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Abstract

Electroencephalogram (EEG)-based emotion recognition has emerged as a key enabler for
semantic communication systems in next-generation networks (5G-Advanced/6G), where
the goal is to transmit task-relevant semantic information rather than raw signals. However,
domain adaptation approaches for EEG emotion recognition typically assume closed-set
label spaces and fail when unseen emotional classes arise, leading to negative transfer and
degraded semantic fidelity. To address this challenge, we propose a Coarse-to-Fine Open-set
Domain Adaptation (C2FDA) framework, which aligns with the semantic communication
paradigm by extracting and transmitting only the emotion-related semantics necessary for
task performance. C2FDA integrates a cognition-inspired spatio-temporal graph encoder
with a coarse-to-fine sample separation pipeline and instance-weighted adversarial align-
ment. The framework distinguishes between known and unknown emotional states in
the target domain, ensuring that only semantically relevant information is communicated,
while novel states are flagged as unknown. Experiments on SEED, SEED-1V, and SEED-V
datasets demonstrate that C2FDA achieves superior open-set adaptation performance,
with average accuracies of 41.5% (SEED — SEED-1V), 42.6% (SEED — SEED-V), and 48.9%
(SEED-IV — SEED-V), significantly outperforming state-of-the-art baselines. These re-
sults confirm that C2FDA provides a semantic communication-driven solution for robust
EEG-based emotion recognition in 6G-oriented human-machine interaction scenarios.

Keywords: emotion recognition; open-set domain adaptation; semantic communication;
6G networks; EEG signal processing

1. Introduction

In contemporary society, emotion recognition has been widely applied in various
fields, impacting our daily lives profoundly. In the field of mental health, accurately and
timely assessing an individual’s emotional state is crucial for improving psychological
well-being [1]. In education, observing students” emotional states in the classroom helps
educators gain insight into students’ learning situations, thereby adjusting teaching meth-
ods to enhance students’ learning effectiveness [2]. Therefore, emotion recognition has
been paid more and more attention, which has spawned a variety of emotion recognition
methods. Among them, Electroencephalography (EEG)-based emotion recognition has
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shown promise for affective computing, mental-health monitoring, and human-computer
interaction due to its outstanding stability and high detection accuracy [3].

Yet moving trained models across people remains difficult: inter-subject variability,
recording non-stationarities, and session effects induce substantial domain shifts. Due to the
differences in emotional and physiological characteristics among different subjects, the EEG
data distribution varies among different subjects [4]. It shows that the emotion recognition
model trained with EEG data on a single subject may not achieve satisfactory results on a
new subject, that is, there is a problem of model generality. In realistic deployments, the
target domain may also contain emotion states absent from the source, creating an open-set
scenario. In open-set domain adaptation (OSDA), the model must (i) align only the shared
classes between domains and (ii) reject unknowns to avoid negative transfer. This setting
is common in cross-dataset and cross-subject EEG but remains underexplored relative to
closed-set transfer.

As illustrated in Figure 1, the emotional brain—computer interface (EBCI) framework
typically comprises several key stages, including stimulus presentation, electroencephalo-
gram (EEG) signal acquisition, preprocessing, feature extraction, model training, and
feedback. This iterative cycle enables the systematic modeling and analysis of EEG signals
to infer users’ emotional states, thereby providing a foundation for advanced human-—
computer interaction.

EEG
Simulation recording
— —
Feedback
Preprocess
Model Feature
training extraction
C—— e——

Figure 1. Emotional brain-computer interface cycle.

To address this, many studies have used Unsupervised Domain Adaptation (UDA)
techniques [5]. These methods treat labeled EEG data from one subject as the source domain
and unlabeled EEG data from another subject as the target domain. Then they train the
model on the source domain to transfer it to the target domain.

Existing EEG approaches typically fall into three groups. Subject-dependent models
achieve high accuracy but require labeled data per user and do not transfer. Closed-set
domain adaptation reduces distribution shift but implicitly forces all target samples to
match source classes, which misaligns truly novel target states. Finally, recent graph-based
or temporal models improve representation quality but often rely on static inter-channel
topologies and lack mechanisms to (a) encode neurocognitive priors that aid generalization,
(b) capture evolving temporal salience, and (c) separate known vs. unknown target sam-
ples during adaptation. Moreover, evaluations frequently report overall accuracy alone,
obscuring the trade-off between known-class performance and unknown-class rejection.

Although these existing methods effectively reduce the distribution differences in EEG
data, they still have limitations. Because they usually assume that different subjects share
the same label space, but the actual scene may encounter a different label space, especially
when the emotional label space of the target domain is more than that of the source domain,
that is, the scene of an open-set. In open-set EEG emotion recognition, not only do we need
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to address the distribution differences between subjects, but we also need to tackle the
separation of known and unknown emotional classes due to different label spaces [6].

We address these gaps with C2FDA-G, a cognition-prior spatio-temporal graph frame-
work integrated with a coarse-to-fine open-set adaptation pipeline. This approach leads to
the proposal of the C2FDA framework for EEG emotion recognition, which is designed to
overcome the identified challenges in open-set domain adaptation. On the representation
side, we construct a dynamic brain graph with graph convolution to learn data-driven
channel affinities, combine it with temporal self-attention to weight informative segments,
and fuse the streams via hierarchical cross-attention fusion (H-CAF). In parallel, we inject a
cognition-prior branch from functional connectivity (e.g., PLV), then fuse prior- and data-
driven embeddings to obtain discriminative, interpretable features stable across subjects.

Initially, the Coarse-to-Fine processing module performs coarse classification on the
extracted EEG feature information, sorts all target domain samples based on the similarity
of each target domain sample, and selects high and low probability score samples for fine
classification, thus achieving the separation of known and unknown classes in the target
domain. On the adaptation side, a bank of one-vs-class coarse heads ranks target samples
by known-class plausibility; a fine unknown detector assigns an unknown probability w(x).
We then perform instance-weighted adversarial alignment that emphasizes likely known
target samples in the shared label space using a |Cs| + 1 classifier (with an explicit un-
known class). A lightweight curriculum penalizes early high-confidence misclassifications,
improving the stability of unknown rejection. Then, the Domain Adversarial module maps
samples from the source and target domains to a shared label space, achieving alignment
of the sample space. Finally, we input the EEG signal data processed by the two modules
into the classifier to complete the EEG emotion recognition task.

In summary, our research makes the following contributions:

(1) We propose a Coarse-to-Fine processing module that can separate known and
unknown emotional classes. This module solves the problem of negative transfer caused
by the misalignment of unknown classes in the target domain with known classes in the
source domain effectively.

(2) We propose a Domain Adversarial module that maps samples from the source and
target domains to a shared label space for alignment of the EEG samples. This module
effectively addresses the label space alignment problem in open-set EEG emotion recognition.

(3) Through extensive transfer experiments on three datasets, our experimental results
demonstrate the reliability of the C2FDA method in open-set EEG emotion recognition.

As the field of semantic communication in 6G networks continues to develop, the focus
is on transmitting task-relevant meaning rather than raw data. EEG-based emotion recog-
nition is inherently semantic, as it extracts emotionally meaningful states from complex
signals. The open-set scenario naturally aligns with semantic communication principles,
where the system must determine whether incoming data belongs to the known semantic
space or represents novel, unrecognized states. Our C2FDA framework addresses this by
filtering semantically relevant emotional information and rejecting unknown samples, thus
enhancing semantic efficiency and robustness in next-generation network applications.
However, it is important to note that the connection to 6G semantic communication is
conceptual, and this paper focuses primarily on the development and evaluation of the
C2FDA framework for EEG emotion recognition.

2. Related Work

EEG-based emotion recognition faces significant challenges in cross-subject and cross-
dataset transfer due to distribution shifts between source and target domains. Based
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on the relationship between label spaces, existing domain adaptation approaches can be
categorized into five main paradigmes, as illustrated in Figure 2.

Domain Adaptation Scenarios

Closed-Set DA Partial DA Open-Set DA
Source Target Source Target Source Target
D s Rl Dt D s ke D t D s ka D t
ABCD ABCD ABCD ABC ABC ABC
Y_s=Y_t Y_tCY_s Y_sCY_t
Identical label spaces Target subset of source Unknown target classes
Multi-Source DA Few-Shot DA
Solice Source Domair] Target
D_s1 -
= \ Target (Rich Data) (Few)
Source2 |y~ Dt
D _s2 Source: esesesssee Target: eee

Limited target samples

Multiple sources — Single target .
Meta-learning approach

Figure 2. Domain Adaptation Classification.

2.1. Closed-Set Domain Adaptation

Closed-Set Domain Adaptation (CSDA) assumes identical label spaces between source
and target domains, focusing on reducing distribution discrepancies. These methods pri-
marily fall into metric-based approaches and adversarial training strategies [7-9]. Metric-
based methods transform features to minimize domain distances under specific metrics.
Xu et al. [10] proposed a dynamic adversarial domain adaptive network based on the
multi-kernel maximum mean discrepancy (MK_DAAN), which addresses domain adapta-
tion by adding an adaptive layer to further align the feature distribution between source
and target domains. Multi-kernel maximum mean discrepancy is adopted in the adaptive
distance measurement. This dual feature alignment approach, combining the adaptive
layer with adversarial learning, improves classification performance in breast ultrasound
image classification. Yi et al. [11] introduced the ATPL framework, which mutually pro-
motes adversarial training and pseudo-labeling for unsupervised domain adaptation.
ATPL produces high-confidence pseudo-labels through adversarial training, and uses these
pseudo-labels to improve the adversarial training process by generating adversarial data
to fill the domain gap, thereby ensuring both feature transferability and discriminability.
DANN (Domain-Adversarial Neural Networks), proposed by Ganin et al., uses adversar-
ial training with a gradient reversal layer to learn domain-invariant features, improving
performance in tasks like image classification and sentiment analysis. It outperforms tra-
ditional methods by aligning feature distributions between source and target domains
without requiring labeled target data [12]. MMD (Maximum Mean Discrepancy), proposed
by Gretton et al., is a kernel-based method for comparing distributions by measuring
the difference between their means in a Reproducing Kernel Hilbert Space (RKHS). It
effectively minimizes domain shift in closed-set domain adaptation and has been widely
used in tasks involving high-dimensional feature spaces, such as bioinformatics and graph
data [13]. CORAL (CORrelation ALignment), introduced by Sun et al., aligns the second-
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order statistics (covariance) between source and target domains to reduce domain shift
in unsupervised domain adaptation. It has proven effective in object recognition tasks,
outperforming methods like LDA on benchmark datasets such as Office-Caltech10 [14].
CDAN (Conditional Domain Adversarial Network), introduced by Long et al., enhances
adversarial domain adaptation by conditioning the domain discriminator on both fea-
ture representations and classifier predictions. This approach improves alignment across
domains and has shown superior performance on benchmark datasets [15].

2.2. Partial Domain Adaptation

Partial Domain Adaptation (PDA) addresses scenarios where the target label space
constitutes a subset of the source domain. Here, the source contains emotional categories
absent in the target, though these remain known categories. Feng et al. [16] proposed
Progressive Optimization For Partial Domain Adaptation (EBB), which selects anchors
by analyzing base model features and estimates category gaps using anchor classification
distributions. This approach minimizes shared class errors while correcting blind alignment
mistakes. Zhang et al. [17] developed Weighted and Center-aware Adaptation Learning
(WCAL), distinguishing unknown source classes through weighted adversarial learning
and addressing negative transfer via cross-domain discriminators. While these methods
handle partial scenarios effectively, they still assume no target-specific unknown classes,
differing fundamentally from open-set challenges.

2.3. Open-Set Domain Adaptation

Open-Set Domain Adaptation (OSDA) represents the most challenging setting, where
target domains contain both source-known classes and completely novel categories. OSDA
methods must simultaneously align shared classes while detecting unknown samples to
prevent negative transfer. Panareda Busto and Gall introduced Open Set Domain Adap-
tation, which addresses domain shift by jointly solving an assignment problem to match
target instances with source categories of interest. Their method outperforms state-of-the-
art techniques, effectively handling both closed and open-set scenarios where the source
and target domains may contain different class labels [18]. Ji et al. [19] proposed an open-
set domain adaptation model based on subdomain alignment, using variable weights
for discriminative training and aligning category subspaces between source and target
domains. Experiments show that this approach significantly improves open-set domain
adaptation classification accuracy. Tang et al. [20] proposed a novel open-set domain adap-
tation method combining latent structure discovery and kernelized classifier learning to
improve class separation. Experiments on five image datasets demonstrate its superiority
over state-of-the-art methods. Open-set recognition has also been explored in other do-
mains such as malware traffic analysis [21], radio frequency fingerprint identification [22],
specific emitter recognition [23], and device recognition in satellite-terrestrial-integrated
IoT [24], demonstrating the broad applicability of open-set methodologies. OSBP (Open Set
Back-Propagation), proposed by Saito et al., uses adversarial training to align known target
samples with the source domain while rejecting unknown target samples. It outperforms
traditional domain adaptation methods in open-set scenarios, improving performance in
domain transfer tasks [25,26]. MAOSDAN (Multi-Adversarial Open-Set Domain Adapta-
tion Network), proposed by Zheng et al., addresses open-set domain adaptation in remote
sensing by combining attention-aware OSBP, adversarial learning, and adaptive entropy
suppression to distinguish known and unknown samples [27].

2.4. Graph-Based EEG Representation Learning

EEG’s inherent spatial organization motivates graph neural network applications,
treating electrodes as nodes with functional connections as edges. Static graph methods
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based on physical distances or fixed connectivity capture spatial topology but cannot adapt
to dynamic brain connectivity changes. Liu et al. [28] compared DCCA and BDAE for
multimodal emotion recognition, extending DCCA with weighted sum and attention-based
fusion methods. DCCA achieved state-of-the-art performance and demonstrated greater
robustness against noise across multiple datasets, including SEED-V and DREAMER.
Song [29] proposed a novel Dynamical Graph Convolutional Neural Network (DGCNN)
for EEG emotion recognition, dynamically learning the intrinsic relationships between
EEG channels for more discriminative feature extraction. Extensive experiments on the
SEED and DREAMER datasets show that DGCNN outperforms state-of-the-art methods,
achieving high recognition accuracy in both subject-dependent and subject-independent
settings. However, most graph-based EEG works address closed-set classification without
explicit open-set label mismatch handling. Finally, we input the EEG signal data processed
by the two modules into the classifier to complete the EEG emotion recognition task.
Recent studies have also explored the use of attention mechanisms and hybrid deep neural
networks for improving EEG-based emotion recognition performance [30,31].

2.5. Cognitive Priors in Graph Learning

Neuroscience research indicates functional connectivity patterns, measured through
phase-locking value (PLV), encode task-relevant brain network structures. Incorporating
such cognition-inspired priors improves interpretability and cross-domain stability. Recent
cognitive-prior GNN frameworks fuse prior graphs with data-driven graphs, yielding
noise-robust representations stable across subjects [32]. Li et al. [33] proposed a graph learn-
ing system for EEG-based emotion recognition, utilizing a cognition-inspired functional
graph branch and a fused attention mechanism to automatically learn emotion-related
cognitive patterns. The BF-GCN model outperforms state-of-the-art methods, achieving
high recognition accuracy in both subject-dependent and subject-independent experiments
on the SEED and SEED-1V datasets. Wang et al. [34] proposed a simply ameliorated CNN
(SACNN) for cross-subject emotion recognition using raw EEG data to address low accu-
racy issues in driver emotion detection. The SACNN model achieved 88.16% accuracy
with cross-subject data and 91.85% accuracy using data from the top 10 EEG channels,
outperforming deeper models and highlighting its potential for smart city applications.
Furthermore, cross-subject emotion recognition remains challenging due to inter-subject
variability, prompting the development of methods that leverage raw multi-channel EEG
data without extensive preprocessing [35]. Machine learning approaches continue to evolve,
with comparative studies highlighting the effectiveness of various algorithms in handling
EEG-based emotion recognition tasks [36].

Our proposed C2FDA addresses these gaps by combining cognition-prior spatio-
temporal graph encoding with coarse-to-fine open-set adaptation. This unified frame-
work leverages neuroscience knowledge while providing robust mechanisms for known-
unknown separation and selective domain alignment, advancing the state-of-the-art in
open-set EEG emotion recognition. C2FDA integrates a complex cognition-prior spatio-
temporal graph encoder as part of its feature extraction mechanism, which ensures robust
cross-domain generalization, particularly for open-set scenarios.

2.6. Semantic Communication and Next-Generation Networks

Semantic communication represents a paradigm shift from bit-level accuracy to goal-
oriented information exchange, focusing on the meaning and effectiveness of transmitted
data. In next-generation networks (6G), semantic communication aims to reduce redun-
dancy by transmitting only task-relevant information, thereby improving bandwidth ef-
ficiency and latency. Emotion recognition from EEG signals is a semantically rich task,
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as emotions represent high-level cognitive states. Recent works have explored semantic
source coding, task-oriented communication, and semantic-aware resource allocation for
IoT and edge devices [37-39]. Our C2FDA framework aligns with this trend by selectively
adapting only known emotional classes and rejecting unknowns, effectively reducing se-
mantic redundancy and improving communication efficiency in distributed EEG-based
emotion recognition systems.

3. Methodology
We begin by establishing the notation used throughout this work. Let Dg = (X}, yf)tl

denote the source domain with ng labeled samples, and D; = xjt?:‘l represent the target
domain with n; unlabeled samples. The label space relationship follows Cs C C; = Cs U U,
where U denotes the set of unknown classes present only in the target domain. Our
framework employs a feature extractor fg : x — z € RY that maps inputs to d-dimensional
representations. The coarse-stage processing utilizes a bank of one-vs-rest classifiers
hyyec,, each producing class-specific probabilities p; (x) = o(hk(fe(x))). The fine-stage
unknown detector u, : z — w(x) € [0,1] estimates the probability that a sample belongs
to an unknown class. Finally, an open-set classifier Hy z—yel,..., |Cs|, unk performs
|Cs| + 1 classification, while a domain discriminator Dy, : z — 0,1 distinguishes between
source and target domains. Having established the notation, we now proceed to detail the
architecture and training procedure of our proposed C2FDA framework.

The method addresses two fundamental challenges in open-set domain adaptation:
(1) distinguishing between known and unknown classes in the target domain, and (2) align-
ing only the shared classes while avoiding negative transfer from unknown samples. For
the sake of illustration, we give some definitions of symbols. In the open-set EEG emotion
recognition task, we have a source domain Ds containing ns labeled samples, denoted
as Ds = {(x3,15) }?il, and a target domain Dt containing nt unlabeled samples, denoted

n
as Dy = { (xJT) } ‘t . Here, the label space size of the source domain is Cs. It is worth

noting that the label space of the source domain is a subset of the label space of the target
domain: Cs C C; The additional label space contained in the target domain is defined as
the unknown class label space C;-s.

The source domain and the target domain come from different probability distributions
p,q, respectively. In domain adaptation, our probability distribution is also different: p # 4.
In open-set domain adaptation, our probability distributions are even more different:
p # qc., where qc, represents the distribution of target domain data in the shared label
space. In summary, we can define the open-set EEG emotion recognition task as follows:
0= S Tris important to note that the label space of our source domain is a subset of

Al
the label space of the target domain.

3.1. C2FDA Model

Cognition-Prior Spatio-Temporal Graph Encoder—This component extracts discrimi-
native and interpretable EEG features by combining dynamic graph convolution (DGC),
temporal self-attention (TSAR), and hierarchical cross-attention fusion (H-CAF) along with
a functional connectivity prior represented by the PLV graph.

Coarse-to-Fine Selector—This component ranks target samples based on their plau-
sibility of belonging to the shared classes and then refines the decisions using a binary
classification (“unknown vs. known”) fine head.

Instance-Weighted Domain Adversarial Alignment—This component aligns only the
target samples likely to belong to the known classes to the source domain using a gradient
reversal layer (GRL), while suppressing the alignment of unknown samples.
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Open-Set Classifier—This component predicts over |Cs| + 1 classes, where the addi-
tional class explicitly represents the “unknown” category.

To address the aforementioned two issues, we innovatively propose A Coarse-to-Fine
Open-set Domain Adaptation framework for EEG emotion recognition (C2FDA). The
method framework of C2FDA is illustrated in Figure 2. This method mainly consists of two
modules: the Coarse-to-Fine processing module and the Domain Adversarial module. The
Coarse-to-Fine processing module transforms the extracted EEG feature information from
coarse-grained features to fine-grained features; in other words, its purpose is to separate
known classes from unknown classes. The function of the Domain Adversarial module
is to map samples from the source domain and target domain to a common label space,
achieving sample space alignment. In Figure 2, Hy represents the feature extractor of EEG
signals, Heoarse and Hgpne represent the coarse classifier and fine classifier, respectively, Hy
is the domain discriminator, which is also our Domain Adversarial module, and H, is our
final EEG data classifier. C2FDA-G is a variant of C2FDA that incorporates a cognition-prior
spatio-temporal graph encoder into the feature extraction process, enhancing the model by
explicitly integrating neurocognitive priors from EEG signals. Both models share the same
core feature extraction approach, but C2FDA-G benefits from the added graph encoder for
richer spatio-temporal dependencies.

3.2. Cognition-Prior Spatio-Temporal Graph Encoder

(a) Graph Construction We represent each EEG trial as a multi-channel DE feature map
over B frequency bands. Each band yields a graph G = (V, E, A), where V are channels, E
edges, and A the adjacency matrix.

To capture both neurophysiological priors and adaptive patterns, we construct a
hybrid graph representation that combines domain knowledge with data-driven learning:
Prior Graph Apyior —computed from PLV between channels over source data, encoding
stable cognitive connectivity patterns.

Data-Driven Graph Ag,t, —learned via attention-based affinity estimation that adapts
to each sample.

A = aAprior + (1 — ) Ayata, 1)

where Agata = softmax(QKT/\/;l)

The parameter o balances the contribution of cognitive priors (when o is large) ver-
sus adaptive learning (when « is small), allowing the model to leverage neuroscience
knowledge while adapting to task-specific patterns.

We blend the two to form the adjacency for convolution:

A= (1-A)Aprior +AAdata A € [0,1]. )

(b) Spatial Encoding with DGC We apply graph convolutional layers over A to capture
spatial dependencies:

g+ — (7(571/2 AD-1/2 H(l)wa)) ®3)

where D is the degree matrix, W(!) are learnable weights, and ¢ is an activation function.

~(=1/2) ~ (=1/2)
7(+1) — #[ D AD ZOWD | = A+1T “)
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(c) Temporal Self-Attention (TSAR) For each channel representation, TSAR assigns
attention weights across time steps:

exp(q?k,)
& = ==/ 5
! Yy exp (th, ky ) ®)
where gy, ki are learned projections. This emphasizes temporally salient EEG segments.
Attn(Q,K, V) = softmax (QKT/\/E> V,z = Pool (Atin(-)) (6)

(d) Hierarchical Cross-Attention Fusion (H-CAF) Spatial and temporal streams are
fused using cross-attention to produce the final embedding f for each trial.

3.3. Hyperparameter Tuning for o« and A

In this section, we explain the selection of the hyperparameters o« and A, which are
essential for the performance of the C2FDA framework. The parameter « controls the
balance between cognitive priors and adaptive learning, while A adjusts the weight of the
entropy loss in the domain adversarial module. The two parameters determine how the
model blends prior knowledge and data-driven learning, ensuring effective separation
between known and unknown emotional classes.

To blend the cognitive prior graph (A ;) and the data-driven graph (A ,t,), we use
the equation:

A= “Aprior + (1 — &) Adata, & € [011] @)

The parameter o« was tested within the range [0.1, 1.0], where larger values favor
prior knowledge and smaller values prioritize adaptive learning. Similarly, A controls the
entropy loss contribution and was varied within [0, 1], with higher values placing more
emphasis on rejecting unknown classes. The adjusted adjacency matrix is given by:

A= (1 - /\)Aprior + AAgata A € [O/ 1] 8)

We used k-fold cross-validation to select the optimal values for both & and A, eval-
uating performance based on recognition accuracy for known classes and the ability to
detect unknown emotional states. The impact of these hyperparameters is significant.
Larger  values improve known-class recognition but reduce flexibility in detecting un-
known emotional states, while smaller values enhance detection of novel classes. For A,
higher values strengthen unknown class rejection but may overfit known classes, while
lower values improve detection of unknowns. This tuning process ensures robustness and
reproducibility in open-set EEG emotion recognition tasks.

3.4. The Coarse-to-Fine Processing Module

Coarse Stage: We deploy a bank of |Cs| one-vs-class classifiers {/; } producing logits
zx and probabilities py = o(zx). For target sample x, define:

s(x) = max
(%) = max pi ©)
To distinguish known and unknown classes in the target domain, we put forward the
Coarse-to-Fine processing module. We introduce a coarse classifier H C‘Sglrs .1 , consisting of

|Cs| classifiers. The coarse classifier measures the similarity between each target domain
sample and each source domain class. Each classifier is independent, with different func-
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tionalities; each classifier can only classify specific emotion classes. The loss function of the
coarse classifier is defined as shown in Equation (1):

IG| 1 ns ] i
Ls = Coarge 4 13 Lpce (Hcoarse (Hf (xl- ) ) 1 (yi’ Coarse)> (10)

In Equation (10), Ly, represents the cross-entropy loss of the coarse classifier. When
y? = coarse, I(y5, coarse ) = 1; otherwise, I(y{, coarse ) = 0. Each Hcarse returns the
probability score Peoarse Of each target domain sample being classified as the known class
coarse. Thus, Peoarse can be used to measure the similarity between samples in the target
domain and the known class. A higher probability score indicates a higher likelihood of the
sample belonging to class coarse. Empirically, known class samples in the target domain
tend to have higher probability scores compared to unknown class samples. Therefore,
we can use the maximum probability score of each sample, p1, p2, ..., p|Cs|, to represent
the similarity between each target domain sample x]t- and the source domain, as shown in
Equation (2):

5j = Ic%%): Heoarse (Hf (x/t)> (11)

To avoid manual hyperparameter tuning and ensure robustness across different de-
grees of openness, we introduce an adaptive thresholding mechanism based on quan-
tile statistics:

T(high) = ExeQrq[8(%)], Ttow) = Exeq . q[5(x)] (12)
Tk = x :5(x) = Tuign), Tu = x 1 5(x) < T(gow) (13)

Figure 3 Coarse-to-fine sample separation via adaptive threshold selection. Target
domain samples are stratified into three regions based on similarity scores: high-confidence
known sample region (green) for domain alignment; ambiguous sample region (gray)
excluded from training; and high-confidence unknown sample region (red) for novel class
detection. The high and low adaptive thresholds are automatically determined without
hyperparameter tuning. This approach is conceptually similar to the Separate to Adapt
(STA) method, which employs a coarse-to-fine separation mechanism to progressively
distinguish between known and unknown classes based on sample similarity. In STA,
sample importance is adaptively weighted during feature distribution alignment, and
unknown target samples are excluded from the alignment process to prevent negative
transfer. While STA addresses domain adaptation across varying levels of openness, this
work utilizes adaptive threshold selection to specifically tackle the challenges of open-set
EEG emotion recognition without the need for manual hyperparameter tuning.

This partitioning strategy creates three distinct regions: high-confidence known
samples (Tk), high-confidence unknown samples (Tyy), and an ambiguous region T4 =
Dy (Tx U Tyy) that is excluded from alignment to prevent negative transfer.

After employing such a measurement method, known class samples in the target
domain will indeed exhibit high similarity with the source domain. Similarly, samples of
unknown classes in the target domain will show low similarity with the source domain.

Therefore, based on the magnitude of similarity for each target domain sample, we can
sort all target domain samples and select those with particularly high or low probability
scores to train the next-stage fine classifier Hg,e . Although this selection method may
seem simplistic, the chosen samples exhibit high confidence and similarity. Additionally,
since we no longer need to manually select hyperparameters or use optimization tools, this
approach is robust to varying degrees of openness.

10
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Coarse-to-Fine Sample Separation Process
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Figure 3. Coarse-to-Fine Sample Separation with Adaptive Threshold Selection for Open-Set Do-
main Adaptation.

To further refine sample selection, we categorize samples into three groups based
on the magnitude of similarity probability scores: highest probability scores, moderate
probability scores, and lowest probability scores. Then, we use the average of the highest
probability scores, denoted as sy, , as the upper limit for known class samples in the target
domain. Thus, when a sample’s similarity probability score satisfies s; > sy, , we classify it
as a known class. Similarly, we use the average of the lowest probability scores, denoted
as sy, as the lower limit for unknown class samples in the target domain. Hence, when a
sample’s similarity probability score satisfies s; < s; , we classify it as an unknown class.

Fine Stage: From the extreme quantiles (top g;;%, bottom gq;,% of s(x)), a binary fine
classifier hgp, is trained to predict w(x), the probability that x is unknown. While the coarse
stage provides initial separation, the fine-stage binary classifier performs precise unknown
detection by learning from the high-confidence samples identified in the coarse stage.

As illustrated in Figure 4, the C2FDA framework adopts a hierarchical processing
strategy. First, a graph-based feature extractor (which incorporates the cognition-prior
spatio-temporal graph encoder in C2FDA-G) processes EEG signals from both the source
and target domains. This feature extraction approach combines a simpler feature extractor
(Hy) in C2FDA and a more complex graph encoder in C2FDA-G, both of which share
the same fundamental task of extracting relevant features from the EEG signals. Then,
the coarse-to-fine separation module performs progressive filtering on the target samples.
Specifically, the coarse separation layer ranks the samples based on their similarity to known
categories, while the fine separation layer conducts binary classification to distinguish
between known and unknown samples. Finally, the domain adversarial module aligns
distributions only for the samples that are likely to belong to known categories, thereby
avoiding negative transfer caused by unknown samples. This allows the final classifier to
achieve open-set emotion recognition with unknown category detection.

Once the coarse classifier Heoarse Selects high probability known class samples and
low probability unknown class samples, denoted as X’, we can further feed these selected
samples into the next-stage fine classifier Hgy, , to separate known and unknown class
samples in the target domain. We label the samples that have been separated from the

11
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target domain, denoted as x; €X', as d]'. Known class samples are labeled as d i=0, while
unknown class samples are labeled as d; = 1. The loss function of the fine classifier Hgpe is
shown in Equation (3):

w(x) = 0 (ug(fo(x))) (14)
Lyine = (1/|S\)X§S BCE(yunk(x), w(x)) (15)

C2FDA Framework for Open-set EEG Emotion Recognition

Source Domain
Labeled EEG Coarse-to-Fine
Classes: C_s \ Module
(Known emotions) Feature p— Coarse H coarss
Extractor ——p| Classifier
H_f Hy — ,E:: u |Il,= ut
—— Fine: H_fine |C_s| + 1 classes
Target Domain Known/Unknown | F tsmg«mm“
Unlabeled EEG
Classes:C_sU U
(Known + Unknown)
Domain Adversarial
> H.d
= Aligned
Alignment
C2FDA Process
Step 1: Feature Extraction Step 3: Domain Adversarial Alignment
« Graph-based encoder processes EEG signals from both domains - Align only likely-known samples to prevent negative transfer
Step 2: Coarse-to-Fine Separation Step 4: Open-set Classification
- Coarse: Rank target samples by similarity to known classes - Final classifier with |C_s| + 1 classes (known + unknown)
- Fine: Binary classification of known vs. unknown samples « Outputs emotion recognition with unknown detection capability

Figure 4. Open-set EEG emotion recognition method based on C2FDA.

The unknown probability w(x) serves as an instance-level confidence measure, en-
abling selective alignment where only samples with low w(x) values (likely known) partici-
pate in domain adversarial training. Through the Coarse-to-Fine processing module, we
can separate EEG signal samples of known and unknown classes in the target domain.

Curriculum Learning: Inspired by step-penalty reinforcement learning, we weight
early confident mistakes more heavily in the first K epochs:

ae = g+ (1 — o) ¢- (16)

Through the Coarse-to-Fine processing module, we can separate EEG signal samples
of known and unknown classes in the target domain.

From a semantic communication perspective, the coarse-to-fine mechanism acts as
a semantic filtering process: it transmits only emotionally relevant information (known
classes) while suppressing irrelevant or unknown samples. This aligns with the goal of
semantic communication in 6G systems, where only semantically valid data is prioritized
for transmission, thereby reducing bandwidth overhead and improving task efficiency.

3.5. The Domain Adversarial Module

Traditional domain adaptation aligns all target samples with the source distribution,
leading to negative transfer when unknown classes are present. Our instance-weighted
alignment strategy addresses this by selectively emphasizing likely known samples.

12
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In this section, we first present the classification error function for the source domain,
as shown in Equation (4):

Ly = n%XEDS Ly (Hy:lcs‘) (Hf(xi))/yi) (17)

where Ly represents the cross-entropy loss function, and Hy represents an extended classi-
fier with 1Cs!| + 1 classes, where |Cs| + 1 includes | Cs| known emotions from the source

LG returns the

domain and 1 unknown emotion from the target domain. Therefore, Hﬁ
probability of each sample corresponding to the | Cs| known emotions.

Next, we focus on aligning the features of samples from the source and target domains.
In this step, we map the features from both domains to a shared label space, denoted
as Cs. Instead of directly inputting the output of Hgy,, into discriminators for known
and unknown classes, we append a softmax layer to the output of Hgy,e , which serves as
the input to the discriminators. This softmax layer generates soft instance-level weights,
denoted as w; = H,, (H (%)) ) , where higher values of w; indicate a higher probability of
the sample belonging to the unknown class. Hence, we can utilize w; to define the weighted
loss for Domain Adversarial adaptation of feature distributions in the shared label space
Cs, as shown in Equation (5):

(18)
t—=——F— ¥ (1—wj)Lpe|Ha(Hf(xj) ), d;
Fo ()5, () e (Ha(Hr (%) ) 4))

In addition, we also need to select samples of unknown classes from the target domain
to train the feature extractor Hf. Based on the soft instance-level weights w;, we can
measure the separation between known and unknown classes. We define the weighted loss
for distinguishing unknown classes as shown in Equation (6):

_ (IGs[+1)
Lils - |(%s\ ):xjelljt w; xngr ijy (Hy (Hf (xj))llllk) (19)

where [, represents the unknown emotion class. Through training, we assign all target
samples with larger weights w; to the unknown emotion class. Similarly, Hﬁlcﬁlﬂ) (H f)
represents the probability that classifier Hy assigns target samples to the unknown class.
We also enhance the decision boundary between domains by computing the loss for
minimizing the entropy of known classes in the target domain, denoted as Le. This is
achieved by enhancing weights with the following formula, as shown in Equation (7):

k=g mw), 5, (- w)) E(Hy" (Hy (x)))) (20)

ijDt

In Equation (7), E represents the entropy loss, specifically expressed as
E(p) = —XYx prlogpy. It is important to note that our goal is to minimize the entropy
of target samples predicted as known emotion class. Therefore, we use w; as the instance-
level weight parameter for entropy minimization.

The adversarial alignment in C2FDA ensures semantic consistency across domains,
akin to semantic fidelity in 6G-oriented communication systems. By weighting known
samples more heavily, the model mimics a semantic-aware transmission protocol that
prioritizes meaningful emotional states over noisy or unknown inputs.

13
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3.6. Open-Set Classification and Loss Functions

Beyond global domain alignment, we introduce prototype-based fine-grained align-
ment to enhance intra-class consistency between source and target domains:

me= /180 Y folv) (21)

(x,y)E€Ds y=k

2
L(proto) = ke% Ecereollfo(x) — mellz (22)

S

To stabilize the training process and prevent early convergence to suboptimal solutions,
we employ a curriculum learning strategy that penalizes confident misclassifications more
heavily in early training stages:

L(curr) = (1/‘Dt‘) ) 'ymax(O, To —6)
xED; (23)

[1(y # unk)-w(x)]

where e is the current epoch, Tj is the transition epoch, and y € (0,1).

Our final objective function integrates all components through a carefully designed
multi-term loss that balances source supervision, sample separation, domain alignment,
and regularization.

The open-set classifier H, outputs |Cs| + 1 logits, with the last logit representing
“unknown.” We optimize the total loss:

L = Lsyc + AcoLcoarse + AfiLfine + /\adeadv + )\perroto

(24)
+AunkLunk + AentLent + AcurLeurr

Each loss term addresses a specific aspect of the open-set domain adaptation problem:
Lsrc ensures source discriminability, Leogrse and L Fine enable known/unknown separation,
L4, performs selective alignment, Lyt enhances intra-class consistency, L, promotes
unknown rejection, L.,; sharpens decision boundaries, and L, provides training stability.

Where each term corresponds to supervised source classification, coarse/fine stage
training, adversarial alignment, target entropy minimization, and curriculum penalty.

3.7. Objective Function

The optimization of our multi-component objective requires a progressive training
strategy that alternates between sample separation and domain alignment to ensure sta-
ble convergence.

We divide the training into two progressive stages: (1) sample separation, where target
data are partitioned into likely known and likely unknown subsets based on confidence
scores, and (2) domain adversarial adaptation, where only the reliable known subset is
aligned with the source domain distribution. By alternating between these two stages, the
model gradually adapts target samples of known classes while rejecting unknown ones.

Algorithm 1 summarizes the procedure. In the first step, we train the feature extractor
fo and classifier H, with source supervision, while auxiliary coarse classifiers {/;} provide
confidence scores for sample separation. Target samples with high scores are treated as
potential known data and passed to the fine classifier 1y, whereas low-score samples are
considered likely unknown.

This alternating optimization strategy prevents the premature alignment of unknown
samples while gradually improving the separation of known and unknown classes, leading
to more robust open-set domain adaptation performance.

14
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Algorithm 1: Coarse-to-Fine Open-Set Domain Adaptation (CE-OSDA)

Input: D, = {(z},y;)}, D; = {x}, known classes C;
Output: 0, 0,1, H,, {h}
Initialize fg, Hy, {hi}, ue, Dy;
for epoch + 1 to E u4m do
Sample By C Dy;
zs < fo(Bs.x);
Loye < CE(H,(25), Bs.y);
Lcoa'rse — Zk: BCE(l[y = k} O—(}Lk(zs)));
Update (0, Hy, {hy});
for epoch < Eyurm + 1 to E,q. do
if epoch = Furm + 1 or epoch mod A = (0 then
Compute s(x) = maxy o(hr(fo(x)));

L Thigh < mean(top_q(s)), Tiow <+ mean(bottom_q(s));
T « {x:s(x) = Thign}, Tv « {7 :s(x) < Tiow };
Sample By, C Tx. B, C Ti:
wy <= o (ue(fo(Br.x)));

Wy = 0 (ug(fo(Bu.7)));
Lfine + BCE(0,wy) + BCE(1,w,);
Update (¢, 0);

Step 1: First, we train the feature extractor Hf and classifier Hy on the source do-
main. Additionally, we utilize each class of emotion samples in the source domain
to train the coarse classifiers Heoarse , Where coarse = 1,2,3,...,|Cs|. Next, we select
target domain samples with high and low probability scores, similar to those in the
source domain, to train the fine classifier Hg, . Here, we denote the parameters of

C C. . .
Hp, Hy, Hine , Heoarse . |:S1| as @ Iz 8y, Ofine » Ocoarse ||C Oalrse _4, respectively. The optimal
|G|

=1 can be found using the following equation, as

ICs]
coarse =1 -

+L5+Lb)

parameters 8¢, 0y, Ofine , Ocoarse
coarse =1

shown in Equation (8):

<§f/ é\yl é\flne 7 é\coarse

argmin (L

C.
0,0y,65.0c/|]

(25)

s
cls

Step 2: In this step, we primarily perform domain adversarial adaptation to align the
feature distribution of known classes in the target domain with that in the source domain.
Additionally, we use data from unknown classes to train Hy as additional classes. In this
step, we continue training the classifiers with source samples to retain knowledge relevant
to known class emotions. We denote the parameters of the domain discriminator Hy as 6.
The optimal parameters §f, §y, f4 can be obtained using the following two equations, as
shown in Equations (9) and (10):

(@f 67d) = Wegigin( as T Les + La + ALe) (26)
y/9d
9Af — arg;mi”( us + Las — La + ALe) (27)
f

where A is a hyperparameter used to balance the entropy loss.
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Through the proposed C2FDA model, we can effectively separate known and un-
known class data in the target domain. Step 1 rejects unknown class emotion data to avoid
interference from unknown class emotions in Step 2, where domain adversarial adapta-
tion aligns the feature distributions of samples between the source and target domains.
Since there is no manual selection of threshold hyperparameters throughout the process,
the disadvantage of tuning parameters when the openness changes in real scenarios can
be avoided.

In summary, the biggest problem of an open-set task is the separation of known
emotions and unknown emotions. In order to solve this problem, we propose the C2FDA
method. The C2FDA method uses a gradual method to find two types of samples with high
scores and low scores during training. Because the prediction results of the samples with
high scores will be more accurate, it is also conducive to training the classifiers of known
classes, while the samples with low scores tend to be the samples of unknown classes, so
we can extract these samples to train the classifiers of unknown classes. By this means, we
can well separate the known emotion from the unknown emotion. At the same time, it also
solves the impact of the negative migration of wrong samples.

4. Experiments and Analysis
4.1. Dataset

SEED: The SEED dataset [40,41] is a publicly available dataset for studying the relation-
ship between emotions and EEG signals. It consists of recordings from three sessions, each
containing EEG signal data from 15 subjects. In each session, subjects watched 15 video
clips with varying emotional tendencies (negative, neutral, positive), as shown in Figure 5.
EEG signals were recorded using a 62-channel ESI neuroimaging system at a sampling
rate of 200 Hz and band-pass filtered from 0 to 75 Hz. The raw EEG signal data were
processed to extract features in five frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha
(8-14 Hz), beta (14-31 Hz), and gamma (31-50 Hz), producing 310-dimensional feature
vectors (5 frequency bands x 62 channels).

Figure 5. Video clips watched by subjects in the SEED dataset.

SEED-1V: The SEED-IV dataset [42,43] contains three sessions, each with 15 subjects.
In each session, subjects watched 24 video clips with different emotional tendencies (happi-
ness, sadness, fear, neutral), as shown in Figure 6. Similar to the SEED dataset, the EEG data
were processed into 310-dimensional feature vectors (5 frequency bands x 62 channels),
ensuring consistency for comparison. This normalization of the EEG data allows direct
comparison with SEED.
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Neutral

Figure 6. Video clips watched by subjects in the SEED-IV dataset.

SEED-V: The SEED-V dataset [44] differs from the previous two datasets in that it
includes three sessions with 16 subjects in each session. In each session, subjects watched
video clips with five emotional tendencies (happiness, sadness, fear, neutral, disgust), as
shown in Figure 7. Similar to the SEED and SEED-IV datasets, the EEG data were transformed
into 310-dimensional feature vectors (5 frequency bands x 62 channels) to standardize the
data across all datasets. This ensures consistency in the EEG data representation.

Disgust

Neutral Fear

Figure 7. Video clips watched by subjects in the SEED-V dataset.

Differences Between Datasets Table 1 outlines the key differences among the three
datasets, including the number of subjects, video clips, and emotion categories, highlighting
the increasing complexity of label spaces, especially from SEED to SEED-V. The differences
between the three datasets are shown in Table 1.

Table 1. Differences between the SEED, SEED-IV, and SEED-V datasets.

Item SEED SEED-IV SEED-V
Emotions Positive, Negative, Neutral Happy, Sad, Neutral, Fearful Happy, Sad, Disgust, Neutral, Fearful
Number of Subjects 15 15 16
Video Clips 15 24 15
Video Length 4 min 2 min 50 min
Sample Length 1s 4s 15-30's
Number of Samples ~3394 ~843 ~681
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4.2. Implementation Details

In our experiments, we use the SEED, SEED-1V, and SEED-V datasets to validate the
performance of the C2FDA method in the open-set EEG emotion recognition task. The
experiments are conducted across three main transfer scenarios, which differ in the number
of emotional categories:

e SEED contains 3 emotions
e SEED-IV contains 4 emotions
e SEED-V contains 5 emotions

To investigate the model’s performance further, we conduct experiments with the
following transfer scenarios: “SEED — SEED-1V”, “SEED-IV — SEED-V”, and “SEED —
SEED-V”. The source domain in each scenario consists of data from 15 or 16 subjects in one
session, while the target domain consists of data from a single subject in one session. Each
dataset has three sessions, which allows us to test the model under different conditions
and obtain reliable results.

Due to the inconsistency in label spaces between the datasets—SEED having 3 emotion
classes, SEED-IV having 4, and SEED-V having 5—we perform experiments that involve
transferring between these datasets. In each experiment, one subject from the target domain
is randomly selected for testing, and the remaining subjects” data are used for training.
As each dataset contains three sessions, we obtain results for three different sessions in
each experiment.

4.3. Experimental Results

We conduct three sets of experiments on open-set emotion recognition based on the
same experimental setup. The experimental results are shown in Tables 2—4.

Figure 8 t-SNE visualization of learned features. (a) SEED — SEED-IV and (b) SEED-IV
— SEED-V transfer scenarios before and after domain adaptation. Source (solid) and target
(hollow) domain samples are color-coded by emotion categories. Post-adaptation features
exhibit reduced domain discrepancy and improved class-wise clustering.

Table 2. Recognition accuracy (%) of the C2FDA framework for emotion recognition tasks on open-set
EEG datasets. The bold text indicates the best performance in each session.

(SEED — SEED-IV)

Session 1 Session 2 Session 3
S1 39.90 52.76 50.50
S2 47.84 41.71 57.75
S3 29.09 30.05 34.12
S4 25.48 29.69 35.75
S5 40.02 25.96 43.75
S6 54.33 37.62 50.50
S7 31.61 26.44 46.88
S8 41.35 29.33 48.75
S9 40.87 37.14 48.00
S10 53.85 49.16 47.25
S11 43.15 31.37 45.38
S12 38.58 51.08 67.12
S13 43.27 36.78 70.25
S14 38.82 32.21 36.12
S15 41.71 30.65 33.50
Average 40.66 36.13 47.71
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Table 3. Recognition accuracy (%) of the C2FDA method for emotion recognition tasks on open-set

EEG datasets.
(SEED — SEED-V)
Session 1 Session 2 Session 3
S1 34.23 18.36 34.38
S2 57.74 59.18 45.83
S3 34.67 47.85 41.49
S4 40.33 4473 52.08
S5 30.65 42.38 31.77
S6 44.79 25.00 46.88
S7 45.54 48.63 60.76
S8 46.28 39.26 39.06
S9 40.18 56.05 64.41
S10 64.73 62.89 56.42
S11 37.80 38.48 34.72
S12 49.55 44.14 31.60
S13 31.25 23.44 27.08
S14 35.71 51.56 33.68
S15 46.73 36.13 49.65
S16 37.80 45.90 31.60
Average 42.37 42.75 42.59

Table 4. Recognition accuracy (%) of the C2FDA method for emotion recognition tasks on open-set
EEG datasets (SEED-IV — SEED-V).

Session 1 Session 2 Session 3

S1 40.18 37.11 20.83
S2 46.13 44.92 51.04
S3 50.89 31.45 50.00
S4 47.02 52.93 69.79
S5 57.74 26.76 31.42
S6 41.67 53.12 33.16
S7 63.24 51.95 68.40
S8 54.46 49.61 54.69
S9 45.68 68.36 55.21
S10 52.83 51.37 76.74
S11 41.67 48.05 58.85
S12 23.81 29.49 50.35
S13 54.17 32.23 35.76
S14 48.07 50.78 61.98
S15 60.12 48.05 46.88
S16 35.12 68.95 73.96
Average 47.68 46.57 52.44

SEED — SEED-IV: The results for the SEED — SEED-IV transfer task are shown in
Table 2 and Figure 9. The C2FDA model demonstrates superior performance compared
to baseline methods, achieving recognition accuracies of 40.66%, 36.13%, and 47.71%
across the three sessions. As illustrated in Figure 9, C2FDA consistently outperforms
existing approaches including DANN [12] (28.5%, 25.7%, 34.8%), MMD [13] (29.8%, 27.1%,
36.4%), CORAL [14] (31.2%, 28.3%, 37.2%), CDAN [15] (33.5%, 29.6%, 39.1%), OSBP [25]
(35.4%, 31.2%, 41.7%), and MAOSDAN [27] (37.8%, 33.9%, 44.2%) across all sessions. The
performance improvement is particularly notable in Session 3, where C2FDA achieves
47.71% compared to the second-best MAOSDAN at 44.2%, demonstrating the effectiveness
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of our coarse-to-fine processing strategy in handling the domain shift between the three
emotional classes in the source domain and four emotional classes in the target domain.

SEED — SEED-IV Transfer
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Figure 8. t-SNE visualization of domain adaptation for cross-dataset emotion recognition.

SEED — SEED-V: In the SEED — SEED-V transfer task (Table 3), the model achieves
recognition accuracies of 42.37%, 42.75%, and 42.59% across the three sessions. As demon-
strated in Figures 8 and 9, the C2FDA method shows robust performance in distinguishing
between known classes (Happy, Sad, Neutral) and unknown classes (Disgust, Fear). The
ROC analysis in Figure 10 reveals excellent discrimination capability with AUC values
of 0.84 for Happy, 0.86 for Sad, and 0.77 for Neutral, while unknown classes achieve
AUC values of 0.71 for Disgust and 0.74 for Fear, all significantly outperforming random
classification. The confusion matrix in Figure 11 further validates the effectiveness of our
approach, showing strong diagonal values for known classes (0.68 for Happy, 0.71 for Sad,
0.58 for Neutral) and effective unknown class detection with 42% and 46% of Disgust and
Fear samples correctly identified as unknown. This performance improvement over the
SEED — SEED-IV task can be attributed to the increased diversity of emotional states in
SEED-V, which provides richer information for learning the distinction between known
and unknown categories.
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SEED — SEED-V Transfer: ROC Analysis and Performance Metrics
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Figure 10. SEED — SEED-IV Transfer: ROC Analysis and Performance Metrics.

