
accuracy of APOA is higher than that of POA.

5.2. Analysis of the Reverse Regulation Rule

The optimal operation scheme obtained by APOA is compared to the actual operation scheme
in order to find out the reverse regulation rule and get the optimal operation mode of the cascade
reservoirs. Figure 10 is a comparison chart of the optimal and the actual operation schemes on
10 December 2016. During the actual operation, Pankou generates electricity as instructed, with
its water level and output process shown in Figure 10a, while Xiaoxuan’s water level and output
process are shown in Figure 10b. Between 0:00 and 6:30, the downtime of Pankou hydropower station,
Xiaoxuan hydropower station keeps operating with about 2 MW of output to meet the requirements for
auxiliary power and ecological flow, and its water level drops steadily and slowly. After 6:30, as Pankou
begins power generation, Xiaoxuan also increases its output until Pankou halts operation at 20:00.
Then Xiaoxuan’s operation returns to about 2 MW of output until the end of the operation period.
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Figure 9. Comparison of Xiaoxuan’s calculated results between POA and APOA. (a) Xiaoxuan’s inflow
process; (b) Xiaoxuan’s water level process; (c) Xiaoxuan’s output process.

 
(a) 

 
(b) 

Figure 10. Comparison between the optimal and the actual operation schemes. (a) Pankou;
(b) Xiaoxuan.

In contrast to the actual operation scheme, the optimal operation scheme produces a markedly
different operation strategy for Xiaoxuan. For one thing, after Pankou commences power generation,
Xiaoxuan’s water level steadily rises and nearly reaches the normal water level at 17:00, and keeping a
high water level yields greater output with the same flow rate. For another, after Pankou halts operation
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at 20:00, Xiaoxuan’s power generation remains efficient with about 16 MW of output as its water level is
still high. As a result, Xiaoxuan’s generated energy in the optimal operation scheme is 307.4 thousand
kWh, an increase of 39.7 thousand kWh from the actual situation (267.7 thousand kWh).

As for Pankou, the elevated water level of Xiaoxuan increases the backwater effect on its tail
water level and affects its power generation efficiency. However, it can be seen from Figure 10a that
the calculated hydrograph of Pankou virtually coincides with the actual one. In addition, it can be
obtained from Table 4 that the hydroenergy consumption of Pankou in the optimal operation scheme
is 1518.9 thousand kWh, only 0.4 thousand kWh more than the actual situation (1518.5 thousand kWh),
meaning that the backwater effect of Xiaoxuan on Pankou’s power generation efficiency is insignificant.

As far as the whole cascade hydropower stations are concerned, the elevated water level of
Xiaoxuan creates a growth in generated energy that is remarkably greater than the hydroenergy
consumption increase of Pankou caused by its fall in power generation efficiency. Moreover,
the optimization of Xiaoxuan’s storage and discharge leads to more efficient utilization of Pankou’s
outflow. Consequently, the value of objective function in the optimal operation scheme is 39.3 thousand
kWh greater than the actual value, with an optimization margin of 2.19%.

A primary conclusion can be drawn from these calculated results—to raise Xiaoxuan’s water level
(water head regulation) and keep its generator units working within the high-efficiency zone (water
quantity regulation) can boost the power generation benefits of the cascade hydropower stations.

Thus, to make the above conclusion more convincing, the other 29 representative days are also
analyzed. As the above analyses have involved the representative day in the dry season, Figure 11
only displays the results of 1 July 2017 (flood season) and 12 June 2017 (transition season). Besides, it
can be seen from Figure 10a that in the optimal scheme and the actual scheme, Pankou’s operation
processes are basically the same, and the focus of this article is Xiaoxuan’s re-regulating effect on
Pankou. Therefore, only Xiaoxuan’s operation schemes are displayed in Figure 11. It can be seen from
Figures 10b and 11 that whatever the season is, the calculated hydrographs of Xiaoxuan are above the
actual ones and that in the optimal operation scheme, Xiaoxuan hydropower station’s output is around
16 MW, 32 MW or 48 MW. When such output is assigned to its generator units, the generator units
operate in the high-efficiency zone (the rated output of Xiaoxuan’s generator unit is 16.7 MW, near
which the power generation efficiency is relatively high), which also verifies the above conclusion.

It should be noted that during Pankou’s downtime, if Xiaoxuan discharges water by efficiently
operating one generator unit, its water level will decline continually because of its small reservoir
capacity. If the downtime lasts long, to prevent the situation of a too low water level with no water
for use, Xiaoxuan has to generate electricity inefficiently with a flow that just satisfies the needs of
ecological flow and auxiliary power.

It is easy to understand that keeping Xiaoxuan’s generators operating in the high-efficiency zone
benefits the power generation of the cascade hydropower stations. As for the reason why raising
Xiaoxuan’s water level can boost the power generation benefits of the cascade hydropower stations, it is
discussed from two aspects: the efficiency of the generator units and the total water head of the cascade
hydropower stations. From the angle of generators’ efficiency, while Pankou hydropower station with
a high water head is affected mainly by power generation flow and insignificantly by a minor change
in water head, Xiaoxuan hydropower station with a low water head is sensitive to changes in water
head. Suppose the impact of Xiaoxuan’s water level variation on the cascade hydropower stations’
total water head is neglected (i.e., when Xiaoxuan’s water level is raised by 1 m, Pankou’s tail water
level will also rise by 1 m correspondingly and the cascade hydropower stations’ total water head stays
unchanged), then we design two operation schemes as shown in Table 5. On the basis of Scheme 1,
Scheme 2 raises Xiaoxuan’s water level by 2 m, thus increasing the water head of Xiaoxuan from 12 to
14 m while decreasing that of Pankou from 80 to 78 m. The calculation results show that with the same
power generation flow of 100 m3/s, Xiaoxuan sees an increase of 0.0198 in power generation efficiency,
much greater than the reduction of 0.0063 that Pankou suffers. Therefore, to raise Xiaoxuan’s water
level by 2 m means an increase of 0.0021 in the overall power generation efficiency.
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Figure 11. Comparison between optimal and actual operation schemes of Xiaoxuan, (a) 1 July;
(b) 12 June.

In fact, the water level variation of Xiaoxuan reservoir has some influence on the total water
head of the cascade hydropower stations. As is shown in Figure 1, the farther the backwater is from
Xiaoxuan dam, the closer the backwater surface gets to the natural water surface. It is found from
statistical analysis of historical data that an increase of 1 m in Xiaoxuan reservoir’s water level will
raise Pankou reservoir’s tail water level by about 0.6 m. Therefore, Scheme 1 should actually become
Scheme 3 after Xiaoxuan’s water level is raised by 2 m, as shown in Table 5. From the angle of the
cascade hydropower stations’ total water head, Scheme 3 uses 0.8 m more of water head than Scheme
1 and further elevates the overall efficiency compared to Scheme 2.

Table 5. Comparison of different operation schemes η = N/(9.81qH).

Items Unit Scheme 1 Scheme 2 Scheme 3

H1 m 80 78 78.8
H2 m 12 14 14
q1 m3/s 100 100 100
q2 m3/s 100 100 100
η1 - 0.6467 0.6404 0.6429
η2 - 0.8503 0.8701 0.8701
η - 0.6732 0.6753 0.6771

In summary, when Xiaoxuan hydropower station raises its operation water level, even though
Pankou’s water head will fall due to the backwater effect, the impact on the efficiency of Pankou’s
generator units is unnoticeable. Besides, the increment in Xiaoxuan’s water head can greatly enhance
the efficiency of its generator units and thus considerably increase its generated energy. In contrast, the
improvement of Xiaoxuan’s power generation benefits is more significant. Therefore, it is beneficial for
the cascade hydropower stations to raise Xiaoxuan’s operation water level.
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6. Conclusions

In this paper, Pankou-Xiaoxuan cascade reservoirs are taken as an example and integrated with
their practical production, a coupling model of their short-term optimal operation under the effect
of reverse regulation is developed and solved. Through analysis of the model’s calculation results,
Xiaoxuan reservoir’s reverse regulation effect on Pankou reservoir is studied from two facets (water
quantity and water head) and the optimal operation rules of the cascade reservoirs are obtained, with
the following conclusions:

1. On the basis of considering Xiaoxuan reservoir’s regulation on both water quantity and water
head of Pankou reservoir, the model takes into account both Pankou’s power generation efficiency
and Xiaoxuan’s generated energy to seek the maximum of overall power generation benefits
from the angle of the cascade hydropower stations’ total energy, which fits the requirements of
actual production. The calculation results show that the model can effectively enhance power
generation benefits of the cascade hydropower stations, which also verifies the model’s validity.

2. The BP neural network has excellent performance in exploring water flow hysteresis and the
aftereffect of tail water level variation, so that the accurate values of downstream reservoir’s
inflow and upstream reservoir’s tail water level can be obtained, which significantly improves
the coupling model’s accuracy. The proposed APOA can efficiently work out the short-term
optimal operation model of cascade reservoirs with aftereffect. With the merits and accuracy of
its calculation results demonstrated, APOA is proved to meet the demand of actual production.

3. As for the rule of reverse regulation, from the aspect of water quantity regulation, Xiaoxuan
reservoir should strategically store and discharge the inflow from Pankou reservoir and try to
discharge flow in the mode where its generator units are in the high-efficiency zone, so that this
portion of water can be utilized more efficiently; from the aspect of water head regulation, the
increase in Xiaoxuan’s generated energy brought by raising its operation water level is greater
than Pankou’s hydroenergy loss caused by the fall in its power generation efficiency. Therefore,
to raise Xiaoxuan’s operation water level is beneficial to power generation of the whole cascade
hydropower stations.

It should be noted that we need to balance water quantity regulation with water head regulation.
Excessive elevation of Xiaoxuan’s operation water level may result in lack of space for water quantity
regulation and even water abandonment of Xiaoxuan. Thus, it will be the focus of future research to
study how high Xiaoxuan’s operation water level should be raised, considering the uncertainty of
Pankou’s output.
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Abstract: During periods of significant water shortage or when drought is impending, it is customary
to implement some kind of water supply reduction measures with a view to prevent the occurrence
of severe shortages (vulnerability) in the near future. In the case of operation of a water supply
reservoir, this reduction of water supply is affected by hedging schemes or hedging policies.
This research work aims to compare the popular hedging policies: (i) linear two-point hedging;
(ii) modified two-point hedging; and, (iii) discrete hedging based on time-varying and constant
hedging parameters. A parameterization-simulation-optimization (PSO) framework is employed
for the selection of the parameters of the compromising hedging policies. The multi-objective
evolutionary search-based technique (Non-dominated Sorting based Genetic Algorithm-II) was used
to identify the Pareto-optimal front of hedging policies that seek to obtain the trade-off between
shortage ratio and vulnerability. The case example used for illustration is the Hemavathy reservoir in
Karnataka, India. It is observed that the Pareto-optimal front that was obtained from time-varying
hedging policies show significant improvement in reservoir performance when compared to constant
hedging policies. The variation in the monthly parameters of the time-variant hedging policies shows
a strong correlation with monthly inflows and available water.

Keywords: parameterization; simulation; optimization; direct policy search; hedging policy; shortage
ratio: Vulnerability; NSGA-II

1. Introduction

The rule or policy of any reservoir operation involves deciding the amount of releases to be made
from the reservoir to meet the specified demands for different purposes based on the “current storage
in the reservoir and the expected (likely) inflows to the reservoir” (available water). The standard
operation policy is a simple operating rule for a reservoir, which aims to meet the demand in each
period based on the available water in the current period. If the available water is higher than the
demand, then the demand is completely satisfied. If the available water is less than the demand,
then the available water is released towards meeting the demand. This policy is likely to result in
high volumes of deficits in the future periods of operation. In order to avoid severe water deficits
during drought periods or when drought is impending, hedging is done, which reduces water supplies
proactively and conserves more water for future use [1].

The trigger for the initiation and the termination of hedging, along with the amount of rationing to
be done in each time step, typically characterize a hedging rule. The parameters of a hedging rule can
be expressed as a function of water available in the reservoir, which is the sum of the current storage
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and the expected inflows into the reservoir. Bayazit and Unal [2] defined the two-point hedging rule
in terms of starting water availability (SWA), i.e., the volume of water availability above which the
reservoir release is hedged and ending water availability (EWA), i.e., the hedging is stopped and the
normal situation is restored. The effectiveness of hedging rules can be enhanced by having control
over the amount of water to be released during hedging. Srinivasan and Philipose [3,4] included the
hedging factor as a third parameter in addition to SWA and EWA to define the modified two-point
hedging rule. The hedging factor specifies the amount of hedging that is to be done in each time step.
They evaluate the trade-off among the reservoir performance indicators based on a large number of
pre-defined hedging policies, using Monte-Carlo simulation technique. In addition, these simulation
models do not yield optimal hedging rules.

Optimization models that make use of systems techniques have been employed in a number of
research works to identify the hedging rules either with regard to the economic outcomes, such
as benefit/loss functions [1,5,6] or performance outcomes, such as water supply reliability and
vulnerability [7–12]. The optimal appropriation of water can be done by analyzing the benefits
of current release against the benefits of storing water for future use as carryover storage [1]. Draper
and Lund [1] provided an analytical view of hedging rules and operations by deriving optimal hedging
policies, given a pair of benefit functions for current delivery and carry-over storage. You and Cai [5]
expanded the theoretical analysis of Draper and Lund [1] to develop a conceptual two-period model
for reservoir operation. Since it is difficult to derive the actual benefit/utility functions for current
delivery as well as carry-over storage, the water supply characteristics of the reservoirs are used as
surrogates to evaluate their performance.

Shih and ReVelle [8] used mixed-integer non-linear programming technique and polytope
search procedure to find the optimal linear hedging rule with starting water availability as the
only decision vector that is based on minimizing the maximum shortfall (vulnerability). Following
this, they also proposed an explicit two-phase discrete hedging rule and implemented the same
while using mixed-integer programming model [9]. This formulation was solved for a single critical
drought. Oliveira and Loucks [13] proposed a piecewise linear hedging rule to derive the optimal
hedging based operating policy for multi-reservoir systems using a genetic algorithm (GA). However,
the performance of the hedging rule was evaluated based only on the single objective of minimizing
the total deficit. Srinivasan and Kranthi [14] adopted a multi-objective simulation-optimization (S-O)
framework for piecewise linear hedging. The pareto-optimal solutions and the computational efficiency
of the multi-objective stochastic search-based optimization algorithm were improved by obtaining
initial feasible solution from a constant hedging parameter based S-O framework. Liu et al. [15]
derived the optimal reservoir operation rules using piecewise linear hedging based environmental
flows and economic objectives. Neelakantan and Pundarikanthan [16] developed an ANN-based
parameterization-simulation-optimization (PSO) framework while using discrete hedging policies to
obtain releases for multi-reservoir system. Sangiorgio and Guariso [17], developed a neural network
based implicit stochastic optimization (ISO) framework for multi-reservoir system. They have shown
that using ISO, a closed-loop control policy, is possible for multi-reservoir system. Ji et al. [18], proposed
a hedging polices for optimal reservoir operation based on a two-period reservoir simulation model
under simulation-optimization framework. It is observed that the two-period optimal hedging model
is able to improve the overall efficacy of the reservoir operation.

Tu et al. [19] developed a multi-objective mixed-integer quadratic programming model that can
simultaneously obtain the water allocation and new hedging rules. They have shown that new hedging
rules obtained while using the above method improve the performance of the reservoir. Celeste and
Billib [12] compared seven stochastic models to obtain optimal reservoir polices. Further, they have
discussed the benefits of parameterization-simulation-optimization (PSO) framework over implicit
stochastic optimization (ISO) and explicit stochastic optimization (ESO). Shiau [20], shown the merits
of the multi-period ahead hedging method when used in combination with the two-point hedging
rule of Srinivasan and Philipose [3,4] associating time-varying hedging parameters into the rule. It is
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shown that the multi-period ahead hedging improves the results over single period hedging rule. Later,
Shiau [21] derived analytical solutions for optimal hedging policies for a water supply reservoir by
explicitly incorporating the reservoir release and carryover storage targets. The optimal hedging policy
that was obtained from the analytical procedure was carried out for two-point hedging and one-point
hedging. Wang and Liu [22] developed a framework to include both the inflow forecast and naïve
hedging strategy to evaluate the performance of a water supply reservoir. They have used gridded
precipitation forecast from a climate model to obtain reservoir inflow forecasting. Spiliotis et al. [23]
adopted particle-swarm-optimization algorithm to derived optimal drought hedging rules that are
based on appropriate identification of activation thresholds and rationing factors. The use of predefined
activation functions reduces the number of parameters to be adopted in the optimization. Recently,
Xu et al. [24] used two criterion namely conditional value-at-risk (CVaR) and forecast uncertainty to
improve the efficacy of the reservoir operation under dry and extremely dry hydrological conditions.
They found that CVaR based hedging performs better in comparison to the expected value-based
hedging policy.

The main objective of this paper is to investigate the improvement in the performance of the
reservoir operation when subjected to time-varying hedging parameters in comparison to constant
hedging parameters. Most of the studies in the literature have adopted constant hedging parameters
to evaluate the performance of the reservoir operation. In this study, we compare three popular
hedging rules that are based on time-varying and constant hedging parameters. To the best of our
knowledge, a detailed comparison of time-varying (TV) and constant hedging policies have not been
reported. A parameterization-simulation-optimization (PSO) [25] or Direct Search Policy (DPS) [26]
framework was adopted for obtaining the Pareto-optimal hedging policies for the operation of a
single-purpose water supply reservoir. The optimal hedging policies are derived based on the reservoir
performance indices proposed by Hashimoto et al. [7]. In this study, two performance indices, namely
the shortage ratio and the period vulnerability (or maximum water shortage), are used for the two
objective functions. The vulnerability index defines the severity of the system when the system is in a
failure state (release is less than demand) [7]. On the other hand, the shortage ratio defines the expected
water shortage over the total operation period. These indices are conflicting with another i.e., when the
shortage ratio decreases, the maximum water shortage increases and vice-a-versa. The three hedging
rules used for reservoir operation form the core of the model (simulation part) and a multi-objective
reservoir performance optimization model is the driver of the framework. The decision variables
of the optimization model are the time-varying (monthly) parameters of the three hedging rules.
Similarly, the parameters of the constant hedging policies are used as the decision variable in the
optimization model.

Performance evaluation of the selected hedging policies from the pareto-optimal front is carried
out by reservoir simulation while using reservoir performance indicators, such as occurrence reliability,
volume reliability, resilience, mean period deficit, and mean event deficit. The case example used for
illustration is the Hemavathy reservoir in Karnataka, Southern India. Derivation of the pareto-optimal
hedging policies and the detailed evaluation of the same have been done using the observed
monthly stream flows into the Hemavathy reservoir for various percentages of demand levels.
The multi-objective evolutionary search-based technique (Non-dominated Sorting based Genetic
Algorithm (NSGA)-II) was employed to obtain the trade-off solutions. A performance comparison
between the three hedging rules is presented for the selected operating policies from the respective
Pareto-optimal fronts.

The remainder of the paper is organized as follows. Section 2 describes the case study and
the parameterization-simulation-optimization (PSO) framework, including the model formulation,
a detailed description of three popular hedging policies adopted in this study, and the basic steps that
are involved in multi-objective NSGA-II. Following this, the results and discussion are presented in
Section 3 aiming to bring out the efficacy of the time-varying hedging parameters. Section 4, outlines
the summary and conclusions of the present study.
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2. Methodology and Case Study

2.1. Parametrization-Simulation-Optimization (PSO) Framework

The parameterization-simulation-optimization (PSO) framework is developed in this study to
obtain the optimal trade-off between the two surrogate objective functions that are mentioned below,
for three of the common hedging rules, namely, (i) Two-point linear hedging; (ii) Modified Two-point
hedging; and, (iii) Discrete hedging. In all cases, the PSO framework is performed for three different
demand levels (namely 75%, 80%, and 85% mean annual flow). The model formulation corresponding
to the PSO framework is described in the following paragraphs.

2.1.1. Objective Functions

The choice of objective functions plays a significant role in improving the efficacy of the reservoir
management. The performance measures adopted in reservoir operation are based on [7]: (i) reliability:
reducing the number of failure periods and total deficit; (ii) resilience: time to recover the system from
a failure state; and, (iii) vulnerability: minimize the large magnitude of deficit either for a period or
event. It is to be noted that the maximizing the reliability or minimizing the shortages of the system
may lead to a larger magnitude of failure event [7], i.e., these performance measures are found to be
conflicting objectives for reservoir operation. In this study, the following conflicting objective functions
are adopted to derive optimal hedging parameters.

(i) Minimize the Period Vulnerability

Z1 = Minimize {VP} (1)

(ii) Minimize Shortage Ratio
Z2 = Minimize {SR} (2)

In Equation (1) Period Vulnerability (Vp) refers to the maximum single period deficit encountered
over the operation horizon, i.e.,

VP = max[Dt − Rt] (3)

where Dt denotes the demand during period ‘t’, Rt denotes the release made during period ‘t’.
In Equation (2), the Shortage ratio is computed as the ratio of the sum of total deficits to the sum of
total demands.

SR =

T
∑

t=1
[Dt − Rt]

Dt
(4)

where T = total number of periods of operation in the horizon considered.

2.1.2. Two-Point Linear Hedging Rule

Bayzit and Unal [2] developed two-point linear hedging rule (Figure 1), in which, when the water
availability falls below the starting water availability (SWA), the available water is released to satisfy
the demand, which leads the reservoir storage to zero. If the water availability is greater than the
ending water availability (EWA), hedging is stopped and normal operation is resumed. In case of
water availability is between SWA and EWA, the hedging is applied and partial demand is satisfied in
order to increase the storage (anticipating low flows in the future). Once the available water is more
than ending water availability, hedging is stopped and normal operation is resumed.

AWt = St + It (5)

Rt = AWt if AWt ≤ SWAt (6)
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Rt = WAt + (AWt − SWAt)×
(

Dt − SWAt

EWAt − SWAt

)
if SWAt ≤ AWt ≤ EWAt (7)

Rt = Dt if EWAt ≤ AWt ≤ K + Dt (8)

Rt = Dt if K + Dt ≤ AWt (9)

Spillt =

{
AWt − K − Dt if K + Dt ≤ AWt

0 else
(10)

St+1 = St + It − Rt − Spillt (11)

SWAt = α × Dt (12)

EWAt = Dt + (K × β) (13)

In Equations (5)–(13), K is the reservoir capacity, AWt denotes the available water during time
period ‘t’, St denotes the initial storage, St+1 the final storage, Rt the release, and Qt the inflows during
time period ’t’. In the optimization formulation of the two-point hedging rule has two parameters
α and β, which represents the starting water availability (SWAt) and ending water availability
(EWAt), respectively.

Figure 1. Two-point hedging policy (SWAt—Starting Water availability; EWAt—Ending Water
availability; Dt—Demand; and, t denotes the time period).

Srinivasan and Philipose [3,4], proposed a modified two-point hedging rule (Figure 2), in which
the hedging factor (HF) specifies the amount of rationing to be done in addition to SWA and EWA.
This answer the question “how much to hedge?” in addition to the starting and the ending periods
of hedging.

AWt = St + It (14)

Rt = AWt if AWt ≤ SWAt (15)

Rt = AWt (1 − HF) if SWAt ≤ AWt ≤ Dt (16)

Rt = Dt (1 − HF) if Dt ≤ AWt ≤ EWAt (17)

Rt = Dt if K + Dt ≤ AWt (18)
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Spillt =

{
AWt − K − Dt if K + Dt ≤ AWt

0 else
(19)

St+1 = St + It − Rt − Spillt (20)

SWAt = α × Dt (21)

EWAt = Dt + (K × β) (22)

0 ≤ HF ≤ 1 (23)

In Equations (14)–(23), K is the reservoir capacity, AWt denotes the available water during time
period ‘t’, St denotes the initial storage, St+1 the final storage, Rt the release, and Qt the inflows during
time period ‘t’. In the optimization formulation of the modified two-point hedging rule, has three
decision variables namely α, β, and HF.

Figure 2. Modified two-point hedging policy (SWAt—Starting Water availability, EWAt—Ending Water
availability, Dt—Demand, HF–Hedging Factor; and, t denotes the time period). Modified two-point
hedging rule.

2.1.3. Discrete Hedging Rule

Shih and Revelle [9] proposed the discrete hedging scheme in which rationing is done on demand
two phases based on the available water, as presented in Figure 3. In this rule, the trigger volumes
of available water are introduced, where k1, k2, k3 are the coefficients used to calculate V1p, V2p,
V3p, respectively.

AWt = St + It (24)

Rt = 0 if AWt ≤ V1p (25)

Rt = α1 × Dt if V1p ≤ AWt ≤ V2p (26)

Rt = α2 × Dt if V2p ≤ AWt ≤ V3p (27)

Rt = Dt if V3p ≤ AWt ≤ K (28)

Rt = Dt if AWt ≥ K (29)
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Spillt =

{
AWt − K − Dt if K + Dt ≤ AWt

0 else
(30)

St+1 = St + It − Rt − Spillt (31)

V1p = k1 × Dt (32)

V2p = k2 × Dt (33)

V3p = Dt + (k3 × (K − Dt)) (34)

0 ≤ α1 ≤ 1 (35)

0 ≤ α2 ≤ 1 (36)

k1 ≥ α1 (37)

k2 ≥ α2 (38)

α2 ≥ α1 (39)

0 ≤ k1, k2, k3 ≤ 1 (40)

k2 ≥ k1 (41)

Figure 3. Discrete hedging policy (Dt—demand, α1, α2-rationing factor; and, t denotes time period).

2.2. Performance Evaluation

The PSO framework will provide a number of pareto-optimal solutions corresponding to each
of the three hedging rules that are invoked. These pareto-optimal solutions that were obtained from
the framework need to be evaluated in detail for their operational performance over the time horizon
considered while using the reservoir simulation module. For the reservoir performance evaluation
over the operation horizon, the following performance indicators are computed.

(i) Occurrence-based reliability, the ratio of the number of times the demand is satisfied to the
number of times the reservoir is operated [7].

(ii) Resilience, the ratio of the number of times the system moved from failure to success to the total
number of periods the system was in a failure state [7].

(iii) Mean event deficit, the ratio of the total deficit volume encountered during the operation horizon
to the total number of failure events. Herein, ‘event’ denotes a sequence of failure periods.
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The high magnitude of event deficit encountered during an irrigation season is detrimental to
crop yield.

(iv) Event vulnerability is the maximum event deficit that is encountered during the operation horizon
of the reservoir.

2.3. Solution Technique

The technique adopted in this research work to solve the multi-objective optimization problem
is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), as proposed by Deb et al. [27].
This technique is known to be better than the traditional multi-objective optimization methods such
as ε -constraint method, weighted sum method in generating near-global pareto-optimal fronts.
This technique is suited for handling complex objective functions involving discontinuities, disjoint
feasible spaces, and noisy function evaluations [28]. The multi-objective optimization model is the
driver and the simulation model that is based on the hedging rules forms the engine of the framework.
The decision variables of the optimization model are the hedging rule parameters. The strings that are
generated from NSGA-II are evaluated for the two fitness functions while using the simulation model.
The near-(global) optimal search is based on the “survival of the fittest” principle of the evolution theory.
The improvements in the quality of the solutions are achieved through the genetic operators, selection,
crossover, and mutation. Elitist-based Non-dominated sorting, tournament selection, and crowded
comparison operator are a few of the special features that were implemented into NSGA-II to enhance
its speed, quality and diversity of the non-dominated solutions. The Multi-Objective Genetic Algorithm
(MOGA) input requirements are population size, number of generations, crossover probability,
mutation probability, and random seed. The other inputs that are required for running the simulation
module are inflows into the reservoir irrigation demands and the physical characteristics of the
reservoir and the choice of the hedging rule for the operation of the reservoir. The illustration of the
framework, including the steps involved in NSGA-II, is presented in Appendix A.

2.4. Case Study—Hemavathy Reservoir

The reservoir performance for the three selected hedging policies based on the PSO framework is
evaluated using Hemavathy Reservoir, located in the Upper Cauvery River Basin, in Southern India
(Figure 4). The salient features of the reservoir are: (i) total catchment area of 5910 km2; (ii) gross storage
capacity is 1048 Mm3; and, (iii) live storage capacity of 962.77 Mm3. In this study, we used monthly
inflows and irrigation demands for the reservoir operation model (Table 1). It can be observed from
Table 1 that most of the inflows are received between the months of June and November (~93%). While
the remaining months receives less than 10% of the total annual flow. Further, it is to be noted that
the reservoir storage exhibits a with-in year behavior, i.e., both filling and emptying occurs within the
operating year. A data set for a period of 58 years is used for the present study. For more details about
the reservoir salient features and inflow and demand characteristics, the readers are referred to [3].
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Figure 4. Location of Hemavathi Reservoir – Upper Cauvery Basin. Blue line indicates the river network.

Table 1. Mean monthly inflows and monthly target yields of River Hemavathy.

Month June July August September October November December January February March April May

Mean Monthly
Inflow (Mm3) 150 856 665 296 285 127 55 30 18 14 14 36

Target Yield (Mm3) 165 260 275 75 50 120 280 350 225 80 20 10

3. Results and Discussion

In this study, the efficacy of the time-varying (TV) hedging (TVH) is compared with that of the
constant hedging (CH) for three selected hedging policies, namely, two-point hedging (TPH), modified
two-point hedging (MTPH), and discrete hedging (DH). This results in a total of six cases are used for
the comparison studies (Table 2). The performance of each of the hedging policies has been evaluated
using various indices, such as period vulnerability, shortage ratio, occurrence reliability, volume
reliability, and resilience. In addition, the results are presented for three critical demand levels, namely
75%, 80%, and 85% of the mean annual flow.

Table 2. The list of hedging models (with acronyms) used for comparison.

Two-Point Hedging (TPH) Modified Two-Point Hedging (MTPH) Discrete Hedging (DH)

Time-Varying TV-TPH TV-MTPH TV-DH
Constant C-TPH C-MTPH C-DH

3.1. Selection of GA Parameters

For the three hedging policies that are considered in this study, sensitivity analysis is carried out on
NSGA-II parameters, namely, number of generations, population size, mutation probability, cross-over
probability, and random seed. Table 2 provides the details of the range of parameters considered
and the selected parameters that are based on the inter-comparison of the Pareto-optimal fronts. It
is observed from Table 2 that the population size (100), number of generations (300), and mutation
probability (0.01) remained constant for all of the hedging policies and across all the demand levels.
However, the cross-over probability and random seed are found to be sensitive in obtaining the near
optimal pareto-fronts and vary with hedging policies (Table 3).
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Table 3. Selected genetic algorithm (GA) parameters based on the sensitivity analysis for time-varying hedging
policies (two-point hedging (TPH), modified two-point hedging (MTPH), and discrete hedging (DH)).

GA Parameter Range
Selected Parameter

Two-Point Hedging
(TV-TPH)

Modified Two-Point
Hedging (TV-MTPH)

Discrete Hedging
(TV-DH)

Demand % 75 80 85 75 80 85 75 80 85

Population 50,100,200 100 100 100 100 100 100 100 100 100
Generation 100,300,500 300 300 300 300 300 300 300 300 300
Cross Over 0.6,0.7,0.8,0.9 0.7 0.8 0.9 0.8 0.7 0.7 0.6 0.7 0.7
Mutation 0.001,0.005,0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Random Seed 0.25,0.35,0.45
0.55,0.65,0.75 0.65 0.45 0.45 0.75 0.25 0.25 0.65 0.25 0.45

3.2. Comparison of Time-Varying and Constant Hedging Policies

The pareto-optimal fronts comparing the variation of selected best hedging policies for both the
constant and time-varying hedging parameters are presented in Figure 5. It is evident from the Figure 5
that the time-varying hedging policies are found to perform better in comparison to the constant
hedging policies at all demand levels that are considered in this study. However, the constant hedging
policies produce a wider range of pareto-optimal solutions when compared to the time-varying hedging
policies. In the case of time-varying hedging policies, TV-TPH has more range of pareto-optimal
solutions when compared to TV-MTPH and TV-DH. Further, the relative performance of the TV-DH
decreases as the demand level increases.

The detailed comparison of the performance indicators that were adopted in this study for each of the
hedging policies is presented in Tables 4–6. For brevity, the results for the 75% demand level is presented
here, as the similar performance was observed for the other demand levels. The results for the 80% and
85% demand levels are provided for the readers as supplementary material (Figure S1–S6 and Table S1–S6).
The pareto-front for each of the hedging models contains 100 possible trade-off solutions. For brevity few
solutions from the pareto-front are selected for comparison of the hedging policies. The selection includes:
(i) two extreme solutions related to the maximum shortage ratio and maximum vulnerability and (ii) three
intermediate solutions which includes the solution closest to the origin (i.e., the best trade-off solution).
It is to be noted that, in few cases, the number of feasible solutions show limited range due to restricted
parameter search space. In such instances, the number of intermediate solutions is restricted to one or two
intermediate solutions depending on the available range of pareto-front. In this study, for comparison,
three intermediate solutions (TV-A75, TV-B75, TV-C75) and two extreme solutions that include minimum
vulnerability (or maximum shortage ratio) (TV-Max S/R) and minimum shortage ratio (or maximum
vulnerability) (TV-Max Vul) for the 75% demand level are selected from the pareto-optimal fronts. Further,
these results are compared with the performance of the standard operating policy (SOP).
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Table 4. Reservoir performance indices at 75% demand level for two point linear—a comparison of
time-varying and constant hedging policies for selected compromising solutions (see figure 5).

Period
Vulnerability

Shortage
Ratio

Volume
Reliability

Occurrence
Reliability

Resilience
Mean Event

Deficit
Number of

Period Deficits

SOP 216.58 0.031 0.969 0.93 0.51 135.2 49

Time-Varying Hedging
TV-Max

S/R 64.44 0.084 0.916 0.461 0.275 89.89 376

TV-Max
Vul 136.97 0.031 0.969 0.841 0.387 79.2 111

TV-A75 80.01 0.048 0.952 0.595 0.355 53.24 282
TV-B75 102.08 0.036 0.964 0.728 0.344 61.12 189
TV-C75 119.23 0.032 0.968 0.829 0.479 62.47 119

Constant Hedging
C-Max

S/R 82.81 0.111 0.889 0.389 0.134 215.61 426

C-Max Vul 216.58 0.031 0.969 0.917 0.431 135.23 58
C-A75 82.81 0.111 0.889 0.389 0.134 215.61 426
C-B75 98.78 0.103 0.897 0.428 0.143 200.48 399
C-C75 120.56 0.084 0.916 0.501 0.164 163.29 347

Table 5. Reservoir performance indices at 75% demand level for modified two point linear—a
comparison of time-varying and constant hedging policies for selected compromising solutions (see
figure 5).

Period
Vulnerability

Shortage
Ratio

Volume
Reliability

Occurrence
Reliability

Resilience
Mean Event

Deficit
Number of

Period Deficits

SOP 216.58 0.031 0.969 0.93 0.51 135.2 49

Time-Varying Hedging
TV-Max

S/R 84.45 0.041 0.959 0.865 0.606 79.75 94

TV-Max
Vul 126.95 0.033 0.967 0.911 0.709 81.96 62

TV-A75 84.45 0.041 0.958 0.865 0.606 79.75 94
TV-B75 100.34 0.039 0.961 0.904 0.716 89.08 67
TV-C75 119.99 0.033 0.967 0.899 0.714 73.36 70

Constant Hedging
C-Max

S/R 67.41 0.115 0.885 0.395 0.133 227.33 422

C-Max Vul 214.72 0.031 0.969 0.917 0.431 135.75 58
C-A75 82.14 0.113 0.887 0.402 0.135 223.16 417
C-B75 100.21 0.108 0.892 0.391 0.13 217.32 425
C-C75 119.05 0.095 0.905 0.579 0.198 180.76 293
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Table 6. Reservoir performance indices at 75% demand level for discrete hedging—a comparison of
time-varying and constant hedging policies for selected compromising solutions (see figure 5).

Period
Vulnerability

Shortage
Ratio

Volume
Reliability

Occurrence
Reliability

Resilience
Mean Event

Deficit
Number of

Period Deficits

SOP 216.58 0.031 0.969 0.93 0.51 135.2 49

Time-Varying Hedging
TV-Max

S/R 69.57 0.05 0.95 0.79 0.74 51.52 146

TV-Max
Vul 123.61 0.033 0.967 0.856 0.43 84.19 100

TV-A75 78.53 0.044 0.956 0.866 0.7 74.2 93
TV-B75 98.35 0.037 0.963 0.888 0.628 83.76 78
TV-C75 123.61 0.033 0.967 0.856 0.43 84.19 100

Constant Hedging
C-Max

S/R 65.59 0.112 0.888 0.394 0.133 221.6 423

C-Max Vul 216.58 0.03 0.969 0.922 0.5 125.28 54
C-A75 79.18 0.097 0.903 0.395 0.128 198.02 422
C-B75 106.22 0.096 0.904 0.402 0.132 193.44 417
C-C75 123.5 0.084 0.916 0.46 0.152 162.81 377

Figure 5. Pareto fronts for two point linear hedging, modified two point hedging and discrete hedging
at 75%, 80% and 85% demand levels—Comparison of time-varying and constant hedging.

It is observed from Tables 4–6, that the hedging policies perform better when compared to SOP in
terms of reducing the period vulnerability of reservoir operation. It is to be noted that the SOP does
not account for the low reservoir inflows, and hence resulting in larger vulnerabilities. In addition,
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the hedging policies reduce the overall shortages by increasing the number of deficit periods when
compared to SOP (which has higher shortages and lower number of deficits). From the Tables 4–6,
it is evident that the time-varying hedging policies show considerable improvement in reservoir
performance indicators when compared to the constant hedging policies. Further, the time-varying
hedging rules produces relatively lower vulnerability, shortage ratio, and mean event deficit when
compared to constant hedging rules. For the selected solutions (A, B, C), the time-varying hedging
(TVH) policies show (relatively) decrease in shortage ratio by 60% and mean event deficit by 68%. In
addition, the TVH policies show an average increase in volume reliability and occurrence reliability by
6% and 65% respectively. However, the resilience of the TVH is more than the CH, which indicates
that the length of the events is longer when compared to the CH. It is to be noted that TVH is able to
improve the performance of the long-term reservoir operation by having longer low volume (event)
deficits when compared to shorter high volume (event) deficits by CH or SOP. The better performance
of the TVH polices is due to the significant decrease in number of deficit periods occurred and mean
event deficit during the entire reservoir simulation period when compared to CH. It is to be noted that
the significant decrease in deficit periods could be explained by the time-varying hedging/rationing
parameters of the policies. The variation of hedging parameters for the selected cases is presented in
the following paragraphs.

The variation of the three hedging parameters for 75% demand levels are presented in Figures 6–8.
The following points are observed

(i) The CH parameters are higher in many months when compared to TVH parameters, i.e., the hedging
factors (rationing as well as storage levels-based factors) are higher. For example, in the case of
two-point hedging policy (Figure 6): higher vulnerability solution (C-A75) the rationing is carried
out even though the reservoir storage levels are high.

(ii) For TV-TPH (Figure 6) it is observed that for the months April to August, the release is marginally
different from SOP, i.e., the deficits are minimized by utilizing the maximum available water
from the reservoir. It is evident from Figure 6 that the TVH parameters are adaptable to hedge the
available water from high inflow months and carry-over the same during the low-flow months
when compared to CH. In CH, although the hedging is carried out during the high-flow months,
due to constant parameters, it is forced to continue hedging in low-flow periods, resulting in
higher volume of deficits.

(iii) Similarly it is observed from Figure 7, that for MTPH most of the dry months TVH parameters
have low hedging factors, indicating that those months are simulated as a SOP. The rationing
is carried out during high inflow months and low storage levels as contradictory to constant
hedging policies.

(iv) In case of MTPH, the additional rationing factor HF plays a significant role in the variation of
parameters alpha and beta. It is observed from Figure 7 that the rationing factor is higher in case
of CH when compared to TVH, except for few months. In case of TVH, during October-January
and April-May is simulated as two-point hedging rule. It is noted that, due to time-varying
parameters in MTPH, it is able to efficiently hedge in demand (HF) and/or storage (alpha and
beta), unlike the CH. This could be one of the plausible reasons for MTPH to perform better when
compared to TPH. Further it is the variation of beta in both TPH and MTPH are similar, however
MTPH alpha is significantly different from TPH. This shows that starting water availability is
significantly affected by the rationing factor.

(v) It is observed from Figure 8, that, for discrete hedging policy, the time-varying parameters are
significantly different for all of the months in comparison to constant hedging. The K3 parameter
is has similar trend to beta parameter of TVH and MTPH.

(vi) It is evident that, most of the rationing for CH is carried out in zones 1, 2, and 3. However,
the TVH the rationing factors are dominant in high flow months when compared to low flow
months. Therefore, the TVH is able reduce the number of failure events when compared to CH.
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Figure 6. Time-varying hedging (TVH) and constant hedging (CH) parameters (alpha and beta) for
two-point hedging policy—A comparison between the selected pareto-optimal solutions for 75%
demand level.

Figure 7. Time-varying hedging (TVH) and constant hedging (CH) parameters (alpha, beta and hedging
factor) for modified two-point hedging policy—A comparison between the selected pareto-optimal
solutions for 75% demand level.
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Figure 8. Time-varying hedging (TVH) and constant hedging (CH) parameters (K1, K2, K3, α1, α2)
for discrete hedging policy—A comparison between the selected pareto-optimal solutions for 75%
demand level.

In addition, it is observed that the variation of the parameters for the selected pareto solutions for
TVH in most of the dry months is insignificant. However, in high flow months, there is considerable
variation in the parameters. Further, the parameters that are related to storage levels have more impact
on the performance of the reservoir in comparison to the rationing parameters.

4. Summary and Conclusions

The study examined the performance of the reservoir simulation model while using
time-varying hedging (TVH) policies and compared with the constant hedging (CH) policies.
A parameterization-simulation-optimization (PSO) framework is used for obtaining compromising
hedging policies for the operation of a reservoir. These hedging policies seek to obtain the trade-off
between minimizing shortage ratio and minimizing vulnerability, which are the two primary objectives
of a water manager for the operation of a reservoir during droughts. The NSGA-II algorithm is adopted
as an optimization tool. The performance comparison is carried out for three commonly used hedging
rules for reservoir operation. The case example that is used for illustration is the operation of the
Hemavathy reservoir, Southern India. The following conclusions are drawn from this research:

(i) The sensitivity analysis on NSGA-II parameters indicated that the cross-over probability and
random seed are found to be sensitive when compared to population size, number of generations,
and mutation probability.

(ii) Both the TVH and CH yield better alternative solutions in comparison to SOP, in terms of lower
period vulnerabilities and shortage ratios.

(iii) The reservoir performance has significantly increased with TVH when compared to CH.

