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Preface to ”Mathematical Modelling in Engineering &
Human Behaviour 2018”

This book is devoted to the mathematical models applied in studying problems of engineering 
and human behaviour. These papers were presented as communications at the conference 
“Mathematical Modelling in Engineering & Human Behaviour 2018” held in Valencia, Spain, from 
July 16th to July 18th 2018.

We were particularly interested in the cross-disciplinary applications of mathematics, ranging 
from medicine, epidemiology, financial mathematics, social addictions and public health issues. Our 
objective was to develop the most useful techniques for dealing with these problems in a way that 
could be applied by specialists of the many disciplines in which mathematics has proven to be 
of critical interest. At the aforementioned conference, we gathered a group of participants within 
multidisciplinary fields with these common interests and objectives. This allowed us to create the 
synergy necessary for effectively implementing mathematical modelling methods in the most diverse 
applications.

In the first three papers of this book, we present three applications within medicine and 
epidemiology. The first paper is devoted to the modelling of chikungunya virus spread in Colombia. 
In this work, Gonźalez-Parra et al. estimate the basic reproduction number of the disease by using 
bootstrapping and Markov chain Monte Carlo techniques. In the second paper, Trejo et al. discuss 
an interesting model for assessing the role of the immune system in bone-healing process. This 
model could be used in the future to monitor bone fracture treatments. The 3rd paper discusses a 
cellular automata model of the brain that could, in spite of its simplicity, provide some insights into 
Alzheimer’s disease and other neurological disorders.

The 4th to the 6th paper focus on problems connected with the human sciences. In particular, 
in the 4th paper, Carpitella et al. propose a multicriteria decision-making approach to gauge the 
organisational risks due to human factors. In the 5th paper, Delgadillo-Alemán et al.  identify social 
factors  involved in the problem of intimate partner violence, and develop a model to predict and 
control this social pandemic. In the 6th paper, Acedo discusses the application of  hidden Markov 
models to linguistics, with the idea of finding some patterns of structure in the ancient Voynich 
manuscript.

The 7th to the 10th paper are devoted to matrix and numerical analysis. In the 7th paper, 
Calatayud et al. extend some recent advances in random differential equations to non-autonomous 
differential equations that are of interest in mathematical modelling. The 8th paper, by Arora et al., 
provides discussion of a multistep scheme with fast convergence. In the 9th paper, the author, Solis, 
discusses a family of polynomial discrete dynamical systems with interesting properties, and the 
difficulties in obtaining points of equilibria and the role of transient behaviour are analysed. The 10th 
paper, by Carre ̃no et al., discusses the block preconditioning matrix techniques used to obtain the 
modes of a nuclear reactor.

The book ends with an application to naval defence. In the 11th paper, Carre ̃no et al. analyse the 
problem of integrating uncertainty to select the best anti-torpedo decoys for frigates.

Lucas Jódar, Juan Carlos Cortés, Luis Acedo Rodrı́guez

Special Issue Editors
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Abstract: The Chikungunya virus is the cause of an emerging disease in Asia and Africa, and also
in America, where the virus was first detected in 2006. In this paper, we present a mathematical
model of the Chikungunya epidemic at the population level that incorporates the transmission vector.
The epidemic threshold parameter R0 for the extinction of disease is computed using the method
of the next generation matrix, which allows for insights about what are the most relevant model
parameters. Using Lyapunov function theory, some sufficient conditions for global stability of the
the disease-free equilibrium are obtained. The proposed mathematical model of the Chikungunya
epidemic is used to investigate and understand the importance of some specific model parameters
and to give some explanation and understanding about the real infected cases with Chikungunya
virus in Colombia for data belonging to the year 2015. In this study, we were able to estimate the
value of the basic reproduction number R0. We use bootstrapping and Markov chain Monte Carlo
techniques in order to study parameters’ identifiability. Finally, important policies and insights
are provided that could help government health institutions in reducing the number of cases of
Chikungunya in Colombia.

Keywords: Chikungunya disease; mathematical modeling; nonlinear dynamical systems; numerical
simulations; parameter estimation; Markov chain Monte Carlo

1. Introduction

The Chikungunya virus is a type of arbovirus, so it is only transmitted by hematopoietic
arthropods that become infected after biting some vertebrates. Later, the arthropods can transmit
the virus to a susceptible vertebrate through a bite [1]. The arthropod vectors are usually Aedes
aegypti and Ae. albopictus [2–4]. The virus has had mutations, allowing Aedes albopictus to transmit
the disease [5]. The Chikungunya disease originated in Sub-Saharan Africa, and it has become
endemic in Africa, where there is a natural transmission between mosquitoes and primates to humans
[3]. The Chikungunya disease is an emerging disease in Asia. In America, it was detected in 2006,
and there is an imminent risk of the virus spreading throughout South America. In the last few
years, several outbreaks have occurred on the island of Reunion, in Cambodia, Comoros, Mayotte,
Madagascar, Mauritius, Italy, Seychelles, and the Maldives [3,6–8]. The first outbreak in Europe was in
the warm northeast region of Italy in July 2007. Probably, the virus came from Kerala (India), where

Math. Comput. Appl. 2019, 24, 6; doi:10.3390/mca24010006 www.mdpi.com/journal/mca1
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the disease was at its highest peak [7]. The Chikungunya disease causes arthritis, fever, and pain of
the joints. Symptoms of chikungunya are generally resolved within 7–10 days, but some patients are
plagued with chronic arthralgia, which could persist for months or years [9–11]. There is no vaccine
for the Chikungunya virus at this moment that could be used to restrict and control the transmission
of the disease [6,12]. Moreover, no effective drug is available for human use for any alphavirus,
although analgesics and non-steroidal anti-inflammatory drugs can provide relief from symptoms
[12]. The incubation of the virus lasts between 5–12 days and the infectious stage between 5–15 days,
in both primates and humans [13,14].

As mentioned above, the Chikungunya virus is spreading around the world, and due to world
climate change, it is expected that more regions are going to be reached by it. For instance, in [15],
the authors presented results regarding the risk of Zika and Chikungunya virus transmission in human
population centers of the eastern United States. In this way, in order to better understand the dynamics
of how the Chikungunya virus is transmitted, we propose and analyze a mathematical model given
by a system of nonlinear differential equations where the populations of hosts and mosquitoes are
homogeneous. This mathematical modeling approach is the standard way to study the dynamical
behavior of diseases in populations from an epidemiological point of view [16–19]. In particular,
there is a variety of models for vector-borne diseases. For instance, in [20], the authors proposed a
mathematical model for vector-borne disease with delay to consider the incubation period. In addition,
in [21], the authors used optimal control to minimize the number of infections. Recently, some works
extended these types of models using versatile fractional derivatives [22–24].

In [25], the authors proposed a deterministic mathematical model for Chikungunya infection
considering that there is transmission of the virus between humans and mosquitoes. The authors
used two infected human subpopulations designated as symptomatic and asymptomatic to classify
the humans responsible for transmitting the virus. Additionally, they considered the subpopulation
of humans carrying the virus, but had no possibility of spreading it. In this paper, the authors
demonstrated the influence of humans on the infection of the latency period. They also remarked
about the necessity of fitting the model to real data so that it will be useful in controlling the spread of
the virus. Another interesting work was presented in [26], where the authors proposed a mathematical
model of three age-structured transmissions of Chikungunya virus. The authors divided the human
population into juvenile, adult, and senior subpopulations.

In [6], the authors proposed a stochastic mathematical model for a rural region in Cambodia,
considering the fact that a stochastic model fits data better in small populations. These authors also used
a subgroup of latent human and mosquito individuals and additionally included a larvae subgroup in
the mosquito population. An innovation in that work is the introduction of three subclasses of infected
humans. Other mathematical models for the Chikungunya virus propagation that include the latency
stage were given in [27–29].

In the present work, our aim is to understand and explain some dynamics regarding the prevalence
of Chikungunya infection in Colombia. The mathematical model is important since in practice, there are
few economic resources to tackle or fight the Chikungunya virus’ spread. Thus, the model allows one
to decide on the best or most convenient health policies. In the proposed model, we consider a chronic
subpopulation that has not been considered previously. The people in this particular class cannot
transmit the disease, but have some types of chronic rheumatic symptoms. The main reason to consider
this class is that health institutions are interested in the number of chronic cases of Chikungunya
and its evolution. In addition, the latency stage for the human and mosquito populations is also
introduced in the mathematical model, since this stage is observed in the real world. Although the
virus may also spread to other vertebrate populations such as primates [30–33], reservoirs different
from humans are not included in the analysis, since in Colombia, known cases are all human. However,
future work might include reservoirs different from humans and would increase the complexity of the
mathematical model and of the fitting process to the real data.
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Numerical simulations are performed to support the theoretical results. In addition, the proposed
mathematical model of Chikungunya is used to explain and understand the infected cases with the
Chikungunya virus in Colombia. In particular, we use the proposed Chikungunya mathematical
model to perform a fitting process to real data of Colombia. Additionally, we used bootstrapping and
Markov chain Monte Carlo techniques in order to do analysis of the parameters’ identifiability [34–40].
Finally, important policies and insights are provided that could help government health institutions in
lowering the infected cases with the Chikungunya virus in Colombia.

The paper is organized as follows. In Section 2, the mathematical model of Chikungunya
is presented together with a set of definitions and basic underlying hypotheses. The proposed
Chikungunya mathematical model is analyzed in Section 3. The fitting process and numerical
simulations are presented in Section 4. Next, the parameter estimation of the model for a Colombia
case using Markov chain Monte Carlo, as well as bootstrapping is performed in Section 5. The last
part, Section 6, is devoted to the discussion and conclusions.

2. Mathematical Model

In this section, we set out a continuous mathematical model for the transmission and evolution of
the Chikungunya infection in the human and mosquito populations. In the proposed mathematical
model, vertical transmission is not included because the number of cases is small when compared to
the total number of infected cases. However, if the virus prevalence increases in the female population,
it may be necessary to include it in the proposed model. Furthermore, we do not consider a vaccinated
class since there are no vaccines on the market [12,41].

The proposed model of the Chikungunya virus transmission dynamics incorporates a
cross-transmission between the human and vector populations. In particular, it is assumed that
the Chikungunya virus spreads by the effective contact between a mosquito infected with a human
susceptible, and vice versa. This contact depends on different environmental factors. Some factors
to consider are: the weather, the temperature, the altitude, and the mosquito bite rate. Varying these
values will generate different degrees of the probability of the transmission of the disease. Here, we will
not include seasonal effects or variability in the populations. Using a population-based approach of
an epidemiological type, the population of humans is divided into five groups: susceptibles, latents,
infected, recovered, and the ones with chronic rheumatic symptoms. It is important to remark that the
people with chronic rheumatic symptoms do not have the Chikungunya virus, just some symptoms
related to it, since they were infected previously. In addition, the population of the vector is divided into
three groups: susceptible vector, latent vector, and infected vector. The resulting mathematical model
is a nonlinear system of eight ordinary differential equations, which is analyzed to find the equilibrium
points and their stability, including the well-known epidemic threshold parameter known as the basic
reproduction number, R0. We estimate some of the unknown key epidemiological parameters of the
model from real data, which allow us to compute R0, defined as the average number of secondary
cases generated by a typical infectious individual in a fully-susceptible population. Moreover, we are
able to compute approximately how many individuals are infected during an outbreak. All these
estimates can help assist with outbreak planning, assessment of health strategies, and the design of
future research regarding Chikungunya infection transmission.

Thus, following the basic ideas and structure of mathematical modeling in epidemiology,
the Chikungunya model will be developed under the following basic hypotheses [16,17]:

• The total population of humans Nh(t) is divided into five subpopulations: humans who may
become infected (susceptible Sh(t)), humans exposed, but still not infected due to the existence of
an incubation period of the virus (latent Eh(t)), humans infected by the Chikungunya virus and
that develop the disease (infected Ih(t)), humans who have recovered from the Chikungunya
infection (recovered Rh(t)), and humans who have the disease chronically (chronic Ch(t)).

• The parameter μh is the birth rate of humans. The birth rate μh is assumed equal to natural
death dh.

3
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• The mortality rate increase due to the disease is a real fact. However, since this rate is small in
comparison with other rates and is not going to affect the dynamics, we assume that ε = 0.

• The total population of mosquitoes Nv(t) is divided into three subpopulations: mosquitoes
who may become infected (susceptible Sv(t)), mosquitoes in a latent stage (latent Ev(t)),
and mosquitoes currently infected or spreading the Chikungunya virus (infected Iv(t)).

• The parameter μv is the birth rate of the mosquitoes, and it is assumed equal to the death rate dv.
• A susceptible human can transit to the latent subpopulation Eh(t) because of an effective

transmission due to a bite of an infected mosquito at a rate of β′
1.

• A susceptible mosquito can be infected if there exists an effective transmission when it bites an
infected human, at a rate β2.

• A fraction α of the latent humans passes to infected by the virus.
• A fraction γ of the infected humans recovers, i.e., they do not have the disease anymore.
• A fraction ρ of the recovered humans moves to the chronic class.
• A fraction φ of the latent mosquitoes goes through to infected mosquitoes.
• Homogeneous mixing is assumed, i.e., all susceptible humans have the same probability of being

infected and all susceptible mosquitoes have the same probability of being infected.

It is important to notice that the parameter β′
1 depends on two different parameter: the bite rate

of an infected mosquito on susceptible people and the probability per bite to transmit the virus from
the mosquito to the human. On the other hand, β2 depends on the bite rate of a susceptible mosquito
on an infected human and the probability per bite to transmit the virus from the human to the vector.
In reality, these parameters are very difficult to estimate due to different environment conditions. Thus,
the values of these parameters are most likely to vary from one region to another. In fact, the values
might be very different for rural and urban areas. We assume that the natural birth rate is equal to
the natural death rate for the human population since we are interested in fitting the model to the
real data of the year 2015 and study the identifiability of the parameters. This is considered a short
period where the births can be balanced with deaths. For instance, in [25], the authors did not even
consider the births and deaths, even though these might affect the dynamics. For mosquitoes, there are
no reliable data; thus, we adopted a conservative approach similar to the one used in [25]. The model
could be expanded to consider the variation of mosquito populations. This can be done adding a
seasonal forcing function [42], but will introduce additional parameters to the model. Furthermore,
it will compromise the identifiability more, which currently is an important issue.

Under the above hypotheses, the following diagram illustrates the interactions of the
Chikungunya infection in human and mosquito populations; see Figure 1.

Figure 1. Dynamics of the Chikungunya virus with transmission vector. The boxes represent the
subpopulation and the arrows the transition between the subpopulations. Arrows are labeled by their
corresponding model parameters.
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The corresponding mathematical model is given by the following system of ordinary
differential equations:

Ṡh(t) = μhNh(t)− Sh(t)(β′
1

Iv(t)
Nh(t)

+ dh),

Ėh(t) = β′
1Sh(t)

Iv(t)
Nh(t)

− Eh(t)(dh + α),

İh(t) = αEh(t)− Ih(t)[dh + γ],
Ṙh(t) = γIh(t)− Rh(t)(ρ + dh),
Ċh(t) = ρRh(t)− dhCh(t),

Ṡv(t) = μvNv(t)− Sv(t)(β2
Ih(t)
Nh(t)

+ dv),

Ėv(t) = β2Sv(t)
Ih(t)
Nh(t)

− Ev(t)(dv + φ),

İv(t) = φEv(t)− dv Iv(t).

(1)

Adding the first five equations, one gets:

Ṅh(t) = Ṡh(t) + Ėh(t) + İh(t) + Ṙh(t) + Ċh(t) = 0

and therefore, the human population is constant. Analogously, by adding the last three equations,
we have that:

Ṅv(t) = Ṡv(t) + Ėv(t) + İv(t) = 0

and likewise, the mosquito populations is constant. Thus, we will denote Nh(t) = Nh and Nv(t) = Nv,
without dependency on time.

All parameters in this model are non-negative. It is easy to prove that the system (1) is well-posed,
in the sense that if the initial data ( Ṡh(0), Ėh(0), İh(0), Ṙh(0), Ċh(0), Ṡv(0), Ėv(0), İv(0) ) are in the
region R8

+, then the solutions will be defined for all time t ≥ 0 and remain in this region.
Normalizing the human and mosquito populations,

sh(t) =
Sh(t)
Nh(t)

, eh(t) =
Eh(t)
Nh(t)

, ih(t) =
Ih(t)
Nh(t)

, rh(t) =
Rh(t)
Nh(t)

, ch(t) =
Ch(t)
Nh(t)

,

and:

sv(t) =
Sv(t)
Nv(t)

, ev(t) =
Ev(t)
Nv(t)

, iv(t) =
Iv(t)
Nv(t)

.

Using the assumptions μh = dh and μv = dv, one can obtain the following system that describes
the dynamics of Chikungunya in each class:

ṡh(t) = dh − sh(t)(β1iv(t) + dh),
ėh(t) = β1sh(t)iv(t)− eh(t)(dh + α),
i̇h(t) = αeh(t)− ih(t)[dh + γ],
ṙh(t) = γih(t)− rh(t)(ρ + dh),
ċh(t) = ρrh(t)− dhch(t),
ṡv(t) = dv − sv(t)(β2ih(t) + dv),
ėv(t) = β2sv(t)ih(t)− ev(t)(dv + φ),
i̇v(t) = φev(t)− dviv(t).

(2)

where β1 = mβ′
1 = Nv

Nh
β′

1. Now, we can define a more specific region,
Ω = {(sh(t), eh(t), ih(t), ch(t), sv(t), ev(t), iv(t)) ∈ [0, 1]8}, and the solutions will be defined for
all time t ≥ 0 and remain in this region Ω.
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3. Analysis of the Model

3.1. Equilibrium Points and Local Stability of the Chikungunya Mathematical Model

Setting the right-hand side of Equation (2) equal to zero, we can find the equilibrium
points of the model. The first point is denoted as the disease-free equilibrium (DFE),
and the other is called the endemic equilibrium (EE). Thus, we obtain the equilibrium point
DFE = (1, 0, 0, 0, 0, 1, 0, 0). On the other hand, the mathematical expression of the other equilibrium
point EE = (S∗

h , E∗
h , I∗h , R∗

h, C∗
h , S∗

v , E∗
v , I∗v ), is extremely long. Therefore, we will present this endemic

equilibrium (EE) in terms of I∗h . It is important to mention that our main interest is to obtain the
conditions under which the population is free of disease. We will discuss later the endemic equilibria
and under which conditions they exist.

For infectious diseases, the basic reproduction number is denoted as R0 and is one of the most
useful threshold parameters. It can help determine whether or not an infectious disease will spread
throughout a population [43,44]. R0 also has been used for social epidemics [18,45].

In order to compute the basic reproduction number R0 for the mathematical model (2), we apply
the next generation technique as proposed in [43,44,46]. The infectious classes in this model are eh(t),
ih(t), ev(t), and iv(t). Thus, at the DFE, one gets,

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 β1

0 0 0 0

0 β2 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦,

and:

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

α + dh 0 0 0

−α dh + γ 0 0

0 0 dv + φ 0

0 0 −φ dv

⎤
⎥⎥⎥⎥⎥⎥⎦,

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 β1φ
dv(dv+φ)

β1
dv

0 0 0 0

β2(αd2
v+αdvφ)

(α+dh)dv(dh+γ)(dv+φ)
β2

dh+γ 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where the matrix F is related to the rate of increase of secondary infections and V to the rate of the
disease progression, death, and recovery. The next generation matrix, K = FV−1, is non-negative,
and therefore, it has a non-negative eigenvalue R0 = ρ(FV−1) and a non-negative eigenvector ω

associated with R0 [43,46].
There are no other eigenvalues of the matrix K with modulus greater than R0. Therefore, applying the

next generation matrix, we obtain:

R0 =

√
β1β2αφ

(α + dh)dv(dh + γ)(dv + φ)
, (3)

or in a more compact form:

R0 =

√
β1β2αφ

ABCdv
,

6



Math. Comput. Appl. 2019, 24, 6

where A = (α + dh), B = (dh + γ), and C = (dv + φ).
Thus, we obtain the following theorem [43,44]:

Theorem 1. The disease-free equilibrium DFE is locally asymptotically stable for R0 < 1 and unstable for
R0 > 1.

This analysis shows that when the threshold parameter R0 is less than unity, the disease disappears,
while the opposite results show an endemic equilibrium in the human population.

Notice that the basic reproduction number R0 has in the numerator all the factors that contribute
to having an epidemic outbreak. For instance, we have the Chikungunya transmissibility β1 from
an infected vector to a susceptible human and the Chikungunya transmissibility β2 from an infected
human to a susceptible vector. In addition, we have the incubation rates of the virus for humans and
mosquitoes α and φ, respectively. Notice that both chronic and recovered classes have a limited role in
the Chikungunya dynamics, since their equations are in some sense uncoupled from the rest of the
model and do not play a role in the threshold parameter R0.

3.2. Endemic Equilibria

In order to find the endemic equilibrium point, we set the right-hand side of Equation (2)
equal to zero, and at least one of the infected components of the model (2) is different than zero.
Let EE = (S∗

h , E∗
h , I∗h , R∗

h, C∗
h , S∗

v , E∗
v , I∗v ) represent any arbitrary endemic equilibrium point. Solving the

equations for the steady state, we obtain:

S∗
h =

ABC(dv + β2 I∗h )
αφμvβ1β2

, E∗
h =

B
α

I∗h , R∗
h =

γ

ρ + dh
I∗h ,

C∗
h =

ργ

dh(ρ + dh)
I∗h , S∗

v =
dv

dv + β2 I∗h
, E∗

v =
β2dv

C(dv + β2 I∗h )

I∗v =
β2φI∗h

C(dv + β2 I∗h )
.

Since we assume that I∗h �= 0, then we can substitute S∗
h and I∗v in the first equation of Model (2) at

the steady state. Thus, after some calculations, we get,

dh − ABβ1β2φI∗h − ABC(dv + β2 I∗h )dh

αφβ1β2
= 0.

Then, solving for I∗h , one gets:

I∗h =

dh −
(

ABCdvdh
αφβ1β2

)
ABβ1β2φ +

ABCdh
αφβ1

.

Using the threshold parameter R0, we can rewrite the value of I∗h as:

I∗h =

dh

(
1 − 1

R2
0

)

ABβ1β2φ +
ABCdh
αφβ1

.

Clearly, if R0 < 1, then I∗h is negative. Thus, in order to have a positive realistic endemic
equilibrium point for I∗h , the threshold parameter R0 must be greater than one.

7
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3.3. Global Stability Analysis

We can study the global stability of the disease-free equilibrium point DFE = (1, 0, 0, 0, 0, 1, 0, 0)
using a Lyapunov function.

Theorem 2. The disease-free equilibrium DFE is globally asymptotically stable on Ω for R0 < 1.

Proof. In order to establish the global stability of the disease-free equilibrium point
DFE = (1, 0, 0, 0, 0, 1, 0, 0), we are going to construct a Lyapunov function V(t) [47,48]. The main

idea is to find some positive constant weights Wi such that
dV(t)

dt
< 0 if R0 < 1. Let us define the

following Lyapunov function:

V(t) = W1

(
sh − 1 − log sh

)
+ W2eh + W3ih + W4

(
sv − 1 − log sv

)
+ W5ev + W6iv.

Taking the derivative with respect to time along the solutions of the model (2), one gets:

dV(t)
dt

= W1

(
1 − 1

sh

)[
dh − shβ1iv − shdh

]
+ W2

[
β1shiv − eh(dh + α)

]
+ W3

[
αeh − ih(dh + γ)

]

+W4

(
1 − 1

sv

)[
dv − svβ2ih − svdv)

]
+ W5

(
β2svih − ev(dv + φ)

)
+ W6

(
φev − dviv

)
.

Rearranging and using A = (α + dh), B = (dh + γ), and C = (dv + φ), one gets:

dV(t)
dt

= −W1β1shiv

(
(sh − 1)2

sh

)
− W4β2svih

(
(sv − 1)2

sv

)
+ (W2 − W1)β1shiv

+(W5 − W4)β2svih + (W3α − W2 A)eh + (W6φ − W5C)ev

+(W4β2 − W3B)ih + (W1β1 − W6dv)iv

Then, we have several options in order to obtain
dV(t)

dt
< 0. If we set W4 =

αφβ1β2

ACdv
, we can set

W3 = 1, and then, the coefficient of ih will be negative if R0 < 1. Then, we can set the other weights

in order to cancel the other terms. Thus, we can set W2 =
α

A
, W5 = W4, W1 = W2, and W6 =

αβ1

Adv
.

Therefore, we have only:

dV(t)
dt

= −W1β1shiv

(
(sh − 1)2

sh

)
− W4β2svih

(
(sv − 1)2

sv

)
+ (R0 − 1)Bih.

Theorem 3. If R0 > 1, then the epidemiological model (2) is uniformly persistent.

Proof. Let V be defined as above. When sh = 1 and sv = 1, it follows that:

dV(t)
dt

> 0,

assuming (β1β2αφ)− (ABCdv) > 0 by hypothesis. Thus, by continuity, V′ > 0 in a neighborhood
of {(1, 0, 0, 0, 0, 1, 0, 0)} provided R0 > 1. Then, the solutions in the positive cone sufficiently close
to {(1, 0, 0, 0, 0, 1, 0, 0)} move away from {(1, 0, 0, 0, 0, 1, 0, 0)}, implying that {(1, 0, 0, 0, 0, 1, 0, 0)} is
unstable and a repeller in Ω. Since EE = (S∗

h , E∗
h , I∗h , R∗

h, C∗
h , S∗

v , E∗
v , I∗v ) is the only equilibrium that lies

8
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in Ω and is isolated, therefore, by means of Theorem 2.2 [48], we show that the instability of the DFE
equilibrium point implies the uniform persistence of System (2).

Notice that the uniform persistence and the positive invariance of the compact set Ω imply the
existence of the endemic equilibrium EE of (2).

In order to establish the global stability of the endemic equilibrium EE = (s∗h, e∗h , i∗h , r∗h , c∗h, s∗v , e∗v , i∗v),
we can construct a Lyapunov function. For instance, a general form of Lyapunov functions used in the
literature of mathematical biology is L = ∑n

i=1 Wi(xi − x∗i − x∗i ln xi
x∗i
), originally from the first integral

of a Lotka–Volterra system [48].

Theorem 4. If R0 > 1, then the EE point is globally asymptotically stable on Ω.

Proof. The main idea is to find some positive constant weights Wi such that
dV(t)

dt
< 0 if R0 > 1.

Let us define the following Lyapunov function:

V(t) = W1

(
sh − s∗h − s∗h log

sh
s∗h

)
+ W2

(
eh − e∗h − e∗h log

eh
e∗h

)
+ W3

(
ih − i∗h − i∗h log

ih
i∗h

)

+W4

(
sv − s∗v − s∗v log

sv

s∗v

)
+ W5

(
ev − e∗v − e∗v log

ev

e∗v

)
+ W6W1

(
iv − i∗v − i∗v log

iv

i∗v

)
.

Taking the derivative with respect to time along the solutions of the model (2), one gets:

dV(t)
dt

= W1

(
1 − s∗h

sh

)
ṡh(t) + W2

(
1 − e∗h

eh

)
ėh(t) + W3

(
1 − i∗h

ih

)
i̇h(t)

+W4

(
1 − s∗v

sv

)
ṡv(t) + W5

(
1 − e∗v

ev

)
ėv(t) + W6

(
1 − s∗v

sv

)
i̇v(t).

Using the equations of Model (2), we obtain:

dV(t)
dt

= W1

(
1 − s∗h

sh

)[
dh − sh(t)(β1iv(t) + dh)

]
+ W2

(
1 − e∗h

eh

)[
β1sh(t)iv(t)− eh(t)(dh + α)

]

+W3

(
1 − i∗h

ih

)[
αeh(t)− ih(t)[dh + γ]

]
+ W4

(
1 − s∗v

sv

)[
dv − sv(t)(β2ih(t) + dv)

]

+W5

(
1 − e∗v

ev

)[
β2sv(t)ih(t)− ev(t)(dv + φ)

]
+ W6

(
1 − s∗v

sv

)[
φev(t)− dviv(t)

]
.

Now, setting W1 = W2 = 1, W3 =
β1s∗hi∗v

αe∗h
, W4 = W5 =

β1s∗hi∗v
β2s∗vi∗h

, and W6 =
β1s∗hi∗v

φe∗v
and using the

information regarding the EE point, one gets:

dV(t)
dt

= dhs∗h
(

2 − sh
s∗h

− s∗h
sh

)
+ β1s∗hi∗v

(
1 − s∗h

sh

)
+ β1s∗hi∗v

(
1 − shive∗h

s∗hi∗veh

)

+β1s∗hi∗v
(

1 − ehi∗h
e∗hih

)
+

β1s∗hi∗vdv

β2i∗h

(
2 − sv

s∗v
− s∗v

sv

)
+ β1s∗hi∗v

(
1 − s∗v

sv

)

+β1s∗hi∗v
(

1 − svihe∗v
s∗vi∗hev

)
+ β1s∗hi∗v

(
1 − evi∗v

e∗viv

)
.

9
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Doing some rearrangement, we obtain:

dV(t)
dt

= dhs∗h
(

2 − sh
s∗h

− s∗h
sh

)
+

β1s∗hi∗vdv

β2i∗h

(
2 − sv

s∗v
− s∗v

sv

)

+β1s∗hi∗v
(

6 − s∗h
sh

− shive∗h
s∗hi∗veh

− ehi∗h
e∗hih

− s∗v
sv

− svihe∗v
s∗vi∗hev

− evi∗v
e∗viv

)
Since the arithmetic mean is greater than or equal to the geometric mean, we have:(

2 − sh
s∗h

− s∗h
sh

)
≤ 0,

(
2 − sv

s∗v
− s∗v

sv

)
≤ 0

(
6 − s∗h

sh
− shive∗h

s∗hi∗veh
− ehi∗h

e∗hih
− s∗v

sv
− svihe∗v

s∗vi∗hev
− evi∗v

e∗viv

)
≤ 0

Thus, V̇(t) ≤ 0 for all (sh, eh, ih, rh, ch, sv, ev, iv) ∈ Ω, and the strict equality V̇(t) = 0 holds only
for (sh = s∗h, eh = e∗h , ih = i∗h , rh = r∗h , ch = c∗h, sv = s∗v, ev = e∗v , iv = i∗v). Then, the EE point is globally
asymptotically stable whenever R0 > 1.

4. Numerical Simulation

In this section, a set of numerical simulations using the mathematical model of Chikungunya (2)
is performed in order to support the presented theoretical results and validate the importance of
the threshold parameter R0. Those simulations also help us to better understand the relationships
among the different groups of the human and vector populations, the parameters, and the dynamics of
Chikungunya at the population level. The numerical simulations are presented using the proportions
of the subpopulations in Model (2) in order to observe easily the dynamics of Chikungunya. In addition,
the simulation results are presented using the parameter values presented in Table 1, which corresponds
approximately to the current Colombian scenario. All simulations were done using an adaptive
Runge–Kutta–Fehlberg method of order four [49].

Table 1. Parameter values for mathematical model of Chikungunya (2).

Parameter Symbol Values Rate

Average life-span of the human host [50] 1
μh

25.000 Days 0.00004

Average life-span of the vector [51] 1
μv

14 Days 0.07133

Average incubation time of the virus (latency in the humans) [52] 1
α 5–12 Days 0.133

Average incubation time of the virus (latency in the vector) [28,53] 1
φ 3 Days 0.33

Average infection time (infection in humans) [51] 1
γ 5–15 Days 0.066

Chronic time [54,55] 1
ρ 300 Days 0.0033

4.1. Numerical Simulations for R0 < 1

First, we perform numerical simulations of the Chikungunya model (2) when the threshold
parameter R0 < 1 in order to corroborate that the infected populations vanish and to observe the
dynamics of the susceptible recovered and chronic populations. We run the simulations for a time long
enough so we can observe both the transient dynamics and the steady states of the system.

For this first numerical simulation, the parameter values used are those presented in Table 1,
but β1 = 1/720. In this particular scenario, the numerical value of β1 is chosen such that R0 < 1.
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As can deducted directly from the Chikungunya model (2), the units of all these parameters are
in days−1, except βi, which measures the effective contacts per day, i.e., the total number of contacts,
effective or not, per unit day, multiplied by the risk of infection with Chikungunya virus.

In Figure 2, it can be observed that for R0 ≈ 0.93, the infected population I(t) dies out, and the
susceptible population approaches the disease-free steady state value Sd = 1. Moreover, the steady
state is as expected the disease-free equilibrium DFE = (1, 0, 0, 0, 0, 1, 0, 0). In this way, if health
institutions have to reduce the Chikungunya prevalence in the population, then they need to introduce
changes in the health policies that affect the corresponding parameters related to R0 in order to reduce
its value.

Figure 2. Numerical simulation of the Chikungunya model (2) when the threshold parameter
R0 = 0.987. The parameter values are those presented in Table 1, but β1 = 1/720.

4.2. Numerical Simulations for R0 > 1

The second numerical simulation of the Chikungunya model (2) is when the threshold parameter
R0 > 1. For this particular scenario, the infected populations persist over time, as well as the susceptible
and recovered populations. As in the previous scenario, we run the simulations for a time long enough
so we can observe both the transient dynamics and the steady states of the system.

In Figure 3, it can be observed that for R0 ≈ 1.1977, the infected subpopulations i(t) and iv(t)
persist and approach an endemic steady state value. However, notice that despite the time-invariant
parameter values, the infected subpopulations oscillate at the beginning and then reach a steady
state. Thus, some slight changes of the parameter values due to environmental events may change the
outcome dynamics. It is important to remark that if health institutions want to reduce the Chikungunya
prevalence in the population, then they need to introduce changes in the health policies that affect the
corresponding parameters related to R0 in order to reduce its value.

4.3. Sensitivity Analysis of the Transmission Parameters

Here, we investigate the relevance of each transmission parameter of the Chikungunya model (2)
on the dynamics of the subpopulation of humans infected by the virus. To answer this key question,
we need to compare the impact of those parameters on the outcome of the infected. As has been
mentioned, the threshold parameter R0 plays a determinant role in the different subpopulations of
the model.

In the previous numerical simulation, we can see in Figure 4 that varying the transmission
parameter β2 allows us to observe the effect of this parameter on the dynamics transmission of
the disease in the human and mosquito population. In all these simulated scenarios, the human
population is exposed to the mosquitoes infected by the Chikungunya virus. Based on the fact that the
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human population exposed to the Aedes aegypti in Colombia is 19 million [51] and assuming different
values of the transmission parameter β2, we can roughly estimate the number of infected humans by
Chikungunya virus, as given in Table 2.

Figure 3. Numerical simulation of the Chikungunya model (2) when the threshold parameter
R0 = 1.1977. The parameter values are those presented in Table 1, but β1 = 1/600.

Figure 4. The dynamics of the different subpopulations are sensitive to the changes of the parameter β2.

Table 2. Variation of the β2 parameter and its effects on the infected human population.

Value β2
3
8

14
50

2
25

Value of R0 4.94 4.27 2.28
Value of Infected Population 7.142 million 6.993 million 5.551 million

5. Estimation of Parameters for the Colombian Scenario

The dynamics of systems are, in general, too complex to allow intuitive predictions and require
the support of mathematical modeling for quantitative assessments and a reliable understanding of
the system functioning [56]. Moreover, one of the most difficult tasks of mathematical modeling is the
estimation of model parameters.

The proposed Chikungunya mathematical model (2) establishes mathematical relationships
among the eight different sub-populations and allows for the flux of individuals between
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sub-populations. Therefore, several parameters that regulate these relationships and fluxes appear in
the model. However, the estimation of these model parameters is not a straightforward task.

5.1. Fitting Algorithm

In order to use the Chikungunya mathematical epidemiological model (2) to simulate the
dynamics of Chikungunya virus in the Colombian population, it is necessary to set the parameter
values of the model. However, some of the parameter values are not accurately known or belong to
different regions. Here, we rely on some parameter values that are available in scientific journals or
based on medical considerations. One aim here is to explain the qualitative and quantitative behavior
of the Chikungunya infection dynamics at the population level in Colombia for the year 2015.

The Chikungunya disease data were collected using available cumulative data from a national
health institution in Colombia. In Table 3, we can see the seroprevalence of Chikungunya infection for
different weeks of 2015 in Colombia.

Table 3. Data provided by the National Institute of Health-SIVIGILA, Colombia. The first row
corresponds to the number of the week of the year 2015. The second row shows the number of
infectious individuals for whom Chikungunya was detected in each week because those people went
to see a doctor and it was reported.

Week 1 2 3 4 5 6 7 8

Cases 15,000 16,200 16,100 14,800 13,900 14,000 12,950 12,100
Week 9 10 11 12 13 14 15 16
Cases 13,900 13,000 12,200 11,900 8300 12,200 12,000 11,800
Week 17 18 19 20 21 22 23 24
Cases 13,700 13,600 11,900 11,700 11,500 9800 7900 8000
Week 25 26 27 28 29 30 31 32
Cases 7800 6100 6200 5000 5700 4000 2900 2300
Week 33 34 35 36 37 38 39 40
Cases 2100 2000 1900 1900 1950 1800 1900 1700
Week 41 42 43 44 45 46 47 48
Cases 1750 1750 1650 1600 1650 1500 1600 1000
Week 49 50 51 52
Cases 1000 1600 1000 900

In order to adjust the Chikungunya mathematical model (2) to the time-series data of Chikungunya
seroprevalence in Colombia, the only parameters to be estimated by a fitting process to real data
are the Chikungunya transmissibility β1 from infected vector to susceptible human, Chikungunya
transmissibility β2 from an infected human to a susceptible vector, and the initial infected human
and mosquito proportions. The parameters β depend on the number of bites per unit of time and the
transmission probability per bite [57].

In regard to initial conditions for the year 2015, we have several assumptions due to the lack of
real data for the vector and human populations. However, we think that the assumptions are biological
plausible since we take into account some available data in conjunction with parameter values that
are known from the related literature. As we have mentioned before, we used the proportions of the
subpopulations in the Chikungunya mathematical model (2). It is important to point out that the
data presented in Table 3 are related to individual cases, but we transform these data to proportional
values related to the real demographic data of Colombia. We use a total population of 19,471,223,
since this is the number of inhabitants that live within the 2200 m where the mosquitoes that transmit
the Chikungunya virus live [51,58]. The following initial conditions based on the proportion of infected
humans i0(ih(0)) are assumed: e0 = i0/2 based on the fact that the latent or exposed stage is half of
the infected one; r0 = i0/40 based on the fact that it takes 300 days for a recovered person to start
suffering chronic symptoms and with a probability of approximately 5% [54,55]. Finally, we set the
initial condition for the proportion of chronic individuals as c0 = 0.05 × r0, and the initial condition
for the susceptible population is just found using the relation s0 = 1 − e0 − i0 − r0 − c0. For the vector
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population, we do not have any real data. We will assume that the proportion of vectors at the eclipse
phase is a tenth of the infected vectors based on the duration of the latent and infectious stages of the
mosquitoes. Here, the simulation interval period of 2015 has been chosen according to the available
Chikungunya seroprevalence data in Colombia.

The fitting process to adjust the Chikungunya mathematical model (2) to the time-series data of
Chikungunya in Colombia corresponding to the year 2015 is done minimizing the sum of squared errors
(SSR). We use two algorithms to find the minimum SSR. We initially used a genetic algorithm [59],
which performs a broad search of the parameter space and is less dependent on the initial guess.
Once the genetic algorithm had found a good fit, these parameters were used as the initial guess for
the trust-region-reflective and interior point algorithms [60,61], which search a more localized region
of the parameter space. The use of several different algorithms increases the probability of finding the
global minimum for the SSR.

In order to compute the best fitting, we carried out computations, and we implemented the
SSR function,

F : R3 −→ R

(β1, β2, iv(0)) −→ F (β1, β2, iv(0))

where β1, β2, and iv(0) are variables such that:

1. For a given (β1, β2, iv(0)), numerically solve the system of differential Equation (2) and obtain
a solution Ŷj(t) = ( ˆshj, ˆehj, ˆihj, ˆrhi, ˆchj, ˆsvj, ˆevj, ˆivj), which is an approximation of the real data
solution Y(t).

2. Set t0 = 0 (the fitting process starts at Week 0), and for t = 0, 1, 2, . . . , 51, corresponding to weeks
where data are available, evaluate the computed numerical solution for subpopulation ih(t); i.e.,
îh(0), îh(1), îh(2),. . ., îh(51).

3. Compute the sum of square of the difference between îh(0), îh(1), îh(2),. . ., îh(51), and infectious
data in Table 1. This function F returns the sum of squared errors (SSR), where for the Colombia
data are given by:

SSR =
51

∑
j=0

(îh(j)− ih(j))2

4. Find a global minimum for the the sum of squared errors (SSR) using genetic,
trust-region-reflective, and interior point algorithms.

The function F takes values in R3 and returns a positive real number, the SSR that measures
the closeness of the scaled infectious population (ih(t)), provided by the model, to time-series data.
In order to ensure that parameter estimates are biologically realistic, we placed bounds on some of the
parameters. Thus, for instance, we can obtain values for iv(0) only from the interval (0, 1) or positive
values for β1 and β2.

5.2. Numerical Simulation of the Chikungunya Mathematical Model

In this section, numerical results for the solution of the Chikungunya mathematical model (2)
are presented. Since no analytic solution to the nonlinear fractional system (2) is available, we use
a Runge–Kutta-type method to compute the solution numerically. The data from Colombia related
to Chikungunya are from Weeks 1–52. It is important to remark that the data only show a small
increasing interval for infected cases and the full decreasing interval. This is due to the fact that at
the beginning of the Chikungunya epidemic, the health institutions diagnosed the cases using just
symptoms instead of the lab tests that confirm a real infected case. Therefore, health institutions
in Colombia disregarded most of the first increasing period in order to avoid inaccurate reports of
Chikungunya. Notice that Dengue virus causes similar symptoms to the Chikungunya virus in human
populations. Thus, lab tests are necessary to differentiate between both epidemics.

In order to fit the Chikungunya mathematical model (2) to the time-series data of Chikungunya
cases in Colombia, we need to estimate the parameters β1, β2, and iv(0). As a first approach, we set
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the initial proportion of latent and infected humans based on the real data. Thus, we only need to
estimate initially β1, β2, and iv(0). In other works, different assumptions regarding the initial infected
and latent populations for humans and vectors have been assumed. For instance, in [62], the authors
assumed that the initial numbers of latent and infectious people were equal, and analogously for the
mosquito population.

The confirmed cases of Chikungunya from the year 2015 in Colombia and the best model fit
along with the best fit parameter values are shown in Figure 5. It can be seen graphically that the
Chikungunya mathematical model (2) produces a good adjustment to the real data and predicts
that the epidemic will disappear in Colombia due to a R0 = 0.79. In addition, the epidemic
peak of the mathematical model approximates well the peak of the real data. It is important to
mention that the Chikungunya mathematical model (2) generates epidemic data that fit well in
terms of the SSR. The Chikungunya mathematical model (2) gives a smoother curve due to its
deterministic nature, as was expected. In order to catch the natural irregularity of the real data,
it would be necessary to introduce stochastic factors to the model, which allows one to obtain a more
accurate fitting [63]. However, introducing stochastic or temporal factors would require more detailed
information regarding the dynamics of the population in Colombia, and the complexity of the model
would increase. It is important to mention that the irregularity of the real data has been observed
in many other studies related to other diseases, and can be explained due to different reasons such
as weather, under-reporting, the stochastic nature of the virus diffusion, spatial effects, or even the
heterogeneity of the human and mosquito population [19]. In Figure 6, the long-term dynamics of the
humans with chronic rheumatoid symptoms can be observed. It can be seen that this class population
will reach a peak and then start to decrease due to the natural death rate and the decay of new infected
humans over the long term.

Additionally, we considered different scenarios fixing the initial conditions for the mosquito
infected population iv(0) and fitting the initial infected human population ih(0). However, the most
important difference with the previous best fit scenario is that the values of the parameters β2 and β1

varied in such way that they compensated each other in order to be able to fit the real data level of
infected humans. This compensation makes total sense since the transmission parameters βs are going
to depend on the initial infected vector population iv(0). The smaller iv(0) is, the greater should be
the transmission parameter from vector to humans in order to reproduce the real number of infected
cases. However, we notice that the basic reproduction number R0 stays approximately constant for all
the scenarios. Thus, from the results, we obtained a robust numerical value for the basic reproduction
number R0, regardless of the initial proportion of infected mosquitoes.

Finally, we present the numerical simulations for larger values of iv(0). We vary iv(0) from 0.2
(20%) to 0.5 (50%) in order to observe other potential realistic scenarios. The idea is to test hypotheses
that consider larger values for the initial proportion of infected vectors iv(0). The best model fits can
be seen in Figure 7. It can be observed graphically that the mathematical model (2) does not fit the real
data well for large values of iv(0). Based on these results and the real data available, we can infer that
these large value scenarios are unlikely for Colombia in 2015. Moreover, notice that for larger values of
the initial proportion of infected vectors iv(0), the model fits to the real data deteriorate. Thus, we have
highlighted some likely scenarios for the parameter values of β1, β2, iv(0), and i0 that can help to
analyze some potential scenarios beyond the data and with some intervention strategies. Moreover,
this allows us to compare with different regions where other parameter values have been obtained and
then raise some questions regarding the explanations of these differences. In the next section, we will
provide further analysis regarding the identifiability of the parameters, the initial conditions, and the
basic reproduction number R0.
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Parameter β1 β2 iv(0) SSR R0

Value 0.361 0.012 2.186 × 10−4 4.701 × 10−7 0.77

Figure 5. Best fit of the Chikungunya mathematical model (2) to the time-series data of Chikungunya
in Colombia corresponding to the year 2015. Red points give the real data, and the blue line shows the
best model fit. The best fit parameter values are given in the table. SSR, sum of squared errors.

Figure 6. Dynamic of the chronic infected individual humans using the fit of the Chikungunya mathematical
model (2) to the time-series data of Chikungunya in Colombia corresponding to the year 2015.

Figure 7. Best fits of the Chikungunya mathematical model (2) to the time-series data of Chikungunya
in Colombia corresponding to the year 2015. The initial proportion of infected vectors iv(0) varies from
0.2 (20%) to 0.5 (50%).
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5.3. Identifiability of the Parameters

As we mentioned before, the parameters β1 and β2 are not fully identifiable. Moreover, we do
not have real data regarding initial conditions for the different subpopulations, but based on our
assumptions, all of them can be set in terms of the initial conditions for the infected human and vector
populations. Here, we use two approaches: for the first one, we fixed the initial condition of the
infected humans to the real data, and consequently, we minimized the function F in R3; the second
approach was just to leave the initial condition of infected humans as a parameter, and then, we
minimized the function F in R4.

We now extend our parameters’ identifiability analysis, by incorporating two numerical
techniques. These techniques are bootstrapping [34,64] and Markov chain Monte Carlo [35,36,39],
which allow us to introduce further information regarding the identifiability of the parameters and
corroborate the identifiability of the basic reproduction number R0. It is recommended to ensure that
the optimum parameter values of the model can be uniquely determined by the available real data.
For non-linear-based models, the issue of identifiability is not straightforward.

An important numerical tool often used to assess the uncertainty in estimated values is
bootstrapping [34,64]. The bootstrapping process begins with the generation of artificially-generated
datasets, which are created by sampling the best fit curve and adding error such that the SSR is equal
to the SSR of the original data. The mathematical model (2) is fitted to each of the surrogated datasets,
leading to new parameter estimates. A total of 3000 bootstrap replicates were performed using the
real data. In this way, we obtained estimates of the distribution of each parameter, as can be seen
in Figure 8. Roughly, it can be seen from the histograms that all the parameter estimates follow a
Gaussian distribution. These distributions were used to give the 95% confidence intervals, which are
shown in Table 4. This information is useful to have a measure of error in the parameter estimates.
There is some small skew present in the histograms of parameters Th and TM, which can be explained
by their correlation. However, we are more interested in the threshold parameter R0, which as can be
seen in Figure 9, is relatively stable around R0 = 0.78.

The bootstrapping method allows us to find correlations between estimated parameters.
In Figure 9, several two-parameter scatter plots for each of the 3000 bootstrap replicates can be
observed. In order to have two uncorrelated parameters, the scatter plot should be roughly a circle,
with no clear relationship between the two parameters. For the parameter iv(0), the plots show a little
bit of correlation, and this was in some way expected since iv(0) is a factor on how strongly the epidemic
starts. There is a clear correlation between the transmission parameters β1 and β2. This correlation in
some way is expected since both transmission parameters are related to the exposure of humans to
mosquitoes and vice versa. However, it is important to remark that we are more interested in their
product since the epidemic threshold parameter R0 is proportional to this product. These results
suggest that the threshold parameter R0 of the mathematical model (2)) is identifiable. Thus, we can
use the model with caution to describe the dynamics of the spread of Chikungunya in the population
of Colombia in the year 2016.

Table 4. Estimated parameters using the mathematical model (2) and the prevalence data of
Chikungunya in the population of Colombia in the year 2016.

Parameters R0 iv(0)

Values 0.78 (0.74–0.84) 2.18 × 10−4 (1.95 × 10−4–2.45 × 10−4)
Parameters β1 β2

Values 0.36 (0.34–0.38) 0.012 (0.011–0.13)

The 95% confidence intervals (bootstrap fits) are given in parentheses.
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Figure 8. Identifiability assessment of the mathematical model (2) fit to the prevalence data of
Chikungunya in the population of Colombia in the year 2016. Correlation plots generated with
parameter estimates from bootstrap fits.