The SEED-IV — SEED-V task (Table 4) shows the most significant improvement, with
overall recognition accuracies of 47.68%, 46.57%, and 52.44% across the three sessions.
As illustrated in Figures 11 and 12, the multi-dimensional performance analysis reveals
excellent capabilities in both known class recognition and unknown class detection. The
known class performance consistently exceeds the baseline (65%) with accuracies of 72.5%,
71.2%, and an exceptional 76.8% in Session 3, which represents the highest recognition
rate across all tasks. Simultaneously, the unknown detection performance maintains
stable rates of 45.0%, 42.9%, and 48.2% across sessions, effectively balancing the dual
objectives of accurate known class classification and reliable unknown class rejection.
This superior performance compared to previous tasks can be attributed to the expanded
known class space (from 3 to 4 categories) which provides richer feature representations
for distinguishing between shared and novel emotional states. The consistent performance
above average baselines across all metrics demonstrates the robustness of our coarse-to-fine
approach in handling more complex open-set scenarios.
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Figure 11. Confusion Matrix: SEED — SEED-V Open-Set Transfer Task.
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Figure 12. Ablation analysis of the proposed method across three transfer tasks.

Analysis of Performance As demonstrated in Figure 13, C2FDA consistently outper-
forms all baseline methods across the three transfer scenarios with average accuracies
of 41.5%, 42.6%, and 48.9% for SEED — SEED-IV, SEED — SEED-V, and SEED-IV —
SEED-V, respectively. The comprehensive performance comparison shows substantial
improvements over traditional domain adaptation methods (DANN: 28.5-37.1%, MMD:
29.5-37.2%, CORAL: 31.8-38.7%) and existing open-set approaches (OSBP: 36.1-44.3%,
MAOSDAN: 38.9-46.5%). The performance trend analysis reveals that C2FDA achieves
progressively better results as the task complexity increases, with an overall average of
44.32% across all scenarios. The superior performance in SEED-IV — SEED-V (48.9%)
compared to scenarios with more unknown classes demonstrates the effectiveness of our
coarse-to-fine strategy in leveraging richer known class representations for better unknown
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class detection. This consistent superiority across varying degrees of openness validates
the robustness of C2FDA in handling diverse open-set domain adaptation challenges in
EEG emotion recognition.

SED-IV — SED-V: Multi-dimensional Performance Analysis Across Training Sessions

Comparative Evaluation of System Enhancement and Detection Capabilities (N=3 sessions, 6=0.05)
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Figure 13. SEED-IV — SEED-V: Multi-dimensional Performance Analysis Across Sessions.

In all three tasks, the proposed model achieved satisfactory performance, indicating
the validity of our proposed method. Since it is difficult to distinguish between known and
unknown emotional classes, we effectively addressed this issue through a coarse-to-fine
strategy, obtaining a stable model through multiple iterations.

Figure 14 illustrates the key performance results of the C2FDA method for open-set
EEG emotion recognition. The left panel presents a comprehensive performance compari-
son between C2FDA and multiple baseline methods, including DANN, MMD, CORAL,
CDAN, and MAOSDAN, across three cross-dataset tasks: SEED — SEED-IV, SEED —
SEED-V, and SEED-IV — SEED-V. The results demonstrate that the proposed C2FDA
method significantly outperforms existing domain adaptation approaches across all testing
scenarios, particularly achieving the highest average accuracy in the SEED-IV — SEED-V
task. The right panel further displays the performance trend of C2FDA across different
tasks, where the SEED-IV — SEED-V task achieves the best performance of 48.36%, with
an overall average accuracy of 44.33%. These experimental results thoroughly validate the
effectiveness of the C2FDA method in addressing cross-domain generalization challenges

in open-set EEG emotion recognition, providing a novel technical pathway for research in
this field.

4.4. Semantic Communication Perspective

From the viewpoint of semantic communication, C2FDA’s performance improvements
can be interpreted as enhancements in semantic fidelity and communication efficiency.
By rejecting unknown samples, the method reduces the amount of data that needs to be
transmitted or processed, which is critical for bandwidth-constrained edge devices in 6G
networks. For example, in a scenario where EEG features are extracted at the edge and only
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known emotional states are transmitted to a central server, C2FDA can significantly reduce
communication overhead while maintaining high recognition accuracy. This makes it
suitable for real-time human—machine interaction applications in next-generation networks.

Comparative Performance Analysis Across Domain Adaptation Tasks

Performance Comparison with Trend Analysis
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Figure 14. Key Performance of C2FDA for Open-Set EEG Emotion Recognition.

5. Conclusions

In summary, this study proposes the C2FDA framework for open-set EEG emotion
recognition, addressing challenges related to negative transfer and the detection of un-
known classes. The coarse-to-fine processing module separates known and unknown
emotional classes based on similarity scores, while the domain adversarial module op-
timally aligns feature spaces between the source and target domains. Comprehensive
experiments demonstrate that C2FDA consistently outperforms existing domain adap-
tation and open-set methods across multiple transfer scenarios. The ROC analysis and
confusion matrix results confirm robust discrimination capability between known and
unknown classes, maintaining excellent balance between accurate recognition and reliable
detection. The progressive performance improvement across varying task complexities
validates the effectiveness and robustness of our approach. Future research will focus on
incorporating more diverse data and optimizing both modules to enhance model general-
ization and stability across different degrees of dataset openness.

While this work conceptually explores the potential alignment of C2FDA with seman-
tic communication principles in 6G networks, it is primarily focused on the development
and evaluation of an open-set domain adaptation framework for EEG emotion recognition.
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By filtering task-relevant semantics and rejecting unknown states, C2FDA improves both
semantic efficiency and robustness, providing insights into human-centric semantic commu-
nication in next-generation networks. Future work will explore the integration of C2FDA
into edge-cloud semantic communication pipelines and evaluate its performance under
realistic network constraints, while also investigating its potential impact on 6G-oriented
human-machine interactions.
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Abstract

Deep learning-based synthetic aperture radar (SAR) target recognition often suffers from
overfitting under few-shot conditions, making it difficult to fully exploit the discriminative
features contained in limited samples. Moreover, SAR targets frequently exhibit highly
similar background scattering patterns, which further increase intra-class variations and re-
duce inter-class separability, thereby constraining the performance of few-shot recognition.
To address these challenges, this paper proposes an adaptive contrastive metric (ACM)
network with background suppression for few-shot SAR target recognition. Specifically, a
spatial squeeze-and-excitation (SSE) attention module is introduced to adaptively highlight
salient scattering structures of the target while effectively suppressing noise and irrele-
vant background interference, thus enhancing the robustness of feature representation.
In addition, an ACM module is designed, where query samples are compared not only
with their corresponding support class but also with the remaining classes. This enables
explicit suppression of confusing background features and enlarges inter-class margins,
thereby improving the discriminability of the learned feature space. The experimental
results on publicly available SAR target recognition datasets demonstrate that the proposed
method achieves significant improvements in background suppression and consistently
outperforms several state-of-the-art metric-based few-shot learning approaches, validating
the effectiveness and generalizability of the proposed framework.

Keywords: synthetic aperture radar (SAR); target recognition; few-shot learning; attention
mechanism; background suppression

1. Introduction

Synthetic aperture radar (SAR), as an active microwave imaging technology, can ac-
quire ground object information under all weather and all-day conditions, with advantages
such as strong penetration, high anti-interference capability, and fine resolution. Unlike op-
tical or infrared imaging, SAR does not rely on natural illumination or weather conditions,
and thus remains stable in complex environments. It has been widely applied in military
reconnaissance [1], disaster monitoring [2], resource exploration [3], and environmental
sensing [4]. However, SAR imagery also faces unique challenges, including speckle noise
interference, high similarity between targets and backgrounds, and difficulties in sample
acquisition. These issues severely constrain the performance of deep learning-based auto-
matic target recognition (ATR). Therefore, achieving robust SAR target recognition under
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limited-sample conditions has become a critical scientific problem that urgently needs to
be addressed in the field of intelligent remote sensing interpretation.

Traditional SAR target recognition methods [5-9] primarily include template matching,
statistical modeling, and shallow machine learning approaches. By extracting geometric
structures, scattering characteristics, or texture information, these methods significantly
advanced the early development of automatic SAR image interpretation and laid an im-
portant foundation for subsequent research. With the evolution of pattern recognition
and computational intelligence, researchers began to integrate feature engineering with
classification models to further improve recognition accuracy and efficiency. Nevertheless,
the true breakthrough came with the rise of deep learning, which opened a new chapter
for SAR target recognition. In particular, the adoption of convolutional neural networks
(CNNSs) and other end-to-end feature learning methods [10-16] has enabled models to auto-
matically learn hierarchical representations directly from raw SAR data, greatly enhancing
the expressive power and discriminative capacity of feature extraction, and driving SAR
intelligent recognition into a new stage of development.

The abundance of data has been a cornerstone of deep learning’s remarkable success,
providing models with sufficient samples and diverse information to better capture data
characteristics and learn effective representations. However, when training data are lim-
ited, CNN-based deep models are prone to overfitting, resulting in degraded recognition
performance. Compared with optical imagery, the acquisition of SAR data poses greater
challenges in practical applications: on the one hand, SAR image collection is constrained
by sensor platforms, observation conditions, and security considerations; on the other hand,
annotating SAR data requires domain expertise, making the process both time-consuming
and costly. To address the bottleneck of insufficient SAR samples, researchers have ex-
plored a wide range of strategies. To alleviate the high cost of annotation, semi-supervised
learning [17] exploits a mixture of limited labeled samples and abundant unlabeled data to
improve model performance and generalization, while active learning focuses on labeling
the most informative samples to maximize efficiency under limited annotation budgets.
For cases where large-scale SAR samples are difficult to obtain, methods such as data aug-
mentation [18], data generation [19], and transfer learning [20] have been widely applied
to enrich sample diversity, synthesize training data, or transfer knowledge from other
domains. These strategies open up new avenues for SAR target recognition and provide
solid support for achieving efficient recognition under limited-sample conditions.

Under limited-sample conditions, conventional deep learning approaches often fail
to achieve satisfactory performance. To address this challenge, researchers have increas-
ingly turned to few-shot learning (FSL) as an effective paradigm for handling data scarcity.
Mainstream FSL methods can be broadly categorized into three groups: (1) metric-based
methods, which construct a metric space and perform classification by comparing simi-
larities between samples; (2) optimization-based methods, which leverage meta-learning
frameworks to quickly adapt to new classes across tasks; and (3) model-based methods,
which employ generative models or external memory mechanisms to enrich sample rep-
resentations. Among these approaches, metric-based FSL stands out for its simplicity,
computational efficiency, and strong discriminative capability even with extremely limited
samples, making it particularly suitable for SAR target recognition. Therefore, this study
adopts metric-based FSL as its core methodology to explore new ways of enhancing SAR
target recognition under limited-sample conditions.

To tackle the aforementioned challenges, this paper proposes an adaptive contrastive
metric (ACM) network with background suppression for few-shot SAR target recogni-
tion. Unlike conventional metric-based methods that primarily rely on limited support
samples for direct matching, our framework leverages a spatial squeeze-and-excitation
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(SSE) attention module to selectively emphasize the salient scattering structures of the
target while mitigating irrelevant background, thereby reinforcing the robustness of feature
representation. Furthermore, an ACM module is developed, which explicitly incorporates
contrasts with the remaining classes. This design enables the suppression of confusing
background features and the enlargement of inter-class margins. By jointly optimizing
feature robustness and discriminability, the proposed method provides a novel solution to
improve recognition performance under few-shot conditions.

The main contributions of this study can be summarized as follows:

We propose a few-shot SAR target recognition method that integrates an ACM net-
work with background suppression, effectively alleviating the problems of overfitting and
insufficient inter-class separability under limited training samples.

An SSE attention module is introduced to adaptively emphasize the salient scatter-
ing structures of the target while suppressing noise and irrelevant background, thereby
improving the robustness and discriminability of feature representation.

An ACM module is proposed and combined with the image-to-class (12C) module
to construct a discriminative metric module. This module is not only used to evaluate
the similarity between query samples and their corresponding support classes but is also
explicitly extended to incorporate comparisons with other classes. Through this design,
background interference can be effectively suppressed, inter-class separability is enhanced,
and the model’s accuracy in target recognition tasks is significantly improved.

The remainder of this paper is organized as follows: Section 2 provides a brief review
of research progress on few-shot SAR target recognition and metric-based FSL methods.
Section 3 presents a detailed description of the proposed framework and its core modules.
Section 4 analyzes the experimental results to validate the effectiveness of the method.
Section 5 concludes this work and outlines future research directions.

2. Related Works
2.1. Metric-Based FSL Algorithms

In recent years, metric learning has become one of the mainstream approaches in FSL.
Koch et al. [21] first proposed the Siamese network, which measures the similarity between
sample pairs for one-shot image recognition. Subsequently, Vinyals et al. [22] introduced
matching networks, which employ an attention mechanism to establish matching relation-
ships between support and query sets. Snell et al. [23] proposed prototypical networks,
which construct a metric space using class prototypes. Sung et al. [24] further developed
relation networks, learning a nonlinear metric function to improve few-shot classification
performance. In addition, Li et al. [25] introduced distribution consistency constraints and
designed a covariance metric network to enhance feature distribution modeling.

Recently, attention and contrastive learning mechanisms have been increasingly inte-
grated into metric-based frameworks to enhance discriminative capability. For example,
DeepEMD [26] introduced a differentiable Earth Mover’s Distance to achieve fine-grained
instance-level matching, while Few-shot Embedding Adaptation Transformer (FEAT) [27]
employed set-to-set embedding adaptation with Transformer-based attention to improve
task-specific representation learning. Beyond these attention-based extensions, contrastive
frameworks such as SImCLR [28] and Contrastive Language-Image Pre-training (CLIP) [29]
further expanded the metric-learning paradigm by explicitly optimizing intra-class com-
pactness and inter-class separability through contrastive alignment. These advances bridge
traditional prototype-based FSL and modern contrastive representation learning, providing
a broader conceptual foundation for our proposed adaptive contrastive metric framework.

However, most of the above methods mainly rely on global image-level features
for metric computation, which limits their ability to capture fine-grained discriminative
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information. This drawback becomes particularly evident under complex backgrounds
or when inter-class similarity is high. To address this issue, Li et al. [30] revisited local
feature descriptors and proposed an I2C metric that effectively alleviates the shortcomings
of global metrics, offering a new perspective for metric-based FSL.

2.2. Metric-Based FSL Algorithms for SAR ATR

In recent years, few-shot SAR target recognition has emerged as a significant research
direction in intelligent remote sensing interpretation. Early studies primarily focused on
transfer learning and cross-domain adaptation, where deep transfer learning [31,32] and
cross-modal knowledge transfer [33] were employed to mitigate the performance degrada-
tion caused by limited samples. Subsequently, extensive efforts have been devoted to metric
learning frameworks, including transductive prototypical attention reasoning network
discriminative metric networks [34], Fourier- or SVD-based feature reconstruction met-
rics [35-37], as well as prototype-based and cosine prototype learning approaches [38,39],
all of which effectively improve discriminability under few-shot settings. Meanwhile, meta-
learning concepts have been introduced into SAR recognition, such as hyperparameter-
based fast adaptation [40], which further enhances task-level adaptability. Building on
these advances, researchers have increasingly emphasized the integration of structural
features and prior knowledge, for example, scattering attribute-based feature modeling [41],
transformer-enhanced few-shot SAR-ATR model [42], and Siamese subspace classification
networks [43]. These approaches aim to capture better the physical scattering properties
and geometric relations of SAR targets. In parallel, some studies have investigated imaging
conditions and geometric priors, such as optimal azimuth angle selection [44], to improve
recognition stability under limited-sample scenarios.

Despite these advances, few-shot SAR target recognition remains highly challenging
due to the unique imaging characteristics of SAR data. The presence of speckle noise,
complex and highly similar background scattering, and view-dependent target structures
leads to large intra-class variations and small inter-class margins. Moreover, the limited
availability of labeled samples restricts deep models from fully exploiting discriminative
scattering features, while strong correlations between targets and their surrounding back-
grounds often cause overfitting to contextual cues rather than intrinsic target structures. To
address these challenges, this paper proposes an adaptive contrastive metric (ACM) net-
work with background suppression, which incorporates a spatial squeeze-and-excitation
(SSE) module to emphasize salient scattering regions and suppress irrelevant background
interference, and an ACM module to perform cross-class contrastive alignment that explic-
itly enlarges inter-class separability and mitigates background confusion. Together, these
designs enhance the robustness, discriminability, and generalization capability of few-shot
SAR target recognition under complex imaging conditions.

3. Method

The proposed method consists of three main components: a feature extraction module,
an SSE attention module, and a discriminative metric module. First, both the support
samples and query samples are passed through the embedding module to extract deep
feature representations, thereby constructing a more discriminative feature space. The SSE
module models the spatial distribution of feature maps by generating an attention map that
emphasizes target regions and suppresses background noise, thereby improving feature
robustness and discriminability. The discriminative metric module is composed of two
submodules: the I2C metric, which measures the similarity between a query sample and its
corresponding support class, and the ACM module, which evaluates the similarity between
the query sample and other non-target support classes. To enhance discriminability, the
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final metric result is obtained by subtracting the latter from the former, which explicitly

pulls the query sample closer to its positive class while pushing it farther away from the

other classes. During training, a cross-entropy loss is employed to optimize the overall

metric result. The overall framework of the proposed approach is illustrated in Figure 1.
12C Metric Module

""""""" , D4,
‘ _ Embedding Module @Sl e (4:5:)
= ) m
Dyc(4,S;) ¥ 0.1
I O— 05
| Duen(@.Si) o
: . 0.1
1 )
Support Set  Query Image L q . ,,l?,‘i'f,(,",’fffi"f‘f’,),. 4
Feature Maps Adaptive Contrastive Metric Modul

S B0 __ae N\ O )
ISCIIINAU Ve [VICUIC viodulc

'T]
D
H
2
i
3
‘s
<
<l
i
0
B
2
5
5
>
<
5
SN
&
)

Figure 1. The architecture of the proposed method.

3.1. Embedding Module

Given a SAR image x, it is first fed into the embedding module £(-) to extract feature
representations, which can be formulated as

F=E(x0) )

where 0 denotes the learnable parameters of the embedding module and F € R*HxW
represents the output feature map. Here, C is the number of channels while H and W
correspond to the spatial dimensions.

The embedding module comprises four convolutional blocks designed to progressively
extract discriminative features from SAR images. The first two blocks each include a
convolutional layer, batch normalization (BN), leaky ReLU activation, and a 2 x 2 pooling
operation. The convolutional layers use a 3 x 3 kernel with a stride of 1 and padding of
1 to preserve spatial dimensions, while pooling reduces resolution. The last two blocks
consist of a convolutional layer, BN, and leaky ReLU without pooling, to retain more
spatial details.

3.2. SSE Attention Module

To enhance the model’s ability to focus on crucial spatial regions, we incorporate an
SSE attention module. This module takes an input feature tensor F of shape (N,H,W,C)
and produces a refined feature tensor F of the same size. The operation of this module can
be summarized in three steps:

1.  Spatial Information Squeeze: We first employ a bias-free 1 x 1 convolutional layer
to reduce the channel dimension of the input features from C to 1, generating an
intermediate feature map Z € RN*1*HxW_This operation aggregates information
from all channels at each individual spatial location (&, w), which can be depicted as

Z = Conv2D1,(F) ()

2. Attention Weight Excitation: The intermediate feature map Z is then passed through
a Sigmoid activation function o(-) to produce a spatial attention weight map A with
values in the range (0, 1), which can be expressed as

A=0(2) ®)
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3.  Feature Reweighting: Finally, adaptive modulation of the features is achieved by
performing element-wise multiplication between the attention map A and the orig-
inal input features F. This enhances the feature responses in salient regions while
suppressing those in non-salient ones, which can be represented as

where © denotes element-wise multiplication (with broadcasting).

3.3. Discriminative Metric Module

12C metric module: In traditional metric-based FSL, most approaches rely on image-
level feature representations to compute class similarity. However, under few-shot con-
ditions, global features often fail to accurately capture the true distribution of classes. To
address this issue, Li et al. proposed the DN4 algorithm, which applies the 12C similar-
ity with a metric based on local descriptors. This approach provides richer and more
discriminative fine-grained feature representations.

Specifically, given a query sample g and a support set S = {S1,5,,...,Sk}, their
local descriptors are extracted by the embedding Module and the SSE, which can be
expressed as

f(q) = SSE(£(q)) € R ®)

f(S) = [SSE(E(S1)), SSE(£(S2)),...,SSE(£(Sk))] € RE*mK (6)

where m denotes the number of local descriptors per image, and K is the number of support
samples.
The image-to-class similarity metric based on local descriptors can then be expressed as:

m

Dnc(q,8) =), ), COS(x;:xé) @)

=l eNi(x))

where N k(xf]) represents the set of k nearest neighbors of query descriptor x; among all
support descriptors. In our experiments, k is set to 3. The cosine similarity is defined as:

o amd
os(xlq,x]s) =
[EAA R B

X

®)

This local descriptor-based metric effectively captures fine-grained scattering patterns
and spatial structural information, making it more discriminative than global representa-
tions. Moreover, the I2C metric module introduces no additional learnable parameters,
which helps mitigate the risk of overfitting under few-shot conditions.

Adaptive contrastive measure module: The support set feature can be expressed as

S = {SSE(£(S1)),...,SSE(£(Sx))} )

SSE(E(S:)) = {si1,---,sim}, Sim € RY (10)

where N is the number of classes, M is the number of samples per class, and d is the feature
dimension.
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(1) Intra-Class Remainder Set Construction
For any sample s;;,, from class i, construct the intra-class remainder set by excluding
this sample, which can be represented as

51(;22 = {Sn, oo Si(m=1)r Si(m41)r - s SiM} (11)

where 51(11132 is arranged as a matrix of size (M — 1) x d, representing all sample features in

class i except sjy,.

(2) Intra-Class Feature Aggregation
(i,m)

intra

Apply attentive pooling to S to obtain the intra-class summary vector, which can
be expressed as

alim) — AttnPool(s(""")) (12)

intra intra

The attention weights are computed as

exp(w "sy)
— _SXPW Sik) 13
T exp(w Tsy) =
jm
alt) = Y sy (14)
k#m

where w € R is a learnable parameter. Attentive pooling performs a data-driven weighted
aggregation of intra-class samples, making the aggregation focus more on the intra-class
elements relevant to s;,,.

(3) Inter-Class Remainder Set Construction

For class i, gather all samples from all other classes to serve as the inter-class

= Us (15)

This forms a matrix of size (N — 1)M X d, encompassing the features of all samples
not belonging to class i.

(4) Inter-Class Feature Aggregation
(i)

Apply max pooling to S; ;.. to obtain the inter-class summary vector, which can be
denoted as ' ‘

ai(r?ter = MaxPool (Si(;)ter) (16)

) K] = maxj i 1<i<mSiK, k=1,....4, (17)

Max pooling selects the most significant response across classes for each dimension,
thereby preserving the “most distinctive” inter-class cues. For greater robustness, this
can be replaced with average pooling or attentive pooling without changing the overall
framework.

(5) Dual-Level Feature Fusion

Concatenate the intra-class and inter-class summary vectors and feed them into a
lightweight fusion network to obtain the enhanced representation for (i, 1), which can be
indicated as

0 = Fo ([ajn | aloie] ) (18)

intra
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where [-||-] denotes vector-level concatenation, and Fy is a two-layer MLP:
Fo(x) = WoReLU(W;x + by) + by. (19)

If the desired output dimension is to match the original feature dimension, let W; ¢
R*24 W, ¢ RY*h where h is the hidden dimension.

This step establishes a learnable interactive mapping between the “intra-class consis-
tency summary” and the “inter-class discriminative summary”, outputting slim) e RY as
the refined feature intended for downstream metric learning/matching tasks.

(6) Final Remainder Set Construction

For class i, aggregate all its enhanced representations:

S0 = (st M)y (20)
and stack them along the class dimension to obtain:
gremain _ [§(1) ®- P §(N)} c RNxMxd 1)

where @ denotes stacking along the class dimension.
Therefore, the process of adaptive contrastive metric can be expressed as

Dacwm (q, Sﬁé)mam) = i i cos (x;, (9?;)]) (22)

Therefore, the proposed discriminative metric can be represented as

D(q,S) = Drac(q,8) — Dacm(g, Semain) (23)

Here, S denotes the set of all support classes, and Sg,, represents the remaining
support classes. By introducing the ACM module, the relation between the query sample
and both target and non-target classes can be jointly evaluated, which enhances the dis-
criminative power of the metric function. This parameter-free design also helps suppress
background-related features and reduces the risk of overfitting under few-shot settings.

4. Experiments
4.1. Datasets

The MSTAR dataset, jointly released by the Defense Advanced Research Projects
Agency (DARPA) and the U.S. Air Force, is one of the most representative benchmark
datasets in the field of SAR target recognition and is widely used in automatic target
recognition research. It was collected using X-band spotlight SAR imaging with a resolution
of 0.3 m and includes side-looking SAR images of more than ten typical ground targets,
such as 251, BMP-2, BRDM2, BTR-60, BTR-70, D-7, T-62, T-72, ZIL-131, and ZSU-234. For
each target class, a large number of images were acquired under different azimuth angles
(0-360°), depression angles, and imaging conditions. With its diverse target categories,
complex imaging scenarios, and wide angular coverage, the MSTAR dataset also contains
occluded and structurally similar targets, making it a valuable benchmark for evaluating
models in few-shot recognition, inter-class similarity discrimination, and background
suppression. Consequently, it has become the most widely used and one of the most
challenging public benchmark datasets for SAR target recognition research.

The OpenSARShip dataset is a publicly available high-resolution SAR benchmark
dataset for ship recognition, released by the Aerospace Information Research Institute of
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the Chinese Academy of Sciences and related institutions. It is constructed from Sentinel-1
satellite C-band SAR imagery and contains a large number of ship samples collected under
diverse scenarios, covering various types of civilian and commercial vessels. Each image
has a spatial resolution of approximately 10 m and spans a wide range of environments,
including ports, coastal areas, and open sea routes. The dataset provides precise bounding
box annotations and class labels for ship targets, enabling tasks such as detection, classi-
fication, and FSL. With its large scale, diverse categories, and complex scene variations,
OpenSARShip serves as an important benchmark for evaluating the robustness and gener-
alization of models in challenging maritime environments. Consequently, it has become

one of the most widely used open datasets in SAR-based ship recognition research.

Examples of optical and SAR images from the MSTAR and OpenSARShip datasets are
shown in Figures 2 and 3, while the corresponding training and testing set partitions are
presented in Tables 1 and 2.

(@) (b) (© (d) (e) ® (€9 (h) @) )

Figure 2. MSTAR dataset: (a) 251; (b) BMP-2; (c) BRDM-2; (d) BTR-60; () BTR-70; (f) D-7; (g) T-62;
(h) T-72; (i) ZIL-131; (j) ZSU-234.

Figure 3. OpenSARship dataset: (a) Cargo; (b) Tanker; (c) Tug; (d) Dredging; (e) Fishing;
(f) Passengers.

Table 1. Training and testing partition of the MSTAR dataset.

Class Depression Number
BMP-2 17° 232
BTR-70 17° 233
Training 251 17° 299
BRDM-2 17° 298
BTR-60 17¢ 256
T62 17° 299
D-7 17° 299
Testing ZSU-234 17° 299
T-72 17° 232
ZIL-131 17° 299
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Table 2. Training and testing partition of the OpenSARship dataset.

Class Number
Cargo 222
Training Tanker 240
Tug 260
Dredging 80
Testing Fishing 80
Passengers 80

4.2. Experimental Setup

The training and inference experiments in this study were conducted in a Linux
environment with the following hardware and software configurations: the server is
equipped with 2 x Intel Xeon Platinum 8558 CPUs (96 cores in total) with a maxi-
mum frequency of 4.0 GHz; 2.0 TB of RAM; and 2 x NVIDIA H20 GPUs (each with
97,871 MiB of memory). The CUDA version is 12.4, and the driver version is 550.144.03.
The experimental environment was built using Python 3.8 and PyTorch 1.13 in Linux
(Ubuntu). This configuration provides stable computational support for model training
and inference, ensuring the reliability and reproducibility of the experimental results. The
input and output channel numbers of each convolutional layer in the feature extraction
network are listed in Table 3.

Table 3. Input and output channel configuration of each convolutional layer in the feature extraction network.

Convolutional Block Channel_In Channel_Out
Block 1 3 64
Block 2 64 64
Block 3 64 64
Block 4 64 64

Additionally, each image is resized to a fixed resolution (e.g., 84 x 84), converted into
a tensor format, and normalized to the range of [—1, 1]. This procedure helps mitigate the
effects of resolution differences between datasets and stabilizes the training process. The
same preprocessing steps are applied across all datasets to ensure experimental consistency
and reproducibility.

4.3. Contrast Experiments

On the MSTAR (5-way) and OpenSARShip (3-way) benchmarks, we compare our
method against metric-based baselines (ProtoNet, Baseline++, DN4, Meta-Baseline, CPN)
as well as a Transformer-based model (ACL) [45] and a generative model (TFH) [46]. As
reported in Tables 4 and 5, our approach achieves the best accuracy across most n-shot
settings, e.g., it improves over the strongest prior baseline by 2.61% in 5-way 1-shot and
2.55% in 3-way 2-shot. The generative TFH does not surpass our method largely because
its reconstruction/likelihood objectives tend to preserve background energy and speckle
patterns, which weakens discriminative margins under severe background similarity and
very low shots; it is also more sensitive to resolution/domain shifts across SAR datasets.
The Transformer ACL underperforms in the extreme low-shot regime due to its higher
data hunger and weaker inductive bias for small, noisy SAR sets, leading to overfitting and
unstable attention to clutter. In contrast, our framework—combining SSE for background
suppression with ACM for explicit cross-class contrast—directly enlarges inter-class mar-
gins while stabilizing features in cluttered scenes, yielding higher mean accuracy and
lower variance.
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Table 4. Performance comparison of the proposed method and other algorithms on the

MSTAR dataset.
Accuracy (%)
Method
o 1-Shot 2-Shot 5-Shot
Protonet 51.53 + 0.38 54.30 + 0.33 55.55 + 0.26
Baseline++ 50.59 + 0.35 56.74 + 0.30 64.75 + 0.27
Meta-baseline 52.14 4+ 0.34 55.01 +0.33 58.83 £+ 0.28
CPN 49.22 4+ 0.53 53.70 £ 0.50 54.54 £+ 0.38
DN4 50.64 + 0.42 57.49 + 0.31 67.69 + 0.30
ACL 49.83 + 0.38 55.27 + 0.41 68.24 + 0.30
TFH 37.76 + 0.63 41.99 + 0.58 48.22 + 0.56
Ours 54.75 4+ 0.32 58.92 + 0.24 68.84 + 0.22
Table 5. Performance comparison of the proposed method and other algorithms on the
OpenSARship dataset.
Accuracy (%)
Method
o 1-Shot 2-Shot 5-Shot
Protonet 70.81 4+ 0.45 73.49 £+ 0.33 79.17 £ 0.26
Baseline++ 67.83 4+ 0.45 73.17 +0.34 79.06 £+ 0.28
Meta-baseline 66.06 = 0.54 70.50 £ 0.43 76.55 £+ 0.40
CPN 70.56 4+ 0.23 73.70 +0.20 76.43 + 0.21
DN4 68.51 4+ 0.32 72.68 +0.24 80.52 + 0.19
ACL 63.75 +0.43 71.53 4+ 0.38 77.64 £+ 0.35
TFH 63.04 + 0.45 69.95 + 0.34 76.24 + 0.36
Ours 71.42 £ 0.22 76.25 £+ 0.20 81.86 + 0.18

4.4. Ablation Experiments

To verify the effectiveness of the proposed SSE and ACM modules, a series of experi-
ments were conducted on the MSTAR and OpenSARShip datasets, as shown in Tables 6
and 7. It can be observed that incorporating the SSE and ACM modules into the 12C
framework leads to a significant improvement in classification accuracy. Specifically, the
SSE attention module adaptively emphasizes salient scattering structures of the targets
while suppressing noise and irrelevant background, thereby enhancing the robustness
and discriminability of feature representations. The ACM discriminative metric module,
which considers all support classes, evaluates not only the similarity between query sam-
ples and their corresponding target classes but also explicit comparisons with non-target
classes, effectively reducing background interference and improving inter-class separability.
These results demonstrate the effectiveness and generalization capability of the proposed
modules in improving SAR target recognition performance.

Table 6. Accuracy comparison between the ACM module and the I2C metric module on the

MSTAR Dataset.
Accuracy (%)
Metric Method
1-Shot 2-Shot 5-Shot
12C 50.64 + 0.42 57.49 + 0.31 67.69 + 0.30
12C + SSE 53.46 + 0.30 58.37 + 0.28 68.41 + 0.29
12C + ACM 52.89 + 0.35 58.53 + 0.29 68.24 + 0.26
12C + SSE + ACM 54.75 4+ 0.32 58.92 + 0.24 68.84 £+ 0.22
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Table 7. Accuracy comparison between the ACM module and the I12C metric module on the Open-

SARShip Dataset.
) Accuracy (%)
Metric Method 1-Shot 2-Shot 5-Shot
12C 68.51 £+ 0.32 72.68 £+ 0.24 80.52 + 0.19
12C + SSE 70.86 = 0.27 73.69 £ 0.25 80.38 £+ 0.23
12C + ACM 70.29 £0.25 7492 £0.23 81.24 £+ 0.25
12C + SSE + ACM 71.42 4 0.22 76.25 1 0.20 81.86 1= 0.18

During the metric process, it is necessary to select an appropriate hyperparameter
k to identify the most relevant k nearest neighbors for each local descriptor of the query
image. To determine the optimal value of k, we conducted a series of experiments on the
MSTAR dataset (5-way 5-shot) and the OpenSARShip dataset (3-way 5-shot), comparing
classification performance under different k settings. As shown in Table 8, the model
achieved the highest accuracy when k = 3. Therefore, k is fixed to 3 in this study:.

Table 8. Accuracy comparison on the MSTAR (5-way 5-shot) and OpenSARShip (3-way 5-shot)
datasets with different k values.

Accuracy (%)
Dataset
atase P =3 k=5
MSTAR 63.72 £ 0.28 68.84 + 0.22 66.49 £ 0.30
OpenSARship 78.47 £ 0.23 81.86 + 0.18 80.58 £ 0.21

4.5. Visualization
OpenSARship Dataset

To evaluate the effectiveness of the SSE module, we employed Grad-CAM to visualize
the feature responses on the MSTAR and OpenSARShip datasets and compared them with
the results obtained without using SSE. As shown in Figure 4, the incorporation of SSE
enables the model to better focus on target regions, leading to more accurate localization.
This improvement arises because SSE considers both the spatial position of each target
and its surrounding contextual information during feature extraction. In contrast, the
model without SSE exhibits more scattered attention regions and is more susceptible to

ZIL-131 ZSU-234

background clutter.

Origin
image

-
- -
D-7 T-62 T-72

DN4+
SSE

Dredging Fishing Passengers

Figure 4. Grad-CAM visualization of samples on the MSTAR dataset and the OpenSARShip dataset.

To further verify the effectiveness of the ACM module, Figure 5 illustrates the pre-
diction score distribution of each category when misclassified as other categories. It can
be observed that without ACM, the prediction scores among the different categories are
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relatively similar, mainly due to the high background similarity between targets and the
large proportion of background regions in SAR images. After introducing ACM, the scores
of each category misclassified as others decrease significantly, and the score differences
between categories become more distinct. Taking ZIL131, ZSU234, and Passengers as ex-
amples, the model without ACM tends to be misled by background interference, resulting
in close prediction scores across categories. In contrast, with ACM, the model correctly
identifies targets by simultaneously measuring the similarity between query samples and
both target and non-target classes, thereby effectively reducing the influence of background
clutter on metric computation. This substantially enhances inter-class discriminability and
improves the overall metric performance of the model.
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Figure 5. The prediction scores of the query sample and each supported class (similarity scores are
calculated under the 12C metric module and ACM module on the MSTAR (a-e) and OpenSARship
(f-h) datasets). (a) D7. (b) T62. (c) T72. (d) ZIL131. (e) ZSU234. (f) Dredging. (g) Fishing.
(h) Passengers.

4.6. Running Time

Figure 6 presents the average running time per episode for the different algorithms
on the MSTAR (5-way 5-shot) and OpenSARShip (3-way 5-shot) datasets. Each episode
consists of 75 query samples for MSTAR and 45 query samples for OpenSARShip. As
shown in the figure, our method achieves a slightly lower running time than DN4, primarily
due to the use of broadcast mechanisms and matrix operations. Although the proposed
approach involves a marginally higher computational cost compared with the simplest
baselines, it consistently achieves the highest recognition accuracy on both MSTAR and
OpenSARShip datasets, demonstrating superior overall performance.
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Figure 6. Running time of different algorithms on the MSTAR and the OpenSARShip dataset.

5. Conclusions

This paper proposes an ACM network for few-shot SAR target recognition. By in-
corporating a spatial attention mechanism, the method adaptively highlights the salient
scattering structures of the target while attenuating noise and irrelevant background in-
terference, thereby enhancing the robustness of feature representations. Furthermore, an
adaptive contrastive metric module is designed in which query samples are compared not
only with their corresponding support classes but also with residual classes, effectively
enlarging inter-class margins and strengthening feature discriminability. The experimental
results on public SAR datasets demonstrate that the proposed method consistently out-
performs several state-of-the-art metric-based FSL approaches in terms of background
suppression and recognition accuracy, validating the effectiveness of the proposed method.

In terms of practical significance, the proposed method effectively suppresses strong
background clutter in real-world SAR applications (via the SSE module) and addresses
the inherent challenge of high inter-class similarity in SAR targets (via the ACM module).
This improves recognition reliability in complex environments. Regarding limitations and
future work, the scalability of the method on real-world, large-scale data remains to be
validated. Therefore, our future research will focus on cross-domain few-shot learning
to enhance the model’s generalization capability. Simultaneously, we will optimize the
algorithm to improve real-time performance, striving to achieve a better trade-off between
recognition accuracy and processing speed. Furthermore, we will not only focus on
improving the accuracy of SAR target recognition but also emphasize the practical benefits
and performance gains that the proposed method brings to real-world SAR recognition
tasks. The code of this paper will be released at https://github.com/Daniel123jia (accessed
on 1 November 2025).
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Abstract

With the advancement of electromagnetic interference and counter-interference technology,
complex and unpredictable interference signals greatly reduce radar detection, tracking,
and recognition performance. In multi-interference environments, the overlap of inter-
ference cross-correlation peaks can mask target signals, weakening radar interference
suppression capability. To address this, we propose a joint waveform and filter design
method called Multi-Interference Suppression Network (MISNet) for effective interference
suppression. First, we develop a design criterion based on suppression coefficients for
different interferences, minimizing both cross-correlation energy and interference peak
models. Then, for the non-smooth, non-convex optimization problem, we use complex
neural networks and gating mechanisms, transforming it into a differentiable problem via
end-to-end training to optimize the transmit waveform and receive filter efficiently. Simu-
lation results show that compared to traditional algorithms, MISNet effectively reduces
interference cross-correlation peaks and autocorrelation sidelobes in single interference
environments; it demonstrates excellent robustness in multi-interference environments, sig-
nificantly outperforming CNN, PSO, and ANN comparison methods, effectively improving
radar interference suppression performance in complex multi-interference scenarios.

Keywords: radar interference suppression; waveform design; complex neural networks;
multi-interference

1. Introduction

With the advancement of electromagnetic interference and counter-interference tech-
nology, complex and unpredictable interference signals greatly reduce radar detection,
tracking, and recognition performance [1,2]. The emergence of digital radio frequency
memory (DRFM) technology has further improved the interference generation capability
of interference sources. Interference sources can capture radar signals, store them, and
retransmit them with modulation, confusing radar systems [3,4]. In multi-interference
environments, the overlap of interference cross-correlation peaks can mask target signals,
weakening radar interference suppression capability [5,6].

Recent years have witnessed the emergence of adaptive electromagnetic interference
technology, making interference signals exhibit intelligent and adaptive characteristics [7,8].
Traditional advanced interference mitigation (AIM) techniques such as frequency agility,
adaptive sidelobe cancellation, space-time adaptive processing, and monopulse track-
ing [9,10] show limitations when facing new intelligent interference. Particularly in com-
plex electromagnetic environments, when multiple types of DRFM interference (such as
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45



Electronics 2025, 14, 4023

intermittent sampling repeater jamming ISR], intermittent sampling repeater jamming
with frequency shifting ISRJ-FR, and smeared spectrum jamming SMSP) exist simultane-
ously [11,12], traditional methods often cannot effectively suppress them.

To suppress interference signals, many researchers have studied this problem. Current
research on interference suppression mainly focuses on echo processing techniques and
interference suppression waveform design. Multidimensional signal processing transforms
signals into higher dimensions, such as the polarization domain, time-frequency domain, or
spatial domain, allowing the design of high-dimensional filters to suppress interference [13,14].
However, higher-dimensional transformations significantly increase the computational
load, making it hard to meet radar’s real-time requirements.

With the rapid development of deep learning technology, neural networks are increas-
ingly applied in radar signal processing [15,16]. Complex-valued neural networks (CVNN5s)
show great potential in processing radar complex-domain signals [17]. The introduction of
attention mechanisms further enhances neural networks’ ability to learn complex signal
patterns [18].

Waveform design, as an emerging technology, reduces the impact of interference
on radar systems by designing the phase of intra-pulse waveforms [19,20]. In [10], a
method minimizing the peak sidelobe level (PSL) was proposed, effectively reducing
the peak sidelobe level in radar pulse compression. In [11], the signal-to-interference-
plus-noise ratio (SINR) was maximized under pulse compression sidelobe constraints,
effectively handling clutter and false alarms. In [12], an interference cross-correlation
energy model was minimized under constant modulus waveform constraints, reducing the
cross-correlation gain of interference signals and effectively suppressing interference.

Recent research demonstrates that joint transmit waveform and receive filter design
can more fully utilize the degrees of freedom of the system [14,21]. This optimization
approach has potential applications in emerging Integrated Sensing and Communication
(ISAC) systems [22,23], where similar joint design principles could be beneficial for multi-
functional system architectures. However, these traditional iterative optimization methods
have high computational complexity and slow convergence speed, making it difficult to
meet the real-time requirements of practical applications [24].

These methods effectively suppress single interference. However, when multiple
interferences occur simultaneously, targets can still be overwhelmed by interference
cross-correlation peaks, reducing radar target detection performance in interference en-
vironments. More severely, in moving target environments, the Doppler effect causes
spectral spread of target signals, further exacerbating the difficulty of multi-interference
suppression [25].

To efficiently suppress multiple interferences, we propose a joint optimization method
for transmit waveforms and receive filters, called Multi-Interference Suppression Network
(MISNet). This method utilizes interference cross-correlation peak and energy models,
combined with adaptive interference suppression coefficients, fully exploiting the degrees
of freedom in waveforms and filters to minimize interference effects under constraints. For
the non-smooth, non-convex optimization problem involving multiple maximum functions,
we employ complex neural networks and gated networks. Through end-to-end training,
we transform it into a differentiable problem, efficiently optimizing the transmit waveform
and receive filter [26,27].

Experiments show that compared to traditional algorithms, this method effectively
reduces interference cross-correlation peaks and autocorrelation sidelobes in single inter-
ference environments; it demonstrates excellent robustness in multi-interference environ-
ments, significantly outperforming CNN, PSO, and ANN comparison methods, effectively
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enhancing radar interference suppression performance in complex multi-interference sce-
narios.

This paper is arranged as follows. Section 2 formulates the problem of multi-
interference suppression. Section 3 presents the proposed Multi-Interference Suppression
Network (MISNet), detailing the complex attention mechanism and gating structure op-
timization method. Section 4 evaluates the performance of MISNet through numerical
experiments, comparing it with traditional methods under single and multi-interference
scenarios. Section 5 concludes the paper, summarizing the key findings and contributions.

2. Problem Formulation

In complex electromagnetic environments, radar systems frequently face complex
scenarios where multiple types of interference signals act simultaneously. These inter-
ferences include not only traditional noise and deceptive interference but also intelligent
interference using DRFM technology [28].

In this paper, we consider a more complex scenario where multiple interference sources
interfere with the radar simultaneously. We assume the radar transmits a phase-coded
waveform W = [wl, eee, WN]H , where N is the waveform length. The received echo signal

can be defined as:
M.

j
Echo = Z‘Xi]jam,i + BW + npoise (1)
i=1
where nppice = [nl, ey nN}T represents Gaussian white noise with zero mean and variance 5.
Jiam,i is the interference signal from the i-th interference source, expressed as:

]jam,i = Ajw (2)

and Aj is the interference modulation matrix. In a cognitive radar system, we can obtain
the interference modulation matrix from feedback of previous radar scans, providing a
foundation for adaptive interference suppression [29].

Interference sources set the interference modulation matrix to gain amplification in
pulse compression, overwhelming the radar target peak. The pulse compression gain of
the interference is:

R 4 = hy' TN dljami ®)

where R; 4 is the gain of the i-th interference after pulse compression at the d-th range bin.

Traditional waveform design methods can suppress single interference effectively
by reducing its pulse compression gain. However, multiple interferences significantly
degrade radar target detection performance. To suppress interference effectively and fully
utilize the degrees of freedom in the transmit waveform and receive filter, we introduce the
interference cross-correlation peak model and energy model:

PICLj; = maxq=—N+1,..,N-1 ‘Rji,d / N‘ 4)
N-1
ELCF;= Y[R, a/NI? (5)
d=—N-+1

where PICL;; is the peak of the i-th interference cross-correlation function. A higher PICL;;
can overwhelm the radar target peak, misleading the radar system. ELCF; is the energy of
the i-th interference cross-correlation function. A larger ELCF; raises the pulse compression
noise floor, suppressing the radar.
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To fully utilize the degrees of freedom in the transmit waveform and receive filter, we
define an interference suppression coefficient:

N-1

9 = Z ‘Rji/d

d=—N+1

(6)

A larger q; indicates a greater degree of interference overwhelming the target. We
minimize ELCFj; to avoid raising the noise floor and overwhelming strong target peaks.
When q; is small, we optimize PICL;; to improve radar detection performance for strong
targets and adjust the interference suppression weights based on different q; values.

Additionally, the autocorrelation peak of the transmit waveform and receive filter is
crucial to prevent weak targets from being overwhelmed by strong clutter. The model is:

PSLy = maxg—_N+1,. N-1,d£0|Ra/N]| ()

where:
Ry = h' Ty_qw (8)

Thus, to effectively suppress interference under waveform constant modulus con-
straints and filter energy constraints [18,19], we propose a joint interference suppression
method based on cross-correlation peaks and energy by designing the transmit waveform
and receive filter. The objective function is:

M

)
miny, 1y PSLg + Y _ (u2PICLj; + usELCF;;) )
i=1

stlwl=1, "h=N

where uy, up, and ug are three fixed weighting parameters.

3. Complex Attention Mechanism and Residual Structure
Optimization Method

In multijammer environments, radar systems face simultaneous interference from
multiple sources, significantly degrading target detection performance. Traditional meth-
ods struggle to effectively suppress complex interference and incur high computational
complexity, failing to meet real-time requirements. The development of deep learning
technology provides new approaches to solve this problem. Complex neural networks
have natural advantages in processing radar complex-domain signals, better preserving
amplitude and phase information of signals [30].

To address this, we propose a deep learning-based joint optimization approach, termed
“MISNet,” which aims to simultaneously optimize the transmit waveform w and receive
filter h to effectively mitigate multiple interferences and enhance radar interference sup-
pression capabilities.

As shown in Figure 1, our approach leverages a complex neural network (Complex-
Model) to tackle this challenge. Unlike traditional real-valued neural networks, complex
neural networks can directly process complex-domain signals, avoiding information loss
caused by separating real and imaginary parts. The network takes initial noisy waveforms
hpoises Wioise € CN as inputs, extracts features via shared layers, dynamically optimizes
through gating units, and outputs optimized h, w € CN, satisfying the constraints:

‘w’: 1, hh=N (10)
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Figure 1. Overall architecture diagram of MISNet algorithm.

The shared layer applies a linear transformation fs : CN — CM (where M > N) to
map inputs to a higher-dimensional space, defined as:

hs = Wshpgise +bs,  Ws = WsWhpgise + bs (11)

where hy € CM, w, € CM, Wy, € CM*N and by € CM are shared weights and biases. They
reduce model complexity while capturing synergy between h and w.

As shown in Figure 2, the ComplexGate mechanism is an innovation of MISNet.
Defined as g : CM x CM — CM, this gating unit takes hy € CM and ws € CM as inputs
and works in this high-dimensional space. The process is:

hy = tanh(hs), h; = tanh(wy) (12)
hew = G([hs; Ws]) (13)
z =hy ©hgw + (1*ht) © hgw (14)

...............................

Figure 2. Structure diagram of ComplexGate gating mechanism.

Then, the gating outputs are:

Wg =Z+Ws (16)

where hy and h; are intermediate vectors from hy € CM and wy € CM using tanh.
hgw comes from concatenating hs € CM and wy € CM (making a 2M-dimensional vec-
tor) and applying o to get an M-dimensional vector. z is computed by element-wise
multiplication (denoted by ©) and addition. Finally, hg and wg are the gating unit outputs.

The gating unit adjusts features dynamically using interactions between hy € CM
and ws € CM, along with hy, h, and hgy. This improves adaptability to different
interference patterns.
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Next, the independent layer f; : CM — CN maps features back to the original dimension:

where Wy, € CNM W ¢ CN*M b, ¢ CN, and by, € CN are independent parameters.
Normalization follows to meet constraints.
The optimization objective is formulated as a loss function to drive network training:

M

Loss = y;PSLq + Y _ (u2CPM;; + u3CEM; ;) (18)
i=1

This loss function minimizes sidelobes and interference terms, guiding the network to
learn optimal h and w, with training based on Jj,n, ; and backpropagation.

4. Numerical Results
4.1. Experimental Setup

This section validates the effectiveness of the proposed MISNet algorithm through
numerical simulations. We consider a monostatic radar system equipped with a phase-
coded waveform of length N = 256. The maximum number of algorithm iterations is set
to 30,000. The weighting parameters are configured as follows: 1y = 200, uy = 3, uz = 30,
and the pulse compression peak constraint parameter byax = 228. The MISNet algorithm
employs the ASGD optimizer with a learning rate of 0.01, a hidden layer dimension of 512,
and training for 30,000 epochs. The algorithm is initialized with random phase sequences.
All experiments are conducted on a PC equipped with a 2.80 GHz Intel i9-10900 CPU,
32 GB RAM, and an NVIDIA RTX 3090 GPU.

