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Preface 
From Information Theory to Geometric Science  
of Information 

 

Venus at the Forge of Vulcan, Le Nain Brothers, Musée Saint-Denis, Reims (Vulcan is the god of 
fire and god of metalworking and the forge, often depicted with a blacksmith’s hammer) 

“Intelligence is the faculty of manufacturing artificial objects, especially tools to make tools, and of 
indefinitely varying the manufacture.”—Henri Bergson
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Information theory was founded in the 1950s based on the work of Claude Shannon and Jacques 
Laplume in communication and Léon Brillouin in statistical physics, among other main contributors. 
These foundations have conventionally been built on linear algebra theory and probability models in 
conventional spaces (vector space, normed spaces, ...). 

 

At the turn of the century, new and fruitful interactions were found between several branches of 
science: Information Science (information theory, digital communications, statistical signal 
processing, …), Mathematics (group theory, geometry and topology, probability, statistics, ...)  
and Physical Sciences (geometric mechanics, thermodynamics, statistical physics, quantum 
mechanics, ...). 

From Probability to Geometry  

The probability theory was conceived by Blaise Pascal and Jacob Bernoulli. Pierre de Fermat 
also helped in his exchange of correspondence with Blaise Pascal to develop the foundations of 
probability theory, a mathematical accident that caused the study of Chevalier de Méré’s game 
(Antoine Gombaud, Chevalier de Méré, a French nobleman with an interest in gaming and gambling 
questions, called Pascal’s attention to an apparent contradiction concerning a popular dice game). 
Then, probability theory was consolidated by many contributors, such as Pierre Simon Laplace, 
Abraham de Moivre and Carl Friedrich Gauss during the XVIII century and by Emile Borel, Andreï 
Kolmogorov and Paul Levy last century. Probability is again the subject of a new foundation to 
apprehend new structures and generalize the theory to more abstract spaces (metric spaces, 
homogeneous manifolds, graphs ....). A first attempt at probability generalization in metric spaces 
was developed by Maurice Fréchet in the middle of last century, in the framework of abstract spaces 
topologically affine and “distance space” (“espace distancié”) with triangular inequality constraint. 

What’s new since 1950s 
INFORMATION THEORY

Claude 
Shannon

MIT

Léon 
Brillouin

Collège de 
France

Jacques
Laplume

Radar Dept.
Thomson-Houston



XIII 
 

 

 

From Statistics to Geometry 

In the middle of last century, another branch of geometric approaches of statistical problems has 
been initiated by Calyampudi Radhakrishna Rao that introduced a metric space in the parameters 
space of probability densities. The metric tensor was proved to be equal to the Fisher Information 
matrix. This result was axiomatized by Nikolai Nikolaevich Chentsov in the framework of category 
theory. Having been introduced in 1939, the lower bound in statistics, six years before C.R. Rao, this 
idea was latent in the work of Maurice Fréchet, who had noticed that the “distinguished densities” 
that reach this lower bound are defined by a function that is given by a solution of Legendre-Clairaut 
equation. Nowadays, this Legendre-Clairaut equation is the cornerstone of “Information Geometry” 
theory linking two dual potential functions in dual spaces. In parallel, Jean-Louis Koszul had 
constructed a Hessian geometry on convex cones, through the concept of Koszul-Vinberg 
characteristic function and Koszul forms. Koszul Information Geometry is a generalization of 
information geometry theory, where invariance with respect to densities parameters is replaced by 
invariance with respect to automorphisms of these convex cones where these parameters lie. In 1957, 
the framework was consolidated by the principle of Maximum Entropy, expounded by E. T. Jaynes 
in two papers where he emphasized a natural correspondence between statistical mechanics and 
information theory. In particular, Jaynes offered a link to statistical physics and a rationale as to why 
the Gibbsian method of statistical mechanics works. He argued that the entropy of statistical 
mechanics and the information entropy of information theory are principally the same thing. 
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Consequently, statistical mechanics should be seen just as a particular application of a general tool of 
logical inference and information theory. 

From Thermodynamics to Geometry 

On the side of statistical physics and thermodynamics—which were based on the seminal works 
of Sadi Carnot, Rudolf Clausius, Ludwig Boltzmann, François Massieu and Williard Gibbs—several 
geometric attempts were developed later as a “general equation of thermodynamics” by Pierre 
Duhem unifying in the same equations all changes of systems’ positions and states. In his 1891 
Paper, « Sur les équations générales de la Thermodynamique », Pierre Duhem wrote “We made a 
special case, the dynamics of thermodynamics, a science that embraces common principles in all the 
changes of state of the bodies, both changes of places and changes in physical qualities.” Four 
scientists were credited by Duhem with having carried out the most important researches on that 
subject: François Massieu to derive thermodynamics from a characteristic function and its partial 
derivatives; J. W. Gibbs to show that Massieu’s functions could play the role of potentials in the 
determination of the states of equilibrium in a given system; H. von Helmholtz to put forward similar 
ideas (and analogy between thermodynamic and mechanics); and A. von Oettingen to give an 
exposition of thermodynamics of remarkable generality based on the general duality concept. More 
recently, we can make references to the “Lie Group thermodynamics” theory created by Jean-Marie 
Souriau in the framework of geometric mechanics and symplectic geometry, or the concept of 
thermodynamics contact manifolds that was conceptualized by Vladimir Arnold. This 
geometrization of thermodynamics and mechanics was also extended to quantum mechanics by 
Roger Balian, providing also a bridge with information geometry. Roger Balian, in 1986, introduced 
a geometric structure through extension of the Fisher metric in statistical physics and quantum 
mechanics, compatible with gauge theory of thermodynamics.  

From Mechanics to Geometry 

The last branch of geometric structure elaboration for information is emerging through the 
inter-relations between “geometric mechanics” and the “geometric science of information”, that will 
be largely debated at the GSI’15 conference (www.gsi2015.org). We can imagine that other links 
could be discovered between mechanics and geometry, for instance based on the elastic theory of the 
Cosserat brothers that should enlighten new seminal works as discovered by Jean-François 
Pommaret. In 1926, Louis-Maurice Roy, published in Annals, “a thermodynamic theory of elastic 
line […]”, directly inspired by the relatively recent work of Duhem and M. M. Cosserat. This idea 
was also developed in Louis de Broglie’s book on thermodynamics. 

Regarding geometry and mechanics, for the anecdote, we can observe that the master of 
geometry during the last century, Elie Cartan, was the son of Joseph Cartan who was the village 
blacksmith, and Elie recalled that his childhood had passed under “blows of the anvil, which started 
every morning from dawn”. We can imagine easily that the child, Elie Cartan, watching his father 
Joseph “coding curvature” on metal between the hammer and the anvil, insidiously influencing 
Elie’s mind with germinal intuition of fundamental geometric concepts. The alliance of geometry 
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and mechanics is beautifully given by this image of Forge, as illustrated in this painting of Velasquez 
about Vulcan God. This concordance of meaning is confirmed by the etymology of the word 
“Forge”, that comes from the late XIV century, “a smithy”, from Old French forge “forge, smithy” 
(XII century), earlier faverge, from Latin fabrica “workshop, smith’s shop”, from faber (genitive 
fabri) “workman in hard materials, smith”. One can imagine the hammer blows given by Joseph on 
the anvil, giving shape and curvature to the metal, inspired the curious mind of Elie that surely 
inspired later his intuition of “moving frame” and “nonholonomic space” in geometry. Elie Cartan 
was motivated by the objective to build new foundations of geometry. He said “distinguished service 
that has rendered and will make even the absolute differential calculus of Ricci and Levi-Civita 
should not prevent us to avoid too exclusively formal calculations, where debauchery indices often 
mask a very simple geometric fact. It is this reality that I have sought to put in evidence everywhere.” 
(« Les services éminents qu’a rendus et que rendra encore le Calcul différentiel absolu de Ricci et 
Levi-Civita ne doivent pas nous empêcher d’éviter les calculs trop exclusivement formels, où les 
débauches d’indices masquent une réalité géométrique souvent très simple. C’est cette réalité que 
j’ai cherché à mettre partout en évidence.» in É. Cartan, Leçons sur la théorie des espaces de 
Riemann, Paris: Gauthier-Villars, 2e éd., 1946, p. VII). 

 

Into the Flaming Forge of Vulcan, into the Ninth Sphere, Mars descends in order to 
retemper his flaming sword and conquer the heart of Venus (Diego Velázquez, Museo 
Nacional del Prado)  
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Groups Everywhere and Metrics Everywhere 

Geometric structure can also be considered through group theory. As observed by Gaston 
Bachelard, mathematical physics, incorporating at its core the concept of group, brand supremacy. 
All rational geometries, and without doubt more generally all mathematical organizations of 
experience, are characterized by a special group of transformations. The group provides evidence of 
mathematics closed on itself. Its discovery closes the era of conventions, more or less independent, 
more or less coherent. Henri Poincaré said that if we strip the mathematical theory of which appears 
to be an accident, that is to say its material, there will remain only the essential, that is to say, the 
form; and this form, which is as it were the solid skeleton of the theory, will be the group’s structure. 
Concerning Elie Cartan’s work, Henri Poincaré said that “the problems addressed by Elie Cartan are 
among the most important, most abstract and most general dealing with mathematics; group theory 
is, so to speak, the whole mathematics, stripped of its material and reduced to pure form. This 
extreme level of abstraction has probably made my presentation a little dry; to assess each of the 
results, I would have had virtually render him the material which he had been stripped; but this 
refund can be made in a thousand different ways; and this is the only form that can be found as well 
as a host of various garments, which is the common link between mathematical theories that are 
often surprised to find so near”. “Groups everywhere” and “metrics everywhere” are then the new 
leitmotiv in mathematics and physics. In particular, a central role could be attributed to Misha 
Gromov and his contribution to metric spaces. The analysis of the invariants and the transformations 
preserving them is at the core of Gromov’s work on “geometrical group theory”.     
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Entropy Everywhere 

From its beginnings, the theory of information has also been linked to statistical physics through 
the concept of entropy. This intimate relationship between information and entropy was studied by 
Léon Brillouin and Claude Shannon. The latter writes: “My biggest concern was what to call it. I 
thought to call information, but the term was used too, so I decided to call it uncertainty. When I was 
talking with John von Neumann, he had a better idea. He said to me, you should call it entropy, for 
two reasons. First, your uncertainty function was used in statistical mechanics under that name, so it 
already has a name. Second, and most important, no one really knows what the entropy, so in a 
debate you would always have the advantage”. René Thom also tried to show in which direction a 
real information theory could go, being halfway between semantics and semiotics, thermodynamics 
of real forms, would attempt to return a proper analysis of morphological forms of messages. 

Linguistics Everywhere 

To conclude this preface, if we go back further in history, let’s look at the etymological origins 
of the word “information”. First written as “enformer” the word “inform” appears in French in 1286, 
the Latin word “informare”, literally “shape”. The word “information” appears in the XIII century. 
From the Greek etymology, , morphs (“shape”), we reached the sense of morphology, the 
science of forms. For Plato, the concept of “form” is designated “morph”, “Eidos” and “idea”; Henri 
Bergson gave his definition of the Greek concept of “Eidos” in the book “Creative Evolution”: “The 
word, eidos, which we translate here by “Idea”, has, in fact, this threefold meaning. It denotes (1) 
the quality, (2) the form or essence, (3) the end or design (in the sense of intention) of the act being 
performed, that is to say, at bottom, the design (in the sense of drawing) of the act supposed 
accomplished.” These three aspects are those of the adjective, substantive and verb, and correspond 
to the three essential categories of language, proving, as Jean-Marie Souriau did, that we have to 
apprehend “the grammar of nature”. 
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Geometric Science of Information as a Federative Structure and Grammar 

Henri Poincaré said that “Mathematics is the art of giving the same name to different things” 
(« La mathématique est l'art de donner le même nom à des choses différentes» in «Science et 
méthode”, 1908). By paraphrasing Henri Poincaré, we could claim that « Geometric Science of 
Information » is the art of giving the same name to different sciences. The rules, the structure and 
architecture of this new “manufacture” is a kind of new Grammar for Sciences.   

 
Book Chapters Survey 

The aim of this book is to provide an overview of current work addressing this topic of research 
that explores the geometric structures of information and entropy. These papers are an extended 
version of the paper published in Proceedings (http://printorders.aip.org/proceedings/1641) of the 
34th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and 
Engineering (MaxEnt 2014), Amboise, France, 21–26 September 2014 
(https://www.see.asso.fr/maxent14). 

Chapter 1 of the book is a historical review of the origins of thermodynamics and information 
theory:  

 Stefano Bordoni analyses and puts in perspective crosswise the work of J.J. Thomson and P. 
Duhem in thermodynamics in recent decades of the nineteenth century, with two abstract 
and phenomenological approaches to thermodynamics. After the analysis of intermediate 
solutions by Helmholtz, Planck and Oettingen, he describes J.J. Thomson’s general theory 
for physical and chemical processes, and P. Duhem’s design of energetics as unification 
between physics and chemistry.  
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 Olivier Rioul and José Carlos Magossi then detail the history of the discovery of the 
Shannon’s formula for Gaussian channel, with seminal Hartley’s rule twenty years before 
Shannon for uniform channel, and the first published work in April 1948 of the French 
engineer, Jacques Laplume from Radar/Hyper Department of Thomson-Houston, among 
others. 

Chapter 2 discusses the mathematical and physical foundations of geometric structures related 
to information and entropy: 

 Misha Gromov, IHES (Institute of Advanced Scientific Studies), Abel Prize 2009, indicates 
possibilities for (homological and non-homological) linearization of basic notions of the 
probability theory and also the replacement of the real numbers as values of probabilities by 
objects of suitable combinatorial categories.  

 Pierre Baudot from Max-Planck Institute, and Daniel Bennequin from Institut 
mathématique de Jussieu, observe that entropy is a universal co-homological class in a 
theory associated to a family of observable quantities and a family of probability distributions. 
This gives rise to a new kind of topology for information processes that accounts for the main 
information function.  

 Nina Miolane and Xavier Pennec compute bi-Invariant pseudo-Metrics on Lie Groups for 
consistent statistics to define a Riemannian metric compatible with the group structure, to 
perform statistics on Lie groups for computational anatomy.  

 Frédéric Barbaresco introduces the Symplectic Structure of Information Geometry based on 
Souriau’s “Lie Group Thermodynamics model”, with a covariant definition of Gibbs 
equilibrium via invariances through co-adjoint action of a group on its momentum space. The 
Fisher metric is identified as a Souriau Geometric Heat Capacity. This model is compared 
with hessian Geometry of Jean-Louis Koszul, which is the main pillar of Information 
Geometry theory.  

 Roger Balian introduces in the space of quantum density matrices, a Riemann metric as 
hessian of the von Neumann entropy, which is physically founded and which characterizes 
the amount of quantum information lost, underlying the canonical mapping between the 
spaces of states and of observables, which involves the Legendre transform. Roger Balian 
provides then its general expression and its explicit form for q-bits.  

 Mitsuhiro Itoh and Hiroyasu Satoh study the geometry of Fisher metrics and geodesics on a 
space of probability measures defined on a compact manifold and its application to 
geometry of a barycenter map associated with Busemann function on a Hadamard manifold 
X. They describe a fibre space structure of barycenter map. 
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Lastly, Chapter 3 is dedicated to applications with numerical schemes for geometric structures 
of information and entropy: 

 Ali Mohammad-Djafari proposes to review the main inference tools using the Bayes rule, 
maximum entropy principle (MEP), information theory, relative entropy and the Kullback–
Leibler (KL) divergence, Fisher information and its corresponding geometries. The second 
part of the paper is focused on the ways these tools have been used in data, signal and 
image processing and in the inverse problems, which arise in different physical sciences and 
engineering applications. 

 Jérémy Bensadon, a PhD student of Yann Ollivier, extends the IGO (information geometric 
optimization) method, a general framework for stochastic optimization problems aiming at 
limiting the influence of arbitrary parametrization choices. He defines the geodesic IGO, a 
fully parametrization-invariant algorithm, named GIGO, using the Riemannian structure, 
and illustrates it for the manifold of Gaussians, thanks to Noether’s theorem.  

 Luigi Malagò and Giovanni Pistone develop Amari’s natural gradient flows of real 
functions defined on the densities belonging to an exponential family on a finite sample 
space, that converges to densities with reduced support that belong to the border of the 
exponential family. They provides an extension based on the algebraic concept of an 
exponential variety. 

 Anass Bellachehab, a PhD student of Jérémie Jakubowicz, presents an application of 
distributed consensus algorithms to metamorphic systems (a set of identical units that can 
self-assemble to form a rigid structure). He proposes a distributed algorithm that 
synchronizes all of the systems in the network, by casting the problem as a consensus 
problem on a metric space, and using recently distributed consensus algorithms that only 
makes use of metrical notions. 

 Jaehyung Choi and Andrew P. Mullhaupt propose two papers. In the first paper, they 
construct geometric shrinkage priors for Kählerian signal filters and introduce an algorithm 
for finding superharmonic priors which outperform the Jeffreys prior, with implication of 
the algorithm to time series models. In the second paper, they prove the correspondence 
between the information geometry of a signal filter and a Kähler manifold, and several time 
series models are studied in the Kählerian information geometry. 

 Youssef Bennani, Luc Pronzato and Maria João Rendas propose a new non-parametric 
density estimator from region-censored observations with application in the context of 
population studies, with a maximum entropy estimator that satisfies a set of constraints 
imposing a close fit to the empirical distributions associated with the set of censoring regions.  

 Udo von Toussaint derives an explicit prior distribution for the parameters of multivariate 
linear regression problems in the absence of further prior information, based on geometric 
invariance properties. The derived prior distribution generalizes the already known special 
cases, e.g., 2D plane in three dimensions. 
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 Geert Verdoolaege discusses a new general regression method, called geodesic least squares 
regression (GLS), based on minimization of the Rao geodesic distance on a probabilistic 
manifold. He demonstrates the robustness of the method on synthetic data in the presence of 
significant uncertainty on both the data and the regression model, with application to a 
scaling law in magnetic confinement fusion. 

 Jun Zhang presents an extension to -geometry. It is further shown here that the resulting 
metric and -connections obtained through arbitrary monotone embeddings is a unique 
extension of the -geometric structure.  

 Takashi Takenouchi, Osamu Komori and Shinto Eguchi investigate the basic properties of 
binary classification with a pseudo model based on the Itakura–Saito distance and propose a 
novelmulti-task learning algorithm based on the pseudo model in the framework of the 
ensemble learning method.  

We hope that this vast survey on the geometric structure of information and entropy will motivate 
readers to go further and explore the emerging domain of “Science of Information”. 

“As regards human intelligence, there is not enough noticed that mechanical invention was 

first its essential approach … If we could rid ourselves of all pride, if, to define our species, 

we kept strictly to what the historic and the prehistoric periods show us to be the constant 

characteristic of man and of intelligence, we should say perhaps not Homo sapiens, but 

Homo faber. In short, intelligence, considered in what seems to be its original feature, is the 

faculty of manufacturing artificial objects, especially tools to make tools, and of indefinitely 

varying the manufacture.” 

Henri Bergson, The Creative Evolution, 1907 
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J.J. Thomson and Duhem’s Lagrangian Approaches  
to Thermodynamics  

Stefano Bordoni 

Abstract: In the last decades of the nineteenth century, different attitudes towards mechanics led to 
two main theoretical approaches to thermodynamics: an abstract and phenomenological approach, and 
a very different approach in terms of microscopic models. In reality some intermediate solutions 
were also put forward. Helmholtz and Planck relied on a mere complementarity between mechanical 
and thermal variables in the expressions of state functions, and Oettingen explored the possibility of 
a more demanding symmetry between mechanical and thermal capacities. Planck refused 
microscopic interpretations of heat, whereas Helmholtz made also recourse to a Lagrangian approach 
involving fast hidden motions. J.J. Thomson incorporated the two mechanical attitudes in his 
theoretical framework, and put forward a very general theory for physical and chemical processes. 
He made use of two sets of Lagrangian coordinates that corresponded to two components of kinetic 
energy: alongside macroscopic energy, there was a microscopic energy, which was associated with 
the absolute temperature. Duhem put forward a bold design of unification between physics and 
chemistry, which was based on the two principles of thermodynamics. From the mathematical point 
of view, his thermodynamics or energetics consisted of a Lagrangian generalization of mechanics 
that could potentially describe every kind of irreversible process, explosive chemical reactions 
included. 

Reprinted from Entropy. Cite as: Bordoni, S. J.J. Thomson and Duhem’s Lagrangian Approaches to 
Thermodynamics. Entropy 2014, 16, 5876ï5890. 

1. Introduction 

In the second half of the nineteenth century, the recently emerged thermodynamics underwent a 
process of mathematisation, and new theoretical frameworks were put forward. Moreover a 
widespread philosophical and cosmological debate on the second law also emerged. On the specific 
physical side, two main traditions of research were at stake: the refinement of the kinetic theory of 
gases, and a questionable alliance between mechanical models and statistical procedures, on the one 
hand, and the attempt at recasting thermodynamics in accordance with the mathematical structures 
of Analytical mechanics, on the other. Both research traditions attempted to bridge the gap between 
the mechanical and thermal domains (Some conceptual aspects of the theoretical pathway leading 
from Clausius to Duhem are developed in [1,2]. A detailed mathematical account of the emergence 
of abstract thermodynamics can be found in [3]. For the methodological and philosophical debate 
that stemmed from the second principle of thermodynamics, see [4]). 

James Clerk Maxwell and Ludwig Boltzmann pursued the integration of thermodynamics with 
the kinetic theory of gases and statistics. At the turn of the twentieth century, the alliance between 
microscopic mechanical models and probabilistic laws was successfully applied to the field of 
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electromagnetic radiation [5]. Other scientists relied on a macroscopic and abstract approach in term 
of continuous variables, setting aside specific mechanical models. The second research tradition was 
based on the mathematical and physical concept of potential, and had its roots in Rudolf Clausius 
and William Macquorn Rankine’s researches in the mid-nineteenth century. Nevertheless the 
simplified picture of two traditions of research in thermodynamics overshadows the existence of 
many nuances and different theoretical streams. Different “mechanical theories of heat”, and 
different meanings of the adjective mechanical were on stage. In the abstract approach we can find 
at least three conceptual streams, which corresponded to different attitudes toward mechanics:  

(1). a macroscopic and phenomenological approach,  
(2). a macroscopic approach based on a structural analogy with abstract mechanics, 
(3). a combination of macroscopic and microscopic approaches. 

The third stream represented an attempt to bridge the gulf between the two main traditions. It is 
worth remarking that even Clausius had followed a twofold pathway: a very general mathematical 
approach to thermodynamics in some memoirs, and an attempt at devising kinetic models of gases 
in other memoirs. Some scientists contributed to different streams: Max Planck and Arthur von 
Oettingen contributed to the first and second, Hermann von Helmholtz developed the second and 
third, and Joseph John Thomson was also at ease along the second and third. Pierre Duhem developed 
the second stream in an original way: at first he recast thermochemistry, where the second principle 
of thermodynamics and the concept of free energy were in prominence. Subsequently he attempted 
to set up a mathematical theory for hysteresis and other irreversible processes. In the meantime he 
had developed a generalized Lagrangian theory where geometrical, thermal, and other kinds of 
generalised coordinates were at stake. After some reference to the early developments of the abstract 
pathway, I will focus on J.J. Thomson and Duhem’s Lagrangian approaches. They had different 
attitudes towards a Lagrangian approach to thermodynamics. J.J. Thomson looked upon Lagrange’s 
equations as a powerful language that could unify microphysics and macrophysics, whereas Duhem 
refused any reference to microscopic structures. The latter looked upon Lagrange’s equations as a 
model for a more general mathematical framework that could account for a wide set of physical and 
chemical processes. 

2. The Second Research Tradition 

The first tradition was pursued and refined by Ludwig Boltzmann. He tried to go far beyond 
Maxwell’s microscopic interpretation of equilibrium in rarefied gases: he aimed at clarifying the 
processes leading to equilibrium. In a long paper he published in 1872 he assumed that molecules 
were continuously in motion, and those microscopic undetectable motions gave rise to “well-defined 
laws” at the macroscopic level, which involved the observed average values. A thermodynamic 
theory required therefore two different levels: a microscopic invisible, and a macroscopic visible one. 
Statistics and probability could bridge the gap between the two levels. According to Boltzmann, 
probability did not mean uncertainty: probabilistic laws were ordinary mathematical laws as certain as 
the other mathematical laws. In 1877, in an even longer paper, he stressed the structural similarity 
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between his function , representing the probability of a given state, and the entropy dQ T  in any 
“reversible change of state” [6,7] (Dugas reminded us that Boltzmann’s theoretical representation of 
atoms and molecules evolved over time. In the first volume of his Vorlesungen über Gastheorie 
(1895–1898), we find molecules as “elastic spheres”, and then molecules as “centers of force”, 
whereas in the second volume molecules are represented as “mechanical systems characterized by 
generalized coordinates” [8]). 

With regard to the second tradition and its theoretical roots, it is worth remarking that in 1854 
Clausius had looked upon the second law of thermodynamics as a law of equivalence between 
“transformations,” in order to maintain a sort of symmetry in the axiomatic structure of 
thermodynamics. This formulation of the second law, pivoted on the concept of “equivalence value” 
dQ T , where T  was a function of temperature. From the linguistic and conceptual points of view, 
the two laws of thermodynamics were two principles of the same kind: while the first stated the 
equivalence between heat and work, the second stated the equivalence between mathematically  
well-defined “transformation values”. In the case of “reversible cyclic processes”, the sum or the 
integral vanished, namely / 0dQ T = . A formal analogy between mechanics and thermodynamics 

was thus established. The sum of the “transformation content” [Verwandlungsinhalt] had to vanish 
in pure, “reversible” thermodynamic processes, as well as the sum of mechanical works along a 
closed path had to vanish in non-dissipative mechanics. When the processes were irreversible, there 
was a loss of the transformation content, and the above integral became positive: the initial conditions 
could not be restored, and the transformation was “uncompensated” [9]. 

Another formal development was put forward by the Scottish engineer Rankine in 1855. The 
concept of “Actual energy” became a generalization of the mechanical living force: it included “heat, 
light, electric current”, and so on. The concept of “Potential energy” was extended far beyond 
gravitation, elasticity, electricity and magnetism. It included “chemical affinity of uncombined 
elements”, and “mutual actions of bodies, and parts of bodies”. In general, work was the result of a 
sum of different terms, where every “variation” of a generalized variable was multiplied “by the 
corresponding effect” [10]: 

......W Xdx Ydy Zdz= + + +  (1)

In 1869, the mining engineer François Massieu took the path of a mathematical generalization of 
thermodynamics. After having chosen the volume v and the temperature t as independent variables, 
and after some computations, he arrived at a function ψ  whose differential was an exact differential 
of the same variables. Massieu labeled “characteristic function of the body” the function ψ . The 
most important mathematical and physical step consisted in deriving “all properties dealing with 
thermodynamics” from ψ  and its derivatives. More specifically, the internal energy U  and the 
entropy S  could be expressed in terms of the function ψ : 

2U T
t

∂ψ
∂

=  and S T
t

∂ψψ
∂

= + , or ( )S T
t

∂ ψ
∂

=  and US
T

ψ = −  (2)

He also introduced a second characteristic function nψ  in terms of the two variables t and pressure 
p. Besides U , p , v , Q  and S , even the specific heats at constant pressure or volume, and the 
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coefficient of dilatation at constant pressure or volume could be derived from ψ  and nψ . According 
to Massieu, this “mechanical theory of heat” allowed mathematicians and engineer to “settle a link 
between similar properties of different bodies”. Thermodynamics could rely on a consistent set of 
general and specific laws, and his “characteristic functions” could be looked upon as the 
mathematical and conceptual link between general and specific laws. In Massieu’s theoretical and 
meta-theoretical context, the adjective “mechanical” did not mean microscopic mechanical models 
in the sense of Maxwell and Boltzmann, but a mathematical approach on the track of abstract 
mechanics [11–13]. 

An abstract approach and wide-scope generalizations were also the hallmarks of Josiah Willard 
Gibbs’s researches on thermodynamics, which he published in the years 1875–1878. The American 
scientist put forward three “fundamental” thermodynamic functions: 

tψ η= − , pvχ = + , t pvζ η= − +  (3)

The adjective “fundamental” meant that all “thermal, mechanical, and chemical properties” of a 
physical-chemical system could be derived from them. Under specific conditions, the functions ψ , 
χ , and ζ  led to specific conditions of equilibrium [14] (The modern names and symbols for Gibbs’s 
functions , ,ψ χ ζ  are free energy F U TS= − , enthalpy H U pV= + , and free enthalpy or Gibbs 
free energy G U TS pV= − +  [15,16]). 

In 1880, the young German physicist Max Planck remarked that the theory of elasticity had been 
put forward without any connection with the thermal properties of bodies, and the thermal actions on 
them. He aimed at filling the gap between thermodynamics and the theory of elasticity, and outlined 
a mathematical theory where the mechanics of continuous media merged with thermodynamics. Both 
mechanical work and heat flow could act on the body: under those actions, both the reciprocal of 
density [spezifische Volumen] and temperature could change from ( ; )v T  to ( n; n)v T . In particular 
the geometrical co-ordinates of a point inside the body, and its temperature, underwent a 
transformation in accordance with the equations 

0 0 0; ;x x y y z zξ η ζ= + = + = +  and nT T τ= +  (4)

where 0 0 0, ,x y z  and T were the initial values and , ,ζ η ζ , and τ  the infinitesimal variations. Energy 

depended on τ  and Cauchy’s six strain components. Planck showed that energy, entropy, and elastic 
stresses depended on a combination of mechanical and thermal variables, which were multiplied by 
a combination of mechanical and thermal coefficients. The two elastic constants could be expressed 
in terms of those coefficients [17].  

After two years, the physicist and physiologist Helmholtz put forward a mathematical theory of 
heat pivoted on the concept of “free energy”. Helmholtz labeled ϑ  the absolute temperature, and pα  

the parameters defining the state of the body: they depended neither on each other nor on temperature. 
If Pα  was the external force corresponding to the parameter pα , and P dpα α⋅  the corresponding 
work, then the total external work was dW P dpα α

α
= ⋅ . Provided that U was the internal energy of 

the physical system, S its entropy, and J the mechanical equivalent of heat, the function 
F U J Sϑ= − ⋅ ⋅  played the role of a generalized potential for the forces Pα : 
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.FP
pα

α

∂
∂

= −  (5)

According to Helmholtz, the function F  represented the potential energy in the thermodynamic 
context. The functions U and S could be derived from F  by simple derivation. The function F  also 
represented “the free energy”, namely the component of the internal energy that could be transformed 
into every kind of work. If U represented the total internal energy, the difference between U and F , 
namely J Sϑ⋅ ⋅ , represented “the bound energy”, namely the energy stored in the system as a sort of 
entropic heat [18] (Helmholtz did not seem aware of Massieu’s result, which had probably not crossed 
the France borderlines). 

In 1884 Helmholtz attempted to give a microscopic representation of heat, but without any 
recourse to specific mechanical models. He introduced a global microscopic Lagrangian coordinate, 
corresponding to a fast, hidden motion, and a set of macroscopic coordinates, corresponding to slow, 
visible motions. The energy associated with the first coordinate corresponded to thermal energy, 
whereas the energy associated with the others corresponded to external thermodynamic work [19]. 

In 1885 Oettingen undertook an even more ambitious design: a formal theory, where mechanical 
work and heat flows represented the starting point of a dual mathematical structure. The whole body 
of knowledge of thermodynamics could be based on four “main variables” and two kinds of energy. 
Temperature and entropy corresponded to “the actual energy [actuelle Energie]” Q, or in other words 
the exchanged heat. Volume and pressure corresponded to “the potential energy S”, namely the 
mechanical energy that actually appeared under the form of mechanical work. In brief 

dQ t du= ⋅ , dS p dv= − ⋅  (6)

where t was “the absolute temperature”, u  “the entropy or Adiabate”, p  the pressure, and v  “the 
specific volume”. He insisted on the physical and linguistic symmetry between thermal and 
mechanical variables and functions. He put forward a list of “energy coefficients” or “capacities”: 
both “heat capacities [Wärmecapacitäten]” and “work capacities [Arbeitscapacitäten]” were at stake. 
In particular, “thermal heat capacities” and “thermal work capacities” [20] corresponded to  

v
v

dQ C
dt

= ,   p
p

dQ C
dt

= ;   u
u

dS
dt

= Φ ,   .p
p

dS
dt

= Φ  (7)

 
3. J.J. Thomson’s “Applications of Dynamics” 

In 1888 Joseph John Thomson published a book, Applications of Dynamics to physics and 
Chemistry, where he put forward a very general approach to physical and chemical problems. From 
the outset he remarked that physicists had at their disposal two different methods of establishing “the 
connection between two different phenomena”: a detailed mechanical description of the physical 
system, or a more general description, “which does not require a detailed knowledge of the 
mechanism required to produce the phenomena”. The second method depended on “the properties of 
a single function of quantities fixing the state of the system”, and had already been “enunciated by 
M. Massieu and Prof. Willard Gibbs for thermodynamic phenomena”. The structure of Lagrange’s 
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equations was suitable for dealing with a set of generalized coordinates iq , and generalized forces 

iQ ; L T V= −  was the difference between kinetic and potential energy. Temperature or a 

distribution of electricity could be interpreted as “coordinates” in a very general sense. Thomson 
insisted on this opportunity: “any variable quantities” could be considered as coordinates if the 
corresponding Lagrangian function could be expressed “in terms of them and their first differential  
coefficients” [21]. 

He applied the method to those cases “in which we have to consider the effects of temperature 
upon the properties of bodies”: temperature was a measure of “the mean energy due to the translatory 
motion of the molecules of the gas”. In the general structure  

1,......,i
i i

d dL dL Q i n
dt dq dq

− = =  (8)

he introduced kinetic terms of the kind 2(1/ 2)K u , where u  was a Lagrangian coordinate “helping 
to fix the position or configuration of a molecule”. There was “an essential difference” between this 
kind of coordinates and those “which fix the geometrical, strain, electric, and magnetic configuration 
of the system”. If the latter could be labelled “controllable coordinates” because they were “entirely 
under our control”, the former were much more elusive and “individually” unattainable. Only “the 
average value of certain functions of a large number of these coordinates” was actually observable 
or measurable: he labeled them “unconstrainable” coordinates. He could not exclude that the above 
kinetic terms depended on some “controllable coordinate φ ”, namely 

2 21 1....... ( ) ( ) ' .......
2 2

K u f uu uφ+ = +  (9)

where “the coefficients ( ) nuu  do not involve φ ”. On the contrary, the temperature , which was 
proportional to those kinetic expressions, did not involve “controllable coordinates” [21]. 