The second numerical technique is based on Markov chain Monte Carlo [35,36]. In particular,
we used a stable algorithm of the affine-invariant ensemble sampler for Markov chain Monte Carlo
(MCMC) proposed in [65]. An algorithm that is affine invariant performs equally well under all
linear transformations; it will therefore be insensitive to covariances among parameters [66]. Markov
chain Monte Carlo is designed to sample from—and thereby provide sampling approximations
to–the posterior PDF efficiently [35,66]. In the algorithm that is used here, we draw samples from a
multivariate Gaussian density. It is necessary to set up the specific values of the hyperparameters in
three dimensions (β1, β2, iv(0)). In addition, we need to decide how many walkers there are, which are
in some way independent paths to reach the maximum of the likelihood function [65]. There are
different options to initialize each of the walkers. One of the best techniques is to start in a small ball
around the a priori preferred position [66]. It is important to mention that the walkers will spread
out and explore the whole space for the parameters. The main goal is to find the maximum of the
likelihood function, which is a Gaussian where the variance is underestimated by some fractional
amount. We can use Markov Chain Monte Carlo to obtain estimates and confidence intervals for
each of the parameters β1, β2, and iv(0). Moreover, we can observe some possible correlations among
the parameters.

In Figure 10, all the one- and two-dimensional projections of the posterior probability distributions
of the parameters can be seen. This allows us to observe all of the covariances between parameters.
In addition, the histograms show the marginalized distribution for a parameter or a set of parameters
using the results of Markov chain Monte Carlo. Thus, Figure 10 shows the marginalized distribution
for each parameter independently in the histograms along the diagonal and then the marginalized
two-dimensional distributions in the other panels [66]. Notice that the maximum likelihood function
profile is also presented. We can say that in order to have two uncorrelated parameters, the level
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curves’ plot should be close to circles, with no clear relationship between the two parameters. For the
parameter iv(0), the plots show less correlation in comparison with the ones with respect to β1 and β2,
and this was in some way expected since iv(0) is a factor of how strongly the epidemic starts. There
is a clear correlation between the transmission parameters β1 and β2, as we also observed with the
bootstrapping results. In fact, this relationship has the same pattern. This correlation in some way is
expected since both transmission parameters are related to the exposure of humans to mosquitoes and
vice versa. However, it is important to remark that we are more interested in their product since the
epidemic threshold parameter R0 is proportional to this product, as we have mentioned before. These
results agree with previous results regarding identifiability for epidemic models with vectors [67].

β

β

×

β

×

β

β

β ×

Figure 9. Identifiability assessment of the mathematical model (2) fit to the prevalence data of
Chikungunya in the population of Colombia in the year 2016. Correlation plots generated with
parameter estimates from bootstrap fits. Correlation between the parameters β1, β2, iM(0), and R0.
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Figure 10. Identifiability assessment of the mathematical model (2) fit to the prevalence data of
Chikungunya in the population of Colombia in the year 2016. Correlation plots generated with Markov
chain Monte Carlo for three (β1, β2, iv(0)) and four parameters (β1, β2, iv(0), ih(0)), respectively.

6. Conclusions

We present a mathematical model of the spread of the Chikungunya disease at the population
level that incorporates the transmission vector by including cross-transmission between the human
and vector populations. The proposed model includes a chronic subpopulation, which to the best
of our knowledge has not been considered in other mathematical models. We determined the
epidemic threshold parameter R0 for the extinction of disease using the method of the next generation
matrix. Using Lyapunov function theory, some sufficient conditions for the global stability of the the
disease-free equilibrium were obtained. Based on this parameter, we found the parameters that affect
the basic reproduction number R0 and therefore what would be the best policies to control the spread
of the Chikungunya disease. We verified that when the threshold parameter R0 is less than unity,
the disease disappears, while when threshold parameter values are larger than one, the disease persists
in the population. Numerical simulations were presented to support the established theoretical results.

Using the proposed mathematical model of Chikungunya diffusion, we were able to analyze the
dynamics of infection during the 2015 outbreak in Colombia. In particular, we estimated the numerical
values of the epidemiological parameters β1, β2, and the reproduction number R0. Based on numerical
results of the model of Chikungunya, we were able to better explain and understand the variation of
the number of infected cases with the Chikungunya virus in Colombia. We found that the transmission
parameters β1 and β2 were highly correlated.

Our estimated values for the reproduction number R0 ranged from 0.74–0.84 across the three
different scenarios proposed and also from the results of bootstrapping and Markov chain Monte
Carlo methods. However, notice that rain seasons have been changing recently due to climate change,
and that could affect some of the parameter values, which is one limitation of this model. The fitting of
the model to the observed weekly reports during the 2015 outbreak in Colombia is relatively good,
despite the natural irregularity of the real data. This irregularity of the data has been observed in
many other studies related to other diseases and can be due to different reasons such as weather,
under-reporting, the stochastic nature of the virus diffusion, spatial effects, or even the heterogeneity
of the human and mosquito population. All these factors were not considered here explicitly and are
other limitations of this work. Other limitations are the fact that the initial proportion of the different
subpopulations is unknown. More complex models are necessary to study all the aforementioned
factors, and future works might consider these factors or at least some of them. Another important
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aspect that we found in this study, based on the previous numerical simulations of the different
scenarios, is that the initial infected population of mosquitoes is likely no greater than 20% for the year
2015 in Colombia. To the best of our knowledge, we do not know if there are real data regarding this
particular description.

In this paper, we performed identifiability analysis in order to estimate some parameters of
the model and found correlations among the parameters of the model. We used the bootstrapping
technique and Markov chain Monte Carlo in order to assess the identifiability of the parameters of
the model. We found out that the parameters were not fully identifiable with the prevalence of the
real data that we had. However, we were able to identify that the reproduction number R0 ranged
from 0.74–0.84. It is important to notice that this result depends on some fixed parameter values
such as the duration of the infectious stage and the life-span of the mosquitoes. Changing values for
these parameters can change the aforementioned range for the reproduction number R0. However,
regardless of some potential changes, we presented a study with a methodology to deal with these
types of epidemic models when real data are available.

Finally, we can conclude that in order to reduce the Chikungunya disease diffusion, it is important
first to decrease the transmission parameters. For instance, people could use clothes covering most of
the body to avoid mosquito bits and could also use repellents. Any action that could reduce the infected
mosquitoes’ bites will affect the reproduction number R0. The aforementioned actions would reduce
the transmission of the virus in both directions. Another way to reduce the value of the reproduction
number R0 is to increase the mortality of the mosquito population. Therefore, a health policy that
could be implemented is to increase this mortality. Other parameters that are included in R0 such as
incubation or infected period are natural characteristics of the Chikungunya virus and are difficult
to modify.
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Abstract: A new mathematical model is presented to study the effects of macrophages on the
bone fracture healing process. The model consists of a system of nonlinear ordinary differential
equations that represents the interactions among classically and alternatively activated macrophages,
mesenchymal stem cells, osteoblasts, and pro- and anti-inflammatory cytokines. A qualitative analysis
of the model is performed to determine the equilibria and their corresponding stability properties.
Numerical simulations are also presented to support the theoretical results, and to monitor the
evolution of a broken bone for different types of fractures under various medical interventions.
The model can be used to guide clinical experiments and to explore possible medical treatments that
accelerate the bone fracture healing process, either by surgical interventions or drug administrations.

Keywords: bone repair; macrophages; immune system; cytokines; stem cells

1. Introduction

Bone fractures are becoming a serious worldwide problem, due to their high frequency and
surgical complications. Globally, more than 8.9 million fractures occur every year, where 10–15% of
them result in nonunion [1–5]. Prolonged healing, disabilities, and high morbidity rates are associated
with severe traumas and immune-compromised-fractured people [2,3,6–8]. In addition, medical care
costs for bone fractures are expected to be over US$25 billions by 2025; due, in part, to the expensive
treatments and prolonged hospitalization and rehabilitation [3,9]. It is essential to have a better
understanding of the bone fracture healing process, in order to prevent unsuccessful healing and to
develop optimal fracture union treatments.

Recently, experimental and mathematical models have demonstrated that macrophages strongly
regulate bone fracture healing [10,11]. Depletion of macrophages results in delayed bone formation [12].
Furthermore, during inflammation, classically activated macrophages attract mesenchymal lineage
cells (MSCs) to the injury site and activate the healing process [3,10,12]. In contrast, during the
repair phase, alternatively activated macrophages promote MSC proliferation and differentiation,
and accelerate bone healing [10,13]. However, the exact mechanisms by which macrophages contribute
to bone healing remain unclear [3,10,14]. Also, the interaction between macrophages and tissue cells,
as well as the importance of classically and alternatively activated macrophages during the bone
healing process, are still not clearly understood [10,12,13].

In [11], a mathematical model, based on the interactions among macrophages, MSCs, and osteoblasts,
was developed to study the regulatory effects of two generic pro- and anti-inflammatory cytokines during
the early stages of bone fracture healing. To our knowledge, it was the first attempt to incorporate the
macrophage interactions in the modeling of the bone fracture healing process. The mathematical model
revealed that high concentrations of pro-inflammatory cytokines negatively affect the healing time of
a fracture, while the administration of anti-inflammatory cytokines can accelerate the healing time in a
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dose-dependent manner. Therefore, it is important to carefully consider and incorporate in the modeling
approach all sources of pro- and anti-inflammatory cytokines, such as macrophages [2,3,15], in order
to correctly represent the complex progression of the bone fracture healing process.

In this paper, the mathematical model developed in [11] is extended, to separately incorporate the
two different phenotypes of macrophages: Classically and alternatively activated macrophages, as they
have distinct functions during the healing process [10,15,16]. Classically activated macrophages release
high levels of pro-inflammatory cytokines, including TNF-α and IL-1β, which exhibit inhibitory and
destructive properties in high concentrations [16,17]. In contrast, alternatively activated macrophages
are characterized by the secretion of anti-inflammatory cytokines, such as IL-10, which increase their
phagocytic activities, mitigate the inflammatory responses, promote growth, and accelerate fracture
healing [2,3,15,16]. This extension leads to a more realistic model, by incorporating the different
phagocytic rates and the separate production of the pro- and anti-inflammatory cytokines by the
two types of macrophages [15,18]. The model can be used to investigate the macrophage functions
during inflammation and their effects during the bone fracture healing process. The model can also be
used to investigate potential therapeutic treatments, based on the use of anti-inflammatory cytokines,
stem cells, and macrophages, suggesting possible ways to guide clinical experiments and bone tissue
engineering strategies [15,16].

The organization of the paper is as follows: Section 2 discusses the cellular and molecular interactions
that occur during the bone fracture healing process. The macrophage-mediated inflammation involved
in the bone fracture healing process is also described in detail. The simplifying assumptions are
presented in Section 3. In Section 4, a system of nonlinear ordinary differential equations is introduced,
to mathematically describe the fundamental aspects of the bone fracture healing process during the
resolution of inflammation and bone repair. The stability analysis of the system is presented in Section 5.
Section 6 demonstrates the functionality of the model, by numerically simulating the progression of the
bone fracture healing process under normal and pathological conditions. The discussion and future work
are presented in Section 7.

2. Biological Background

Bone fracture healing is a complex biological process, which involves the participation of different
cell types (including the immune system and mesenchymal lineage cells [16]) and is strongly regulated
by released molecular factors [10,16,19–21]. Particularly, at the beginning of the healing process,
cytokines activate and direct both immune and tissue cellular functions.

Cytokines are functionally classified into pro-inflammatory and anti-inflammatory families.
Pro-inflammatory cytokines, such as the tumor necrotic factor-α (TNF-α), activate the immune system
defense to kill bacteria and fight infections. Anti-inflammatory cytokines block the pro-inflammatory
synthesis and activate the mesenchymal lineage cellular functions [2]. Interleukin-10 (IL-10) is one of
the most potent anti-inflammatory molecules that inhibits pro-inflammatory production [2,22], and is
mainly delivered by macrophages and MSCs [2]. A correct balance between pro- and anti-inflammatory
cytokines during fracture healing is necessary for successful fracture repair. High levels of TNF-α
induce chronic inflammation and gradual destruction of cartilage and bone tissue [21], while the
absence of TNF-α results in nonunion or delayed nonunions [17,23].

Bone fracture healing can be described in three characteristic phases: Inflammatory, repair,
and remodelling (see Figure 1) [24]. During inflammation, necroses of cells result in the delivery
of pro-inflammatory cytokines which attract inflammatory immune cells, such as neutrophils and
monocytes [1,23], to the injury site. In response to their phagocytic activities, these cells magnify
the pro-inflammatory production, leading to an acute inflammation [17,23,25]. Subsequently,
monocytes differentiate into macrophages to down-regulate the inflammation and resolve it. Once this
differentiation begins, the influx of the inflammatory cells ceases, and they die out [26].

During the resolution of inflammation, macrophages increase their population by migration
and activate to their classical and alternative phenotypes, accordingly to the cytokine stimuli [16,27].
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The two phenotypes can also shift between each other during this process [28,29]. Macrophages
have the capability to release both pro- and anti-inflammatory cytokines through their different
phenotypes [28]. Classically activated macrophages release high concentration of pro-inflammatory
cytokines, including TNF-α, and low levels of anti-inflammatory cytokines [28], in response to their
engulfing functions. Alternatively activated macrophages secrete high levels of Il-10 and low levels of
TNF-α, as they continue with the clearance of debris and the modulation of inflammation [28].

During the repair phase, migrating MSCs contribute with the delivery of IL-10, and proliferate
or differentiate into fibroblasts, chondrocytes, and osteoblasts [2,30]. Fibroblasts and chondrocytes
proliferate and release the fibrinous/cartilagenous extracellular matrix, which fills up the fracture
gap [10,30,31] while osteoblasts proliferate and deposit the new bone, also called woven bone [30]. Bone
deposit results from mineralized collagen and other proteins being delivered by the osteoblasts [10].
After bone mineralization, osteoblasts remain on the bone surface or differentiate into osteocytes,
which become part of the bone extracellular matrix [32,33].

Figure 1. Inflammatory, repair, and remodeling phases of the bone fracture healing process. During
the inflammatory phase, debris (D) activates the healing process by attracting macrophages M0 to
the injury site, which subsequently activate into their M1 or M2 phenotypes. Activated macrophages
remove debris and secrete pro- and anti-inflammatory cytokines, such as tumor necrotic factor-α
(TNF-α) (c1) and interleukin-10 (IL-10) (c2), which regulate the inflammation and the cellular functions.
During the repair phase, migrating mesenchymal stem cells (MSCs) up-regulate IL-10 production,
proliferate, and differentiate into osteoblasts (Cb). Mesenchymal and osteoblast cells synthesize the
fibro/cartilage and woven bone, which closes the fracture gap. During the bone remodeling phase,
osteoblasts and osteoclasts constantly remove and deposit new bone until the fracture is fully repaired.

During the last phase of the bone fracture healing process, the fibrocartilage and the woven
bone are constantly removed and replaced by a functional bone [34]. This process is referred to as
bone remodeling, and consists of systematic tissue degradation and production by osteoclasts and
osteoblasts, respectively. Bone remodeling is a slow process, that can take months to years until the
bone recovers to its pre-injury state [14]. In a moderate fracture, acute inflammation is observed 24 h
after the injury; it also corresponds to the peak of TNF-α, which returns to baseline levels within
72 h [14,23]. Fibrinous/cartilaginous tissue production is observed in the first 3 days, peaks in about 10
to 12 days, and its removal starts as early as 21 days [30]. The inflammation is considered resolved when
the debris is eliminated, activated macrophages emigrate to the lymphatic nodes to die, and inactivated
macrophages return to their normal density [26]. These events are observed after two weeks from
the beginning of the healing process [34,35]. At approximately 28 to 35 days, osteoclasts populate
the injury site and a substantial removal of the fibrocartilage is observed [34]. The fracture healing
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outcome is considered a delayed union if the fibrous/cartilaginous tissue is not removed completely in
about 3 to 4 months after the injury, while it is considered a nonunion if no functional bone is obtained
in 6 months after the trauma [36].

3. Modeling Assumptions

The most important effects of macrophages on bone fracture healing are observed during the
inflammatory and repair phases of the healing process [11,16]. During the inflammatory phase,
macrophages modulate and resolve the inflammation while, during the repair phase, macrophages
provide an optimal environment for the cellular proliferation, differentiation, and tissue production.
The primary variables during the inflammatory and repair phases of the bone fracture healing
process are debris (D), unactivated macrophages (M0), classical macrophages (M1), alternative
macrophages (M2), MSCs (Cm), osteoblasts (Cb), pro-inflammatory cytokines (c1), anti-inflammatory
cytokines (c2), fibrocartilage (mc), and woven bone (mb).

The biological system interactions are depicted in Figure 2. The cells and cellular dynamics
are represented by the circular shapes and solid arrows. The molecular concentrations and their
production/decay are represented by the octagonal shapes and dashed arrows. The pro- and
anti-inflammatory cytokine activation/inhibition effects on the cellular functions are represented
by the dotted arrows. Removal of debris and the negative effect among the variables are represented
by the dot-ending dotted arrows.

Inflammation Repair

Figure 2. Flow diagram of the cellular and molecular dynamics during the inflammatory and repair
phases of the bone fracture healing process.

It is assumed that the cellular functions are regulated by c1 (such as TNF-α) and c2 (such as
IL-10). It is also assumed that c1 is delivered through cell necrosis and by the classically activated
macrophages, while c2 is delivered by the alternatively activated macrophages and MSCs. It is further
assumed that the repair process is governed by the production of mc and mb [30,37], whose final levels
are used to classify the outcome of the bone healing process. Additionally, it is assumed that the
debris D are proportional to the number of necrotic cells [11]. It is also assumed that unactivated
macrophages M0 do not release cytokines and do not engulf debris. Additionally, the population of M0

increases proportionally in size to the density of debris, up to a maximal value of Mmax [27]. The only
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source of activated macrophages, M1 and M2, is M0. Even though both phenotypes of activated
macrophages have the ability to release both pro- and anti-inflammatory cytokines, it is assumed
that only M1 deliver c1 and M2 deliver c2, as those are the major cytokines for each phenotype [38].
M0 activate to M1 under the c1 stimulus, while they activate to M2 under the c2 stimulus. M1 and
M2 macrophages do not de-differentiate back to the M0 macrophages [39], and are able to switch
phenotypes at a constant rate [29]. The accumulation of macrophages at the injury site is modeled by
its recruitment due to inflammation, which is assumed to be proportional to the debris density.

Furthermore, it is assumed that the differentiation rates of MSCs into osteoblasts and osteoblasts
into osteocytes are constant. MSCs synthesize the fibrocartilage, while osteoblasts synthesize the
woven bone. It is also assumed that only the fibrocartilage is constantly removed by the osteoclasts,
with the density of the osteoclasts being assumed proportional to the density of the osteoblasts [30].
In addition, it is assumed that the populations of the two tissue cells, Cm and Cb, experience logistic
growth, where the growth rates decrease linearly as the population sizes approach a maximum value,
Klm and Klb, respectively, imposed by the limited resources of the environment [30,40]. It is also
assumed that there is no recruitment of MSCs and osteoblasts.

4. Model Formulation

The inflammatory and repair phases of the bone fracture healing process are modeled with a
mass-action system of nonlinear ordinary differential equations. All variables represent homogeneous
quantities in a given volume. Following the outlined biological assumptions and the flow diagram
given in Figure 2 yields the resulting system of equations:

dD
dt

= −RD(ke1 M1 + ke2 M2) (1)

dM0

dt
= RM − G1M0 − G2M0 − d0M0 (2)

dM1

dt
= G1M0 + k21M2 − k12M1 − d1M1 (3)

dM2

dt
= G2M0 + k12M1 − k21M2 − d2M2 (4)

dc1

dt
= H1(k0D + k1M1)− dc1 c1 (5)

dc2

dt
= H2(k2M2 + k3Cm)− dc2 c2 (6)

dCm

dt
= AmCm

(
1 − Cm

Klm

)
− F1Cm (7)

dCb
dt

= AbCb

(
1 − Cb

Klb

)
+ F1Cm − dbCb (8)

dmc

dt
= (pcs − qcd1mc)Cm − qcd2mcCb (9)

dmb
dt

= (pbs − qbdmb)Cb (10)

Equation (1) describes the rate of change with respect to time of the debris density, which decreases
proportionally to M1 and M2. The engulfing rate RD is modeled by a Hill Type II function to represent
the saturation of the phagocyte rate of macrophages [38,41]:

RD =
D

aed + D
.

Equation (2) describes the rate of change with respect to time of the undifferentiated macrophages
density. It increases because of migration and decreases by differentiating into M1 and M2 or by a
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constant emigration rate. It is assumed that M0 migrate to the injury site proportionally to D, up to a
maximal constant rate, kmax, [22,28]:

RM = kmax

(
1 − M

Mmax

)
D,

where M = M0 + M1 + M2. The differentiation rates of M0 into M1 and M2 are stimulated by the
cytokines accordingly to Hill Type II equations, respectively [29]:

G1 = k01 × c1

a01 + c1
, G2 = k02 × c2

a02 + c2
.

Equation (3) describes the rate of change with respect to time of M1, which increases when M0

activates to M1, and M2 shifts phenotype; and decreases by emigration, and when M1 shift phenotype.
Similarly, Equation (4) describes the rate of change with respect to time of M2. Equations (5) and (6)
describes the rate of change with respect to time of c1 and c2. Here, k0, k1, k2, and k3 are the constant
rates of the cytokine productions and dc1 and dc2 are the cytokine constant decay rates. The inhibitory
effects of the anti-inflammatory cytokines are modeled by the following functions [29]:

H1 =
a12

a12 + c2
, H2 =

a22

a22 + c2
.

Equation (7) describes the rate of change with respect to time of Cm, which increases by cellular
division up to a constant-maximal carrying capacity, Klm, and decreases by differentiation [30].
The total MSC proliferation rate is modeled by [42]:

Am = kpm × a2
pm + apm1 c1

a2
pm + c2

1
,

where in the absent of inflammation, c1 = 0, MSC proliferate at a constant rate kpm. However,
when there is inflammation, c1 > 0, and the proliferation rate of MSCs increases or decreases according
to the concentration of c1 (i.e., high concentration levels of c1 inhibit Cm proliferation, while low
concentration levels of c1 accelerate Cm proliferation). The differentiation rate of Cm is inhibited by c1,
which is modeled by the following function [11]:

F1 = dm × amb1

amb1 + c1
.

Equation (8) describes the rate of change with respect to time of Cb. It increases when MSC
differentiate into osteoblasts, or when osteoblasts proliferate [30]. It decreases at a constant rate db
when osteoblasts differentiate into osteocytes. The osteoblast proliferation rate is inhibited by c1,
which is modeled by the following function [11]:

Ab = kpb ×
apb

apb + c1
.

Equations (9) and (10) describe the rate of change with respect to time of the fibrocartilage and
woven bone, where pcs and pbs are the tissue constant synthesis rates and qcd1, qcd2, and qbd are the
tissue degradation rates, respectively [30].
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5. Analysis of the Model

The analysis of Model (1)–(10) is done by finding the equilibria and their corresponding stability
properties. An equilibrium is a state of the system where the variables do not change over time [40].
Once the equilibria are identified, it is important to determine the behavior of the model near the
equilibria by analyzing their local stability properties. An equilibrium is locally stable if the system
moves toward it when it is near the equilibrium, otherwise it is unstable [40]. Therefore, the equilibria
provide the possible outcomes of the bone fracture healing process, and their corresponding stability
properties define the conditions under which a particular healing result occurs.

System (1)–(10) has the following three biologically meaningful equilibria of the vector form E =

(D, M0, M1, M2, c1, c2, Cm, Cb, mc, mb): E0 = (0, 0, 0, 0, 0, 0, 0, 0, m∗
c0

, m∗
b0
), E1 = (0, 0, 0, 0, 0, 0, 0, Klb(1 −

db/kpb), 0, pbs/qbd), E2 = (0, 0, 0, 0, 0, c∗2, C∗
m, C∗

b , m∗
c , pbs/qbd), where C∗

m = Klm(1 − dm/kpm), C∗
b =

Klb(kpb − db +
√
(kpb − db)2 + 4kpbdmC∗

m/Klb )/2kpb, c∗2 = a22(−1 +
√

1 + 4k3C∗
m/a22dc2 )/2, and

m∗
c = pcsC∗

m/(qcd1C∗
m + qcd2C∗

b ). The existence conditions for the three equilibria are summarized
in Table 1 and their stability conditions are summarized in Table 2, and are proved in Appendix A.

The existence conditions, listed in Table 1, arise from the fact that all biologically meaningful
variables are nonnegative. Therefore, the existence condition for E0 requires the steady state tissue
densities to be either zero or any positive number. For E1, the existence condition arises from the
requirement that the steady state density of Cb must be greater than zero, which implies that the
proliferation rate of osteoblasts must be greater than their differentiation rate (i.e., kpb > db).

Similarly for E2, the existence condition arises from the requirement that the steady state density
for Cm must be greater than zero, which implies that the proliferation rate of MSCs must be greater
than their differentiation rate (i.e., kpm > dm).

Table 1. Existence conditions for the equilibrium points and their biological meaning.

Equilibrium Points Existence Conditions Meaning

E0 = (0, 0, 0, 0, 0, 0, 0, 0, m∗
c0

, m∗
b0
) m∗

c0
≥ 0, m∗

b0
≥ 0 nonunion

E1 = (0, 0, 0, 0, 0, 0, 0, Klb(1 − db/kpb), 0, pbs/qbd) kpb > db successful healing
E2 = (0, 0, 0, 0, 0, c∗2, C∗

m, C∗
b , m∗

c , pbs/qbd) kpm > dm nonunion or delayed union

The stability conditions of each biologically feasible equilibrium are listed in Table 2, and is
determined from the eigenvalues of its associated Jacobian matrix (see Appendix A), as follows:

E0 is stable when kpm ≤ dm and kpb ≤ db (see Theorem A1), which implies that the differentiation
rates of the MSC and osteoblasts are greater than or equal to their proliferation rates, respectively.
The steady-state E0 represents a nonunion. In this case, the inflammation is resolved, since the first
five entries of E0 are zero; however, the repair process has failed since the osteoblasts and osteoclasts
have died out before the beginning of the remodeling process. Hence, the tissue densities, m∗

c0
and m∗

b0
,

can be any two positive values smaller than their maximal densities, pcs/qcd1 and pbs/qbd, respectively
(see Theorem A1).

E1 is stable when kpm ≤ dm and kpb > db (see Theorem A2). The steady-state E1 represents
a successful repair of the bone fracture, where the inflammation is resolved, the fibrocartilage is
completely removed from the repair site, and the woven bone has achieved its maximal density. In this
case, osteoblasts proliferate faster than they differentiate, while MSC have the opposite behavior.

E2 is stable when kpm > dm (see Theorem A3). The steady-state E2 represents a nonunion or
delayed union, where the inflammation is resolved, but the osteoclasts have failed to degrade the
cartilage in a timely fashion.
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Table 2. Stability conditions for the equilibrium points.

Equilibrium Points Stability Conditions Stability

E0 kpm ≤ dm, kpb ≤ db E0 belongs to an attracting local set
E0, E1 kpm ≤ dm, kpb > db E0 unstable; E1 locally stable
E0, E2 kpm > dm, kpb ≤ db E0 unstable; E2 locally stable

E0, E1, E2 kpm > dm, kpb > db E0 and E1 unstable; E2 locally stable

6. Numerical Results

The proposed new model (1)–(10) is used to study the importance of macrophages during the
inflammatory and repair phases of the bone fracture healing process, which occur within the first
21 days after trauma [11,13]. It is also used to investigate the evolution of a broken bone under
normal and pathological conditions. Table 3 summarizes the baseline parameter values and units
for the numerical simulations. These values are estimated in a qualitative manner from data in other
studies [11,27,30,38,39,43]. Some of those, from [11], were also rescaled to account for the different
mathematical expressions of the proliferation and differentiation rates of the tissue cells. All parameter
values are based on murine experiments, with healthy mice having a moderate fracture (a broken
bone with a gap size less than 3 mm) [30,43]. However, the bone fracture healing process for humans
involves the same cells, cytokines, and qualitative dynamics, differing only in the number of cells,
concentrations, and the length of time it takes for a full recovery [24].

First, a set of numerical simulation results was presented to compare two mathematical models of
the bone fracture healing process that incorporate macrophages: The model developed in [11], and the
new model (1)–(10). Next, numerical simulations were performed to support the theoretical stability
results (successful and nonunion equilibria) and to numerically monitor the healing progression of
a moderate fracture in normal conditions. Another set of numerical simulations was performed
to analyze the effects of different debris densities on bone fracture healing. Finally, a set of
numerical simulation results was presented, to investigate the effects of different concentrations of
anti-inflammatory cytokines and various cellular treatments on the fracture healing under numerous
pathological conditions. All simulations were obtained by using the adaptive MATLAB solver
ode23s, and were initiated with densities of debris, macrophages, and MSCs set to D(0) = 5 × 107,
M0(0) = 4000, Cm(0) = 1000, respectively, and the pro-inflammatory cytokine concentration set to
c1(0) = 1.

6.1. Comparison of Existing Models

The model developed in [11] and the present mathematical model (1)–(10) were compared when
D(0) < aed = 4.71 × 106 (i.e., the initial debris concentration was below the half-saturation of debris).
In this case, the macrophage digestion rate increased approximately linearly with respect to the debris
population, as assumed in model [11]. The same parameter values were used in both models (Table 3),
with ke1 = 11, ke2 = 48, k2 = 3.72 × 10−6, k3 = 8 × 10−6, and qbd = 5 × 10−8.

Figure 3 shows the numerical evolutions of the tissues’ production when D(0) = 2 × 106.
In all simulations, we refer to fibrocartilage and woven bone as cartilage and bone, respectively.
The production of cartilage mc and bone mb given by the present model is much more realistic
than the production given by the model developed [11], since, according to the experimental data,
the cartilage production peaks to its maximal density of around 1 g/mL about 10–12 days after trauma,
and significant bone tissue production is observed after the second week [44].
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Table 3. Parameter descriptions and units.

Parameter Description Range of Values Reference

ke1 Engulfing debris rate of M1 3–48/day [38,41]
ke2 Engulfing debris rate of M2 3–48/day [38,41]
aed Half-saturation of debris 4.71 × 106 cells/mL [38]

kmax Maximal migration rate 0.015–0.1/day [39,45]
Mmax Maximal macrophages density 6 × 105–1 × 106 cells/mL [27,41]

k01 Activation rate of M1 0.55–0.611/day [29,39]
k02 Activation rate of M0 to M2 0.0843–0.3/day [29]
k12 Transition rate from M1 to M2 0.083–0.075/day [29,39]
k21 Transition rate from M2 to M1 0.005–0.05/day [29]
d0 Emigration rate of M0 0.156–0.02/day [29,39]
d1 Emigration rate of M1 0.121–0.2/day [29,38,39]
d2 Emigration rate of M2 0.163–0.2/day [29,38,39]
k0 Secretion rate of c1 by debris 5 × 10−7–8.5 × 10−6 ng/cells/day [38]
k1 Secretion rate of c1 by M1 macrophages 8.3 × 10−6 ng/cells/day [38]
k2 Secretion rate of c2 by M2 macrophages 3.72 × 10−6 ng/cells/day [38]
k3 Secretion rate of c2 by MSCs 7 × 10−7–8 × 10−6 ng/cells/day [11]
dc1 Decay rate of c1 12.79–55/day [29,38]
dc2 Decay rate of c2 2.5–4.632/day [29,38]
a12 Effectiveness of c2 inhibition of c1 synthesis 0.025 ng/mL [29]
a22 Effectiveness of c2 inhibition of c2 synthesis 0.1 ng/mL [29]
apm Effectiveness of c1 inhibition of Cm proliferation 3.162 ng/mL [11,46]
amb1

Effectiveness of c1 inhibition of Cm differentiation 0.1 ng/mL [11,47]
a01 Half-saturation of c1 to activate M1 0.01 ng/mL [29]
a02 Half-saturation of c2 to activate M2 0.005 ng/mL [29]
apb Effectiveness of c1 inhibition of Cb proliferation 10 ng/mL [11,48]

apm1 Constant enhancement of c1 to Cm proliferation 13 ng/mL [11,46]
kpm Proliferation rate of Cm 0.5/day [11]
dm Differentiation rate of Cm 1/day [11,30]
kpb Proliferation rate of Cb 0.2202/day [11,30]
db Differentiation rate of Cb 0.15/day [11,30]
pcs Fibrocartilage synthesis rate 3 × 10−6 g/cells/day [11,30]
qcd1

Fibrocartilage degradation rate 3 × 10−6 mL/cells/day [11,30]
qcd2 Fibrocartilage degradation rate by osteoclasts 0.2 × 10−6 mL/cells/day [11,30]
pbs Bone tissue synthesis rate 5 × 10−8 g/cells/day [11,30]
qbd Bone tissue degradation rate 5 × 10−8 mL/cells/day [30]
Klb Carrying capacity of Cb 1 × 106 cells/mL [11,30]
Klm Carrying capacity of Cm 1 × 106 cells/mL [11,30]

D(0) Density of necrotic cells 1 × 106–2 × 108 cells/mL [27,38,41]
Cm(0) Initial MSCs density 1000 cells/mL [11]
M0(0) Unactivated macrophage density 4000 cell/mL [45]
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Figure 3. Comparison of tissues evolution in Model [11] and Model (1)–(10).

33



Math. Comput. Appl. 2019, 24, 12

6.2. Different Outcomes of the Bone Fracture Healing Process

Next, a set of numerical simulations is presented to support the theoretical results. Accordingly
to the qualitative analysis of the model there are three equilibria: E0, E1, and E2, where their stability
conditions are determined by the tissue cells’ proliferation and differentiation rates, kpm, kpb, dm and
db, respectively. The following parameter values were used: kpm = 0.5, dm = 1, kpb = 0.2202, and
db = 0.3, to demonstrate the stability of E0, since then kpm < dm and kpb < db. The stability of
E1 was demonstrated using the following parameter values: dm = 1, kpm = 0.5, kpb = 0.2202, and
db = 0.15, since then kpm ≤ dm and kpb > db. Finally, the following parameter values were used:
kpm = 0.5 and dm = 0.1, to demonstrate the stability of E2, since then kpm > dm. Different time-periods
are used in Figures 4–6 to better demonstrate the qualitative behavior of the system under different
stability conditions.

Figure 4 shows the qualitative behavior of E1 for the macrophages, debris, TNF-α, and IL-10
densities, with the inflammation being resolved in about 40 days. The top-left plot of Figure 4 shows the
temporal evolution of M0 (dashed lines), M1 (dotted lines), and M2 (solid lines). It can be observed that
M1 first peaks to its maximum value, which is then followed by M2. Similar sequences of transitions
of first M1, and then M2, are commonly observed in normal tissue healing conditions [2,39].
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Figure 4. Cellular and molecular evolution of the resolution of the inflammation in normal conditions.
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Figure 5. Cellular and molecular evolution of the repair process in a successful fracture healing.
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Figure 5 shows the qualitative behaviors of E1 for the MSC, osteoblasts, cartilage, and bone
densities. Here, the MSC density decayed to zero over time, while the osteoblasts maintained a
constant density below their carrying capacity Klb = 1 × 106. In addition, the bottom plots of
Figure 5 shows that the cartilage was eventually degraded by the osteoclasts and the bone achieved its
maximum density of 1 ng/mL. Therefore, E1 exhibits the temporal progression of a successful bone
fracture healing.
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Figure 6. Cellular and molecular evolution of the repair process in a nonunion fracture healing.

Figure 6 shows the qualitative evolution for the MSC, osteoblasts, cartilage, and bone densities
for E0 (solid lines) and E2 (dotted lines). Since the temporal evolution of macrophages, debris, and
cytokines densities in E0 and E2 are similar to those for E1 showed in Figure 4, they are omitted
here. It can be observed, in Figure 6, that the two cellular densities in E0, MSC, and osteoblasts,
decayed to zero over time, with the osteoclasts failing to degrade the cartilage; this results in nonunion.
Mathematically, this case occurs when osteoblasts proliferate at a rate lower than their differentiation
rate, i.e., kpb < db. In practice, this scenario is commonly observed in advanced-age patients whose
MSC and osteoblast cells decrease their capability to proliferate and differentiate [3]. On the other
hand, the two cells and the two tissues in E2 remain at positive constant values (Figure 6), but the final
fracture healing outcome is still a nonunion. Here, the osteoclasts again fail to degrade the cartilage [3],
even though the bone has achieved its maximum density of 1 ng/mL. Therefore, in this case, migration
of osteoclasts must be enhanced through surgical interventions, in order to achieve a successful bone
repair [30].

6.3. Importance of Macrophages during the Bone Fracture Healing Process

In this section, the mathematical model is used to investigate the effects of macrophages during
the inflammatory and repair phases of the bone fracture healing process. The major contribution of
macrophages to fracture healing is through the delivery of pro- and anti-inflammatory cytokines at
the repair site. Therefore, the values of the parameters ki, representing the secretion rates of ci by Mi,
i = 1, 2, are varied in the numerical simulations, as compared to their base values from Table 3.

Figure 7 shows that macrophages have a drastic effect on the short-term tissue dynamics during
the healing process. In the presence of M1 and M2, fibrocartilage formation more than doubles
in about 1 week, while woven bone experiences an additional steady increase during the same
period and beyond. The simulations presented in Figure 8 demonstrate the individual effects of the
different phenotypes of macrophages, and show that the alternatively activated macrophages M2

have a more dominant contribution to the tissue production, as compared to the classically activated
macrophages M1.
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Figure 7. Tissue evolution when macrophages contribute to the healing process (solid line), k1, k2 �= 0,
and when they do not contribute to the healing process (dashed line), k1 = k2 = 0.
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Figure 8. Tissue evolution when the alternatively activated macrophages, M2, do not contribute to
the healing process (dashed line), k2 = 0, and when the classically activated macrophages, M1, do not
contribute to the healing process (dotted line), k1 = 0.

6.4. Evolution of the Healing Process for Different Types of Fractures

In this section, the model is used to monitor the evolution of a successful repair (Table 3) for
different types of fractures. In healthy individuals, simple, moderate, and severe fractures are correlated
with the debris densities [49,50]. Therefore, the initial debris concentration is set to D(0) = 3 × 105,
D(0) = 5 × 107, and D(0) = 2 × 108, for a simple, moderate, and severe fracture, respectively.

Figure 9 shows that the tissue production is a slow process for a simple fracture, since the cartilage
and bone densities are less than the corresponding tissue densities for moderate and severe fractures.
A slow healing process is commonly observed in micro-crack healing [49]. Furthermore, there is less
cartilage formation over time in simple fractures [50]. For a moderate fracture, the maximal production
of cartilage is observed around 10 days, followed by a significant degradation, while the bone tissue
production occurs after the first week. For a severe fracture, Figure 9 shows that there is a delay in
the two tissues’ production, compared with those given by moderate fractures, with the peak of the
cartilage and bone production observed at around day 16.
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Figure 9. Tissue evolution of a successful repair for different types of fractures.

6.5. Immune-Modulation Therapeutic Treatments of Bone Fractures

The administration of anti-inflammatory drugs and the injection and/or transplantation of
MSC and macrophages are two of the clinical trials that have been implemented in orthopedics to
stimulate and accelerate bone fracture healing [2,23]. In this section, Model (1)–(10) is used to explore
these possible therapeutic treatments to accelerate the healing of a broken bone, under normal and
pathological conditions such as severe fractures, advanced age, and senile osteoporosis [3].

6.5.1. Administration of Anti-Inflammatory Drugs at the Beginning of the Healing Process

Treatments based on anti-inflammatory cytokines, such as the cytokine-specific agents that block
the pro-inflammatory cytokines productions, have exhibited promising clinical results and have led to
intense orthopedic research activities [1,2,17,23,33,51–53]. In this section, a set of numerical simulations
is presented to investigate the effect of the administrations of anti-inflammatory cytokines at the
beginning of the healing process in healthy individuals and also in immune-compromised patients.
In each case of the numerical simulations, c2(0) = 0, 10, and 100 ng/mL.

In healthy individuals, the administration of anti-inflammatory drugs is implemented for a simple
fracture and also for two moderate fractures with different debris concentrations: D(0) = 3 × 105,
D(0) = 2 × 107, and D(0) = 5 × 107.

Figure 10 shows that the administration of c2 in the simple fracture slows down both the
cartilage and bone productions. Figures 11 and 12 show that the administration of c2 in the moderate
fractures improves the tissue evolution, but in a dose-dependent manner. On one hand, when
D(0) = 2 × 107, the administration of c2 has either a positive or negative effect on the two tissue
productions. The administration of 10 ng/mL of c2 enhances the early production of cartilage and
increases the bone synthesis, while the administration of 100 ng/mL of c2 results in the opposite
effect. On the other hand, when D(0) = 5 × 107, the administration of c2 enhances the earlier cartilage
production and improves the synthesis of the bone for both concentrations, with 10 ng/mL being the
optimal of the two doses.
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Figure 10. Tissue evolution in a simple fracture under different initial anti-inflammatory cytokines
concentrations, D(0) = 3 × 105.
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Figure 11. Tissue evolution in a moderate fracture under different initial anti-inflammatory cytokines
concentrations, D(0) = 2 × 107.

Next, the model is used to implement the administration of anti-inflammatory drugs under
different pathological conditions. First, severe fractures in immune-compromised individuals are
simulated by using the following parameter values: D(0) = 2 × 108 and kmax = 0.0015, since, in the
fractures of such individuals, there is an increase in the accumulation of debris [50] and a decrease in
the macrophage migration rate [54]. Second, the following parameter values are used: ke1 = ke2 = 3
and k1 = 9 × 10−6, to simulate bone fracture healing in aging individuals, since, in this case, the
macrophage phagocytic rate decreases and there is an increase of pro-inflammatory cytokine synthesis
by M1 [3,25]. Finally, c1(0) = 100, kpm = 0.2, dm = 0.5, kpb = 0.16, and db = 0.15 are used to
simulate the healing process for an senil osteoporotic fracture, since, in this case, a high level of
pro-inflammatory cytokines is observed and the MSC and osteoblast functions decrease [3].
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Figure 12. Tissue evolution in a moderate fracture under different initial anti-inflammatory cytokine
concentrations, D(0) = 5 × 107.

Figures 13–15 show that the administration of anti-inflammatory cytokines under the above three
different pathological conditions always improve tissue productions, where the optimal dose of c2,
for both the advanced-age individuals and senile osteoporotic fractures, is 10 ng/mL.
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Figure 13. Tissue evolution in a severe fracture under different initial anti-inflammatory cytokines
concentrations.

39



Math. Comput. Appl. 2019, 24, 12

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1
C

ar
til

ag
e 

(g
/m

L) 0 ng/mL
10 ng/mL
100 ng/mL

0 2 4 6 8 10 12 14 16 18 20
Days

0

0.1

0.2

0.3

B
on

e 
(g

/m
L)

0 ng/mL
10 ng/mL
100 ng/mL

Figure 14. Tissue evolution in an advanced age fracture under different initial anti-inflammatory
cytokines concentrations.
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Figure 15. Tissue evolution in a senile osteoporotic fracture under different initial anti-inflammatory
cytokines concentrations.

6.5.2. Cellular Therapeutic Interventions under Immune-Compromised Conditions

Additions of MSC to the injury site through injection and/or transplantation have been used in
practice to stimulate and augment bone fracture healing [2]. Another cellular intervention is scaffold
implants, where undifferentiated macrophages and MSCs are co-cultured together, and cytokines are
slowly released to stimulate M2 activation [3]. The parameter values used in the numerical simulations
that explore these possible therapeutic treatments are the same as in Section 6.5.1.

For severe fractures with immune-compromised conditions, the use of scaffold implants is
simulated through a fast M2 activation (i.e., k02 = 0.3 and k12 = 0.075), and also an increase in the
Cm and M0 densities (i.e., M0(0) = 5000 and Cm(0) = 5000). For fractures in aging individuals
and individuals with senile osteoporotic fractures, the MSC injection and the fast M2 activation are
simulated by setting Cm(0) = 5000, k02 = 0.3, and k12 = 0.075.

Figures 16–18 show that the two cellular interventions increase both tissue productions.
Furthermore, those interventions result in larger improvements in severe and senil osteoporotic
fractures, when compared to fractures in aging individuals.
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Figure 16. Tissue evolution in a severe fracture without therapeutic innervation (solid line) and with
M0(0) and Cm(0) transplantation (dotted line).
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Figure 17. Tissue evolution in an aging fracture without therapeutic innervation (solid line) and with
MSCs injection (dotted line).
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Figure 18. Tissue evolution in a senile osteoporotic fracture without therapeutic innervation (solid line)
and with MSCs injection (dotted line).
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7. Discussion and Conclusions

A new mathematical model was introduced to mathematically and numerically study the
macrophage-mediated inflammation involved in the early stages of the bone fracture healing process:
The inflammatory and repair phases. Classically and alternatively activated macrophages were
incorporated in the model, to study their capabilities to modulate and resolve the inflammation.
The model also included the macrophage abilities to regulate the tissue cellular functions through the
delivery of pro- and anti-inflammatory cytokines. The resolution of the inflammation was assumed
to be initiated with the activation of the macrophages into their classical phenotype. The classically
activated macrophages deliver pro-inflammatory cytokines, such as TNF-α, as they engulf debris.
Then, the alternatively activated macrophages and the MSC modulate the inflammation by releasing
anti-inflammatory cytokines, such as IL-10. Finally, the classically activated macrophages remove the
remaining debris. The model also incorporated different engulfing rates of activated macrophages,
saturation rates of phagocytes, and the maximal density of macrophages at the injury site, thus allowing
a better understanding of the interplay between macrophages and tissue cells during the bone fracture
healing process.

The mathematical analysis revealed that there are three feasible fracture healing outcomes. Two of
the outcomes represent a nonunion healing: One is the case when the cells deactivate or die out before
the healing process finishes up, and the other is the case when the tissue cells remain constant but
the osteoclasts fail to completely remove the cartilage. The third outcome represents a successful
healing, where the osteoblasts and osteoclasts are constantly producing and removing the woven bone.
The stability conditions of each outcome can be used to biologically explain why the fracture healing
fails, as well as to design therapeutic interventions to stimulate or accelerate the healing process.

The new model was used to study the importance of macrophages during the early stages
of tissue production. It revealed that macrophages significantly improve the tissue production,
with alternatively activated macrophages having the main effect on the process. The flexibility of
the model also allowed us to perform a variety of different types of numerical simulations quickly
and cost effectively. It was used to monitor the progression of the healing of a broken bone and to
predict its final outcome. In particular, the administration of anti-inflammatory drugs to improve
the bone fracture healing process was numerically simulated. It was found that the administration
of anti-inflammatory cytokines fails to accelerate the healing process in simple fractures, while it
accelerates the healing process in moderate fractures, depending on the cytokine concentrations,
and always improves the healing process in severe fractures. Such results have been also clinically
observed, when corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs) are administered
in bone fractures [23]. Therefore, based on the model findings, the concentration of debris must be
carefully considered when administering anti-inflammatory drugs to enhance the fracture healing
process [50]. The model was also used to explore other potential cellular therapeutic approaches,
such as MSC injection and transplantation. It was found that such treatments can also improve
the healing time of a broken bone, especially in immune-compromised patients. The model can
also be easily adapted to other therapeutic approaches, such as the administration of different
anti-inflammatory drugs, suggesting a variety of possible ways to guide clinical experiments and bone
tissue engineering strategies.

Future research directions include modifications of the model by incorporating additional
molecular and cellular interactions and processes during the inflammatory and repair phases of
fracture healing, such as macrophage migration and MSC differentiation due to cytokine stimulus.
Another research direction is the incorporation of the bone remodeling phase of the healing process,
which begins at the end of the repair phase and continues long after fracture union. There are different
factors that affect the bone remodeling, including other bone cells, such as osteoclasts, osteocytes,
progenitor cells, and other sources of cytokines [30,32,43]. This presents a challenging new research
direction in the pursuit to better understand the bone fracture healing process and the development of
new treatment strategies.
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Appendix A

The stability conditions of the equilibria of Model (1)–(10) are stated and proved below.
The analysis is conducted using the Jacobian of the system at each equilibrium point and finding its
corresponding eigenvalues [40,55].

Theorem A1. The E0 = {(0, 0, 0, 0, 0, 0, 0, 0, m∗
c0

, m∗
b0
) belongs to the set B = {(0, 0, 0, 0, 0, 0, 0, 0, mc, mb) :

0 ≤ mc ≤ pcs/qcd1 , 0 ≤ mb ≤ pbs/qbd}, which is a local attractor set of the solution set given by System
(1)–(10) if and only if kpm ≤ dm and kpb ≤ bd.

Proof of Theorem A1. The right-hand side functions of System (1)–(10) are continuous and bounded,
since all model variables and parameters are positive. Hence, for each initial condition of the system,
there is a unique solution [55]. Then, as zero is a solution of the System (1)–(10), and by uniqueness of
solution, all the solutions of the system with positive initial condition are positive [55].

Next, it will be proved that the hyperplane A = {(0, 0, 0, 0, 0, 0, 0, 0, mc, mb) : mc ≥ 0, mb ≥ 0} is
an attractor set of the solutions of the system (1)–(10). There are two cases to consider, based on the
relation between the cell proliferation and differentiation rates.