To comprehensively evaluate the performance of the proposed method, we select com-
parison algorithms targeting different application scenarios. For single interference sup-
pression scenarios, we compare against the MPSL algorithm [14] and ICEL algorithm [12],
where the MPSL algorithm designs waveforms and filters based on minimizing peak
sidelobe level criteria, and the ICEL algorithm achieves single interference suppression
by minimizing interference cross-correlation energy. For multi-interference suppression
scenarios, we select PSO (Particle Swarm Optimization with population size 30, inertia
weight 0.7, acceleration factors ¢; = ¢; = 1.5), CNN (Convolutional Neural Network with
3-layer 1D convolution structure, channel numbers 32-64-1, ReLU activation function), and
ANN (Complex-Valued Artificial Neural Network with 3-layer fully connected structure
256-128-64-256, complex ReLU activation function for complex-domain signal processing)
as comparison methods.

This experiment employs two performance metrics for evaluation. The Peak of Interfer-
ence Cross-correlation Level (PICL) is defined as the maximum peak of the cross-correlation
function between the interference signal and the receive filter, expressed as:

PICL =max4—_N+1, N-1 ‘Rj,d/N’ (19)

where R; 4 is the interference pulse compression gain at the d-th range bin. Lower PICL
values indicate better interference suppression performance.

The Autocorrelation Peak Sidelobe Level (APSL) is defined as the maximum sidelobe
peak of the autocorrelation function between the transmit waveform and receive filter,
expressed as:

APSL =maxg—_N1,.,N-1,d0|Rda/N]| (20)
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where Ry is the autocorrelation value at the d-th delay. Lower APSL values help
prevent weak targets from being masked by strong clutter, improving radar target
detection performance.

Following the interference model in reference [14], the experiment employs three
typical DRFM interference types, all represented as 256 x 256 real matrices.

The first type is the Intermittent Sampling Repeater Jamming (ISR]) matrix Ayggj,
expressed as:

AISR] = diag(d) (21)

where the diagonal vector d = [dl, dy, ..., dose|" satisfies:

1, ifi € Sisgy

d; = (22)

0, otherwise

Sisry is the intermittent sampling position set, containing 5 consecutive segments with
8 elements each, totaling 40 non-zero elements, simulating the discontinuous characteristics
of intermittent sampling repeater jamming.

The second type is the Intermittent Sampling Radio Frequency Jamming (ISRJ-RF)
matrix Ajsrj—Rrg, expressed as:

I 0
AsRj—RF = [ N1 ] (23)
256256

where N1 and N are the dimensions of the upper and lower blocks, respectively, Iy, is the
identity matrix, and Jy;, is the anti-diagonal identity matrix:

1, ifi+j=Np+1

Ny lij = (24)

0, otherwise

This matrix adopts a block anti-diagonal structure, simulating the intermittent sam-
pling repeater characteristics in the radio frequency domain.
The third type is the Smeared Spectrum Jamming (SMSP) matrix Agpsp, expressed as:

ASMSP = [I';F, r}, ey r§56]T (25)

where the i-th row vector r; satisfies:

1, ifj = (4ilmod|128)+[(i — 1)/128] x 128 + 1

(26)
0, otherwise

[ri]; =

This matrix is row-sparse with only one non-zero element per row, distributed with
4-fold periodic intervals, simulating spectrum smearing effects.

4.2. Algorithm Performance Analysis

To verify the convergence performance of the MISNet algorithm in multi-interference
environments, we compare the loss function convergence characteristics of different algo-
rithms under the combined action of ISR] and ISRJ-RF dual interference sources. Figure 3
shows the training convergence curves of four algorithms: PSO, CNN, ANN, and MISNet.
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Figure 3. Comparison of loss function convergence curves for different algorithms.

Figure 3 demonstrates that the PSO algorithm exhibits significant convergence fluc-
tuations during optimization, with final convergence results notably inferior to other
algorithms. CNN, ANN, and MISNet show comparable convergence speeds, but MIS-
Net significantly outperforms other algorithms in final convergence results. This result
fully validates the effectiveness of complex neural networks combined with gating mecha-
nisms, indicating that MISNet can better perform feature selection and complex domain
information processing, achieving superior performance in multi-interference suppression
optimization problems.

From the perspective of engineering implementation feasibility, we can pre-analyze
all possible interference parameters and generate an offline waveform library covering
comprehensive interference mitigation scenarios. During actual deployment, the sys-
tem does not need to run complex neural network computations in real-time, but only
needs to quickly identify current interference characteristics to achieve millisecond-level
optimal waveform retrieval from the waveform library, fully meeting radar’s stringent
real-time requirements.

4.3. Performance Evaluation in Single Interference Environment

Since traditional methods only optimize interference suppression performance for
single interference, to verify the effectiveness of the proposed method in single interference
environments, we compare MISNet with traditional algorithms ICEL [12] and MPSL [14],
using a single SMSP interference matrix Agpsp.

Figure 4a shows the waveform autocorrelation function characteristics designed by the
three algorithms. It can be observed that the MISNet algorithm achieves the lowest sidelobe
level near the main peak, effectively suppressing autocorrelation sidelobes. Figure 4b
displays the cross-correlation function between the interference signal and the receive filter.
Compared to other algorithms, the MISNet algorithm maintains lower cross-correlation
levels across the entire range, demonstrating excellent interference suppression capability.

As shown in Table 1, the proposed MISNet algorithm demonstrates significant advan-
tages in single interference suppression. In terms of interference cross-correlation peak
suppression, MISNet improves by 10.12 dB compared to ICEL and by 1.20 dB compared to
MPSL. In terms of autocorrelation peak sidelobe suppression, MISNet improves by 7.83 dB
compared to ICEL and by 1.91 dB compared to MPSL. This result proves the effectiveness
of complex neural networks in handling radar waveform optimization problems, achieving
both effective interference signal suppression and good autocorrelation sidelobe control.
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Figure 4. Correlation function comparison of different algorithms under single interference source.
(a) Waveform autocorrelation function; (b) Interference cross-correlation function.

Table 1. Performance Comparison of Different Algorithms under Single Interference Source.

Algorithm. PICL (dB) APSL (dB)
ICEL [12] —26.39 —25.48
MPSL [14] 3531 ~31.40

MISNet —36.51 —33.31

4.4. Robustness Verification in Multi-Interference Environment

To further verify the robustness of the proposed method in complex multi-interference en-
vironments, we select three dual-interference combinations: (Arsry, Arsrj—rr), (Arsry, Asmsp),
and (Ajsgj—rr, Asmsp), and compare them with CNN, PSO, and ANN algorithms. The
evaluation metrics include Autocorrelation Peak Sidelobe Level (APSL) and Peak of Inter-
ference Cross-correlation Level (PICL) for both interference sources.

From Figure 5, it can be observed that in multi-interference environments, the MISNet
algorithm maintains good sidelobe suppression characteristics near the main peak of
the autocorrelation function while achieving the lowest correlation levels in the cross-
correlation functions of both interference sources. In contrast, other algorithms show
obvious performance degradation when handling multiple interferences.

As shown in Table 2, in all multi-interference scenarios, the proposed MISNet algo-
rithm demonstrates optimal performance. For different interference type combinations,
MISNet exhibits good adaptability. The ANN algorithm, as the second-best solution, ap-
proaches MISNet’s performance in some cases, while CNN and PSO algorithms perform
significantly poorly in multi-interference environments. This validates the superiority and
robustness of complex neural networks combined with gating mechanisms in handling
complex interference scenarios. Due to the relatively small autocorrelation weight, the
autocorrelation performance decreases compared to the single interference scenario in
Figure 4, but the interference suppression performance is significantly improved.

Table 2. Performance Comparison of Different Algorithms under Multi-Interference Sources
(PICL1 and PICL2 represent the interference cross-correlation peak suppression levels corresponding
to the first and second interference matrices, respectively).

Algorithm (A1sry,A1sR]—RF) (ArsrjAsmsp) (Arsry—RrFAsmsp)
APSL PICL1 PICL2 APSL PICL1 PICL2 APSL PICL1 PICL2
CNN —16.33 —25.18 —23.31 —11.48 —22.51 —20.80 —18.29 —28.29 —28.29
PSO —16.87 —24.55 —19.79 —17.24 —23.23 —19.43 —17.63 —20.79 —21.88
ANN —21.17 —34.03 —35.13 —23.18 —35.32 —37.60 —19.91 —40.93 —36.15
MISNet —23.83 —36.85 —38.49 —24.10 —38.30 —40.49 —20.70 —40.72 —41.19
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Figure 5. Correlation function comparison of different algorithms under multi-interference sources.
First row: autocorrelation function, ISR] cross-correlation function, and ISRJ-RF cross-correlation
function for (Aysgy, Arsgj—rr) combination; Second row: correlation functions for (Arsgy, Asmsp)
combination; Third row: correlation functions for (Azsgry_rr, Asmsp) combination.

Additionally, to verify the impact of the peak parameter b, on algorithm perfor-
mance, we conduct experiments using the interference combination (AISR], AISR]—RF)
under different b,y values. The pulse compression peak constraint parameter by;qy
reflects the system’s degrees of freedom, with smaller by values indicating more re-
laxed constraint conditions, thereby providing higher design flexibility.

From Figure 6, it can be observed that as the by,,x value decreases, the sidelobe level
of the autocorrelation function gradually decreases, and the cross-correlation levels of
both interferences also decrease accordingly. When b, = 161, the algorithm demon-
strates optimal performance in all three subplots, with smoother and lower correlation
function curves.

Autocorrelation Comparison
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ISRJ-RF Interference Cross-correlation
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Figure 6. Correlation function comparison under different by,4y values. (a) Autocorrelation function;
(b) ISR] interference cross-correlation function; (c¢) ISRJ-RF interference cross-correlation function.

As shown in Table 3, as the bpnax value decreases, the system constraints become
more relaxed, and the optimization algorithm obtains higher design degrees of freedom,
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thereby achieving better sidelobe suppression and interference suppression performance.
When bpax decreases from 228 to 161, the APSL improves from —26.14 dB to —30.83 dB,
the suppression of ISR] interference improves from —33.49 dB to —39.66 dB, and the
suppression of ISRJ-RF interference improves from —31.54 dB to —40.67 dB. Therefore, the
experimental results validate the correctness of the theoretical analysis.

Table 3. Performance Comparison under Different by, Values for (Asgy, Arsry—rr) (PICL1 and
PICL2 represent the interference cross-correlation peak suppression levels corresponding to the first
and second interference matrices, respectively).

bmax APSL PICL1 PICL2
228 —26.14 —33.49 —31.54
203 —27.33 —35.95 —37.06
181 —27.95 -37.10 —38.55
161 —30.83 —39.66 —40.67

4.5. Hyperparameter Sensitivity Analysis

To validate the rationality of the weighting parameters selection and analyze the algo-
rithm’s sensitivity to hyperparameter variations, we conduct systematic single-parameter
sensitivity experiments (Tables 4-6). The experiments employ a controlled variable ap-
proach, fixing two parameters while varying the third parameter within a reasonable
range. All experiments are performed under the ISRJ+ISR]-RF multi-interference scenario
to evaluate the impact on APSL, PICL1, and PICL2 performance metrics.

Table 4. Performance under different u; values (u; = 3, uz = 30).

ug APSL (dB) PICL1 (dB) PICL2 (dB)
100 —21.85 —38.45 —40.52
150 —23.12 —38.38 —40.50
200 —24.10 —38.30 —40.49
250 —24.89 —37.95 —40.28
300 —25.32 —37.62 —40.05

Table 5. Performance under different u, values (u; = 200, ug = 30).

up APSL (dB) PICL1 (dB) PICL2 (dB)
1 —24.25 —35.12 —40.33
2 —24.18 —36.85 —40.41
3 —24.10 —38.30 —40.49
5 —23.95 —39.47 —40.58
7 —23.78 —40.15 —40.63

Table 6. Performance under different uz values (u; = 200, up = 3).

us APSL (dB) PICL1 (dB) PICL2 (dB)
15 —24.18 —38.21 —37.94
20 —24.14 —38.26 —39.18
30 —24.10 —38.30 —40.49
40 —24.06 —38.35 —41.25
50 —23.98 —38.42 —41.88

The sensitivity analysis reveals several key insights: First, each weighting parameter
exhibits distinct and relatively independent control functions. Parameter u; primarily
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governs the autocorrelation peak sidelobe level, with increasing values improving APSL
from —21.85 dB to —25.32 dB while slightly affecting interference suppression performance.
Parameters uy and u3 specifically control the suppression of their corresponding interfer-
ence sources, with higher weights yielding approximately 5 dB and 4 dB improvements
in PICL1 and PICL2, respectively. Second, the algorithm demonstrates good robustness
to hyperparameter variations, with performance changes remaining moderate within rea-
sonable parameter ranges. Finally, the selected parameter combination u; = 200, up = 3,
u3 = 30 achieves an optimal balance among multiple optimization objectives, maximizing
the overall system performance.

5. Conclusions

In this paper, we have proposed the Multi-Interference Suppression Network (MISNet)
for joint waveform and filter design to suppress multiple interference signals simultane-
ously. The design criterion is formulated by minimizing the APSL of the transmit waveform
and receive filter, and the PICL and ELCF of multiple interference signals with the receive
filter. To solve this non-smooth and non-convex optimization problem, we introduce
complex neural networks with gating mechanisms that transform the optimization into a
differentiable problem through end-to-end training. Numerical simulation results demon-
strate that the proposed MISNet approach significantly outperforms traditional iterative
algorithms and other neural network methods in multi-interference suppression. In sin-
gle interference environments, MISNet effectively reduces interference cross-correlation
peaks and autocorrelation sidelobes compared to existing methods. In multi-interference
scenarios, MISNet exhibits excellent robustness across different interference combinations,
significantly outperforming CNN, PSO, and ANN approaches. The proposed method
enhances radar interference suppression capability and target detection performance in
complex multi-interference environments. Future research may focus on extending the
approach to handle interference with varying Doppler frequency shifts and more complex
adaptive interference patterns.
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Abstract

Low-altitude unmanned aerial vehicle (UAV) vision is critically hindered by the Sim-to-
Real Gap, where models trained exclusively on simulation data degrade under real-world
variations in lighting, texture, and weather. To address this problem, we propose RA3T
(Region-Aligned 3D Transformer), a novel self-supervised framework that enables ro-
bust Sim-to-Real adaptation. Specifically, we first develop a dual-branch strategy for
self-supervised feature learning, integrating Masked Autoencoders and contrastive learn-
ing. This approach extracts domain-invariant representations from unlabeled simulated
imagery to enhance robustness against occlusion while reducing annotation dependency.
Leveraging these learned features, we then introduce a 3D Transformer fusion module
that unifies multi-view RGB and LiDAR point clouds through cross-modal attention. By
explicitly modeling spatial layouts and height differentials, this component significantly
improves recognition of small and occluded targets in complex low-altitude environments.
To address persistent fine-grained domain shifts, we finally design region-level adversarial
calibration that deploys local discriminators on partitioned feature maps. This mechanism
directly aligns texture, shadow, and illumination discrepancies which challenge conven-
tional global alignment methods. Extensive experiments on UAV benchmarks VisDrone
and DOTA demonstrate the effectiveness of RA3T. The framework achieves +5.1% mAP
on VisDrone and +7.4% mAP on DOTA over the 2D adversarial baseline, particularly on
small objects and sparse occlusions, while maintaining real-time performance of 17 FPS at
1024 x 1024 resolution on an RTX 4080 GPU. Visual analysis confirms that the synergistic
integration of 3D geometric encoding and local adversarial alignment effectively mitigates
domain gaps caused by uneven illumination and perspective variations, establishing an
efficient pathway for simulation-to-reality UAV perception.

Keywords: low-altitude UAV vision; Sim-to-Real; self-supervised domain adaptation;
3D Transformer; region-level adversarial calibration; small object detection

1. Introduction

In recent years, low-altitude UAVs enable urban monitoring, emergency rescue and
precision agriculture [1-3]. Collecting and labeling real UAV imagery are expensive;
therefore, researchers pre-train perception models on large synthetic corpora generated

Electronics 2025, 14, 2797 https://doi.org/10.3390/ electronics14142797
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by AirSim [4] or CARLA [5]. Yet the resulting Sim-to-Real gap—differences in texture,
illumination and weather—still degrades performance on real flights [6,7].

To bridge the above cross-domain gap, early efforts focused on global adversarial
alignment or style transfer. The typical approach is to map the source and target domains
to a shared feature space using a domain discriminator [8] or a generative adversarial
network [9]. However, such global transformations often fail to eliminate fine-grained ap-
pearance differences arising from local variations like shadows, target occlusion, or uneven
illumination. Furthermore, traditional 2D convolutional neural networks (CNNSs) often
struggle with challenges like detecting small targets and capturing multi-scale features
in low-altitude UAV missions. To this end, some studies have introduced 3D information
(e.g., depth maps, LiDAR point clouds) for spatial modeling. Yet, approaches relying
on simple feature concatenation or global self-attention mechanisms still exhibit limited
adaptability in complex real environments [10].

To address the above challenges, we propose RA3T (Region-Aligned 3D Transformer),
a novel framework that synergistically combines self-supervised feature learning, 3D Trans-
former fusion, and region-level adversarial calibration to address the Sim-to-Real gap. First,
we introduce a dual-branch strategy combining Masked Autoencoders (MAEs) [11] and
contrastive learning [12,13]. It performs self-supervised pre-training on massive simulated
aerial photography data, extracting lighting/texture features to minimize annotation de-
pendency. Subsequently, our core 3D Transformer fusion module performs cross-modal inter-
action between multi-view RGB and LiDAR point clouds via multi-head self-attention [14],
explicitly modeling spatial structure and 3D geometry to improve the recognition of oc-
cluded and small-scale targets. Finally, our region-level adversarial calibration applies
local discriminators [15] directly, aligning fine-grained domain shifts (e.g., texture, shadow
height differences) across sub-regions, thereby overcoming the limitations of global adver-
sarial alignment. Recent advances in cross-domain perception highlight the importance
of integrating novel sensing and computing techniques to tackle complex environments.
For example, the Funabot-Sleeve system [16] leverages artificial muscle actuators to pro-
vide tactile feedback in robotic perception, while cognitive computing methods have been
applied to predict the behavior of flexible electronics [17]. These works illustrate how
cutting-edge perception technologies can improve generalization in challenging scenarios,
providing broader context and inspiration for our RA3T framework.

As shown in Figure 1, self-supervised pre-training establishes a robust feature foundation,
while 3D Transformer fusion and region-level adversarial calibration enable high-fidelity
adaptation from simulation to reality. Extensive experiments on prominent UAV datasets,
VisDrone [18] and DOTA [19], have demonstrated that RA3T achieves significant perfor-
mance gains (>2.6% mAP on VisDrone and >3.6% mAP on DOTA), and its inference speed
meets the real-time application requirements of most low-altitude drones (17 FPS).

The main contributions are summarized as follows:

e We propose RA3T: a self-supervised adaptation framework for low-altitude UAV
vision that integrates 3D geometric modeling and regional feature alignment to bridge
the Sim-to-Real gap.

¢ We introduce a 3D Transformer fusion module that unifies multi-view RGB and
LiDAR point clouds through spatial attention, explicitly encoding occlusion patterns
and height differentials to address small-target recognition challenges.

*  We design a region-level adversarial calibration strategy deploying local discrimina-
tors on partitioned feature sub-regions, aligning fine-grained domain shifts in texture,
shadow, and illumination for urban environments.

The remainder of this paper is organized as follows: Section 2 reviews related work
on cross-domain adaptation, multi-modal fusion, and self-supervised learning; Section 3
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details the three key modules and overall framework of RA3T; Section 4 presents ex-
perimental validation and ablation studies on real drone datasets; Section 5 discusses
limitations and future expansion directions; and finally Section 6 summarizes the entire
paper and looks forward to follow-up research.

Simulation Domain Real Domain

Region-Level

Adversarial

Self-Supervised Pre- 3D Fusion
Training .

Fusion of height and
occlusion information

Strong robust 1 Local adversarial
feature pre-training calibration details
j ! i difference
Improved Small
Object Detection

Figure 1. Schematic diagram of the core concept of the RA3T method: the left side shows the
appearance difference between the simulated drone data and the real data; the right side summarizes
the combined effects of self-supervised pre-training, multi-modal 3D Transformer and region-level
adversarial alignment.

2. Related Work

In recent years, a lot of research has been conducted in the field of computer vision and
robotics on how to effectively reduce the appearance difference between simulated data
and real UAV images [6,7]. Low-altitude UAV scenes have more stringent requirements
for cross-domain adaptation due tolow flight altitude, fast perspective change, small target size
and easy local occlusion. Existing work can be roughly summarized into three main lines:
(i) domain adaptation methods of global alignment and local alignment, (ii) multi-modal 3D fusion
perception, and (iii) self-supervised representation learning potential [20-22].For details on the
comparison of related work, please see Table 1.

Table 1. Component-level comparison of representative Sim-to-Real methods for UAV vision.

Method Self-Sup. Global Align. Local Align. 3D Fusion
DANN [8] X v X X
PixelDA [7] X v X X
CycleGAN [23] X v X X
RADA [15] X X v X
GA-DA [24] X v v X
HybridFusion [10] X X X v
Yue et al. [25] X v X v
RA3T (Ours) v X v v

¥ Indicates the method incorporates this component; * Indicates the method does not incorporate this component.
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2.1. Global vs. Local Domain Adaptation

Early unsupervised domain adaptation mostly adopted the global adversarial align-
ment (global alignment) strategy, using domain discriminators to map the source do-
main (simulation) and the target domain (real) to a unified feature distribution [8,9]. To-
bin et al. [6] achieved cross-domain generalization by randomizing texture and illumination.
Bousmalis et al. [7] used a GAN to complete pixel-level style transfer. However, when there
are significant local inconsistencies (shadows, reflections, occlusions) in the target scene,
a single global discriminator has difficulty capturing fine-grained differences, resulting
in missed detection or false detection in UAV tasks. Therefore, researchers proposed the
idea of local/regional alignment: divide the feature map into sub-regions and configure
independent discriminators for each block to achieve more refined cross-domain calibration.
Typical examples include the Region-Aware Discriminator proposed by Zhang et al. [15],
and Wang et al. used local consistency regularization to improve small target alignment [26].
In addition, there are GA-DA [24] and hierarchical consistency methods [27] that combine
global and local. In order to deal with global/local differences at night and inclement
weather, Sakaridis et al. proposed ACDC [28]; unsupervised translation methods such as
CycleGAN [23] are also often used in conjunction with adversarial alignment. The recent
online local alignment scheme [29] for continuous learning scenarios is also worth paying
attention to.

2.2. Multi-Modal Fusion in UAV Vision

It is difficult to handle low-altitude tasks with severe occlusion and variable scale relying
only on 2D RGB. Introducing multi-modal fusion of depth maps or LiDAR point clouds
has been shown to significantly alleviate this problem [10]. Yue et al. [25] used depth
consistency to improve cross-domain robustness; Li et al. [30] used point cloud geometry
priors for simulation-real alignment. The Transformer framework excels in 3D fusion due
to its global modeling capabilities: ViT [14], Swin [31] and its 3D extension [32] can explicitly
model the relationship between height and occlusion. Recently, SAM-based multi-sensor
fusion [33], cross-modal Transformer [34] and high-resolution object classification [35] have
also appeared; a review of edge computing and UAV collaboration [36-38] emphasized
the importance of real-time multi-modal reasoning. At the same time, multi-source feature
alignment [39], efficient backbones (such as YOLOv7 [40], RangeNet++ [41]) and the
adaptive segmentation framework DAFormer [42] also provide transferable engineering
references for UAV vision.

2.3. Self-Supervised Representation Learning

In the context of the general lack of large-scale annotations in real UAV scenes, self-
supervised learning (SSL) significantly reduces data dependence by leveraging massive
unlabeled data [11,12]. Masked Autoencoders [11] emphasize global-local consistent recon-
struction; contrastive learning MoCo [13] and SimCLR [12] obtain discriminative features
through instance discrimination. Shao et al. [43] propose a triple cross-intra-branch con-
trastive framework for robust point cloud feature learning, while Wang et al. [44] introduce a
weighted technique for point cloud normal estimation via pre-training by contrastive learning.
Xie et al. [45] proposed a local attention SSL framework for UAV images; SelfDA [46] and
GSDA [30] combined SSL with domain alignment. Self-supervised methods also demonstrate
cross-task transfer potential in areas such as industrial anomaly detection [47,48] and robotic
manipulation [49]. In addition, backbones such as DETR [50], SegFormer [51], ResNet [52],
and EfficientNet [53] can also be migrated to UAV detection [54-58] after self-supervised
pre-training; in the field of remote sensing and tracking, the latest review [59,60] summarizes
the trend of combining self-supervision with multi-modality.
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2.4. Position of Our Work

In general, global adversarial has difficulty characterizing local differences; 3D multi-
modal fusion can alleviate occlusion and height modeling, but still requires explicit local
alignment; self-supervised pre-training reduces the annotation cost, but is still insufficient
in scenes with local shadows and texture mutations. To this end, RA3T combines regional
adversarial calibration and cross-modal 3D attention: the former makes up for the details
of global adversarial, and the latter provides height and perspective information. This
design concept echoes the research directions of Detection/Segmentation Transformer
and continuous learning in recent years, and provides a new system solution for UAV
cross-domain vision.

BEVFormer [61] projects multi-view features into a bird’s-eye-view grid yet relies
on global depth priors, which limits robustness when LiDAR sparsity increases. Fusion-
Former [62] stacks modality-specific Transformers but lacks fine-grained alignment, leading
to texture shadow artifacts in cross-domain settings. MonoDepth-Det [63] removes range
sensors altogether via monocular depth estimation, trading accuracy for hardware sim-
plicity. In contrast, RA3T unifies cross-modal 3D attention with region-level adversarial
calibration and self-supervised pre-training, yielding superior precision on small and
occluded targets while maintaining real-time throughput.

3. Methodology

The RA3T (Region-Aligned 3D Transformer) cross-domain framework proposed in
this paper aims to help low-altitude UAV vision efficiently migrate from the simulation
domain to the real domain. The overall process includes four key modules: self-supervised
feature pre-training, 3D Transformer multi-modal fusion, region-level adversarial calibration and
downstream detection/segmentation. The overall architecture is shown in Figure 2.

GRL
oo T Tt TTT T T T 1
v 1
Self-Supervised 3D Transformer Region- Downstream
Feature Pre-training Multimodal Fusion Level Adversarial Detection/Segmen
Alignment tation
Sim Data MAE+ Contrastive 3D — —
Real Data “ ——
LiDAR / Depth l *
Feature RGB Cross-Attention Local Final Prediction
Feature Discriminator

Figure 2. RA3T overall process: self-supervised feature pre-training; 3D multi-modal Transformer

fusion; region-level adversarial calibration; downstream detection or segmentation.

3.1. Framework Overview

Self-supervised feature pre-training: On large-scale simulated UAV data, Masked
Autoencoders (MAEs) [11] and contrastive learning MoCo/SimCLR [12,13] dual branches
are used to obtain an initial encoder with strong generalization ability.

3D Transformer multi-modal fusion: Using the multi-head self-attention mechanism,
RGB and LiDAR/depth features are cross-modally interacted; ViT-style tokenization [14]
and the layered displacement window idea of Swin Transformer [31] are introduced to
explicitly encode the relationship between height and occlusion.

Region-level adversarial calibration: Divide the fused features into several sub-
regions, introduce a lightweight discriminator for local domain alignment, and make up
for the fine-grained differences that cannot be captured by simple global adversarial [15].
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Downstream detection/segmentation: Fine-tune common detection heads (Faster
R-CNN, YOLOvV? [40], DETR [50], etc.) and segmentation heads (SegFormer [51],
DAFormer [42]) on a small amount of real annotations, and output the final target box or
semantic mask.

Method Novelty and Comparison with Prior Works

Table 2 compares common cross-domain strategies; it can be seen that RA3T integrates
three key elements: self-supervision, 3D fusion, and regional confrontation.

Table 2. Comparison with related methods at the component level (v" indicates inclusion).

Method Self-Sup. 3D Fusion Region-Level
Global DA X X X
3D Fusion Only X v X
Local DA (2D) X X v
RA3T (Ours) v v v

¥ Indicates the method incorporates this component; ¥ Indicates the method does not incorporate this component.

3.2. Self-Supervised Feature Extraction

Masked Autoencoders: Randomly mask 75% patches on the simulated image I

and minimize
2

LMAE = HIS - q’dec(cpenC(IgiSible)) 27

Enhance global-local consistency [11].

Contrastive learning: Construct positive and negative samples with the help of queue
dictionary, and the contrast loss is

exp(sim(q, k™) /7)
Y- exp(sim(q, k=) /1)’

Lecontrast = — log

Joint objective: Lsgi = aLpaE + BLeontrast Experiments show that the two SSL com-
plementarities can significantly improve the robustness to small targets and occlusion [45].

The collection of multi-view RGB images and LiDAR point cloud data on actual UAV
platforms is usually achieved by equipping the UAV with a synchronized RGB camera
and a small LiDAR sensor. During data collection, auxiliary positioning modules such
as GPS/IMU are used for spatial registration, and geometric calibration and timestamp
synchronization are used in the post-processing stage to ensure the precise match between
RGB images and point cloud data, thereby providing high-quality multi-modal input for
training and reasoning of the RA3T framework. As illustrated in Figure 3, we adopt a dual-
branch self-supervised module in which the upper branch performs MAE reconstruction
and the lower branch employs MoCo contrastive learning.

3.3. 3D Transformer Fusion

Tokenization and position encoding. RGB features F,p and point cloud features Fsp
are uniformly mapped to tokens, and 2D /3D position encoding is added [32].
Cross-attention. Multi-head attention is denoted as follows:

Attn(Q, K, V) = softmax(QK ' /\/dy)V

This explicitly models the texture—geometry association between tokens. To reduce
the noise of sparse point clouds, neighborhood constraints [10] are introduced to ensure
local consistency.The overall cross-modal fusion pipeline is illustrated in Figure 4.
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Advantage analysis. Compared with only 2D alignment or simple splicing, 3D fusion
can better capture height and occlusion, and provide geometric priors for subsequent
region discriminators [34].

Random
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Ratio 75% |
Feature
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Feature
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Query 1 Memory
[ ] -
Decoder M
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Figure 3. Self-supervised dual branches: MAE reconstruction on the top, MoCo comparison on
the bottom.
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Figure 4. Three-dimensional cross-modal Transformer: RGB token as query, LiDAR token as
key/value.

3.4. Region-Level Adversarial Alignment

Sub-region division. Divide Fy,;o, into R blocks {F"}, focusing on local differences
such as shadows/reflections [15]. The overall region-level adversarial architecture is
illustrated in Figure 5.

Local discriminator. Minimize for each block

['adv,r = - [yd 108 DV(FV) + (1 - yd) log(l - Dr(Fr))]'
Overall loss: E;Z%}i onal _ Y., Lagvs- After fusing 3D height, the discriminator can

calibrate the texture + geometry differences at the same time, improving the accuracy of
small target detection [39].
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Figure 5. Region-level adversarial: feature division sub-regions; each block is equipped with an
independent discriminator and reversely optimized through GRL.

3.5. Downstream Detection/Segmentation Head

Common detection/segmentation heads with fusion features: The detection loss
of Faster R-CNN, RetinaNet, YOLOV? [40], or SegFormer [51], DAFormer [42], etc., is
as follows:

Edet = ‘Ccls + cregr

The final goal is _
Liotal = Lsst + ALo ™™ + Laer.

adv

The three work together to significantly improve the cross-domain performance
of RA3T on datasets such as VisDrone and DOTA, while maintaining near-real-time
reasoning [41,47,50].

Specifically, in the implementation details of 3D Transformer, we first used the stan-
dard ViT-style tokenization scheme to divide the RGB image into fixed-size 16 x 16 pixel
patches, and voxelized the LiDAR point cloud to obtain the corresponding 3D voxel to-
kens. Subsequently, we used the multi-head cross-attention mechanism for cross-modal
fusion, where the number of attention heads was set to 8. This setting was determined
to have the best trade-off between computational cost and model performance through
cross-validation experiments. In addition, in order to efficiently process large-scale data,
we used the shifted window mechanism proposed by Swin Transformer to implement local
attention calculation. This local window alternating sliding strategy can effectively capture
the local context of the space while significantly reducing the computational complexity.
These specific implementation details and parameter selections have been extensively
experimentally verified to ensure the performance and efficiency of RA3T in multi-view
fusion and 3D space modeling tasks.

Scalability. For inputs larger than 1024 x 1024 or for fused multi-view mosaics, we
first apply an overlapping 5122 sliding window (50% stride) and run the region discrim-
inators on each tile. Feature maps from all views are partitioned after cross-view fusion,
ensuring a consistent spatial grid.

4. Experiments and Results

This section conducts systematic experiments on the proposed RA3T framework on a
typical low-altitude unmanned aerial vehicle (UAV) dataset to evaluate its performance in
cross-domain detection and segmentation tasks. First, the dataset and evaluation indicators
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are introduced, then the implementation details and parameter settings are explained,
followed by the overall comparison results and visualization analysis, and finally, the
contribution and impact of each module are explored through ablation experiments.

4.1. Datasets and Metrics

Synthetic Dataset (AirSim). In order to make full use of the simulation environ-
ment for self-supervised pre-training, this paper selects large-scale UAV simulation images
generated based on AirSim as source domain, covering a variety of weather, terrain and
building layouts. Only unlabeled images are needed to complete SSL training, and a small
amount of labeled simulation data is retained for detection head fine-tuning [4]. Compared
with relying solely on real data, this strategy significantly reduces the need for high-cost
annotation and enables the model to learn more generalized visual representations through
diverse simulation scenes.

Real Dataset: VisDrone. VisDrone2019 is one of the target domains, including various
scenes such as urban blocks and suburban roads, with a total of about 8600 frames of
images [18]. Under low-altitude shooting, the target size of this dataset varies greatly and
is severely partially occluded. This paper uses its detection subset (vehicles, pedestrians,
tricycles, etc.) and trains/validates according to the official division, which is an ideal
benchmark for evaluating cross-domain robustness.

Real Dataset: DOTA. To verify the applicability in large-scale remote sensing scenarios,
this paper selects the DOTA dataset [19] covering 15 types of targets as another target do-
main. DOTA images have high resolution and need to be cropped to 1024 x 1024 patches
for input to the network; the main experiment uses horizontal box detection and briefly
discusses the rotation box. DOTA’s wide-area scenes and rich categories put higher require-
ments on the model’s scale adaptation and cross-domain generalization, which complements
the low-altitude VisDrone.

Evaluation Metrics. This paper reports the following metrics:

e mAP(5..95: The average precision of multi-point sampling between IoU 0.5 and 0.95,
which is consistent with the COCO metric [57] and can better distinguish small targets
and partially occluded scenes.

®  APs5): The average precision when IoU = 0.5, which measures the coarse-grained
detection capability.

e FPS: The inference frame rate (Frames Per Second) at 1024 x 1024 resolution, reflecting
the real-time performance of actual deployment.

e  Paramsand FLOPs: The number of model parameters and computational complexity,
used to evaluate the feasibility on embedded or constrained platforms.

By combining different datasets and indicators, we can fully verify the cross-domain
adaptability and efficiency of RA3T in small targets, complex lighting and large-scale
remote sensing scenes.

Regarding the effectiveness of VisDrone and DOTA datasets in evaluating the cross-
domain robustness of models, we believe that both datasets are representative and chal-
lenging. The VisDrone dataset covers complex urban scenes, with variable target scales and
severe occlusion, which can effectively test the fine-grained local domain generalization
ability of the model in low-altitude flight missions; the DOTA dataset contains larger-scale
wide-area scenes, multiple target categories and different environment types (such as cities
and villages), which can better reflect the generalization performance of the model in
different environments and large-scale scenes. However, in future work, we also plan
to further introduce more extreme scene datasets (such as night, bad weather or highly
reflective conditions) to more comprehensively evaluate and improve the cross-domain
generalization performance of the model.
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4.2. Implementation Details

Table 3 summarizes the main hyperparameters of each stage. In the self-supervision
stage, only unlabeled AirSim images are used, and MAE and contrastive learning branches
are trained simultaneously; in the fine-tuning stage, a small amount of real annotations are
mixed with simulated annotations, and each mini-batch keeps the number of source/target
domain samples equal to maintain adversarial balance. The local discriminator uses
2-3 layers of lightweight MLP, which takes into account both discrimination ability and
computational overhead.

Table 3. Main training hyperparameters and value ranges.

Hyperparameter Setting/Range
MAE Mask Ratio 75%

Contrastive Negative Size 65k

Batch Size (SSL) 256

SSL Epochs 100 (AirSim only)
Transformer Layers 6

Token Dim (2D/3D) 256

Local Discriminator Grid 4 x4

A (Adv. Weight) 0.5-1.0
Downstream Fine-tuned Epochs 50 (Mixed Sim + Real)
Optimizer AdamW

Initial LR 1x107*

To ensure convergence and stability, the following strategies are used in training: Grad-
ual learning rate decay: Cosine annealing or segmentation strategies are used in both SSL
and fine-tuning stages to prevent gradient oscillation in the later stages; Data augmenta-
tion: Random cropping, horizontal flipping, color perturbation, etc., are uniformly applied
to simulated and real images to enhance the robustness to simulation-real illumination
differences and perspective changes; Mixed batch: The number of source/target domain
samples in each batch is kept consistent to avoid excessive bias towards one domain in
early training; Validation set monitoring: Validation sets are set for VisDrone and DOTA,
and mAP and APs are evaluated every 5 rounds to select the best model.

The above configuration enables the model to obtain strong generalization representa-
tion in the self-supervision stage and complete efficient cross-domain optimization under
limited real annotations; the lightweight local discriminator combines 3D information and
also takes into account the real-time reasoning requirements. The specific speed overhead
will be discussed in detail in the experimental part.

In order to clarify the amount of simulated data required for effective self-supervised
pre-training, we conducted additional ablation experiments. The experiments show that
when the amount of simulated data exceeds 20,000 images, the robustness and general-
ization performance of the model’s self-supervised pre-training features tend to be stable;
when the amount of data is less than 10,000 images, it is obviously insufficient to effectively
capture the complex and diverse features in the real environment. Therefore, we recom-
mend using at least 20,000 diverse simulated images to give full play to the advantages of
self-supervised pre-training in improving cross-domain generalization performance.

4.3. Overall Performance

Table 4 lists the cross-domain detection performance of RA3T and various baselines on
VisDrone and DOTA. The evaluation adopts COCO-style mAP) 5.9 95 metric [57]. Compared
with 3D fusion solutions that only use 2D adversarial or lack SSL, RA3T improves mAP by
3-5% on average on both datasets. Among them, VisDrone has dense small objects and
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severe local occlusion, and the combination of self-supervision and 3D semantic geometry
is particularly advantageous. Although the 3D Transformer and local discriminator bring
additional overhead, the inference speed remains above 15FPS, which is close to the
online frame rate requirement of the classic real-time detector YOLOv3 [54]. To further
benchmark RA3T against recently proposed Sim—to—Real detectors, we compare it with
several state-of-the-art methods in Table 5.

In addition, we also compared RA3T with some recently proposed pure Transformer
detection models (such as DETR and Swin Transformer) that do not adopt domain adapta-
tion strategies. The experimental results show that in cross-domain generalization tasks,
RA3T’s mAP performance is significantly better than that of pure Transformer methods:
compared with DETR and Swin Transformer, it is improved by 4.8% and 3.9%, respectively.
This performance difference clearly shows the advantages of self-supervised feature pre-
training and region-level adversarial calibration adopted by RA3T in cross-domain tasks,
especially in low-altitude drone scenarios with small targets and obvious local differences.

Table 4. Comparison of cross-domain detection results (VisDrone and DOTA, mAP[%], IoU = 0.5:0.95).

VisDrone DOTA
Method
mAP APsg FPS mAP APsg FPS

Baseline (CNN-only) 21.5 32.3 26 34.6 47.2 23
+Global DA (2D) 24.2 36.1 24 37.8 50.5 22
+Local DA (2D) 25.1 37.6 22 39.2 52.1 21
+3D Fusion (No SSL) 26.4 39.1 18 42.0 55.9 17
RA3T (Ours) 29.3 44.7 17 45.2 59.5 15

"

Table 5. Cross-domain detection comparison with recent methods (IoU = 0.5:0.95). indicates that

the original paper did not report the value.

VisDrone DOTA
Method Year/Ref. = Modality FPS
mAP AP50 mAP AP50
Zhang et al. [15] 2020 2D + Local 25.1 37.6 392 521 21
Zhangetal. [24] 2022 2D + Global + Local 259 384 399 532 22
Wang et al. [26] 2021 2D + Local 248 372 - - 22
Yue et al. [25] 2021 3D + Global 267 399 416 548 19
RA3T (Ours) 2025 3D + Local + SSL 293 447 452 595 17

Qualitative Analysis

As shown in Figure 6, the baseline method is prone to missed detection in areas with
dense shadows or uneven lighting; RA3T combines 3D geometry and local discriminators
to significantly reduce the false detection rate and improve recall in such scenes. This
further verifies that local adversarial combined with 3D information can fine-grainedly
correct the difference between simulation and reality in texture and shadow levels [10,25].

Table 6 shows that 3D fusion adds 9.4 M parameters and 27.1 G FLOPs, while the
regional discriminator adds 6.1 M and 13.3 G; together they raise mAP by 4.2 points,
allowing practitioners to weigh accuracy against cost.

Table 6. Trade-off analysis of RA3T modules regarding accuracy and complexity.

Module mAP Improvement (%)  Parameter Increase (M) FLOPs Increase (G)
3D Transformer Fusion +2.8 +9.4 +27.1
Regional Discriminator +1.4 +6.1 +13.3
Total (Overall RA3T) +4.2 +15.5 +40.4
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Figure 6. Comparison of detection effects of some scenes in the VisDrone validation set. Green boxes
indicate correct detections, and red boxes indicate missed detections or false detections. Left: 2D
adversarial baseline only; right: RA3T of this paper.

4.4. Ablation Study

Table 7 and subsequent grid size experiments (Table 7) show that the synergy of self-
supervised pre-training, 3D fusion, and local adversarial can produce significant gains; if any of
these links is missing, the robustness of the model in small target/occlusion scenarios will
be significantly reduced.

Table 7. Ablation study on VisDrone (IoU = 0.5:0.95): contribution of each RA3T component to
accuracy and inference speed. Note: w/o = without.

1D MAE Contr. 3D Region mAP APs5p FPS
(1) Full RA3T v v v v 29.3 44.7 17
(2) w/o SSL X X v v 26.8 38.1 18
(3) Only MAE v X v v 27.6 39.0 17
(4) Only Contrastive X v v v 27.3 38.7 17
(5) w/0 3D Fusion v v X v 25.7 38.2 23
(6) w/o Region DA v v v X 27.9 42.5 18

¥ Component included; * Component not included.

4.5. Runtime and Resource Usage

Although RA3T has higher parameters and FLOPs, it is still faster than other GPUs
on modern GPUs. It still maintains 17 FPS, which can meet the needs of real-time low-
altitude missions; if deployed on a resource-constrained platform, it can be combined with
lightweight backbones such as EfficientNet [53], pruning and quantization strategies to
further compress [52].

To gauge robustness, we further evaluated RA3T on a synthetic extreme-weather set
comprising nighttime, fog and rain renderings of VisDrone scenes (2000 images each).
RAS3T retained 96.8% of its daylight mAP, outperforming a 2D adversarial baseline by 3.9%.
Detailed numbers are summarized in Table 8.
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Table 8. Inference efficiency of different methods under 1024 x 1024 input.

Method Params (M) FLOPs (G) FPS Device

2D Baseline 32.1 75.3 26 RTX 4080
Global DA 36.2 79.5 24 RTX 4080
3D Fusion (No SSL) 45.6 102.4 18 RTX 4080
RA3T (Ours) 48.2 115.7 17 RTX 4080

4.6. Sensitivity Analysis to Simulation Diversity

In order to analyze the sensitivity of the RA3T method to the diversity of the sim-
ulated environment, we designed additional comparative experiments. Specifically, we
constructed three different scene diversity settings in the simulated training set: low di-
versity (only urban scenes), medium diversity (urban + rural scenes), and high diversity
(urban + rural + different weather conditions). The experimental results show that the
generalization performance of the model under the high-diversity training set is signifi-
cantly better than that of the low-diversity and medium-diversity cases on the real UAV
dataset, with mAP increased by 3.5% and 1.8%, respectively. This result highlights the
importance of simulated environment diversity for the RA3T framework to achieve high
generalization performance.

4.7. Analysis of Robustness to Sensor Noise and Calibration Errors

In order to evaluate the robustness of the RA3T framework to sensor noise, calibration
errors, and missing data, we conducted an additional series of simulation tests. We added
random Gaussian noise to the RGB image, simulated the random position offset of the
LiDAR point cloud (calibration error), and artificially removed a certain proportion of
data (data missing). The experimental results show that when the RGB noise is enhanced
(the signal-to-noise ratio is reduced by 10 dB), the mAP only decreases by about 1.9%;
when the point cloud position offset is as high as 5 cm, the mAP decreases by about 2.5%;
and when 20% of the point cloud data is randomly missing, the mAP decreases by about
3.3%. These results show that the RA3T framework has a strong tolerance for sensor
noise and calibration errors, and can effectively deal with data uncertainty problems in
real environments.

4.8. Evaluation on Segmentation and Tracking Tasks

In order to evaluate the performance of the RA3T framework on other drone vision
tasks besides object detection, we additionally conducted preliminary experimental verifi-
cations on semantic segmentation and target tracking. In the semantic segmentation task
(based on DAFormer and SegFormer heads), the average IoU (Intersection over Union) of
RAB3T increased by about 3.6% compared with the traditional CNN method; in the target
tracking task, we used the Siamese network combined with the 3D Transformer features of
RAS3T. Preliminary results show that the tracking accuracy (success rate) increased by about
2.9%. These results preliminarily confirm the effectiveness and generalization ability of
the cross-domain self-supervised features and 3D geometric context information extracted
by RA3T for a variety of visual tasks, reflecting the multi-task expansion potential of
the framework.

4.9. Performance on Small and Heavily Occluded Objects

To further evaluate the performance of the RA3T framework in the detection of ex-
tremely small or heavily occluded objects, we conducted comparative experiments with
existing mainstream methods. Experimental results show that in datasets such as VisDrone
and DOTA, RA3T significantly outperforms traditional CNN and other Transformer meth-
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ods (such as DETR and Swin Transformer) in detecting small objects with a size of less
than 20 x 20 pixels and objects with an area of more than 50% occluded. Specifically, RA3T
improves the mAP by an average of about 4.2% in the small object detection task and by
an average of about 3.7% in the heavily occluded object detection task. This performance
improvement is mainly due to the 3D spatial modeling capability and region-level domain
adversarial calibration mechanism adopted by the RA3T framework, which effectively
alleviates the detection difficulties caused by local occlusion and size limitation.

4.10. Architecture-Level Ablation Study

In order to further verify the rationality of the RA3T architecture design, we conducted
ablation experiments on core parameters such as token dimension, Transformer depth
and window size. The experimental results show the following: (1) The performance is
best when the token dimension is 256, which is 2.1% and 0.4% mAP higher than 128 and
512 dimensions, respectively. (2) The best depth of Transformer is 6 layers. When it is fur-
ther increased to 8 layers, the performance is only improved by 0.2%, but the computational
cost is significantly increased, and when it is reduced to 4 layers, the performance decreases
by about 1.5%. (3) When the sliding window size is set to 7 x 7, the best balance between
performance and efficiency is achieved, which is 1.3% and 0.6% mAP higher than 5 x 5 and
9 x 9, respectively. The experimental verification of these architectural parameters clearly
shows the best trade-off between performance and complexity achieved by the current
RA3T framework design.

4.11. Preliminary Experiments on Model Pruning and Quantization for Edge Deployment

To verify the feasibility of RA3T deployment on embedded platforms or low-end
GPUs, we conducted preliminary model pruning and quantization (INT8 quantization)
experiments. The experiment used NVIDIA Jetson Xavier NX (Nvidia Corporation, Santa
Clara, CA, USA) as a typical edge computing device and optimized it through TensorRT.
Preliminary results show that after 50% model pruning and INT8 quantization, the model
parameters are reduced by about half, the inference speed is increased from the initial
about 5 FPS to about 12 FPS, and the mAP accuracy is only reduced by about 1.5%.
This preliminary result clearly demonstrates the potential of RA3T for deployment on
resource-constrained devices and provides specific data support and direction guidance
for subsequent in-depth research.

4.12. Comparison with Recent 3D Cross-Modal and Segmentation Frameworks

In order to more comprehensively evaluate the performance of the RA3T framework,
we also conducted direct comparative experiments with recent mainstream 3D cross-modal
frameworks (such as BEVFormer, FusionFormer, and MonoDepth-based methods) on
drone vision tasks. The experimental results show that the RA3T framework is signif-
icantly better than the above methods in cross-modal feature fusion and cross-domain
generalization performance. For example, on the VisDrone and DOTA datasets, the detec-
tion accuracy (mAP) of RA3T is improved by 3.4% and 2.7% compared with BEVFormer
and FusionFormer, respectively, and by 4.1% compared with MonoDepth-based methods.
In addition, we also conducted preliminary experiments on semantic segmentation tasks
(based on DAFormer and SegFormer). RA3T performs better than traditional cross-domain
segmentation methods, with an average IoU improvement of about 3.2%.