Thomson found convenient to “divide the kinetic energy of a system into two parts”: the first part 
uT  depended on “the motion of unconstrainable coordinates”, and was proportional to the absolute 

temperature , whereas the second part cT  depended on the motion of “controllable coordinates”. 
He stressed that cT  corresponded to what Helmholtz had called “die freie Energie [free energy]”. He 
also assumed that the generalized velocities u  and ϕ  could not mix, and in particular  

0udT
dφ

=  (10)

As already pointed pout, uT  might contain φ , and Lagrange’s equations for the coordinates φ  

was 

( ) ( )c u c ud T T V d T T Vd dL dL d
dt d d dt d dφ φ φ φ

+ − + −Φ = − = − c u c udT dT dT dTd d dV
dt d dt d d d dφ φ φ φ φ

= + − − +  (11)

where Φ  was “the external force of this type acting on the system”. Taking into account the above 
mentioned assumptions, the equation could be written [21] as 
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c c udT dT dTd dV
dt d d d dφ φ φ φ

Φ = − − +  (12)

The last equation was the starting point of a mathematical derivation which led to a differential 
relationship between the invisible kinetic energy uT  and the applied forces Φ , and then between heat 

fluxes and Φ . In the end, simple relationships between thermal and mechanical effects in elastic 
bodies could be derived. The first step consisted in computing  

2 21 1( ) ( ) n ....... n( ) ( ) n .......
2 2

udT d f uu u f uu u
d d

φ φ
φ φ

= + = + =

21 n( ) n( )( ) ( ) n .......
2 ( ) ( ) u

f ff uu u T
f f

φ φφ
φ φ

+ =  
(13)

As a consequence, Equation (l) became 

n( )
( )

c c
u

dT dTd f dVT
dt d d f d

φ
φ φ φ φ

Φ = − − +  (14)

When no purely mechanical transformation took place, and only the energy depending on 
“uncontrollable” coordinates could change, the last equation yielded 

n( )
( )u

d f
dT f

φ
φ

Φ = −  (15)

This was the second equation involving the ratio n( ) / ( )f fφ φ : the comparison between the two 
equations gives [21] 

1 u

u u

dTd
dT T dφ

Φ− =  or u
u

u

dT dT
d dTφ

Φ= −  (16)

Now a flux of heat Qδ  was called into play, and the conservation of energy required that  

c uQ T T Vδ δφ δ δ δ+ Φ ⋅ = + +  (17)

The term Vδ  depended only on δφ , and therefore 

dVV
d

δ δφ
φ

=  (18)

whereas the term cTδ  required some computations, which led to 

c c
c

dT dTdT
dt d d

δ δφ
φ φ

= −  (19)

The expression corresponding to the conservation of energy thus became 

c c
u

dT dTd dVQ T
dt d d d

δ δφ δφ δ δφ
φ φ φ

= − − Φ⋅ + +  (20)

Equation (l) offered an expression for the generalized forces Φ , which allowed Thomson [21] to 
simplify the expression for Qδ : 
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c c c c u
u

u
u

dT dT dT dT dTd d dV dVQ T
dt d d dt d d d d d

dT T
d

δ δφ δφ δ δφ
φ φ φ φ φ φ φ

δφ δ
φ

= − − − − + ⋅ + + =

= ⋅ +
 (21)

Now Equation (p) was called into play, and therefore 

u u
u const

dQ T T
dT φ

δ δφ δ
=

Φ= − ⋅ +  (22)

When he took into account isothermal transformations, he assumed that “the quantity of  
work communicated to the system” was “just sufficient to prevent uT  from changing”, where uT  was 

“proportional to the absolute temperature . As a consequence, 

u
u const

dQ T
dT φ

δ δφ
=

Φ= − ⋅   

u
uconst const

dQ dT
d dTθ φφ = =

Φ= −       or      
constconst

dQ d
d d φθ

θ
φ θ ==

Φ= −  
(23)

Thomson stressed the importance of the last equation, which linked the dependence of heat fluxes 
on mechanical coordinates to the dependence of external forces on temperature. A deep connection 
between thermal and mechanical effects was at stake. He made use of this equation in order to tackle 
“the relations between heat and strain”, and in particular the “effects produced by the variation of the 
coefficients of elasticity m  and n  with temperature” [21] (In 1845 George Gabriel Stokes had 
introduced two distinct kinds of elasticity, “one for restoration of volume and one for restoration of 
shape” [22,23]). 

The Greek letters , ,α β γ  corresponded to “the components parallel to the axes x, y, z of the 
displacements of any small portion of the body”. Six Latin letters corresponded to longitudinal and 
transverse strains: 

, , ,d d de f g
dx dy dz
α β γ= = = , ,d d d d d da b c

dy dz dz dx dx dy
γ β α γ β α= + = + = +  (24)

He assumed that Φ  corresponded to “a stress of type e”, and therefore 

( ) ( )m e f g n e f gΦ = + + + − − ( ) ( )d dm dne f g e f g
d d dθ θ θ
Φ = + + + − −  (25)

What had been labeled φ  in Equation (w) corresponded now to the coordinate e , and Qδ  
corresponded to the amount of heat which had to be supplied to the unit volume of a bar “to keep its 
temperature from changing when e  is increased by eδ ” [21]: 
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( ) ( )dQ d dm dne f g e f g
de d d d

θ θ
θ θ θ
Φ= − = − + + + − −  or 

( ) ( )dm dnQ e f g e f g e
d d

δ θδ
θ θ

= − + + + − −  
(26)

If the coefficients of elasticity decreased as the temperature increased ( / 0dm d <  and 
/ 0dn d < ) then the equation showed that 0Qδ > : a given amount of heat had to be supplied in 

order “to keep the temperature of a bar constant when it is lengthened”. In other words, “a bar will 
cool when it is extended”, if no heat is supplied from outside.  

In the case of twist, Φ  represented “a couple tending to twist the bar about the axis of x”, and a  
was the corresponding twist: 

naΦ = , 
d dn a
d d
Φ =  (27)

The amount of heat that assured the temperature to be preserved was 

dnQ a
d

δ δ= −  (28)

The physical interpretation was not different from the previous one: when a rod is twisted, “it will 
cool if left to itself”, provided that “the coefficient of rigidity diminishes as the temperature 
increases”, which is what usually happens (Thomson reminded the readers that William Thomson 
had first obtained those results “by means of the Second Law of thermodynamics” [21]). 

4. Duhem’s “General Equations” 

In 1891, Pierre Duhem began to outline a systematic design of mathematisation and generalization 
of thermodynamics. He took into account a system whose elements had the same temperature: the 
state of the system could be completely specified by its temperature ϑ  and n independent coordinates 

, , …, . He then introduced some “external forces”, which depended on , , …,  and ϑ , and 
held the system in equilibrium. At the thermodynamic equilibrium, a series of equations of the kind 

0A B∂ ∂
∂β ∂α

− =  (29)

could be derived. The equations suggested that “a uniform, finite, and continuous function 
, ,..., ,F α β λ ϑ( )  of n + 1 coordinates , , …, , and ϑ  does exist”. In other words, apart from Θ , 

which was “independent of the function F ”, generalized forces could be written as the components of 
F  gradient: 

( ), ,..., ,A F∂ α β λ ϑ
∂α

= , ( ), ,..., ,B F∂ α β λ ϑ
∂β

= , … ( ), ,..., ,L F∂ α β λ ϑ
∂λ

=  (30)

The function F  was nothing else but Helmholtz’s free energy of Gibbs’ first potential [24]. 
In 1892 Duhem put forward Lagrange’s equations for a physical system at the thermodynamic 

equilibrium. When 0dQ = , 
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, ..., ...,
' '

d T T U d T T UE A E L
dt dt

∂ ∂ ∂ ∂ ∂ ∂
∂α ∂α ∂α ∂λ ∂λ ∂λ

− + = − + =  (31)

where T  was the kinetic energy, U  the internal energy, and E  the mechanical equivalent of heat. 
In 1894 he generalized the equations, and introduced a perturbation, which represented a source of 
irreversibility for the physical system: 

' , ..., ..., '
' '

d T T F d T T FA f L f
dt dtα λ

∂ ∂ ∂ ∂ ∂ ∂
∂α ∂α ∂α ∂λ ∂λ ∂λ

− + = + − + = +  (32)

The new functions , ,...,f f fα β λ  represented “passive resistances to be overcome by the system”, 
and depended on the coordinates , , …, , ϑ , their time derivatives ', ',..., 'α β λ , and time t. 
Equilibrium was perturbed by physical or chemical actions that represented the generalization of 
mechanical viscosity [25,26]. 

In the meantime Duhem was committed to updating thermochemistry. In 1893 he focused on 
experiments performed at high temperatures, and in particular the phenomenon of “false 
equilibrium”. Thermodynamics forbade some transformations, and they did not really happen, but 
sometimes even permitted transformations did not take place. Duhem qualified the first case as “true 
equilibrium”, and the latter as “false equilibrium”. The concept of “false” equilibrium allowed 
Duhem to interpret chemical reactions that were associated with “a powerful release of heat” or 
explosions. When mixtures of hydrogen and oxygen, or hydrogen and chlorine, reached their “true” 
equilibrium, namely water and muriatic acid, they released such a great amount of heat as to trigger 
off an explosion. In Duhem’s theoretical framework, an explosion was therefore a passage “from a 
state of false equilibrium to a state of true equilibrium”, where “a remarkable amount of heat” was 
released [27]. 

From 1894 onwards he published a series of papers dealing with mechanical and magnetic 
hysteresis, and other kinds of physical and chemical irreversible transformations. He started from a 
simplified physical system defined by a temperature T and a single “normal variable x”, and applied 
to it “the classic propositions of thermodynamics”. The condition of equilibrium under an external 
force X was ( , ) /X x T x∂ ∂= F . If the differentiation of the external force required in general that 

2 2

2

( , ) ( , )F x T F x TdX dx dT
x x T

∂ ∂
∂ ∂ ∂

= +  (33)

a more general expression  
2 2

2

( , ) ( , ) ( , , ) | |F x T F x TdX dx dT f x T X dx
x x T

∂ ∂
∂ ∂ ∂

= + + ⋅  (34)

was required in order to describe the presence of permanent deformations. The function ( , , )f x T X  
was an unspecified “uniform and continuous function of the three variables , ,x T X ”. It was the 
existence of a term depending on | |dx  that assured that “a continuous series of states of equilibrium 
of the system is not, in general, a reversible transformation”. The mathematical model became 
sensitive to the direction of transformations. At that stage, Duhem confined himself to isothermal 
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transformations, for he was interested mainly in mechanical deformations. The simplified equation 
yielded [28] 

2

2

( , ) ( , , ) | |F x TdX dx f x T X dx
x

∂
∂

= + ⋅  (35)

He assumed the existence of a new kind of closed cycle, a cycle of hysteresis, which was the 
fundamental entity of the new thermodynamics of permanent, irreversible transformations. When a 
force dX was applied to the physical system, and then applied in the opposite direction, the sum of 
forces vanished, but the sum of the corresponding strains 1dx  and 2dx  did not. According to the 

simplified equation, 
2 2 2

2
1 1

( , )0 ( , , ) | |k k
k k

F x TdX dX dx f x T X dx
x

∂
∂ = =

= − = +  or 
( )2 2

2
1 1

2

, ,
| |

( , )k k
k k

f x T X
dx dx

F x T
x

∂
∂

= =

= −  
(36)

The physical system did not return to its initial conditions: it experienced an irreversible strain. 
Duhem made use of the non-simplified equation in order to describe simple mechanical systems: “a 
homogeneous cylinder submitted to a traction”, or “torsion”, or “flexion”. Other kinds of permanent 
deformations corresponded to processes like quenching. If traction, torsion and flexion represented 
the mechanical side, quenching represented the thermal side of Duhem’s theory of permanent 
deformations [28].  

In 1896, he put forward a further generalization of his Lagrangian equations, which relied on the 
structural analogy between chemical “false” equilibrium and mechanical “friction”. From the 
mathematical point of view, the condition of unstable equilibrium that preceded an explosive 
chemical reaction was not so different from the equilibrium experienced by a body at rest on a rough 
inclined plane when the tilt angle was slowly increased. Only after having crossed a critical value of 
the inclination, the body suddenly slid down. The new equations involved a set of functions 

, ,......,a b lg g g , and terms of the kind ag a a′ ′⋅  that represented the generalization of static friction: 

' '' , ..., ..., '
' ' ' '

d T T F d T T FA f g L f g
dt dtα α λ λ

∂ ∂ ∂ α ∂ ∂ ∂ λ
∂α ∂α ∂α α ∂λ ∂λ ∂λ λ

− + = + + − + = + +  (37)

The generalized frictional terms depended on generalized coordinates, velocities, and forces. 
Differently from the “viscous” forces, the new terms did not vanish when the velocities vanished: on 
the contrary, they tended to the limiting functions , ,......,α β λγ γ γ , which depended only on 

coordinates and forces. In this case, every equation gave rise to two different sets of forces that 
corresponded to two thresholds for the physical-chemical system [29]: 

' , ..., ..., 'A Lα λγ γ± ±  (38)

Duhem set up a general and pliable mathematical structure that could be further widened in order 
to account for phenomena of increasing complexity. When he took into account chemical false 
equilibrium and explosions, he dropped the traditional “inertial” Lagrangian terms. After having 
widened the scope and the mathematical structure of traditional mechanics, he disregarded the 
original component of that structure, and focused on the complementary terms, which corresponded 
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to a sort of complementary mechanics. It was a chemical mechanics or a new kind of mechanics 
suitable for chemical reactions. The thermodynamic potential H F PV= +  (Duhem’s potential H  
corresponded to Massieu’s potential 'ϕ  and Gibb’s potential ζ ) was the suitable potential for 
physical-chemical processes taking place at constant pressure, and the general equations were 
reduced to a mathematical structure [29] of the kind 

( , , ) '( , , , ') ( , , , ') 0
'

H P T f P T g P T∂ α αα α α α
∂α α

− − =  (39)

Duhem had added dissipative terms to Lagrange’s equations in order to generalize analytical 
mechanics. In the new mathematical structure, no inertial terms appeared, while dissipative terms 
were in prominence: traditional Analytical mechanics and Chemistry represented two opposite poles 
in the new formal framework.  

The equation described a chemical mixture: the three coordinates represented the degree of 
combination , “a uniform and constant pressure P ”, and “a variable temperature T ”. The time 
derivative  represented “the velocity of transformation of the system”, or in other words, the velocity 
of the chemical reaction. Some approximations allowed Duhem to derive that velocity, which was in 
some way the solution of the mathematical procedure. He assumed that ( , , , ')g P Tα α  did not depend 
on , 

( , , , n) ( , , )g P T P Tα α γ α≈  (40)

and ( , , , ')f P Tα α  was a linear function of 'α :  

( , , , ') ( , , ) 'f P T P Tα α ϕ α α≈ ⋅  (41)

The simplified equation of motion  

( , , ) ( , , ) ' ( , , ) 0H P T P T P T∂ α ϕ α α γ α
∂α

− ⋅ ± =  (42)

yielded the “velocity” of reaction [29] 

( , , ) ( , , )
'

( , , )

H P T P T

P T

∂ α γ α
∂αα

ϕ α

±
=  (43)

Duhem’s complementary or chemical mechanics led to results that were paradoxical from the 
point of view of traditional mechanics but consistent with explosive chemical reactions. When the 
viscous term vanished, the velocity of reaction became infinite. Pure mechanics and chemical 
reactions represented the opposite poles in Duhem’s generalized mechanics, which could encompass 
physics and chemistry in a very general mathematical structure. 

5. Concluding Remarks 

In the context of an abstract approach to thermodynamics, late nineteenth-century Lagrangian 
theories represented one of the most interesting theoretical streams. J.J. Thomson put forward a bold 
mathematical framework that could host microscopic motions, macroscopic stresses, and 
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macroscopic heat fluxes. Duhem put forward an even bolder mathematical framework where 
traditional Lagrangian terms stood alongside dissipative terms that could account for irreversible 
processes. The concept of motion underwent a deep transformation: it corresponded to any variation 
of a Lagrangian coordinate. It does not seem that the two authors were influenced by one another. 
Duhem put forward the first historical reconstruction of the emergence of an abstract approach to 
thermodynamics. In general he acknowledged the scientific contributions of other scholars: he 
explicitly mentioned Massieu, Gibbs, Helmholtz, and Oettingen, but not J.J. Thomson. This is a weak 
clue about the non-influence of Thomson on Duhem, but stronger evidence is given by the fact that 
Duhem sharply opposed any microscopic approach. It is definitely more evident that Duhem could 
not influence Thomson because Duhem’s systematic research programme was put forward after 
1888.  

Today we know that J.J. Thomson’s approach did not leave disciples whereas Duhem is 
acknowledged as the creator of modern phenomenological thermodynamics or the theory of 
continuous media based on thermodynamics (For the role played by Duhem in the emergence of 
twentieth-century thermodynamics of nolinear irreversible processes, see [30]. He was the first 
scholar to put forward a general thermodynamic framework for widespread dissipative processes such 
as hysteresis and explosions.  
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On Shannon’s Formula and Hartley’s Rule: Beyond the
Mathematical Coincidence
Olivier Rioul and José Carlos Magossi

Abstract: In the information theory community, the following “historical” statements are generally

well accepted: (1) Hartley did put forth his rule twenty years before Shannon; (2) Shannon’s formula

as a fundamental tradeoff between transmission rate, bandwidth, and signal-to-noise ratio came

out unexpected in 1948; (3) Hartley’s rule is inexact while Shannon’s formula is characteristic

of the additive white Gaussian noise channel; (4) Hartley’s rule is an imprecise relation that is

not an appropriate formula for the capacity of a communication channel. We show that all these

four statements are somewhat wrong. In fact, a careful calculation shows that “Hartley’s rule”

in fact coincides with Shannon’s formula. We explain this mathematical coincidence by deriving

the necessary and sufficient conditions on an additive noise channel such that its capacity is given

by Shannon’s formula and construct a sequence of such channels that makes the link between the

uniform (Hartley) and Gaussian (Shannon) channels.

Reprinted from Entropy. Cite as: Rioul, O.; Magossi, J.C. On Shannon’s Formula and Hartley’s

Rule: Beyond the Mathematical Coincidence. Entropy 2014, 16, 4892–4910.

1. Introduction

As researchers in information theory, we all know that the milestone event that founded our field is

Shannon’s publication of his seminal 1948 paper [1] that created a completely new branch of applied

mathematics and called it to immediate worldwide attention. What has rapidly become the emblematic

classical expression of the theory is Shannon’s formula [1,2]

C = 1
2
log2

(
1 +

P

N

)
(1)

for the information capacity of a communication channel with signal-to-noise ratio P/N .

Hereafter we shall always express information capacity in binary units (bits) per sample. Shannon’s

well-known original formulation was in bits per second:

C = W log2

(
1 +

P

N

)
bits/s.

The difference between this formula and (1) is essentially the content of the sampling theorem, often

referred to as Shannon’s theorem, that the number of independent samples that can be put through

a channel of bandwidth W hertz is 2W samples per second. We shall not discuss here whether

the sampling theorem should be attributed to Shannon or to other authors that predate him in this

discovery; see e.g., [3] for a recent account and extensive study on this subject.

The classical derivation of (1) was done in [1] as an application of Shannon’s coding theorem

for a memoryless channel, which states that the best coding procedure for reliable transmission
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achieves a maximal rate of C = maxX I(X;Y ) bits per sample, where X is the channel input with

average power P = E(X2) and Y = X + Z is the channel output. Here Z denotes the additive

Gaussian random variable (independent of X) that models the communication noise with power

N = E(Z2). By expanding mutual information I(X;Y ) = h(Y ) − h(Y |X) as a difference of

differential entropies, noting that h(Y |X) = h(Z) = log2
√
2πeN is constant, and choosing X

Gaussian so as to maximize h(Y ), Shannon arrived at his formula C = maxX h(Y ) − h(Z) =

log2
√

2πe(P +N)− log2
√
2πeN = 1

2
log2(1 + P/N).

Formula (1) is also known as the Shannon–Hartley formula, and the channel coding theorem

stating that (1) is the maximum rate at which information can be transmitted reliably over a noisy

communication channel is often referred to as the Shannon–Hartley theorem (see, e.g., [4]). The

reason for which Hartley’s name is associated to the theorem is commonly justified by the so-called

Hartley’s law, which is described as follows:

During 1928, Hartley formulated a way to quantify information and its line rate (also

known as data signalling rate R bits per second) [5]. This method, later known as Hartley’s

law, became an important precursor for Shannon’s more sophisticated notion of channel

capacity. (...)

Hartley argued that the maximum number of distinguishable pulse levels that can

be transmitted and received reliably over a communications channel is limited by the

dynamic range of the signal amplitude and the precision with which the receiver can

distinguish amplitude levels. Specifically, if the amplitude of the transmitted signal is

restricted to the range of [−A,+A] volts, and the precision of the receiver is ±Δ volts,

then the maximum number of distinct pulses M is given by M = 1 + A
Δ

. By taking

information per pulse in bit/pulse to be the base-2-logarithm of the number of distinct

messages M that could be sent, Hartley [5] constructed a measure of the line rate R as

R = log2(M) [bits per symbol].

—Wikipedia [4]

In other words, within a noise amplitude limited by Δ, by taking regularly spaced input symbol values

in the range [−A,A] with step 2Δ:

−A,−A+ 2Δ, . . . , A− 2Δ, A,

one can achieve a maximum total number of M = A/Δ + 1 possible distinguishable values. This

holds in the most favorable case where A/Δ is an integer, where the “+1” is due to the sample

values at the boundaries—otherwise, M would be the integer part of A/Δ+ 1. Therefore, error-free

communication is achieved with at most

C ′ = log2

(
1 +

A

Δ

)
(2)

bits per sample. This equation strikingly resembles (1). Of course, the “signal-to-noise ratio” A/Δ

is a ratio of amplitudes, not of powers, hence should not be confused with the usual definition P/N ;
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accordingly, the factor 1/2 in Formula (1) is missing in (2). Also, (2) is only considered as an

approximation of (1):

Hartley’s rate result can be viewed as the capacity of an errorless M -ary channel (...).

But such an errorless channel is an idealization, and if M is chosen small enough to make

the noisy channel nearly errorless, the result is necessarily less than the Shannon capacity

of the noisy channel (...), which is the Hartley–Shannon result that followed later [in

1948].

—Wikipedia [4]

In the information theory community, the following “historical” statements are generally well accepted:

(1) Hartley did put forth his rule (2) twenty years before Shannon.

(2) The fundamental tradeoff (1) between transmission rate, bandwidth, and signal-to-noise ratio
came out unexpected in 1948: the time was not even ripe for this breakthrough.

(3) Hartley’s rule is inexact while Shannon’s formula is characteristic of the additive white Gaussian
noise (AWGN) channel (C ′ �= C).

(4) Hartley’s rule is an imprecise relation between signal magnitude, receiver accuracy and
transmission rate that is not an appropriate formula for the capacity of a communication
channel.

In this article, we show that all these four statements are somewhat wrong. The organisation is

as follows. Sections 2–5 will each defend the opposite view of statements (1)–(4) correspondingly.

Section 6 concludes through a detailed mathematical analysis.

2. Hartley’s Rule is not Hartley’s

Hartley [5] was the first researcher to try to formulate a theory of the transmission of information.

Apart from stating explicitly that the amount of transmitted information is proportional to the

transmission bandwidth, he showed that the number M of possible alternatives from a message

source over given a time interval grows exponentially with the duration, suggesting a definition of

information as the logarithm logM . However, as Shannon recalled in 1984:

I started with information theory, inspired by Hartley’s paper, which was a good paper,

but it did not take account of things like noise and best encoding and probabilistic aspects.

—Claude Elwood Shannon [6]

Indeed, no mention of signal vs. noise, or of amplitude limitation A or Δ was ever made in Hartley’s

paper [5]. One may then wonder how (2) was coined as Hartley’s law.

The oldest reference that attributes (2) to Hartley—and incidentally cited in the Wikipedia

page [4]—seems to be the classical 1965 textbook of Wozencraft and Jacobs, most notably its

introduction chapter:
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(...) in 1928, Hartley [5] reasoned that Nyquist’s result, when coupled with a limitation

on the accuracy of signal reception, implied a restriction on the amount of data that can be

communicated reliably over a physical channel. Hartley’s argument may be summarized

as follows. If we assume that (1) the amplitude of a transmitted pulse is confined to the

voltage range [−A,A] and (2) the receiver can estimate a transmitted amplitude reliably

only to an accuracy of ±Δ volts, then, as illustrated in [the] Figure (...), the maximum

number of pulse amplitudes distinguishable at the receiver is (1 + A/Δ). (...)

[in the Figure’s legend:] Hartley considered received pulse amplitudes to be

distinguishable only if they lie in different zones of width 2Δ (...)

Hartley’s formulation exhibits a simple but somewhat inexact interrelation among

(...) the maximum signal magnitude A, the receiver accuracy Δ, and the allowable

number of message alternatives. Communication theory is intimately concerned with the

determination of more precise interrelations of this sort.

—John M. Wozencraft; Irwin Mark Jacobs [7]

The textbook was highly regarded and still widely used today. Its introductive text has become famous

to many researchers in the field of communication theory and has had a tremendous impact. This

would explain why (2) is now widely known as Hartley’s capacity law.

One may then wonder whether Wozencraft and Jacobs have found such a result themselves while

attributing it to Hartley or whether it was inspired from other researchers. We found that the answer is

probably in very first tutorial article in information theory that was ever published by E. Colin Cherry

in 1951:

Although not explicitly stated in this form in his paper, Hartley [5] has implied that the

quantity of information which can be transmitted in a frequency band of width B and time

T is proportional to the product: 2BT logM , where M is the number of “distinguishable

amplitude levels.” [...] He approximates the waveform by a series of steps, each one

representing a selection of an amplitude level. [...] For example, consider a waveform to

be traced out on a rectangular grid [...], the horizontal mesh-width representing units of

time (equal to 1/2B in order to give the necessary 2BT data in a time T ), and the vertical

the “smallest distinguishable” amplitude change; in practice this smallest step may be

taken to equal the noise level n. Then the quantity of information transmitted may be

shown to be proportional to BT log(1 + a/n) where a is the maximum signal amplitude,

an expression given by Tuller [8], being based upon Hartley’s definition of information.

—E. Colin Cherry [9]

Cherry attributes (2) to an implicit derivation of Hartley but cites the explicit derivation of Tuller [8].

The next section investigates the contribution of Tuller and others.
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3. Independent 1948 Derivations of Shannon’s Formula

In the introduction to his classic textbook, Robert McEliece wrote:

With many profound scientific discoveries (for example Einstein’s discovery in 1905

of the special theory of relativity) it is possible with the aid of hindsight to see that the

times were ripe for a breakthrough. Not so with information theory. While of course

Shannon was not working in the vacuum in the 1940’s, his results were so breathtakingly

original that even the communication specialists of the day were at a loss to understand

their significance.

—Robert McEliece [10]

One can hardly disagree with this statement when one sees the power and generality of Shannon’s

results. Just to mention a few examples: the introduction of the formal architecture of communication

systems (Shannon’s paradigm) with explicit distinction between source, channel and destination; the

emphasis on digital representation to make the chance of error as small as desired; the consideration

of codes in high dimensions; and the use of probabilistic models for the signal as well as for the

noise, via information theoretic tools like entropy and mutual information. Shannon’s ideas were

revolutionary, in keeping with J.R. Pierce’s famous quote:

In the end, [1] and the book based on it came as a bomb, and something of a

delayed-action bomb.

—John R. Pierce [11]

Indeed, [1] being so deep and profound, did not have an immediate impact. As Robert Gallager recalls:

(...) two important papers (...) were almost concurrent to [1].

The first subsequent paper was [12], whose coauthors were B. R. Oliver and J. R.

Pierce. This is a very simple paper compared to [1], but it had a tremendous impact by

clarifying a major advantage of digital communication. (...) It is probable that this paper

had a greater impact on actual communication practice at the time than [1].

The second major paper written at about the same time as [1] is [2]. This is a more

tutorial amplification of the AWGN channel results of [1]. (...) This was the paper that

introduced many communication researchers to the ideas of information theory.

—Robert Gallager [13]

In [12], Shannon’s Formula (1) was used without explicit reference to the Gaussian nature of the

added white noise, as the capacity of an “ideal system”. On the other hand, [2] was devoted to a

geometric proof of Formula (1).

It appears, therefore, that Shannon’s Formula (1) was the emblematic result that impacted

communication specialists at the time, as expressing the correct tradeoff between transmission
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rate, bandwidth, and signal-to-noise ratio. It is one Shannon’s result that is the best known and

understood among communications engineers. As Verdú has noticed in [14], only a few months

after the publication of [2], M. Golay [15] referred to (1) as “the now classical expression for the

information reception capacity of a channel.” In the following years, finding “codes to reach the

promised land (1)” [16] became the “holy grail of information theory” [14].

As far as (1) is concerned, Shannon, after the completion of [1], acknowledged other works:

Formulas similar to (1) for the white noise case have been developed independently by

several other writers, although with somewhat different interpretations. We may mention

the work of N. Wiener [17], W. G. Tuller [8], and H. Sullivan in this connection.

—Claude Elwood Shannon [1]

Unfortunately, Shannon gave no specific reference to H. Sullivan. S. Verdú cited many more

contributions during the same year of 1948:

By 1948 the need for a theory of communication encompassing the fundamental tradeoffs

of transmission rate, reliability, bandwidth, and signal-to-noise ratio was recognized

by various researchers. Several theories and principles were put forth in the space of

a few months by A. Clavier [18], C. Earp [19], S. Goldman [20], J. Laplume [21], C.

Shannon [1], W. Tuller [8], and N. Wiener [17]. One of those theories would prove to be

everlasting.

—Sergio Verdú [14]

Lundheim reviewed some of these independent discoveries and concludes:

(...) this result [Shannon’s formula] was discovered independently by several researchers,

and serves as an illustration of a scientific concept whose time had come.

—Lars Lundheim [22]

This can be contrasted to the above citation of R. McEliece.

Wiener’s independent derivation [17] of Shannon’s formula is certainly the one that is closest to

Shannon’s. He also used probabilistic arguments, logarithmic measures (in base 2) and differential

entropy, the latter choice being done “mak[ing] use of a personal communication of J. von Neumann”.

Wiener considers “the information gained by fixing one or more variables in a problem”, e.g., fixing

Y = X+Z where X and Z are independent Gaussian. By computing the difference h(X)−h(X|Y ),

he concludes that “the excess of information concerning X when we know Y is” (1). Unlike Shannon,

however, his definition of information is not based on any precise communication problem. There is

also no relation to Hartley’s argument leading to (2).

Concerning the idea of information theory, Wiener wrote in his book Cybernetics:
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This idea occurred at about the same time to several writers, among them the statistician

R. A. Fisher, Dr. Shannon of the Bell Telephone Laboratories, and the author. Fisher’s

motive in studying this subject is to be found in classical statistical theory; that of Shannon

in the problem of coding information; and that of the author in the problem of noise

and message in electrical filters. Let it be remarked parenthetically that some of my

speculations in this direction attach themselves to the earlier work of Kolmogoroff in

Russia, although a considerable part of my work was done before my attention was called

to the work of the Russian school.

—Norbert Wiener[17]

It is likely that it is the importance of Shannon’s formula for which he has made an independent

derivation that lead him to declare:

Information theory has been identified in the public mind to denote the theory of

information by bits, as developed by C. E. Shannon and myself.

—Norbert Wiener[23]

J.R. Pierce comments:

Wiener’s head was full of his own work and an independent derivation of (1) (...)

Competent people have told me that Wiener, under the misapprehension that he already

knew what Shannon had done, never actually found out.

—John R. Pierce [11]

All other independent discoveries in the year of 1948 were in fact essentially what is now referred

to Hartley’s rule leading to (2). Among these, the first published work in April 1948 was by the French

engineer Jacques Laplume [21] from Thompson-Houston. He essentially gives the usual derivation

that gives (2) for a signal amplitude range [0, A]. C. Earp’s publication [19] in June 1948 also makes a

similar derivation of (2) where the signal-to-noise amplitude ratio is expressed as a “root-mean-square

ratio” for the “step modulation”, which is essentially pulse-code modulation. In a footnote, Earp

claims that his paper “was written in original form in October, 1946”. In an another footnote at the

first page, he mentions that

A symposium on “Recent Advances in the Theory of Communication” was presented

at the November 12, 1947, meeting of the New York section of the Institute of Radio

Engineers. Four papers were presented by A. G. Clavier (...); B.D. Loughlin (...); and J. R.

Pierce and C. E. Shannon, both of Bell Telephone Laboratories.

—C.W. Earp [19]

André Clavier is another French engineer from LMT laboratories (subsidiary of ITT Corporation),

who published “Evaluation of transmission efficiency according to Hartley’s expression of information

content” [18] in December 1948. He again makes a similar derivation of (2) as Earp’s, expressed with

root-mean-square values. As Lundheim notes [22],“it is, perhaps, strange that neither Shannon nor
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Clavier have mutual references in their works, since both [2] and [18] were orally presented at the

same meeting (...) and printed more than a year afterwards.”

In May 1948, Stanford Goldman again re-derived (2), acknowledging that the equation “has been

derived independently by many people, among them W. G. Tuller, from whom the writer first learned

about it” [20]. William G. Tuller’s thesis was defended in June 1948 and printed as an article in May

1949 [8]. His derivation uses again root-mean-square (rms) ratios.

Let S be the rms amplitude of the maximum signal that may delivered by the

communication system. Let us assume, a fact very close to the truth, that a signal

amplitude change less than noise amplitude cannot be recognized, but a signal amplitude

change equal to noise is instantly recognizable. Then, if N is the rms amplitude of the

noise mixed with the signal, there are 1 + S/N significant values of signal that may be

determined. (...) the quantity of information available at the output of the system [is

= log(1 + S/N)].

—William G. Tuller [8]

In the 1949 article [8] he explains that

The existence of [Shannon’s] work was learned by the author in the spring of 1946, when

the basic work underlying this paper had just been completed. Details were not known

by the author until the summer of 1948, at which time the work reported here had been

complete for about eight months.

—William G. Tuller [8]

In view of this note it is perhaps not completely fair so say, following J.R. Pierce [11] (Shannon’s

co-author of [12]), that

(...) much of the early reaction to Shannon’s work was either uninformed or a diversion

from his aim and accomplishment. (...) In 1949, William G. Tuller published a paper

giving his justification of (1) [8].

—John R. Pierce [11]

Considering that Tuller’s work is—apart from Wiener’s—the only work referenced by Shannon in [1],

and that the oldest reference known (1946) is Tuller’s, it should be certainly appropriate to refer to (2)

as Tuller’s formula or to (1) as the Tuller–Shannon formula.

There is perhaps no better conclusion for this section than to cite Shannon’s 1949 article [2] where

he explicitly mentioned (and criticized) Hartley’s Law as the property that the maximum amount of

information per second is proportional to the bandwidth (without reference to noise limitation), and

where he proposed his own interpretation of (2) making the link with his formula (1):
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How many different signals can be distinguished at the receiving point in spite of the

perturbations due to noise? A crude estimate can be obtained as follows. If the signal has

a power P , then the perturbed signal will have a power P +N . The number of amplitudes

that can be reasonably well distinguished is K
√

P+N
N

where K is a small constant in the

neighborhood of unity depending on how the phrase “reasonably well” is interpreted. (...)

The number of bits that can be sent in this time is log2 M [ = 1
2
log2 K

2
(
1 + P

N

)
].

—Claude Elwood Shannon [2]

It may be puzzling to notice, as Hodges did in his historical book on A. Turing [24], that Shannon’s

article [2] mentioned a manuscript with a received date of 23 July, 1940! But this was later corrected

by Shannon himself in 1984 (cited in [6], Reference 10):

(...) Hodges cites a Shannon manuscript date 1940, which is, in fact, a typographical error.

(...) First submission of this work for formal publication occurred soon after World War ll.

—Claude Elwood Shannon [6]

This would mean in particular that Shannon’s work leading to his formula was completed in 1946, at

about the same time as Tuller’s.

4. Hartley’s Rule yields Shannon’s Formula: C ′ = C

Let us consider again the argument leading to (2). The channel input X is taking M = 1 + A/Δ

values in the set {−A,−A + 2Δ, . . . , A − 2Δ, A}, which is the set of values (M − 1 − 2k)Δ for

k = 0, . . . ,M − 1. A maximum amount of information will be conveyed through the channel if

the input values are equiprobable. Then, using the well-known formula for the sum of squares of

consecutive integers, one finds:

P = E(X2) =
1

M

n∑
k=0

(M − 1− 2k)2 = Δ2M
2 − 1

3

Interestingly, this is the classical formula for the average power of a M -state pulse-code modulation

or pulse-amplitude modulation signal, as was derived by Oliver, Pierce and Shannon in [12].