329



Water 2018, 10, 1311

(iv) The decrease in number of deficits and mean period vulnerability are the key factors for better
performance of the TVH

(v) The hedging parameters for TVH indicate less rationing in low reservoir inflows and lower
storage levels when compared to CH rationing, which is constant irrespective of inflows and
storage levels.
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Appendix

The following Figure A1 presents the steps involved in parametrization-simulation-optimization
framework. The framework consists of two major components, namely, the optimization algorithm
(NSGA-II) and reservoir simulation model.
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Figure A1. Block diagram of PSO frame work for single purpose reservoir operation.
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Abstract: Modelling flow duration curves (FDCs) has long been a topic of interest since it is widely
used in various hydrological applications. Most studies related to the estimation of FDCs in ungauged
or partial gauged basins focus primarily on using climate and catchment characteristics to regionalize
FDC at some single time scale. However, the relationship of FDCs at various time scales are rarely
analyzed or studied. Here, we propose two methods, which are Modelled FDC Parameter comparison
(M-FDC-P) and Empirical FDC Ratio comparison (E-FDC-R), to study the quantitative relationship
between daily and monthly FDCs. One method M-FDC-P, selects a Kappa (KAP) distribution to
represent the characteristics of the FDCs and then analyzes the relationship between KAP parameters
of modelled FDCs at different time scales. Results indicate that three out of four parameters have
strong correlations between FDCs at daily and monthly time scales. The other method, E-FDC-R,
compares the quantitative relationship between daily and monthly empirical FDCs with given
exceedance probabilities. The Power function is used for fitting the ratio-exceedance probability
curves. In addition, the simulated daily FDC derived from monthly FDC can be very consistent with
the observed daily flow records when the two parameters of power function are quantified precisely.
These results clearly indicate that there are strong connections between daily and monthly FDCs,
and monthly FDC can provide valuable information for daily FDC estimation. Since flow records at
a large time scale are easier to obtain, daily FDC could be derived from monthly FDC by considering
the inherent relationships between FDCs at different time scales, which is not sufficiently realized in
previous studies.

Keywords: Kappa distribution; parameter relation; partial gauged basin; power function; ratio curve;
ungauged basin

1. Introduction

The flow duration curve (FDC), which illustrates the percentage of time with which daily, monthly
or some other time interval flows are equaled or exceeded over a historical period for a particular river
basin, is recognized as one of the most important and widely used signatures of catchment runoff
response [1]. The FDC is often interpreted as the complement of the cumulative distribution function
of the flow, which provides a graphical representation of the relationship between the frequency and
magnitude of flows, making it a compact signature of a catchment’s functioning [2,3].
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However, the modeling of FDCs has proven elusive, because of the complicated dynamics existing
in flows, such as fractal and multifractal behavior [4], chaos-like dynamics [5–7], and periodicity in
the mean, standard deviation, and skewness [8]. For example, at the daily time scale, daily flow is
a complex time series with flow values ranging over many orders of magnitude [9]. It is very difficult
to characterize the probability distribution that can approximate daily flow precisely.

At present, major studies related to the estimation of FDCs in ungauged or partial gauged basins
focus primarily on statistical methods, which can be divided into three types [10,11]. The first one is
the regression method, which involves establishing the relationship between flow with exceedance
probabilities (or flow durations) and a set of climate and catchment characteristics [12–15]. The second
one is the index method, which includes regionalization of parameters that represent the distribution
function of FDC [16–18]. When no streamflow records are available, regional FDCs are used to
synthesize FDCs [19]. The third one is the geostatistical method, which involves relying on kriging
methods to produce predictions of hydrologic phenomena at ungauged sites with the combination
of the information collected at neighboring gauging stations [20]. Over the past decade, geostatistical
approaches predicting streamflow indices in ungauged basins have become increasingly popular [21–24].

However, as it can be seen, the above researches related with FDC mainly focus on a certain
time scale, such as daily or annual. Except very few studies, the existing literature rarely concerns or
analyzes the relationships among the FDCs at different time scales. Since FDCs at daily or monthly or
annual time scale have different usages in the hydrology [9,25], and flow records at large time scale are
easier to obtain, we are curious about the relationship between FDCs at different time scales. Are there
any connections among the FDCs at different time scales? Is the information in FDC at large time scale
implicit in small time scale? Can large scale FDCs provide some reference for small scale FDC?

To answer these questions, this paper comprehensively studies the correlations between FDCs at
different time scales, especially for daily and monthly FDCs. The expected research results will be very
important and useful for ungauged or partial gauged basins, which often just have flow records at
larger time scale. To achieve this objective, the paper is structured as follows: Section 2 proposes the
methodology to calculate the correlations between FDCs at different time scales. Section 3 describes
the study area and data used. In Section 4, the variation characteristics of FDCs at different time scales
and the correlations between different FDCs are revealed. Section 5 provides a detailed discussion of
the results. The last section summarizes the conclusions of this study.

2. Methodology

In the present study, the correlations between FDCs at different time scales are studied by applying
two types of methods. One method, called the Modelled FDC Parameter comparison (abbreviated
as M-FDC-P), is to calculate the correlations between the parameters of modelled FDCs at different
time scales. The other one, called the Empirical FDC Ratio comparison (abbreviated as E-FDC-R), is to
compare the ratio relationship of different empirical FDCs with given exceedance probabilities.

2.1. M-FDC-P Method

M-FDC-P method first selects a specific probability distribution for modelling FDCs at different
time scales and then compares the correlations between the probability distribution parameters of
FDCs. By doing so, it is vivid to see to what degree the parameters are correlated, and which parameter
is obviously strongly or weakly correlated.

Previous studies have noted that a complex distribution with at least four parameters is needed
to approximate the probability distribution of the daily streamflow [2,16]. Blum et al. [9] demonstrated
that four-parameter Kappa (KAP) distribution outperformed other three-parameter distributions and
could provide a very good fit to the distribution of daily streamflow across most of the US. KAP
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distribution [18,25,26] is, therefore, selected as a probability distribution for modelling FDCs at different
time scales, and its function is defined as follows:

F(x) =
{

1 − h
[

1 − k
α
(x − ξ)1/k

]}1/h
(1)

where ξ is a location parameter, α is a scale parameter, and k and h are shape parameters.
The corresponding quantile function is described as:

x(F) = ξ +
α

k

{
1 − (

1 − Fh

h
)

}1/h

(2)

KAP distribution is a base function of many commonly used three-parameter probability
distributions. When k �= 0, the general Pareto, generalized extreme value and generalized logistic
distributions are all special cases of KAP distribution for h = 1, h = 0 and h = –1, respectively.

KAP distribution parameters are usually estimated by the method of L-moments, in which the first
p (number of the unknown parameters in the distribution, 4 for KAP distribution) sample L-moments
or L-ratios is equaled to the corresponding population quantities. Estimates of L-moment ratios exhibit
substantially less bias than ordinary moment ratio estimators and are resistant to the influence of data
outliers [26]. Vogel and Fennessey [1], Hosking and Wallis [26] among others have described and
summarized the advantages of L-moments, and therefore they are not reproduced herein. The detail
description of the theory of L-moments and parameter estimation of KAP distribution can be found
in [27,28].

When the probability distribution function is chosen, parameter is the only factor that affects the
variation of the probability distribution. Finally, the correlation among KAP distribution parameters at
different time scales are evaluated by the most widely used linear correlation coefficient to analyze the
relationship between FDCs at different time scales.

2.2. E-FDC-R Method

The above M-FDC-P method uses theoretical probability distribution to model FDCs and then
compares the relationship between parameters at different time scales, which may not be universally
applicable due to the subjective choice of the probability distribution function. Therefore, the study also
selects another way, called E-FDC-R, which does not consider specifying any probability distribution.
The steps of the E-FDC-R method are presented as follows:

1. Estimation of the empirical FDCs. An empirical FDC is constructed by ranking flows at specific
time scales from all recorded years and plotting them against an estimate of their exceedance
probability, known as a plotting position [1]. The first step in empirical FDC construction is to
sort flow data from highest to lowest. For the probability with which each flow is exceeded,
the Weibull plotting position is then used, as it provides an unbiased estimate of exceedance
probability, regardless of the underlying probability distribution of the ranked observations [1].
The Weibull plotting position is described as follows:

p =
m

N + 1
× 100% (3)

where p is the exceedance probability for the mth flow data, and N is the number of the total flow
records. Plot p on x axis and the corresponding flow (the mth flow value) on y axis. The plotted
dots and the x and y axis form the empirical FDC.

2. Calculation of the ratios between empirical FDCs. Firstly, sample a series of flow with pre-selected
exceedance probabilities of empirical FDCs at different time scales, and then calculate the ratios
of flow values at different time scales with given exceedance probabilities. Thus, the quantitative
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relationship of FDCs at different time scales is achieved. It should be noted that the number of
pre-selected exceedance probabilities needs to be large enough to sufficiently represent the ratio
relation of FDCs. Secondly, the quantitative relationship is analyzed in order to find a certain
function to represent the quantitative relationship between FDCs.

3. Evaluation of Modelled FDC. Once the specific function is obtained, the FDC at smaller time
scale can be derived via the empirical FDC at larger time scale. To evaluate the performance of
FDC at smaller time scale to reproduce observations, a measure of the standardized mean square
error commonly referred to as Nash–Sutcliffe efficiency (NSE) is used. The description of NSE is
introduced in [9], and hence not reproduced herein.

3. Study Area and Data

To keep the accuracy of the research data and the repeatability of the research, the international
Model Parameter Estimation Experiment (MOPEX) data set is used in this study. The data set is
described by Duan et al. [29] and can be downloaded from ftp://hydrology.nws.noaa.gov/. This data
set includes mean areal precipitation, potential evaporation, daily streamflow, and daily maximum and
minimum air temperature with an adequate number of precipitation gauges. As this study focuses on
FDCs, only the streamflow for 219 catchments in the MOPEX data set is selected for analysis. Most of
the streamflow data are included in the Hydroclimatic Data Network (HCDN) [30], which includes only
gauges believed to be unaffected by upstream regulations [31] and therefore considered to represent
near-natural hydrological conditions, without the need to worry that modifications to streamflow
could have substantial impacts on FDCs [10,32]. The MOPEX data set consists of 56 years of daily
streamflow from 1948 to 2003, which is long enough to construct FDCs. The catchment locations and
boundaries are shown in Figure 1.

Figure 1. Locations and boundaries of 219 MOPEX catchments.

4. Results and Analysis

4.1. Empirical FDCs Variation with Different Time Scales

To see how the FDC variations with time scales, Figure 2 displays the empirical FDCs for
a randomly selected catchment (No. 1064500) at time scales from 1 day to 365 days. It is evident
from Figure 2a that the empirical FDCs change slowly with time scales, which means two FDCs could
be very alike when their time scales are not much different, indicating that information of FDC at
large time scale might be somewhat implicit in small time scales. FDC at a time scale of 1 day is the
steepest (having largest slope) with obvious high flow values for low exceedance probabilities and low
flow values for high exceedance probabilities, which then becomes flatter as the time scale gets larger.
This is due to the fact that extreme flow events usually occur at the smaller time scale, and larger time
scale flow will aggregate the difference, therefore resulting in flat FDC.
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Figure 2b shows the empirical FDCs at time scales 1, 7, 15, 30, 90, and 365 days, corresponding
to daily, weekly, half-monthly, monthly, seasonally, and yearly FDCs. The empirical FDCs at 1 day
to 30 day time scales are very similar. Obvious differences occur when the time scale is larger than
90 days. Therefore, it is logical to investigate the possibilities of estimating daily FDC by using monthly
flow data, since monthly flow data is far easier to obtain in the real world.

 
(a) (b) 

Figure 2. Empirical flow duration curve (FDC) variations with time scales for a randomly selected
catchment. (a) Time scales from 1 day to 365 days. (b) Time scales at 1, 7, 15, 30, 90, and 365 days.

4.2. Relationships of FDCs Derived via M-FDC-P

The daily flow data is averaged at different time scales and then fitted to a KAP distribution,
and the relationships of the parameters of the KAP distribution is studied. As demonstrated earlier,
the empirical FDCs at 1 to 30 day scales are very similar and might have strong correlations, therefore,
this paper concentrates research interest on time scales from 1 to 30 days.

To assess how the KAP distribution parameters vary across time scales, Figure 3 presents the
average of four KAP parameters of modelled FDCs for 219 catchments at time scales from 1 to 30 days.
It can be seen that all the parameters change gradually with these time scales, some parameters even
show a distinct changing trend. The maximum ξ (~−0.4) occurs at a time scale of 1 day and then ξ

decreases step by step, and finally stays steady around −0.8 after 19 days. For parameter α, it increases
with time scales from 1 day to 30 days, with a minimum 1.1 at 1 day scale and a maximum around
2 at the 29 day scale. k is very similar to α; it increases along with all the time scales from negative
to positive, and is very closed to zero at a time scale of 16 days. Parameter h is a little complicated
compared to other parameters, for it first increases from 1 day to 11 day time scales and then decreases
slightly until 30 day time scales.

The correlations of the four KAP distribution parameters for 219 catchments at different time scales
are also studied. The linear correlation coefficients between four parameters at 1, 7, 15, and 30 day
time scales are calculated in Table 1. For parameter ξ, all the correlation coefficients exceed 0.85,
indicating very high correlations exist in parameter ξ at 1 to 30 days. The linear correlation coefficients
between 1 day and other days become smaller as the time scale gets larger, so does the other time
scales. It can also be seen in Table 1, except that the correlation coefficient for α between the largest
time scale difference of 1 day and 30 day is 0.835; all the other correlation coefficients are higher or
much closed to 0.9, which also indicates that high correlations exist in parameter α at 1 to 30 day.
However, when compared to ξ, the correlations of α at different scales are a little weaker. When looking
at parameter k, the linear correlation coefficients are dramatically lower than parameters ξ and α, with
lowest correlation coefficients between 1 day and 30 day less than 0.5, indicating very weak correlation.
The correlation coefficients for parameter h between 1 day and other days become smaller as the time
scale gets larger, just like other parameters. The linear correlation coefficients for h are the highest of
all the parameters, with the lowest correlation coefficient between 1 day and 30 day still passing 0.94,
indicating an extremely strong correlation.
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Figure 3. Variations of average four-parameter Kappa (KAP) parameters at time scales from 1 day to
30 day; (a) parameter ξ; (b); parameter α; (c) parameter k; (d) parameter h.

In addition, the relationships of the four parameters at different times are also studied by plotting
corresponding parameter values for all the catchments. For illustration, the four parameters at the
largest time scale difference of 1 day and 30 day are plotted in Figure 4. For parameter ξ, most of
the points lie in or very near to the regression line. By comparing the linear correlation coefficients
and the plot, it is easily to see the degree to which ξ1 can be linear regressed by ξ30. It can also be
seen in Figure 4, that although most of the points lie in or very near to the regression line, there are
more points far away from the regression line compared to parameter ξ. Meanwhile, these points are
very centrally distributed, with a large proportion of points falling in the region bounded by α1 less
than 2 and α30 less than 3. When looking at parameter k, the points are much dispersed distributed,
and only a few proportion of the points lie in or near to the regression line. Further, these points do
not follow a clear relationship, which indicates k30 is far less informative to estimate k1 and more
information should be incorporated. For parameter h, it can be seen that except few points away from
the regression line, most of the points lie in or very near to the regression line, which indicates that
simple linear regression can have good performance for estimating h1 when only h30 is available.

338



Water 2018, 10, 1008

T
a

b
le

1
.

Li
ne

ar
co

rr
el

at
io

n
co

ef
fic

ie
nt

s
be

tw
ee

n
fo

ur
K

A
P

pa
ra

m
et

er
s

at
di

ff
er

en
tt

im
e

sc
al

es
.

P
a
ra

m
e
te

r
ξ

α
k

h

T
im

e
S

ca
le

1
D

a
y

7
D

a
y

1
5

D
a
y

3
0

D
a
y

1
D

a
y

7
D

a
y

1
5

D
a
y

3
0

D
a
y

1
D

a
y

7
D

a
y

1
5

D
a
y

3
0

D
a
y

1
D

a
y

7
D

a
y

1
5

D
a
y

3
0

D
a
y

1
da

y
1

0.
95

9
0.

90
1

0.
85

8
1

0.
95

3
0.

89
3

0.
83

5
1

0.
86

7
0.

65
4

0.
47

5
1

0.
98

7
0.

96
7

0.
94

0
7

da
y

0.
95

9
1

0.
98

2
0.

95
4

0.
95

3
1

0.
98

1
0.

94
1

0.
86

7
1

0.
93

1
0.

81
7

0.
98

7
1

0.
99

2
0.

97
3

15
da

y
0.

90
1

0.
98

2
1

0.
99

0
0.

89
3

0.
98

1
1

0.
98

5
0.

65
4

0.
93

1
1

0.
96

2
0.

96
7

0.
99

2
1

0.
99

2
30

da
y

0.
85

8
0.

95
4

0.
99

0
1

0.
83

5
0.

94
1

0.
98

5
1

0.
47

5
0.

81
7

0.
96

2
1

0.
94

0
0.

97
3

0.
99

2
1

339



Water 2018, 10, 1008

Figure 4. Scatter plots of four parameters at time scales 1 day and 30 day; (a) parameter ξ; (b); parameter α;
(c) paramter k; (d) parameter h.

4.3. Relationships of FDCs Derived via E-FDC-R

Here we also focus research interest on the correlation between the FDCs at 1 day and 30 day.
The flow values corresponding to 1 day and 30 day are sampled from the exceedance probabilities
0.5% to 99.5% with 0.5% as the sample interval. The total number of the sampled value is 199, which is
large enough to analyze the quantitative relationship of FDCs at two time scales.

The ratios of FDC flow values at time scale 1 day to 30 day corresponding to sampled exceedance
probabilities are shown in Figure 5. It is evident from Figure 5a that the ratio lines have distinct decreasing
trend, these lines firstly decrease dramatically within 20% exceedance probability and slightly decrease
thereafter. This is easy to understand that in flood season, maximum daily flow is certainly much
higher than the monthly average, so the ratios at low exceedance probabilities are very high. While in
non-flood season, minimum daily flow is also far lower than the monthly average, so the ratios at
low exceedance probabilities are very low. Consequently, the ratio lines clearly show that daily FDC
has higher flow values for low exceedance probability and lower flow values for high exceedance
probability compared to monthly FDC, which is also consistent with Figure 2. It should also be noted
that most of the curves reach 1 at less than 10% exceedance probability, consistent with [33], in which
daily and monthly FDC curves normally cross (representing the ratio equals to 1) between the 1% and
10% exceedance probability in South Africa.

Figure 5. Ratios of daily to monthly FDCs at given exceedance probabilities; (a) conventional coordinates;
(b) double logarithmic coordinates.
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Seen from Figure 5a, the ratio relationship appears to be a power function, we apply the log-log
transformation to the ratio relationship. It is evident from Figure 5b that the relationship between
ratio value and exceedance probability is overall near-linear in the log-log plot, except a very small
proportion in the very high exceedance probability. Here, the power function is used to fit the ratio
curves as follows:

y = ax−b (4)

where x is the exceedance probability; y is the ratio value.
For each catchment, the parameter a and b are estimated and shown in Figure 6. The parameter a

for all the catchments is positive and less than 1. This is due to the fact that the ratio is less than 1 for
medium and has high exceedance probability. Despite for only two catchments, the parameter b for
the rest of the catchments is negative; this is simply because the ratio curve is decreasing overall.

 
(a) (b) 

Figure 6. Histograms of parameters (a,b) in the power function.

By applying the power function to fit the ratio of daily to monthly FDCs, the daily flow at given
exceedance probability can be estimated based on the monthly FDC. The simulated daily FDC for
a randomly selected catchment is presented in Figure 7. It is evident that an obvious improvement has
been made for simulated daily FDC as it is much closer to daily FDC. Especially for the exceedance
probability ranging from 10~70%, the simulated daily FDC and the observed daily FDC almost overlap.

Figure 7. Simulated daily FDC based on monthly FDC.

After graphical comparison with observed daily FDC, the simulated daily FDC is modelled by
KAP distribution and then evaluated with observed daily flow data. Figure 8 presents the NSE of
modelled daily FDC. It is obvious that most of the catchments have very high NSE with median higher
than 0.96. The results confirm again that power function is an appropriate relationship for the ratio of
daily to monthly FDCs. After power transformation, the modelled daily FDC with good accuracy can
be obtained based on monthly FDC.
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Figure 8. NSE of simulated daily FDCs based on monthly FDC.

5. Discussion

The present study aims to ascertain the relationships between FDCs at different time scales, based
on M-FDC-P and R-FDC-P. Note that the two methods use different ways to examine the relationships,
and some research results are discussed here.

In previous studies, the value of every single parameter of KAP distribution is rarely presented or
discussed, though Parida [34] have done some research on the restrictions of the four parameters. In the
present research, the averages of four KAP distribution parameters at time scales from 1 to 30 days
are analyzed. The relationship between parameter h at 1 and 30 day is so strong that h1 can be well
estimated by merely h30. The high correlation or insensitive of the h parameter is to be expected, as the
generalized Pareto, a special case of KAP when h = 1, has been used to describe daily FDCs in many
studies [16,18,25]. Even Blum et al. [9] illustrated that there are some regions in the United States such
as New England, the Appalachian, and Valley and Ridge regions, for which the generalized Pareto
distribution can provide a very good fit to daily FDCs. However, the relationship of the other three
parameters are not following a very obvious linear trend or even a single trend (for parameter k).
As stated before, even modeling daily FDC in daily gauged sites is very difficult, we are not expecting
a single relationship can be found to estimate daily FDC parameters by using only monthly FDC
parameters. Therefore, this paper proves that FDC parameters at different time scales are correlated
and the relationships found in the paper can be used as an important supplement to the regional
regression models to estimate daily FDC at ungauged or partial gauged sites.

As far as the E-FDC-R is concerned, Smakhtin [35] described a method to estimate daily FDCs from
monthly flow data, which first assumed that both daily and monthly FDCs are linear in a log-normal
space and then established the regression relationship for only two daily FDC indices based on monthly
flow data. This method is very ambitious because it established the indices for 200 gauged hydrological
stations without any specific parameters representing at-site characteristics. Sugiyama et al. [36] also
stated that a distribution of FDC at given exceedance probability was usually represented with
a straight line on log-normal probability paper. However, as for the ratio curves of flow values at given
exceedance probability, they are very like exponential curves in our work, thus we use the power
function to simulate the ratio curves and apply the log-log transformation to the ratio relationship.
The results show that the relationship between ratio value and exceedance probability almost tends
to be near-linear in the log-log axis, except a very small proportion in the very high exceedance
probability. Future studies will consider further improving power function by using a piecewise
function to describe the ratio curves for some kind of region (e.g., the stations with positive parameter
b after figuring out a way to regionalize parameters in the power function).

6. Conclusions

This study provides a comprehensive assessment of relationships between FDCs at different time
scales based on two methods including M-FDC-P and E-FDC-R. Selecting the MOPEX as the research
data, the correlations of daily FDC and monthly FDC are deeply analyzed.
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As for the M-FDC-P method, the Kappa (KAP) distribution is selected in this work to represent
the streamflow distribution characteristics, due to the already existed existing research. The averages
of all four KAP parameters tend to change gradually with time scales from 1 to 30 day. Meanwhile,
three out of four parameters have linear correlations except the shape parameter k. The relationships
found in the paper can be used as an important supplement to the regional regression models to
estimate daily FDC at ungauged sites, when observed records with larger time scales are available.

As for the E-FDC-R method, it tries to quantify the relationship between daily and monthly
FDCs, based on the ratio of FDCs rather than parameters of a specific distribution. Power function
seems to be an effective functions for depicting the relationship between daily and monthly FDCs.
The simulated daily FDC derived from monthly FDC can be very consistent with the observed daily
flow records, when the two parameters in power function are quantified precisely. There are only
two parameters in the power function that need to be regionalized by the site climate and catchment
characteristics, which can reduce the uncertainties compared to other regional FDC methods that
involve more parameters. Further, the parameter a in power function mainly controls the ratio for high
exceedance probability or low flow data; and the parameter b mainly controls the shape of the ratio
curve for low exceedance probability or high flow data.

Generally, results based on the above two methods clearly prove that there are strong connections
between daily and monthly FDCs, which is not sufficiently realized in previous studies. If a specific
probability distribution is applied for modelling FDCs at larger time scales, the gradual change
characteristics of the distribution parameters for different FDCs can be considered to provide valuable
information for daily FDC estimation. If there is no enough information to ascertain the probability
distribution, the simple ratio relationships between different FDCs can help to assess the smaller
time scale FDCs. Therefore, the inherent relationship between different FDCs will be very helpful for
flow regulation and water resources management, especially in ungauged or partially gauged basins.
Nonetheless, our future research will consider the regionalization of the distribution parameters to
provide a complete daily FDC estimation using monthly flow data and other information collectively.
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Abstract: For better water resources management, we proposed a method to estimate basin-scale
seasonal rainfall over selected areas of the Chao Phraya River Basin, Thailand, from existing climate
indices that represent variations in the Asian summer monsoon, the El Niño/Southern Oscillation, and
sea surface temperatures (SST) in the Pacific Ocean. The basin-scale seasonal rainfall between 1965 and
2015 was calculated for the upper Ping River Basin (PRB) and the upper Nan River Basin (NRB) from
a gridded rainfall dataset and rainfall data collected at several gauging stations. The corresponding
climate indices, i.e., the Equatorial-Southern Oscillation Index (EQ-SOI), Indian Monsoon Index (IMI),
and SST-related indices, were examined to quantify seasonal rainfall. Based on variations in the
rainfall anomaly and each climate index, we found that IMI is the primary variable that can explain
variations in seasonal rainfall when EQ-SOI is negative. Through a multiple regression analysis,
we found that EQ-SOI and two SST-related indices, i.e., Pacific Decadal Oscillation Index (PDO)
and SST anomalies in the tropical western Pacific (SSTNW), can quantify the seasonal rainfall for
years with positive EQ-SOI. The seasonal rainfall calculated for 1975 to 2015 based on the proposed
method was highly correlated with the observed rainfall, with correlation coefficients of 0.8 and
0.86 for PRB and NRB, respectively. These results suggest that the existing indices are useful for
quantifying basin-scale seasonal rainfall, provided a proper classification and combination of the
climate indices are introduced. The developed method could forecast seasonal rainfall over the target
basins if well-forecasted climate indices are provided with sufficient leading time.

Keywords: seasonal rainfall; upper Chao Phraya River Basin; El Niño/Southern Oscillation; Indian
Monsoon; sea surface temperatures

1. Introduction

Recently, many regions have endured significant impacts from extreme floods and droughts,
including Southeastern Asian countries [1–4]; disastrous floods and droughts are expected to
occur more frequently due to the changing climate [2,5–7]. To mitigate the impacts of extreme
hydro-meteorological events, well-prepared water resource management practices are required,
for which the quantification of rainfall and resulting runoff is key information.

In Thailand, a devastating flood occurred in the Chao Phraya River Basin in 2011 [8,9], resulting
in a change in policy to focus more on flood mitigation. However, the basin suffered a serious drought
during 2015 and 2016 due to the reduced water storage of the major reservoirs, i.e., the Bhumibol
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and Sirikit Dam reservoirs during the preceding years and the limited amount of rainfall in the wet
season of 2015. To sustain socio-economic activities in the downstream areas of the Chao Phraya River
Basin, sufficient water storage in these reservoirs is required before the dry season while enough empty
volume should be maintained for flood-control during the rainy season. Therefore, water release from
the reservoirs needs to be well-managed by forecasting the areal rainfall and its resulting inflows to
the reservoirs with sufficient leading time.

Different approaches have been adopted to quantify or forecast rainfall in Thailand using climate
indices. Most approaches are based on a simple linear correlation method [10,11], and a limited
number of works have considered multiple indices using a linear multiple-regression model and a
non-parametric method [12]. The linear regression approach is conventional, but not suitable if the
rainfall is non-linearly related to climate indices. The non-parametric method is advantageous in this
situation, although its implementation is complicated.

Furthermore, previous studies focused on rainfall at a limited number of sites with shorter
duration (for example, [12]); however, for water resources management purposes, rainfall must be
estimated to represent the entire rainy season at regional or basin-scales, rather than the smaller area
represented by individual gauging stations.

In this study, we attempt to develop a method that can relate seasonal rainfall over the two
major upstream sub-basins of the Chao Phraya River Basin draining to the Bhumibol and Sirikit Dam
reservoirs, i.e., the upper Ping River Basin (PRB) and the upper Nan River Basin (NRB), to multiple
climate indices that are predictable prior to the rainy season. The Bhumibol and Sirikit Dam reservoirs
are the first and second-largest reservoirs in Thailand and provide water for various economic and
environmental purposes [13]. The areal-averaged rainfall data of the rainy seasons between 1965
and 2015 were used to determine a relationship between the total rainfall and selected indices, i.e.,
the Southern Oscillation index (Equatorial SOI, hereafter EQ-SOI), Indian Monsoon index (IMI),
El Niño/Southern Oscillation index (SSTs), and the Pacific Decadal Oscillation index (PDO).

2. Study Area and Data Analysis

2.1. Study Area

Two major sub-basins of the Chao Phraya River Basin (CPRB) draining to the Bhumibol and
Sirikit Dam reservoirs, i.e., the PRB and NRB, were selected as study sites, respectively (Figure 1).
The PRB and NRB cover 26,300 km2 and 11,950 km2, respectively. The Bhumibol and Sirikit Dam
reservoirs discharge a significant amount of water for domestic and industrial use, as well as for
irrigation and environmental purposes [13,14]. Although domestic usage receives priority in the water
allocation of the Chao Phraya River Basin, a large area of farmland requires a large amount of water for
irrigation, especially during the dry season, and depends on the two major dams and other medium-
to small-scale reservoirs. Therefore, it is highly important to know the volume of water available in
these reservoirs before the dry season arrives.

The climate of the study area is characterized by distinct rainy and dry seasons (Figure 2). During
the rainy season, the amount of precipitation and its areal extent in the CPRB are caused by the
southwest monsoons, together with typhoons, monsoon troughs, and depressions from the South
China Sea. The mean monthly rainfall over the study area is large during May and October (PRB) or
September (NRB), which corresponds to the southwest monsoon periods [15] (Figure 2).
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Figure 1. Location of the upper Ping River Basin (PRB) and the upper Nan River Basin (NRB). The inset
shows the area of the Chao Phraya River Basin (CPRB). The Upper Chao Phraya River Basin (UCPRB)
is defined to cover the area north of 16◦ N. The black dots indicate the locations of rain gauges used to
estimate areal rainfall since 2001.
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Figure 2. Mean monthly areal-averaged rainfall for the period from 1975 to 2015 over (a) PRB and
(b) NRB.

2.2. Data Source

To determine the relationship between seasonal rainfall and regional climate conditions, we used
the areal rainfall obtained from gridded and gauged rainfalls, and indices representing the regional
climate conditions, such as the monsoon and El Niño/Southern Oscillation (ENSO). The area-averaged
rainfall during the rainy season was calculated for the period between April and October utilizing
a gridded rainfall dataset (APHRODITE, [16]) and rain-gauge data collected by the Royal Irrigation
Department of Thailand (RID) at multiple sites located in the PRB and NRB (Figure 1). Rainfall in April
is included in the rainy season as the onset of the summer rainy season begins earlier in the inland
Indochina in late April to May [17], and the monthly rainfall in April is comparable to that of October
for NRB (Figure 2). As the APHRODITE dataset only contains data until 2007, the areal rainfall during
2008–2015 was estimated from the original relationship between the areal-mean monthly rainfalls
obtained from the APHRODITE dataset and those calculated by the Thiessen Polygon applied to the
rain-gauge data of RID for the period from 1980 to 2000 (see the supplement for detailed method
information to calculate the areal rainfall).

The climate indices used in the analysis include the EQ-SOI, IMI, SST anomaly over selected
domains in the Pacific Ocean, PDO, and the Indian Ocean Dipole Mode index (DMI). The definition of
each index is listed in Table 1. EQ-SOI is superior to SOI in representing the strength of trade winds
over the tropical Pacific as one of the domains for calculating EQ-SOI (SLP.2 in Figure 3) is closer to
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our study area while SOI is defined as the difference between the sea level pressure at two specific
locations in the Southern Hemisphere (Tahiti and Darwin). IMI is the difference between the 850-hPa
zonal wind in domain U850.1 and that in domain U850.2 (Figure 3) [18]. A larger IMI indicates a
stronger summer monsoon over the Bay of Bengal. Anomalies in sea surface temperature (SST) are
defined for the selected domains over the tropical Pacific (Table 1). If EQ-SOI is positive, which likely
corresponds to stronger trade winds than normal, the sea surface temperature in these domains may
affect the supply of atmospheric vapor in the leeward region. PDO is an anomaly pattern of SST in the
Pacific Ocean (north of 20◦ N) that shifts phases on an inter-decadal time scale that usually covers over
10 years [19]. A positive (negative) value of PDO indicates that SST is lower (higher) than normal in
the northwestern Pacific. The intensity of the Indian Ocean dipole mode (IOD) is represented by the
Dipole Mode Index (DMI) as an anomalous SST gradient between two selected domains (Table 1) [20].
The domain for calculating the finally selected indices is illustrated in Figure 3.

Table 1. Description of climate indices used in this study.

Index Definition Data Sources

EQ-SOI
The difference between the area-averaged sea level pressure in an area of the
eastern equatorial Pacific (80◦ W–130◦ W, 5◦ N–5◦ S; indicated as SLP.1 in
Figure 3) and an area over Indonesia (90◦ E–140◦ E, 5◦ N–5◦ S; SLP.2 in Figure 3)

[21]

IMI
The difference between the 850-hPa zonal wind in the domain of 40◦ E–80◦ E, 5◦
N–15◦ N (indicated as U850.1 in Figure 3) and that in the domain of 70◦ E–90◦ E,
20◦ N–30◦ N (U850.2 in Figure 3)

[22]

SST Anomalies in sea surface temperature for the domain over [23]
NINO.WEST the western tropical Pacific (130◦ E–150◦ E, 15◦ N–EQ)
NINO.3 the eastern equatorial Pacific (150◦ W–90◦ W, 5◦ N–5◦ S)
NINO.4 the central equatorial Pacific (160◦ E–150◦ W, 5◦ N–5◦ S)
NINO.34 the central/eastern equatorial Pacific (170◦ W–120◦ W, 5◦ N–5◦ S)

PDO The leading principal component of the mean monthly SST in the Pacific Ocean
north of 20◦ N [19] [24]

DMI An anomalous SST gradient between the western (50◦ E–70◦ E, 10◦ S–10◦ N) and
southeastern equatorial Indian Ocean (90◦ E–110◦ E, 10◦ S–0◦ N) [25]

Figure 3. Domains related with each climate index finally employed in the proposed method (the
domain related with PDO is not shown).

The EQ-SOI and IMI data were obtained from the NOAA National Weather Service [21]
and the International Pacific Research Center (IPRC), University of Hawaii [22], respectively.
The SST indices over NINO.WEST, NINO.3, NINO.4, and NINO.34 were obtained from the Japan
Meteorological Agency [23]. The PDO and DMI data were obtained from the NOAA Earth System
Research Laboratory (ESRL) [24] and the Japan Agency for Marine-Earth Science and Technology
(JAMSTEC) [25], respectively.

2.3. Overview of Data Analysis

To quantify the seasonal rainfall from existing climate indices, we assume that a functional
relationship between the total rainfall from April to October and the selected climate indices averaged
over the same period can be applied, which may take the form of Equation (1):
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TR = f (EQ − SOI, IMI, PDO, DMI, SST) (1)

where TR (mm) is the areal-averaged seasonal rainfall during April and October, and SST represents
the SST anomaly over a certain domain in the Pacific Ocean.

Based on our preliminary check for coherent variations in TR and each index, we found that
the influential climate factors differed depending on EQ-SOI; thus, we classified the data into two
categories with respect to EQ-SOI. When EQ-SOI is negative, we simplified Equation (1) to utilize a
single independent variable (IMI), however, when EQ-SOI is positive, multiple regression analysis
was used to determine the exact form of Equation (1). We obtained the functional relationship by
parameter optimization (when EQ-SOI is negative) and the multiple regression analysis (when EQ-SOI
is positive) based on the data for 1975 to 2015, and verified it for data between 1965 and 1974.

3. Results

3.1. Characteristics of Rainfall and Corresponding Climate Indices

Areal rainfall data indicates that over 90% of the annual rainfall occurs during April and October
almost every year, with the largest mean monthly rainfall occurring in September (PRB) or August
(NRB) (Figure 2). In the NRB, the mean monthly rainfall in April is larger than that in October.
The anomaly of seasonal rainfall from April to October ranges from −291 to 367 mm for PRB and from
−315 to 444 mm for NRB, with mean rainfall of 890 mm and 1073 mm, and standard deviations of
124 mm and 165 mm for PRB and NRB, respectively (Figure 4).
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Figure 4. Anomalies of the seasonal rainfall and finally selected climate indices for the period between
1965 and 2015. (a) Rainfall anomaly in PRB; (b) Rainfall anomaly in NRB; (c) EQ-SOI; (d) IMI; (e) PDO;
and (f) SSTNW (SST anomaly over NINO.WEST). Each decade is separated by dashed lines. The rainfall
anomaly is calculated as the deviation from the mean rainfall for the period from 1975 to 2015.
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The areal rainfall over PRB tends to be smaller and less variable than that over NRB, which could
be due to the effect of the Dawna Range located on the western side of PRB and the limited influence
of the easterly wind. The rainfall anomalies for PRB and NRB tended to be positively large between
2004 and 2011 (excluding some years), while negative anomalies were predominant during 1981–1993
and since 2012 (Figure 4). The average of each climate index between April and October is plotted in
Figure 4. In years with negative EQ-SOI and IMI (1979, 1991, 1992, 1993, 1997, and 2015), it is likely
that the rainfall anomalies are also negative. A positive rainfall anomaly was found in years with
positively large IMI (1994 and 2006) and negative EQ-SOI. PDO was large and negative between 2008
and 2013, when the rainfall anomaly is mostly positive. EQ-SOI was negatively correlated with PDO
on inter-annual and decadal time scales. Coherent variation is observed between EQ-SOI and the SST
anomaly over NINO.WEST (SSTNW) in both the negative and positive phases. However, the influence
of SSTNW on rainfall anomalies is not clear from Figure 4.

3.2. Relationship between Seasonal Rainfall and Climate Indices

Based on the coherent variation of the rainfall anomaly and each climate index described in the
previous section, we classified the rainfall dataset and climate indices into two groups depending on
EQ-SOI (the threshold value was slightly larger than 0). Seasonal rainfall is primarily related to IMI
when EQ-SOI is negative and approaches the lower (upper) bound when IMI is negatively (positively)
large (Figure 5). This suggests that, when EQ-SOI is negative, the effect of the monsoon on rainfall
over the Indochina Peninsula is predominant due to the lower influence of the weaker surface trade
winds. A nonlinear equation based on a sigmoid function (Equation (2)) was applied to the relationship
between IMI and seasonal rainfall TR (mm) by calibrating the parameters in Equation (2) to minimize
the root mean square error (RMSE) between the actual and calculated rainfalls (Figure 5):

TR =
a

1 + exp(−λ × IMI)
+ b (2)

where a, b, and λ are the parameters calibrated for each basin (Table 2).

0

200

400

600

800

1000

1200

1400

-2 -1 0 1 2

Se
as

on
al

Ra
in

fa
ll 

(m
m

)

IMI

(a) 2006

1987
2002

2015

0

200

400

600

800

1000

1200

1400

-2 -1 0 1 2

Se
as

on
al

Ra
in

fa
ll 

(m
m

)

IMI

(b)

1977

2002

1982
2015

Figure 5. The relation between the seasonal rainfall and IMI for (a) PRB and (b) NRB. Two dashed
lines are separated from the solid line (Equation (1)) by the standard deviation of the error between
the observed and estimated seasonal rainfalls. The gray circles are the data used for calibrating
the parameters, and the cross marks indicate data for 1965, 1969, and 1972, which were not used
for calibration.

Table 2. Calibrated parameters used in Equation (1).

Basin a (mm) b (mm) λ

PRB 302.4 723.0 4.107
NRB 395.1 870.6 4.734
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The most recent drought year, 2015, is plotted close to the curve of Equation (2) (Figure 5).
The difference between the estimated (solid line) and observed rainfall in some years is large (Figure 6).
Although we checked the influence of other factors (EQ-SOI, PDO, and other SST-related indices),
none of them were likely to be responsible for this difference. Data for years before 1975 are also plotted
in Figure 5, indicating that the seasonal rainfall for these years can also be represented by Equation (2)
despite the limited number of gauging stations used to obtain the areal rainfall. Furthermore, it was
found that Equation (2) is applicable to the upper Chao Phraya River Basin (UCPRB, Figure 1, the basin
area is 109,000 km2) with the correlation coefficient r = 0.77 and RMSE = 83.1 mm for calibration period
from 1976 to 2006 (sample number = 17).
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Figure 6. Comparison of observed and estimated seasonal rainfall for (a) PRB and (b) NRB for
calibration and validation years with EQ-SOI < 0.02. Equation (2) with calibrated parameters (Table 2)
was applied. The dashed line indicates the mean rainfall for the period from 1975 to 2015.

When EQ-SOI is positive, i.e., when the surface trade winds are larger than normal, seasonal
rainfall was not significantly related to any one of the tested indices; however, it was positively
correlated to EQ-SOI (Figure 9a). Since the arrival and passage of typhoons and tropical cyclones
are major causes of increased rainfall, it is likely that the trade winds and SSTs in the Pacific Ocean
contribute to these phenomena, with additional influence on seasonal rainfall from the Indian Ocean
and monsoon [26]. In this study, we applied an equation that considers interactive and non-linear
relationships between the seasonal rainfall and ENSO and SST-related indices for the Pacific Ocean
using quadratic functions (Equation (3)). In addition, we tested the inclusion of IMI and DMI as
additional components in Equation (6) to consider the influence of the Indian Ocean and monsoon,
respectively; however, there was no significant improvement for rainfall estimation:

TR = (g1 × PDO2 + g2 × PDO + g3)× EQ − SOI + d0 (3)

g1 = d1 × SST2 + d2 × SST + d3 (4)

g2 = d4 × SST2 + d5 × SST + d6 (5)
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g3 = d7 × SST2 + d8 × SST + d9 (6)

where SST is any one of the four SST anomalies over the domain of NINO.WEST, NINO.3, NINO.4, and
NINO.34, and d0–d9 are the coefficients of the multiple regression analysis. Equation (3) was evaluated
with each SST index by the RMSE, multiple correlation coefficient, the similarity of coefficients d1–d9

between PRB and NRB, and the consistency with the perceived physical influences, which will be
discussed in the following sections.

On average, comparatively high correlation coefficients and small RMSE were obtained for PRB
and NRB by applying Equation (3) with the SST anomaly over NINO.WEST (SSTNW). Figure 7
compares the observed and estimated seasonal rainfall during the parameter setting period by the
multiple regression analysis. A favorable agreement is found throughout the period, including flood
years (1995 and 2011) and drought years (2003), although there are gaps in some years. Thus, we
determined that Equation (3) with SSTNW is suitable within the range of the given climate indices
examined, despite the limited flexibility caused by the form (quadratic function).
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Figure 7. Comparison of observed and estimated seasonal rainfall for (a) PRB and (b) NRB for years
with EQ-SOI > 0.02. Equation (3) with NINO.WEST was applied. The dashed line indicates the mean
rainfall for the period from 1975 to 2015.