First, let us examine the case when kpm < dm and kpm < db. The Jacobian matrix J(E0) is given by
the following lower triangular block matrix

J(E0) =

⎛
⎜⎝ J1(E0) 0 0

∗ J2(E0) 0

0 ∗ J3(E0)

⎞
⎟⎠ ,

where

J1(E0) =

⎛
⎜⎜⎜⎝

0 0 0 0
kmax −d0 0 0

0 0 J11 0
k0 0 ∗ −dc1

⎞
⎟⎟⎟⎠ , J2(E0) =

⎛
⎜⎝ −dc2 k3 0

0 −dm + kpm 0
0 dm −db + kpb

⎞
⎟⎠

J11 =

(
−d1 − k12 k21

k12 −d2 − k21

)
, J3(E0) =

(
0 0
0 0

)
.

Therefore, the corresponding characteristic polynomial associated with J(E1) is given by the
product of the characteristic polynomials associated with each submatrix [56]:

p(λ) = λ3 (λ + d0) (λ + dc1) (λ + dc2)
(
λ + dm − kpm

) (
λ + db − kpm

)
(λ2 + aλ + b),

where a = d1 + d2 + k12 + k21 and b = k12d2 + k21d1 + d1d2. The polynomial factor of order two of p(λ)
has the following two roots: (−a ±√

a2 − 4b )/2, which are negative since a2 − 4b = (d1 − d2 + k12 −
k21)

2 + 4k12k21 > 0 and b > 0. Therefore, the eigenvalues of J(E0) are negative for the variables M0,
M1, M2, c1, c2, Cm, and Cband are equal to zero for D, mc, and mb. Since D′(t) ≤ 0 for all the variables
in the system (1)–(10) and (D∗, 0, 0, 0, 0, 0, 0, 0, mc, mb) with D∗ �= 0 is not an equilibrium point, then the
solutions of the system (1)–(8) are attracted to the set A = {(0, 0, 0, 0, 0, 0, 0, 0, mc, mb) : mc ≥ 0, mb ≥ 0}.
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Equations (9) and (10) imply that m′
c ≤ 0 and m′

b ≤ 0 for all mc > pcs/qcd1 and mb > pbs/qbd. Therefore,
the set B is a local attractor set of A [55].

Next, let us consider the case when kpm = dm and db = kpb. Here, the eigenvalues of J(E0) are
the same as above except those associated with Cm and Cb, which are equal to zero. Therefore, in this
case, by considering the second order approximations of the right hand sides of Equations (7) and (8),
instead of just the first order approximations, and using similar arguments as above, proves that the
set B is a local attractor set of A.

Theorem A2. The equilibrium E1 = (0, 0, 0, 0, 0, 0, 0, Klb(1 − db/kpb), 0, pbs/qbd) is locally stable if and
only if dm ≥ kpm and kpb > db.

Proof of Theorem A2. The Jacobian matrix corresponding to the point E1 is given by the following
lower triangular block matrix

J(E1) =

⎛
⎜⎝ J1(E1) 0 0

∗ J2(E1) 0

0 ∗ J3(E1)

⎞
⎟⎠ ,

where J1(E1) has the same expression as J1(E0), defined in Theorem A1, and

J2(E1) =

⎛
⎜⎝ −dc2 k3 0

0 −dm + kpm 0
0 dm db − kpb

⎞
⎟⎠ , J3(E1) =

⎛
⎝ −qcd2 Klb(1 − db

kpb
) 0

0 −qbdKlb(1 − db
kpb

)

⎞
⎠ .

Since dm − kpm ≥ 0 and kpb > db, and all of the eigenvalues of J1(E0) are non-positive values, then the
eigenvalues of J(E1) are negative, except the eigenvalues associated with D and Cm when kpm = dm,
which are equal to zero. Therefore, E1 is a locally stable node, since D′ ≤ 0 for all the variables of the
system (1)–(10) and C′

m ≤ 0 when kpm = dm.

Theorem A3. The equilibrium E2 = (0, 0, 0, 0, 0, c∗2, C∗
m, C∗

b , m∗
c , pbs/qbd) is locally stable if and only if

kpm > dm, where C∗
m = Klm(1 − dm/kpm), C∗

b = Klb(kpb − db +
√
(kpb − db)2 + 4kpbdmC∗

m/Klb )/2kpb,

c∗2 = a22(−1 +
√

1 + 4k3C∗
m/a22dc2 )/2, and m∗

c = pcsC∗
m/(qcd1C∗

m + qcd2C∗
b ).

Proof of Theorem A3. The Jacobian matrix corresponding to the point E2 is given by the following
lower triangular block matrix

J(E2) =

⎛
⎜⎝ J1(E2) 0 0

∗ J2(E2) 0

0 ∗ J3(E2)

⎞
⎟⎠ ,

where

J1(E2) =

⎛
⎜⎜⎜⎝

0 0 0 0
kmax −d0 − G∗

2 0 0
0 ∗ J11 0

k0H∗
1 0 ∗ −dc1

⎞
⎟⎟⎟⎠ , J3(E2) =

(
−qcd1 C∗

m − qcd2 C∗
b 0

0 −qbdC∗
b

)
,

J2(E2) =

⎛
⎜⎜⎜⎝

−dc2

(
1 + c∗2

a22+c∗2

)
k3H∗

2 0

0 dm − kmb 0

0 dm −
√
(db − kpb)2 + 4

kbpdmC∗
m

Klb

⎞
⎟⎟⎟⎠ ,
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G∗
2 =

c∗2 k02
a02+c∗2

, H∗
1 = a12

a12+c∗2
, H∗

2 = a22
a22+c∗2

and J11 is defined as in Theorem A1. Since all of the eigenvalues
of J11 are negative (Theorem A1) and kpm > dm, and all equilibrium variables and parameter values
are positive, then all the eigenvalues of J1(E2), J2(E2), J3(E2) are negative, except for the eigenvalue
associated to D which is equal to zero. Therefore, since D′ ≤ 0 for all the variable system, then E2 is
locally stable.
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Abstract: Brain dynamics, neuron activity, information transfer in brains, etc., are a vast field where
a large number of questions remain unsolved. Nowadays, computer simulation is playing a key role
in the study of such an immense variety of problems. In this work, we explored the possibility of
studying brain dynamics using cellular automata, more precisely the famous Game of Life (GoL).
The model has some important features (i.e., pseudo-criticality, 1/f noise, universal computing),
which represent good reasons for its use in brain dynamics modelling. We have also considered that
the model maintains sufficient flexibility. For instance, the timestep is arbitrary, as are the spatial
dimensions. As first steps in our study, we used the GoL to simulate the evolution of several
neurons (i.e., a statistically significant set, typically a million neurons) and their interactions with
the surrounding ones, as well as signal transfer in some simple scenarios. The way that signals
(or life) propagate across the grid was described, along with a discussion on how this model could be
compared with brain dynamics. Further work and variations of the model were also examined.

Keywords: cellular automata; game of life; brain dynamics

1. Introduction

The question “Can cellular automata model brain dynamics?” or in our case “Can the Game
of Life model brain dynamics?” is hard to answer for, at least, three reasons. First, despite decades
of efforts to understand the Game of Life (GoL hereafter), several questions remain unanswered.
Second, although brain dynamics is an exponentially growing field in neuroscience, several questions
remain under strong debate. Third, it is still not known which characteristics are fundamental in brain
dynamics and which characteristics are derived from (or are dependent upon) a particular biological
realization. Hence, the goal of this study was fairly ambitious and only some possible ideas and paths
to follow were presented.

Cellular automata (CA) have been studied since the early 1950’s [1–3] in connection with many
different problems, such as predator–prey, [4,5] chemistry, [6] dendritic growth [7], and many more.
For instance, Reference [8] provides a review of the biological applications. Different CA have been
used in several problems related to neuroscience [9–13]. Amongst the various CA, the GoL was chosen
because it presents several characteristics that are, in our opinion, good reasons to associate brain
dynamics with the evolution of life as modelled using the GoL. It is an established idea in science,
particularly in chaos theory and complex systems, that very simple rules can often generate great
complexity [14], and probably nothing in nature is more complex than the human brain.

The brain was included amongst the abundance of physical and biological systems that
exhibit different levels of criticality, as described in References [15–17] and the references therein.
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To function optimally, neuronal networks were considered to operate close to a non-equilibrium critical
point [18]. However, recent works provide evidence that the human brain operates not in a critical
state, but rather it keeps a distance to criticality [19–21], despite the computational advantages of
criticality [22]. Therefore, it appears that maximization of information processing is not the only
goal function of the brain. According to these results, the brain only tunes itself closer to criticality
when it is necessary for information processing. Otherwise, the brain maintains a safety margin,
losing processing capacity, but avoiding instabilities (e.g., an epileptic crisis) [19–21]. This hypothesis,
however, is still controversial [23–26].

GoL was originally supposed to present self-organized criticality (SOC). Power-law decay of
several statistical quantities was interpreted as evidence of SOC [27]. For example, the distribution D(T)
of time steps required for the lattice to return to stability following a random single-site perturbation
is characterized by D(T) ~T−1.6 [27]. More recently, Hemmingsson [28] suggested that the GoL does
not converge to a SOC state, but it is in fact subcritical with a long length scale. Additional evidence
has also been put forward by Nordfalk et al [29], wherein this capacity of the GoL model suggests
a connection to brain dynamics.

A second point is that the GoL presents a 1/f noise [30], a feature that is believed to be present in
brain dynamics [31,32] in electro- and magneto-encephalogram spectra (EEG and MEG) [33], and in
human cognition as well [34]. Results suggest that there is a relationship between computational
universality and 1/f noise in cellular automata [30]. However, discussion continues regarding whether
or not 1/f noise is evidence of SOC [35]. Langton asked “Under what conditions will physical systems
support the basic operations of information transmission, storage, and modification constituting
the capacity to support computation?” [22]. Researching on CA, Langton concluded, “the optimal
conditions for the support of information transmission, storage, and modification, are achieved in
the vicinity of a phase transition” [22]. It has been shown that the GoL can undergo different phase
transitions when topology or synchronicity is modified (see the following section). Wolfram suggested
that class IV CA are capable of supporting computation, even universal computation, and that it is this
capacity which makes their behavior so complex [36]. Proof that the GoL is computation-universal
employs propagating “gliders” (See Figure 2) as signals (i.e., the glider can be considered as a pulse
in a digital circuit) and period-2 “blinkers” (See Figure 1) as storage elements in the construction
of a general-purpose computer [37–40]. It is possible to construct logic gates such as AND, OR,
and NOT using gliders. One may also build a pattern that acts like a finite state machine connected
to two counters. This has the same computational power as a universal Turing machine, as such,
using the glider, the GoL is theoretically as powerful as any computer with unlimited memory and no
time constraints, i.e., it is Turing complete [37,39].

The objective of this paper was to find some characteristics of the statistical behavior of the GoL
that made it suitable for comparison with some general features of brain dynamics. Of course,
it was not our intention to give an accurate, or even approximate, representation of any of the brain
functions and processes with such a simple model. Large scale simulations of a detailed nature for
the human brain have already been performed at the so-called Human Brain Project (HBP) [41]. In any
case, the fundamental question of how to formulate the most basic mathematical model which features
some of the essential characteristics of the brain connected to information processing, dynamics,
statistical properties, memory retrieval, and other higher functions, is still open. In this respect,
the study of cellular automata could still be a promising path to analyze these characteristics or in
answering the question of how the brain should be defined.

The paper is structured as follows: In Section 2, a short introduction is given about the GoL
cellular automaton. Then, the idea of the GoL model for basic features of brain dynamics is given
in Section 3. In Section 4, the idea of spiking is introduced into the model. Section 5 is devoted to
the effect of defects in the GoL lattice and their possible role in degenerative diseases of the brain.
Possible extensions of the model are discussed in Section 6. Finally, general conclusions are drawn in
Section 7.
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2. Game of Life: A Brief Introduction

Conway’s GoL is a cellular automaton with an infinite 2D orthogonal grid of square cells, each of
which is in one of two possible states, i.e., active or inactive. Every cell interacts with its eight nearest
neighbors (NN), which are the cells that are horizontally, vertically, or diagonally adjacent (called Moore
neighborhood). At each step in time, the following transitions occur, as in Reference [38]:

- Any active cell with fewer than two active neighbors, becomes inactive, i.e., under-population.
- Any active cell with two or three active neighbors, lives on to the next generation.
- Any active cell with more than three active neighbors becomes inactive, i.e., over-population.
- Any inactive cell with exactly three active neighbors becomes active, i.e., reproduction.

Starting from random initial conditions, “Life” will evolve through complex patterns,
eventually settling down to a stationary state composed of different stable configurations, both static
and periodic (see Figure 1). Despite its simple algorithm, the GoL simulates the dynamic evolution of
a society of living individuals, including processes such as growth, death, survival, self-propagation,
and competition. A class IV CA quickly produces apparent randomness, which is consistent with
the tendency towards randomness observed in Brownian motion [36].

Figure 1. (Color online) Example of the most common stable clusters in the GoL (blinkers, blocks,
beehives, etc.) and an example of a not-so-common cluster (pulsar). Green cells are the active cells,
blue are inactive, and red ones represent defects (see Section 5). Numbers stand for the probability
of appearance [42]. Inset. Glider and its movement. Active cells are represented by a black square,
while inactive cells are empty. This glider moves diagonally downward and to the right by one cell
every four updates.

Let us examine a few characteristics of the GoL: Simulations can be carried out in open,
closed, or periodic boundary conditions. In the present work, open boundary conditions were
utilized, unless otherwise stated. Starting from a random initial distribution, life evolves to a final
state composed of small stable clusters (see Figure 1 and Video 1 in the Supplementary material),
usually blocks, blinkers, beehives, and others less likely to appear (see Table 1). An important entity
is the “glider”. In the GoL, there also exist configurations which "move" uniformly across the grid,
executing a cycle of a few internal states. The simplest example is the glider that contains five live sites
(Figure 1, Inset) and undergoes a cycle of length four.
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Table 1. The most common clusters found in the GoL. Columns: Name of object, Size (number of live
cells per object), Period (0 means no period exists), Heat (number of changing cells), Influence area
(all cells which are in the Moore-neighborhood of each live cell of an object).

Name Size Period Heat Influence

Blinker 3 2 4 21
Block 4 1 - 16
Beehive 6 1 - 26
Loaf 7 1 - 30

Glider 5 4 5 22

Empirical investigations suggest that the density of structures containing L live sites generated
from a disordered initial state decreases like el/L, where l is the size of the minimal distinct
configuration which evolves to the required structure in one time step [43]. The time needed for
the system, when N is large, to reach equilibrium is approximately equal to N, N×N being the size of
the box. This is not true for special small configurations, as we will discuss later. The final density of
life is small, independent of the initial one, unless the initial density is very small or very big (then life
disappears completely) [44].

How Life resists noise was studied as early as 1978 [45]. In Schulman’s work, the GoL was
studied including a stochastic element (that was called "temperature"). The idea was to examine
how the introduction of a stochastic element in the local evolution rule would perturb the long-term
evolution of the system. Temperature, in their study, was represented by the random perturbation
of cell states as the rule was iterated. Then, the statistical properties examined were the density
as a function of temperature and the (suitably defined) entropy. A phase transition was observed
at a certain “Temperature” and certain "thermodynamic" constant of the motion [45]. A different
approach was adopted in Reference [36], wherein by introducing stochastic rules in the GoL, it was
found that “Life” exhibited a very rich critical behavior. Discontinuous (first-order) irreversible phase
transitions between an extinct phase and a steady state supporting life were found [36]. A statistical
analysis of the GoL can be found in Reference [46]. In that study, the number of clusters of n live sites
at time t, the mean cluster size, and the diversity of sizes among other statistical functions was given.
The dependence of the statistical functions on the initial density of live sites was examined as well.

Recently, dynamical aspects of CA have been studied by analyzing various characteristic
parameters used in network theory [47–49]. The effect of network topology, i.e., the links between cells,
on the evolution of the GoL has been studied using a version of the GoL on a 2D small-world [50].
The effect of synchronicity has also been examined in different studies [51–53].

For example, in Reference [52], the authors claim that an asynchronous GoL simulates exactly
the behavior of the GoL in terms of universal computation and self-organization, no matter whether
the update of cells is simultaneous or independent, according to some updating scheme like
a time-driven [54] or step-driven [53] method. An abrupt change of behavior in the asynchronous GoL
was presented in the work of Blok and Bergersen [53]. The authors showed that the phenomenon was
a second-order phase transition, i.e., the macroscopic functions that describe the global behavior
as a function of synchrony rate α (when α = 1 we have the classical synchronous updating
and the system is deterministic, for α < 1 the system becomes stochastic) are continuous but their
derivatives are discontinuous at the critical point αc∼0.9. The critical threshold αc separates
two well-distinguished macroscopic behaviors or phases. The phase α > αc is the frozen phase,
in which the system evolves with low-density patterns and quickly stabilizes to a fixed point.
The second phase (α < αc) is the labyrinth phase, characterized by a steady state with higher density
and the absence of stabilization at a fixed point [53]. Further research of the behavior of the GoL
under different rules, i.e., different intervals of survival and fertility can be found in Reference [55].
However, all this complexity must not be confused with chaos. The GoL is not a chaotic system, it is
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deterministic but extremely complex. Life is not at the “border of chaos,” but thrives on the “border of
extinction” [56].

The list of mentioned works does not claim to be complete. It only presents some important
studies regarding different aspects of the GoL which could be of importance in our model as we will
discuss later. In the presented work, to present our ideas, we utilized the original 2D GoL without any
modification to either the topology or the synchronicity. To the best of our knowledge, almost nothing
has been published connecting the GoL to brain dynamics, except for the work of de Beer [57,58].

3. The Basic Idea of the Model

The human brain comprises of a set of 1010–1011 individual neurons and the total number of
connections is even larger because every cell projects its synapses to a total of 104–105 different
neurons [59]. With such an immense number of connections, our model is not intended to accurately
describe the human brain or any other real nervous system, but rather to examine overall properties of
a big connected group of discrete “neuron-like” elements. As a first approximation, we can assume
that live cells in the GoL correspond to active neurons and dead cells to inactive neurons. As such,
if the cells in the 2D grid are assumed to be single neurons, then the model may be considered
unrealistic, since usually, a single neuron is connected on average to 10,000 neurons, and not only eight.
This can be modified easily; counting second NN (the second ring around the cell) cells would
have 24 connections, counting third NN cells would have 48 and so on, but that would make the model
much more expensive, computationally speaking. To count 100 connections, it would be necessary to
consider up to 15 NNs, for 1000 connections it would be necessary to consider 49 NNs.

More importantly, the resulting GoL differs significantly from the original Conway’s GoL.
Another possibility is to assume that a cell in the simulation corresponds to a number of neurons
(how big or small is an open question), or the other way around, that a number of cells
(again, how many is unknown) correspond to a single neuron. For example, in the model proposed by
Hoffman [10] the cells in the simulation represent small groups of neurons in the cortex. A cell in our
simulation could be considered to represent, for example, a thousand neurons and that the neurons
there, contained in a single cell, are connected with the other 8000 neurons around. This may look
artificial but raises the first interesting question: Would a “large” (1000 or more) number of neurons
interact, on average, with neighboring groups of the same size in the way that is modeled by the GoL?

In any case, despite the crude oversimplification, our question may be reformulated as:
Is there any magnitude or measurable property in brain dynamics that behaves, on average,
or presents some similarities with the GoL outputs? It must be noted at this point that all presented
simulations (unless otherwise stated) were performed for randomly generated initial configurations
in a 1000 × 1000 square box, with open boundary conditions, and the presented results for each
different configuration were averaged over 20 simulations. Figure 2 (top panel) shows the time
evolution of density (i.e., the number of live cells divided by the total number of cells), starting from
different initial densities. As can be seen, in a few steps (100), the density of life decreases very fast
(almost exponentially) to a lower density that then decreases to a final value of ~2.7%, independent of
the initial one. The exact way in which density decreases is, to the best of our knowledge, unknown.
The curves, in the first 100 steps (approximately), can be fitted to an exponential decay.
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Figure 2. (Color online) Density (top panel) and Activated Area (bottom panel) versus time for five different
initial densities, ranging from 10% (black), 15% (red), 20% (green), 25% (blue), and 30% (magenta).

The lower panel shows the normalized Activated Area, AA/A0 where AA is the area in
the simulation that has been active at least once, and A0 is the initial active area (the initial number of
live cells). The Activated Area grows faster for high densities (initial density ρi ≥ 15%) only during
the first stages of the simulation (for times ≤ 500). After this first stage, the slope decreases, whilst for
ρi = 10%, AA continues growing with a similar slope. Hence, for the activated area, two stages can be
differentiated in the evolution of the system. Initially, the area increase occurs at a fast rate, and then,
after some time τ(ρi), the rate of increase becomes slower. It is important to note that the ratio of
AA/A0 is > 1, but that does not mean multi-counting. When the activated area is computed, we count
the cells that have been alive at least once. However, when a cell is counted, then it is no longer counted
again. That is to say, if a cell is alive at time 0 (or time x), it is not counted again if it goes back to life at
time n (> 0 (or > x)). The idea is very much like the random walk study presented in Reference [60].
The reason to have a ratio > 1 is that we start, for example, with an initial density of 10%, i.e., 10% of
the initial area is active. If this is the case in a closed simulation, then the ratio can be as high as 10 at
a certain time (and unlimited in an open (infinite) simulation). As for the reason to define the activated
area in our model, there are studies where the spatial extension of brain activity is studied [61,62].

Clearly, a one-to-one comparison of our model to real brain data would be highly desirable.
However, that is not the main goal of this study, but rather it is to create a simple framework (with high
complexity at the same time as we will see) capable of being used as a model of brain dynamics.
Comparing the activated area, signal transmission, etc., as defined in our model to real experiments
(EEG, fMRI, etc.) requires further study and collaboration with neurologists.

At this stage, an interesting conclusion may be drawn: The maximum/optimal spreading of
activity in the grid is achieved for initial densities between 10 and 15%. Figure 2 suggests a very
likely conjecture: “For large enough sample sizes and long simulation times, on average, the product
Density times the Activated Area remains constant for all initial densities”. To illustrate this idea,
Figure 3 shows the product Density x Active Area versus time. Note that this conjecture cannot be true
in open simulations (infinite side), since the area can grow endlessly (due to emitted gliders moving
away from the initial live cells), but density will reach a constant value (or equilibrium value).
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Figure 3. (Color online) Density x Active area vs. time for five different initial densities, from 10 to 30%,
as labeled.

The activity can be defined as:
X = [ρ(t) − ρ(t − 1)]2 (1)

i.e., as the squared difference between consecutive densities. As seen in Figure 4, the activity decays
more than three orders of magnitude within the first 100 steps. The figure is noisy, since it has not been
averaged over a number of simulations.

Figure 4. (Color online) Activity (as defined in Equation (1)) vs. timestep for three different initial
densities (20, 30, and 40%), as labelled. Note the logarithmic scale on both axes.

Despite the possible answer to the previous questions, a possible first idea is to use a random
distribution of neurons, some active and some inactive, in an open grid, and since in the final state
some neurons will be active far from the initial ones, associate the simulation to an impulse or stimulus
that is originated somewhere (the initial configuration) and evolves temporally. We can study how
the “information” or the activity spreads (since is difficult to define information). Figure 5 (top panel)
shows an example, in order to make this clearer. It presents the spreading of activity for the same
initial density (20%), but different random starting configurations, after 2000 timesteps. The color scale
corresponds to the number of times that the cells have been active during the simulation. For the sake
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of clarity, the scale has been limited between 0 (dark blue) and 20 (red), meaning that a red cell has
been active during at least 20 steps. As can be seen, the activity spreads from the initial emplacement
in a “random way”. The total number of cells that are active (no matter how many times) for a given
time will be called the “activated area” or “sampled area”. This area will vary from one simulation to
the next, both in size and shape, as can be seen in the three presented examples. It must be noted that
there exist spots on the grid that have been active for a total time that can be very close to the total
number of steps, which can be the case of a stable configuration formed at the very beginning that did
not interact again with the rest of the system. The bottom panel of Figure 5, which refers to spiking
activity, will be discussed in a later section.

Figure 5. (Color online) Three different simulations with random configuration of equal initial density
(20%). Top panel: Active area AA. The straight lines correspond to the traces left by gliders. Bottom panel:
Spiked area AS, i.e., neurons that have spiked at least once. From left to right, Spiking Rules R3, R4, and R5,
respectively (see Section 4). Color scale in both panels is between 0 (dark blue) and 20 (red). All results
correspond to time 2000.

To be precise, the simulation may be terminated once the density becomes constant, or when
the “sampled area” reaches a final constant value. By choosing the second option, this can lead
to an infinite number of steps and a never-ending simulation, since gliders appear quite often,
which would lead to a non-stopping increase of the sampled area if they move away from the center of
the system. In our analyses, we neglected the fact that the system was still active due to the presence
of gliders (or any other “ships”), and we defined equilibrium as the time after which no more changes
are observed in the system, except for the periodic ones due to blinkers and similar clusters.

Thus, we can study how far and fast the signal (or activity) spreads. As a first approximation,
the activated area (considered a circular one) can be written as πr2(t) (r being the distance from
the center of the box), hence we can write the velocity of the spreading signal as:

v(t) =
1√
π

d
√

AA
dt

(2)

Figure 6 shows the velocity calculated from the curves of the activated area vs. time, presented in
Figure 2. For comparison, we have also plotted the result considering the spread as a pure random
walk (green dashed curve).
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Figure 6. (Color online). Velocity vs. time for five different initial densities as labelled. The green
dashed curve shows the result assuming a simple random walk. Note the logarithmic scale on both axes.

It has to be noted that the activated area will increase outwards as well as inwards. The velocity
of the signal propagation calculated from the increase of this area as a circle that grows from the center
of the initial configuration is only valid after the area of the box containing the initial configuration has
been sampled. This occurs for values of time that depend on the density and is about a few hundreds of
steps. In the very first steps of the simulation, a big increase of this area is expected, since, grosso modo,
most of the dead cells around the living ones will become live in few steps, so that the activated
area will increase from A0 to 2A0, 3A0, etc., in only a few steps. At the same time, as has already been
discussed, in few steps the density decreases, and this process is fast as well (see top panel of Figure 2),
so that in a few steps the increase of the initial active area will not be “explosive” anymore.

This simple computational experiment could be the first step towards answering a number of
important questions and determining whether the GoL is a suitable model. How does a signal
propagate in the brain? Is there experimental data that might relate to this simple model of
neuronal activity? Can we define the initial configuration as an impulse or stimulus (in microvolts,
with the density determining its range for example), and its subsequent evolution as the spreading of
that signal or information?

Moreover, it has been argued that in the brain, volume conduction (or electrical spread) is a passive
resistive process, where the amplitude of the extracellular signal decreases as the distance from
the active membrane increases, as described in Reference [63] (see Figures 1 and 3 in that paper).
This is not an argument to verify our model; however, our model presents similarities, since the signal
propagates fast around the initial activated region and slowly far from it. In the CA model proposed
by Hofmann, the excitation of a region of space does not propagate to distant regions [10], this is also
true of cortical regions under normal conditions [64]. Similar behavior is predicted by our model.

The activated area, AA increases from A0 to 10 to 15 times A0, which means that the initial
square is filled (i.e., AA is multiplied by a factor 100/ρi) and then little spread is observed. In terms
of the initial size, N×N, the final activated area (or sampled area) would be less than 2N × 2N,
so that the signal (neglecting the propagation due to gliders that will continue growing forever) is not
spreading more than N cells from the borders of the initial distribution. However, this is something
that may vary from one simulation to the next, and it is certainly not true for special configurations
such as the “Methuselahs,” as we will discuss later.

The first possible connection of the presented model with brain dynamics is shown at this point.
We compare the spreading of activity with the cortical spreading depolarization (CSD) wave [65].
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Spreading depolarization waves of the neurons (and neuroglia) propagate across the gray matter
at a velocity of 2–5 mm/min, [66,67], i.e., 0.33–0.83 × 10-4 mm/ms. If we calculate the velocity
of growth of the active area during the first 100 steps, when AA grows fast, it is found that
V = 10−3–10−4 cells/step. If we assume that the timestep is in ms, in accordance to Reference [68],
and cell size is of the order of mm3, then V is predicted to be higher than that of the CSD by one order of
magnitude. To make this comparison, we have assumed a one-to-one correspondence between neurons
and cells in our model. However, since the number of actual neurons represented by each CA cell is
a user-defined parameter, in that sense the CA model is flexible and can achieve better agreement.

It has to be noted that if each computational cell is assumed as a single neuron, there exists
some ambiguity, since the size of neurons is not constant but depends on the type of neuron, etc.
For instance, pyramidal cells are big (~20μm), whilst stellate cells are smaller [69]. Moreover, CSD is
not the only measurable quantity that exists in brain dynamics and other phenomena may be
modeled. For instance, during an epileptic crisis, the rate of migration of hypersynchronous
activity (hallmark of epilepsy) has been experimentally recorded and the estimated value is
about 4 m/ms, [70,71], i.e., approximately 60 times higher than that of the CSD.

4. Spikes in the GoL Model

Inspired by the Wilson-Cowan model [72,73], we defined spikes in a similar manner. Most neurons
require a minimum level of input before they fire. That threshold in our model can be the number of
adjacent active cells. In this way, a cell (neuron) spikes when it is active and has exactly x number of
active neighbors. We will refer to spiking requirements or rules as R3, R4, R5, and R6, with 3, 4, 5,
and 6 being the previously defined number x. In each case, a cell is considered as having had spiking
activity if it has spiked at least once, obeying either of the previously mentioned spiking rules. In this
way, similar to the active area, the spiked area AS may be defined at each timestep as the total number
of cells that have spiked at least once (obviously, AS as AA can never decrease). It is a well-known
fact in neurophysiology that the same neuron can become inactive and active (firing) many times
per second [72,73]. Regardless, real neurons have a period of refractoriness after which they can fire
again. This period last about 15 milliseconds and in our model, we assumed that this discrete timestep
corresponded to the discrete unit of time.

Please note that in the W-C model, the neighborhood includes only 4 cells (von Neumann
neighborhood), whilst in our model it included eight (as in the classical GoL model).
Moreover, in the present version of the model, there is no differentiation between excitatory
and inhibitory neurons. Obviously, these conditions could be easily modified. A simulation was carried
out, where a randomly distributed initial density of 20% (i.e., 200,000 active cells in a 1000 × 1000 grid)
was left to evolve, following spiking rules R3, R4, R5, and R6), and the spiking activity was measured.
The averaged results of 20 different simulations for each rule are presented in Figure 7.
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Figure 7. (Color online) Top panel: Ratio between the activated area and the spiked area, AA/AS

vs. time. Bottom panel: Number of spikes divided by the total initial population (i.e., 200,000),
as a percentage of this.

The spike curves prove helpful in understanding the evolution of the system. The number of
spikes for a given time are the number of active neurons that have exactly 3, 4, 5, or 6 active neighbors
at that step. Since we started from a low-density configuration (ρi = 20%), at the very first stages,
the number of spikes was found to be small in terms of the initial area (or initial population pi)
and it grew, but not by much, within a few steps (less than 10). Then, after this initial reorganization,
an almost flat curve was observed, especially for rules R4, R5, and R6. The average value for
the first 200 steps after the aforementioned reorganization (from 20 to 220 steps) was as follows:
5.15, 1.48, 0.80, and 0.22 for R3, R4, R5, and R6, respectively (see bottom panel of Figure 7).

The ratio AA/AS converged fast to an almost constant value for R3, R4, and R5, but not as fast for
R6. For R3 and R4 the ratio was almost 1, i.e., the spiked area becomes almost equal to the active area.
However, the number of spikes with the R3 rule was more than 5 times larger than the one with R4.
For R5 that ratio was 1.5 and for R6 the ratio was approximately 2.5 (see top panel of Figure 7).

Returning to Figure 5, its bottom panel presents the results of the spiked area AS at timestep 2000,
for three simulations with a random initial configuration of density of 20% in a 1000 × 1000 grid
and spiking rules R3, R4, and R5, respectively. The top panel presents the respective active areas (as has
already been discussed) and the colors for the sake of clarity have been limited between 0 and 20.
The shape and size of both areas (active and spiked) vary significantly between different simulations,
a fact arising from the different initial random configurations. However, the ratio AA/AS has
not changed and remains almost constant at 1 for R3 and R4 and 1.5 for R5, as discussed in
the previous paragraph.

From the above analyses, one could deduce that starting from a small community of live cells,
let us say less than 10 or 20, the system would reach equilibrium in a few steps. However, this is
not the case for some configurations called "Methuselahs" [74]. Some well-known Methuselahs are
the acorn, the r-pentonimo, and the diehard. These apparently simple configurations (and their
subsequent evolutions) are good examples of the amazing complexity that can be found in the GoL.
Figure 8 shows the (a) acorn, (b) r-pentonimo, (c) diehard.
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Figure 8. Some well-known Methuselahs; Left to right: (a) acorn, (b) r-pentonimo, (c) diehard, as shown
in Reference [74].

See Video 2 in supplementary material for a simulation involving the acorn. The acorn resulted
in a stable configuration after approximately 5000 steps. Starting from an initial configuration of
the acorn at the center of the box (only 7 cells live), the stable pattern that emerged contained 633 cells,
and the total sampled area was around 22,885 cells (a small part of this area accounted for
the area sampled by some gliders before the system reached equilibrium). Using the acorn as a starting
point, we examined the evolution of the spiking area under different spiking rules. Figure 9 presents
the spiked area (for cells that have spiked at least once) at a timestep of 2000, for spiking rules R3,
R4, R5, and R6, and as expected, the spiked area is lower when the number of neighbors required for
a neuron to spike is higher.

Figure 9. (Color online) Acorn simulation and spikes. (See Video 2). Cells that spiked at least once
after 2000 steps. Color scale, as previously discussed, is limited between 0 (dark blue) and 20 (red).
From left to right, Rules 3, 4, 5, and 6, respectively.

Figure 10 presents the results of the simulations for the acorn with 4 different spiking rules.
As can be seen in the top panel, the spiked area for R3 (continuous black line) was almost equal to
the active area (black dashed line), and then it decreased for the other rules in the expected order (i.e., R3,
R4, R5, R6 from biggest to smallest). The bottom panel of Figure 10 presents the sum (from timestep
1 up to the current timestep) of spikes that have appeared for each of the 4 different spiking rules.
As can be seen, the R3 curve exhibited, after the initial stages of the simulation, more than twice
the number of spikes that the R4 curve did.
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Figure 10. (Color online) The acorn simulation. Spiked area (top panel) and total number of spikes
(bottom panel) vs. time (See Video 2) with different spiking rules, as labeled. The dashed black line on
top represents the total active area AA.

Simulating the acorn was interesting to show the expected differences once the spiking rule was
modified; however, the results obtained using the acorn may be not valid in general. If the simulations
were carried out with various initial random configurations with spiking rule R3, the number of spikes
decays fast (see Figure 11, Top panel), and when the number of spikes is divided by the population
(that decays exponentially), the resulting behavior of the spikes per neuron versus time is a small
decrease in the very first stages of the simulation, only around the first 50 steps, as can be seen in
Figure 11’s bottom panel, followed by an almost constant value in the next steps.

Figure 11. (Color online) Total number of spikes (Top panel) and averaged number of spikes per neuron
(i.e., total number of spikes divided by total population, Bottom panel) vs. time for five different initial
densities as labelled: 10 (black), 15 (red), 20 (green), 25 (dark blue), and 30% (magenta).

Apart from the very first stage of the simulation, we observed an average of 0.005 spikes (or firing
neurons) per active neurons as time progressed. This can be compared to the results of a more realistic
model like the one presented in Reference [68]. In that study (See Figure 2), the number of firing
excitatory neurons is given. The value was about 400–500 firing neurons within a total of a million
neurons, i.e., only 0.04–0.05%. It is also important to note that this result corresponded to a typical test
with normal non-periodic behavior. Periodic states with high activity are associated with epileptic
episodes [68].

60



Math. Comput. Appl. 2018, 23, 75

Can this simple model of spiking activity be compared to real spiking activity in a real brain?
How many spikes should we have per time and area? We have a certain number of spikes (per time,
per area, etc.). It remains to be confirmed if this number is too low or too high compared to the usual
number of spikes per neuron in the brain (or some part of it, depending on the activity).

5. Defects and Percolation

A simple ingredient that can be added to the present model is the presence of defects, i.e., cells that
are inactive, neither dead nor alive, but are totally inactive all the time. These defects act as boundaries,
i.e., they cannot become alive and are not counted when the GoL rules are applied. By doing so,
we can study how these defects affect the propagation of life (i.e., a signal) as studied earlier. The basic
idea or question behind this is: Is it possible to associate the presence of defects, defined in this way,
to dead neurons that are present in neuronal diseases like Alzheimer or autism? [75–78].

We set up two communities separated by an empty space to study how the two communities
mixed and/or interacted. In this way, we assumed that the two communities represented two parts
of the brain (how big or small is an important question), which were somewhere disconnected
(i.e., the part of the brain in between two active areas is in total rest state). We observed how they
connected, i.e., we could define some kind of connectivity and studied this connectivity and its
dependence to the initial density of active cells and other parameters.

Figure 12 shows the result of one of our simulations of this interaction. The sample size N × M
was 100 × 300 (vertical by horizontal), meaning that the empty space between the two communities
(i.e., the gap), N/3, was 33 cells. The initial density was 20% in the top and bottom regions
(33 × 300 cells each). In the presented case, the number of defects was 2% in the middle region.

Figure 12. (Color online) Example of the mixing interaction of the two separated communities
(up and down). The color scale corresponds to the number of timesteps that the cells have been
active. See Video 3 in the supplementary material.

As can be seen, after some steps (350 steps, 35 secs in the video), both communities interact.
For clarity’s sake, when this occurs, we plotted the resulting “life” in yellow. A simple way to
quantify the interaction is to study only the density of “yellow neurons,” as we will see later.
Henceforth, the density of active neurons after the interaction of the two separated communities
will be referred to as “mixed density.”

However, to analyze the effect of defects on the transmission of information or in
the communication of the two parts of the “brain”, let us understand the effect on the transmission
or propagation of life. If the simulation was run with an initial density of life plus a percentage
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of randomly distributed defects, what is observed is a clear decrease in the time needed to reach
equilibrium. This can be observed in the density and active area curves, since both reach the final
value in a few steps compared to the 0% defects case (See Figure 13).

Figure 13. (Color online) Density (top panel) and Active Area, AA, divided by initial area A0

(bottom panel) vs. time for four different simulations adding randomly distributed defects to the lattice,
from 0% to 3% as labelled.

To show how defects affect the signal propagation, we presented four different simulations
with an initial density of 15% in the center of the box, and with defects being randomly distributed
across the computational domain. The percentage of defects ranged from 0% to 3% (from left to
right, see Figure 14). As can be seen, the higher the number of defects, the smaller the activated area,
and the same applies for the spiked area (bottom panel). In the top panel, it can also be seen how
the defects block the paths of gliders (for 1% and 3% defects).

Figure 14. (Color online) Top panel: Activated Area after 1000 steps for initial density = 15%.
Bottom panel: Spiked Area applying Rule 4 (scale goes from 0 (dark blue) to 20 (red)). From left
to right, the percentage of defects is 0%, 1%, 2%, and 3% as labelled.

Figure 15 shows the “mixed density” for 5 simulations that were performed for two initially
separated regions with initial densities, ρi = 20% each, for different densities of defects in the middle
region (i.e., the same configuration as described for the simulations presented in Figure 13). The result
was not absolute (or was relative) in two ways. First, it presented only single simulations and not
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averaged curves. For the same conditions, the results changed significantly from one simulation
to another, and in some cases, both communities would not interact at all. The idea was to
demonstrate that the lower the number of defects, the easier it becomes for the two regions
(upper and lower) to interact (i.e., lesser time is needed for the mixed density to become different from
zero). Moreover, the interaction becomes stronger, if we consider the area under the density curve as
a measure of strength (See Video 4 in the supplementary material).

Figure 15. (Color online) Mixed density vs. time for five different percentages of defects as labelled.
As can be seen, the lower the number of defects, the easier it is for the two blocks to interact.

The connectivity was achieved in several timesteps that depended on the densities of the upper
and lower regions (See Figure 16, right panel). For low densities, the time was larger, and then for
densities ≥ than 20%, it was approximately 125 steps, the gap distance was 100 cells, meaning that
the communities “moved” towards each other with a velocity v = 50/125 = 0.4 grid-cells/timestep.
Then for a given density (20% in this case), the time needed to interact will depend on the percentage of
defects present in the middle region (Figure 16 left). When the percentage of defects is less than or equal
to 0.75%, the effect is almost negligible; however, for bigger percentages, the time clearly increases,
and when the defects reach more than 2% of the grid in the middle region, the signal is almost blocked.

Figure 16. (Color online) Effect of the defects in the “transmission efficiency” of signals. Left figure
shows the number of timesteps needed for the two communities to interact depending on the percentage
of defects, for two different gaps, N/3, N being either 100 (blue squares) or 60 (red circles). (See videos
3 and 4). Right figure shows the time needed for the “transmission of the signal” between the regions
“upper” and “lower,” depending on the initial density (in%) of the regions.
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It must be noted that the values presented in Figure 16 are obviously geometry-dependent.
As already mentioned, the sample size is N×M (vertical by horizontal). If the gap (N/3 in our
simulations, though it can be any other fraction of N) is very big compared to N, the two communities
are unlikely to interact, except via gliders (or other “ships”), and when the gap is small the interaction
will be fast. Note that, as shown in Figure 14, the gliders may be hindered by a single defect. If the size
of the two communities (in terms of the fraction of N) is not very big, then it is more unlikely to create
“traveling groups” that will end up connecting both sides.

Figure 17 shows a summary of the different properties of Life, depending on the percentage of
defects in the grid. The equilibration time decays exponentially with the percentage of defects.

Figure 17. (Color on line) Dependence on the percentage of defects of several properties. For initial
densities ρi = 15%: Top Left: Active area, AA, divided by the initial area A0. Top Right: Spiked area AS,
divided by A0. Bottom left: Equilibration time, bottom right, ratio #blocks/#blinkers. Straight line
represents the linear fit of both results. Red squares and blue triangles are the results using open
and closed boundaries, respectively.

In this part, we have established a second idea that deserves further study. This simple model
with the addition of defects may be utilized to study neural network dysfunctions in the excitatory
and inhibitory circuits that have been proposed as a mechanism in Alzheimer’s disease [75–78].

6. Extensions of Game of Life

To conclude, as mentioned earlier, the number of nearest neighbor (NN) cells may be easily
modified in the 2-dimensinal GoL. Counting second NN cells would take us to 24 NN, whilst counting
third NN cells would take us to 48 NN and so on. However, that would make the model much more
expensive computationally, and not only that, but the rules would have to be changed to have “Life,”
i.e., gliders and other interesting features observed in Conway’s GoL [79,80]. Finding the correct
rules for different neighborhoods was not trivial, but after some trial and error we found a possible
interesting extension: B789/S69 (in the notation used by the Golly/RLE open-source cellular automaton
package), where 789 is the interval of fertility and 69 is the interval of survival.

Figure 18 shows the most common clusters in the equilibrium state of the extended GoL B789/S69
CA. Another interesting “animal” found in this CA was the “orbiter” (See Video 5 in the supplementary
material), a configuration that turns over itself in 10 steps. At this point, a similar analysis of density,
activated area, etc., could be carried out. In Figure 19, the density and activated area versus time
are presented. As can be seen, the qualitative behavior was similar but the timescales were different.
Further analysis is possible, but it is beyond the scope of this study.
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Figure 18. Most common clusters in the equilibrium state of the extended GoL B789/S69.
(a) Orthogonal glider: Moves a cell forward in 5 steps, parallel or perpendicular to the grid.
(b) Diagonal glider: Moves a cell in four steps. (c), (d) and (e), three different stable clusters. (f) Blinker.
Period two.

Figure 19. (Color online) Top panel: Activated area vs. time for different initial densities as labelled.
Bottom panel: Density vs. time for different initial densities. Final density is approximately 0.9%.
Second NN configuration, 69/789 rule applied.

We have shown that we can move from the original rules (B3/S23) to B789/S69 if we move from
the first NN to the second NN, (i.e., from r = 1 to r = 2). Hence, it is natural to think that, for r = 3, r = 4,
etc., it will be “always” possible to find a new GoL. However, would that model be a more accurate
representation of some aspects of brain dynamics? This is a question that is not trivial to answer.

7. Conclusions

The GoL based model seems unrealistic at first glance, to be applied to the modeling of brain
dynamics. However, there are some similarities with other well-known models. For instance,
the stochastic rate model proposed by Benayoun et al [81] treats neurons as coupled, continuous-time,
two-state Markov processes. Briefly, in that model, neurons are 2-state random processes. Each neuron
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can exist in either the active state, representing a neuron firing an action potential and its accompanying
refractory period, or a quiescent state, representing a neuron at rest [82].

The advantage of our approach lies in the fact that its simplicity makes it computationally
cheap, so that one million neurons can be modelled in a single non-expensive computer. Even more,
within our model, simulations containing several millions of neurons are feasible without the use of
supercomputers. In comparison, as described in Reference [68], for simulations of a million neurons
(because the degree of the node, k, in their simulations is k = 300), distributed computing techniques
are needed. A model somewhat more realistic than ours, but not as complex as the one proposed by
Acedo et al. [68], should be explored.

The GoL can be an interesting model to understand the many problems related to signal or activity
propagation in brain dynamics. When the grid is filled with defects (cells that are always inactive),
the transmission is clearly damped with the addition of a very small percentage of defects (2%).
This could be related to neuronal damage and accumulation of amyloid-β plaques and neurofibrillary
tangles, as in Alzheimer’s disease [82]. Even a small percentage of damage impairs memory retrieval
and other higher functions in patients and this is a feature of the disorder which could be studied with
simple models such as cellular automata.

However, eight neighbors only in plane simulations (2D) are likely to be a crude oversimplification
of the problem. A more realistic model would be a 3D Game of Life. Here more questions arise.
Which 3D game of life? Several possible rules in 3D can be defined as “good life” [83]. In our opinion
the GoL, both in 2D and 3D, deserves further attention, as well as the possibility of some kind of
connection between the overall behavior of Life (2D or 3D) and brain dynamics. We believe that
the GoL can play an important role in theoretical neuroscience. Clearly, besides being a simplification
of the problem, it provides a theoretical framework on which more refined and realistic models can be
built. In that direction, we have presented some simple analysis regarding the behavior of the GoL
and how to use those ideas as tools to better understand the different aspects of brain dynamics,
namely, sampling time, signal (or information) spreading or transmission, spikes, and defects.
All these ideas can be combined or used in different scenarios (different topologies, for instance small
world networks [50] or GoL in 3D [84]), or variants (synchronous–asynchronous) of the GoL [51–53]
and combinations.

More interesting questions arise. Can we associate the final clusters (periodic or not, etc.)
with some information storage? If so, periodic and stable (period 1) clusters correspond to short
and long-term memory (or vice versa)? Recent studies [84] have challenged traditional theories
of memory consolidation (i.e., the transfer of information to different parts of the brain for long
term storage). They argue that memories form simultaneously in both the prefrontal cortex
and the hippocampus (rather than the hippocampus only) and they gradually become stronger
in the cortex and weaker in the hippocampus (rather than being transferred from the hippocampus
to the neocortex, with only traces remaining in the hippocampus). Our model may be utilized to
help determine how cortical and hippocampal regions communicate, to understand how the cortical
memory cells maturation process occurs. Moreover, it may help to answer the question of whether
memories fade completely from the hippocampal region or if traces remain to be occasionally retrieved.

Finally, another interesting experiment would be to check our results in much bigger samples,
100 times bigger, or more (108 or 109 neurons). As Anderson said “More is different” [85], so the results
regarding the defects can be very size dependent.

Supplementary Materials: The following are available online at http://www.mdpi.com/2297-8747/23/4/75/s1,
Video 1: Example of the GoL simulation with color representing activity along the simulation. The scale goes
from 1 to 20. Video 2: The acorn time evolution. Number of timesteps is 5500. Color scale shows the number of
spikes per cell. Video 3: Interaction of two communities. The color scale represents the number of times a cell
has been active. Video 4: Interaction between two communities with defects in the grid. The cells created after
the interaction are now colored in yellow. Video 5: The Orbiter; a stable configuration in the extended GoL.
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Abstract: Human factors are intrinsically involved at virtually any level of most industrial/business
activities, and may be responsible for several accidents and incidents, if not correctly identified
and managed. Focusing on the significance of human behaviour in industry, this article proposes a
multi-criteria decision-making (MCDM)-based approach to support organizational risk assessment in
industrial environments. The decision-making trial and evaluation laboratory (DEMATEL) method
is proposed as a mathematical framework to evaluate mutual relationships within a set of human
factors involved in industrial processes, with the aim of highlighting priorities of intervention. A case
study related to a manufacturing process of a real-world winery is presented, and the proposed
approach is applied to rank human factors resulting from a previous organisational risk evaluation
from which suitable inference engines may be developed to better support risk management.

Keywords: human behaviour; organisational risk; multi-criteria decision-making; DEMATEL;
bottling process

1. Introduction

Companies are managed by following previously designed strategies, and operate according
to processes implemented on the basis of the available resources. These strategies and processes
are complex systems that integrate workers, plants and environment. Balancing and mutually
adapting these elements make it possible, among others, to implement actions aimed at preventing the
occurrence of accidents and occupational disease within workplaces, and also to identify near misses.
The concept of human management system (HMS) is important to this issue.