4.13. Quantitative Analysis of Simulation Data Diversity and Domain Gap

In order to clarify the diversity of simulation data and its impact on domain gap, we
conducted a detailed quantitative analysis of the simulation dataset used for self-supervised
pre-training. The dataset contains about 30,000 images, of which urban scenes account
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for about 60%, rural scenes account for 25%, and mountain and forest scenes account
for 15%. In terms of weather conditions, sunny weather accounts for 50%, cloudy and
overcast weather accounts for about 30%, and rainy and snowy weather accounts for 20%.
We further quantitatively analyze the domain gap by calculating the feature distribution
distance (such as Fréchet distance) between the source (simulated) domain and the target
(real) domain. The analysis results show that although the overall domain gap still exists,
the feature difference between domains is significantly reduced after the regional-level
domain adversarial calibration in the RA3T framework (the Fréchet distance is reduced
by about 35% on average). However, for extreme conditions that are not covered (such as
night or strong wind and rain environments), further specialized datasets are still needed
to verify the generalization performance in practice, which is an important direction for
future research.

5. Discussion

This study systematically verifies the cross-domain detection effect of RA3T on two
low-altitude drone datasets, VisDrone and DOTA, while taking into account both accuracy
and inference efficiency. As shown in Tables 4 and 7, compared with the method of only
using global adversarial or pure 2D detection, regional adversarial can achieve more fine-
grained correction on local differences such as shadows and textures, which is particularly
effective in small targets and occlusion scenes, and the introduction of 3D Transformer pro-
vides valuable spatial information and has a compensatory effect on the height distribution
of buildings and vehicles, which is consistent with the “local adversarial + 3D fusion” idea
emphasized in the literature [10,15].

From the perspective of self-supervised pre-training, MAE and contrastive learning
dual branches can automatically mine common textures and geometric representations
in massive simulated images, effectively reducing the dependence on real annotations
and improving the generalization ability of initial features; compared with traditional
supervised features, only a very small amount of real annotations are needed to obtain
considerable precision and recall, which is consistent with the conclusion of [11,13].

It should be noted that the addition of 3D Transformer and region-level discriminator
will bring additional computational overhead. Although high FPS can still be maintained
on high-performance GPUs such as RTX 4080, real-time performance may be challenged
in resource-constrained drone embedded environments, which is consistent with [38]’s
discussion on edge computing bottlenecks. In the future, if combined with strategies such
as sparse attention, model pruning or offline geometric prior, it is expected to further compress
3D feature expressions and reduce deployment costs.

Preliminary pruning (50% weights) and INT8 quantization reduce RA3T to about 24 M
parameters and 48 G FLOPs, delivering 11.8 FPS on an NVIDIA Jetson Xavier NX (15W
power mode) with only a 1.6 mAP drop. A further TensorRT pass lifts the speed to 13.2 FPS
on Jetson Orin Nano. These results confirm that the proposed framework can satisfy the
real-time requirements of micro-UAVs without dedicated GPUs.

We conducted additional preliminary analysis and discussion on the scalability of the
RA3T framework to large-scale scenes or different environments (such as urban and rural
areas). Since the regional-level discriminator is inherently adaptable to multiple spatial
scales and different scene contents, the framework has good spatial scalability. When facing
a larger range of scenes, effective expansion can be achieved through multi-scale pyramid
feature fusion and sliding window strategies. In addition, in terms of generalization issues
in different urban and rural environments, RA3T can adapt well to significant changes
in scene content and texture structure through domain-independent features obtained
through self-supervised pre-training and local domain calibration mechanisms, which has
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been verified to a certain extent in our preliminary tests. These scalability features make
RAB3T particularly suitable for various large-scale, cross-environment drone vision tasks.

When facing extreme environments such as nighttime or bad weather, if the simulation
domain lacks corresponding data distribution, regional adversarial alignment may still
be insufficient. If style transfer or randomization strategies (such as CycleGAN [23]) are
introduced during the training phase, it is expected to enhance the adaptability to extreme
scenarios. For larger-scale urban inspection tasks, the continuous learning framework [29]
can be combined to dynamically update the regional discriminator during long-duration
flights to adapt to urban landscape and seasonal changes. In the future, RA3T can also be
extended to tasks such as 3D reconstruction and time series tracking, using 3D information
and regional adversarial to play an advantage in multi-frame data.

Regarding the question of whether region-level adversarial calibration can also be
used for purely supervised models, we believe that this mechanism has good universality.
Region-level adversarial calibration essentially aims to finely align the fine-grained differ-
ences between different domains at the level of local domain features, and this idea is not
limited to the self-supervised framework. In fact, our preliminary analysis shows that even
in the domain adaptation scenario of traditional supervised learning, region-level adversar-
ial calibration can also provide significant performance gains (such as an increase of about
2-3% mAP). Therefore, further exploring the application of region-level domain adversarial
in supervised frameworks in the future may become a very valuable research direction.

Considering the extremely limited computing resources of micro-UAVs, we further
discussed the lightweight version of the RA3T framework. Specifically, the number of
model parameters and computational complexity can be significantly reduced by replacing
the backbone network with an efficient and lightweight architecture (such as MobileNetV3,
EfficientNet-Lite) and streamlining the number of Transformer layers and heads. In addi-
tion, using depthwise separable convolution instead of standard convolution and using
smaller input images (such as 512 x 512 or smaller) can also effectively improve the model’s
deployment capabilities on micro-UAVs. Preliminary tests of this lightweight version show
that although the detection accuracy will decrease (about 2—4% mAP), it can still meet the
basic task requirements and achieve real-time operation (more than 15 FPS), making it
suitable for micro-UAV deployment in actual tasks.

In addition, the RA3T framework has great potential when actually deployed to low-
power edge devices. Through strategies such as model pruning, parameter quantization
(such as INT8 quantization), and the use of efficient and lightweight backbone networks
(such as EfficientNet), the computational complexity and memory requirements of the
model can be further reduced, making it suitable for resource-constrained drone platforms
or portable edge computing devices. This deployment flexibility greatly expands the prac-
tical application scope of RA3T, especially in edge computing scenarios such as emergency
rescue, agricultural monitoring, and urban safety inspections.

The main challenges faced by RA3T in the actual deployment of UAV systems include
the following: (1) Real-time synchronization and calibration of sensor data. It is difficult
to accurately align RGB images and LiDAR point clouds in actual flight environments.
(2) Computational resource limitations. Due to the limited power consumption of comput-
ing units on UAV platforms, especially micro-UAVs, the complexity of the model needs to
be significantly reduced. (3) Robustness to environmental changes. In long-term operation,
how to ensure that the model can quickly adapt to scene changes in different regions
and seasons is also an important factor to be considered in actual deployment. In future
research, we will specifically optimize these challenges to improve the practicality and
reliability of RA3T in real missions.
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Although the RA3T framework performs well under the conditions covered by the
existing VisDrone and DOTA datasets, we also noticed that extreme weather (such as heavy
rain and heavy snow) or special lighting conditions (such as strong backlight and highly
reflective scenes) are not fully covered by the current datasets. Therefore, the performance
of RA3T in these uncovered scenes still needs further practical verification. In future work,
we plan to specifically expand the simulation and real datasets with extreme conditions,
and further improve the generalization performance of RA3T through data augmentation
and domain randomization techniques to ensure that the model can maintain robustness in
a wider range of real application environments.

Overall, RA3T integrates three key elements, self-supervised features, cross-modal
3D fusion, and region-level adversarial, taking into account the needs of efficient migra-
tion from simulation to reality and the processing needs of small targets/partial occlusion
scenes, and has strong scalability and application value. Subsequent work can further
lightweight the network for different hardware platforms, and combine multiple types of
sensors such as thermal infrared and spectral sensors to improve the cross-domain per-
ception capabilities of nighttime or sudden disaster scenes. Ablation on self-supervision.
Table 9 compares four self-supervised learning variants and confirms that combining MAE
with contrastive learning achieves the best accuracy on VisDrone.

Table 9. Ablation experiments of different self-supervision strategies (VisDrone, IoU = 0.5:0.95).
“MAE Only” means removing the contrast branch, and “Contrastive Only” means removing MAE.
The combination of the two can achieve the best accuracy.

SSL Strategy mAP AP5 A (mAP) Description

No SSL (Plain Enc.) 26.8 38.1 —2.5 Supervision Only
MAE Only 27.6 39.0 -1.7 Global-local consistency
Contrastive Only 27.3 38.7 —-2.0 Instance differentiation
MAE + Contrastive 29.3 447 0 Dual-branch optimal

6. Conclusions and Future Work

The RA3T (Region-Aligned 3D Transformer) framework proposed in this paper syner-
gistically narrows the Sim-to-Real gap from three aspects: self-supervised feature pre-training,
3D multi-modal fusion, and region-level adversarial calibration. It can significantly alleviate the
problems of shadow occlusion, small target detection, and local illumination differences in
low-altitude flight scenes. Experiments show that compared with the baseline that only
uses global adversarial or pure 2D features, RA3T brings about 3-5% mAP improvement on
VisDrone and DOTA, respectively, and achieves higher recall rate in small target/occlusion
scenes; the self-supervised branch (MAE + MoCo) fully exploits the potential information
of massive unlabeled simulation data, further reducing the dependence on real annotations.

Model lightweight and hardware adaptation—For the real-time constraints of edge
GPU/FPGA, strategies such as pruning, sparse attention or knowledge distillation can be
combined to compress the computation of 3D Transformer and local discriminator [40,52],
while using efficient backbones (such as EfficientNet [53]) or the RangeNet++ point cloud
encoder [41].

Robustness in extreme environments—Under extreme weather conditions such as night,
rain and fog, style transfer /randomization strategies (such as CycleGAN [23]) and the latest
SAM-Fusion fusion paradigm [33] can be further introduced to improve the adaptability to
low light and blurred textures.

Continuous/online domain adaptation—Combining mobile edge computing and drone
swarm collaboration frameworks [36,37], in long-duration missions, through continuous
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learning [29] or online adversarial updates, the local discriminator can be dynamically
adjusted according to spatiotemporal changes.

Multi-task and multi-sensor expansion—In the future, RA3T can be combined with
cross-modal Transformer [34], high-resolution land use recognition networks [35] or multi-
source feature alignment networks [39] to carry out richer tasks such as 3D reconstruction,
temporal tracking and semantic segmentation (such as DAFormer [42], SelfDA [46]).

In future work, we plan to further expand the scope of applicable tasks of the RA3T
framework, including extending the 3D Transformer module to 3D reconstruction and
semantic segmentation tasks to take advantage of its advantages in spatial modeling.
In addition, the region-level domain adversarial calibration mechanism also has strong
expansion potential. We expect to apply it to domain adaptation tasks in other fields, such
as autonomous driving and robot vision, to solve the common local domain difference
problems in these fields.

In addition, we also plan to further expand the RA3T framework by introducing
temporal information to improve the detection stability and accuracy of the model. Specifi-
cally, we can explore the fusion of continuous multi-frame data by combining temporal
Transformer or recurrent neural networks (such as LSTM) to utilize the consistency of
scene and target motion, reduce the uncertainty of single-frame detection, and effectively
improve the performance of the model in complex dynamic environments. This extension is
particularly important for long-term inspection and continuous monitoring tasks, and will
further enhance the practical applicability and generalization ability of RA3T.

We also plan to explore extending the regional-level domain adversarial calibration
strategy to other sensor modalities, such as thermal infrared and spectral data. These
sensors have unique advantages at night, in bad weather or special environments, but they
also face obvious domain differences. It is preliminarily speculated that the regional-level
adversarial calibration method can also effectively capture local fine-grained differences
in these modalities, thereby improving cross-modal and cross-domain generalization per-
formance. This extension will further enhance the applicability of the RA3T method in
multi-modal fusion and all-weather application scenarios.

In summary, RA3T provides a feasible, effective and scalable solution for cross-domain
migration of low-altitude UAV vision. We will continue to perform in-depth research in
the direction of self-supervision, multi-modality, and fine-grained adversarial, and promote the
high-precision implementation of this framework in actual scenarios such as agricultural
monitoring, post-disaster assessment, and urban safety inspections.
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Abbreviations

RA3T  Region-Aligned 3D Transformer
UAV Unmanned Aerial Vehicle

SSL Self-Supervised Learning

MAE  Masked Autoencoder

MoCo Momentum Contrast

ViT Vision Transformer

mAP  Mean Average Precision
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FPS Frames Per Second

CNN  Convolutional Neural Network
DA Domain Adaptation

GPU Graphics Processing Unit
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Abstract: In the U-Space environment, seamless communication between key stake-
holders—such as U-Space Service Providers (USSP), Common Information Service
Providers (CISP), and drone operators—is very important for the safe and efficient man-
agement of Unmanned Aerial Vehicle (UAV) operations. A major challenge in this context
is minimizing communication latency, which directly affects the performance of time-
sensitive services. This study investigates latency issues by evaluating two communication
protocols: push—pull (using REST-API and ZeroMQ) and publish—subscribe (using AMQP
and MQTT). Through a case study focused on drone detection, the research examines
latency across critical operational activities, including conformance monitoring, flight plan
confirmation, and the transmission of alerts via the USSP system under varying message
intervals and payload sizes. The results indicate that while message interval has a signifi-
cant influence on latency, message size has a minimal effect. Furthermore, the push—pull
protocols consistently deliver lower and more stable latency compared to publish-subscribe
protocols under the tested conditions. Both approaches, however, achieve latency levels
that align with EASA’s operational requirements for U-Space systems.

Keywords: latency; REST-APIL; ZeroMQ; AMQP; MQTT; U-Space; communication

1. Introduction

The rising presence of Unmanned Aerial Vehicles (UAVs) in airspace for commercial,
public safety, and recreational operations—especially in urban and restricted areas—poses
new challenges to airspace security. To ensure safe and reliable drone operations, it is
essential to establish efficient communications among UAV operators, U-Space Service
Providers (USSPs), and drone detection systems. U-Space refers to the set of services,
procedures, and infrastructures that enable the safe integration of drones into civil airspace,
encompassing registration, authorization, intrusion detection, and traffic management.
In practical terms, mitigating potential harm depends on rapidly identifying intrusions
into restricted airspace and immediately transmitting that information to the responsible
operator or authority. The AI4HyDrop project [1], for instance, develops automatic drone
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detection and real-time notification solutions, underscoring the importance of low-latency,
highly reliable communication mechanisms in U-Space service chains.

Although there are various studies on secure, low-delay communications in UAV
scenarios—including performance analyses of 4G networks for drones [2], elliptic-curve-
based cryptographic protocols [3], latency-guaranteed mechanisms for BVLOS opera-
tions [4], data-sharing APIs for drone identification [5], and investigations of MQTT in
multi-drone scenarios [6]—empirical evaluations that directly compare push—pull pro-
tocols and publish—subscribe protocols within U-Space service chains remain lacking.
Furthermore, it is unclear whether these approaches satisfy the EASA’s stringent latency re-
quirements for time-sensitive U-Space services. To address this gap, we present a case study
measuring the end-to-end latency of four representative protocols (REST-API, ZeroMQ,
AMQP, and MQTT) in a realistic intrusion-notification scenario from a drone detection
system to a U-Space Service Provider. Our objective is to quantify and compare latency
behaviors under realistic conditions and evaluate compliance with EASA delay limits for
time-sensitive U-Space services.

The manuscript is organized as follows. Section 2 reviews related work on UAV
communications and U-Space latency requirements, followed by studies on latency opti-
mization in distributed systems. Section 3 describes the experimental scenario and latency
measurement methodology. Section 4 presents the results, and Section 5 discusses their
implications for protocol selection in U-Space services. Finally, Section 6 concludes and
suggests future directions.

2. Literature Review

Early studies have emphasized the importance of secure and low-latency commu-
nication for UAV systems. Some contributions include analyses of the performance of
4G networks employed in drone communications [2]; proposals of elliptic-curve-based
cryptographic protocols to ensure data confidentiality and integrity in UAV networks [3];
investigations into latency-guaranteed mechanisms for aircraft control in beyond-visual-
line-of-sight (BVLOS) operations [4]; studies on data sharing via Application Programming
Interfaces (APIs) aimed at drone identification [5]; and explorations of the Message Queu-
ing Telemetry Transport (MQTT) protocol in multi-drone communication scenarios [6].
Additionally, decentralized swarm communication algorithms for efficient task allocation
and power consumption in swarm robotics [7], hybrid Cellular Potts and Particle Swarm
Optimization models for energy and latency optimization in edge computing [8], and
peer-to-peer topology optimization in blockchain-based Industrial IoT networks to reduce
propagation latency [9] have been investigated in related distributed systems domains.

For distributed communication systems, the Advanced Message Queuing Protocol
(AMQP) has proven to be a practical option, particularly in critical industrial settings
and Internet of Things (IoT) networks. The protocol’s original purpose was to oversee
high-integrity commercial transactions in the banking sector. Its architecture, based on
exchanges, queues, and bindings, promotes interoperability and modularity [10]. This
structure makes message management scalability and dependability possible, which is
especially helpful for systems that require high security and integrity. Its applicability
for corporate applications and critical contexts is further supported by recent research
that shows its effectiveness in high-density networks and its capacity to manage varying
message sizes [11].

Because AMQP can retain messages until they are used, it has proven to be more
resilient than MQTT in challenging situations, such as high latency and packet loss. AMQP
performs exceptionally well in complicated workloads and activities that value reliability,
whereas MQTT is more effective in low-latency situations [12]. In addition to enhancing
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the protocol’s performance and adaptability in distributed systems, real-world imple-
mentations such as RabbitMQ and ActiveMQ facilitate cloud solutions and on-premises
settings [13]. These elements make AMQP a wise option for systems that need reliable and
secure communication.

The communication protocols employed in communication are critical to the per-
formance and scalability of UAVs and IoT networks, especially in low-latency and high-
reliability applications. AMQP, MQTT, and Constrained Application Protocol (CoAP)
protocols have been researched extensively due to their varying characteristics. MQTT, for
example, is well-known for its simplicity and efficiency on low-bandwidth and high-latency
networks and is utilized in Internet of Things applications [14,15]. However, because AMQP
offers additional resilience and advanced features to ensure message delivery in critical
systems, it stands out when message integrity and storage are critical [16,17]. According
to research assessing hybrid scenarios and the shortcomings of individual protocols, the
best protocol should be chosen after taking into account the system’s characteristics and
the particular message needs [17].

In order to satisfy real-time needs in industrial and Internet of Things systems, recent
developments have investigated the integration of new technologies with established pro-
tocols. To better adapt to industrial applications that demand transmissions with specified
delays, PrioMQTT, a modification of MQTT, for instance, offers message priority features.
Simultaneously, the creation of hybrid protocols, like the one suggested for the Internet
of Flying Things (IoFT), combines the advantages of Micro Air Vehicle Link (MAVLink)
and MQTT to enhance communication in systems involving UAVs, providing notable
enhancements in processing time, latency, and network throughput [15]. Furthermore,
strategies like extending Apache Pulsar (ePulsar) show how publish/subscribe-based
systems may be tailored for geo-distributed edge infrastructures, lowering latency and
enhancing performance like drone coordination [18].

In addition to the protocols already discussed, ZeroMQ is a lightweight asynchronous
messaging library that supports publish—subscribe, push—pull, and request-reply patterns
without a centralized broker. Comparative studies show that this peer-to-peer architecture
can markedly reduce latency and increase throughput in high-frequency exchanges, out-
performing MQTT and approaching DDS performance when packets are small, or many
nodes communicate concurrently [19]. Its simple API and low resource footprint make
ZeroMQ an attractive choice for embedded systems—such as the drone-detection sensors
examined in this work—yet the lack of built-in persistence and load balancing means that
reliability, authentication (e.g., CurveZMQ), and flow control must be provided at higher
layers or through additional configuration [20].

Finally, there are unique difficulties when using communication protocols in UAVs
managed by cellular networks. Drone telemetry and BVLOS control are now possible
thanks to protocols like MQTT that have been modified to function with mobile tech-
nologies like 4G and 5G [21]. However, operations’ responsiveness and safety may suffer
due to the delay that mobile networks introduce. In addition to suggesting methods to
minimize the effects by optimizing protocols and integrating them with modern networks,
recent research has looked into techniques to quantify and simulate these delays [21,22].
These advancements are still required to ensure that communication channels satisfy the
expanding demands of airspace real-time operations.

In the context of UAV communication requirements, it is useful to juxtapose the four
protocols evaluated in this work: REST-API and ZeroMQ, as representatives of push—pull
approaches, and AMQP and MQTT, as representatives of publish—subscribe approaches,
highlighting their respective strengths and trade-offs. Table 1 provides a concise comparison
of these protocols in terms of messaging pattern, underlying transport technology, broker
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dependency, message overhead, synchronization model, and built-in security support.
This overview illustrates how REST-API and ZeroMQ differ in terms of simplicity, latency
potential, and infrastructure needs compared to AMQP and MQTT, which offer richer
broker-based features and delivery guarantees at the cost of additional overhead. By
situating these characteristics side by side, the reader gains immediate insight into why
certain protocols may be preferable for specific U-Space functions, such as low-latency
onboard command and control versus reliable backend data analysis, thereby motivating
the experimental evaluation that follows.

Table 1. Comparison of protocols used in this study.

Feature REST-API ZeroMQ AMQP MQTT

Pattern Push-Pull Push-Pull Pub-Sub Pub-Sub
Technology HTTP/HTTPS TCP TCP TCP

Broker No No Yes Yes

Message overhead High (HTTP headers, Very low (no Medium to high Low (optimized for
handshakes) headers, raw sockets)  (framing + broker) small payloads)
Process Synchronous Asynchronous Asynchronous Asynchronous
Security TLS native Must add manually TLS via broker TLS via broker

Prior studies have consistently emphasized the critical role of secure and low-latency
communication in UAV operations, particularly for beyond-visual-line-of-sight (BVLOS)
missions. Early contributions have explored the use of 4G networks for drone communi-
cation, introduced elliptic-curve cryptographic protocols for data security, and proposed
latency-guaranteed mechanisms for UAV control. Application Programming Interfaces
(APIs) have been used for drone identification, while MQTT has been investigated for
multi-drone coordination due to its simplicity and suitability for constrained networks.
AMQP, originally developed for the financial sector, has demonstrated high reliability
and message persistence, making it effective for critical systems and varying message
sizes. ZeroMQ has gained attention for its brokerless, low-latency architecture suitable
for edge computing and embedded UAV systems, though it lacks native persistence and
flow control. Furthermore, hybrid protocol designs—such as MAVLink with MQTT for the
Internet of Flying Things (IoFT), PrioMQTT for prioritized messaging, and ePulsar for geo-
distributed publish-subscribe systems—have shown improvements in latency, throughput,
and scalability. Finally, studies integrating these protocols with mobile networks like 4G
and 5G highlight both the potential and limitations of cellular infrastructure in supporting
responsive UAV communication.

Despite the advancements, several gaps remain that necessitate further investigation.
Most existing studies focus on specific protocols or applications, lacking comparative
performance evaluations under uniform conditions, particularly across MQTT, AMQP,
ZeroMQ, and REST-API. Moreover, current research does not adequately address commu-
nication requirements specific to U-Space environments, such as those involving drone
detection, conformance monitoring, and alert dissemination. There is also limited analy-
sis of protocol performance across varying payload sizes and message intervals—factors
critical for real-time UAV operations with bursty data patterns. While ZeroMQ shows
promise for decentralized sensor systems, the trade-offs between brokered (e.g., AMQP)
and brokerless (e.g., ZeroMQ) architectures in UAV detection frameworks remain underex-
plored. Additionally, few studies evaluate how these communication protocols perform
in edge-to-cloud architectures typical of drone detection services, where low latency, high
throughput, and message integrity must be balanced across distributed system components.
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These gaps highlight the need for a systematic analysis of communication protocols tailored
for real-time, reliable, and scalable UAV communication in U-Space systems.

3. Methodology

This study centers on analyzing the communication latency of two types of protocols,
which are push-pull and publish-subscribe, in delivering warning messages from the
drone detection system to the U-Space Service Provider (USSP). Within the AI4HyDrop
project, the proposed drone detection framework can identify both cooperative and non-
cooperative drones using Al-driven detection algorithms, as illustrated in Figure 1 [1].
The system integrates multiple sensors including cameras, microphone arrays, and radio
frequency antennas to gather data on drones operating near restricted airspace. These data
serve as input for deep learning algorithms, which require extensive training datasets to
accurately detect various drone models.

In this framework, the drone detection service can either be integrated into the USSP’s
services or provided by a third-party service linked to the USSP. The USSP, as defined
by regulations and described by Barrado et al. (2020), offers essential services to UAS
operators to support their flight operations [23]. Additionally, the framework includes the
Common Information Service Provider (CISP) as another key U-Space component. In this
research, an extended definition of CISP is applied, since current regulations, as noted by
EASA (2024), do not yet encompass the capability of managing drone flight plans (U-Plans)
under CISP’s responsibilities [24].
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Figure 1. Drone detection framework [25].

This research identifies three case studies related to drone detection:
a. Cooperative drones are authorized to fly into restricted airspace.

In this scenario, a drone is detected by sensors flying near a restricted airspace, and its
location is estimated. The system receives the broadcast remote ID data, which includes
the drone’s ID and position. The detection system then connects to the Extended CISP
to retrieve flight plan authorization data. Upon confirming that the drone is authorized
to operate within the restricted airspace, the case is considered resolved with no further
action needed.

b. Cooperative drones are not authorized to fly into restricted airspace.

Here, a drone is similarly detected by sensors near restricted airspace, and its location
is determined. The system receives its broadcast remote ID data, including the drone ID
and location. Upon connecting to the Extended CISP, the detection system finds that the
drone is not authorized to enter the restricted airspace. Consequently, a warning level 1
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message—containing the drone’s ID and location—is sent to the USSP to alert the operator
to avoid the restricted area. If the drone operator commands the drone to return to its
planned path, the incident is closed. However, if the drone continues moving closer to the
restricted zone, it is then classified as a non-cooperative drone (see case study number ¢
below).

c¢.  Non-cooperative drones are flying into restricted airspace.

In this case, a drone is detected flying near restricted airspace and its position is esti-
mated, but no broadcast remote ID data are received—either because it is a non-cooperative
drone, or it evolved from case number b. A level 2 warning is then issued, which includes
the drone’s location. This message is sent to the USSP to alert all nearby operators, initi-
ate any necessary tactical deconfliction measures, and inform security personnel to take
appropriate actions.

The push—pull protocol is a request-response model where the client (drone detection
system) “pushes” a message to the server (USSP) by initiating a request. The server then
“pulls” the data, processes them, and sends a response back to the client [26]. In this
study, the REST-API (Representational State Transfer—Application Program Interface) and
ZeroMQ protocols are utilized for sending messages in the push—pull protocol because of
its wider usage in website or application. The REST-API protocol is based on the universal
HTTP (Hypertext Transfer Protocol) protocol, and the information is usually returned in
the JSON (JavaScript Object Notation) format that almost all the programming languages
can read with the schematic diagram as shown in Figure 2. There are 4 types of possible
commands that can be used including GET (retrieve data), POST (create new data), PUT
(update data), and DELETE (remove data) [27].

GET
e
T =]
e
request response m
Client

methods S

Figure 2. REST-API schematic diagram.

ZeroMQ is a high-performance asynchronous messaging library that enables scalable,
brokerless communication through various messaging patterns, including push—pull. In
the push—pull pattern, a Ventilator component pushes tasks to multiple Worker nodes
using the PUSH socket while each Worker pulls tasks using a PULL socket. This design
achieves load-balanced parallel processing, as tasks are distributed evenly across workers,
as shown in Figure 3.

Once a Worker processes a task, it sends the result using its PUSH socket to a Sink,
which collects results through a PULL socket. This one-way message flow from Ventilator
to Workers to Sink eliminates the need for a central broker, reduces latency, and allows
for scalable and decoupled task distribution. This pattern is ideal for distributed task
processing pipelines where throughput and responsiveness are key [28].

The publish—subscribe protocol is based on an event-driven model where the USSP
subscribes to specific events (such as a warning message from the drone detection system).
The drone detection system acts as the publisher and publishes the event to the subscribers
whenever an event occurs [26]. In this study, the AMQP and MQTT protocols are used
to represent the publish—-subscribe protocol because of its broad usage in business and
commercial applications and its ability to perform message orientation, queuing, switching
reliability, and security [29]. The structure of AMQP protocol is shown in Figure 4 which
consists of publishers, the broker, and subscribers. Inside the broker, the exchange functions
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receiving publishers” messages and adding them to the queue. Then, the queues send

messages to subscribers.

PULL
—_— Worker
PUSH
Ventilator tasks : results _ PULL
PUSH . Sink
PULL
| S, Worker

PUSH

Figure 3. ZeroMQ schematic diagram.

AMQP Broker
Queue Consumer
Producer
Queue Consumer

Figure 4. Structure of AMQP protocols.

MQTT is a lightweight, publish-subscribe protocol designed for low-bandwidth, high-
latency, and unreliable networks, making it ideal for IoT, UAV communication, and drone
operations. It operates using a broker-based architecture, where publishers send messages
to topics and subscribers receive updates from those topics as shown in Figure 5. MQTT
supports three Quality of Service (QoS) levels, QoS 0 (fire-and-forget), QoS 1 (at least
once delivery), and QoS 2 (exactly once delivery), ensuring reliable communication across

various network conditions [30].

Client 2

lish o

Client1 [ publis > MQTT subscribe °
broker °

Client n

Figure 5. Structure of MQTT protocols.

In the experiment, the information sender is a computer running a Python script
version 3.11.9 at the University of South-Eastern Norway, Kongsberg campus. The informa-
tion receiver is the DLR U-Space Research Environment (DURE), hosted on Amazon Web
Services (AWS) cloud servers in Frankfurt, Germany, and running on an Amazon Linux
server instance. In the REST-API experiment, POST command is used to send a message
to the server. While for ZeroMQ experiment, PUSH command is used to send a message
to the server via NGROK gateway. Similarly, in the AMQP and MQTT experiments, the
CloudAMQP with the free “Litle Lemur” plan is used as the broker. The used message
format in JSON is shown in Figure 6, which consists of the drone ID of detected drone,
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timestamp of the event, warning type and warning level of the drone detection, location of
detected drone including latitude, longitude, and relative altitude (height), reasoning of
the warning, and token for security of connection.

{
"droneId": "123456789ABCDE",
"timestamp": "2021-04-27T16:48:05+02:00",
"warning": "drone detection",
"warning level": 1,
Nen™: =Faairl;
mlaE™: A3 1AI893,;
Al Fel™: 500,
"reason": "Violation of NFZ X. Exit the area immediately.",
"token": "eyJhbGciJIUzIl...AzFUD7SvMmSA"
}

Figure 6. JSON format of drone detection warning [25].

The latency as the dependent variable of experiment is defined as the time taken
from the moment the warning message is generated by the drone detection system until
it is received by the USSP system. However, since the clocking time between server and
computer is not always the same and the latency measurement requires very precise
clocking, the latency is calculated by the difference in time when the data are sent, and the
acknowledgement is received, then divided by two.

The independent variables are the sending interval (1 s, 0.5 s, 0.1 s, and 0.01 s) to
represent the number of drones approaching the restricted area and the message size (small:
325 bytes, medium: 2580 bytes, and large: 4880 bytes) to represent the information quantity
that needs to be delivered by multiplying the reasoning text. The test is conducted in a
batch of 100 messages for each combination of interval and message sizes to avoid being
detected as a cyberattack. In total, there are 10 batches of experiments for each protocol
executed during January—April 2025. In total, 48,000 data points are collected.

To assess the distribution of the data, a normality test, such as the Shapiro-Wilk test, is
conducted to determine whether the residuals follow a normal distribution. Additionally,
a homogeneity of variances test, such as Levene’s test, is performed to evaluate if the
variances across groups are equal [31].

Based on these assessment results, the appropriate statistical parameters are selected
to represent the data. When the assumptions of normality and homogeneity of variances
are confirmed, the mean and standard deviation will be used. Meanwhile, when the
assumptions are violated, the median, and interquartile range (IQR), which is the range
between the 25th and 75th percentiles, will be used in the analysis because they are not
influenced by extreme outliers or skewness of data distribution.

4. Results and Analysis
4.1. Data Distribution Analysis

To check the assumption on the normality of data and the homogeneity of variance,
the Shapiro-Wilk test and Levene’s test are conducted, and the results are shown in Table 2,
where the unit of test statistic and p-values are dimension-less and ranged between 0
and 1. For all the latency data of the REST-API, ZeroMQ, MQTT, and AMQP protocols,
the Shapiro-Wilk test resulted in extremely small p-values (significantly below a typical
threshold of 0.05), indicating that the residuals for both data do not follow a normal
distribution. Similarly, the p-values from Levene’s test were also very small, suggesting
that the variances of latency data are not homogeneous, thereby violating the assumption
of equal variances. Given these violations of both normality and homogeneity assumptions,
the median, and the IQR is analyzed to represent the data. The finding is confirmation
from our previous research on the latency of API and AMQP-based protocols [32].
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Table 2. Result of normality and homogeneity of latency data.

Shapiro-Wilk Test Levene’s Test
Protocol — —
Test Statistic p-Value Test Statistic p-Value
REST-API 0.97193 447957 x 10~% 10.36336 8.29229 x 107
ZeroMQ 0.08319 3.13331 x 10118 3.32261 0.01887
AMOQP 0.20215 2.77060 x 10~114 8.14282 2.05649 x 107>
MQTT 0.46216 2.92306 x 107104 2070.83529 0.0

4.2. Latency Analysis

Figures 7-10 represent the latency statistics of the REST-API, ZeroMQ, AMQP, and
MQTT protocols, respectively, with selected intervals and payload sizes. It shows similar
latency for intervals of 100 ms, 500 ms, and 1000 ms. However, a notable increase in latency
occurs at the 10 ms interval, indicating that this interval may be nearing the receiver server’s
capacity to handle warning messages, leading to performance degradation. Exceptions
occur in the ZeroMQ protocol, where there are no significant differences across all message
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Figure 7. Boxplot of latency result using REST-API protocol.

The observed latency behavior can be explained by considering how each commu-
nication protocol and the used system infrastructure manage message throughput and
processing under different conditions. For REST-API, AMQP, and MQTT, the similar la-
tency levels at 100 ms, 500 ms, and 1000 ms intervals suggest that the message rates at these
intervals fall within the acceptable handling capacity of the receiver server. These intervals
provide sufficient time for the server to process and respond to incoming messages without
introducing significant delays.

However, when the message interval is reduced to 10 ms, the system requires the
processing of 100 messages per second, which significantly increases the processing load.
This higher frequency can lead to message queuing, increased 1/O contention, or thread
scheduling delays, especially in protocols like REST-API and AMQP, which rely on more
resource-intensive mechanisms such as HTTP requests or message broker intermediaries.
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As a result, the server begins to approach its processing threshold, causing latency to rise
sharply due to resource saturation or internal buffer overflows.
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Figure 8. Boxplot of latency result using ZeroMQ protocol.
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Figure 9. Boxplot of latency result using AMQP protocol.

In contrast, ZeroMQ demonstrates stable latency across all tested intervals, including
10 ms. This can be attributed to its lightweight, brokerless architecture and asynchronous
messaging model, which is designed for high-throughput and low-latency communication.
ZeroMQ)'’s efficiency in handling high-frequency message streams without relying on
intermediaries allows it to maintain consistent performance even under increased load,
making it less susceptible to the performance degradation observed in the other protocols.

Another finding is that payload size does not significantly affect latency across most
protocols, except for MQTT. This behavior is expected in protocols like REST-API, AMQP,
and ZeroMQ, which are generally designed to handle variable payload sizes efficiently
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through mechanisms such as buffering, chunked transfers, or efficient binary serialization.
These protocols tend to have a relatively fixed processing overhead, meaning that small
increases in payload size do not translate into proportionally higher latency, especially
within the modest payload ranges used in this experiment.
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Figure 10. Boxplot of latency result using MQTT protocol.

However, in the case of MQTT, latency increases with larger payloads. This can be
attributed to MQTT’s design as a lightweight publish—subscribe protocol optimized for
low-bandwidth, low-power devices. MQTT introduces higher overheads when managing
larger payloads due to increased processing time for encoding, transmission, and potential
Quality of Service (QoS) mechanisms, especially when using higher QoS levels that require
acknowledgments or retry. Additionally, broker-side buffering and client-side message
handling can further add to the latency when payload sizes increase.

Also, the boxplot analysis of latency for AMQP reveals a greater number and magni-
tude of outliers compared to the other protocols. This variability in latency may be caused
by AMQP’s complex message queuing and delivery guarantees, which often involve in-
termediate message brokers, acknowledgments, routing mechanisms, and transactional
features. These mechanisms, while useful for ensuring reliable and ordered delivery,
introduce variability depending on server load, broker state, and network conditions. Oc-
casional spikes in processing time, thread scheduling delays, or congestion in the message
queue can lead to latency outliers, making AMQP appear less consistent in time-sensitive
applications.

The statistical values of median and IQR for latency data using the REST-API, Ze-
roMQ, AMQP, and MQTT protocols are shown in Tables 3-6, respectively. The median
values that represent the central tendency of data in the ZeroMQ protocol have the smallest
values compared to the others. Also, the IQRs that represent the variability of data in
the ZeroMQ protocol have the smallest values compared to other protocols. This finding
indicates that ZeroMQ is both a faster typical message delivery time and more consistent
performance than the other protocols. It can be attributed to its lightweight, brokerless, and
asynchronous architecture. In contrast, the REST-API, AMQP, and MQTT protocols intro-
duce additional processing layers, transport overhead, or broker-related delays, resulting
in higher and more variable latency.
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Table 3. Statistical values of latency in REST-API protocol.

Interval [ms] Payload Size Median [ms] IOR [ms]
Large 30.62375 6.315375
10 Medium 31.45775 6.40875
Small 31.53425 6.218625
Large 28.63825 4.14925
100 Medium 28.729 5.403
Small 28.72025 4.34875
Large 29.24875 4.76925
500 Medium 28.905 4.81075
Small 28.86625 5.125
Large 29.89475 4.6925
1000 Medium 29.27075 4.01975
Small 29.44625 4.643625

Table 4. Statistical values of latency in ZeroMQ protocol.

Interval [ms] Payload Size Median [ms] IOR [ms]
Large 12.44225 0.472375
10 Medium 12.49375 0.71125
Small 12.39725 0.488625
Large 13.015 0.809875
100 Medium 12.90875 0.80825
Small 12.94075 0.93325
Large 13.05525 0.887125
500 Medium 12.9835 0.850375
Small 12.98275 0.923625
Large 12.732 0.6595
1000 Medium 12.73775 0.752125
Small 12.68375 0.657875

Table 5. Statistical values of latency in AMQP protocol.

Interval [ms] Payload Size Median [ms] IOR [ms]
Large 50.569 12.6585
10 Medium 50.51875 12.478
Small 52.6935 13.77975
Large 33.1475 4.251
100 Medium 33.415 4.739
Small 32.868 3.85075
Large 33.1405 3.83725
500 Medium 32.7955 3.993875
Small 32.4895 3.49275
Large 33.169 3.261
1000 Medium 33.1695 3.88675
Small 33.29825 3.77675

In terms of the push—pull and pub-sub protocols considered in this study, the
push—pull protocols (REST-API and ZeroMQ) tend to have a better latency than the
pub—sub protocols (AMQP and MQTT). That push—pull protocols achieve better latency
could be because they eliminate the intermediate broker layer, reduce protocol overhead,
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and maintain tighter communication control between sender and receiver. In contrast, the
decoupled and broker-based nature of pub-sub protocols introduces additional latency.

Table 6. Statistical values of latency in MQTT protocol.

Interval [ms] Payload Size Median [ms] IOQR [ms]
Large 495.4235 460.7555

10 Medium 140.4 113.407
Small 30.90525 5.435125
Large 26.89975 2.418375

100 Medium 18.0635 1.47325
Small 18.24425 1.488625

Large 27.04675 2.12475

500 Medium 18.19575 1.3335

Small 18.10475 1.41675

Large 26.74275 2.43675

1000 Medium 18.06275 1.56
Small 18.3065 1.58325

5. Discussion

The first finding from this study reveals that the message interval significantly affects
latency. This is in line with the findings from research about the effect of communication
latency, overhead, and bandwidth on a wide range of applications that show higher
message rates can lead to increased queuing delays, indicating that frequent message
intervals can exacerbate latency due to processing overheads, especially in broker-based
systems where messages must be managed and forwarded by an intermediary server [33].
An exception is observed in the ZeroMQ protocol, where the message interval does not
affect latency, as supported by a study evaluating DDS, MQTT, and ZeroMQ under different
IoT traffic conditions. The study shows that the latency for ZeroMQ remained relatively
stable across a range of message intervals [19]. The absence of a centralized broker and
ZeroMQ)'s peer-to-peer architecture, combined with asynchronous communication and
minimal message overhead, explains its resilience to changes in message interval.

However, the payload size has no statistically significant effect on latency, as the
second finding for REST-API, ZeroMQ, and AMQP. For example, a study on MQTT and
ZeroMQ under different IoT traffic conditions found that ZeroMQ’s latency remained
relatively stable even as payload sizes increased [19]. Also, another study about AMQP for
financial application over different message sizes observed that AMQP’s latency remained
consistent across varying payload sizes, suggesting that other factors like broker perfor-
mance and network conditions play a more significant role in influencing latency [34]. An
exception is observed in the MQTT protocol where the payload size significantly affects
the latency. This is supported by a study on dimensioning payload size in MQTT under
network disconnections, which found that larger payloads led to increased end-to-end
communication delays in MQTT, particularly when higher Quality of Service (QoS) levels
were used [35]. Similarly, an evaluation study for MQTT under heterogeneous traffic with
a combination of different payload sizes observed that MQTT brokers exhibited higher
latency with increasing payload sizes, especially under high-load conditions [36]. These
results suggest that MQTT’s internal queuing and acknowledgment mechanisms, especially
with persistent session settings and QoS 1 or 2, can introduce latency bottlenecks under
high data loads.

The third finding in the push—pull protocol is that ZeroMQ has lower latency than
REST-AP], as supported by a comparative study of gRPC and ZeroMQ in fast communica-
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tion. This study found that ZeroMQ’s lightweight design and asynchronous messaging
capabilities resulted in lower latency compared to protocols that rely on HTTP-based com-
munication, such as REST-API or gRPC [20]. REST-API’s reliance on Transmission Control
Protocol (TCP) handshakes and repeated header transmission for each request contributes to
added communication delay, especially in bursty or continuous data transmission scenarios.

While in publish—-subscribe protocol, MQTT has lower latency than AMQP as the
fourth finding, supported by a comparative study of IoT communication in a real pho-
tovoltaic system, where MQTT demonstrated the lowest latency among the evaluated
protocols (MQTT, AMQP, and HTTP), making it the most suitable choice for applica-
tions requiring real-time data transmission [37]. This advantage is largely due to MQTT’s
lightweight protocol design, minimal header size, and event-driven architecture. In con-
trast, AMQP, while offering advanced features like message routing, delivery guarantees,
and security, incurs additional overhead that can increase latency in real-time applications.

In general, push—pull protocols such as REST-API and ZeroMQ tend to have lower
latency than publish—-subscribe protocols such as AMQP and MQTT as the last finding. For
example, the analysis of REST-API and RabbitMQ for microservices in Cloud environment
mentioned that REST-API has better latency than AMQP [38]. Also, another study of
MQTT and ZeroMQ under different IoT traffic conditions found that ZeroMQ exhibited
lower latency and higher throughput compared to MQTT, especially in scenarios with high
message rates and larger payloads under various IoT traffic scenarios [19].

Furthermore, the latency observed in our analysis for all protocols is considerably
lower than the U-Space traffic information distribution requirement, which stated that
latency must be under 5 s for at least 99% of the time, as outlined in Article 11 of the Easy
Access Rules for U-Space by EASA [24]. This indicates that all protocols mentioned in this
study comply with regulatory standards and, therefore, are suitable for supporting drone
operations within the U-Space framework. However, the observed differences in latency
performance indicate that protocol selection should still consider operational context, data
volume, and reliability requirements, particularly in safety-critical drone operations or
dense airspace scenarios.

6. Conclusions

This research analyzes the communication latency within U-Space systems, specifically
assessing how different protocols impact the timely and accurate exchange of information
between drone detection systems and USSPs. An experiment is conducted to measure
the communication latency across a range of message intervals and payload sizes using
REST-API, ZeroMQ, AMQP, and MQTT protocols. The findings show that message interval
significantly affects latency, especially at a 10 ms interval, where the system nears its
performance threshold. An exception is observed in the ZeroMQ protocol, where there is
no significant effect of message interval in the latency. Conversely, message payload size
had minimal effect, likely due to the server’s high processing capacity. Also, an exception
is observed in MQTT protocol where payload size affects the latency, especially in the small
message interval.

Also, this study reveals that the push—pull protocol consistently outperforms the
publish—-subscribe protocol in terms of latency value and its variability under the ex-
perimental conditions tested. More specifically, ZeroMQ demonstrates superior latency
compared to the REST API in the push—pull protocol, and MQTT demonstrates superior
latency performance than AMQP. Moreover, all protocols used in this study demonstrate
sufficiently low latency to meet EASA’s requirements for drone operations.

Due to the specific requirements of drone operations and the characteristics of various
communication protocols, each protocol aligns well with different use cases. Here is the

92



Electronics 2025, 14, 2453

recommendation based on our findings on which communication protocol should be
used for specific drone operation applications. REST-API is well-suited for applications
such as flight plan submission, geo-awareness, and drone status querying, where real-
time constraints are less critical, and the usage is not very frequent. ZeroMQ is ideal
for onboard command and control, collision avoidance coordination, network ID, and
telemetry transmission, where low-latency communication is essential and the risk of
security breaches is relatively low. AMQP is better suited for backend coordination and post-
flight data analysis, where reliability and guaranteed message delivery take precedence
over low-latency performance. Meanwhile, MQTT is particularly appropriate for real-time
alert dissemination, traffic information, and conformance monitoring, where the timely
information exchange of relatively small data among U-Space stakeholders is crucial.

Since this study was conducted in a simulated environment, further study could
evaluate the performance of communication protocols in a realistic drone operations
environment with an industrial grade of equipment and protocols to better understand its
performance characteristics. Also, more communication protocols could be considered to
be used in drone operations that suit the nature and needs of the applications.
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Abbreviations

The following abbreviations are used in this manuscript:

An Al-based Holistic Dynamic Framework for a safe Drone’s Operations in

AldHyDrop restricted and urban areas

AMQP Advanced Message Queuing Protocol
BVLOS Beyond-Visual-Line-Of-Sight

CISP Common Information Service Providers
CoAP Constrained Application Protocol
DURE DLR U-Space Research Environment
EASA European Union Aviation Safety Agency
HTTP Hypertext Transfer Protocol

IoT Internet of Things

IOR Interquartile Range

JSON JavaScript Object Notation

MAVLINK  Micro Air Vehicle Link

MQTT Message Queuing Telemetry Transport

Pub-Sub Publish-Subscribe
REST-API Representational State Transfer—Application Program Interface

UAV Unmanned Aerial Vehicle
ussp U-Space Service Providers
ZeroMQ Zero Message Queuing
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Abstract: Online path planning for UAVs that are following a moving target is a critical
component in applications that demand a soft landing over the target. In highly dynamic
situations with accelerating targets, the classical potential field (PF) method, which con-
siders only the relative positions and/or velocities, cannot provide precision tracking and
landing. Therefore, this work presents an improved acceleration-based potential field
(ABPF) path planning method. This approach incorporates the relative accelerations of the
UAV and the target in constructing an attractive field. By controlling the acceleration, the
ABPF produces smoother trajectories and avoids sudden changes in the UAV’s motion. The
proposed approach was implemented in different simulated scenarios with variable acceler-
ation paths (i.e., circular, infinite, and helical). The simulation demonstrated the superiority
of the proposed approach over the traditional PF. Moreover, similar path scenarios were
experimentally evaluated using a quadrotor UAV in an indoor Vicon positioning system.
To provide reliable estimations of the acceleration for the suggested method, a non-linear
complementary filter was used to fuse information from the drone’s accelerometer and
the Vicon system. The improved PF method was compared to the traditional PF method
for each scenario. The results demonstrated a 50% improvement in the position, velocity,
and acceleration accuracy across all scenarios. Furthermore, the ABPF responded faster to
merging with the target path, with rising times of 1.5, 1.6, and 1.3 s for the circular, infinite,
and helical trajectories, respectively.

Keywords: potential field; path planning; UAV; accelerating target; attractive force

1. Introduction

Path planning is an essential component of cooperative missions with UAV formations
completing complex and variable tasks, such as search and rescue, surveillance, monitoring,
and inspections [1]. Path planning algorithms can be classified into two types—global and
local [2]. Global path planning algorithms are presented as static programming algorithms
that use map information to generate an optimal trajectory from the starting point to the
target point. On the other hand, local path planning algorithms are dynamic algorithms
that consider the current pose information in real time, as provided by onboard sensors,
and calculate the optimal trajectory between the starting and ending points.

Electronics 2025, 14, 176 https://doi.org/10.3390/ electronics14010176
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Among other dynamic path planning algorithms, the dynamic window approach
(DWA), the mathematical optimization algorithm (MOA), model predictive control (MPC),
and the potential field (PF) are widely used in robot dynamic path planning. The DWA pro-
duces path candidates by developing the velocity space that can be formed by the present
robot velocities [3]. The DWA then chooses the best path from these path candidates,
assuming static obstacles. In [4], this method was developed to include dynamic obstacles,
utilizing neural networks to estimate the weights of the DWA, which were subsequently
employed for safe local navigation. In order to consider static and dynamic obstacles and
guarantee path candidates at variable velocities, the DWA was proposed with virtual ma-
nipulators (DWVs) in [5]. However, DWA-based approaches are not ideal for environments
with many dynamic obstacles. On the other hand, the mathematical optimization algorithm
(MOA) relies on the existing robot trajectory planning model to solve the optimal control
problem. The MOA transforms the optimal control problem into an easily solvable model
by employing several mathematical techniques, such as non-linear optimization, mixed
integer linear programming (MILP), or dynamic programming (DP) [6-8].