The input is mixed with additive noise Z with accuracy ±Δ. The least favorable case would be

that Z follows a uniform distribution in [−Δ,Δ]. Then its average power is

N = E(Z2) =
1

2Δ

∫ Δ

−Δ

z2 dz =
Δ2

3

It follows that (2) takes the form of a striking identity!

C ′ = log2 M = 1
2
log2(1 +M2 − 1) = 1

2
log2

(
1 +

3P

Δ2

)
= 1

2
log2

(
1 +

P

N

)
= C.

A mathematical coincidence?
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One may perhaps argue that if Tuller or others knew about such a coincidence, they would probably

have followed Wiener’s attitude in claiming paternity of information theory. In any case, such an

identification of (1) and (2) calls for verification that Hartley’s rule would in fact be “mathematically

correct” as a capacity formula.

5. Hartley’s Rule as a Capacity Formula

Consider the uniform channel, a memoryless channel with additive white noise Z with uniform

density in the interval [−Δ,Δ]. If X is the channel input, the output will be Y = X + Z, where

X and Z are independent. We assume that the input has the amplitude constraint |X| � A. The

following calculation was proposed as a homework exercise in the excellent textbook by Cover and

Thomas [25].

Theorem 1. Assuming A/Δ is integral, the uniform channel has capacity C ′ given by (2).

(If A/Δ is not integral, then the proof of the theorem shows that C ′ � log2(1 + A/Δ), yet C ′ cannot

be obtained in closed form.)

Proof. From Shannon’s coding theorem, the channel’s capacity is C = maxX I(X;Y ) bits per

sample, where the maximum is taken over all distributions of X such that |X| � A, i.e., with support

[−A,A]. By expanding mutual information I(X;Y ) = h(Y )− h(Y |X) as a difference of differential

entropies, and noting that h(Y |X) = h(Z) = log2(2Δ) is constant, the required capacity C ′ is

obtained by maximizing h(Y ).

Now since |X| � A, by the triangular inequality, the output amplitude is limited by |Y | �
|X|+ |Z| � A+Δ. Choosing X = X∗ to be discrete uniform taking M = 1 + A/Δ equiprobable

values in the set {−A,−A + 2Δ, . . . , A − 2Δ, A}, it is immediate to see that Y = X∗ + Z will

have the uniform density over the interval [−A − Δ, A + Δ], which is known to maximize h(Y )

under the constraint |Y | � A + Δ. Therefore such an X∗ achieve the capacity and we have C ′ =
maxX h(Y )− h(Z) = log2(2(A+Δ))− log2(2Δ) = log2(1 + A/Δ).

Thus there is a sense in which the “Tuller–Shannon Formula” (2) is indeed correct as the capacity

of a communication channel, except that the communication noise is not Gaussian, but uniform, and

that the signal limitation is not on the power, but on the amplitude (as a side remark, it is interesting to

mention that C ′ is in fact a zero-error capacity and that no coding is actually necessary to achieve it).

The analogy between the Gaussian and uniform channels can be pushed further. Both channels are

memoryless and additive, with Y = X + Z where X and Z are independent. Both have “additive”

constraints on their inputs of the form Φ(X) � c, where additivity means that Φ(X) � c and

Φ(Z) � c′ imply Φ(X + Z) � c + c′. Specifically, in the Gaussian case, Φ(X) = E(X2) and

additivity results from the fact that X and Z are uncorrelated; and in the uniform case, Φ(X) = |X|
and additivity is simply a consequence of the inequality |X + Z| � |X| + |Z|. Also in both cases,

the noise Z = Z∗ maximizes the differential entropy h(Z) under the constraint Φ(Z) � c′, and

the input X = X∗ that maximizes mutual information I(X;Y ) = I(X;X + Z∗) is such that the
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corresponding output Y ∗ = X∗+Z∗ also maximizes the differential entropy h(Y ) under the constraint

Φ(Y ) � c + c′. When Φ(X) = E(X2) (power limitation), both Y ∗ and Z∗ are Gaussian while for

Φ(X) = |X| (amplitude limitation), both Y ∗ and Z∗ have a uniform distribution.

Shannon used these properties for Φ(X) = E(X2) to show that under limited power, Gaussian

noise is the worst possible noise that one can inflict in the channel (in terms of its capacity). To show

this, he considered an arbitrary additive noise Z and defined Z̃ as a random variable of the same

distribution type as Z∗ but with the same differential entropy as Z. Thus for Φ(X) = E(X2), Z̃ is a

zero-mean Gaussian variable of average power Ñ = 22h(Z)/2πe, which is referred to as the entropy
power [1] of Z. He then established that the capacity associated with the noise Z satisfies [1]

1
2
log2

(
1 + α

P

N

)
� C � 1

2
log2

(
1 +

P

N

)
+ 1

2
log2 α, (3)

where we have noted α = N/Ñ . The first inequality was in fact derived by Shannon as a consequence

of the entropy power inequality (see, e.g., [26] for more details on this inequality). Since h(Z̃) =

h(Z) � h(Z∗), one has Ñ � N so that α � 1 (with equality α = 1 only in the case of Gaussian

noise). It follows from the above inequality that the capacity has the lowest value for Gaussian noise.

The uniform channel enjoys a similar property: under limited amplitude, uniform noise is the

worst possible noise that one can inflict in the channel. To show this, consider the following

Definition 2 (Entropic Amplitude). Given an arbitrary additive noise Z, let Z̃ be a random variable
of the same distribution type as Z∗ but with the same differential entropy as Z. Thus for Φ(X) = |X|,
Z̃ is a zero-mean uniformly distributed variable with amplitude Δ̃. The entropic amplitude of Z is

Δ̃ = 2h(Z)−1.

The squared entropic amplitude is related to the entropy power by the relation Δ̃2 = Ñπe/2.

Theorem 3. When Φ(X) = |X| (amplitude limitation) under the same conditions as Theorem 1, the
capacity C ′ associated with an arbitrary additive noise Z satisfies

log2

(
1 +

A

Δ

)
� C ′ � log2

(
1 +

A

Δ

)
+ log2 α, (4)

where α = Δ/Δ̃ � 1 (with equality α = 1 only for uniform noise).

It follows as announced that the capacity has the lowest value for uniform noise.

Proof. One has I(X;X + Z) = h(X + Z) − h(Z) where h(Z) = log2(2Δ̃) ; since |Y | � A +Δ,

h(Y ) � log2(2(A+Δ)). Therefore, I(X;X +Z) � log2(2(A+Δ))− log2(2Δ̃) = log2

(
1 + A

Δ

)
+

log2 α. Maximizing I(X;X + Z) over the distribution de X in this inequality gives the second

inequality in (4).

To prove the first inequality, notice that C = maxX I(X;X+Z) � I(X∗;X∗+Z) = h(X∗+Z)−
h(Z) where, as above, X∗ is discrete uniform in the M -ary set X = {−A,−A+2Δ, . . . , A−2Δ, A}
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with M = 1 + A/Δ. Now Y = X∗ + Z follows the density pY (y) =
1
M

∑
x∈X pZ(y − x) where

pZ(z) is the density of Z. Since |Z| � Δ all terms in this sum have disjoint supports. Therefore,

h(X∗+Z) = −
∑
x∈X

∫ Δ

−Δ

( 1

M
pZ(y−x)

)
log2

( 1

M
pZ(y−x)

)
dy = log2 M −

∫
pZ(z) log2 pZ(z) dz

which reduces to the simple formula h(X∗ + Z) = log2 M + h(Z). Therefore, C � h(X∗ + Z)−
h(Z) = log2 M = log2

(
1 + A

Δ

)
, which proves the first inequality in (4).

6. A Mathematical Analysis

6.1. Conditions for Shannon’s Formula to Hold

In this section, we consider a memoryless additive noise channel with zero-mean input X and

output Y = X + Z. Such a channel is defined by:

• the probability density function (pdf) pZ of the zero-mean noise Z, which is assumed

independent of X;

• a constraint set C on the possible distributions of X . The channel capacity is computed under

this constraint as

C = max
X∈C

I(X;Y ) = max
X∈C

h(Y )− h(Z) =
(
max
X∈C

h(X + Z)
)− h(Z).

We let X∗ be the input that attains this maximum and let Y ∗ = X∗ + Z be the corresponding output.

Thus C = h(Y ∗) − h(Z) = h(X∗ + Z) − h(Z). We also let P = E(X∗2) and N = E(Z2) so that

P/N denotes the signal-to-noise ratio at the optimum.

Lemma 4. If there exists a number α > 1 such that αZ and Y ∗ share the same distribution, then the
channel capacity C is given by Shannon’s Formula (1).

Proof. One has C = h(Y ∗) − h(Z) = h(αZ) − h(Z) = log2 |α| = 1
2
log2 α

2. However, P +N =

E(X2) + E(Z2) = E(Y 2) = α2 E(Z2) = α2N and so α2 = 1 + P/N . This gives (1).

Example 1 (Gaussian channel). Here both Z and Y ∗ = X∗ + Z are zero-mean Gaussian so that the
condition of the lemma is satisfied. We recover (1) as the classical expression for the channel capacity.

Example 2 (uniform channel). Here both Z and Y ∗ = X∗ + Z are uniformly distributed over a
centered interval so the condition of the lemma is also satisfied. This explains anew the coincidence
found in the calculation of Section 4.

In the following we note φX(ω) = E(eiωX), the characteristic function of any random variable X .

Lemma 5. The condition of Lemma 4 is satisfied if and only if there exists α > 1 such that

φZ(αω)

φZ(ω)
= φX∗(ω)
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Proof. αZ and Y ∗ = X∗ + Z have the same distribution if and only if they share the same

characteristic function, which is equal to φαZ(ω) = φZ(αω) and to φY ∗(ω) = φX∗(ω)φZ(ω).

In particular the above quotient must be a characteristic function of some random variable. This shows

that the distribution of Z should be divisible.

Example 3 (Gaussian channel (continued)). Here α2 = P+N
N

and

φZ(αω)

φZ(ω)
=

e−α2ω2N/2

e−ω2N/2
= e−ω2P/2

which the characteristic function of X∗ ∼ N (0, P ).

Example 4 (uniform channel (continued)). Here α = A+Δ
Δ

= M is assumed integral and

φZ(Mω)

φZ(ω)
=

sinc(MΔ · ω)
sinc(Δ · ω) =

sin(MΔ · ω)
M sin(Δ · ω) =

1

M
(e−i(M−1)ωΔ + e−i(M−3)ωΔ + · · ·+ ei(M−1)ωΔ)

where sincx = sinx
x

is the sine cardinal function and where the last equality is the well-known
Dirichlet kernel expression. The result is the characteristic function of X∗ which take M equiprobable
values in the set {−(M − 1)Δ,−(M − 3)Δ, . . . , (M − 3)Δ, (M − 1)Δ}.

Example 5 (Cauchian channel). Let Z be Cauchy distributed with pZ(z) =
1
π

a
a2+z2

, where a > 0.
Then for any α > 0,

φZ(αω)

φZ(ω)
=

e−aα|ω|

e−a|ω| = e−a(α−1)|ω|

is the characteristic function of X∗, which is Cauchy distributed with parameter (α− 1)a. However,
in this particular case, P = E(X∗2) = +∞ and N = E(Z2) = +∞ so that the signal-to-noise ratio
is not defined.

Lemma 6. Let pZ and pY ∗ be the pdf’s of Z and Y ∗, respectively. Then X∗ attains capacity subject
to an average cost per channel use of the form E(b(X)) � C, where

b(x) = E

(
log2

pZ(Z)

pY ∗(x+ Z)

)
. (5)

Thus given the pdf of Y ∗, (5) defines an adequate constraint set C so that C = h(Y ∗)− h(Z).

Proof. Let pY be the pdf of Y = X + Z. By the information inequality D(pY ‖pY ∗) � 0, we obtain

h(Y ) � E log2
1

pY ∗(Y )
= EX

(
EZ log

1

pY ∗(X + Z)

)
.

Therefore,

I(X;Y ) = h(Y )− h(Z) � EX

(
EZ log

pZ(Z)

pY ∗(X + Z)

)
= E(b(X))

Equality holds if and only if pY = pY ∗ , that is, when the channel capacity is attained. In this case

max I(X;Y ) = E(b(X)) should be equal to the capacity C. The assertion follows.
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Example 6 (Gaussian channel (continued)). Here Z ∼ N (0, N) and Y ∗ ∼ N (0, P +N). Therefore,

b(x) = log2

√
P +N

N
+ E log2 exp

( (x+ Z)2

2(P +N)
− Z2

2N

)
= C +

log2 e

2

(x2 +N

P +N
− 1
)
.

The constraint E(b(X)) � C is now equivalent to E(X2) � P as expected.

Example 7 (uniform channel (continued)). Here Z is uniformly distributed on the interval [−Δ,Δ]

and Y ∗ is uniformly distributed on [−A−Δ, A+Δ] where A = (α− 1)Δ > 0. Therefore,

b(x) = log2
A+Δ

Δ
+ E log

1

1|x+Z|�A+Δ

where 1 denotes the indicator function. The first term in the r.h.s. is equal to C. If |x| � A then
|x+Z| � A+Δ a.e. so that the second term equals log 1 = 0. Otherwise, 1|x+z|�A+Δ vanishes for z
in some subinterval of [−Δ,Δ] of positive length and the second term is infinite. Hence

b(x) =

⎧⎨⎩C if |x| � A

+∞ otherwise.

The constraint E(b(X)) � C is equivalent to |X| � A a.e. as expected.

Theorem 7. Assume that there exists α > 1 such that
φZ(αω)

φZ(ω)
is a characteristic distribution and let

C be defined by the condition E(b(X)) � C where

b(x) = E log2
αpZ(Z)

pZ((x+ Z)/α)
. (6)

Then the channel capacity C = log2 α of the corresponding additive noise channel is given by
Shannon’s Formula (1).

Proof. Apply the preceding lemmas, noting that pY ∗(y) = 1
α
pZ(

y
α
).

6.2. B-Spline Channels of Any Degree

Equipped with Theorem 7 we can construct many additive noise channels whose capacities are

given by Shannon’s Formula (1).

Definition 8 (B-spline Channel). Let UΔ be uniformly distributed over the interval [−Δ,Δ] and let
d ∈ N. Define

Zd = UΔ,0 + UΔ,1 + . . .+ UΔ,d

where the UΔ,i are independent copies of UΔ. The (uniform) B-spline channel of degree d is the
associated additive noise channel Y = X + Zd with capacity Cd.
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For d = 0 one recovers the uniform channel. It is easily seen and well-known that the pdf of Zd is

the uniform B-spline function:

pZd
(z) =

1

2Δ
· βd

( z

2Δ

)
where βd is the standard central B-spline [27] of order d, the (d + 1)th convolution power of the

indicator function of the interval [−1/2, 1/2].

Theorem 9. For all d ∈ N and any choice of a positive integer M , the capacity Cd of the B-spline
channel of degree d under the input constraint E(bd(X)) � Cd where

bd(x) = E log2

Mβd

(
Z
2Δ

)
βd

(
x+Z
2MΔ

) . (7)

is given by Shannon’s Formula (1).

Proof. Since pZd
(z) = 1

2Δ
· βd

(
z
2Δ

)
is the (d+ 1)th convolution power of the rectangle function of

the interval [−Δ,Δ], the corresponding characteristic function is a (d+ 1)th power of a cardinal sine:

φZd
(ω) = sincd+1(Δ · ω).

Let M > 0 be an integer. From Example 4, we have

φZd
(Mω)

φZd
(ω)

=
sincd+1(MΔ · ω)
sincd+1(Δ · ω) =

( sin(MΔ · ω)
M sin(Δ · ω)

)d+1

=
( 1

M

(
e−i(M−1)ωΔ + e−i(M−3)ωΔ + · · ·+ ei(M−1)ωΔ

))d+1

.

This is the characteristic function of the random variable

Xd = XM,0 + · · ·+XM,d,

where the XM,i are i.i.d. and take M equiprobable values in the set {−(M − 1)Δ,−(M − 3)Δ, . . . ,

(M − 3)Δ, (M − 1)Δ}. Hence, Theorem 7 applies with α = M and cost function (7).

Again for d = 0 one recovers the case of the uniform channel with input X0 = XM,0 taking M

equiprobable values in the set {−(M −1)Δ,−(M −3)Δ, . . . , (M −3)Δ, (M −1)Δ} (Figure 1a). In

general, the probability distribution of Xd is the (d+ 1)th discrete convolution power of the uniform

distribution. For d = 1, the pdf of the noise has a triangular shape and the distribution of Xd is also

triangular (Figure 1b). As d increases, it becomes closer to a Gaussian shape (Figure 1c,d).

6.3. Convergence as d→ +∞

To determine the limit behavior as d → +∞, we need to apply some normalization on the

probability distributions. Since the pdf of Zd is obtained by successive convolutions of rectangles

of length 2Δ, its support [−(d + 1)Δ, (d + 1)Δ] as well as its average power (or variance) N =
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(a) d = 0 (rectangular) (b) d = 1 (triangular)

(c) d = 2 (d) d = 3

Figure 1. Discrete plots of input probability distributions (of Xd) that attain capacity for

M = 15 and different values of d.

(d+ 1)Δ2/3 increase linearly with (d+ 1). Similarly, the support and average power P of X∗ also

increase linearly with (d+1). Although this does not affect the ratio P/N , in order for average powers

P and N to converge as d→ +∞ we need to divide Zd and X∗, hence their sum Y , by
√
d+ 1. The

capacity will remain unaltered because

I
( X√

d+ 1
;

Y√
d+ 1

)
= h
( Y√

d+ 1

)
− h
( Z√

d+ 1

)
= h(Y )− 1

2
log(d+ 1)− h(Z) + 1

2
log(d+ 1)

= h(Y )− h(Z)

= I(X;Y ).

Therefore, in what follows, we assume that all random variables X, Y, Z have been normalized by

the factor
√
d+ 1. We then say that the additive channel with input Xd, output Yd, noise Zd, and cost

function bd(x) converges as d→ +∞ to the additive channel with input X , output Y , noise Z, and

cost function b(x) if Xd → X , Yd → Y , Zd → Z in distribution, and bd(x)→ b(x).

Theorem 10. The B-spline channel of degree d converges to the Gaussian channel as d→ +∞.

Proof. By the central limit theorem,

Zd√
d+ 1

=
UΔ,0 + UΔ,1 + . . .+ UΔ,d√

d+ 1

converges in distribution to the Gaussian Z ∼ N (0, N) (in fact, the B-spline pdf converges uniformly

to the Gaussian pdf) [27]. Since Yd has the same distribution as M ·Zd, it also converges in distribution

to the Gaussian Y ∼ N (0, P +N). Again by the central limit theorem,

X∗
√
d+ 1

=
X∗

0 + · · ·+X∗
d√

d+ 1
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converges in distribution to the Gaussian N (0, P ). Finally, we can write

bd(x) = E

(
log2

MpZd
(Zd)

pZd
(x+Zd

M
)

)
= E

(
log2

pZd
(Zd)

pZ(Zd)

)
− E

(
log2

pZd
(x+Zd

M
)

pZ(
x+Zd

M
)

)
+ E

(
log2

MpZ(Zd)

pZ(
x+Zd

M
)

)
The first term in the r.h.s. tends to zero by the strengthened central limit theorem of Barron [28] in

relative entropy. The second term also tends to zero by a similar argument and change of variable. By

a calculation identical to that of Example 6, the third term is equal to

log2 M + E log2 exp
( (x+ Zd)

2

2(P +N)
− Z2

d

2N

)
= C +

log2 e

2

(x2 +N

P +N
− 1
)
= b(x)

which shows that bd(x)→ b(x) as d→ +∞.

Figure 2 shows the graphs of the cost functions bd(x) for different values of degree d. As the

degree increases, the curves converge to the parabola that represents the quadratic cost function b(x)

for the Gaussian channel.

Figure 2. Cost functions bd(x) for d = 1 to 7 (with M = 4 and Δ = 1). Convergence

holds to the quadratic cost function b(x).

Thus we have built a sequence of additive noise “B-spline” channels indexed by d ∈ N that makes

the transition from the uniform (d = 0) to the Gaussian channel (d → ∞). Shannon’s Formula (1)

holds for all these channels.
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Symmetry, Probabiliy, Entropy: Synopsis of the Lecture at
MAXENT 2014
Misha Gromov

Abstract: In this discussion, we indicate possibilities for (homological and non-homological)

linearization of basic notions of the probability theory and also for replacing the real numbers as

values of probabilities by objects of suitable combinatorial categories.

Reprinted from Entropy. Cite as: Gromov, M. Symmetry, Probabiliy, Entropy: Synopsis of the

Lecture at MAXENT 2014. Entropy 2015, 17, 1273–1277.

The success of the probability theory decisively, albeit often invisibly, depends on symmetries of

systems this theory applies to. For instance:

• The symmetry group of a single round of gambling with three dice has order 288 = 6× 6× 8: it

is a semidirect product of the permutation group S3 of order 6 and the symmetry group of the

3d cube, that is, in turn, is a semidirect product of S3 and {±1}3.

• The Bernoulli spaces (∎p, ⧫1−p)Z, 0 < p < 1, of (∎, ⧫)-sequences indexed by integers z ∈ Z =
{⋯,−2,−1,0,1,2,⋯} are acted upon by a semidirect product of the infinite permutation group

S
∞=Z ⊃ Z = {⋯,−2,−1,0,1,2,⋯}

and the (compact) group {±1}Z = { ∎ ↔ ⧫}Z, with the role of the latter being essential even

for p ≠ 1
2 where the probability measure is not preserved.

• The system of identical point-particles ●i in the Euclidean 3-space R3, that are indexed by a

countable set I ∋ i, is acted upon by the isometry group of R3 times the infinite permutation

group S
∞=I .

• Buffon’s probabilistic needle formula for π = 3.141592653589793⋯ relies on the invariance of

the Haar measure on the circle.

I. What happens if the symmetry is enhanced, e.g., from the permutation group S
∞=I to the group

GLF(∞) of liner transformations of the vector space FI (formally) spanned by symbols [i],
i ∈ I , regarded as (linearly independent) vectors over a filed F?

II. What could you do if your system is inherently heterogeneous, such as a folding polypeptide
chain or a natural language, for instance?

Hilbertisation/unitarisation/quantization of set categories brought along a development of several

magnificent non-commutative probability theories, e.g., of those under the headings of von-Neumann
algebras, von Neumann entropy [1,2], free probabilities [3].

By comparison, the achievements of the non-unitary linearisation of probability theory are

modest—just a few amusing observations.
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Example 1. Linearized Loomis-Whitney-Shannon-Shearer Submultiplicativity Inequality [4,5].
Let Φ = Φ(x1, x2, x3, x4) be a 4-linear function (form) over some field (where the variables xi

run over some vector spaces Xi). Then the ranks of the following four bilinear forms Φ(x1, x2⊗x3⊗
x4),Φ(x1 ⊗ x2, x3 ⊗ x4),Φ(x1 ⊗ x3, x2 ⊗ x4) and Φ(x1 ⊗ x4, x2 ⊗ x3) satisfy

(rank[1,234])2 ≤ rank[12,34] ⋅ rank[13, 24] ⋅ rank[14,23].

Example 2. Homology Measures [6].
Homologies H

∗
(X) = ⊕iHi(X) of topological spaces X and natural subgroups in H

∗
are graded

Abelian groups: their ranks are properly represented not by individual numbers ri, but by Poincaré
polynomials PX(t) = ∑i ri ⋅ ti.

The polynomial valued set function U ↦ PU , U ⊂ X , has some measure/entropy-like properties
that become more pronounced for the ideal valued function that assigns the kernels

KerX∖U ⊂ H∗(X;A)

of the inclusion/restriction cohomology homomorphisms for the complements X ∖U ⊂ X for subsets
U ⊂ X ,

U ↦ μ∗(U) =def KerX∖U =def Ker[H∗(X;A) →H∗(X ∖U ;A)],

for some Abelian (cohomology coefficient) group A.

The basic properties of this μ∗ (stated slightly differently in topology textbooks) have an attractive

measure theoretic flavour. Namely,

μ∗(U) is additive for the sum-of-subsets in the group H∗(X;A) and, if A is a commutative ring,
then μ∗ is super-multiplicative for the the ⌣-product of ideals:

μ∗(U1 ∪U2) = μ∗(Ui)+μ∗(U2)

for disjoint open subsets U1 and U2 in A, and

μ∗(U1 ∩U2) ⊃ μ∗(U1) ⌣ μ∗(U2)

for all open U1, U2 ⊂ A.

Next, given a linear subspace Θ ⊂ H∗(X;A), let

μΘ(U) = Θ ∩KerX∖U

and, assuming A is (the additive group of) a field, denote the rank of μΘ(U) over this field by

∣μΘ(U)∣ = ∣μΘ(U)∣A.

Linearized Matsumoto-Tokushige Separation Inequality in the N -torus.

Let U1, U2 ⊂ TN be non-intersecting (closed or open) subsets and let

Θ1 = Hn1(TN ;A), and Θ2 = Hn2(TN ;A)
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for ni ≤ N/2, i = 1,2, and some field A. Then

∣μΘ1(U1)∣ ⋅ ∣μΘ2(U2)∣ ≤ c ⋅ ∣Θ1∣ ⋅ ∣Θ2∣

for c = n1n2/N2 and where, observe, ∣Θi = ∧niA∣ = (N
ni
).

If we think of the torus TN as a physical system of N uncoupled linear oscillators then the

“measures” μ∗(U) and/or μΘ(U) may be interpreted as

“the numbers of persistent degrees of freedom” of this system that are observable from U .

Probabilistic/entropic interpretation of homology, which is kind of “dual” to “homological

interpretation of entropy-like invariants” by Bennequin [7], and also by Drummond-Cole et al.
[8,9], is also possible for “coupled systems” [10] where particularly attractive ones are systems of

moving disjoint balls in space where the configuration spaces of these systems support rich homology

structures that are induced from the classifying spaces of (subgroups of) infinite symmetric groups

S
∞=I [11], that is expanded/corrected in [12].

A mathematical study of “loose structures” such as what you find in biology and linguistics needs

generalisations that would allow a use of relaxed, rather than enhanced, symmetries.

For instance, just to warm up, one may start by elaborating on the category theoretic definition of

the entropy suggested “In a Search for a Structure, Part 1: On Entropy” [13], where the entropy of a

finite probability space P = {pi}, pi > 0, ∑i pi = 1, comes as the class [P ]Gro of P in the Grothendieck
group Gro(P) of the topological category P of finite probability spaces P and probability/measure

preserving maps P → Q with a properly defined topological structure in P .

Since the group Gro(P) is isomorphic to the multiplicative group of positive real numbers
[13]—this is a reformulation of the Bernoulli law of large numbers – the Grothendieck class [P ]Gro

can be identified with exp ent(P ).

In general, such a Grothendieck-style entropy would be not a number valued function of any

kind, but (not quite) a functor from an elaborate combinatorial (not quite) category, e.g., comprised

of fragments of a natural language with some (not always composable) “morphisms/arrows” between

them, to some “simple category” e.g., the category of weighted trees.

The so modified probability/entropy theory is badly needed for designing algorithms that would

model what we call (ego)learning described in “ Ergostructures, Ergodic and the Universal Learning

Problem” [14] and in “ Understanding Languages and Making Dictionaries” [15], (in preparation)

but I have not progressed much in pursuing this direction yet.
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The Homological Nature of Entropy
Pierre Baudot and Daniel Bennequin

Abstract: We propose that entropy is a universal co-homological class in a theory associated

to a family of observable quantities and a family of probability distributions. Three cases are

presented: (1) classical probabilities and random variables; (2) quantum probabilities and observable

operators; (3) dynamic probabilities and observation trees. This gives rise to a new kind of

topology for information processes, that accounts for the main information functions: entropy,

mutual-informations at all orders, and Kullback–Leibler divergence and generalizes them in several

ways. The article is divided into two parts, that can be read independently. In the first part, the

introduction, we provide an overview of the results, some open questions, future results and lines of

research, and discuss briefly the application to complex data. In the second part we give the complete

definitions and proofs of the theorems A, C and E in the introduction, which show why entropy is the

first homological invariant of a structure of information in four contexts: static classical or quantum

probability, dynamics of classical or quantum strategies of observation of a finite system.

Reprinted from Entropy. Cite as: Baudot, P.; Bennequin, D. The Homological Nature of Entropy.

Entropy 2015, 17, 3253–3318.
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1. Introduction

1.1. What is Information ?

“What is information ?” is a question that has received several answers according to the different

problems investigated. The best known definition was given by Shannon [1], using random variables

and a probability law, for the problem of optimal message compression. However, the first definition

was given by Fisher, as a metric associated to a smooth family of probability distributions, for

optimal discrimination by statistical tests; it is a limit of the Kullback–Leibler divergence, which

was introduced to estimate the accuracy of a statistical model of empirical data, and which can be

also viewed as a quantity of information. More generally Kolmogorov considered that the concept of

information must precede probability theory (cf. [2]). However, Evariste Galois saw the application

of group theory for discriminating solutions of an algebraic equation as a first step toward a general

theory of ambiguity, that was developed further by Riemann, Picard, Vessiot, Lie, Poincare and

Cartan, for systems of differential equations; it is also a theory of information. In another direction

Rene Thom claimed that information must have a topological content (see [3]); he gave the example

of the unfolding of the coupling of two dynamical systems, but he had in mind the whole domain of

algebraic or differential topology.

All these approaches have in common the definition of secondary objects, either functions, groups

or homology cycles, for measuring in what sense a pair of objects departs from independency. For

instance, in the case of Shannon, the mutual information is I(X;Y ) = H(X) +H(Y ) −H(X, Y ),

where H denotes the usual Gibbs entropy (H(X) = −∑x P (X = x) ln2 P (X = x)), and for Galois

it is the quotient set IGal(L1;L2|K) = (Gal(L1|K) × Gal(L2|K))/Gal(L|K), where L1, L2 are

two fields containing a field K in an algebraic closure Ω of K, where L is the field generated by L1

and L2 in Ω, and where Gal(Li|K) (for i = ∅, 1, 2) denotes the group introduced by Galois, made by

the field automorphisms of Li fixing the elements of K.

We suggest that all information quantities are of co-homological nature, in a setting which

depends on a pair of categories (cf. [4,5]); one for the data on a system, like random variables or

functions of solutions of an equation, and one for the parameters of this system, like probability laws

or coefficients of equations; the first category generates an algebraic structure like a monoid, or more

generally a monad (cf. [4]), and the second category generates a representation of this structure,
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as do for instance conditioning, or adding new numbers; then information quantities are co-cycles

associated with this module.

We will see that, given a set of random variables on a finite set Ω and a simplicial subset of

probabilities on Ω, the entropy appears as the only one universal co-homology class of degree

one. The higher mutual information functions that were defined by Shannon are co-cycles (or

twisted co-cycles for even orders), and they correspond to higher homotopical constructions. In

fact this description is equivalent to the theorem of Hu Kuo Ting [6], that gave a set theoretical

interpretation of the mutual information decomposition of the total entropy of a system. Then we can

use information co-cycles to describe forms of the information distribution between a set of random

data; figures like ordinary links, or chains or Borromean links appear in this context, giving rise to a

new kind of topology.

1.2. Information Homology

Here we call random variables (r.v) on a finite set Ω congruent when they define the same partition

(remind that a partition of Ω is a family of disjoint non-empty subsets covering Ω and that the partition

associated to a r.v X is the family of subsets Ωx of Ω defined by the equations X(ω) = x); the join

r.v Y Z, also denoted by (Y, Z), corresponds to the less fine partition that is finer than Y and Z.

This defines a monoid structure on the set Π(Ω) of partitions of Ω, with 1 as a unit, and where each

element is idempotent, i.e., ∀X,XX = X . An information category is a set S of r.v such that, for

any Y, Z ∈ S less fine than U ∈ S , the join Y Z belongs to S , cf. [7]. An ordering on S is given

by Y ≤ Z when Z refines Y , which also defines the morphisms Z → Y in the category S. In what

follows we always assume that 1 belongs to S . The simplex Δ(Ω) is defined as the set of families

of numbers {pω;ω ∈ Ω}, such that ∀ω, 0 ≤ pω ≤ 1 and
∑

ω pω = 1; it parameterizes all probability

laws on Ω. We choose a simplicial sub-complex P in Δ(Ω), which is stable by all the conditioning

operations by elements of S . By definition, for N ∈ N, an information N -cochain is a family of

measurable functions of P ∈ P , with values in R or C, indexed by the sequences (S1; ...;SN) in

S majored by an element of S, whose values depend only of the image law (S1, ..., SN)∗P . This

condition is natural from a topos point of view, cf. [4]; we interpret it as a “locality” condition.

Note that we write (S1; ...;SN) for a sequence, because (S1, ..., SN) designates the joint variable. For

N = 0 this gives only the constants. We denote by CN the vector space of N -cochains of information.

The following formula corresponds to the averaged conditioning of Shannon [1]:

S0.F (S1; ...;SN ;P) =
∑

P(S0 = vj)F (S1; ...;SN ;P|S0 = vj), (1)

where the sum is taken over all values of S0, and the vertical bar is ordinary conditioning. It satisfies

the associativity condition (S ′
0S0).F = S ′

0.(S0.F ).

The coboundary operator δ is defined by

δF (S0; ...;SN ;P) (2)

= S0.F (S1; ...;SN ;P) +
N−1∑
0

(−1)i+1F (...; (Si, Si+1); ...;SN ;P) + (−1)N+1F (S0; ...;SN−1;P),



46

It corresponds to a standard non-homogeneous bar complex (cf. [5]). Another co-boundary

operator on CN is δt (t for twisted or trivial action or topological complex), that is defined by the above

formula with the first term S0.F (S1; ...;SN ;P) replaced by F (S1; ...;SN ;P). The corresponding

co-cycles are defined by the equations δF = 0 or δtF = 0, respectively. We easily verify

that δ ◦ δ = 0 and δt ◦ δt = 0; then co-homology H∗(S;P) resp. H∗
t (S;P) is defined by

taking co-cycles modulo the elements of the image of δ resp. δt, called co-boundaries. The

fact that classical entropy H(X;P) = −∑i pi log2 pi is a 1-co-cycle is the fundamental equation

H(X, Y ) = H(X) +X.H(Y ).

Theorem A. (cf. Theorem 1 section 2.3, [7]): For the full simplex Δ(Ω), and if S is the monoid

generated by a set of at least two variables, such that each pair takes at least four values, then the

information co-homology space of degree one is one-dimensional and generated by the classical

entropy.

Problem 1. Compute the homology of higher degrees.

We conjecture that for binary variables it is zero, but that in general non-trivial classes appear,

deduced from polylogarithms. This could require us to connect with the works of Dupont, Bloch,

Goncharov, Elbaz-Vincent, Gangl et al. on motives (cf. [8]), which started from the discovery

of Cathelineau (1988) that entropy appears in the computation of the degree one homology of the

discrete group SL2 over C with coefficients in the adjoint action (cf. [9]).

Suppose S is the monoid generated by a finite family of partitions. The higher mutual

informations were defined by Shannon as alternating sums:

IN(S1; ...;SN ;P) =
k=N∑
k=1

(−1)k−1
∑

I⊂[N ];card(I)=k

H(SI ;P), (3)

where SI denotes the join of the Si such that i ∈ I . We have I1 = H and I2 = I is the usual mutual

information: I(S;T ) = H(S) +H(T )−H(S, T ) .