We validated this method by comparing the observed seasonal rainfall during 1966–1974 (when
EQ-SOI is positive) with those estimated using Equation (3), resulting in RMSE of 91.0 and 101.4 mm
for PRB and NRB, respectively (Figure 8). These RMSEs are larger than those for the calibration period
(during 1975–2014) probably due to the limited number of gauging stations used for APHRODITE
products during the period. In addition, we applied multiple regression analysis using Equation (3) to
UCPRB (Figure 1), which resulted in satisfactory agreement for both the period of regression analysis
between 1975 and 2007 (sample number = 16, r = 0.86, RMSE = 44.6 mm) and the period of validation
between 1966 and 1974 (sample number = 6, r = 0.92, RMSE = 40.2 mm). Table 3 summarizes the results
of the proposed Equations (2) and (3) applied to all years between 1975 and 2015. The correlation
coefficients were greatly improved from those in previous studies (such as [11]), although the domain
and duration differed.
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Figure 8. Same as Figure 7 but for validation years between 1966 and 1974 for (a) PRB and (b) NRB.

Table 3. Correlation coefficient r and RMSE for the period from 1975 to 2015 for years of negative
EQ-SOI, positive EQ-SOI and all years.

Basin EQ-SOI < 0.0 EQ-SOI > 0.0 All Years

PRB
r 0.83 0.79 0.81

RMSE (mm) 69.0 78.4 74.4

NRB
r 0.82 0.89 0.86

RMSE (mm) 95.4 72.1 83.1

4. Discussion

The seasonal rainfall data and three climate indices (EQ-SOI, PDO, and SSTNW) used in
Equation (3) are plotted in Figure 9 to visualize the influence of these indices during years with
positive EQ-SOI. Figure 9a shows that EQ-SOI is positively correlated with seasonal rainfall for both
PRB and NRB at a significance level less than 5%, while there is no clear difference depending on the
PDO phase (Figure 9a). Therefore, it is reasonable to include EQ-SOI as a multiplier of the quadratic
function in Equation (3).

In PRB and NRB, the seasonal rainfall during the cool PDO phase (PDO < 0) is 220 mm and
150 mm larger than that in the warm phase (PDO > 0), respectively, under negative SSTNW conditions
(Figure 9b). However, for years with a positive SSTNW, the differences in seasonal rainfall between
the negative and positive PDO phases are much smaller for both basins (below 35 mm). There was
a negative correlation between PDO and seasonal rainfall in PRB for all plots (r = −0.42, p = 0.02),
while there was no clear correlation for NRB (r = −0.26, p = 0.16), and seasonal rainfall increases with
positive-phase PDO when EQ-SOI exceeds 0.03 (Figure 9b, right). Similar characteristics were observed
by Sen Roy and Sen Roy [27], who concluded that monsoon precipitation in eastern Myanmar is
positively related to PDO during its warm phase, and negatively correlated during the cold phase.
This is considered in the quadratic function.

Seasonal rainfall in both the PRB and NRB is positively correlated with SSTNW, with a p-value
below 5%, when PDO is positive (Figure 9c), while seasonal rainfall negatively related to SSTNW when
PDO is negative. A previous study found that the positive (negative) phase of PDO is associated with
deficit (excess) rainfall over India [28]. The same phase characteristics were found between annual
rainfall in Thailand and an ENSO-related index (MEI) and PDO [29]. Our results indicate that seasonal
rainfall cannot be solely related to a single index, and multiple indices (including EQ-SOI) need to be
considered when quantifying rainfall.
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Figure 9. Relationship between seasonal rainfall and (a) EQ-SOI; (b) PDO and (c) SSTNW for (left) PRB
and (right) NRB between 1965 and 2015 (when EQ-SOI is positive).

To highlight the influences of PDO and SSTNW, we define the normalized rainfall anomaly
(Equation (7)) by rearranging Equation (3):

TR − d0

EQ − SOI
= g1 × PDO2 + g2 × PDO + g3 (7)

where g1, g2, and g3 are given by Equations (4)–(6) with calibrated parameters. Figure 10 shows the
relationships between the normalized rainfall anomaly and PDO and SSTNW. Each curve in Figure 10
was drawn using Equation (3), and the data plots were limited for years between 1975 and 2015 with
EQ-SOI larger than 0.2 for clear indication. Most of the data plots in each class of SSTNW (Figure 10a)
or PDO (Figure 10b) are consistent with the corresponding curves with similar SSTNW or PDO value,
respectively, although there are some outliers.

The lines in Figure 10a indicate that PDO increases the normalized rainfall anomaly when it is
largely negative or positive for the same or similar SSTNW. Therefore, we confirmed that the sensitivity
of Equation (3) is consistent with the recognized influence of PDO, i.e., abundant precipitation tends
to occur during La Niña years and the PDO cool phase [29]. Furthermore, the results in Figure 10a
suggest that the seasonal rainfall in PRB and NRB can increase with both negative and positive PDO as
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there was no clear relationship between EQ-SOI and PDO when EQ-SOI is positive, which is consistent
with the data plots in Figure 9b (especially for NRB) as well as previous analysis [27].

Unlike PDO, the influence of SSTNW on the normalized rainfall anomaly appears to be more
complicated (Figure 10b). For NRB (Figure 10b right), SSTNW positively affects the normalized rainfall
anomaly when PDO is positive and SSTNW is within a certain positive range, while the normalized
rainfall anomaly is likely to decrease as SSTNW becomes larger (Figure 10b). These characteristics
may be applied to seasonal rainfall itself as there is no certain correlation between EQ-SOI and SSTNW

when EQ-SOI is positive. When PDO is negative, local minima are found for the normalized rainfall
anomaly, as indicated by the circle plots and corresponding curve (PDO = −1.0) for NRB in Figure 10b.
Similar characteristics were found for PRB, although the variation in the normalized rainfall anomaly is
smaller than that for NRB as there was less seasonal rainfall with lower variation over NRB. Although
the mechanistic reason for these characteristics is unclear, the normalized rainfall anomaly could be
amplified when PDO and SSTNW are in the same phase. Hoell and Funk [30] reported that, for La Niña
events (when EQ-SOI tends to be positive), precipitation is enhanced over the western Pacific and
extended to the Indian Ocean during a strong western Pacific SST gradient (WPG), which is defined as
the standardized difference between area-averaged SST over the central Pacific Ocean and the domain
similar to NINO.WEST. This suggests that SST over NINO.WEST, combined with PDO, could affect
precipitation over the Indochina Peninsula through the SST gradient in the western Pacific.
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Figure 10. Relationship between seasonal rainfall and (a) PDO and (b) SSTNW for (left) PRB and
(right) NRB. The vertical axis indicates the seasonal rainfall anomaly divided by EQ-SOI. The solid and
dashed curves in each panel are given by Equation (3). Each symbol represents the data when EQ-SOI
is positive.
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5. Conclusions

The seasonal rainfall over the 50 years during 1965–2015 over the upper Ping River Basin (PRB)
and upper Nan River Basin (NRB) in Thailand were analyzed to elucidate a quantitative relationship
with existing climate indices. We showed that, when the Equatorial Southern Oscillation index
(EQ-SOI) is negative, seasonal rainfall is predominantly related to the Indian Monsoon index (IMI)
using a sigmoid function; however, when EQ-SOI is positive, seasonal rainfall is estimated by the
nonlinear function using the El Niño/Southern Oscillation index (SSTNW), Pacific Decadal Oscillation
index (PDO), and EQ-SOI. The areal rainfall calculated for the period between 1975 and 2015 from the
proposed functions exhibits a high correlation with the observed seasonal rainfall, with correlation
coefficients of 0.8 and 0.86 for PRB and NRB, respectively.

Although our proposed method exhibited a relatively high performance for estimating seasonal
rainfall, further verification and improvement are necessary by updating the rainfall data and climate
indices. Furthermore, to apply the method in practical water resource management, such as dam
reservoir operation and the assessment of climate change impacts [31], the use of the forecasted
or projected results of selected climate indices should be examined to evaluate the accuracy and
uncertainty of seasonal rainfall resulting from the proposed method.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/10/6/800/s1,
Figure S1: Relationship between the areal-mean monthly rainfalls obtained from the APHRODITE dataset
(Aphrodite-based) and those calculated by the Thiessen Polygon applied to the rain-gauge data of RID (RID-based)
for the period from 1980 to 2000 for (left) PRB and (right) NRB; Figure S2. The number of gauging stations used to
calculate the RID-based areal-mean monthly rainfall (red line) and that used to generate the APHRODITE dataset
(black line) for (top) PRB and (bottom) NRB.
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Abstract: The impacts of temperature and precipitation changes on regional evaporation and runoff
characteristics have been investigated for the Biliu River basin, which is located in Liaoning Province,
northeast China. Multiple climate change scenarios from phase 3 and phase 5 of the Coupled Model
Intercomparison Project (CMIP3 and CMIP5) (21 scenarios in total) were utilized. A calibrated
hydrologic model—SWAT model—was used to simulate future discharges based on downscaled
climate data through a validated morphing method. Results show that both annual temperature
and precipitation increase under most of the CMIP3 and CMIP5 scenarios, and increase more in
the far future (2041–2065) than in the near future (2016–2040). These changes in precipitation and
temperature lead to an increase in evaporation under 19 scenarios and a decrease in runoff under
two-thirds of the selected scenarios. Compared to CMIP3, CMIP5 scenarios show higher temperature
and wider ranges of changes in precipitation and runoff. The results provide important information
on the impacts of global climate change on water resources availability in the Biliu River basin, which
is beneficial for the planning and management of water resources in this region.

Keywords: climate change; CMIP3; CMIP5; downscaling; runoff response; SWAT model

1. Introduction

It has been recognized that climate change could have profound impacts on the global water
cycle [1–3]. Therefore, it is important to consider potential impacts of climate change in the planning
and management of regional water resources.

To quantitate climate change impacts on water resources, the output of general circulation models
(GCMs) is commonly used [4–6], coupled with hydrological models or forcing offline hydrological
models [7–10]. The results help to understand the impacts of climate change and develop strategies to
adapt to or possibly mitigate these impacts [3]. The Coupled Model Intercomparison Project phase 3
(CMIP3) and phase 5 (CMIP5) have provided abundant climate data (e.g., the IPCC’s AR5) [11], and
both CMIP3 and CMIP5 climate datasets have been widely utilized globally [12–16]. Several studies
have revealed that, compared to CMIP3, CMIP5 ensemble simulations have substantially improved the
statistical representation of daily mean precipitation and temperature [17,18]. However, few studies
have compared the impacts of CMIP3 and CMIP5 on the design of the planning and management
infrastructure of water resources [19–21], especially in China [22].
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Northeast China is an important food production area in China and it has suffered from droughts
in recent years. It has been reported that the inflow of Biliu River Reservoir (an important river in
northeast China) declined significantly over the period of 1990–2005 [23]. Because the reservoir is
the most important water source for nearby big cities and also because it plays an important role
in cropland irrigation, a water transfer project is currently being constructed to transfer water into
the reservoir. Zhang et al. optimized water diversion and supply rules of Biliu River Reservoir and
attempt to identify resilient water diversion strategies to mitigate the potential impacts of climate
change [10]. However, the design of the water transfer project was based on CMIP3 data, which may
inaccurately estimate the severity of a water resource shortage [19,20]. Therefore, it is necessary to
compare the availability of simulated water resources using CMIP3 and CMIP5, which can provide
important information on the differences in the availability of projected water resources and therefore
facilitate the design and evaluation of the water transfer project [19–21].

The overall objective of this study is to compare the projected availability of runoff using datasets
from CMIP3 and CMIP5 in the Biliu River basin. Three GCM outputs of CMIP3 for three emission
scenarios and six GCM outputs of CMIP5 for two representative concentration pathways are utilized.
A ‘morphing’ downscaling method is utilized to derive local climatic parameters on a daily time
scale. The downscaled datasets are utilized as the input of the SWAT hydrological model to simulate
future runoff.

2. Methodology

2.1. CMIP3 and CMIP5 Datasets

2.1.1. Climate Models and Emission Scenarios

Several studies have evaluated the precipitation and temperature simulation performance of the
CMIP3 and CMIP5 historical experiments and found that CMIP5 improved the simulation of basic
atmospheric variables compared to CMIP3 [17,18]. Three CMIP3 models and six CMIP5 models are
used in this study to consider the uncertainties of global climate prediction. They cover a representative
range of projections of the two experiments and perform well in the statistical representation of daily
precipitation and temperature [17,18].

Emission scenarios A1B, A2, and B1 from CMIP3, which can capture the emission uncertainties,
have been analyzed by other studies [24,25] and are considered in this study. Three GCMs for each
emission scenario are utilized (as shown in Table 1). The baseline scenario (20C3M) for the historical
period is also considered. The regional monthly temperature and precipitation of the study area
are derived by linear interpolation of the nearest GCM data. Although it is simple, its precision is
acceptable [26–28].

The formulation of the long-term (century time-scale) simulations is a new part of CMIP5 when
compared with CMIP3. The long-term experiment was initiated from the end of freely evolving
simulations of the historical period; the experiment was conducted with atmosphere-ocean global
climate models (AOGCMs) which in some cases may be coupled with carbon cycle models [11,29].
The long-term experiment includes the pre-industrial control run, the historical run (1850 to at least
2005), and the future scenario run (~2006–2100, or extended to 2300), etc.

For future climate projections, four emission and concentration scenarios called ‘representative
concentration pathways’ (RCPs) were designed that lead to radiative forcing levels of 8.5, 6, 4.5, and
2.6 W/m2 around the end of the century. Each of the RCPs covers the period 2006–2100, and extensions
have been formulated for periods up to 2300 [30]. RCP4.5 and RCP8.5 are core experiments [29].
RCP4.5 is a medium forcing integration and RCP8.5 is a high radiative forcing case. They correspond
to a medium mitigation scenario and a high emissions scenario, respectively. RCP6 and RCP2.6 are
two carbon cycle feedback experiments, part of tier 1 experiments. The tier 1 and tier 2 experiments
explore various aspects of the core experiments in further detail. The core experiments (i.e., RCP4.5 and
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RCP8.5) are utilized in this study. Six climate models (as shown in Table 1) from CMIP5 are considered
for comparison.

Table 1. Details of CMIP3 and CMIP5 climate models and scenarios used in this study.

Model Country Resolution Scenarios

BCCR_BCM2.0 Norway 2.81◦ × 2.81◦
A1B, A2, B1 for each model respectivelyCSIRO_MK3.0 Australia 1.88◦ × 1.88◦

MIROC3.2m Japan 2.81◦ × 2.81◦

ACCESS1.0 Australia 1.88◦ × 2.48◦

RCP8.5 and RCP4.5 for each model respectively

BCC-CSM1.1(m) China 1.13◦ × 1.13◦
CESM1(BGC) USA 1.3◦ × 0.9◦

CESM1(CAM5) USA 1.3◦ × 0.9◦
CMCC-CM Italy 0.75◦ × 0.75◦

MPI-ESM-MR Germany 1.88◦ × 1.88◦

2.1.2. Downscaling Method

The coarse resolution climate model predictions need to be downscaled to fine spatial and
temporal resolutions to facilitate hydrological simulations. There are many downscaling methods,
and they can be divided into two categories: dynamical downscaling and statistical downscaling
methods. The statistical downscaling methods are relatively simpler than dynamical downscaling and
have been widely used [7–9]. One of the statistical downscaling methods called “morphing” [7] is
adopted here. The “morphing” approach has two characteristics. First, the ‘baseline climate’ is reliable,
because it is based on observed climate data. Second, the resulting weather sequence is likely to be
meteorologically consistent.

Morphing involves three generic operations: a shift, a linear stretch (scaling factor), and a combination
of shift and a stretch. A shift by Δxm is applied to the present-day climate variable x0 by x = x0 + Δxm.
Here, Δxm is the absolute changes in monthly mean climate for month m. The monthly variance of
climate variables is unchanged. A stretch of αm is applied by x = αmx0, where αm is the fractional
change in the monthly-mean value for month m. A combination of shift and stretch is obtained by
x = x0 + Δxm + αm × (

x0 − x0
m
)
, in which x0

m is the baseline climatological value for month m,
and is calculated as x0

m = 1
24 × dm × Y ∑

Y year
∑

month m
x0, where Y is the number of years and dm is the

number of days in month m.
Precipitation and temperature are two main climate variables considered in previous research in

runoff simulation. Therefore, we analyze runoff responses to changes in precipitation and temperature.
The precipitation data is downscaled by a combination of shift and stretch morphing, and the
temperature data is downscaled by shift morphing by

P1 = (1 + αm) × P0 = (1 +
Pm − Pb

m

Pb
m

) × P0 (1)

T1 = T0 + ΔT = T0 + (Tm − Tb
m) (2)

Tmax
1 = Tmax

0 + ΔTmax = Tmax
0 + (Tmax

m − Tb,max
m ) (3)

Tmin
1 = Tmin

0 + ΔTmin = Tmin
0 + (Tmin

m − Tb,min
m ) (4)

where P1, T1, Tmax
1 and Tmin

1 are downscaled precipitation, daily mean, and maximum and minimum
temperature; P0, T0, Tmax

0 and Tmin
0 are historical observation precipitation, daily mean, and maximum

and minimum temperature; Pm, Tm, Tmax
m and Tmin

m are average values of future precipitation, daily

mean, and maximum and minimum temperature over month m; Pb
m, Tb

m, Tb,max
m and Tb,min

m are average
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values of precipitation, daily mean, and maximum and minimum temperature over month m for the
historical period from GCMs.

2.2. Hydrological Model

The continuous and physically distributed hydrological model—the Soil and Water Assessment
Tool (SWAT) [31]—is utilized in this study. The main components of SWAT include hydrology, climate,
nutrient cycling, soil temperature, sediment movement, crop growth, agricultural management, and
pesticide dynamics [32]. The model has been widely applied to simulate hydrological processes
globally [23,33–35] and it can conveniently consider weather adjustment.

Model calibration and validation are necessary to identify the SWAT model parameters before it
can be used for prediction. Sensitive parameters were first identified by the LH-OAT (latin hypercube
sampling based on one-factor-at-a-time) method [36] incorporated in SWAT. Manual calibration was
then carried out for several of the most sensitive parameters. The performance of SWAT was estimated
by three performance metrics: the Nash–Sutcliffe model efficiency (NSE), the average relative error
(Re) and the coefficient of determination (R2). These metrics are defined as

NSE = 1 −
T

∑
t=1

(Qmt − Qst)
2/

T

∑
t=1

(Qmt − Qmavg)
2 (5)

Re = (Qmavg − Qsavg)/Qsavg × 100 (6)

R2 =
T

∑
t=1

(Qst − Qsavg)(Qmt − Qmavg)/

{
[

T

∑
t=1

(Qst − Qsavg)
2][

T

∑
t=1

(Qmt − Qmavg)
2]

} 1
2

(7)

where Qmt and Qst are measured and simulated flow at time t; Qmavg and Qsavg are average values of
observed flow and simulated flow; T is the total number of time steps. The model performance is
considered to be acceptable when NSE > 0.50, R2 > 0.60, and Re < ±20% according to the study by
Hao et al. [37].

3. Study Region and Datasets

3.1. Biliu River Basin

The Biliu River basin is located in the Liaoning Province, northeast China (Figure 1). The study
area is about 2085 km2. The Biliu River Reservoir was built in 1975 and it has a storage capacity of
934 × 106 m3. The reservoir is the most important water source of nearby big cities and also plays an
important role in cropland irrigation. The study area is located in the north temperate zone and is
characterized by a moist climate. Forest land and farmland are the main land use types. The main soil
types are brown soil and meadow soil. Another reservoir, named Yushi Reservoir, with a drainage
area of 313 km2 and a storage capacity of 89 × 106 m3, was built upstream in 2001. The reservoir
supplies water to the outside of the basin. Therefore, the impact of Yushi Reservoir needs to be
considered in the hydrological model. The Biliu River Reservoir has experienced severe water shortage
problems recently and therefore future runoff conditions under climate change need to be analyzed for
adaptation measures.
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Figure 1. The Biliu River basin.

3.2. Dataset

The climate data in 1901–2099 for A1B, A2, and B1 were downloaded from the National
Climate Center (http://ncc.cma.gov.cn). The long-term experiment data of 1850–2100 for the chosen
six climate models in CMIP5 were downloaded from the Program for Climate Model Diagnosis
and Intercomparison (PCMDI, http://pcmdi3.llnl.gov/esgcet/). The climate data were extracted
for 1980–2004 period and two future periods (2016–2040 and 2041–2065). Future precipitation and
temperature data output from the climate models are used as the input of the SWAT model to simulate
future runoff.

Yearly and monthly precipitation and runoff data in 1958–2011 and daily runoff data in 1978–2004,
were obtained from the Biliu River Reservoir administration. Daily precipitation data in 1978–2004
at nine precipitation stations were obtained from the Hydrology Bureau of Liaoning Province. Daily
meteorological data—including mean, maximum, and minimum temperature, humidity, wind speed
and direction, and solar radiation—were obtained from the China Meteorological Data Sharing Service
System (http://cdc.cma.gov.cn/index.jsp). The Digital Elevation Model (DEM) data (90 × 90 m) were
obtained from the CGIAR Consortium for Spatial Information (CGIAR-CSI) (http://srtm.csi.cgiar.org).
Soil type and land use maps were obtained from the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences (http://www.resdc.cn/first.asp).

4. Results

This section includes three main parts. First, the SWAT model used is calibrated and validated
based on observed data; second, the variations of precipitation and temperature in the study region are
studied based on GCMs data from CMIP3 and CMIP5; third, the precipitation and temperature data
are used as the input of SWAT model to predict the runoff in this region. In the resulting figures, runoff
data are for the location of the Biliu River Reservoir, while precipitation, temperature, and evaporation
data are the mean values of the Biliu River Reservoir basin in Figure 1.
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4.1. SWAT Model Calibration and Validation Results

The SWAT model is calibrated and validated beforehand. The periods 1980–1994 and 1995–2004
were used as the calibration period and validation period, respectively. Yushi Reservoir runs after
2001 in the model. The simulated and measured monthly runoff are shown in Figure 2. The values of
NSE and R2 exceed 0.90 and 0.95, respectively. Re values are 4.04% and 12.64% in the calibration and
validation. Therefore, the SWAT model is applicable for runoff prediction in this area.

 

Figure 2. Simulated monthly runoff at Biliu River Reservoir station: (a) calibration period of 1980–1989;
(b) validation period of 1990–1999.

4.2. Precipitation and Temperature Variations

After the 1980s, the Biliu River basin is affected by both climate change and human activities.
The influence will exist in the future, and it is difficult to return to the natural state before 1980s.
Therefore, the period after 1980s is used for precipitation and temperature downscaling. In addition,
daily data are required for hydrological simulation. Thus, 1980–2004 is considered for downscaling
since daily scale is not available after 2004. The climate model outputs in 1980–2004 and two future
periods, 2016–2040 (near future) and 2041–2065 (far future), are utilized. Precipitation and temperature
of the two future periods are downscaled respectively on the basis of 1980–2004 data. The output of
the GCMs is bias corrected according to the observation in the historically period, and the same bias
correction approach is applied to the output of GCMs in the future.
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4.2.1. Temperature Variations

Two time periods, 1985–1994 and 1995–2004, were utilized to validate the morphing method
for temperature downscaling. The downscaled temperature of 1995–2004 can be calculated using
Equations (2)–(4). The downscaled temperature was compared with the historical observation in
Figures 3 and 4. The nine selected models are verified detail by detail because there is no scenario
difference in the historical period.

Figure 3. Comparison of the average downscaled temperature from CMIP3 using morphing and
historical observation temperature series: (a) annual series; (b) monthly distribution.

Figure 4. Comparison of the average downscaled temperature from CMIP5 using morphing and
historical observation temperature series: (a) annual series; (b) monthly distribution.

Figure 3a compares the average annual mean temperatures of CMIP3 models. For BCCR_BCM2.0,
CSIRO_MK3.0, and MIROC3.2m, the relative errors (Re) are −1.2%, −3.1%, and −4.8% respectively,
and correlation coefficients (R2) all are larger than 0.60. Figure 3b compares monthly temperature
variations. It can be seen that they agree well. Figure 4a shows the average annual mean temperature
of the six models from CMIP5. Three of them—ACCESS1.0, CMCC-CM and MPI-ESM-MR—slightly
overestimate the temperature with Re being 2.7%, 5.2%, and 3.4% respectively. The other three models
slightly underestimate the temperature with Re of BCC-CSM1.1(m), CESM1(BGC), and CESM1(CAM5)
being −3.4%, −2.3%, and −7.0% respectively. The R2 of the six models all are larger than 0.60.
Figure 4b shows the comparison of monthly temperature variations, and it can be seen that the
downscaled temperatures agree well with observation. Overall, the morphing approach shows
acceptable performance in the temperature downscaling.
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The annual mean temperature changes relative to 1980–2004 period are shown in Figures 5 and 6.
The horizontal dash lines refer to the maximum and minimum multi-year mean temperature changes,
which show the ranges of change uncertainty, and can be calculated by Equations (8) and (9).

zMAX = max

{
1
Y

Y

∑
j=1

Δzj
i , i = 1, 2, · · · , k

}
(8)

zMIN = min

{
1
Y

Y

∑
j=1

Δzj
i , i = 1, 2, · · · , k

}
(9)

where zMAX and zMIN represent the maximum and minimum multi-year mean changes, respectively;
Δzj

i is the absolute or fractional changes in annual mean climate for year j based on the ith scenario;
Y is the number of years and k is the number of scenarios.

Figure 5. The forecasted temperature differences relative to 1980–2004 period under CMIP3: (a) the
period 2016–2040; (b) the period 2041–2065.

Figure 6. The forecasted temperature differences relative to 1980–2004 period under CMIP5: (a) the
period 2016–2040; (b) the period 2041–2065.

As shown in Figures 5 and 6, the annual mean temperature increases under all of the CMIP3 and
CMIP5 scenarios. The annual mean temperature changes range from 0.41 to 1.16 ◦C under CMIP3
and range from 0.76 to 1.50 ◦C under CMIP5 in 2016–2040. The temperatures under all of the CMIP3
and CMIP5 scenarios increase even more in 2041–2065 than in 2016–2040, and the increases range
from 0.68 to 1.96 ◦C under CMIP3 and range from 1.53 to 3.38 ◦C under CMIP5. Overall, future
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temperature increases range from 0.41 to 1.50 ◦C in 2016–2040 and 0.68 to 3.38 ◦C in 2041–2065 relative
to 1980–2004 period on the basis of the selected scenarios. The results imply that temperatures are
likely to increase in the future and increase more in the far future than in the near future. Moreover,
temperature increases more under CMIP5 than under CMIP3.

The temperature differences between emission scenarios are also compared. Among A1B,
A2, and B1, the increase in temperature from largest to smallest is A1B > A2 > B1 on the basis
of BCCR_BCM2.0 and MIROC3.2m in both future periods, while it is A2 > A1B > B1 based on
CSIRO_MK3.0. In addition, it is found that the temperature increases more in RCP8.5 than in RCP4.5
under all the models in both future periods except ACCESS1.0 in 2016–2040. This implies that climate
emission scenarios are closely associated with temperature.

4.2.2. Precipitation Variations

Similar to the temperature downscaling validation, two time periods, 1985–1994 and 1995–2004,
were used to validate the applicability of the morphing method for precipitation downscaling.
Downscaled precipitation of 1995–2004 can be calculated by Equation (1). The downscaled precipitation
is compared with the historical observation precipitation to verify its accuracy in Figures 7 and 8.

Figure 7. Comparison of the downscaled precipitation from CMIP3 using morphing and historical
observation precipitation series: (a) annual series; (b) monthly distribution.

 
Figure 8. Comparison of the downscaled precipitation from CMIP5 using morphing and historical
observation precipitation series: (a) annual series; (b) monthly distribution.

Figure 7a compares the annual precipitation of CMIP3 models. For BCCR_BCM2.0, CSIRO_MK3.0
and MIROC3.2m, Re are 6.4%, 10.7% and 32.2% respectively, and R2 are larger than 0.72. Figure 7b
compares monthly precipitation variations. It can be seen that they agree well. Figure 8a shows the
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average annual precipitation of the six models from CMIP5. Only one of them—CESM1(CAM5)—slightly
underestimated the precipitation (Re is −1.8%). The other five models all overestimate the precipitation.
The Re of ACCESS1.0, BCC-CSM1.1(m), CMCC-CM, CESM1(BGC), and MPI-ESM-MR are 11.9, 8.8,
6.5, 16.3, and 4.0% respectively. The R2 of the six models all are larger than 0.70. Figure 8b shows
a comparison of monthly precipitation variations. The fitting result is accurate: R2 values are larger than
0.93. Overall, the morphing results basically meet the downscaling requirements, which demonstrates
that the morphing method is valid for precipitation downscaling.

The annual mean change percentages relative to 1980–2004 period are shown in Figures 9 and 10.
The horizontal dash lines refer to the maximum and minimum multi-year mean precipitation change
percentages, which show the ranges of change uncertainty, as calculated by Equations (8) and (9).

Figure 9. The forecasted precipitation change percentage relative to 1980–2004 period under CMIP3
(a) 2016–2040; (b) 2041–2065.

 
Figure 10. The forecasted precipitation change percentage relative to 1980–2004 period under CMIP5
(a) 2016–2040; (b) 2041–2065.

As shown in Figure 9, annual precipitation increases under most of the CMIP3 scenarios except
CSIRO_MK3.0 (B1). The mean annual change percentage ranges from −2.13% to 21.85% in 2016–2040.
The range is slightly smaller in 2041–2065, which ranges from −4.08% to 14.65%. The difference
of MIROC3.2m (B1) in the two future periods is the greatest, followed by BCCR_BCM2.0 (A2)
and MIROC3.2m (A1B). The other six scenarios differ by less than ±5%. This implies that future
precipitation is likely to increase, with similar changes in the near future and far future.

As shown in Figure 10, annual precipitation increases under most of the CMIP5 scenarios except
CMCC-CM (RCP4.5 and RCP8.5) in 2016–2040 and MPI-ESM-MR (RCP8.5) in 2041–2065. The annual
mean change percentage ranges from −12.23% to 18.42% in 2016–2040. The range is significantly
wider in 2041–2065, which ranges from −0.6% to 42.2%. Compared to the results in 2016–2040,
the precipitation change percentage in 2041–2065 decreases only under MPI-ESM-MR (RCP8.5), while
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the other 11 scenarios all increase. This implies that future precipitation is likely to increase. Moreover,
precipitation in the far future is likely to increase more significantly than in the near future. On the
other hand, future precipitation decreases under a few scenarios, which reveals the uncertainties of
future precipitation. Overall, future precipitation changes range from −12.23% to 21.85% in 2016–2040
and −4.08% to 42.2% in 2041–2065 relative to 1980–2004 period on the basis of the selected scenarios.

The precipitation differences between emission scenarios are also compared. Among A1B, A2,
and B1, the increase in precipitation from largest to smallest is A1B > A2 > B1 on the basis of
CSIRO_MK3.0 in both future periods. However, the pattern is not obvious under the other two
models. In addition, it is found that half of the models have larger change percentages under RCP8.5
while the other half have larger change percentages under RCP4.5. This implies that climate emission
scenarios are not so closely associated with precipitation.

The historical annual series of 1958–2011 data are considered as the baseline to further analyze
the precipitation variations. Compared to the historical mean annual precipitation of the baseline
period (739.4 mm), the change percentages of the forecasted long series (2016–2065) are no more than
±10% under CMIP3 scenarios. Specifically, the forecasted mean annual precipitation decreases by 0.56,
1.77, and 8.3% under BCCR_BCM2.0 (B1), CSIRO_MK3.0 (A2), and CSIRO_MK3.0 (B1) respectively,
while it increases under the other six CMIP3 scenarios. Among the 12 CMIP5 scenarios, the decline
in precipitation only appears in the CMCC-CM model, with declines of 8.67% and 6.56% for RCP4.5
and RCP8.5, respectively. The maximum increase appears in the ACCESS1.0 model, while the other
scenarios show smaller increases. The increased proportions of precipitation are mostly below 10%,
with two exceptions: the ACCESS1.0 models for RCP4.5 and RCP8.5. A comparison of the results is
shown in Table 2.

Table 2. Mean annual precipitation and runoff in the historical period (1958–2011) and future period
(2016–2065).

Climate Scenario
Precipitation

(mm)
Runoff
(mm)

Runoff
Coefficient

Change Percentage (%)

Precipitation Runoff
Runoff

Coefficient

Historical observation 739.43 275.43 0.37 - - -
BCCR_BCM2.0(A1B) 741.76 258.55 0.35 0.31 −6.13 −6.43
BCCR_BCM2.0(A2) 739.93 263.35 0.36 0.07 −4.39 −4.45
BCCR_BCM2.0(B1) 735.28 260.24 0.35 −0.56 −5.52 −4.98

CSIRO_MK3.0(A1B) 790.78 300.37 0.38 6.94 9.06 1.97
CSIRO_MK3.0(A2) 726.37 249.02 0.34 −1.77 −9.59 −7.97
CSIRO_MK3.0(B1) 678.03 217.10 0.32 −8.30 −21.18 −14.04
MIROC3.2m(A1B) 805.40 306.29 0.38 8.92 11.20 2.10
MIROC3.2m(A2) 760.50 276.14 0.36 2.85 0.26 −2.52
MIROC3.2m(B1) 793.18 300.71 0.38 7.27 9.18 1.78

ACCESS1.0 (RCP4.5) 841.15 331.45 0.39 13.76 20.34 5.79
ACCESS1.0 (RCP8.5) 909.90 398.39 0.44 23.05 44.64 17.54

BCC-CSM1.1(m)(RCP4.5) 752.82 261.36 0.35 1.81 −5.11 −6.80
BCC-CSM1.1(m)(RCP8.5) 759.89 269.18 0.35 2.77 −2.27 −4.90

CESM1(BGC) (RCP4.5) 741.93 254.00 0.34 0.34 −7.78 −8.09
CESM1(BGC) (RCP8.5) 748.55 264.06 0.35 1.23 −4.13 −5.30

CESM1(CAM5) (RCP4.5) 807.84 307.95 0.38 9.25 11.81 2.34
CESM1(CAM5) (RCP8.5) 761.03 268.87 0.35 2.92 −2.38 −5.15

CMCC-CM (RCP4.5) 675.31 204.83 0.30 −8.67 −25.63 −18.57
CMCC-CM (RCP8.5) 690.96 204.70 0.30 −6.56 −25.68 −20.47

MPI-ESM-MR (RCP4.5) 766.74 266.63 0.35 3.69 −3.20 −6.64
MPI-ESM-MR (RCP8.5) 756.81 248.18 0.33 2.35 −9.90 −11.97

4.3. Future Evaporation and Runoff Conditions under Climate Changes

The annual evaporation and runoff of the 21 scenarios in the two future periods are predicted by
the SWAT model using the downscaled daily precipitation and temperature data. The predicted
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evaporation and runoff percentage differences relative to the 1980–2004 period are shown in
Figures 11–14, respectively. The horizontal dashed lines in the figures refer to the maximum and
minimum multi-year mean evaporation and runoff change percentages, which can be calculated by
Equations (8) and (9), show the ranges of change uncertainty.

Figure 11 shows the annual evaporation changes under CMIP3 scenarios. The annual mean
change percentage ranges from −1.09% to 5.50% in 2016–2040. The range is slightly wider in 2041–2065,
which ranges from −0.85% to 7.21%. Figure 12 shows the annual evaporation changes under CMIP5
scenarios. The annual mean change percentage ranges from −2.05% to 8.90% in 2016–2040. The range
is slightly smaller in 2041–2065, which ranges from 5.10% to 12.55%. Compared to the results in
2016–2040, the annual evaporation change percentages are similar under CMIP3 but much larger
under CMIP5. Future annual evaporation all increase except CSIRO_MK3.0 (B1) for two future periods
and CMCC-CM (RCP4.5) for 2016–2040. Overall, future evaporation changes range from −2.05% to
8.90% in 2016–2040 and −2.70% to 12.55% in 2041–2065 relative to 1980–2004 period on the basis of the
selected scenarios. The increase in future evaporation is mainly caused by the rising temperature.

Figure 11. The forecasted evaporation change percentage relative to 1980–2004 period under CMIP3:
(a) 2016–2040; (b) 2041–2065.

Figure 12. The forecasted evaporation change percentage relative to 1980–2004 period under CMIP5:
(a) 2016–2040; (b) 2041–2065.

Figure 13 shows the annual runoff changes under CMIP3 scenarios. The annual mean change
percentage ranges from −13.35% to 46.59% in 2016–2040. The range is slightly smaller in 2041–2065,
which ranges from −19.39% to 25.47%. The difference of MIROC3.2m (B1) in the two future periods is
the greatest, followed by MIROC3.2m (A1B) and BCCR_BCM2.0 (A2). The other six scenarios differ by
less than ±10%.

Figure 14 shows the annual runoff changes under CMIP5 scenarios. The annual mean change
percentage ranges from −37.97% to 37.60% in 2016–2040. The range is significantly wider in 2041–2065,
which ranges from −24.05% to 90.16%. Compared to the results in 2016–2040, the runoff change
percentage in 2041–2065 decreases most under MPI-ESM-MR (RCP8.5), which is also the only scenario
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under which precipitation decreases. Meanwhile, runoff slightly decreases under BCC-CSM1.1(m)
(RCP4.5), CMCC-CM (RCP8.5), and MPI-ESM-MR (RCP4.5), while under the other eight scenarios
runoff increases. Overall, future runoff changes range from −37.97% to 46.59% in 2016–2040 and
−24.05% to 90.16% in 2041–2065 relative to 1980–2004 period on the basis of the selected scenarios.

Figure 13. The forecasted runoff change percentage relative to 1980–2004 period under CMIP3:
(a) 2016–2040; (b) 2041–2065.

 
Figure 14. The forecasted runoff change percentage relative to 1980–2004 period under CMIP5:
(a) 2016–2040; (b) 2041–2065.

This implies that changes in future runoff are greater than changes in precipitation under both
CMIP3 and CMIP5. However, future runoff changes are relatively similar in the near future and far
future under CMIP3, but are much more severe in the far future than in the near future under CMIP5.
In addition, the ranges of change in runoff under CMIP5 are much wider than under CMIP3.

Among A1B, A2, and B1, the change of runoff from largest to smallest is A1B > A2 > B1 under
CSIRO_MK3.0 in both future periods. However, the pattern is not obvious under the other two
models. In addition, it is found that half of the models have larger change percentages under RCP8.5
while the other half have larger change percentages under RCP4.5. The situation is just like that of
the precipitation changes, but with different change percentages. This implies that climate emission
scenarios are also not so closely associated with runoff.

The forecasted long series (2016–2065) of runoff is compared with the baseline series (1958–2011)
in order to thoroughly analyze the future runoff changes which are more practical for decision makers.
Compared to the historical mean annual runoff (275.43 mm), the mean annual runoff decreases under
five CMIP3 scenarios while it increases under the other four scenarios. Specifically, the scenarios under
which mean annual runoff increases include MIROC3.2m for A1B, A2, and B1, and CSIRO_MK3.0
(A1B). The forecasted mean annual runoff increases by up to 11.20% under MIROC3.2m (A1B), while
it decreases by up to 21.18% under CSIRO_MK3.0 (B1); this is because the precipitation under these
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scenarios increases the most and decreases the most respectively. Among the 12 CMIP5 scenarios,
runoffs increase in the ACCESS1.0 model for RCP4.5 and RCP8.5, as well as the CESM1 (CAM5) model
for RCP4.5, while the other scenarios all have a decline in runoff. Runoff increases by up to 20.34%
and 44.64% under the ACCESS1.0 model for RCP4.5 and RCP8.5 respectively, mainly because their
precipitation increases the most. On the other hand, runoffs of the CMCC-CM model decrease by up
to 25.63% and 25.68% for RCP4.5 and RCP8.5 respectively, which is because the precipitation decreases
the most. A comparison of the results is shown in Table 2. Overall, compared to the baseline series,
the runoff decreases under two-thirds of the selected scenarios including five CMIP3 scenarios and
nine CMIP5 scenarios.

5. Discussion

The morphing results are affected by the characteristics of the ‘baseline climate’. However,
the morphing results meet the downscaling requirements in this study; in addition, the method is
simple and requires only a small computation volume. That is the reason why morphing is utilized in
this study.

Compared to 1980–2004 period, both temperature and precipitation increase under most of the
scenarios, and they both increase more in the far future than in the near future under both CMIP3
and CMIP5. Moreover, the temperature increases more under CMIP5 than under CMIP3 scenarios.
Several studies have shown that CMIP5 presents warmer and wetter predictions [19,20]. Meanwhile,
the ranges of change in both precipitation and runoff under CMIP5 are much wider than under
CMIP3, which indicates that the selected CMIP5 scenarios are more effective in capturing future runoff
uncertainties than the selected CMIP3 scenarios. In addition, the results imply that climate emission
scenarios are closely associated with temperature but not so closely associated with precipitation
and runoff.

As shown in Table 2, the runoff changes differ from precipitation changes. In most scenarios (15 of
the 21 chosen scenarios), the decline in precipitation results in a more significant decline in runoff,
while the increase in precipitation results in less increase in runoff. This implies that whether the
precipitation increases or decreases, part of the water is failed to form runoff. There are six exceptions
when the annual precipitation is more than 790 mm and the increase in runoff is larger than that of
precipitation. The six exceptions include three CMIP3 scenarios (CSIRO_MK3.0 (A1B), MIROC3.2m
(A1B), and MIROC3.2m (B1)) and three CMIP5 scenarios (the ACCESS1.0 model for RCP4.5, RCP8.5,
and CESM1(CAM5) (RCP4.5)), which are the same as the six runoff increase scenarios. Precipitation
supplements the soil moisture content when precipitation reaches or exceeds a certain amount. After
the soil moisture content is saturated, most of the remaining precipitation forms runoff [31]. The runoff
coefficient of precipitation thus increases (as show in Table 2), which may result in the larger increase
in runoff than precipitation.

The relatively low flow conditions of the 1980–2004 period may partly result in the decline
in future runoff when compared to the baseline series. Three impact factors are further analyzed.
First, Yushi Reservoir supplies water to the outside of the basin, about 46 million m3 each year
(about 22.1 mm). This is one cause of the decline in runoff. Second, compared to 1980–2004 period,
the simulated future evaporation increased under all the selected scenarios in both future periods
except CSIRO_MK3.0 (B1) and CMCC-CM (RCP4.5) with slightly decreases. Evaporation increases
greater in the far future than in the near future, which is the same to the temperature increase pattern.
The increase in evaporation caused by the rising temperature is another cause of the decline in future
runoff. Third, on the basis of water balance in the basin, the upstream water consumption, such as
farmers getting water from the stream for irrigation, may be another factor which affects future runoff.
Unlike the former two factors, the amount of upstream water consumptions is relatively small, and the
impact on runoff is not obvious in these scenarios.