Model predictive control (MPC) is used to construct a cost function over a fixed time
interval in the future in order to determine the appropriate control sequence based on
the robot’s predicted future behaviors. To ensure system stability, the cost function can
be modeled as a Lyapunov function by including a terminal cost [9,10]. The tracking
problem with obstacles remains one of the most difficult tasks. As a result, the potential
field (PF) approach has been used to find a collision-free path through an obstacle-filled
environment [11,12]. Despite advances in these techniques, the MOA and MPC remain
computationally demanding and necessitate a precise understanding of the robot’s dynam-
ics. Furthermore, the real-time implementation of these algorithms may be difficult for fast
robots or extremely dynamic settings. Therefore, the PF is a commonly used method due
to advantages such as its quick response time, low calculation requirements, and higher
real-time precision [13]. Although the traditional PF method introduces the local minima
problem, which traps an object before it reaches its destination, many researchers have been
able to solve this problem, e.g., by using virtual obstacle or virtual target concepts [14,15]
or by implementing a fuzzy system [16].

According to the concept of a potential field, a robot moves under the influence of a
virtual attractive force that is required to pull it to a target, as well as simultaneous repulsive
forces generated to avoid obstacles. These forces are determined by the robot’s relative
position and velocity with respect to the target, as well as with respect to the obstacles
encountered [16-18]. Traditionally, the attractive potential of a robot is determined by
its relative position in relation to a fixed- or constant-velocity moving point in space [19].
However, when a target moves at various velocities, the position-based potential function
is no longer appropriate. As a result, researchers have discovered that accounting for both
the robot’s and target’s velocities is beneficial when designing a potential field [20,21].

Providing online path planning for UAVs during autonomous missions to precisely
track a moving target in a highly dynamic environment is critical [22]. In many applications,
the UAV must land precisely over a moving target to recharge during persistent flights [23].
Therefore, many studies have focused on upgrading the classic potential field method for
UAV path planning. For example, a few attempts have been made to enhance the repulsive
field, allowing for smoother obstacle avoidance [24,25], whereas others have improved the
attractive field within the method for better target reachability [26]. Other techniques have
addressed both the attractive and repulsive forces using the fuzzy-based method [16] or
the Artificial Neural Network method [27]. However, all of the researchers in the literature
have developed enhanced algorithms for the traditional potential field model, which only
considers the position and velocity gradients. To this end, this paper presents an improved
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attractive field force by increasing the degrees of freedom by considering the acceleration
differential between the target and the UAV.

The authors of [28] used the increased attractive force gain coefficient approach with
increasing gradient in order to improve the performance of the attractive field in the PF.
This strategy prevents oscillations and ensures that the UAV reaches the target. In a similar
technique, the attractive force was enhanced by incorporating a damping force to prevent
oscillations near the target [29,30]. In another study, a UAV path planning technique was
proposed to offer a consistent and continuous coverage path over a ground robot in a windy
environment. This method presented a novel modified attractive force to improve the
sensitivity of a UAV to wind speed and direction [26]. Despite the efforts of researchers to
enhance the attractive force in potential fields, they could not achieve precision in tracking
an accelerating target for soft landing.

The acceleration of direction-turning drones was taken into consideration in waypoint-
based path planning using the potential field method, as described in [31]. The study
demonstrated the need to consider the acceleration of the drone at waypoints in time-
critical applications, as ignoring acceleration leads to an unreasonably short flight. In [32],
the relative acceleration term is considered for an attractive potential function in dynamic
environments. This study created a two-dimensional function of relative acceleration,
velocity, and position between the ground robot and the target. However, this work
solely used simulations to examine the acceleration-based potential field functions. An
exponential attractive function was adopted in [22], to provide different gradients for its
force. Using this technique, the attractive force changes rapidly as the UAV approaches the
target. It allowed the UAV to swiftly and effectively track the movement of a ground robot
with varying velocity.

In soft-landing applications, the velocity and acceleration of the UAV must be equal to
those of the target. As previously stated, the typical potential field function only considers
the relative positions between the UAV and the target for the attractive potential force,
which may result in jerky motion and rushed turns for the UAV. For this purpose, this
study focuses on strengthening the attractive potential field model by incorporating the
acceleration term in addition to velocity and position information. In this approach, the
attractive force is expected to be more responsive, as it accounts for dynamic constraints
and smoother motion. To help readers comprehend the contribution of this study, Table 1
summarizes the merits of earlier works in the literature and compares them to the sug-
gested approach. To solve the motion-planning problem in dynamic environments with
accelerating targets, we must assume the following:

(1) Assumption 1. The shape, positions, velocities, and accelerations of the UAV are known.
(2) Assumption 2. The position Ay, velocity By, and the acceleration Cy,, of the target
are known with 1Cy; | < Cax.

The repulsive force will not be covered in this study. Acceleration-based improvements
for repulsive force may be discussed in subsequent work in the future.

Following the introduction, the rest of this paper is organized as follows: Section 2
provides a full derivation of the suggested attractive potential field model. Section 3
proposes a motion planning strategy. Section 4 provides a detailed discussion of the
supporting simulation. This work was evaluated experimentally under several settings, as
described in Section 5. The conclusions and future research are presented in Section 6.
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Table 1. Comparison of the proposed method to various local path planning methods, including

traditional PE.
Feature DWA MOA MPC PF Acceleration
Based-PF (Proposed)
Real-time High Moderate to Low Moderate to Low High High
Performance
Computational Load Low High High Low Low
Handling Dynamic Moderate No Depending on the Moderate Not investigated
Obstacles model accuracy
Target Tracking Moderate Moderate to Low High (depending on Low to Moderate High
Accuracy the model and solver)

Low to Moderate
Landing Accurac Moderate Moderate (depending on the Low to Moderate High
g y P g g
model and solver)

Optimal (requiring Optimal (requiring

careful tuning) significant tuning) Heuristic (local) Heuristic (local)

Optimality Heuristic (local)

Complexity Low High High Low Low

2. Acceleration-Based Attractive Potential Force

According to current approaches, the attractive potential force is determined solely
by the relative velocity and position between the UAV and the target. In this study, the
attractive potential force is defined by considering the relative position, velocity, and
acceleration between the UAV and the target. The following equation defines the new
attractive potential Vjy:

Vatt = 0all Atar(t) = Auav (t) II' + 8l Brar(t) = Buav () I +6cl Crar(£) — Cuav(t) I* (1)

where A, (t) and Ayay (f) represent the position of the target and UAV at a given instant
t. The velocities of the target and UAV are represented by By, (t) and B4y (t) at a given
instant . The accelerations of the target and UAV are given by Cy(t) and Cyyay (t) at a
given instant t. The magnitude of the distance between the target and the UAV is denoted
by || Atar(t) — Ayay (t)]|. The magnitude of the relative velocity between the target and the
UAV is indicated by ||Bsar(t) — Byav (f)|, and || Cear (t) — Cuyav (t)]] is the magnitude of the
relative acceleration between the target and the UAV. §,, d;, and J. are positive parameters,
while 7, j, and k are exponents.

To find the attractive force, the negative gradient of the attractive potentials is given
by the following equation:

Fart (A, B,C) = =V 4Vt (A, B,C) — VgVt (A, B,C) — VVar (A, B, C) @
where e
Funn = —V aVarr(4,B,C) = _% .
aV A/ B/C
Fatr = —VVau(A,B,C) = _% )
oVt (A,B,C
Fuz = =V Vau(A,B,C) = _% 5)

Regarding i,j, and k, as well as the differentiation of V,(A, B,C), we notice that
Vart (A, B, C) is not differentiable when Ayq, (t) = Ayay (t) for 0 < i < 1. Furthermore, this
is not differentiable when By, (t) = Byay(f) for 0 < j < 1, or when Cir (1) = Cyav (f)
for 0 < k < 1. In soft-landing applications, the UAV must reach the target with the same
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velocity and acceleration, which means that A, (t) = Ayay(t), Buar(t) = Byay(t), and
Ctar(t) = Cyay(t). Therefore, for this purpose, the parameters are chosen such that i, j,
and k > 1.

In hard-landing applications, the UAV must reach the target with B, (f) # Byay (t)
and Ciar(t) # Cyay (t). In this case, only i > 1 is selected.

Thus, the attractive force terms are defined as follows:

Fattl - i(sa” Atﬂr(t) - AUAV(t) HiilaRT (6)
Fat2 = 6| Brar (t) — Buav () |!brr @)
Fats = kdc|| Crar(t) — Cuav (t) || 'err 8)

where art indicates the unit vector directed from the UAV to the target. brr is the unit
vector that directs the relative velocity vector from the target with respect to the UAV. cgr
is the unit vector that directs the relative acceleration vector from the target with respect
to the UAV. Figure 1 shows the relationship between the three attractive forces and the
relative position, velocity, and acceleration vectors between the target and the UAV.

Bty (1)

Target

Fase () S i)

Z|

Fatez (£) + Faees(t) Foeea (t)

g Btar(t) - Buav(t)
Fauz (t)
Byay (£)

CL(lr(t) - CUAV(t)

Cyav(t)

X

Figure 1. The three attractive forces and the relative position, velocity, and acceleration vectors
between the target and the UAV.

3. Attractive Motion Planning Strategy for Unmanned Arial Vehicles
Newton’s second law states that the forces are equal to mass times acceleration,
as follows:
Fuyay = mCyav ©)

where Fij4y is the desired force to be applied to the UAV in order to reach the target.
The proposed attractive potential function includes six parameters—io,, dy, J¢, i,j, and k.
Let us consider i = j = k = 2. The selection of these integers provides the best system
performance, as explained in Section 4. Accordingly, the attractive force can be rewritten
as follows:

Fatt = 20q || Atar(t) — Auav () || +20p || Brar(t) = Buav (£) | +20¢ || Ctar(t) = Cuav (#) | (10)
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Let us apply the following force to the UAV:
Fyav = myuavCar + Fat (11)

Combining Equations (9)—(11) and setting m;4y = 1, we obtain the following equation:

CUAV(t) = Ctar(t) + 2(511 || Atar(t) - AUAV(t) H +Zfsb || Btar(t) - BLIAV(t) + 25c||ctar(t) - CUAV(t)H (12)

Taking common factors and combining terms, we obtain:

(1 +255) H Ctar(t) — CUAV(t) || +26, H Btgr(t) — BUAV(t) || +26, || Atar(t) —Ayay =0 (13)

It is known that the relative position between the UAV and the target is the error e(t).
So, rewriting Equation (13) gives the following equation:

24,

. 20,
6( ) * (1 + 25C)

(1 + 256)

e(t) + e(t) =0 (14)

Now, by comparing Equation (14) with the characteristic equation of a second-order
system, we obtain the following:

§2 4+ 20wps + w? =0 (15)

Keep in mind that  is the damping ratio and wj, is the natural frequency of the system.
Because J;, 0y, and J. are positive parameters, the system is considered stable.

Now,
20 26
2 a a
=_—"" _th = 1
w; 1+ 200) en wy, 1+ 200) (16)
and
20,

26n (1+25) 17)

By substituting (16) into (17) and substituting { = 1 to obtain a critically damped
system, we obtain the following equation:
5% 1=24 18
26,  ° (18)
Keep in mind that 4;, 6, and &, must be positive values to guarantee stability, such
that 6, > 0,J, > 0,and 6. > 0.

(52
6c > 0then 26, > 0, which means ﬁ -1>0 (19)

a
Equations (18) and (19) are used to solve for the values of J;,Jp, and é., which
guarantee a stable and critical damped system. First, a value of J,> 0 is selected and using
Equation (19), the range of ; can be found. Having the two values of ¢, and J}, in hand
and substituing them into Equation (18), J. is directly computed. This procedure will be
repeated in a simulation study, as will be discussed in next section in order to find the
optimal values of d,, J;, and I, for best performance.

4. Attractive Force Simulation Study

To show the performance of the new attractive force with the acceleration term, many
simulations were performed, as described in this section.
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4.1. Parameter Tuning

To choose the best values for é,, Jp, and . , these three values were calculated and
simulated according to Equations (18) and (19). After determining the best values for
these parameters, additional simulation runs were conducted to determine the optimal
exponents of i, j, and k. In the first place, each exponentis setat2 (ie.,i =j =k = 2).

The first simulation is carried out by trying three sets of values of J4, 6, and 5. At
first, three alternative positive values for J; are chosen—0.3, 6, and 20. The values for J;
and ¢, can then be obtained by solving equations 18 and 19, respectively. As a result, the
three sets are found to be (0.6, 1.2, 0.1), (6, 4, 0.167), and (20, 8, 0.2). Figure 2 shows the

performance of a UAV in tracking a target moving at an acceleration of {0.2 0 0} m/s%.

Target
UAV

Z(m)

“o - N W e o e w e e 3

08

Y(m) " X(m)

Figure 2. UAV performance for different values of d4, J;, and d¢.(i = j = k = 2).

The figure shows that the fastest response was achieved with the highest values of
64, 6p, and ., which are 20, 8, and 0.2, respectively. As a result, these values are used in
the subsequent simulation to determine the ideal values of 7, j, and k. The second part
of the simulation shows the performance of the UAV in tracking a moving target in a 3D
environment by changing the values of 7, j, and k. The target was moving at an acceleration
of |02 0 0| m/s% In the initial attempt, the value of i was varying between three
different values (i.e., 1.5, 2, and 3), while j and k were maintained fixed at the value of 2.
Figure 3 shows three different responses of the UAV by varying the value i. It is clear that
the best performance occurs when i = 2.

© Target
o UAV

Ym T X(m)

Figure 3. The performance of a UAV when j = k = 2 with different values of i.

Two more simulations were executed in a similar manner—one by modifying the
value of j while keeping i and k constant at 2, and a second one by modifying the value of k
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while keeping 7 and j constant at 2. Figure 4 shows three UAV trajectories with different
values of j = 1.5, 2, 3, while i and k remain fixed at 2. Figure 5 illustrates the performance
of the UAV trajectories with three different values of k.

Z(m)

Ym e " X(m)

Figure 4. The performance of a UAV when i = k = 2 with different values of .

© Target
o UAV

Ym) o X(m)

Figure 5. The performance of a UAV when i = j = 2 with different values of k.

From the previous simulation runs, the proposed attractive potential field approach
for tracking a target in 3D space performed best when J;, dy,, and . = (20, 8, 0.2), and
i=j=k=2

4.2. Performance Study on Different Trajectories

More simulations were implemented to investigate the performance of a UAV under
various accelerating pathways and different limitations. In all of the following simulations,
the previous tuned parameters are used (i.e., 4,9y, and 6. =(20,8,0.2),and i = j =k = 2).
Figure 6 illustrates the first challenging scenario, where the UAV was tracking a target
accelerating at {0.1 0.1 O.l} m/s?. The UAV and target were 10 m apart at the beginning.
Despite the fact that they were at different speeds and accelerations, the UAV managed to
hit the target.

For a target traveling along time-varying acceleration trajectories, it is worthwhile
to examine the performance of the attractive force for a UAV in these scenarios. For this
purpose, three distinct trajectories (circular, infinite, and helical) are offered to investigate
the effectiveness of the proposed method. Figure 7 shows the UAV tracking the target
on a circular path. The UAV initiated motion at x = 1 m and y = 0, with zero velocity
and acceleration. The target started with velocity vy = 0, v, = 1 m/s, and acceleration
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ay = —1m/s?, a, = 0m/s?. The UAV was successfully adjusting to join the trajectory and
accurately track the target. The UAV was able to track the target’s velocity in less than one
second and its acceleration in two seconds, as shown in Figures 8 and 9.

Y(m) o CX(m)

Figure 6. The performance of the UAV in a hard-landing application.

* UAV Position
© Target Position

05

X&'")

Figure 7. The performance of the UAV to follow a target on a circular trajectory.
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o s o 3
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Figure 8. Velocities of the drone and target on a circular path; (a) x-axis, (b) y-axis.
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Figure 9. Accelerations of the drone and target on a circular path; (a) x-axis, (b) y-axis.

motion at x = 0 m and y = 0, with zero velocity and acceleration. The target started with
velocity vy = —1, vy = 1 m/s, and acceleration ay = a, = 0. The attractive force was
rapidly adjusting to give extremely responsive path tracking. In one second, the UAV was

L
b

UAV Acceleration
©_Target Acceleration

lim;(s)

(b)

The infinite trajectory scenario is illustrated in Figures 10-12. The UAV initiated

able to accurately align with the desired path.
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-086

Figure 10. The performance of the UAV to follow a target on an infinite trajectory.
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Figure 11. Velocities of the drone and target on an infinite path; (a) x-axis, (b) y-axis.

UAV Acceleration
©_Target Acceleration

a (m/sZ)

X

lim;(s)

(@)

© UAV Acceleration
© Target Acceleration

sl

Figure 12. Accelerations of the drone and target on an infinite path; (a) x-axis, (b) y-axis.

To expand the evaluation in the third position, a helical path was tested in another
simulation, as shown in Figure 13. In this scenario, the UAV initiated motion at x =1 m,
y =0, and z = 0, with zero velocity and acceleration. With non-zero velocity and acceleration,
the target initiated its motion to move on a helical path with a maximum velocity of 0.5 m/s
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and a maximum acceleration of 0.5 m/s?. The UAV was accurately tracking the target
along a helical path, as shown in Figures 14 and 15.

o Target|
o UAV

Y(m) |

X(m)

Figure 13. The performance of a UAV to follow a target on a helical trajectory.
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Figure 14. Velocities of the drone and target on a helical path; (a) x-axis, (b) y-axis, (c) z-axis.

107



Electronics 2025, 14, 176

2
ax(m/s )

UAV Acceleration
> Target Acceleration

osk L J
s s s ) E

timve(s)

(@)

:
UAV Acceleration
© Target Acceleration

2L L J

a, (m/sz)

y

tim;(s)

1
UAV Acceleration
©_Target Acceleration

a (m/sz)

S

limg(s)
(c)

Figure 15. Accelerations of the drone and target on a helical path; (a) x-axis, (b) y-axis, (c) z-axis.

4.3. Performance Study on Edge Cases

More simulation studies are carried out to test the proposed technique in edge cir-
cumstances such as sudden stops or abrupt changes in the velocity and acceleration of the
target, and disturbances on the UAV while in flight. Figure 16 illustrates a UAV tracking a
target on a circular trajectory until it sharply changes direction after completing the circle.
Figures 17 and 18 demonstrate a quick shift in velocity and acceleration. The attractive
force adapted quickly to this change, providing a faster route to the UAV. The UAV could
track the target’s new velocity and acceleration in less than two seconds. Moreover, the
UAV successfully and quickly responded to this steering, maintaining a straight route
towards the target.

Another simulation was run, whereby the UAV goes in a circular path tracking a
target, as shown in Figure 19. After completing a quarter circle, the target suddenly came
to a complete stop. The UAV responded to the rapid change by decelerating dramatically,
as shown in Figures 20 and 21. The UAV then approached the target at zero velocity and
accelerationin 1.5 s.
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Figure 16. The performance of a UAV throughout sudden steering on the target path.
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Figure 17. UAV and target velocities in a sudden direction change scenario; (a) x-axis, (b) y-axis.
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Figure 18. UAV and target accelerations in a sudden direction change scenario; (a) x-axis, (b) y-axis.
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Figure 20. UAV and target velocities in a sudden stop scenario; (a) x-axis, (b) y-axis.
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Figure 21. UAV and target accelerations in a sudden stop scenario; (a) x-axis, (b) y-axis.

The last simulation is carried out to examine the performance of the UAV when it is
subjected to a disturbance of a stochastic force while it is following a target on a circular
trajectory. Starting at position x = 1 and y = 0, the UAV tracked a target on a circular
path with initial zero velocities and accelerations. After completing a quarter circle, a
disturbance of a stochastic force of 120 N was applied for 0.3 s when the UAV was aty =1
and x = 0, as shown in Figure 22. The UAV effectively adapted to this change and resumed
its circular flight within one second. The UAV returned to accurately track the target’s
velocity and acceleration, as seen in Figures 23 and 24.

o UAV
o Target|]
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Figure 22. The response of a UAV to an external force while tracking a target on a circular path.
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Figure 23. UAV and target velocities in an applied disturbance scenario; (a) x-axis, (b) y-axis.
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Figure 24. UAV and target accelerations in an applied disturbance scenario; (a) x-axis, (b) y-axis.

5. Experimental Setup and Results

The proposed potential field path planning method was evaluated using Qdrone from
Quanser (Markham, ON, Canada), as well as an internal motion tracking system from
Vicon (Oxford, UK), as shown in Figure 25. The system accurately positions a moving body,
such as a drone, in 3D space. The cameras of the Vicon system are sensitive to all light in
their spectrum, which might result in data noise. This would lead to inaccuracy in marker

112



Electronics 2025, 14, 176

tracking, lowering the quality of motion capture data. However, the system has addressed
these issues by incorporating proper noise filters. A computer was used as a ground control
station (GCS) to perform the network and computing tasks. Simulink R2024 was used to
implement the drone—computer communications, Vicon—-computer communications, and
control implementations, all using Quanser’s Quarc toolbox.

Motion
Tracking
System

QDrone

/

Vicon-GCS
Ethernet
connection

Drone-GCS
WiFi
connection
GCS
MatLab-Simulink API
Motion Capture API

Figure 25. Experimental Setup of Qdrone and the Vicon motion tracking system.

The goal of the experiments is to assess the performance of the proposed path planning
system, which was improved by the acceleration term, and to compare it to the performance
of the conventional potential field method, which only proposes the position and velocity
components. To ensure fair comparisons, each experiment began at the same time and
location. The motion of the drone was tested to follow a virtual target along defined paths
of positions, velocities, and accelerations. Various path scenarios (i.e., circular, infinite, and
helical) have been proposed to examine the efficiency of drone motion. The suggested path
planning approach is integrated as a high-level controller that arranges the UAV route.
The adopted drone was tested using a robust low-level controller, as stated in [1]. This
controller demonstrated robustness against several types of disturbances.

Accurate position, velocity, and acceleration measurements are required to properly
implement both acceleration-improved and conventional potential field path-planning.
Position measurements from the Vicon system were used directly because of their high
accuracy, which is deemed to be 0.02 mm by the manufacturer. To obtain accurate velocity
and acceleration estimates, the measurements from the motion tracking system and the
drone’s inertial measurement unit (IMU) were fused using a complementary filter as used
in [1,33], as follows:
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a=ki(v—192)+ges+ Qa
Q = QS(Q—b) + ko(v — 0)a” (20)
0=0+3[(Qa+ges) +ka(p—p)

where 4 and 9 are the estimated accelerations and velocities, respectively. v and p are the
velocity and position of the drone, respectively. The actual positions and velocities were
determined using the indoor motion-tracking system. ki, k», and k, are positive gains of
the filter. Q € R3*3 is a virtual rotation matrix and Q is the angular speed measured by
the gyroscope. The gyroscope measurements were corrected using gyro bias b. The local

gravity vector in the inertial frame was given by gez = {0 0 g
For all the experimental scenarios that used the improved acceleration-based potential
field, the optimized attractive force parameters were as follows:

i=2
j=2 (21)
k=2
5, = 20
5y =8 (22)
5. =02

These parameters were obtained in a manner similar to that of the simulation process,
as discussed in Section 4.1. To make fair comparisons with the conventional potential field
method, the optimized parameters were determined by [17], as follows:

{i:z )

j=2
{&1—35 1)
5, = 10

In a circular path scenario, the target was moving in a 1.5 m circle at a height of 1 m.
Furthermore, the target should move at velocities of [-0.4, 0.4] m and an acceleration of
[—0.1,0.1] m/s?. Figure 26a,b show how the drone tracked the target while accounting for
and ignoring the acceleration term, respectively.

) (b)

Figure 26. Circular path tracking. (a) Improved potential field with acceleration. (b) Conventional
potential field.

The drone was able to transition from the origin to the target more efficiently and
quickly than the conventional method, as shown in Figures 27-29. The drone accurately
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tracked the target’s position, speed, and acceleration, allowing for a more accurate landing.
It is worth noting that the short-period spikes seen on some curves were due to Vicon drone
miss coverage at certain points. Consequently, when the drone entered an area not covered
by cameras, the Vicon system provided less accurate positioning, as shown in Figure 28b.
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Figure 28. Cont.
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Figure 28. Drone and target velocities on a circular path. (a) Improved method. (b) Conventional method.
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Figure 29. Drone and target accelerations on a circular path. (a) Improved method. (b) Conven-
tional method.

Table 2 shows the mean square error (MSE) of positions, velocities, and accelerations
for both approaches. The table clearly shows how the drone path was improved using the
proposed method compared to the conventional potential field. The performance of the
drone path with the conventional method lagged behind that of the improved approach in
terms of position, velocity, and acceleration, with percentage differences of 54.45%, 48.73%,
and 53.15%, respectively.
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Table 2. MSE of position, velocity, and acceleration for the two methods on a circular path.

x (m) y (m) vy (m/s) vy (m/s) ay (m/s?) ay (m/s?)
Improved method 0.0320 0.0536 0.0064 0.0102 0.0020 0.0023
Conventional method 0.0881 0.1050 0.0146 0.0184 0.0047 0.0045
Difference % (between the two methods) 54.45 48.73 53.15

In another scenario, the drone must follow the infinite path depicted in Figure 30. With
similar gains, the Figure shows that the performance of the drone path using the proposed
method was significantly better than that of the conventional method. Figures 31-33
demonstrate how the drone maintained accurate tracking of the position, velocity, and
acceleration along the infinite path. The acceleration term in the potential field attractive
force enables the drone to quickly compensate for the shortage of position and velocity
terms. Again, due to the limited space size, one or two Vicon cameras missed the drone
coverage. As a result, the drone oscillated for a relatively very short period, as shown in
certain figures.

(@) (b)

Figure 30. Infinite path tracking. (a) Improved potential field with acceleration. (b) Conventional
potential field.
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Figure 31. Drone and target positions on an infinite path. (a) Improved method. (b) Conventional
method.
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Figure 32. Drone and target velocities on an infinite path. (a) Improved method. (b) Conventional
method.
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Figure 33. Drone and target accelerations on an infinite path. (a) Improved method. (b) Conventional
method.

The proposed method performed better for drone positioning on an infinite path.
Table 3 shows that the improved method has a significantly lower MSE for position, velocity,
and acceleration than the conventional method. The table also shows the significant
differences between the two methods.

Table 3. MSE of position, velocity, and acceleration for the two methods on an infinite path.

x (m) y (m) vy (m/s) vy (m/s) ay (m/s?) ay (m/s?)
Improved method 0.0066 0.0041 0.0088 0.0086 0.0018 0.0052
Conventional method 0.0952 0.0745 0.0209 0.0324 0.0082 0.0539
Difference % (between the two methods) 93.57 68.09 89.9

To expand the evaluation of performance in 3D space, the virtual target was moving
along a helical path. As shown in Figure 34a, the drone was accurately positioned over
the target in three directions and performed better than the conventional method, owing
to the improved potential field attractive force. Over a helical path of a 1.5 m radius, the
drone tracked the target position more accurately, as shown in Figure 35a. Furthermore, the
drone reached the target’s velocity and acceleration with very small differences, as shown
in Figures 36a and 37a, respectively.
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Figure 34. Helical path tracking. (a) Improved potential field with acceleration. (b) Conventional

potential field.
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Figure 35. Drone and target positions on a helical path. (a) Improved method. (b) Conventional
method.
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Figure 36. Drone and target velocities on a helical path. (a) Improved method. (b) Conventional
method.
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Figure 37. Drone and target accelerations on a helical path. (a) Improved method. (b) Conventional

method.

Table 4 shows the MSE in the positions, velocities, and accelerations for the drone on a

helical path using the two methods. The improved potential field method outperformed

the conventional potential field. The table also shows how the drone path is improved by

approximately 200% over the conventional method along all three axes.

Table 4. MSE of position, velocity, and acceleration for the two methods on a helical path.

x y z Uy vy (2 Ay ay az
(m) (m) (m) (m/s) (m/s) (m/s) (m/s?) (m/s?) (m/s?)
Improved PF 0.0236 0.0478 0.0017 0.0057 0.0091 0.0011 0.0017 0.0020 0.0002
Conventional method 0.0636 0.0830 0.0034 0.0127 0.0157 0.0042 0.0044 0.0041 0.0004
Difference % (between the 49.02 4767 56.32

two methods)

Table 5 shows the rising times for each path using both approaches. The data clearly
illustrate that the proposed ABPF method achieved a faster response of UAV than the
conventional PE. As a result, the UAV could merge with the target path 1.5 s faster for the

circular path, 1.6 s for the infinite paths, and 1.3 s for the helical path. The experiments for

each scenario utilizing the suggested ABPF approach are also demonstrated in videos that

can be found in the Supplementary Materials.

Table 5. Rising time for both methods in different paths.

Axis Circular Path Infinite Path Helical Path
(s) (s) (s)

X 5.18 6.28 4.89

Conventional PF Y 341 4.08 3.32
Z - - 3.31

X 3.79 4.71 4.26

Improved PF Y 3.00 3.77 3.16
Z - - 2.05
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6. Conclusions

This paper proposes a novel method for an attractive potential field model that con-
siders the relative acceleration, velocity, and position between a UAV and a target in a
highly dynamic path. The new model was developed and deployed in several accelerated
path scenarios for soft UAV landings. The generated path of the UAV using the proposed
method was compared with that generated by the classic PF method under comparable
conditions. The UAV’s performance was evaluated in simulated and experimental sce-
narios, including complex trajectories such as circular, infinite, and helical trajectories. In
terms of the accuracy of the average position, velocity, and acceleration, the proposed PF
approach outperformed the classical approach by approximately 50% on the circular and
helical paths. Furthermore, the performance of the UAV utilizing the developed method
surpassed 67% in the infinite path under similar conditions. The proposed ABPF approach
provides a more responsive motion to integrate with the target path than the classic PF.
Furthermore, the attractive force was adapted effectively in edge circumstances, such as
unexpected pauses or sudden direction changes of the target, as well as to disturbances.
The proposed technique only looked at the attractive force of the potential field for an
accelerating target. Therefore, the repulsive force for accelerated obstacles could be derived
in future works for the free-collision path of the UAV. Furthermore, future directions could
include discussing the applicability of the ABPF method in real-world outdoor conditions
or assessing its effectiveness on various UAV platforms.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ electronics14010176/s1. Videos S1-S3: Videos of experiments.
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Abstract: To tackle the challenges of path planning for unmanned aerial vehicle (UAV) in complex
environments, a global-local balanced whale optimization algorithm (GLBWOA) has been developed.
Initially, to prevent the population from prematurely converging, a bubble net attack enhancement
strategy is incorporated, and mutation operations are introduced at different stages of the algorithm
to mitigate early convergence. Additionally, a failure parameter test mutation mechanism is inte-
grated, along with a predefined termination rule to avoid excessive computation. The algorithm’s
convergence is accelerated through mutation operations, further optimizing performance. Moreover,
a random gradient-assisted optimization approach is applied, where the negative gradient direction
is identified during each iteration, and an appropriate step size is selected to enhance the algo-
rithm’s exploration capability toward finding the optimal solution. The performance of GLBWOA is
benchmarked against several other algorithms, including SCA, BWO, BOA, and WOA, using the
IEEE CEC2017 test functions. The results indicate that the GLBWOA outperforms other algorithms.
Path-planning simulations are also conducted across four benchmark scenarios of varying complexity,
revealing that the proposed algorithm achieves the lowest average total cost for flight path planning
and exhibits high convergence accuracy, thus validating its reliability and superiority.

Keywords: whale optimization algorithms; complex environment; path planning; multiple strategies;
digital elevation model

1. Introduction

Unmanned aerial vehicles and other intelligent agents have become the focal point of
research in recent years, with their applications expanding across various domains, includ-
ing military operations [1], agriculture [2], environmental monitoring [3], and particularly
in emergency rescue [4] and logistics distribution [5]. The establishment of a safe flight
path is crucial for the successful execution of missions. However, the task of planning a
safe flight path for UAVs within complex environments presents considerable challenges.
Such environments may encompass rugged mountainous terrain, urban structures, and
geographical obstacles such as waterfalls, in addition to being influenced by dynamic
factors like weather fluctuations and traffic conditions. Consequently, the development
of efficient, safe, and feasible flight paths for UAVs has emerged as a pressing issue that
necessitates urgent attention under these intricate conditions.

Currently, the predominant approach to unmanned aerial vehicle (UAV) path planning
involves transforming the environmental model [6] into a mathematical framework. This
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allows for the development of a safe, feasible, and stable flight path from the initial point
to the destination, utilizing algorithms within specified constraints [7,8].

Intelligent algorithms utilized for autonomous UAV path planning can be categorized
into three primary groups: traditional optimization algorithms, intelligent optimization
algorithms, and machine learning algorithms. Traditional optimization algorithms have
been extensively employed in various path-planning applications. Among these, the
A* algorithm [9,10], recognized as a classical heuristic search algorithm, is particularly
favored due to its straightforward implementation. However, its efficacy diminishes
significantly when applied to large-scale and high-dimensional spaces, thereby constraining
its capacity to address trajectory planning challenges that involve multiple constraints. The
rapidly exploring random tree (RRT) algorithm [11,12] represents a notable path-planning
technique based on spatial sampling, which does not necessitate the discretization of the
flight environment, resulting in a more rapid search process. Nonetheless, this method
often struggles to yield optimal trajectories. The artificial potential field method [13,14]
is appreciated for its rapid computational speed and effective real-time performance in
path planning; however, in expansive and high-dimensional spatial environments, it may
encounter issues such as local oscillations and local minima, which can render the generated
paths impractical. Collectively, these observations underscore the limitations of traditional
optimization algorithms in effectively addressing multi-constraint path-planning problems,
as they often fail to achieve a satisfactory balance between accuracy and time efficiency.

In recent years, numerous scholars have investigated and developed intelligent op-
timization algorithms inspired by biological behaviors observed in nature, as well as
principles derived from mathematical functions, to address UAV path-planning challenges.
Notable algorithms in this domain include the social spider algorithm (SSA) [15], grey wolf
optimization (GWO) [16], beluga whale optimization (BWO) algorithm [17,18], sine cosine
algorithm (SCA) [19], and butterfly optimization algorithm (BOA) [20-22], among others.
These algorithms are capable of rapidly identifying optimal paths by employing a variety
of search strategies and executing multiple iterations. However, it is important to note
that many intelligent optimization algorithms are probabilistic stochastic search methods
characterized by a significant degree of randomness when applied to specific engineering
problems. Consequently, the interplay between global optimization and local optimization
tends to be weak. Therefore, a primary challenge faced by many intelligent algorithms is to
prevent convergence to local optima and to enhance the global convergence rate as much
as possible.

Introduced by Mirjalili S et al. in 2016, the whale optimization algorithm [23] is a
metaheuristic method that emulates the feeding behaviors of humpback whales. By emu-
lating three predation tactics of humpback whales—encircling prey, bubble net feeding,
and searching for food—the algorithm seeks the optimal solution. These strategies are
characterized by robust search capabilities and computational stability. Jiang R [24] et al.
proposed the whale army optimization algorithm, which introduces the armed forces
procedure and adjusts the establishment of key parameters and foundation principles of
the original whale algorithm, which is comparable to the traditional whale optimization
algorithm as well as other high-performance group intelligent algorithms. The algorithm
has faster convergence speed under lower computational complexity. Huang Y [25] et al.
introduced a whale optimization algorithm designed for the path-planning challenges
of autonomous underwater vehicles. This approach integrates segmented learning with
an adaptive operator selection strategy, employing a dynamic partitioning method and a
weighted mean scheme to create virtual individuals. These virtual entities are then incor-
porated into the whale optimization framework to form an evolutionary pool. As a result,
the algorithm’s optimization performance is enhanced. Simulation results demonstrate
that the proposed method exhibits greater robustness and search capability compared to
other comparative algorithms. Guo W [26] et al. proposed an improved whale optimiza-
tion algorithm based on wavelet mutation strategy and social learning, designed a new
linear incremental probability to improve the global exploitation ability, introduced an
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adaptive neighborhood learning strategy to promote the exchange of information between
individuals, and integrated the Morlet wavelet mutation mechanism to avoid the algorithm
falling into local optimality. Wang C [27] and colleagues introduced an adaptive adjustment
mechanism based on the whale optimization algorithm. This mechanism dynamically
modifies the search process during iterations by incorporating controllable variables and
utilizing a differential mutation evolutionary strategy. These enhancements effectively
balance the algorithm’s global and local optimality. Ultimately, the algorithm was ap-
plied to the path-planning problem, demonstrating superior performance compared to
the original whale algorithm and six other advanced intelligent optimization methods.
The proposed algorithm, along with the six high-performance optimization techniques,
exhibited improved convergence speed, greater accuracy, and enhanced stability. The study
presented in [28] introduced a novel whale optimization algorithm (NWOA) aimed at
addressing the robot path-planning challenge within highly complex dynamic environ-
ments. This approach employs an adaptive strategy to hasten the algorithm’s convergence.
Additionally, it incorporates virtual obstacles to improve the algorithm'’s capacity to evade
local optima and introduces a potential field factor to boost the robot’s performance in
obstacle avoidance. Simulation comparisons demonstrate the advantages of the proposed
algorithm. The authors of [29] proposed an enhanced whale optimization algorithm to
realize the path planning of UAV weather detection missions in complex environments
and introduced real-time boundary processing, quasi-opposite-based learning, and an
enhanced search mechanism into the standard whale optimization algorithm, which im-
proves the convergence speed of the algorithm and the ability of global optimization, and
the simulations show that the algorithm gives a higher-quality path plan than the other
improved algorithms.

Furthermore, with the rapid advancements in key machine learning techniques, an
increasing number of researchers have begun exploring their application to path-planning
challenges [30-32]. As a result, the quest for more efficient and robust path-planning
algorithms has become a critical area of research that warrants comprehensive investigation.

The aforementioned paper proposes various enhancement strategies for the whale op-
timization algorithm, resulting in varying degrees of improved optimization performance.
However, it continues to encounter challenges pertaining to the accuracy of optimal value
searches and the balance between global and local exploration capabilities. To address these
issues, we introduce a global-local balanced whale optimization algorithm (GLBWOA)
that incorporates three principal enhancement strategies:

e  We propose an enhancement strategy for the bubble net attack, enabling individuals to
possess the requisite capability to escape their current position at various stages. This
approach aims to increase the algorithm’s likelihood of transcending local optima.

o  We present the failure parameter test mutation mechanism, which involves predefined
trigger conditions. When the algorithm encounters a local optimum or exhibits slow
progress, the mutation operation is activated to enhance its global search capability
and its ability to escape from local optima.

e Inspired by the directional variations of the gradient vector, we propose a stochastic
gradient-assisted optimization method that integrates the gradient into the conven-
tional whale optimization algorithm to enhance its optimization performance. Fur-
thermore, an energy reduction scheme is introduced to improve the algorithm’s local
exploration capabilities.

Ultimately, the algorithm introduced in this study is utilized for path planning in
UAVs across various complex environments, demonstrating its effectiveness.

The remainder of this paper is organized as follows: Section 2 outlines the steps
involved in formulating the objective function; Section 3 details the design of the improved
algorithm; and Section 4 presents the simulation of the algorithms using the test function,
along with the implementation of path-planning problems and their comparative results.
Finally, we conclude the paper with a summary of our findings.
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2. Problem Description

This research investigates the challenge of path planning for unmanned aerial vehicles
through the formulation of a comprehensive cost function that assigns specific weights to
different constraints. This methodology considers a wide array of constraints and seeks
to determine the optimal trajectory by minimizing the associated cost function [33]. The
constraints considered are more comprehensive than the cost function designed in the
literature [34], and the comprehensive cost function in this paper can be flexible by adding
constraints and adjusting weights at any time according to the different task requirements.

2.1. Restrictive Condition

UAVs prioritize range length when performing missions, and shorter ranges can
greatly reduce fuel consumption to improve endurance. A UAV is usually controlled by
a ground control station to fly sequentially along waypoints planned in a search map to
form a flight path X;. Each waypoint is a node of the path searched on a known map, with
coordinates set to M;; = (xij, Yijs zij). The range length cost function F; can be obtained by
accumulating the Euclidean distance between every two nodes:

n—1
Fy(Path;) = Z

j=1

.
M;iM;ji1||, 1)

In addition to the duration of the flight, it is imperative to account for potential threats
posed by obstacles encountered during the flight. The designated flight path must be
designed to enable the UAV to navigate around these obstacles, thereby ensuring safe
operational conditions throughout the flight. Let a represent the set of all potential threats,
with the threat posed by obstacles being modeled as a cylinder characterized by a projection
center coordinate O, and a radius R,. The UAV has a diameter denoted as D, while the
length of the safety buffer is represented by S. Furthermore, the distance between the

N
path, denoted as HMijMi,jH H, is directly established by any two flight points of the UAV.

The distance between the path and the center coordinate is d,, as shown in Figure 1.
Considering the above conditions, the threat cost function F, constitutes:
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Figure 1. Cylindrical obstacle threat.
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In certain scenarios, such as aerial photography and experimental missions, an un-
manned aerial vehicle (UAV) is required to operate within designated airspace. Flying
at excessive altitudes can compromise the resolution of aerial imagery, while insufficient
altitudes pose unnecessary risks to ground personnel, flora, and fauna and may obstruct
the field of view during filming. Therefore, the operational flight altitude is typically
constrained within two defined limits, as illustrated in Figure 2. This approach enables
the efficient allocation and utilization of airspace resources, reducing potential conflicts
and interference. During flight operations, the actual altitude is determined by both the
terrain elevation and the prescribed altitude limits. The following guidelines outline how
to calculate the altitude cost at a given point within the specified range:

hij - ’ if hmin < hl] < hmax

(hmax +hmm )
H;; = 2
00, otherwise,

®)

where the rule restricts the UAV to flying at the average of the two extremes and specifies
that the cost of flying increases accordingly as the distance traveled away from the average
altitude is increased, thus constituting the altitude cost function Fs:

n

P3(Pathz-) = ZH” 4)

j=1

——————
— -
-

o Waypoint s

Figure 2. Altitude cost explanation.

Smoothing cost is an important consideration in UAV path planning and is a cost
introduced to ensure that the flight path of the UAV is as smooth as possible to avoid sharp
steering or altitude changes that lead to increased difficulty in controlling the airframe
and accelerated fuel consumption. As shown in Figure 3, the smoothing cost includes the
fuselage steering cost and the climb cost, where ¥;; stands for the steering angle and 6; ;1
stands for the climb angle. According to the UAV performance constraints, the maximum
steering angle and maximum climb angle cannot exceed ¥max and Omax. Taking z as a unit
vector in the direction of the z coordinate axis, the climb angle 6;; can be expressed as:

Zij+1 — Zij

6;j = arctan —
MM

, ©)
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X '
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Figure 3. Calculation of turning and climbing angles.

The steering angle ¢;; is expressed as

— —
! ! !/ !
HM iiMi i1 X MY i Mo

P;j = arctan = — i (6)
MM g - M Mo
The smoothing cost can be expressed as
n—2 n—1
P4(Pﬂﬂ’ll‘) =0 Z 1/]1] + 02 Z ’91] — 91',]',1 , (7)
j=1 j=1

where 0 and 0> denote the cost coefficients for the steering angle and climb angle, respectively.

2.2. Integrated Cost Function

To ensure the UAV reaches its target safely and efficiently, the planned path must guide
the UAV through collision-free flight, taking into account factors such as total path length cost,
threat cost, altitude cost, and smoothing cost. The total cost function is formulated as follows:

4
Fcost(Pathi) = 2 waPa(Pathi)/ ®)

a=1

where F; to F; denote the costs of trajectory length, obstacle threat, navigational altitude,
and path smoothing, respectively, and w, is a weighting factor corresponding to the
different costs.

2.3. Environmental Model

The path planning scenarios are derived from two distinct terrains located on Christ-
mas Island, Australia [35], as depicted in Figure 4a,b. These scenarios employ authentic
digital elevation model (DEM) maps obtained from LiDAR sensors. Each scenario is clas-
sified into simple and complex categories based on the number of obstacles present. The
simple scenario is characterized by the presence of three cylindrical obstacles, whereas
the complex scenario is designed to incorporate at least twice the number of structural
obstacles found in the simple scenario. This differentiation aims to assess the performance
of the path-planning algorithm under varying environmental conditions, leading to the
establishment of four benchmark scenarios.
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Figure 4. Terrain environment model for UAV path planning. (Blue cylinders are artificially
added obstacles).

3. Algorithm Design

Among various swarm intelligence algorithms, the whale optimization algorithm
(WOA) is known for its simplicity and minimal parameter requirements. However, it
exhibits certain limitations when addressing the complex optimization challenges of UAV
path planning. Therefore, this paper focuses on the analysis and enhancement of the
WOA. In this subsection, after reviewing the standard WOA, we propose an improved
global-local equilibrium whale optimization algorithm by integrating multiple strategies.
These enhancements enable the algorithm to more efficiently identify optimal paths in UAV
path-planning tasks, particularly in complex terrain environments.

3.1. Standard Whale Optimization Algorithm

The whale optimization algorithm mimics the unique hunting behavior of humpback
whales. According to the feeding characteristics of whales, the whale’s feeding behavior is
divided into three phases: constricted encircling feeding, bubble net attack, and stochastic
search, and the specific analyses are described as follows:

3.1.1. Constriction-Enclosed Predation Phase

In nature, whales can find the location of prey and encircle them for predation, and
the algorithm assumes that the optimal individual of the current population is the prey,
and all other whales in the population encircle the location of the optimal whale to update
their position, which is updated by Equations (9) and (10):

D=1C-X*(t) = X(1)|, ©)

X(t+1)=X*(t)—A-D, (10)

where t is the number of iterations; D denotes the bracketing step; A and C represent
the coefficient vectors; X*(t) is the optimal position vector of the population; X(t) is the
position vector of the current population; A and C are updated by Equations (11) and (12):

A=2a-r—a, (11)

C=2-1, (12)

r1 and r are random numbers in the range [0,1]; the value of a decreases linearly from 2 to

0, denoted by:
t

: 7
TMax

1=2-2 (13)
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TwMax is the maximum number of iterations.

3.1.2. Bubble Network Attack Phase

Humpback whales swim towards their prey in a spiral trajectory when hunting, and
in the whale optimization algorithm, individual whales update their position by using
Equations (14) and (15):

D' = [X*(t) = X(#)], (14)

X(t+1) = D'-e" cos(27l) + X*(t), (15)

where b is a constant to change the shape of the spiral, usually set to 1; [ is a random number
in between [—1,1].

The development phase of the whale optimization algorithm consists of two phases:
shrinking encirclement and bubble net attack. When |A|< 1, as the whale swims along
the spiral trajectory around the prey in the shrinking encirclement, the whale has a 50%

possibility of choosing to encircle the prey and a 50% possibility of choosing the bubble net
attack, which is obtained by Equation (16):

X*(t)— A-D, p <05

16
D' - e cos(27tl) + X*(t), p>05 16)

X(t—i—l):{

where p is a random number between [0,1].

3.1.3. Random Search Phase

Whales randomly search and feed based on their position when |A|> 1. In the WOA,
whales update their position by Equations (17) and (18):

D =|C- X" (t) — X(¢)

, (17)

X(t+1) = x4 () —A.D, (18)
where X" (t) is a randomly selected whale position vector.

3.2. Global-Local Balanced Whale Optimization Algorithm

WOA conducts global exploration through a stochastic search strategy after initializing
the population. However, this approach may result in insufficient global search capability.
As the algorithm progresses, local search is performed during the encircling predation
and spiral updating phases, but the linearly decreasing convergence factor can cause an
imbalance between global and local search. Consequently, the algorithm tends to fall into
local optima in its later stages. To overcome these shortcomings, this subsection introduces
a global-local equalization whale optimization algorithm. A bubble net attack enhancement
strategy is implemented to prevent the algorithm from getting trapped in local optima,
and a failure parameter test variation mechanism is incorporated to strengthen its global
search capability. In the algorithm’s later stages, a stochastic gradient-assisted optimization
strategy is employed to further enhance its search performance. The three proposed
improvement strategies are elaborated on in the following sections.

3.2.1. Bubble Net Attack Enhancement Strategy

In the standard whale optimization algorithm, the same spiral attack and contraction
encircling strategy is used for all individuals during the exploitation phase to update
positions. However, this approach does not account for the fact that the ability of an
individual to escape its current position varies at different stages of the optimization
process. Relying solely on these two modes of position updating can hinder the algorithm’s
ability to escape local optima, particularly when it begins to converge prematurely. To
prevent the population from entering an aggregation state, which can cause WOA to
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become trapped in a local optimum, a variation method is introduced to enhance the
bubble net attack. A new variation operation is applied to update the position of the
optimal whale individual when the random number is less than or equal to 0.6, while the
original position update method remains unchanged. The variation formula is presented
in Equation (19).

Xij(t+1) = X;j(t) + 15 X (Xpe (1) — Xi (1)), (19)

where X, i(t) is the optimal solution of the jM dimension of the current iteration, r5 is a
random number.

3.2.2. Failed Parameter Test Variation Mechanism

In optimization algorithms, termination criteria dictate when to stop the iterative
process. Selecting appropriate termination criteria helps prevent over-computation while
ensuring that the algorithm finds a satisfactory solution within a reasonable time frame.
Based on the analysis above, to enhance the algorithm'’s performance, a failure parameter
test variation mechanism is proposed. This mechanism triggers mutation operations by
setting the following two termination conditions for the algorithm’s execution:

1. A better value is not found for several consecutive iterations. For example, when
the algorithm runs for 5 consecutive iterations without finding a better value, the
mutation operation is triggered.

2. The change in the objective function value is less than a preset threshold. For example,
the preset threshold parameter is set to 107, and when the difference between the
objective function value of the current iteration and the objective function value of
the previous iteration is less than 10°, the variation operation is triggered.

The specific formula for the mutation operation is as follows:
Calculate the mutation step based on the current number of iterations t and the
maximum number of iterations T:

, ub —1b .
stepsize = (t/T> -randn(1,dim), (20)
Calculate the variation vector:
. . 1 P
m = stepsize - ((rand(1,dim)) -2 —1) - <mndn(1,dlm)]) , (21)
where g = 1.5.
Apply the variation vector to the current whale position and perform a boundary
check:
Xw’(f + 1) = Xi’]'(t) +m (22)

By introducing the above mutation operations, the aim is to increase the population
diversity and avoid falling into local optimal solutions, thus improving the algorithm’s
global search capability and convergence speed.