Clerici et al. [1] affirm that an organization is a plurality of “human elements”, and risks
often depends on organizational criticalities, whose reduction can be undertaken by implementing
effective human resource management (HRM). In particular, HRM is defined as a system of structured
procedures aimed at optimizing the manpower management in a company [2], with its workers being
the most valuable assets of the organisation [3]. As asserted by Cirjaliu and Draghici [4], nowadays
companies seek to continuously improve the well-being and satisfaction of their human resources
within their own operational environments.

An important aspect to take into account within this context is the integrations of human factors
and ergonomics (HF/E), whose optimal management is crucial to achieve central objectives, for
instance the transition to sustainable development [5,6].

Indeed, human factors are intrinsically involved at virtually any level of most industrial/business
activities [7,8]. They represent the core component of many organisations and may be responsible for
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several accidents and incidents if not correctly identified and managed, as asserted by Ergai et al. [9].
However, as authors underline, investigating these aspects depends on the specific features of the
workplace of reference, and on the evaluator’s background. For this reason, promoting a safe and
environmentally responsible manner of working represents one of the most important organisational
challenges, currently [10].

The importance of this concept is broadly shared in the literature. Wilson [11] asserts that
any understanding of system ergonomics must be related to the idea of system engineering.
Hassall et al. [12] stress that analyses based on human factors and ergonomics are commonly used
to improve safety and productivity—particularly in complex systems. Sobhani et al. [13] underline
that the improvement of workplace ergonomic conditions gives opportunities to better deal with
production variations and optimize the performance of system operation.

To address the aspects related to HF/E within industrial workplaces, the decision-making trial
and evaluation laboratory (DEMATEL) method, first developed by Fontela and Gabus [14,15], is herein
suggested as a mathematical framework to evaluate mutual relationships among some of the most
important human factors involved in industrial processes—which, as in many other areas, have usually
shown to be deeply intertwined and mutually affected.

Amid various multi-criteria decision-making (MCDM) methods proposed in the literature,
DEMATEL is particularly helpful to take into account existing interdependence among the main
elements involved in any complex decision-making problem, on the basis of judgments attributed
by a team of experts. DEMATEL also finds the central criteria to represent the effectiveness of
factors/aspects, and avoids evaluation overfitting. This interdependence is eventually represented by
means of a graphical chart, from which causes, and effects, are suitably described.

The present paper is organised as follows. Section 2 discusses human factors and ergonomics in
industrial environments. The main investigated areas when leading organisational risk assessment are
presented and described. Section 3 deploys the DEMATEL framework, with its various methodological
steps, and the obtained outputs. Section 4 presents a real-world case study of a manufacturing process
led in a winery: The bottling process. The most critical human factors, emerged from a previous
implementation of risk assessment [16], are ranked by means of the DEMATEL to suggest an order
of intervention aimed at gradually reducing organisational risk in the analysed operational context.
Lastly, conclusions are provided in Section 5 to close the paper.

2. Human Factors and Ergonomics in Industry

Amount and intensity of human interactions with industry processes generally depend on the field
in which the organisation operates. Carpitella et al. [17] presents a literature review in this regard, which
is herein extended. Saravia-Pinilla et al. [18] analyse the strong bond existing among environmental
and human factors. In particular, the authors highlight a gap in the existing literature about this topic,
and propose a model combining human and environmental factors with relation to the processes of
product/service design and an ad hoc development to potentiate decision-making processes.

A tool that is particularly effective in conducting human factor-based analyses for reducing
accidents and incidents is represented by the human factor analysis and classification system (HFACS),
developed by Wiegmann and Shappell [19]. This can be applied in a wide variety of contexts, such
as, for instance, aviation industry [20] or maritime safety [21]. Chen et al. [22] focus on marine
casualties and incidents and deal with human factor management with the aim of reducing accidents
and avoiding disasters. The authors implement the framework HFACS for maritime accidents
(HFACS-MA), a useful support to increase the level of safety and reduce human errors by identifying
possible accident causes. Madigan et al. [23] refer to the rail industry and stress the importance of
carefully taking into account also latent factors. They propose HFACS by accomplishing a retrospective
analysis to examine causes of minor incidents to prevent future and more severe events.

It is neither possible, nor convenient, to totally eliminating human contribution to processes, even
when a high degree of automation is pursued, such as in manufacturing industries [24]. Industries
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with high production volumes may consider machines and computers as faster and more reliable than
humans in leading automatic operations. In this case, the human contribution given to automated
processes would be barely necessary, and this may help reduce possible errors, due to psychological
and physical factors, such as health, stress, age, mood, and so on. Moreover, the more customised the
manufacturing process, the more crucial the role of human factors.

Furthermore, the aspect of dependence among various phases of a process has to be considered
and managed. This kind of dependence strongly impacts on the reliability level, as asserted by
Zio et al. [25]. Indeed, considering, for instance, a sequence of two interdependent tasks, a fault on
one of them increases the probability of failing on the other. The authors propose a framework based
on a fuzzy system for eliciting expert knowledge about those factors mostly influencing dependence
between two successive tasks. In particular, relationships between the input factors and the conditional
human error probability are represented by means of a set of transparent fuzzy logic rules, and an
application, related to two tasks required in response to an accident scenario at a nuclear power plant,
is analysed.

Therefore, a current challenge faced by organisations consists in integrating even more machines
and workers [26], with the aim of creating a systematic operational environment and optimising all
the available resources. In this context, human reliability strongly influences organisations’ outcomes,
and plays an important role in evaluating risks related to industrial/business activities.

Human reliability refers to the field of human factors and ergonomics, and is defined as the
probability to successfully carry out a general human activity [27]. Human performance, as expressed
before, can be influenced by such factors as age, physical and psychological health, attitude, etc.
For this reason, human reliability is assessed with the aim of supporting risk evaluation and, in
particular, of determining the impact of human contribution to the risk of failure or success, especially
when humans are directly responsible for system operation, as it is usual today.

Since diverse factors are involved within the operation of systems or processes under analysis, a
multidisciplinary approach is necessary to prevent the possible occurrence of human errors. Generally,
human errors [28,29] are classified into errors of commission (EOC) and errors of omission (EOO).
The first group is related to errors during the phases of identification, interpretation and execution
of a specific activity, whereas the second category regards errors, due to forgetfulness or inattention,
omitting a step of the task or also the whole task itself.

Triggers for faults are likely represented by human factors, the evolution of the error probability
can be understood and approached by modelling human behaviour. Human behaviour can be
schematised according to various levels, classified as skill-based, rule-based and knowledge-based [30].
By transiting from the first level to the third, the human error probability (HEP) increases. Specific
errors are associated to each kind of behaviour [31]. In particular, the main causes of errors related to
skill-based behaviour are the lack of concentration and the presence of stressful situations. Concerning
the rule-based level of behaviour, errors derive from wrong approaches to procedures and rules. Lastly,
regarding the knowledge-based behaviour, errors are caused by incorrect interpretations of specific
situations or also by incomplete knowledge.

On the basis of all the above, organisational risk assessment in industrial environments is conducted
with the aim of evaluating, eliminating or at least minimising risks related to ineffective manners of
work, in terms of methods and operation management from humans. Such kind of risks derives from
psychological and physical conditions that negatively impact on the quality of work and life.

In particular, when leading organisational risk assessment, the main areas presented in Table 1
are analysed with a deep level of detail. The purpose consists in highlighting the presence of
possible stressful aspects related to human factors and ergonomics within each area, which could
potentially damage the global wellness and health of workers, and therefore, the performance of the
whole organisation.

These factors are present in almost all the working environments. Among all organisational
aspects, the European agreement on work-related stress held in Brussels in the year 2004 [32] underlines
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as managing the problem of stress at work leads to greater efficiency and improvement of health
and safety conditions, with consequent economic and social benefits for companies, workers and
society. For this reason, the same agreement established to offer models and guidelines for evaluating
work-related stress on the basis of two phases, namely preliminary assessment and in-depth evaluation.
The first phase is based on the identification of verifiable and quantitative stress indicators. The second
phase should be undertaken through surveys, focussing on groups and semi-structured interviews to
homogeneous groups of workers.

Table 1. Description of investigated areas related to human factors and ergonomics.

ID Investigated Area Description

A1
Organizational culture and
role

Sharing values, upon which the organisation policy is grounded;
maintaining relationships among different levels of the same
organization; being aware about the own role within the
company.

A2
Career development and job
stability

Having clear the possibilities of development in terms of career
advances; knowing the path of professional growing; achieving
contractual stability.

A3

Communication, information,
consultation and participation
of workers

Empowering communication among all the levels of the
hierarchy structure of the company; involving workers within
decision-making processes to pursue general business
objectives.

A4
Training, awareness and
competence

Promoting training paths aimed at increasing specific
competencies of workers and at continuously improving the
level of safety and security related to industrial processes.

A5
Operational control: Indication
of measures and instruments

Defining scheme, minimum contents and work procedures to
lead a safe execution of the main tasks; identifying the main
criticalities to be monitored; monitoring and controlling
processes and outputs; planning and implementing
maintenance interventions on the basis of the policies
undertaken by the organisation.

A6
Extraordinary situations and
changes management

Defining criteria, methods and responsibilities to identify
possible scenarios of extraordinary situations causing
exceptional or unusual results; establishing intervention
measures; managing changes to implement corrective measures.

A7
Outsourcing and interference
management

Evaluating direct and indirect impacts of the outsourcing
process; implementing a framework of cooperation with
external companies to optimise safety both of internal workers
and third parties.

A8 Workload and working hours

Examining the entity of workload; balancing responsibilities
related to each group of workers; managing and correctly
planning the number of working hours per person; integrating
work with life and social contexts of workers.

By analysing the results coming from such evaluations, we propose to focus on the more critical
human factors emerged for each target area (Table 1). With this aim, the DEMATEL methodology is
suggested to select, within the set of highlighted human factors, those most influencing the others.
This approach is useful to suggest an order in planning and implementing mitigation measures of
organisational risk.

3. DEMATEL to Increase the Level of Safety in Industrial Processes

In complex systems, many aspects, factor or criteria are, either directly or indirectly, deeply
intertwined (sometimes in a hidden way), and mutual interference affects other elements, thus
making it difficult to find priorities for action and eventually hindering decision-making. In many
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cases, pursuing a specific objective may inadvertently impair several other objectives. Therefore,
having a clear vision of the system contributes to the identification of workable solutions. DEMATEL
has shown to help confirm interdependence among variables and restrict the relation that reflects
the characteristics of a system of management trend [33–35]. DEMATEL’s outcome is a visual
representation, through which decision-makers may organize better the actions to take. The purpose
of the use of DEMATEL in this paper is to discern the direction and intensity of direct and indirect
relationships that flow among a number of well-defined elements. Thus, experts’ knowledge is used to
contribute to better understand the problem components and the way they interrelate.

The DEMATEL technique can be implemented by means of seven steps, in sequence.

1. The problem under analysis has to be clearly expressed in terms of a general goal. The main
elements/factors characterising the problem have to be defined by means of the support of a
decision-making team composed of experts in the field.

2. Non-negative matrices X(k) have to be produced, where 1 ≤ k ≤ H, H being the number of
experts, expressing judgments on the mutual influence between pairs of elements. Elements
x(k)ij i, j = 1, . . . , n (n being the number of compared elements) represent the numerical values
encoding the judgments. The meanings of those numerical values are defined as follows: 0 (no
influence), 1 (very low influence), 2 (low influence), 3 (high influence), 4 (very high influence).
The main diagonal values of any of these matrices are zero.

3. The direct-relation matrix A has to be built. This matrix incorporates all the matrices previously
filled in by the involved experts. A is a square matrix of order n that averages the opinions of the
group of experts:

A =
1
H ∑H

k=1 X(k). (1)

4. The normalized direct-relation matrix has to be obtained. From (1), this matrix is calculated as

D = sA, (2)

where s is a positive number slightly smaller than

min

⎡
⎣ 1

max
1≤i≤n

∑n
j=1 aij

,
1

max
1≤j≤n

∑n
i=1 aij

⎤
⎦. (3)

Based on matrix D, the initial influence that elements exert on and receive from the others is
shown. Then, a continuous decrease of the indirect effects among the considered elements may
be obtained along the consecutive powers of matrix D. This enables to obtain the total relation
matrix, as explained next.

5. The total relation matrix T has to be calculated. This matrix reflects both direct and indirect effects
among elements, and is achievable through the sum of the powers of matrix D. Observe that
lim

n→∞
Dn = 0, since the spectral radius of D is smaller than 1, since, by Equation (3), it is bounded

by the maximum row and column sum. As a result, see, for example, Example 7.3.1 in [36], the
power series of D, I + D + D2 + · · · , converges to (I − D)−1 where I is the identity matrix of
size n. Consequently, the total relation matrix may be written as

T = D(I − D)−1. (4)

As said, this matrix represents the build-up of mutual direct and indirect effects among elements.
Observe that the diagonal entries of matrix D (accounting for the direct effects) are zero; however,
the diagonal elements of T collect all the non-direct effects associated to their corresponding
factors. This fact is crucial in step 7.
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6. An influential relation map is obtained through the definition of r = (ri) and c =
(
cj
)

as n× 1 and
1 × n vectors, respectively representing the sum of the rows and the sum of the columns of the
total relation matrix T. Particularly, ri represents both direct and indirect effects of element i on the
others, whereas ci summarizes both direct and indirect effects of the other elements on element i.
In such a way, the sum ri + ci gives the overall effect (prominence) of element i, and the subtraction
ri − ci helps in dividing the elements into cause and effect groups (relation). Prominence allows
to rank factors according to their global influence, while relation enables to group elements into
the cause group—if the subtraction is positive—, and into the effect group—otherwise.

7. Prominence ranking gives crucial information on the impact associated to the factors. However,
a cutoff on the factor list is performed through a suitable threshold, bearing in mind that if
the threshold is too high important factors may be excluded and if it is too low, too many
factors—some of them irrelevant—may be included, which will turn the solution too complex
and thus impractical. In the literature, the threshold value is determined in a variety of ways:
By experts through discussions [37,38] or brainstorming techniques [39], by following results of
literature review, the maximum mean de-entropy (MMDE) [40], the average of all elements in the
matrix T [41], among others. In this paper we use this last value. Finally, a causal diagram chart
is drawn by mapping the dataset of (ri + ci, ri − ci), which gives a graphical representation of
the main interrelations among factors. Typically, only the interrelations among factors considered
within the cutoff are drawn, for the sake of clarity.

The main goal of the DEMATEL application in the present paper consists in identifying key
factors based on the causal relationships and the degrees of interrelationship between them, with the
aim of providing companies with a structured way of understanding the nature of interdependencies
within a set of human factors. As previously asserted, the definition of human factors results from
a previous context evaluation carried out in terms of an organizational risk analysis. In other terms,
we aim to identify aspects influencing the others and aspects being influenced by others for pursuing
a higher level of safety and security in leading industrial processes. To demonstrate the usefulness
of our approach, a real-world case study is developed to evaluate interdependencies among critical
human factors analysed in a manufacturing process of a Sicilian firm with the aim of reducing
organizational criticalities.

4. Real-World Case Study of a Sicilian Winery

The case study refers to a manufacturing firm, a winery located in Trapani, Sicily (Italy). We aim
to focus on the wine bottling process carried out in the company. This process is composed of 13
different phases, provided in Figure 1, and takes place in the area dedicated to delivery and production.
In the mentioned area, there are three fixed stations and a movable position, respectively occupied by
the following operators:

1. W1, worker dedicated to control that bottles are filled in and plugged;
2. W2, worker dedicated to control the global quality of bottles;
3. W3, worker dedicated to wrap final products;
4. W4, worker dedicated to carry out the following two activities: Raw materials (empty bottles,

labels and corks) and packaging supply; handling of wrapped final products.
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Figure 1. Phases of the bottling process.

The scheme of the production line representing the bottling process is shown in Figure 2.
The stations indicated as “DP” and “P”, respectively, represents the point in which empty bottles are
first taken off from pallets (in which they were originally stocked) for starting the bottling process, and
the point in which bottles (after having been filled in, plugged and checked) are finally put in pallets
and wrapped to be sent to the storage or final customer areas.

Figure 2. Scheme of the production line representing the bottling process.

With relation to the described process, the firm recently undertook an organisational risk
assessment by focusing on the group of workers distributed in the interested zone. In particular,
the work-related stress was evaluated by adopting the guidelines provided in 2011 by the National
(Italian) Institute for Insurance against Accidents at Work [16]. Within that evaluation, the areas of
Table 1 were deeply investigated by means of detailed surveys with the workers. These surveys aimed
at highlighting the possible presence of critical human factors for each area, with the final purpose of
managing critical aspects and then reducing the organisational risk as much as possible. In particular,
the 16 human factors in Table 2 (listed with relation to their related area) emerged as possible sources
of problems. The application of the DEMATEL methodology is suggested for establishing an order for
implementing mitigating measures.
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Table 2. Critical human factors related to each area.

ID Investigated Area Description

A1
Organisational culture
and role

• HF1 System of security and safety management not implemented;
• HF2 Ethical and behavioural code not implemented.

A2
Career development
and job stability

• HF3 Criteria for career advancement are not defined;
• HF4 Reward systems related to the correct management of human

resources are not defined for supervisors;
• HF5 Reward systems related to the achievement of security objectives

are not defined.

A3

Communication,
information,
consultation and
participation of
workers

• HF6 Work may depend on tasks previously accomplished by others;
• HF7 Tools involving workers within decisions and strategies are

not implemented;
• HF8 Rigid protocols supervising and controlling workers

are implemented.

A5

Operational control:
Indication of measures
and instruments

• HF9 Workers are exposed to noise between the I and the II levels
of action;

• HF10 Inadequate ventilation and microclimate;
• HF11 Inadequate lighting;
• HF12 Workers may be exposed to the risk of recurring movements.

A8
Workload and working
hours

• HF13 Unpredictably variations of workload;
• HF14 Workers cannot regulate machines’ rhythm;
• HF15 Workers lead tasks having high level of responsibility for

stakeholders, plants and production;
• HF16 Shifts may be not well organised.

We apply now the DEMATEL to evaluate existing interdependencies within the set of n = 16
human factors detailed in Table 2. Five experts in the field (H = 5) were involved to such an aim,
whose roles are given in Table 3.

Table 3. Roles of the decision makers.

Decision Maker Role

H1 Maintenance responsible
H2 Quality manager
H3 Consultant
H4 Chief of the safety and security system
H5 Department chief

The experts composing the decision-making group contribute to the process development by
playing diverse, but complementary, roles. Indeed, these subjects have been involved with the aim of
guaranteeing as complete as possible understanding about the problem under analysis.

Each decision-maker was asked to evaluate the direct influence between any two human factors
by means of integer scores from 0 to 4. Five non-negative square matrices X(1), X(2), X(3), X(4) and
X(5) (given in the Appendix A) were collected and then aggregated to obtain the direct-relation matrix
A of order 16 (Table 4).

Tables 5 and 6 respectively show the normalized direct-relation matrix D and the total relation
matrix T. Lastly, Table 7 shows the values of ri + ci and ri − ci associated to the various factors, and
the ranking of factors, obtained on the basis of their prominence, ri + ci, which collects the direct and
indirect effects related to all the other factors.
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Human factors with higher ri + ci value, as explained in step 6 before, give crucial information
regarding, in our case, how to reduce organisational risk, since their variations have greater impact
on the variations of all the other aspects. As explained in step 7, a threshold has to be established for
not taking into account negligible effects. As said, this threshold is here calculated as the average of
all the elements in matrix T. In this case the threshold is 0.159. Now, those factors having a value of
T(HFi; HFi) higher than the threshold are selected.

Accordingly, we suggest that the human factors occupying the first six positions of the ranking
need to be more carefully monitored during the process of organisational risk management. They are,
in order:

• HF5: Reward systems related to the achievement of security objectives are not defined;
• HF15: Workers lead tasks having high level of responsibility for stakeholders, plants

and production;
• HF1: System of security and safety management not implemented;
• HF8: Rigid protocols supervising and controlling workers are implemented;
• HF16: Shifts may be not well organised;
• HF13: Unpredictably variations of workload.

Figure 3 presents the four quadrants of the chart derived from the DEMATEL application. From
this representation, decision makers can visually identify causal relationships among the considered
human factors. The rationale for selecting, Si et al. [42], may be summarized as follows:

• Factors in quadrant I are identified as core factors or intertwined givers since they have high
prominence and relation;

• Factors in quadrant II have low prominence but high relation, which are impacted by other factors
and cannot be directly improved;

• Factors in quadrant III have low prominence and relation and are relatively disconnected from
the system;

• Factors in quadrant IV are identified as driving factors or autonomous givers because they have
high prominence but low relation.

Figure 3. Decision-making trial and evaluation laboratory (DEMATEL) chart with human factors (HFs)
spread out into quadrants.

Figure 4 shows the interdependencies among the selected HFs, the casual factors. In this
methodology, arrows for the factors with values T(HFi; HFi) lower than this threshold are not customary
indicated in the graph, meaning that the corresponding interdependencies can be neglected [43].
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The relations corresponding to the ten unselected HFs are, thus, not represented for the sake of clarity,
despite some relation of interdependence between them and the other factors may exist.

Figure 4. Chart representing interdependencies among the six selected HFs.

By analysing the six selected human factors, we can observe that human factor HF5, by occupying
the first position of the ranking, reveals the need for better defining reward systems related to
the achievement of security objectives. This could be pursued by motivating workers in actively
participating to the implementation of a system of security and safety management, as suggested
also by human factor HF1. Thus, this implementation may simultaneously enhance these two factors
and can be addressed by starting from a clearer definition of procedures related to the planning
and execution of preventive maintenance intervention for the bottling plant. Moreover, three of the
selected factors (HF15, HF16, HF13) belong to area A8 (see Table 2), that is, “Workload and working
hours”. It means that, for example, interventions aimed at rearranging aspects related to the entity of
workload and the number of working hours per worker could help improve the entire process under
the organisational point of view.

Lastly, let us underline that, among the six selected HFs, the value of the difference (ri − ci)

is positive just for HF13, what makes this factor a possible cause of bad process organisation and
its improvement will produce benefits. The other five factors have associated a negative value of
difference (ri − ci), so these factors must be interpreted as cause factors of perceived risk.

5. Conclusions

The present paper deals with organisational risk assessment in industry, a field in which the role
of human factors is crucial. In particular, a MCDM approach based on the DEMATEL methodology has
been proposed to evaluate interdependencies among critical human factors. This method enables to
rank human factors so that a framework for prioritising interventions thus reducing risk is suggested.
From the influential relation map pictured in the chart, decision makers can visually detect the complex
causal relationships among factors and highlight further valuable insights for decision-making.

The proposed approach is applied to a real-world case study related to a winery located in Sicily
(Italy). The process of wine bottling has been taken into account, and results coming from a previous
organisational risk evaluation have been manipulated. This evaluation highlighted 16 critical human
factors with relation to the group of workers distributed in the analysed working area. The DEMATEL
has been used to rank human factors on the basis of their interdependencies. The selected human
factors (namely HF5, HF15, HF1, HF8, HF16, HF13) give fundamental information, and their variations
correspond to variations of all the other aspects. For this reason, these human factors need to be
monitored with priority during the process of organisational risk management.
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Since the human factor HF5 occupies the first position in the ranking, the company should
consider as primary action the definition of reward systems related to the achievement of security
objectives. This may be undertaken by motivating workers in taking part in the implementation of a
system of security and safety management starting from a clearer definition of procedures related to the
planning and execution of preventive maintenance intervention for the bottling plant. In this way, HF5
and HF1 would be simultaneously taken into account. This aspect may be further investigated, also
in terms of management of the maintenance monitoring process, through suitable key performance
indices, and the practical validity of our proposal should be carefully tested once the actions we
suggest will be implemented in the context of reference.

Moreover, this work may be further extended by means of other MCDM approaches to
support, and to the practical implementation of measures aimed at reducing organisational risk.
These measures and their planning would directly derive from the ranking achieved in the present
research. For example, the fuzzy set theory could be a useful tool to manage uncertainty and vagueness
of the involved experts. In particular, with special regard to the critical human factors highlighted in
the present article, an inference engine may be developed to support risk management. As another
example, the analytic hierarchy process (AHP) method can also be employed to find out the weights
of factors/aspects and obtain suitable scores for various actions that could be implemented. Lastly,
the analytic hierarchy process (ANP), as an extension of the AHP, can be applied with the aim of
understanding more complex dependency relationships among criteria.
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Appendix A

Table A1. Non-negative matrix X(1) filled in by the expert H1, “maintenance responsible”.

X1 HF1 HF2 HF3 HF4 HF5 HF6 HF7 HF8 HF9 HF10 HF11 HF12 HF13 HF14 HF15 HF16

HF1 0 3 1 1 4 2 2 2 4 4 4 4 1 3 4 2
HF2 2 0 3 3 3 0 0 3 1 1 1 1 0 0 2 1
HF3 2 2 0 4 3 3 3 3 0 0 0 0 0 0 2 2
HF4 2 3 3 0 4 1 4 3 0 0 0 0 2 1 4 4
HF5 4 2 3 4 0 3 3 3 3 3 3 3 1 4 4 2
HF6 2 1 2 2 3 0 2 3 1 1 1 1 4 3 3 4
HF7 1 0 2 3 3 3 0 4 2 2 2 2 3 0 2 4
HF8 2 2 3 3 4 2 4 0 2 2 2 2 2 2 3 2
HF9 4 1 0 0 3 1 2 2 0 0 0 0 3 1 3 2
HF10 4 1 0 0 3 1 2 2 0 0 0 0 3 1 3 2
HF11 4 1 0 0 3 1 2 2 0 0 0 0 3 1 2 2
HF12 4 1 0 0 3 1 2 2 0 0 0 0 3 1 3 3
HF13 1 0 0 2 1 4 3 2 3 3 3 3 0 3 4 4
HF14 4 0 0 1 3 3 0 2 1 1 2 1 4 0 3 2
HF15 4 2 1 4 4 3 2 3 2 3 2 1 4 3 0 3
HF16 3 2 1 4 2 4 3 2 2 3 2 2 4 2 2 0
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Table A2. Non-negative matrix X(2) filled in by the expert H2, “quality manager”.

X2 HF1 HF2 HF3 HF4 HF5 HF6 HF7 HF8 HF9 HF10 HF11 HF12 HF13 HF14 HF15 HF16

HF1 0 3 2 2 4 1 2 1 4 3 4 4 2 2 4 2
HF2 2 0 2 3 2 0 0 3 1 2 2 1 0 0 3 2
HF3 2 2 0 4 3 3 3 3 0 0 0 0 0 0 1 1
HF4 1 3 3 0 4 1 4 3 0 0 0 0 2 1 3 3
HF5 3 2 3 4 0 3 3 3 2 3 2 3 1 4 4 3
HF6 2 1 2 3 4 0 2 3 1 1 1 1 4 3 3 4
HF7 1 0 2 2 4 3 0 4 1 1 1 1 3 0 2 4
HF8 2 2 3 2 4 2 4 0 1 1 1 1 2 2 3 2
HF9 4 1 0 0 3 1 2 1 0 0 0 0 3 2 3 2
HF10 4 1 0 0 3 1 2 1 0 0 0 0 2 1 2 2
HF11 4 1 0 0 3 1 2 1 0 0 0 0 2 2 2 2
HF12 4 1 0 0 3 1 2 1 0 0 0 0 3 1 3 3
HF13 2 0 0 2 1 4 3 1 3 3 3 3 0 3 4 3
HF14 4 0 0 1 3 3 0 2 1 1 1 1 4 0 3 2
HF15 4 2 1 4 3 3 2 3 2 3 1 1 4 3 0 3
HF16 4 2 1 4 2 3 3 2 2 3 2 2 4 2 2 0

Table A3. Non-negative matrix X(3) filled in by the expert H3, “consultant”.

X3 HF1 HF2 HF3 HF4 HF5 HF6 HF7 HF8 HF9 HF10 HF11 HF12 HF13 HF14 HF15 HF16

HF1 0 3 1 1 4 3 3 3 4 4 4 4 1 3 4 2
HF2 2 0 3 3 3 0 0 3 2 2 2 2 0 0 2 1
HF3 2 2 0 4 3 3 3 3 0 0 0 0 0 0 2 2
HF4 2 3 3 0 4 1 4 3 0 0 0 0 2 1 4 4
HF5 4 2 3 4 0 2 2 2 2 2 2 2 1 4 4 2
HF6 3 1 2 2 2 0 2 3 1 1 1 1 4 3 3 4
HF7 2 0 2 3 2 3 0 4 2 2 2 2 3 0 2 4
HF8 3 2 3 3 3 2 4 0 2 2 2 2 2 2 3 2
HF9 4 2 0 0 2 1 2 2 0 0 0 0 2 1 3 2
HF10 4 2 0 0 2 1 2 2 0 0 0 0 2 1 3 2
HF11 4 2 0 0 2 1 2 2 0 0 0 0 2 1 2 2
HF12 4 2 0 0 2 1 2 2 0 0 0 0 2 1 3 3
HF13 1 0 0 2 2 4 3 2 2 2 2 2 0 3 4 4
HF14 4 0 0 1 3 3 0 2 1 1 2 1 3 0 3 3
HF15 4 2 1 4 4 3 2 3 2 3 2 1 3 3 0 3
HF16 3 2 1 4 2 4 3 2 2 3 2 2 3 1 1 0

Table A4. Non-negative matrix X(4) filled in by the expert H4, “chief of the safety and security system”.

X4 HF1 HF2 HF3 HF4 HF5 HF6 HF7 HF8 HF9 HF10 HF11 HF12 HF13 HF14 HF15 HF16

HF1 0 3 2 2 4 1 2 1 4 3 4 4 2 2 4 2
HF2 2 0 2 3 2 0 0 3 1 2 2 1 0 0 3 2
HF3 2 2 0 4 3 3 3 2 0 0 0 0 0 0 1 1
HF4 1 3 3 0 4 1 4 3 0 0 0 0 2 1 3 3
HF5 3 2 3 4 0 3 3 2 2 3 2 3 1 4 4 3
HF6 2 1 2 3 4 0 2 4 3 3 3 3 4 2 2 3
HF7 1 0 2 2 4 3 0 4 1 1 1 1 3 0 2 4
HF8 2 2 2 3 3 3 4 0 1 1 1 1 2 2 3 1
HF9 4 1 0 0 3 3 2 1 0 1 1 1 3 2 3 1
HF10 4 1 0 0 3 3 2 1 1 0 1 1 2 1 2 1
HF11 4 1 0 0 3 3 2 1 1 1 0 1 2 2 2 1
HF12 4 1 0 0 3 3 2 1 1 1 1 0 3 1 3 3
HF13 2 0 0 2 1 4 3 1 3 3 3 3 0 3 3 4
HF14 4 0 0 1 3 2 0 2 1 1 1 1 3 0 3 2
HF15 4 2 1 4 3 2 2 3 2 3 1 1 2 3 0 3
HF16 4 2 1 4 2 2 3 1 1 2 1 2 3 2 2 0
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Table A5. Non-negative matrix X(5) filled in by the expert H5, “Department chief”.

X5 HF1 HF2 HF3 HF4 HF5 HF6 HF7 HF8 HF9 HF10 HF11 HF12 HF13 HF14 HF15 HF16

HF1 0 4 3 2 4 3 3 4 4 4 4 4 3 4 4 3
HF2 3 0 4 3 3 0 0 4 1 1 1 1 0 0 3 1
HF3 3 2 0 4 3 3 3 4 0 0 0 0 0 0 3 2
HF4 4 4 4 0 4 2 4 4 0 0 0 0 4 2 4 4
HF5 4 2 4 4 0 3 3 4 3 3 3 3 2 4 4 2
HF6 3 1 3 2 3 0 2 4 1 1 1 1 4 3 4 4
HF7 2 0 3 3 3 3 0 4 2 2 2 2 4 0 3 4
HF8 4 3 4 4 4 3 4 0 3 3 3 3 4 3 4 3
HF9 4 1 0 0 3 1 2 3 0 0 0 0 4 1 4 2
HF10 4 1 0 0 3 1 2 3 0 0 0 0 4 1 4 2
HF11 4 1 0 0 3 1 2 3 0 0 0 0 4 1 3 2
HF12 4 1 0 0 3 1 2 3 0 0 0 0 4 1 4 3
HF13 3 0 0 3 2 4 4 4 4 4 4 4 0 4 4 4
HF14 4 0 0 1 3 3 0 3 1 1 2 1 4 0 4 2
HF15 4 3 3 4 4 4 3 4 3 4 3 2 4 4 0 4
HF16 4 2 2 4 2 4 3 3 2 3 2 2 4 2 3 0
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Abstract: In the context of mathematical models applied to social sciences, we present and analyze
a model based on differential equations for the intimate partner violence (IPV). Such a model
describes the dynamics of a heterosexual romantic couple in which the man perpetrates violence
against the woman. We focus on incorporating different key factors reported in the literature as
causal or motivational factors to perpetrate IPV. Among the main factors included are the failures
in self-regulation, the man’s need to control the woman, the social pressure on the woman to
remain married, and empowerment programs. Another aspect that we include is periodic alcohol
consumption for the man. The discussion of the model includes a stability analysis of its equilibrium
points and the asymptotic behavior of its solutions. Also, the interpretation of results is presented
in terms of IPV phenomenon. Finally, a brief review is given on different scales to quantify human
behavioral traits and numerical simulations for some IPV scenarios.

Keywords: IPV; violence index; independence index; model; ode

1. Introduction

Violence against woman is a social problem that afflicts all societies, without distinction of race,
socioeconomic level or academic degree. In fact, it is considered a global public health problem by
the World Health Organization (WHO), due to its frequency and alarming consequences of violence
against women. In particular, the intimate partner violence (IPV) is one of the most common and
includes physical, sexual or emotional abuse by the intimate partner towards the woman, according to
WHO [1]. Paradoxically, this type of violence is also usually one of the most forgiven, quiet and ignored,
often for being something that occurs in privacy and is perpetrated by the loved one. Although IPV
is officially penalized and rejected, it continues to occur with relative impunity, and is sometimes
well accepted by some societies. Global statistics estimate that about one out of three women have
experienced some type of violence worldwide. In Mexico, six out of ten women have been victims
of some kind of aggression, at least once in their lives, and four out of ten have suffered some type
of violence caused by her intimate partner. Likewise, 33% of the women in Mexico suffered violence
during childhood and seven femicides occur daily according to the statistics of the National Institute of
Statistics and Geography (INEGI) [2]. Worldwide, Mexico ranks 71 of 169 countries ranked according
to their gender inequality measured with the Gender Inequality Index (GII) [3,4]. From our point of
view, these statistics show the importance of studying this problem. However, mathematical modeling
involving differential equations is an approach almost not used in social science problems, but it has
proven its importance to understand and offer a solution for different problems [5–7].

The classical approach of mathematics in social sciences usually involves the application of
statistical techniques. A common situation is the validation of hypothesis through statistical tests.
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Another application of statistical models is the measurement and quantification of different factors or
variables. As an example of quantification of the level of violence, we can refer to [8] by Sánchez et al.
where a study to measure the level of historical violence of a population is described. Our approach
is different from these examples. We search for models to describe the evolution in time of violence
or related variables. With this approach, we find models such as the one reported by Poza et al. [9]
which is an epidemiological type model that describes the evolution of the populations of different
types of men, who were classified according to their level of woman abuse in Spain. This model is
in terms of difference equations and predicts the evolution of IPV in Spain based on the statistical
information reported by the literature. Another, important and pioneer work which is supported by
a long and deep research on human behavior for marital couples is reported in [10,11] by Gottman
et al. Let us say, that this article is not directly related to violence levels, but it presents and analyzes
a model to predict a possible marital dissolution. In fact, it succeeded remarkably well. The model
considers two functions of “influence” which aim to model the balance of positive-negative attitudes
of a spouse towards the other in the context of an interview on conflict topics. The talk is recorded and
coded according to a validated scale to obtain the parameters of the model. Using this information the
authors were capable of making predictions on marriage success chances. We borrow some ideas of
this article to model the interaction between the intimate partners involved in a violent relationship
which we will discuss later.

On the other side, let us describe some sociological and psychological theories related to violence
which we will use to construct our model. It is important to mention that sociologists have studied
and analyzed this serious problem and developed a number of different theories. For example in [12],
L. Walkers points out that violence against women is a cyclic process that consists of an accumulation
of stress, acute violence, and reconciliation. Also, that this behavior has its origin in the patriarchal
culture, which is enmeshed in the men’s and women’s thoughts through social learning mechanisms.
Moreover, in the context of a patriarchal society, the success of a man in a relationship is based on the
use of power and control of the woman, according to Corsi [13]. Another work also in the context
of social learning theory which we found useful is the article by Stith and Fairley [14]. There, the
authors propose a statistical model to predict violence in the couple, taking external and internal
variables of the man. They reported that sex-role egalitarianism, approval, and observation of marital
violence have effects on the use of severe marital violence. Moreover, that the observation of marital
violence decreases self-esteem which raises marital stress and the level of alcohol consumption, both
of which may increase marital violence. However, they remark that egalitarianism has a negative
effect on the violence level, meaning, it could decrease the use of severe violence. Otherwise, those
violent acts damage the self-esteem of the woman and create codependency toward her intimate
partner which could be boosted by social pressure. On the opposite side, we take into account the
effect of empowerment programs for the woman which have proven to be an effective strategy to
reduce IPV [15], and we will include it as an external factor that could change the violence dynamic in
a couple.

Finally, Finkel et al. [16] have reported that self-regulatory failures are important predictors of
IPV. Besides that, the self-regulation capacity of a battering man is a trait that can be improved or
depleted through training sessions. From the above and from various sociological multiple causal
models, we will consider causal and motivational factors in our study. The causal factors are those
that set the “perfect scenario” for male violence to occur in a relationship, this is according to the
social learning theory. The causal factors in the man that unleash violence are the following: Violence
observed during childhood, low self- esteem, acceptance of machismo, and failures in self-regulation.
On the other hand, the motivational factors are those that motivate to perpetrate the violence and
are more likely to trigger a violent episode in the relationship. The motivational factors that we will
consider are the man’s need to control woman and the effect of external factors for the woman. Other
facts that support our selection of factors that we will include in the model come from the Mexican
national surveys on violence [2,17]. There, violence against women is described and fits the situation
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that our model intends to simulate. Let us remark that health-related factors such as mental and/or
physical illnesses and external support factors such as psychological therapies will not be considered
in our proposed model.

Our objective is to model mathematically the dynamics of the IPV problem in one couple in order
to contribute to a better understanding of this social phenomenon. Let us remark that while violence
affects both men and women, the violence against women is more alarming in some countries, for
example in Mexico. For this reason, our model describes violence in one direction, man battering
woman. This model was proposed using the theory of differential equations and taking into account
causes or relevant factors that may contribute to the triggering of the violent behavior described above.
We present the development of a first mathematical model in ordinary differential equations, which
allows us to predict the possible violent situations that a woman could face in the relationship. Later,
we use the obtained model to simulate computationally probable scenarios of violence.

The article is organized as follows: In Section 2 we present and explain the assumptions made in
order to construct the model in differential equations. In particular, in Section 2.1 we present a simple
model without considering the interaction between the romantic partners, as we do in Section 2.2. In
Section 2.3. we discuss different scales related to the variables and parameters of our model. While
in Section 3, we present the asymptotic analysis of the model without considering the man’s alcohol
consumption and provide its interpretation in terms of the factors considered. In Section 4, we show
numerical simulations for some IPV scenarios. Later in Section 5, a discussion about the model and its
application is given. Finally, conclusions are presented in the last section.

2. Mathematical Modeling

Our aim is to give a model that describes the IPV dynamics in a romantic couple. In order to
explain in detail the model formation, let us present it in two parts. In the first one, we consider
equations for each spouse independently of their intimate partner. We will call this interaction
non-influenced intimate partner interaction. In the second one, we include the interaction between
intimate partners. We call it influenced intimate partner interaction.

2.1. Non-influenced Intimate Partner Interaction

Let us first define two variables, one for the man and the other for the women. The variable v(t)
is the man’s violent behavior index (positive) at time t which indicates the potential level of the man’s
hostility or aggression. The variable i(t) is the woman independence behavior index which indicates
the woman’s state of freedom (positive) or potential of dependency or submission (negative).

• A0. In a similar way and following [10], we assume the existence of non-influenced steady states
ṽ and ĩ for each individual, man and woman indexes, respectively. Those states are independent
of each other intimate partner. Actually, they depend on their own personal history with respect
to the IPV problem. For this reason, we assume that the non-influenced steady states are directly
proportional to two causal factors: Violence seen in childhood and acceptance of violence. So,
we define the non-influenced man’s violence steady state as ṽ = α1β1 and the non-influenced
woman’s independence steady state as ĩ = (1 − α2)(1 − β2), where α1, α2 are the parameters that
quantify the violence watched in childhood for man and woman, respectively, and β1, β2 are
the parameters that quantify the acceptance of machismo for the man and woman, respectively.
Notice that the non-influenced independence index of the woman decreases according to the
level of violence watched during her infancy and her acceptance of IPV [18]. We will discuss
these parameters in more detail in the next section.

• A1. These non-influenced steady states correspond to an equilibrium point (ṽ, ĩ) of the following
differential equation system:

dv(t)
dt = δ1(ṽ − v(t)), v(0) = v0,

di(t)
dt = δ2(ĩ − i(t)), i(0) = i0,

(1)
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where δ1 and δ2 are positive constant called “inertias” which are associated with the coping
abilities with the problems of each individual of the couple. Mathematically, these coefficients
correspond to the speed at which the system solutions tend to the equilibrium point. Note
that (ṽ, ĩ) is an asymptotically stable equilibrium point of the model, for any initial condition
(v0, i0). This can be interpreted as, when there is not couple interaction and after an unusual
event (violent or not), each individual tends to his or her non-influenced index or state.

2.2. Influenced Intimate Partner Interactions

Now, based on the non-influenced model (1), we add the interactions between the intimate
partners by taking into account other causal factors such as the self-esteem and self-regulation. Also,
motivational factors such as, the man’s need to control woman and the effect of external factors for
woman. Then, the proposed system of differential equations that models the interaction between the
man and woman in one romantic couple is:

dv
dt (t) = δ1(ṽ − v(t)) + k1(1 − ρ1)

β1
γ i(t) + h(t), v(0) = v0,

di
dt (t) = δ2(ĩ − i(t)) + k2(1 − ρ2)μv(t), i(0) = i0,

(2)

where variables v(t) and i(t) have the same meaning as in Model (1). The same applies for the
coefficients αi, βi, and δi, for i = 1, 2. The added coefficients ρ1 and ρ2 are the self-regulatory parameters
for man and woman, respectively. k1 and k2 are proportionality positive constants. γ is the man’s
self-esteem and μ is an external factor that could be family or social pressure, when μ is positive.
Otherwise for μ negative, the woman is exposed to empowerment programs. Let us remark, that all
coefficients are positive, but we allow μ to take positive and negative values. A graphical representation
of the model is shown in Figure 1.

Figure 1. Diagram of model (2) showing the variables and their interaction terms.

In order to explain the terms that we have added, let us summarize the assumptions:

• A2. The rate at which the man’s violence index increases depends on the man’s need to control
the woman which is caused by a low man’s self-esteem [14]. In particular, we assume that it is
inversely proportional to the man self-esteem, 1/γ in k1(1 − ρ1)

β1
γ i(t). Besides, we assume that

the variation rate of v(t) depends linearly on the woman’s independence index. This is because
the man will have more need to control the woman when woman becomes more independent.
This is supported by patriarchal theory as described in [13]. Moreover, the coefficients in the
modeling term k1(1 − ρ1)

β1
γ i(t) were set considering the influence of the man’ s acceptance of

machismo β1, as well as, possible self-regulatory failures ρ1. It is important to remark, that the
self-regulatory factor of a person is something difficult to quantify because depends on several
random factors. For these reason and as a first approximation, we assume that these coefficients
are constant.

• A3. In an analogous way for the modeling term k2(1 − ρ2)μv(t), we assume that the degree
of violence that the man exerts against the woman, in addition with the influence of the social
environment, are factors that can change the woman’s independence index. This might cause
an increase in the level of the woman submission (μ negative) caused by the social pressure
of the woman’s family or friends to remain in the relationship. Or it can increase the level of
the woman’s independence index (μ positive) when the woman is enrolled in empowerment
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programs. Let us remark the importance of the sign change of μ which implies a turning point in
the IPV dynamics of the couple. On the other hand, notice that ρ2 is included in this term and is
the woman’s self-regulatory coefficient. So, we propose that v(t) influences linearly the change
rate of i(t) and vice versa.

• A4. According to the latest National Survey on Violence against Women in Mexico (ENVIM) [2],
the frequency of alcohol consumption by a violent man is proportional to the number of
aggressions perpetrated by a battering man. Also, that the alcohol consumption events are
generally periodic with usually weekly or monthly periodicity. In order to model this behavior,
we use the modeling term h(t). We assume that this situation can be properly described by a
sine function with parameters that allow us to control its amplitude (ρ) and its frequency (ω):
h(t) = ρ(sin(ωt) + η), where η is a positive constant.

Let us recall, that we do not take into account for our model health-related factors such as mental
and/or physical illnesses nor external supporting/therapeutic factors such as psychological therapies
or rehabilitation. This is, in fact, worthwhile to study, and we hope to include it in a near future. Let us
remark that all these factors involved in the model (2) can be measured through scales developed by
social science specialists, which we discuss in the next subsection.

2.3. Variable and Parameter Scales

In this section, we discuss the different scales related to the factors considered in our IPV model
and that describes the efforts to measure different human behavioral traits. Let us start with the
variables of our model. As previously discussed v(t) is the man’s violence index. In the literature, it is
reported that there are several scales to measure the violence against women. Several instruments have
been designed to quantify the level of violence [19,20]. One of them is known as the “Violentometro”.
In particular, in Mexico, the National Institute of Women called in Spanish “Inmujeres” and the
Institutional Management Program in Gender Perspective of the IPN (Instituto Politecnico Nacional
or the National Polytechnic Institute in Mexico) proposed a scale widely applied that takes integer
values in the interval [0, 30], see [21]. It assigns the value of 0 (zero) to man’s non-violent behavior
and 30 corresponds to murder. To compute such a value, a questionnaire is applied with the aim of
assessing the degree of violence a woman faces. In an analogous way, we can find studies to measure
the woman’s independence [22]. For our purposes, this shows how the indexes can be quantified and
in order to introduce them to our model we normalize them to the interval [0, 1].

In the case of the parameters, α1 and α2 which correspond to the violence observed in childhood
for the man and woman, respectively. A revision of the methodology to measure these variables can be
found in [23]. There, the main tool to measure the violence exposition during childhood was obtained
with conflict tactics scales. The range of this scale varies according to the applied version of the
instrument and the number of used items. As an example of application of this type of measurements,
we can see the results reported by the ENVIM 2003 [17]. There, the applied index grades the aggression
in a scale from 0 to 12 points. In order to be used in our model, we normalize it to the interval [0, 1].
A zero value corresponds to a lack of violence childhood, while αi = 1, i = 1, 2, indicates a high
degree of violence observed in childhood. In the case of parameters that measure the acceptance of
machismo βi, i = 1, 2 can be also quantified. As an example, let us cite the work by Arciniega et
al. called Toward a Fuller Conception of Machismo: Development of a Traditional Machismo and
Caballerismo Scale in [24]. Here, a seven points scale is analyzed to measure this behavior. Also,
the work by Bendezu [25] evaluates gender stereotypes, beliefs, and expectations to give a weight in
the interval [0, 1] for a romantic couple. A value close to one indicates high acceptance of machismo
attitudes. Continuing with the model parameters, γ which measures the man’s self-esteem can be
measured using the scale of Rosenberg. It takes integer values that range from 0 to 40 points [26].
Again we normalize the scale in such a way that we consider γ values in the interval [0, 1]. When
γ = 1 it means that the person has high self-esteem while γ = 0 is the opposite. For parameters δ1

and δ2 which we claim are related to coping styles. We can mention the work reported in [27]. There,
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a scale is defined according to different coping styles which define the way an individual returns to
its natural level of violence or independence after facing a stressing situation. For a scale applied in
Mexico, we refer the reader to [28]. For coefficient μ which is related to the external factors as the
empowerment programs for the woman or the social pressure. Let us recall the work by Kim et al. [15]
which measure nine indicators of woman empowerment, which are combined in one value called the
risk ratio and we standardize it for our purposes in the interval [−1, 1] where one implies a high level
of empowerment and minus one means a high level of submission. However, it is important to say
there exist in Mexican women’s Institute (Inmujeres) local scales and measurement for the Mexican
population such as the one reported in [8]. Finally, let discuss the coefficient θ in the function h(t)
for the alcohol consumption which corresponds to the man’s alcohol consumption frequency. This is
given by the number of drinking days per week. This data can be easily found for different cases in
the ENVIM [2]. The scale that we consider is ρ ∈ [0, 1], where 0, means a zero alcohol consumption
and 1 implies an excessive one. Let summarize all this information in Table 1.

Table 1. Informational table of the variables and parameters of the model.

Variable or Coefficient Description Scale Reference

v(t) violence index [0, 30] [20,21]
i(t) independence index [0, 1] [22]

α1, α2 violence in childhood [0, 12] [17,23]
β1, β2 acceptance of machismo [0, 1] [24,25]
δ1, δ2 coping styles several [27,28]
ρ1, ρ2 self-regulatory coefficients [0, 8] [16]

γ man’s self-esteem Rosenberg [0, 40] [26]
μ external factors risk ratio [15]

Once, we have completely described the model we analyze it in the next section.