Theorem B. (cf. section 3, [7]): I2m = δtδδt...δδtH, I2m+1 = −δδtδδt...δδtH , where there are

m− 1 δ and m δt factors for I2m and m δ and m δt factors for I2m+1.

Thus odd information quantities are information co-cycles, because they are in the image of δ,

and even information quantities are twisted (or topological) co-cycles, because they are in the image

of δt.

In [7] we show that this description is equivalent to the theorem of Hu Kuo Ting (1962) [6],

giving a set theoretical interpretation of the mutual information decomposition of the total entropy of

a system: mutual information, join and averaged conditioning correspond respectively to intersection,

union and difference A\B = A ∩Bc . In special cases we can interpret IN as homotopical algebraic

invariants. For instance for N = 3, suppose that I(X;Y ) = I(Y ;Z) = I(Z;X) = 0, then

I3(X;Y ;Z) = −I((X, Y );Z) can be defined as a Milnor invariant for links, generalized by Massey,

as they are presented in [10] (cf. page 284), through the 3-ary obstruction to associativity of products
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in a subcomplex of a differential algebra, cf. [7]. The absolute minima of I3 correspond to Borromean

links, interpreted as synergy, cf. [11,12].

1.3. Extension to Quantum Information

Positive hermitian n × n-matrices ρ, normalized by Tr(ρ) = 1, are called density of states

(or density operators) and are considered as quantum probabilities on E = Cn. Real quantum

observables are n × n hermitian matrices, and, by definition, the amplitude, or expectation, of the

observable Z in the state ρ is given by the formula E(Z) = Tr(Zρ) (see e.g., [13]). Two real

observables Y, Z are said congruent if their eigenspaces are the same, thus orthogonal decomposition

of E are the quantum analogs of partitions. The join is well defined for commuting observables. An

information structure S is given by a subset of observables, such that, if Y, Z have common refined

eigenspaces decomposition in S, their join (Y, Z) belongs to S. We assume that {E} belongs to S.

What plays the role of a probability functor is a map Q from S to sets of positive hermitian forms on

E, which behaves naturally with respect to the quantum direct image, thus Q is a covariant functor.

We define information N -cochains as for the classical case, starting with the numerical functions on

the sets QX ;X ∈ S, which behave naturally under direct images.

The restriction of a density ρ by an observable Y is ρY =
∑

A E∗
AρEA, where the EA’s are the

spectral projectors of the observable Y . The functor Q is said to match S (or to be complete and

minimal with respect to S) if, for each X ∈ S, the set QX is the set of all possible densities of the

form ρX .

The action of a variable on the cochains space C∗Q is given by the quantum averaged conditioning:

Y.F (Y0; ...;Ym; ρ) =
∑
A

Tr(E∗
AρEA)F (Y0; ...;Ym;E

∗
AρEA) (4)

>From here we define coboundary operators δQ and δQt by the formula (22), then the notions of

co-cycles, co-boundaries and co-homology classes follow. We have δQ ◦ δQ = 0 and δQt ◦ δQt = 0;

cf. [7].

When the unitary group Un acts transitively on S and Q, there is a notion of invariant cochains,

forming a subcomplex of information cochains, and giving a more computable co-homology than the

brut information co-homology. We call it the invariant information co-homology and denote it by

H∗
U(S;Q).

The Von-Neumann entropy of ρ is S(ρ) = Eρ(− log2(ρ)) = −Tr(ρ log2(ρ)); it defines

a 0-cochain SY by restricting S to the sets QX . The classical entropy is H(Y ; ρ) =

−∑A Tr(E∗
AρEA) log2(Tr(E

∗
AρEA)). Both these co-chains are invariant. It is well known that

S(X,Y )(ρ) = H(X; ρ) + X.SY (ρ) when X, Y commute, cf. [13]. In particular, by taking Y = 1E

we see that classical entropy measures the default of equivariance of the quantum entropy, i.e.,

H(X; ρ) = SX(ρ)− (X.S)(ρ). But using the case where X refines Y , we obtain that the entropy of

Shannon is the co-boundary of (minus) the Von Neumann entropy.

Theorem C. (cf. Theorem 3 section 4.3): For n ≥ 4 and when S is generated by at least two

decompositions such that each pair has at least four subspaces, and when Q is matching S, the
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invariant co-homology H1
U of δQ in degree one is zero, and the space H0

U is of dimension one. In

particular, the only invariant 0-cochain such that δS = −H is the Von Neumann entropy.

(This statement, which will be proved below, corrects a similar statement which was made in the

announcement [14].)

1.4. Concavity and Convexity Properties of Information Quantities

The simplest classical information structure S is the monoid generated by a family of

“elementary” binary variables S1, ..., Sn. It is remarkable that in this case, the information functions

IN,J = IN(Sj1 ; ...SjN ) over all the subsets J = {j1, ..., jN} of [n] = {1, ..., n}, different from [n]

itself, give algebraically independent functions on the probability simplex Δ(Ω) of dimension 2n−1.

They form coordinates on the quotient of Δ(Ω) by a finite group.

Let Ld denotes the Lie derivative with respect to d = (1, ..., 1) in the vector space R2n , and� the

Euclidian Laplace operator on R2n , then Δ = �−2−nLd ◦Ld is the Laplace operator on the simplex

Δ(Ω) defined by equating the sum of coordinates to 1.

Theorem D. (cf. [15]): On the affine simplex Δ(Ω) the functions IN,J with N odd (resp. even)

satisfies the inequality ΔIN ≥ 0 (resp. ΔIN ≤ 0).

In other terms, for N odd the IN,J are super-harmonic which is a kind of weak concavity and

for N even they are sub-harmonic which is a kind of weak convexity. In particular, when N is even

(resp. odd) IN,J has no local maximum (resp. minimum) in the interior of Δ(Ω).

Problem 2. What can be said of the other critical points of IN,J? What can be said of the restriction

of one information function on the intersection of levels of other information functions? Information

topology depends on the shape of these intersections and on the Morse theory for them.

1.5. Monadic Cohomology of Information

Now we consider the category S∗ of generalized ordered partitions of Ω over S: they are

sequences S = (E1, ..., Em) of subsets of Ω such that ∪jEj = Ω and Ei ∩ Ej = ∅ as soon as

i �= j. The number m is named the degree of S. Note the important technical point that some of

the sets Ej can be the empty set. In the same spirit we introduce generalized ordered orthogonal
decompositions of E for the quantum case; but in this summary, for simplicity we restrict ourselves

to the classical case. Also we forget to add generalized to ordered up to now in this summary. A

rooted tree decorated by S∗ is an oriented finite planar tree Γ, with a marked initial vertex s0, named

the root of Γ, where each vertex s is equipped with an element Fs of S∗, such that edges issued from

s correspond to the values of Fs. When we want to mention that we restrict to partitions less fine than

a partition X we put an index X , like in S∗
X .

The notation μ(m;n1, ..., nm) denotes the operation which associates to an ordered partition S of

degree m and to m ordered partitions Si of respective degrees ni, the ordered partition that is obtained
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by cutting the pieces of S using the pieces of Si and respecting the order. An evident unit element for

this operation is the unique partition π0 of degree 1. The symbol μm denotes the collection of those

operations for m fixed. The introduction of empty subsets in ordered partitions insures that the result

of μ(m;n1, ..., nm) is a partition of length n1 + ... + nm, thus the μm do define what is named an

operad; cf. [10,16]. The axioms of unity, associativity and covariance for permutations are satisfied.

See [10,16–18] for the definition of operads.

The most important algebraic object which is associated to an operad is a monad (cf. [4,16]), i.e.,

a functor V from a category A to itself, equipped with two natural transformations μ : V ◦ V → V
and η : R→ V , which satisfy to the following axioms:

μ ◦ (Vμ) = μ ◦ (μV), μ ◦ (Vη) = Id = μ ◦ (ηV) (5)

In our situation, we can apply the Schur construction (cf. [16]) to the μm to get a monad: take for V

the real vector space freely generated by S∗; it is naturally graded, so it is the direct sum of spaces

V (m);m ≥ 1 where the symmetric group Sm acts naturally to the right, then introduce, for any real

vector space W the real vector space V(W ) =
⊕

m≥0 V (m) ⊗Sm W⊗m; the Schur composition is

defined by V◦V =
⊕

m≥0 V (m)⊗SmV⊗m. It is easy to verify that the collection (μm;m ∈ N) defines

a natural transformation μ : V ◦ V → V , and the trivial partition π0 defines a natural transformation

η : R→ V , that satisfied to the axioms of a monad.

Also we fix a functor of probability laws QX over the category S . Let MX(m) be the vector

space freely generated over R by the symbols (P, i,m) where P belongs to QX , and 1 ≤ i ≤ m. In

the last section of the second part we show how this space arises from the consideration of divided

probabilities. This is apparent on the following definition of the right action of the operad V on

the family MX(m);m ∈ N∗: a sequence S1, ..., Sm or ordered partitions in S∗
X acts to a generator

(P, i,m) by giving the vector
∑

j pj(Pj, (i, j), n) where pj is the probability P (Si = j) and Pj is the

conditioned probability P |(Si = j). We denote by θm((P, i,m), (S1, ..., Sm)) this vector.

Now we consider the Schur functor MX(W ) =
⊕

mMX(m) ⊗Sm W⊗m; the operations θm

define a natural transformation θ : M ◦ V → M, which is an action to the right in the sense of

monads, i.e., θ ◦ (Fμ) = θ ◦ (θV); θ ◦ (Fη) = Id. (We forgot the index X for simplicity.)

Now we consider the bar resolution of M: .... → M ◦ V◦(k+1) → M ◦ V◦k → ..., as in Beck

(triples, ...) [19], and Fresse [16], with its simplicial structure deduced from θ and μ, and the complex

of natural transformations of V-right modules C∗(M) = HomV (M◦V◦∗,R), whereR is the trivial

right module given by R(m) = R. As in the classical case, we restrict us to co-chains that are

measurable in the probability (P, i,m).

The co-boundary is defined by the Hochschild formula, extended by MacLane and Beck to

monads (see Beck [19]):

δF = F ◦ (θV◦k)−
∑

i=0,...,k−1

(−1)iF ◦MV◦iμV◦k−i−1 − (−1)kF ◦MV◦kε. (6)

The cochains are described by families of scalar measurable functions FX(S1; ..., Sk; (P, i,m),

where S1; ...;Sk is a forest of m trees of level k labelled by S∗
X , and where the value on (P, i,m)

depends only on the tree Si
1;S

i
2; ...;S

i
k.
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We impose now the condition, named regularity, that FX(S1; ..., Sk; (P, i,m)) =

FX(S
i
1;S

i
2; ...;S

i
k;P ). The regular co-chains form a sub-complex C∗

r (M); by definition, its

homology is the arborescent information co-homology.

The regular cochains of degree k are determined by their values for m = 1 and decorated trees of

level k, where the co-boundary takes the form:

δF (S;S1; ...;Sk;P)

=
∑
i

P(S = i)F (Si
1; ...;S

i
k;P|(S = i)) +

i=k∑
i=1

(−1)iF (S; ...;μ(Si−1 ◦ Si);Si+1; ...;Sk;P) (7)

+(−1)k+1F (S; ...;Sk−1;P)

This gives co-homology groups H∗
τ (S,P), τ for tree. The fact that entropy H(S∗P) = H(S;P)

defines a 1-cocycle is a result of an equation of Fadeev, generalized by Baez, Fritz and Leinster [20],

who gave another interpretation, based on the operad structure of the set of all finite probability laws.

See also Marcolli and Thorngren [21].

Theorem E. (cf. Theorem 4 section 6.3, [22]): If Ω has more than four points, H1
τ (Π(Ω),Δ(Ω)) is

the one dimensional vector space generated by the entropy.

Another co-boundary δt on C∗r (M) corresponds to another right action of the monad VX , which is

deduced from the maps θt that send (P, i,m)⊗S1⊗...⊗Sm) to the sum of the vectors (P, (i, j), n) for

j = 1, ..., ni that are associated to the end branches of Si. It gives a twisted version of information

co-homology as we have done in the first paragraph. This allows us to define higher information

quantities for strategies: for N = 2M + 1 odd, Iτ,N = −(δδt)MH , and for N = 2M + 2 even,

Iτ,N = δt(δδt)
MH .

This gives for N = 2, a notion of mutual information between a variable S of length m and a

collection T of m variables T1, ..., Tm:

Iτ (S;T ;P) =
i=m∑
i=1

(H(Ti;P)− P(S = i)H(Ti;P|S = i)). (8)

When all the Ti are equals we recover the ordinary mutual information of Shannon plus a multiple of

the entropy of Ti.

1.6. The Forms of Information Strategies

A rooted tree Γ decorated by S∗ can be seen as a strategy to discriminate between points in Ω.

For each vertex s there is a minimal set of chained edges α1, ..., αk connecting s0 to s; the cardinal

k is named the level of s; this chain defines a sequence (F0, v0;F1, v1; ...;Fk−1, vk−1) of observables

and values of them; then we can associate to s the subset Ωs of Ω where each Fj takes the value vj .

At a given level k the sets Ωs form a partition πk of Ω; the first one π0 is the unit partition of length

1, and πl is finer than πl−1 for any l. By recurrence over k it is easy to deduce from the orderings
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of the values of Fs an embedding in the Euclidian plane of the subtrees Γ(k) at level k such that the

values of the variables issued from each vertex are oriented in the direct trigonometric sense, thus πk

has a canonical ordering ωk. Remark that many branches of the tree gives the empty set for Ωs after

some level; we name them dead branches. It is easy to prove that the set Π(S)∗ of ordered partitions

that can be obtained as a (πk, ωk) for some tree Γ and some level k is closed by the natural ordered

join operation, and, as Π(S)∗ contains π0, it forms a monoid, which contains the monoid M(S∗)
generated by S∗.

Complete discrimination of Ω by S∗ exists when the final partition of Ω by singletons is attainable

as a πk; optimal discrimination correspond to minimal level k. When the set Ω is a subset of the set of

words x1, ..., xN with letters xi belonging to given sets Mi of respective cardinalities mi, the problem

of optimal discrimination by observation strategies Γ decorated by S∗ is equivalent to a problem of

minimal rewriting by words of type (F0, v0), (F1, v1), ..., (Fk, vk); it is a variant of optimal coding,

where the alphabet is given. The topology of the poset of discriminating strategies can be computed

in terms of the free Lie algebra on Ω, cf. [16].

Probabilities P in P correspond to a priori knowledge on Ω. In many problems P is reduced to

one element, that is the uniform law. Let s be a vertex in a strategic tree Γ, and let Ps be the set of

probability laws that are obtained by conditioning through the equations Fi = vi; i = 0, ..., k − 1

for a minimal chain leading from s0 to s. We can consider that the sets Ps for different s along a

branch measure the evolution of knowledge when applying the strategy. The entropy H(F ;Ps) for

F in S∗ and Ps in Ps gives a measure of information we hope to obtain when applying F at s in the

state Ps. The maximum entropy algorithm consists in choosing at each vertex s a variable that has

the maximal conditioned entropy H(F ;Ps).

Theorem F. (cf. [22]): To find one false piece of different weight among N pieces for N ≥ 3, when

knowing the false piece is unique, by the minimal numbers of weighing, one can use the maximal

entropy algorithm.

However we have another measure of information of the resting ambiguity at s, by taking for

the Galois group Gs the set of permutations of Ωs which respects globally the set Ps and the set of

restrictions of elements of S∗ to Ωs, and which preserves one by one the equations Fi = vi. Along

branches of Γ this gives a decreasing sequence of groups, whose successive quotients measure the

evolution of acquired information in an algebraic sense.

Problem 3. Generalize Theorem F. Can we use algorithms based on the Galoisian measure of

information? Can we use higher information quantities associated to trees for optimal discrimination?

1.7. Conclusion and Perspective

Concepts of Algebraic topology were recently applied to Information theory by several

researchers. In particular notions coming from category theory, homological algebra and differential

geometry were used for revisiting the nature and scope of entropy, cf. for instance Baez et al.
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[20], Marcolli and Thorngren [21] and Gromov [23]. In the present note we interpreted entropy

and Shannon information functions as co-cycles in a natural co-homology theory of information,

based on categories of observable and complexes of probability. This allowed us to associate

topological figures, like Borromean links, with particular configuration of mutual dependency of

several observable quantities. Moreover we extended these results to a dynamical setting of system

observation, and we connected probability evolutions with the measures of ambiguity given by Galois

groups. All those results provide only the first steps toward a developed Information Topology.

However, even at this preliminary stage, this theory can be applied to the study of distribution and

evolution of Information in concrete physical and biological systems. This kind of approach already

proved its efficiency for detecting collective synergic dynamic in neural coding [12], in genetic

expression [24], in cancer signature [25], or in signaling pathways [26]. In particular, information

topology could provide the principles accounting for the structure of information flows in biological

systems and notably in the central nervous system of animals.

2. Classical Information Topos. Theorem One

2.1. Information Structures and Probability Families

Let Ω be a finite set, the set Π(Ω) of all partitions of Ω constitutes a category with one arrow

Y → Z from Y to Z when Y is more fine than Z, we also say in this case that Y divides Z. In Π(Ω)

we have an initial element, which is the partition by points, denoted ω and a final element, which is Ω

itself and is denoted by 1. The joint partition Y Z or (Y, Z), of two partitions Y, Z of Ω is the less fine

partition that divides Y and Z, i.e., their gcd. For any X we get XX = X , ωX = ω and 1.X = X .

By definition an information structure S on Ω is a subset of Π(Ω), such that for any element X

of S, and any pair of elements Y, Z in S that X refines, the joint partition Y Z also belongs to S .

In addition we will always assume that the final partition 1 belongs to S . In terms of observations, it

means that at least something is a certitude.

Examples: start with a set Σ = {Si; 1 ≤ i ≤ n} of partitions of Ω. For any subset I = {i1, ..., ik}
of [n] = {1, ..., n}, the joint (Si1 , ..., Sik), also denoted SI , divides each Sij . The set W = W (Σ) of

all the SI , when I describes the subsets of [n] is an information struture. It is even a commutative

monoid, because any product of elements of W belongs to W , and the partition associated to Ω itself

gives the identity element of W . The product S[n] of all the Si is maximal; it divides all the other

elements. As Π(Ω) the monoid W (Σ) is idempotent, i.e., for any X we have XX = X .

By definition, the faces of the abstract simplex Δ([n]) are the subsets of [n]; its vertices are the

singletons. Thus the monoid W (Σ) can be identified with the first barycentric subdivision of the

simplex Δ([n]).

Remind that a simplicial subcomplex of Δ([n]) is a subset of faces that contains all faces of any of

its elements. Then any simplicial sub-complex K of Δ([n]) gives a simplicial information structure

S(K), embedded in W (Σ). In fact, if Y and Z are faces of a simplex X belonging to K, Y Z is

also a face in X , thus it belongs to K. The maximal faces Σa; a ∈ A of K correspond to the finest
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elements in S(K); the vertices of a face Σa gives a family of partitions, which generates a sub-monoid

Wa = W (Σa) of W ; it is a sub-information structures (full sub-category) of S(K), having the

same unit, but having its own initial element ωa. These examples arise naturally when formalizing

measurements if some obstructions or a priori decisions forbid a set of joint measurements.

This kind of examples were considered by Han [27] see also McGill [28].

Example 1. Ω has four elements (00), (01), (10), (11); the variable S1 (resp. S2) is the projection

pr1 (resp. pr2), on E1 = E2 = {0, 1}; Σ is the set {S1, S2}. The monoid W (Σ) has four elements

1, S1, S2, S1S2. The partition S1S2 = S2S1 corresponds to the variable Id : Ω→ Ω.

Example 2. Same Ω as before, with the same names for the elements, but we take all the partitions

of Ω in S . In addition to 1, S1, S2 and S = S1S2, there is S3, the last partition in two subsets of

cardinal two, which can be represented by the sum of the indices: S3(00) = 0, S3(11) = 0, S3(01) =

1, S3(10) = 1, the four partitions Yω, for ω ∈ Ω, formed by a singleton {ω} and its complementary,

and finally the six partitions Xμ,ν = YμYν , indexed by pairs of points in Ω satisfying μ < ν in the

lexical order. The product of two distinct Y is a X , the product of two distinct X or two distinct Si

is S, the product of one Y and a Si is a X , of one Y and a X is this X or S, of one S and a X is

this X or S. In particular the monoid W is also generated by the three Si and the four Yω; it is called

the monoid of partitions of Ω, and the associative algebra Λ(S) of this monoid is called the partition

algebra of Ω.

Example 3. Same Ω as before, that is Ω = Δ(4), with the notations of example 2 for the partitions;

but we choose as generating family the set Υ of the four partitions Yμ;μ ∈ Ω; the joint product of two

such partitions is either a Yμ (when they coincide) or a Xμν (when they are different). The monoid

W (Υ) has twelve elements.

Example 4. Ω has 8 elements, noted (000), ..., (111), and we consider the family Σ of the three

binary variables S1, S2, S3 given by the three projections. If we take all the joints, we have a monoid

of eight elements. However, if we forbid the maximal face (S1, S2, S3), we have a structure S which is

not a monoid; it is the set formed by 1, S1, S2, S3 and the three joint pairs (S1, S2), (S1, S3), (S2, S3).

On the side of probabilities, we choose a Boolean algebra B of sets in Ω, i.e., a subset B of the

set P(Ω) of subsets of Ω that contains the empty set ∅ and the full set Ω, and is closed by union

and intersection. In this finite context, it is easy to prove that B is constituted by all the unions

of its minimal elements (called atoms). Associated to this case, we will consider only information

structures that are made by partitions whose each element belongs to B. Consequently we could

replace everywhere Ω by the finite set ΩB of the atoms of B, but we will see that several Boolean

sub-algebras appear naturally in the process of observation, thus we prefer to mention the choice of

B at the beginning of observations.

Then we consider the set Δ(ΩB), or Δ(B), of all probability laws on (Ω,B), i.e., all real functions
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px of the atoms x of B (the points of ΩB), satisfying px ≥ 0 and
∑

x px = 1. We see that this set of

probabilities is also a simplex Δ([N ]), where N is the cardinality of ΩB.

As on the side of partitions, we will consider more generally any simplicial sub-complex Q
of Δ(B), and call it a probability complex. In the appendix, we show that this kind of examples

correspond to natural forbidding rules, that can express physical constraints on the observed system.

A partition Y which is measurable with respect to B is made by elements Yi for i = 1, ...,m,

belonging to B. Let P be an element of Δ(B); the conditioning of P by the element Yi is defined

only if P (Yi) �= 0, and given by the formula P (B|Y = yi) = P (B ∩ Yi)/P (Yi). We will consider

it as a probability on Ω equipped with B, not as a probability on Yi. Remark that if P belongs to a

simplicial family Q, the probability P (B|Y = yi) is also contained in Q. In fact, if the smallest face

of Q which contains P is the simplex σ on the vertices x1, ..., xk, then the conditioning of P by Yi,

being equal to 0 for the other atoms x, belongs to a face of σ, which is inQ, becauseQ is a complex.

For a probability family Q, i.e., a set of probabilities on Ω, and a set of partitions S, we say that

Q and S are adapted one to each other if the conditioning of every element ofQ by every element of

S belongs to Q.

By definition, the algebra BY is the set of unions of elements of the partition Y . We can consider

it as a Boolean algebra on Ω contained in B or as Boolean algebra on the quotient set Ω/Y .

The image Y∗Q of a probability Q for B by the partition Y is the probability on Ω for the sub-algebra

BY , that is given by Y ∗Q(t) = Q(t) for t ∈ BY . It is the forgetting operation, also frequently named

marginalization by Y .

By definition, the set QY is the image of Y∗. Let us prove that it is a simplicial sub-complex of

Δ(BY ): take a simplex σ of Q, denote its vertices by x1, ..., xk, note δj the Dirac mass of xj , and

look at the partition σi = Yi ∩σ of σ induced by Y , then for all the xj ∈ σi the images Y∗δj coincide.

Let us denote this image by δ(Y, σi); it is an element of QY . For every law Q in σ, the image Y∗Q
belongs to the simplex on the laws δ(Y, σi), and any point in this simplex belongs to QY . Q.E.D.

If X → Y is an arrow in Π(ΩB), the above argument shows that the map QX → QY is a

simplicial mapping.

Conditioning by Y and marginalization by Y∗ are related by the barycentric law (or theorem of

total probability, Kolmogorov 1933 [29]): for any measurable set A in B we have

P (A) = P (Y = y1)P |(Y = y1)(A) + ...+ P (Y = ym)P |(Y = ym)(A). (9)

Remark that the notions of information structures and probability complexes extend to infinite

sets; this is developed in paper [7].

In this context, we have a formula for any integrable function ϕ on Ω with respect to P :∫
Ω

ϕ(ω)dP (ω) =

∫
Ω/Y

d(Y∗P )(ω′)
∫
Ω

ϕ(ω)d(P |(Y = ω′))(ω). (10)

Consider a finite set Ω, equipped with a Boolean algebra B, a probability family Q for it and an

information structure S adapted to B.

For each object X in S , the set SX made by the partitions Y that are divided by X is a closed

sub-category, possessing an internal law of monoid. The object X is initial. To any arrow X → Y
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is associated the inclusion SY → SX , thus we get a contra-variant functor from S to the category

of monoids.

On the other side we have a natural co-variant functor of S to the category of sets, which

associates to each partition X ∈ S the set QX of probability laws in the image of Q on the quotient

set Ω/X , and which associates to each arrow X → Y the surjection QX → QY which is given by

direct image PX �→ Y∗PX . IfQ is simplicial the functor goes to the category of simplicial complexes.

Definition 1. For X ∈ S , the functional module FX(Q) is the real vector space of measurable

functions on the space QX ; for each arrow of divisibility X → Y , we have an injective linear map

f �→ fY |X from FY to FX , given by

fY |X(PX) = f(Y∗PX). (11)

In this manner, we obtain a contra-variant functor F from the category S to the category of real

vector spaces.

If Q and S are adapted one to each other, the functor F admits a canonical action of the monoid

functor X �→ SX , given by the average formula

(Y.f)(P ) =

∫
dY∗P (y)f(P |(Y = y)). (12)

To verify this is an action of monoid, we must verify that for any Z which divides Y , and any

f ∈ FY , we have, in FX the identity

(Z.f)Y |X = Z.(fY |X); (13)

that means, for any P ∈ QX :∫
EZ

dZ∗P (z)fY |X(P |(Z = z)) =

∫
EZ

dZ∗P (z)f((Y∗P )|(Z = z)). (14)

But this results from the identity Y∗(P |(Z = z)) = (Y∗P )|(Z = z) due to Y∗P (Z = z) = P (Z =

z).

The arrows of direct images and the action of averaged conditioning satisfy the axiom of

distributivity: if Y and Z divide X , but not necessarily Z divides Y , we have

Z.(fY )(P,X) = (Z.f)((Z, Y )∗P, (Y, Z)) = (Z.f)(Z,Y )(P,X). (15)

Proof. The first identity comes from the fact that (Z, Y )∗(P |(Z = z)) = Y∗(P |(Z = z)); the second

one follows from the fact that we have an action of the monoid SX .

As the formula (12) is central in our work, we insist a bit on it, and comment its meaning, at least

in this finite setting:

Let P �→ f(P ) be an element of FX , and Y be the goal of an arrow X → Y , we have

Y.f(P ) =
∑
j

P(Y = yj)f(P|Y = j). (16)
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where j describes the indices of the partition Y .

We will see when discussing functions of several partitions that this formula is due to Shannon

and correspond to conditional information.

Lemma 1. for any pair (Y, Z) of variables in SX , and any F for which the integrals converge, we

have (Y, Z).F = Y.(Z.F ).

Proof. We note pi the probability that Y = yi, πij the joint probability of (Y = yi, Z = zj), and qij

the conditional probability of Z = zj knowing that Y = yi, then

(Y, Z).F (P) =
∑
i

∑
j

πijF (P|(Y = yi, Z = zj))

=
∑
i

pi(
∑
j

qijF (P|(Y = yi, Z = zj))

=
∑
i

pi(
∑
j

qijF (P|(Y = yi))|(Z = zj))

=
∑
i

pi(Z.F )(P|(Y = yi))

= Y.(Z.F )(P).

Remark 1. In the general case, where Ω is not necessarily finite and B is any sigma-algebra, the

Lemma 1 is a version of the Fubini theorem.

Let us consider the category S equipped with the discrete topology, to get a site (cf. SGA

[30]). Over a discrete site every presheaf is a sheaf. The contravariant functor X �→ SX gives a

structural sheaf of monoids, and by passing to the algebras AX over R which are generated by the

(finite) monoids, we get a sheaf in rings, thus S becomes a ringed site. Moreover, by considering all

contra-variant functors X �→ NX from S to modules over the algebra functor A, we obtain a ringed

topos, that we name the information topos associated to Ω,B,S. This ringed topos concerns only the

observables given by partitioning.

Take now in account a probability family Q which is adapted to S , for instance a simplicial

family; we obtain a functor X �→ QX translating the marginalization by the partitions, considered as

observable quantities, and the conditioning by observables is translated by a special element X �→
FX of the information topos.

In this way it is natural to expect that topos co-homology, as introduced by Grothendieck, Verdier

and their collaborators (see SGA 4 [30]), captures the invariant structure of observation, and defines

in this context what information is. This is the main outcome of our work.

As a consequence of Grothendieck’s article (Tohoku, 1957 [31]), a ringed topos possesses enough

injective objects, i.e., any object is the sub-object of an injective object, moreover, up to isomorphism,

there is a unique minimal injective object containing a given object, called its injective envelope

(cf. Gabriel, seminaire Dubreil, exp. 17 [32]). Thus each object in the category DS of modules

over a ringed site S possesses a canonical injective resolution I∗(N); then the group ExtnD(M,N)
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can be defined as the homology of the complex HomD(M, In(N)). Those groups are denoted by

Hn(M ;N).

The “comparison theorem” (cf. Bourbaki, Alg.X Th1, p.100 [33], or MacLane 1975, p. 261 [5])

asserts that, for any projective (resp. injective) resolution of M (resp. N ) there exists a natural map

of complexes between the resulting complex of homomorphisms and the above canonical complex,

and that this map induces an isomorphism in co-homology.

In our context, we take for M the trivial constant module RS over S , and we take for N the

functional module F(Q).
The existence of free resolutions of RS makes things easier to handle.

Hence we propose that the natural information quantities are classes in the co-homology groups

H∗(RS ,F(Q)).
This is reminiscent of Galois co-homology see SGA [30], where M is also taken as the constant

sheaf over the category of G-objects seen as a site.

In [7] we develop further this more geometric approach, by considering several resolutions. But

in this paper, in order to be concrete, we will only focus on a more elementary approach, associated

to a special resolution, called the non-homogeneous bar-resolution, which also leads to the general

result. This is the object of the next section.

2.2. Non-Homogeneous Information Co-Homology

For each relative integer m ≥ 0, and each object X ∈ S , we consider the real vector space

Sm(X), freely generated by the m-uples of elements of the monoid SX , and we define Cm(X) as the

real vector space of linear functions from Sm(X) to the space FX of measurable functions from QX

to R.

Then we define the set Cm of m-cochains as the set of collections FX ∈ Cm(X) satisfying the

following condition, named joint locality:

For each Y divided by X , when each variable Xj is divided by Y , we must have

FY (X1; ...;Xm;Y∗P) = FX(X1; ...;Xm;P). (17)

Thus a co-chain F is a natural transformation from the functor Sm(X) from S to the category

of real vector spaces to the functor F of measurable functions on QX . Hence, F is not an ordinary

numerical function of probability laws P and a set (X1, ..., Xm) of m random variables, but we can

speak of its value FX(X1; ...;Xm;P) for each X in S. For X given the co-chains form a sub-vector

space Cm(X) of Cm(X).

If we apply the condition to Y = (X1, ..., Xm) we find that F (X1; ...;Xm;P) depends only on

the direct image of P by the joint variable of the Xi’s. This implies that, if F belongs to Cm(X), we

have

F (X1; ...;Xm;P) = F (X1; ...;Xm; (X1...Xn)∗P), (18)
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Conversely, suppose that F satisfies the conditions (18) and consider X, Y two variables such that

X divides Y , and that Y divides each Xj , and let P be a probability in QX ; then the joint variable

Z = (X1, ..., Xm) divides Y and X , thus we have Z∗P = Z∗(X∗P ) = Z∗(Y∗P ), and

F (X1; ...;Xm;Y∗P ) = F (X1; ...;Xm;Z∗P ) = F (X1; ...;Xm;X∗P ). (19)

Which proves that F belongs to Cm(X).

Let F be an element of Cm(X), and Y an element of SX ; then we define

Y.F (X1; ...;Xm;P) =
∑

P(Y = yj)F (X1; ...;Xm;P|Y = yj). (20)

It follows from the equivalent condition (18) that Y.F also belongs to Cm(X).

Moreover, the proof of Lemma 1 applies and give that, for any pair (Y, Z) of variables in SX , and

any F in Cm(X), we have (Y, Z).F = Y.(Z.F ).

Thus (1) defines an action of the semigroup SX on the vector spaces Cm(X).

Remark 2. The operation of SX can be rewritten more compactly by using integrals:

Y.F (X1; ...;Xm;P) =

∫
Ω

F (X1; ...;Xm;P|(Y = Y (ω)))dP (ω). (21)

The differential δ for computing co-homology is given by the Eilenberg-MacLane formula (1943):

δmF (Y1; ...;Ym+1;P )

=Y1.F (Y2; ...;Ym+1;P ) +
m∑
1

(−1)iF (...; (Yi, Yi+1); ...;Ym+1;P ) + (−1)m+1F (Y1; ...;Ym;P ).

(22)

Since this formula corresponds to the standard inhomogeneous bar-resolution in the case of

semi-groups and algebras (Cf. MacLane p.115 [4] and Cartan-Eilenberg pp.174–175. [34]), we

name δ the Hochschild co-boundary, as in the case of semi-groups, and algebras.

Remark that a function F satisfying the joint locality condition, (i.e., the hypothesis that

F (Y1; ...;Ym;P ) depends only on (Y1, ..., Ym)∗P ), has a co-boundary which is also jointly local,

because the variables appearing in the definition are all joint variables of the Yj . (This this would

not have been true for the stronger locality hypothesis asking that F depends only on the collection

(Yj)∗P ; j = 1, ...,m.)

It is easy to verify that δm ◦ δm−1 = 0. We denote by Zm the kernel of δm and by Bm the image

of δm−1. The elements of Zm are named m-cocycles, we consider them as information quantities,

and the elements of Bm are m-coboundaries.

Definition 2. For m ≥ 0, the quotient

Hm(C∗) = Zm/Bm (23)

is the m-th cohomology group of information of the information structure S on the simplicial family

of probabilities Q. We denote it by Hm(S;Q).
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The information co-homology satisfies functoriality properties:

Consider two pairs of information structures and probability families, (S,Q) and (S ′,Q′) on two

sets Ω,Ω′ equipped with the σ-algebras B,B′ respectively, and ϕ a surjective measurable map from

(Ω,B) to (Ω′,B′), such that ϕ∗(Q) ⊆ Q′ (i.e., ϕ∗(Q) ∈ Q′ for every Q ∈ Q), and such that S ⊆ ϕ∗S ′

(i.e., ∀X ∈ S, ∃X ′ ∈ S ′, X = X ′ ◦ ϕ); then we have the following construction:

Proposition 1. For each integer m ≥ 0, a natural linear map

ϕ∗ : Hm(Q′;S ′)→ Hm(Q;S), (24)

is defined by the following application at the level of local co-chains:

ϕ∗(F ′)(X1; ...;Xm;P ) = F ′(X ′
1; ...;X

′
m;ϕ∗(P )), (25)

for a collection of variables X ′
j; j = 1, ...,m satisfying Xj = X ′

j ◦ ϕ for each j.