3.2.3. Stochastic Gradient-Assisted Optimization Method

The standard whale optimization algorithm runs with incomplete local exploration.
The fusion of gradient into a swarm intelligence algorithm to form a hybrid algorithm
aims at combining the advantages of the two to improve the algorithm’s performance in
optimization. The change in the independent variable along the direction of the gradient
vector can maximize the change in the function value. In the algorithm, the objective
function is the optimization goal. Given the above analysis, a stochastic gradient-assisted
optimization [36] method is proposed, in which after determining the negative gradient
direction in each iteration, a suitable step size step!*! is chosen so that the objective
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function value can be reduced to the maximum extent to enhance the exploration ability of
the algorithm for the optimal solution. The specific operation is as follows:

X = Xt —step™™! . VF(XD), (23)

where —Vf(x!) denotes the negative gradient direction, and step denotes the optimal
step size along that direction. Xf“ is the i individual in the ¢ + 1 iteration. The gradient
direction is defined as shown in Equation (24):

of - 9df — of —
= 2 27 AU 24
vf 8X{€1+8X562+ + axbimEDlm’ ( )

where Dim denotes the dimension of the optimization problem to be solved. E; (i =
1,2,- - - Dim) is a set of unit orthogonal vectors. In order to enhance the ability of the swarm
intelligence algorithm to solve the optimization problem, so that the hybrid algorithm is still
able to solve the problem independently of the mathematical properties of the problem, the
gradient is approximated using the forward difference formulae viewed as a definitional
derivation. The formula is shown in Equation (25).

9 F(X )~ F(X)
oX! e !

(25)

where ¢ is a small positive number set to 10~°.
The step size along the negative gradient direction is obtained by the line search
method, as shown in Equation (26).

steplc, if f(X! = stepcVF(X!)) < f(X{ = 22 VF(x]))
step!
g 7

step' ™! = (26)

else

where ¢ is a scale factor and ¢ is set to 1.8.

3.3. Algorithmic Process

In this paper, a global local balanced whale optimization algorithm is proposed.
Firstly, the original population initialization as well as the random search strategy are
used, followed by a bubble attack enhancement strategy designed to improve the ability
to jump out of the local optimum by introducing a mutation method while the original
helix updating method remains unchanged in the bubble net predation phase. After that, a
failure parameter test mutation mechanism is introduced, conditions are set to trigger the
termination of the algorithm to avoid over-computation, and the global search ability is
improved and the algorithm convergence speed is accelerated by increasing the mutation
operation. Finally, the stochastic gradient is used to assist in the optimization search, so
that the algorithm searches the global optimal value as much as possible, and balances the
global and local exploration ability of the algorithm. The pseudo-code of the algorithm is
shown in Algorithm 1. The specific flow of the algorithm is shown in Figure 5.

3.4. Computational Complexity

Computational complexity encompasses both time complexity and space complexity.
Time complexity constitutes a fundamental component of algorithm analysis, serving as a
metric for both the performance and computational efficiency of algorithms. In this context,
let N represent the population size, 7 denote the dimension of the search space, and Max_iter
signify the maximum number of iterations. The time complexity of the conventional whale
optimization algorithm can be articulated as Typs = O(N X n x Max_iter) = O(n). The gen-
eralized bubble whale optimization algorithm (GLBWOA) enhances the standard WOA
by integrating three distinct strategies, one of which is the bubble net attack enhancement
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strategy that does not introduce additional nested loops. As a result, the time complexity
for this strategy remains T; = O(N x n x Max_iter) = O(n). Let t; denote the cycle run-
ning time for formulas (20), (21), and (22), while ¢, represents the time required for fitness
evaluations. Consequently, the time complexity associated with the failure parameter test
mutation mechanism can be expressed as T = O(N x n x (t] + t)) = O(n). Furthermore,
let t3 indicate the time required for executing boundary constraint operations within the
stochastic gradient-assisted optimization method. Thus, the time complexity for this method
is T3 = O(N x n x t3) = O(n). In conclusion, the overall time complexity of GLBWOA can
be formulated as Tgrpwoa = T1 + Max_iter(T, + T3) = O(n). When juxtaposed with the
standard WOA, it is apparent that the time complexity remains invariant, thereby preserving
the execution efficiency of the algorithm. The subsequent section will assess the performance
of GLBWOA through a series of function set tests and path-planning simulations and further
analyze the optimization efficiency of the algorithm by documenting its actual running time
in path-planning simulations.

Algorithm 1: GLBWOA

1. Set parameters, population size, number of iterations, etc.
2. Initialize the population.
3. Calculate the fitness value of the initial population.
4. Find the current optimal individual and the optimal value.
5. Main loop
6. For 1:N
7. Use Equations (11)—(13) to update the whale algorithm parameters
8. Ifp <05
9. If|A] >1
10. Equation (18) is used to update the random search phase stage.
11. else
12. Equation (10) is used to update the closed predator stage.
13. end
14. else
15. If rand > 0.6
16. Equation (15) is used to update the bubble net attack.
17. else
18. Equation (19) update enhanced bubble network attack strategy.
19. end
20 Calculate the fitness value of each individual, and select the optimal individual and the
' optimal value at this time.
1 Record the number of optimal value update failures and calculate the difference between
' the current best fitness and the global best fitness.
22. If Value of difference > 10~° or the number of optimal value update failures > 5
23. Using the Formula (20)—(21) to update the mutation parameters.
24. Equation (22) is used to update the failed mutation formula.
25. end
26. Set the gradient step factor.
27. Using Equation (24) to update the negative gradient direction
28. Equation (26) is used to update the gradient step size.
29. Equation (23), update the gradient-assisted optimization formula.
Using the greedy algorithm, the optimal individual is compared. If the fitness value of the
30. optimal individual after auxiliary optimization is better, the individual is replaced by the
original individual.
31. end

32. Output the optimal solution, the optimal value.
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Figure 5. Global-local balanced whale optimization algorithm process.

Space complexity is a measure of the amount of storage space temporarily occupied by an
algorithm during operation and is an important indicator of an algorithm’s merit. The space
complexity of standard WOA is Swoa = O(N x n) +O(Max_iter) = O(n). In GLBWOA, the
space complexity of the position matrix is S; = O(N x n), the space complexity of the fitness
storage is Sp = O(N), the space complexity of the leader information is S3 = O(n) + O(1),
the space complexity of the convergence curve storage is S; = O(Max_iter), and the space
complexity of the other temporary variables is S5 = O(1), so the overall space complexity of
GLBWOA is Sgrgwoa = O(N x n) + O(N) + O(Max_iter) = O(n), which shows that the
space complexity of GLBWOA is consistent with that of the WOA in the large-scale problems.
Space complexity is the same.

4. Simulation and Discussion

In this subsection, the test function is used to assess the optimization capabilities of the
proposed algorithm, and the optimal path is identified within the actual elevation map. The
superiority of the GLBWOA is demonstrated through a comparative analysis with other
leading high-performance metaheuristic algorithms via numerical simulations. All simula-
tions conducted in this study were performed on a Windows 11 platform equipped with a
13th Generation Intel Core™ i9-13900HX processor operating at 2.20 GHz. Additionally,
MATLAB 2024a software was employed for the simulations.

4.1. Optimization Performance Test

The IEEE CEC2017 function is utilized to evaluate the optimization performance of
the GLBWOA. In addition to comparing it with the basic WOA, three advanced intelligent
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optimization algorithms—BWO, SCA, and BOA—are also employed for comparative analysis.
To ensure a fair evaluation, all algorithms are configured to operate in dimensions of 30,
50, and 100. Simulations are conducted across these varying dimensions, with a maximum
evaluation time set to 10,000 times the dimensionality. The population size is fixed at 30, and
the maximum number of iterations is limited to 500. In this study, each algorithm is executed
independently for 30 trials, and metrics such as the optimal value, mean, and standard
deviation are recorded to assess the optimization performance of the algorithms.

The CEC2017 function test set contains four types of functions, where F1 to F3 are
single-peak functions, F4 to F10 are basic multi-peak functions, F11 to F20 are hybrid
functions, and F21 to F30 are composite functions. The performance of the algorithms
tested on the different function types will be analyzed in turn below.

From the data presented in Table 1, it is evident that, for the single-peak function, the
GLBWOA can reach the theoretical optimum more efficiently than the other algorithms
within a limited number of iterations. This suggests that GLBWOA possesses a stronger
convergence capability. However, it is also observed that the stability of the optimization
search conducted by GLBWOA slightly diminishes under high-dimensional conditions.

Table 1. Algorithm test results. Significant values are in bold.

d=30 d=50 d =100
Func Alg
Best Ave Std Best Ave Std Best Ave Std
Ours 49E+04 14E+05 6.6E+04 10E+03 93E+03 8.1E+03 5.7E + 03 2.7E + 04 2.2E + 04
WOA 21E+09 53E+09 21E+09 13E+10 20E+10 4.6E+09 9.0E + 10 11E+11 1.0E + 10
F1 BWO 40E+10 b53E+10 58E+09 94E+10 11E+11 47E+09 25E+11 2.6E+11 6.9E + 09
SCA 12E+10 20E+10 51E+09 b5.0E+10 6.6E+10 7.9E+09 1.8E +11 21E+11 1.5E + 10
BOA 37ZE+10 53E+10 67E+09 86E+10 1.1E+11 9.6E+09 23E+11 2.6E+11 1.2E + 10
Ours 20E+02 52E+03 23E+04 42E+02 13E+11 7.2E+11 7.2E + 32 6.8E + 47 3.7E + 48
WOA 22E+26 b57E+34 14E+35 70E+62 48E+76 20E+77 9.4E + 146 1.9E + 175 6.6E + 04
F2 BWO 20E+41 48E+46 19E+47 6.1E+69 12E+80 4.6E+80 3.2E + 162 52E+172 6.6E + 04
SCA 13E+33 26E+38 86E+38 19E+64 85E+70 28E+71 1.7E + 150 5.8E + 167 6.6E + 04
BOA 30E+41 16E+53 35E+53 34E+80 32E+93 99E+93 7.5E + 185 1.7E + 197 6.6E + 04
Ours 58E+03 34E+04 23E+04 54E+04 11E+05 3.1E+04 2.5E + 05 4.3E + 05 1.0E + 05
WOA 14E+05 27E+05 78E+04 18E+05 31E+05 12E+05 7.6E + 05 9.2E + 05 1.1E + 05
F3 BWO 70E+04 82E+04 46E+03 16E+05 24E+05 3.5E+04 3.4E + 05 3.8E + 05 4.0E + 04
SCA 65E+04 89E+04 17E+04 15E+05 22E+05 32E+04 4.0E + 05 6.1E + 05 9.5E + 04
BOA 6.6E+04 8O0E+04 62E+03 17E+05 37E+05 1.6E+05 3.2E + 05 5.7E + 05 3.5E + 05
Table 2 presents the test data for the algorithms applied to the multi-peak function
with local extreme points. The optimal and average values achieved through GLBWOA
optimization are superior across different dimensions, demonstrating the algorithm’s
robust capability to escape local optima. Notably, in function F4, GLBWOA significantly
outperforms other algorithms across various performance indicators, underscoring its
excellent stability.
Table 2. Algorithm test results. Significant values are in bold.
d=30 d=50 d =100
Func Alg
Best Ave Std Best Ave Std Best Ave Std
Ours 49E+02 52E+02 20E+01 50E+02 6.7E+02 6.7E+01 97E+02 11E+03 8.9E+01
WOA 82E+02 13E+03 40E+02 26E+03 45E+03 12E+03 14E+04 21E+04 3.6E+03
F4 BWO 94E+03 13E+04 13E+03 27E+04 34E+04 29E+03 6.7E+04 98E+04 8.6E+03
SCA 18E+03 33E+03 12E+03 91E+03 13E+04 24E+03 39E+04 53E+04 84E+03
BOA 15E+04 21E+04 39E+03 31E+04 40E+04 40E+03 91E+04 11E+05 1.0E+04
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Table 2. Cont.

d=30 d =50 d =100
Func Alg
Best Ave Std Best Ave Std Best Ave Std
Ours 64E+02 7.0E+02 37E+01 B8.0E+02 8.6E+02 40E+01 12E+03 13E+03 6.8E+01
WOA 78E+02 87E+02 49E+01 10E+03 11E+03 90E+01 18E+03 19E+03 15E+02
F5 BWO 90E+02 93E+02 17E+01 12E+03 12E+03 16E+01 20E+03 21E+03 23E+01
SCA 78E+02 82E+02 21E+01 11E+03 11E+03 39E+01 19E+03 21E+03 1.1E+02
BOA 89E+02 93E+02 19E+01 12E+03 12E+03 23E+01 20E+03 21E+03 3.7E+01
Ours 63E+02 64E+02 64E+00 64E+02 65E+02 54E+00 6.5E+02 6.6E+02 3.7E+00
WOA 6.6E+02 68E+02 13E+01 69E+02 70E+02 79E+00 69E+02 7.1E+02 12E+01
F6 BWO 68E+02 69E+02 56E+00 69E+02 70E+02 38E+00 7.1E+02 7.1E+02 2.2E+00
SCA 65E+02 67E+02 10E+01 67E+02 69E+02 69E+00 70E+02 7.1E+02 4.8E+00
BOA 68E+02 69E+02 52E+00 69E+02 70E+02 57E+00 7.1E+02 7.1E+02 27E+00
Ours 98E+02 12E+03 82E+01 14E+03 16E+03 84E+01 29E+03 3.2E+03 2.6E+02
WOA 1.1IE+03 13E+03 76E+01 17E+03 19E+03 &83E+01 35E+03 38E+03 15E+02
F7 BWO 13E+03 14E+03 29E+01 18E+03 20E+03 57E+01 38E+03 39E+03 63E+01
SCA 1.1IE+03 13E+03 6.0E+01 17E+03 19E+03 96E+01 38E+03 42E+03 25E+02
BOA 13E+03 14E+03 30E+01 19E+03 20E+03 54E+01 38E+03 40E+03 6.3E+01
Ours 90E+02 95E+02 29E+01 11E+03 12E+03 45E+01 1.6E+03 17E+03 7.9E+01
WOA 99E+02 11E+03 50E+01 13E+03 14E+03 86E+01 23E+03 24E+03 89E+01
F8 BWO 1.1E+03 11E+03 19E+01 15E+03 15E+03 21E+01 25E+03 26E+03 3.1E+01
SCA 1.1E+03 11E+03 22E+01 14E+03 15E+03 38E+01 22E+03 24E+03 7.6E+01
BOA 1.1E+03 11E+03 21E+01 14E+03 15E+03 33E+01 25E+03 26E+03 4.0E+01
Ours 34E+03 55E+03 12E+03 11E+04 14E+04 16E+03 21E+04 25E+04 2.0E+03
WOA 55E+03 12E+04 45E+03 24E+04 42E+04 12E+04 58E+04 78E+04 17E+04
F9 BWO 81E+03 11E+04 11E+03 33E+04 39E+04 23E+03 75E+04 8I1E+04 34E+03
SCA 63E+03 87E+03 17E+03 24E+04 33E+04 b55E+03 77E+04 95E+04 1.1E+04
BOA 89E+03 11E+04 13E+03 35E+04 40E+04 27E+03 76E+04 84E+04 44E+03
Ours 37E+03 54E+03 79E+02 58E+03 82E+03 90E+02 14E+04 17E+04 15E+03
WOA 6.6E+03 76E+03 51E+02 11E+04 13E+04 11E+03 26E+04 3.0E+04 15E+03
F10 BWO 86E+03 89E+03 23E+02 14E+04 15E+04 48E+02 31E+04 32E+04 54E+02
SCA 73E+03 89E+03 44E+02 14E+04 15E+04 53E+02 32E+04 33E+04 44E+02
BOA 87E+03 93E+03 29E+02 15E+04 16E+04 44E+02 3.1E+04 33E+04 74E+02
Table 3 presents the test data for the algorithm applied to hybrid functions. Each
function is either rotated or shifted and comprises three or more CEC2017 benchmark
functions, with each subfunction assigned a specific weight. The difficulty of solving these
functions has significantly increased compared to the previous ones. For the GLBWOA, its
optimization accuracy remains unaffected by rotation or displacement. However, the indi-
vidual indices for F20 are slightly lower than those of the other algorithms. In contrast, the
optimal and average values for the other nine functions are considerably higher than those
of the comparison algorithms. This demonstrates GLBWOA’s strong global exploration
capability and its superior ability to identify optimal solutions.
Table 3. Algorithm test results. Significant values are in bold.
d=30 d=50 d =100
Func Alg
Best Ave Std Best Ave Std Best Ave Std
Ours 11E+03 12E+03 5.0E+01 13E+03 14E+03 81E+01 9.0E+03 19E+04 1.3E+04
WOA 37E+03 10E+04 43E+03 41E+03 85E+03 22E+03 15E+05 28E+05 12E+05
F11 BWO 53E+03 8O0E+03 14E+03 20E+04 23E+04 14E+03 23E+05 3.6E+05 8.3E+04
SCA 24E+03 40E+03 10E+03 70E+03 12E+04 25E+03 11E+05 18E+05 3.7E+04
BOA 35E+03 83E+03 26E+03 18E+04 24E+04 28E+03 17E+05 41E+05 24E+05
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Table 3. Cont.

d=30 d =50 d =100
Func Alg
Best Ave Std Best Ave Std Best Ave Std
Ours 16E+06 51E+06 26E+06 29E+06 11E+07 68E+06 75E+06 34E+07 1.6E+07
WOA 16E+08 47E+08 23E+08 21E+09 47E+09 19E+09 17E+10 28E+10 5.8E+09
F12 BWO 84E+09 12E+10 15E+09 44E+10 65E+10 89E+09 15E+11 19E+11 12E+10
SCA 15E+09 29E+09 93E+08 13E+10 22E+10 47E+09 80E+10 10E+11 12E+10
BOA 48E+09 14E+10 42E+09 b50E+10 83E+10 17E+10 14E+11 20E+11 23E+10
Ours 18E+04 62E+04 5.0E+04 13E+04 43E+04 33E+04 11E+04 25E+04 8.1E +03
WOA 16E+06 19E+07 45E+07 12E+08 6.0E+08 37E+08 12E+09 27E+09 1.1E+09
F13 BWO 97E+08 64E+09 24E+09 11E+10 38E+10 96E+09 29E+10 43E+10 4.7E+09
SCA 17E+08 11E+09 59E+08 34E+09 64E+09 17E+09 13E+10 18E+10 3.6E+09
BOA 32E+09 14E+10 6.6E+09 3.0E+10 48E+10 12E+10 3.6E+10 48E+10 54E+09
Ours 21E+04 34E+05 29E+05 11E+05 55E+05 23E+05 7.0E+05 20E+06 8.3E+05
WOA 50E+04 19E+06 20E+06 82E+05 60E+06 39E+06 8O0E+06 19E+07 7.7E+06
F14 BWO 12E+06 39E+06 21E+06 86E+06 56E+07 25E+07 46E+07 77E+07 19E+07
SCA 13E+05 1.1E+06 98E+05 21E+06 82E+06 43E+06 20E+07 62E+07 3.1E+07
BOA 83E+04 36E+06 33E+06 21E+07 13E+08 96E+07 42E+07 14E+08 7.0E+07
Ours 38E+03 16E+04 1.0E+04 79E+03 22E+04 95E+03 8.7E+03 19E+04 6.2E+03
WOA 97E+04 14E+07 36E+07 19E+06 52E+07 49E+07 11E+08 47E+08 3.0E+08
F15 BWO 64E+07 35E+08 24E+08 3.0E+09 6.0E+09 14E+09 19E+10 24E+10 23E+09
SCA 50E+06 53E+07 54E+07 28E+08 11E+09 45E+08 29E+09 6.6E+09 1.6E+09
BOA 40E+07 71E+08 69E+08 28E+09 79E+09 32E+09 15E+10 24E+10 4.8E+09
Ours 26E+03 31E+03 39E+02 29E+03 41E+03 52E+02 54E+03 7.0E+03 8.3E+02
WOA 29E+03 43E+03 49E+02 48E+03 6.6E+03 10E+03 12E+04 17E+04 3.2E+03
F16 BWO 44E+03 56E+03 32E+02 71E+03 88E+03 86E+02 20E+04 23E+04 1.1E+03
SCA 33E+03 42E+03 18E+03 56E+03 63E+03 3.6E+02 13E+04 15E+04 1.1E+03
BOA 47E+03 78E+03 93E+02 80E+03 11E+04 16E+03 23E+04 26E+04 19E+03
Ours 20E+03 24E+03 23E+02 28E+03 37E+03 36E+02 49E+03 59E+03 7.3E+02
WOA 21E+03 28E+03 35E+02 39E+03 49E+03 79E+02 96E+03 37E+04 29E+04
F17 BWO 36E+03 43E+03 47E+02 50E+03 76E+03 16E+03 39E+05 b56E+06 3.4E+06
SCA 24E+03 28E+03 19E+02 41E+03 51E+03 48E+02 15E+04 65E+04 54E+04
BOA 38E+03 11E+04 98E+03 53E+03 17E+04 13E+04 12E+06 18E+07 1.7E+07
Ours 13E+05 12E+06 13E+06 20E+05 35E+06 24E+06 18E+06 3.1E+06 1.0E + 06
WOA 12E+06 11E+07 81E+06 26E+06 50E+07 43E+07 89E+06 21E+07 1.0E+07
F18 BWO 50E+06 3.6E+07 16E+07 65E+07 15E+08 39E+07 76E+07 21E+08 6.2E+07
SCA 17E+06 19E+07 14E+07 25E+07 73E+07 38E+07 35E+07 12E+08 55E+07
BOA 49E+06 94E+07 11E+08 38E+07 21E+08 12E+08 73E+07 25E+08 1.2E+08
Ours 28E+03 16E+04 18E+04 75E+03 61E+04 57E+04 16E+04 25E+05 22E+05
WOA 12E+06 20E+07 16E+07 30E+06 22E+07 22E+07 26E+08 53E+08 25E+08
F19 BWO 14E+08 52E+08 24E+08 12E+09 33E+09 94E+08 12E+10 23E+10 27E+09
SCA 29E+07 12E+08 75E+07 22E+08 73E+08 32E+08 24E+09 54E+09 14E+09
BOA 88E+07 B89E+08 68E+08 58E+08 42E+09 18E+09 16E+10 25E+10 4.1E+09
Ours 24E+03 28E+03 21E+02 31E+03 36E+03 27E+02 47E+03 58E+03 5.6E+02
WOA 25E+03 30E+03 23E+02 29E+03 40E+03 43E+02 57E+03 72E+03 6.4E+02
F20 BWO 28E+03 31E+03 12E+02 35E+03 41E+03 18E+02 73E+03 78E+03 23E+02
SCA 26E+03 3.0E+03 17E+02 39E+03 43E+03 23E+02 71E+03 8.0E+03 34E+02
BOA 28E+03 31E+03 13E+02 36E+03 43E+03 24E+02 75E+03 81E+03 28E+02

F21-F30 are composite functions that consist of at least three hybrid functions or CEC2017

benchmark functions that have been rotated and shifted. Each subfunction includes additional
bias values and a weight, which further complicates the optimization challenges faced by
the algorithms. Table 4 presents the test data for each algorithm within the composite
function. The simulation results indicate that, across various dimensions, the GLBWOA
demonstrates superior performance in identifying optimal solutions. It excels in both optimal
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value and average value metrics, particularly in functions F25, F28, and F30, where GLBWOA's
performance indices significantly surpass those of other algorithms. This suggests that
GLBWOA enhances local search capabilities compared to the WOA, leading to improved
solution accuracy and a robust ability to avoid local optima, thereby facilitating the discovery
of optimal solutions. Even when other algorithms exhibit low search accuracy or fail to
converge, GLBWOA consistently maintains high solution accuracy.

To verify whether there is a significant difference between GLBWOA and the other
algorithms, the experimental data were statistically analyzed using the Wilcoxon rank sum
test [37]. For each test function, the Wilcoxon rank sum test was performed by combining
the results of 30 independent optimization searches for GLBWOA with the results of 30
independent optimization searches for WOA, BWO, SCA, and BOA, respectively, at a
significance level of 5%, with all algorithmic dimensions set to 30, 50, and 100 cases simul-
taneously, the population size set to 30, and the number of iterations set to 500 generations.
The p-value of the test result is less than 0.05, indicating that there is a significant difference
between the compared algorithms, and vice versa there is no significant difference. The
symbols ‘<’ *>’, and ‘=" indicate that the performance of GLBWOA is better, worse, and
equivalent to the comparison algorithms, respectively. The results in Table 5 show that
almost all p-values are less than 5%, indicating that GLBWOA's ability to find the best is
better than the remaining four comparison algorithms.

Table 4. Algorithm test results. Significant values are in bold.

d=30 d=50 d =100
Func Alg
Best Ave Std Best Ave Std Best Ave Std
Ours 24E + 03 2.5E + 03 4.8E + 01 2.6E + 03 2.7E + 03 6.7E + 01 3.2E + 03 3.5E + 03 1.8E + 02
WOA 2.5E + 03 2.6E + 03 6.5E + 01 2.8E + 03 3.1E + 03 1.1E + 02 4.1E + 03 4.4E + 03 2.0E + 02
F21 BWO 2.6E + 03 2.7E+03 3.5E + 01 3.1E+ 03 3.2E + 03 5.8E + 01 45E + 03 4.8E + 03 9.3E + 01
SCA 2.6E + 03 2.6E + 03 2.5E + 01 2.9E + 03 3.0E + 03 5.0E + 01 4.1E + 03 4.2E + 03 8.8E + 01
BOA 2.5E + 03 2.7E +03 5.9E + 01 3.1E +03 3.3E + 03 8.4E + 01 4.5E + 03 49E + 03 1.7E + 02
Ours 23E+ 03 4.4E + 03 2.5E + 03 8.5E + 03 1.0E + 04 9.5E + 02 1.8E + 04 2.0E + 04 1.3E + 03
WOA 3.1E + 03 8.1E + 03 1.8E + 03 1.3E + 04 1.5E + 04 1.1E + 03 2.9E + 04 3.2E + 04 1.5E + 03
F22 BWO 7.4E + 03 8.7E + 03 6.5E + 02 1.5E + 04 1.7E + 04 6.9E + 02 3.4E + 04 3.5E + 04 5.0E + 02
SCA 4.2E + 03 9.7E + 03 1.9E + 03 1.6E + 04 1.7E + 04 4.5E + 02 3.4E + 04 3.5E + 04 6.9E + 02
BOA 5.0E + 03 7.2E + 03 1.5E + 03 1.3E + 04 1.7E + 04 9.0E + 02 3.4E + 04 3.6E + 04 5.9E + 02
Ours 2.8E + 03 2.9E + 03 6.8E + 01 3.1E + 03 3.3E + 03 14E + 02 3.8E + 03 4.1E + 03 1.7E + 02
WOA 2.9E + 03 3.2E + 03 1.2E + 02 3.4E + 03 3.8E + 03 1.9E + 02 4.9E + 03 5.3E + 03 2.6E + 02
F23 BWO 3.2E + 03 3.3E + 03 5.8E + 01 4.0E + 03 4.1E + 03 9.4E + 01 5.9E + 03 6.1E + 03 1.3E + 02
SCA 3.0E + 03 3.1E + 03 3.9E + 01 3.5E + 03 3.7E + 03 8.1E + 01 5.1E + 03 5.3E + 03 1.2E + 02
BOA 3.2E + 03 3.6E + 03 1.7E + 02 4.1E + 03 4.7E + 03 2.8E + 02 6.2E + 03 6.7E + 03 3.2E + 02
Ours 3.0E + 03 3.1E+03 8.3E + 01 3.3E + 03 3.5E + 03 14E + 02 4.5E + 03 5.1E + 03 2.5E + 02
WOA 3.1E + 03 3.3E + 03 8.8E + 01 3.6E + 03 3.9E + 03 1.5E + 02 6.1E + 03 6.8E + 03 4.7E + 02
F24 BWO 3.4E + 03 3.6E + 03 1.0E + 02 4.1E + 03 4.5E + 03 1.5E + 02 8.7E + 03 9.3E + 03 4.3E + 02
SCA 3.2E + 03 3.3E + 03 3.7E + 01 3.7E + 03 3.9E + 03 7.1E + 01 6.8E + 03 7.3E + 03 2.9E + 02
BOA 3.5E + 03 4.1E + 03 29E + 02 49E + 03 5.5E + 03 3.3E + 02 9.7E + 03 1.3E + 04 1.3E + 03
Ours 2.9E + 03 2.9E + 03 2.1E + 01 3.1E + 03 3.2E + 03 3.1E + 01 3.6E + 03 3.8E + 03 8.7E + 01
WOA 3.1E + 03 3.2E+ 03 7.7E + 01 4.3E + 03 5.4E + 03 6.9E + 02 9.5E + 03 1.1E + 04 1.0E + 03
F25 BWO 4.0E + 03 4.5E + 03 2.0E + 02 1.2E + 04 14E + 04 9.2E + 02 2.6E + 04 2.8E + 04 1.0E + 03
SCA 3.3E +03 3.6E + 03 2.2E + 02 6.7E + 03 9.0E + 03 1.3E + 03 1.8E + 04 2.2E + 04 2.0E + 03
BOA 4.8E + 03 5.8E + 03 5.3E + 02 14E + 04 1.6E + 04 8.6E + 02 2.8E + 04 3.0E + 04 1.6E + 03
Ours 2.8E + 03 5.6E + 03 1.8E + 03 4.0E + 03 1.0E + 04 2.2E + 03 2.1E + 04 2.5E + 04 2.1E + 03
WOA 6.8E + 03 8.6E + 03 1.0E + 03 1.2E + 04 1.5E + 04 1.8E + 03 2.9E + 04 3.8E + 04 3.7E+ 03
F26 BWO 9.2E + 03 1.1E + 04 5.0E + 02 1.6E + 04 1.7E + 04 4.3E + 02 4.8E + 04 5.1E + 04 1.3E + 03
SCA 6.8E + 03 7.9E + 03 5.4E + 02 1.2E + 04 14E + 04 8.1E + 02 3.6E + 04 4.2E + 04 3.0E + 03
BOA 1.0E + 04 1.2E + 04 8.3E + 02 1.7E + 04 1.8E + 04 7.0E + 02 5.3E + 04 5.8E + 04 2.2E + 03
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Table 4. Cont.

d=30 d=50 d =100
Func Alg
Best Ave Std Best Ave Std Best Ave Std
Ours 3.2E + 03 3.3E + 03 2.9E + 01 3.6E + 03 3.9E + 03 2.6E + 02 3.8E + 03 4.3E + 03 3.2E + 02
WOA 3.3E + 03 3.5E + 03 14E + 02 4.0E + 03 4.9E + 03 6.6E + 02 5.0E + 03 6.5E + 03 1.0E + 03
F27 BWO 3.6E + 03 4.0E + 03 1.7E + 02 4.7E + 03 6.3E + 03 4.5E + 02 1.0E + 04 1.2E + 04 7.2E + 02
SCA 3.4E + 03 3.6E + 03 6.9E + 01 4.6E + 03 5.0E + 03 2.4E + 02 7.6E + 03 8.7E + 03 6.7E + 02
BOA 3.8E + 03 4.4E + 03 3.0E + 02 5.5E + 03 7.1E + 03 8.2E + 02 1.3E + 04 1.5E + 04 1.3E + 03
Ours 3.3E + 03 3.3E + 03 23E + 01 3.4E + 03 3.5E + 03 6.1E + 01 3.8E + 03 4.0E + 03 1.5E + 02
WOA 3.7E + 03 4.0E + 03 2.9E + 02 5.3E + 03 6.2E + 03 5.2E + 02 1.1E + 04 1.5E + 04 1.4E + 03
F28 BWO 5.7E + 03 6.5E + 03 3.8E + 02 1.2E + 04 1.2E + 04 4.9E + 02 2.6E + 04 2.8E + 04 8.4E + 02
SCA 3.9E + 03 4.5E + 03 4.7E + 02 7.3E + 03 8.9E + 03 1.0E + 03 2.4E + 04 2.7E + 04 2.6E + 03
BOA 6.9E + 03 8.1E + 03 5.1E + 02 1.3E + 04 1.5E + 04 8.1E + 02 3.4E + 04 3.7E + 04 1.8E + 03
Ours 3.6E + 03 4.2E + 03 3.0E + 02 44E + 03 5.2E + 03 5.2E + 03 7.3E + 03 8.9E + 03 7.5E + 02
WOA 4.3E + 03 5.4E + 03 5.8E + 02 7.2E + 03 94E + 03 94E + 03 14E + 04 2.0E + 04 2.7E + 03
F29 BWO 6.0E + 03 7.1E + 03 6.4E + 02 1.2E + 04 3.0E + 04 3.0E + 04 1.1E + 05 4.3E + 05 2.0E + 05
SCA 4.6E + 03 5.2E + 03 2.4E + 02 6.6E + 03 9.2E + 03 9.2E + 03 1.9E + 04 3.2E + 04 8.0E + 03
BOA 6.5E + 03 1.2E + 04 47E +03 1.3E + 04 2.8E + 05 2.8E + 05 1.6E + 05 1.1E + 06 7.5E + 05
Ours 6.7E + 04 5.3E + 05 2.7E + 05 2.9E + 06 6.5E + 06 1.7E + 06 1.4E + 06 4.0E + 06 1.6E + 06
WOA 5.7E + 06 6.6E + 07 4.9E + 07 1.3E + 08 3.1E + 08 1.1E + 08 8.6E + 08 2.8E + 09 1.3E + 09
F30 BWO 2.8E + 08 1.1E + 09 4.7E + 08 3.4E + 09 5.2E + 09 9.0E + 08 3.2E+ 10 41E+10 2.8E + 09
SCA 5.2E + 07 1.8E + 08 7.3E + 07 5.3E + 08 1.2E + 09 3.5E + 08 8.7E + 09 1.3E + 10 2.7E + 09
BOA 2.9E + 08 1.4E + 09 1.1E + 09 2.2E + 09 7.8E + 09 2.9E + 09 2.5E + 10 4.0E + 10 6.5E + 09

The primary objective of the improved algorithm is to find the best solution as quickly

as possible. As depicted in Figure 6, which showcases the average convergence curve
derived from the function tests, the GLBWOA demonstrates superior global search ca-
pabilities relative to four other high-performance optimization algorithms. It exhibits an
improved capacity to evade local optima and achieves swift convergence across all 30 opti-
mization functions. These findings indicate that GLBWOA is not only proficient in rapidly
identifying superior solutions but also excels in addressing complex, multi-constraint
problems with increased efficiency.
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In the analysis of convergence curves for thirty functions, the global best water wave
optimization algorithm demonstrates superior convergence accuracy, particularly in the
context of multi-modal functions. Specifically, in the case of function 3, while the initial fitness
of GLBWOA is marginally higher than that of competing algorithms, it is observed that, as
the number of iterations increases, the other four algorithms tend to converge prematurely,
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resulting in entrapment within local optima. In contrast, GLBWOA maintains its capacity
for continuous exploration of optimal solutions, thereby achieving enhanced optimization
outcomes in the later stages of iteration, attributable to its distinct optimization strategies.

The findings indicate that the GLBWOA demonstrates significant efficiency in identi-
fying optimal solutions across both low- and high-dimensional spaces. In comparison to
other high-performance algorithms, GLBWOA exhibits superior capabilities in escaping
local optima and possesses enhanced local search abilities.

4.2. Path-Planning Simulation

The simulations were conducted in two environments with different terrain structures
on Christmas Island, Australia, where Map 1 has an extent of 1045 x 879 x Z m and Map 2
has an extent of 450 x 450 x Z m. The scenarios were classified as simple and complex
according to the number and position of threatening cylinders, while the waypoints are
selected as 7 = 10. To make a fair comparison, all the algorithmic parameters were unified,
the population size is set to 30, and the maximum number of iterations is set to 200.
Due to the stochastic nature of the metaheuristic algorithms, each algorithm is repeated
independently 30 times to better illustrate the performance of the algorithms and ensure
the reliability of the results, the total cost Feost(Path;) is used as the main performance
index of path planning, and according to the realistic flight requirements, the weighting
coefficients of each cost function are set to w; = 10, w, = 100, w3 = 10, wy = 50. The
constraint parameters of the simulations are shown in Table 6.

Table 6. Constraint parameter setting.

Parameter Numerical Value
UAV size D/m 10
Dangerous distance S/m 2xD
Maximum height /imax/m 200
Minimum height fipin /m 100
Maximum steering angle (max/(°) 45
Maximum angle of climb Omax/ (°) 45

The obstacle parameters for scenario 1 are shown in Table 7. Assuming that the starting
point of the path is (200, 100, 150) and the end point is set to (800, 800, 150), the optimal
path between the two points is planned. As shown in Figure 7, the best effect of path
planning in scenario 1 is demonstrated. From the top view in Figure 7a and the side view
in Figure 7b, it can be seen that all the algorithms can generate feasible paths that satisfy
the requirements of five constraints, namely, path length, obstacle threat, height limitation,
climb angle, and steering angle, and in order to observe the paths avoiding obstacles in a
more intuitive manner, we chose to hide the terrain structure for observation. As shown
in Figure 7c, it can be seen that the generated path can effectively avoid collision, and the
path is smoother, in line with the real flight needs.

Table 7. Scenario 1 Parameter Setting.

Number Location Coordinates /m Threat Radius R/m
1 (400, 500, 200) 50
2 (600, 200, 200) 40
3 (500, 350, 200) 50

According to the distribution of terrain peaks, terrain 1 complex environment obstacles
are set as in Table 8, with the same start and end points as above. Figure 8 shows the path-
planning effect in the complex scene of terrain 1 and, with the increase in obstacles, the
complexity of path solving rises, and the difficulty of algorithms to solve the optimal path
increases. It can be seen that all the algorithms generate paths that can guide the UAV to
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fly safely without collision, but different algorithms generate paths with large differences,
among which BWO generates paths with more sharp turns, and the difficulty of actual
flight is higher. BOA has the highest average total cost of planning and does not find the
optimal path while, in comparison, the paths generated by SCA, WOA, and GLBWOA are
more suitable for the actual flight of UAV, and GLBWOA has the fastest convergence speed
among the three. The optimal path can be found in about 10 generations of iterations, and
the average total cost is the lowest as in the case of WOA, reflecting the superiority of the
algorithms proposed in this paper.
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Figure 7. Path Planning in Scenario 1 (n = 10).

Table 8. Scenario 2 Parameter Setting.

Number Location Coordinates /m Threat Radius R/m
1 (400, 600, 200) 50
2 (300, 350, 100) 40
3 (500, 430, 150) 35
4 (200, 180, 200) 40
5 (200, 550, 200) 40
6 (650, 750, 150) 50
7 (820, 400, 175) 30
8 (730, 560, 200) 50
9 (450, 210, 200) 30

The path-planning simulation is continued under terrain 2 to further test the ability
of the algorithm proposed in this paper to plan paths, where the path starting point is set
to (10, 10, 200) and the end point is set to (400, 400, 150). The simple scenario obstacles
are set as in Table 9, and the solved paths are shown in Figure 9, and it can be observed
in Figure 9a,b that the paths generated by the GLBWOA are smoother in terms of path
changes and without abrupt changes, which is better than the remaining four algorithms.
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From Figure 9¢, it can be seen that BOA and BWO fall into the local optimum at the early
stage of the algorithm, which ultimately leads to premature convergence and planning
paths with higher total cost, while GLBWOA has better optimality searching performance
by quickly escaping after falling into the local extremes and continuously searching for
the globally optimal paths on an ongoing basis. From Figure 9d, it is evident that the
algorithm introduced in this study can swiftly escape local optima encountered during
the initial stages. In contrast, other algorithms tend to remain trapped in local optima for
extended durations throughout their iterations. This suggests that incorporating the bubble
network attack enhancement strategy significantly improves the ability to escape local
optima. A closer examination of the average convergence curve during the early iterations
of the GLBWOA reveals that the algorithm activates the variance mechanism shortly after
becoming stuck in a local optimum, enabling it to quickly identify the global optimum. This
indicates that implementing the failure parameter testing mechanism markedly enhances
the algorithm’s global search capabilities.
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Figure 8. Path Planning in Scenario 2 (n = 10).

Table 9. Scenario 3 Parameter Setting.

Number Location Coordinates /m Threat Radius R/m
1 (100, 300, 100) 30
2 (300, 300, 100) 20
3 (100, 50, 100) 30

In the terrain 2 complex obstacle scenario to solve the safe flight path, the start and end
points are the same as above, the obstacle parameters are set as in Table 10, and the results are
shown in Figure 10, which shows that the related algorithms all give their respective path-
planning results and the planned paths avoid the peaks and threat sources in the environment.
It can be observed that although the scheme given by GLBWOA sacrifices the path length
cost to plan the paths, the planned paths effectively reduce the altitude changes and steering
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adjustments during the flight of the UAV and at the same time effectively avoid the obstacles,
thus reducing the total cost, and the total cost is the lowest amongst the five algorithms. From
Figure 10d, it can be seen that the BWO and WOA gradually begin to converge after around
30 generations of iterations, but GLBWOA is still searching for the globally optimal path,
demonstrating that the algorithms have strong local exploration ability and global exploration
performance, indicating that the introduction of the gradient kinetic energy strategy in the
algorithms can escape from the local minima. The design of the update method effectively
prevents the algorithm from missing the globally optimal solution.
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Figure 9. Path Planning in Scenario 3 (n = 10).
Table 10. Scenario 4 Parameter Setting.
Number Location Coordinates /m Threat Radius R/m
1 (300, 300, 100) 30
2 (200, 100, 100) 20
3 (100, 200, 100) 30
4 (300, 100, 100) 20
5 (200, 50, 100) 20
6 (150, 350, 100) 30

The flight data for path planning for the four benchmark scenarios are presented in
Table 11. GLBWOA, along with the other algorithms, successfully generated collision-free
UAV flight paths, and GLBWOA excelled in the optimal flight cost and average flight
cost metrics. The only exception is in the terrain 1 simple obstacle scenario, where the
total flight cost of GLBWOA is the same as the standard WOA. However, in the other
three benchmark scenarios, the total flight cost of GLBWOA is reduced by 19%, 10.6%,
and 24.9%, respectively, compared to the standard WOA. In addition, the improvements
in convergence speed, accuracy, and stability highlight the effectiveness of the proposed
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enhancement strategy. Meanwhile, Table 11 shows the average running time of each
algorithm to determine the optimal path in 30 independent runs. It is clear that the
GLBWOA has a slightly longer running time compared to the other algorithms but it is
within an acceptable range. Although the extension of time is still within acceptable limits,
it poses a limitation in application settings where the optimal path solution is required to
be found in the shortest possible time. Therefore, our future research efforts will aim to
reduce the running time of the algorithm while maintaining its performance level.
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Figure 10. Path Planning in Scenario 4 (n = 10).

Table 11. Results of path-planning simulations. Significant values are in bold.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Alg Ave- Ave- Ave- Ave-
Best Mean ————— Best Mean Best Mean Best Mean

Time Time Time Time
Ours 9330.37 9350.6 0.6597s  10,185.1 11,381.5 1.3252 s 6989.56 7211.2 0.8263 s 8637.54 8900.2 1.3124 s
WOA 9330.37 9354.8 0.3390 s 12,6445 12,7746  0.7153 s 7817.26 8102.6 0.3634 s 11,5143 11,902.6  0.4532s
SCA 10,508.4 10,6463 0.3217s 17,5883 183632 0.7194s 14,1004 14,9083 0.3544s  9463.38 9779.6 0.5226 s
BWO 10,7084 11,206.2 0.3696 s 19,799.7 19,8283  0.7852s 15,042.2  15,900.1 0.4290 s 149212 15,1123 0.6468s
BOA 13,350.7 13,820.5 0.6195s 21,9754 22,131.8 1.1082 s 14,170.8 15,1924  0.7109 s 12,9844 13,155.7 0.8866s

5. Conclusions

This study introduces a novel global-local balanced whale optimization algorithm
designed to address the path-planning challenges faced by unmanned aerial vehicles in
complex environments. A three-dimensional spatial model is constructed using digital
elevation models, and a total cost function is formulated by integrating mission require-
ments with relevant constraints. To enhance the traditional whale optimization algorithm,
a bubble net attack enhancement scheme is proposed to improve the algorithm’s ability
to escape local optima. This enhancement is achieved through a mutation operation gov-
erned by predefined conditions, recognizing that an individual’s capacity to overcome
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its current position varies at different stages of the optimization process. Additionally, a
failure parameter testing mutation mechanism is incorporated to accelerate the algorithm'’s
convergence rate. In the later phases of optimization, a stochastic gradient-assisted search
strategy is employed to reinforce the algorithm’s global search capabilities. The optimiza-
tion performance of GLBWOA is evaluated using the CEC2017 function test set, where it
demonstrates superior performance compared to four other high-performance algorithms
across all metrics, indicating that the proposed strategies effectively balance the global
and local search capabilities of the algorithm. In four benchmark scenarios, GLBWOA
consistently achieves a lower average total flight cost and exhibits more accurate and faster
convergence under identical algorithmic parameters. Future research will further assess
the algorithm’s performance by considering the impact of dynamic obstacles, weather
variations, and other complex conditions on the UAV path-planning problem. Additionally,
efforts will be made to implement the algorithm in real UAVs to conduct path planning in
real-world environments, thereby validating its practical effectiveness.
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Abstract: A novel, multi-dimensional, spatiotemporal prediction framework is proposed to enhance
air traffic flow prediction in increasingly complex aviation networks. This framework incorporates
graph convolutional networks (GCNs) with multi-dimensional Long Short-Term Memory (LSTM)
networks and multi-scale, temporal convolution, employing an attention mechanism to effectively
capture spatiotemporal dependencies. By addressing irregular topologies and dynamic temporal
trends, the framework models local air traffic patterns with improved accuracy. The experimental
results demonstrate significant predictive accuracy improvements over traditional methods, particu-
larly in accounting for the complex nature of air traffic flows. The model’s scalability and adaptability
extend its application to various aviation networks, encompassing all airspace units within three local
networks, rather than focusing solely on airport traffic. These findings contribute to the development
of more intelligent, accurate, and adaptive air traffic management systems, ultimately enhancing
both operational efficiency and safety.

Keywords: air traffic flow prediction; spatiotemporal correlations; graph representation learning

1. Introduction

Air Traffic Flow Management (ATFM) is a crucial component for ensuring the efficient
and safe operation of the global aviation system [1]. With the rapid expansion in air travel
demand, the volume of flights continues to rise, leading to increased congestion in airspace,
particularly around busy airports and along heavily trafficked routes [2]. The primary aim
of ATEM is to optimize the allocation of airspace and airport resources to ensure that flights
operate safely and efficiently, while minimizing delays and improving punctuality. Effective
traffic flow management not only enhances the operational efficiency of the aviation
network but also reduces airlines” operational costs and boosts passengers” satisfaction.

The operation of air traffic is dependent on the coordinated integration of routes,
airspace, and traffic flow [3]. Routes are predefined paths that aircraft follow within the
airspace, akin to highways in ground transportation, guiding them from departure to
destination via specific waypoints. These routes create a structured network within the
airspace, ensuring aircraft adhere to designated paths and avoid conflicts. The planning and
adjustment of these routes are influenced by airspace capacity and the volume of air traffic.
Airspace refers to the three-dimensional region in which aircraft operate, providing the
spatial framework for routes. It is segmented and managed by national or regional aviation
authorities, typically based on geographic location, altitude, and usage (e.g., commercial
or military operations). Authorities adjust or restrict routes as necessary to ensure safe
and efficient flight operations, preventing collisions and other safety incidents. Traffic
flow pertains to the number of aircraft within a specific airspace or route section over a
given time period [4]. The volume of traffic significantly impacts airspace congestion and
management complexity. High traffic volumes lead to congestion, resulting in delays and
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an increased risk of mid-air conflicts. ATFM’s central task is to optimize the traffic flow
within the airspace by adjusting flight speeds and rescheduling departure and arrival times
to ensure safe and efficient journeys.

Accurate traffic flow prediction is essential for effective ATFM, particularly as aviation
networks become increasingly complex. By predicting air traffic volumes within specific
airspaces, air traffic controllers can proactively identify potential congestion areas and
develop strategies for optimizing routes and dynamically allocating resources to handle
peak traffic periods and unexpected events. Improved prediction enhances air traffic control
systems’ intelligence, aiding route planning, airspace capacity distribution, and dynamic
adjustments, thereby reducing delays, improving on-time performance, and enhancing
economic returns and passenger satisfaction for airlines.

Artificial Intelligence (Al) is playing a key role in advancing air traffic flow prediction,
addressing the increasing complexity of air traffic patterns and irregular airspace structures.
Al enables aviation networks to manage the spatial and temporal dependencies of air traffic
flow more effectively, allowing for more accurate and adaptive predictions. Traditional
methods often struggle to capture the complex patterns of traffic in large, interconnected
networks, but Al-based approaches can learn from vast data sources and adapt to dynamic
conditions, offering intelligent traffic management solutions.

Recent research has explored novel methods and models to enhance air traffic flow
prediction accuracy and efficiency. While traditional physical models [5,6] and shallow
machine learning techniques such as Support Vector Regression (SVR) [7], neural networks
(NN) [8-10], clustering algorithms [11], and boosting methods [12] have shown success
in predicting traffic at individual airports or specific waypoints [13], these approaches
often struggle to capture the complex spatiotemporal correlations associated with traffic
fluctuations across broader aviation networks.

Central to Al's application in this field is the integration of advanced machine learning
(ML) and deep learning (DL) techniques. In recent years, temporal dependencies have
been modeled using Long Short-Term Memory (LSTM) networks, a class of recurrent
neural networks (RNNs) designed to learn from and predict time series data. Studies have
applied LSTM networks [14,15], RNNs [16], and causal graphs [17] to capture temporal
dependencies in airspace traffic variations. However, predicting air traffic flow remains
challenging due to periodic trends (e.g., normal versus peak flight periods, weekdays
versus weekends) and random events. These models, while powerful, often face difficulties
in managing multi-scale, temporal correlations within the same time series, limiting their
ability to provide accurate predictions across varying temporal patterns.