3. Analysis of the Model without Alcohol Consumption

In this section, we present a classical and numerical analysis of Model (2). In order to accomplish
this, we first analyze the model when there is not alcohol consumption. Later, we numerically analyze
the complete model by considering alcoholism events.

Let us first assume that the function h(t) ≡ 0 because we are considering that the man does not
consume alcohol periodically. This leads to an autonomous model. Thus, we start by determining the
equilibrium points of the system (2) by making the derivatives equal to zero dv

dt = 0, di
dt = 0, and we

solve for the model variables,

v∗ = δ1δ2 ṽ+δ2k1(1−ρ1)(β1/γ)ĩ
δ1δ2−k1k2(1−ρ1)(1−ρ2)(β1/γ)μ

, i∗ = δ1δ2 ĩ+δ1k2(1−ρ2)μṽ
δ1δ2−k1k2(1−ρ1)(1−ρ2)(β1/γ)μ

.

A simple inspection of v∗ and i∗ shows us that when k1 = k2 = 0, we trivially recover the
non-influenced steady state. It is more important to note that the equilibrium point of system (2) is
now a linear combination of steady states ṽ and ĩ. Observe that the denominator is the same for v∗

and i∗, and that it is a difference between the terms δ1δ2 and k1k2(1 − ρ1)(1 − ρ2)(β1/γ)μ. The first
one of these two expressions is in terms of rate of returning to the non-influenced steady states while
the second depends on important factors for both of the intimate partners. Now, we determine the
stability of the equilibrium point. For this, we compute the characteristic equation λ2 − τλ + Δ = 0
associated with the system. The roots of this equation are the eigenvalues of the coefficient matrix
of the system and are given by, λ1 = 1

2 τ + 1
2

√
τ2 − 4Δ y λ2 = 1

2 τ − 1
2

√
τ2 − 4Δ. where τ = −δ1 − δ2

and Δ = δ1δ2 − k1k2(1 − ρ1)(1 − ρ2)(β1/γ)μ. Let us recall, that an equilibrium point is asymptotically
stable if τ2 − 4Δ ≥ 0 and Δ ≥ 0 or τ2 − 4Δ < 0. In the case of τ2 − 4Δ > 0 and Δ < 0, we have that the
equilibrium point is unstable. Let us discuss how these conditions apply to our model.

• Case 1. If τ2 − 4Δ < 0, we have that (δ1 − δ2)
2 < −4k1k2(1 − ρ1)(1 − ρ2)(β1/γ)μ, then the

equilibrium point (v∗, i∗) is asymptotically stable, but the solutions are oscillating. A necessary
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condition is that μ < 0 which means that external factors make the woman’s independence index
decrease. This may be caused by family or social pressure on the woman, or by her beliefs that
lead her to a highly dependent state. In these circumstances, the IPV for this couple tends to the
stable steady state which indicates woman submission and a constant level of IPV. It is important
to remark that the left-hand side of the inequality is the difference between δ1 and δ2. Then,
we can have this case when the inertia coefficients are very similar or equal, and there is social
pressure on the woman. Another way in which this condition may hold corresponds to a high
social pressure, low self-regulatory conditions, high acceptance of machismo or very low man’s
self-esteem.

• Case 2. If τ2 − 4Δ ≥ 0 and Δ ≥ 0, or equivalently (δ1 − δ2)
2 ≥ −4k1k2(1− ρ1)(1− ρ2)(β1/γ)μ ≥

−4δ1δ2, then the equilibrium point is asymptotically stable and the solutions are not oscillatory.
Notice that μ could be positive or negative. For this case, we can find a lot of possible parameter
combinations which could lead us to this situation where the intimate partner interaction
stabilizes rapidly. That means that the man’s violence and the woman’s independence indexes
reach a stationary level and remain there for a long time. Observe that in this case, the inertias for
both of the members of the couple could be similar or different, one from each other. However,
independently of this, the level of IPV will be high when there exists high acceptance of machismo,
low self-esteem or low self-regulation for the man. Otherwise, the model predicts a moderated
level of IPV. Another fact is that depending on the μ value, the level of the woman’s independence
will stabilize on a level of independence or dependency.

• Case 3. If τ2 − 4Δ > 0 and Δ < 0 or equivalently, δ1δ2 < k1k2(1 − ρ1)(1 − ρ2)(β1/γ)μ, then
the equilibrium point is unstable and it is necessary that μ > 0 for the condition holds. Notice
that the condition μ > 0 means that external factors are leading to an increment in the woman’s
independence index. In particular, this could be achieved through empowerment programs for
the woman. Then, our model reproduces the reported fact that this type of programs can lead
to break the IPV cycle. But, it is important to remark that other situations must also occur. For
example, if the coefficients δ1 and δ2 are relatively high, the coefficients ρ1 and ρ2 have to be
close to zero, and β1 high, or γ small. In any case, we will have a steep climb on the IPV or the
woman’s independence.

Let us recall that in the performed analysis we are considering no alcohol consumption. This will
be addressed numerically in the next section.

4. Numerical Simulations

Now, we present simulations for the solutions of our model for different scenarios without and
with man’s alcohol consumption. Let us say that the simulations where obtained using synthetic data
for the parameters because we have no found any reported case where all parameters of the our model
have been determined for a particular couple. However, we can define different parameter sets that
corresponds to different situations or scenarios.

4.1. Model without Alcohol Consumption

In this subsection, we present different scenarios and its simulations of Model (2) for cases without
man’s alcohol consumption. Before starting the discussion, let us explain the structure used in the
figures. In each figure we can observe two graphs as well as the full set of parameters. The left-hand
graphs are the phase portrait where only the indexes are shown. Also, we have marked with a star
(∗) the non-influenced steady state point and with a triangle the influenced equilibrium point. For
the right-hand side graphs, we have pictured the solutions as functions of time, v(t) and i(t) with
time t in weeks. The choice of the time units is with the aim to compare the solutions with the alcohol
consumption case, which is reported in weeks.

Scenario 1 Couple with a profile of moderated IPV. In this case, we consider a moderated violent
man and a non-independent woman. We are assuming that both of the members of the couple have
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observed violence during their childhood, and they accept machismo as a lifestyle. This determines
the non-influenced steady state. The rest of the parameters are such that the man’s self-esteem is
medium as well as the self-regulatory level. With respect to the woman, its self-regulatory level is a
medium level, and she is experiencing social pressure to continue in the relationship. Let us recall
that for this case h(t) = 0 because the man does not consume alcohol regularly. In Figure 2, we can
observe that the solutions stabilize after an oscillatory behavior which corresponds to case 1, previously
discussed. Also, that under these conditions the man’s violence index increases while the woman’s
independence index reduces when it is compared with non-influenced steady state. This reduction
usually is caused by a decrease in the woman’s self-esteem which could be explained as a consequence
of the woman suffering IPV. On the other hand, let us remark that the maximum value of the violence
index is 0.6. If this value is extrapolated to the original scale, it corresponds to aggressions described
as shaking and pulling to mistreat to the woman. For the level at which the violence index stabilize,
we can say a daily man’s behavior corresponds to violent acts such as rough touching or destruction of
personal belongings.

Figure 2. Violent man without alcohol consumption and submissive woman. α1 = 0.7, α2 = 0.6, β1 =

0.6, β2 = 0.5, γ = 0.5, δ1 = 0.2, δ2 = 0.25, ρ1 = 0.5, ρ2 = 0.5, μ = −0.2, (v(0), i(0)) = (0.4, 0.2).

Scenario 2 Couple with a profile of moderated IPV and empowered woman. For this case,
the parameters were set with values similar to the values of Scenario 1. Both of the members of
the couple have observed a slightly medium level violence during their childhood, and they have a
medium acceptance level of machismo. The man’s self-esteem is medium while that his self-regulatory
parameter is lesser than the corresponding woman’s parameter value. The main change is that
the woman empowerment is high as a consequence of being involved in empowerment programs.
In Figure 3, we can observe that the solutions for both of the indexes increase rapidly. This is because
the man responds violently to the increment in the woman’s independence. Let us recall that the
man’s self-esteem is related to the man’s need to control the woman. For this case, violence reaches
values so high that they escape of any real situation of IPV. Then, we can interpret this situation as a
scenario where the woman faces severe violence perpetration (eventually the woman’s death when the
violence index exceeds one). A more optimistic interpretation is that the relationship breaks because
the woman’s independence increases faster than the IPV. It is important to remark that when the
machismo acceptance or the man’s self-esteem is higher, the IPV grows even faster than the woman’s
independence. Notice that influenced steady state cannot be reached by the solutions because it
is non-stable.
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Figure 3. Violent man without alcohol consumption, empowerment woman. α1 = 0.5, α2 = 0.6, β1 =

0.3, β2 = 0.3, γ = 0.6, δ1 = 0.25, δ2 = 0.25, ρ1 = 0.5, ρ2 = 0.5, μ = 0.6, (v(0), i(0)) = (0.4, 0.2).

4.2. Model with Alcohol Consumption

Now, we numerically analyze the model including the term that models the effect of alcoholism
in the couple.

Scenario 3 Couple with a moderated profile of IPV and man’s alcohol consumption. In this case,
we take the same parameter set of Scenario 1 and include the effect of the periodic alcohol consumption
by the man (h(t) �= 0), i.e., we are considering ρ = 0.25, ω = π/2, η = 0.35. In Figure 4, we can observe
that the model with man’s periodic alcohol consumption follows the qualitative model behavior
without alcohol consumption. In this case, the violence index increases and the independence index
decreases, but the solution oscillates. Let us observe that, there is a time interval where the oscillations
are changing in amplitude (transient behavior) to finally reach a periodic solution. Note the that
maximum value of the violence index almost reach one, which corresponds to assassination attempt
according to the IPN scale. Finally, the solution for v(t) oscillates in an approximate range of [0.5, 0.8].
When these values are interpreted according to IPV scale, they correspond to psychological and
physical violent acts ranging from controlling the woman action, destroying personal belongings and
death threats among others. We also note that there is the displacement of the steady state point, when
it is compared with the case without alcohol consumption. This means that the man’s violence index
and the woman’s dependency index increases, confirming that alcohol worsens the IPV perpetration.
This agrees with the behavior reported one by the literature [2].
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Figure 4. Violent man with alcohol consumption, non-independent woman. α1 = 0.7, α2 = 0.6, β1 =

0.6, β2 = 0.5, γ = 0.5, δ1 = 0.2, δ2 = 0.25, ρ1 = 0.5, ρ2 = 0.5, μ = −0.2, ρ = 0.25, ω = π/2, η = 0.35.

Scenario 4 Couple with a profile of empowered woman and man’s alcohol consumption. In this
case, we take the parameter set of Scenario 2 and include the effect of the periodic alcohol consumption
by the man (h(t) �= 0), i.e., we add the parameters values ρ = 0.15, ω = π/2, η = 0.35. The results
of this simulation are an oscillating increment in both of the indexes which is the same qualitative
behavior found in the scenario 2, but with oscillations. See Figure 5. This even occurs more rapidly than
in the case with a non-alcoholic man showing the emphasizing effect of periodic alcohol consumption.

Certainly, these all cases are undesirable and intervention strategies to avoid these situations are a
must and will be discussed in the next section.

Figure 5. Violent man with alcohol consumption, empowered woman. α1 = 0.5, α2 = 0.6, β1 =

0.3, β2 = 0.3, γ = 0.6, δ1 = 0.25, δ2 = 0.25, ρ1 = 0.5, ρ2 = 0.5, μ = 0.6, ρ = 0.25, ω = π/2, η = 0.35.

5. Discussion of the Model and Its Application

We have constructed a mathematical model based on measures of the human behavioral traits for
the IPV dynamics in a romantic couple. Based on this model, it is very important to analyze possible
applications. Also as a next step, we may ask about possible intervention strategies to reduce or to
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avoid violence. In order to do this, it is important to remark that our model reproduces a small number
of reported situations of IPV which are boosted by alcoholism, considering only two variables. Notice,
that despite it is very restrictive with respect to the IPV dynamics found in a romantic relationship, we
can draw some interesting conclusions.

According to our model, there are two key parameters to change the IPV dynamics in a couple.
The first one is the parameter ρ1, which measures the self-regulatory factor of the IPV perpetrator.
Certainly, the reason for introducing this factor is supported by the reported results in [16]. Especially
by the fact that it can be used as an IPV predictor. In such a work, the authors argue that violent
man impulses do not necessarily end in violent behavior. Moreover, this parameter value or human
behavioral trait can be increased by providing the violence perpetrator with techniques to refrain
from violent acts. Then, a possible intervention strategy could be to encourage this type of training.
However, let us analyze the limit case ρ1 = 1, recall that this parameter is normalized. Our model
implies that woman independence does not contribute to increasing the violence in the couple. Then,
the model suggests that violent behavior would tend to the non-influenced steady state which is not
a zero violence state. Therefore, it is not enough to focus on the education of the perpetrator, but on
the factors defining his intrinsic level of violence such as therapies to reduce the trauma caused by
the violence watched in childhood. Additionally, educational programs to change man’s mind with
respect to the machismo are needed.

Another possible strategy of intervention can be understood in terms of the empowering
coefficient, μ. By allowing it to take positive or negative values gives the opportunity to change
the model dynamics. As a first scenario, with negative μ, there are factors encouraging the woman to
remain married, despite the level of violence that the woman is experiencing. Certainly, this simulates
a cruel reality that must be avoided. As a first stage to achieve this, the woman must be enrolled in
empowerment programs, ie. setting μ positive as a first step to break the violence cycle. violence
caused by man’s need for control. One may suggest stressing the level of empowerment programs,
but according to the model it will lead to increase the IPV. The suggested solution to escape IPV is
to set conditions that ensure a more rapidly increment in the independence index with respect to
violence increment. This is a consequence of the linearity of the model and points out the need to
provide a more balanced model. Such improved model should reproduce more mild IPV scenarios.
Also, it would be important to determine conditions where the violence can decrease while the woman
independence increase. After that, it would follow the addition of modeling terms for the intervention
strategies such as the couple therapy and public policy strategies. Both of them, with a short term
impact in the reduction of the IPV problem.

6. Conclusions

In this work, we developed a model for the IPV perpetration in a romantic couple in terms of
a system of linear differential equations. This model describes the cycle of violence in one couple
by considering important causal and motivational factors. Among those factors, we consider that
the most relevant is the inclusion of the need to control woman, the self-regulatory coefficients and
the external factors for the woman. From our point of view, our contribution is the identification of
important factors that trigger IPV and the corresponding use in setting a first differential equation
model. Despite the simplicity of our model, it allowed us to reproduce different IPV scenarios and
identify possible intervention strategies. In future work, we would like to explore the inclusion in the
model of more realistic assumptions such as a variable self-regulatory coefficients, the inclusion of
nonlinear terms to describe interactions. In particular those related with intervention strategies In
this way, the model will reproduce more complex IPV scenarios and provide more targeted actions to
reduce this social problem.
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Abstract: Hidden Markov models are a very useful tool in the modeling of time series and any
sequence of data. In particular, they have been successfully applied to the field of mathematical
linguistics. In this paper, we apply a hidden Markov model to analyze the underlying structure of an
ancient and complex manuscript, known as the Voynich manuscript, which remains undeciphered.
By assuming a certain number of internal states representations for the symbols of the manuscripts,
we train the network by means of the α and β-pass algorithms to optimize the model. By this
procedure, we are able to obtain the so-called transition and observation matrices to compare with
known languages concerning the frequency of consonant andvowel sounds. From this analysis,
we conclude that transitions occur between the two states with similar frequencies to other languages.
Moreover, the identification of the vowel and consonant sounds matches some previous tentative
bottom-up approaches to decode the manuscript.

Keywords: Hidden Markov models; mathematical linguistics; Voynich Manuscript

1. Introduction

Hidden Markov models (HMMs) are a particular kind of a Bayesian network obtained by
combining a Hidden Markov layer and a second layer of outputs that depends probabilistically
on the hidden states of the first layer [1,2]. This model has proven a very versatile and useful tool
in many applications of artificial intelligence, among others: (i) modeling of biological sequences
of proteins and DNA [3]; (ii) speech recognition systems [4]; (iii) data compression and pattern
recognition [5]; and (iv) object tracking in video sequences [6]. Of particular interest to us are the
early studies in which HMMs were used to analyze a large body of text, in that case of English (the
so-called “Brown Corpus”), considered as a sequence of letters without any previous assumption on
the linguistic structure of the text or the meaning of the letters [1,4,7]. Depending on the number of
hidden states, thanks to this work, light was shed on the linguistic structure of English in the model.
For example, for two hidden states, the basic division among vowels and consonants was recovered
as the most natural basic pattern of the English language [7]. As many more states were taken into
account, it was discovered a structure including the initial and final letters of a word, vowel followers
and preceders, etc. This elucidates the purely statistical nature of a language and it shows that HMMs
can be an insightful tool in mathematical and computational linguistics.

Applications of HMMs to the field of Natural Language Processing (NLP) has also flourished in
recent years as its has been shown for different layers of NLP such as speech tagging and morphological
analysis. By using this approach, successful results for many languages such as Arabic and Persian
have been obtained [8,9]. For these reasons, it seems promising to extend these analyses to other
sources of text that still cannot be deciphered because they are written in an unknown script and with
a unique linguistic structure. Among the candidates to this challenge, the medieval codex known as
Voynich manuscript stands out [10].
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Discovered by the Polish–Lithuanian book dealer W. Voynich in 1912, it has remained an enigma
of historical cryptography since then. For a detailed introduction to the manuscript’s history and
attempts of decipherment until 1978, the interested reader can find more information in M. d’Imperio’s
monograph [11] and on Zandbergen’s website [10]. It is generally believed by history researchers that
this book could have belonged to emperor Rudolph II of Baviera until his death in 1612. This was
stated in a letter addressed to the XVIIth century scholar Athanasius Kircher that was found by Voynich
himself inside the manuscript. The history of the ownership of the manuscripthas been elucidated
throughout the years. It is also known that it was property of the Jesuits and it was kept at the “Collegio
Romano” since the last decade of the XVIIth century until the end of the XIXth century when it was
moved to Frascati where Voynich acquired it.

Modern physics and chemistry analyses have allowed establishing some rigorous facts. Firstly,
in 2009, some samples of ink and paint were taken from the manuscript and analyzed by X-ray
spectroscopy and X-ray diffraction techniques showing that these inks and pigments were totally
compatible with those used by scribes at the last epoch of the Middle Ages [12]. The same year, a
radiocarbon dating of the parchment was carried out by researchers at the University of Arizona [13].
They found that with a 95% probability the parchment corresponds to the period between 1404 and
1438. This places the manuscript in the first half of the fifteen century. It is also clear that the text was
added after the drawing of the figures in the manuscript because it usually surrounds these figures
very closely.

An image of the first line in the Voynich manuscript is shown in Figure 1. The total set of individual
characters depends on some ambiguities in counting but it seems that there are 36 characters in the set
as recognized by the Currier alphabet, some of them far more frequent than other. Others alphabets,
such as the European Voynich Alphabet (EVA), consider only 25 characters (ignoring the rare ones).
Although the symbols seem strange, and not immediately associated with any known alphabet
ancient or modern, a closer inspection reveals a similarity with Latin, Arabic numerals and, specially,
some Latin abbreviations very common throughout the Middle Ages [14]. Anyway, these clues have
helped little in finding an accepted decipherment of the text.

Figure 1. A sample of the first folio of the Voynich manuscript.

Among the possible solutions to this riddle, there have been four main proposals:

1. It is a manuscript written in an extinct natural language with an exotic alphabet [15].
2. It is the encipherment of a known language (possibly Latin, German or other Indo-European

language but nobody is sure [11]).
3. It is a hoax consisting of asemic writing with the objective of making the book strange and valuable

to collectors of antiquities [16].
4. It is a modern fabrication (perhaps by its discoverer, W. Voynich) [10].

From these hypotheses, the last one seems excluded by modern physicochemical analyses but the
other three may still be considered open. The paper is organized as follows. In Section 2, we discuss
the basics of Hidden Markov Models and its application to linguistic analysis. Section 3 is devoted to
the application of HMMs to the Voynich manuscript and the information we may deduce from this.
Finally, the paper ends with a discussion on the meaning of the findings of the paper and guidelines
for future work in Section 4.

2. Hidden Markov Models

In this section, we provide a quick summary of the basic concepts and algorithms for HMMs.
In Figure 2, we show the structure of a HMM. The Markov process (Figure 2) is characterized by a
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sequence {X0 , X1 , X2 , . . . , XT−1} of internal states selected among a total of N. The transition among
these states is performed according to the probabilities of a transition matrix A in such a way that the
element aij denotes the probability of performing a transition from the internal i state to the state j.
We can also denote the different internal states as qi, with i = 0 , 1 , 2 , . . . , qN−1.

The second layer we have plotted in Figure 2 corresponds to the observations. The sequence
of observations is then denoted by {O0 ,O1 , . . . ,OT−1} and they can be chosen among a total of M
possible observation symbols. The relation between the Markov process layer and the observation
layer is also probabilistic because, given an internal state qj, the probability for observing the symbol k
is bj(k). These elements constitute a row stochastic matrix, B.

Figure 2. A schematic view of a HMM. See the main text for details.

The problem we want to address is the following: Suppose we have a given sequence of
observations, O, consisting of a series of symbols from a total of M. If we assume that there are
N internal states in the model, the objective is to find the model (A, B, π) (where π is the distribution
of initial states) that provides the best fit of the observation data. The standard technique in HMMs to
evaluate this optimum model makes use of a forward algorithm and a backward algorithm described
as follows. In the description of the algorithms, we closely follow the pedagogical presentation by
Stamp [1].

2.1. The Forward Algorithm

Firstly, we are interested in evaluating the following probability:

αt(i) = P(O0,O1, . . . ,Ot, xt = qi|λ) , (1)

i.e., the probability that the sequence of observations up to time t is given by O0, . . . ,Ot and the
internal state at time t is qi for a given model λ. Then, for t = 0, we have that:

α0(i) = πi bi(O0) , (2)

where i = 0, 1, . . ., N − 1. The reason is that πi is the probability that the initial internal state is qi, and
bi(O0) is the probability that, given that the internal state is qi, we have the observation O0. It is the
easy to check that the recursion expression for αt(i) is given by:

αt(i) =

[
N−1

∑
j=0

αt−1(j) aji

]
bi(Ot) . (3)

Here, aji is the transition probability from the inner state j to the inner state i. This algorithm is
also called α-pass.
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2.2. The Backward Algorithm

The backward algorithm, or β-pass, is proposed for the efficient evaluation of the following
probability:

βt(i) = P(Ot+1,Ot+2, . . . ,OT−1, xt = qi|λ) . (4)

This means that we are interested in finding the probability that the sequence of observations from
time t + 1 to the end is Ot+1, . . . ,OT−1 and the inner state at time t is qi. The algorithm is constructed
as follows:

• In the first place, we define βT−1(i) = 1 for i = 0, 1, . . ., N − 1.
• Then, for t = T − 2, T − 3, . . ., 0 we define the recursive relation:

βt(i) =
N−1

∑
j=0

aij bj(Ot+1) βt+1(j) . (5)

We use these two algorithms, the forward and the backward, to find the standard algorithm that
can be used to reestimate the model and make it approach its optimum.

2.3. Reestimating The Model

Our objective now is to reevaluate the model in such a way that the optimum parameters that fit
the observations are found. These parameters are the elements of the matrices A and B as well as those
in the vector corresponding to the initial distribution of internal states, π. We need now an algorithm
to reestimate the model in such a way that the probability of the observation sequence, O0, . . . ,OT−1,
given the model λ, P(O0, . . . ,OT−1|λ) is maximized.

The idea of the algorithm begins with the definition of the following probability for a given model
and a given observation sequence:

γt(i, j) = P(xt = qi, xt+1 = qj|O, λ) . (6)

This is the probability of finding the internal states qi and qj at times t and t + 1 for the observation
sequence O and the model λ. Using now the standard relations for conditional probabilities and the
definitions of the α and β probabilities in Equations (1) and (4), we have:

γt(i, j) =
αt(i) aij bj(Ot+1) βt+1(j)

P(O|λ) , (7)

for time t = 0, 1, . . ., T − 2. We also define the sum over the index j, i.e., the probability of finding the
inner state qi at time t for a given model and observation sequence:

γt(i) =
N−1

∑
j=0

γt(i, j) . (8)

With these definitions and expressions, we can now propose the evolution algorithm for the
reestimation of the parameters:

• We initialize the model λ = (A, B, π). It is a common practice to choose the elements according
to the uniform distribution: πi ≈ 1/N, aij ≈ 1/N, and bj(k) ≈ 1/M but these values must be
randomized to avoid that the algorithm becomes stuck at a local maximum.

• We calculate the parameters αt(i), βt(i), γt(i, j) and γt(i) by applying the corresponding
expressions in Equations (3), (5), (7) and (8).
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• For i = 0, 1, . . ., N − 1 and j = 0, 1, . . ., N − 1 we reestimate the elements of the transition matrix,
A, as follows:

aij =

T−2

∑
t=0

γt(i, j)

T−2

∑
t=0

γt(i)

, (9)

• For i = 0, 1, . . ., N − 1 and j = 0, 1, . . ., N − 1 we compute the new values for the elements of the
observation probability matrix as follows:

bj(k) =

∑
t∈{0,1,...,T−1} ,Ot=k

γt(j)

∑T−1
t=0 γt(j)

. (10)

Here, the sum in the numerator is restricted to those instants of time in which the observation
symbol is the kth.

• Finally, we compute the probability of the given observation sequence, i.e., P(O|λ) (obtained as
the sum of αT−1(i) for all the inner state values, i). If this probability increases (with respect to
the previous value), the model updating is performed again. However, in practice, the algorithm
is run for a given number of steps or until the probability does not increases more than a
selected tolerance.

Another issue with this algorithm is that the α-pass and β-pass evaluations may easily lead to
underflow. To avoid this problem, a normalization by the sum over j of αt(j) is performed. For further
details on HMMs the interested reader may check the references [1].

2.4. Applications to Linguistics of HMM and Other Network Models

Before the application of this particular model to the examples in the next section, we briefly
review some relevant studies concerning the use of networks in linguistics. Although computational
linguistics is as old as computers themselves, the field of natural language processing (NLP) started to
take off in the 1980s with the development of statistical machine translation [17], machine learning
algorithms and neural networks [18]. More recently, NLP has received an important advance within
the broader field of Deep Learning [19]. Hidden Markov Models (HMM) also played a role in these
developments: Baum and Petrie in their seminal paper laid the foundations of the theory of HMM in
1966 [20], which took form in the late 1960s and early 1970s [21,22]. The forward–backward algorithm
described in this section was proposed in this early studies and it is usually known as the Baum–Welch
algorithm. As mentioned before, in 1980, Cave and Neuwirth applied HMMs to study the structure of
a set of texts in English (known as “Brown Corpus”), which allowed them to derive useful conclusions
about the role of individual letters [1,7]. Word alignment was also studied in connection with statistical
translation by using a HMM by Vogel et al. [23]. More recent applications of HMM to linguistics
include part-of-speech tagging, i.e., the labeling of the different words according to their grammatical
category [8,9]. The Baum–Welch algorithm has also been used to identify spoken phrases in VoIP
calls [24]. HMM are used in speech recognition since the seminal work of Baker in 1975 [25]. Nowadays,
Long Short-Term Deep Neural Networks are the current paradigm in this field due to their capacity
tospot long term dependencies [26]. Networks have also proven very useful in the development of
the so-called word adjacency model, as shown by Amancio [27] and Nebil et al. [28]. This paradigm
has been applied to the classification of artificially generated manuscripts in contrasts to genuine
ones by observing their topological properties [29]. The dynamics of word co-occurrence in networks
has also allowed identifying the author of a given manuscript [30]. It is known that this adjacency
model captures, mainly, syntactical features of texts [31]. The algorithm to find the optimum model for
HMM is also oriented to identify the basic syntactical features concerning the probability sequences of
individual letters. Nothing can be said about the semantics, although it can certainly help in a Rosetta
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stone approach to decode a particular manuscript written in an unknown language, such as the Voynich
manuscript [15]. The adjacency model has also been used to analyze the Voynich manuscript [32] with
similar conclusions to the ones deduced in this paper: that the manuscript is mostly compatible with a
natural language instead of a random text.

3. Results

In this section, we discuss the application of the algorithm discussed in the previous section to
several cases. First, we consider the case of a text in English and we implement the model optimization
algorithm to classify the letters of the alphabet (after removing all the punctuation signs) into two
classes corresponding to the inner states of the HMM. It is shown that these classes are clearly associated
with the vowels and the consonants in English and this provides the basic phonemic structure of the
language. Testing the algorithm with a known language gives us the necessary confidence to apply it
to the Voynich manuscript.

In both applications (to a text in English and to the Voynich manuscript), we only used two
hidden states. This raises the question about the advisability of this particular choice, instead of a
larger number of hidden states. As the main objective was to show that these texts can be partitioned
in different sets of symbols that are different in their statistical properties, selecting N = 2 seems
the simpler choice. Moreover, in earlier applications to other books (such as the “Brown Corpus”,
which it is a compilation of roughly one million words with texts ranging from science to literature or
religion), this choice was proven to be successful in the identification of the vowels and consonants [7].
More hidden states were considered by Cave and Neuwirth in their seminal application of HMM to
language and they even obtained some conclusions for N = 3 to N = 12. Nevertheless, this was done
with the advantage of dealing with a known language. Proving the existence of, at least, two different
sets of letters in the Voynich manuscript is already a useful conclusion. If we take into account that the
alphabet and the language are completely unknown in this case, this could help linguistics in their
research to unveil some meaning in the words of the manuscript. Only after some globally accepted
success is achieved in this endeavor the study of the convergence of the HMM model for N > 2 could
be done with some possibility of interpretation.

3.1. Application to The Quixote

We applied the model evolution algorithm for HMM with N = 2 and M = 27. Therefore,
we considered 26 letters and the space as output symbols. The text of the Quixote in plain ASCII can
be freely downloaded from the Gutenberg’s project website [33]. This is the English translation of the
original Spanish version. As a data pre-processing stage, we transformed all the upper-case letters to
lower-case and removed the punctuation signs with the exception of the spaces among subsequent
words. This way, we obtained a sequence of 5,693,310 characters but, to our purpose, we restricted
ourselves to the first 100,000 characters.

As initial transition matrix, we chose:

A =

(
0.46 0.54

0.52 0.48

)
, (11)

and the distribution of initial hidden states was given at the start of the algorithm by

π =

(
0.52

0.48

)
, (12)

The observation probability matrix was obtained by randomizing the equal probability
assumption: bj(O) = 1/M for every j. For example, we could multiply 1/M by a random number
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in the interval (0.8, 1.2). However, we must verify the condition that the total probability for a given
inner state j and all the possible observation outcomes is normalized to one:

∑
all O

bj(O) = 1 , (13)

and this was accomplished by imposing this condition to define the last value bj(O) for the Mth
state, O.

The algorithm was then implemented in Mathematica using lists and the model evolution was
run for 200 steps with 100,000 characters from the book, pre-processed to retain only the letters and
removing all the punctuation signs (see the supplementary material accompanying this paper for
Mathematica code). Results were also checked using other independent implementations of the code
in C++ [34].

Firstly, we noticed that the algorithm converged after around 100 iterations, as deduced from
the evolution of the logarithm of the observation sequence probability for the given model P(O|λ).
This is shown in Figure 3. However, the convergence may seem peculiar because this probability only
started raising after iteration 50 and settled to a “plateau” in a few iterations after that. This could be
an indication of a small basin of attraction for the fixed point we were looking for. The topography of
the landscape for this particular problem would require further investigation.

Figure 3. The evolution of the logarithm of the observation sequence’s probability as a function of the
iteration. Notice the fast convergence to an asymptotic “plateau”.

From the results in this figure, we conclude that convergence was achieved after only 60 steps
and that further iterations only improve the results very slightly. The final transition matrix we found
is given as follows:

A =

(
0.369 0.631

0.869 0.131

)
, (14)

with an initial distribution of initial states given by:
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π =

(
0

1

)
. (15)

Transition matrices with large off-diagonal elements are also found using other texts such as the
“Brown Corpus” [7]. This compilation contains a million words with texts ranging from religion to
science, including also some novels. Consequently, the conclusions we derived from a single book
are already supported for a variety of texts in English from the early study of Cave and Neuwirth [7].
The form of the transition matrix in Equation (14) is already pointing towards the existence of two
categories of letters (the inner states of the HMM). These categories are, obviously, the vowels and
the consonants and this statement is reinforced by the values of the observation probability matrix, B.
In our case, the inner state 2 has been identified as the vowels, as clearly shown in Figure 4 where a
peak of probability is found for every vowel.

Figure 4. The probability of observation of a given letter for the hidden state 2. Notice the peaks for
the vowels as well as “y” and the space.

From the results in Figure 4, we could also derive some interesting conclusions:

1. The most frequent vowel in the English language is “e”.
2. The space among words has the structural function of a vowel, although it has no associated sound.
3. The letter “y” is mostly a vowel in the English language. Indeed, the Oxford Dictionary classifies

it as a vowel in some cases (“myth”), a semivowel in others (“yes”) or forming a diphthong (as in
“my”) [35].

In rigor, these conclusions would be valid only for the Quixote but they have also been checked for
other books (in particular the “Brown Corpus” book compilation). Thus, it is not unjustified to apply
them to the English language in general. Similar conclusions can also be deduced for the consonants.
It is also remarkable that the results in Figure 4 cannot be deduced from simple frequency analysis.
The histogram of the letters obtained from the Quixote’s text is shown in Figure 5.
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Figure 5. The histogram for the frequency of the totality of letters (and the space) in the English version
of the Quixote.

We see that the vowel “e” is still the most frequent letter in the English language (not only the
most frequent vowel) but the second most frequent letter is “t”. Thus, there is no clear pattern in the
histogram to separate vowels from consonants. This ability of HMM make them a very powerful tool
in computational linguistics.

Finally, we should emphasize that this experiment was performed by starting with particular
forms of the transition matrix, A, and the initial distribution vector, π, as given in Equations (11)
and (12). The observation probability matrix was also chosen in a random way as described above.
It is possible that, in some cases, the evolution algorithm for the HMM may find a local minima and
be sensitive to initial values instead of converging to the global minima we are looking for. Indeed,
a solution with A defined as a 2-by-2 identity matrix is always stable and can be approached by certain
initial conditions. For these reasons, it is convenient to check the sensitivity of our results to initial
conditions by performing several runs of the program. To check the convergence of the algorithm,
we chose different initial conditions, in which A and π were randomly selected as follows:

A =

(
x 1 − x

y 1 − z

)
, (16)

π =

(
z

1 − z

)
, (17)

where x, y, and z are random real numbers in the interval (0.4, 0.6). After performing 10 simulations
with 200 runs, we found that the average transition matrix is given by:

A =

(
0.300(63) 0.700(63)

0.701(61) 0.299(61)

)
. (18)

Notice that both the matrices in Equations (14) and (18), are unstable as the off-diagonal elements
are larger than the diagonal ones. However, this stationary state of the algorithm is coherent with
previous results obtained with other texts [7]. This means that two hidden states can be identified in
the symbols of the book (corresponding to vowels and consonants) and that the transitions take place
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mainly from consonants to vowels and vice versa. This is precisely what happens in natural languages.
A transition matrix equal, or approximately equal, to the identity matrix would not separate the states
and it is not relevant to this linguistic application.

3.2. Application to the Voynich Manuscript

After the successful implementation of the HMM technique for the Quixote, we thus turned again
to our problem of analyzing the Voynich manuscript. Several transcriptions of this manuscript are
available but the most popular is the one based upon the so-called European Voynich Alphabet (EVA),
as developed by Zandbergen and Landini. Although there is an extended version, which includes
the less common symbols in the Voynich manuscript, the basic version uses 26 letters of the English
alphabet (excluding “w”) to make a correspondence with the most abundant symbols in Voynichese.
The correspondence among the EVA code and the Voynich symbol is given in the table of Figure 6.

At this point, it is also necessary to explain why we chose this particular alphabet instead of
the other alternatives. The main reasons are its popularity and the fact that many transcriptions are
available for it. Otherwise, some specialists would argue that some symbol combinations in this
alphabet, such as “ch” and “sh”(corresponding to the so-called “pedestals”) should be considered as
one single character each [10]. On the other hand, the combinations “in” and “iin” are also candidates
for representing letters, although, in some other cases, “i” could be a single character. This is another
problem that computational analyses could help to solve [36].

Figure 6. The correspondence among Voynich’s symbols and the associated letter in the EVA
transcription systems. Notice that this is merely an arbitrary codification without any relation to
the actual phonemes that the Voynich’s characters might represent.

This way, a transcription of the whole Voynich manuscript has been performed in such a way that
it can be used in computational analysis. These transcriptions are available in several sites, as discussed
by Zandbergen [10]. In particular, we used Takahashi’s transcription developed in 1999. Of course,
some pre-processing was required before applying the HMM algorithm because this file includes
some information about each line, including the folium number (recto or verso) and the number of
the line within each page of the manuscript. After removing this information, we were left with a
set of EVA characters separated by dots. These dots correspond to the spaces between words in the
original manuscript. The total number of characters (including spaces) we used for the simulation is
228,836. Convergence of the algorithm was also very fast, as in the case of the English text analyzed
in Section 3.1, and, when we used more than 50,000 characters, the results were stable and showed
no dependence on the total length of the sequence, T. This is a convincing argument in favor of the
consistency of the results.

We started with the same initial conditions as those given in Equations (11) and (12) for the
transition matrix and the distribution of the state t = 0. The probability matrix for the observation
states (the Voynich characters) was randomized in the usual way explained in Section 3.1. In this
particular example, we used the first 100,000 characters in the Voynich manuscript and 200 iteration
steps. The final transition matrix is similar to those of natural languages (because the off-diagonal
elements are larger than the diagonal ones):

A =

(
0.169 0.831

0.840 0.160

)
, (19)

and the distribution of initial states was given by:
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π =

(
0

1

)
. (20)

After performing the same randomization of initial conditions as we saw for the example of the
Quixote, we found an average transition matrix of the form:

A =

(
0.182(45) 0.818(45)

0.831(17) 0.169(17)

)
, (21)

which confirms that the result in Equation (19) is close to the asymptotic fixed point we were looking for.
We can also see that Equation (20) indicates that the first character of the manuscript is associated

with a consonant sound. The most interesting results are, however, those obtained with the observation
probability matrix, which clearly separate two kinds of characters to be associated with vowel and
consonant phonemes, as occurred in the case of the Quixote. In Figure 7, we show the probability of
obtaining each character when the hidden state is 1.

Figure 7. The probability of observation of a given character in the Voynich manuscript for the hidden
state 1. The peaks correspond to the symbols: “a”, “c”, “e”, “i”, “o”, “s” and “y” of the EVA alphabet.
There is also a peak for the space among words.

The probabilities for hidden state 2 are given in Figure 8. We see that a set of very conspicuous
peaks were obtained in both cases, but there were fewer in the result shown in Figure 7, which
could mean that the symbols corresponding to those peaks are associated with vowel’s phonemes.
On the other hand, this correspondence is not as strong as in the case of the English text of Section
3.1 because there are symbols with noticeable probability that appear in both figures (in particular,
the EVA symbols “e”, “i”, “s” and “y”). Perhaps, the most simple explanation for the absence of a clear
separation among vowels and consonants in these four cases is that we are confronted with another
example of letters that can function as both vowels and consonants as in the case of “y” in English.
However, for the Voynich manuscript, we have four letters with this capacity and this is a peculiarity
whose meaning we cannot unravel for the moment. Another possibility is that the Voynich alphabet is
some kind of abjad but this hypothesis is not so clear because in abjads the letters that appear in the
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text are always a vowel or a consonant (although some vowels are left out). This could have an effect
in the transition matrix but it is not evident that it would produce an ambiguity in the classification of
those letters in the hidden states, one or two. Further research into HMM applied to languages with
abjad’s alphabets, such as Arabic, should be necessary to clarify this point.

Figure 8. The same as Figure 7 but for the hidden state 2.

Nevertheless, the appearance of high peaks in Figure 7 also suggests the existence of vowel
symbols in the manuscript so this abjad would be impure. Bax also suggested in 2014 [15] that this is
the case after proposing a provisional decoding of some words in the manuscripts associated with
plants and a constellation. In the next section, we discuss this intriguing possibility.

4. Discussion

Although a lot of research effort has been devoted to understanding the Voynich manuscript,
we still lack a consensual opinion about the nature of the writing it contains. Early efforts by
Friedman, Tiltman, Currier and Bennett, among others [10,11] helped to elucidate some features
of the manuscript and exclude the hypothesis of a simple substitution cipher. The interest in the
application of mathematical and computational methods to the Voynich manuscript is maintained
nowadays, as shown by recent publications [32,37].

The main result of this paper is the evidence of the existence of two states associated with the
symbols in the manuscript that could correspond to consonants and vowels. This reaffirms to the
conclusions of Amancio et al. [32] and Montemurro et al. [37] of the existence of word co-occurrences
and keywords in the same proportion than natural languages.

The recent proof of the old age of the “vellum” by carbon-dating places this manuscript in the first
half of the XVth century and all other tests are very compatible with an origin in the Middle Ages [12,13].
Anyway, although a forgery by Voynich or other recent author is excluded, some authors support the
idea that this object was fabricated in the Middle Ages with a pecuniary intention by making it similar,
in appearance, to a real, but enciphered, text [16]. As said before, statistical measurements carried out
by Amancio et al. in 2013 [32] show that the Voynich manuscript is incompatible with shuffled texts
and, moreover, that certain keywords appear throughout the manuscript. These keywords organize
in patterns of semantic networks, as shown by Montemurro et al. [37]. These conclusions, and those
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of this paper, make the hypothesis of a fake more unlikely but a clever fake designed to simulate a
human language with the adequate transition among letters cannot completely be excluded.

Other authors, as most researchers in the past, think that the text is enciphered in some way.
Hauer and Kondrak assumed that the manuscript was written in some abjad’s alphabet using some
transposition of letters or anagramming [38]. These assumptions are very strong and their conclusions
of a relation to Hebrew have been widely dismissed.

In this paper, we use the conservative approach of applying the standard technique of HMM for
the linguistic analysis of the manuscript. We have shown that a division among vowels and consonant
phonemes is very clear in the resulting observation probability matrix but that some characters (such
as the EVA symbols “e”, “i”, “s” and “y”) could participate in the vowel and consonant natures,
either because they are semivowels or because there is an implicit vowelling in them as in impure
abjad’s alphabets. A positional dependence of the vowelling as in abugida’s alphabets cannot be
excluded. In abugida’s alphabets, some vowels are written but, sometimes, they are attached as part of
the consonant, which makes the analysis more difficult. Further research with HMM into languages
with these alphabets would be necessary to obtain a reliable conclusion.

In any case, we found some characters in the script that very possibly represent vowel’s phonemes:
“a”, “c”, “e”, “o” and “y” in the EVA notation (see Figure 6). There are also some exclusively consonant
phonemes, such as “d”, “h”, “k”, “l” or “t” in the EVA’s notation.

The idea of using HMM to analyze the Voynich manuscript has already been proposed by
other authors but their results have not been published officially in scientific journals. For example,
Zandbergen discussed his application of HMM to the manuscript on a webpage [36]. His
conclusions are similar to those found in this present paper. Another study was performed by
Reddy and Knight [39]. However, they indicated that their algorithm separates vowels and consonants
in an odd fashion because one of the states always corresponds to the last symbol in a letter. Anyway,
their explanations are cursory and they did not describe their algorithm in enough detail to allow for a
reproduction of their results. Much earlier, D’Imperio wrote a paper about the use of an algorithm
called PTAH at the National Security Agency [40]. Although we can infer from her discussion that the
algorithm is some kind of HMM and that the results obtained from a five-state model are compatible
with our results, it is difficult to compare her algorithm with the one discussed here because PTAH is
still classified. On the other hand, implementations with a higher-state HMM could provide useful
information if the linguistics provide some agreement about the possible translation of some words.

It also seems interesting that Prof. Bax in 2014 [15] identified some names of plants and the
constellation Taurus in the manuscript and that his associations with phonemes are similar to the
one discussed in this paper. In Figure 9, we show some of these associations for the words “Taurus”,
“Coriander” and “Juniper” (in Arabic).

Figure 9. Some words in the Voynich manuscript and the phonetics transcriptions proposed by Bax [15].

Although these associations are considered very preliminary, even by its author, the similarity
with our identification of vowels and consonants is striking. Thus, we can gain some confidence
that a serious scholarship effort could enhance these identifications and provide a sure path for
further research. In any case, we must stress that the identifications performed by Bax are not
generally accepted but, at least, they show that our mapping of vowels and consonants allows for
some meaningful words to appear.
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Although other possibilities might still be open, we have increasing support of the view that
the text in the manuscript is neither a hoax nor an intentional cipher but a genuine language written
in an unknown script. Notwithstanding this progress, we are still far from identifying the language
because it could even be a dead tongue, for which the script was devised. Further analysis including
more states could help if the decoding of the manuscript adds further evidence to these preliminary
conclusions. We hope that this work stimulates further research by expert linguists that could shed
additional light into this ancient enigma.
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Abstract: The objective of this paper is to complete certain issues from our recent contribution
(Calatayud, J.; Cortés, J.-C.; Jornet, M.; Villafuerte, L. Random non-autonomous second order linear
differential equations: mean square analytic solutions and their statistical properties. Adv. Differ. Equ.
2018, 392, 1–29, doi:10.1186/s13662-018-1848-8). We restate the main theorem therein that deals with
the homogeneous case, so that the hypotheses are clearer and also easier to check in applications.
Another novelty is that we tackle the non-homogeneous equation with a theorem of existence of
mean square analytic solution and a numerical example. We also prove the uniqueness of mean
square solution via a habitual Lipschitz condition that extends the classical Picard theorem to mean
square calculus. In this manner, the study on general random non-autonomous second order linear
differential equations with analytic data processes is completely resolved. Finally, we relate our
exposition based on random power series with polynomial chaos expansions and the random
differential transform method, the latter being a reformulation of our random Fröbenius method.

Keywords: random non-autonomous second order linear differential equation; mean square analytic
solution; random power series; uncertainty quantification
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1. Introduction

The important role played by differential equations in dealing with mathematical modeling is
beyond discussion. They are powerful tools to describe the dynamics of phenomena appearing in
a variety of distinct realms, such as engineering, biomedicine, chemistry, social behavior, etc. [1–3].
In this paper, we concentrate on a class of differential equations that have played a distinguished role in
a variety of applications in science, in particular in physics and engineering, namely second order linear
differential equations. Indeed, these equations have been successfully applied to describe, for example,
vibrations in springs (free undamped or simple harmonic motion, damped vibrations subject to a
frictional force, or forced vibrations affected by an external force), the analysis of electric circuits
made up of an electromotive force supplied by a battery or a generator, a resistor, an inductor, and a
capacitor. In the former type of problems, second order linear differential equations are formulated
by applying Newton’s second law, while in the latter case, this class of equations appears via the
application of Kirchhoff’s voltage law. In these examples, the formulation of second order linear
differential equations to describe the aforementioned physical problems appears as direct applications
of important laws of physics. However, this class of equations also arises indirectly when solving
significant partial differential equations in physics. In this regard, Airy, Hermite, Laguerre, Legendre,
or Bessel differential equations are non-autonomous second order linear differential equations that
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emerge in this way. For example, the Airy equation appears when solving Schrödinger’s equation with
triangular potential and for a particle subject to a one-dimensional constant force field [4]; the Hermite
equation emerges in dealing with the analysis of Schrödinger’s equation for a harmonic oscillator in
quantum mechanics [5]; the Laguerre equation plays a main role in quantum mechanics for the study
of the hydrogen atom via Schrödinger’s equation using radial functions [6] (Ch. 10); the Legendre
equation appears when solving the Laplace equation to compute the potential of a conservative
field such as the space gravitational potential using spherical coordinates [7]; and finally, the Bessel
equation is encountered, for example, when solving the Helmholtz equation in cylindrical or spherical
coordinates by using the method of the separation of variables [6] (Ch. 9).

In all the previous examples, two important features can be highlighted to motivate our
subsequent analysis. First, the coefficients of the differential equations are analytic (specifically
polynomials). Second, these coefficients depend on physical parameters that, in practice, need to
be fixed after measurements; therefore, they involve uncertainty. Both facts motivate the study of
random non-autonomous second order linear differential equations, whose coefficients and initial
conditions are analytic stochastic processes and random initial conditions, respectively. The aim of
our contribution is to advance the analysis (both theoretical and practical) of this important class of
equations. In our subsequent development, we mainly focus on the theoretical aspects of such an
analysis with the conviction that it can become really useful in future applications where randomness is
considered in that class of differential equations. In this sense, some numerical experiments illustrating
and demonstrating the potentiality of our main findings are also included. The study of random
non-autonomous second order linear differential equations has been carried out for particular cases,
such as Airy, Hermite, Legendre, Laguerre, and Bessel equations (see [8–13], respectively), and the
general case [14–17]. Alternative approaches to study this class of random/stochastic differential
equations include the so-called probabilistic transformation method [18] and stochastic numerical
schemes [19,20], for example.