Acknowledging the uncertainty of the simulated runoff using the GCMs in the future [13,20,21,38],
it is hard to give an accurate estimate about how much water the reservoir will have. However,
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the results in this study do show that the runoff in the future could decrease. This decrease could
provide important information for the long-term planning of the development of this region. At present,
the study region has a few factories that consume much water every year, and the water demand
may increase in the future. In addition, the water used for irrigation could also increase in the
future. The decreasing runoff (as shown in this study) suggests that this region may suffer from
water shortages if industrial and irrigation demands keep increasing in the future. This information is
beneficial for regional sustainable development, and indicates that possible adaption measures (e.g.,
building water transfer projects) should be taken in advance to adapt to climate change.

6. Conclusions

This study investigated the variations of future climate and water resources availability in
an important river basin (the Biliu River basin) in northeast China. We found that both temperature
and precipitation increase under most of the CMIP3 and CMIP5 scenarios, and CMIP5 shows higher
temperature and wider ranges of changes in precipitation and runoff than CMIP3. We also found that
the evaporation could increase and the runoff could decrease in the future. The decline in runoff may
aggravate water shortages in the Biliu River basin, which may influence the water security in nearby big
cities. The results provide very important information for water resources planning and management
in this region and could have important implications to the regional sustainable development.

The uncertainties caused by the downscaling method and hydrological model, which are not
considered in this article, require further research. In addition, the impact of human activities on
future runoff, as well as the comprehensive impact of change conditions, also requires further research.
Furthermore, it is necessary to combine these results with the analysis of reservoir regulation rules
in order to use this information to make an informed decision about the future water availability for
this reservoir.
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Abstract: Heilongjiang Province is under the pressure of a water shortage due to climate change,
population growth and economic development. To effectively manage regional land and water
resources, this paper describes a system dynamics model that was built to simulate the interaction
between land and water resources and socioeconomic factors, as well as the evolution of regional
land and water resources in different climates in Heilongjiang Province. The results show that the
declining trend of unused land area and the water supply–demand ratio will not stop, even under
the most optimistic (e.g., humid climate) climate conditions, if the current land use patterns continue.
Therefore, measures should be taken to manage the unreasonable usage patterns of land and water
resources in this region. This study simulated the evolution of regional land and water resources for
five scenarios under an arid climate by changing the net irrigation quota for paddy fields, the water
quota for industrial use, forestland area, annual change rate of farmland area, and the growth rate
of the gross industrial output value. Further, a combined scenario that can maximally reduce the
regional land and water resource sustainable risk was identified. The simulation of the combined
scenario showed that it can effectively increase the degree of regional land and water resource use in
the region, as well as reduce the risks that threaten these resources. This study provides theoretical
support for the efficient use of land and water resources in the future.

Keywords: land and water resources; system dynamics; modeling; scenario analysis; Heilongjiang

1. Introduction

Land and water resources are important for human survival; they not only show a region’s
resource endowment, but also determine the region’s agricultural and industrial development
patterns [1–3]. In recent years, the evolution of regional land and water resources has become
more dynamic and complex than ever due to climate change, relevant policies, and economic
development. More and more scholars have been working on sustainable management of land and
water resource systems.

System dynamics (SD) is a method developed by Forrester et al. [4] to study the structure of a
system. This method establishes a systematic model with a series of interrelated and feedback variables
to study a system’s past, present, and future. This model can be used to reproduce and analyze the
dynamic behaviors of a system [5–7]. With the increasing complexity, dynamics, and variability
of modern society, approaches based on a comprehensive system theory (e.g., SD, cybernetics
and information theory) help people to understand nonlinear and time-varying phenomena [8].
The present study uses the SD model because the land and water resource system is the result of the
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interplay of social, ecological, and economic factors [9], and the model can help us to analyze the
evolution of the land and water resource system in the long term [10,11].

At present, land and water resource systems are often used as an important factor of a subsystem
in regional environmental [12] or agricultural systems [13]. In a regional environmental system, water
and land resources can be used as key components of the resource subsystem; by analyzing the
production and consumption of land and water resources, the overall impact of the resource subsystem
on the regional environmental system can be analyzed. In agricultural systems, which are based
on land and water resources, SD can be used to simulate the dynamic changes in land and water
resources to promote the dynamic development of agricultural systems, evaluate the agricultural
system as a whole, and analyze the rationality of agricultural models to guarantee the development of
agricultural systems.

This paper describes an SD model of the land and water resource system in Heilongjiang Province,
which was built to simulate the evolution of the system under different conditions (e.g., economic
policies, climate change) and can systematically analyze the land and water use patterns, analyze
the interaction between the conditions and results, and identify the potential risks of using regional
land and water resources in the region. This study can solve the conflicts between the demand
(for future economic development and grain production) and the limited land and water resources,
provide guidance for the sustainable use of regional land and water resources, and realize sustainable
socioeconomic development.

2. The Study Area

Heilongjiang Province is located in northeastern China; the latitude ranges between 43◦26′ and
53◦33′ and longitude between 121◦11′ and 135◦05′ (Figure 1). The province has a temperate continental
monsoon climate with high summer temperatures, abundant rainfall, a long winter, and cold and dry
weather. The annual sunshine duration is approximately 2300–2800 h, the annual average temperature
is approximately −7.9 to 7 ◦C, and the annual rainfall is approximately 360–830 mm; the solar energy
resource is abundant. With its vast territory, the province had farmland area accounting for 11.75% of
the country’s total in 2015 and is an important grain production base.

Figure 1. Heilongjiang Province location map.

In recent years, the Chinese government has adopted a series of economic policies which have
helped the economic development of the province, and the province’s grain production had increased
over a consecutive 12-year period, from 2003 to 2015. However, with the economic development and
grain production increase, the province presented a sharp increase in water demand and a trend of
land resource overdevelopment, resulting in an imbalance between the supply and demand of regional
land and water resources. Moreover, the imbalance curbed the region’s economic development and
grain production. The “12 consecutive years of increase in grain production” stopped in 2016.
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3. The Model and Data Sources

3.1. System Dynamics

System dynamics has enormous advantages for the analysis of complex dynamic feedback
systems. This advantage makes it widely used in nature, resources, society, engineering, and other
fields, and its application requires software support. With the development and popularization of
computer technology, system dynamics software has been greatly improved. From many versions of
the software, this study selected Vensim-DSS, which was developed by Ventana Corporation in the
United States. This software can set the flowchart, the writing equation, the feedback loop analysis,
and the output graph form. This study used Vensim to model the simulation flowchart and used
the Equations function to assign calculation equations and parameters to various variables, and then
used the Run a Simulation function to express the changes in each variable in the form of a chart.
Additionally, structural analysis and data set analysis of the model were performed, and the changes
in other characteristic variables were observed by changing one of the variables; the operating results
were compared to provide a comprehensive analysis of the plan.

3.2. Constructing the Model

To analyze and predict the evolution of the land and water resources in Heilongjiang Province,
this study built an SD model (Figure 2) including four subsystems: a population subsystem, water
subsystem, land subsystem, and economic subsystem. The study time ranges from 2000 to 2030 with
1 year as the time step. The historical years range from 2000 to 2015, and the planning years range
from 2016 to 2030. Four subsystems were also introduced in the model: the population subsystem,
land subsystem, water subsystem, and economic subsystem. The subsystem interconnection overview
is shown in Figure 2, and the workflow with more details of the subsystems is given in Figures 3–6.

Water
supply–demand ratio

Annual total water
supply

Annual total water
demand

Surface water
supply

UndergroundwaterRecycled water

Total
population

Population
increase

Population
decrease

Aortality rate

Birth rate

Industrial water
demand

Agricultural water
demand

Urban public facilities
water demand

Domestic water
demand
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Coefficient of agricultural
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industries
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Population subsystemLand subsystem
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Figure 2. Subsystem interconnection overview.
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The population size and structure of the population subsystem are the main driving forces for
regional water consumption and land use type conversion. For example, facing the expansion of
urban population, the government needs to convert farmland and unused land to built-up land or
to reduce the water supply for agricultural land to meet the water demand in urban areas (Figure 3).
The parameter that determines the population size and structure is total population, which is calculated
using Equation (1)

Total populationt+1 = Total populationt + Population increaset − Population decreaset (1)

Rural population

Urban population
-

Urbanization rate

+

Birth rate

Aortality rate

Total population

Population
decrease

Population
increase

+

-
+

+

+ +
-

+

Figure 3. Workflow for the population subsystem.

In the water subsystem (Figure 4), the key variable is the water supply–demand ratio, i.e., the ratio
of annual total water supply to annual total water demand; the annual total water supply and annual
total water demand are presented as follows:

Annual total water supply = Surface water supply + Groundwater + Recycled water (2)

Annual total water demand = Agricultural water demand + Industrial water demand + Ecological
water demand + Domestic water demand + Urban public facilities water demand

(3)

To quantitatively evaluate the status quo of the region’s water resources, this paper introduced
characteristic variables (such as the water shortage risk index (WSRI), water use efficiency index (WUI),
and coefficient of agricultural land and water resource matching (CA)) into the water subsystem.

The water shortage risk index depends on a range of factors, as in Equation (4) [14].

WSRI =
Precipitation coefficient × Total population ×√

Gross region output
Annual total water supply + Diverter water volume of transit water

(4)

The water use efficiency index reflects the region’s water use efficiency and its water-saving
potential, which is calculated using Equation (5) [15].

WUI =
Gross agriculture output

Gross region output ×Agriculture water demand ratio+Gross industry output
Gross region output ×Industry water demand ratio

Agriculture water demand ratio+Industry water demand ratio (5)

The coefficient of agricultural land and water resource matching represents the matching of the
region’s agricultural land and water resources, as in Equation (6) [16].

CA =
Annual total water supply × Agricultural water demand ratio

Farmland area
(6)
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Figure 4. Workflow for the water subsystem.

The land subsystem (Figure 5) divides the region’s land area into seven land use types: farmland,
orchards, built-up land, forestland, the remaining agricultural land, pastureland, and unused land.
Unused land is determined by the other land use types, as shown in Equation (7)

Unused land = Land area − Orchards − Built-up land − Forestland − Pastureland −
Farmland area − The remaining agricultural land

(7)

The structure of land use is determined by many factors. Therefore, this paper introduces
characteristic variables, such as the comprehensive index of the land use degree (CILU), land use
diversity index (LUDI), and land use ecological risk index (LUERI).

The comprehensive index of the land use degree measures the land use degree level and the
effects of interactions between humans and nature, which is calculated using Equation (8) [17].

CILU =
Unused land+2×(Forestland+Pastureland+Waters)+3×(Orchards+Farmland area)+4×Built−up land

Land area (8)

The land use diversity index represents the diversity of land use types, as shown in
Equation (9) [18].

LUDI = −
7

∑
i=1

(Land use type area × log2(Land use type area)) (9)

There are seven land use types: farmland, orchards, built-up land, forestland, remaining
agricultural land, pastureland, and unused land.

The land use ecological risk index represents the size and degree of damage caused to land when
ecological disasters occur, which is calculated using Equation (10) [19].

LUERI =
7

∑
i=1

Land use type area × Wi

Land area
(10)
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Wi is the ecological risk intensity parameter for the ith land use type, which can be found in
Reference [19].
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+ -

+

+
+

+
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+
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-
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Figure 5. Workflow for the land subsystem.

An economy subsystem is crucial to analyze the regional development. This study used the gross
regional output to measure the regional development level (Figure 6). The gross regional output is
shown in Equation (11).

Gross regional output = The primary industries + The secondary industries + The tertiary industries (11)

Without water-saving measures, economic growth always leads to an increase in water demand.
Considering the province’s agricultural and industrial development status quo, government may
manage its water demand by reducing the water use per gross regional output unit.

Annual growth rate of
gross industrial output

value

The primary
industries

Gross regional
output

The secondary
industries

+

+

Tertiary industry
wastewater

Sewage
discharge

+
The tertiary
industries

+

+

+

Gross industrial
output value
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+

+
+

+

+

Agriculture water
demand

+

Figure 6. Workflow for the economic subsystem.
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3.3. Data Sources

The historical data of the variables in the model were obtained from the China Statistical
Yearbook [20] and Heilongjiang Statistical Yearbook [21]. The planning year data were obtained
from the country and region’s government documents, such as the Thirteenth Five-Year Plan of
Heilongjiang Province [22] and the Comprehensive Land Use Planning of Heilongjiang Province [23].
The base year data on the development and use of land and water resources are the same as the
status quo.

4. The Simulation Model and Results Analysis

Considering the impact of future climate scenarios on land and water resources [24–26], this study
introduced three climate types (i.e., arid, humid, and normal) into the SD model (Vensim DSS software,
Ventana Systems Inc, Wiltshire, UK). These climate types were based on precipitation data series from
1965 to 2015 to represent different climate types. An arid climate has a minimum precipitation of
382.9 mm (in year 2001); a normal climate has an average precipitation of 518.6 mm; and a humid
climate has a maximum precipitation of 691.7 mm (in year 2013).

4.1. Model Testing

This work used historical data to test the precision and accuracy of the simulation (see Table 1).
Comparing the predicted with the actual values, it can be seen that the difference is within
±10%; the relative errors are small. The simulation result can represent the actual situation.
Therefore, the model can be used to predict the evolution of the land and water resource system
in Heilongjiang Province.

4.2. Simulating the Evolution of the Land and Water Resource System under Different Climates

This study used precipitation to separate different climates (i.e., arid, humid, and normal)
(Figure 7). Some variables changed dramatically over time (i.e., water supply–demand ratio, water
shortage risk index, coefficient of agricultural land and water resource matching, unused land area,
degree index, diversity index, and ecological risk index), while the water use efficiency index did not
change much.

From Figure 3, it can be seen that the unused land area and water supply–demand ratio both
declined under different climates. Under the humid climate, the ecological risk index and water
shortage risk index tend to decrease, while the coefficient of agricultural land and water resource
matching, degree index, and diversity index increase slightly. However, under other climates,
the ecological risk index and water shortage risk index tend to increase, while the coefficient of
agricultural land and water resource matching, degree index, and diversity index tend to decrease.

Therefore, even under the most optimistic condition (i.e., humid climate), the declining trend
of the unused land area and water supply–demand ratio will not stop if the current land and
water use patterns continue. Moreover, the land and water resources may face various challenges
(e.g., ecological risk, shortage risk, mismatching, low efficiency and diversity) unless the humid climate
continues in the future. Therefore, the region may face the inevitable crisis of land and water resource
shortages unless it improves its current land and water use patterns.

4.3. Simulation of the Land and Water Resource System under Different Scenarios

The combination of different climates and resource use patterns can make the land and water
resource system evolve in different directions. Although the future is uncertain, the overall direction
will still achieve the desired goals.

The Thirteenth Five-Year Plan of Heilongjiang Province pointed out the following: Heilongjiang
Province should have an advantage, focus on industry, optimize and upgrade the industrial structure
and ownership structure; accelerate artificial afforestation, build a national reserve forest base;
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and improve the effective coefficient of irrigative water utilization for farmland. The Comprehensive
Land Use Planning of Heilongjiang Province pointed out that Heilongjiang Province should adhere
to the most stringent farmland protection system, strictly protect basic farmland; increase the supply
of farmland; strictly protect forestland, prohibit deforestation; actively develop water conservancy
projects; and promote water-saving and drought-resistance technologies. Considering the possible
temperature rise due to global warming, this study used the arid climate as an example to adjust the
variables within each subsystem according to the regional development plan to simulate the setting of
land and water resource-use strategies under different scenarios.

Table 1. The model verification results using historical data.

Index Variable Unit 2000 2002 2004 2006 2008 2010 2012 2014 2015

Annual total water
supply

Predicted value 108 m3 287 249 251 282 300 324 350 348 348
Actual value 108 m3 297 252 259 286 297 325 359 364 355

Error % −3.48 −1.20 −3.19 −1.42 1.00 −0.31 −2.57 −4.60 −2.01

Groundwater
resources

Predicted value 108 m3 275 247 262 268 236 285 285 282 282
Actual value 108 m3 268 270 274 279 248 278 290 295 283

Error % 2.55 −9.31 −4.58 −4.10 −5.08 2.46 −1.75 −4.61 −0.35

Gross regional
output

Predicted value 108 Yuan 2963 3375 4551 6233 8161 9976 14,398 15,247 15,440
Actual value 108 Yuan 3151 3637 4751 6212 8314 10,369 13,692 15,039 15,490

Error % −6.34 −7.76 −4.39 0.34 −1.87 −3.94 4.90 1.36 −0.32

Urbanizat-ion rate
Predicted value % 52 52 52 53 55 56 57 58 58

Actual value % 52 53 53 53 55 56 57 58 59
Error % 0.00 −1.92 −1.92 0.00 0.00 0.00 0.00 0.00 −1.72

4.3.1. The Subsystems’ Variable Selection and the Scenarios

In the water subsystem, reducing the water quota for industries can reduce the overall water
demand, and the factors influencing the annual total water demand can be examined (Figure 8). As the
figure shows, the trend of the annual total water demand matches that of the water demand for paddy
fields. Therefore, the net irrigation quota can be used for paddy fields to manage the water quota for
agricultural use. Furthermore, the region should also introduce advanced water-saving technologies
to properly reduce the water quota for industrial use.

In the land subsystem, inappropriate land development may result in a decrease in the
unused land area, the diversity index, and degree index but an increase in the ecological risk.
Forestland accounts for the largest area of Heilongjiang Province, followed by farmland. Considering
the importance of forestland and farmland, the region may effectively control the region’s land
development by controlling the conversion between the two land use types. Through the annual
change rate of farmland area in the land subsystem, the government can control the conversion
between forestland and farmland.

In the economic subsystem, this paper uses the gross regional output to represent the region’s
economic situation. Heilongjiang is largely an agricultural province and part of the industrial base of
the country. Since agriculture is the region’s base industry, changing agricultural land use types may
lead to social chaos. Therefore, this study adjusted the region’s economic factors without changing
anything in the agricultural industry. This model adjusted the annual growth rate of the gross regional
output to evaluate its impact on the gross regional output and the land and water resources.
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Figure 8. Influential factors of the annual total water demand. (a) Annual total water demand;
(b) Paddy field irrigation water.

Based on the above analysis, this work selected the net irrigation quota for paddy fields, the water
quota for industrial use, forestland area, annual change rate of farmland area, and annual growth
rate of gross industrial output value to set different scenarios within a reasonable range, according
to government programs at the planning horizon, to simulate the evolution of the land and water
resource system in the planning years. This model also considered the province’s existing problems and
socioeconomic development status quo with respect to land and water resources to set the planning
years’ conditions. In Scenario 1, the model reduced the net irrigation quota for paddy fields and the
water quota for industrial use, given the implementation of water-saving techniques. In Scenario 2,
the model adopted the policy of returning farmland to forestland. In Scenario 3, the model converted
an appropriate amount of forestland to farmland. In Scenario 4, the model adopted development
policies to boost economic growth. In Scenario 5, the model slowed the economic development rate.
There is more literature on setting different scenarios [27–33], and Table 2 shows the details used when
setting each scenario in this paper.

Table 2. Different scenarios.

Variable Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Net irrigation quota for paddy fields
(m3/hm2) Decrease by 20% No change No change No change No change

Water quota for industrial use
(m3/hm2) Decrease by 20% No change No change No change No change

Forestland (10,000 hm2) No change Increase by 20% Decrease by 20% No change No change
Annual change rate of farmland area No change Decrease by 20% Increase by 20% No change No change

Annual growth rate of gross
industrial output value No change No change No change Maximum over

the years 0

4.3.2. Simulations under Each Scenario

This model simulated the evolution of the land and water resource system for an arid climate
under different scenarios to predict the change range of variables compared with the status quo in
2030 (Table 3).

In Scenario 1, the model decreased the area’s water use for agricultural and industrial use, given
advanced water-saving technologies, and thus increased the water supply–demand ratio, reduced the
water shortage risk index, and increased the water use efficiency. This scenario has a more effective
impact on the water subsystem but a less effective impact on the land subsystem.

In Scenario 2, the model slowed the development rate of unused land by adopting the policy
of returning farmland to forestland and thus reduced the ecological risk index and increased the
coefficient of agricultural land and water resource matching. However, the land use diversity and
comprehensive land use degree indices decreased. This means that the policy of returning farmland to
forestland can reduce the adverse effects of ecological disturbance, but this scenario may decrease the
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land use type and land use degree. Therefore, this scenario has a more effective impact on the land
subsystems but a less effective impact on the water subsystem.

Table 3. Comparing the simulation results with the status quo under an arid climate.

Variable Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Unused land - 2.85% - - -
Land use diversity index - −2.60% 1.66% - -

Land use ecological risk index - −9.97% 8.92% - -
Comprehensive index of land use degree - −3.09% 2.67% - -

Water supply–demand ratio 20.10% - - −0.10% 0.5%
Water use efficiency index 17.81% - - −7.81% 3.59%
Water shortage risk index −4.44% - - 33.22% −3.22%

Coefficient of agricultural land and water
resource matching −2.35% 26.62% −6.62%c −6.62% 0.86%

Note: the symbol of “-”means keep invariant.

In Scenario 3, the model converted forestland to farmland and thus increased the land use diversity
and degree indices. However, the ecological risk index increased, and the coefficient of agricultural
land and water resource matching decreased. Therefore, this scenario has a more effective impact on
the land subsystem but a less effective impact on the water subsystem.

In Scenario 4, the model greatly boosted the regional economy. From Table 3, it can be seen
that emphasis on economic development can lead to an increase in water demand for economic use,
thus decreasing the water supply–demand ratio, increasing the water shortage risk, and decreasing the
coefficient of agricultural land and water resource matching. This scenario has a more effective impact
on the water subsystem but a less effective impact on the land subsystem. It emphasizes economic
growth but neglects the region’s sustainable development.

In Scenario 5, the model decreased the economic development rate. Table 3 shows that
decreasing the economic development rate can increase the water supply–demand ratio, reduce
the water shortage risk, and increase the coefficient of agricultural land and water resource matching.
This scenario has a more effective impact on the water subsystem but a less effective impact on the
land subsystem. Furthermore, this scenario can greatly increase the environmental and ecological
benefits while reducing the economic benefits.

From the above analysis, it can be seen that no single scenario can improve regional land and water
resources in all aspects. Each scenario has its merits and demerits. The region needs to balance and
complement different measures to properly improve regional land and water resources. Comparing
the scenario results, it can be seen that combining Scenarios 1, 2, and 5 can minimize the evolution risk
of regional land and water resources. Table 4 shows the result of the combined scenario in 2030.

Table 4. Comparing the status quo with the system dynamics (SD) model results under the combined
scenario in 2030 under an arid climate.

Variable Unit Status Quo Combined Scenario Change Range

Unused land 10,000 hm2 207.4 251.9 21.46%
Land use diversity index - 1.27 1.24 −2.05%

Land use ecological risk index - 0.08 0.07 −9.78%
Comprehensive index of land use degree - 235.9 228.1 −3.31%

Water supply–demand ratio - 0.56 0.65 17.45%
Water use efficiency index - 0.34 0.45 29.45%
Water shortage risk index - 24.08 22.49 −6.60%

Coefficient of agricultural land and water
resource matching - 0.19 0.23 22.18%

As shown in Table 4, the development of land and water resources is acceptable under the
combined scenario. The unused land area and water supply–demand ratio both increased by over 20%;
this relieved the declining trend of the land and water resources. In addition, the ecological risk
index and water shortage risk index decreased by more than 5%. The water use efficiency index
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and coefficient of agricultural land and water resource matching also increased by more than 20%.
Besides the quantitative improvement, the combined scenario also promoted quality improvement
in the system’s sustainable development. However, a decrease in the ecological risk index usually
results in a decrease in the diversity and degree indices. Since ecological damage may be irreversible,
reducing ecological risk substantially but reducing land use diversity and degree appropriately within
a manageable range may be a favorable approach for the system’s evolution. Therefore, the combined
scenario can advance water-saving technologies, adopt the policy of returning farmland to forestland,
and decrease the economic development rate to ensure the healthy evolution of regional land and
water resources. This is the best plan to use the land and water resources in Heilongjiang Province.

5. Discussion

To discuss the reasons why different scenarios produce different simulation results for each
variable, the Vensim software was used to analyze the characteristic variable tree (Figure 9) to analyze
the details of the effects of each control variable. Because the “Gross regional output” variable has more
appearances and it is a key variable of the economic subsystem, and the economic subsystem is closely
related to the land and water subsystem, the “Gross regional output” variable tree is drawn separately.

Considering that the “Gross regional output” variable is directly affected by the “Annual growth
rate of gross regional output” variable, it is also influenced by the “Agriculture water demand” variable.
Because the “Water use efficiency index” and the “Agriculture water demand” variable is affected by
the “Net irrigation quota for paddy fields”, the tree containing the “Gross regional output” variable
also includes the “Annual growth rate of gross regional output” and “Net irrigation quota for paddy
fields.” Because the “Gross regional output“ tree appears in all of the characteristic variable trees in the
water subsystem, the characteristic variable tree in the water resource subsystem includes the “Annual
growth rate of gross regional output” and “Net irrigation quota for paddy fields” variables.

The “Annual change rate of farmland area” and “Forestland” variables appear in all characteristic
variables of the land subsystem tree, so controlling the conversion between farmland and forestland can
directly affect the land resource subsystem, but there is little impact on water subsystems. The “Water
quota for industrial use” variable appears in the “water use efficiency index” tree, which shows that
increasing industrial water-saving technologies can effectively increase the water use efficiency and
water-saving potential. The “Net irrigation quota for paddy fields” and “Annual growth rate of gross
regional output” variables appear in the characteristic variable tree in the water resource subsystem. These
two variables have a direct impact on the water subsystem but do not directly affect the land resources
subsystem, so they have little effect on the land resource subsystem. In addition, “Net irrigation quota
for paddy fields” has more appearances than the “Annual growth rate of gross regional output”, and it
can be seen that the direct impact of the “Net irrigation quota for paddy fields” variable on the water
subsystem is greater than that of the “Annual growth rate of gross regional output” variable.

Based on comparative literature, Hamid Balali et al. [23] used SD methods to simulate the
groundwater dynamics to depletion under different economic policies and climate change and
developed a model that can simulate a farmer’s economic behavior and groundwater aquifer dynamics,
as well as studied area climatology factors and government economic policies related to groundwater.
These authors concluded that climate change can affect the water system, and this study confirms that
under conditions where climate and economic changes are difficult to predict, in addition to adopting
comprehensive management policies, planning and the application of certain methods to control
climate factors such as precipitation can achieve groundwater sustainable management effectively
and can reduce the vulnerability of water resource systems. Janez et al. [34] used SD methods to
analyze policy trends, incorporate socioeconomic factors into the integrated water system, and monitor
the possible environmental and socioeconomic impacts by controlling key parameters to assess the
potential impact of water shortages and socioeconomic policies in complex hydrological systems and
to provide information for the formulation of regional water resources policies, further confirming the
applicability of the SD approach for assessing the potential impact of various policies and measures on
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regional water systems. Tong et al. constructed a complicated coupling simulation system of water
resources-land resources-social economy-ecology based on the method of system dynamics [26] and
analyzed the regional land and water resources joint allocation plan, pointing out that in order to
realize sustainable use of land and water resources, we should increase the intensity of agricultural
water conservation and implement land consolidation, which coincides with the conclusions of this
study. This study also points out that the construction of a comprehensive SD model of regional
land and water should be combined with relevant hydrological and water environment models to
realize accurate quantification research. The results of various studies confirm the applicability of
SD in land and water systems and show that climatic factors also have a certain impact on regional
land and water systems. In addition, advanced water-saving technologies, adoption of the policy
of returning farmland to forestland, and decreasing the economic development rate can ensure the
healthy evolution of regional land and water resources.

 
(a) 

 
(b) (c) 

 
(d) 

 

(e) (f) 

  
(g) (h) 

 
(i) 

Figure 9. The characteristic variable tree. (a) Water supply-demand ratio variable tree; (b) Water use
efficiency index variable tree; (c) Water shortage risk index variable tree; (d) Coefficient of agricultural
land and water resource matching variable tree; (e) Unused land variable tree; (f) Land use diversity
variable tree; (g) Land use ecological risk index variable tree; (h) Comprehensive index of land use
degree variable tree; (i) Gross regional output variable tree.
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6. Conclusions and Future Research

1. Through establishing an SD model of the land and water resource system for Heilongjiang
Province, this study analyzed the evolution of the system under different climates and concluded
that the region faced a risk of supply and demand of land and water resources. This step clarified
the problem and the direction of managing regional land and water resources.

2. This paper shows the evolution of regional land and water resources as a result of many driving
forces. This study selected and adjusted the variables (i.e., net irrigation quota for paddy fields,
water quota for industrial use, forestland area, annual change rate of farmland area, the annual
growth rate of industrial gross) to set different scenarios. The model simulated the evolution
and analyzed the results and then combined the favorable scenarios to predict the evolution of
regional land and water resources in Heilongjiang Province. Through simulation under different
scenarios, it can be seen that water-saving technologies can reduce water use, and the policy
of returning farmland to forestland can reduce the ecological risk of land use. Decreasing the
economic development rate can alleviate the pressure of water shortage. Combining these
strategies can promote the healthy evolution of regional land and water resources in the region.

3. The SD model can simulate the dynamic relationships between the variables, as well as predict the
response of the land and water resource system to climate change and relevant policies. However,
this model has a limitation. Precipitation has a certain impact on the evolution of the system,
but it is not accurate and is difficult to predict. Follow-up studies can introduce hydrological
considerations into the SD method to reasonably predict precipitation.

This study provides a new perspective for the analysis of the land and water resource system.
However, due to the complexity of the land and water resource system, there are still many issues that
require further research.

• The model is complicated. The land and water resource system is extremely complex and
involves many factors. The research process is still uncertain and lacks mature theoretical research.
In view of this, the SD model of land and water resources established by previous scholars can be
summarized and analyzed, and the insufficiency of the land and water resource system model of
this study can be improved to explore a multi-perspective comprehensive SD model of land and
water resources that is suitable for regional conditions so that improved analysis and prediction
of land and water resource systems can be achieved.

• The method is simple. The system dynamics analysis method of the land and water resource
system in this study is relatively simple, and the analysis result is one-sided. Therefore, in future
research, scholars should focus on the complementary expansion of multiple methods and
should seek a more reasonable multidisciplinary interactive system to achieve the qualitative
and quantitative analysis of land and water resource systems and to obtain more comprehensive
research results.
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34. Sušnik, J.; Vamvakeridou-Lyroudia, L.S.; Savić, D.A.; Kapelan, Z. Integrated System Dynamics Modelling
for water scarcity assessment: Case study of the Kairouan region. Sci. Total Environ. 2012, 440, 290–306.
[CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

393



water

Article

Optimal Operation of Hydropower Reservoirs under
Climate Change: The Case of Tekeze Reservoir,
Eastern Nile

Fikru Fentaw Abera 1,2,*, Dereje Hailu Asfaw 1, Agizew Nigussie Engida 1 and

Assefa M. Melesse 2

1 School of Civil and Environmental Engineering, Addis Ababa Institute of Technology (AAiT),
Addis Ababa 1000, Ethiopia; dereje_hasfaw@yahoo.com (D.H.A.); agiz70@yahoo.com (A.N.E.)

2 Department of Earth and Environment, Florida International University, Miami, FL 33199, USA;
melessea@fiu.edu

* Correspondence: ffentawa@fiu.edu; Tel.: +1-973-424-3654

Received: 3 January 2018; Accepted: 27 February 2018; Published: 5 March 2018

Abstract: Optimal operation of reservoirs is very essential for water resource planning and
management, but it is very challenging and complicated when dealing with climate change impacts.
The objective of this paper was to assess existing and future hydropower operation at the Tekeze
reservoir in the face of climate change. In this study, a calibrated and validated Soil and Water
Assessment Tool (SWAT) was used to model runoff inflow into the Tekeze hydropower reservoir under
present and future climate scenarios. Inflow to the reservoir was simulated using hydro-climatic
data from an ensemble of downscaled climate data based on the Coordinated Regional climate
Downscaling Experiment over African domain (CORDEX-Africa) with Coupled Intercomparison
Project Phase 5 (CMIP5) simulations under Representative Concentration Pathway (RCP)4.5 and
RCP8.5 climate scenarios. Observed and projected inflows to Tekeze hydropower reservoir were used
as input to the US Army Corps of Engineer’s Reservoir Evaluation System Perspective Reservoir
Model (HEC-ResPRM), a reservoir operation model, to optimize hydropower reservoir release,
storage and pool level. Results indicated that climate change has a clear impact on reservoir inflow
and showed increase in annual and monthly inflow into the reservoir except in dry months from May
to June under RCP4.5 and RCP8.5 climate scenarios. HEC-ResPRM optimal operation results showed
an increase in Tekeze reservoir power storage potential up to 25% and 30% under RCP4.5 and RCP8.5
climate scenarios, respectively. This implies that Tekeze hydropower production will be affected
by climate change. This analysis can be used by water resources planners and mangers to develop
reservoir operation techniques considering climate change impact to increase power production.

Keywords: reservoir operation; optimization; SWAT; HEC-ResPRM; climate change; CORDEX-Africa;
Tekeze basin

1. Introduction

Water resources reservoirs are important tools for integrated water resources development and
management [1,2], but nowadays their operation and management is challenging due to various
factors [3,4]. The reservoir operates to supply water for municipal consumption, hydropower
production, irrigation and industrial needs, flood control, recreation, navigation or ecological requirements.
Currently, due to water crisis the global freshwater supply to meet the needs of the different sectors is
falling short [5–7]. Factors that contribute to this include population growth, urbanization, climate change,
land use change, land degradation and poor water resources management [8,9]. Hence, to alleviate
these problems and meet the freshwater and energy demand of communities, it will necessitate optimal
operation of water resources reservoirs [10,11].
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Various researchers studied the reservoir operation throughout the world to get optimum level
of release and optimal volumes of storage considering inflows and needs [12–15]. Most research
conducted in the reservoir operations have specific objectives like hydropower [12,14,15], flood
control [13], irrigation [3] and environmental [16].

Water resources infrastructures have been designed and managed historically but these designs
gave little attention to the effect of climate change and non-stationarity in hydrologic variables [17].
Evidence suggests that these hydrologic variables used for water resources planning and management
previously assumed stationarity in time have changed by anthropogenic activities [18]. The increase
in temperature, changes in precipitation and evapotranspiration rates due to climate change alters
global hydrologic cycle [19]. The streamflow affected by intensity and frequency of precipitation leads
to increase the intensity of floods and droughts. These changes affect water resources at local and
regional levels [20]. The hydrological processes and water availability affected by a change in the
patterns of precipitation and temperature impacts agriculture, industry, communities, hydropower
and aquatic life [21]. Climate change impact on fresh water resources may change the mean annual
streamflow, shift seasonal flows, increases floods and droughts and changes in sediment fluxes which
affects reservoir operation [22–24].

Many researchers in different parts of the world have studied the impacts of climate variability
and change on shifts in hydrological regimes and water resources (e.g., [25–28]). These studies assessed
the current and future water resources availability and rainfall variability across the globe to support
appropriate water resources planning and management. Different studies showed that Africa is
highly vulnerable to climate change [29]. Climate change studies showed temperature increased and
precipitation pattern changed throughout arid and semi-arid regions of Africa [30–32] and affected the
hydrological processes that impacts reservoir operation. Most studies showed the impacts of climate
change on African hydropower reservoirs [23,33–36]. Kim and Kaluarachchi [33] and Beyene et al. [34]
projected that precipitation and temperature will be increased in the Nile River basin and have
positive effect on hydropower production, but Yamba et al. [35] and Hamududu and Killingtveit [36]
investigated that in the next 60 years hydropower production show a gradual reduction with large
variability in the Zambezi River basin. In the Nile River basin, the rapidly growing hydropower based
energy need, population growth, food insecurity and finite water resources will lead to competitions
for water in the riparian countries and this will be aggravated by the climate change. Several studies
have been conducted on the variability of precipitation and streamflow in the Nile River basin [37–41]
that affects reservoir planning and management [3].

Most hydropower reservoir operators concern is existing hydrological variability without
foreseeing climate change as a particular serious threat [23]. Hence reservoir operation need
to incorporate plans to address hydrologic non-stationarity and uncertainty caused by climate
change [20,26,42,43]. Due to this, ensembles of Global Circulation Models (GCMs), scenarios
and regional climate models (RCMs) used as input to hydrological model to generate future
streamflow [44,45] that can be used as an input for reservoir operations.

Sedimentation may cause serious impacts on reservoir operation and functionality by reducing
reservoir storage capacity and shortening reservoir useful life for human benefits. Studies showed
that Northern part of the Tekeze basin watersheds are vulnerable to sedimentation and/or soil erosion
problems for the sustainable use of small reservoirs developed for irrigated agriculture and Tekeze
reservoir [46,47]. This reservoir sedimentation problem may lead serious reduction in reservoir storage
capacity, causing future hydropower generation problems. However, rate of sedimentation of Tekeze
reservoir still remains unpredicted. More and wide knowledge is still needed to better understand
and solve the sediment problem, and hence may improve future reservoir operation. But the focus
of this research is to study potential climate change impact on hydropower reservoir operation and
management by not varying sedimentation level.

Nowadays, reservoir operation techniques become increasingly important and researchers still
searching the best technique. Many authors proposed and reviewed various reservoir operation models
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and methods [4,48–51]. Labadie [50] extensively reviewed and evaluated various optimization methods
and reported that no universally approved algorithm for all reservoir operations. Rani and Moreira [4]
investigated that optimization models usually require simulation models for verifying and testing
planned operating policies. Dam managers use simulation models more relaxed than optimization
models as simulation models are easier to interpret, apply and present to non-professionals [49,50].
But Optimization models give reliable results. In recent years, to overcome these problems, a
combination of simulation and optimization models applied in reservoir operation. In this research, US
Army Corps of Engineer’s Reservoir Evaluation System Perspective Reservoir Models (HEC-ResPRM),
a combination of simulation and optimization model is used.

In this study, Tekeze hydropower reservoir was chosen due to: (1) Tekeze basin shows high rainfall
variability [37,52] which affects reservoir inflow; (2) Tekeze hydropower reservoir not designed by
considering hydrological non-stationarity and climate change; (3) the reservoir has not been optimally
operated and sometimes not fully functional during dry periods. Therefore, the objective of this
research are to (1) assess impact of climate change on reservoir inflow using Soil and Water Assessment
Tool (SWAT) and recent Coordinated Regional climate Downscaling Experiment over African domain
(CORDEX-Africa) RCMs under Representative Concentration Pathway (RCP)4.5 and RCP8.5 climate
scenarios, and (2) apply HEC-ResPRM optimization model to get optimal release, reservoir level and
storage for optimal power production including in the face of climate change.

2. Material and Methods

2.1. Study Area

Tekeze basin, a tributary of Tekeze-Setit-Atbera river part of Eastern Nile (Figure 1) is
geographically located from 11◦40′ to 15◦12′ N and 36◦30′ to 39◦50′ E. The surface area of the Tekeze
reservoir watershed is 29,404 km2. This basin has high mountainous areas in its sources in the central
Ethiopian highlands up to 4517 m and low land areas near Ethio-Sudan border as low as 800 m with
varying climate depending on altitude change. The rainfall increases with altitude from 600 mm to
1200 mm but it is a reverse for temperature which decreases from 26 ◦C to 10 ◦C. This basin has a
mean annual inflow of 4.4 Billion cubic meters at Embamadre gauging station and annual potential
evapotranspiration of 1778 mm.

Figure 1. Location of Tekeze hydropower reservoir and weather stations.
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Tekeze basin has a large elevation drop from its sources to low land areas near Ethio-Sudan border
and offers a significant hydropower potentials of 5960 GWh/year. Tekeze single purpose hydropower
reservoir located at 13◦21′ N and 38◦45′ E (Figure 1) is the second tallest double concrete arch dam in
Africa next to Katse arch dam in Lesotho. The purpose of this reservoir is for hydropower production
with total installed capacity of 300 MW in four 75 MW Francis turbines at underground power house.
The reservoir has a total storage capacity of 9293 million cubic meters (MCM) of which 5293 MCM
live storage at 1140 m above sea level (masl) and 4000 MCM below dead storage level (1096 masl).
The reservoir also has 147 km2 surface areas at full supply level with mean annual inflow of 3750 MCM.

2.2. Datasets Used

2.2.1. Historical and Future Hydrology

In this research, four hydrological data periods were analyzed. These were the reservoir inflow data
of: (1) observed and RCP scenarios historical records (1994–2008); (2) the near future period (2011–2040),
middle future period (2041–2070) and the far future periods (2071–2100). SWAT simulates historical
(past) and all future reservoir inflows using precipitation and temperature projections from ensemble
outputs of CORDEX-Africa RCMs downscaled from different GCMs from Coupled Intercomparison
Project Phase 5 (CMIP5) simulations available in 0.44◦ resolution for Ethiopian domain under two recent
representative concentration pathways (RCP4.5 and RCP8.5) climate scenarios. There are numerous
weather stations in Tekeze basin. For this study, stations recording precipitation and temperature data
that have long period of records with small data gaps were used. There are more than 20 streamflow
gauged stations in the Tekeze basin but most of the stations are found in the small tributaries of Tekeze
River which covers only small watershed areas. These stations, except Embamadre station, have large
data gaps, short record periods and high amount of missing data. Observed streamflow at Embamadre
station was collected from Ethiopian Ministry of Water, Irrigation and Electricity.

2.2.2. CORDEX-Africa

Currently, CORDEX-Africa initiated by World Climate Research Program (WCRP) provides an
opportunity for the generation of high resolution regional climate projections over Africa that is
used to assess future impacts of climate change at regional and local scales. In this study, results of
CORDEX-Africa ensemble RCMs simulations for the past (1951–2005) and future (2006–2100) climate
projections downscaled from different GCMs under RCP4.5 and RCP8.5 with spatial resolution of 0.44◦

is used. CORDEX-Africa RCMs generate an ensemble of high resolution historical and future climate
projections at regional scale by downscaling different GCMs forced by RCPs based on the Coupled
Intercomparison Project Phase 5 (CMIP5) [32,53]. CORDEX-Africa climate projections use RCP4.5 and
RCP8.5 climate scenarios.