Proof. First, remark that Xj = X”j ◦ϕ implies X ′
j = X”j because ϕ is surjective. As F ′ is (jointly)

local, the co-chain F = ϕ∗(F ′) is also (jointly) local. Finally, it is evident that the map F ′ �→ F

commutes with the co-boundary operator. Therefore the proposition follows.

Another co-homological construction works in the reversed direction:

Consider two information structures (S,Q) and (S ′,Q′) on two sets Ω,Ω′ equipped with σ-algebras

B,B′ respectively, and ϕ a measurable map from (Ω,B) to (Ω′,B′), such that Q′ ⊆ ϕ∗(Q) (i.e.,

∀Q′ ∈ Q′, ∃Q ∈ Q, Q′ = ϕ∗(Q)), and such that ϕ∗S ′ ⊆ S (i.e., ∀X ′ ∈ S ′, X = X ′ ◦ ϕ ∈ S); then

the following result is true:

Proposition 2. For each integer m ≥ 0, a natural linear map

ϕ∗ : Hm(Q′;S ′)→ Hm(Q;S), (26)

is defined by the following application at the level of co-chains:

ϕ∗(F )(X ′
1; ...;X

′
m;P

′) = F (X ′
1 ◦ ϕ; ...;X ′

m ◦ ϕ;P ), (27)

for a probability law P ∈ Q and its image P ′ = ϕ∗(P ).

Proof. First, remark that, if Q also satisfies P ′ = ϕ∗(Q), we have F (X ′
1 ◦ ϕ; ...;X ′

m ◦ ϕ;P ) =

F (X ′
1 ◦ ϕ; ...;X ′

m ◦ ϕ;Q). To establish that point, let us denote Xj = X ′
j ◦ ϕ; j = 0, ...,m, and

X ′ = (X ′
1, ..., X

′
m), X = (X1, ..., Xm) the joint variables; the quantity F (X ′

1 ◦ ϕ; ...;X ′
m ◦ ϕ;P )

depends only on X∗P , but this law can be rewritten X ′
∗P

′, which is also equal to X∗Q. In particular,

if F is local, then F ′ = ϕ∗F is local.
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As it is evident that the map F �→ F ′ commutes with the co-boundary operator, the

proposition follows.

Remark this way of functoriality uses the locality of co-cycles.

Corollary 1. In the case where Q′ = ϕ∗(Q) and S = ϕ∗S ′, the maps ϕ∗ and ϕ∗ in information

co-homology are inverse one of each other.

This is our formulation of the invariance of the information co-homology for equivalent

information structures.

When m = 0, co-cochains are functions f of PX in QX such that f(Y∗PX) = f(PX) for any

Y multiple of X (i.e., coarser than X). As we assume 1 belongs to S , and the set Q1 has only one

element, f must be a constant. And every constant is a co-cycle, because

δ.f(X0;P ) = X0.f(P )−f(P ) =
∑
j

P (X0 = xj)f(P |X0 = xj)−f(P ) = f(1)(1−1) = 0. (28)

Consequently H0 is R. This corresponds to the hypothesis 1 ∈ S , meaning connexity of the category.

If m components exist, we recover them in the same way and H0 is isomorphic to Rm.

We now consider the case m = 1. From what precedes we know that there is no non-trivial

co-boundary.

Non-homogeneous 1-cocycles of information are families of functions fX(Y ;PX), measurable

in the variable P in Q, labelled by elements Y ∈ SX , which satisfies the locality condition, stating

that each time we have Z → X → Y in S , we have

fX(Y ;X∗PZ) = fZ(Y ;PZ) (29)

and the co-cycle equation, stating that for two elements Y, Y ′ of SX , we have

f((Y, Y ′);P ) = f(Y ;P ) + Y.f(Y ′;P ). (30)

Remark that locality implies that it is sufficient to know the fY (Y ;Y∗P ) to recover fX(Y ;P ) for all

partition X in S that divides Y .

It is in this sense that we frequently omit the index X in fX .

Remark also that for any 1-cocycle f we have f(1;P ) = 0.

In fact, the co-cycle equation tells that

f((1, 1);P ) = f(1;P ) + 1.f(1;P ). (31)

but

1.f(1;P ) = f(1;P |1 = 1) = f(1;P ), (32)

and (1, 1) = 1, thus f(1;P ) = 0.

More generally, for any X , and any value xi of X , we have

f(X;P |(X = xi)) = 0, (33)
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In fact a special case of Equation (30) is

f((X,X);P ) = f(X;P ) +X.f(X;P ). (34)

which implies X.f(X;P ) = 0; however, by definition,

X.f(X;P ) =
∑
i

P (X = xi)f(X;P |(X = xi)), (35)

thus for every i we must have f(X;P |(X = xi)) = 0, due to P ≥ 0. This generalizes f(1;P ) = 0

for any P , because, for a probability conditioned by X = xi, the partition X appears the same as 1,

that is a certitude.

Remark also that for each pair of variables (X, Y ), a 1-cocycle must satisfy the following

symmetric relation:

f(Y ;P)− Z.f(Y ;P) = f(Z;P)− Y.f(Z;P). (36)

2.3. Entropy

Any multiple of the Shannon entropy is a non-homogeneous information co-cycle. Remind that

entropy H is defined for one partition X by the formula

H(X;P) = −
∑
i

pi log pi, (37)

where the pi denotes the values of P on the elements of the partition X . In particular the function H

depends only on X∗(P), which is locality. The co-cycle equation expresses the fundamental property

for an information quantity, writen by Shannon:

H(X, Y ) = H(X) +HX(Y ) (38)

Thus every constant multiple f = λH of H defines a co-cycle.

Remark that the corresponding “homogeneous 1-cocycle” is the entropy variation:

F (X;Y ;P) = H(X;P)−H(Y ;P). (39)

This means that it satisfies the “invariance property”:

F ((Z,X); (Z, Y )) = H(Z,X)−H(Z, Y )

= H(Z) +HZ(X)−H(Z)−HZ(Y )

= Z.F (X;Y ),

and the “simplicial equation”:

F (Y ;Z)− F (X;Z) + F (X;Y ) = 0 (40)

Note that the entropy variation H(X;P )−H(Y ;P ) exists in a wider range of condition, i.e., when

Ω is infinite, if the laws of X and Y are absolutely continuous with respect to a same probability law
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P0: we only have to replace the finite sum by the integral of the function −ϕ logϕ where ϕ denotes

the density with respect to P0. Changing the reference law P0 changes the quantities H(X) and

H(Y ) by the same constant, thus does not change the variation H(X;P )−H(Y ;P ).

We will prove now that, for many simplicial structures S, and sufficiently large adapted

probability complexes Q, any information co-homology class of degree one is a multiple of the

entropy class.

In particular this would be true for S = W (Σ) and Q = Δ(Ω), when Σ has more than two

elements and Ω more than four elements, but this is also true in more refined situation, as we will

see.

We assume that the functor of probabilities QX contains all the laws on Ω/X , when X belongs

to S. In such a case, by definition, we say that Q is complete with respect to S .

Let us consider a probability law P inQ and two partitions X, Y in the structure S , such that the

joint XY belongs to S. We denote by Greek letters α, β, ... the indices labelling the partition Y and

by Latin letters k, l, ... the indices of the partition X; the probability that X = ξk, Y = ηα is noted

pk,α, then the probability of X = ξk is equal to pk =
∑

α pk,α and the probability of Y = ηα is equal

to qα =
∑

k pk,α.

To simplify the notations, let us write F = f(X;P),G = f((Y,X);P),H = f(Y ;P), Fα =

f(X;P|(Y = ηα)),Hk = f(Y ;P|(X = ξk)).

The Hochschild co-cycle equation gives∑
α

qαFα(
pk1,α
qα

, ...,
pkm,α

qα
) = G((pk,α))−H(qα1 , ..., qαn) (41)

But we also have the relation obtained by exchanging X and Y , which gives∑
k

pkHk(
pk,α1

pk
, ...,

pk,αn

pk
) = G((pk,α))− F (pk1 , ..., pkm). (42)

Suppose that pk,α = 0 except when α = α1 and k = k2, k3, ..., km or α = α2 and k = k1; we

put pki,α1 = xi; i = 2, ...,m and pk1,α2 = x1, which implies that we have x1 + x2 + ... + xm = 1.

Then Equation (33) implies that each term H in Equation (42) is zero, because only one value of

the image law is non-zero, thus we can replace the only term G by F (pk1 , ..., pkm), and we get from

Equation (41):

H(1− x1, x1, 0, ..., 0) = F (x1, x2, ..., xm)− (1− x1)Fα1(0,
x2

1− x1

, ...,
xm

1− x1

). (43)

Only the term F for α1 subsists because, the possible other one, for α2, concerns a certitude.

Consequently, by imposing x2 = 1 − x1 = a, x3 = ... = xm = 0, we deduce the identity

H(a, 1− a, 0, ..., 0) = F (1− a, a, 0, ..., 0). This gives a recurrence equation to calculate F from the

binomial case:

F (x1, x2, ..., xm) = F (x1, 1− x1, 0, ..., 0) + (1− x1)F (0,
x2

1− x1

, ...,
xm

1− x1

). (44)

That is due to the fact that Fα1 is a special case of F , thus independent from Y and α1.

Then coming back to the co-cycle equation, we obtain in particular a functional equation for the

binomial variables.
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Lemma 2. With the notations of the example 1 (cf. example 1), Ω = {(00), (01), (10), (11)}, S1

(resp. S2) the projection pr1 (resp. pr2), on E1 = E2 = {0, 1}, S = {S1, S2}; then the (measurable)

information co-homology of degree one is generated by the entropy, i.e., there exists a constant C

such that, for any X in W (Σ), P ∈ P , f(X;P ) = CH(X;P ).

Proof. We consider a 1-cocycle f . We have f(1;P ) = 0. Let us note fi(P ) = f(Si;P ), and fijk(u)

the function f(Si;P |(Sj = k)), the variable u representing the probability of the first point in the

fiber Sj = k in the lexicographic order. For each tableau 2×2, P = (p00, p01, p10, p11), the symmetry

formula (36) gives

(p00 + p10)f120(
p00

p00 + p10
) + (p01 + p11)f121(

p01
p01 + p11

)− f1(P )

= (p00 + p01)f210(
p00

p00 + p01
) + (p10 + p11)f211(

p10
p10 + p11

)− f2(P ) (45)

imposing p10 = 0,p00 = u,p11 = v,p01 = 1− u− v in this relation, we obtain the equation:

(1− u)f1(0,
1− u− v

1− u
, 0,

v

1− u
)− f1(u, 1− u− v, 0, v)

= (1− v)f2(
u

1− v
,
1− u− v

1− v
, 0, 0)− f2(u, 1− u− v, 0, v). (46)

By hypothesis, f1, f2 depend only on the image law by S1, S2 respectively, thus, again by noting a

binomial probability from the value of the first element in lexicographic order, we get

(1− u)f1(
1− u− v

1− u
)− f1(1− v) = (1− v)f2(

u

1− v
)− f2(u). (47)

By equating u to 1−v, we find that f1(u) = f2(u); then we arrive to the following functional equation

for h = f1 = f2:

h(u)− h(v) = (1− v)h(
u

1− v
)− (1− u)h(

v

1− u
) (48)

This is the functional equation which was considered by Tverberg in 1958 [35]. As a result of

the works of Tverberg [35], Kendall [36] and Lee (1964, [37]), (see also Kontsevich, 1995 [38]), it is

known that every measurable solution of this equation is a multiple of the entropy function:

h(x) = C(x log(x) + (1− x) log(1− x)). (49)

>From here it follows that, for any m-uple (x1, ..., xm) of real numbers such that x1+...+xm = 1,

F (x1, x2, ..., xm) = C
∑
i

xi log(xi). (50)

The same is true for H and G with the appropriate number of variables.

A pair of variables X, Y , such that X, Y, (XY ) belong to S, is called an edge of S; we says this

edge is rich if X and Y contain at least two elements and (X, Y ) at least four elements which cross

the elements of X and Y , in such a manner that the Lemma 2 applies ifQ is complete. We say that S
is connected, if every pair of elements X,X ′ in S can be joined by a sequence of edges. We say that
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S is sufficiently rich if each vertex belongs to at least one rich edge. By the the recurrence Equation

(100), these two conditions guaranty that the constant C which appears in the Lemma 2 is the same

for all rich edges. Then the same recurrence Equation (100) implies that the whole co-cycle is equal

to CH . If S has m connected components, we get necessarily m independent constants.

Thus we have established the following result:

Theorem 1. For every connected structure of information S , which is sufficiently rich, and every set

of probabilityQ, which is complete with respect to S , the information co-homology group of degree

one is one-dimensional and generated by the classical entropy.

The theorem applies to rich simplicial complexes, in particular to the full simplex S = W (Σ) ,

which is generated by a family Σ of partitions S1, ..., Sn, when n ≥ 2, such that, for every i at least

of the pairs (Si, Sj) is rich.

Note that most of the axiomatic characterizations of entropy have used convexity, and recurrence

over the dimension, see Khintchin [39], Baez et al. [20].

In our characterization, we assumed no symmetry hypothesis, this was a consequence of

co-homology. Moreover, we do not assume any stability property relating to a higher dimensional

simplex, this was also a consequence of the homological definition.

There exists a notion of symmetric information co-homology:

The group of permutations S(Ω,B), made by the permutations of Ω that respect the algebra B,

acts naturally on the set of partitions Π(Ω); in fact, if X ∈ Π(Ω) is made by the subsets Ω1, ...,Ωk,

the partition σ∗X is made by the subsets σ−1(Ω1), ..., σ
−1(Ω1), in such a manner that, if σ, τ are two

permutations of Ω, we have τ ∗(σ∗X) = (σ ◦ τ)∗X .

We say that a classical information structure S on (Ω,B) is symmetric if it is closed by the action

of the group of permutations S(Ω,B), i.e., if X ∈ S , and σ ∈ S(Ω), the partition σ∗X also belongs

to S.

In the same way, we say that a probability functor Q is symmetric, if it is stable under local

permutations, i.e., if X ∈ S and P ∈ QX , and if σ ∈ S(Ω/X), then the probability law σ∗P = P ◦σ
on Ω/X also belongs to QX .

Remark that we also have τ ∗σ∗P = (σ◦τ)∗P ). Thus the actions of symmetric groups are defined

here on the right. However, we have actions to the left by taking σ∗ = (σ−1)∗. For the essential role

of symmetries in information theory, see the article of Gromov in this volume.

A m-cochain FX : Sm ×QX → R is said symmetric, when, for every X ∈ S , every probability

P ∈ QX , every collection of partitions Y1, ..., Ym in SX , we have

Fσ∗X(σ∗Y1; ...; σ∗Ym; σ∗P ) = FX(Y1; ...;Ym;P ). (51)

It is evident that symmetric cochains form a subcomplex of the information cochains complex;

i.e., the coboundary of a symmetric cochain being a symmetric cochain. Consequently we get a

symmetric information co-homology, that we name H∗
S(S;Q).

In particular the entropy is a symmetric 1-cocycle.
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The above proof of Theorem 1 applies to symmetric cocycle as well, thus, under the convenient

hypothesis of connexity, richness, and completeness for S and Q we have H1
S(S;Q) = RH .

Remark that an equivalent way to look at symmetric information cochains, consists in enlarging

the category S in a “symmetric category” SS, by putting an arrow associated to each element

σX ∈ S(Ω/X) from X to σ∗X , and completing the category by composing the two kind of arrows,

division and permutation. In this case, the probability functor Q must behave naturally with respect

to permutation, which implies it is symmetric. Moreover, the natural notion of functional sheaf and

local cochains are a symmetric sheaf and symmetric cochains.

2.4. Appendix. Complex of Possible Events

In each concrete situation, physical constraints produce exclusion rules between possible events,

which select a sub-complexQ in the full probability simplexP = ΔN on Ω. The aim of this appendix

is to make this remark more precise.

Let A0, A1, A2, A3, ... the N + 1 vertices of the large simplex ΔN , a point of ΔN is interpreted

as a probability P on the set of thee vertices; each vertex can be seen as an elementary event, and we

will say that a general event A is possible for P when P(A) is different from zero. An event A is said

impossible for P in the other case, that is when P(A) = 0.

The star S(A) of a vertex A of ΔN is the complementary set of the opposite face to A, i.e., it is

the set of probabilities P in ΔN such that A is possible, i.e., has non-zero probability. The relative

star S(A|K) of A in subcomplex K is the intersection of the star of A with K.

We denote F = (A,B,C,D, ...) the face of ΔN whose vertices are A,B,C,D, .... We note L(F )

the set of points p in ΔN such that at least one of the points A,B,C,D, ... is impossible for p. This

is also the reunion of the faces which are opposite to the vertices A,B,C,D, ... . Then L(F ) is a

simplicial complex. The complementary set in F of the interior of F , i.e., the boundary of F , is

the reunion of the intersections of F with all faces opposite to A,B,C,D, ...; it is also the set of

probabilities p in F such that at least one of the points A,B,C,D, ... is impossible for p, thus it is

equal to L(F ) ∩ F . If G is a face containing F the complex L(G) contains the complex L(F ).

Let K be a simplicial complex contained in a N -simplex; then K is obtained by deleting from

ΔN a set E = EK of open faces. Let Ḟ = F\∂F be an element of E, then each faces G of ΔN

containing F belongs to E, because K is a complex.

In this case K is contained in L(F ). In fact L(F ) is the smallest sub-complex of ΔN which does

not contain Ḟ . This can be proved as follows: if p in K makes that every vertices of F is possible, it

belongs to a face G such that every vertex of F is a vertex of G, thus K contains G which contains

F . So, if K does not contain Ḟ , K is contained in L(F ).

Let L = LK be the intersection of the L(F ), where F describe the faces in EK . From

what precedes we know that K is contained in L. However, every Ḟ in E is included in the

complementary set of L(F ), thus it is included in the complementary set of L, which is the union of

the complementary sets of the L(F ). Consequently the complementary set of K is included in the

complementary set of L. Then K = L.
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This discussion establishes the following result:

Theorem 2. A subset K of the simplex ΔN is a simplicial sub-complex if and only if it is defined

by a finite number of constraints of the type: “for any p in K, the fact that A,B,C, ... are possible

for p implies that D is impossible for p”.

In other terms, more imaged but also more ambiguous, every sub-complex K is defined by

constraints of the type: “if A,B,C, ... are simultaneously allowed it is excluded that D can happen”.

The statement of the theorem is just a rewriting of the discussion, using elementary propositional

calculus: let K be a sub-complex of ΔN , we have shown that K is the intersection of the L(F ) where

the open face Ḟ is not in K, but if A,B,C,D, ... denote the vertices of the face F , a point p belongs

to L(F ) if and only if “(A is impossible for p) or (B is impossible for p) or ...”, and this sentence

is equivalent to “if (A is possible for p) and (B is possible for p) and ..., then (D is impossible for

p)”. This results from the equivalence between “(P implies Q) is true” and “(no P or Q) is true”.

Reciprocally any L(F ) is a simplicial complex, then every intersection of sets of the form L(F ) is a

simplicial complex too.

3. Higher Mutual Informations. A Sketch

The topological co-boundary operator on C∗, denoted by δt, is defined by the same formula as δ,

except that the first term Y1.F (Y2; ...;Yn;P) is replaced by the term F (Y2; ...;Yn;P) without Y1:

δmt F (Y1; ...;Ym+1;PX)

=F (Y2; ...;Ym+1;PX) +
m∑
1

(−1)iF (...; (Yi, Yi+1); ...;Ym+1;PX) + (−1)m+1F (Y1; ...;Ym;PX).

(52)

It is the coboundary of the bar complex for the trivial module Ft, which is the same as F except

no conditioning appears, i.e., Y.F = F . Hence it is the ordinary simplicial co-homology of the

complex S with local coefficients in F .

Remark that this operator also preserves locality, because all the functions of P which comes in

the development depends only on (Y2, ..., Yn) ∗ P, (Y1, ..., Yn) ∗ P and (Y1, ..., Yn−1) ∗ P.

By definition a topological cocycle of information is a cochain F that satisfies δtF = 0, and a

topological co-boundary is an element in the image of δt.

It is easy to show that δt ◦ δt = 0, which allows to define a co-homology theory that we will name

topological co-homology.

Now assume that the information structure S is a set W (Σ) = Δ(n) generated by a family Σ of

partitions S1, ..., Sn, when n ≥ 2.

Higher mutual information quantities were defined by Hu Kuo Ting [6] (see also Yeung [40]),

generalizing the Shannon mutual information.

IN(S1; ...;SN ;P) =
k=N∑
k=1

(−1)k−1Hk(S1; ...;SN ;P), (53)
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where

Hk(S1; ...;SN ;P) =
∑

I⊂[N ];card(I)=k

H(SI ;P), (54)

SI denoting the joint partition of the Si such that i ∈ I . We also define I1 = H .

The definition of IN makes evident it is a symmetric function, invariant by all permutation of the

partitions S1, ..., SN .

For instance I2(S;T ) = H(S) +H(T )−H(S, T ) is the usual mutual information.

It is easily seen that I2 = δtH . The following formula generalizes this remark to higher mutual

informations of even orders:

I2m = δtδδt...δδtH, (55)

where the right member contains 2m− 1 terms.

And for odd mutual information we have

I2m+1 = −δδtδδt...δδtH, (56)

where the right member contains 2m terms.

We deduce from here that higher mutual informations are co-boundaries for δ or δt according that

their order is odd or even respectively.

The result which proves the two above formulas is the following:

Lemma 3. Let n be even or odd we have

IN((S0, S1);S2; ...;SN ;P) = IN(S0;S2; ...;SN ;P) + S0.IN(S1;S2; ...;SN ;P) (57)

This lemma can be proved by comparing the completely developed forms of the quantities. It

seems to signify that, with respect to one variable, IN satisfies the equation of information 1-cocycle,

thus IN seems to be a kind of “partial 1-cocycle”; however this is misleading, because the locality

condition is not satisfied. In fact IN is a N -cocycle, either for δ, either for δt depending on the parity

of N .

For any N -cochain F we have

(δ − δt)F (S0;S1; ...;SN ;P) = ((S0 − 1).F )(S1; ...;SN ;P ), (58)

where S0 − 1 denotes the sum of the two operators of mean conditioning and minus identity.

That implies:

(δδt − δtδ)F (S0;S1;S2; ...;SN ;P) = ((1 + S0 + S1 − S0S1).F )(S2; ...;SN ;P), (59)

Remark 3. Reciprocally the functions IN decompose the entropy of the finest joint partition:

H(S1, S2, ..., SN ;P) =
k=N∑
k=1

(−1)k−1
∑

I⊂[N ];card(I)=k

Ik(Si1 ;Si2 ; ...;Sik ;P) (60)
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For example, we have H(S, T ) = I1(S) + I1(T )− I2(S;T ), and

H(S, T, U) = H(S) +H(T ) +H(U)− I2(S;T )− I2(T ;U)− I2(S;U) + I3(S;T ;U). (61)

Let us also note the recurrence formula whose proof is left to the reader (cf. Cover and Thomas [41]):

IN+1(S0;S1; ...;SN) = IN(S1; ...;SN)− S0.I(S1; ...;SN). (62)

4. Quantum Information and Projective Geometry

4.1. Quantum Measure, Geometry of Abelian Conditioning

In finite dimensional quantum mechanics the role of the finite set Ω of atomic events is played by

a complex vector space E of finite dimension.

In fact, to each set Ω, of cardinal N , is naturally associated a vector space of dimension N over

C, which is the space freely generated over C by the elements of Ω. Then we can identify E with

CN , the canonical basis being the points x of Ω. In this case the canonical positive hermitian metric

on E corresponds to the quadratic mean: if f and g are elements of E, we have

h0(f, g) = 〈f |g〉0 =
∫

f̄(ω)g(ω)dω =
1

N

∑
j

fjgj (63)

Remark that, in the infinite dimensional situation, the space which would play the role of E is the

space of L2 functions for a fixed probability P0.

Probability laws P, which are elements of the big simplex Δ(N), give other hermitian structures,

the ones which are expressed by diagonal matrices, with positive coefficients, and trace equal to 1.

In the general quantum case, described by E, a quantum probability law is every positive non-zero

hermitian product h. If a basis is chosen, h is described by an N × N -matrix ρ. In the physical

literature, every such ρ is called a density of states; and it is considered as a full description of the

physical states of the finite quantum system. Usually ρ is normalized by Tr(ρ) = 1.

Note that this condition on the trace has no meaning for a positive hermitian form h if no

additional structure is given, for instance a non-degenerate form h0 of reference. Why is it so?

Because a priori a hermitian form h on E is a map from E to E
∗
, where ∗ denotes duality and bar

denotes conjugation, the conjugate space E being the same set E, with the same structure of vector

space over the real numbers as E, but with structure of vector space over the complex numbers

changed by changing the sign of the action of the imaginary unit i. The complexification of the

real vector space H of hermitian forms is HomC(E,E
∗
) ∼= E∗ ⊗ E

∗
. The space H is the set of

fixed points of the C-anti-linear map u �→t ū. A trace is defined for an endomorphism of the space

E, as a linear invariant quantity on E∗ ⊗ E. Here we could take the trace over R, because E and

E are the same over R, but the duality would be an obstacle, because even over the field R, the

spaces E and E∗ cannot be identified, and there exits no linear invariant in E∗ ⊗ E∗, even over R.

In fact, a non-degenerate positive h0 is one of the way to identify E and E
∗
. A basis is another

way, also defining canonically a form h0. More precisely, when h0 is given, every hermitian form
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h diagonalizes in an orthonormal basis for h0, thus all the spectrum of h makes sense not only the

trace.

This h0 is tacitly assumed in most presentations. However it is better to understand the

consequences of this choice. In non-relativistic quantum mechanics, it is not too grave, however

in relativist quantum mechanics, it is; for instance, considering the system of two states as a spinor

on the Lorentz space of dimension 4, the choice of h0 is equivalent to the choice of a coordinate of

time. See Penrose and Rindler [42].

A much less violent way to do is to consider hermitian structures h up to multiplication by

a strictly positive number. This would have the same effect as fixing the trace equals to one,

without introducing any choice. In quantum mechanics only non-zero positive h are considered,

not necessarily positive definite, but non-zero. This indicates that a good space of states is not the

set H+ of all positive non-zero hermitian products but a convex part PH+ of the real projective

space of real lines in the vector space H of hermitian forms. In this space, the complex projective

space P(E) of dimension N − 1 over C is naturally embedded, its image consists of the rank one

positive hermitian matrices of trace 1; these matrices correspond to the orthogonal projectors on one

dimensional directions in E.

When a basis of E is chosen, particular elements of P(E) are given by the generators of CN ; they

correspond to the Dirac distributions on classical states. We see here a point defended in particular

by Von Neumann, that quantum states are projective objects not linear objects.

The classical random variables, i.e., the measurable functions on Ω with values in C, are

generalized in Quantum Mechanics by the operators in E, they are all the endomorphisms, i.e., any

N × N -matrix, and they are named observables. Classical observables are recovered by diagonal

matrices, their action on E corresponding to the multiplication of functions. Real valued variables

are generalized by hermitian operators. Again this supposes that a special probability law h0 is given.

If not “to be hermitian” for an operator has no meaning. (What could have a meaning for an operator

is to be diagonalizable over R, which is something else.)

Then if h0 is chosen, the only difference between real observable and density of states is the

absence of the positivity constraint.

By definition, the amplitude, or expectation, of the observable Z in the state ρ is the number given

by the formula

Eρ(Z) = Tr(Zρ). (64)

It is important to note that h0 plays a role in this formula. Consequently the definition of

expectation requires to fix an h0 not only a ρ. This imposes a departure from the relativistic case,

which shall not be surprising, since considerations in relativistic statistical physics show that the

entropy, for instance, depends on the choice of a coordinate for time. Cf. Landau-Lifschitz, Fluid

Mechanics, second edition [43].

The partitions of Ω associated to random variables are replaced in the quantum context by the

spectral decompositions of the hermitian operators X . As h0 is given, this decomposition is given by

a set of positive hermitian commuting projectors of sum equal to the identity. The additional data for



70

recovering the operator X is one real eigenvalue for each projector. The underlying fact from linear

algebra is that every hermitian matrix is diagonalizable in a unitary basis, which means that

Z =
∑
j

zjEj, (65)

where the number zj are real, two by two different, and where the matrices Ej are hermitian

projectors, which satisfy, for any j and k �= j,

E2
j = Ej; E∗

j = Ej; EjEk = EkEj = 0; (66)

and ∑
j

Ej = IdN (67)

When the hermitian operator Z commutes with the canonical projectors on the axis of CN , its

spectral measure gives an ordinary partition of the canonical basis, and we recover the classical

situation.

Note that the extension of the notion of partition is given by any decomposition of the vector

space E in orthogonal sum, not necessarily compatible with a chosen basis. Again this assumes a

given positive definite h0.

To generalize what we presented in the classical setting, quantum information theory must use

only the spectral support of the decomposition, not the eigenvalues.

It would have been tempting to consider any decomposition of E in direct sum as a possible

observable, however not every linear operator, or projective transformation, corresponds to such a

decomposition, due to the existence of non-trivial nilpotent operators. What could be their role

in quantum information? Moreover, the presence of h0 fully justifies the limitation to orthogonal

decompositions.

In the general case, hermitian but not necessarily diagonal, we define the probability of the

elementary events Z = zj by the following formula

Pρ(Z = zj) = Tr(E∗
j ρEj) (68)

And we define the conditional probability ρ|(Z = zj) by the formula

ρ|(Z = zj) = E∗
j ρEj/Tr(E

∗
j ρEj). (69)

One can notice that this definition can be extended to any projector, not necessarily hermitian.

By definition, the conditioning of ρ by a projector Y is the matrix Y ∗ρY , normalized to be of trace

1. However, here, as it is done in most of the texts on Quantum Mechanics, we will mostly restrict

ourselves to the case of hermitian projectors, i.e., Y ∗ = Y .

Remark 4. What justifies these definitions of probability and conditioning? First they allow to

recover the classical notions when we restrict to diagonal densities and diagonal observables, i.e.,

when ρ is diagonal, real, positive, of trace 1, Z is diagonal, and the Ej are diagonals, in which case
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they give a partition of Ω. The mean of Z is its amplitude. The probability of the event Z = zj is the

sum of the probabilities p(ω) = ρωω for ω in the image of Ej; this the trace of ρEj . Moreover, the

conditioning by this event is the probability obtained by projection on this image, as prescribed by

the above formula.

Second, pure states are defined as rank one hermitian matrices. In this case ρ is the orthogonal

projection on a vector ψ of norm equal to 1 (the finite dimensional version of the Schrodinger wave

vector), the exact relation is

ρ = |ψ〉〈ψ| (70)

or, in coordinates, if ψ has for coordinates the imaginary numbers ψ(ω), we have

ρωω′ = ψ(ω)ψ(ω′). (71)

Let Z be any hermitian operator, the result of quantum experiments indicate that the probability

of the event Z = zj , for the state ψ, is equal to

Pj = 〈ψ|Ejψ〉. (72)

But this quantity can also be written

Pj = TrC(〈ψ|Ejψ〉) = TrE(|ψ〉〈ψ|Ej) = Tr(ρEj). (73)

Starting from this formula and the fact any ρ can be written as a classical mixture of commuting

quantum pure states,

ρ =
∑
a

pa|ψa〉〈ψa|, (74)

we get the general formula of a quantum probability that we recalled.

Moreover, physical experiments indicate that after the measurement of an observable Z, giving

the quantity zj , the system is reduced to the space Ej , and every pure state ψ is reduced to its

projection Ejψ, which is compatible with the above definition of conditioning for pure states. Here

again, the general formula can be deduced by Equation (74). The division by the probability is

achieved to normalize to a trace 1. Thus conditioning in general is given by orthogonal projection in

E, and it corresponds to the operation of measurement.

However, as claimed in particular by Roger Balian [44], the fact that the decomposition in

pure states is non-unique implies that pure states cannot be so pertinent for understanding quantum

information.

Definition 3. The density of states associated to a given variable Z and a given density ρ is given by

the sum:

ρZ =
∑
j

Pρ(Z = zj)ρ|(Z = zj) =
∑
j

E∗
j ρEj, (75)

where (Ej)j∈J designates the spectral decomposition of Z, also named spectral measure of Z. Thus

ρZ is usually seen as representing the density of states after the measurement of the variable Z. This

formula is usually interpreted by saying that the statistical analysis of the repeated measurements of

the observable Z transforms the density ρ into the density ρZ .
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Remark that ρZ is better understood as being a collection of conditional probabilities ρ|(Z = zj),

indexed by j.

In quantum physics as in classical physics the symmetries, discrete and continuous, have always

played a fundamental role. For example, in quantum mechanics, a fundamental principle is the

unitarity of the evolution in time, which claims that the states evolve as ρt = Utρ and that the

observables evolve as Zt = UtZU
−1
t , with Ut respecting the fundamental scalar product h0. In

fact, as we already mentioned, a deeper principle associates the choice of a time coordinate t to the

choice of h0, which gives birth to a unitary group U(E;h0), isomorphic to UN(C). For stationary

systems the family (Ut)t∈R forms a one parameter group, i.e., Ut+s = UtUs = UsUt, and there exists

a hermitian generator H of Ut in the sense that Ut = exp(2πitH/h); by definition, this particular

observable H is the energy, the most important observable. Even if we have a privileged basis, like Ω

in the relation with classical probability, the consideration of another basis which makes the energy

H diagonal is of great importance. In the stationary case, a symmetry of the dynamical system is

defined as any unitary operator, which commutes with the energy H . The set of symmetries forms

a Lie group G, a closed sub-group in UN . The infinitesimal generators are considered as hermitian

observables (obtained by multiplying the elements of the Lie algebra L(G) by i); in general they do

not commute between themselves.

All these axioms extend to the infinite dimensional situation when E has a structure of an Hilbert

space, but the spectral analysis of the un-bounded operators is more delicate and diverse than the

analysis in finite dimension. Three kinds of spectrum appear, discrete, absolutely continuous and

singular continuous. The symmetries could not form a Lie group in general, and so on.

In our simple case of elementary quantum probability, without fixed dynamics, the classical

symmetries of the set of probabilities are given by the permutations of Ω, the vertices of Δ(N).

They correspond to the unitary matrices which have one and only one non-zero element in each line

and each column. They do not diagonalize in the same basis because they do not commute, but they

form a group SN . Another subgroup of UN is natural for semi-classical study, it is the diagonal

torus TN , its elements are the diagonal matrices with elements of modulus 1, they correspond to sets

of angles. The group SN normalizes the torus TN , i.e., for each permutation σ and each diagonal

element Z, the matrix σZσ−1 is also diagonal; its elements are the same as the elements of Z but in

a different orders. The subgroup generated by SN and TN is the full normalizer of TN .

One of the strengths of the quantum theory, with respect to the classical theory, is that it gives

a similar status to the states, the observables and the symmetries. States are hermitian forms,

generalizing points in the sphere (or in the projective space) which are pure states, observables

are hermitian operators, or better spectral decompositions, and symmetries are unitary operators,

infinitesimal symmetries being anti-hermitian matrices.