For the sake of clarity in the presentation, the layout of the paper is as follows: In Section 2,
we study the homogeneous random non-autonomous second order linear differential. The analysis
includes a result (Theorem 2) that simplifies the application of a recent finding by the authors that is
particularly useful in practical cases. This issue is illustrated via several numerical examples where
both the random Airy and Hermite differential equations are treated. In Section 3, the analysis is
extended to a random non-autonomous second order linear differential equation with a forcing term.
In this study, we have included conditions under which the solution is unique in the mean square
sense. This theoretical study is supported with a numerical example as well. Section 4 is addressed to
enrich our contribution by comparing the random Fröbenius method proposed in this paper against
other alternative approaches widely used in the extant literature, specifically generalized polynomial
chaos (gPC) expansions, Monte Carlo simulations, and the random differential transform method.
Conclusions and future research lines are drawn in Section 5.

2. Homogeneous Case

We consider the general form of a homogeneous random non-autonomous second order linear
differential equation in an underlying complete probability space (Ω,F ,P):⎧⎪⎪⎨

⎪⎪⎩
Ẍ(t) + A(t)Ẋ(t) + B(t)X(t) = 0, t ∈ R,

X(t0) = Y0,

Ẋ(t0) = Y1.

(1)

It is assumed that the stochastic processes A(t) and B(t) are analytic at t0 in the mean square
sense [21] (p. 99):
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A(t) =
∞

∑
n=0

An(t − t0)
n, B(t) =

∞

∑
n=0

Bn(t − t0)
n, t ∈ (t0 − r, r0 + r),

with convergence in L2(Ω). The terms A0, A1, . . . and B0, B1, . . . are random variables. In fact, they are
related to A(t) and B(t), respectively, via Taylor expansions:

An =
A(n)(t0)

n!
, Bn =

B(n)(t0)

n!
,

where the derivatives are considered in the mean square sense. According to the Fröbenius method,
we look for a solution stochastic process X(t) also expressible as a mean square convergent random
power series on (t0 − r, t0 + r):

X(t) =
∞

∑
n=0

Xn(t − t0)
n.

mean square convergence is important, as it allows approximating the expectation (average) and
variance (dispersion) statistics of X(t) at each t [21] (Th. 4.2.1, Th. 4.3.1). This is one of the primary
goals of uncertainty quantification [22].

Proposition 1 ([21] (Th. 4.2.1, Th. 4.3.1)). Let {Zn}∞
n=1 and Z be second order random variables. If Zn

converges to Z as n → ∞ in L2(Ω) (i.e., in the mean square sense), then the expectation and variance of Z can
be approximated as follows:

E[Z(t)] = lim
n→∞

E[Zn(t)], V[Z(t)] = lim
n→∞

V[Zn(t)].

In [17], some auxiliary theorems on random power series were stated and proven: differentiation
of random power series in the Lp(Ω) sense [17] (Th. 3.1) and Mertens’ theorem for random series in
the mean square sense [17] (Th. 3.2), which generalize their deterministic counterparts.

Proposition 2 (Differentiation of a random power series in the Lp(Ω) sense [17] (Th. 3.1)). Let A(t) =
∑∞

n=0 An(t − t0)
n be a random power series in the Lp(Ω) setting (p ≥ 1), for t ∈ (t0 − r, t0 + r), r > 0.

Then, the random power series ∑∞
n=1 nAn(t − t0)

n−1 exists in Lp(Ω) for t ∈ (t0 − r, t0 + r), and moreover,
the Lp(Ω) derivative of A(t) is equal to it: Ȧ(t) = ∑∞

n=1 nAn(t − t0)
n−1, for all t ∈ (t0 − r, t0 + r).

Proposition 3 (Mertens’ theorem for random series in the mean square sense [17] (Th. 3.2)).
Let U = ∑∞

n=0 Un and V = ∑∞
n=0 Vn be two random series that converge in L2(Ω). Suppose that one of

the series converges absolutely, say ∑∞
n=0 ‖Vn‖L2(Ω) < ∞. Then:

(
∞

∑
n=0

Un

)(
∞

∑
n=0

Vn

)
=

∞

∑
n=0

Wn,

where:

Wn =
n

∑
m=0

Un−mVm,

and ∑∞
n=0 Wn is understood in L1(Ω). The series ∑∞

n=0 Wn is known as the Cauchy product of the series
∑∞

n=0 Un and ∑∞
n=0 Vn.

With these two auxiliary results, the main theorem of [17] was stated as follows:

Theorem 1 ([17] (Th. 3.3)). Let A(t) = ∑∞
n=0 An(t − t0)

n and B(t) = ∑∞
n=0 Bn(t − t0)

n be two random
series in the L2(Ω) setting, for t ∈ (t0 − r, t0 + r), r > 0 being finite and fixed. Assume that the initial
conditions Y0 and Y1 belong to L2(Ω). Suppose that there is a constant Cr > 0, maybe dependent on r, such that
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‖An‖L∞(Ω) ≤ Cr/rn and ‖Bn‖L∞(Ω) ≤ Cr/rn, n ≥ 0. Then, the stochastic process X(t) = ∑∞
n=0 Xn(t− t0)

n,
t ∈ (t0 − r, t0 + r), where:

X0 = Y0, X1 = Y1, (2)

Xn+2 =
−1

(n + 2)(n + 1)

n

∑
m=0

[(m + 1)An−mXm+1 + Bn−mXm] , n ≥ 0, (3)

is the unique analytic solution to the random initial value problem (1) in the mean square sense.

This theorem is a generalization of the deterministic Fröbenius method to a random framework.
As was demonstrated in [17], Theorem 1 has many applications in practice. It supposes a unified
approach to study the most well-known second order linear random differential equations: Airy [8],
Hermite [9], Legendre [10,11], Laguerre [12], and Bessel [13]. The results established in these
articles [8–13] are particular cases of Theorem 1. The main reason why this fact occurs is explained
in [17] (Section 3.3): given a random variable Z, the fact that its centered absolute moments grow at
most exponentially, E[|Z|n] ≤ HRn for certain H > 0 and R > 0, is equivalent to Z being essentially
bounded, ‖Z‖L∞(Ω) ≤ R.

Notice that Theorem 1 does not require any independence assumption about the random input
parameters. Moreover, from Theorem 1, [17] obtained error estimates for the approximation of the
solution stochastic process, its mean, and its variance.

Let us see that Theorem 1 may be put in an easier to handle form. We substitute the growth
condition on the coefficients A0, A1, . . . and B0, B1, . . . by the L∞(Ω) convergence of the random power
series that define A(t) and B(t). In this manner, in practical applications, one does not need to find
any constant Cr; see the forthcoming Examples 1–4.

Theorem 2. Let A(t) = ∑∞
n=0 An(t − t0)

n and B(t) = ∑∞
n=0 Bn(t − t0)

n be two random series in the L∞(Ω)

setting, for t ∈ (t0 − r, t0 + r), r > 0 being finite and fixed. Assume that the initial conditions Y0 and Y1

belong to L2(Ω). Then, the stochastic process X(t) = ∑∞
n=0 Xn(t − t0)

n, t ∈ (t0 − r, t0 + r), whose coefficients
are defined by (2) and (3), is the unique analytic solution to the random initial value problem (1) in the mean
square sense.

Proof. By [11] (Lemma 2.3),

∞

∑
n=0

‖An‖L∞(Ω)|t − t0|n < ∞,
∞

∑
n=0

‖Bn‖L∞(Ω)|t − t0|n < ∞,

for t ∈ (t0 − r, t0 + r). Thus, for each 0 ≤ r1 < r,

∞

∑
n=0

‖An‖L∞(Ω)r
n
1 < ∞,

∞

∑
n=0

‖Bn‖L∞(Ω)r
n
1 < ∞.

Since the sequences {‖An‖L∞(Ω)rn
1}∞

n=0 and {‖Bn‖L∞(Ω)rn
1}∞

n=0 tend to zero, they are both
bounded by a number Cr1 > 0:

‖An‖L∞(Ω) ≤
Cr1

rn
1

, ‖Bn‖L∞(Ω) ≤
Cr1

rn
1

, n ≥ 0.

Then, Theorem 1 is applicable with r1: the stochastic process X(t) = ∑∞
n=0 Xn(t − t0)

n whose
coefficients are given by (2) and (3) is a mean square solution to (1) on (t0 − r1, t0 + r1). Now, since r1

is arbitrary, we can extend this result to the whole interval (t0 − r, r0 + r).

Notice that we have proven that Theorem 1 from [17] entails Theorem 2. However, the other way
around also holds: Theorem 2 implies Theorem 1. Thus, both theorems are equivalent and offer the
same information. Indeed, if we assume the hypotheses from Theorem 1, then:
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‖An‖L∞(Ω)r
n
1 ≤ Cr

( r1

r

)n
, ‖Bn‖L∞(Ω) ≤ Cr

( r1

r

)n
,

for any 0 ≤ r1 < r, and since ∑∞
n=0(

r1
r )

n < ∞, by comparison, we derive that:

∞

∑
n=0

‖An‖L∞(Ω)r
n
1 < ∞,

∞

∑
n=0

‖Bn‖L∞(Ω)r
n
1 < ∞,

which entails that the series of A(t) = ∑∞
n=0 An(t − t0)

n and B(t) = ∑∞
n=0 Bn(t − t0)

n converge L∞(Ω),
by [11] (Lemma 2.3), for t ∈ (t0 − r1, t0 + r1). As r1 is arbitrary, the L∞(Ω) convergence holds for
t ∈ (t0 − r, t0 + r). This is exactly the hypothesis used in Theorem 2.

Let us see that Theorem 2 has an easier to handle form by checking the hypotheses in the examples
from [17]. We refer the reader to [17] (Section 4) for approximations of the expectation and variance
statistics of the solution stochastic process to each one of the examples.

Example 1. Airy’s random differential equation is defined as follows:⎧⎪⎪⎨
⎪⎪⎩

Ẍ(t) + AtX(t) = 0, t ∈ R,

X(0) = Y0,

Ẋ(0) = Y1,

(4)

where A, Y0, and Y1 are random variables. We suppose that Y0 and Y1 have centered second order absolute
moments. In [8], the hypothesis used in order to obtain a mean square analytic solution X(t) was E[|A|n] ≤
HRn, n ≥ n0. See [8] (expr. (18)–(19)) for the explicit expression of the solution process X(t). Notice that this
growth assumption is equivalent to ‖A‖L∞(Ω) ≤ R, by [17] (Section 3.3). In our general notation, A(t) = 0
and B(t) = At. Due to the boundedness of the random variable A, the L∞(Ω) convergence of the series that
define A(t) and B(t) holds, so Theorem 2 (and Theorem 1) is applicable: there is an analytic solution stochastic
process X(t) to (4) on R, whose coefficients are defined by (2) and (3).

Example 2. Hermite’s random differential equation is given as follows:⎧⎪⎪⎨
⎪⎪⎩

Ẍ(t)− 2tẊ(t) + AX(t) = 0, t ∈ R,

X(0) = Y0,

Ẋ(0) = Y1,

(5)

where A, Y0, and Y1 are random variables. We suppose that Y0, Y1 ∈ L2(Ω). In [9], the hypothesis utilized to
derive a mean square analytic solution X(t) was E[|A|n] ≤ HRn, n ≥ n0. See [9] (expr. (26)–(27)) for the
explicit expression of the solution process X(t). This growth hypothesis is equivalent to ‖A‖L∞(Ω) ≤ R, by [17]
(Section 3.3). Under the boundedness of the random variable A, the input stochastic processes A(t) = −2t and
B(t) = A are expressible as L∞(Ω) convergent random power series. Hence, both Theorem 2 and Theorem 1
are applicable and guarantee the existence of a mean square solution process X(t) on R, whose coefficients are
defined by (2) and (3).

Example 3. We consider the following random linear differential equation with polynomial data processes:⎧⎪⎪⎨
⎪⎪⎩

Ẍ(t) + (A0 + A1t)Ẋ(t) + (B0 + B1t)X(t) = 0, t ∈ R,

X(0) = Y0,

Ẋ(0) = Y1.

(6)

If the initial conditions Y0 and Y1 belong to L2(Ω) and the random input parameters A0, A1, B0, and B1

are bounded random variables, then the hypotheses of Theorem 2 (and Theorem 1) are fulfilled, and we derive
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that there is a mean square solution process X(t) on R, with coefficients defined by (2) and (3). In contrast to
Example 1 and Example 2, the partial sums of the series X(t) are not obtained explicitly. One computes the
partial sums computationally via the recursion (2) and (3); see [17] (Example 4.3) for further details.

Example 4. We consider (1) with the non-polynomial analytic stochastic process:⎧⎪⎪⎨
⎪⎪⎩

Ẍ(t) + A(t)Ẋ(t) + B(t)X(t) = 0, t ∈ R,

X(0) = Y0,

Ẋ(0) = Y1,

(7)

where An ∼ Beta(11, 15), for n ≥ 0, Bn = 1/n2, for n ≥ 1, and Y0, Y1 ∈ L2(Ω). Since
∑∞

n=0 ‖An‖L∞(Ω)|t|n = ∑∞
n=0 |t|n is finite for t ∈ (−1, 1), and analogously for B(t), Theorem 2 (and

consequently, Theorem 1) implies that there is a mean square solution X(t) to (7) on (−1, 1), with coefficients
expressed by (2) and (3). Unlike Example 1 and Example 2, the partial sums of the series X(t) are not obtained
explicitly, and one acts computationally by means of the recursion (2) and (3); see [17] (Example 4.4) for details.

We raise the following open problem, which would imply that the hypotheses used in Theorem 2
are necessary: “If there exists a point t1 ∈ (t0 − r, t0 + r) such that A(t1) /∈ L∞(Ω) or B(t1) /∈ L∞(Ω),
then there exist two initial conditions Y0, Y1 ∈ L2(Ω) such that (1) has no mean square solution on
(t0 − r, t0 + r)”. Although we have not been able to prove this statement (which might be false), we
think that the proof might be based on the reasoning used in [23] (Example, pp. 4–5).

This open problem, despite being of theoretical interest, does not contribute in practical
applications. In numerical experiments, one usually truncates the stochastic processes A(t) and
B(t) (that is, works with a partial sum instead of the whole Taylor series). This is not uncommon when
dealing with stochastic systems computationally, as one requires a dimensionality reduction of the
problem. If the coefficients of A(t) and/or B(t) have unbounded support, one may truncate them
so that the hypotheses of Theorems 1 and 2 are fulfilled, and the probabilistic behavior of the data
processes does not change much.

3. Non-Homogeneous Case

In this section, we generalize (1) by adding a stochastic source term:⎧⎪⎪⎨
⎪⎪⎩

Ẍ(t) + A(t)Ẋ(t) + B(t)X(t) = C(t), t ∈ R,

X(t0) = Y0,

Ẋ(t0) = Y1.

(8)

This new term C(t) is analytic at t0 in the mean square sense [21] (p. 99), with Taylor series:

C(t) =
∞

∑
n=0

Cn(t − t0)
n, t ∈ (t0 − r, t0 + r).

The coefficients C0, C1, . . . are random variables. For this new model (8), we want to find conditions
under which X(t) is an analytic mean square solution on (t0 − r, t0 + r). This work was not done
in [17], and it completes the study on the random non-autonomous second order linear differential
equation with analytic input processes.

The following theorem is a generalization of Theorem 2:

Theorem 3. Let A(t) = ∑∞
n=0 An(t − t0)

n and B(t) = ∑∞
n=0 Bn(t − t0)

n be two random series in the L∞(Ω)

setting, for t ∈ (t0 − r, t0 + r), r > 0 being finite and fixed. Let C(t) = ∑∞
n=0 Cn(t − t0)

n be a random series
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in the mean square sense on (t0 − r, t0 + r). Assume that the initial conditions Y0 and Y1 belong to L2(Ω).
Then, the stochastic process X(t) = ∑∞

n=0 Xn(t − t0)
n, t ∈ (t0 − r, t0 + r), whose coefficients are defined by:

X0 = Y0, X1 = Y1, (9)

Xn+2 =
1

(n + 2)(n + 1)

{
−

n

∑
m=0

[(m + 1)An−mXm+1 + Bn−mXm] + Cn

}
, n ≥ 0, (10)

is the unique analytic solution to the random initial value problem (8) in the mean square sense.

Proof. Suppose that X(t) = ∑∞
n=0 Xn(t− t0)

n is a solution to (8) in the L2(Ω) sense, for t ∈ (t0 − r, t0 + r).
By Proposition 2 with p = 2, the mean square derivatives of X(t) are given by:

Ẋ(t) =
∞

∑
n=1

nXn(t − t0)
n−1 =

∞

∑
n=0

(n + 1)Xn+1(t − t0)
n,

Ẍ(t) =
∞

∑
n=2

n(n − 1)Xn(t − t0)
n−2 =

∞

∑
n=0

(n + 2)(n + 1)Xn+2(t − t0)
n.

By Proposition 3,

A(t)Ẋ(t) =
∞

∑
n=0

(
n

∑
m=0

An−m(m + 1)Xm+1

)
(t − t0)

n,

B(t)X(t) =
∞

∑
n=0

(
n

∑
m=0

Bn−mXm

)
(t − t0)

n,

where these two random series converge in L1(Ω). From Ẍ(t) + A(t)Ẋ(t) + B(t)X(t) = C(t),

∞

∑
n=0

[
(n + 2)(n + 1)Xn+2 +

n

∑
m=0

(An−m(m + 1)Xm+1 + Bn−mXm)

]
(t − t0)

n =
∞

∑
n=0

Cn(t − t0)
n,

where the infinite series converge in L1(Ω). By Proposition 2 with p = 1, differentiating over and over
again in the L1(Ω) sense and evaluating at t = t0 yield:

(n + 2)(n + 1)Xn+2 +
n

∑
m=0

(An−m(m + 1)Xm+1 + Bn−mXm) = Cn.

Isolating Xn+2, we obtain the recursive expression (10).
Thus, it only remains to prove that the random power series X(t) = ∑∞

n=0 Xn(t − t0)
n, whose

coefficients are defined by (9) and (10), converges in the mean square sense.
From the hypothesis Y0, Y1 ∈ L2(Ω) and by induction on n in Expression (10), we obtain that

Xn ∈ L2(Ω) for all n ≥ 0. On the other hand, by [11] (Lemma 2.3),

∞

∑
n=0

‖An‖L∞(Ω)s
n < ∞,

∞

∑
n=0

‖Bn‖L∞(Ω)s
n < ∞,

∞

∑
n=0

‖Cn‖L2(Ω)s
n < ∞,

for 0 < s < r. As the general term of a convergent series tends to zero, we have the following bounds:

‖An‖L∞(Ω) ≤
Ds

sn , ‖Bn‖L∞(Ω) ≤
Ds

sn , ‖Cn‖L2(Ω) ≤
Ds

sn , n ≥ 0, (11)

for a certain constant Ds > 0 that depends on s. Then, from (10), if we apply L2(Ω) norms and (11),
we obtain:
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‖Xn+2‖L2(Ω) ≤
1

(n + 2)(n + 1)

{
n

∑
m=0

[
(m + 1)‖An−mXm+1‖L2(Ω) + ‖Bn−mXm‖L2(Ω)

]
+ ‖Cn‖L2(Ω)

}

≤ 1
(n + 2)(n + 1)

Ds

sn

{
n

∑
m=0

sm
(
(m + 1)‖Xm+1‖L2(Ω) + ‖Xm‖L2(Ω)

)
+ 1

}
.

(12)

Define H0 := ‖Y0‖L2(Ω), H1 := ‖Y1‖L2(Ω), and:

Hn+2 :=
1

(n + 2)(n + 1)
Ds

sn

{
n

∑
m=0

sm ((m + 1)Hm+1 + Hm) + 1

}
, n ≥ 0. (13)

From (12) and (13), by induction on n, it is trivially seen that ‖Xn‖L2(Ω) ≤ Hn, for n ≥ 0. If we
check that ∑∞

n=0 Hnρn
1 < ∞, for all 0 < ρ1 < s < r, then the random series that defines X(t) converges

in the mean square sense on (t0 − r, t0 + r), as wanted.
We rewrite (13) so that Hn+2 is expressed as a function of Hn+1 and Hn (second order recurrence

equation). By assuming n ≥ 1, we perform the following operations:

Hn+2 =
1

(n + 2)(n + 1)
Ds

sn

(
n−1

∑
m=0

sm ((m + 1)Hm+1 + Hm) + 1 + sn ((n + 1)Hn+1 + Hn)

)

=
1

(n + 2)(n + 1)
Ds

sn
(n + 1)n

Ds
sn−1

(
1

(n + 1)n
Ds

sn−1

{
n−1

∑
m=0

sm ((m + 1)Hm+1 + Hm) + 1

}
︸ ︷︷ ︸

=Hn+1

)

+
Ds

n + 2
Hn+1 +

Ds

(n + 2)(n + 1)
Hn

=

(
n

(n + 2)s
+

Ds

n + 2

)
Hn+1 +

Ds

(n + 2)(n + 1)
Hn.

(14)

This difference equation of order two has as initial conditions:

H2 =
Ds

2
(H1 + H0 + 1) , H1 = ‖Y1‖L2(Ω), H0 = ‖Y0‖L2(Ω).

Notice that H2 is obtained from (13). Expression (14) coincides with [17] (expr. (12)) (although
with different initial conditions). Then, the method of proof for ∑∞

n=0 Hnsn < ∞ is identical to the last
part of the proof of [17] (Th. 3.3). Indeed, fixing 0 < ρ1 < ρ < s, we have:

Hn+2ρn+2 =

(
nρ

(n + 2)s
+

Dsρ

n + 2

)
Hn+1ρn+1 +

Dsρ2

(n + 2)(n + 1)
Hnρn.

Let Mn = max0≤m≤n Hmρm. We have:

Hn+2ρn+2 ≤
(

nρ

(n + 2)s
+

Dsρ

n + 2
+

Dsρ2

(n + 2)(n + 1)

)
Mn+1.

Since:

lim
n→∞

nρ

(n + 2)s
+

Dsρ

n + 2
+

Dsρ2

(n + 2)(n + 1)
=

ρ

s
< 1,

it holds Mn+2 = Mn+1 for all large n, and call the common value M. Hence, Hnρn ≤ M for all
large n, therefore, Hnρn

1 ≤ M(ρ1/ρ)n. Since ∑∞
n=0(ρ1/ρ)n < ∞, by comparison, the series ∑∞

n=0 Hnρn
1

converges, and we are done.

Example 5. Let us consider Hermite’s random differential equation with a stochastic source term:
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⎧⎪⎪⎨
⎪⎪⎩

Ẍ(t)− 2tẊ(t) + AX(t) = Ct2, t ∈ R,

X(0) = Y0,

Ẋ(0) = Y1,

(15)

where A, C, Y0, and Y1 are random variables. Due to the non-homogeneity of the equation, this example cannot
be addressed with [17]. We have set the following probability distributions:

A ∼ Bernoulli(0.35), Y0 ∼ Gamma(2, 2), (Y1, C) ∼ Multinomial(3, {0.2, 0.8})

(for the Gamma distribution, we use the shape-rate notation) where A, Y0 and (Y1, C) are independent.
Notice that we are considering both discrete and absolutely continuous random variables/vectors and also
both independent and non-independent random variables/vectors. Thus, the Fröbenius method covers a wide
variety of situations in practice. Since A is bounded and Y0, Y1, C ∈ L2(Ω), Theorem 3 ensures that the random
power series X(t) = ∑∞

n=0 Xn(t − t0)
n defined recursively by (9) and (10) is a mean square solution to (15) on

R. By considering the partial sums XN(t) = ∑N
n=0 Xn(t − t0)

n, we approximate the expectation and variance
of X(t) as:

E[X(t)] = lim
N→∞

E[XN(t)], V[X(t)] = lim
N→∞

V[XN(t)],

see Proposition 1. The computations have been performed in the software Mathematica R©. Our code to build the
partial sum XN(t) was the following one:

X[n_?NonPositive] := Y0;
X[1] = Y1;
X[n_] := 1/(n*(n - 1))*(-Sum[(m + 1)*A[n - 2 - m]*X[m + 1] +
B[n - 2 - m]*X[m], {m, 0, n - 2}] + CC[n - 2]);
seriesX[t_, t0_, N_] := X[0] + Sum[X[n]*(t - t0)^n, {n, 1, N}];

This implementation in the computer is necessary, as no closed-form expression for XN(t) is available due
to the complexity of (15). For each numeric value of N, the functions t �→ E[XN(t)] and t �→ V[XN(t)] have
been calculated with the built-in function Expectation applied to seriesX[t, 0, N] (with symbolic t), by
setting the desired probability distributions to A[n], B[n], and CC[n]. In Tables 1 and 2, we show E[XN(t)]
and V[XN(t)] for N = 19, N = 20, and 0 ≤ t ≤ 1.5. Both orders of truncation produce similar results, which
agrees with the theoretical convergence. Observe that, as we move away from the initial condition t0 = 0, larger
orders of truncation are needed. This indicates that the Fröbenius method might be computationally inviable for
large t. The results have been compared with Monte Carlo simulation (with 100,000 and 200,000 realizations).

t E[X19(t)] E[X20(t)] MC 100,000 MC 200,000

0.00 1 1 0.995893 1.00266
0.25 1.14231 1.14231 1.13899 1.14544
0.50 1.28890 1.28890 1.28672 1.29236
0.75 1.49183 1.49183 1.49130 1.49547
1.00 1.85892 1.85892 1.86087 1.86246
1.25 2.62573 2.62574 2.63173 2.62863
1.50 4.34772 4.34784 4.36111 4.34892

Table 1. Approximation of E[X(t)] with N = 19, N = 20, and Monte Carlo simulations. Example 5.

t V[X19(t)] V[X20(t)] MC 100,000 MC 200,000

0.00 0.5 0.5 0.493124 0.504501
0.25 0.520298 0.520298 0.514702 0.524803
0.50 0.597008 0.597008 0.593603 0.601376
0.75 0.790556 0.790556 0.790161 0.794549
1.00 1.27425 1.27425 1.27702 1.27759
1.25 2.60694 2.60694 2.60987 2.60982
1.50 6.94095 6.94100 6.92663 6.94787

Table 2. Approximation of V[X(t)] with N = 19, N = 20, and Monte Carlo simulations. Example 5.
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Notice that the theoretical error estimates from [17] (Section 3.6) apply in this case as well, since
all estimates rely on the majorization ‖Xn‖L2(Ω) ≤ Hn and the recursive Equation (14), which also
hold in [17].

An important issue that was not treated in the recent contribution [17] is the uniqueness of the
mean square solution. To deal with uniqueness, we use a habitual extension of the classical Picard
theorem to mean square calculus [21] (Th. 5.1.2); see Theorem 4. Notice that, in our setting of analyticity
for A(t) and B(t) in the L∞(Ω) sense, one has that A(t) and B(t) are continuous in L∞(Ω), so the
uniqueness from Theorem 4 is applicable.

Theorem 4. If A(t) and B(t) are continuous stochastic processes in the L∞(Ω) sense, then the mean square
solution to (8) is unique.

Proof. We write (1) as a first order random differential equation, which is the setting under study
in [21]: (

Ẋ(t)
Ẍ(t)

)
︸ ︷︷ ︸

Ż(t)

=

(
0 1

−B(t) −A(t)

)
︸ ︷︷ ︸

M(t)

(
X(t)
Ẋ(t)

)
︸ ︷︷ ︸

Z(t)

+

(
0

C(t)

)
︸ ︷︷ ︸

q(t)

.

We work in the space L2
2(Ω) of two-dimensional random vectors whose components belong to

L2(Ω). Given Z = (Z1, Z2) ∈ L2
2(Ω), its norm is defined as:

‖Z‖L2
2(Ω) = max{‖Z1‖L2(Ω), ‖Z2‖L2(Ω)}.

On the other hand, given a random matrix B = (Bij), we define the following norm:

|||B||| = max
i

∑
j
‖Bij‖L∞(Ω).

In the case of the random matrix M(t), it holds:

|||M(t)||| = max{1, ‖A(t)‖L∞(Ω) + ‖B(t)‖L∞(Ω)}. (16)

Given Z, Z′ ∈ L2
2(Ω), we have:

‖(M(t)Z + q(t))− (M(t)Z′ + q(t))‖L2
2(Ω) = ‖M(t)(Z − Z′)‖L2

2(Ω) ≤ |||M(t)|||︸ ︷︷ ︸
k(t)

·‖Z − Z′‖L2
2(Ω).

Since A(t) and B(t) are continuous stochastic processes in the L∞(Ω) sense, the real maps:

t ∈ (t0 − r, t0 + r) �→ ‖A(t)‖L∞(Ω), t ∈ (t0 − r, t0 + r) �→ ‖B(t)‖L∞(Ω)

are continuous. By (16), the deterministic function k(t) is continuous on (t0 − r, t0 + r). This implies
that k ∈ L1([t0 − r1, t0 + r1]) for each 0 < r1 < r. By [21] (Th. 5.1.2), there is the uniqueness of the mean
square solution for (1) on [t0 − r1, t0 + r1]. Since r1 is arbitrary, there is the uniqueness of the solution
on (t0 − r, t0 + r).

4. Comparison with Other Methods

A final objective of this paper is to relate our method based on [17] (which is based on the
deterministic Fröbenius method) to other well-known techniques to tackle (8). In [17], the random
power series method was compared, both theoretically and in numerical experiments, with Monte
Carlo simulations and the dishonest method [24]. It was demonstrated that Monte Carlo simulations
imply a more expensive computational cost to calculate accurately the expectation and variance
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statistics for t near t0, due to the slow rate of convergence. However, Monte Carlo simulations usually
allow validating the numerical results obtained, as they always present convergence with a similar
rate for every stochastic system [25] (p. 53).

The article [17] does not compare the Fröbenius method with generalized polynomial chaos (gPC)
expansions [25–30], although it has been proven to be a powerful technique to deal with general
continuous and discrete stochastic systems with absolutely continuous random input coefficients.
Due to the spectral mean square convergence of the Galerkin projections, the expectation and variance
statistics of the response process can be approximated with small orders of truncation. In the particular
setting of random second order linear differential equations, only [31,32] analyzed the application
of gPC expansions to Airy’s random differential equation, by assuming independence between the
random input parameters. Recently, we have also studied the application of gPC expansions to the
Legendre random differential equation with statistically-dependent inputs in an arXiv preprint [11].
The application of gPC expansions to general random second order linear differential equations (8)
could be part of a future work. We believe that this is important because both the Fröbenius method
and gPC expansions may validate each other in applications, since they provide good approximations
of the expectation and variance statistics rapidly. Moreover, we believe that the gPC approach may
provide better approximations of the statistics in the case of large times; see for example [33], where
for the classical continuous epidemic models (SIS, SIR, etc.) uncertainty quantification is performed
via gPC up to Time 60 with chaoses bases of order just two and three, producing very similar results;
or [30], where an analogous study was performed for the corresponding discrete epidemiological
models up to Time 30. Nonetheless, an excessively large number of input parameters may pose
problems to the gPC-based method: if the chaos order is p and the degree of uncertainty is s, then
the length of the basis for the gPC expansions is (p + s)!/(p!s!) [25], which may make the method
computationally inviable. Another drawback of the gPC technique is that catastrophic numerical
errors usually appear for large chaos orders, specially when dealing with truncated distributions ([11]
(Example 4.3) and [34]).

In [17], we did not compare our methodology with the random differential transform method
proposed in [35]. Given a stochastic process U(t), its random differential transform is defined as:

Û(k) =
U(k)(t0)

k!
.

Its inverse transform is defined as:

U(t) =
∞

∑
k=0

Û(k)(t − t0)
k.

Notice that we are actually considering Taylor series in a random calculus setting. It is formally
assumed that the series ∑∞

k=0 Û(k)(t − t0)
k is mean square convergent on an interval (t0 − r, t0 + r),

r > 0. The computations with the random differential transform method were analyzed in [35]
(Th. 2.1).

Proposition 4 ([35] (Th. 2.1)). Let F(t) and G(t) be two second order stochastic processes, with mean square
derivatives of k order F(k)(t) and G(k)(t). Then, the following results hold:

(i) If U(t) = F(t)± G(t), then Û(k) = F̂(k)± Ĝ(k).
(ii) If U(t) = λF(t), where λ is a bounded random variable, then Û(k) = λF̂(k).

(iii) If U(t) = G(m)(t), then Û(k) = (k + 1) · · · (k + m)Ĝ(k + m) (here, m is a nonnegative integer).
(iv) If U(t) = F(t)G(t), then Û(k) = ∑k

n=0 F̂(n)Ĝ(k − n).

Notice that (iii) and (iv) can be seen as consequences of differentiating random power series [17]
(Th. 3.1) (Proposition 2) and multiplying random power series [17] (Th. 3.2) (Proposition 3), respectively.
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Thereby, the random transform method is actually the random Fröbenius method. The recursive
equations found for X̂(k) are as in (3). Our Theorems 1–3 give the conditions under which the inverse
transform ∑∞

k=0 X̂(k)(t − t0)
k converges.

Thus, we believe that our recent contribution [17] together with the notes presented in this paper
give an excellent approach to tackle (1) and/or (8) with analytic random input processes. Apart from
obtaining a mean square analytic solution to (1) and/or (8), the expectation and variance of it can be
calculated for uncertainty quantification.

5. Summary, Conclusions, and Future Lines of Research

In this paper, we have written some notes and comments to complete our recent contribution [17]
on the random non-autonomous second order linear differential equation. The main theorem from [17],
which deals with the homogeneous case, has been restated in a more convenient form to deal
with practical applications. We addressed the non-homogeneous case, by proving an existence
theorem of the mean square solution and performing a numerical example. On the other hand,
the uniqueness of the solution has been established by using the Picard theorem for mean square
calculus. A comparison of the extant techniques for uncertainty quantification (Monte Carlo, gPC
expansions, random differential transform method) with respect to the random Fröbenius method
was studied.

This paper is a contribution to the field of random differential equations, as it completely generalizes
to a random framework the deterministic theory on second order linear differential equations with
analytic input data. To carry out the study, mean square calculus and, in general, Lp random calculus
become powerful tools to establish the theoretical results and perform uncertainty quantification.

Some future research lines related to the contents of this paper are the following:

• Solve the open problem raised in this paper at the end of Section 2, concerning the necessity of the
hypotheses of Theorem 2.

• Apply the technique of gPC expansions and stochastic Galerkin projections to general random
second order linear differential equations.

• Extend Theorem 3 to higher order random linear differential equations. Probably, one would need
to require all input stochastic processes to be random power series in an L∞ sense, in analogy
with the hypotheses of Theorem 3.

• Apply the random Fröbenius method to the random Riccati differential equation with the analytic
input processes. In [35] (Section 3), the authors applied the random differential transform method
(which is equivalent to a formal random Fröbenius method) to a particular case of the random
Riccati differential equation with a random autonomous coefficient term. It would be interesting
to apply the random Fröbenius method in the situation in which all input coefficients are analytic
stochastic processes, by proving theoretical results and performing numerical experiments.
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Abstract: In this study, an iterative scheme of sixth order of convergence for solving systems of
nonlinear equations is presented. The scheme is composed of three steps, of which the first two
steps are that of third order Potra–Pták method and last is weighted-Newton step. Furthermore, we
generalize our work to derive a family of multi-step iterative methods with order of convergence
3r + 6, r = 0, 1, 2, . . . . The sixth order method is the special case of this multi-step scheme for r = 0.
The family gives a four-step ninth order method for r = 1. As much higher order methods are
not used in practice, so we study sixth and ninth order methods in detail. Numerical examples are
included to confirm theoretical results and to compare the methods with some existing ones. Different
numerical tests, containing academical functions and systems resulting from the discretization of
boundary problems, are introduced to show the efficiency and reliability of the proposed methods.

Keywords: systems of nonlinear equations; iterative methods; Newton’s method; order of
convergence; computational efficiency; basin of attraction

1. Introduction

Many applied problems in Science and Engineering [1–3] are reduced to solve nonlinear systems
F(x) = 0 numerically, that is, for a given nonlinear function F(x) : D ⊂ Rm −→ Rm, where
F(x) = ( f1(x), f2(x), ..., fm(x))T and x = (x1, x2, ..., xm)T , to find a vector α = (α1, α2, ..., αm)T such
that F(α) = 0. The most widely used method for this purpose is the classical Newton’s method [3,4],
which converges quadratically under the conditions that the function F is continuously differentiable
and a good initial approximation x(0) is given. It is defined by

x(k+1) = x(k) − F′(x(k))−1F(x(k)), k = 0, 1, . . . , (1)

where F′(x(k))−1 is the inverse of Fréchet derivative F′(x(k)) of the function F(x) at x(k). In order
to improve the order of convergence of Newton’s method, several methods have been proposed in
literature, see, for example [5–11] and references therein. In particular, the third order method by
Potra–Pták [11] for systems of nonlinear equations is given by

y(k) = x(k) − F′(x(k))−1F(x(k)),

x(k+1) = y(k) − F′(x(k))−1F(y(k)) k = 0, 1, . . . (2)

It is quite clear that this scheme requires the evaluation of two functions, one derivative and one matrix
inversion per iteration, that is usually avoided by solving a linear system. This algorithm is illustrious
not only for its simplicity but also for its efficient character.
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In this paper, based on Potra–Pták method (2), we develop a three-step scheme with increased
order of convergence and still maintaining the efficient character. With these considerations, we
propose a three-step iterative method with accelerated sixth order of convergence; of the three steps,
the first two are those of Potra–Pták method whereas the third is a weighted Newton-step. Then,
based on this scheme, a multi-step family with increasing order of convergence 3r + 6, r = 0, 1, 2, . . . ,
is developed. The sixth order method is the special case of this multi-step scheme for r = 0. The family
gives a four-step ninth order scheme for r = 1. As much higher order methods are not used in practice,
so we study sixth and ninth order methods in particular.

The rest of the paper is organized as follows: In Section 2, we present the new three-step scheme
for solving nonlinear systems and we analyze its order of convergence. In Section 2.1, the order of this
scheme is improved in three units, by adding another step that needs a new functional evaluation and
to solve a linear system with the same matrix of coefficients as before. This idea can be generalized
for designing an iterative method with arbitrary order of convergence. The computational efficiency
of the proposed schemes is studied in Section 3, doing a comparative analysis with the efficiency of
other known methods. Section 4 is devoted to the numerical experiments with academical multivariate
functions and nonlinear systems resulted of the discretization of boundary problems. For some cases,
the basins of attraction of the methods are also showed. The paper finishes with some conclusions and
the references used in it.

2. The Method and Analysis of Convergence

We start with the following iterative scheme:

y(k) = x(k) − F′(x(k))−1F(x(k)),

z(k) = y(k) − F′(x(k))−1F(y(k)), (3)

x(k+1) = z(k) − (aI + F′(x(k))−1[z(k), y(k) ; F](bI + cF′(x(k))−1[z(k), y(k) ; F]))F′(x(k))−1F(z(k)),

where the first two-steps are those of Potra–Pták scheme [11] for nonlinear systems and [z(k), y(k) ; F] is
the first order divided difference of F.

In order to discuss the behavior of scheme (3), we consider the following expression of divided
difference operator [·, · ; F] : D × D ⊂ Rm × Rm −→ L(Rm), see for example, [2,10],

[x + h, x ; F] =
∫ 1

0
F′(x + th) dt, ∀ x, h ∈ Rm. (4)

By expanding F′(x + th) in Taylor series at the point x and integrating, we have

[x + h, x ; F] =
∫ 1

0
F′(x + th) dt = F′(x) +

1
2

F′′(x)h +
1
6

F′′′(x)h2 + O(h3). (5)

where hi = (h, h,
i· · · ·, h), h ∈ Rm.

Let e(k) = x(k) − α. Developing F(x(k)) in a neighborhood of α and assuming that Γ = [F′(α)]−1 exists,
we have

F(x(k)) = F′(α)(e(k) + A2(e(k))2 + A3(e(k))3 + A4(e(k))4 + O((e(k))5)), (6)

where Ai =
1
i! ΓF(i)(α) ∈ Li(Rm, Rm) and (e(k))i = (e(k), e(k),

i· · · ·, e(k)), e(k) ∈ Rm.
Also,

F′(x(k)) = F′(α)(I + 2A2e(k) + 3A3(e(k))2 + 4A4(e(k))3 + O((e(k))4)), (7)

F′′(x(k)) = F′(α)(2A2 + 6A3e(k) + 12A4(e(k))2 + O((e(k))3)), (8)

F′′′(x(k)) = F′(α)(6A3 + 24A4e(k) + O((e(k))2)). (9)
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Inversion of F′(x(k)) yields,

F′(x(k))−1 =
[

I − 2A2e(k) + (4A2
2 − 3A3)(e(k))2 − (8A3

2 − 6A2 A3 − 6A3 A2 + 4A4)(e(k))3 + O((e(k))4)
]

Γ. (10)

We are in a position to analyze the behavior of scheme (3). Thus, the following result is proven.

Theorem 1. Let F : D ⊂ Rm → D be sufficiently differentiable function in an open neighborhood D of
its zero α. Let us suppose that the Jacobian matrix F′(x) is continuous and nonsingular at α. If an initial
approximation x(0) is sufficiently close to α, then the local order of convergence of method (3) is at least 6,
provided a = 13/4, b = −7/2 and c = 5/4.

Proof. Let e(k)y = y(k) − α is the local error of Newton’s method given by

e(k)y = A2(e(k))2 − 2(A2
2 − A3)(e(k))3 + O((e(k))4). (11)

Employing Equations (10) and (11) in the second step of (3), we get

e(k)z = z(k) − α = 2A2e(k)e(k)y + O((e(k))4). (12)

Using Equations (7)–(9) in (5) for x + h = z(k), x = y(k) and h = e(k)z − e(k)y , it follows that

[z(k), y(k) ; F] = F′(α)(I + A2(e
(k)
y + e(k)z ) + O((e(k))4)). (13)

With the help of Equations (10) and (13), we can write

aI+F′(x(k))−1[z(k), y(k) ; F](bI + cF′(x(k))−1[z(k), y(k) ; F])

=
[
(a + b + c)I − 2(b + 2c)A2e(k) + ((5b + 14c)A2

2 − 3(b + 2c)A3)(e(k))2 − (10(b + 4c)A3
2

−(8b + 22c)A2 A3 − (6b + 18c)A3 A2 + 4(b + 2c)A4)(e(k))3 + O((e(k))4)
]

Γ.

(14)

Expanding F(z(k)) about α, we obtain

F(z(k)) = F′(α)
(
e(k)z + A2(e

(k)
z )2 + O((e(k)z )3)

)
. (15)

Using (10), (14) and (15) in the last step of (3), we get

e(k+1) = x(k+1) − α = 2 (1 − a − b − c) A2
2(e

(k))3 + 4(a + 2b + 3c)A3
2(e

(k))4

− 2((4a + 13(b + 2c))A2
2 − 3A3(a + 2b + 3c))A2

2(e
(k))5 + 4((3a + 17b + 45c)A5

2

− (3a + 10(b + 2c))A2 A3 A2
2 + (3a + 6(b + 3c))A3 A3

2 + 2(a + 2b + 3c)A4 A2
2)(e

(k))6

+ O((e(k))7).

(16)

In order to achieve sixth order of convergence it is clear that terms 1 − a − b − c, a + 2b + 3c and
4a + 13(b + 2c) must vanish for some values of a, b, and c. This happens when a = 13

4 , b = − 7
2

and c = 5
4 .

Thus, the error equation (16) becomes

e(k+1) = x(k+1) − α = (26A3
2 + A2 A3 − 3A3 A2)A2

2(e
(k))6 + O((e(k))7). (17)

This proves the sixth order of convergence.
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Thus, the proposed scheme (3) is given by

y(k) = x(k) − F′(x(k))−1F(x(k)),

z(k) = y(k) − F′(x(k))−1F(y(k)),

x(k+1) = z(k) −
(13

4
I − F′(x(k))−1[z(k), y(k) ; F]

(7
2

I − 5
4

F′(x(k))−1[z(k), y(k) ; F]
))

(18)

× F′(x(k))−1F(z(k)).

Clearly this formula uses three functional evaluations, one evaluation of the Jacobian matrix, one of a
divided difference, and one matrix inversion per iteration. We denote this scheme by H6,1.

2.1. Multi-step Method with Order 3r + 6

In this section, we improve the H6,1 by adding a functional evaluation per each new step to get
the multi-step version called H3r+6,1 method. The method is defined as

x(k+1) = H3r+6,1(x(k)) = νr(x(k)),

νj(x(k)) = νj−1(x(k))− θ(x(k))F′(x(k))−1F(νj−1(x(k))),

θ(x(k)) =
13
4

I − F′(x(k))−1[z(k), y(k) ; F]
(7

2
I − 5

4
F′(x(k))−1[z(k), y(k) ; F]

)
, (19)

ν0 = H6,1(x(k)), j = 1, 2, . . . , r ; r � 1.

Let us note that case r = 0 is H6,1 method given by (18). This multi-step version has the order of
convergence 3r + 6, r � 1, which we shall prove through the following result.

Theorem 2. Let us Assume that F : D ⊂ Rm −→ D is a sufficiently Fréchet differentiable function in an
open convex set D containing the zero α of F(x) and F′(x) is continuous and nonsingular at α. Then, sequence
{x(k)}k�0, x(0) ∈ D obtained by using method (19) converges to α with convergence order 3r + 6.

Proof. Let e(k)νj = ν
(k)
j − α, for all j = 1, 2, . . . , r. Taylor’s expansion of F(ν(k)j−1(x(k))) about α yields

F(νj−1(x(k))) = F′(α)
(
e(k)νj−1 + A2(e

(k)
νj−1)

2 + O((e(k)νj−1)
3)
)
. (20)

Using (10) and (14) for a = 13/4, b = −7/2 and c = 5/4, we have

θ(x(k))F′(x(k))−1 =
(13

4
I − F′(x(k))−1[z(k), y(k) ; F]

(7
2

I − 5
4

F′(x(k))−1[z(k), y(k) ; F]
))

F′(x(k))−1

=
[
I − S3(e(k))3 + O((e(k))4)

]
Γ,

(21)

where S3 = 15A3
2 +

1
2 A2 A3 − 3

2 A3 A2.
With the help of (20) and (21), we can write

θ(x(k))F′(x(k))−1F(νj−1(x(k))) = (I − S3(e(k))2 + · · · )(e(k)νj−1 + A2(e
(k)
νj−1)

2 + · · · )
= e(k)νj−1 − S3(e(k))3e(k)νj−1 + · · · .

(22)

By substituting (22) in (19), we get

e(k)νj = ν
(k)
j − α = e(k)νj−1 − (e(k)νj−1 − S3(e(k))3e(k)νj−1 + · · · )

= S3(e(k))3e(k)νj−1 + · · · .
(23)
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As we know that e(k)ν0 = (26A3
2 + A2 A3 − 3A3 A2)A2

2(e
(k))6, so from (23), for j = 1, 2, . . . , we have that

e(k)ν1 = S3(e(k))3e(k)ν0

= S3(e(k))3(26A3
2 + A2 A3 − 3A3 A2)A2

2(e
(k))6 + · · · ,

e(k)ν2 = S3(e(k))2e(k)ν1

= S2
3(e

(k))6(26A3
2 + A2 A3 − 3A3 A2)A2

2(e
(k))6 + · · · .

(24)

Proceeding by induction, we have

e(k)νr = Sr
3(26A3

2 + A2 A3 − 3A3 A2)A2
2(e

(k))3r+6 + O((e(k))3r+7), r � 0. (25)

Hence, the result of the theorem is proven.

As a special case, this family when r = 1 gives a ninth order method:

y(k) = x(k) − F′(x(k))−1F(x(k)),

z(k) = x(k) − F′(x(k))−1F(y(k)),

ν
(k)
0 = H6,1(x(k), y(k)), (26)

x(k+1) = ν
(k)
0 − θ(x(k))F′(x(k))−1F(ν(k)0 ) k = 0, 1, 2, . . .

It is clear that this scheme requires four functional evaluations, one Jacobian matrix, one divided
difference, and one matrix inversion per full iteration. We denote this scheme by H9,1.

Remark 1. Multi-step version H3r+6 (r � 0), utilizes r + 3 functional evaluations of F, one evaluation of F′,
and one divided difference. Also, the scheme (19) requires only one matrix inversion per iteration.

3. Computational Efficiency

To obtain an estimation of the efficiency of the proposed methods we shall make use of efficiency
index, according to which the efficiency of an iterative method is given by E = ρ

1
C , where ρ is the order

of convergence and C is the computational cost per iteration. For a system of m nonlinear equations
and m unknowns, the computational cost per iteration is given by (see [9,10])

C(μ0, μ1, m) = P0(m)μ0 + P1(m)μ1 + P(m), (27)

where P0(m) represents the number of evaluations of scalar functions ( f1, f2, ....., fm) used in the
evaluations of F and [y, x ; F]. The divided difference [y, x ; F] of F is an m × m matrix with elements
(see [11,12])

[y, x ; F]ij =( fi(y1, ....., yj−1, yj, xj+1, ....., xm)− fi(y1, ....., yj−1, xj, xj+1, ....., xm)

+ fi(x1, ....., xj−1, yj, yj+1, ....., ym)

− fi(x1, ....., xj−1, xj, yj+1, ....., ym))/(2(yj − xj)), 1 � i, j � m.

The number of evaluations of scalar functions of F′, i.e. ∂ fi
∂xj

, 1 � i, j � m, is P1(m). P(m) represents the
number of products or quotients needed per iteration, and μ0 and μ1 are ratios between products and
evaluations required to express the value of C(μ0, μ1, m) in terms of products.