RCPs are new climate change scenarios established by CMIP5 [54,55], which can depict a wide
variety of possible future climate scenarios. The fifth Assessment Report (AR5) scientific literature selects
one mitigation scenario (RCP2.6), two medium stabilization scenarios (RCP4.5 and RCP6.0) and one high
emission scenario. RCP2.6 scenario sees emissions peak early, then fall shown to be technically feasible.
But one of RCP2.6 scenario key assumptions is the full participation of all developed and developing
countries in the world in the short run to reduce all the main emitters, which is not possible in actual
cases. Due to this, we decided to choose one medium scenario (RCP4.5) and high scenario (RCP8.5)
covering entire range of radiative forcing. RCPs represent pathways of radiative forcing, not linked
with exclusive socio-economic assumption in contrary to Special Report on Emission Scenarios (SRES).
Any single radiative forcing pathway can result from a diverse range of socio-economic and technological
development scenarios. RCP4.5 is a mid-range scenario that stabilizes radiative forcing at 4.5 W/m2

(approximately 650 ppm CO2-equivalent) in the year 2100 without exceeding this value, but this does not
imply the climate system are stable [53,56]. Whereas RCP8.5 is upper bound of all RCP scenarios that
stabilizes radiative forcing at 8.5 W/m2 (greater than 1370 ppm CO2-equivalent) in the year 2100 [53,57].
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2.2.3. Reservoir Data

HEC-ResPRM, a reservoir operation model, requires data like back ground map of the watershed,
reservoir outlet capacities, elevation-area-storage curve, current outflow-energy relationship, power
production and flow time series to perform optimal operations. These physical data were used to
develop model constraints and allow the model to calculate penalties. All these data were collected
from Ethiopian Electric Power Corporation and Ministry of Water, Irrigation and Electricity.

2.3. Methods

2.3.1. Overview of SWAT

Soil and Water Assessment Tool (SWAT) was used to produce inflow projections and assess
climate change impact on the streamflow used as an input for reservoir operation. The details of SWAT
shown in Neitsch et al. [58]. It is a semi-distributed continuous widely used hydrological model in
the Eastern Nile basins [59,60]. Since the objective of the study was to examine streamflow response
to climate change, the land phase of the hydrologic cycle simulated by SWAT is based on the water
balance equation:

SWt = SWo +
t

∑
i=1

(
Rday − Qsurf − Ea − Wseep − Qgw

)
(1)

in which SWt is the final soil water content (mm), SWo is the initial soil water content on day i (mm),
t is the time (days), Rday is the amount of precipitation on day i (mm), Qsurf is the amount of surface
runoff on day i (mm), Ea is the amount of evapotranspiration on day i (mm), Wseep is the amount
of water entering the vadose zone from the soil profile on day i (mm), and Qgw is the amount of
return flow on day i (mm). Surface runoff volume was estimated using modified Soil Conservation
Serves-Curve Number (SCS-CN) method.

In this study, SWAT was used together with the ArcSWAT interface, a geographic information
system (GIS) based graphical user interface used to facilitate watershed delineation and initial
parameterization. The SWAT model requires digital elevation model (DEM), land cover/land
use information, soils and basic climate data. The land use/land cover data of the Tekeze basin
includes agricultural land, shrub land (range grasses), mixed forests and pasture/grazing lands.
SWAT subdivides the watershed in to hydrological response units (HRUs) with a homogeneous land
use and soil properties based on topography and quantifies the relative impacts of soil, land use
and climate change within each HRU. The 30 m × 30 m DEM, soil properties, land use/land cover
and streamflow data were all collected from Ethiopian Ministry of Water, Irrigation and Electricity.
Meteorological data of precipitation and temperature (1994–2008) were collected from National
Meteorological Service Agency. Sensitivity analysis was done using Latin Hypercube sampling based
on One Factor at a Time (LH-OAT) inbuilt in SWAT to identify sensitive parameters that influence
model simulations. The sensitive parameters of this study mainly affecting model calibration were
curve number (CN-2), soil available water capacity (Sol-AWC), alpha base flow recession constant
(ALPHA-BF), soil evaporation compensation factor (ESCO), threshold water depth required for return
flow to occur (GWQMN) and saturated hydraulic conductivity (SOL_K). Model calibration adjusts
such high sensitive parameters to optimize the agreement between observed and simulated streamflow
values at Embamadre station in Tekeze basin. Model performance was assessed using Nash-Sutcliffe
efficiency (ENS), coefficient of determination (R2) and percent of bias (PBIAS). Finally, the historical
and future RCP4.5 and RCP8.5 projections of precipitation and temperature were used as input into
the calibrated and validated SWAT model to assess the impact of climate change on reservoir inflow.

2.3.2. HEC-ResPRM Optimization Model

In this study, the US Army Corps of Engineer’s Reservoir Evaluation System Perspective Reservoir
Model (HEC-ResPRM), a reservoir system operations optimizations software package developed to
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assist planners, operators and managers with reservoir operation plan and decision making, was used.
It addresses a reservoir system operation problem of optimal long-term allocation of available water.
HEC-ResPRM is a combination of simulation and optimization model when Perspective Reservoir
Model (PRM) is integrated in to HEC-RES modeling platform. It is an implementation of HEC-PRM
shared with HEC-ResSim in a graphical user interface for creating, running, sorting and analyzing
optimization runs. HEC-ResPRM uses HEC’s data storage system (HEC-DSS) to store and retrieve of
input and output time series data.

It is a monthly network flow programming model and gives optimal values of release and storage
by minimizing penalty functions [61,62]. Network flow programming is computationally efficient form
of linear programming. A network solver finds optimal flow for the entire network simultaneously
based on the unit cost associated with flow along each arc. Optimization problem represented by the
network with cost associated with flow as follows:

Minimize :
n

∑
t

CtQt (For all nodes) (2)

Subject to : ∑ Qt − ∑ atQt = 0 (For all nodes) (3)

Lt ≤ Qt ≤ Ut (For all arcs) (4)

in which n is total number of network arcs; Ct is unit cost, weighting factor for flow along arc t;
Qt is flow along arc t; at is multiplier (gain) for arc t; Lt is lower bound on flow along arc t; and Ut

is upper bound on flow along arc t. In this case, node represents a reservoir and river or channel
junctions. Arcs represent inflow and outflow links in the reservoir system. Each arc has a minimum
and maximum flow that it must carry in the reservoir system. The arcs (inflow and outflow links) may
transfer water between two points in space (transferring water in channels) or in time (changing pool
elevations in the reservoir). Also, flow is conserved in the reservoir (node). Equations (2) through (4)
are special forms of linear programming problems solved using primal simplex method.

3. Results and Discussions

3.1. Climate Projections

Projected annual temperature and precipitation showed an increasing trend in 2020s, 2050s
and 2080s over Tekeze basin under RCP4.5 and RCP8.5 climate scenarios. Projected mean annual
temperature may increase up to 1.1 ◦C and 3.38 ◦C under RCP4.5 and RCP8.5 scenarios, respectively
in all future time periods. Similarly, mean annual precipitation may increase up to 45% under
both scenarios for all future time periods. Figure 2 shows future change rates of temperature in
both scenarios for all future time periods. Mean monthly temperature will increase under both
scenarios in all time periods except the months of January and February which showed a slightly
decreasing trend in 2020s. Figure 3 shows future percentage changes of monthly precipitation amounts
for different projected periods under RCP4.5 and RCP8.5 climate change scenarios. For RCP8.5
scenarios, the months of March, April and May would exhibit a decrease in precipitation amount
compared to the baseline period whereas RCP4.5 scenario presented an increasing trend. The months
of October through February would show an increase in precipitation compared to reference period
for bothscenarios and projected periods considered.
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Figure 2. Rates of change of monthly mean temperature for the selected scenarios and projected periods.

 

Figure 3. Change of monthly precipitation amount for the selected scenarios and projected periods.

3.2. Impacts of Climate Change on Streamflow

Impact of climate change on the streamflow at Embamadre station downstream of the reservoir
was analyzed. Observed streamflow data from a period 1994–2002 was used for model calibration
and from 2003–2008 was used for validation. Results in Figure 4 show that SWAT successfully
simulated annual and monthly streamflow with a reasonable accuracy. The monthly result showed a
good performance of SWAT, which indicated by the value of Nash-Sutcliffe efficiency (ENS) 0.70 for
calibration and 0.79 for validation and the coefficient of determination (R2) 0.73 for calibration and
0.80 for validation. Similarly, percent of bias (PBIAS) value of 0.53% during calibration and 0.45% in
validation periods showed good fit between observed and simulated streamflow.

Hence, the calibrated and validated SWAT forced to run for historical and future climate scenarios
to generate future streamflow for both RCP4.5 and RCP8.5 climate scenarios. The effect of climate
change on annual and monthly streamflow was also investigated as a percentage change with respect
to the baseline period (1994–2008) under the two scenarios in three time periods 2020s (2011–2040),
2050s (2041–2070) and 2080s (2071–2100).

Figure 5 showed the percentage change of annual and monthly streamflow for both climate
scenarios and the three time periods. Mean annual streamflow showed an increasing trend for both
RCP4.5 and RCP8.5 for all time periods. Under RCP4.5, the mean annual percentage change of
streamflow will increase by 49%, 39% and 47% in the 2020s, 2050s and 2080s, respectively. Similarly, for
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RCP8.5, the mean annual percentage change of streamflow increases to 22%, 19% and 2% in the 2020s,
2050s and 2080s, respectively.

 

Figure 4. Observed and SWAT simulated monthly stream flow at Embamadre station.

 

Figure 5. Mean monthly and annual streamflow changes under RCP4.5 and RCP8.5 climate scenarios.

The monthly streamflow change shows a mix of positive and negative trends. Under RCP4.5
climate scenario, change in average monthly streamflow ranges from 12 to 69% in 2020s and 13 to
67% in 2080s but in 2050s streamflow change shows mixed trend that decreases in March to May by
up to 9% and increases on other months up to 39%. Mean monthly percentage change of streamflow
under RCP8.5 climate scenario showed mixed trends in all time periods. Under RCP8.5, the mean
monthly streamflow changes from −37 to 64%, −29 to 68% and −49 to 64% in 2020s, 2050s and 2080s,
respectively. Individual month’s trend showed that there was an increasing trend from August to
February and a decreasing trend from March to July. Therefore, climate change will have a clear impact
on the future streamflow an input of reservoir power production in Tekeze basin.

The changes and variability of monthly (inter-annual) streamflow will be much greater than the
annual streamflow changes in both scenarios in all time periods. This result showed that it is important
for the hydropower reservoir planners and managers to consider, the monthly streamflow variability
and changes for future planning and operation of reservoirs.

The total mean annual historical (past) and future Tekeze hydropower reservoir inflow (m3/s)
trends under RCP4.5 and RCP8.5 climate scenarios for all time periods are shown in Figure 6.
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Figure 6. Annual Tekeze hydropower reservoir inflow trend for future time periods.

3.3. Current Reservoir Operation

HEC-ResPRM optimization model run under current baseline condition (2009–2017). This model
optimized the current Tekeze hydropower reservoir operation. The current optimized value (Table 1)
of HEC-ResPRM optimization model showed an increase in reservoir storage compared to current
actual hydropower reservoir operation status. It is also indicated that the mean annual reservoir
pool level increased up to 7.87 m (Table 2) that will store more water to produce power throughout
the year. It contradicts the current actual Tekeze hydropower reservoir operation which produces
insufficient power even very little or no power production during dry months. This implies that
Tekeze hydropower reservoir was not optimally operated till now. The reservoir storage dropped to
the minimum operating level and sometimes dries in the non-rainy months. Therefore, the current
actual reservoir operation is not effective and should consider different well tested reservoir operation
techniques under a changing climate.

Table 1. Mean annual optimized power storage under climate change scenarios.

Periods
Optimized Reservoir

Storage (Mm3)
Change in Optimized
Reservoir Storage (%)

RCP4.5 RCP8.5 RCP4.5 RCP8.5
Current optimized 6639 24.0

2020s 6688 6880 25.0 28.5
2050s 6669 6903 24.6 29.0
2080s 6665 6958 24.5 30.0

Table 2. Mean annual optimized pool level variation under RCP4.5 and RCP8.5 climate scenarios in
three future time periods.

Time Periods
Optimized Pool Level (masl) Pool Level Change (m)

RCP4.5 RCP8.5 RCP4.5 RCP8.5

Current optimized 1120.48 7.87
2020s 1121.06 1123.27 8.45 10.66
2050s 1120.87 1123.37 8.26 10.76
2080s 1120.89 1123.85 8.28 11.24

3.4. Reservoir Operation under Climate Change

The future reservoir inflows generated by SWAT under RCP4.5 and RCP8.5 climate scenarios in
three time periods 2020s (2011–2040), 2050s (2041–2070) and 2080s (2071–2100) with other reservoir data
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were used to run optimization model to get projected optimal reservoir outflow (release), storage and
pool level results.

3.4.1. Projected Reservoir Inflow and Outflow

Climate change impacted inflow and outflow (release) hydrograph of Tekeze hydropower
reservoir considered in this study are shown in Figure 7a,b. According to the inflow projections
based on ensembles of CORDEX-Africa RCM climate model simulations, total inflows to Tekeze
hydropower reservoir expected to increase under RCP4.5 and RCP8.5 climate scenarios for all future
time periods. Figure 7a,b show that total monthly inflow under RCP4.5 is greater than the total
monthly inflow projected under RCP8.5 climate scenarios. However, under RCP4.5 climate scenario,
the reservoir inflow projections exhibit high fluctuations inter-annually as compared to RCP8.5 climate
scenario and observed historical values. The highest inflow volumes under RCP4.5 were concentrated
in the rainy months that spilled easily and affect the dry period reservoir storage level and or release.

Figure 7. Mean monthly reservoir inflow and optimized outflow (release) for future time periods
under: (a) RCP4.5 climate scenario; (b) RCP8.5 climate scenario.

There would be an increase in excess reservoir inflow during the rainy months of August through
October under both RCP4.5 and RCP8.5 climate scenarios in all time periods. This increased spillage
of available water inflow occurs because of the effect of climate change that increased the hydropower
reservoir inflow under RCP4.5 and RCP8.5 future climate scenarios. According to the latest climate
simulations, the overall inflow volume is predicted to be higher during rainy months and provided
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that the reservoir lack sufficient storage capacity to accommodate these high flows. As a result, Tekeze
hydropower reservoir forced to spill water without generating hydropower. This indicates that the
increased in overall reservoir inflow volume does not necessarily be advantageous to produce more
power. Therefore, decision need to be taken on the amount of water to be released and or stored now
and retained for future considering the variations in inflow and demands.

In this study, the reservoir outflow (release) was obtained by HEC-ResPRM optimization model
under RCP4.5 and RCP8.5 climate scenarios for 2020s, 2050s and 2080s time periods. In all future
time periods (Figure 7a,b) under the two climate scenarios, the reservoir release will be increased to
produce more power due to an increased future reservoir inflow and optimum water storage using
optimization model. Under RCP4.5 climate scenario average monthly reservoir outflow varies from
353 to 2590 m3/s in 2020s, 435 to 2757 m3/s in 2050s and 442 to 3090 m3/s in 2080s. Similarly, average
monthly reservoir outflow varies from 538 to 1445 m3/s in 2020s, 514 to 1412 m3/s in 2050s and 577 to
1396 m3/s in 2080s under RCP8.5 scenario. In both scenarios, the minimum and maximum outflow
value occurred during dry and wet periods, respectively. In all time periods, the optimum reservoir
outflows (releases) under RCP8.5 climate scenario for the dry months of November through February
were greater than the optimum releases under RCP4.5 climate scenario. These changes show that
under RCP8.5, the optimized reservoir stored more water in wet months for dry period release and
projected higher storage level compared to RCP4.5 climate scenario.

3.4.2. Optimum Reservoir Power Storage under Climate Change

HEC-ResPRM optimized result showed an increase in projected mean annual Tekeze hydropower
reservoir storage under RCP4.5 and RCP8.5 climate scenarios. This increase was projected for three
future time periods (Table 1) and the projected optimum stored water varies from 24 to 25% (RCP4.5)
and 28.5 to 30% (RCP8.5).

HEC-ResPRM model result under both scenarios in current and all future time periods showed a
minimum and maximum reservoir storage periods (Figure 8). Tekeze reservoir reached at maximum
storage (reservoir filled) in September and stayed somewhat constant optimum storage up to November.
During August to September, main rainy months, the reservoir is filled and optimization model keeps
the maximum storage up to November. The reservoir storage tends to slightly be decreased starting
from end of November until the beginning of February. After February, the reservoir storage decreased
down to the optimization model capacity to store energy at a minimum flow and reached a minimum
storage level in June to prepare and capture inflows in the wet main rainy months. In all future months,
there will be a stored water to produce power which is always greater than the current optimized value.

Figure 8. Cont.
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Figure 8. Monthly optimized reservoir storage variations under RCP4.5 and RCP8.5 climate scenarios
for: (a) 2020s; (b) 2050s; (c) 2080s.

Figure 8 shows that more power is stored in both scenarios for the next 90 years as compared
to current actual and current optimized value. The change in maximum optimum storage increased
will be occurred in January and varies from 1693.4 to 1800.8 Mm3 under RCP4.5 scenario and from
1731.9 to 1851.1 Mm3 under RCP8.5 scenario in all time periods. The minimum optimal storage change
increased will occur in July and varies from 392.2 to 424.7 Mm3 under RCP4.5 scenario and 803.6
to 956.6 Mm3 under RCP8.5 scenario in all time periods. This is due to climate change impact on
the reservoir inflow and the capacity of the optimization model to operate the reservoir optimally.
HEC-ResPRM optimization of future projections tends to make much greater seasonal use of reservoir
storage than the current actual operations.

The monthly optimum stored water increases in all months for future time periods under
both RCP scenarios as compared to the baseline period (base line varies from 4400 to 6500 Mm3).
Optimized monthly reservoir storage variations are shown in Figure 8. The mean monthly optimum
reservoir storage in the future time periods varies for RCP4.5 from 5100 to 8300 Mm3 in 2020s, 4700 to
8050 Mm3 in 2050s and 5000 to 8100 Mm3 in 2080s. It also varies for RCP8.5 from 4900 to 8100 Mm3 in
2020s, 4850 to 8020 Mm3 in 2080s and 750 to 7900 Mm3 in 2080s.

3.4.3. Optimum Reservoir Pool Level (Elevation) under Climate Change

HEC-ResPRM optimization result indicates that Tekeze hydropower reservoir pool level will
be increased under RCP4.5 and RCP8.5 scenarios in all time periods. This comparison made with
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the current mean annual reservoir operation pool level of 1112.61 masl from 2009–2017. In the three
projected time periods, optimal pool level (Table 2) change varies from 8.26 to 8.45 m under RCP4.5
and 10.66–11.24 m under RCP8.5 climate scenarios. This is large elevation difference that will store
more water in the rainy months for the dry season power production. The optimized pool levels
under both scenarios in all time periods are larger than the current optimized pool level. This is due to
the impact of climate change and hydrological non-stationarity on reservoir operation. The reservoir
storage pool level change in RCP4.5 scenario is lower than RCP8.5 scenario due to increase in each year
individual month’s fluctuations in RCP4.5 scenarios because of future inflow variability that reduced
the mean annual reservoir water storage level.

The Tekeze hydropower reservoir operational level is changing continually due to inflows
occurred and releases are made to produce power. The start of dead storage level at 1096 masl
(minimum live storage level) has been assumed for power production. Figure 9 shows the optimal
reservoir pool level of Tekeze hydropower reservoir generated by HEC-ResPRM optimization model.
These optimal pool level results have a similar pattern with the optimal reservoir storage variations
and may be considered as rule curves for optimal operation of Tekeze hydropower reservoir under a
given scenario and time period. The reservoir pool level stayed at high level every year from August to
November when reservoirs filled during the rainy months of August through September. The drop of
pool level in June caused due to optimization model constraint reservoir not emptied and a transition
zone when the drawdown ends and reservoir refill start.

 

 

Figure 9. Cont.
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Figure 9. Monthly optimum pool level variations under RCP4.5 and RCP8.5 climate scenarios in three
time periods: (a) 2020s; (b) 2050s; (c) 2080s.

There is no doubt that the hydropower system of Tekeze basin will be affected by climate change.
With over all predicted increases in precipitation and streamflow, inflow to the reservoir anticipated
to increase. Therefore, even though both RCP4.5 and RCP8.5 climate scenarios exhibited higher
water inflow volume to Tekeze hydropower reservoir, this did not necessarily result in significantly
more hydropower generation. Optimal operation of the reservoir using HEC-ResPRM considerably
increases the power production by storing the higher inflow volume to inflow deficiency periods.
Based on this research, the potential for hydropower production in the Tekeze hydropower reservoir is
predicted to increase if appropriate reservoir operation techniques are used by operators and water
managers to store and use the wet months flow to the dry months. Even if many optimization models
and techniques have been developed in several fields of water resources system analysis such as
hydropower reservoir operation around the world, the adaptation of such techniques and tools by
water managers is slow. Researchers and scientists must accept the fact that the gap still exists between
research studies and applications in practice. There need to be research on how to translate science to
improve management operations of reservoirs for optimal results.

4. Conclusions

This study used a semi-distributed hydrological model (SWAT) and a reservoir optimization
model (HEC-ResPRM) to evaluate the hydrological impacts of climate change on Tekeze hydropower
reservoir operation in Tekeze basin part of Eastern Nile. We have evaluated climatic data (historical
and future period) from the ensemble outputs of CORDEX-Africa RCMs under RCP4.5 and RCP8.5
climate scenarios for the periods of 2020s, 2050s, and 2080s. Calibrated SWAT model was used to
generate climate change induced streamflow that was used as an input for optimal reservoir operation
modeling. Analysis conducted on Tekeze hydropower reservoir inflows and outflow, reservoir storage
volume and reservoir pool levels revealed the following:

1. This study found that the impact of climate change would increase in precipitation, temperature
and streamflow in Tekeze basin under RCP4.5 and RCP8.5 climate scenarios over future periods
which have an impact on current and future Tekeze hydropower reservoir operation.

2. Projected annual and inter-annual reservoir inflow showed increasing trend under both RCP4.5
and RCP8.5 climate scenarios.

3. HEC-ResPRM incorporates water storage, water surface elevation, release and power generation
would provide better understanding of current and future conditions of Tekeze hydropower
reservoir operation.
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4. Current optimized power storage and pool level show more optimal results than the current
actual operation, so it is recommended to change the current operating policy to produce more
power throughout the year.

5. The projected increase of reservoir inflow under an ensemble of CORDEX-Africa RCP4.5 and
RCP8.5 future climate scenarios lead to optimized reservoir power storage, pool level (head)
and release that greatly exceed those historically observed, indicating a shift in current water
system behavior.

6. The study showed that climate change clearly affects future reservoir planning and management
in Tekeze basin. Therefore, water resources planners, managers and operators should consider
climate change impacts in the design, planning and management of reservoir systems.

7. In practice, many reservoir system operators and water managers feel more comfortable to use
pre-defined rule curves and simulation results which are easy to understand and operate as
most optimal operating rules developed by scientists using sophisticated optimization models
and algorithms are mathematically more complex. The use of a combination of simulation and
optimization models may solve this problem.

8. This study has not considered the changes in land use/land cover due to socio-economic
development in the future. Coupling climate models with projected changes in land use associated
with climate change impacts and effect of climate change adaptation on erosion and sediment
yield which is necessary to evaluate projected changes in runoff associated with future Tekeze
River basin development. Hence, further studies are recommended to quantify future change in
streamflow and sedimentation load in Tekeze hydropower reservoir as well as its implication on
future hydropower generation.
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Abstract: The security of drinking water is a serious issue in China and worldwide. As the backup
source of drinking water for the Changde City in China, the Huangshi Reservoir suffers from the
threat of eutrophication due to the water quality of the reservoir ecosystem being affected by the
tributaries that carry Non-Point Source (NPS) pollutants. The calculation of the water environmental
capacity (WEC) can provide a scientific basis for water pollution control, which refers to the maximum
amount of pollutants that the water can accommodate. In this paper, according to the hydrological
characteristics of the river–reservoir combination system, a one-dimensional (1-D) water quality
model and the Environmental Fluid Dynamics Code (EFDC) model were chosen to calculate the
water environmental capacity of each functional zone in this basin. The quantity control of pollution
from the tributaries was conducted based on the combined results of the water environmental
capacity calculation from the EFDC model and a one-dimensional (1-D) river water quality model.
The results show that total water environmental capacity of the tributaries included a chemical
oxygen demand (COD) of 421.97 tons; ammonia nitrogen (NH3-N) of 40.99 tons; total nitrogen
(TN) of 35.94 tons; and total phosphorus (TP) of 9.54 tons. The water environmental capacity of
the Huangshi Reservoir region accounts for more than 93% of the total capacity. The reduction
targets of the major pollutants in the Huangshi Reservoir and its four major input rivers, which are,
namely, the Bamao River, the Longtan River, the Fanjiafang River, and the Dongtan River, have been
determined to achieve the water quality objectives for the reservoir in 2020 and 2025. The results will
be helpful for the local water quality management and will provide a valuable example for other
similar water source reservoirs.

Keywords: drinking water resources; water environmental capacity (WEC); Environmental Fluid
Dynamics Code (EFDC) model; the Huangshi Reservoir

1. Introduction

In recent years, instead of flood control and irrigation, drinking water supplementation has
become the primary purpose of reservoirs in China [1]. The issue of drinking water security plays
a decisive role in the national economy and social wellbeing in China [2,3]. With the enormous
development of aquaculture, water pollution in reservoirs has become a serious problem with the
water quality of drinking water source directly influencing people’s health, which is related to the
economic development and stability of the general social situation.

The water environmental capacity (WEC) refers to the maximum amount of pollutants that the
water can accommodate under the designed hydrological conditions and the specified environmental
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objectives without destroying its own function [4,5]. Generally, the calculation of WEC can provide a
scientific basis for water pollution control as it provides a baseline for the total pollutant reduction
needed. Previous studies mainly focused on various methods of calculating WEC [6–18], including
analytical methods, dynamic mechanism model methods, and the calculation of the water environment
capacity in a specific area [11,14,16,19–23]. Most case studies mainly use a river [12,15,16,19,23], lake,
and reservoir [6,14,20,22] as objects in China, but there has been less research on the WEC of a certain
river–reservoir combination system.

In addition, there are many models and equations available to calculate the WEC of rivers, lakes,
and reservoirs. For this study, it is important to select the proper water quality simulation model.
In calculating WEC, the use of three-dimensional modeling for simulating the water ecosystems has
been used extensively and successfully by many studies [24–26]. They can simulate and predict the
overall water quality of the water bodies for evaluating the WEC. In this sense, they are superior to the
traditional field monitoring methods, which are mainly based on the field data monitored at limited
locations [27–31].

Many studies have indicated that the inflow discharges will affect the variations of pollutants
or nutrients in reservoirs [3–5,32–34]. As the backup drinking water source reservoir for Changde
City in China, the Huangshi Reservoir, with multiple tributaries, is currently suffering from the
threat of eutrophication, with the influence of pollutants or nutrients from the tributaries of Huangshi
Reservoir having not been taken into consideration. It is necessary to calculate the WEC of the
river–reservoir combination system. The purpose of this study is to simulate the WEC and control the
amount of pollution in a drinking water reservoir with multiple tributaries using a widely used model,
the environmental fluid dynamic model (EFDC), coupled with a 1-D convection equation.

This research paper is arranged as follows: firstly, the EFDC model is applied to analyze the
changing trends of the water quality in the Huangshi Reservoir and its tributaries. Secondly, the 1-D
water quality model and the EFDC model were chosen to calculate the WEC of each functional zone
of the river–reservoir combination system. Finally, the quantity control of pollution of the multiple
tributaries is analyzed based on the combined results of the WEC calculation.

2. Study Area

2.1. Study Area

The Huangshi Reservoir is a large-scale water conservancy project, which mainly provides the
benefits of irrigation, flood control, power generation, and a habitat for fish, among others. It is located
in the Huangshi town, Hunan Province, China. The reservoir is mainly fed by the convergences of
the Bamao River, the Longtan River, the Fanjiafang River, the Liujiaxi River, and the Dongtan River.
The boundary of the reservoir and the tributaries is shown in Figure 1, with the main characteristics
of the tributaries shown in Table 1. The weather is relatively moderate with an annual average
temperature of 16.8 ◦C. The annual average precipitation is about 1465.2 mm, the annual mean
evaporation is about 1284.2 mm, and the relative humidity is 77%. The total storage capacity of the
reservoir is 6.02 × 109 m3, and the effective storage capacity is 3.38 × 109 m3. The watershed has a
total area of 494.34 km2, with forests being the major land use type that accounts for 85.12% of the total
basin area.
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Figure 1. The location of the Huangshi Reservoir and the sample points of water quality.

Table 1. The features of the tributaries.

Rivers
Control Area

(km2)
Length of

Reaches (km)
Water Quality Objectives (River

Water Quality Standards) *
Flow (m3/s)

Bamao River 102.9 10 II 1.429
Longtan River 154.4 14.2 II 1.2769

Fanjiafang River 61.2 4 II 0.6726
Dongtan River 40.3 5.8 II 0.4089

* Note: for the values of Water quality objectives, see also Table 2.

Table 2. The surface water environmental quality standard of China [35] (units: mg/L).

Indicators II III IV V

COD 15 20 30 40
NH3-N 0.5 1 1.5 2

TP 0.1 (lake and
reservoir 0.025)

0.2 (lake and
reservoir 0.05)

0.3 (lake and
reservoir 0.1)

0.4 (lake and
reservoir 0.2)

TN 0.5 1 1.5 2

2.2. Water Quality Assessment in the Huangshi Reservoir Basin

A total of 23 representative sampling points was set up in the Huangshi Reservoir area for the
assessment of the water quality and hydrobiology (shown in Figure 1), from which two points were
monitored in the Bamao River (HS1, HS2), two points were monitored in the Longtan River (HS4, HS5),
two points were monitored in the Dongtan River (HS20, HS21), and only one point was monitored in
both the Fanjiafang River (HS13) and the Liujiaxi River (HS18). The rest of the 15 points were monitored
in the reservoir region. According to the monitored water quality data of the sampling points in the
years of 2013–2015 for the surface water environmental quality standard of China (GB3838–2002),
the water quality of the Huangshi Reservoir is in accordance with the requirements of drinking water
quality. Namely, the water quality of Huangshi Reservoir is classified as degree II and III (shown in
Table 2). However, the main water quality indexes, including the chemical oxygen demand (COD),
the ammonia nitrogen (NH3-N), the total nitrogen (TN), and the total phosphorus (TP), exceed the
environmental quality standards (shown in Tables 3 and 4), with the Longtan River exceeding the
standards most compared to with the other four tributaries.
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Table 3. The water quality evaluation result of the Huangshi Reservoir.

Sections Standard Water Quality Exceed Factors and Multiples *

HS7 II III TN (0.92)
HS8 II V TN (3.96)
HS9 II IV TN (1.32)
HS16 II IV TN (1.18), TP (0.88)
HS17 II IV TN (1.70)
HS19 II IV TN (0.28), TP (2.36)
HS3 II V TN (2.86), TP (0.04)
HS6 II IV TN (0.88)
HS10 II V TN (2.38)
HS12 II V TN (2.06), TP (0.76)
HS14 II IV TN (1.54), TP (0.48)
HS15 II V TN (1.46), TP (4.68)
HS22 II IV TN (1.42), TP (0.92)
HS23 II IV TN (1.08), TP (0.08)

* Note: exceed multiples = (measured value − standard value)/standard value.

Table 4. The water quality evaluation result of the tributaries.

Tributaries Sections Standard Water Quality Exceed Factors and Multiples *

Bamao River
HS1

III

V TN (0.90)
HS2 IV TN (0.49)

Longtan River HS4 V TN (0.90)
HS5 V TN (0.88), TP (1.54)

Fanjiafang River HS11 V TN (0.70)
HS13 V TN (0.71), TP (0.60)

Liujiaxi River HS18 V TN (0.86)

Dongtan River HS20 V TN (0.79)
HS21 V TN (0.53)

* Note: exceed multiples = (measured value − standard value)/standard value.

The monitored data of the sampling points set up in the Huangshi Reservoir (Figure 1), the water
quality based on the assessment of the hydrobiology with the species, and the quantity measures are
shown in Figure 2.

Figure 2. The assessment results of water quality.
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The tributaries were seriously affected by agricultural non-point source (NPS) pollution and
living pollution, while the water quality in the vicinity of the reservoir was worse. The water quality
of the reservoir is increasingly worsening, with the levels of nitrogen and phosphorus nutrient salts
exceeding the standard.

3. Methods

3.1. Water Environmental Capacity of the River-Reservoir Combination System

For fulfilling the purpose of water pollutant control in a drinking water reservoir with multiple
tributaries, the paper selected 2014 as the status quo year, and 2020 and 2025 as the forecast years.

In order to simulate the WEC and control the amount of pollution of the Huangshi Reservoir with
multiple tributaries in 2020 and 2025, we developed an integrated method to evaluate the WEC of the
river–reservoir combination system, which consisted of the coupling of the 1-D model and the EFDC
model. The technical route is as follows (Figure 3).

Figure 3. The technical route.

3.2. Water Environmental Capacity Model of the Tributaries

The equation for calculating the WEC was derived based on a 1-D convection-diffusion equation,
with the adopted model expressed as follows [5]:

M = (CS − C0exp(−kL/u))exp(kL/2u)Qr (1)

where M is the water environmental capacity per unit time (t); Cs is the pollutant concentration of the
tail section in mg/L; C0 is the pollutant concentration of the initial section in mg/L; k is the pollutant
degradation coefficient in 1/s; and L is the length of the reach. A plurality of sewage outlets in the
reach can be generalized as a centralized outfall and the outfall was located at the middle point of the
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reach. Therefore, it is equivalent to a concentrated point source, of which the self-purification length is
half the length of the river reach. This means that the self-purification length is L/2 when the length of
the river reach is L. In addition, u is the average flow velocity under the design flow in m/s; and Qr is
the design flow.

In this paper, the climatic characteristics have been considered [36] and the degradation coefficients
of COD, NH3-N, TN, and TP are 0.5, 0.25, 0.03, and 0.011/day, respectively.

3.3. Water Environmental Capacity Model of the Huangshi Reservoir

In this study, the EFDC model developed by Hamrick [37] was applied to the Huangshi Reservoir.
This model is an integrated modeling system that has been successfully applied to many surface water
systems, including rivers, estuaries, lakes, and coastal bays [12,38–40]. The EFDC model includes
four major sub-models: (1) a hydrodynamic model; (2) a sediment transport model; (3) a toxic model;
and (4) a water quality model. This simulation is mainly based on the EFDC hydrodynamic, convective
diffusion, and first-order degradation modules of the water quality model.

The water quality module not only considers the wind direction, wind speed, and evaporation
effect on the flow field and the pollutant transport but also the influence of the distribution
characteristics of different types of aquatic plants and waves on the bottom stress. Its numerical
simulation can estimate C, N, P, and other forms of nutrients, as well as a variety of algae. It is a strong
model of water quality and movement and can accurately reflect the level of pollution in water.

In the water quality module, the governing mass-balance equation for each water quality state
variable and the temperature of the water was expressed as follows [41]:

∂C
∂t

+
∂(uC)

∂x
+

∂(vC)
∂y

+
∂(wC)

∂z
=

∂

∂x

(
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)
+

∂

∂y

(
Ky

∂C
∂y

)
+

∂

∂z

(
Kz

∂C
∂z

)
+ Sc (2)

where C is the concentration of a water quality state variable or C is the temperature of the water;
u, v and w are the velocity components in the x, y, and z directions, respectively; Kx, Ky and Kz are the
turbulent diffusion coefficients in the x, y, and z directions, respectively; and SC is the internal and
external sources and sinks per unit volume.

By combining the water quality simulation results simulated by the EFDC model with the
environmental target of the Huangshi Reservoir, an inverse method was selected to calculate the WEC,
which is able to deduce the concentration of pollutants corresponding to water quality targets.

3.3.1. Hydrological Parameters

The protection of the water quality of the Huangshi Reservoir is strict. The lowest water monthly
average flow rate and the lowest water level condition in 2013 and 2014 were chosen to calculate the
environmental capacity of the reservoir.

3.3.2. Boundary Conditions

Flow boundary conditions: There are six boundary conditions in the simulated water area,
which are formed by the inflow of the five rivers using the flow boundary, and the dam using the
water surface elevation.

Meteorological boundary conditions: The data were obtained from the Meteorological Data
Sharing Service Network of China, including rainfall, evaporation, solar radiation, cloud coverage,
atmospheric pressure, air temperature, air humidity, wind speed, wind direction, and so on.

Water quality boundary conditions: The concentrations of COD, NH3-N, TN, and TP in the five
main input rivers were used.
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3.3.3. Parameters of Model

Due to the lack of longtime serial hydrological data and water quality monitoring data of inflows
and outflows of the Huangshi Reservoir, the parameters of the hydrodynamic model of the Huangshi
Reservoir referenced some classical cases of the hydrodynamic model in South China. The degradation
coefficients of COD, NH3-N, TN, and TP of the Huangshi Reservoir referenced the research report of
comprehensive improvement of the water environment and ecological protection plan in the Shanxi
Reservoir area. The degradation coefficients of COD, NH3-N, TN, and TP are 0.03 /day, 0.03/day,
0.03/day, and 0.01/day, respectively. The parameters of the water quality model are shown in Table 5.

Table 5. The parameters of the water quality model.

Parameters Roughness
Eddy Viscosity

Coefficient
Diffusion
Coefficient

COD NH3-N TN TP

Coefficient/Degradation
coefficient 0.02 m 1 m2/s 0.2 0.03/day 0.03/day 0.03/day 0.01/day

3.3.4. Model Verification

In this study, four main water quality variables were simulated, namely COD, NH3-N, TN, and TP.
The observed data from 2013 to 2014 were used for the verification of the water quality model.

The error statistics of the model verification are listed in Table 6. It is clear that the simulated
values agree well with the measured values, which demonstrates that the established water quality
model is able to simulate the process of water quality in the Huangshi Reservoir.

Table 6. The error statistics of the model verification (units: mg/L).

Characteristic Values COD NH3-N TN TP

Compare numbers 12 12 12 12
Average observed 7.78 0.12 1.20 0.15
Average simulated 6.92 0.10 1.15 0.10

Average Error −0.85 0.01 −0.04 0.02
Relative Error 20.29 28.10 12.99 157.42
Absolute Error 1.68 0.02 0.14 0.03

Root Mean Square Error 2.18 0.03 0.18 0.03
Relative Root Mean Square Error 47.28 70.38 61.56 139.98

Nash-Sutcliffe coefficient −2.05 −11.89 −4.05 −50.35

4. Results

4.1. Water Quality Simulation and Prediction

The Huangshi Reservoir is the backup source of drinking water for Changde City. There are
no industrial districts in the area and water quality is affected mainly by agriculture NPS pollutants,
domestic sewage, and aquaculture pollutants.

Based on the pollutant loads discharged into the river in the status quo year of 2014 (shown
in Table 7), the increase of the population and the development of urbanization, and the scale of
eco-agriculture and the increase of aquaculture, the pollutant loads in the tributaries of the Huangshi
Reservoir in 2020 and 2025 have been estimated according to the Report of Huangshi Reservoir
protection planning from the Chinese Academy of Environmental Sciences (shown in Table 8).
The values have also been converted into concentrations of pollutants in the tributaries of the Huangshi
Reservoir, which is shown in Table 9.
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Table 7. The pollutant quantity inlets into the river in 2014 (units: tons/year).

Area
COD NH3-N TN TP

Inflow Inflow Inflow Inflow

Bamao River 148.66 17.96 27.04 4.859
Longtan River 108.67 13.87 19.65 2.678

Fanjiafang River 116.8 14.6 21.36 3.34
Dongtan River 89.292 12.23 16.23 1.573

Reservoir region 197.64 97.54 179.03 44.375
Total amount 661.062 156.2 263.31 56.825

Table 8. The predicted values of the pollutant loads in the tributaries of the Huangshi Reservoir in 2020
and 2025 (units: tons/year).

Year Pollutants Bamao River Longtan River Fanjiafang River Dongtan River

2020

COD 764.73 482.54 428.13 239.27
NH3-N 70.56 45.65 39.14 22.43

TN 136.2 86.16 75.46 41.72
TP 59.98 38.576 32.24 16.446

2025

COD 981.21 604.68 549.45 298.1
NH3-N 86.48 54.60 48.21 27.08

TN 172.16 106.32 95.67 51.42
TP 72.42 44.424 39.21 19.544

Table 9. The predicted values of the pollutant concentrations in the tributaries of the Huangshi
Reservoir in 2020 and 2025 (units: tons/years).

Year Pollutants Bamao River Longtan River Fanjiafang River Dongtan River

2020

COD 16.97 11.98 20.18 18.55
NH3-N 1.57 1.13 1.85 1.74

TN 3.02 2.14 3.56 3.24
TP 1.33 0.96 1.52 1.28

2025

COD 21.77 15.02 25.90 23.12
NH3-N 1.92 1.36 2.27 2.10

TN 3.82 2.64 4.51 3.99
TP 1.61 1.10 1.85 1.52

The hydraulic conditions adopted the average level of the status year and have no prediction for
the future hydraulic conditions, that is, the hydraulic conditions almost stay constant in the model.
The annual average wind speed used in Huangshi Reservoir was 2 m/s, the dominant wind direction
was northeast, and the annual average evaporation was 1160 mm. The hydrological calculation of
WEC was based on the driest monthly flow in 2013 and 2014. The pollutant loads estimated in 2020
and 2025 are allocated on a monthly basis.

The water quality of the Huangshi Reservoir without reduction measures simulated the predicted
values of the inflow for COD, NH3-N, TN, and TP in 2020 and 2025. The results are displayed in
Figures 4 and 5, which respectively show the following:
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Figure 4. The simulated concentration distribution of COD, NH3-N, TN, and TP in the Huangshi
Reservoir in 2020. ((a) COD, (b) NH3-N, (c) TN and (d) TP).

Figure 5. The simulated concentration distribution of COD, NH3-N, TN, and TP in Huangshi Reservoir
in 2025. ((a) COD, (b) NH3-N, (c) TN and (d) TP).

(a) In 2020, the affected areas are the incoming parts of the tributaries, based on the concentration
distribution of COD and NH3-N. The main reservoir area is less affected. TN has a bigger area of
the effect. In addition, the influence of TP from the tributaries on the water quality of the reservoir is
confined to the inner part of the tributaries in the reservoir.

(b) In 2025, the influences of the tributaries on the water quality of the reservoir are confined to the
inner parts of the tributaries in the reservoir, but they have bigger areas of effect on the concentrations
of COD, NH3-N, TN, and TP compared to those in 2020.
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4.2. Water Environmental Capacity of the River–Reservoir Combination System

As the Huangshi Reservoir is a water source protection zone, the water quality protection target
is degree II. Assuming that the water quality degree of the initial section is degree I when the water
quality degree of the reservoir control point is degree II, the results of the WEC for the tributaries of
each section are shown in Table 10.

Table 10. The water environmental capacities of the Huangshi Reservoir and tributaries
(units: tons/year).

Sections Water Quality Target
Water Environmental Capacity

COD NH3-N TN TP

Bamao River II 185.46 15.37 13.57 3.60
Longtan River II 131.32 13.87 12.11 3.22

Fanjiafang River II 58.56 7.33 6.38 1.69
Dongtan River II 46.63 4.42 3.88 1.03
Sum of rivers 421.97 40.99 35.94 9.54

Reservoir region (inner part) II 4850 200 160 38
Total amount 5271.97 240.99 195.94 47.54

The highest WEC values of the COD, NH3-N, TN, and TP were in the Bamao River, while the
lowest WEC values of the COD, NH3-N, TN, and TP were in the Dongtan River. The total WEC of the
tributaries included a COD of 421.97 tons; an NH3-N of 40.99 tons; a TN of 35.94 tons; and a TP of
9.54 tons. Thus, it is obvious that the WEC of the Huangshi Reservoir region mainly accounts for more
than 93% of the total capacity.