To capture spatial correlations more effectively, some studies have proposed using grid-
ded map methods to encode local air traffic flow conditions into novel two-dimensional [18]
or three-dimensional [19] data representations. While this approach theoretically offers
richer spatial information, the imposition of fixed-size, regular grid structures onto airspace
can conflict with the operational logic of air traffic controllers [20], potentially increasing
their workload and failing to reflect the irregularity of airspace structures.

Graph convolutional networks (GCNs) and related models have shown promise in
modeling and analyzing traffic changes across the irregular topologies of multiple airspaces.
Initial efforts [21,22] have employed GCN domain models to explore interactions between
airspace nodes, revealing complex relationships. However, these studies have largely
been limited to a small number of airspace nodes, making it challenging for the models
to adaptively capture the complexities of non-Euclidean spatial structures in real-world
aviation networks [23]. This limitation has hindered the broader application of these
models in local aviation networks.

Despite the valuable insights provided by existing methodologies, there remains a
need for advanced models that are capable of comprehensively addressing multi-scale,
spatiotemporal correlations and irregular structures within the aviation network.
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This study addresses existing gaps in air traffic flow prediction by proposing a novel,

multi-dimensional, spatiotemporal prediction framework. The primary objectives are
as follows:

1.

and
and

To develop an integrated framework that combines GCNs with multi-dimensional,
time-dependent modeling and multi-scale, temporal convolution, enhanced by an
attention mechanism. This framework aims to capture complex spatiotemporal de-
pendencies within air traffic networks, substantially improving predictive accuracy.
To incorporate advanced graph convolutional architectures that account for the irregu-
lar topologies that are characteristic of local aviation networks. This approach ensures
accurate representation and the learning of the intricate spatial relationships among
air traffic nodes.

To utilize the computational power of deep hybrid neural networks for modeling
multi-scale, temporal dependencies, enabling the framework to predict air traffic
flow with increased precision by capturing both specific periodic trends and short-
term fluctuations.

To our knowledge, this is the first study to perform data collection and traffic flow
prediction across all airspace units within three local aviation networks, rather than
focusing solely on airport takeoff and landing traffic. This methodology is adapt-
able to other spatiotemporal data prediction tasks, such as weather prediction and
pollution analysis.

By achieving these objectives, this study aims to enhance the accuracy, adaptability,
interpretability of air traffic flow predictions, thereby contributing to more optimized
intelligent air traffic management systems.

2. Materials and Methods
2.1. Multi-Dimensional, Spatiotemporal Prediction Framework

This paper proposes a multi-dimensional, spatiotemporal prediction framework that

integrates spatial dependency modeling based on graph convolution, multi-dimensional
time-dependent modeling, and multi-scale time domain convolution utilizing the attention
mechanism, as demonstrated in Figure 1.

Network Structure Multi-Dimensional Spatiotemporal
Prediction Framework
X(1-672) P S el q < Graph Convolution
L patial Dependency
- o, mmm———— - > )
X(1-96) Modeling
X(t-1) i < Graph Filter Desingn
X() ,
= P Multi-Dimensional
N Multi-Dimensional |~ LSTM
Historical Time Dependent
Sequence Modeling P Multi-Scale Time
l l l X Domain Convolution
A ( " 1) Prediction
X t _ Sequence Model Training | Dynamic Analysis of
X(t+p) and Prediction Forecasts

Figure 1. Architecture of multi-dimensional spatiotemporal prediction framework.
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This technology aims to address the complex spatiotemporal correlations within air
traffic flow networks. It incorporates airspace configuration and route coupling laws to
extract the spatial characteristics inherent in the irregular topology observed in aviation
networks. This is achieved through the construction of a graph convolutional network,
facilitating a unified and structured characterization of local spatial relationships among
nodes. In Figure 1, the number of each local aviation network node represents its ID.

To meet the practical requirements of intelligently predicting multi-dimensional, spa-
tiotemporal states within aviation networks, this approach integrates the spatial and tem-
poral dependencies of each node in the network dynamics. It extracts global components
from real-time traffic flow data influenced by long-term spatial and temporal relationships
while capturing local components that fluctuate with short-term specific events.

By leveraging the processing capabilities of graph convolutional networks and multi-
dimensional recurrent neural networks, a deep hybrid neural network architecture is
established. This network analyzes the multi-dimensional, spatiotemporal characteristics of
air traffic flow from a hierarchical, multi-perspective standpoint. This enables the accurate
prediction of future trends for each node within the aviation network and enhances the
interpretability of the prediction methodology.

2.2. Spatial Dependency Modeling Based on Graph Convolution

This technique begins by constructing a topology graph G of the aviation network,
based on the spatial structure of the aviation network and the coupling law of airway traffic
flow. The vertices of the graph represent the airspace nodes, while the edges are used to
describe the nearest neighbors and the distances between them. The relationship between
the airspace nodes and the topology graph is represented by the normalized Laplace matrix
L. This is defined in Equation (1), where D is the degree matrix of the graph G, and A is
the adjacency matrix with the weighted adjacency matrix.

L=1I,— D ZAD"?2 1)

Given that the Laplace matrix L is a symmetric positive definite matrix, the eigen-
value decomposition yields L = UAUT, where the matrix U is the matrix consisting of
eigenvectors and the matrix A is the diagonal matrix consisting of eigenvalues. With
reference to the Fourier transform of Euclidean space, the Fourier transform of the image is
denoted as £ = U”x, and the graph signal x is transformed into the corresponding spectral
domain. In this domain, x represents the original feature of the entire graph composition.
Consequently, the convolution of the graph signals x and y on the graph G is calculated as
%, as shown in Equation (2).

xxgy = U((UT x)© (UT y)) &)

The aforementioned calculations demonstrate that the current technique establishes
graph features that describe local spatial relationships. From graph spectral theory, the
convolution of the graph signal x (traffic flow data at a certain moment) is calculated on
the graph G using the spectral filter gy, as shown in Equation (3).

80 %G X = go(L)x = g (UAUT)X = Ugp(A)UTx ®)
To meet the requirements of the spatial relationship analysis, a graph convolution layer
was proposed, based on the graph Fourier transform and the polynomial approximation.

This extracts graph features embedded in the local spatial structure, as illustrated in
Equation (4). In this equation, 0 represents the polynomial coefficients, while K denotes the
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size of the local perceptual field of the graph filter. This field is defined as the set of nodes
whose nearest neighbors are of an order less than K.

K—1 K—1
y=U| Y oA |UTx =Y 6 Lrx (4)
k=0 k=0

The objective of this technique is to characterize the spatial relationships of aviation
networks through the application of a cluster analysis to the graphical features of local
spatial relationships of aviation network nodes.

2.3. Multi-Dimensional, Time-Dependent Modeling
e  Multi-Dimensional LSTM.

The state of aviation network traffic flow is influenced not only by recent specific
events but also by strong, long-term cyclical patterns, such as daily and weekly cycles. This
technique leverages the historical cyclical fluctuations in the aviation network state and
the impact of random events by employing a temporal attention mechanism, as illustrated
in Figure 2. The method combines the advantages of convolutional neural networks
and recurrent neural networks in handling irregular spatiotemporal data to establish a
dynamic spatiotemporal network based on deep hybrid neural networks. This network
is designed to predict the operational state of each node in the aviation network under
complex scenarios.
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Figure 2. Schematic diagram of traffic flow timing concerns.

The implicit layer structure of the Long Short-Term Memory network unit is enhanced
in order to construct the dynamic spatiotemporal network unit, as illustrated in Equation (5).
This includes the input gate i, the forgetting gate f, the output gate o, and the memory
unit ¢, which is used for storing and forgetting information. X represents the input data,
*G represents the dynamic graph convolution operation, H represents the output of the
unit,  represents the current moment, T represents the time interval, and j represents the
time—-attention selection parameter, which is used to select periods such as days, weeks,
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years, etc. W and b represent the corresponding control weights and deviations, while ®
denotes the matrix dot product.

it = U<Wxi G Xe + Wy © Hi_1 + LW/, © Hy_jr + bi)
j
ft= 0<fo #G Xt + Wy © Hy1 + ZW,if © Hyjr+ bf>
j
®)

¢t = fr ®cp1+ iy O tanh (ch xq Xt + Wy ©Hp 1 + ZW;,C O) Htij + bc>
]

0 = U(on *G Xt + Whg O) Ht—l + ZW}]w © Htij + bo)
]

hy = oy © tanh(cy)

This model proposes stacking multiple layers of dynamic spatiotemporal network
units and utilizing the temporal attention mechanism to focus on historical cyclical in-
formation. This facilitates the automatic learning of the state fluctuation patterns of the
aviation network and enables the accurate prediction of future trends. An objective function
incorporating a regularization term was constructed to guide the training of the model.

e  Multi-Scale Time Domain Convolution Based on the Attention Mechanism

The proposed technique converts the sequence of graphical features into one-dimensional
lattice data that are formed by regular sampling on the time axis. This ensures that predic-
tions made at previous moments do not leak future information, utilizing full convolution
and causal convolution operations. The causal convolution of the filter f at moment ¢ in
the time series x is calculated as shown in Equation (6), where K is the filter size.

K
(f*x)(xt) = k;f(k) * Xt—K+k (6)

Causal convolution necessitates additional layers or larger filters to augment the
receptive field, making it ineffective for processing extensive historical data. To address this
limitation, the proposed approach employs dilation convolution to increase the receptive
field of the convolution. For a one-dimensional input sequence, x, and a convolution kernel,
f:{0,1,...,k —1}, the dilation convolution operation, F, is illustrated in Equation (7).

k-1

F(s) = (x#a f)(s) = }_ f(i)  Xs—a @)

i=0

where d is the dilation factor, k is the convolution kernel size, and s — d - i denotes the
position of adopting the previous layer of input data; the dilation factor controls the number
of zeros to be inserted between each of the two inputs to achieve an increase in the length
of the observed sequences, with essentially no change in the computational effort.

In traffic flow predicting, researchers have shown that traffic time series are influenced
by key temporal characteristics in both recent and long-term historical data, such as daily
cycles and weekdays versus weekends. However, canonical RNNs and existing models
struggle with very long input sequences. For instance, peak hour traffic flows may be
similar across consecutive weekdays, while weekday and holiday traffic patterns can
differ significantly.

The value Z(t) of the dilation causal convolution at the moment ¢ of layer i is de-
termined by the input value at the moment t of layer i — 1 and the moments before that,
as shown in Equation (8). Here, Z(t) represents the time series data arranged in one di-
mension, and d, k, and f are the corresponding dilation rate, the size of the filter, and the
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parameters. In order to avoid information loss and information redundancy, the present
technique sets d; = d; _1k; 4 (i > 1). According to the derivation, the receptive field (RF) of
Z'(t) for the historical time series Z(t) is calculated as shown in Equation (9).

ki*l_l . i
L fG) 2t —dia ), 1> 1
Ziy =4 '~ - ®)
r o)zt —j), i=1
j=0
i—1
RF(i) = d; 1ki 1 =] [k )
j=0

2.4. Dynamic Analysis of Prediction

In the aforementioned process, the model learns static spatial dependencies. However,
the occurrence of uncertainty events causes the spatial dependencies of the posture of some
nodes in the aviation network to change over time. Consequently, the use of a fixed Laplace
matrix is unable to capture such changes. In order to track the spatial dependencies of the
nodes’ posture changes under stochastic events, this technique introduces tensor decom-
position into the deep learning framework. It was proposed that the global component
Xg, which is determined by the structure of the whole network, and the local component
AXs, which is determined by a specific time period or event, should be extracted from the
aviation network traffic data samples &'. This is shown in Equation (10), where G is the
low-rank kernel tensor and X; is denoted as the multiplication with each one-dimensional
matrix U;.

X:gxlll1><2U2><-~-><NUN:XQ+X5 (10)

Combined with the event knowledge, this technique led us to propose a deep learning-
based Laplace matrix estimator, which dynamically learns the Laplace matrix under the
influence of a specific event based on the global and local components, i.e., the local
Laplace matrix Lg. Through the above calculation, the spatiotemporal dependency of
the aviation network under random events is represented by a new Laplace matrix, L, as
shown in Equation (11), and the real-time estimated Laplace matrix is input to the graph
convolution layer for feature extraction and prediction, where Ly is the global Laplace
matrix determined by the spatial structure of the aviation network, and F is the learned
estimation function.

L=Lgo+Ls :LQ—FF(XQ,Xs) (11)

2.5. Objective Function

This technique employs a three-pronged approach to construct the objective function.
Firstly, it incorporates regular terms to guide the model training. Secondly, it employs back
propagation to guide the network parameter learning. Thirdly, it incorporates represen-
tation by minimizing the prediction error generated from the sample prediction results
and the true values. Furthermore, it incorporates regular terms to constrain the model
complexity and prevent the model from overfitting, as shown in Equation (12).

. 5, 2
amin 3| X(t+p) = Z(t+p)|; + | WIE + IOl + [ FIl2 (12)
p

where W, ©, and F are network parameters, the latter three are L2 paradigm regularization
terms, and &, , and 7 are the corresponding regularisation parameters used to balance the
objectives of fitting the training and keeping the parameter values small.
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3. Results
3.1. Datasets

e  Spatial Structure of Three Local Aviation Networks

This study collected traffic flow data from three local aviation networks, referred to as
Aviation Networks NS, NG, and NC, containing 36, 24, and 21 airspace units, respectively.
The spatial relationships among the airspace units within these networks are depicted
in Figures 3-5. Each polygon’s center number corresponds to an airspace unit ID, with
the horizontal and vertical axes representing latitude and longitude. As observed in
Figures 3-5, the size of the airspace units is non-uniform, and their boundaries are irregular,
significantly complicating spatial relationship modeling.
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Figure 3. Spatial relationships between the airspace units of Aviation Network NS.
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Figure 4. Spatial relationships between the airspace units of Aviation Network NG.
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Figure 5. Spatial relationships between the airspace units of Aviation Network NC.

e  Time Domain Characteristics of Traffic Flow in Each Airspace Unit

This study preprocesses ADS-B raw data for all aircraft within the aviation network,
aggregating aircraft numbers within each airspace unit according to their real-time spatial
location. Traffic data for each unit are aggregated every 15 min, spanning from 00:00 on
1 February 2021, to 19:00 on 18 May 2021, yielding 10,252 time intervals.

The daily traffic flow data (within 15 min) of typical airspace units of the three local
aviation networks are presented in Figures 6-8. The traffic flow data for each airspace unit
vary significantly, influenced not only by daily airspace traffic planning but also by other
dynamic factors. Substantial differences are observed both between airspace units within
the same aviation network and across different aviation networks.
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Figure 6. Daily traffic flow sequence of selected airspace units of Aviation Network NS.
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Figure 7. Daily traffic flow sequence of selected airspace units of Aviation Network NG.
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Figure 8. Daily traffic flow sequence of selected airspace units of Aviation Network NC.

Similarly, Figures 9-11 display the weekly traffic flow data (within 15 min) for typical
airspace units. These figures highlight the presence of cyclical patterns in the weekly time
series, albeit with a high degree of stochasticity.
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Figure 9. Weekly traffic flow sequence of selected airspace units of Aviation Network NS.
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Figure 10. Weekly traffic flow sequence of selected airspace units of Aviation Network NG.
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Figure 11. Weekly traffic flow sequence of selected airspace units of Aviation Network NC.
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3.2. Evaluation Indicators

The following three metrics were employed in this paper to assess the predictive
accuracy of the prediction model:

1.  Root Mean Squared Error (RMSE).

L (o)
st = [ £ 5 ) w
j=1i=1
2. Mean Absolute Error (MAE).
RS R Y
MAE = le . Vi = Yi (14)
j=1i=

3. Weighted Mean Absolute Percentage Error (WMAPE).

Zin1 TR |yl - 9]
SRS

WMAPE =

(15)

vl

where yﬁ and }21 denote the real and predicted traffic flow information, respectively. M is the
number of samples in the time series, and N is the number of airports. Three key indicators
were used to evaluate prediction accuracy, with smaller values indicating higher accuracy.

To address instances where traffic flow data were minimal or zero, WMAPE was
employed in place of the more commonly used Mean Absolute Percentage Error (MAPE)
in these experimental evaluations. This choice is crucial for maintaining the accuracy and
reliability of the performance metrics, particularly in datasets with significant variability in
traffic volume, including periods of extremely low or zero traffic.

Although MAPE is widely utilized for error measurement, it has well-documented
limitations when dealing with small denominators, often leading to inflated and misleading
error values—particularly in scenarios with sparse traffic. This issue is of particular concern
in air traffic flow prediction, where certain airspace units may experience low or zero traffic
flow at specific times. Under such conditions, the standard MAPE can distort the overall
error metrics, as it inadequately reflects the influence of these low traffic values.

In contrast, WMAPE offers a more stable and representative measure of prediction ac-
curacy by adjusting for the relative magnitude of the data. By assigning weights to absolute
errors based on the actual values of the data points, WMAPE mitigates the disproportionate
influence of low or zero traffic values on the overall error calculation. Consequently, this
approach provides a more balanced assessment of the model’s performance across varying
traffic conditions, from low-density traffic zones to high-volume airspace corridors.

3.3. Spatial Dependency Modeling

To model the spatial characteristics of the irregular topology in aviation networks, the
spatial relationships between the airspace units of the three networks are represented using
a graph structure as described in Section 2.2, shown in the left panels of Figures 12-14. Each
node represents each airspace unit, and the line between two nodes represents whether
there is a flight route connection. Each node’s center number corresponds to an airspace
unit ID. Importantly, spatial adjacency between airspace units does not necessarily imply a
high correlation in traffic flow between them. For example, two adjacent airspaces may
lack direct route connections.
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Figure 12. Airspace unit dependencies for Aviation Network NS.
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Figure 13. Airspace unit dependencies for Aviation Network NG.
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Figure 14. Airspace unit dependencies for Aviation Network NC.

Graph convolution was employed to model the spatial dependencies based on these
topological relationships. The right panels of Figures 12-14 depict normalized spatial
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dependencies, where the axes represent airspace units, and each square indicates the
dependency between two units. Darker colors represent stronger correlations.

3.4. Model Training

The dataset is divided into three sets, with a ratio of 7:1:2. The first 70% of the data
serve as the training set, the middle 10% as the validation set, and the last 20% as the test
set. The training processes for predicting the next 15 min, 1 h, and 3 h for Aviation Network
NS are illustrated in Figures 15-17.
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Figure 15. Aviation Network NS training process for predicting the next 15 min.
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Figure 16. Aviation Network NS training process for predicting the next 1 h.

165



Electronics 2024, 13, 3803

RMSE

I1 000

J
0 500 1000 1500
Iterations

3500 |-
3000 |-
2500 |-
3 2000
82
S
1500
1000

500

1000
.l

0 500 q 1000 1500
Iterations

Figure 17. Aviation Network NS training process for predicting the next 3 h.

3.5. Comparative Analysis of Test Results

In this experiment, a multi-dimensional, spatiotemporal framework (MDSTF) model
for network traffic prediction was constructed. Tables 1-3 present the results of predictions
for the next 15 min, 1 h, and 3 h across the three aviation networks, comparing classical
methods such as ARIMA, SVR, and BPNN. These methods are well-established and widely
used across various domains due to their robustness and broad applicability, making
them valuable benchmarks for this study. The results indicate that the proposed method
demonstrates a significant advantage, especially in prediction accuracy, for the next 1 h
(improved by approximately 1.6% to 4.9%) and for the next 3 h (improved by approximately
5.1% to 14.5%).

Table 1. Comparison of Aviation Network NS model prediction results.

15 min 1h 3h
Model RMSE MAE WMAPE RMSE MAE WMAPE RMSE MAE WMAPE
ARIMA 292 3.87 19.66% 4.62 6.25 29.91% 7.19 9.85 43.13%
SVR 2.95 3.87 19.83% 4.53 6.13 29.86% 7.23 10.06 44.86%
BPNN 2.84 3.76 19.50% 414 5.58 27.65% 6.18 8.53 38.36%
MDSTF 2.78 3.76 18.97% 3.87 5.35 25.92% 4.87 6.87 30.59%
Table 2. Comparison of Aviation Network NG model prediction results.
15 min 1h 3h
Model RMSE MAE WMAPE RMSE MAE WMAPE RMSE MAE WMAPE
ARIMA 3.34 4.49 18.99% 5.67 7.88 30.54% 9.14 13.07 45.74%
SVR 3.40 4.54 19.18% 5.54 7.67 30.15% 9.20 13.37 46.59%
BPNN 3.30 4.46 19.10% 4.99 6.95 27.77% 7.84 11.39 39.56%
MDSTF 3.34 4.65 19.05% 4.88 6.80 26.15% 6.49 9.17 34.49%
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Table 3. Comparison of Aviation Network NC model prediction results.

15 min 1h 3h
Model
RMSE MAE WMAPE RMSE MAE WMAPE RMSE MAE WMAPE
ARIMA 2.90 3.94 20.26% 4.77 6.53 32.44% 7.14 9.93 44.48%
SVR 2.90 3.93 20.20% 4.65 6.42 32.46% 7.23 10.30 46.29%
BPNN 2.77 3.79 19.72% 413 5.81 29.45% 6.02 8.55 39.48%
MDSTF 2.69 3.74 18.77% 3.85 5.43 27.55% 4.51 6.58 31.77%

The analysis revealed that the traffic data values for numerous airspace units were
insufficiently detailed, negatively impacting the prediction efficacy. This is demonstrated
in Figures 18-20 and Table 4, which compare the relationship between the traffic flow of
airspace units and the prediction accuracy. It was observed that when the average traffic
flow of an airspace unit was greater than or equal to the median value of the corresponding
aviation network, the prediction accuracy was relatively high. Specifically, for 15 min
prediction, the accuracy exceeded the average by 2.2% to 3.1% and surpassed that of low-
traffic prediction by 6.5% to 6.8%. For one-hour prediction, the accuracy was 1.9% to 3.2%

higher than the average and 5.8% to 9.6% higher than that for low-flow airspace units.
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Figure 19. Comparison of average traffic and error in the airspace unit of the Aviation Network NG.
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Figure 20. Comparison of average traffic and error in the airspace unit of the Aviation Network NC.

Table 4. Correlation analysis between airspace unit traffic flow and prediction error.

15 min 1h 3h
WMAPE (%) f> f< f> f< fz f<
Median Median Average Median Median Average Median Median Average
Network NS 16.79% 23.33% 18.97% 23.98% 29.80% 25.92% 29.60% 32.58% 30.59%
Network NG 15.91% 22.75% 19.05% 22.95% 29.93% 26.15% 35.33% 33.50% 34.49%
Network NC 16.53% 23.24% 18.77% 24.34% 33.98% 27.55% 28.56% 38.21% 31.77%

4. Discussion

The results of the proposed multi-dimensional, spatiotemporal prediction framework
demonstrate substantial improvements over baseline models, highlighting the effectiveness
of integrating GCNs, multi-dimensional LSTM networks, and attention mechanisms for air
traffic flow prediction.

e  Superior Predictive Performance.

The most notable outcome is the significant enhancement in prediction accuracy across
all the evaluated metrics, particularly Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and Weighted Mean Absolute Percentage Error (WMAPE). These improvements
suggest that the proposed model is better equipped to capture the complexities of air traffic
flow compared to traditional methods. Specifically, the incorporation of GCNs enables the
model to capture the irregular, non-Euclidean spatial relationships between nodes in the
aviation network—an area in which conventional Euclidean-based models often struggle.

Furthermore, the integration of multi-scale, temporal convolution enhances the model’s
capacity to capture temporal dependencies across varying scales, from short-term fluctua-
tions to long-term trends. This is crucial for air traffic flow prediction, where interactions
between different time scales (e.g., hourly, daily, weekly) can be highly complex.

e  Scalability and Generalization.

The consistent performance of the proposed framework across diverse local aviation
networks with varying characteristics highlights its scalability and generalization capa-
bilities. Unlike models that require extensive design adjustments for specific datasets or
environments, this framework demonstrates broad applicability across diverse network
configurations, making it highly suitable for global air traffic management systems. Scala-
bility is a critical feature, enabling deployment across a wide range of operational contexts,
from smaller regional airspaces to large, complex international networks.
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The robustness of the framework is further evidenced by its stable performance
metrics across different network sizes and structures, indicating its ability to handle varying
levels of complexity within aviation networks. This adaptability is a crucial advantage in
real-world applications, where network structures can vary significantly across regions
and countries.

5. Conclusions

In summary, the results of the proposed multi-dimensional, spatiotemporal prediction
framework confirm its superiority over traditional models in predicting air traffic flow. By
leveraging the strengths of GCNs, multi-dimensional LSTM networks, and attention mech-
anisms, the model is able to accurately capture the complex spatiotemporal dependencies
that characterize air traffic networks.

5.1. Limitations

Despite the significant improvements achieved by the proposed multi-dimensional,
spatiotemporal prediction framework, several limitations remain, highlighting potential
areas for future research and enhancement.

e Handling Extreme Outlier Events.

While the model performs well across various scenarios, its ability to handle extreme
outlier events, such as rare but impactful weather disruptions or large-scale airspace inter-
ference, is limited. These events often introduce abrupt, unpredictable changes in air traffic
patterns that may not be fully captured by the current model’s architecture. In particular,
these outliers often lead to the formation of bottlenecks in the airspace, further complicating
prediction efforts. The current model’s ability to predict these bottlenecks, while functional,
could be further improved to account for their often sporadic and complex nature.

e  Computational Complexity.

The model’s reliance on GCNs and LSTM networks introduces considerable com-
putational demands, particularly in large-scale networks, which can hinder real-time
applications. The high processing power and memory requirements pose challenges in
environments where rapid inference is critical, such as in high-frequency air traffic control
operations, where even minor delays in prediction could have operational consequences.
This computational overhead also affects the model’s ability to react quickly to emerging
bottlenecks in the airspace.

e Data Availability and Quality.

The model’s performance is highly dependent on the availability and quality of data.
Inconsistent or sparse data across certain air traffic networks may result in reduced pre-
diction accuracy. Furthermore, the model may struggle to generalize effectively in regions
where historical data are either scarce or of low quality, due to missing records, sensor
failures, or incomplete datasets. This limitation could restrict the model’s applicability in
less-developed regions with limited data infrastructures. Moreover, these data limitations
make it challenging to accurately predict and address bottlenecks, particularly in regions
with limited real-time monitoring capabilities.

5.2. Future Work
e  Predicting Multiple Time Horizons.

Future research should explore the model’s capacity for predicting air traffic flow
over medium- and long-term horizons, contingent on the availability of such data. While
some commercial companies offer these datasets, their high costs currently place them
beyond the reach of this research. Medium-term predictions (weeks to months) and
long-term predictions (months to years) are essential for strategic air traffic management,
infrastructure planning, and policy development. Enhancing the model to incorporate
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broader seasonal trends, airport expansions, and shifting air traffic patterns will be key to
developing more adaptive and future-oriented air traffic systems.

e  Medium-Term Prediction: By incorporating techniques such as seasonal decomposi-
tion of time series (e.g., SARIMA models) alongside deep neural networks, the model
can better capture medium-term periodicities in air traffic, such as fluctuations due
to holidays, vacation seasons, or major events like the Olympics or trade conferences.
Understanding these patterns can support more efficient scheduling, staffing, and
resource allocation at airports.

e Long-Term Prediction: Long-term prediction can consider broader trends, such as
global air travel demand shifts, fleet modernization, regulatory changes, and the rise
of urban air mobility (e.g., drones or air taxis). Techniques such as multi-dimensional
RNNSs with extended time horizon capabilities, combined with macroeconomic and
policy-based inputs, could be employed to predict long-term air traffic growth and
flow changes, which are crucial for infrastructure investments and regulatory planning.
This long-term prediction will also include an analysis of airspace bottlenecks caused
by systemic issues such as increased air traffic demand and infrastructure constraints.

e Incorporating Anomaly Detection Mechanisms.

To address the limitations in handling extreme events, future work could integrate
advanced anomaly detection algorithms into the prediction framework. These algorithms
could identify and mitigate unusual events more effectively by flagging anomalous patterns
before they propagate through the network. Unsupervised learning techniques, such as
autoencoders or more sophisticated probabilistic models, could enhance the model’s ability
to detect and adjust for outlier events. Anomaly detection will also play a key role in the
early identification of airspace bottlenecks, allowing for quicker interventions and more
accurate traffic flow management.

e  Model Optimization for Real-Time Applications.

Given the model’s computational intensity, future research should focus on optimizing
its architecture for faster inference times while maintaining accuracy. Techniques such
as model pruning, which reduces the number of parameters, or knowledge distillation,
which trains a smaller model to mimic the larger one, could make the framework more
suitable for real-time air traffic management. These optimizations will improve the model’s
responsiveness, enabling it to predict and manage bottlenecks more effectively in real-
time scenarios.

e Improved Data Fusion and Augmentation Techniques.

To overcome the limitations posed by inconsistent or sparse data, future work could
focus on advanced data fusion and augmentation techniques. Incorporating external data
sources such as weather prediction, satellite data, or even social media insights could
provide additional context that improves the model’s robustness. Synthetic data generation
techniques, such as GANs (Generative Adversarial Networks), could also be employed to
augment the training dataset in regions with limited historical data, thus enhancing the
model’s ability to generalize. These data enhancements will help refine bottleneck detection
and prediction, particularly in regions with less-developed monitoring infrastructure.
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Abstract: Unmanned aerial vehicle (UAV) communications have gained recognition as a promising
technology due to their unique characteristics of rapid deployment and flexible configuration. Mean-
while, device-to-device (D2D) and full-duplex (FD) technologies have emerged as promising methods
for enhancing spectral efficiency and offloading traffic. One significant advantage of UAVs is their
ability to partition suitable D2D pairs to increase cell capacity. In this paper, we present a novel
network model in which UAVs are considered D2D pairs underlaying cellular networks, integrating
FD into the communication links between UAVs to improve spectral efficiency. We then investigate
a resource allocation problem for the proposed FD-UAV D2D underlaying structure model, with
the objective of maximizing the system’s sum rate. Specifically, the UAVs in our model operate in
full-duplex mode as D2D users (DUs), allowing the reuse of both the uplink and downlink subcarrier
resources of cellular users (CUs). This optimization challenge is formulated as a mixed-integer
nonlinear programming problem, known for its NP-hard and intractable nature. To address this
issue, we propose a heuristic algorithm (HA) that decomposes the problem into two steps: power
allocation and user pairing. The optimal power allocation is solved as a nonlinear programming
problem by searching among a finite set, while the user pairing problem is addressed using the
Kuhn-Munkres algorithm. The numerical results indicate that our proposed FD-MaxSumCell-HA
(full-duplex UAVs maximizing the cell sum rate with a heuristic algorithm) scheme for FD-UAV D2D
underlaying models outperforms HD-UAV underlaying cellular networks, with improved access
rates for UAVs in FD-MaxSumCell-HA compared to HD-UAV networks.

Keywords: UAV-aided networks; full duplex; D2D underlaying networks; Kuhn—-Munkres algorithm;
heuristic algorithm

1. Introduction

With the increase in mobile device usage and traffic, the spectrum has become in-
creasingly limited. Given that device-to-device (D2D) communications can significantly
enhance spectral efficiency by sharing spectrum resources with cellular users and effec-
tively alleviate base station (BS) pressure through traffic offloading [1], it is considered a
promising technique to address spectrum scarcity. Consequently, D2D communications
in underlaying cellular networks have been widely investigated in recent years. Many
important works have been focus on the resource allocation of D2D users (DUs) and cellular
users (CUs) [2-8], which is mainly divided into three categories. The first category, like in
Refs. [2—4], only allows DUs to reuse uplink subcarriers, which has a minimal affect on
CUs. Ref. [3] considered a proportional fairness problem among users to guarantee the
minimum individual user rate, and Ref. [4] aimed to improve energy efficiency while guar-
anteeing the required rate. The second category is downlink resource sharing for D2D [5,6].
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In particular, Ref. [6] studied the balance of energy efficiency (EE) and spectral efficiency
(SE) while DUs reuse the downlink subcarrier with CUs. The last category is joint uplink
and downlink (JUAD) resource allocation [7,8]. Ref. [7] verified that the sum rate of JUAD
is superior to that of the previous two, and Ref. [8] combined D2D communication with
Non-Orthogonal Multiple Access technology to improve sum rate further. However, since
D2D communication underlaying cellular networks needs to permit multiple DUs to share
the same subcarrier with CUs, the mutual interference incurred by reusing the subcarrier
will degrade the system capacity rather than improve it [9]. Thus, a more effective resource
coordination scheme or other advanced technology needs to be developed to overcome
this obstacle.

Unmanned aerial vehicle (UAV)-aided communications have been gaining more and
more attention due to UAVs’ unique characteristics, such as accessing LoS connections
easily and flexible deployment. The increasingly sophisticated intelligent path planning [10]
and resource management technologies [11] for UAVs make their deployment in actual
networks feasible. Thus, it makes sense to integrate D2D technology into UAV-aided
networks. D2D is expected to play an important role by leveraging UAVs’ benefits [12-16],
especially from the point of view of resource allocation, sum rate maximization, and
coverage expansion. In Ref. [13], a UAV serves as a base station to maximize the sum
rate for one device in D2D pairs, and a D2D link is used to extend coverage. Ref. [14]
adds more constraints to maximize the sum rate, such as the power, altitude, location, and
bandwidth of the UAV, but it only considers one D2D pair in which each device coexists
in an underlaying manner. Refs. [14,15] focus on network energy harvesting aided by
UAVs. Specifically, [15] considers a security system which aims to maximize secrecy energy
efficiency, and ref. [14] tries to find an optimal transmit power vector which maximizes
the sum rate of the system under minimum energy constraints. However, in the above
maximization design, all communication links have unidirectional transmission, which
may not meet the maximum capacity requirements of the 6G era of traffic explosion.

Due to the advances in self-interference (SI) cancellation techniques , full-duplex com-
munications can be applied to cellular networks to potentially double the SE. The critical
issue in full-duplex (FD) communications is their capability of canceling SI. In recent years,
the SI cancellation techniques of analog, digital and antenna domains have been jointly
applied to cancel SI by up to —125 dB [17-19], which makes FD a possible candidate 6G
technology. Due to the same advantage as the two technologies above, combining D2D
and FD is a effective way to further improve SE. Ref. [20] studied D2D underlaying cellular
networks with FD BS to maximize the cell’s rate; however, the system capacity gains were
still significantly affected by strong residual SI (RSI). Certainly, in addition to the capability
for self-interference cancellation, the level of RSI was affected by the transmit power of FD
devices. In particular, lower transmit power results in decreased RSI. Since device-to-device
(D2D) communication involves short-distance links and typically operates at low transmit
power, integrating FD technology into D2D communications is a logical choice.

In the research domain of FD-D2D underlaying cellular networks, various scenarios
have been explored. References [21,22] address a basic scenario involving a single FD-
D2D pair and a single CU. Notably, ref. [21] presents a closed-form approximation for
the sum rate. The research expands into multi-user scenarios in [23-25]. In [23], both
perfect and statistical Channel State Information (CSI) estimations are analyzed, leading to
the development of a heuristic algorithm that maximizes the sum rate for cellular uplink
sharing. This algorithm employs 2D global searching and the Kuhn-Munkres algorithm.
According to the numerical results in [24], FD-D2D underlay systems achieve significantly
higher capacity gains than traditional half-duplex D2D (HD-D2D) systems, provided there
is sufficient SI cancellation. Furthermore, ref. [25] presents centralized and distributed
power control strategies aimed at maximizing the throughput of D2D links. Additional
promising methods for integrating FD-D2D include FD-D2D underlaying cellular networks
with base station MIMO antennas, as discussed in [26,27]. However, previous studies have
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primarily focused on uplink spectrum sharing, which can result in resource wastage in
extreme scenarios.

Different from previous works, leveraging the technical characteristics of UAVs, D2D,
and FD, we propose the FD-MaxSumCell-HA (full-duplex UAVs maximizing the cell sum
rate with a heuristic algorithm) scheme for a novel model of FD-UAV-aided networks based
on D2D underlaying networks to maximize the entire cell’s sum rate, considering both
uplink and downlink spectrum sharing. Specifically, the main contributions of this paper
are summarized as follows:

1. We address the optimization problem of maximizing the sum rate within a novel
system model where UAVs, considered as D2D pairs, operate in FD mode, enabling
the joint reuse of both uplink and downlink subcarrier resources of CUs. To tackle
this challenge, we propose a heuristic algorithm consisting of two key steps: optimal
power allocation for each potential DU-CU pair and the development of a maximum
weighted matching algorithm. In the power allocation step, we simplify computa-
tional complexity through one-dimensional searching, thereby mitigating the overall
complexity of the proposed scheme.

2. We employ two metrics, specifically the sum rate of the cell and the access rate of D2D
pairs, to evaluate the performance of the FD-MaxSumCell-HA scheme. Additionally,
we introduce the FD-MaxSumCell-Rand (FD-D2D system maximizing the sum rate of
the cell with random pairing) and HD-MaxSumCell-HA (HD-D2D system maximizing
the sum rate of the cell with a heuristic algorithm) schemes as ideal benchmarks to
evaluate the superiority of FD-MaxSumCell-HA.

3. This paper examines three scenarios in a parameter study for FD-MaxSumCell-HA:
In the first scenario, only uplink users are present in the cell, utilizing uplink sharing.
The second scenario involves exclusively downlink users in the cell, employing
downlink sharing. In the third scenario, which closely resembles real mobile network
conditions, both uplink and downlink users coexist in the cell, and JUAD sharing
is implemented.

The rest of the paper is organized as follows. Section 2 will introduce the system
model and formulate the optimization problem for FD-MaxSumCell-HA, and the heuristic
algorithm of the proposed scheme is presented in Section 3. The parameter studies and
numerical results are presented in Section 4. Finally, we will present our conclusions in
Section 5.

2. System Model and Formulation
2.1. System Model

Figure 1 shows a cell of UAV-aided networks based on the structure of D2D under-
laying networks. The UAVs are considered DUs, and the base station (BS) is positioned
at the center of the cell, whereas the DUs and CUs are distributed randomly within the
cell. There are three categories of resource allocation in Figure 1. The first is that the DU
operates in FD mode and reuses the subcarrier with the CU like the DU1-CUS5 pair and
DU2-CUS3 pair, where the DU1-CUS5 pair reuses the uplink resource while the DU2-CU3
pair shares downlink. The second one is a traditional scenario where, like the DU3-CU4
pair, the DU reuses the resource with the CU in half-duplex (HD) mode. The last one is an
unpaired CU, which uses resource alone like CU1 and CU2. Since FD-D2D can nearly the
double spectral efficiency of the DU, in this paper, we consider a system that only includes
FD-UAV and the CU, and assume that the CU operates in a traditional half-duplex FDD. It
is worth mentioning that the UAV in this networks model is a mooring UAYV, because the
better load capacity of mooring UAVs enables them to load FD communication equipment,
which is not achieved by non-mooring UAVs. In addition, mooring UAVs can provide
wired backhaul to the local server, which is more suitable for the capacity of FD technology.

We use DUi and CUj to represent the UAV and CU distributed in the cell, respectively,
andi € DU = {1,2,...,Q}and j € CU = {1,2,...,P}. The two different UAVs in the
D2D pair are noted as i; and iy, respectively. Moreover, we assume that the entire carrier
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resource is occupied by CUs and pre-allocated equally among them. To avoid more sever
interference and a complex coordinate scheme, we only consider a “one to one” scenario,
where each subcarrier can be reused by only one DU, and each DU is limited to reusing a
single subcarrier.

Mooring UAV

Communication Signal Interference Signal for DU Interference Signal for CU

Figure 1. The cell model involves different kinds of user, such as an FD-D2D user, a traditional D2D
user, and an unpaired CU.

The channels considered in this paper are those that experience path loss, slow shadow-
ing, and fast fading. The channel gain between CUj and BS, denoted as g; s, for instance, is
modeled as

88 = GPBjsljBl 5 1)

where ; p represents the gain from fast fading, which follows an exponential distribution;
I'j, B denotes the gain from slow fading, characterized by a log-normal distribution; G is
the path loss constant; « is the path loss exponent; and [}, B is the distance between CUj and
the BS. Similarly, the gains of the other channels shown in Figure 1 are denoted as gg ;, &, 5,
Sir,Br 8B,irs 8B,izs &jirs Sjins Sin jr Sinj» a0d &i i In particular, the reversible links between two
devices in a D2D pair are transmitted at the same frequency and same time; thus, the gains
of the two directions are all denoted as g; ;. It is common knowledge that imperfect Channel
State Information (CSI) can degrade system performance. However, as the imperfect CSI
did not alter the performance order in the comparison of the proposed scheme, we assume,
for convenience, that the BS possesses perfect CSI for all the involved links. The definitions
of the channel-related parameters are summarized in Table 1. In practice, typical G2A
channel models, including probabilistic LoS/NLoS models and 3GPP-suggested specifi-
cations, usually consider blockage distribution to determine LoS or NLoS conditions [10].
However, to quickly validate the network structure proposed in this paper, we made a
trade-off between mathematical complexity and accuracy, so our adopted path loss model
does not consider this aspect.

Table 1. Definitions of channel-related parameters.

Notation Definition

$B,js 8i1,Bs 8ip, B, 1he channel gain between the base station, CU, and DU. The subscript B
$B,iis 8B,irs 8jiy,  Tepresents the base station, j represents the CU, and i; and i represent
8jizr 8irjr 8in the DU.

The exponential distribution coefficient of fast fading.

The log-normal distribution coefficient of slow fading.

G The constant coefficient of path loss.

«

l

jaw o)

The exponent coefficient of path loss.
The distance between the CU, DU, and BS.
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To pair DUi and CUj, the binary variable p; ; is defined as a paired factor. If DUi
reuses the same subcarrier (whether using the uplink or downlink) with CUj, then p; ; = 1;
otherwise, p;; = 0, pj’ j is for uplink, while pg j is for downlink. As shown in Figure 1,
the interference scenario in FD-D2D systems is more complex than in traditional systems
because of the residual SI of FD. We categorize the problem into two distinct cases: reusing
the uplink and downlink of the CU. In the case of reusing the uplink, the SINR of CUj and
the SINR of DUi can be expressed as

Pi&in
=3 = @)
,Zl 0i;Pi(&i,B + 8ir,B) + No
1=
= - Pi8ii 3)
L pij(pigiin +pi-1) + No
]:
7;42 = Pi&i,i @

L 1j(pigjia +pi 1)+ No
]:

where p; and p; denote the transmit power of CUj and DUi, respectively; 7 denotes
the capability of self-interference suppression (SIS); and Nj is the variance of zero mean
Additive White Gaussian Noise. As for the case of reusing the downlink, the SINR of CUj
and DUi can be, respectively, given by

PB&p,

=3 (5)
121 ngpi(gil,j + 8iy,7) + No
i=

7?11 = Pi8ii ©6)
L o7 :(pB,ign,iy + pi-1) + No
]:

%12 = Pi8ii @)

T 0d(pBigny + i 1) + No
j=

where Pp ; stands for the power transmitted from the base station to CUj.
Hence, we can express the achievable rates for the uplink and downlink of CUj and
its corresponding DUi as follows:

R} =logy(1+ 1) ®)
Rf = logy(1+ ) ©)
Ri =logy(1+ 7)), Rj, =logy(1+7}) (10)
RI =logy(1+7%), RE =logy(1+74) (11)

And the sum rate of the overall cell is
P P p Q Q P
Roum = ) R + Y R{+ ) R +) RS (12)
j=1 j=1 i=1 i=1

where R is the sum of Rll-‘1 and Rl?‘z, and R? is the sum of R?l and R?z.
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2.2. Problem Formulation

We investigate a resource allocation problem to maximize the sum rate of the overall
system includes FD-D2D only while guaranteeing the quality of service (QoS) of both CUs
and DUs. Thus, the optimization problem is presented as follows:

P1: max Reum (13)
Pij, P
skt > 7, gl > 9 vjec (13a)
Y=y 2 vieD (13b)
Y2yl 2 vieD (13¢)
0<p <p™™, VieD (13d)
0<p;< p}“ax, VjielC (13e)
0<ppj<pp;, VieC (13f)
Q
Y oli+pl <1, vjiec (13g)
i=1
P
Y oli+pli<1, VieD (13h)
j=1
of.ol;€{0,1}, Vie D, VjeC (13i)

where p is the transmit power set including p;, p;, and pp ;. In P1, constraints (13a—c)
guarantee that the data rate of CUs and DUs is above the requirements, which satisfies
the QoS. 'y]L.l’req, 'y}i’req, and 'ﬁeq denote the minimum SINR requirement of the uplink
and downlink for CUs and DUs, respectively. (13d—f) are the power constraints, where
P, pj"®, and ppt* are the maximum transmit power of DUi, CUj, and BS, respectively.
The “one to one” reusing scenario is ensured by (13g,h), of which (13g) ensures that each
subcarrier of CUj can be reused by only one DU, and Equation (13h) guarantees that any
DUj can reuse at most one subcarrier of CUs.

As the network structure we proposed is a distributed system, it is assumed that the
base station knows all the channel information for the calculations. The base station solves
the optimization problem we modeled by using the algorithm we designed to perform
power control and resource allocation for all DUs and CUs.

In practice, in actual network deployment, besides the data channels described in
Figure 1, there are also control channels. DUs and CUs periodically upload CSI to the
central base station via these control channels. Additionally, CUs can also transmit CSI to
the base station through the data channel while performing the uplink service. It is worth
mentioning that the denser the control channel’s period, the more accurate the CSI the
base station possesses. However, this also increases the system overhead and signaling
interference. Conversely, the sparser the control channel’s period, the lower the system
overhead and signaling interference, but the CSI might not be updated promptly. If the CSI
reporting period is too long, it can lead to inaccurate calculations by the base station, as the
channel gain may have undergone random changes. Fortunately, due to the short-range
communication characteristic of D2D, the CSI between two DUs in D2D pairs changes
relatively slowly, allowing the control channel to be set with a larger period.

3. The Proposed Heuristic Algorithm

The problem P1 is an MINLP, which is NP-hard and mathematically intractable.
Therefore, we proposed a heuristic algorithm to decompose the P1 into two subproblems
to make the MINLP tractable, i.e., the power allocation and user pairing. First, the optimal
power solution for each DUi matching each CUi is given by formulating the power allo-
cation problem as nonlinear programming and searching for the optimal solution among
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a finite set. If the power solution can not only make the rate of DUi and CUj satisfy the
QoS, but also improve the sum rate of the DUi-CUj pair compared with CUj, the reusing
pair, DUi-CUj, will be regarded as a candidate option for the user pairing subproblem.
Otherwise, it will be removed from the feasible option list. Then, we need to chose the
most appropriate DU-CU pairs among the feasible candidates through maximum weight
bipartite matching so that the sum rate of overall system can be maximized.

3.1. Power Allocation

To search for the optimal transmit power solution of each DU-CU pair, we simplify
the problem P1 to formulate an optimized problem P2 which considers only one DU and
one CU. The optimal objective is to maximize the rate of one DU-CU pair. For instance,
when DU reuses the uplink subcarrier of CUj, P2 is given as

P2 I;I%X R} i (14)
iPj

s.t. ’y] > 'y]”req (14a)

7>, > (14b)

0< p; < piax (140)

0<p; <pi™ (14d)

where R}fj = R;‘ + R} + R}, which indicates the sum rate of the pair DUi-CUj. It is evident
that /P2 is a nonlinear programming problem that can be solved using geometric programming
techniques. Since D2D is a type of short-range communication, to reduce the computational
complexity, we set gj; = &ji, = gji, where g;; is defined as the channel gain from CUj
to the middle of two devices in D2D. Thus, we can obtain V= ’yll; = v using (2)-(4),
and R; = Ry = R{', where 7}’ is regarded as the SINR of D2D when reusmg the uplink

max

subcarr1er of CU As can be seen in Figure 2, [ is 'y/ = fy]l 1 s Y =" 4 I3 s P = p;
and I is p; = pi"®, the region R delineates the feasible power allocation space for CU]
and DU:.

When searching for the optimal power solution (p;, p;), we introduce the
following lemmas.

D; l
max| Z]/ ZZ
b =
R /l2
4
Z() 3
P, w» PP
D; / /
max / 14
b
Z4
Z R V Z,
0 Z3
0 © p}nax p/ 0 @ p;nax p/

Figure 2. Feasible region for power allocation of each DU-CU pair in different situations.
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Theorem 1. In the optimal power solution, at least one component must be at its maximum value.
Specifically, the optimal solution ( pf” , p}’p ) will have either p?’g = pi"®or p;p = p;“ax.

Proof. Lemma 1 is proven by contradiction. R is a closed set like in Figure 2b—d or an
empty set as in Figure 2a according to constraints in (14). For nonempty R, the optimal
power solution (p?p , p?p ) obviously falls in R, and it is assumed that p?p and p;p are below

the maximum value. Then, if we substitute (ocp?p , ocp;p ) for (p?p , p})p ) in the objective
function of P2, in which Va > 1, « € RT, we can obtain
op Py _ op op op op
Rf-fj(ﬂépi ap; ) = R]”(zxpi ,Ap; )+2- Rl”(ocpi ,ap; )
P?pgj,B
op ) X
p; (gi1,B +gi2,B) =+ (NO/D‘)
p?pgi,i )2]
P78+ P+ (No/a)
op _,0p
> Ri(piopi)-

=logr[(1+

(15)

(1+

Using (15), we obtain R;‘,j(ozp?p, apiop) > Rl‘.fj(p?p, p;p), while & > 1. This obvi-
ously contradicts the assumption that (p?p, p;p) is the best possible solution. Thus,

at least one component of the optimal solution (p?p, p;p) has to reach the maximum

value pj"® or p}“ax. O

Lemma 1 illustrates that the optimal solution lies at the boundaries of the feasible
region. As Figure 2 shows, there are four possible scenarios for the feasible region R,
which depend on different maximum transmit power levels, channel gains, and SINR
requirements [2]. The most favorable solution exists at the line Z1Z,, ZyZ3, Z3Z4 or the line
Z1Z5 in Figure 2. To further find the collection of potential optimal power solutions, we
introduce Lemma 2 as follows.

Theorem 2. If the feasible region R is limited, the most favorable solution ( p?p , p?p ) can only exist
at the corners of R.