To compute F in any iterative method we calculate m scalar functions and if we compute the
divided difference [y, x ; F] then we evaluate 2m(m − 1) scalar functions, where F(x) and F(y) are
computed separately. We must add m2 quotients from any divided difference. The number of scalar
evaluations is m2 for any new derivative F′. In order to compute an inverse linear operator we solve
a linear system, where we have m(m − 1)(2m − 1)/6 products and m(m − 1)/2 quotients in the LU
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decomposition and m(m − 1) products and m quotients in the resolution of two triangular linear
systems. We suppose that a quotient is equivalent to l products. Moreover, we add m2 products for the
multiplication of a matrix with a vector or of a matrix by a scalar and m products for the multiplication
of a vector by a scalar.

Denoting the efficiency indices of Hρ,i (ρ = 6, 9 and i = 1, 2, 3, 4) by Eρ,i and computational cost
by Cρ,i, then taking into account the above considerations, we obtain

C6,1 = (2m2 + m)μ0 + m2μ1 +
m
6
(2m2 + 39m − 11 + 9l(m + 3)) and E6,1 = 61/C6,1 . (28)

C9,1 = (2m2 + 2m)μ0 + m2μ1 +
m
6
(2m2 + 69m − 11 + 9l(m + 5)) and E9,1 = 91/C9,1 . (29)

To check the performance of the new sixth order method, we compare it with some existing sixth order
which belongs to the same class. So, we choose the sixth order methods presented in [10,13]. The sixth
order methods presented in [10] are given by

y(k) = x(k) − F′(x(k))−1F(x(k)), k = 0, 1, 2, . . .

z(k) = y(k) − (2 [y(k), x(k) ; F]− F′(x(k)))−1F(y(k)), (30)

x(k+1) = H6,2(x(k), y(k), z(k)) = z(k) − (2 [y(k), x(k) ; F]− F′(x(k)))−1F(z(k))

and

y(k) = x(k) − F′(x(k))−1F(x(k)), k = 0, 1, 2, . . .

z(k) = y(k) − (2 [y(k), x(k) ; F]−1 − F′(x(k))−1)F(y(k)), (31)

x(k+1) = H6,3(x(k), y(k), z(k)) = z(k) − (2 [y(k), x(k) ; F]−1 − F′(x(k))−1)F(z(k)).

The sixth order method proposed in [13] is given by

y(k) = x(k) − F′(x(k))−1F(x(k)), k = 0, 1, 2, . . .

z(k) = y(k) − (3 I − 2 F′(x(k))−1 [y(k), x(k) ; F])F′(x(k))−1F(y(k)), (32)

x(k+1) = H6,4(x(k), y(k), z(k)) = z(k) − (3 I − 2 F′(x(k))−1 [y(k), x(k) ; F])F′(x(k))−1F(z(k)).

Per iteration these methods utilize the same number of function evaluations as that of H6,1. The
computational cost and efficiency for the methods H6,2, H6,3 and H6,4 is given as below:

C6,2 = (2m2 + m)μ0 + m2μ1 +
m
3
(2m2 + 9m − 8 + 6l(m + 1)) and E6,2 = 61/C6,2 , (33)

C6,3 = (2m2 + m)μ0 + m2μ1 +
m
3
(2m2 + 12m − 8 + 6l(m + 2)) and E6,3 = 61/C6,3 , (34)

C6,4 = (2m2 + m)μ0 + m2μ1 +
m
3
(2m2 + 39m − 5 + 9l(m + 3)) and E6,4 = 61/C6,4 . (35)

3.1. Comparison among the Efficiencies

To compare the iterative methods Hρ,i, we consider the ratio

Rp,i;q,j =
log Ep,i

log Eq,j
=

log(p)Cq,j

log(q)Cp,i
. (36)

It is clear that if Rp,i;q,j > 1, the iterative method Hp,i is more efficient than Hq,j. Moreover, if we need to
compare the methods having the same order then using (36) we can say that the iterative method Hp,i
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is more efficient than Hq,j, if Cq,j > Cp,i. This means that the comparison of the methods possessing
same order can be done by just comparing their computational costs.

H6,1 versus H6,2 case:

In this case comparison of the corresponding values of C6,1 and C6,2 in (28) and (33) gives
E6,1 > E6,2 for all m � 4 and l � 1.

H6,1 versus H6,3 case:

Comparing the corresponding values of C6,1 and C6,3 in (28) and (34) we obtain E6,1 > E6,3 for all
m � 2 and l � 1.

H6,1 versus H6,4 case:

Comparison of computational costs C6,1 and C6,4 in (28) and (34) gives E6,1 > E6,4 for all m � 2
and l � 1.

In addition to the above comparisons we compare the proposed methods H6,1 and H9,1 with each other.

H9,1 versus H6,1 case:

The particular boundary R9,1;6,1 = 1 expressed by μ0 written as a function of μ1 and m is

μ0 =
1

12
2(r − s)m2 + 3m(2μ1(r − s) + 3l(r − s) + 3r − 23s) + 3l(r − 5s)− 22s

m(s − r) + s
. (37)

where r = ln(3) and s = ln(2). This function has a vertical asymptote for m = s/(r − s) = 1.7095.
Note that for m � 44, the numerator of (37) is positive and the denominator is negative, which

shows that μ0 is always negative for m � 44. That is, the boundary is out of admissible region for
m � 44 and we have E9,1 > E6,1 ∀ (μ1, μ0) ∈ (0,+∞)× (0,+∞) and l � 1.

We summarize the above results in following theorem:

Theorem 3. For all μ0 > 0, μ1 > 0 and l � 1 we have:
(a) E6,1 > E6,2 ∀m � 4.
(b) E6,1 > E6,3 and E6,1 > E6,4 ∀m � 2.
(c) E9,1 > E6,1 ∀m � 44.
Otherwise, the efficiency comparison depends on m, μ0, μ1 and l.

4. Numerical Results

This section is devoted to check the effectiveness and efficiency of some of our proposed methods
on different types of applications. In all cases, we apply our proposed schemes H6,1 and H9,1 and
compare the results with those obtained by known methods H6,2, H6,3, and H6,4. We consider academic
examples, a special case of a nonlinear conservative problem which is transformed in a nonlinear
system by approximating the derivatives by divided differences and, also the approximation of the
solution of an elliptic partial differential equation that model a chemical problem.

All the experiments have been carried out in Matlab 2017 with variable precision arithmetics with
1000 digits of mantissa. These calculations have been made with an Intel Core processor i7-4700HQ
with a CPU of 2.40GHz and 16.0 GB al RAM memory. In the tables we include the number of
iterations (iter), the residual error of the corresponding function (‖F(x(k+1))‖) in the last iterated
and the difference between the two last iterates (‖x(k+1) − x(k)‖ ). We also present the approximated
computational order of convergence (ACOC) defined in [14] with the expression
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ACOC ≈
log
(
‖x(k+1) − x(k)‖/‖x(k) − x(k−1)‖

)
log
(‖x(k) − x(k−1)‖/‖x(k−1) − x(k−2)‖) .

When the components of this vector are stable, it is an approximation of the theoretical order of
convergence. In other case, it does not give us any information and we will denote it by −. Also the
execution time (in seconds) has been calculated (by means of “cputime” Matlab command) with the
mean value of 100 consecutive executions, for big-sized systems corresponding to Examples 1 to 3.

4.1. Example 1

We consider the case of a nonlinear conservative problem described by the differential equation

y′′(t) + Φ(y(t)) = 0, t ∈ [0, 1],

with the boundary conditions
y(0) = y(1) = 0.

We transform this boundary problem into a system of nonlinear equations by approximating the
second derivative by a divided difference of second order. We introduce points ti = 0 + ih, i =

0, 1, . . . , m + 1, where h = 1
m+1 and m is an appropriate positive integer. A scheme is then designed for

the determination of numbers yi as approximations of the solution y(t) at point ti. By using divided
differences of second order

y′′(ti) ≈ yi+1 − 2yi + yi−1

h2 ,

we transform the boundary problem into the nonlinear system

yi+1 − 2yi + yi−1 + h2Φ(yi) = 0, i = 1, 2, . . . , m. (38)

Introducing vectors

y = (y1, y2, . . . , ym)
T , Φy = (Φ(y1), Φ(y2), . . . , Φ(ym))

T

and the matrix of size m × m

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · 0
...

...
...

...
0 0 0 · · · −2

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

system (38) can be written in the form

F(y) ≡ Ay + h2Φy = 0.

In this case, we choose the law Φ(y(t)) = 1 + y(t)3 for the heat generation in the boundary problem
and we solve system (38) by using iterative methods H6,1, H6,2, H6,3, H6,4, and H9,1. In all cases, we
use as initial estimation x(0) = (0.5, 0.5, . . . , 0.5)T and the stoping criterium ‖x(k+1) − x(k)‖ < 10−100

or ‖F(x(k+1))‖ < 10−100. We can see in Table 1 the results obtained for m = 20 and m = 50.
There are no significant differences among the results obtained for different values of step h,

i.e. for different sizes of the nonlinear system resulting from discretization. Let us remark that, for
the lowest number of iterations, the best results in terms of lowest residuals have been obtained by
methods H9,1 and H6,1.
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Table 1. Numerical results for conservative boundary problem.

Method H6,1 H6,2 H6,3 H6,4 H9,1

m = 20

ACOC 5.5833 6.0210 - - 6.2081
iter 3 3 4 4 3

‖x(k+1) − x(k)‖ 2.78 × 10−35 1.37 × 10−34 2.69 × 10−98 3.59 × 10−96 8.63 × 10−59

‖F(x(k+1))‖ 6.10 × 10−125 1.17 × 10−101 4.55 × 10−229 8.10 × 10−225 1.87 × 10−210

CPU time (seconds) 0.025 0.024 0.028 0.026 0.022

m = 50

ACOC 3.1024 2.1869 - - 6.0462
iter 3 3 4 4 3

‖x(k+1) − x(k)‖ 3.81 × 10−34 2.08 × 10−34 6.93 × 10−97 9.18 × 10−95 2.24 × 10−57

‖F(x(k+1))‖ 2.76 × 10−121 8.62 × 10−101 1.03 × 10−225 1.80 × 10−221 7.16 × 10−206

CPU time (seconds) 0.042 0.042 0.043 0.042 0.044

4.2. Example 2

Let us consider the system of nonlinear equations

m

∑
j=1,j �=i

xj − e−xi = 0, i = 1, 2, . . . , m,

for an arbitrary positive integer m. We solve this system whit the same schemes as before, using as
initial guess x(0) = (1, 1, . . . , 1)T and two values for the size, m = 20 and m = 50, being the solution
α = (0.05, 0.05, . . . , 0.05)T and α = (0.02, 0.02, . . . , 0.02)T , respectively. The stopping criterium used is
again ‖x(k+1) − x(k)‖ < 10−100 or ‖F(x(k+1))‖ < 10−100, that is, the process finishes when one of them
is satisfied. The obtained results are shown in Table 2.

Table 2. Numerical results for Example 2.

Method H6,1 H6,2 H6,3 H6,4 H9,1

m = 20

ACOC 5.9898 5.9078 5.9248 5.9442 8.4359
iter 3 3 3 3 3

‖x(k+1) − x(k)‖ 3.10 × 10−45 6.62 × 10−46 1.67 × 10−46 3.55 × 10−47 8.19 × 10−78

‖F(x(k+1))‖ 3.45 × 10−155 1.94 × 10−127 1.24 × 10−128 5.59 × 10−130 6.49 × 10−271

CPU time (seconds) 0.031 0.028 0.030 0.028 0.029

m = 50

ACOC 4.3931 2.0177 5.8962 5.9425 7.0463
iter 3 3 3 3 3

‖x(k+1) − x(k)‖ 1.04 × 10−49 1.10 × 10−52 2.90 × 10−53 8.37 × 10−54 2.50 × 10−83

‖F(x(k+1))‖ 9.16 × 10−170 6.01 × 10−142 4.15 × 10−143 3.46 × 10−144 5.37 × 10−289

CPU time (seconds) 0.060 0.058 0.058 0.061 0.059

In this case, all the methods use the same number of iterations to achieve the solution, but the
lowest residual are those of proposed schemes H9,1 and H6,1 .

4.3. Example 3

Gas dynamics can be modeled by a boundary problem described by the following elliptic partial
differential equation and the boundary conditions:

uxx + uyy = u3, (x, y) ∈ [0, 1]× [0, 1],

u(x, 0) = 2x2 − x + 1, u(x, 1) = 2, (39)

u(0, y) = 2y2 − y + 1, u(1, y) = 2.

By using central divided differences and step h = 1/5 in both variables, this problem is discretized
in the nonlinear system

F(x) = Ax + h2φ(x)− b = 0,
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where

A =

⎛
⎜⎜⎜⎝

B −I 0 0
−I B −I 0
0 −I B −I
0 0 −I B

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎝

4 −1 0 0
−1 4 −1 0
0 −1 4 −1
0 0 −1 4

⎞
⎟⎟⎟⎠ ,

being I the identity matrix of size 4 × 4, φ(x) =
(

x3
1, x3

2, . . . , x3
16
)T and

b =

(
44
25

,
23
25

,
28
25

,
87
25

,
23
25

, 0, 0, 2,
28
25

, 0, 0, 2,
87
25

, 2, 2, 4
)T

.

To solve problem (39) we have used as initial guess x(0) = (1, 1, ..., 1)T . Also the stopping criteria
‖F(x(k+1))‖ < 10−100 or ‖x(k+1) − x(k)‖ < 10−100 have been used and the process finishes when one
of them is satisfied or the number of iterations reachs to 50.

The results are shown in Table 3. The first column shows the numerical aspects (approximated
computational order of convergence ACOC, last difference between consecutive iterates ‖x(k+1)− x(k)‖
and residual ‖F(x(k+1))‖) analyzed for the schemes used to solve the problem. In the rest of the
columns we show the numerical results obtained by the methods H6,1, H6,2, H6,3, H6,4, and H9,1.

Table 3. Numerical results for elliptic partial differential equation.

Method H6,1 H6,2 H6,3 H6,4 H9,1

ACOC 3.0100 2.0107 5.6132 5.8724 5.2651
iter 3 3 3 3 3

‖x(k+1) − x(k)‖ 4.51 × 10−40 1.82 × 10−48 3.74 × 10−47 3.56 × 10−46 6.95 × 10−67

‖F(x(k+1))‖ 6.27 × 10−138 4.19 × 10−129 1.67 × 10−126 1.52 × 10−124 2.45 × 10−234

CPU time (seconds) 0.035 0.036 0.035 0.035 0.035

The low number of iterations needed justify that the ACOC does not approximate properly the
theoretical order of convergence. The methods giving lowest exact error at the last iteration are again
H9,1 and H6,1.

4.4. Example 4

Let us consider the nonlinear two-dimensional system F(x1, x2) = 0 with coordinate functions

f1(x1, x2) = log(x2
1)− 2 log(cos (x2)),

f2(x1, x2) = x1 tan
(

x1√
2
+ x2

)
−
√

2. (40)

This system has two real solutions at points, approximately, (0.954811, 0.301815)T and
(−0.954811,−0.301815)T . By using x(0) = (1, 0.5)T as initial estimation, we have obtained the results
appearing in Table 4, in which the residuals ‖x(k+1) − x(k)‖ and ‖F(x(k+1))‖ appear, for the three
first iterations.

Table 4. Numerical results for Example 4.

H6,1 H6,2 H6,3 H6,4 H9,1

‖x(1) − x(0)‖ 1.90 × 10−1 1.55 × 10−1 1.45 × 10−1 1.27 × 10−1 2.01 × 10−1

‖x(2) − x(1)‖ 1.44 × 10−2 5.69 × 10−2 7.36 × 10−2 1.18 × 10−1 2.62 × 10−3

‖x(3) − x(2)‖ 1.07 × 10−9 5.15−7 1.25 × 10−5 1.74 × 10−4 1.69 × 10−18

‖F(x(1))‖ 4.12 × 10−2 1.21 × 10−1 1.41 × 10−1 1.85 × 10−1 7.56 × 10−3

‖F(x(2))‖ 2.41 × 10−9 2.65 × 10−6 3.05 × 10−5 2.99 × 10−4 6.77 × 10−18

‖F(x(3))‖ 3.21 × 10−44 1.54 × 10−23 6.19 × 10−20 6.93 × 10−16 5.39 × 10−86
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It can be observed that, although the difference between two consecutive iterations is not very
small, the precision in the estimation of the root is very high, being the best for proposed schemes H6,1

and H9,1.
Moreover, dynamical planes help us to get global information about the convergence process. In

Figure 1 we can see the dynamical planes of the proposed methods H6,1 and H9,1 and known schemes
H6,2, H6,3, and H6,4 when they are applied on system F(x1, x2) = 0. This figures are obtained by
using the routines described in [15]. To draw these images, a mesh of 400 × 400 initial points has been
used, 80 was the maximum number of iterations involved and 10−3 the tolerance used as the stopping
criterium. In this paper, we have used a white star to show the roots of the nonlinear system. A color is
assigned to each initial estimation (each point of the mesh) depending on where they converge to: Blue
and orange correspond to the basins of the roots of the system (40) (brighter as lower is the number of
iterations needed to converge) and black color is adopted when the maximum number of iterations is
reached or the process diverges.
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Figure 1. Cont.
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Figure 1. Basins of attraction of known and proposed methods on F(x1, x2) = 0. (a) H6,1; (b) H6,2;
(c) H6,3; (d) H6,4; (e) H9,1.

In Figure 1, the shape and wideness of the basins of attraction show that H6,1, H6,2, H6,3, and H6,4

can found any of both roots by using a great amount of initial estimations, some of them far from the
roots. However, H6,4 is hardly able to find the roots and their basins are very small.

4.5. Example 5

Let us consider the nonlinear two-dimensional system G(x1, x2) = 0 with coordinate functions

g1(x1, x2) = x2
1 + x2

2 − 1, (41)

g2(x1, x2) = x2
1 − x2

2 +
1
2

. (42)

This system has four real solutions at points

(
1
2

,

√
3

2

)T

,

(
1
2

,−
√

3
2

)T

,

(
−1

2
,

√
3

2

)T

, and(
−1

2
,−

√
3

2

)T

. Let us remark that they are symmetric as the system shows the intersection between

two conical curves, an ellipse and a circumference. By using x(0) = (1, 1)T as initial estimation, we
have obtained the results appearing in Table 5, in which the residuals ‖x(k+1) − x(k)‖ and ‖F(x(k+1))‖
also appear, for the three first iterations.

Table 5. Numerical results for Example 5.

H6,1 H6,2 H6,3 H6,4 H9,1

‖x(1) − x(0)‖ 5.10 × 10−1 5.15 × 10−1 5.125 × 10−1 5.10 × 10−1 5.16 × 10−1

‖x(2) − x(1)‖ 7.96 × 10−3 2.38 × 10−3 5.63 × 10−3 8.30 × 10−3 1.46 × 10−3

‖x(3) − x(2)‖ 6.03 × 10−12 3.54 × 10−16 3.60 × 10−13 8.89 × 10−12 1.14 × 10−23

‖F(x(1))‖ 1.13 × 10−2 3.37 × 10−3 8.00 × 10−3 1.18 × 10−2 2.07 × 10−3

‖F(x(2))‖ 8.53 × 10−12 5.00 × 10−16 5.10 × 10−13 1.26 × 10−11 1.61 × 10−23

‖F(x(3))‖ 2.56 × 10−56 8.87 × 10−62 8.99 × 10−57 5.02 × 10−54 6.87 × 10−161

The numerical results appearing in Table 5 show as the estimation of the roots has similar errors
in all sixth order methods, although H6,2 and H6,3 are slightly better than H6,1. Indeed, the ninth order
scheme has the best precision in the approximation of the roots of G(x1, x2), as corresponds to its high
order of convergence. In terms of computational time, the mean of one hundred consecutive iterations
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have been used in order to get good estimations of the real time and, in case of proposed methods,
they use similar times as the existing schemes getting better accuracy.

In Figure 2 the colors blue, orange, green and purple correspond to the basins of the roots of the
system (41). We can see the dynamical planes of the proposed method methods H6,1 and H9,1 and
known schemes H6,2, H6,3, and H6,4 when they are applied on system G(x1, x2) = 0.
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Figure 2. Basins of attraction of known and proposed methods on G(x1, x2) = 0. (a) H6,1; (b) H6,2;
(c) H6,3; (d) H6,4; (e) H9,1.
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Regarding the stability of proposed and known iterative processes on G(x1, x2), it can be observed
in Figure 2 that, in all cases except H6,4, the connected component of the basins of attraction that holds
the root (usually known as immediate basin of attraction) is very wide. For all iterative methods black
areas of low convergence or divergence appear, being more diffuse in case of H6,2 and wider in H6,4.
Methods H6,1, H6,3 and H9,1 present black areas that are mainly regions of slower convergence, that
would be colored if a higher number of iterations is fixed as a maximum; meanwhile, the biggest black
area of the dynamical plane associated to method H6,4 corresponds to divergence.

5. Concluding Remarks

From Potra–Pták third order scheme, an efficient sixth order method for solving nonlinear system
is proposed. Moreover, it has been extended by adding subsequent steps with the same structure that
adds a new functional evaluation per new step. Then the order of the resulting procedure increases in
three units per step. The proposed methods have been shown to be more efficient that several known
methods of the same order. Some numerical tests with academic and real-life problems have been
made to check the efficiency and applicability of the designed procedures. The numerical performance
have been opposed to the stability shown by the dynamical planes of new and known methods on
two-dimensional systems.
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Abstract: In this paper, we introduce and analyze a family of exponential polynomial discrete
dynamical systems that can be considered as functional perturbations of a linear dynamical system.
The stability analysis of equilibria of this family is performed by considering three different parametric
scenarios, from which we show the intricate and complex dynamical behavior of their orbits.
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1. Introduction

One of the most important properties of a discrete dynamical system (DDS) is its asymptotic
behavior. Most systems exhibit diverse types of transient behavior, followed by convergence to an
invariant attracting region in space. It is interesting to note that the transient behavior is defined
as the behavior of the orbits before they settle in the attracting set, but no one seems to explain or
give conditions when this phenomenon has expired [1,2]. The study of discrete systems requires
appropriate analysis methods to extract and characterize their transient behaviors. Such analysis
should allow both the classification of the transient motion and the parametric variation. Different
efforts to develop analytical methods have been made in fields such as biology [3–6], physics [7–11],
engineering [12,13], and ecology [14,15]. Even in medicine, epilepsy may be considered as a transient
periodic phenomenon [16,17]. In economics, there are conditions for practical asymptotic stability
and approximately optimal transient performance [18]. However, the methods developed are usually
applied to describe specific behaviors. In consequence, these methods are rather particular and can
hardly be applied to other different systems. Moreover, some methods are not well-developed or
may fail to notice important factors, such as the slow convergence of the orbits at points of slow
convergence that includes bifurcation points (see References [19,20]). Thus, in addition to practical
implications, the present study aims to gain insights by analyzing a particular but novel family of
discrete dynamical systems.

Our goal in this work was to introduce and study a family of discrete systems that exhibits
a large variety of transient behaviors with slow convergence not at specific points but for most
parametric values. Such a family is given by exponential polynomials that act as iteration functions
for such systems [21,22]. It is known that real exponential polynomials often appear as solutions
of differential equations and also in theoretical applications, as in transcendental number theory,
where they appear as auxiliary functions [23]. In our context, the inclusion of these functions generates
a complicated behavior of the system orbits and leads to controversial dilemmas between theory
and practice. The analysis of these exponential polynomial dynamical systems also shows how
relationships between different terms of the iteration function give rise to a complex collective behavior
of the system. Moreover, even when the analysis of a nonlinear discrete system is done correctly,
the numerical evaluation of its orbits needs to be consistent with the theory. Here, we show that
transient behavior does not correspond to asymptotic theoretical behavior and also contradicts theory
showing false equilibria and also displaying unstable features of the system. Additionally, the usual
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local linearization around equilibria makes sense only when the fixed points can be calculated and
needs to reflect the correctness and meaningful of the numerical evaluations, which, in practice,
is far from true for exponential polynomials. We explain this new paradox and give implications of
paramount importance in the study of nonlinear discrete dynamical systems. It is important to remark
that the equations from which models of exponential polynomial systems are developed generally
derive from diverse areas, such as population models, models for infectious diseases, and so forth.

This paper is organized as follows: In Section 2, we introduce exponential polynomials in order to
define the family of discrete dynamical systems of our interest, and we also provide its relationship with
known discrete systems. In Section 3, the stability analysis of equilibria for this family is performed by
dividing it into three scenarios: A perturbed linear case, a basic exponential polynomial case defined
a posteriori, and, finally, a mixed case. Next, in Section 4 we discuss the transient behavior of the basic
exponential polynomial case, since in practical situations, it presents a fictitious asymptotic behavior
with geometric characteristics similar to the unstable equilibria. The general conclusions of this work are
summarized in Section 5. All numerical calculations in this work were done using our own codes written
in the high-level programming language C with an Intel Xeon(R) CPU X5670 @ 2.93GHz × 6 processor.

2. Exponential Polynomial Family of DDS

The goal of this section is to introduce exponential polynomial discrete dynamical systems.
In order to achieve this goal, our first step is to define the corresponding iteration functions for those
systems. Thus, we have the following definition:

Definition 1. An exponential polynomial function with polynomial coefficients and exponents is a function
f : R → R of the form:

f (x) = p1(x)eq1(x) + p2(x)eq2(x) + · · ·+ pk(x)eqk(x), (1)

where k is a fixed natural number and pj and qj are polynomials j = 1, 2, . . . , k, with at least one pair pj, qj,
for some j, of nonconstant polynomials.

An exponential polynomial will be called a basic exponential polynomial when k = 1. Functions of
Equation (1) are typical solutions of linear differential equations. Moreover, they arise in different
areas of applied and theoretical mathematics, for example, in neural network models with delays,
in statistical mechanics, and in approximation theory (see References [24,25]). A review of exponential
polynomials with a list of their properties can be found in Reference [26]. Leaving aside these specific
applications, we focused specifically on the basic properties of the asymptotic behavior of parametric
families of exponential polynomial discrete dynamical systems, which we define as follows:

Definition 2. An exponential polynomial discrete dynamical system is a system of the form:

xn+1 = f (λ, xn),

where f is an exponential polynomial function and λ is a parameter family.

A treatment of these general dynamical systems is important and so far has not yet been fully
implemented. Therefore, as a first step in this direction, we direct our efforts to analyze a very particular
exponential family in order to show their diverse and intricate dynamical behavior.

Consider the family of exponential polynomial discrete dynamical systems given by:

xn+1 = f (α, β, xn) = βxn + (2 − xn)e−α(xn−1)2
, (2)
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where the parameters satisfy β ∈ [0, 1], α ≥ 0 and also xn ≥ 0. System (2) generalizes typical linear
discrete dynamical systems, known in several applications as exponential growth models with constant
growth rates. The new system incorporates a new term that for small values of α can be considered
as a small perturbation term, which biologically models a period of abundance of resources for the
population. Notice how the function f is basically linear on x, except that it has a localized bump
at x ≈ 1. Additionally, the function f can be considered as a modification of a unimodal function,
see Figure 1, where a linear growth replaces the typical downhill behavior. The importance of unimodal
systems resides in their very similar dynamical behavior (see References [27–29]).
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Figure 1. Graphs of the iteration function f (α, β, x) with α = 4 and with different values of β.

3. Analysis of the Family

Let us analyze the family of systems (Equation (2)) by classifying its equilibria along with their
stability properties. The fixed points of Equation (2) satisfy the equation:

(β − 1)x + (2 − x)e−α(x−1)2
= 0. (3)

In order to focus on the intricacies of the number of roots of Equation (3) and their stability
properties, we divided its analysis into three cases, namely, β = 1, which corresponds to a perturbed
linear case, a basic exponential polynomial case given by β = 0, and, finally, a mixed case with
β ∈ (0, 1). Let us start with the first case.

3.1. Perturbed Linear Case, β = 1

This particular case allows us to analyze a more general discrete dynamical system than
System (2), namely:

xn+1 = xn + P(xn)e−αQ(xn),

where P and Q are polynomials. The fixed points of this new system are given by the roots of P(x).
Assume that Q is nonnegative and P has different roots:

r0 < r1 < r2 < · · · < rm,

satisfying
|P(rj)|
|r−rj |

∣∣∣
r=rj

< 1 for j = 0, 1, . . . , m. With these assumptions, we have the following result:

Theorem 1. If (−1)m dmP(x)
dxm < 0, then the system xn+1 = F(xn) = xn + P(xn)e−αQ(xn) has stable fixed

points at roots of P with even subindexes x = rj, j = 0, 2, 4, ... and unstable fixed points at roots of P with odd
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subindexes x = rj, j = 1, 3, 5, ... for all positive values of α. Otherwise, the fixed points change stability, that is,
roots with even (odd) subindexes are unstable (stable).

Proof. Notice that F′(rj) = 1 + P′(rj)e
−αQ(rj) = 1 +

P(rj)

(r−rj)

∣∣∣
r=rj

e−αQ(rj).

In particular, System (2) has only one fixed point, given by x = 2, for every value of α. That is,
a branch of fixed points that is constant for every value of α. A subregion of its basin of attraction
is shown on Figure 2; notice that the system for α > 3.8 requires more iterations to converge to the
fixed point for initial conditions satisfying x0 < 2. Since ∂ f

∂x (α, 1, 2) = 1 − e−α < 1, the fixed point
is always stable for all nonnegative values of α, which means that the local asymptotic behavior
of System (2) is trivial; its orbits converge to this fixed point or diverge to infinity. What about in
practical applications, though?

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 0  1  2  3  4  5  6  7

x 0

α

 0

 20

 40

 60

 80

 100

 120

Figure 2. Basin of attraction of the fixed point x = 2 for α ∈ (0, 7) and initial conditions x0 ∈ [1.5, 2.2].
Colors denotes the number of iterations within a tolerance of 10−3.

In order to answer this question, we made use of bifurcation diagrams which display properties
of the asymptotic solution of a dynamical system as a function of α, allowing one to see at a glance
where qualitative changes in the asymptotic solution occur. Let us observe the bifurcation diagram
for System (2) with β = 1 given in Figure 3a, where the initial condition is x0 = 0.05 and the first
3000 iterations are discarded for each value of α. Here, the fixed point x = 2 seems to be stable only
for values of α in (0, 5.56). Let us observe that after the value α = 5.66, the branch of fixed points
decreases down to the value of 1.982. We also obtained the same qualitative behavior when we varied
the initial conditions, see Figure 3. For large α, the fixed point is only weakly attracting. In this respect,
Figure 2 seems irrelevant, but the novelty of this figure is that it shows unreal fixed points, namely,
those appearing after the value α = 5.66.
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Figure 3. Bifurcation diagram of System (2) with initial conditions (a) 0.05, (b) 0.19, (c) 1.7. Horizontal
axis is α and vertical axis is xn. n > 3000 for (a) and n > 8000 for (b,c).

How can we explain this controversial phenomenon? Here is where the fact that we are dealing
with an exponential polynomial as iteration function plays a significant role, meaning that the
phenomenon of slowing down takes place [30]. Notice that for α � 1, the system behaves as
xn+1 = xn + ε(xn), ε(xn) being a small perturbation depending on xn. Thus, a large number of
iterations is required before transient responses have died out. Also notice that the correct asymptotic
value depends on the initial condition. In Figure 3b, we show the previous behavior, but we increased
the number of iterations up to 8000 and then plotted the next one hundred iterations. Clearly,
the numerical asymptotic behavior is correct up to α = 6.55, whereas with 3000 iterations, it was
correct only up to α = 5.56. We carried out different simulations in order to obtain how the correct
behavior depends on α and on initial conditions, from our results, we conclude that:

Theorem 2. The system xn+1 = xn + (2 − xn)e−α(xn−1)2
has a stable fixed point at x = 2 for all positive

values of α.

This previous result is straightforward to verify, but, as we found out previously, in numerical
calculations, the fixed point seems to vary with α. Therefore, special care must be taken to make sure
that the orbits settle in the attracting fixed point. We have the following heuristic, which was found by
bounding the number of iterations for α ∈ (0, 8] by numerical means:

Remark 1. In order to have “practical” convergence to the fixed point, that is, convergence with a tolerance of
10−7 for α ∈ (0, 8] at least

[
1000e0.3(4+ε)2

]
iterations must be performed with an initial value of 2 − ε.

3.2. Basic Exponential Polynomial Case, β = 0.

Let us consider the basic exponential polynomial case, namely, the case when β = 0. For this
case, the number of fixed points of System (2) depends on α. For all values of α, x = 1 is a branch of
fixed points. Since ∂ f

∂x (α, 0, 1) = −1, and computing the Schwarzian derivative of f (see References

[31,32]), which is given in this case by − ∂3 f
∂x3 (α, 0, 1)− 1.5

[
∂2 f
∂x2 (α, 0, 1)

]2
= −6α(α + 1), it follows that

x = 1 is locally stable for α > 0. For α � 3.432987771, there is another branch of fixed points which
can not be obtained in an explicit analytical form. In Figure 5a, we plot the locus of fixed points that
satisfy Equation (3), which consists of a horizontal line at x = 1 and a c-shaped curve with one branch
that approaches asymptotically to zero, and the other branch approaches one as α goes to infinity.
Stability is shown with black circles and nonstability with white circles. Therefore, there are three fixed
points for every value of α ≥ 3.432987771. Before we continue analyzing the fixed points of the system,
we state the following two definitions from Reference [32]:
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Definition 3. Let xn+1 = f (α, xn) be a discrete dynamical system with a fixed point x f = 0 that is attracting
from the left (or from the right). The point (α0, x f ) is r-slow if there exists a real number r > 1 such that:

| f (α0, x)− x| = O(xr), as x → 0.

This definition is closely related to the concept of asymptotic expansions: A function g(x) is
asymptotic to a power series if, for fixed N and sufficiently small x:

g(x)−
N

∑
j=0

ajxj = O(xN+1).

In our case, g(x) = f (α0, x), N = 1, a0 = 0 and a1 = 1, and we are replacing the natural number
N + 1 by a real number r. However, Definition 3 can not be used as a precise classification of slow
discrete dynamical systems, since the order of a function usually only provides an upper bound on its
growth rate. To avoid this inconvenience and provide a more precise classification of slowness, the
following new definition is used:

Definition 4. Let xn+1 = f (α, xn) be a discrete dynamical system with a r-slow point (α0, x f ). The slow point
belongs to the η class of slowness if:

η = max{r ∈ R | (α0, x f (α0)) is r − slow}.

In our case, the fixed point x = 1 with arbitrary α is characterized as a slow fixed point belonging
to the η = 2 class of slowness class, meaning that its rate of convergence is similar to the oscillating
system xn+1 = −xn + x2

n. Thus, we expect that convergence for this system to the fixed point will
require at least 105 iterations for all initial points in the range [0, 0.99]. More concretely, as an example
for a tolerance of 10−3 (a number relatively small), the minimum number of required iterations is
249,733 for α ∈ (0, 1] with initial contition x0 = 0.5, see Figure 4. Let us recall that for the case β = 1, the
required number of iterations used in the examples was in the order of 104 iterations within a tolerance
of 10−6.

Figure 4. Number of iterations required to obtain convergence to the fixed point given a tolerance of
10−3 for α ∈ (0, 1) and initial condition x0 = 0.5.

In Figure 5b, we show a bifurcation diagram, where the lower branch of the curve is stable,
whereas the upper branch is unstable. Notice that in the same figure, for 1 < α < 3.43, there
is a transient behavior (a “ghost” solution) , a behavior that will be discussed in the next section.
Thus, we obtain the following theoretical result:
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Theorem 3. The system xn+1 = (2 − xn)e−α(xn−1)2
has a fixed point at x = 1 for all values of α, which is

locally stable for α > 0. For α � 3.432987771, the system has two equilibria, the larger one unstable and the
smaller one stable. This last equilibrium point approaches zero as α approaches ∞.

By numerical evaluation of the orbits, we obtain (see Figure 5b)):

Remark 2. The system xn+1 = (2 − xn)e−α(xn−1)2
has oscillatory behavior for all initial conditions close to

x = 1 and α � 3.432987771. The oscillation consists of a 2 periodic orbit.
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Figure 5. (a) Fixed points for System (2) when β = 0. (b) Bifurcation diagram with initial condition
x0 = 0.3 and 1000 initial iterations discarded.

3.3. Mixed Case β ∈ (0, 1)

So far, we have analyzed the two boundary values of β. For β ∈ (0, 1), x = 1 is not longer a fixed
point; instead, there are two branches of fixed points which are similar to those given in Figure 5a.
The first branch consists of a decreasing curve that starts at the point (0, 2

2−β ) in the plane x − α and
approaches decreasingly asymptotically to x f = 1 as α goes to infinity. The second branch is similar
to the c-shaped one for the case of β = 0, meaning that for α ∈ [0, b(β)], there is a unique fixed point,
where the values of the function b(β) are given in Figure 6a.

Along the first branch, the equilibrium remains stable for α ∈ (0, γ(β)), where the values of
function γ(β) are also shown in Figure 6a. After that, the branch of equilibrium points becomes
unstable, giving rise to a two periodic stable branch, which loses its stability at b(β) for small initial
conditions; for larger initial conditions, the two periodic branch bifurcates again to a fourth periodic
branch and so on. For α ∈ (b(β), ∞), there are three fixed points, and only the smallest one is
locally stable.

Notice that the smallest fixed point approaches zero when α goes to infinity, making the discrete
system approach a unimodal system, which means that for larger values of α, the asymptotic behavior
of the system is independent of initial conditions. It is important to remark that this scenario is the
only case where stable periodicity is present. Moreover, the equilibria can not be shown explicitly.

Let us now vary parameter β in search of chaotic behavior. When parameter β is small (less than
0.26), the system basically behaves as in the previous scenario, meaning that the system is robust under
such perturbation. However, as β increases, the system behaves totally different. Such a parameter
increase triggers in the system a period doubling sequence to chaos similar to the behavior of
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the classical logistic discrete dynamical system. This chaotic behavior is present for all values of
β ∈ (β0, 1), where β0 ≈ 0.26. The values of parameter α where chaos is present depends on parameter
β, as increasing β also increases the values of α (see Figure 6b,c).
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Figure 6. (a) Graph of b(β). (b) Bifurcation diagram for β = 0.3. (c) Bifurcation diagram for β = 0.6.

4. Transient Behavior for the Case β = 0

From now on, we will center our attention to the case when β = 0. Figure 7a is a bifurcation
diagram, which is a zoom of Figure 5b, obtained by choosing the initial condition x0 = 0.3 and plotting
two hundred iterates after the first one thousand iterations have been discarded. Now, if instead
of discarding the first one thousand iterations, we wait longer and discard the first five thousand
iterations, we obtain the bifurcation diagram given in Figure 7b. From these two diagrams, we notice
that there are some distinctive features with complicated behavior. First, the discrete system is very
slow in the sense of having a slow fixed point belonging to the η = 2 class of slowness class, as was
defined previously. Thus, we would like to analyze the characteristic exponents associated with this
system at all values of α, especially those where we have that the “links” of the chain in the bifurcation
diagrams are connected.
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Figure 7. Bifurcation diagrams for β = 0 and initial condition x0 = 0.3. Horizontal axis is α and vertical
axis is xn. (a) First 1000 iterations discarded. (b) First 5000 iterations discarded. (c) Both diagrams
(a) and (b).

Let us define characteristic exponents to our system as defined by Hao [30]. Let x f be a fixed
point of the system xn+1 = F(α, xn). Let xn = x f + εn and assume that |εn| decays as exp(−n/τ),
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that is, we used the exponential function as a function of comparison. Then, we may define the time of
convergence as:

τ = −
(

ln
∣∣∣∣∂F

∂x
(α, x f )

∣∣∣∣
)−1

, (4)

and define the critical exponent, Δ, as the smallest power of the nonzero term in the Taylor series
of ln | ∂F

∂x (α, x f )| around the point |α − α0|, where α0 satisfies |F′(α0, x f )| = 1. Hao discovered the
exponent with value Δ = 1 for discrete dynamical systems. In our particular case, ln | ∂F

∂x (α, x f )| ≡ 0.
Therefore, the value of Δ is not even defined, which shows that our system is special and thus,
it is neccesary to introduce new comparision functions in order to define a more general concept of
exponent characteristics.

We already know that the behavior presented in the bifurcation diagram is not asymptotically
correct, since the orbits must approach x = 1. Thus, our goal now is to discover why such a behavior
is present in the numerical simulations. Let us consider System (2) again with β = 0:

xn+1 = (2 − xn)e−α(xn−1)2
= (2 − xn)

∞

∑
k=0

(−1)kαk

k!
(xn − 1)2k.

If we truncated the previous series just to get only two terms from the series and substituting
xn = yn + 1, then we get the following cubic system:

yn+1 = −yn + αy2
n(yn − 1).

which has zero as an equilibrium point (same as the nontruncated case) and two extra fixed points at

y =
α±

√
α(α+8)
2α . Those are spurious equilibria for the nontruncated case. The Schwarzian derivative

evaluated at zero is given by −6α(1 + α), which is negative for all nonnegative values of α. Therefore,
zero is locally stable for all α > 0. However, the two other equilibrium points are unstable. The fact
that zero is also a slow equilibrium point belonging to the η = 2 class of slowness class explains
why the system does not show signs of convergence to the stable equilibrium point. To give
a better understanding of this slow behavior, one may compare this system to xn+1 = xn cos(

√
xn).

Both systems have the same value of slowness class. Using asymptotic analysis and telescopic
cancellation, we can show that xn = 1

2n +O(n2 log(n)), which explains the slow behavior. Notice also
that the shape of the spurious equilibria corresponds to the shape of the behavior illustrated on
Figure 8a. Bifurcation diagrams for the cubic system and for a quartic system are given in Figure 8b,c.

The distinctive points that simulate links (points of breakdown in the pace of convergence)
correspond to eventually periodic points (see Reference [19]), and they generate a converging sequence
{αm}∞

m=1 to the value 3.43298771..., which is the value where the second branch of fixed points
arises. Each value αm is characterized for a fixed initial condition x0 by αm = f−1(αm−1, xo) with
α1 = 2 − x0/(ln |2 − x0|). This sequence is well defined because f is a decreasing function on α and
convergent because it is increasing and bounded. The limit is independent of initial conditions for
appropriate connected sets that include the fixed point, and therefore, it inherits universal properties.
Therefore, the system also shows universal properties that are characteristic of unimodal maps,
and they also appear in applications with chaotic oscillations in mechanical systems.
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Figure 8. Bifurcation diagrams for β = 0 and initial condition x0 = 0.3. Horizontal axis is α and vertical
axis is xn.

5. Conclusions

We have discovered and established that polynomial discrete systems are complicated to analyze
and most of the time, even the equilibria are impossible to express explicitly. These systems may
exhibit transient behavior that does not correspond to the asymptotic behavior, a characteristic that
may lead to wrong results if one is using only numerical calculations due to the impossibility of carry
out an analytical process.
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Abstract: In nuclear engineering, the λ-modes associated with the neutron diffusion equation are
applied to study the criticality of reactors and to develop modal methods for the transient analysis.
The differential eigenvalue problem that needs to be solved is discretized using a finite element
method, obtaining a generalized algebraic eigenvalue problem whose associated matrices are large
and sparse. Then, efficient methods are needed to solve this problem. In this work, we used a
block generalized Newton method implemented with a matrix-free technique that does not store all
matrices explicitly. This technique reduces mainly the computational memory and, in some cases,
when the assembly of the matrices is an expensive task, the computational time. The main problem
is that the block Newton method requires solving linear systems, which need to be preconditioned.
The construction of preconditioners such as ILU or ICC based on a fully-assembled matrix is not
efficient in terms of the memory with the matrix-free implementation. As an alternative, several block
preconditioners are studied that only save a few block matrices in comparison with the full problem.
To test the performance of these methodologies, different reactor problems are studied.

Keywords: block preconditioner; generalized eigenvalue problem; neutron diffusion equation;
modified block Newton method

1. Introduction

The neutron transport equation is a balance equation that describes the behavior of the neutrons
inside the reactor core. This equation for three-dimensional problems is an equation defined in a
phase space of dimension seven, and this makes the problem very difficult to solve. Thus, some
approximations are considered such as the multigroup neutron diffusion equation by relying on the
assumption that the neutron current is proportional to the gradient of the neutron flux by means of a
diffusion coefficient.

Given a configuration of a nuclear reactor core, its criticality can be forced by dividing the
production operator in the neutron diffusion equation by a positive number, λ, obtaining a neutron
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balance equation: the λ-modes problem. For the two energy groups approximation and without
considering up-scattering, this equation can be written as [1]:(

−�∇(D1�∇) + Σa1 + Σ12 0
−Σ12 −�∇(D2�∇) + Σa2

)(
φ1

φ2

)
=

1
λ

(
νΣ f 1 νΣ f 2

0 0

)(
φ1

φ2

)
, (1)

where φ1 and φ2 denote the fast and thermal flux, respectively. The macroscopic cross-sections Dg, Σag,
and νΣ f g, with g = 1, 2, and Σ1,2, are values that depend on the position.

The largest eigenvalue in magnitude, called the k-effective (or multiplication factor), indicates a
measure of the criticality of the reactor, and its corresponding eigenfunction describes the steady-state
neutron distribution in the reactor core. Next, dominant eigenvalues and their corresponding
eigenfunctions are useful to develop modal methods for the transient analysis.

To make a spatial discretization of Problem (1), a high order continuous Galerkin finite element
method is used, leading to a generalized algebraic eigenvalue problem of the form:(

L11 0
L21 L22

)(
φ̃1

φ̃2

)
=

1
λ

(
M11 M12

0 0

)(
φ̃1

φ̃2

)
, (2)

where the matrix elements are given by:

Lij =
Nt

∑
e=1

(
D1

∫
Ωe

�∇N1i · �∇N1j dV − D1

∫
Γe

N1i�∇N1j d�S + D2

∫
Ωe

�∇N2i · �∇N2j dV

− D2

∫
Γe

N2i�∇N2j dV + (Σa1 + Σ12)
∫

Ωe
N1i N1j dV + Σa2

∫
Ωe

N2i N2j dV

− Σ12

∫
Ωe

N2i N1j dV

)
,

Mij =
Nt

∑
e=1

(
νΣ f 1

∫
Ωe

N1i N1j dV + νΣ f 2

∫
Ωe

N1i N2j dV

)
,

where Ni is the prescribed shape function for the ith node. The vector φ̃ =
(
φ̃1, φ̃2

)T is the algebraic
vector of the finite weights corresponding to the neutron flux in terms of the shape functions. The shape
functions used in this work are Lagrange polynomials. The subdomains Ωe (e = 1, . . . , Nt) denote
the cells in which the reactor domain is divided and where the cross-sections are assumed to be
constant. Similarly, Γe is the corresponding subdomain surface, which is part of the reactor boundary.
More details on the finite element discretization can be found in [2]. For the implementation of the
finite element method, the open source finite elements library Deal.II [3] has been used.

In this work, a matrix-free strategy for the blocks of the matrix M and for the non-diagonal blocks
of L is developed. In this way, matrix-vector products are computed on the fly in a cell-based interface.
For instance, we can consider that a finite element Galerkin approximation that leads to the matrix
M1,1 takes a vector u as input and computes the integrals of the operator multiplied by trial functions,
and the output vector is v. The operation can be expressed as a sum of Nt cell-based operations,

v = M1,1u =
Nt

∑
e=1

PT
e Me

1,1Peu, (3)

where Pe denotes the matrix that defines the location of cell-related degrees of freedom in the global
vector and Me

1,1 denotes the submatrix of M1,1 on finite element e. This sum is optimized through
sum-factorization. Details about the implementation are explained in [4]. This strategy greatly reduces
the memory used by the matrix elements.
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Calculation of the dominant lambda mode has traditionally utilized the classical power iteration
method, which although robust, converges slowly for dominance ratios near one, as occurs in some
practical problems. Thus, acceleration techniques are needed to improve the convergence of the power
iteration method. Some approaches in diffusion theory are, for instance, Chebyshev iteration [5] and
Wielandt shift [6]. Alternative approaches to the power iteration method have been studied in an
attempt to improve upon the performance of accelerated power iteration methods [7,8]. The subspace
iteration method [9], the Implicit Restarted Arnoldi method (IRAM) [10], the Jacobi–Davidson [11],
and the Krylov–Schur method [2] implemented in the SLEPclibrary [12] have been used to compute
the largest or several dominant eigenvalues for the neutron diffusion equation and their corresponding
eigenfunctions. More recently, other Krylov methods have been used to compute these modes for other
approximations of the neutron transport equation [7,13]. Usually, applying these kinds of methods
requires either transforming the generalized problem (2) into an ordinary eigenvalue problem or
applying a shift and invert technique. In both cases, in the solution process, it is necessary to solve
numerous linear systems. These systems are not well-conditioned, and they need to be preconditioned.
Thus, the time and computational memory needed to compute several eigenvalues become very high.