4.3. Total Amount of Pollutant Control Goal Based on the Water Environmental Capacity

Based on the pollutant loads discharged into the river in 2014, the utilized peculiarities of the
reservoir and tributaries, as well as the water environmental capabilities, were estimated and shown
in Table 11.

The utilization rates of COD, NH3-N, TN, and TP in most tributaries were over 100%. The highest
utilization rate of COD and TP occurred in the Fanjiafang River, exceeding 100% by 2 times and
1.98 times, respectively. The highest utilization rate of NH3-N and TN occurred in the Dongtan River,
exceeding 100% by 2.77 times and 4.18 times, respectively.

The utilization rates of COD and NH3-N in the reservoir region were 13% and 65%, respectively,
while there was still a certain WEC. However, the maximum utilization rate of TN and TP exceeded
100% by 1.34 times and 1.2 times, respectively. These were mainly caused by the fish cage culture and
the internal release of pollutants. Furthermore, this rate had a significant relationship with the high
degree of eutrophication in the reservoir region.

421



Water 2018, 10, 483

T
a

b
le

1
1

.
Th

e
w

at
er

en
vi

ro
nm

en
ta

lc
ap

ac
it

y
ut

ili
za

ti
on

s
of

th
e

H
ua

ng
sh

iR
es

er
vo

ir
in

20
14

(u
ni

ts
:t

on
s/

ye
ar

).

A
re

a

C
O

D
N

H
3
-N

T
N

T
P

In
fl

o
w

C
a

p
a

ci
ty

U
ti

li
z

a
ti

o
n

R
a

ti
o

(%
)

In
fl

o
w

C
a

p
a

ci
ty

U
ti

li
z

a
ti

o
n

R
a

ti
o

(%
)

In
fl

o
w

C
a

p
a

ci
ty

U
ti

li
z

a
ti

o
n

R
a

ti
o

(%
)

In
fl

o
w

C
a

p
a

ci
ty

U
ti

li
z

a
ti

o
n

R
a

ti
o

(%
)

Ba
m

ao
R

iv
er

14
8.

66
18

5.
46

80
17

.9
6

15
.3

7
11

7
27

.0
4

13
.5

7
19

9
4.

85
9

3.
6

13
5

Lo
ng

ta
n

R
iv

er
10

8.
67

13
1.

32
83

13
.8

7
13

.8
7

10
0

19
.6

5
12

.1
1

16
2

2.
67

8
3.

22
83

Fa
nj

ia
fa

ng
R

iv
er

11
6.

8
58

.5
6

19
9

14
.6

7.
33

19
9

21
.3

6
6.

38
33

5
3.

34
1.

69
19

8
D

on
gt

an
R

iv
er

89
.2

92
46

.6
3

19
1

12
.2

3
4.

42
27

7
16

.2
3

3.
88

41
8

1.
57

3
1.

03
15

3
R

es
er

vo
ir

re
gi

on
19

7.
64

48
50

4
97

.5
4

20
0

49
17

9.
03

16
0

11
2

44
.3

75
38

11
7

To
ta

la
m

ou
nt

66
1.

06
2

52
71

.9
7

13
15

6.
2

24
0.

99
65

26
3.

31
19

5.
94

13
4

56
.8

25
47

.5
4

12
0

422



Water 2018, 10, 483

According to the pollutant inflows into the reservoir and the WEC results, the pollutant control
target can be determined based on the WEC. The water pollutant reductions of the Huangshi Reservoir
region as well as the Bamao River, Longtan River, Fanjiafang River, and Dongtan River—which are the
4 major tributaries into the reservoir—have been determined for 2020 and 2025 (Tables 12 and 13).

Table 12. The pollutants reduction targets of the Huangshi Reservoir in 2020 (units: tons/year).

Area
COD NH3-N TN TP

Reductions Reductions Reductions Reductions

Bamao River 10.39 6.59 20.93 3.358
Longtan River 7.18 2.73 12.16 0.457

Fanjiafang River 92.74 9.89 20.55 3.062
Dongtan River 63.55 9.93 15.61 1.055

Reservoir region −4560.48 * −58.02 * 84.81 23.233
Total amount −4386.62 −28.88 154.06 31.165

* Note: the symbol of “−”delegates’ available capacity without reduction.

Table 13. The pollutants reduction targets of the Huangshi Reservoir in 2025 (units: tons/year).

Area
COD NH3-N TN TP

Reductions Reductions Reductions Reductions

Bamao River 86.64 13.78 33.19 6.17
Longtan River 61.22 8.19 20.68 1.898

Fanjiafang River 150.44 16.06 29.96 4.961
Dongtan River 103.48 14.23 21.89 1.827

Reservoir region −4445.73 * −2.79 * 175.45 44.122
Total amount −4043.95 49.47 281.17 58.978

* Note: the symbol of “−” delegates’ available capacity without reduction.

The pollutants in the tributaries of the Huangshi Reservoir will need a large number of cuts both in
2020 and 2025, with respect to the degree II national surface water quality standards. The largest COD
reduction will occur in the Fanjiafang River, with approximately 61.3% and 71.9% of the inflow needing
to be cut to meet the water quality objectives, respectively. Tributaries will need a total reduction of
173.8 to 401.8 tons per year, with the residual WEC for COD being approximately 4560.5 tons per year
in the reservoir region.

The largest NH3-N reduction will occur in the Dongtan River and the Fanjiafang River in 2020 and
2025. More than 69.2% of the pollutant inflow will need to be cut to meet the water quality objectives in
2020, which corresponds to an increase of 7.1% in 2025. Tributaries will need a total reduction of 29.14
and 52.2 tons per year, respectively, with the residual WEC for NH3-N needing to be approximately
4560.5 and 2.79 tons per year in the reservoir region, respectively.

The largest TN reduction will occur in the Dongtan River in 2020 as well as in the Dongtan River
and the Fanjiafang River in 2025. More than 80.1% and 74.59% of the inflow will need to be cut to meet
the water quality objectives, respectively. The TN of the entire basin will need to be cut by 44.02% and
58.9%, respectively, which corresponds to an increase of 14.88% in 2025.

The largest TP reduction will occur in the Dongtan River and the Fanjiafang River in 2020
and 2025. More than 64.4% of the inflow will need to be cut to meet the water quality objectives,
which corresponds to an increase of 10.19% in 2025. The inflow into the reservoir will be significantly
larger than the WEC of the reservoir. The TP of the reservoir area will need to be reduced by 37.9%
and 53.73%, respectively, with the entire basin needing to be cut by 39.6% and 55.37%, respectively.

Water pollution control is still an arduous task in all four tributaries and the reservoir region.
The pollutants significantly exceed the state standards for drinking water sources in China, especially
in the reservoir region, which will induce or aggravate the risk of water eutrophication.
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5. Conclusions

This study constructed an integrated method to simulate the WEC of the Huangshi river–reservoir
combination system, which coupled a 1-D convection-dispersion model with the EFDC model. It was
further applied to study the quantity control of pollution of the input rivers based on the results of the
WEC calculation and the degree II national surface water quality standards.

The highest WEC is in the Bamao River, while the lowest WEC is in the Dongtan River.
Summarizing the WEC of the tributaries, the COD is 421.97 tons, NH3-N is 40.99 tons, TN is 35.94 tons,
and TP is 9.54 tons.

The utilization rates of COD, NH3-N, TN, and TP in most of the tributaries are over 100%.
The utilization rates of COD and NH3-N in the reservoir region are 13% and 65%, respectively,
and there is still a certain WEC. However, the loads of TN and TP exceed the maximum utilization
rates by 1.34 times and 1.2 times, respectively. This is mainly caused by the fish cage culture and the
internal release of pollutants. Furthermore, this has a significant relationship with the high degree of
eutrophication in the reservoir region.

The pollutants in the tributaries of the Huangshi Reservoir will need a large number of inflow
cuts to meet the water quality objectives in 2020 and 2025. The pollutants significantly exceed the state
standard, especially in the reservoir region. Therefore, the reduction and control of pollutants are the
main objectives.

To exploit the WEC completely, rationally, and continuously, a balance point needs to be found
between environmental concerns and the social and economic development. As the study area is the
backup source of drinking water for Changde City, the calculation of WEC can enable decision makers
to determine load reductions and allocations. Various measures of controlling the total amount of
pollutants can be applied to realize the improvement of the water quality. This perspective can be
referred as a beneficial supplement for a single study of rivers or lake.

Additionally, in calculating WEC, the uncertainty analysis should be taken into consideration.
In a practical river—reservoir combination system there are many uncertainties in terms of variable
information while calculating WEC. More variable information will result in a more flexible WEC.
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Abstract: Long distance water diversion projects are developed to alleviate the conflicts between
supply and demand of water resources across different watersheds. However, the significant scale
water diversion projects bring new challenges for the water supply security. This paper presents
the flood risk of inverted siphon structure which is used for crossing transversally in the water
diversion project through sensitivity analysis. Soboĺ and regionalized sensitivity analysis are used to
investigate the sensitive parameters of the integrated model and the sensitive range of the parameters,
respectively. The integrated system model consists of the hydrologic model, the sediment transport
model and the siphon hydraulic model to determine the flood overtopping duration and volume,
which are used to quantify flood risk in this study. The flood overtopping duration and volume
indicators are used to quantify flood risk in the sensitivity analysis. The South to North Water
Diversion Project in China is used as a case study. The results show the mean rainfall and roughness
coefficient of the pipe are the most sensitive parameters in the integrated models, while the sensitive
range of these two parameters are distinct. The sensitivity analysis of the inverted siphon provides
an insight into the significant contributions to the flood risk. The analysis can provide the guidance
for the system operation security.

Keywords: long distance water diversion; inverted siphon; sensitivity analysis; integrated supply
system modeling

1. Introduction

Due to urbanization and the uneven distribution of water resources in time and space,
long-distance water transfer projects are constructed to alleviate the shortage of water resource and
meet the increasing demands [1–3]. Water transfer projects often involve huge capital investment
and pose complex security problems [4–6]. For example, canals usually cross hundreds of kilometers
of complicated terrain, which leads to water quality deterioration, temperature variation, and long
operation response period. Moreover, critical hydraulic structures are essential for ensuring the
operation security of the projects, e.g., gate/valve, pump station, and intersection structures.
Here, we focus on the inverted siphon structure, which is linked to the river to drain water by gravity
that is collected from a relatively small hydrographic basin, so that the river can cross transversally
a large artificial open channel carrying fresh water for supply.

Inverted siphon structures are prone to be impacted by the hydraulic transient process and
structure stability. The potential failures of inverted siphons can be divided into two categories:
(1) structure failure; and (2) operation failure. Structure failure indicates the structure identity is
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destroyed or collapsed due to structure aging and external forces. Operation failure refers to the
flows exceeding the design standard of inverted siphon. That is because the designed flood and flood
design standard that are used to guide the structure design are subject to the hydrologic parameter
uncertainties (e.g., rainfall, soil moisture, and land use) and the hydraulic uncertainties (e.g., sediment
deposition). The extra upstream flow of inverted siphon is retained at the entry and a large flood
can potentially enter the canal and contaminate the quality of source water in the canal. Therefore,
there is a need to investigate which uncertain parameters (e.g., rainfall, sediments, and pipe roughness
coefficient) can significantly contribute to the flooding incidents. This paper utilizes an inverted siphon
structure that passes underneath a long distance transfer project to illustrate the flood overtopping
risk. The sensitivity analysis with respect to inverted siphons is of vital importance to guarantee the
safe operation of the long-distance transfer project.

Sensitivity Analysis (SA) has gathered plenty of attention for describing the sensitivity of
parameters in terms of the contributions to the model output [7]. Global SA method, in contrast
to local SA, is capable of accounting for the whole range of input parameter variation to avoid
the subjective judgment and case-specific characteristics on the parameter range. The global
SA can deal with the non-linear and non-monotonic models [8–10]. Another type of SA is
regression-related, e.g., Multivariate Adaptive Regression Splines (MARS), Gaussian Process (GP)
and Radial Basis Function [11]. They use linear or non-linear models to refit the original model and
investigate which parameters can give the relative large reduction in goodness-of-fit. The large
reduction represents the sensitive parameters [12]. The regression sensitivity methods have the
advantage of less computational effort. Moreover, Soboĺ SA [13] is typically a variance based method.
It decomposes the response variances for the specific order SA indices. The Soboĺ SA method can
calculate the interactions among input parameters, but it should be noted that the higher order
Soboĺ analysis could significantly increase the computational burden with the increase in the input
number [14–16]. Regional Sensitivity Analysis (RSA) was developed by Spear and Hornberger [17] and
improved by Beven and Binley [18], which is also a global SA method. RSA elaborates the sensitivity
variation over the full range for a given parameter. The cumulative possibility of behavioral sets is
investigated in the RSA to reflect the parameter interaction implicitly. Both Soboĺ and RSA methods are
employed in this paper to ascertain the sensitive parameters in the inverted siphon flooding model [19].

This paper aims to address the sensitivities of any value over the domain of the parameters and
further identifies the sensitive parameters in the inverted siphon models. The sensitive parameter
screening and sensitive range identification of the parameters are implemented by Soboĺ SA and RSA
methods, respectively. The upstream runoff of the siphon is simulated by a local hydrologic model,
and the sediment transportation and pipe transmission model are used to calculate the inverted siphon
flows. The evaluation indexes (flood overtopping duration and volume) are set up to demonstrate
the flood risk of the inverted siphon. The sensitivity analysis results are demonstrated based on an
inverted siphon structure across the South to North Water Diversion project.

2. Methods

The sensitivity analysis methods including Soboĺ SA and RSA method are introduced to evaluate
the sensitivity of parameters in the integrated system modeling. The integrated system model is set
up by integrating hydrologic model, sediment transport model and inverted siphon hydraulic model.
Then, the two evaluation indicators, i.e., flood overtopping duration and volume, are used to quantify
flood risk.

2.1. Sensitivity Analysis Methods

2.1.1. General

Two global sensitivity analysis methods are employed in this paper for investigating parameter
sensitivity in consideration with the interaction of variables and the sensitivity variation over the range
of the variables. The model can be represented by a numerical function,
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Y = f (X) = f (x1, . . . , xn) (1)

where Y is the model output (or objective function) and X is the variable set, x1, . . . , xn.

2.1.2. Soboĺ Sensitivity Analysis

The Soboĺ sensitivity analysis [13,20] is a variance-based method, which uses variance
decomposition to derive a variance ratio. It can provide a quantitative description of how individual
variables and their interactions affect model performance [21]. An individual model parameter and its
interaction with other parameters contribute to the total output variance, and the function is shown
as follows:

VS =
n

∑
i=1

Vi +
n

∑
i=1

n

∑
j<i

Vij + · · ·+ V1,2,...,n (2)

where VS is the total variance of the output variable Y; Vi is given by the variance of the conditional
expectation Vi = V[E(Y|xi )] and Vij

(
Vij = V[E(Y|xi, yi )]− Vi − Vj

)
to V1···k the interactions among

k parameters. To assess the role of each variable or interaction between variables, sensitivity measures
are needed. The chosen measures are known as Soboĺ indices. The indices represent the bias in the
variance of the output, which is attributed to a variable or a combination of variables. The first-order
index (Si) is

Si =
Vi

V(Y)
(3)

and the second-order index
(
Sij
)

is

Sij =
Vij

V(Y)
(4)

The total order sensitivity index of a single parameter and this parameter’s interaction with other
parameters, at least one index being j �= i from 1 to k, is as follows:

STi = ∑ Si + ∑
j �=i

Sij + · · ·+ S1···k (5)

The first-order sensitivity index only represents the individual contribution of variable xi to the
model output. The second-order index indicates the interaction effect of two variables

(
xi, xj, i �= j

)
on the model output. The total-order index (STi) measures the main effect of parameter xi and its
interactions with all the other variables. The Soboĺ indices are obtained by a sampling process, e.g.,
Latin Hypercube.

2.1.3. Regionalized Sensitivity Analysis

Regionalized sensitivity analysis (RSA) is proposed by Spear and Hornberger [17] and further
extended by Beven and Binley [18]. RSA method is broadly applied in hydrology and environmental
system analysis [19,22,23]. The approach is based on the Monte Carlo simulation considering possible
combination of uncertain parameters with the given possibility density function. The parameters
sampling process can cover the whole distribution range, so RSA also belongs to the global sensitivity
analysis category. The sampled parameter sets are divided into behavioral or non-behavioral. If the
computational result of a parameter set (objective function evaluations) satisfies the prescribed
condition (e.g., less than a threshold), the parameter set is behavioral, vice versa.

RSA results are expressed by the cumulative distribution. The difference between the behavioral
and non-behavioral cumulative distributions is larger, and then the parameter is more sensitive.
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Kolmogorov-Smirnoff (K-S) test is used to show the maximum vertical distance (dm,n) between the
behavioral and non-behavioral cumulative distributions. The K-S test function is given as

dm,n = sup
x
|SB(x)− SNB(x)| (6)

where SB(x), SNB(x) are the behavioral and non-behavioral cumulative distributions, respectively.

2.2. Definition of Evaluation Indicators

If the water level at the inlet of the inverted siphon exceeds the embankment crest elevation of the
canal (denoted by Zs), then the flooding water will flow into the main trunk canal, i.e., flood overtopping
happens. The event occurrence represents the inverted siphon hydraulic failure. This failure will bring
the risks that are the embankment erosion and the water quality pollution for example. The longer
duration of flood overtopping leads to more severe hazards and exaggerating the impacted extent on
the canal. Therefore, we adopt the flood overtopping duration and flood overtopping volume as the
indicators to evaluate the risk of flood overtopping for the inverted siphon.

It is assumed that the water level at the water inlet of the inverted siphon can rise, even if it exceeds
the crest elevation of the canal Zs (i.e., there is a virtual water pond with unlimited crest elevation).
The time periods, when water level exceeds Zs, are defined as the duration of flood overtopping.
The flood overtopping volume can be calculated by the difference of maximum flood volume at the
inlet and the volume that corresponds to the embankment crest elevation. The volumes are calculated
by the water level–storage relationship at the inlet of the inverted siphon.

2.3. System Modeling

2.3.1. General

The input parameters that need to be tested in the sensitivity analysis are assigned by a set of
random values (p1, p2, p3, · · · , pn). The hydrologic model simulates the inflow of the inverted siphon
in a given watershed. Sediment transport model is introduced to model the sand movement and
deposition. Siphon hydraulic model is used to calculate the flow of the siphon. These three models
are integrated and convey the parameter values, as shown in Figure 1. The outputs of the models are
runoff, flow, sand content and water level. Two evaluation indexes are formulated by these outputs.
The whole flow chart of the methodology is shown in Figure 1.

 

Input Parameter p1 Parameter p2 Parameter p3 Parameter pn

Models
Hydrologic model Siphon hydraulics model

Sediment transport model

Sand content
(Open channel)

Flow
(Inlet section )

Flow
(Outlet section )

Sand content
(Pipe)

Flow

Output

Evaluation 
Indexes

Flood overtopping duration Flood overtopping volume

Water levelSand contentRunoff Flow

Figure 1. Flow chart of the models.
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2.3.2. Hydrologic Model

Due to the lack of monitoring data in small watersheds, the Inferential Formula Method is often
used to determine the design floods [24]. This study uses the Inferential Formula Method specified in
China’s design flood regulations and proposed by Chen [25]. The flood is derived from design rainfall
in the assumption that rainfall frequency is the same with flood frequency. The flood calculation
includes the following steps:

(1) The maximum rainfall

The maximum rainfall during t h (for small watersheds, t is set to be 24 h) can be calculated by

xt,P = xt
(
1 + Cv · Φp

)
(7)

where xt,P represents the amount of rainfall with the frequency P for t h (mm); xt is the average of
maximum rainfall for t h (mm); Φp is a frequency factor; and Cv is the coefficient of variation of
maximum rainfall for t h.

(2) The peak discharge

Rational method [26] is one of the earliest methods to estimate the peak discharge according to the
rainfall data. When the runoff generation time (denoted by tc) is larger than the runoff concentration
time (denoted by τ), i.e., tc ≥ τ, the peak discharge is consisted of the runoff from the whole watershed.
Assuming the runoff intensity is evenly distributed both in spatial and temporal, and the concentration
is irrespective to the channels and slops, then the peak discharge is calculated by

QmP = 0.278
(

hτ

τ

)
F (8)

in which, F denotes the area of the watershed (km2) and τ is the runoff concentration time (h),
calculated based on the terrain characteristic for the given area,

τ = 0.278
L

mJ1/3QmP1/4 (9)

hτ is the amount of runoff generation during τ hours (mm), given by the following equation
under the assumption of excess infiltration, that is, there is runoff generation only when the rainfall
intensity is larger than the infiltration rate.

hτ = xt,Ptγ−1τ1−γ − μτ (10)

In Equations (9) and (10), γ is the rainfall diminishing exponent; μ is the average infiltration rate
during τ h (mm/h); L is the longest length from the outlet of main river to watershed outline (km);
J is the average slope for the longest path of runoff; m is the runoff parameter; and QmP is the peak
discharge for the flood with the frequency P (m3/s).

When the runoff generation time is smaller than the runoff concentration time, i.e., tc < τ,
the peak discharge is consisted of the runoff from partial of the watershed, and the peak discharge is
approximately calculated by the following equation [25]

QmP = 0.278
(

hR
τ

)
F (11)

where the runoff generation hR (mm) is calculated by

hR = xt,Ptγ−1tc
1−γ − μtc (12)
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and the runoff generation time can be calculated by the following equation:

tc =

[
(1 − γ)xt,Ptγ−1

μ

] 1
γ

(13)

(3) The flood hydrograph

The generalized triangle hydrograph method [25], including the following steps, is applied to
obtain the flood hydrograph.

Firstly, the total runoff during t hours is allocated to T periods in terms of the designed runoff
hydrograph and the runoff concentration time (τ). The rainfall duration for each period (denoted by
ti and I = 1, 2, . . . T) is larger than the runoff concentration time, that is ti ≥ τ.

Secondly, assume the runoff generation time equals the rainfall time, and the concentration time
in each period equals that of the peak discharge for the whole hydrograph (calculated by Equation (9)).
Then, the peak discharge resulting from rainfall in ith period can be calculated by the following
equation with the generalized triangle hydrograph.

Qti = 0.556
(

hti
ti + τ

)
F (14)

where hti is the runoff of rainfall in ith period (mm); Qti is the peak flow at ti (m3/s). It is worth
mentioning that, when ti = τ (h), Equation (14) is the same with Equation (8).

Thirdly, the flood hydrograph resulting from rainfall in each period can be obtained with the peak
flow, and the time for the flood hydrograph is the sum of rainfall duration and runoff concentration
time, i.e., (ti + τ). When ti = τ, the hydrograph resulting from runoff ith periods is symmetric,
i.e., equilateral triangle hydrograph. Otherwise, when ti > τ, the resulting hydrograph is asymmetric.
Finally, the flood hydrograph for rainfall during t h can be convoluted.

2.3.3. Sediment Transport Model

The sensitivity analysis is conducted under the worst condition that the water with the given
velocity contains the maximum amount of sands. If the velocity in the pipe shows down, the deposition
can occur. It is therefore assumed that the flood can carry the maximum amount of sediments for
the given flow velocity. Since the fluid regime is complicated and diversified inside the structure,
the regression analysis to formulate an empirical formula is more practical. Here the capacity of
sediment transport is fitted based on the field data. The Guojunke formula [27], which uses the
logarithmic function to fit the field data and performs well for the Yellow River, is adopted here.
The Guojunke formula for the open channel is formulated as,

S∗ =

1
20

(
V3

p

gRω

)1.5

1 +

(
1
45

V3
p

gRω

)1.15 (15)

where S∗ is the sand content, i.e., the mass of sands in a unit volume (kg/m3); Vp is the average velocity
of the section (m/s); g is the gravity acceleration (m/s2); R is the hydraulic radius; and ω is the sand
deposition rate which is calculated by Zhu-Cheng formula [28] (m/s),

ωd
ν

=
−24 cos3 α +

√
576 cos6 α +

(
18 cos3 α + 3.6 sin2 α

)
d3∗

9 cos3 α + 1.8 sin2 α
(16)
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d∗ =
(
(ρs − ρ)g

ν2ρ

) 1
3
d (17)

α =

{
0

π/
(

2 + 2.5(log d∗)−3
) , d∗ ≤ 1

, d∗ > 1
(18)

where d is the diameter of sand, d = 0.033 mm for the silty-fine sand; ν is the fluid viscosity (m2/s);
ρs is sand density (kg/m3), ρs = 2650 kg/m3; and ρ is water density (kg/m3), ρ = 1000 kg/m3.

When the floods go into the inverted siphon, the capacity of sediment transport changes.
The capacity that the pipe transports sand is determined by the non-deposition velocity. The critical
non-deposition velocity (Vc) is given by Wasp equation [29],

Vc = 3.28Sv
0.243

[
2gD

(
ρs − ρ

ρ

)]1/2( d
D

)1/6
(19)

Sv =
S∗
ρs

(20)

where D is the diameter of the pipe (m) and Sv is the ratio of water to sand in the unit volume.
When the velocity is larger than Vc, no sediment is deposited, otherwise sediment deposition happens.
The diameter parameter of the circular pipe in the original Wasp equation is transformed into the
equivalent hydraulic radius of the square pipe.

2.3.4. Siphon Hydraulics Model

The siphon is calculated in terms of the quasi steady flow (i.e., steady flow is calculated in
each time interval, and the all simulation snapshots comprise the simulation process over time).
The inverted siphon flow computation includes the downstream and upstream open channel flows
and pressurized pipe flow. The calculation of the conveyance capacity of the inverted siphon includes
flood regulation and hydraulic routing. The flood regulation is based on the water balance equation,
given as,

QA − QB =
ΔW
Δt

(21)

where QA is the flow at the upstream channel of the inverted siphon (m3/s), which is known according
to the hydrologic model results; QB is the flow at downstream channel of the inverted siphon (m3/s);
and ΔW is the volume of retained water at upstream channel during the time of Δt (m3). The water
level at the upstream and downstream channels and flow in the siphon pipe are unknown, i.e., QB and
ΔW are both unknown, but they meet the hydraulics conditions. Then, the iterative method is applied,
and a water level at downstream is given before each iteration and thus the iterative process is
implemented as follows,

Step 1. Given a water level ZB at downstream channel, the flow rate at downstream channel can
be calculated with the Chezy equations

QB = AcCc
√

Rc J (22)

Cc =
1
nc

Rc
1/6 (23)

where QB is the flow at downstream channel (m3/s); Cc is Chezy coefficient of the channel (m1/2/s);
Ac is the section area of the flow (m2); nc is the roughness coefficient at downstream channel which is set
to be 0.035 in this study (s/m1/3); and Rc is the wetted perimeter of the channel; J is the hydraulic slope.

The iterative initial water level at downstream is assumed to be zero. With the flow rate QB,
the retaining volume at the inlet ΔW can be calculated with Equation (12). Then, with the relationship
between water level and water volume at upstream channel (denoted by F(Z)) and the initial water
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level at the inlet (denoted by ZA,t−1, equaling zero at the first time period, otherwise, equaling the
ending water level of the last period), the ending water level (ZA,t) at upstream channel can be derived
by ZA,t = F−1[ΔW + F(ZA,t−1)]. This water level minus the presumed water level at downstream can
obtain the water level difference ΔZ1.

Step 2. The difference between downstream and upstream channel water levels (ΔZ2) is given as,

ΔZ2 = h f + hj +
VA

2 − VB
2

2g
(24)

where VA and VB are the velocity at upstream and downstream channel (m/s), and calculated by the
ratio of flow to flow area. h f and hj are pipe friction headloss and local headloss, respectively (m), and
given by

h f =
LpVp

2

Cp2Rp
(25)

hj = (K1 + K2 + K3)
Vp

2

2g
(26)

where Lp is the length of the inverted siphon (m); Cp is Chezy coefficient of the inverted siphon
(m1/2/s); Rp is the wetted perimeter of the inverted siphon; K1, K2, and K3 are the local loss coefficients
at inlet, outlet and inside of the inverted siphon, respectively; Vp is the velocity of inverted siphon
(m/s), calculated by the ratio of flow (Qp) to flow area (Ap) of the inverted siphon; and Ap can be
calculated by

Ap =
(

Hp − zp
)× Wp (27)

where Hp and Wp are the height and width of inverted siphon, respectively (m); zp is the deposition
height (m).

Step 3. In comparison of ΔZ1 (obtained from water balance) and ΔZ2 (obtained from energy
balance), if the difference between them is less than a threshold, then the calculation process terminates.
Otherwise, a new water level at downstream is given following: if ΔZ1 > ΔZ2, the water level at
downstream should be increased by a step; if ΔZ1 < ΔZ2, the water level should be decreased by a step.
The step is determined according to the search method. Then, the Steps from 1 to 3 are repeated until
the stop criteria.

3. Case Description

3.1. Overview of the Study Area

The Central Route of the South-to-North Water Diversion Project, shown in Figure 2, transfers
water from Danjiangkou Reservoir on the Han River (a tributary of Yangtze River) to Beijing and
Tianjin Cities. This project links up four major basins, including Yangtze River, Huai River, Yellow
River and Hai River, and crosses Hebei, Henan, and Hubei Provinces. The main trunk canal is a total
length of 1277 km, and crosses 205 rivers with cross-river buildings. The buildings are called river-canal
crossing structures.

This study is targeted to the inverted siphon—A typical river-canal crossing structure. The inverted
siphon, located on the intersection between main trunk canal of Central Route of the South-to-North
Water Diversion Project and Meihe tributary, is taken as an illustrated case study. The drainage area of
Meihe tributary is 10.80 km2, the longest length from the outlet of the main river to watershed outline
is 5 km, and the average slope for the longest path is 0.017. The inverted siphon consists of pipe section,
upstream channel and downstream channel sections, as shown in Figure 3. The upstream channel and
downstream channel sections are the trapezoidal open channels and the lengths are 55 m and 68 m,
respectively. The pipe section includes four 3 × 3 m2 square barrels, which have equal heights at the
entrance. The horizontal projection length of each pipeline is 111.6 m, and the slopes of the rising and
descending legs are 1:5 and 1:4, respectively. Since there is no gate control of the pipelines, the four
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pipelines operate simultaneously. The peak discharges for a 50-year return period of flood design
criterion and 200-year flood check criterion are 209 m3/s and 294 m3/s, respectively.

Figure 2. The sketch map of the study area.
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Figure 3. The schematic diagram of the inverted siphon.

3.2. Parameter Uncertainty Description

In the flood risk analysis of the inverted siphon, the parameter uncertainties in the integrated
model, including rainfall module (x24, Cv, and γ), runoff generation module (m), runoff concentration
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module (u), and hydraulic module (nc, zp), are considered. The distribution and feasible range of the
parameters are listed in Table 1.

Table 1. Parameters studied for the sensitivity analysis.

Model Response Parameter Description Range Distribution Unit

Rainfall

x24 Mean annual maximum rainfall in 24 h 90–110 uniform mm

Cv
Variation coefficient of annual

maximum rainfall in 24 h 0.5–0.6 uniform –

γ Rainfall diminishing exponent 0.75–0.80 uniform –

Runoff
u Mean infiltration rates 2–5 uniform mm/h
m Confluence coefficient 0.95–1.05 uniform –

Conduit flow
nc Roughness coefficient of the pipe 0.014–0.020 uniform –
zp Initial deposition height 0–3 truncated normal m

3.2.1. Mean Value (x24) and Variation Coefficient (Cv) for the Maximum 24-h Rainfall

According to the “Atlas of the Design Storm and Flood for the Medium and Small-Sized Basins
in Henan Province” edited in 1984, the mean value and variation coefficient for the maximum 24-h
are 100 and 0.55, respectively. However, they are both closely related to the length of the rainfall data.
At the beginning of the design stage for South to North Water Diversion Project, the statistical rainfall
parameters for 24 rain gauge stations, which are distributed on different rivers but along the main
trunk canal, are validated with the rainfall data prolonged to 2000. The results show that the mean
value x24 ranges within −10%–10% of the designed value and Cv ranges within −0.05–0.05. Regardless
of the impact of human activities, it is assumed that the statistical parameters change within the above
ranges. That is, the ranges of x24 and Cv are 90–110 and 0.5–0.6, respectively, and x24 and Cv are
assumed to be uniformly distributed.

3.2.2. The Rainfall Diminishing Exponent (γ), Runoff Concentration Parameter (m) and the Mean
Filtration Rate (u)

Statistic parameters of γ, m, and u are obtained from the corresponding contour map in
“Atlas of the Design Storm and Flood for the Medium and Small-Sized Basins in Henan Province”.
The uncertainties in these parameters are caused by observation. The ranges for γ, m and u are
0.75–0.80, 2–5, and 0.95–1.05, respectively, by the upper and lower contour curve evaluation. γ, m and
u are assumed to follow the uniform distribution.

3.2.3. The Roughness Coefficient (nc)

The roughness coefficient of the pipe for the inverted siphon (nc) changes with sediment
deposition. The more sediments, the greater roughness coefficient. The roughness coefficient can reach
as large as 0.020 according to the empirical data [24]. However, the inverted siphon was designed
according to a fixed value, i.e., 0.014. Therefore, we consider the uncertainty of nc within range
0.014–0.020 obeying a uniform distribution.

3.2.4. The Initial Deposition Height of Sediment (zp)

The initial deposition height of sediment in the model is set at the beginning of the flood process.
It can be as large as the pipe width, 3 m in this study. zp is typically small with the larger probability,
while small probability corresponds to a large zp. Thus, the truncated normal distribution, which is
widely used when there is little information about the distribution, is assumed for zp within range 0–3.
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4. Results and Discussion

4.1. RSA Results

The parameters in the integrated model, listed in Table 1, are assumed to be independent, and
Latin Hypercube sampling method [30] is used. It is noted that the parameters of the hydraulic model
(roughness coefficient and initial deposition height) for each conduit (the culvert consists of four
squared conduits) are set to be identical. The sample size is 100,000, and one sample includes all
parameters values that are randomly assigned. The distributions of runoff concentration time and
peak discharge are shown in Figure 4. As can be seen, the peak discharge considering the uncertainties
of parameters are all larger than the original designed value, 294 m3/s.
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Figure 4. The distribution of runoff concentration time and peak discharge. (a) The distribution of
runoff concentration time; (b) The distribution of peak discharge.

The parameters sets are divided into two subsets in terms of the inverted siphon failure
(i.e., non-behavioral) or operation (behavioral), with cumulative distributions shown in Figure 3.
The behavioral sample (SB) is that no water flows into the canal, i.e., the water level at the water intake
is smaller than the embankment crest elevation. In contrast, the non-behavioral sample (SNB) is that
water flows into the canal, i.e., the water level at the water intake is higher than the crest elevation.
In Figure 3, the diagonal line (D-line) represents the parameter has a uniform distribution and the
model is not sensitive to this parameter in terms of the chosen likelihood measure. Any deviation from
the “D-line” shows a non-uniform distribution and the model is sensitive to this parameter. The larger
distance between the SB and SNB indicates more sensitive range of this parameter.

As shown in Figure 5, all parameters exhibit an obvious shift. In addition, the SNB curve for all
the parameters except zp is close to “D-line”, indicating that the effects of parameters within the whole
range on the failure of the inverted siphon are almost identical. The cumulative distributions for the
mean rainfall (x24), variation coefficient (Cv), rainfall diminishing exponent (γ), runoff concentration
parameter (m) and the roughness coefficient (nc), show that the values at the lower end of the tested
ranges contribute to the greatest number of behaviors, i.e., lower value of these parameters lead to
lower flood risk of the inverted siphon. Conversely, the greatest number of behaviors occurs at the
higher end of the range for mean filtration rate (u). For initial deposition height (zp), the greatest
number of behaviors and non-behaviors comes from values at the lower end of the range. Meanwhile,
the initial deposition height (zp) has the least impact on flood risk of the inverted siphon, with the
smallest shift from the straight line in comparison with the others.

Each parameter sensitivity is tested by the two-sample Kolmogorov–Smirnov (K-S) test method
with the confidential level of 95%. Results show that the mean rainfall (x24) is most sensitive,
followed by the roughness coefficient (nc). Furthermore, the other parameters related with the
rainfall, i.e., variation coefficient (Cv), rainfall diminishing exponent (γ), are more sensitive, and
thus, the rainfall is the most important factor for the flood risk of the inverted siphon. The roughness

437



Water 2018, 10, 292

coefficient (nc) is related with the conveyance capacity of the pipe, thus the conveyance capacity of the
pipe also is the most important factor for the flood risk of the inverted siphon.
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Figure 5. Cumulative distribution of the seven parameters with regard to failure of the inverted
siphon. SB and SNB represent the behavioral and non-behavioral groups, respectively. (a) Cumulative
distribution of mean rainfall; (b) Cumulative distribution of variation coefficient ; (c) Cumulative
distribution of rainfall diminishing exponent; (d) Cumulative distribution of runoff concentration
parameter; (e) Cumulative distribution of mean filtration rate; (f) Cumulative distribution of roughness
coefficient; (g) Cumulative distribution of initial deposition height.

4.2. Soboĺ Sensitivity Analysis Results

The first-order and total-order sensitivity indices of seven parameters are shown in Figure 4.
The black bars represent the first-order index values, which measure the individual parameter
contributions to the duration and volume of flood overtopping. The white bars represent the interactive
indices, which demonstrate the total interactive contribution of one parameter with all other parameters.
The parameter is identified as sensitive when total-order sensitivity index is larger than 0.1.

As can be seen in Figure 6, the total-order index for roughness coefficient (nc), mean rainfall (x24),
variation coefficient (Cv) and rainfall diminishing exponent (γ), are all larger than 0.1, i.e., sensitive
parameters for flood overtopping duration and volume. Parameters m and u, which are related
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with runoff generation and concentration, are not sensitive. The reason is that flood hydrograph,
flood volume, and the conveyance capacity of the pipe are the most important factors for the flood
overtopping. A larger flood volume or smaller conveyance capacity leads to more water retained
at the inlet, and thus leads to a larger risk of flood overtopping. The magnitude of rainfall is the
most important factor of flood volume and flood hydrograph. Thus, the parameters related with
the magnitude of rainfall and conveyance capacity are sensitive. The initial deposition height (zp) is
sensitive for the flood overtopping duration, but it is not sensitive for the flood overtopping volume.
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Figure 6. The first-order sensitivity and total-order sensitivity of parameters. (a) The first-order
sensitivity and total-order sensitivity of parameters for flood overtopping duration; (b) The first-order
sensitivity and total-order sensitivity of parameters for flood overtopping volume.

The results of the overtopping duration show that x24 obtains the largest value of total-order
index, followed by nc. These two parameters determine the magnitude of rainfall and the water
conveyance capacity of the pipe, respectively. Therefore, the result indicates that rainfall and the water
conveyance capacity of the pipe both have a great impact on the overtopping duration in the inverted
siphon. The results of the flood overtopping volume show the total-order index for x24, Cv, γ as well
as nc are sensitive parameters. x24, Cv and γ determine the runoff volume, which is the input of the
inverted siphon, while nc determines the flood volume transported.

Figure 6 show the interaction between zp and other parameters is strong, and the interaction for
the flood overtopping volume is weaker than the flood overtopping duration. The interaction between
any two parameters is shown in Figure 7. As can be seen in Figure 7a, the sum of the second-order
index between zp and other parameters is the largest, and the interaction between zp and m is strongest
for the flood overtopping duration. As for flood overtopping volume, the sum of second-order index
between nc and other parameters is largest. However, Figure 6b shows that the total interactions of zp is
larger than that of nc, which indicates that higher order interactions (third-order, four-order, etc.) exist
between zp and other parameters. The second-order index value for nc and γ is strongest, followed by
the value for nc and x24, indicating that the interaction between nc and γ, nc and x24 are strong. This is
because x24 is the most important factor that determines the flood volume, and a larger x24 result in
a larger flood. A larger γ results in a larger runoff generation under the same magnitude of rainfall,
and a larger x24 results in a larger and thus a larger peak discharge and flood volume, while a larger nc

results in a smaller conveyance capacity.
In conclusion, results of RSA and Soboĺ sensitivity analysis both indicate that the mean rainfall

and roughness coefficient of the pipe are two important parameters, which determine the rainfall and
water conveyance capacity of the siphon pipe, respectively. These results demonstrate that lower value
of the mean rainfall or roughness coefficient of the pipe lead to lower flood risk of the inverted siphon.
Thus, the effective measures for reducing the flood risk of the inverted siphon to clean the inverted
siphon periodically, i.e., reduce the roughness coefficient of pipe.
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Figure 7. The interaction between each two parameters. (a) The interaction between each two
parameters for flood overtopping duration; (b) The interaction between each two parameters for
flood overtopping volume.

5. Conclusions

This paper investigated, by using an integrated system coupling the hydrology and hydraulic
models, the impact of rainfall, sediments and pipe roughness coefficient on the failure of inverted
siphon through RSA and Soboĺ sensitivity analysis. The flood risk of the inverted siphon is evaluated
by the flood overtopping duration and volume. The conclusions are summarized as follows:

(1) RSA and Soboĺ sensitivity analyses both indicate the mean rainfall and the roughness coefficient
of the pipe are most sensitive for the flood risk of the inverted siphon. These results imply that lower
value of the mean rainfall or roughness coefficient of the pipe lead to lower flood risk of the inverted
siphon. Thus, periodically cleaning the inverted siphon is an effective measure for reducing the flood
risk of the inverted siphon, i.e., reduce the roughness coefficient of pipe.

(2) The RSA identifies the sensitivity range of safety and failure for the inverted siphon. Effects
of all parameters except initial deposition height throughout the feasible range on the failure of the
inverted siphon are almost identical. For the safety of the inverted siphon, the smaller values of
variation coefficient, rainfall diminishing exponent, runoff concentration parameter, and roughness
coefficient of pipe, the more safety of the inverted siphon. For the mean filtration, a higher value leads
to the more security of the inverted siphon.

(3) Soboĺ sensitivity analysis reveals the individual and interactive effects of the parameters.
The effects of all parameters on flow overtopping duration and volume all parameters are all dominated
by the individual effects. For the flood overtopping duration, the interactions between the initial
deposition height and other parameters are high, with the largest interaction between initial deposition
height and confluence coefficient. For flood overtopping volume, the interaction between rainfall
model parameters and hydraulic model parameters are both significant.
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Abstract: At the basin scale, the operation of surface water reservoirs rarely takes groundwater
aquifers into consideration, which can also be regarded as reservoirs underground. This study
investigates the impact of reservoir operation on the water cycle and evaluates the effect of the joint
operation of surface water and groundwater reservoirs on the water conflict in arid regions through
an integrated modeling approach. The Heihe River Basin (HRB) in northwestern China is selected
as the study area. Our results show that the ecological operational strategies of a reservoir under
construction in the upper HRB have a direct impact on the agricultural water uses and consequently
affect other hydrological processes. The ecological operation strategy with a smaller water release
and a longer duration is beneficial to securing the environmental flow towards the downstream area
and to replenishing aquifers. With the joint operation of surface water and groundwater reservoirs,
a balance among the agriculture water need, the groundwater sustainability in the Middle HRB and
the ecological water need in the Lower HRB can be flexibly achieved. However, the joint operation
can hardly improve the three aspects simultaneously. To resolve the water conflict in HRB, additional
engineering and/or policy measures are desired.