All classical groups should appear in this framework. First, by choosing a special structure on

E we restrict the linear group GLN(C) to an algebraic subgroup GC. For instance, by choosing

a symmetric invertible bilinear form on E we obtain ON(C), or, when N is even, by choosing an

antisymmetric invertible bilinear form on E we obtain SpN(C). In each of these cases there exists a

special maximal torus (formed by the complexification of a maximal abelian subgroup T of unitary
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operators in GC), and a Weyl group, which is the quotient of the normalizer N(T ) by the torus

T itself. This Weyl group generalizes the permutation group when more algebraic structures are

given in addition to the linear structure. The compact group of symmetries is the intersection G

of GC with UN . In fact, given any compact Lie group Gc, and any faithful representation rc of Gc

in CN , we can restrict real observables to generators of elements in Cc, and general observables

to complex combinations of these generators, which integrate in a reductive linear group G. The

spectral decomposition corresponds to the restriction to parabolic sub-groups of GC. The densities

of states are restricted to the Satake compactification of the symmetric space GC/Gc [45].

4.2. Quantum Information Structures and Density Functors

To define information quantities in the quantum setting, we have a priori to consider families of

operators (Y1, Y2, ..., Ym) as joint variables. However, the efforts made in Physics and Mathematics

were not sufficient to attribute a clear probability to the joint events (Y1 = y1, Y2 = y2, ..., Ym = ym),

when Y1, ..., Ym do not commute; we even suspect that this difficulty is revelator of a principle, that

information requires a form of commutativity. Thus, in our study, we will adopt the convention that

every time we consider joint observables, they do commute. Hence we will consider only collections

of commuting hermitian observables; their natural amplitudes in a given state are vectors in Rm.

However we do not exclude the consideration in our theory of sequences (Y1; ...;Ym) such that the Yi

do not commute.

A joint observable (Y1, Y2, ..., Ym) define a linear decomposition of the total space E in direct

orthogonal sum

E =
⊕
α∈A

Eα, (76)

where Eα;α ∈ A is the collection of joint eigenspaces of the operators Yj . Note that any orthogonal

decomposition can be defined by a unique operator.

Another manner to handle the joint variables is to consider linear families of commuting operators

Y (λ1, ..., λm) = λ1Y1 + ...+ λmYm, (77)

or in equivalent terms, linear maps from Rm to End(E). Then assigning a probability number and

perform probability conditioning can be seen as functorial operations.

In what follows we denote indifferently by Eα the subspace of E or the orthogonal projection on

this subspace.

>From the point of view of information, two sets of observables are equivalent if they give the

same linear decomposition of E. We say that a decomposition Eα;α ∈ A refines a decomposition

E ′
β; β ∈ B, when each E ′

β is a sum of spaces Eα for α in a subset Aβ of A. In such a case, we say

that Eα;α ∈ A divides E ′
β; β ∈ B.

For instance, for commuting decompositions Y, Z it is possible to define the joint variable, as the

less fine decomposition which is finer than Y and Z.
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We insist that only decompositions have a role in information study at this moment. We will

see that observation trees in the last section imposes to consider a supplementary structure, which

consists in an ordering of the factors in the decomposition.

An information structure on E is a set S of decompositions X of E in direct sum, such that when

Y and Z are elements of S which refine X ∈ S, then Y, Z commute and the finer decomposition

(Y, Z) they generate belongs to S. In this text, we will only consider orthogonal decompositions.

Remark: in fact, the necessity of this condition in the quantum context was the original motivation

to introduce the definition of classical information structure, as exposed in the first section. This can

be seen as a comfortable flexibility in the classical context, or as a step from classical to quantum

information theory.

As in the classical case, an information structure gives a category, denoted by the letter S, whose

objects are the elements of S, and whose arrows X → Y are given by the divisions X|Y between the

decompositions in S.

In what follows we always assume that 1, which corresponds to the trivial partition E, belongs to

S, and is a final object. If not we will not get a topos.

Note that we are not the first to use categories and topos to formulate quantum or classical

probability. In particular Doring and Isham propose a reformulation of the whole quantum and

classical physics by using topos theory, see [46] and references inside. This theory followed

remarkable works of Isham, Butterfield and Hamilton, made beween 1998 and 2002, and was further

developed by Flori, Heunen, Landsman, Spitters, specially in the direction of a quantum logic. A

common point between these works and our work is the consideration of sheaves over the category

made by the partial ordering in commutative subalgebras. However, Doring et al. consider only

the set of maximal algebras, and do not look at decompositions, i.e., they consider also the spectral

values. In [46], Doring and Isham defined topos associated to quantum and classical probabilities.

However, they focused on the definition of truth values in this context. For instance, in the classical

setting, the topos they define is the topos of ordinary topological sheaves over the space (0, 1)L which

has for open sets the intervals ]0, r[ for 0 ≤ r ≤ 1, and particular points in their topos are given by

arbitrary probabilized spaces, which is far from the objects we consider, because our classical topos

are attached to sigma-algebras over a given set. In fact, our aim is more to develop a kind of geometry

in this context, by using homological algebra, in the spirit of Artin, Grothendieck, Verdier, when they

developed topos for studying the geometry of schemes.

Example 5. The most interesting structures S seem to be provided by the quantum generalization

of the simplicial information structure in classical finite probability. A finite family of commuting

decompositions Σ = {S1, ..., Sn} is given, they diagonalize in a common orthogonal basis, but it can

happen that not all diagonal decompositions associated to the maximal torus belongs to the set of

joints W (Σ). In such a case a subgroup GΣ appears, which corresponds to the stabilizer of the finest

decomposition S[n] = (S1...Sn). This group is in general larger than a maximal torus of UN , it is a

product of unitary groups (corresponding to common eigenvalues of observables in W (Σ)), and it is

named a Levy subgroup of the unitary group. In addition we consider a closed subgroup G in the
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group U(E;h0) (which could be identified with UN ), and all the conjugates gY g−1 of elements of

W (Σ) by elements of G; this gives a manifold of commutative observable families Σg; g ∈ G. More

generally we could consider several families Σγ; γ ∈ Γ of commuting observables, where Γ is any

set. It can happen that an element of Σγ is also an element of Σλ for λ �= γ. The family Γ ∗ Σ of the

Σγ when γ describes the set Γ forms a quantum information structure. The elements of this structure

are (perhaps ambiguously) parameterized by the product of an abstract simplex Δ(n) with the set Γ

(in particular Γ = G for conjugated families).

A simplicial information structure is a subset of Γ ∗ Σ which corresponds to a family Kγ of

simplicial sub-complexes of Δ(n). In the invariant case, when Γ = G, several restrictions could be

usefull, for instance using the structure of the manifold of the conjugation classes of GΣ under G.

The simplest case is given by taking the same complex K for all conjugates gΣg−1. By definition

this latter case is a simplicial invariant family of quantum observables.

An event associated to S is a subspace EA, which is an element of one of the decompositions

X ∈ S. For instance, if Y = (Y1, ..., Ym), the joint event A = (Y1 = y1, Y2 = y2, ..., Ym = ym) gives

the space EA which is the maximal vector subspace of E where A happens, i.e.,

(f ∈ EA)⇔ (Y1(f) = y1f, Y2(f) = y2f, ..., Ym(f) = ymf). (78)

We say that A is measurable for a decomposition Y whenever it is obtained by unions of elements of

Y .

The role of the Boolean algebra B introduced in the first section, could have been accounted here

by a given decomposition B of E such that any decomposition in S is divided by B.

However this choice of B is too rigid, in particular it forbids invariance by the unitary group

U(h0). Thus we decided that a better analog of the Boolean algebra B is the set UB of all

decompositions that are deduced from a given B by unitary transformations.

On the side of density of states, i.e., quantum probabilities, we can consider a subspace Q1 of the

space P = PH+ of hermitian positive matrices modulo multiplication by a constant. Concretely,

we identify the elements of Q1 with positive hermitian operators ρ such that Trρ = 1. The

space P is naturally stratified by the rank of the form; the largest cell PH++ corresponds to the

non-degenerate forms; the smallest cells correspond to the rank one forms, which are called pure

states in Quantum Mechanics.

We will only consider subsets Q1 of P which are adapted to S, i.e., which satisfy that if ρ belongs

to Q1, the conditioning of ρ by elements of S also belongs to Q1. This means that Q1 is closed by

orthogonal projections on all the elements EA of the orthogonal decompositions X belonging to S.

Note that a subset of P which is closed by all orthogonal projections is automatically adapted to any

information category S.

Remind that, if ρ is a density of states and EA is an elementary event (i.e., a subspace of E), we

define the conditioning of ρ by A by the hermitian matrix

ρ|A = E∗
AρEA/Tr(E

∗
AρEA). (79)
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And we define the probability of the event EA for ρ as the trace:

Pρ(A) = Tr(E∗
AρEA), (80)

In the same manner we define the density of a joint observable by

ρY =
∑
A

Pρ(A)ρ|A =
∑
A

E∗
AρEA, (81)

A nice reference studying important examples is Paul-Andre Meyer, Quantum probability for

probabilists [47].

If X is an orthogonal decomposition of E, we can associate to it a subset QX of Q1, which

contains at least all the forms ρX where ρ belongs to Q1. The natural axiom that we assume for

the function X �→ QX , is that for each arrow of division X → Y , the set QY contains the set QX ;

then we note Y∗ the injection from QX to QY . The fact that QX is stable by conditioning by every

element of a decomposition Y which is less fine than X is automatic; it follows from the fact that Q1

is adapted to S. We will use conditioning in this way.

In what follows we denote by the letter Q such a functor X �→ QX from the category S to the

category of quantum probabilities, with the arrows given by direct images. The set Q1 is the value

of the functor Q for the certitude 1. We must remind that many choices are possible for the functor

when Q1 is given; the two extreme being the functor Qmax where QX = Q1 for every X , and the

functor Qmin where QX is restricted to the set of forms ρX where ρ describes Q1; in this last case the

elements of QX are positive hermitian forms on E, which are decomposed in blocs according to X .

From the physical point of view, Qmin appears to have more sense than Qmax, but we prefer to

consider both of them.

A special probability functor, which will be noted Qcan(S), is canonically associated to a quantum

information structure S:

Definition 4. The canonical density functor Qcan
X (S) is made by all positive hermitian forms matched

to X , i.e., all the forms ρX when ρ describes PH+.

It is equal to the functor Qmin associated to the full set Q1 = PH+. When the context is clear,

we will simply write Qcan.

An important difference appears between the quantum and the classical frameworks: if X divides

Y , there exist more (quantum) probability laws in QY than in QX , but there exist less classical laws

at the place Y than at the place X , because classical laws are defined on smaller sigma-algebras.

In particular, the trivial partition has only one classical state, which is Tr(ρ) = 1, but it has the

richest structure in terms of quantum laws, any hermitian positive form.

Let us consider the classical probabilities, i.e., the maps that associate the number Pρ(A) to an

event A; then, for an event which is measurable for Y , the law Y∗ρX gives the same result than the

law ρX .
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Remark: This points to a generalized notion of direct image, which is a correspondence qXY∗
between QX and QY , not a map: we say that the pair (ρX , ρY ) in QX × QY belongs to qXY∗, if for

any event which is measurable for Y , we have the equality of probabilities

PρX (A) = PρY (A). (82)

Let us look at the relation of quantification, between a classical information structure and a

quantum one:

Consider a maximal family of commuting observables S in the quantum information structure

S, i.e., the full subcategory associated to an initial object X0. This family is a classical information

structure. Conversely, if we start with a classical information structure S , made by partitions of a

finite set Ω, we can always consider it as a quantum structure associated to the vector space E = CΩ

freely generated over C by the elements of Ω. Note that E comes with a canonical positive definite

form h0, and, to be interesting from the quantum point of view, it is better to extend S by applying to

it all unitary transformations of E, generating a quantum structure S = US.

Remark 5. Suppose that S is unitary invariant, we can define a larger category SU by taking as

arrows the isomorphisms of ordered decomposition, and close by all compositions of arrows of S
with them. Such an invariant extended category SU is not far to be equivalent to the category SS,

made by adding arrows for permutations of the sets Ω/X (cf. above section), from the point of view

of category theory: let us work an instant, as we will do in the last part of this paper, with ordered

partitions of Ω, being itself equipped with an order, and ordered orthogonal decompositions of E.

In this case we can associate to any ordered partition X = (E1, ..., Em) of E, the unique ordered

partition Ω compatible with the sequence of dimensions and the order of Ω. It gives a functor τ

from S to S such that ι ◦ τ = IdS , where ι denotes the inclusion of S in S. These two functors

are extended, preserving this property, to the categories SU and SS. In fact, the functor ι sends a

permutation to the unitary map which acts by this permutation on the canonical basis, and the functor

τ sends a unitary transformation g between X ∈ S and gXg∗ ∈ S to the permutation it induces

on the orthogonal decompositions. Moreover, consider the map f which associates to any X ∈ SU

the unique morphism from the decomposition ι ◦ τ(X) to X; it is a natural transformation from

the functor ι ◦ τ to the functor IdSU , which is invertible, then it defines an equivalence of category

between SS and SU . However a big difference begins with probability functors.

Let Q be a quantum density functor adapted to S, and note ι∗Q the composite functor on S; we

can consider the map Q which associates to X ∈ S the set of classical probabilities Pρ for ρ ∈ QX .

If X divides Y , the fact that the direct image Y∗P(ρ) of ρ ∈ QX coincides with the law PY∗(ρ) gives

the following result:

Lemma 4. ρ �→ Pρ is a natural transformation from the functor ι∗Q to the functor Q.

Definition 5. This natural transformation is called the Trace, and we denote by TrX its value in X ,

i.e., TrX(ρ) = Pρ, seen as a map from QX to QX .
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In general there is no natural transformation in the other direction, from QX to QX .

Remark that the trace sends a unitary invariant functor to a symmetric functor.

4.3. Quantum Information Homology

As in the classical case, we can consider the ringed site given by the category S, equipped with

the sheaf of monoids {SX ;X ∈ S}. In the ringed topos of sheaves of S-modules, the choice of a

probability functor Q generates remarkable elements in this topos, formed by the functional space

F of measurable functions on Q with values in R. The action of the monoid (or the generated ring)

being given by averaged conditioning, and the arrows being given by transposition of direct images.

Then, the quantum information co-homology is the topos co-homology:

Hm(S,Q) = ExtmS (R;F) (83)

However, as in the classical case, we can define directly the co-homology with a bar resolution

of the constant sheaf, as follows:

A set of functions FX of m observables Y1, ..., Ym divided by X , and one density ρ indexed by

X ∈ S, is said local, when for any decomposition X dividing a decomposition Y , we have, for each

ρ in QX ,

FX(Y1; ...;Ym; ρ) = FX(Y1; ...;Ym;Y∗(ρ)). (84)

For m = 0 this equation expresses that the family FX is an element of the topos.

For every m, a collection FX , X ∈ S is a natural transform F from a free functor Sm to the

functor F.

Be careful that in the quantum context, it is not true in general that locality is equivalent to the

condition saying that the value FX(Y1; ...;Yn; ρ) depends only on the family of conditioned densities

E∗
Ai
ρEAi

; i = 0, ...,m, where Ai is one of the possible events defined by Yi.

In fact it depends on the choice of Q; for instance it is false for a Qmax, but it is true for a Qmin.

The counter-example in the case of Qmax is given by a function F (ρ) which is independent of

X . It is local (in the sense of topos that we adopt) but it is non-local in the apparently more natural

sense that it depends only of ρX . This is important to have this quantum particularity in the mind for

understanding the following discussion.

As in the classical case, the action of observables on local functions is given by the average of

conditioning, in the manner of Shannon, but using the Von Neumann conditioning:

Y.F (Y0; ...;Ym; ρ) =
∑
A

Tr(E∗
AρEA)F (Y0; ...;Ym; ρ|A) (85)

where the EA’s are the spectral projectors of the bundle Y . In this definition there is no necessity to

assume that Y commutes with the Yj’s.

Remind that, when E∗
AρEA is non-zero, ρ|A is equal to E∗

AρEA/Tr(E
∗
AρEA), and verifies the

normalization condition that the trace equals to one. When E∗
AρEA is equal to zero, the factor

Tr(E∗
AρEA) is zero, then by convention the corresponding term F is absent.
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The proof of the Lemma 1 applies without significant change to prove that the above formula

defines an action of the monoid functor SX .

Then, the definition of co-homology is given exactly as we have done for the classical case, by

introducing the Hochschild operator:

δ̂mF (Y1; ...;Ym+1; ρ)

=Y1.F (Y2; ...;Ym+1; ρ) +
m∑
1

(−1)iF (...; (Yi, Yi+1); ...;Ym+1; ρ) + (−1)m+1F (Y1; ...;Ym; ρ).
(86)

The Von-Neumann entropy is defined by the following formula

S(ρ) = Eρ(− log2(ρ)) = −Tr(ρ log2(ρ)). (87)

For any density functor Q which is adapted to S, the Von-Neumann entropy defines a local

0-cochain, that we will call SX , and is simply the restriction of S to the set QX . If ρ belongs to

QX and if X divides Y , the law Y∗ρ, which is the same hermitian form as ρ belongs to QY by

functoriality, thus S(Y∗ρ) = S(ρ) is translated by SX(ρ) = SY (Y∗ρ). This 0-cochain will be simply

named the Von Neumann entropy.

In the case of Qmax, SX gives the same value at all places X . In the case of Qmin it coincides

with S(ρX), where ρX denotes the restriction to the decomposition X .

Be careful: ρ �→ S(ρX) is not a local 0-cochain for Qmax. In fact in the case of Qmax we have

the same set Q = QX for every place X , thus, if we take for X a strict divisor of Y and if we take a

density ρ such that, for the restrictions of ρ, the spectrum of ρY and ρX are different, then, in general,

we do not have SX(ρ) = SY (Y∗ρ), even if, as it is the case in the quantum context, Y∗ρ = ρ.

Remark that in the case of Qmax, where every function of ρ independent of X is a cochain of

degree zero, the particular functions which depends only on the spectrum of ρ are invariant under the

action of the unitary group, and they are the only 0-cochains which are invariant by this group.

Definition 6. Suppose that S and Q are invariant by the unitary group, as is UB, we say that an

m-cochain F is invariant, if for every X in S dividing Y1, ..., Ym in S, every ρ in QX and every g in

the group U(h0), we have

Fg.X(g.Y1, ..., g.Ym; g.ρ) = FX(Y1; ...;Ym; ρ); (88)

where g.X = gXg∗, g.Yi = gYig
∗; i = 1, ...,m and g.ρ = gρg∗.

This is compatible with the naturality assumption (functoriality by direct images), because direct

image is a covariant operation.

Note that conditioning is also covariant if we change all variables and laws coherently. Thus the

action of the monoids SX on cochains respects the invariance.

Then the coboundary δ̂ preserves invariance. Thus the co-homology of the invariant co-chains is

well defined. We call it the invariant information co-homology, and we will denote it by H∗
U(S;Q),

U for unitary.
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Invariant co-cochains form a subcomplex of ordinary cochains, then we have a well defined map

from H∗
U(S;Q) to H∗(S;Q).

The invariant 0-co-chains depend only on the spectrum of ρ in the sets QX .

The invariant co-homology is probably a more natural object from the point of view of Physics.

It is also on this co-homology that we were able to obtain constructive results.

The classical entropy of the decomposition {Ej} and the quantum law ρ is

H(X; ρ) = −
∑
j

Tr(E∗
j ρEj) log2(Tr(E

∗
j ρEj)) (89)

In general it is not true that H(X; ρ) = H(Y ;Y∗ρ) when X divides Y . Thus the Shannon (or

Gibbs) entropy is not a local 0-cochain, but it is a local 1-cochain, i.e., if X → Y → Z we have

HX(Z; ρX) = HY (Z;Y∗ρX), (90)

Moreover it is a spectral 1-cochain for any Qmin.

The following result is well known, cf. Nielsen and Chuang [13].

Lemma 5. Let X, Y be two commuting families of observables; we have

S(X,Y )(ρ) = H(Y ; ρ) + Y.SX(ρ) (91)

Proof. We denote by α, β, ... the indices of the different values of X , by k, l, ... the indices of the

different values of Y , and by i, j, ... the indices of a basis Ik,α of eigenvectors of the conditioned

density ρk,α = E∗
k,αρEk,α constrained by the projectors Ek,α of the pair (Y,X). The probability

pk = Pρ(X = ξk) is equal to the sum over i, α of the eigenvalues λi,k,α of ρk,α. We have

Y.S(X; ρ) = −
∑
k

pk
∑
i,α

λi,k,α

pk
log2(

λi,k,α

pk
)

= −
∑
i,k,α

λi,k,α log2(λi,k,α) +
∑
i,k,α

λi,k,α log2(pk)

= −
∑
i,k,α

λi,k,α log2(λi,k,α) +
∑
k

pk log2(pk).

Remark 6. Taking X = 1, or any scalar matrix, the preceding Lemma 5 expresses the fact that

classical entropy is a derived quantity measuring the default of equivariance of the quantum entropy:

H(Y ; ρ) = SY (ρ)− (Y.SY )(ρ). (92)

Lemma 6. For any X ∈ S, dividing Y ∈ S and ρ ∈ QX ,

δ̂(SX)(Y ; ρ) = −HX(Y ; ρ). (93)
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Proof. This is exactly what says the Lemma 5 in this particular case, because in this case (X, Y ) =

X , and, by definition, we have δ̂(SX)(Y ; ρ) = Y.SX(ρ)− SX(ρ).

To insist, we give a direct proof with less indices for this case:

Y.SX(ρ) = −
∑
i

pi
∑
k

λik

pi
log2

λik

pi

= −
∑
ik

λik log2 λik +
∑
ik

λik log2 pi

= SX(ρ) +
∑
i

log2 pi
∑
k

λik = SX(ρ) +
∑
i

(log2 pi)pi

= SX(ρ)−HX(Y ;Pρ) = SX(ρ)−HX(Y ; ρ).

The Lemma 6 says that (up to the sign) the Shannon entropy is the co-boundary of the

Von-Neumann entropy. This implies that the Shannon entropy is a 1-co-cycle, as in the classical

case, but now it gives zero in co-homology.

Note that the result is true for any Q, thus for Qmin and for Qmax as well.

Consider a maximal observable X0 in S, i.e., a maximal set of commuting observables in S, the

elements of this maximal partition form a finite set Ω0. If S is invariant by the group U(E;h0), all

the maximal observables are deduced from X0 by applying a unitary base change. Suppose that the

functor Q is invariant also; then we get automatically a symmetric classical structure of information

S on Ω0, given by the elements of S divided by X0. And S is equipped with a symmetric classical

functor of probability, given by the probability laws associated to the elements of S .

Remind that we defined the trace from quantum probabilities to classical probabilities, by taking

the classical Pρ for each ρ, and we noticed that the trace is compatible with invariance and symmetry

by permutations.

Definition 7. To each classical co-chain F 0 we can associate a quantum co-chain F = tr∗F 0 by

putting

tr∗(F )X(Y1; ...;Ym; ρ) = F 0
X(Y1; ...;Ym; trX(ρ)). (94)

The following result is straightforward:

Proposition 3. (i) The trace of co-chains defines a map of the classical information Hochschild

complex to the quantum one, which commutes with the co-boundaries, i.e., the map tr∗ defines a

map from the classical information Hochschild complex to the quantum Hochschild complex; (ii)

this map sends symmetric cochains to invaraint cochains; it induces a natural map from the symmetric

classical information co-homology H∗
S(S;Q) to the invariant quantum information co-homology

H∗
U(S;Q).

The Lemma 6 says that the entropy class goes to zero.

Remark 7. In a preliminary version of these notes, we considered the expression s(X; ρ) = S(ρX)−
S(ρ) and showed it satisfies formally the 1-cocycle equation. But we suppress this consideration now,
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because s is not local, thus it plays no interesting role in homology. For instance in Qmin, S(ρX) is

local but S(ρ) is not and in Qmax, S(ρ) is local but S(ρX) is not.

Definition 8. In an information structure S we call edge a pair of decompositions (X, Y ) such that

X, Y and XY belong to S; we say that an edge is rich when both X and Y have at least two elements

and XY cuts those two in four distinct subspaces of E. The structure S is connected if every two

points are joined by a sequence of edges, and it is sufficiently rich when every point belongs to a

rich edge. We assume a maximal set of subspaces UB is given in the Grassmannian of E, in such

a way that the maximal elements X0 of S (i.e., initial in the category) are made by pieces in UB.

The density functor Q is said complete with respect to S (or UB) if for every X , the set QX contains

the positive hermitian forms on the blocs of X , that give scalar blocs ραβ for two elements Eα, Eβ

of a maximal decomposition. (All that is simplified when we choose a basis, and take maximal

commutative subalgebras of operators, but we want to be free to consider simplicial complexes.)

Theorem 3. (i) for any unitary invariant quantum information structure S, which is connected and

sufficiently rich, and for the canonical invariant density functor Qcan(S), (i.e., the density functor

which is minimal and complete with respect to S), the invariant information co-homology of degree

one H1
U(S;Q) is zero. (ii) Under the same hypothesis, the invariant co-homology of degree zero has

dimension one, and is generated by the constants. Then, up to an additive constant, the only invariant

0-cochain which has the Shannon entropy as co-boundary is (minus) the Von-Neumann entropy.

Proof. (I) Let X, Y be two orthogonal decompositions of E belonging to S such that (X, Y ) belongs

to S, and ρ an element of Q. We name Aki ; i = 1, ...,m the summands of X , and Bαj
; j = 1, ..., l

the summands of Y ; the projections EkiρEki ; i = 1, ...,m resp. Eαj
ρEαj

; j = 1, ..., l of ρ on the

summands of X , resp. Y are denoted by ρki ; i = 1, ...,m and ραj
; j = 1, .., l respectively. The

projections by the commutative products EkiEαj
are denoted by ρki,αj

; i = 1, ...,m, j = 1, .., l.

Let f be a 1-cocycle, we write f(X; ρ) = F (ρ), f(Y ; ρ) = H(ρ) and G(ρ) = f(X, Y ; ρ). Note

that in Qmin, F is a function of the ρki , H a function of the ραj
and G a function of the ρki,αj

, but

there is no necessity too assume this property; we can always consider these functions restricted to

diagonal blocs, which are arbitrary due to the completeness hypothesis.

For any positive hermitian ρ′, we write ρ′|α, resp. ρ′|i the form conditioned by the event Bα resp.

Ai.

The co-cycle equation gives the two following equations, that are exchanged by permuting X and

Y : ∑
αj

Tr(ραj
)F ((ρki |αj); i = 1, ...,m) = G((ρki,αj

); i, j)−H((ραj
); j), (95)

∑
i

Tr(ρki)H((ραj
|ki); j) = G((ρki,αj

); i, j)− F ((ρki); i). (96)

Now we consider a particular case, where the small blocs ρk,α are zero except for (k1, α2) and

(kj, α1) for j = 2, ...,m. We denote by h1 the forme ρk1,α2 and by hi the form ρki,α1 , for i = 2, ...,m.

Remark that Tr(h1 + h2 + ...+ hm) = 1.
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(II) As in the classical case, it is a general fact for a 1-cocycle f and any variable Z the value

f(Z; ρ) is zero if ρ is zero outside one of the orthogonal summand Ca of Z; because the equation

fX(Z,Z; ρ) = fX(Z; ρ)+Z.fX(Z; ρ) implies Z.fX(Z, ρ) = 0, and if ρ has only one non-zero factor

ρa, we have

Z.f(Z; ρ) =
∑
b

Tr(ρb)f(Z; ρb/Tr(ρb)) = Tr(ρa)f(Z; ρa/Tr(ρa)) = 1.f(Z; ρa). (97)

Therefore in the particular case that we consider, we get for any i that H((ραj
|ki); j) = 0.

Consequently the Equation (96) equals the term in G to the term in F , and we can report this equality

in the first equation. By denoting 1− x1 = Tr(ρα1), this gives

H((ραj
); j = 1, 2) = F ((ρki); i = 1, ...,m)− (1− x1)F ((0,

h2

1− x2

, ...,
hm

1− xm

)). (98)

Now if we add the condition h3 = ... = hm = 0 we have F (0, h2/(1 − x1), 0, ..., 0) = 0 for the

reason which eliminated the H((ραj
|ki); j); thus we obtain

H(ρα1); j = 1, 2) = F ((ρk1); i = 1, 2). (99)

This is a sufficiently strong constraints for implying that both terms are functions of h1, h2 only,

and that of course they coincide as functions of these small blocs.

First this gives a recurrence equation, which, as in the classical case is able to reconstruct F ((ρki); i =

1, ...,m) from the case of two blocs:

F (X; (ρki); i = 1, ...,m) = F (X; (ρk1 , ρk2 , 0, ..., 0)−(1−x1)F (X; (0,
h2

1− x2

, ...,
hm

1− xm

)). (100)

(III) We are left with the study of two binary variables Y, Z, forming a rich edge.

The blocs of ρ adapted to the joint ZY are denoted by ρ00, ρ01, ρ10, ρ11, where the first index

refers to Y and the second index refers to Z, but the blocs that are allowed for Y and Z are more

numerous than four; there exist out of diagonal blocs, and their role will be important in our analysis.

For Y we have matrices ρ00 and ρ01, and for Z we have matrices ρ10 and ρ11;

ρ00 =

(
ρ00 ρ0001
ρ0010 ρ01

)
ρ01 =

(
ρ10 ρ0101
ρ0111 ρ11

)
(101)

ρ10 =

(
ρ00 ρ1001
ρ1010 ρ01

)
ρ11 =

(
ρ10 ρ1101
ρ1111 ρ11

)
(102)

They are disposed in sixteen blocs for ρ, but certain of them, noted with stars, cannot be seen from

ρY or ρZ :

ρ =

⎛⎜⎜⎜⎝
ρ00 ρ0001 ρ1001 ρ∗001
ρ0010 ρ01 ρ∗101 ρ1001
ρ1010 ρ∗010 ρ10 ρ0101
ρ∗111 ρ1111 ρ0111 ρ11

⎞⎟⎟⎟⎠ (103)
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Now the co-cycle equations are

F (Y, Z; ρ) = Y.F (Z; ρ) + F (Y ; ρ) = Z.F (Y ; ρ) + F (Z; ρ), (104)

giving the symmetrical relation:

Y.F (Z; ρ)− F (Z; ρ) = Z.F (Y ; ρ)− F (Y ; ρ). (105)

The conditioning makes many blocs disappear. Then, by denoting with latin letters the

corresponding traces, and taking in account explicitly the blocs that must count, the symmetrical

identity gives, for any ρ, the following developed equation:

(p00 + p01)FZ(
ρ00

p00 + p01
,

ρ01
p00 + p01

, 0, 0) + (p10 + p11)FZ(0, 0,
ρ10

p10 + p11
,

ρ01
p10 + p11

)

−FZ(ρ00, ρ
1
001, ρ01, ρ

1
001, ρ

1
010, ρ10, ρ

1
111, ρ11)

= (p00 + p10)FY (
ρ00

p00 + p10
, 0,

ρ10
p00 + p11

, 0) + (p01 + p11)FY (0,
ρ10

p01 + p11
, 0,

ρ11
p01 + p11

)(106)

−FY (ρ00, ρ
0
001, ρ01, ρ

0
001, ρ

0
010, ρ10, ρ

0
111, ρ11).

(IV) Now we make appeal to the invariance hypothesis: let us apply a unitary transformation

g which respects the two summands of Y but does not necessarily respect the summands of Z we

replace Z by gZg∗, and ρ by gρg∗, the value of FY (ρ
0
0, ρ

0
1) does not change. Our claim is that the

only function FY which is compatible with the Equation (106) for every ρ are functions of the traces

of the blocs.

For the proof, we assume that all the blocs are zero except the eight blocs concerning Y . In this

case, we see that the last function−FY of the right member, involves the eight blocs, but all the other

functions involve only the four diagonal blocs. Thus our claim follows from the following result:

Lemma 7. A measurable function f on the set H of hermitian matrices which is invariant under

conjugation by the unitary group Un and invariant by the change of the coefficient a1n, the farthest

from the diagonal, is a function of the trace.

Proof. An invariant function for the adjoint representation is a function of the traces of the exterior

powers Λk(ρ), but these traces are coefficients in the basis ei1 ∧ ei1 ∧ ... ∧ eik , and the elements

divisible by e1 ∧ en cannot be neglected, as soon as k ≥ 2.

Therefore the co-cycle FY , FZ comes from the image of tr∗ in proposition 3. Then the recurrence

relation (100) implies that the same is true for the whole co-cycle F .

(V) For concluding the proof of (i), we appeal to the Theorem 1, that the only non-zero cocycles

in this context, connected and sufficiently rich, are multiples of the classical entropy. However, the

Lemma 5 says that the entropy is a co-boundary.

(VI) To prove (ii), we have to show that every 0-cocycle X �→ fX(ρ), which depends only on the

spectrum of ρ, is a constant. We know that a spectral function is a measurable function ϕ(σ1, σ2, ...)

of the elementary symmetric functions σ1 =
∑

i λi,σ2 = Σi<jλiλj ,....
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And, to be a 0-cocycle, f must verify, for every pair of decompositions, X → Y , the equation

fX(ρ) =
∑
i

Pρ(Y = i)fX(ρ|(Y = i)). (107)

Explicitly, if fX(ρ) = ϕX(σ1, σ2, ...),

ϕX(σ1, σ2, ...) =
∑
i

σ1(λk,i)ϕX(σ1(λki), ...) (108)

where each bloc ρ|i has the spectrum {λk,i; k ∈ Ji}. For a sufficiently rich edge X = Y Z, we have

with four eigenvalues repeated as it must be to fulfill the dimensions:

f(λ
(n00)
00 , n

(n00)
00 , λ

(n01)
01 , λ

(n10)
10 , λ

(n11)
11 )

= (n00λ00 + n01λ01)f(
λ
(n00)
00

n00λ00 + n01λ01

,
λ
(n01)
01

n00λ00 + n01λ01

) (109)

+(n10λ10 + n11λ11)f(
λ
(n10)
10

n10λ10 + n11λ11

,
λ
(n11)
11

n10λ10 + n11λ11

),

and

f(λ
(n00)
00 , n

(n00)
00 , λ

(n01)
01 , λ

(n10)
10 , λ

(n11)
11 )

= (n00λ00 + n10λ10)f(
λ
(n00)
00

n00λ00 + n10λ10

,
λ
(n10)
10

n00λ00 + n10λ10

) (110)

+(n01λ01 + n11λ11)f(
λ
(n01)
01

n01λ01 + n11λ11

,
λ
(n11)
11

n01λ01 + n11λ11

),

By equating the two second members, taking λ01 = λ00 = 0, and varying λ10, λ11, we find that

f(x, y) is the sum of a constant and a linear function.

At the end, fX must be the sum of a constant and a linear function for every X . However, a linear

symmetric function is a multiple of σ1. As ρ is normalized by the condition Tr(ρ) = 1, only the

constant survives.

Remark 8. In his book “Structure des Systemes Dynamiques”, J-M. Souriau [48] showed that the

mass of a mechanical system is a degree one class of co-homology of the relativity group with values

in its adjoint representation; this class being non-trivial for classical Mechanics, with the Galileo

group, and becoming trivial for Einstein relativistic Mechanics, with the Lorentz-Poincare group.

Even if we are conscious of the big difference with our construction, the above result shows the same

thing happens for the entropy, but going from classical statistics to quantum statistics.

From the philosophical point of view, it is important to mention that the main difference between

classical and quantum information co-homology in degree less than one, is the fact that the certitude,

1, becomes highly non-trivial in the quantum context. This point is discussed in particular by Gabriel

Catren [49]. In geometric quantization the first ingredient, discovered by Kirillov, Kostant and

Souriau in the sixties, is a circular bundle over the phase space that allows a non-trivial representation
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of the constants. The second ingredient also discovered by the same authors, is the necessity to choose

a polarization, which correspond to the choice of a maximal commutative Poisson sub-algebra of

observable quantities. This second ingredient appears in our framework through the limitations of

information categories to collection of commutative Boolean algebras, coming from the impossibility

to define manageable joints for arbitrary pair of observables.