One alternative is to use a method that does not require solving any linear system, such as the
generalized Davidson, used for neutron transport calculations in [14]. Other methods are the block
Newton methods that have been shown to be very efficient in the computation of several eigenvalues
in neutron diffusion theory. These methods either do not need to solve as many linear systems as the
Krylov methods or avoid solving any linear system with some hybridization. One of these Newton
methods is the modified block Newton method, which has been considered for the ordinary eigenvalue
problem associated with Problem (2) [15] or directly for the generalized eigenproblem (2) [16].
One advantage of these block methods is that several eigenvectors can be approximated simultaneously,
and as a consequence, the convergence behavior improves. The convergence of the eigensolvers
usually depends on the eigenvalue separation, and if there are clustered or multiple eigenvalues,
the methods may have problems finding all the eigenvalues. In practical situations of reactor analysis,
the dominance ratio corresponding to the dominant eigenvalues is often near unity, resulting in a slow
convergence. In the block methods, this convergence only depends on the separation of the group
of target eigenvalues from the rest of the spectrum. Another advantage is that these methods do not
require solving as many linear systems as the previous methods. However, these linear systems still
need to be preconditioned. Another of this kind of Newton method is the Jacobian-free Newton–Krylov
methods that have been studied with traditional methods such as the power iteration used as the
preconditioner [17,18] or with a more sophisticated Schwarz preconditioner [19]. In this work, we use
the Modified Generalized Block Newton Method (MGBNM) presented in [16], and we propose several
ways to precondition the linear systems that need to be solved in this method in an efficient way.

The structure of the rest of the paper is as follows. In Section 2, the modified generalized block
Newton method is described. In Section 3, the different preconditioners for the MGBNM are presented.
The performance of the preconditioners is presented in Section 4 for two different benchmark problems.
Finally, Section 5 synthesizes the main conclusions of this work.

2. The Modified Generalized Block Newton Method

This method was presented by Lösche in 1998 [20] for ordinary eigenvalue problems, and an
extension to generalized eigenvalue problems was studied in [16]. Given the partial generalized
eigenvalue problem (2) written as:

MX = LXΛ, (4)

where X ∈ Rn×q is a matrix with q eigenvectors and Λ ∈ Rq×q is a diagonal matrix with the q
eigenvalues associated, we suppose that the eigenvectors can be factorized as X = ZS, where Z is
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an orthogonal matrix. Moreover, the biorthogonality condition WTZ = I is introduced, where W is a
fixed matrix. Thus, if we denote K = SΛS−1, the problem (4) can be rewritten as:

MX = LXΛ ⇔ MZ = LZSΛS−1 ⇔ MZ = LZK.

We construct this projection to ensure that the method converges to independent eigenvectors.
Then, the solution of Problem (4) is obtained by solving the non-linear problem:

F(Z, Λ) :=

(
MZ − LZK
WTZ − Iq

)
=

(
0
0

)
. (5)

By applying Newton’s method, a new iterated solution arises as:

Z(k+1) = Z(k) − ΔZ(k), K(k+1) = K(k) − ΔK(k), (6)

where ΔZ(k) and ΔK(k) are solutions of the system obtained when the equations (6) are substituted
into the equations (5), and these are truncated at the first order terms.

The matrix K(k) is not necessarily a diagonal matrix, and as a result, the system is coupled.
To avoid this problem, the modified generalized block Newton method (MGBNM) needs to apply
the previous two steps. Firstly, the modified Gram–Schmidt process is used to orthonormalize the
matrix Z(k). Then, the Rayleigh–Ritz projection method for the generalized eigenvalue problem [21]
is applied. Thus, ΔZ(k) = (Δz(k)1 , . . . , Δz(k)q ), where Δz(k)i ∈ Rn and ΔK(k) = (Δk(k)1 , . . . , Δk(k)q ) where

Δk(k)i ∈ R are obtained from the solutions of the linear systems:

(
M − λ

(k)
i L LZ(k)

Z(k)T 0

)(
Δz(k)i

−Δk(k)i

)
=

(
Mz(k)i − Lz(k)i λ

(k)
i

0

)
, i = 1, . . . , q.

The solution of these systems is computed by using the Generalized Minimal Residual method
(GMRES) computing the matrix vector products with block matrix multiplications. However, these
systems need to be preconditioned (in each iteration and for each eigenvalue) to reduce the condition
number of the matrix.

3. Preconditioning

The first choice for a preconditioner is assembling the matrix:

A =

(
M − λ

(k)
i L LZ(k)

Z(k)T 0

)
,

and constructing the full preconditioner associated with the matrix. We use the ILUT(0) preconditioner
since A is a non-symmetric matrix. There are no significant differences if the preconditioner obtained
for the matrix associated with the first eigenvalue is used for all eigenvalues in the same iteration
because in the matrix, A only changes the value of λ

(k)
i , and usually, the eigenvalues in reactor problems

are clustered. This preconditioner is denoted by P.
To devise an alternative preconditioner without the necessity of assembling the matrix A, we

write the explicit inverse of A, by using its block structure,

A−1 =

⎛
⎜⎝J−1(I − C1(CT

2 C1)
−1CT

2 ) J−1C1(CT
2 C1)

(CT
2 C1)

−1CT
2 −(CT

2 C1)
−1

⎞
⎟⎠ ,
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where:
J = M − λiL, C1 = LZ, CT

2 = ZT J−1.

We desire a preconditioner for A by suitably approximating A−1. Let us call PJ a preconditioner
for J. For instance, PJ = (LU)−1, where L, U are the incomplete L and U factors of J. Thus, we can
define, after setting CT

2 = ZTPJ , the preconditioner of A as:

P̂J =

⎛
⎜⎝PJ(I − C1(CT

2 C1)
−1CT

2 ) PJC1(CT
2 C1)

(CT
2 C1)

−1CT
2 −(CT

2 C1)
−1

⎞
⎟⎠ .

The previous preconditioner does not need to assemble the entire matrix A, but it needs to
assemble the matrix J to build its ILUpreconditioner. Therefore, the next alternative that we propose is
using a preconditioner of −L instead of J = M − λ1L. This preconditioner works well because in the
discretization process, the L matrix comes from the discretization of the differential matrix that has the
gradient operators and the diffusion terms. In addition, in nuclear calculations, λ1 is near 1.0. Thus,
we can build a preconditioner of −L instead of the matrix J. We denote by P̂L the preconditioner P̂J
where the preconditioner of −L is used to precondition the block J.

Finally, the last alternative is avoiding assembling the matrix L taking advantage of its block
structure. For that purpose, we carry out a similar process as the one used for matrix A. We write the
explicit form of the inverse of L as:

L−1 =

⎛
⎜⎝ L−1

11 0

−L−1
22 L21L−1

11 L−1
22

⎞
⎟⎠ , (7)

and substitute the inverses of the blocks by preconditioners. Thus, the preconditioner of L has the
following structure:

QL =

⎛
⎜⎝ P11 0

−P22L21P11 P22

⎞
⎟⎠ ,

where P11, P22 denote a preconditioner of L11 and L22, respectively. The block matrices L11, L22

are symmetric and positive definite. Then, we can use as preconditioner the Incomplete Cholesky
decomposition (IC(0)). However, the main advantage of this preconditioner is that it permits using a
matrix-free implementation that does not require allocating all matrices. We only need to assemble the
blocks L11 and L22 to construct the associated IC(0) preconditioners. The application of P̂J with −QL
to precondition J is called P̂Q.

4. Numerical Results

In this section, the performance of the proposed preconditioners has been tested on two different
problems: a version of the 3D NEACRPreactor [22] and a configuration of the Ringhals reactor [23].
The neutron diffusion equation in both problems has been discretized using the finite element method
presented in Section 1 using Lagrange polynomials of degree three because it is shown in previous
works that this degree is necessary to obtain accurate results in similar reactor problems [2]. The number
of eigenvalues computed was four for each reactor.

The incomplete lower-upper preconditioner with Level 0 of fill (ILU) has been provided by the
PETScpackage [24].

As the modified generalized block Newton method needs an initial approximation of a set of
eigenvectors, a multilevel initialization with two meshes was used to obtain this approximation (for
more details, see [25]).
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The stopping criteria for all solvers has been set equal to 10−6 in the global residual error,

εres = max
i=1,...,q

‖Mxi − λiLxi‖2 ,

where λi is the ith eigenvalue and xi its associated eigenvector such that ‖xi‖ = 1.
The modified block Newton method has been implemented using a dynamic tolerance in

the residual error of the solution in the linear systems. The tolerance values have been set to
{10−2, 10−3, 10−5, 10−8, 10−8, . . . }.

The methods have been implemented in C++ based on the data structures provided by the library
Deal.ii [3] and PETSc [24]. The computer used for the computations was an Intel R© CoreTMi7-4790
@3.60 GHz with 32 Gb of RAM running on Ubuntu GNU/Linux 16.04 LTS.

4.1. NEACRP Reactor

The NEACRP benchmark in a near-critical configuration [22] is chosen to compare the proposed
methodology. The reactor core has a radial dimension of 21.606 cm × 21.606 cm per assembly. Axially,
the reactor, with a total height of 427.3 cm, is divided into 18 layers with height (from bottom to
top): 30.0 cm, 7.7 cm, 11.0 cm, 15.0 cm, 30.0 cm (10 layers), 12.8 cm (two layers), 8.0 cm, and 30.0 cm.
Figure 1 shows the reactor geometry and the distribution of the different materials. The cross-sections
of materials are displayed in Table 1. The total number of cells of the reactor domain is 3978. Zero flux
boundary conditions were set. The spatial discretization of the neutron diffusion equation, by using
polynomials of degree three, gave a number of 230,120 degrees of freedom. The mesh built to obtain an
initial guess had 1308 cells, and the computational time needed to obtain this approximation was 24 s.
The four dominant eigenvalues computed are collected in Table 2. This table shows that the spectrum
associated with the problem is clustered with two degenerated eigenvalues. A representation of the
fast flux distribution for each mode is displayed in Figure 2.
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Figure 1. Geometry and distribution of the materials of the NEACRPreactor.
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Table 1. Macroscopic cross-section of the NEACRP reactor.

Mat. D1 (cm) D2 (cm) Σa1 (cm−1) Σa2 (cm-1) Σ12 (cm−1) νΣ f 1 (cm−1) νΣ f 2 (cm−1)

1 5.9264 8.2289 × 10−1 2.5979 × 10−4 1.7085 × 10−1 2.7988 × 10−2 0.0000 0.0000
2 1.1276 1.7053 × 10−1 1.1878 × 10−3 1.9770 × 10−1 2.3161 × 10−2 0.0000 0.0000
3 1.1276 1.7053 × 10−1 1.1878 × 10−3 1.9770 × 10−1 2.0081 × 10−2 0.0000 0.0000
4 1.4624 3.9052 × 10−1 8.4767 × 10−3 6.2569 × 10−2 1.9686 × 10−2 5.0150 × 10−3 8.7712 × 10−2

5 1.4637 3.9485 × 10−1 8.8225 × 10−3 6.9978 × 10−2 1.9436 × 10−2 5.6085 × 10−3 1.0424 × 10−1

6 1.4650 3.9851 × 10−1 9.1484 × 10−3 7.6850 × 10−2 1.9196 × 10−2 6.1819 × 10−3 1.1954 × 10−1

7 1.4641 4.0579 × 10−1 9.0869 × 10−3 7.7687 × 10−2 1.8526 × 10−2 5.5830 × 10−3 1.0289 × 10−1

8 1.4642 4.0946 × 10−1 9.1738 × 10−3 8.0302 × 10−2 1.8223 × 10−2 5.5741 × 10−3 1.0232 × 10−1

9 1.4642 4.1314 × 10−1 9.2596 × 10−3 8.2924 × 10−2 1.7920 × 10−2 5.5650 × 10−3 1.0169 × 10−1

10 1.4653 4.0919 × 10−1 9.4097 × 10−3 8.4462 × 10−2 1.8288 × 10−2 6.1564 × 10−3 1.1807 × 10−1

11 1.4655 4.1277 × 10−1 9.4956 × 10−3 8.7030 × 10−2 1.7986 × 10−2 6.1474 × 10−3 1.1744 × 10−1

12 5.5576 8.7013 × 10−1 2.7375 × 10−3 1.9644 × 10−1 2.4796 × 10−2 0.0000 0.0000
13 5.6027 8.6371 × 10−1 2.4169 × 10−3 1.9313 × 10−1 2.5209 × 10−2 0.0000 0.0000
14 1.4389 4.0085 × 10−1 1.0954 × 10−2 8.8157 × 10−2 1.6493 × 10−2 4.9122 × 10−3 8.4889 × 10−2

15 1.4413 4.0665 × 10−1 1.1578 × 10−2 1.0250 × 10−1 1.6054 × 10−2 6.0593 × 10−3 1.1626 × 10−1

Table 2. Eigenvalues for the NEACRP reactor.

Eigenvalue Value

1 1.002
2 0.98862
3 0.985406
4 0.985406

(a) 1st mode (b) 2nd mode

(c) 3rd mode (d) 4th mode

Figure 2. Fast fluxes’ distribution of the NEACRP reactor corresponding to the first four modes.
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First, we show the convergence history of the MGBNM to obtain the solution of the eigenvalue
problem. Figure 3 shows the number of iterations against the residual error for the NEACRP reactor.
It is observed that the MGBNM only needed four iterations to reach a residual error equal to 10−6.
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Figure 3. Convergence history of the Modified Generalized Block Newton Method (MGBNM) for the
NEACRP reactor.

Table 3 collects the average number of iterations obtained by directly applying the ILU
preconditioner of A and the total time that the GMRES method needs to reach the residual error
in the linear systems given in Tol(‖b − Ax‖). The time spent to assemble the matrices and to build
the preconditioner (setup time (s)) is also displayed. These data are presented for each iteration and
in a total sum. This table shows that the number of iterations is not very high, but the time spent to
assemble the matrix and to construct the preconditioner increases the total CPU time considerably. It is
necessary to build in each iteration a new preconditioner for A because the columns related to the
block Z change considerably in each updating.

Table 3. Data for the preconditioner P for the NEACRP reactor. GMRES, Generalized Minimal Residual.

No. It. Tol Mean Its. Setup Time (s) Total Time (s)
MGBNM (‖b − Ax‖) GMRES

1 1 × 10−2 4.5 12.0 18.0
2 1 × 10−3 9.75 12.0 20.4
3 1 × 10−5 20.75 12.0 25.2
4 1 × 10−8 37.5 12.0 33.2

Total 72.5 48.0 96.8

Table 4 displays these data related to the block preconditioner proposed P̂J that uses the ILU
preconditioner for approximating the inverse of M − λ1L. It is observed that we only needed to
assemble the matrix M − λ1L once in the first iteration to build the preconditioner. This is because
we only needed a preconditioner of M − λ1L, and the value of λ1 was very similar for all iterations.
The mean of the number of iterations of the GMRES preconditioned with P̂J was larger than in the
previous case, but the total CPU time of using this block preconditioner was reduced by 26 s with
respect to the full preconditioner.
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Table 4. Data for the preconditioner P̂J with ILUfor the NEACRP reactor.

No. It. Tol Mean Its Setup Time (s) Total Time (s)
MGBNM (‖b − Ax‖) GMRES

1 1 × 10−2 8.25 6.6 12.9
2 1 × 10−3 13.25 - 9.5
3 1 × 10−5 23.25 - 16.6
4 1 × 10−8 41.25 - 30.0

Total 86.0 6.6 70.0

Table 5 shows the data related to the block preconditioner P̂J , but in this case, we have used
the Geometric Multigrid (GMG) preconditioner to approximate the inverse of M − λ1L. The results
show, in comparison with the results of Table 4, that in spite of the total number of iterations and
the setup time being much lower for the GMG, the total computational time is much higher. This is
due to the application of the GMG preconditioner being more expensive than the application of the
ILU preconditioner.

Table 5. Data for the preconditioner P̂J with the Geometric Multigrid (GMG) for the NEACRP reactor.

No. It. Tol Mean Its Setup Time (s) Total Time (s)
MGBNM (‖b − Ax‖) GMRES

1 1 × 10−2 6.00 2.5 19.8
2 1 × 10−3 9.75 - 30.8
3 1 × 10−5 12.75 - 39.4
4 1 × 10−8 20.50 - 61.3

Total 49.00 2.5 151.3

The next results were obtained by using the block preconditioner, P̂, but in these cases,
approximating the (M − λ1L)−1 by the ILU preconditioner of −L (P̂L) and by a block preconditioner of
−L (QL̂). The most relevant data to compare the preconditioners considered in this work are exposed
in Table 6. They were the total iterations of the GMRES, the total setup time, the total time to compute
the solution, and the maximum computational memory spent by the matrices. We observe that the
number of iterations increased when worse approximations of the inverse of A were considered, but
the setup time that each preconditioner needs became smaller. Moreover, the maximum CPU memory
was also reduced significantly. In the total CPU times, we observed that the block preconditioner (P̂),
in all of its versions, improved the times obtained by applying the ILU preconditioner of A directly.
Between the possibilities for obtaining a preconditioner of M − λ1L, there were no big differences in
the computational times, but there was an important savings of the computational memory. The best
results were obtained by P̂L̂ if the computational memory consumption was taken into account.

Table 6. Data obtained by using different preconditioners for the NEACRP reactor.

Prec. Its GMRES Time Setup Total Time Max. CPU mem.

PILU 72.5 48.0 s 96.8 s 2062 Mb
P̂J

ILU 86.0 6.6 s 70.0 s 1418 Mb
P̂L

ILU 98.0 4.4 s 73.2 s 787 Mb
P̂Q

ILU 100.25 1.8 s 74.4 s 787 Mb

Table 7 shows the timings and the memory spent in the matrix allocation by using the matrix-free
technique or without using this strategy. The results show that not only the matrix memory consumption
and the time to assemble were reduced, but also the time spent to compute the matrix-vector products.
That implies that the matrix-free strategy reduced the total CPU time by about 30%.
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Table 7. Data obtained using different matrix implementations for the NEACRP reactor.

Matrix Time Matvec Time Time Total
Memory Products Assembly Newton Time

Sparse Matrix 787 Mb 27 s 7 s 51 s 74 s
Matrix Free 319 Mb 10 s 4 s 33 s 52 s

Finally, we compared the MGBNM with this methodology against other eigenvalue solvers
commonly used in the neutron diffusion computations (Table 8). We show the results by using
a different number of computed eigenvalues (No. eigs). In particular, we have chosen for this
comparison the generalized Davidson preconditioned with the block Gauss–Seidel preconditioner and
the Krylov–Schur method by previously reducing the generalized eigenvalue problem to an ordinary
eigenvalue problem as in [2]. To use both methods, the library SLEPc has been used [12]. From the
computational times, we can deduce that the MGBNM was twice as fast as the rest of solvers for the
computation of one and two eigenvalues, and it was very competitive at computing four eigenvalues.

Table 8. Computational times for the MGBNM with P̂Q, the generalized Davidson method, and the
Krylov–Schur method for the NEACRP reactor. eigs, eigenvalues.

No. Eigs MGBNM Generalized Davidson Krylov–Schur

1 14 s 28 s 27 s
2 23 s 39 s 37 s
4 53 s 48 s 52 s

4.2. Ringhals Reactor

For a practical application of the preconditioners in a real reactor, we have chosen the configuration
of the Ringhals rector. Particularly, we have chosen the C9 point of the BWRreactor Ringhals I
stability benchmark, which corresponds to a point of operation that degenerated in an out-of-phase
oscillation [23]. It is composed of 27 planes with 728 cells in each plane. A representation with more
detail of its geometry can be observed in Figure 4. The spatial discretization using finite elements of
degree three gave 1,106,180 degrees of freedom. The coarse mesh considered to obtain an initial guess
for the MGBNM had 6709 cells and the problem associated with this mesh a size of 386,768 degrees
of freedom. The computed dominant eigenvalues were 1.00191, 0.995034, 0.992827, and 0.991401.
The corresponding fast fluxes are represented in Figure 5.

Figure 4. Geometry of the Ringhals reactor.
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(a) 1st mode (b) 2nd mode

(c) 3rd mode (d) 4th mode

Figure 5. Fast fluxes’ distribution of the Ringhals reactor corresponding to the first four modes.

The convergence history of the MGBNM associated with the Ringhals reactor is represented in
Figure 6. For this reactor, the number of iterations needed to reach the tolerance (10−6) was also equal
to four.
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Figure 6. Convergence history of the MGBNM for the Ringhals reactor.

Table 9 collects the average number of iterations for the GMRES method for each iteration of
MGBNM, the time to assemble the matrices and build the preconditioners, the total time of the
MGBNM to reach the tolerance, and the maximum computational memory requested to assemble
the matrices. From this table, similar conclusions as the ones obtained for the previous reactor are
deduced. The number of iterations was not reduced, but the total CPU time and the maximum memory
decreased considerably. For the Ringhals reactor, the most efficient option, in terms of computational
memory, was also to apply the block preconditioner P̂Q. However, as the size of this reactor is much
larger, the differences between the preconditioners for computational memory were much higher.

Table 9. Data obtained using different preconditioners for the Ringhals reactor.

Prec. Its GMRES Time Setup Total Time Max. CPU mem.

P 71.5 155 s 408 s 12.5 Gb
P̂J 81.0 39 s 331 s 9.3 Gb
P̂L 85.2 36 s 348 s 6.2 Gb
P̂Q 88.2 8 s 308 s 3.7 Gb

Finally, in Table 10, we compare the MGBNM with the generalized Davidson method and the
Krylov–Schur method from the SLEPc library as in the previous reactor. The results show that the
MGBNM was more efficient in terms of the computational time to compute one or a set of the lambda
modes than the generalized Davidson and the Krylov–Schur methods.

Table 10. Computational times for the MGBNM with P̂Q, the generalized Davidson method, and the
Krylov–Schur method for the Ringhals reactor.

No. Eigs MGBNM Generalized Davidson Krylov–Schur

1 100 s 264 s 324 s
2 207 s 294 s 471 s
4 308 s 317 s 528 s

5. Conclusions

The modified generalized block Newton method (MGBNM) is an efficient eigenvalue solver that
has been used to compute the dominant λ-modes associated with the neutron diffusion equation.
This problem has been previously discretized by using a high order finite element method. This method
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requires solving many linear systems that need to be previously preconditioned. Different block
preconditioners have been studied as an alternative to assemble the full matrix and to construct a
preconditioner in each iteration. The different preconditioners have been tested in a benchmark reactor
problem (NEACRP) and in a realistic reactor problem (Ringhals). The preconditioners proposed in this
work break down the setup cost at the price of a slight increase of the number of iterations. The result is
a significant reduction of the total CPU time needed to reach convergence and the memory occupancy.
Among the implementations studied, it is shown that the best option is the one that uses the block
structure of the L matrix. Moreover, this implementation permits implementing the MGBNM with a
matrix-free technique, thus greatly reducing the memory consumption. The differences increase when
the size of the problem is larger. In comparison with other eigenvalue solvers, such as the generalized
Davidson and the Krylov–Schur methods, the numerical results conclude that the MGBNM with
this strategy of preconditioning is more efficient in some cases and very competitive in the rest.
In future works, the MGBNM with these strategies for the preconditioning will be applied to other
approximations of the neutron transport equations as the SPN equations.
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Abstract: The Spanish Navy has planned that the F-80 frigates will be replaced by the brand new
F-110 frigates in 2022. The F-110 program is in the conceptual design phase and one of the objectives
is to provide the new F-110 frigate with a salient anti-submarine capability. Therefore, it is necessary
to choose what anti-torpedo decoy should be installed in the warship. The Joint Chiefs of Navy Staff
(EMA) established some guidelines and, considering the Navy guidance’s, the Analytic Hierarchy
Process (AHP) method was applied. After applying the AHP method, none of the decoys obtained a
better score to the other one to make a decision. This paper addresses the problem of the selection
of the best anti-torpedo decoy to be installed in the new frigates. This allowed implementing a
new approach, the Graphic Method of Measurement of Uncertainty Beyond Objectivity (GMUBO).
This approach considers different scenarios from the AHP, quantifies the uncertainty, and evaluates
which is the best alternative. The method integrates the uncertainty in the AHP and allows measuring
the robustness of the selected alternative, also providing a useful graphical tool. Furthermore,
GMUBO has a great ease of use and it is helpful to make decisions under uncertainty conditions.

Keywords: F-110 frigate; decision-making; ASW; anti-torpedo decoy; AHP; uncertainty modelling

1. Introduction

Currently, the Spanish Navy has two types of frigates in service, the F-80 class and the F-100
one. F-80 frigates will be replaced in 2022, after 35 years of service, due to obsolescence. It is planned
that F-80 units will be replaced by brand new F-110 frigates. At present, the F-110 program is in the
definition and decision phase, specifically in the determination stage of obtaining alternatives [1].
This stage will end when the feasibility document (DDV) is signed. DDV establishes that a certain
technical proposal, with known costs and deadlines, is feasible and can be hired. It is necessary that
Spain’s government take the necessary steps to guarantee a financing of the program that makes the
hiring possible [2].

The new F-110 frigates will be complex vessels properly equipped so that the Spanish Navy carries
out operational and strategic missions for the defense and security of Spain and its allies. The F-110
frigates must be designed to be balanced ships in all areas of naval warfare, but with a remarkable
anti-submarine warfare (ASW) capability. In warfare, there are two categories of protection in order to
defeat the threat: destruction of the threat (hard kill) and distraction of the threat (soft kill). Hard kill
includes both kinetic and directed energy weapons. Soft kill is the prevention of a successful attack by
the threat after the attack has commenced. Distraction could be accomplished through decoys, chaff,
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jammers, flares, signature management, and electronic, infrared, or acoustic countermeasures [3]. ASW
is one of the most complex concerns in a surface warship. The concept of uncertainty is deeply linked
to ASW due to the lack of dominance of warships over the underwater environment.

The presence of an enemy submarine close to the operations area of a surface warship is a
dangerous threat against the ship. Furthermore, the presence of submarines not only represents a
direct threat against the physical integrity of a ship. Gathering intelligence data is considered one of
the main objectives of a submarine, and a major threat to the national defense of the warship’s country.
Therefore, one of the important decisions that must be taken is the choice of the best anti-torpedo
decoy that will be implemented in the F-110.

The ASW capability possessed by some surface warships poses an important threat to submarines.
These warships can use ASW countermeasures to prevent submarines from accessing certain areas due
to the risk of detection and to avoid torpedo damage [4]. When a submarine fires a torpedo, it goes
straight to the target because it is fitted with an electronic device that enables it to find and hit the
target. An anti-torpedo decoy is an acoustic device used as a countermeasure to avoid the attack of
torpedoes. A decoy works by transmitting the emulated ship’s signature to confuse the torpedo [5].

Both the conception and design of a warship are part of the process of developing a product of
great complexity, i.e., the warship. This process is essentially a continuous decision-making process
for which a number of techniques and methods could be used to help decision-making. This implies
the consideration of multiple criteria and the possibility of conflict between these criteria. Therefore,
the use of methods multiple-criteria decision-making (MCDM) methods is required to solve the
decision-making problem. It can be said that all techniques and methods have two important objectives
for these techniques to be successful and applicable in the industry: ease of use and exactness of
results. However, both objectives can easily conflict. Exactness and uncertainty are closely related
since uncertainty affects the variables involved in the decisions. A method that does not consider
uncertainty will not provide correct results. Thus, the lower the uncertainty when applying the method,
the greater the exactness of the results and, therefore, the greater the utility and applicability of the
method. Methods that do not model uncertainty will fail in the exactness of their results. However,
many methods that model uncertainty are not easy to apply.

One of the most used methods is the well-known Analytic Hierarchy Process (AHP), which is able
to obtain a hierarchical classification of the different alternatives by comparing pairs of alternatives
and criteria. A disadvantage of AHP is that it does not model uncertainty. Therefore, it is useful to
have methods that consider the uncertainty inherent in MCDM problems. In recent years, MCDM
methods have been developed to help decision-making in different fields [6–14].

Using MCDM methods to solve problems implies a complex analysis due to the number of factors
that must be considered. Technical, political, institutional, standards, and economic factors take part
of the problem [15]. Some methods that we want to mention in this work are Weighted Sum Method
(WSM), ELimination Et Choix Traduisent la REalité (ELECTRE), Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS), Multi-Attribute Utility Theory (MAUT), Preference Ranking
Organization Method For Enrichment Evaluation (PROMETHEE), and AHP. However, WSM and AHP
stand out for their simplicity of calculation and their adaptability to multiple situations.

This work seeks to provide an approach that helps the EMA to decide on the best anti-torpedo
decoy for the F-110 frigates. Two criteria, (1) logistics, and (2) operational capabilities were the
monitored and chosen criteria by the EMA. Keeping in mind the Navy guidelines, two possible decoy
alternatives were chosen: towed device (N) and expendable device (L) [16]. The towed device
can send acoustic signals to deceive the torpedo away from the ship. This device is a passive
and electro-acoustic system that provides deceptive countermeasures, by simulating a variety of
machinery noises. The expendable device is a system to deceive torpedoes as the towed device does.
The difference (Figure 1) lies in that the expendable device is launched into the sea from the warship
and the towed device is dragged. A group of experts from the Navy established the criteria weights
and the AHP method [17] was applied to determine the best anti-torpedo decoy. The AHP result
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is not enough to make a clear decision since sensitivity analysis identified that the result depends
on criteria weights. Consequently, none of the decoys obtained a better score to make a correct
decision. This brought uncertainty due to the criteria weights could come from subjective evaluations.
However, by integrating uncertainty in the AHP, through the medium of the Graphic Method of
Measurement of Uncertainty Beyond Objectivity (GMUBO) [18], it is possible to help the EMA to make
a decision. GMUBO considers different scenarios and results of the AHP, which is the starting point.
Moreover, it allows measuring the robustness of the selected alternative by means of a mathematical
and graphical tool.

(a) (b)

Figure 1. Difference between towed and expendable devices: (a) a towed device is dragged by the
warship; and (b) an expendable device is launched from the warship.

The capability of managing the uncertainty is one advantage of GMUBO, just as it enables
alternatives to be assessed graphically and determine the best one. An additional benefit of GMUBO
is that it considers changes in the process conditions themselves, when assessing and selecting
alternatives. A case study is presented to demonstrate the approach by comparing AHP (initial method)
with GMUBO. Managing the selection of alternatives, under uncertainty, in a graphic way, and
considering the susceptibility of the selection to changes, are the novelties of the approach.

2. Methodology

A frigate is a surface warship and the new F-110 frigates should be balanced ships in all areas
or scenarios of naval warfare. Keeping in mind that one of the main threats to surface ships is the
presence of submarines, the F-110 should have a great capability of survival against possible attacks.
This is the reason why one of the objectives is to provide the new frigate F-110 with an important
anti-submarine capability [19]. Considering the aforementioned statements, the EMA decided to
preselect two possible decoy alternatives: towed device (N) and expendable device (L), as indicated
in the previous section. In the same way, the EMA established two criteria: logistics issues and
operational capacities. The meaning of the criteria is detailed below.

1. Logistics issues. This allows evaluating different aspects: storage of decoys, volume they occupy,
existence of available means to train personnel in the use of the type of decoy.

2. Operational capacities or effectiveness issues. This is an essential criterion to make an adequate
decision to the tactical and strategic demands of a surface ship in the field of ASW.

Initially, the methodology that was followed is provided on the left of the Figure 2. According
to the Navy guidelines, alternatives, criteria, and sub-criteria are the starting point to manage the
problem. Next, a survey was conducted by expert officers of the Navy to determine the weights of
the criteria. After applying the AHP, a sensitivity analysis was carried out by varying the weights
assigned to the criteria. Since none of the alternative decoys could be selected in a suitable way, it was
necessary to change the methodology. Hence, the GMUBO methodology was implemented, which
allows integrating uncertainty into the AHP results.

173



Math. Comput. Appl. 2019, 24, 5

(a) (b)

Figure 2. Initial methodology versus the GMUBO methodology: (a) Initially, neither the uncertainty
nor different scenarios were considered; (b) GMUBO considers the uncertainty since it foresees different
scenarios that could occur.

GMUBO methodology is applied considering two data sets: (1) alternatives, criteria and
sub-criteria and, (2) AHP results from different scenarios. The application of GMUBO is shown
on the right of the Figure 2.

Since the initial methodology was modified, it must be indicated that it was improved by
integrating the uncertainty. Therefore, GMUBO starts from the data provided by the EMA, that
is, decoy alternatives, criteria, and sub-criteria. Likewise, the data of the survey made by the experts
were used, obtaining the weightings of criteria and sub-criteria. From here, the scenarios are defined
and the AHP method is applied. Therefore, the EMA guidelines and the AHP results allow starting
GMUBO. The following paragraphs give a breakdown of the whole process.

First, the chosen criteria were monitored by the EMA and the sub-criteria that emanate from
each of the two criteria are provided in Figure 3. All values are fictitious due to real ones being
classified information.

Figure 3. Criteria and sub-criteria established by the EMA.
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Second, the survey was conducted as follows (Figure 4): A scale of numbers proposed by Saaty
indicates how many times more important one element is over another element, considering the
criterion with respect to which they are compared [20]. Let xij denote the intensity of importance of
the criteria being compared, that is, logistics, and operational capabilities. Let yij denote the intensity
of importance of the sub-criteria belonging logistics criterion. Finally, zij denotes the intensity of
importance given to the sub-criteria related to operational capabilities criterion. Pairwise comparison
matrices for criteria and sub-criteria were given to experts of the Navy in order to fill in the xij, yij, and
zij values. The numerical values to denote the intensity of the importance of criteria and sub-criteria
are the integers from 1 to 9. The results were treated statistically to obtain the weights of the criteria,
which were used in the AHP method.

Figure 4. Survey conducted to experts of the Navy.

Next, the AHP method was applied to determine the best anti-torpedo decoy. The decision
process based on the AHP considers a finite number of alternatives xi, for i from 1 to n. A score is
assigned to each alternative (wi is the score of alternative xi), providing a weight vector. A square
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matrix of pairwise comparison is used to solve the multi-criteria decision-making (MCDM). Let A be
the pairwise comparison matrix:

A = (aij) (1)

where aij = 1/aji and aii = 1 for all i and j from 1 to n [17]. Saaty proposed a consistency index (CI) to
evaluate the consistency of the pairwise comparison matrix:

CI = (λmax − n)/(n − 1) (2)

To deduce the weight vector, is used the eigenvector theory. The method consists of finding the
Perron-Frobenius eigenvector [21], which corresponds to the maximum eigenvalue of the pairwise
comparison matrix, that is:

A · w = λmax · w (3)

The AHP decomposes a problem into a hierarchy of smaller sub-problems, which can more
easily be evaluated. Thus, the AHP provides a hierarchy of goal, criteria (ci), sub-criteria (scij), and
alternatives (ai), as shown in Table 1.

Table 1. Hierarchy of the AHP.

Goal

c1 c2 . . . cn
sc11 . . . sc21 . . . . . . scn1 . . .

a1 a2 . . . am

Two sub-criteria needed to be analyzed differently from the rest. For the logistics sub-criteria
“storage volume” (SV), a utility function was used. This allows adding objective data of the real
volume occupied by each decoy in a warship. Similarly, a utility function is used to evaluate the
sub-criteria “reaction time” (RT). This adds objectivity since the real values of the time it takes to make
effective use of the decoy of each of the alternatives are known [22]. Thus, the linear utility functions
shown in Equations (4) and (6) were considered:

ySV = C1 · xSV + C2 (4)

where xSV = 5 m3 if ySV = 0 and xSV = 1 m3 if ySV = 1 (5)

yRT = C3 · xRT + C4 (6)

where xRT = 30 s if yRT = 0 and xRT = 0 s if yRT = 1 (7)

For a volume of 5 m3 the minimum utility ySV is assigned, i.e., a value of 0%, given that this
volume is too large because it reduces space to other logistic needs of the vessel. Then, for a volume of
1 m3 the maximum utility ySV is assigned, i.e., a value of 100%, since it is not possible to store decoys
in a smaller space.

In a like manner, the minimum utility yRT (0%) happens when xRT is 30 s. Half a minute is
considered as the maximum time established to make effective use of decoy capabilities. That is, once
that time has passed, it is considered that the vessel is no longer able to make effective use of any of
the decoys. Likewise, the maximum utility yRT (100%) happens when the reaction time is 0 s. That is to
say, the optimal value of the reaction time is a null value, which would represent the ideal situation.
However, it is only a reference, because in practice reaction time can never be zero. Hence, the utility
functions are:

ySV = −25 · xSV + 125 and yRT = −(10/3) · xRT + 100 (8)

Next, the GMUBO method considers the uncertainty of the process. In order to achieve a
robustness in the results, the uncertainty in the process must be integrated. To do this, different
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scenarios were considered. These scenarios are changes to the weightings of the objective. Then,
uncertainty of the alternatives, considered as grey numbers [23,24], was calculated. Subsequently,
the best alternative was determined, taking into account that the scenarios are not controllable by
the decision-maker.

In the AHP method, a criteria comparison matrix is multiplied by a priority vector and an overall
priority vector (OPV) is obtained. The OPV determines a hierarchy on the selection of alternatives and
provides a first selection that does not consider uncertainty. A decision maker does not know which
scenario is going to arise. Then, it is necessary to repeat the process considering a number of scenarios.
Each scenario allows to obtain a corresponding OPV. Keeping this in mind a Penalties Matrix (m × n)
is built:

P = (cij) (9)

Consider SA the set of alternatives and SS the set of scenarios. Then:

SA = {ai} for i = 1 to m (10)

SS = {sj} for j = 1 to n (11)

In P matrix, each cij is the penalty obtained after choosing the alternative ai when the given
scenario is sj.

To choose the best alternative two calculations are performed. On the one hand, a measure of
the uncertainty is needed. On the other hand, weighted sums calculation is carried out. The best
alternative should have the highest value of weighted sum and the lowest value for uncertainty.

Since the penalties are considered as grey numbers, the following expression is a measure of the
uncertainty for each alternative [18]:

gi
0 = (cik − cim)/(1 · cim + Σμij · cij + 0 · cik) (12)

where:
cik = max cij and cim = min cij with μij ε [0,1] (13)

Now the weighted sum is calculated for each alternative i:

Wi = λi1 · pi1 + . . . + λnn · pnn (14)

Finally, the best alternative should have the highest value of weighted sum and the lowest value
for uncertainty. If both values lead to more than one alternative, then the alternative with the greatest
final sum FS must be selected [18].

FS = Wi + (max gi
0 − gi

0) + 1/Σcij (15)

3. Results and Discussion

The GMUBO methodology is fed from the results of applying the AHP method for different
scenarios. The scenarios represent the way in which uncertainty is modeled since the decision-maker
does not know what scenario will occur in the future. The changes in the scenario produce variations
in the comparison matrices, all of which allows the implementation of GMUBO. One advantage of
GMUBO is that it takes into account the imprecision that may be present in the minds of the experts
when making the pairwise comparison.

The AHP method has wide applicability and allows dealing with complex problems by
synthesizing them. Moreover, it establishes a ratio scale that makes easy the measurement [25].
The AHP has an axiomatic foundation and uses a clearly defined mathematical structure [26].
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The AHP is a MCDM method that uses a hierarchy to represent a decision problem. The AHP
assumes the hypothesis that each element in the hierarchy is independent. An advantage of the AHP
is that it enables to include intangible qualitative criteria along with tangible quantitative criteria [27].

Although the criteria, sub-criteria and their weights were provided by a survey conducted with
EMA experts, a utility functions had to be used for two of the sub-criteria. Specifically, the sub-criteria
of SV and RT, since the real values of the storage volume and the reaction times were available.
This was possible because the technical features of the different alternatives were available, all of
which allowed the process to be more objective.

Table 2 provide the final decision matrix after applying the AHP. Then, as is shown in column
1, there is no clear preference for one of the alternatives. As shown in Table 2, the results are clearly
different if only one of the criteria is taken into account. Specifically, alternative N acquires a clear
advantage over alternative L if only the “logistics” criterion is considered in the evaluation. Similarly,
if only the criterion “operational capabilities” is taken into account, it is observed that alternative L is
better than alternative N.

Table 2. Final decision matrix after applying the AHP.

Alternatives Logistics (35%) Operational Capabilities (65%)

N (49.5%) 84% 41%
L (50.5%) 16% 59%

It follows that, once the AHP method is applied, practically equal results are obtained for both
N and L alternatives. To be exact, it is obtained that the alternative L is slightly preferable to the
alternative N, but with only a 1% difference between L and N. Since this difference is very small, it can
be concluded that, given the available information, it is not advisable to establish which alternative
is better.

Figures 5 and 6 show a sensitivity analysis obtained by varying the weights assigned to the
criteria. The sensitivity analysis allows observing that a small variation in the weights assigned
to the criteria produces that the chosen alternative changes. Therefore, the result obtained in the
problem is very sensitive to variations in the influence or weight of the two criteria “logistics” and
“operational capabilities”.

Figure 5. Sensitivity analysis.
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(a)

(b)

Figure 6. Sensitivity analysis by considering different criteria: (a) Sensitivity of the weight assigned to
the logistics criterion; and (b) sensitivity of the weight assigned to the operational capabilities criterion.

This means that, according to this result, it is not advisable to choose any of the two alternative
solutions if you want to be certain of success. This is because the method does not clearly decide
which alternative is preferable to the other. This is one source of uncertainty in the decision-making
process. The AHP is a method that does not handle uncertainty although it is a good starting point to
implement a better solution.

Different options were evaluated: re-evaluation and addition of more criteria, the use of
complementary calculations, simulations or sophisticated software, and the integration of uncertainty
in the AHP method. These options are discussed below.

Initially, by adding new criteria to the hierarchy to proceed to a re-evaluation, applying again
the AHP. This option was discarded because it required more time and did not take into account the
uncertainty inherent in the process. It should also be noted that this solution would imply that the
experts would not have done their job correctly. However, the EMA took special care to define the
most important criteria for decision-making. Moreover, the experts assigned the scores according to
their experience and current environment.

Then, some mathematical techniques were considered as the theory of probability and fuzzy
logic, among others, which do consider uncertainty. The implementation of these techniques involved
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complex calculations, simulations and sophisticated software. Actually, decision-makers do not have
time to develop techniques that require excessive amounts of knowledge. Hence, ease of use and
exactness are basic features to encourage decision-makers in using of useful techniques.

Next, let us see an example of application of the GMUBO approach. With the proposed new
approach, it is assumed that the result obtained through the application of the AHP is due to the
consideration of a deterministic situation, that is, without uncertainty. This situation is called Scenario
S0. Therefore, to apply GMUBO, three additional scenarios are going to be assumed in order to show
how this new approach works.

Then, scenarios S1, S2, and S3 are considered, taking into account that these scenarios present
different conditions that will modify the valuations given by the experts of the Navy. In the following
points the characteristics and implications of each scenario are explained.

• Scenario S0. This is the initial scenario, due to a deterministic and known situation, where AHP is
applied. The final decision matrix was given in Table 2 above. In addition, in Figure 3 of Section 2,
the assessments of the criteria and sub-criteria were provided.

• Scenario S1. In this new scenario, the implementation of important logistical improvements in the
Navy is assumed. This has produced a change in the valuations of the criteria and sub-criteria,
which is presented in Table 3. The values given for “possibility of training” and “resupply needs”
have changed.

• Scenario S2. The existence of this scenario is based on the subjectivity of the values given to two
of the sub-criteria of the operational capabilities criterion. This means that the sub-criteria “radius
of action” and “constraints” are very variable. Therefore, the assessments given to them have
been reviewed. The values are presented in Table 4.

• Scenario S3. In this case, it is simply assumed that the weight of the logistics criterion is reduced
by up to 15% and the operational capabilities criterion increases up to 85% (Table 5).

Table 3. Final decision matrix for S1 after applying the AHP.

Alternatives Logistics (40%) Operational Capabilities (60%)

N (55.4%) 73.9% 43.1%
L (44.6%) 26.1% 56.9%

Table 4. Final decision matrix for S2 after applying the AHP.

Alternatives Logistics (30%) Operational Capabilities (70%)

N (59.6%) 83.5% 49.3%
L (40.4%) 16.5% 50.7%

Table 5. Final decision matrix for S3 after applying the AHP.

Alternatives Logistics (15%) Operational Capabilities (85%)

N (42.0%) 68.6% 37.9%
L (58.0%) 31.4% 62.1%
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Now, following the steps explained in Section 2, the penalties matrix (P) is constructed from the
OPV vector, obtained by applying the AHP to each scenario. Then, the matrix P is constructed from
the matrix of the following OPV, given by the AHP:[

0.495 0.554 0.596 0.420
0.505 0.446 0.404 0.580

]

Once normalized, the matrix of penalties is obtained, where each cij represents the penalty
incurred when choosing an alternative ai when a scenario sj has been given. Therefore, P becomes:

[
0.101 0.042 0.021 0.176
0.091 0.150 0.192 0.016

]

Applying Equation (12) of Section 2, a measure of the uncertainty of each alternative is determined,
from which it follows that:

g1
0 = 1.4598 (16)

g2
0 = 1.6920 (17)

The value 0 is assigned to the greatest cij in each column and 1 to the smallest. The other values are
assigned from the linear interpolation between 0 and 1. Since it has the smallest uncertainty, alternative
1 should be chosen. However, according to the methodology exposed in Section 2, it is necessary to
calculate the weighted sum to avoid high penalties. Then, calculating Wi for each alternative:

W1 = 0.0630 (18)

W2 = 0.1070 (19)

According to the methodology used, the best alternative is the one with the highest Wi, which
would be alternative 2. Because both uncertainty (gi

0) and weighted sum (Wi) led to more than one
alternative, then the alternative with the highest final sum FS must be selected:

FS1 = W1 + (max gi
0 − g1

0) + 1/Σc1j = 3.2364 (20)

FS2 = W2 + (max gi
0 − g2

0) + 1/Σc2j = 2.3342 (21)

Eventually, the alternative with the highest FS turns out to be 1.
Finally, uncertainty was implemented using the GMUBO method, which is easy to use and

useful to help decision-making under uncertainty, as well as providing a very useful graphical tool
(Figure 7) [18]. GMUBO provides two vectors that are combined subsequently. On the one hand,
a measure of the uncertainty given by the degree of greyness of each alternative [24]. On the other
hand, for a given alternative, the inverse of the sum of its penalties is measured. Both vectors can
provide a clear and singular alternative. However, there are situations where each vector leads to a
different alternative. In these cases, the final sum (FS) would resolve the discrepancy.

FS measures the suitability of an alternative considering all the scenarios that can arise. FS controls
and minimize the effect of a very small uncertainty that could modify the choice of the best alternative.
It is considered that for a given alternative, the inverse of the sum of its penalties should be as large as
possible to avoid alternatives with both high penalty values and a very small uncertainty.

GMUBO considers uncertainty and allows to measure the robustness of the selected alternative.
Furthermore, it is a helpful method for decision-makers since it has a great ease of use.
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Figure 7. Graphical interface of GMUBO [17].

4. Managerial Implications

The design and construction of a warship is characterized by fundamental managerial implications
for the EMA. One of the most important implications is the need of decision-making under uncertainty
and unforeseen events. Thus, decisions about the capabilities of a warship involve not only engineering,
but also a managerial level of analysis.

GMUBO manages the uncertainty combining it with the AHP and a weighted sum method.
Weighted sum methods have advantages for multi-criteria decision-making: they are easier for
understanding and to be handled by a decision-maker than complex calculations or simulations.

The approach proposed in the work would allow to managing uncertainty and risks to the
decision-makers of the EMA. Hence, the findings of this work would be useful for enhancing the
decision-making performance of the Spanish Navy.

When managing a MCDM problem, it is very important to know how sensitive or decisive each
criterion is. In this way, managers can improve the decisions they must make. The sensitivity analysis
show how sensitive the actual alternative is to changes on the current weights of the decision criteria.
To learn more about the sensitivity analysis, the works [28–30] are available in the literature on the
topic. In this work, a preliminary sensitivity analysis was done to assess the performance of the AHP.
In Figures 5 and 6 of Section 3 this analysis could be used to demonstrate the convenience of improving
the performance obtained with the AHP. Once the GMUBO method was applied, using a computer
tool, it was possible to verify how this new approach allows the robustness of the selected alternative
to be measured (some data and information have not been provided due to the confidentiality of the
possible implementation of the method in the Navy).
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5. Conclusions

Due to the inherent complexity of the ASW, the Spanish Navy has established that the new frigates
of the F-110 class must possess a remarkable ASW capability. To get it, the F-110 frigates should be
equipped with a soft kill protection based on anti-torpedo decoys that allows the distraction of the
underwater threat. This work seeks to provide an approach that can help the EMA to decide on the
best anti-torpedo decoy for the F-110.

The methodology initially used was based on the AHP method, which does not consider
uncertainty. However, the uncertainty arises in the scenarios where a frigate develops its missions.
Hence, the solution obtained with the AHP method does not provide sufficient robustness. Moreover,
the problem of selecting the best anti-torpedo decoy is a complex decision and another approach
is required. However, AHP is a good starting point to implement a better solution, even though it
does not handle uncertainty. Since AHP does not manage uncertainty, it is interesting to look for an
approach that allows it to be managed. To consider uncertainty is fundamental in decision-making
processes. Some of the existing MCDM methods take uncertainty into account, but require additional
knowledge to be used. In general, decision-makers usually do not have a strong theoretical foundation
of mathematical knowledge. In a general way, ELECTRE, TOPSIS, MAUT, and PROMETHEE are less
adapted for changing easily from one to another of various situations or fields. Moreover, a good
knowledge of these methods may be difficult to achieve for an inexperienced user.

GMUBO are based in the AHP, which is capable of many applications and has a wide use.
A great advantage of the AHP is that it decomposes a decision problem in parts and builds
hierarchies. The above-mentioned methods do not provide this structuring capability. The integration
of uncertainty in an intuitive and visual way, as well as simplicity, are some of the advantages of the
proposed approach.

GMUBO provides a simple method for managing uncertainty, considering different scenarios
that decision-makers do not control. GMUBO allows graphically visualizing the solution. The graphic
tool that provides the method not only allows a better visualization of the problem, but also helps the
decision-making process.
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