Keywords: reservoir operation; integrated surface water-groundwater model; Heihe River Basin;
environmental flow; irrigation

1. Introduction

Irrigation plays an indispensable role in agricultural water supply when rainfall is not sufficient
to sustain crop growth. Currently, the irrigated cropland produces more than 40% of the total cereal
yield worldwide [1,2]. Globally, about 54% of the total irrigated area is dependent on surface water
(SW) such as rivers, lakes, artificial canals and reservoirs [3]. Meanwhile, in arid and semi-arid
regions of the world where surface water is not abundantly available, groundwater (GW) abstraction
is often required for irrigation purposes. According to Siebert et al. [4], the total area irrigated by
groundwater is nearly 114 million hectares globally. In most arid and semi-arid regions, irrigation with
groundwater has experienced a considerable increase over the past few decades mainly due to the
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growing demand for agricultural products and the changing climate [5]. In the North China Plain,
one of China’s most important agricultural regions, approximately 73% of the groundwater extraction
is used for irrigation [6]. In the United States, around 60% of the irrigation relies on groundwater,
especially in California’s Central Valley and the High Plains [7]. Surface water reservoirs are enlarged
natural or artificial lakes, storage ponds or impoundments created using a dam or lock to store water.
Operating several surface water reservoirs next to each other collectively in order to serve a defined
single purpose has become a common practice. A groundwater aquifer, although buried and unseen,
can also act as a lumped water storage unit with a known capacity, which resembles a surface water
reservoir [8]. Therefore, using groundwater pumping for irrigation can, in principle, be conceptualized
as operating surface water reservoirs. Kundzewicz and Döll [9] analyzed the potential of using
the natural storage capacity and the buffering effect provided by groundwater reservoirs to cope
with highly variable surface water supply in different years. Scanlon et al. [10] further discussed
the possibility of utilizing groundwater reservoirs to better adapt to climate extremes in California’s
Central Valley and central Arizona.

Taking groundwater as a part of the reservoir chain and considering the joint effect of surface
water and groundwater reservoirs simultaneously is a relatively new research topic [11]. For instance,
Castle et al. [12] assessed the influence of conjunctive surface water and groundwater use on
water availability in the Colorado River Basin by estimating the water storage change of both
surface water and groundwater reservoirs from satellite images. Fuchs et al. [13] quantified the
resilience of the agricultural system that depends on the conjunctive use of surface and groundwater
in the Rincon Valley. Nikoo et al. [14] established optimal operation scheduling rules for a
reservoir-river-groundwater joint system through data mining. To our knowledge, however, it is
rarely reported that both surface water and groundwater reservoirs are operated jointly for water
resources conservation via integrated surface water-groundwater modeling.

Increasing demand for irrigation has created human-nature water conflicts and therefore posed
many challenges in water resources management. Such a problem is especially serious in arid and
semi-arid regions. As an example, the Heihe River Basin (HRB), our study area, has witnessed this
conflict gradually developing in the past 30 years. HRB is the second largest endorheic river basin
in China and is agriculturally intensive. In the late 1990s, the growing irrigation in the Middle HRB
(MHRB) significantly decreased the streamflow available for the Lower HRB (LHRB) and therefore
deteriorated the ecological conditions [15–18]. To protect the fragile ecosystems in the Lower HRB,
the central government restricted the surface water diversion since 2000 in the Middle HRB [19].
However, the restriction of surface water usage led to a significant increase of groundwater pumping
in the Middle HRB, since it was not strictly regulated [20]. Recently, the construction of a new reservoir
in the upper HRB basin has been approved, which aims to enhance the water resources management
in the basin. However, how the new reservoir may change the water cycle in the middle and Lower
HRB has not been systematically investigated by fully accounting for the groundwater reservoir effect,
which motivated this study. Therefore, the main objectives of this study are: (1) to quantify the impact
of the new reservoir in the upper HRB on the water cycle in the middle and Lower HRB; and (2) to
evaluate the effect of the joint operation of surface water and groundwater reservoirs on the water
conflict in HRB, based on integrated surface water-groundwater modeling. Overall, this study provides
insights into the water resources management in arid regions.

2. Data and Methods

2.1. Study Area

The Heihe River Basin (HRB) is a typical endorheic river basin in the arid region in the northwest
of China. It is located between 97.1◦ E–102.0◦ E and 37.7◦ N–42.7◦ N. The entire basin can be divided
into the upper, middle and lower stream areas, with very different landscapes. The upper stream basin
is characterized by a mountainous area on the northern margin of the Qinghai-Tibetan Plateau. It is
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densely vegetated with forests and grasslands. The Middle HRB is dominated by the Gobi Desert,
while many irrigated farmlands exist inside the oases. The Lower HRB is mainly a desert with very
little vegetation. More than 30 rivers originated in the upstream area bring approximately 3651 million
m3 of water per year to the midstream area. The largest stream, namely the Heihe River, has a length
of 928 km. It originates from the Qilian Mountains, flows towards the north and ends in a terminal
lake, the East Juyan Lake (EJL), in the Gobi Desert. Yingluoxia (YLX) and Zhengyixia (ZYX) are usually
regarded as the starting points of the midstream and lower stream of the Heihe River, respectively
(see Figure 1). In the upstream, the Heihe River has a major tributary called Babaohe River, which flows
into the main stream within the vicinity of the municipality Huangzangsi where the new reservoir is
under construction. Daily streamflow measurements are carried out at four gaging stations as indicated
by the blue points in Figure 1. Qilan, YLX and ZYX gaging stations are located at the main stream of
the Heihe River, and Zhamashike gaging station is located at the Babaohe River. Annual streamflow
through Qilian, Zhamashike, YLX and ZYX is 8,204,801,770 and 1010 million m3, respectively.

 
Figure 1. The study area.

In the midstream area, the most common crops are corn and winter wheat. A complicated
aqueduct system has been developed in this area. The basic unit for water resources management is
called an irrigation district. There are 17 irrigation districts to which stream water from the middle
stream of the Heihe River is diverted. Only water consumption from the agricultural sector is
considered in these irrigation districts in this study. According to the statistics by the local water
resources authority, in 2000–2012, agriculture in the 17 irrigation districts consumed approximately
1860 million m3 of water per year, 80% of which was diverted from the main Heihe River, and the rest
was pumped from the local groundwater aquifer. To secure the environmental flow towards the lower
stream under different hydrological conditions, a water allocation plan has been implemented since
2000. For example, in a normal year (i.e., the annual flow from Yingluoxia reaches 1580 million m3),
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the flow through Zhengyixia should be no less than 950 million m3. Since 2000, diversion of the
stream flow has been restricted in the midstream area, which has resulted in a substantial increase
of groundwater pumping. In recent years, the groundwater pumping has also been regulated. Thus,
the agriculture in the midstream area is now facing a great risk of irrigation water shortage [21].
The water resources authorities have therefore been resorting to hydraulic engineering measures,
such as reservoirs, in order to mitigate the water shortage problem in the irrigation districts.

In fact, in the past decades, many surface water reservoirs have been built in the natural low-lying
lands along the Heihe River in the midstream area. As of 2012, there were 20 reservoirs with a total
water storage of 48.65 million m3. This amount is able to irrigate more than 20,000 ha of farmland.
All these reservoirs are replenished by diverting water from the Heihe River, except the one named
Shuangquanhu, which is replenished by natural springs. However, the storage capacity of the existing
reservoirs is quite small, compared to the irrigation demand. In addition, the loss of water through
evaporation is non-negligible, which is approximately 17 million m3 per year, accounting for more than
1/3 of the total reservoir storage. Therefore, as planned, all the plain reservoirs will stop operating in the
near future, except the Shuangquanhu Reservoir. Instead, a large reservoir named Huangzangsi is now
being built in the upper mountainous area (Figure 1). The total storage of the Huangzangsi Reservoir
is approximately eight-times larger than the sum of all the existing plain reservoirs. More information
about this reservoir is provided in Section 2.3. It is expected that, with this new reservoir, the irrigation
demand in the midstream area can be better met, and the environmental flow towards the lower
stream area can be more secured. This provides a unique opportunity to study the joint operation
of the surface water and groundwater reservoirs in the HRB in order to alleviate the human-nature
water conflict.

2.2. Hydrological Model

GSFLOW (Coupled Groundwater and Surface Water Flow Model) (Version 1.1.6, U.S. Geological
Survey, Reston, VA, U.S.) is the model applied in the present study. It is an integrated surface
water-groundwater model developed by the United States Geological Survey (USGS), which can
simulate all the major hydrological processes of the terrestrial water cycle [22]. GSFLOW couples the
Precipitation-Runoff Modeling System (PRMS) (Version 3.0.5, U.S. Geological Survey, Reston, VA, U.S.)
with the Modular Groundwater Flow Model (MODFLOW-2005) (Version 1.9.1, U.S. Geological Survey,
Reston, VA, U.S.) to simulate both the surface water hydrology (top of the plant canopy to the root
zone) and the three-dimensional groundwater (the base of the root zone to the base of the aquifers)
movement. In the surface water domain, hydrologic response units (HRUs) are the basic computing
units, which can be either regular grids or irregular polygons. GSFLOW uses a cascade method to route
the overland flow and interflow between HRUs and from HRUs to streams and lakes. The subsurface
domain is discretized with finite difference grids. To simulate the two-way interactions between
surface water and groundwater, GSFLOW defines a “gravity reservoir” as a storage in which an HRU
exchanges water with the MODFLOW grid(s) at places where they intersect. The unsaturated zone is
defined as the space between the root zone and the top of the groundwater table, which is computed
using the Unsaturated Zone Flow package (UZF1) [23]. Streams and lakes are simulated using the
Streamflow Routing package (SFR2) [24] and Lake package [25], respectively. In reaches where the
stream water is connected to the groundwater, stream-aquifer exchange is calculated based on the
head difference using Darcy’s law. More details on GSFLOW can be found in Markstrom et al [22].

Tian et al. [20] improved the capacity of GSFLOW by adding two new irrigation modules, so it
simulates agricultural water management activities. One of the modules is to distribute the diverted
water from streams to farmlands through an aqueduct system, and the other is to distribute the
abstracted groundwater to the farmlands close to the pumping wells. These two modules require
daily surface water diversion rate and pumping rate as input. Since it is difficult to obtain these
data, we developed a third module, the Water Resources Allocation (WRA) module, for GSFLOW
recently. Besides integrating functionalities of the two irrigation modules, the WRA module enables
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one to simulate demand-based diversion and pumping rates. HRUs with farmlands are the basic
computing units. The crop type in each HRU and the irrigation quota for each crop need to be
predefined. The irrigation quota could be changed from year to year or kept unchanged throughout
the entire simulation period. Based on the crop type and irrigation quota, water demand at each HRU
is calculated. The demand is supplied by precipitation at first if it rains, then the remaining part is
supplied by irrigation. Irrigation in each HRU is assumed to be supplied by either surface water
diversion or groundwater pumping, or the combination of the two. The proportions of diversion
and pumping in the total irrigation are predefined for each HRU, based on which expected diversion
and pumping are first calculated. Then, actual diversion is computed by considering stream routing,
and actual pumping is computed by considering the available groundwater in the aquifer. Finally,
the actual diversion and pumping is distributed to HRUs by using the method in our previous
study [20]. It is noted that the demand for irrigation may not be met 100%, which can be caused by
insufficient stream flow or drying of the groundwater wells.

Based on the data availability, the updated GSFLOW model has been applied to the middle and
lower streams of HRB over the period 2000–2012 [26]. This period includes wet, dry and normal
years and is therefore representative. The model requires daily streamflow at YLX as the boundary
conditions. After construction of the Huangzangsi Reservoir, the streamflow at YLX will be greatly
changed based on the reservoir’s operation, which may lead to significant changes of the water cycle
in the middle and lower streams of HRB. Thus, we developed a program to simulate operation of the
Huangzangsi Reservoir, which is described in the following section.

2.3. The Huangzangsi Reservoir

The Huangzangsi Reservoir under construction is on the upstream of the Heihe River (Figure 2),
approximately 70 km from the Yingluoxia gaging station. It receives the main stream of the Heihe
River and the Babaohe River. Table 1 summarizes the physical and hydrological characteristics of the
reservoir. The normal storage capacity of the reservoir ranges from 61 million m3 (the dead storage)
to 356 million m3 (the normal storage). The water surface covers an area of 11.01 km2 at its normal
water level. The Huangzangsi Reservoir is designed to be a multipurpose reservoir, where two main
purposes are meeting the agriculture water demand by the Middle HRB and meeting the environmental
flow demand by the Lower HRB. It is important to note that the reservoir is not intended to control
flooding, thus the normal water level and flood control water level have the same value of 2628 m.
The construction of the reservoir is expected to be finished in 2022. All of the reservoir’s information
was obtained from the environmental impact assessment report provided by the Heihe River Basin
Authority [27].

Our study assumes that the Huangzangsi Reservoir is operated based on its rule curves, where the
time of decision, the present water level and the overall water demand are the three constraining
factors. The overall water demand consists of irrigation water demand in the midstream area,
the environmental flow demand in the lower stream area and the minimum base flow demand.
Table 2 shows the monthly water demand for the reservoir operation. These values were derived based
on statistics and hydrological observations during the period 2000–2012. The irrigation water demand
was estimated based on annual statistics by the Water Bureau of the Zhangye City [26]. As Table 2
indicates, irrigation occurs mainly from March–November. The environmental flow demand in the
lower stream area was estimated based on the report provided by the Heihe River Basin Authority [27].
The minimum base flow demand occurs from December in the previous year to March, and it is
assumed to be 25% of the reservoir’s inflow during these months.
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Figure 2. The Huangzangsi Reservoir in the upstream mountainous area and the existing small
reservoirs in the plain midstream area.

Table 1. Hydrological and physical characteristics of the Huangzangsi Reservoir.

Hydrological Characteristics Value

Basin area above dam site 7648 km2

Annual inflow 1285 × 106 m3

Averaged annual discharge 40.7 m3/s
Maximum measured discharge 603 m3/s

Physical Characteristics

Maximum water level 2629 m (elevation)
Normal water level 2628 m (elevation)
Flood control water level 2628 m (elevation)
Dead storage level 2580 m (elevation)
Water surface area at normal water level 11.01 km2

Length of reservoir at normal level 13.5 km
Total storage 406 × 106 m3

Dead storage 61 × 106 m3

Normal storage 356 × 106 m3

Maximum discharge capability 2775 m3/s
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Table 2. Monthly demands considered for the operation of the Huangzangsi Reservoir.

Month
Water Demands

Surface Water for Irrigation (106 m3) Environmental Flow (106 m3) Base Flow (106 m3)

January 0 0 6
February 0 0 6
March 22 0 9
April 72 140 0
May 183 0 0
June 379 0 0
July 305 82 0
August 344 82 0
September 101 202 0
October 101 0 0
November 219 0 0
December 0 0 9
Total 1727 506 30

For the Huangzangsi Reservoir, there are only two basic rule curves, the Normal Curve (NC)
and Critical Curve (CC). The values of NC and CC are determined by the normal water level and
dead storage level, respectively, and they are kept unchanged throughout a year. The reservoir
operates to maintain the water level below NC (2628 m) and above CC (2580 m). Based on the rule
curves, there are three distinct operational strategies, which are described in Table 3. To meet the
environmental flow demand, a special category of reservoir operation called environmental flow
regulation is designed for the study area. Under this operation, the reservoir discharges water within a
short period, and meanwhile, the irrigation districts in the Middle HRB are not allowed to divert water
from the main Heihe River. This operation is to ensure that enough flow can reach the Lower HRB and
replenish the terminal lake. The short period can range from 3 days–20 days, and it is scheduled in the
middle of April, July, August and September.

The water balance of the Huangzangsi Reservoir under the abovementioned operation can be
written as:

St+1 = St + Qt − Rt − Atet, ∀ t (1)

where St is storage at the beginning of the period t; Qt is inflow during the period t; Rt is the water
release in the period t; At is the water surface area at the beginning of the period t; et is evaporation
rate during the period t; St, Qt, Rt are in units of cubic meters; At is in units of square meters; and et is
in units of meters.

The rule curves and operation strategies are used as constraints during the simulation. First,
reservoir storage in any period should not exceed its normal storage and also not be lower than its
dead storage:

Sdead ≤ St ≤ Snomal , ∀ t (2)

Second, water released in any period should not exceed the reservoir’s maximum discharge
capability:

0 ≤ Rt ≤ Rmax, ∀ t (3)

The reservoir’s operation is simulated at a daily time step over the period from 2000–2012.
The reservoir’s daily inflow is obtained by summing daily streamflow measured at Qilian and
Zhamashike gaging stations (Figure 2). The evaporation rate at the water surface is estimated by
applying a factor of 0.7 to the daily Pan evaporation measured at Qilian station.

When considering the reservoir operation, the streamflow at YLX is calculated as follows:

QYLX
t = Rt + Lt, ∀ t (4)
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where QYLX
t is streamflow at YLX; Lt is lateral flow between the Huangzangsi Reservoir and YLX,

and is calculated by subtracting the sum of streamflow at Qilian and Zhamashike from the original
streamflow at YLX.

Table 3. The basic operational strategies of the Huangzangsi Reservoir based on the rule curves.

Condition Operational Decision

If storage level > Normal Curve (NC) Increase water release to keep storage level = NC.

If Critical Curve (CC) < storage level ≤ NC Perform environmental flow regulation if required. Regulate
release to meet agriculture water and base flow demands.

If storage level ≤ CC Stops release to keep storage level = CC.

2.4. Numerical Modeling Experiments

The model is run from 2000–2012, in total 13 years, at the daily time scale. The actual simulation
during that period of time without the new reservoir is considered as the baseline model. Two series
of numerical simulations are designed, namely Series A and Series B, in order to reflect the situation if
the new reservoir had existed. Series A is aimed at investigating the impact of the different reservoir
operational strategies on the hydrological processes in the middle and Lower HRB, where demand of
groundwater pumping is fixed. Series B is used to investigate the relationship between the reservoir’s
operational strategy and groundwater exploitation practices in the study region. Series A specifies
three environmental flow conservation schemes, which are shown in Table 4 as Experiments A1, A2
and A3. The total volume of the water released from the reservoir remains the same for the ecological
flow purposes in these three experiments, while the water release for non-ecological flow purposes can
still be different from one experiment to another. The duration and discharge rate of each operational
strategy varies: Experiment A1 has the shortest duration and the largest discharge rate among the
three experiments, while Experiment A3 has the longest duration and the smallest discharge rate.
In general, a higher discharge in a single release may lead to a larger chance for the streamflow to
replenish the terminal lake. Hereafter, the strategies in Experiments A1, A2 and A3 are referred to as
the ecological operational strategies. For comparison, an additional experiment, Experiment A0, is also
performed, in which only the basic operational strategy is applied without considering the ecological
flows in the downstream.

Table 4. Operational strategies of the four experiments in Series A.

A0 A1 A2 A3

Period Discharge
(m3/s) Period Discharge

(m3/s) Period Discharge
(m3/s) Period Discharge

(m3/s)

N/A N/A

April 1–5 324 April 1–10 162 April 1–15 108
July 10–12 318 July 10–15 159 July 10–18 106
August 10–12 315 August 10–15 158 August 10–18 105
September 10–15 390 September 10–21 195 September 10–27 130

N/A N/A
Duration 17 days Duration 34 days Duration 51 days
Av. Discharge 344.5 m3/s Av. Discharge 172.2 m3/s Av. Discharge 114.8 m3/s
Total volume 506 × 106 m3 Total volume 506 × 106 m3 Total volume 506 × 106 m3

Note: Av. is the abbreviation of Average.

Since groundwater recharge plays a critical role in sustaining a healthy ecosystem in the lower
stream, it is important to consider the impact of groundwater abstraction together with the reservoir
operational strategies. As our previous study [28] revealed, for the Middle HRB, if more groundwater
is used in the irrigation districts that are closer to the river and more river water is diverted to the
districts that are further away from the river, the water use efficiency for irrigation may be increased.
Experiment B is designed to represent this spatial operation of the groundwater reservoir, in which
the changes in pumping ratio at different irrigation districts follow the suggestion by Wu et al. [28].
The pumping ratio is defined as the percentage of groundwater in the total irrigation water supply.
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Experiment B considers the ecological operational strategy in Experiment A3 (longest release
duration with smallest rate), and it assumes that the irrigation water demand at all the irrigation
districts remains unchanged. Essentially, Experiment B represents a joint operation of surface water
and groundwater reservoirs in this region.

3. Results and Discussion

3.1. Water Balance of the Reservoir

The annual averaged water balances for years 2000–2012 at the Huangzangsi Reservoir for
Experiments A0–A3 were calculated and are presented in Table 5. The calculated annual evaporation
ranged from 2.9 × 106–4.8 × 106 m3. It is seen that the ecological operational strategies have an obvious
impact on the reservoir’s water balance. Compared to Experiment A0, Experiments A1–A3 have much
higher annual water release and much lower evaporation and storage changes.

Figure 3a demonstrates the intra-annual fluctuation of the annual average water level. All the
water levels fluctuated between the normal water level (2628 m) and the dead storage level (2580 m).
As we can see, without the environmental flow consideration (i.e., in Experiment A0), the effective
storage of the reservoir was used twice per year: the first time from December–March in the next
year, when no irrigation and environmental flow was requested; therefore, most of the inflow was
stored in the reservoir, and the water level gradually increased; and the second time from July–October,
when the flood season comes, and the inflow to the reservoir significantly exceeded the water demands
for irrigation and ecological flow. The reservoir loses water also twice per year: the first time from
April–June, when the water level declines rapidly due to the irrigation demands; and the second time in
November, where the water level declines once again due to the irrigation demand for keeping enough
soil moisture through winter. The fluctuation of water level in the reservoir was more complicated,
since the release of environmental flow could reduce the water level in a very short time period of time.
Figure 3b illustrates the intra-annual variation of daily evaporation. As can be seen, the ecological
operational strategies can substantially reduce the evaporation from the reservoir, especially from
April–June and in October.

Table 5. Annual average water balances of the Huangzangsi Reservoir under different operations.

Experiment
Inflow Q
(106 m3)

Water Release R

(106 m3)
Evaporation E

(106 m3)
Storage Change ΔSr

(106 m3)
Average Water Level

(Elevation) (m)

A0 1319.1 1297.0 4.8 17.3 2604.69
A1 1319.1 1311.9 2.9 4.3 2593.09
A2 1319.1 1311.0 3.0 5.1 2593.89
A3 1319.1 1308.9 3.2 7.0 2594.45
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Figure 3. Impacts of the ecological operations on the water balance of the reservoir on a multiyear
average basis. (a) The daily water level; and (b) the daily evaporation from the reservoir.

3.2. Water Balance at the Middle and Lower HRB

Inflow of stream water to our model domain at Yingluoxia (YLX) was derived, following the
approach introduced in Section 2.3. A set of variables was examined to evaluate the impact of
the ecological operational strategies on the hydrological processes in the middle and Lower HRB
systematically. Table 6 summarizes the simulation results of selected variables, which represent five
key processes including agricultural water uses, streamflow, stream-aquifer interaction, groundwater
flow and evapotranspiration.
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Table 6. Key hydrological variables simulated by the Groundwater and Surface Water Flow (GSFLOW)
model under different ecological operational strategies. GW, groundwater; MHRB, Middle HRB; ZYX,
Zhengyixia; EJL, East Juyan Lake; YLX, Yingluoxia; LHRB, Lower HRB.

Hydrological
Process

Variable
Baseline
Scenario

Ecological Operations (Experiment ID)

A0 A1 A2 A3

Agricultural
water uses

SW diversion in MHRB (106 m3) 1456 1672 1483 1402 1336
GW pumping in MHRB (106 m3) 403 405 405 405 405
Total supply in MHRB (106 m3) 1859 2078 1888 1807 1741

Degree of demand fulfillment (%) 87.39 97.67 88.76 84.97 81.85

Streamflow
Streamflow through ZYX (106 m3) 994 807 972 1030 1079
Streamflow entering EJL (106 m3) 74 33 61 68 74

Stream-aquifer
interaction

Stream leakage in YLX-312B (106 m3) 466 480 459 466 476
GW discharge in 312B-ZYX (106 m3) −462 −484 −468 −461 −455
Stream leakage in ZYX-EJL (106 m3) 543 518 553 569 583

Groundwater
flow

Areal recharge in MHRB (106 m3) 462 461 462 400 389
Areal recharge in LHRB (106 m3) 6 6 6 9 10

ΔS in MHRB (106 m3) −86 −64 −81 −84 −86
ΔS in LHRB (106 m3) 15 6 11 14 16

Evapotranspiration ET in MHRB (106 m3) 1473 1566 1564 1458 1433
ET in LHRB (106 m3) 1038 859 858 1055 1090

Note: ΔS is storage change in the saturated zone; a negative value indicates loss of water with respect to initial
storage, and a positive value indicates gain of water with respect to initial storage.

The ecological operational strategies have a direct impact on the agricultural water uses,
which consequently affect other hydrological processes. Under the baseline conditions (i.e., the
baseline scenario), 87.39% of the total irrigation water demand in the Middle HRB (MHRB) is fulfilled.
This percentage could be increased to as high as 97.67% by employing the function of the new reservoir
if the environmental flow is not considered (i.e., Experiment A0). If the environmental flow is taken
into consideration (i.e., Experiments A1–A3), more water is needed at the Lower HRB (LHRB), but the
degree of demand fulfillment in MHRB would be reduced. For example, in Experiment A3, the annual
streamflow through Zhengyixia (ZYX) reaches the maximum value (1079 million m3), but the degree
of demand fulfillment (81.85%) is the lowest. Figure 4 shows the spatial patterns of the degree of
demand fulfillment in the four experiments. It can be seen that the degree of fulfillment decreases in
all districts from Experiment A0–Experiment A3.

The streamflow through ZYX is the environmental flow for the Lower HRB, which largely
determines how much water can eventually enter the East Juyan Lake (EJL). According to the
water allocation plan, the streamflow through ZYX should be 1150 million m3 per year on average
in 2000–2012. However, the simulated actual flow (i.e., in the baseline scenario) did not exceed
1000 million m3 per year, and the goal of the water allocation plan was not achieved. As Table 6
indicates, the operations in Experiments A1–A3 push the environmental flow towards the goal, and the
flow in Experiment A3 is very close to the goal. This suggests that a smaller water release with a longer
duration is beneficial to achieve the water allocation goal.

As for stream-aquifer interaction, based on our previous study [26], three distinctive segments
along the main river can be identified as either gaining or losing streams. YLX to the bridge named
312 Bridge (312B) is a losing segment, where a large amount of streamflow percolates through a thick
vadose zone and recharges the aquifer. 312B to ZYX is a gaining segment as a whole, where the aquifer
discharges water to the river. ZYX to the terminal lake (EJL) is another losing segment. Based on our
prior understanding, the flux of water in each of the three segments due to stream-aquifer interaction
are calculated. It is noted that even though small spatial-temporal variations can happen so that a
sub-segment of the gain branch can turn to a losing branch for a short period of time, the multi-annual
statistics show that the separations of the three segments do not change from year to year. That is,
a smaller water release rate with a longer duration in the ecological operations is beneficial to the
replenishment of the aquifer in the mid- and lower stream basins, especially in the lower stream
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segment. In addition, the amount of groundwater discharging to the gaining segment from 312B to
ZYX decreases from Experiment A0–Experiment A3.

 

Figure 4. The simulated degree of demand fulfillment under different operations of the Huangzangsi
Reservoir. (a–d) correspond to Experiments A0–A3.

In the Middle HRB, groundwater recharge takes place mainly due to the percolation of
irrigated water. Thus, when the irrigation is reduced (as seen from Experiment A1–Experiment A3),
the groundwater recharge decreases accordingly. As seen in Table 6, even though there is still a negative
change in the groundwater storage, the speed of decline is slower from Experiment A3–Experiment
A1. This is because of the reduced groundwater recharge. Furthermore, our results suggest that the
groundwater storage in the Lower HRB is recovered due to increased stream leakage in the ZYX-EJL
segment from Experiments A1–A3.

Evapotranspiration (ET) in the study area largely depends on the availability of surface water.
From Experiment A1–A3, when the water supply for irrigation decreases, the ET in the Middle HRB
decreases accordingly. On the contrary, the simulated ET in the Lower HRB is higher in Experiment
A3 than the other two experiments because more environmental flow is available in the Lower HRB
for A3, and thus more surface water is available. Figure 5 demonstrates the spatial pattern of annual
average ET in the lower HRB.
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Figure 5. Spatial patterns of annual average Evapotranspiration (ET) in the lower stream under
(a) Experiment A0, (b) Experiment A1, (c) Experiment A2 and (d) Experiment A3.

3.3. Impacts of the Joint Operation

Several key hydrological variables are selected to investigate the impact of the joint operation
in Experiment B. While the overall degree of demand fulfillment is similar in Experiments A3 and
B (see Table 7), the spatial pattern of the degree varies. Figure 6a,b show the spatial pattern of the
pumping ratio in the 17 irrigation districts in Experiments A3 and B, respectively. Figure 6c and 6d
show the change in pumping ratio and the changes in the degree of demand fulfillment. It can be
seen that, in the irrigation districts with IDs of 14, 15, 16 and 25 (red areas), the irrigation demand is
better met in Experiment B. In contrast, in the irrigation districts with IDs of 23, 30 and 31, the irrigation
demand is less met in Experiment B.

Table 7. Key hydrological variables simulated by the GSFLOW model under Experiments A3 and B.

Variable A3 B Difference (Percentage Change)

SW diversion in MHRB (106 m3) 1336 1307 −0.29 (−2.14%)
GW pumping in MHRB (106 m3) 405 409 0.04 (0.79%)
Total supply in MHRB (106 m3) 1741 1716 −0.25 (−1.45%)

Degree of demand fulfillment (%) 81.85 80.66 −1.19 (−1.45%)
Streamflow through ZYX (106 m3) 1079 1031 −0.48 (−4.49%)

Stream leakage in YLX-312B (106 m3) 476 458 −0.18 (−3.82%)
GW discharge in 312B-ZYX (106 m3) −455 −384 −0.71 (−15.59%)

Areal recharge in MHRB (106 m3) 389 388 −0.01 (−0.39%)
Areal recharge in LHRB (106 m3) 10 9 −0.01 (−6.97%)

ΔS in MHRB (106 m3) −86 −39 0.47 (54.40%)
ΔS in LHRB (106 m3) 16 13 −0.03 (−22.31%)

Note: ΔS is storage change in the saturated zone; a negative value indicates loss of water with respect to initial
storage, and a positive value indicates gain of water with respect to initial storage.
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Figure 6. Spatial patterns of the pumping ratios in the 17 irrigation districts. (a) The actual pumping
ratios over the period 2000–2012 in Experiment A3; (b) the assumed pumping ratios in Experiment B;
(c) changes in the ratios from Experiment A3–B; and (d) changes in the degree of irrigation demand
fulfillment. The pumping ratio is defined as the percentage of groundwater in the total irrigation
water supply.

As Table 7 indicates, the change in pumping ratio changes the surface water-groundwater
interactions, which in turn alters the spatial pattern of the degree of fulfillment. Figure 7 compares
spatial patterns of annual average Groundwater (GW) recharge at the 17 irrigation districts. It can
be seen that the GW recharge decreases in the districts that are near the river and increases in the
districts that are far from the river, while the change of the total areal GW recharge is small. Overall,
the decline in groundwater storage in HRB can be significantly slowed down (see ΔS in MHRB
in Table 7). However, this recovery is at the cost of reduced environmental flow through ZYX (see
streamflow through ZYX in Table 7).
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Figure 7. Spatial patterns of annual average Groundwater (GW) recharge at the 17 irrigation districts.
(a) The annual average GW recharge in Experiment A3; (b) the annual average GW recharge in
Experiment B; and (c) the change in GW recharge from Experiment B–Experiment A3.
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Overall, as suggested by Table 7 and Figure 7, the groundwater operation can enhance the
flexibility of the water resources management. With the joint operation of surface water and
groundwater reservoir, a balance among the agriculture water need, the groundwater sustainability in
the Middle HRB and the ecological water need in the Lower HRB can be easily achieved. For example,
if the primary goal of the water resources management is to maintain the sustainability of groundwater
in the Middle HRB, the groundwater pumping may consider the spatial pattern in Experiment B
(Figure 6b). If the primary goal is to meet the ecological water need of the Lower HRB, the groundwater
pumping may consider the spatial pattern in Experiment A3 (Figure 6a). However, the joint operation
can hardly improve the three aspects simultaneously. To resolve the water conflict in HRB, further
engineering and/or policy measures are desired, besides the reservoir development and groundwater
regulation. Water-saving irrigation technologies and reducing the weight of agriculture in the regional
economy are potential solutions.

4. Conclusions

This study investigates the hydrological impacts of joint operation of surface water and
groundwater reservoirs in Heihe River Basin (HRB), using an integrated surface water-groundwater
modeling coupled with a reservoir operation simulation model. The integrated model can simulate
demand-based diversion and pumping rates, which is specifically designed for arid regions with
significant agricultural irrigation. The reservoir operation model evaluates basic and ecological
operational strategies. Through a set of numerical experiments, this study further addresses whether
and how the joint operation could alleviate the human-water conflict in HRB.

The major findings are summarized as follows. First, based on simulation results of the reservoir
operation model, the effective storage of the Huangzangsi reservoir is used twice per year, and the
ecological operational strategies can substantially reduce the evaporation from the reservoir. Second,
the ecological operational strategies have a direct impact on the agricultural water uses in the Middle
HRB, and consequently affect other hydrological processes in the middle and Lower HRB. The
ecological operation strategy that has a smaller water release with a longer duration is beneficial to
achieve the water allocation goal and to the replenishment of the aquifer in the middle and Lower
HRB, but such a strategy may reduce the chance to meet the agriculture water demand of the Middle
HRB. Finally, with the joint operation of the surface water and groundwater reservoir, a balance among
the agriculture water need, the groundwater sustainability in the Middle HRB and the ecological water
need in the Lower HRB can be easily achieved. However, the joint operation can hardly improve the
three aspects simultaneously. To resolve the water conflict in HRB, further engineering and/or policy
measures are desired, besides the reservoir development and groundwater regulation.

Overall, our study provides insights into the water resources management in arid regions.
The study results imply that reservoir operation alone, even considering both surface water and
groundwater, may not be sufficient to resolve the typical human-water conflict. Future studies can
investigate more management and policy measures, such as using water-saving irrigation technologies
and reducing the weight of agriculture in the regional economy.
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Abstract: This study used a multiscale analysis of relationships among the bitterling and mussel
communities, lentic habitat structures with conditions and flooding frequency, and channel
characteristics for application in ecological sediment management. From the Kizu River in Japan,
120 lentic habitats were sampled in 2007 and 2010. The floodplain vertical shape index (FVSI),
which indicates the degree of convexity or concavity of the vertical shape of a floodplain, was
used as channel characteristics using historical cross-section profiles obtained from 1960 to 2012.
For examining the relationships between bitterlings/mussels and each habitat condition or structure,
abundance values of bitterlings and mussels were transformed into habitat suitability index (HSI).
Furthermore, the relationships between the number of habitat structures and FVSI were analyzed.
The results indicated that bitterlings and mussels are more abundant in terrace ponds than in active
ponds, especially so in terrace ponds located in the lower area of bars with a flooding frequency of
8–16 days/year (bitterlings), those located in the lower area of bars with a flooding frequency of
8 days/year, and those located in the upper area of bars with a flooding frequency of 16–22 days/year
(mussels). These ponds tended to have less than 1 cm mud depth that was negatively related
to abundance of mussels. These suitable habitat types tended to be located in channels with a
floodplain vertical shape index between −0.35 and 0.05. We established countermeasures to prevent
channel types with floodplain vertical shape index exceeding 0.05 instead of restoring the previous
channel conditions.

Keywords: lentic habitats; bitterling; mussel; floodplain vertical shape index; sediment management

1. Introduction

The interruption of the natural flow and sediment transfer by dams causes changes in the flow, river
structure, and ecosystem in the reservoirs and regions downstream of the dam. When reservoirs are
filled with sediments, their storage capacity is reduced, affecting the water supply and hydroelectric
power [1]. Downstream of dams, the reduced sediment supply results in degradation of the stability
of channel structure, and the quality of aquatic habitats [2]. In order to remove sediments accumulated
in reservoirs and to transport sediment downstream, several sediment management strategies such
as replenishment, sluicing, and bypassing have been tested worldwide [3–5]. Actually, artificial
sediment supplies downstream have contributed to enhancing the available spawning habitat for
chinook salmon [2] and the lotic habitat quality for invertebrates and fishes [6]. In order to predict
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the geomorphic and environmental impacts of sediment management and for successful ecological
restoration, it is essential to understand river characteristics and conditions under natural and artificial
disturbances. The reach-scale channel configuration, such as braided, wandering, and straight channel,
can be helpful for linkage between hydraulic conditions and aquatic ecosystems. This can be examined
using hydraulic and geomorphic parameters, including discharge and slope [7], sediment load and
lateral stability [8], and slope and bed materials [9]. The variations in channel configuration are in
response to the flow regime and sediment transport, which further influence the geomorphic units
such as ponds, bars, wetlands, backwaters, and pool-riffle sequences. Further, the assemblages of
geomorphic units at the reach-scale are related to the habitat diversity and animal communities [10].
The high complexity of landforms generally equates to the high diversity of hydraulics and thus the
high biodiversity [11,12]. If research related to the relationship between the channel configuration
and ecosystem are efficiently conducted, it is possible to predict the impact of natural or artificial
disturbances on the ecosystem [13]. Therefore, integration of ecological and geomorphological
perspectives with the acknowledges the multiscale abiotic and biotic structures of a stream system
is required, but is an unresolved challenge [14]. Wyrick and Rasternack [12] systematically studied
the relationship between geomorphic units, hydraulic parameters, and their relevance for various
habitats. Other previous studies on multiscale relationships between abiotic and biotic structures have
focused on lotic habitat conditions; the relationships between lotic habitat conditions and channel
configurations [15,16], landscape diversity with channel characteristics [17], or habitat diversity in
specific channel types [18,19].

This study focused on multiscale relationships among animal communities, lentic habitats,
and channel characteristics in the Kizu River. The Kizu River provides suitable lentic habitats
such as ponds or backwaters for bitterlings and mussels on its floodplain [20]. However, the
diversities of bitterlings and mussels decreased, and the protected bitterling Acheilognathus longipinnis
disappeared. Therefore, the target animal communities of this study are considered to be bitterlings
and mussels. Further, because bitterlings and mussels live only in lentic habitats, lentic habitat
structures and conditions was considered as habitat scale. In the case of lentic habitat on floodplains,
the environmental conditions are characterized by hydrological connectivity with the main river
channels [21]. Flooding provides hydrological connectivity with the exchange of nutrients, sediments
and organisms. Therefore, we considered not only structures but also the flooding frequency. First,
this study investigates the relationships between the abundance of bitterling/mussel and lentic habitat
structures/conditions with the flooding frequency. Second, the relationships between habitat structures
and the reach-scale channel characteristics were investigated. The floodplain vertical shape index
(FVSI) was used as the reach-scale channel characteristic. As the channel types are not numerical values,
FVSI was developed in Reference [22] and represented the concave and convex floodplain shapes.
Additionally, the historical changes of FVSI were calculated using the historic cross-section data.
Finally, we discussed previous environmental conditions and the application of these characteristics to
ecological sediment management.

2. Materials and Methods

2.1. Study Site

The study area was comprised of the lower reaches (0–26 km) of the Kizu River in Japan (Figure 1).
The riverbed of the Kizu River degraded, and the vegetation in the floodplain expanded after dam
construction over a 65-year period. A total of five dams, namely, Takayama Dam, Syourenji Dam,
Murou Dam, Nunome Dam, and Hinachi Dam, which were constructed in 1969, 1970, 1974, 1992,
and 1999, respectively, are located in the Kizu River basin. The approximately 6000 m3/s peak floods
occurred before the construction of dams; however, the peak of floods decreased to approximately
3000 m3/s after construction [23]. The estimated amount of bed-load transportation downstream of
the dam was approximately 183,000 m3/y in the 1960s; further, it decreased to 23,000 m3/y in the
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2000s (Figure 2) [13]. The reduction in the peak discharge and sediment supply upon dam construction
influenced the alternation of channels from braided to single or alternating channels. These river
channel changes caused the degradation of lentic habitat conditions on the floodplain owing to the
reduction of inundation [20].

 

Figure 1. Study site in the Kizu River.

 

Figure 2. Historic changes in annual transport sediment volume in the Kizu River were estimated in
Reference [23].

2.2. Data Acquisition of Bitterling and Mussel Communities

In the case of the Kizu River, because bitterlings and mussels live only in lentic habitats such
as ponds and backwaters, the habitat types of pond and backwater were selected for sampling
(Figure 3d,e). Prior to conducting the field survey, the size and location of the habitat were identified
using aerial photos. In 2006, 190 ponds were detected in aerial photos, whereas 178 ponds were
detected in 2010. Among the detected ponds, bitterlings and mussels were sampled in 47 ponds
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among the 190 ponds in 2007 and in 73 among the 178 ponds in 2010 by the Yodogawa River Bureau.
The sampling was conducted in the summer season. Bitterlings were observed in 63 ponds and mussels
were observed in 47 ponds among 120 ponds. There are five taxa of bitterlings (Acheilognathus rhombeus,
Acheilognathus tabira tabira, Acheilognathus cyanostigma, Rhodeus ocellatus ocellatus, Tanakia lanceolate)
and five taxa of mussels (Anodonta calipygos Kobelt, Anodonta woodiana, Lanceolaria grayana cuspidate,
Lanceolaria oxyrhyncha (Martens), Unio douglasiae nipponensis) in sampling ponds. The total number
(population) of bitterlings and mussels were divided by the surveyed time (h) and number of people
who participated in the sampling (n), and this value was used as the abundance of bitterlings and
mussels. The abundance value was used to calculate the best model of lentic habitat conditions for
bitterlings and mussels. For examining the relationships between bitterlings/mussels and each habitat
condition or structure, abundance values transformed into habitat suitability index (HSI) [19–21].
Habitat suitability index was derived by Equation (1).

wi =
ui/ ∑n

i=1 ui

ai/ ∑n
i=1 ai

(1)

wi is the ratio for the ith of n habitat categories, ui is the total abundance in category I, ∑ ui is the total
abundance for all habitat categories, ai is the number of samples from categories i, and ∑ ai is the total
number of samples [24]. The indices range from 0 to 1 for each variable, with 0 indicating the least
suitable habitat conditions and 1 indicating the optimum habitat condition [25].