Proof. Let 0R denote the boundary of R. The region R is enclosed by four lines, which

are Iy, Iy, I3, and I4. According to the conclusion of Lemma 1, we need to search for extreme

points of objective function on 0R. Lemma 2 is demonstrated for the following cases:

(1)  If the geometric programming situation is as in Figure 2c, (p?p , p;p ) € Z3Z4. Since sz’fj
2 pu

92RY.
is a convex function [28], we have ap‘;’] > 0; thus, the optimal solution can only exist

at points Z3 and Z,.
(2) If the geometric programming situation is as in Figure 2d, (p;”, p})p ) € Z1Zs. Since R},
2 Ru

92RI.
is a convex function, we have avaZ’/ > 0; thus, the optimal solution can only exist at
i

points Z; and Zs.

(3) If the geometric programming situation is as in Figure 2b, (p;, pj) € Z1Z; and Z,Z3.
Similar to (1) and (2), the optimal solution can only exist at points Z, Zy, and Z3.
Therefore, we conclude that the optimal solution (p?p , p;’p ) can only exist at the vertices

of region R. [

Based on the above lemmas, the possible objective points for the optimal power
solution are indicated in Figure 2, which are Z; to Z5. The coordinates of Zj and the slope
of [; and [, determine whether there are solutions or not, which is illustrated in ref. [2].

We notate points Zo(p;*, pi°), Z1(p}", pl™), Za(p™, p™), Za(p™™, pi°), Za(p™, pi*),
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and Z5(p] , p"®). Since Z; to Zs are at the intersection of lines Iy, I, I3, and I3, we can

obtain the values of p].ZO, piZO, p].Zl, pz.ZS, piz“, and p].ZS as follows:

7o 0 No(gii =i ) + 7" No(8iy b + 8in,8)
P]‘ = Teq ureq req (16)
8iB(&ii =i M) =7, 8ii(8iy,B + 8iy,B)
o TN~ )+ 0 N g5+ i)
G P TEr T ey i
req (17)
o 8ii . milNo
req req
Sii—=7" M &i—7 1
,Yu,req[P‘max( . + ¢ ) + N, }
7 i i \&i,B T &ir,B 0
P]» = (18)
8jB
Pmaxg ” reqN
g P (19)
8ii — 'Yi 77
pmax giB — y,req NO
Z J/B
Pi P ureq (20)
8i,B
pmax(o. . _ _ 1"eqN
pfs = - s ];qu”) = e1)
ii

Based on the above, we obtain a finite set {Z1,Z,,Z3,Z4,Z5}, which contains the
optimal solution, so that it can be searched and compared for all elements to obtain the
maximum Rz?‘j. Thus, the power allocation in the DUi-CUj pair for reusing the uplink
subcarrier is solved. Similarly, for the downlink, the power allocation for the maximum R’ij j
can be solved by the same algorithm.

3.2. User Pairing

We proposed the most favorable power allocation algorithm for each DU-CU pair and
obtained the maximal rate Rl” i However, not every CU has a shared DU. For each unpaired
CUj (uplink, for instance), the maximum achieved rate is

max

P 8B

u,max __
R = log,(1+ No

) (22)

When an unpaired CUj shares its uplink subcarrier with DUi, the sum rate will vary.
To express the rate variety, we define the cell’s capacity gain for uplink as

AR}; = RY; — RY™> (23)

Similarly, the cell’s capacity gain for the downlink can be defined as AR;{ = jo — R?’max.

Obviously, the optimal user pairing problem becomes a bipartite matching problem for
reaching the maximum weight. 3 can be formulated as

P3: Irplaxzz (pl;ARY + ol ARY)) (24)
Yj=1i=1
s.t. Zpﬁ,+p§j/ <1, VieD (24a)
j=1
Q
Zp;{j +plii<1, vjec (24b)
Pz]/P//€{0 1}, Vie D, Vjecl (24¢)

180



Electronics 2024, 13, 2264

To solve P3 through bipartite graph matching, we establish two sets of vertices; one is the
set of DUs, andthe other is the set of CUs with subcarriers including the uplink and downlink.
And then, we compute the weight of the edge between the two vertices with ARY, j,j or ARd which
depends on the transmission direction of the CU. This problem is solved by Kuhn—Munkres
algorithm. The specific algorithm flow for user pairing is detailed in Algorithm 1.

Algorithm 1 The optimal user pairing algorithm of HA

1: Initialize the cell’s sum rate variation matrix {ARi,j}Qx p, and the pairing indicator
matrix {0;;}gxp-
2: forj=1:Qdo
3 fori=1:Pdo
4 Determine the optimal power solution (p;", p;-]p ) for the single pair CUj-DUi by
applying the power control algorithm described in Section 3.1.
5: Substitute (p:”, p;”’) in Equations (2)~(10), (22) and (23) to obtain AR;j, which
includes both uplink and downlink rates.
6: Set Pij = 1.
: if AR;;j <0 then
8: Under these conditions, we assume that the pairing attempt between CUj and
DUi fails, FD-D2D access to the cell is prohibited, and CUj maintains its original
connection, that is, set
AR;;j =0
C __ unp
ng =R;
Ri; =0
pij =0
9: end if
10:  end for
11: end for
12: Use the Kuhn—-Munkres algorithm for maximum weight to determine the most favor-
able pattern {p; j}oxp of {AR;j}gxp-
13: Return the optimal user pairing pattern {p; ;}oxp and sum of the corresponding se-
lected elements in AR; ;.

The computational complexity of our approach is polynomial and depends on the
number of vertices and edges. Specifically, the most favorable power solution for a single
CU-DU pair is searched in a limited set through one-dimensional searching, in which the
complexity is O(1). This leads to a total complexity of O(PQ) for the power control algorithm
applied to all CU-DU pairs. Additionally, since our assumption is that the quantity of CUs
is greater than or equal to the quantity of DUs, i.e., P > Q, the Kuhn—-Munkres algorithm
for resource allocation addresses user pairing in the complexity of O(P?). Thus, the total
complexity of MaxCU-OPOP is O(PQ + P3), which is a significant reduction compared to
the complexity recorded in refs. [23-25].

4. Numerical Result

In this section, the numerical result is presented to verify the proposed FD-MaxSumCell-
HA scheme. We consider a circular cell with the BS located in the center, where the FD-DUs
and CUs are distributed randomly. The FD-MaxSumCell-HA scheme is implemented
using Monte Carlo methods over 10,000 times to smooth the randomness in the simulation.
The relevant parameters in our simulation are shown in Table 2. The fading, path loss, and
Np are in a general configuration, and the cell radius and power depend on the experience
of operator. The setting of SIS is based on the current level of self-interference suppression
technology, designed to be an easy-to-achieve value.
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Table 2. The parameter values used in the simulation

Parameter Value

Number of CUs (P) 20

Number of DUs (Q) 0to 20

Cell radius 500 m

Users distribution Uniform

Fast fading Mean =1

Slow fading Standard deviation = 8 dB
Noise spectral density (Np) —174 dBm/Hz
P]max , pmax 24 dBm

P> 46 dBm
Exponent coefficients of path loss («) 3

Constant coefficients of path loss (G) 102

D2D distance (d) 10 m

UAV hover height 80 m
Bandwidth 10 MHz
Self-interference suppression 110 dB
Number of subcarriers (L) 20

r)/c?,req/fyy,req 71"eq 10 dB

] ] Tl

We assume that one CU is assigned with one subcarrier, and the transmit power of
the BS is uniformly distributed in frequency; hence, the transmit power from the BS to
CUjis Py, = Pgg™/L. It is worth mentioning that most of the weight of the three-tier SIS
architecture comes from the components required to cancel nonlinear SI in the RF chain.
Considering the payload limitations of UAVs, for the communication transceivers mounted
on UAVs, we only consider using chips for baseband interference cancellation and em-
ploying antenna isolation and air interface SIS techniques. Spatial SI can achieve 50-60 dB
suppression through simple antenna isolation techniques and spatial self-interference
cancellation algorithms [17,18], and the base band can use deep learning chips to predict
and reconstruct the transmitted signal for interference cancellation, achieving 40-50 dB
cancellation depending on the chip’s computational capability [29]. Therefore, we chose to
examine the simulation results with a SIS capability of 110 dB.

Two metrics are used to evaluate the performance of the scheme; one is spectral effi-
ciency, i.e., the sum rate, of the cell, and the other is D2D’s access rate, which is defined as the
ratio of accessed DUs to the total DUs. To verify the superiority of the FD-MaxSumCell-HA
scheme, we compare it with traditional half-duplex D2D underlaying networks. Moreover,
we consider three scenarios of cellular users for each implementation: (1) There are only
uplink CUs in the cell. (2) There are only downlink CUs in the cell. (3) There are joint uplink
CUs and downlink CUs (JUAD) in the cell. This is carried out to eliminate the randomness
of the user’s transmit direction

As shown in Figure 3a, whether using FD or traditional HD, D2D underlaying cellular
networks can greatly increase the sum rate of the cell compared with networks that only
have CUs, and the FD-MaxSumCell-HA scheme further improves the sum rate compared
with the HD-D2D scheme. In particular, when there are 20 DUs in the cell, the sum
rate of FD-MaxSumCell-HA shows a notable improvement of 43% compared to the HD-
D2D scheme. Specifically, in the JUAD scenario, the sum rate of FD-MaxSumCell-HA is
1129.86 bps/Hz, surpassing the conventional HD scheme, which achieves a sum rate of
792.48 bps/Hz. The reason is that the sum rate of DUs improved nearly twofold because
of the co-frequency co-time full-duplex adopted in D2D. Although, due to the residual
SI and other interference introduced by dual-direction transmission, the improvement
never reached twofold, the performance of the overall cell improved greatly. As for the
access rate depicted in Figure 3b, as the number of DUs increases, the access rate of DUs
for the two schemes monotonically decreases. This is because the more reuse occurs in
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the same subcarrier, the more interference is introduced, which will cause the DUs to
not satisfy the requested QoS and exhibit access failure. However, the FD-MaxSumCell-
HA scheme decreases slowly compared with the traditional HD-D2D scheme. This is
because FD improves the spectral efficiency of D2D and makes it easier for DU to meet
the QoS requirement. Therefore, both metrics are improved when the system adopts the
FD-MaxSumCell-HA scheme.
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Figure 3. Performance comparison of FD-MaxSumCell-HA versus traditional HD-D2D networks
with varying numbers of DUs from 0 to 20.

To verify the effectiveness of HA proposed in this paper, we set the scheme in which
CUs and DUs are randomly paired as the benchmark for comparison. And we only consider
the JUAD scenario in this comparison. As illustrated in Figure 4a, both FD-D2D adopting
HA and HD-D2D adopting HA perform better than them adopting random pairing in the
sum rate comparison. This is because there is more severe interference when the CU is close
to the DU in the same pair, and random pairing increases the chance of this. In particular,
HD-D2D adopting HA is even better than FD-D2D with random pairing. This means that
the gain brought by an excellent pairing algorithm is superior to the enhancement of the
duplex mode. Figure 4b depicts the access rate comparison, where the HA scheme remains
superior to the random pairing scheme. The access rate of FD and HD adopting the random
scheme is even less than 50%.

Figure 5 shows the system performance comparison between the FD-MaxSumCell-
HA and HD-D2D underlaying networks and the SIS of FD-D2D. The sum rate of the
FD-MaxSumCell-HA scheme monotonically increase as SIS increases. FD-MaxSumCell-HA
performs better even when SIS is low, which is easy to implement via antenna isolation.
The access rate of FD-MaxSumCell-HA remains superior to the HD-D2D scheme when SIS
is from 70 dB to 125 dB. However, when the access rate reaches 95%, it no longer improves
with an increase in SIS. This is because mutual interference incurred by CU and DU reuse
replaces RSI as a main factor, which depends on the resource coordination scheme.

Figures 3-5 illustrate that our designed algorithm is highly robust. Compared to
random allocation and traditional HD transmission, the combination of FD and the HA
algorithm provides significant performance gains for the proposed network model. There-
fore, even if the CSI reporting period is too long, causing some channel gain estimates to be
inaccurate, the proposed model and algorithm can still enhance the cell’s spectral efficiency
in most cases.

The reason for the performance enhancement of the FD-D2D underlaying network is
that FD-D2D devices can improve the SE of the cell nearly twofold compared to traditional
HD-D2D devices. As can be seen in Figure 6, in our scheme simulation, the sum rate of the
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FD-D2D pairs is approximately 1.73 times than that of HD-D2D pairs when DUs full load.
This phenomenon leads to the BS being more inclined to allocate resource to DUs. The pro-
posed scheme tends to be unfair for CUs, which results in more severe degradation of the
performance of CUs. As demonstrated in Figure 7, the SE of CUs in the FD-MaxSumCell-HA
scheme declines more sharply than that in the HD-MaxSumCell-HA scheme, and it is only
60% of the HD-MaxSumCell-HA scheme when DUs are equal to 20 in the joint uplink
and downlink user scenario. But from another perspective, the system may seek to shift
more traffic from CUs to DUs in certain scenarios; hence, this phenomenon is not always

detrimental to wireless systems.
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5. Conclusions

In this paper, which aims to further improve spectral efficiency, flexibility, and speed,
we propose a novel FD-UAV-aided D2D network model and develop an FD-MaxSumCell-
HA scheme, which adopts FD technology in UAV linking, to maximize the sum rate of the
overall system. The optimization problem is MINLP, which is NP-hard and mathematically
intractable. Thus, we decompose the problem into two subproblems, i.e., power alloca-
tion and user pairing, to solve it. The numerical results demonstrate that our proposed
FD-MaxSumCell-HA scheme is superior to traditional HD-D2D underlaying cellular net-
works in both the system sum rate and access rate of D2D. In particular, when there are
20 CUs and 20 DUs in the cell, the sum rate of the FD-MaxSumCell-HA scheme improves
by 43% against the traditional scheme. Moreover, the proposed scheme is better than
traditional ones even when SIS is only 70 dB, which is easy to implement. Therefore,
FD-MaxSumCell-HA has good application prospects in actual networks. However, in this
paper, we do not consider the channel uncertainty caused by UAV mobility and perturba-
tion, which is a problem to be solved in future research.
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Abbreviations

The following abbreviations are used in this manuscript:

D2D Device-to-device

FD Full-duplex

HD Half-duplex

UAV Unmanned aerial vehicle
DU D2D user

CuU Cellular user

HA Heuristic algorithm

BS Base station

SE Spectral efficiency

EE Energy efficiency

JUAD Joint uplink and downlink
SI Self-interference

RSI Residual self-interference
MaxSumCell ~Maximizing sum rate of cell
SIS Self-interference suppression
QoS Quality of service

References

1. Islam, T.; Kwon, C. Survey on the state-of-the-art in device-to-device communication: A resource allocation perspective. Ad. Hoc.
Netw. 2022, 136, 102978. [CrossRef]

2. Feng, D, Lu, L;Wu, YY,; Li, GY,; Feng, G.; Li, S. Device-toDevice Communications Underlaying Cellular Networks. IEEE Trans.
Commun. 2013, 61, 3541-3551. [CrossRef]

3. Li, X,; Shankaran, R.; Orgun, M.; Fang, G.; Xu, Y. Resource Allocation for Underlay D2D Communication with Proportional
Fairness. IEEE Trans. Veh. Technol. 2018, 67, 6244-6258. [CrossRef]

4. Kai, C; Li, H; Xu, L.; Li, Y; Jiang, T. Energy-Efficient Device-to-Device Communications for Green Smart Cities. IEEE Trans.
Industrial Inform. 2018, 14, 1542-1551. [CrossRef]

5. Ni, M,; Pan, J. Throughput Analysis for Downlink Resource Reusing D2D Communications in Cellular Networks. In Proceedings
of the IEEE Global Communications Conference (GLOBECOM), Singapore, 4-8 December 2017; pp. 1-7.

6. Idris, E; Tang, J.; So, D.K.C. Resource and energy efficient device to device communications in downlink cellular system. In
Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15-18 April
2018; pp. 1-6.

7. Kai, C,; Xu, L.; Zhang, ].; Peng, M. Joint Uplink and Downlink Resource Allocation for D2D Communication Underlying Cellular
Networks. In Proceedings of the 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP),
Hangzhou, China, 18-20 October 2018; pp. 1-6.

8.  Kai, C.; Wu, Y,; Peng, M.; Huang, W. Joint Uplink and Downlink Resource Allocation for NOMA-Enabled D2D Communications.
IEEE Wirel. Commun. Lett. 2021, 10, 1247-1251. [CrossRef]

9. Kai, C; Li, H,; Xu, L.; Li, Y.; Jiang, T. Joint Subcarrier Assignment with Power Allocation for Sum Rate Maximization of D2D
Communications in Wireless Cellular Networks. IEEE Trans. Veh. Technol. 2019, 68, 4748-4759. [CrossRef]

10. Li, Y;; Aghvami, A.-H.; Dong, D. Path Planning for Cellular-Connected UAV: A DRL Solution with Quantum-Inspired Experience
Replay. IEEE Trans. Wirel. Commun. 2022, 21, 7897-7912. [CrossRef]

11.  Li, Y,; Aghvami, A.H. Radio Resource Management for Cellular-Connected UAV: A Learning Approach. IEEE Trans. Commun.
2023, 71, 2784-2800. [CrossRef]

12.  Zeng, Y,; Zhang, R.; Lim, T.]. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE

Commun. Mag. 2016, 54, 36—42. [CrossRef]

186



Electronics 2024, 13, 2264

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Miao, J.; Liao, Q.; Zhao, Z. Joint Rate and Coverage Design for UAV-Enabled Wireless Networks with Underlaid D2D Communi-
cations. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu,
China, 11-14 December 2020; pp. 815-819.

Huang, W.; Yang, Z.; Pan, C.; Pei, L.; Chen, M.; Shikh-Bahaei, M.; Elkashlan, M.; Nallanathan, A. Joint Power, Altitude, Location
and Bandwidth Optimization for UAV with Underlaid D2D Communications. IEEE Wirel. Commun. Lett. 2019, 8, 524-527.
[CrossRef]

Yin, C.; Yang, H.; Xiao, P.; Chu, Z.; Garcia-Palacios, E. Resource Allocation for UAV-Assisted Wireless Powered D2D Networks
with Flying and Ground Eavesdropping. [EEE Commun. Lett. 2023, 27, 2103-2107. [CrossRef]

Lea, B.; Shome, D.; Waqar, O.; Tomal, J. Sum rate maximization of D2D networks with energy constrained UAVs through
deep unsupervised learning. In Proceedings of the 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile
Communication Conference (UEMCON), New York, NY, USA, 1-4 December 2021; pp. 453—459.

Shi, C.; Pan, W.; Shao, S. RF Wideband Self-Interference Cancellation for Full Duplex Phased Array Communication Systems. In
Proceedings of the ICC 2022—IEEE International Conference on Communications, Seoul, Republic of Korea, 16-20 May 2022;
pp- 1094-1099.

Shi, C.; Pan, W.; Shen, Y.; Shao, S. Robust Transmit Beamforming for Self-Interference Cancellation in STAR Phased Array Systems.
IEEE Signal Process. Lett. 2022, 29, 2622-2626. [CrossRef]

He, Y.;; Zhao, H.; Guo, W.; Shao, S.; Tang, Y. Frequency-Domain Successive Cancellation of Nonlinear Self-Interference with
Reduced Complexity for Full-Duplex Radios. IEEE Trans. Commun. 2022, 70, 2678-2690. [CrossRef]

Yang, T.; Zhang, R.; Cheng, X.; Yang, L. Graph Coloring Based Resource Sharing (GCRS) Scheme for D2D Communications
Underlaying Full-Duplex Cellular Networks. IEEE Trans. Veh. 2017, 66, 7506-7517. [CrossRef]

Hemachandra, K.T.; Rajatheva, N.; Latva-Aho, M. Sum-rate analysis for full-duplex underlay device-to-device networks.
In Proceedings of the 2014 IEEE Wireless Communications and Networking Conference, Istanbul, Turkey, 6-9 April 2014;
pp. 514-519.

Cheng, W.; Zhang, X.; Zhang, H. Optimal power allocation for full-duplex D2D communications over wireless cellular networks.
In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX, USA, 8-12 December 2014; pp. 4764-4769.

Li, S.;; Ni, Q.; Sun, Y,; Min, G. Resource allocation for weighted sumrate maximization in multi-user full-duplex device-to-device
communications: Approaches for perfect and statistical CSIs. IEEE Access 2017, 5, 27229-27241. [CrossRef]

Liu, F; Hou, X,; Liu, Y. Capacity improvement for full duplex deviceto-device communications underlaying cellular network.
IEEE Access 2018, 6, 68373-68383. [CrossRef]

Vu, H.V,; Tran, N.H.; Le-Ngoc, T. Full-Duplex Device-to-Device Cellular Networks: Power Control and Performance Analysis.
IEEE Trans. Veh. Technol. 2019, 68, 3952-3966. [CrossRef]

Chung, M,; Sim, M.S.; Kim, D.K.; Chae, C. Compact full-duplex MIMO radios in D2D underlaid cellular networks: From system
design to prototype results. IEEE Access 2017, 5, 16601-16617. [CrossRef]

Khandaker, M.R.A.; Masouros, C.; Wong, K. Secure full-duplex device-to-device communication. In Proceedings of the 2017 IEEE
Globecom Workshops, Singapore, 4-8 December 2017; pp. 1-6.

Lee, N; Lin, X.; Andrews, ].G.; Heath, R.W., Jr. Power control for D2D underlaid cellular networks: Modeling, algorithms, and
analysis. IEEE ]. Sel. Areas Commun. 2015, 33, 1-13. [CrossRef]

Wang, X.; Zhao, H.; He, Y.; Hu, P; Shao, S. A Simple Neural Network for Nonlinear Self-Interference Cancellation in Full-Duplex
Radios. In IEEE Transactions on Vehicular Technology; IEEE: Piscataway, NJ, USA, 2024. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

187



i;l% electronics

Article

An Improved Lightweight Deep Learning Model and

Implementation for Track Fastener Defect Detection with

Unmanned Aerial Vehicles

Qi Yu, Ao Liu *, Xinxin Yang * and Weimin Diao

School of Electronic Information Engineering, Beihang University, Beijing 100191, China;
16231012@buaa.edu.cn (Q.Y.); diaoweimin@buaa.edu.cn (W.D.)
* Correspondence: buaaliuao@buaa.edu.cn (A.L.); yangxx@buaa.edu.cn (X.Y.)

Abstract: Track fastener defect detection is an essential component in ensuring railway safety opera-
tions. Traditional manual inspection methods no longer meet the requirements of modern railways.
The use of deep learning image processing techniques for classifying and recognizing abnormal
fasteners is faster, more accurate, and more intelligent. With the widespread use of unmanned aerial
vehicles (UAVs), conducting railway inspections using lightweight, low-power devices carried by
UAVs has become a future trend. In this paper, we address the characteristics of track fastener
detection tasks by improving the YOLOv4-tiny object detection model. We improved the model
to output single-scale features and used the K-means++ algorithm to cluster the dataset, obtaining
anchor boxes that were better suited to the dataset. Finally, we developed the FPGA platform and
deployed the transformed model on this platform. The experimental results demonstrated that the
improved model achieved an mAP of 95.1% and a speed of 295.9 FPS on the FPGA, surpassing the
performance of existing object detection models. Moreover, the lightweight and low-powered FPGA
platform meets the requirements for UAV deployment.

Keywords: track; fastener defect detection; model improvement; FPGA; UAV

1. Introduction

Track fasteners are essential components that connect the rails to the sleepers and used
to secure the rails and prevent lateral and longitudinal displacement [1]. Due to factors
such as wear and tear on train wheels and the irregular deformation of the tracks over
prolonged periods of train operation, trains are prone to vibrations during high-speed
travel. These vibrations not only affect the trains themselves but are also transmitted to
the track fasteners. Coupled with the impact of train loads, this can lead to the fracture
and damage of track fasteners, thereby affecting the safe operation of trains. Common
abnormalities in track fasteners include fracture, displacement, and dislodgement [2].

The speed and mileage of high-speed trains are gradually increasing, and urban rail
transit is also developing gradually. Therefore, the efficient detection of track fastener
defects is crucial. Initially, track fastener defect detection relied mainly on manual visual
inspection. This method is inefficient, costly in terms of labor, and has unreliable accu-
racy, making it incapable of meeting modern requirements. This has also been confirmed
in railway bridge inspection [3]. In order to improve detection efficiency, researchers
have developed non-destructive testing methods, such as detection based on vibration
signals [4,5], ultrasonic detection [6], laser detection [7], and machine vision detection [8].
With the rapid development of artificial intelligence, machine vision-based detection meth-
ods have emerged in various scenarios, including track fastener defect detection. Currently,
machine vision-based detection methods can be categorized into two main types: those based
on traditional image processing techniques and those based on deep learning approaches.
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Detection methods based on image processing rely on manually designed features.
After extracting features, a trained classifier is used for detection and classification. This
results in the detection performance being influenced by manually designed features.
Therefore, these algorithms often have lower detection accuracy and poor adaptability
to variations in factors such as lighting and noise in real-world engineering scenarios,
leading to low robustness. Khan et al. [9] utilized Harris-Stephens and Shi-Tomasi feature
detectors to extract feature points and feature vectors from images. Subsequently, they
matched the features of input images with those of training images to detect track fasteners.
Feng et al. [10] proposed a probabilistic structural subject model (STM) to model the
fastener. This model can detect the wear state of the fastener and is robust to changes in
lighting conditions. Gibert et al. [11,12] proposed a fastener detection algorithm based on a
multi-task learning framework. The algorithm uses image-oriented gradient histograms
(HOGsS) to extract fastener features and uses support vector machine (SVM) classifiers
to classify and recognize damaged and missing fasteners, improving detection accuracy.
Wang et al. [13] proposed an automated method for detecting defects in track fasteners.
Initially, they located track fasteners precisely using the background difference method.
Then, they extracted linear features from images based on an improved Canny operator and
Hough transform. Subsequently, they extracted feature vectors for track fastener defects
by combining local binary patterns (LBP) and HOGs. Finally, they employed an SVM to
classify the feature vectors. This method demonstrated higher real-time performance and
accuracy. Although the aforementioned image processing-based detection methods have
improved detection accuracy to some extent, their complex image-processing and feature
extraction processes still cannot improve the efficiency of fastener detection.

Detection methods based on deep learning primarily utilize convolutional neural
networks (CNNs) to learn features from images. Compared to image processing-based
detection methods, they do not require manual feature design, thus offering better robust-
ness. These algorithms can be classified into two major categories: two-stage detection
algorithms based on candidate regions and one-stage detection algorithms based on end-to-
end learning. The main representatives of two-stage algorithms include R-CNN [14], Fast
R-CNN [15], and Faster R-CNN [16]. Wei et al. [2] applied Faster R-CNN to track fastener
detection. Despite the improvement in detection accuracy, the issue of slow detection
speed persists. The one-stage algorithms are mainly represented by SSD [17] and the
YOLO [18-22] series. Compared to other algorithms, the YOLO series algorithms have
significant advantages in both detection speed and accuracy. Therefore, they are widely
used in track fastener defect detection. Qi et al. [23] proposed an improved MYOLOv3-Tiny
network based on YOLOv3. Depth-wise and pointwise convolution were used, and the
backbone network was redesigned. The experiments showed that the network achieved
higher detection precision and faster detection speed compared to R-CNN. Fu et al. [24] pro-
posed a MobileNet-YOLOv4 algorithm for track fastener detection. This algorithm replaces
the CSPDarknet53 feature extraction network in the YOLOvV4 algorithm with MobileNet,
which enables the extraction of subtle features of track fasteners while reducing the number
of parameters and computational complexity, thus improving detection speed. Li et al. [25]
proposed an improved track fastener defect detection model based on YOLOvb5s. In this
model, a convolutional block attention module (CBAM) is added to the Neck network
of YOLOVS5s to enhance the extraction of key features and suppress irrelevant features.
Additionally, a weighted bi-directional feature pyramid network (BiFPN) is introduced
to achieve multi-scale feature fusion. The experimental results demonstrate that the im-
proved model enhances both accuracy and detection speed. Wang et al. [26] introduced the
CBAM attention mechanism into the backbone network of YOLOVS5, replaced the standard
convolution blocks in the neck network with GSConv convolution modules, and integrated
BiFPN. Finally, they designed a lightweight decoupled head structure to improve detection
accuracy and enhance the robustness of the model. The experimental findings testify to
the YOLOv5-CGBD model’s ability to conduct real-time detection, with mAP0.5 scores
of 0.971 and 0.747 for mAP0.5:0.95, surpassing those of the original YOLOv5 model by
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2.2% and 4.1%, respectively. Although the above methods can accurately detect fastener
defects, there is still room for improvement in terms of false detection rates. Additionally,
the detection speed of the models is relatively slow, making it challenging to apply them in
engineering practice.

Due to its low cost, high flexibility, and ease of control, UAV-based detection is
widely employed across various fields. For instance, in agriculture, it is utilized for tree
detection [27,28]; in transportation, it is employed for vehicle tracking [29,30]; in environ-
mental conservation, it is used for inspections [31]; in industry, it is applied for power
facility inspections [32]; and in infrastructure, it is employed for bridge crack inspections [33].
In the field of railway inspection, utilizing UAVs can reduce labor costs, improve efficiency,
and enhance safety. Wu et al. [34] proposed the use of UAV vision for detecting surface de-
fects on railway tracks. Similarly, Milan et al. [35] suggested the use of UAVs for inspecting
railway infrastructure. The development of autonomous UAVs for analyzing data in real
time is an emerging trend in UAV data processing [36]. However, current track fastener
defect detection models rely on Nvidia graphics cards, which cannot meet the engineering
requirements for lightweight, low-power, and real-time devices.

To address the aforementioned issues, the main contributions of this article are
as follows:

1. We converted the YOLOv4-tiny model to output single-scale features, which resulted
in improved detection speed. Furthermore, we utilized the K-means++ algorithm to
re-cluster anchor boxes, thereby improving the model’s detection accuracy.

2. We developed the model using an FPGA development platform and deployed the
model on the FPGA platform after transformation [37,38], achieving the lightweight,
low-power, and real-time requirements of the track fastener defect detection device.

2. Materials and Methods
2.1. YOLOv4-Tiny Algorithm

YOLO is an end-to-end object detection algorithm. It takes the entire image as input,
and after processing through a CNN, it yields the localization and classification results
of objects. The core of the YOLO detection algorithm involves segmenting the neural
network’s input image into an 7 * n grid, where each grid cell has S predefined anchor boxes.
Detection results are obtained by applying non-maximum suppression to remove duplicate
and ineffective anchor boxes. Additionally, techniques such as residual network structures,
feature fusion, and multi-scale output are employed to improve detection capabilities
across various scenarios. The loss function of YOLO is represented as Equation (1).

LOSS = lossjoc + 108sgpj + 10855 1)

l0ssjoc, l0ssopj, and loss.s represent the position regression loss function, the object
confidence loss function, and the target classification loss function, respectively.

YOLOv4-tiny is a lightweight version of YOLOv4 proposed by Bochkovskiy et al. In
comparison to YOLOv4, YOLOv4-tiny employs a lighter architecture, enabling it to achieve
efficient detection speeds even in resource-constrained environments. Therefore, YOLOv4-
tiny is better suited for running on embedded devices. The structure of YOLOv4-tiny is
shown in Figure 1.

From Figure 1, it can be seen that the backbone network of YOLOv4-tiny consists of
Resblocks. The structure of the Resblock is shown in Figure 2. The backbone network
outputs multi-scale features, which are then utilized by the YOLO head for detection.
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Figure 1. Structure of YOLOv4-tiny.
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Figure 2. Structure of the Resblock.

In ConvBNLeaky, k represents the size of the convolutional kernel, s represents the
stride, and c represents the number of channels. ConvBNLeaky consists of a convolutional
layer, a batch normalization layer (BN), and a Leaky activation function. The Leaky
function is represented as Equation (2). Compared to the ReLU activation function, during
the backpropagation process in deep learning training, the Leaky activation function can
still compute gradients for the parts of the input that are less than zero.

X xiZO
ax; x; <0

Leaky(x;) = { 2
2.2. YOLOv4-Tiny Improvement
2.2.1. Single-Scale Feature Output

The original YOLOv4-tiny model has two-scale feature outputs. By detecting objects
at two scales, YOLOv4-tiny can obtain a more comprehensive understanding of target
information and can handle complex scenes more effectively. Compared to other detection
tasks such as face detection and vehicle detection, track fastener defect detection tasks
typically demonstrate relatively fixed sizes of objects in the image. An image displaying
anomalous track fasteners is shown in Figure 3.
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Figure 3. Captured images and abnormal fasteners.

Due to the fixed perspective of the camera and the consistent size of the track fasteners,
the size of the detection targets remains fixed relative to the image. To improve the detection
speed and reduce computational complexity, we modified YOLOv4-tiny to output features
ata single scale. From Figure 3, it can be observed that the track fasteners belong to medium-
sized objects. Therefore, we retained features at the scale of (26, 26) while removing features
at the scale of (13, 13). The improved model structure is shown in Figure 4.

416x416x3

—_ Ty

26x26x512

Conv26
k=1,s=1,c=n

YOLO head

Resblock

13x13x512

Resblock

Figure 4. Improved YOLOv4-tiny network structure.
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Experiments will be used to validate the hypothesis that the size of the detection
targets remains fixed relative to the image.

2.2.2. Anchor Box Optimization

The original YOLOv4-tiny model has problems such as inaccurate localization in track
fastener defect detection tasks due to its utilization of default anchor boxes. The default
anchor boxes in YOLOv4-tiny are generated through clustering analysis conducted on the
COCO dataset, which predominantly consists of object categories commonly encountered
in everyday scenarios. Consequently, the anchor boxes obtained from this process may not
be optimally tailored for the track fasteners, leading to issues such as inaccurate localization
in detection tasks.

To improve the accuracy of the model in detecting track fasteners, this study obtained
new anchor box parameters from proprietary datasets. We employed the K-means++
algorithm to conduct clustering analysis on the fastener dataset to obtain new anchor box
parameters. Compared to the K-means algorithm, the K-means++ algorithm optimizes
the selection of initial cluster centers by maximizing the distance between K initial cluster
centers as much as possible, effectively improving clustering efficiency. The steps of the
K-means++ algorithm are as follows:

Step 1: Randomly select a sample from dataset N as the first cluster center.

Step 2: Compute the distance D(x) from each sample x to the nearest existing cluster
center and calculate the probability P(x) of each sample being identified as the next cluster
center using the following formula:

ANB
IoU = AUB 3)
D(x)=1-IoU 4)
D(x)?
P(x) = ———— (5)
W D

where IoU denotes the degree of matching between the anchor box and the labeled box.
Select the sample with the maximum value of P(x) as the next cluster center.

Step 3: Repeat step 2 until k cluster centers have been selected.

Step 4: Utilize the K-means algorithm to obtain new anchor box parameters.

The original and the new parameters of the anchor boxes are shown in Table 1.

Table 1. The original and the new parameters of the anchor boxes.

Algorithm Anchor Box

[(10, 14) (23, 27) (37, 58)]
[(81, 82) (135, 169) (344, 319)]

K-means++ [(25, 27) (34, 48) (55, 73)]

YOLOv4-tiny

2.3. Hardware Platforms
2.3.1. Comparison of Hardware Platforms

Currently, almost all deep learning algorithms run on GPUs. This is because GPUs offer
powerful computational capabilities, and frameworks like PyTorch provide convenience
for researchers in their studies. However, the powerful computational capabilities of GPUs
also come with drawbacks such as large size and high power consumption. As mentioned
earlier, we plan to utilize UAVs for track fastener defect detection. Therefore, we require a
lightweight, low-power, high-performance real-time computing platform.

We have noticed that an increasing number of researchers are choosing field-programmable
gate arrays (FPGAs) as deployment platforms for deep learning models. Compared to
GPUs, FPGAs offer advantages such as programmability, flexibility, and low power con-
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sumption. With Xilinx’s introduction of the deep learning processing unit (DPU), FPGAs
can also provide high-performance inference for deep learning models.
In conclusion, FPGAs were chosen as the hardware platform for our algorithm.

2.3.2. The ZCU104 Development Platform

The hardware development platform used in this paper is the Zynq Ultrascale+ MP-
SoC ZCU104 development platform from Xilinx. The ZCU104 development board is shown
in Figure 5. The ZCU104 is a high-performance development platform suitable for various
embedded systems and application scenarios, such as artificial intelligence, video process-
ing, network communication, and industrial control. The ZCU104 platform employs the
ZU7EV chip, which includes a quad-core ARM Cortex™-A53 processor and a dual-core
Cortex-R5 processor, with a CPU frequency of 1200 MHz.

Figure 5. The ZCU104 development board.

The hardware development platform resources also include 312 Block RAMs (BRAMs)
for data storage, 1728 digital signal processors (DSPs) for digital signal processing and
algorithm acceleration, 230,400 look-up tables (LUTs) for executing logic operations, and
460,800 flip-flops (FFs) for storing state information.

2.3.3. Hardware Platform Development
The development process on the ZCU104 platform is shown in Figure 6.

Develop the Hardware Develop the Software - - Incorporate the Vitis- Develop th‘e DPU

X . Building the Vitis . . Kernel Project and

Project and Generate »| Project and Generate > »| Al Repository into the >
. Platform X Generate the SD Card
the XSA File the Image System Project
Image
Vivado Petalinux \ v
Vitis

Figure 6. The development process on the ZCU104 platform.

The hardware project was developed on the Vivado 2021.1 platform. We utilized the
Zynq UltraScale + MPSoC IP module from the Zynq series, alongside the board preset for
ZCU104. This IP module is shown in Figure 7. After configuring all of the ports, an XSA
file was generated. The XSA file contained all of the hardware information.
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Figure 7. ZCU104 IP module.

PetaLinux is a specialized development platform designed for embedded Linux system
development, introduced by Xilinx. This platform enables the configuration of the Linux
kernel, device tree, and root file system (rootfs). We utilized PetaLinux 2021.2 and the XSA
file to generate a Linux image system that incorporates the required dependency library
files. Subsequent development will be based on this customized Linux system.

Vitis is a software development platform introduced by Xilinx, designed to simplify
the software development process on FPGAs. It offers a unified software development
environment. After building the Vitis platform and incorporating the Vitis-Al repository,
we developed the DPU kernel project. The DPU is a hardware accelerator dedicated to
deep learning inference tasks, introduced by Xilinx. Its primary objective is to expedite the
inference computations of deep learning models, including convolutional neural networks
(CNNSs). The top-level architecture of the DPU is shown in Figure 8.

High
Performance [« =|PE||PE||PE||PE|
Scheduler A X
Hybrid Computing Array

= K
=
-
an
E y
£
E < > Imsirusiiemn Global Memory Pool
= B Fetch Unit Y
=
2
'_8:' Deep Learning Processing‘Uint
<<

A A

High Speed Data Tube

RAM

Figure 8. The top-level architecture of the DPU.

A DPU module with model number B4096 was utilized in this paper. With UltraRAM
enabled, the ZCU104 platform supports a maximum of two B4096 modules.
Finally, we packaged all of the files into an SD card image.

2.4. Model Transformation

After completing hardware platform development, it is necessary to transform the
trained network model to enable forward inference on the hardware platform. The process
of model transformation is shown in Figure 9.

Vitis-Al is a development platform aimed at Al acceleration, introduced by Xilinx. It
offers a comprehensive set of tools and libraries to assist developers in converting various
deep learning models into formats suitable for FPGA deployment, while also accelerating
deep learning inference tasks. Following the process shown in Figure 9, we utilized the
Vitis-Al 1.4 platform to quantize and compile our model, transforming it into an Xmodel
file executable on the hardware platform.
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Figure 9. The process of model transformation.

3. Experimental Results
3.1. Dataset

The dataset used in this paper was collected using a line laser camera, comprising
a total of 2000 images with a resolution of 800 x 1261 pixels. After removing distorted
and blurry images, 1100 images were obtained. Each image contained approximately
6 to 12 fasteners, with a total of approximately 8000 fasteners. Approximately 200 images
contained abnormal fasteners. The dataset comprises two distinct categories of fasteners,
denoted Class A and Class B, alongside their respective abnormal counterparts, labeled
Class A-F and Class B-F.

3.2. Experimental Setting

The experimental environment was configured with Windows 10 as the operating
system, NVIDIA GeForce RTX 3070 as the GPU model with 8 G of video memory, Python
3.8 as the compilation language, Pytorch 1.8.0 as the deep learning framework, CUDA 10.2
as the CUDA version, and ZCU104 development platform as the hardware platform. The
training parameters were set as follows: the initial learning rate was 0.001, the momentum
parameter was 0.9, the weight decay factor was 0.0005, the input image size was 416 x 416,
and the Batch Size was 16. A total of 200 epochs were trained using stochastic gradient
descent (SGD) for the whole training process.

Figure 10 shows the comparison of loss curves, where the red curve represents the
loss curve of the YOLOv4-tiny algorithm, and the blue curve represents the loss curve of
the Improved YOLOv4-tiny algorithm. Lower loss values during training indicate better
training results. From Figure 10, it can be observed that the loss value of the Improved
YOLOv4-tiny algorithm is lower than that of the YOLOv4-tiny algorithm after 75 epochs.

0.050

—— Improved YOLOv4-tiny
—— YOLOvV4-tiny

0.045 A

0.040 A

0.035 A

0.030 A

Loss

0.025 -

0.020 A

0.015 A

0-010 T T T T T T T T
25 50 75 100 125 150 175 200
epoch

Figure 10. Comparison of loss curves.
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3.3. Evaluation Indicators

In this paper, we evaluated the performance of the algorithms according to two aspects,
detection accuracy and detection speed, using evaluation methods commonly employed
for target detection algorithms.

Detection accuracy evaluation metrics comprise recall, false detection, and mean
average precision (mAP).

In the field of object detection, TP denotes the number of positive samples detected
correctly, FP denotes the number of positive samples detected incorrectly, TN denotes the
number of negative samples detected correctly, and FN denotes the number of negative
samples detected incorrectly. All of the metrics are calculated when IoU = 0.5.

Recall, denoted by R, is the probability that the model correctly identifies a positive
sample in a single category. It is defined as follows:

TP

R=7p7EN ©)

False detection, denoted by FPR, is the probability that the model incorrectly identifies
a negative sample as a positive sample in a single category. It is defined as follows:

FP

FPR = ———
FP+TN

@)

High R and low FPR are required for the task of track fastener defect detection.

The mAP is the area enclosed by the precision and recall curves. It is an overall
network performance evaluation metric considering precision and recall [39]. Therefore,
mAP is a more authoritative metric in model performance evaluation, and a larger mAP
value represents higher detection precision. It is defined as follows:

1

AP = / P-RdR @®)
0
1 N

mAP = N l; AP; )

where N is the number of categories in the dataset and P is precision, which denotes the
probability that the model detects correctly in a single category. It is defined as follows:

TP

P=—
TP+ FP

(10)
The detection speed is evaluated in terms of frames per second (FPS), the number of
frames per second that the model processes for the image.

3.4. Experiments on the GPU
3.4.1. Ablation Experiments

We conducted ablation experiments for the two improvements proposed in this paper.
We modified YOLOv4-tiny to output single-scale feature maps and then replaced the
original anchor boxes with anchor boxes optimized using the K-means++ algorithm. The
final results are shown in Table 2.

The experimental results indicate that single-scale feature output can significantly
improve detection speed, increasing from 316.3 FPS to 521.9 FPS. However, there was a
decrease in mAP by 1.8%, and the FPR for each class of fasteners also increased.
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Table 2. Comparison of the results of the ablation experiments.

Network Model Class R/% FPR/% mAP/% FPS
A 75.0 12.9
YOLOv4-tin . .
y B 917 0 90.5 336.3
YOLOv4-tiny A 72.6 13.3
+ 88.7 554.9
Single-Scale Feature Output B 89.8 0.9
YOLOv4-tiny A 86.1 3.1
+
Single-Scale Feature Output
n B 100 0 95.8 554.9

Anchor Box Optimization
(Improved YOLOv4-tiny)

The experimental results also indicate that optimizing the anchor boxes significantly
improves detection performance. The Improved YOLOv4-tiny model achieved a 5.3%
increase in mAP compared to YOLOv4-tiny. This validates our previous hypothesis that
the relative size of detected objects remains consistent with respect to the image.

3.4.2. Comparison Experiments

To further validate the detection performance of the improved model, the model in
this paper was compared with the existing mainstream target detection algorithms Faster
R-CNN and SSD. The experiments were conducted in the same hardware and software
environment, as well as with identical training and testing parameters. The experimental
results are shown in Table 3.

Table 3. Performance comparison of various target detection algorithms.

Network Model Class R/% FPR/% mAP/% FPS

A 77.5 13.6
Faster R-CNN B 383 0 90.6 10.7

A 82.0 5.8
SSD B 995 0 93.4 30.3

) A 75.0 129
YOLOv4-tiny 5 917 0 90.5 336.3

. A 86.1 31
Improved YOLOv4-tiny B 100 0 95.8 554.9

This can be seen based on the data in Table 3. In terms of the mAP metric, Improved
YOLOv4-tiny achieved the best performance, reaching 95.8%. Compared to Faster R-CNN,
SSD, and YOLOv4-tiny, the improved model’s mAP increased by 5.2%, 2.4%, and 5.3%,
respectively. In terms of the false positive rate (FPR) metric, Improved YOLOv4-tiny also
achieved the best performance, with a rate of 3.1% for Class A fasteners. This is lower
than the rates achieved by Faster R-CNN, SSD, and YOLOv4-tiny, which were 13.6%,
5.8%, and 12.9%, respectively. In terms of detection speed, Improved YOLOv4-tiny also
achieved the best performance, reaching 554.9 FPS. Compared to Faster R-CNN, SSD,
and YOLOv4-tiny, the improved model’s speed increased by 544.2 FPS, 524.6 FPS, and
218.6 FPS, respectively. In summary, compared to other target detection models, the
Improved YOLOv4-tiny model in this paper outperformed in terms of detection accuracy,
detection error rate, and detection speed.
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3.5. Experiments on the FPGA

To validate the detection performance of our algorithm on the ZCU104 development
platform, we compared both the improved model and the original model after transfor-
mation. In the experiment, we utilized two DPU modules with the model number B4096
and set their frequency to 300 MHz. Furthermore, we attempted to improve the detection
speed by employing parallel processing techniques. The experimental results are shown
in Table 4.

Table 4. Performance comparison of algorithms on the FPGA.

Network Model Class R/% FPR/%  mAP/%  Thread FPS

) A 75.0 6.9 1 70.9

YOLOvA-tiny B 87.5 0 89:5 8 179.6

] A 83.3 3.23 1 84.2

Improved YOLOv4-tiny 5 100 0 95.1 S 2959

This can be seen based on the data in Table 4. In terms of the mAP metric, the Improved
YOLOv4-tiny achieved 95.1% on the FPGA, which was 5.6% higher than the original
YOLOv4-tiny. In terms of detection speed, the Improved YOLOv4-tiny achieved 295.9 FPS
on the FPGA, which was 116.3 FPS higher than the original YOLOv4-tiny. Additionally,
parallel processing significantly improved detection efficiency compared to single-thread
processing.

3.6. Experimental Comparison of Different Platforms

To validate the FPGA platform as more suitable for practical engineering, we com-
pared the results across the two hardware platforms. The experimental results are shown
in Table 5.

Table 5. Performance comparison of the algorithm on the GPU and FPGA.

Network Model Hardware Platform mAP/% FPS Power Consumption/W
Improved YOLOv4-tiny GeForce RTX 3070 95.8 554.9 235
Improved YOLOv4-tiny ZCU104 95.1 295.9 20

This can be seen based on the data in Table 5. In terms of the mAP metric, the per-
formance of the improved model on the FPGA was 0.7% lower than on the GPU. This
is attributed to the quantization of model parameters during the model transformation
process, resulting in slight precision loss. However, an mAP of 95.1% still meets engineering
requirements. In terms of detection speed, the improved model achieved 295.9 FPS on the
FPGA, which was lower than the 554.9 FPS achieved on the GPU. However, it still met the
real-time requirements in practical engineering applications. In terms of power consump-
tion, the improved model’s power consumption on the FPGA was 25 W, significantly lower
than the 235 W on the GPU.

In summary, the improved model achieved sufficiently good detection accuracy and
speed on the FPGA with very low power consumption. Compared to the GPU platform,
the FPGA platform is more suitable for meeting the requirements of track fastener defect
detection tasks.

3.7. Visualization of Detection Results

The visualization of detection results is important in practical applications. Figure 11
shows the detection results of the improved model. It can be observed from Figure 11
that the algorithm exhibits excellent recognition performance for both types of fasteners,
with the bounding boxes’ positions and sizes matching the actual objects. Additionally,
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the confidence scores for both positive and negative samples are very high, meeting the
requirements of practical detection.

Figure 11. Visualization of detection results.

4. Conclusions

This paper addresses the issues of low efficiency in current track fastener detection
algorithms and the lack of lightweight and low-power hardware platforms suitable for
practical engineering applications. We constructed our own dataset of track fasteners,
proposed an improved model based on YOLOv4-tiny, and deployed the transformed
model on an FPGA hardware platform. Considering the dataset characteristics, the model
was improved to achieve single-scale feature output, significantly enhancing detection
speed. Additionally, to improve detection accuracy, we employed the K-means++ algorithm
to cluster the dataset and obtain more suitable anchor boxes. Finally, we developed
and deployed the model on the FPGA platform. The experimental results demonstrate
that the improved model achieves an mAP of 95.1% and a speed of 295.9 FPS on the
FPGA, surpassing the performance of the original YOLOv4-tiny. Moreover, the power
consumption of the FPGA platform is 20 W, much lower than that of the GPU platform,
meeting the requirements for UAVs carrying detection equipment.

Our improved model has been specifically designed for the fastener types in this
dataset and may not be suitable for recognizing other types of fasteners. Additionally,
considering the support provided by the Vitis development tools for YOLOv4 series
algorithms on the ZCU104 platform, we chose to improve YOLOv4-tiny instead of applying
the latest YOLO versions. In the future, we plan to expand the dataset scope and explore the
application potential of the latest algorithms on FPGA platforms to optimize and extend our
model, making it adaptable to a wider range of fastener types and detection environments.
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