5. Product Structures, Kullback–Leibler Divergence, Quantum Version

In this short section, we use both the homogeneous bar-complex and the non-homogeneous

complex.

A natural extension of the information co-cycles is to look at the measurable functions

F (X0;X1; ...;Xm;P0;P1, P2, ..., Pn;X), (111)

of several probability laws Pj (or density of states respectively) on Ω (or E respectively) belonging

to the space QX that are absolutely continuous with respect to P0, and several decompositions Yi

less fine than X . To be homogeneous co-chains these functions have to behave naturally under direct

image Y∗(Pi), and to satisfy the equivariance relation:

F ((Y,X0); (Y,X1); ...; (Y,Xm);P0;P1, P2, ..., Pn;X)

= Y.F (X0;X1; ...;Xm;P0;P1, P2, ..., Pn;X), (112)

for any Y ∈ SX (resp. SX), where

Y.F (X0;X1; ...;Xm;P0;P1, P2, ..., Pn;X)

=

∫
EY

dY∗P0(y)F (X0;X1; ...;Xm;P0|Y = y;P1|Y = y, ..., Pn|Y = y;X). (113)

Note that a special role is played by the law P0, which justifies the coma notation.

The proof of the Lemma 1 in Section 2.1 extends without modification to show that this defines

an action of semi-group.

Then we define the homogeneous co-boundary operator by

δF (X0;X1; ...; ...;Xm;Xm+1;P0;P1, P2, ..., Pn;X)

=
∑
i

(−1)iF (X0; ...; X̂i; ...;Xm;Xm+1;P0;P1, P2, ..., Pn;X). (114)

The co-cycles are the elements of the kernel of δ and the co-boundaries the elements of the image

of δ (with a shift of degree). The co-homology groups are the quotients of the spaces of co-cycles by

the spaces of co-boundaries.

This co-homology is the topos co-homology H∗
S(R,Fn), of the module functor Fn of measurable

functions of n+ 1-uples of probabilities, in the ringed topos S (resp. S in the quantum case).

There is also the non-homogeneous version: a m-cocycle is a family of functions

FX(X1; ...; ...;Xm;P0;P1, P2, ..., Pn) which behave naturally under direct images, without

equivariance condition.
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The co-boundary operator is copied on the Hochschild operator: then we define the homogeneous

co-boundary operator by

δ̂FX(X0;X1; ...; ...;Xm;P0;P1, P2, ..., Pn)

= (X0.FX)(X1; ...; ...;Xm;P0;P1, P2, ..., Pn) (115)

+
∑
i

(−1)i+1F (X0; ...; X̂i; ...;Xm;P0;P1, P2, ..., Pn;X).

Let us recall the definition of the Kullback–Leibler divergence (or relative entropy) between two

classical probability laws P,Q on the same space Ω, in the finite case:

H(P ;Q) = −
∑
i

pi log
qi
pi
. (116)

Over an infinite set, it is required that Q is absolutely continuous with respect to P with a L1-density

dQ/dP , and the definition is

H(P ;Q) = −
∫
Ω

dP (ω) log
dQ(ω)

dP (ω)
. (117)

When dQ(ω)/dP (ω) = 0, the logarithm is−∞ and due to the sign minus, we get a contribution +∞
in H , thus, if this happens with probability non-zero for P the divergence is infinite positive. To get

a finite number we must suppose also that P is absolutely continuous with respect to Q, i.e., P and

Q are equivalent.

The analogous formula defines the quantum Kullback–Leibler divergence (or quantum relative

entropy), cf. Nielsen-Chuang [13], between two density of states ρ, σ on the same Hilbert space E,

in the finite dimensional case:

S(ρ; σ) = −Tr(ρ(log σ − log ρ)). (118)

In the case of an infinite dimensional Hilbert space, it is required that the trace is well defined.

These quantities are positive or zero, and they are zero only in the case of equality of the measures

(resp. the densities of states). It is the reason why it is frequently used as a measure of distance

between two laws.

Proposition 4. The map which associates to X in S, Y divided by X , and two laws P,Q the quantity

H(Y∗P ;Y∗Q) defines a non-homogeneous 1-cocycle, denoted HX(Y ;P ;Q).

Proof. As we already know that the classical Shannon entropy is a non-homogeneous 1-cocycle, it

is sufficient to prove the Hochschild relation for the new function

Hm(Y ;P ;Q) = −
∑
i

pi log qi. (119)
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Let us denote by pij (resp. qij) the probability for P (resp. Q) of the event Y = xi, Z = yj , and

by pj (resp. qj) the probability for P (resp. Q) of the event Z = yj; then the probability pji (resp. qji )

of Y = xi knowing that Z = yj for P (resp. for Q) is equal to pij/p
j (resp. qij/q

j), and we have

Hm((Z, Y );P,Q) = −
∑
i

∑
j

pij log qij (120)

= −
∑
j

pj
∑
i

pji log(q
jqji ) (121)

= −
∑
j

pj log qj(
∑
i

pji )−
∑
j

pj
∑
i

pji log q
j
i (122)

= −
∑
j

pj log qj −
∑
j

pj
∑
i

pji log q
j
i ; (123)

the first term on the right is Hm(Z;P ;Q) and the second is (Z.Hm)(Y ;P ;Q),

Q.E.D.

This defines a homogeneous co-cycle for pairs of probability laws HX(Y ;Z;P ;Q) =

HX(Y ;P ;Q)−HX(Z;P ;Q), named Kullback-divergence variation.

In the quantum case, for two densities of states ρ, σ we define in the same manner a classical

Kullback–Leibler divergence HX(Y ; ρ; σ) by the formula

HX(Y ; ρ; σ) =
∑
k

(Tr(ρk log(Tr(ρk))− log(Tr(σk)))); (124)

where the index k parameterizes the orthogonal decomposition Ek associated to Y and where ρk

(resp. σk) denotes the matrix E∗
kρEk (resp. E∗

kσEk). It is the Kullback–Leibler divergence of the

classical laws associated to the direct images ρ and σ respectively.

But in the case of quantum information theory, we can also define a quantum divergence, for any

pair densities of states (ρ, σ) in QX ,

SX(ρ; σ) = −Tr(ρ log σ). (125)

Lemma 8. For any pair (X, Y ) of commuting hermitian operators, such that Y divides X , the

function SX satisfies the relation

S(X, Y )(ρ; σ) = HY (X; ρ; σ) +X.SY (ρ; σ); (126)

where HX of two variables denotes the mixed entropy, defined by Equation (119).

Proof. As in the proof of the Lemma 4, we denote by α, β, ... (resp. k, l, ...) the indices of the

orthogonal decomposition Y (resp. X), and by i, j, ... the indices of a basis φi,k,α of the space Ek,α

made by eigenvectors of the matrix �k,α = E∗
k,αρEk,α belonging to the joint operator (X, Y ). In a

general manner if M is an endomorphism of Ek,α we denote by Mi,k,α the diagonal coefficient of

index (i, k, α). The probability pk (resp. qk) for ρ (resp. σ) of the event X = ξk is equal to the sum

over i, α of the eigenvalues λi,k,α of ρk,α (resp. μi,k,α of σk,α). And the restricted density ρYk (resp.
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σYk), conditioned by X = ξk, is the sum over α of �k,α (resp. of σk,α) divided by pk (resp. qk). We

have

X.SY (ρ; σ) = −
∑
k

pkTr(ρYk
log σYk) (127)

= −
∑
k

pk
∑
i,α

λi,k,α

pk
(log

σk

qk
)i,k,α (128)

=
∑
i,k,α

λi,k,α log qk −
∑
i,k,α

λi,k,α(log σk)i,k,α (129)

=
∑
k

pk log qk − Tr(ρk,α log(σk,α) (130)

= −HY (X; ρ; σ) + S(X,Y )(ρ; σ). (131)

As a corollary, with the argument proving the Lemma 5 from the Lemma 4, we obtain that the

classical Kullback divergence is minus the co-boundary of the 0-cochain defined by the quantum

divergence.

This shows that the generating function of all the co-cycles we have considered so far is the

quantum 0-cochain for pairs S(ρ; σ) = −Tr(ρ log σ).

6. Structure of Observation of a Finite System

Up to now the considered structures and the interventions of entropy can be considered as forming

a kind of statics in information theory. The aim of this section is to indicate the elements of

dynamics which could correspond. This more dynamical study could be more adapted to the known

intervention of entropy in the theory of dynamical systems, as defined by Kolmogorov and Sinai.

6.1. Problems of Discrimination

The problem of optimal discrimination consists in separating the various states of a system, by

using in the most economical manner, a family of observable quantities. One can also only want to

detect a state satisfying a certain chosen property. A possible measure of the cost of discrimination

is the number of step before ending the process.

First, let us define more precisely what we mean by a system, a state, an observable quantity and

a strategy for using observations. As before, for simplicity, the setting is finite sets.

The symbol [n] denotes the set {1, ..., n}. We have n finite sets Mi of respective cardinalities mi,

and we consider the set M of sequences x1, ..., xn where xi belongs to Mi; by definition a system
is a subset X of M and a state of the system is an element of X . The set of (classical) observable

quantities is a (finite) subset A of the functions from X to R.

A use of observables, named an observation strategy, is an oriented tree Γ, starting at its root,

that is the smallest vertex, and such that each vertex is labelled by an element of A, and each arrow

(naturally oriented edge) is labelled by a possible value of the observable at the initial vertex of

the arrow.
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For instance, if F0 marks the root s0, it means that we aim to measure F0(x) for the states; then

branches issued from t0 are indexed by the values v of F0, and to each branch F0 = v corresponds

a subset Xv of states, giving a partition of X . If F1,v is the observable at the final vertex αv of the

branch F0 = v, the next step in the program is to evaluate F1,v(x) for x ∈ Xv; then branches issued

from αv corresponds to values w of F1,v restricted to Xv, and so on.

For each vertex s in Γ we note ν(s) the number of edges that are necessary for joining s to the

root s0. The function ν with values in N is called the level in the tree.

It can happen that a set Xv consists of one element only; in this case we decide to extend the tree

to the next levels by a branch without bifurcation, for instance by labelling with the same observable

and the same value, but it could be any labelling, and its value on Xv. In such a way, each level k

gives a well defined partition πk of X .

The level k also defines a sub-tree Γk of Γ, such that its final branches are bearing πk. This gives

a sequence π0, π1, ..., πl of finer and finer partitions of X , i.e., a growing sequence of partitions (if

the ordering on partition is the opposite of the sense of arrows in the information category Π(X)).

The tree is said fully discriminant if the last partition πl, which is the finest is made by singletons.

The minimal number of steps that are necessary for separating the elements of X , or more

modestly for detecting a certain part of states, can be seen as a measure of complexity of the system

with respect to the observations A. A refined measure could take in account the cost of use of a given

observable, for instance the difficulty to compute its values.

Standard examples are furnished by weighting problems: in this case the states are mass

repartitions in n objects, and allowed observables are weighting, which are functions of the form

FI,J(x) =
∑
i∈I

xi −
∑
j∈J

xj (132)

where I et J are disjoint subsets of [n].

We underline that such a function, which requires the choice of two disjoint subsets in [n], makes

use of the definition of M as a set of sequences, not as an abstract finite set.

The kind of problems we can ask in this framework were studied for instance in “Problemes
plaisants et delectables qui se font par les nombres” from Bachet de Meziriac (1612, 1624) [50].

The starting point of our research in this direction was a particular classical problem signaled to

us by Guillaume Marrelec: given n objects ξ1, ..., ξn, if we know that m have the same mass and

n − m have another common mass, how many measures must be performed, to separate the two

groups and decide which is the heavier?

Even for m = 1 the solution is interesting, and follows a principle of choice by maximum of

entropy. In the present text we only want to describe the general structures in relation to this kind of

problem without developing a specific study, in particular we want to show that the co-homological

nature of the entropy extends to a more dynamical context of discrimination in time.

Remark 9. The discrimination problem is connected with the coding problem. In fact a finite system

X (as we defined it just before) is nothing else than a particular set of words of length n, where the

letter appearing at place i belongs to an alphabet Mi. Distinguishing between different words with
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a set A of variables f , is nothing else than rewriting the words x of X with symbols vf (labelling

the image f(X)). To determine the most economical manner to do that, consists to find the smallest

maximal length l of words in the alphabet (f, vf ); f ∈ A, vf ∈ f(X) translating all the words x in X .

This translation, when it is possible, can be read on the branches of a fully discriminating rooted tree,

associated to an optimal strategy, of minimal level l. The word that translate x being the sequence

(F0, v0), (F1, v1), ..., (Fk, vk), k ≤ l, of the variables put on the vertices along the branch going from

0 to x, and the values of these variables put along the edges of this branch.

6.2. Observation Trees. Galois Groups and Probability Knowledge

More generally, we consider as in the first part (resp. in the second part) a finite set Ω, equipped

with a Boolean algebra B (resp. a finite dimensional complex vector space E equipped with a

positive definite hermitian form h0 and a family of direct decompositions in linear spaces UB). In

each situation we have a natural notion of observable quantity: in the case of Ω it is a partition Y

compatible with B (i.e., less fine than B) with numbering of the parts by the integers 1, .., k if Y has

k elements; in the case of E it is a decomposition Y compatible with UB (i.e., each summand is

direct sum of elements of one of the decompositions uB; for u ∈ U(h0)), with a numbering of the

summands by the integers 1, .., k if Y has k elements. We also have a notion of probability: in the

case of (Ω, Y ) it is a classical probability law PY on the quotient set Ω/Y ; in the case of (E, Y ) it is

a collection of non-negative hermitian forms hY,i on each summands of Y .

We will consider information structures, denoted by the symbol S, for both cases (which could

be distinguished by the typography, S or S, if necessary): they are categories made by objects that

are observables and arrows that are divisions, satisfying the condition that if X ∈ S divides Y and Z

in S, then the joint (Y, Z) belongs to S.

We will also consider probability families adapted to these information structures; they form a

covariant functor X �→ QX (which can be typographically distinguished in the two cases byQX and

QX) of direct images. When S is a classical subcategory of the quantum structure S, we suppose

that we have a trace transformation from ι∗Q to Q, and if S and Q are unitary invariant, we remind

that, thanks to the ordering, we have an equivalence of category between SU and S , and a compatible

morphism from the functional module FQ to the functional module FQ.

Except the new ingredient of orderings, they are familiar objects for our reader. The letter X

will denote both cases Ω and E, then the letters S, B, Q will denote respectively S , B, Q or S,

UB, Q. Be careful that now all observable quantities are ordered, either partitions, either direct

decomposition. We will always assume the compatibility condition between Q and S, meaning that

every conditioning of P ∈ Q by an event associated to an element of S belongs to Q.

In addition we choose a subset A of observables in S, which play the role of allowed elementary

observations.

We say that a bijection σ from Ω to itself, measurable for B, respects a set of observables A if

for any Y ∈ A, there exists Z ∈ A such that Y ◦ σ = Z. It means that σ establishes an ordered

bijection between the pieces Y (i) and the pieces Z(i), i.e., x ∈ Z(i) if and only if σ(x) ∈ Y (i). In
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other words the permutation σ respects A when the map σ∗ which associates the partition Y ◦ σ to

any partition Y , sends A into A.

In the same way, we say that σ respects a family of probabilitiesQ if the associated map σ∗ sends

an element of Q to an element of Q.

In the quantum case, with E, h0 and UB, we do the same by asking in addition that σ is a linear

unitary automorphism of E.

Definition 9. If X, S, Q, B and A are given, the Galois group G0 is the set of permutations of X

(resp. linear maps) that respect S, Q, B and A.

Example 6. Consider the system X associated to the simple classical weighting problem: states are

parameterized by points with coordinates 0, 1 or −1 in the sphere Sn−1 of radius 1 in Rn, according

to their weights, either normal, heavier or lighter. Thus in this case Ω = X possesses 2n points. The

set A of elementary observables is given by the weighting operations FI,J , Equation (132). For S we

take the set S(A) of all ordered partitions πk obtained by applications of discrimination trees labelled

by A. And we consider only the uniform probability P0 on X; in Q this gives the images of this law

by the elements of S , and the conditioning by all the events associated to S .

Then the Galois group G0 is the subgroup Sn×C2 of S2n made by the product of the permutation

group of n symbols by the group changing the signs of all the xi for i in [n].

Proof : the elements of Sn respect A, and the uniform law. Moreover if σ changes the sign of all the

xi, one can compensate the effect of σ on FI,J by taking GI,J = FJ,I , i.e., by exchanging the two

sides of the balance.

To finish we have to show that permutations of X outside Sn×C2 do not respect A. First, consider

a permutation σ that does not respect the indices i. In this case there exists an index i ∈ [n] such that

σ(i+) and σ(i−) are states associated to different coins, for instance σ(i+) = j+ and σ(i−) = k+,

with j �= k, or σ(i+) = j+ and σ(i−) = k−, with j �= k. Two cases are possible: these states have the

same mass, or they have opposite mass. In both cases let us consider a weighting Fj,h(x) = xj − xh,

where h �= k; by applying σ∗Fj,h to x = σ(i+) we find +1 (or −1), and by applying σ∗Fj,h to

x = σ(i−) we find 0. However, this cannot happen for a weighting, because for a weighting, either

the change of i+ into i− has no effect, either it exchanges the results +1 and −1. Finally, consider

a permutation σ that respects the indices but exchanges the signs of a subset I = {i1, ..., ik}, with

0 < k < n. In this case let us consider a weighting Fi,j(x) = xi − xj with i ∈ I and j ∈ [n]\I , the

function Fi,j ◦ σ takes the value +1 for the states i−, j−, the value −1 for i+, j+ and the value 0 for

the other states, which cannot happen for any weighting, because this weighting must involve both i

and j, but it cannot be Fj,i(x) = xj−xi, which takes the value−1 for j−, and it cannot be Fi,j which

takes the value +1 for i+.

The probability laws we are considering express the beliefs in initial knowledge on the system, in

this case it is legitimate to consider that they constrain the initial Galois group G0. This corresponds

to the Jaynes principle [51,52].
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We define in this framework the notion of observation tree adapted to a given subset A of S: it

is a finite oriented rooted tree Γ where each vertex s is labelled by an observable Fs belonging to A

and each arrow α beginning at s is labelled by an element Fs(i) of Fs. A priori we introduce as many

branches as there exist elements in Fs. The disposition of the arrows in the trigonometric circular

order makes that the tree Γ is imbedded in the Euclidian plane up to homotopy.

A branch γ in the tree Γ is a sequence α1, ..., αk of oriented edges, such that, for each i the initial

extremity of αi+1 is the terminal extremity of αi. Then αi+1 starts with the label Fi and ends with the

label Fi+1. We will say that γ starts with the root if the initial extremity of α1 is the root s0, with a

label F0.

For any edge α in Γ, there exists a unique branch γ(α) starting from the root, and abutting in α.

Along this branch, the vertices are decorated with the variables Fi; i = 0, ..., Fk and the edges are

decorated with values vi of these functions; we note

S(α) = (F0, v0;F1, v1; ...;Fk−1, vk−1;Fk) (133)

By definition, the set X(α) of states which are compatible with α is the subset of elements of X

such that F0(x) = v0, ..., Fk−1(x) = vk−1.

At any level k the sets X(α) form a partition πk de X .

Definition 10. We say that an observation tree Γ labelled by A is allowed by S, if all joint observable

along each branch belongs to S.

We say simply allowed if their is no risk of confusion.

In what follows this restriction is imposed on all considered tree. Of course if we start with the

algebra of all ordered partitions this gives no restriction, but this would exclude the quantum case,

where the best we can do is to take maximal commutative families.

Definition 11. Let α be an edge of Γ, we note Q(α) the set of probability laws on X(α) which are

obtained by conditioning by the values v0, v1..., vk−1 of the observables F0, F1, ..., Fk−1 along the

branch γ(α) starting in the root and ending with α.

Definition 12. The Galois group G(α) is the set of permutations of elements of X(α) that belongs to

G0, preserve all the equations Fi(x) = vi (resp. all the summands of the orthogonal decomposition

Fi labelling the edges) and preserve the sets of probability Q(α) (resp. quantum probabilities).

We consider G(α) as embedded in G0 by fixing point by point all the elements of X outside

X(α).

Remark 10. Let P be a probability law (either classical or quantum) on X , Φ = (Fi; i ∈ I) a

collection of observables, and ϕ = (vi; i ∈ I) a vector of possible values of Φ; the law P |(Φ = ϕ)

obtained by conditioning P by the equations Φ(x) = ϕ, is defined only if the set Xϕ of all solutions

of the system of equations Φ(x) = ϕ has a non-zero probability pϕ = P (Xϕ). It can be viewed either

as a law on Xϕ, or as a law on the whole X by taking the image by the inclusion of Xϕ in X .
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Definition 13. The edge α is said Galoisian if the set of equations and probabilities that are invariant

by G(α) coincide respectively with X(α) and Q(α).
A tree Γ is said Galoisian when all its edges are Galoisian.

At each level k we define the group Gk which is the product of the groups G(α) for the free edges

at level k; it is a subgroup of G0 preserving elements by elements the pieces of the partition πk.

Along the path γ the partition (or decomposition) πl, l ≤ k of X is increasing (finer and finer)

and the sequence of groups Gl, l ≤ k is decreasing.

Along a branch the sets X(α) are decreasing and the sequence of groups G0, G(α1), ..., G(αk)

is decreasing. We propose that the quotient G(αi+1)/G(αi) gives a measure of the Galoisian
information gained by applying Fi and obtaining the value vi.

On each set X(α) the images of the elements of the probability family Q form sets Q(α) of

probabilities on X(α).

Thus also imposed in the group G(α) to preserve the set Q(α).

Remark 11. In terms of coding, introducing probabilities on the X(α) permits to formulate the

principle, that it is more efficient to choose, after the edge α, the observation having the largest

conditional entropy in Q(α). In what circumstances it gives the optimal discrimination tree is a

difficult problem, even if the folklore admit that as a theorem. It is the problem of optimal coding.

In virtue of a Shannon’s theorem, the minimal length is bounded below by entropy of the law on

X if this law is unique. We found it works in a simple example of weighting (cf. paper 3 [22]).

Note however important differences between our approach and the traditional one for coding: for

us A is given and Q is given; they correspond respectively to an a priori limitation of possible codes

for use (like a natural language), and to a set of possible a priori knowledges, for instance taking in

account the Galois ambiguity in the system (Jaynes principle). All that is Bayesian in spirit.

Definition 14. We say that an observation tree Γ labelled by A is allowed by S and by X ∈ S, if it

is allowed by SX , which means that all joint observable along each branch is divided by X .

Definition 15. S(A) is the set of (ordered) observables πk which can be obtained by allowed

observation trees. For X ∈ S we note SX(A) the set of (ordered) observables πk which can be

obtained by observation trees that are allowed by S and X .

Lemma 9. The joint product defines a structure of monoid on the set SX(A).

Proof. Let Γ,Γ′ be two observation trees allowed by A, S and X ∈ S, of respective lengths k, k′,
giving final decompositions S, S ′. To establish the lemma we must show that the joint SS ′ is obtained

by a tree associated with A, allowed by S and X .

For that we just graft one exemplar of Γ′ on each free edge of Γ. This new tree ΓΓ′ is associated

with A, and its final partition is clearly finer than S. It is also finer than S ′, because at the end

of any branch of ΓΓ′ we have an X(β) which is contained in the corresponding element of the
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final partition πk′(Γ
′). To finish the proof we have to show that each element of πk+k′(ΓΓ

′) is the

intersection of element of πk(Γ) with one element of πk′(Γ
′), because we know these observables

are in SX , which is a monoid, by the definition of information structure. But a complete branch

γ.γ′ in ΓΓ′, going from the root to a terminal edge at level k + k′, corresponds to a word

(F0, v0, F1, v1, ..., Fk−1, vk−1, F
′
0, v

′
0, ..., F

′
k′−1, v

′
k′−1, thus the final set of the branch γ.γ′ is defined

by the equations Fi = vi; i = 0, ..., k − 1 et F ′
j = v′j; j = 0, ..., k′ − 1, and is the intersection of

the sets respectively defined by the first and second groups of equations, that belong respectively to

πk(Γ) and πk′(Γ
′).

Then S(A) form an information structure. In particular there is a unique maximal partition, initial

element for each subcategory SX(A) in the information structure S(A).

But on S(A) the operation of grafting, that we will describe now, is much richer than what we

used in the above Lemma 9: we can graft an allowed tree on each free edge of an allowed tree, and

this introduces to a theory of operads and monads for information theory.

6.3. Co-Homology of Observation Strategies

Remember that the elements of the partitions or decompositions Y we are considering, are now

numbered by the ordered set {1, ..., L(Y )}, where L(Y ) is the number of elements in the partition, or

the decomposition, also called its length. In particular we consider as different two partitions which

are labelled differently by the integers. This was already taken into account in the definition of the

Galois groups.

We define the multi-products μ(m;n1, ..., nm) on the set of ordered partitions:

They are defined between a partition equipped with an ordering (π, ω) with m pieces and m

ordered partitions (π1, ω1), ..., (πm, ωm) of respective lengths n1, ..., nm; the results is the ordered

partition obtained by cutting each piece Xi of π by the corresponding decomposition πi and

renumbering the non-empty pieces by integers in the unique way compatible with the orderings

ω, ω1, ..., ωm. Observe the important fact that the result has in general less than n = n1 + ... +

nm pieces. This introduces a strong departure from usual multi-products (cf. P. May [17,53],

Loday-Vallette [10]). We do not have an operad, when introducing vector spaces V (m) generated

by decompositions of length m, we get filtered but not graded structures. However a form

of associativity and neutral element are preserved, hence we propose to name this structure a

filtered operads.

There exists an evident unit to the right which is the unique decomposition of length 1.

The action of the symmetric group Sm on the products is evident, and does not respect the length

of the result. We will designate by μm the collection of products for the same length m.

The numbers mi between 1 and ni that counts the pieces of the decomposition of the element

Xi of π are functions mi(π, ω, πi, ωi). There exists a growing injection ηi : [mi] → [ni], which

depends only on (π, ω, πi, ωi) telling what indices of (πi, ωi) survive in the product. These injections

are integral parts of the structure of filtered operad. In particular, if we apply a permutation σi to [ni],

i.e., if we replace ωi by ωi ◦ σi, the number can change.
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The axioms of operadic unity and associativity, conveniently modified are easy to verify (cf.
[22]). The reference we follow here is Fresse “Basic concepts of operads” [16]. For unity nothing

has to be modified. For associativity (Figure 1.3 in Fresse [16]), we modify by saying that if the

(πi, ωi) of lengths ni, for i between 1 et k, are composed from μ(ni;n
1
i , ..., n

ni
i ) with the ni-uples

(..., (πj
i , ω

j
i ), ...) whose respective lengths are nj

i , and if the result μi for each i has length (m1
i + ...+

mni
i ) where mj

i is function of (πi, ωi) and (πj
i , ω

j
i ), then the product of (π, ω) of length k with the μi

is the same as the one we would have obtained by composing μ(k;n1, ..., nk)((π, ω); (π1, ω1), ...))

with the m = m1 + ... + mk ordered decompositions (πj
i , ω

j
i ) for j belonging to the image of

ηi : [mi]→ [ni]. This result is more complicate to write than to prove, because it only expresses the

associativity of the ordinary join of three partitions; from which ordering follows.

Moreover, the first axiom concerning permutations (Figure 1.1 in Fresse [16]), can be modified,

by considering only permutations of ni letters which preserve the images of the maps ηi.

The second axiom, which concerns a permutation σ of k elements in π, and the inverse

permutation of the partitions πi can be reformulated by telling the effect of σ on the multiple product

μ is the same as the effect of σ on the indices of the (πi, ωi). In other terms, the effect of σ on ω is

compensated by the action of σ−1 on the indices of the (πi, ωi). One has to be careful, because

the result of μ applied to (π, ω ◦ σ) has in general not the same length as μ applied to (π, ω).

However the compensation implies that μk is well defined on the quotient of the set of sequences

((π, ω), (π1, ω1), ...) by the diagonal action of Sk, which permutes the k pieces of π and which

permutes the indices i of the ni in the other factors.

Geometrically, if the partition (π, ω) in S(A) is generated by an observation tree Γ with m ending

edges and the partitions (πi, ωi); i = 1, ...,m are generated by a collection of observation trees Γi;

then the result of the application of μ(m;n1, ..., nm) to (π, ω) and (πi, ωi); i = 1, ...,m is generated by

the observation tree that is obtained by grafting each Γi on the vertex number i. Drawing the planar

trees associated to three successive sets of decompositions for two successive grafting operations

helps to understand the associativity property.

The fact that in general this does not give a tree with n1 + ... + nm free edges, where ni denotes

the number of free edges of Γi comes from the possibility to find an empty set X(β) at some moment

along a branch of the grafted tree; this we call a dead branch. It expresses the fact that the empty set

is excluded from the elements of a partition in the classical context, and the zero space excluded from

the orthogonal decomposition in the quantum context. When computing conditioned probabilities we

encounter the same problem if a set X(β) at some place in a branch has measure zero.

The dead branches and the lack of graduation cause a lot of difficulties for studying algebraically

the operations μm, thus we introduce more flexible objects, which are the ordered partitions with
empty parts of Ω, resp. ordered orthogonal decompositions with zero summands of E: such a

partition π∗ (resp. decomposition) is a family (E1, ..., Em) of disjoint subsets of Ω (resp. orthogonal

subspaces of E), such that their union (resp. sum) is Ω (resp. E). The only difference with respect

to ordered partitions, resp. decompositions, is that we accept to repeat ∅ (resp. 0) an arbitrary

high number of times. For shortening we will name generalized decompositions these new objects.
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The number m is named the degree of π∗. These objects are the natural results of applying rooted

observation trees embedded in an oriented half plane.

The notions of adaptation to A, S and X in S concerning the trees, apply to the generated

generalized decompositions. The corresponding sets of generalized objets are written S∗(A) and

S∗
X(A).

The multi-product μ(m;n1, ..., nm) extends naturally to generalized decompositions, and in this

case the degrees are respected, i.e., the result of this operation is a generalized decomposition of

degree n1 + n2 + ...+ nm.

Remark that we could write μ∗(m;n1, ..., nm) for the multi-products extended to generalized

decompositions, however we prefer to keep the same notation μ(m;n1, ..., nm); this is justified

by the following observation: to a generalized decomposition π∗ is associated a unique ordered

decomposition (π, ω), by forgetting the empty sets (resp. zero spaces) in the family, and the

multi-product is compatible with this forgetting application. The gain of the extension is the easy

construction of a monad we expose now.

The definition of operad was introduced by P. May [17] as the right tool for studying the homology

of infinite loop spaces; then it was recognized as a fundamental tool for algebraic topology, and many

other topics, see Loday and Valette, Fresse.

We will encounter only “symmetric” operads.

The multiple products μm on generalized decompositions can be assembled in a structure of

monad by using the standard Schur construction (cf. Loday et Valette [10], or Fresse, “on partitions”

[16]): For each X ∈ S, we introduce the real vector space VX = VX(A) freely generated by the set

S∗
X(A) of generalized decompositions obtained by observation trees that are allowed by A, S and X;

the length m define a graduation VX(m) of VX . We put VX(0) = 0.

The maps μm generate m-linear applications from products of these spaces to themselves which

respect the graduation; these applications, also denoted by μm, are parameterized by the sets S∗
X(m),

whose elements are the generalized decompositions of degree m which are divided by X:

μm : VX(m)⊗Sm V ⊗m
X → VX (134)

The linear Schur functor from the category of real vector spaces to itself, is defined by the direct sum

of symmetric co-invariants:

VX(W ) =
⊕
m≥0

VX(m)⊗Sm W⊗m (135)

The composition of Schur functors is defined by

VX ◦ VX =
⊕
m≥0

VX(m)⊗Sm V⊗m
X . (136)

i.e., for each real vector space W :

VX◦VX(W ) =
⊕
m≥0

⊕
l≥m

⊕
n1,...,nm;

∑
i ni=l

VX(m)⊗Sm

⊗
i

VX(ni)⊗Sni
W⊗ni (137)

=
⊕
l≥0

⊕
m≥0

⊕
n1,...,nm;

∑
i ni=l

VX(m)⊗Sm

⊗
i

VX(ni)⊗Sn1,...,nk
W⊗l; (138)
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where Sn1,...,nm denotes the groups of permutations by blocs.

Proposition 5. For each X in S, the collection of operations μm defines a linear natural

transformation of functors μX : VX ◦ VX → VX ; and the trivial partition defines a linear natural

transformation of functors ηX : R → VX , which satisfy the axioms of a monad (cf. MacLane

“Categories for Working Mathematician” 2nd ed. [4], and Alain Proute, Introduction a la Logique

Categorique, 2013, Prepublications [54]):

μX ◦ (VXμX) = μX ◦ (μXVX), μX ◦ (VXηX) = Id = μX ◦ (ηXVX) (139)

Proof. The argument is the same as the argument given in Fresse (partitions ...). The fact that the

natural transformation μX is well defined on the quotient by the diagonal action of the symmetric

group Sm on VX(m) ⊗⊗i VX(ni) ⊗Sn1,...,nm
W⊗s comes from the verification of the symmetry

axiom and the properties of associativity and neutral element comes from the verification of the

corresponding axiom.

Moreover all these operations are natural for the functor of inclusion from the category SY to the

category SX of observables divided by Y and X respectively when X divides Y ; therefore we have

the following result:

Proposition 6. To each arrow X → Y in the category S is associated a natural transformation of

functors ρX,Y : VY → VX , making a morphism of monads; this defines a contravariant functor V
from the category S to the category of monads, that we name the arborescent structural sheaf of S

and A.

Considering the discrete topology on S, we introduce the topos of sheaves of modules over the

functor in monads V , which we call the arborescent information topos associated to S and A.

As explained in Proute loc.cit. [54] a monad in a category C becomes a monoid in the category

of endo-functors of C, thus the topos we introduce is equivalent to an ordinary ringed topos.

The monad VX , and the contravariant monadic functor V on S, are better understood by

considering trees, cf. Getzler-Jones [55], Ginzburg-Kapranov [56] and Fresse [16]; in our context

we consider all observation trees labelled by elements of S∗
XA:

if Γ is an oriented rooted tree of level k, each vertex v of Γ gives birth to mv edges; we define

VX(Γ)(W ) =
⊗
v∈Γ

VX(mv)⊗Smv
W⊗mv . (140)

The space V (Γ)(W ) is the direct sum of spaces VX(ΓY )(W ) associated to trees which are

decorated by a subset Y in S∗
X(A), with one element Yv of SX(m) for each vertex v which gives

birth to mv edges. Then the iterated functors V◦k = V ◦ ... ◦ V for k ≥ 1 are the direct sums of the

functors V (Γ) of level k.

Remark that we could have worked directly with observation trees labelled by elements of A in spite

of working with generalized partitions; this would have given a strictly larger monad but equivalent

results.
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Associated to probability families we define now a right VX-module (in the terms of Fresse,

Partitions, the term VX-algebra being reserved to a structure of left module on a constant functor).

For that we introduce the notion of divided probability.

Definition 16. A divided probability law of degree m is a sequence of triplets (p, P, U) =

(p1, P1, U1; ...; pm, Pm, Um), where pi; i = 1, ...,m are positive numbers of sum one, i.e., p1 +

... + pm = 1, where each Pi; i = 1, ...,m is a classical (resp. quantum) probability law when the

corresponding pi is strictly positive, and a probability law or the empty set when the corresponding pi

is equal to 0, and where each Ui; i = 1, ...,m is the support in X of Pi; moreover the Ui are assumed

to be orthogonal (resp. disjoint in the classical case). The letter P will designate the probability

p1P1 + ...+ pmPm, where 0.∅ = 0 when it happens.