 

  
(b) (c) 

  
(a) (d) (e)

Figure 3. Lentic habitats and target species. (a) Image showing classification of lentic habitats; (b) an
active pond (AP); (c) a terrace pond (TP); (d) bitterling; and (e) mussel.

2.3. Data Acquisition of Lentic Habitat Structure and Conditions

Lentic habitat structures were classified into two types, active pond (AP) and terrace pond
(TP), depending on their locations. The aerial photos obtained in 2006 and 2010 were used for
this classification. AP is defined as a pond and backwater that is located on active channels such
as sand-bars or sanded islands (Figure 3b), and TP is defined as a pond located on a terrace with
vegetation (Figure 3c). These ponds were further classified based on the location of upper and lower
sites on a particular bar. The bar was divided into two halves based on the direction of stream flow.
The ponds located in the upper area were defined as bar head-ponds, whereas those located in the
lower area were defined as bar tail-ponds. This classification was based on the assumption that even if
the same habitat structure type was located on the same bar, the habitat conditions or the abundance
of species differed depending on whether the habitats were located on the upper or lower part of
the bar. Thus, four types of lentic habitats were considered: Bar head-active pond (BH-AP), bar
head-terrace pond (BH-TP), bar tail-active pond (BT-AP), and bar tail-terrace pond (BT-TP) (Figure 3).
A total of 190 ponds were detected in aerial photos in 2006, whereas 178 ponds were detected in
2010. Although only a total of 120 ponds were surveyed, all the detected ponds in aerial photos
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(n = 368) had values of the geomorphic parameters of flooding frequency. The term flooding frequency
refers to the inundation frequency in a pond per year. The water level data obtained during the
period from 1989 to 2008 were converted into discharge using the HQ formula. Using the converted
discharge, 1 day discharge (909.1 m3, at Inooka observatory station), 8 day discharge (249.5 m3), 16 day
discharge (149.0 m3), 22 day discharge (118.3 m3), 45 day discharges (72.9 m3), 71 day discharge
(52.9 m3), 185 day discharge (26.2 m3) and 365 day discharge were calculated. The water level of the
cross section (200 m intervals) according to each discharge was calculated using HEC-RAS software.
Further, the values of water levels were overlapped with the digital elevation model (DEM) data using
Geomedia 6.1 software. Thus, if the pond would be inundated based on the 1 day discharge, the pond
would have a flooding frequency of 1 day/year. If the pond would be inundated based on the 8 day
discharge, the pond would have a flooding frequency of 8 days/year. Therefore, the ponds have one
of the following flooding frequencies: 1 day, 8 days, 16 days, 22 days, 45 days, 71 days, 185 days,
and 365 days per year [26–28]. In this study, the flooding frequency parameter was used as the
representative environmental parameter because flooding frequency is an important external condition
that determines the internal habitat conditions [21]. This is especially true for lentic habitats such as
wetlands or ponds. We classified the structure of the habitats by reflecting the visible geomorphic
characteristics and location of the habitat to find visible targets. However, in order to compensate
for the limitations of types of habitat structure identified only from aerial photos, the values of flood
frequency obtained by numerical simulation were used.

In all, 7 habitat condition parameters were surveyed in 120 ponds. The parameters were as
follows: Area, water depth, mud depth, mean grain size (D50), dissolved oxygen (DO), chlorophyll,
and wood coverage. The previous studies examined the relationships between mussel and habitat
conditions; velocity, substrate size and compaction, water depth [29]; sediment softness, velocity and
sediment types [30]; water temperature and quality with the flood pulse frequency [21]. As these
studies considered hydraulic habitat conditions and water quality, we determined the habitat shape
(area, water depth), the substrate of habitat (mud depth and D50), and the water quality (DO and
chlorophyll) to a considerable extent. The method of the survey parameters can be referenced to in the
reports of References [26–28]. The wood coverage indicates the shaded shoreline ratio by wood, i.e.,
100% wood coverage indicates that the shoreline of the pond was entirely occupied by vegetation such
as that depicted in Figure 3c.

2.4. Reach-Scale Channel Characteristics

The reach-scale channel configuration in the Kizu River is categorized into single, semi-wandering-
straight and sinuous, wandering-straight and sinuous, bifurcated-straight and sinuous, and braided
sinuous using parameters of number of channels and sinuosity per 2 km [13]. Aerial photos obtained
between 1948 and 2010 were used for performing this classification. The channel configuration of
the Kizu River changed from braided channel (characterized by multi-channels and braided sand
bars) to single or slightly wandering channel (characterized by less channels and wide vegetation area
on the floodplain) between 1948 and 2010. However, because the channel types are not numerical
values, we used floodplain vertical shape index (FVSI). This index indicates the degree of convexity or
concavity of the vertical shape of a floodplain [22]. The FVSI value was calculated using cross-section
data of 200 m intervals. The relative elevation of the riverbed from the water level was arranged in an
ascending order. Further, we determined the area between the arranged shape (B) and the triangle
connecting the following three points (A): The riverbed tangent to the water surface, bottom of the
bank, and top elevation of the bank (Figure 4). The value is positive if B−A is greater than A, and
negative if it is less than A. As one channel type of 2 km has 10 cross sections, 10 values are averaged
in 2 km. A positive value means a convex floodplain vertical shape (Figure 4a), and a negative value
indicates a concave vertical shape (Figure 4b).

The FVSI was calculated using cross-sectional data obtained between 1960 and 2010, as done in
the classification of the reach-scale channel configuration in [13]. The classified reach-scale channel
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configurations were single, semi-wandering, wandering, bifurcated, braided channels in the Kizu
River. Figure 5 depicts the average the FVSI values of the classified channel types by Tukey’s tests.
The majority of the channel configurations in the Kizu River exhibited a concave floodplain vertical
shape with negative values of FVSI. Although a significant difference of FVSI was not observed between
single/semi-wandering and wandering/bifurcated, and the difference of wandering/bifurcated and
braided, we could identify the difference between single/semi-wandering and braided channels.
The single and slightly wandering channels in the Kizu River tended to have slightly convex floodplain
vertical shape (−0.3 < values < 0.1), and wandering and bifurcated channels tended to have FVSI
values between −0.5 and −0.1. Braided channels have a significantly concave floodplain vertical shape
(values < −0.6) (Figure 5).

 

(b) 

(a) (c) 

Figure 4. (a) Calculation of the floodplain vertical shape index (FVSI); (b) a positive value indicates a
convex floodplain vertical shape; and (c) a negative value indicates a concave vertical shape.

Channel Type Single Semi-wandering Wandering Bifurcated Braided 

Image 

     

FVSI 

Figure 5. Classification of the channel configurations in the Kizu River [13] and their relationship with
FVSI. The squares of FVSI indicate the average FVSI value per channel type (mean ± SE). Similar letters
above histograms indicate significant differences based on Tukey’s tests.
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2.5. Statistical Analyses

In order to understand the relationships among species, habitat structures and conditions,
and channel characteristics, we considered the following items in the analysis:

• A multiple regression model using the parameters of habitat conditions for the abundance of
bitterlings and mussels

• Comparison of the habitat suitability index (HSI) of bitterlings/mussels and habitat conditions
• Comparison of the HSI of bitterlings/mussels and habitat structures
• Comparison of habitat structures and habitat conditions
• Comparison of habitat structures and FVSI

We generated multiple linear regression models with a stepwise selection method to examine
the effect of habitat conditions on the abundance of bitterlings/mussels. The best model was
selected based on the correlation coefficient and significance. An α value of 0.05 indicates statistical
significance in the test. Further, only the parameters of habitat conditions that are related to the
best models are compared with the HSI of bitterlings/mussels. Additionally, the relationship
between the HSI of bitterlings/mussels and habitat conditions were analyzed. Furthermore, the
relationships between habitat structures and habitat conditions were analyzed. An HSI exceeding
0.7 indicates excellent suitability. After analyzing the relationships between bitterlings/mussels and
habitat structures/conditions, the relationships between the number of habitats and FVSI values
were examined.

3. Results

3.1. Relationships among the Bitterlings/Mussels, Habitat Structures, and Habitat Conditions

In order to understand the relationships between the abundance of bitterlings/mussels and
habitat conditions, the best models were selected based on surveyed ponds (n = 120) by using a
multiple regression model. The multiple regression models were generated to test the influences of
habitat conditions (area, water depth, D50, DO, Chlorophyll and wood coverage) on abundance of
bitterlings and mussels. Only the parameters of habitat conditions related to the best models are
listed in Table 1. The abundance of bitterlings was best described by a model consisting of DO and
chlorophyll (correlation coefficient: 0.238, p < 0.05), and that of mussels was best described by a model
consisting of mud depth and wood coverage (correlation coefficient: 0.272, p < 0.05). Abundance of
bitterlings tended to have a negative relationship with DO (regression coefficient of −1.08), whereas it
tended to have positive relationships with chlorophyll (regression coefficient of 2.52). Abundance of
mussels tended to have a negative relationship with mud depth (regression coefficient of −1.29) and a
positive relationship with wood coverage (regression coefficient of 2.67).

Table 1. Multiple regression analysis to examine the best models of habitat conditions for the abundance
of bitterlings and mussels.

Abundance
Area
(cm2)

Water
Depth (cm)

Mud
Depth (cm)

D50
(mm)

DO
(mg/L)

Chlorophyll
(μg/L)

Wood
Coverage (%)

Best Model

R p

Bitterling −1.08 * 2.52 * 0.238 <0.05
Mussel −1.29 2.67 ** 0.272 <0.05

The best models were selected on the basis of the correlation coefficient (R) and significance (p). Values of
independent variables indicate the regression coefficient (t). Significance: * p < 0.05, ** p < 0.01, *** p < 0.001.

The HSI values of bitterlings and mussels with the habitat conditions that are selected in the best
model are shown in Figure 6. If there are no sampling points in the class or no detection of bitterlings
or mussels, the result will exhibit a zero value. Although the HSI values of bitterlings decreased
in 15–20 mg/L DO, this exhibited a high habitat suitability in DO case of more than 25 mg/L DO
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(Figure 6a). The HSI values of bitterlings tended to increase in chlorophyll between 0 and 500 μg/L and
then significantly decreased after 500 μg/L (Figure 6b). The HSI of mussels exhibited the maximum
score in mud depth of 0–1 cm (Figure 6c). The HSI values of mussels showed excellent suitability in
100% wood coverage (Figure 6d). There was no sampling pond with wood coverage of 60% and 80%,
and number of mussels in ponds with wood coverage of 50, 70 and 90% was very low. Therefore, HSI
of mussels showed about zero values in these groups.

 

Figure 6. Habitat Suitability Index (HSI) values with habitat conditions were selected for the best
models. The HSI of bitterlings and habitat conditions of (a) dissolved oxygen (DO) (mg/L) and
(b) Chlorophyll (μg/L). The HSI of mussels and habitat condition of (c) mud depth (cm) and (d) wood
coverage (%).

The HSI values of bitterlings and mussels are explained by considering the habitat structures
with the flooding frequency observed for 120 ponds (Figure 7). Among terrace ponds, BT-TP with a
flooding frequency between 8 and 16 days/year showed excellent suitability for bitterlings (Figure 7a).
BT-TP and BH-TP with flooding frequencies of 8 days/year and 16–22 days/year exhibited excellent
suitability for mussels, respectively (Figure 7b). That is, the terrace ponds (BH-TP and BT-TP) with
a flooding frequency between 8 and 22 days/year tended to have high HSI values for bitterlings
and mussels.

Figure 8 illustrates the relationships between habitat environmental conditions and habitat
structures with flooding frequency. Almost all the habitat structures, except those with a flooding
frequency of 45 days of BT-TP, exhibited an average of between 7 and 13 mg/L of DO (Figure 8a).
Values of chlorophyll in BT-TP with flooding frequency of 1, 8, 16, and 22 days were higher than
other habitat types in the same flooding frequency (Figure 8b), and the values of mud depth in BT-TP
with flooding frequencies of 16, 22, and 45 days were highest as compared to other habitat structures
(Figure 8c). Further, the relationship between wood coverage and habitat structures with flooding
frequency could not detect obvious difference (Figure 8d).
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Figure 7. HSI of (a) bitterlings and (b) mussels, and habitat structures with the flooding frequency.
Habitat structures are: BH-AP (bar head-active pond), BH-TP (bar head-terrace pond), BT-AP (bar
tail-active pond), and BT-TP (bar tail-terrace pond).

Figure 8. Relationships between the average habitat conditions: (a) DO; (b) chlorophyll; (c) mud depth;
and (d) wood coverage and habitat types with flooding frequency. Habitat structures are: BH-AP
(bar head-active pond), BH-TP (bar head-terrace pond), BT-AP (bar tail-active pond), and BT-TP (bar
tail-terrace pond).

3.2. Historical Changes in FVSI

The values of FVSI per year were shown in Figure 9. As the study area extends to a length of
26 km, 12 FVSI values were obtained per year. Average FVSI increased from −0.44 in 1960 to −0.17 in
2010. The cross-sectional floodplain shape of the Kizu River tended to show convex shapes during the
60 years. Since 1990, only values of one or two sections had an FVSI > 0.
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Figure 9. Historical changes in FVSI. Since the study area extends to a length of 26 km, 12 FVSI values
per year obtained. The squares indicate the annual average.

3.3. Relationship between the Habitat Structures and FVSI

FVSI was classified into six groups (Figure 10). The number of ponds was counted by considering
the categorized values of FVSI (Figure 9a), and ratio of ponds with different flooding frequencies was
measured by FVSI (Figure 9b). All the ponds detected in aerial photos (n = 386), including 120 surveyed
ponds, were used in this relationship. Reaches with FVSI values of less than −0.35 had a high number
of APs (Figure 10a), adversely those of more than 0.05 had high TPs (Figure 10b). Based on the increase
in FVSI values, the number of APs decreased, whereas the number of TPs increased. The ratio of ponds
with flooding frequencies is depicted in Figure 11. The ratio of ponds with a flooding frequency of
1 day/year significantly increased in reaches with FVSI exceeding 0.05. However, ponds with flooding
frequencies of less than 16 days/year were not observed in the case of an FVSI of less −0.35. BH-TP
and BH-TP with a flooding frequency of 8 days/year and 16–22 days/year exhibited that excellent
suitability tended to exist for bitterlings and mussels on a reach with an FVSI that was between −0.35
and 0.05.

Figure 10. Relationships between the number of habitat types with (a) active ponds and (b) terrace
ponds and FVSI. Habitat structures are: BH-AP (bar head-active pond), BH-TP (bar head-terrace pond),
BT-AP (bar tail-active pond), and BT-TP (bar tail-terrace pond).
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Figure 11. Relationships between the ratio of flooding frequency of habitat and FVSI.

4. Discussion

4.1. Relationships among Species Abundance and Habitat

We attempted to understand the relationships between bitterlings/mussels and habitat structures
with flooding frequency. Further, to explain the effect of habitat structures and flooding frequency
on the habitat conditions, and relationships between habitat structures and habitat conditions were
analyzed. Relationships between bitterling and chlorophyll tended be positive, even though the
suitability of the bitterling in chlorophyll over 500 was very low (Table 1; Figure 6b). According
to relationship between chlorophyll and habitat structures with flooding frequency, terrace pond
with flooding frequency of 1–16 days/year showed relatively high chlorophyll (Figure 8b). Among
these ponds, terrace ponds with flooding frequency of 8–16 days/year had high a HSI of bitterlings
(Figure 7a). That is, suitability of bitterling had the high values in terrace ponds with a flooding
frequency of 8–16 days/year, because they had a high value of chlorophyll that were positively related
with bitterling. As the flooding frequency increases, the values of chlorophyll decreases. Maybe this
is because frequent flooding reduces the residence time of water [21]. The infrequent flooding of
ponds tended to maintain concentration of chlorophyll, and thus tended to influence bitterling habitat.
A previous study [31] on CCA analysis between bitterlings/mussels and habitat conditions also
showed that these species and chlorophyll have positive relationships.

The bitterling Acheilognathus longipinnis is listed on the IUCN red species and is a domestic species
with national monument in Japan. However, this bitterling has not been found in the Yodo River
system since 2006 [32]. The Kizu River joins the Yodo River. Therefore, the Yodogawa River Bureau and
Osaka-fu prefecture implemented the re-introduction of the bitterling Acheilognathus longipinnis in the
autumn of 2009 as an experimental trial. Mature adults (five hundred individuals) were released into
embayments of the Yodo River in autumn 2009 during the spawning season. A total of 133 juveniles
were observed in the embayments, but no juveniles were found in the spring of 2011. The bitterling
restoration project continues, and this paper could be support of this restoration project.

Mussels were negatively related to the mud depth (Table 1; Figure 6b). Mussels also were more
clearly observed in TPs than APs, especially the TPs located in the lower area of bars with a flooding
frequency of 8 days/year and those located in the upper area of bars with flooding frequencies of
16–22 days/year than in APs (Figure 7b). Further, these TPs had an average mud depth of 1 cm
(Figure 8c). Mussels require an appropriate depth of sediments under stable conditions because they
live buried in the riverbed [21], and they filter the surrounding water to obtain food and oxygen [33].
However, deep mud may influence negative relationships with mussels, as shown in Figure 6c. Here,
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the pond is generated by erosion during large flood events, and is sustained by frequent intermediate
flood events. In the case of TPs, the depth of the mud is likely to deepen by the deposition of suspended
load by frequent intermediate flood events. Therefore, in the case of BT-TP, a flooding frequency of
16–22 days exhibits considerable mud depth as compared to that obtained at a flooding frequency
of 1–8 days. If the mud depth increases, mussels buried in the mud will find it difficult to breathe
owing to the reduction in DO. The authors of Reference [21] explained that the survival rates of
mussels were low and that the growth was approximately zero in infrequently inundated water bodies
(backwater, wetlands) by conducting field-earing experiments in the case of the Kiso River, because
infrequently inundated water bodies exhibited hypoxic conditions in substratum-water. Further, other
studies [29,30] indicated that the sand size of substrate is more suitable than that of silt (fine size) or
gravel (larger size). However, fine substrate sediments have been reported to increase the mortality
rate in some freshwater mussel species [34]. We assumed that the mud depth until 1 cm could maintain
suitable DO for mussel breathing; if the depth is increased, it could become difficult for mussels to live
in the Kizu River.

Further, we detected that, although the same TP with the same flooding frequency, they showed
different habitat conditions and abundance of mussels. The mud depth of BH-TP was lower than that
observed in BT-TP by considering the same flooding frequency. Thus, the HSI of mussels belonging to
BH-TP exhibited higher values as compared to that exhibited by BT-TP with a flooding frequency of
16–22 days. However, we were unable to explain the reason for this difference. We inferred that ponds
located on the upper area in the bar have much more powerful river strength than ponds located in the
lower area in the flood event. Further, the accumulation of chlorophyll and mud in ponds is prevented
by tractive force. In future studies, we should perform various other comparative analyses and include
hydraulic aspects.

4.2. Relationships between Habitats Structures and FVSI

FVSI reflects the channel configuration in the Kizu River. The concave reaches with an FVSI < −0.35
had a lot of ponds with frequent flooding frequency more than 22 days/year (Figure 11) and only
active ponds (Figure 10b). This indicates the significantly concave reaches with FVSI < −0.35 had
low habitat suitability for bitterlings and mussels, because they have few suitable habitat structures
(terrace ponds) with flooding frequency (8–22 days/year). These reaches were related with wandering,
bifurcated, and braided channels in the Kizu River (Figure 5). Their floodplain is frequently inundated,
and thus active channel was wide and area of vegetation was small. Hence, active ponds or backwaters
on active channels are mainly located on these reaches. Although these channel types may have
low potential of bitterlings and mussels, they may have high potential for other fish or aspects of
lotic habitats. For example, Sukhodolov et al. and, Payne and Lapointe [15,16] noted that braided
channels supply suitable conditions for fish shelters in terms of depth and velocity. Choi et al. [13] also
examined that the bifurcated channel exhibits higher habitat diversity for both lentic and lotic habitats
as compared to that exhibited by the single or slightly wandering channels. Since this study focused
on lentic habitat with bitterlings and mussels, channel types with FVSI < −0.35 tended to have lower
potential than others.

On the other hand, the convex channel reaches with an FVSI > 0.05 had a lot of terrace ponds
with infrequent flooding frequency (1 day/year). Although habitat with infrequent flooding was
suitable for bitterlings and mussels in the Kizu River, less flooding about 1 day/year showed the low
suitability for bitterlings and mussels (Figure 7). However, unfortunately, there was no clear difference
of environmental conditions between flooding frequency of 1 day and others (8, 16, 22, 45, 71, 185,
and 365 days), and between active ponds and terrace ponds in the same flooding frequency 1 day.

Therefore, the intermediate channel types tended to be suitable excluding reaches of significant
concave floodplain vertical shape (FVSI < −0.35) and convex shape (FVSI > 0.05). These suitable
reaches were related to single or slightly wandering channels in the Kizu River (Figure 5), and these
reaches were detected more after the 1990s (Figure 9). Similarly, studies related to the potential of
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recent channel conditions of the Kizu River were also noted by Reference [35]. They classified riffle
structures into four types (traverse, converge, diverge I and II types), and surveyed the biomass and
taxonomic richness of invertebrates per these riffle types. Further, the areas of each riffle type were
measured using aerial photos that were obtained over 65 years. Their results exhibited that traverse and
converge types of riffle had more biomass and taxonomic richness of invertebrates as compared to the
diverge types; further, the areas of these riffle types increased after the 1970s. They discussed that river
conditions from the 1980s to the 2010s may have had more biomass and richness than before. Thus,
we recommend establishing countermeasures to prevent an increase in single or slightly wandering
channel types to an FVSI of more than 0.05 to include many ponds with a flooding frequency of
1 day/year rather than restoring the previous channel conditions.

4.3. Application of FVSI to Sediment Management

Dam constructions cause the regular flow and the reduction of sediment transport. Stabilized
flow and low sediment volume results in channel changes from braided (mobile) channel to single
or single-thread (stabilized) channels [36]. In the Kizu River, these channel changes occurred over
60 years [13] with a reduction of sediment transport (Figure 2). A stabilized channel shows channel
narrowing and incision with vegetation encroachment [2]. The encroachment of riparian vegetation
into high level of floodplain by reduction in flood scour and sediment deposition is related to the high
value of floodplain vertical shape index. As sediment deposition and vegetation expansion lead to an
increase in the relative elevation of floodplains, FVSI was calculated by difference between elevation
of floodplain and water level in main channel increases. Thus, positive values (convex shape) of FVSI
meant stabilized channel such as single or semi wandering channels, and negative values (concave
shape) meant more mobile channels such as wandering, bifurcated and braided channels in the Kizu
River (Figure 5). This means that a greater reduction of sediment transport could further increase
the FVSI. Therefore, sediment supplies need to maintain the current channel condition, not the more
stabilized channel, for bitterlings and mussels. If we want to maintain single or slightly wandering
channels with FVSI less than 0.05, we could consider a suitable period as between 1990s and 2000s
(Figure 9), and suggest the volume of sediment transport at the time (20,000–50,000 m3/y) of sediment
management. However, this is an indirect and long-term measurement. The consideration of various
external and internal conditions should precede before the management.

On the other hand, the sediment management such as replenishment directly leads to improved
habitat quality. The sediment excavated at the upstream of dam was moved to downstream by dump
truck or other transportation [5]. Then, the riverbed was reformed by magnitude or duration of
flushing flow or natural flood. Kondolf [2] stated that sediment supply contributed to enhancing
the available spawning habitat for chinook salmon. Wood and Armitage [6] said that replenishment
of coarse sediment increased the lotic habitat quality for invertebrates and fishes. Additionally,
it is possible to convey sediment from convex floodplain vertical shape (FVSI greater than 0.05
having low potential of bitterlings and mussels) to significant concave floodplain vertical shape (FVSI
less than −0.35 having low potential of bitterlings and mussels). The area of convex floodplain
vertical shape requires a reduction of sediment deposition on the floodplain for changing the movable
channels, and significant concave floodplain vertical shape requires sediment deposition for changing
the stabilized channel. These processes could be predicted through simulations or experiments.
The experiments and simulations of the sediment replenishment had been undertaken in tributary
of the Kizu River [5]. However, ecological evaluation of the sediment management has not yet been
properly performed. This study tried to support ecological connectivity between species abundance
and sediment management based on relationships among animal communities, habitat structures with
flooding frequency, and channel characteristics.
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5. Conclusions

The reach-scale channel characteristics helped to determine a suitable target image for ecological
sediment management on a catchment scale based on the multiscale relationships. The bitterlings
and mussels were more abundant in terrace ponds than in active ponds, especially terrace ponds
with a flooding frequency of 8–22 days/year. These suitable pond types tended to be located on the
reaches with floodplain vertical shape index between −0.35 and 0.05 under the current channel
conditions in the Kizu River. Thus, we recommend establishing long-term countermeasures of
required sediment volume to maintain current conditions at sediment supply downstream. In terms of
short-term countermeasures, we could suggest the target conditions at experiments and simulation
of sediment replenishment. Although this study is based on a simple relationship analysis and
requires considerably detailed correlation analysis, it could indicate an eco-geomorphic framework
for river management based on the hierarchical interrelationships. In future, we will supplement
the biological characteristics of bitterlings and mussels and various habitat conditions based on the
hydraulic interpretation.
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Abstract: Water scarcity is an important issue in many countries, and it is therefore necessary to
improve the efficiency and equality of water resource allocation for decision makers. Based on game
theory (GT), a bi-level optimization model is developed from the perspective of a leader-follower
relationship among agents (stakeholders) of a river basin in this study, which consists of a single-agent
GT-based optimization model of common interest and a multi-agent cooperative GT-based model.
The Hanjiang River Basin is chosen as a case study, where there are conflicts among different
interest agents in this basin. The results show that the proposed bi-level model could attain the same
improvement of common interest by 8%, with the conventional optimal model. However, different
from the conventional optimal model, since the individual interests have been considered in the
bi-level optimization model, the willingness of cooperation of individuals has risen from 20% to 80%.
With a slight decrease by 3% of only one agent, the increases of interest of other agents are 14%, 18%,
7%, and 14%, respectively, when using the bi-level optimization model. The conclusion could be
drawn that the proposed model is superior to the conventional optimal model. Moreover, this study
provides scientific support for the large spatial scale water resource allocation model.

Keywords: multi-agent of river basin; game theory; water resources allocation

1. Introduction

Water is essential for human well-being and all activities [1]. Owing to the impact of climate
change and human activities, water scarcity has become a common problem in many countries,
especially in developing countries [2–4]. Since the imbalance between the supply and demand of water
resources is getting more and more prominent, it is urgent for decision makers to solve the conflicts
arisen from ineffective and unfair water resource allocation [5].

To enhance the effectiveness and benefits of water resource allocation schemes, a large group
of scholars have suggested the use of optimization models. Optimization techniques, such as linear
programming, mixed-integer linear programing, dynamic programming, evolutionary computation,
artificial neural networks, and so on [5–8], have been trying to find the optimal schemes of
water resource allocation. However, these conventional optimization methods usually convert the
multi-decision-maker problems of the whole system into a single-decision-maker problem, with a
single composite objective [5]. Consequently, based on perfect cooperation, the ideal top-down schemes
attained by conventional optimization methods, only emphasize the common interest of the system
and ignore individual interests. Nevertheless, in fact, the ideal optimal scheme can’t be realized
without the willingness to cooperation of individuals [9–11].

Taking individual willingness into consideration, game theory was introduced as a solution to the
conflicts caused by ineffective and unfair water resource allocation among multi decision makers. Game
theory (GT) has been applied to different water or cost/benefit allocation situations, among users in
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water resources. Both non-cooperative and cooperative game theory methods have been used to solve
water conflicts [12,13]. While non-cooperative game theory is useful in providing strategic insights into
conflicts, cooperative game theory is normally helpful in providing an alternative framework for fair
and efficient allocation of the incremental benefits of cooperation, among multi decision makers [14].
Using the idea of game theory, Adams et al. [15] advanced a new framework for noncooperative,
multilateral bargaining, which can be used to conceptualize negotiation processes. The cooperative
water allocation model was designed by Wang et al. [2], aiming at modeling equitable and efficient
water allocation among competing users. A multi-objective game-theory model, which could balance
economic and environmental concerns in reservoir watershed management, was developed by Lee [3].
Furthermore, Madani et al. [14] proposed a new framework for resolving conflicts over transboundary
rivers using bankruptcy methods. However, there are few studies about the conflicts among multi-agent
(i.e., water user) at the river basin level, and no strict systems are available to guide practical problems.

The aim of this study is to develop a bi-level optimization model, which consists of the
optimization model of water resources allocation among the superiors and the optimization model
of water resources allocation among the subordinates. In the bi-level optimization model, not only
the maximization of the common interest is realized, but also the individual interest is taken into
consideration. In other words, our model is featured by top-down coordination and bottom-up
feedback, aiming at proposing an optimal scheme that could be accepted by superiors and subordinates.
The Hanjiang River Basin is used as a case study to prove the equality and effectiveness of this bi-level
optimization model. Thereby, our model could provide a fundamental basis for water resource
allocation on a large scale.

2. Model Description

The bi-level optimization model begins with the framework of the model (Section 2.1), followed
by the mathematical formulae of the model, which are presented in Section 2.2.

2.1. Model Framework

As shown in Figure 1, the bi-level optimization model (i.e., multi-agent cooperative game-based
optimization model of water resources allocation) consists of the optimization model of water resource
allocation among the superiors (in brief, the superiors model), and the optimization model of
water resource allocation among the subordinates (in brief, the subordinates model). The former
is a single-agent GT-based optimization model of common interest, which is designed to solve
the multi-objective optimization problems of water resource management agents. The latter is a
multi-agent cooperative GT-based model, which intends to solve multi- agent cooperation problems in
water usage. Due to the existence of the cooperation agreement between the superiors and subordinates,
the common interest of the superiors could be dealt as an equality constraint on the subordinate
model. Both models have their separate objective functions and constrains, and any solution to the
subordinates model depends on the corresponding solution to the superiors model.
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Figure 1. Optimization model frame of water resource allocation.

2.2. Model Formulation

The generalization of multi-agents in a river basin must be the first step. As shown in Figure 2 for
demonstration, the whole basin is divided into M zones on the basis of meteorological and hydrological
features and natural geographical conditions. Zone 1 is located in the upper and middle reaches of
the river’s main stream. Zone 2 is located in a tributary of the river basin. Zone M is the most
downstream area of the basin, where the tributaries merge with the main stream. According to the
spatial distribution, there are mainly three types among these interest agents, including consumptive
water users outside the river, users with ecological water needs inside the river, and water energy
users inside the river. Water transfer to other basins is also considered in this model. It is assumed that
there are L water users outside the river, and the total number of interest agents in zone M is denoted
as NM. R represents the outflow of each zone, and these interest agents are correlated with each other
through the runoff.

Figure 2. Generalization of multi-agents in a river basin.

2.2.1. The Superiors Model

The optimization of the common interest of water resource management agents in the superior
model is described by the following equation:

Max Bu =
1

M
∑

z=1
Nz

M

∑
z=1

Nz

∑
i=1

Bu
zi =

1
M
∑

z=1
Nz

M

∑
z=1

Nz

∑
i=1

[
1 −

(
Dzi − xzi

Dzi

)2
]

(1)
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In Equation (1), the objective function of each agent Bu
zi represents the water requirement

satisfaction index of agents i in Zone z (z = 1, · · · , M; i = 1, · · · , Nz). M represents the number of

zones in the basin, and Nz represents the number of agents in Zone z (z = 1, · · · , M).
M
∑

z=1
Nz represents

the number of agents in the whole river basin. xzi represents the water allocated to agent i in Zone
z, which is also a decisive variable of this model. Dzi represents the water demand of each agent.
Bu

zi represents the standard benefit value (i.e., [0, 1]) of agent i in Zone z, which is also the goal of
individual interests. Bu represents the total benefits of interest agents, which is also the optimization
goal of the common interest in the superior model.

The constraints are as follows:

(1) Water balance equation

Rz = Wz +
K

∑
k=1

Rz−k − (1 − ϕzi)
L

∑
l=1

xzl − Wzd − ΔSz (2)

In Equation (2), Rz represents the outflow from Zone z; Wz represents the inflow of Sub-basin z;
Rz−k represents the outflow from Zone z − k; k represents the upstream zones who are related
to the flow in Zone z (k = 1, · · · , K); ϕzi represents the water receding coefficient of the user l
(l = 1, · · · , L) outside the river in Zone z; xzl represents the water allocated to user l outside the
river in Zone; Wzd represents the water transfer from reservoirs in Zone z (the positive value
represents the outflow, whereas the negative value represents the inflow); and ΔSz represents the
variation in the poundage of reservoir in Zone z at the specified period.

(2) Constraints on the water available to each agent

xzi ≤ Wz +
K

∑
k=1

Rz−k − Wzd − ΔSz (3)

(3) Water demand constraints
0 ≤ xzi ≤ Dzi (4)

(4) Constraints on the total amount of water available

M

∑
z=1

L

∑
l=1

xzl ≤ Wk (5)

In these equations, Wk represents the total amount of water available to users outside the
river basin.

2.2.2. The Subordinates Model

The objective function of the lower multi-agent cooperative game-based optimization model [7]
of water resource allocation, based on the Nash bargaining model [8,16,17], is obtained as follows:

Max Bd =
M

∏
z=1

Nz

∏
i=1

(
Bd

zi − Nzi

)
(6)

The constraints are as follows:

1
M
∑

z=1
Nz

M

∑
z=1

Nz

∑
i=1

Bd
zi = Bu (7)

Nzi = Max Szi (8)
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Bd
zi ≥ Nzi ≥ 0 (9)

In this model, xzi, i.e., the water allocated to agent i in Zone z, is the decisive variable. Bu
zi, Rz, Rz−k,

xzl , and Bd
zi are also variables in this model, while others are parameters. With a cooperative alliance of

all agents, the optimal solution is solved on the condition that the Nash product (
M
∏

z=1

Nz
∏
i=1

(
Bd

zi − Nzi
)
)

reaches the maximum. Bd
zi and Nzi are the agent’s benefit in the cooperation mode, and the agent’s

benefit in the individual (non-cooperative) mode, respectively. Bd
zi − Nzi is the gain from cooperation.

By using the Nash bargaining model, the bargaining process can be simulated among the agents.
A compromise among the conflicting objectives could be found, in which agents have considered their
own benefits and know that they can get more benefits in the coalition on the whole [17,18].

Constraint (7) denotes the solution of the superior model as the equality constraint of the model.
In Equation (8), Nzi represents the benefit of each agent in the non-cooperative mode.

The optimization model of individual interests covers objective function (8) and constraints (2)–(4).
When the benefit of the most upstream agent with first-mover advantage reaches the maximum Nzi = 1
in the non-cooperative mode, Nzi = Bu

zi will facilitate cooperation.
Equation (9) indicates a rational requirement for individuals to participate in cooperation, which is

the “bottom line”. Failure to reach the bottom line may cause the agent’s unwillingness to cooperate
and the collapse of their cooperative alliance. The optimization solution of the lower multi-agent
cooperative game-based decision-making model for water resource allocation involves identifying
appropriate allocation strategies to maintain the cooperative alliance, where the benefit of each
individual is not less than that in the non-cooperative mode (or when optimizing the superior model).

Equations (1)–(9) provide the GT-based optimization model that combines the superior and
subordinate models of water resource allocation among interest agents, and the optimization model
can be solved by the dynamic programming algorithm [6,19]. This optimization describes the carrying
capacity of spatially-related water resources using the water available to zones in the same watershed
and the pressure load on water resources in each zone using the requirements of interest agents.
The model also proposes to achieve the load balance of the entire basin on a large scale through
the downward constraints in the optimization of the common interest of the superiors and the fair
allocation of the common interest of the subordinates.

3. Case Study

3.1. Study Area

The Hanjiang River basin, with an area of 159,000 km2, is the largest and most developed tributary
of the Yangtze River Basin [20]. Being the ninth largest river in China, with a total length of 1570 km,
the Hanjiang River flows through the south of Shanxi Province, the northwest and central region of
Hubei Province, and runs into Yangtze River at Wuhan city [21]. After the height of the Danjiangkou
Dam being increased from 162.0 m to 176.7 m, Hanjiang River has served as an important water
source for the middle route of the South-to-North Water Diversion Project in China, and has formed
a connection between north and south China [22–24]. Meanwhile, Hanjiang River is an important
channel, which connects the inland area in the northwest with the marine coastal area in the east,
and nurtures the natural and human environment of the basin [21].

Because of the rapid growth of population and economy, water demand is expanding and conflicts
over water use among interest agents in the Hanjiang River Baisn are intensifying [25]. The bi-level
optimization model is established and applied to the Hanjiang River Basin, trying to alleviate conflicts
among different individual interests.

3.2. Data and Primary Analyses

The Hanjiang River Basin is divided into three zones (M = 3), according to the three-tier zoning
of nationwide water resources. Zone 1 is located above the Danjiangkou reservoir, as Danjiangkou
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Reservoir is the boundary of the upper and mid-lower reaches of the Hanjiang River Basin. In Zone 1,
the interest agents could be conceptualized into one type (N1 = 1), namely, the consumptive water
user outside of the river. What needs to be explained is that the water transfer from Danjiangkou
reservoir is considered, and the total volume of the transferred water is assumed to be 9.5 billion m3

per year, through the middle route of South to the North Water Transfer Project [23,26]. Zone 2 is
located in the Tangbai river, which is the main tributary of the Hanjiang river. Similarly, the interest
agents could be conceptualized into one type (N2 = 1), namely, the consumptive water user outside of
the river. Zone 3 is located below the Danjiangkou reservoir, in which the interest agents should be
conceptualized into three types (N3 = 3). The first is the users with ecological water needs inside the
river, since the flow in Xiangyang is both the spawning ground of the Asian carp and control node
of the ecological condition of the main stream of the Hanjiang River. The second is the consumptive
water user outside of the Tangbai river. The third is the users with ecological water needs inside the
river, because the flow in Xiantao is the critical flow whether the phytoplankton blooms would occur
in the river below Qianjiang, and another control node of the ecological condition of the main stream
of the Hanjiang River.

As shown in Table 1, the amount of water resources in different zone is resented.

Table 1. The available water resources in different zones.

Content Unit (Billion m3)

Total of the Hanjiang River Basin 14.7
Annual inflow of Zone 1 based on a guaranteed rate of 95% 16.7
Annual inflow of Zone 2 based on a guaranteed rate of 95% 1.5

Local inflow of Zone 3 5.5

In Table 2, according to the flow, the annual water demands and water receding coefficients of the
three consumptive water users outside the river (i.e., Agents 1, 2 and 4) are presented.

Table 2. The annual water demands and water receding coefficients of Agents 1, 2, and 4.

Agent 1 Agent 2 Agent 4

annual water
demand

(million m3/s)

water receding
coefficient

annual water
demand

(million m3/s)

water receding
coefficient

annual water
demand

(million m3/s)

water receding
coefficient

510 0.45 560 0.44 3150 0.59

In Table 3, the ecological flow requirement of Agents 3 and 5 are presented, which is the minimum
flow of the river to avoid the occurrence of the phytoplankton blooms.

Table 3. The ecological flow requirement of Agents 3 and 5 (m3/s).

Xiangyang Section Xiantao Section

May–October November–Next April May–October November–Next April February–March

632.3 379.4 623.7 374.3 500

4. Results and Discussion

As mentioned in Section 3.2, interest agents are correlated with each other through the runoff.
It has been mentioned above that there are five agents in the Hanjiang River Basin. When the basics
of the basin are put into the model, and are solved by the bi-level optimization model with dynamic
programming, we see the results as shown in Figure 3.
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In Figure 3, the bar in different colors represent different models. Compared to the single-objective
individual optimization model (in brief, Scheme 1), the total benefits of the upper model (in brief,
Scheme 2) increased by 8%. Since Agent 1 is located in the most upstream river, which could allow
for it to take advantage of its spatial location, assuming its individual interests reach the maximum
in having enough water resources. Except for Agent 2, whose individual interests increased by 49%,
the individual interests of Agents 1, 3, 4, and 5 are decreased by 8%, 10%, 12%, and 2%, respectively,
when comparing Scheme 1 with Scheme 2. Although the common interest of the upper optimization
model is improved, it is at the sacrifice of some individual interests. In conclusion, only Agent 2 is
willing to cooperate, while the rest of the agents are not.

 

Figure 3. Multi-agent benefits of different optimization models.

Compared to Scheme 1, the total benefits of the bi-level optimization model (in brief, Scheme
3) also increased by 8%. From the perspective of individual interests, except for Agent 1, whose
individual interests decreased by 3%, the individual interests of Agents 2, 3, 4, and 5 are increased
by 14%, 18%, 7%, and 14%, respectively, comparing Scheme 1 with Scheme 3. Evidently, Scheme 3,
which not only emphasizes the common interest but also considers individual interests, is in favor of
the cooperation of the agents in the basin, because a slight decline in individual interests can contribute
greatly to great increases of other individual and common interests.

When comparing Scheme 2 with Scheme 3, it can be found that the total benefits are the same.
However, in Scheme 2, 4 out of 5 of the individuals are unwilling to cooperate due to their damaged
interests. Whereas, 4 out of 5 of the individuals tend to cooperate in Scheme 3. Scheme 2 emphasizes
the common interest but neglects individual interests, thereby causing in efficiency and inequity.
On the contrary, Scheme 3 realized the optimization of the common interest, considering individual
interests simultaneously, through bottom-up feedback with optimal individual interests optimized
and top-down coordination with the optimal common interest.

5. Conclusions

In this study, the bi-level optimization model is proposed for water resource allocation. Based on
the cooperative game-based theory, the bi-level model consists of the superiors model and subordinates
model, which could realize a win-win cooperation of common and individual interests in water
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resource allocation. The following conclusions are drawn, based on the results of the case study of the
Hanjiang River Basin.

The results of the case study indicate the effectiveness and fairness of the bi-level optimization
model. Compared to the single-objective individual optimization model, our model can bring more
common interest, by 8% in total. Four out of five of the interest agents can get more benefits, by
7%–18%, although one out of five of the interest agents’ benefit decreases, only by 3%. Compared to
the upper optimization model, from the perspective of the common interest, there is no improvement.
However, it must be realized that in the upper model, only one out of five of the interest agents can
get more benefits, so that this model is only ideal, since most of the interest agents will not choose to
cooperate. In a word, both common and individual interests are improved by our model, and these
agents are more likely to cooperate to get more benefits.

From the case study, there are some recommendations for decision and policy makers. Before
making decisions, policy makers are advised to realize the needs and acceptable values of agents
adequately, and adjust the decisions according to the feedback from agents. Afterwards, the allocation
could be efficient and equitable.

The bi-level optimization model can be easily applied into other basins, and is possible to solve
more problems related to water resources. However, there are still some areas to improve, which require
further research.
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