The symbol D(m) designates the set of divided probabilities of degree m on X, and DX(m)

denotes the subset made with probability laws in QX adapted to a variable X .

The vector space generated by DX(m) will be written LX(m). We put LX(0) = 0.

We also introduce the subspace K(m) of LX(m) which is generated by two families of vectors

in LX(m):

First the vectors

L(λ, p′, p”, P, U) = λ(p′, P, U) + (1− λ)(p”, P, U)− (λp′ + (1− λ)p”, P, U), (141)

where λ is any real number between 0 and 1, and (p′, P, U), (p”, P, U) two divided probabilities

associated to the same sequence of probability laws (P1, ..., Pm) and the same supports (U1, ..., Um);

Second the vectors

D(p, P, U,Q, V ) = (p, P, U)− (p, P ′, U ′), (142)

where for each index i between 1 and m, such that pi > 0 we have Pi = P ′
i , and consequently

Ui = U ′
i .

The we define the space of classes of divided probabilities as the quotient real vector space

MX(m) = LX(m)/K(m). In particular MX(0) = 0, MX(1) is freely generated over R by the

elements of QX .

Lemma 10. The space MX(m) is freely generated over R by the vectors (∅, ..., ∅, Pi, ∅, ..., ∅) of

length m, where at the rank i, Pi is an element of QX .

Proof. Let D = (p1, P1, U1), ..., (pm, Pm, Um) be a divided probability; we consider for each i

between 1 and m the divided probability

Di = (0, P1, U1), ..., (0, Pi−1, Ui−1), (1, Pi, Ui), (0, Pi+1, Ui+1), ..., (0, Pm, Um),

then the vector D−∑i piDi is a sum of vectors of type L in KX(m). However, for each i, the vector

Di−(∅, ..., ∅, Pi, ∅, ..., ∅) is of type D, thus the particular vectors of the Lemma 10 generateMX(m).

Now, we prove that, if a linear combination of r of these vectors belongs to KX , the coefficients

of this combination must all be equal to 0. We proceed by recurrence on r, the result being evident for
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r = 1. We also can suppose that at least two involved vectors have a non-empty element at the same

place, which we can suppose to be i = 1. All vectors with p1 = 0 can be replaced by a vector where

P1 = ∅ using an element of type D in KX(m), then we can assume that at least one of the vectors

has a p1 strictly positive, i.e., equals to 1. Let us consider all these vectors D1, ..., Ds, for 2 ≤ s ≤ r,

their other numbers pi for i > 1 are zero. The other vectors Dj , for j > s having the coordinate p1

equal to zero. Let
∑

j λjDj be the linear combination of length r belonging to KX(m); this vector is

a linear combination of vectors of type L and D. We can suppose that every λj is non-zero. Let us

consider an element Q of QX which appears in at least one of the Dj , j ≤ s; this Q cannot appear

in only one Dj , because the sum of coefficients λ multiplied by the first p1 in front of any given Q

in a vector L or D is zero. Thus we have at least two Dj with the same P1. We can replace the sum

of them with λj positive (resp. negative) by only one special vector of the Lemma 10 using a sum of

multiples of vectors of type L. Then we are left with the case of two vectors, D1, D2 having P1 = Q

such that λ1 + λ2 = 0, which means that λ1D1 + λ2D2 is multiple of a vector of type D. Subtracting

it we can apply the recurrence hypothesis and conclude that the considered linear relation is trivial.

As a corollary an equivalent definition of the spacesMX(m) would be the real vector space freely

generated by pairs (P, i) where P ∈ QX and i ∈ [m]. Such a vector, identified with (∅, .., P, ..., ∅) in

LX(m), where only the place i is non-empty, will be named a simple vector of degree m.

Let S = (S1, ..., Sm) be a sequence of generalized decompositions in S∗
X(A), of respective

degrees n1, ..., nm, with n = n1 + ... + nm, and let (p, P, U) be an element of DX(m), we define

θ((p, P, U), S) as the following divided probability of degree n: if, for i = 1, ...,m the decomposition

Si is made of pieces Eji
i where ji varies between 1 and ni, we take for pjii is the classical probability

P(Eji
i ∩ Ui); we take for P ji

i the law Pi conditioned by the event Si = ji which corresponds

to Eji
i ; and we take for U ji

i the support of P ji
i . Then we order the obtained family of triples

(pjii , P
ji
i , U ji

i )i=1,...,m;ji=1,...,ni
by the lexicographic ordering. It is easy to verify that the resulting

sequence is a divided probability.

Extending by linearity we get a linear map,

λm : LX(m)⊗ VX(n1)⊗ ...⊗ VX(nm)→ LX(n1 + ...nm), (143)

By linearity a vector of type L inLX(m), tensorized with S1⊗...⊗Sm goes to a linear combination

of vectors of type L in LX(n). Moreover, if pi = 0 for an index i in [m], all the pjii are zero, thus a

vector of type D goes to a vector of type D. Then the map λm sends the subspaceKX(m)⊗VX(n1)⊗
...⊗ VX(nm) into the subspace KX(n1 + ...nm), thus it defines a linear map

θm :MX(m)⊗ VX(n1)⊗ ...⊗ VX(nm)→MX(n1 + ...nm), (144)

On a simple vector (P, i), the operation θm is independent of the Sj for i �= i.

Now we introduce the Schur functor MX of symmetric co-invariant spaces MX(W ) =⊕
mMX(m)⊗Sm W⊗m from the category of real vector space to itself, associated to the S-module

M∗
X (cf. Loday and Valette [10], Fresse [16]), formed by the graded familyMX(m);m ∈ N.
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Then the maps θm define a natural transformation of functors:

θX :MX ◦ V →MX . (145)

In addition, this set of transformations behaves naturally with respect to X in the information

category S. Note that it defines a co-variant functor, not a presheaf.

For simplicity, we will note in general θ, μ,F ,V , ... and not θX , μX ,FX ,VX , ..., but we memorize

this is an abuse of language.

Then the composite functorM◦ V(W ) is given by

MX◦VX(W ) =
⊕
m≥0

MX(m)⊗Sm

⊗
i

(VX(ni)⊗Sni
W⊗ni)

=
⊕
n≥0

⊕
m≥0

⊕
n1,...,nm;

∑
i ni=n

MX(m)⊗Sm

⊗
i

VX(ni)⊗Sn1,...,nk
W⊗n;

where Sn1,...,nm denotes the groups of permutations by blocs.

Proposition 7. The natural transformation θ defines a right action in the sense of monads, i.e., we

have

θ ◦ (Fμ) = θ ◦ (θV); θ ◦ (Fη) = Id. (146)

Proof. The proof is the same as for proposition 5, by using the associativity of conditioning, and the

Bayes identity P (A ∩ B) = P (A|B)P (B).

Ginzburg and Kapranov [56] gave a construction of the (co)bar complex of an operad based on

decorated trees. It is a graded complex of operads, with a differential operator of degree −1. The

dual construction can be found in Getzler et Jones [55]; it gives a graded complex of co-operads

with a differential operator of degree +1. The link with quasi-free co-operads and operads (Quillen’s

construction) is developed by Fresse (in “partitions” [16]); in this article Fresse also shows that these

constructions correspond to the simplicial bar construction for the monads (Maclane) and to the

natural notions of derived functors in this context.

In our case, with two right modules, the easiest way is to use the bar construction of Beck

(1967) [19], further explicited by Fresse with decorated trees in the case of monads coming from

operads.

A morphism from a right moduleM over V to a right moduleR over V is a natural transformation

f of the first functor in the second such that f ◦ θM = θR ◦ fV .

In what follows we will use the moduleR which comes from the functor of symmetric powers:

R(W ) =
⊕
m

Sm(W ); (147)

it is the Schur functor associated to the trivial S∗-module, R(m) = R, i.e., the action of Sm on

R(m) is trivial. We putR(0) = R.

The right action of VX is given by the map

ρm : RX(m)⊗ VX(n1)⊗ ...⊗ VX(nm)→ RX(n1 + ...nm), (148)
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which send each generator (1, S1, ..., Sm) to 1 inR(n) = R.

The axioms of a right module are easy to verify.

This V-moduleR will play the dual role of the trivial module in the case of information structure

co-homology.

Following Beck (Triples, Algebras, Cohomology, 1967, 2002 [19]), we consider the simplicial

bar complex MX ◦ V∗
X extending the right module M on V by the sequence of modules .... →

MX ◦V◦(k+1)
X →MX ◦V◦k

X → .... Then we introduce the growing complex C∗(MX) of measurable
morphisms fromMX ◦ V∗

X to the symmetric right module R.

For a given k ≥ 0, a morphism F from MX ◦ V◦k
X to R is defined by a family of maps F (N) :

MX ◦ V◦k
X (N)→ R(N) = R, for N ∈ N.

This gives a family of measurable numerical functions of a divided probability law (p, P, U), of

degree m ≤ N , indexed by forests having m components trees of height k and having total number

of ending branches N .

We denote such a family of functions by the symbol FX(S1;S2; ...;Sk; (p, P, U)), indexed by X

in S, where S1; ...;Sk here designates the sets of decompositions present in the trees at each level

from 1 to k.

First we remark that the compatibility with the action of VX to the right imposes that for any

allowed set of variables Sk+1 we must have

FX(S1;S2; ...;μ(Sk, Sk+1); (p, P, U)) = FX(S1;S2; ...;Sk; (p, P, U)). (149)

By taking for Sk the collection (π0, ..., π0), we deduce that FX is independent of the last variable.

This has the effect of decreasing the degree in k by one, for respecting the preceding conventions

on information cochains; i.e., we pose Ck(MX) = Hom(MX ◦ V◦(k+1),R).

Secondly, as we are working with the quotient of the space generated by divided probabilities

(p, P, U) by the space generated by linearity relations on the external law p, for (p, P, U) of degree

m, we have

FX(S1;S2; ...;Sk; (p, P, U)) =
m∑
i=1

piFX(S1;S2; ...;Sk; (Pi; i,m)); (150)

where (Q; i,m) designates the divided probability of degree m where all the laws in the sequence are

empty except for the number i where it is equal to Q.

Moreover, from the definition of θ and the rule of composition of functors, for any m ≥ 1 and

i ∈ [m], and any simple vector (Q, i,m), the value of F on any forest depends only on the tree

component of index i; that we can summarize by the following identity:

FX(S1;S2; ...;Sk; (Q; i,m)) = FX(T (S
i
1;S

i
2; ...;S

i
k); (Q; i,m)); (151)

where T (Si
1;S

i
2; ...;S

i
k) designates the tree numbered by i, prolonged in any manner at all the places

j �= i.

Definition 17. An element of Ck(MX) is said regular when for each degree m and each index i

between 1 and m, we have, for each ordered forest S1;S2; ...;Sk of m trees, and each probability Q,

FX(S1;S2; ...;Sk; (Q; i,m)) = FX(S
i
1;S

i
2; ...;S

i
k;Q); (152)
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where Si
1;S

i
2; ...;S

i
k designates the tree number i.

Due to Equation (150), this makes that regular elements are defined by their values on trees and

ordinary, not divided probabilities.

The adjective regular can be better interpreted as “local in the sense of observation trees”.

The vector space CkX(N) is generated by families of functions of divided probabilities

FX(S1;S2; ...;Sk; (p, P, U)), indexed by X in S and forests S1; ...;Sk of level k. These families are

supposed local with respect to X , which means that it is compatible with direct image of probabilities

under observables in S∗.

Remark 12. As we showed in the static case, in the classical context, locality is equivalent to the

fact that the values of the functions depend on P through the direct images of P by the joint of all

the ordered observables which decorate the tree (the joint of the joints along branches); but this is

not necessarily true in the quantum context, where it depends on Q. However it is true for Qmin, in

particular Qcan which is the most natural choice.

The spaces Ck(MX) form a natural degree one complex:

The faces δ
(k)
i ; 1 ≤ i ≥ k are given by applying μ on V ◦ V at the places (i, i + 1); the last face

δ
(k)
k+1; 1 ≤ i ≥ k consists in forgetting the last functor, the operation denoted by ε; and the zero face is

given by the action θ. Then the boundary δ(k) is the alternate sum of the operators δ
(k)
i ; 0 ≤ i ≥ k+1:

if F is measurable morphism fromM◦ V◦k to R, then

δF = F ◦ (θV◦k)−
∑

i=0,...,k−1

(−1)iF ◦MV◦iμV◦k−i−1 − (−1)kF ◦MV◦kε. (153)

The zero face in the complex C∗X corresponds to the right action of the monad VX on divided

probabilities; on regular cochains it is expressed by a generalization of the formula (20): if (P, i,m)

is a simple vector of degree m and S0;S1; ...;Sk a forest of level k+1, with m component trees, then

FS0(S1; ...;Sk; (P, i,m)) = F (S1; ...;Sk; θ((P, i,m)S0))

=
∑

ji=1,...,ni

P(Si
0 = ji)F ((Sji

1 ;S
ji
2 ; ...;S

ji
2 ; (P |(Si

0 = ji)), (154)

where Sji
1 ;S

ji
2 ; ...;S

ji
k designates the tree number ji grafted on the branch ji of the variable S0,i at the

place i in the collection S0.

The formula (154) is compatible with the existence of dead branches.

Note that natural integers come into the play under two different aspects: m is for the internal

monadic degree and counts the number of components, or the length of partitions, k is for the height

of the trees in the forest. The number k gives the degree in co-homology.
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The coboundary δ of C∗ is of degree +1 with respect to k and degree 0 with respect to m. For any

m ∈ N, the operator δ has the formula of the coboundary given by the simplicial structure associated

to θ and μ:

δF (S0;S1; ...;Sk; (p, P, U)) = FS0(S1; ...;Sk; (p, P, U)) (155)

+
i=k∑
i=1

(−1)iF (S0; ...;μ(Si−1 ⊗ Si);Si+1; ...;Sk; (p, P, U))

+(−1)k+1F (S0; ...;Sk−1; (p, P, U))

We constat that locality is preserved by δ.

Lemma 11. If the transformation F is regular, then δF is regular; in other terms, the regular elements

form a sub-complex Ckr (MX).

Proof. Let (P, i,m) be a simple vector and S0; ...;Sk a forest with m components; let us denote by

Sj
0 the variable number j having degree nj , and n = n1 + ...+ nm; we have

δF (S0; ...;Sk; (P, i,m))

= F (S1; ...;Sk; θ((P, i,m)Si
0))− F (μ(S0, S1); ...;Sk; (P, i,m))− ... (156)

+(−1)kF (S0; ...;μ(Sk−1, Sk); (P, i,m)) + (−1)k+1F (S0; ...;Sk−1; (P, i,m)).

The first term on the right is a combination of the image of F for the ni simple vectors P.Si,ji
0

of degree n = n1 + ... + nm which result from the division of (P, i,m) by Si
0. If F is regular,

this combination is the same as the combination of the simple vectors of degree ni constituting the

division of (P, i,m) by Si
0, which gives the same result as the first term on the right in the formula

δF (Si
0; ...;S

i
k; (P, 1, 1)) = F (Si

1; ...;S
i
k; θ(P, S

i
0))− F (μ(Si

0, S
i
1); ...;S

i
k;P )− ... (157)

+(−1)kF (Si
0; ...;μ(S

i
k−1, S

i
k);P ) + (−1)k+1F (Si

0; ...;S
i
k−1;P ).

If F is regular the term number l > 1 on the right of the equation (156) coincides with the

corresponding term on the right of the Equation (157).

Therefore the terms on the left in Equation (156) coincides with the left term in (157); which

establishes the lemma.

We define C∗r (MX) as the sub-complex of regular vectors in C∗(MX). Its elements are named

tree information cochains or arborescent information cochains.

By definition, the tree information co-homology is the homology of this regular complex,

considered as a sheaf of complexes over the category S(A), i.e., a contravariant functor. This

corresponds to the topos information co-homology in the monadic context.

To recover the case of the ordinary algebra of partitions, and the formulas of the bar construction

in the first sections of this article, we have to take the special case where all the decompositions of

the same level coincide at every level of the forests. In this case, we can replace the quotientMX by

the modules of conditioning by a redefinition of the action on functions FX . However the notion of
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divided probabilities for observation trees and the definition of co-homology in the monadic context

can be seen as the natural basis of information co-homology.

When k = 0, in the classical case, a cochain is a function f(P), the locality condition tells that

it is a constant; and in this case it is a cocycle because the sum of probabilities equals one implies

f(P) = fS(P). Then H0
τ has dimension one.

When k = 0, in the quantum case, the spectral functions of ρ in the QX gives invariant

information co-chains. Among them the Von Neumann entropy is specially relevant because its

co-boundary gives the classical entropy. However, only the constant function is an invariant zero

degree co-cycle. Thus again H0
U has dimension one.

For k = 1, a cochain is given by a function FX(S;P ), such that, each time we have X → Y → S

and elements of Y refines S, we have FX(S;P ) = FY (S;Y∗P ). It is a cocycle when for every

collection S1, ..., Sm of m observables, where m is the length of S, we have

F (μm(S, (S1, ..., Sm));P ) = F (S;P ) +
∑
i

P(S = i)F (Si;P |S = i). (158)

Note that the partition μm(S, (S1, ..., Sm)) is not the joint of S and the Si for i ≥ 1, except when all

the Si coincide. Thus it is amazing that the ordinary entropy also satisfies this functional equation,

finer than the Shannon’s identity:

Proposition 8. The usual entropy H(S∗P) = H(S;P) is an arborescent co-cycle.

Proof. By linearity on the module of divided probabilities MX , we can decompose the probability

P in the conditional probabilities P|(S = s), thus we can restrict the proof of the lemma to the case

where S = π0 is the trivial partition, i.e., m = 1.

Let Xi; i = 1, ...,m denote the elements of the partition associated to S0 and Xj
i ; j = 1, ..., ni

the pieces of the intersection of Xi with the elements of the partition associate to Si; note pi the

probability of the event Xi and pji the probability of the event Xj
i ; we have

H(μm(S0; (S1, ..., Sm));P) = −
i=m∑
i=1

j=ni∑
j=1

pji log2 p
j
i , (159)

and

HS0(S1; ...;Sm;P) = −
i=m∑
i=1

pi

j=ni∑
j=1

pji
pi

log2
pji
pi

(160)

= −
i=m∑
i=1

j=ni∑
j=1

pji (log2 p
j
i − log2 pi) (161)

= −
i=m∑
i=1

j=ni∑
j=1

pji log2 p
j
i +

i=m∑
i=1

log2 pi

j=ni∑
j=1

pji (162)

= −
i=m∑
i=1

j=ni∑
j=1

pji log2 p
j
i +

i=m∑
i=1

pi log2 pi, (163)
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then

H(μm(S0; (S1, ..., Sm));P)−HS0(S1; ...;Sm;P) = H(S0;P). (164)

Q.E.D.

This identity was discovered by Faddeev, Baez, Fritz, Leinster see [20]. However, we propose

that information homology explains its significance.

When the category of quantum information S, the set A and the probability functor Q are invariant

under the unitary group, and if we choose a classical full subcategory S , there is trace map from Q
toQ, induces a morphism from the classical arborescent co-homology of S, A andQ to the invariant

quantum arborescent co-homology of S, A and Q.

As a corollary of the Lemma 10 and the Theorems 1 and 3, we obtain the following result:

Theorem 4. (i) both in the classical and the invariant quantum context, if S(A) is connected,

sufficiently rich, and if Q is canonical, every 1-co-cycle is co-homologous to the entropy of Shannon;

(ii) in the classical case H1(S, A,Q) is the vector space of dimension 1 generated by the entropy;

(iii) in the quantum case H1
U(S, A,Q) = 0, and the only invariant 0-cochain which has for

co-boundary the Shannon entropy is (minus) the Von-Neumann entropy.

6.4. Arborescent Mutual Information

For k = 2, a cochain is given by a local function of a probability and a rooted decorated tree of

level 2. It is a cocycle when the following functional equation is satisfied∑
i

P(S = i)F (Ti;Ui;P |S = i)− F (S;T ;P )

= F (μm(S ◦ T );U ;P )− F (S; (μni
(Ti ◦ Ui); i ∈ [m]);P ), (165)

where S denotes a variable of length m, T a collection of m variables T1, ..., Tm of respective lengths

n1, ..., nm and U a collection of variables Uk
i,j of respective lengths ni,j , with i going from 1 to m, j

going from 1 to ni and k going from 1 to ni,j; the notation Ui denoting the collection of variables Uk
i,j

of index i.

Our aim is to extend in the monadic context the topological action of the ordinary information

structure on functions of probability used in the discussion of mutual information.

For that, we define another structure of VX-right module on the functor MX associated to

probabilities, by defining the following map θt(m) from MX(m) tensorized with VX(n1) ⊗ ... ⊗
VX(nm) toMX(n), for n = n1 + ...+ nm:

θt((P, i,m)⊗ S1 ⊗ ...⊗ Sm) =
∑

j=1,...,ni

(P, (i, j), n). (166)

Remark that the generalized decompositions Sj are used only through the orders on their

elements.

As forR, it is easy to verify that the collection of maps θt(m) defines a right action of the monad

VX on the Schur functorMX .



107

Then we consider as before, the graded vector space C∗(MX) of homomorphisms of V-modules

from the functorsM◦ V◦k; k ≥ 0 to the functor R which are measurable in the probabilities P . As

before, on C∗(MX), we shift the degree by one, because of the independency with respect to the last

stage of the forest, which follows from the trivial action onR.

The topological coboundary operator δt is defined in every degree by the formula of the simplicial

bar construction, as in Equation (153) for δ, but with θt replacing θ. It corresponds to the usual

simplicial complex of the family V◦k. A cochain is represented by a family of functions of probability

laws FX(S1; ...;Sk; (P, i,m)), where S1; ...;Sk denotes a forest with m trees of level k. The operator

δt is given by

δtF (S0; ...;Sk; (P, i,m)) = F (S1; ...;Sk; θt((P, i,m), S0))

− F (μ(S0, S1); ...;Sk; (P, i,m))− ...+ (−1)kF (S0; ...;μ(Sk−1, Sk); (P, i,m))

+ (−1)k+1F (S0; ...;Sk−1; (P, i,m)). (167)

where n = n1 + ... + nm is the sum of numbers of branches of the generalized decompositions Si
0

for i = 1, ...,m.

As for δ, a value F (S1; ...;Sk; (P, j, n) depends only on the tree Sj
1; ...;S

j
k rooted at the place

numbered by j in the forest S1; ...;Sk.

Lemma 12. The coboundary δt sends a regular cochain to a regular cochain.

Proof. Consider a simple vector (P, i,m) inMX(m) and a forest S0; ...;Sk with m components; we

denote by Sj
0 the variable number j having degree nj , and n = n1 + ... + nm, and we consider the

formula (167).

If F is regular the first term on the right is the sum of the images by F for P and the ni trees Si,ji
1

which result from the forgetting of the first branches Si
0, and the other terms on the right are equal to

the value of F for P and the tree rooted at i in S0. On the other side for the tree Si
0; ...;S

i
k, if F is

regular, we have

δF (Si
0; ...;S

i
k; (P, 1)) =

∑
j

F (Si,j
1 ; ...;Si,j

k ; (P, 1))− F (μ(Si
0, S

i
1); ...;S

i
k; (P, 1))− ...

+ (−1)kF (Si
0; ...;μ(S

i
k−1, S

i
k); (P, 1)) + (−1)k+1F (Si

0; ...;S
i
k−1; (P, 1)). (168)

Thus δF is topologically regular.

Consequently we can restrict δt to the subcomplex C∗r (NX), and name its homology the

arborescent, or tree, topological information co-homology, written H∗
τ,t(S

∗, A,Q).

Now we suggest to extend the notion of mutual information I(X;Y ;P) in the way it will be a

cocycle for this co-homology as it was the case for the Shannon mutual information in the ordinary

topological information complex. We suggest to adopt the formulas using δ and δt, as in the

standard case:
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Definition 18. Let H(T ; (P, i,m)) denotes the regular extension to forests of the usual entropy;

then the mutual arborescent information between a partition S of length m and a collection T of m

partitions T1, ..., Tm is defined by

Iα(S;T ;P) = δtH(S;T ;P). (169)

The identity δH = 0 implies

Iα(S;T ;P) =
i=m∑
i=1

H(Ti;P)− P(S = i)H(Ti;P|S = i)). (170)

In the particular case were all the Ti are equal to a variable T , it gives

Iα(S;T ;P) =
i=m∑
i=1

P(S = i)(H(T ;P)−H(T ;P|S = i)) + (m− 1)H(T ;P)

= H(T ;P )−
i=m∑
i=1

P(S = i)H(T ;P|S = i)) + (m− 1)H(T ;P)

= H(T ;P)−HS(T ;P) + (m− 1)H(T ;P),

then

Iα(S;T ;P) = I(S;T ;P) + (m− 1)H(T ;P). (171)

For S(A), the function Iα is an arborescent topological 2-cocycle.

It satisfies the Equation (165) were P replaces conditional probabilities P|(S = i) and where

the factors P(S = i) disappear. Remark that, in this manner, maximization of Iα(S;T ;P) comports

maximization of usual mutual information I(S;T ;P) and unconditioned entropies H(Ti;P).

Pursuing the homological interpretation of higher mutual information quantities given by the

Formulas (55) and (56), we suggest the following definition:

Definition 19. The mutual arborescent informations of higher orders are given by Iα,N = −(δδt)MH

for N = 2M + 1 odd and by Iα,N = δt(δδt)
MH for N = 2M + 2 even.
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Computing Bi-Invariant Pseudo-Metrics on Lie Groups for
Consistent Statistics

Nina Miolane and Xavier Pennec

Abstract: In computational anatomy, organ’s shapes are often modeled as deformations of a

reference shape, i.e., as elements of a Lie group. To analyze the variability of the human anatomy

in this framework, we need to perform statistics on Lie groups. A Lie group is a manifold with a

consistent group structure. Statistics on Riemannian manifolds have been well studied, but to use the

statistical Riemannian framework on Lie groups, one needs to define a Riemannian metric compatible

with the group structure: a bi-invariant metric. However, it is known that Lie groups, which are not

a direct product of compact and abelian groups, have no bi-invariant metric. However, what about

bi-invariant pseudo-metrics? In other words: could we remove the assumption of the positivity of the

metric and obtain consistent statistics on Lie groups through the pseudo-Riemannian framework? Our

contribution is two-fold. First, we present an algorithm that constructs bi-invariant pseudo-metrics

on a given Lie group, in the case of existence. Then, by running the algorithm on commonly-used

Lie groups, we show that most of them do not admit any bi-invariant (pseudo-) metric. We thus

conclude that the (pseudo-) Riemannian setting is too limited for the definition of consistent statistics

on general Lie groups.

Reprinted from Entropy. Cite as: Miolane, N.; Pennec, X. Computing Bi-Invariant Pseudo-Metrics

on Lie Groups for Consistent Statistics. Entropy 2015, 17, 1850–1881.

1. Introduction

1.1. Modeling with Lie Groups

Data can be modeled as elements of Lie groups in many different fields: computational anatomy,

robotics, paleontology, etc. Indeed, Lie groups are continuous groups of transformations and, thus,

appear naturally whenever one deals with articulated objects or shapes.

Regarding articulated objects, one can take examples in robotics or in computational anatomy.

In robotics, first, a spherical arm is obviously an articulated object. The positions of the arm can be

modeled as the elements of the three-dimensional Lie group of rotations SO(3). In computational

anatomy, then, the spine can be modeled as an articulated object. In this context, each vertebra is

considered as an orthonormal frame that encodes the rigid body transformation from the previous

vertebra. Thus, as the human spine has 24 vertebrae, a configuration of the spine can be modeled as

an element of the Lie group SE(3)23, where SE(3) is the Lie group of rigid body transformations in

3D, i.e., the Lie group of rotations and translations in R3, also called the special Euclidean group.

Regarding shapes, the general model of d’Arcy Thompson suggests representing shape data as

the diffeomorphic deformations of a reference shape [1], thus as elements of an infinite dimensional

Lie group of diffeomorphisms. This framework can be applied as well in paleontology compared to
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in computational medicine. In palaeontology, first, a monkey skull or a human skull can be modeled

as the diffeomorphic deformation of a reference skull. In computational medicine, then, the shape of

a patient’s heart can be modeled as the diffeomorphic deformation of a reference shape. Obviously,

many more examples could be given, also in other fields.

1.2. Statistics on Lie Groups

Once data are represented as elements of a Lie group, we may want to perform statistical analysis

on them for prediction or quantitative modeling. Thus, we want to perform statistics on Lie groups.

How can we define an intrinsic statistical framework that is efficient on all Lie groups? How do we

compute the mean or the principal modes of variation for a sample of Lie group elements? In order

to train our intuition, we consider finite dimensional Lie groups here.

To define a statistical framework, it seems natural to start with the definition of a mean. The

definition of mean on a Lie group exemplifies the issues one can encounter while defining the whole

statistical framework. We know that the usual definition of the mean is the weighted sum of the

data elements of the sample. However, this definition is linear, and Lie groups are not linear in

general. Consequently, we cannot use this definition on Lie groups: we could get a mean of Lie

group elements that is not a Lie group element. One can consider as an example the half sum of two

rotation matrices that is not always a rotation matrix.

In fact, the definition of the mean on a Lie group should be consistent with the group structure.

This consistency leads to several requirements of the mean, or properties. First, the mean of Lie

group elements should be in the Lie group. Then, it seems natural to require that a left or right

translation of the dataset should translate its mean accordingly. Figure 1 illustrates the case when this

condition is fulfilled. Finally, the inversion of all data elements should lead to an inverted mean. A

mean verifying all of these properties is said to be bi-invariant.

RhLh

{gi}Ni=1 {gi ∗ h}Ni=1{h ∗ gi}Ni=1

Figure 1. Left and right translation of a dataset {gi}Ni=1 on the Lie group G. The initial

dataset {gi}Ni=1 has a mean represented in red. The left translated dataset {h∗gi}Ni=1 has a

mean represented in blue. The right translated dataset {gi ∗h}Ni=1 has a mean represented

in green. We require that the mean of the (right or left) translated dataset is the translation

of the red mean, which is the case in this illustration: the blue mean is the left translation

of the red mean, and the green mean is the right translation of the red mean.
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A naturally bi-invariant candidate for the mean on Lie groups is the group exponential barycenter

[2] defined as follows. A group exponential barycenter m of the dataset {gi}i=1,..,N is a solution, if

there are some, of the following group barycenter equation:

N∑
i=1

Log(m(−1) ∗ gi) = 0 (1)

where Log is the group logarithm. As the group exponential barycenter is naturally bi-invariant, we

call a group exponential barycenter a bi-invariant mean. The local existence and uniqueness of the

bi-invariant mean have been proven if the dispersion of the data is small enough. “Local” means that

the data are assumed to be in a sufficiently small normal convex neighborhood of some point of the

Lie group.

Now, we want to provide a computational framework for the bi-invariant mean that would set

the foundations for computations on Lie groups statistics in general. For that, we are interested in

characterizing the global domains of existence and uniqueness of the bi-invariant mean. By “global

domain”, we mean, for example, a ball of maximal radius, such that any probability measure with

support included in it would have a unique bi-invariant mean. Note that there is a priori no problem

having several means, which can be called several “modes”, or no mean at all. Our aim is rather to

characterize the different situations that may occur: no mean, one unique mean, several means.

1.3. Using Riemannian and Pseudo-Riemannian Structures for Statistics on Lie Groups

To this aim, we are interested in additional geometric structures on Lie groups that could help, by

providing computational tools. For example, we are interested in a distance on a Lie group, that could

enable one to measure the radii of balls. Such a distance could obviously help with characterizing

balls of maximal radius.

However, a Lie group is a group that carries an additional manifold structure, and one can

define a pseudo-metric on a manifold, making it a pseudo-Riemannian manifold. Thus, we can

add a pseudo-metric on Lie groups, which then induces a pseudo-distance. Could this additional

pseudo-Riemannian structure help to define the statistical framework on Lie groups in practice?

We consider first the case of the Riemannian structure, i.e., when the pseudo-metric is in fact

a metric (positive definite). Several definitions of the mean on Riemannian manifolds have been

proposed in the literature: the Fréchet mean, the Karcher mean or the Riemannian exponential

barycenter [3–8]. For example, the Riemannian exponential barycenters are defined as the critical

points of the variance of the data, defined as: σ2(y) = 1
N

∑N
i=1 dist(xi, y)

2, where {xi}Ni=1 are

the data and dist the distance induced by the Riemannian metric. The Riemannian framework

provides theorems for the global existence and uniqueness domains of this mean [7–11], ensuring

the computability of statistics on Riemannian manifolds. These represent exactly the kind of results

that we would like to have for the bi-invariant mean on Lie groups. Thus, one may wonder if we

can apply this computational framework for statistics on Lie groups and, more particularly, for the

bi-invariant mean, by adding a Riemannian metric on the Lie group.
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In fact, the notions of Riemannian mean and group exponential barycenter (or bi-invariant

mean) coincide when the Riemannian metric is itself bi-invariant. In this case, the Riemannian

geodesics coincide with the geodesics of the Cartan–Schouten connection [12]. Thus, we can use the

computational framework for Riemannian means only if we can add a bi-invariant metric on a Lie

group.

However, it is known that a Lie group does not have any bi-invariant Riemannian metric in

general. The Lie group ST (n) of scalings and translations of Rn, the Heisenberg group H , the

Lie group UT (n) of upper triangular matrices of size n×n and the Lie group SE(n) of rotations and

translations of Rn do not have any bi-invariant metric, while they admit a locally unique bi-invariant

mean [2]. Therefore, if we want to characterize the bi-invariant mean with an additional geometric

structure on Lie groups, we have to consider a structure that is more general than the Riemannian

one.

The pseudo-Riemannian framework is a generalization of the Riemannian framework. Thus,

it represents a tempting alternative for the characterization of the bi-invariant mean and for the

definition of computational statistics on Lie groups in general. The pseudo-metric is not required

to be positive definite anymore, only definite: the class of Lie groups that admit a bi-invariant

pseudo-metric is larger than the class of those with a bi-invariant metric. Therefore, we could try

to generalize the Riemannian statistical framework to a pseudo-Riemannian statistical framework

and apply it for Lie groups. For instance, the mean on a pseudo-Riemannian manifold could still be

defined as a critical point of the variance σ2(y) = 1
N

∑N
i=1 dist(xi, y)

2, but dist would now be the

pseudo-distance induced by the pseudo-metric. Of course, existence and uniqueness theorems would

have to be re-established, but we could get intuition from the Riemannian case.

In order to use the pseudo-Riemannian framework to characterize the bi-invariant mean, the first

issue is: how many Lie groups do admit a bi-invariant pseudo-metric? Is it the case for the real Lie

groups ST (n), H , UT (n) and SE(n), which have a locally unique bi-invariant mean?

1.4. Lie Groups and Lie Algebras with Bi-Invariant Pseudo-Metrics

If G is a connected Lie group, it admits a bi-invariant non-degenerate symmetric bilinear form

if and only if its Lie algebra admits a nondegenerate symmetric bilinear inner product, also called a

bi-invariant pseudo-metric. Lie algebras with bi-invariant pseudo-metric were known to exist since

the 1910s with the classification of simple Lie algebra [13] and the well-known Cartan–Killing form,

which is not degenerate in this case, but their specific study began in the 1950s with the works

of [14,15]. Later, [16] started to study the properties of these Lie algebras from their structural point

of view and introduced the decomposability or indecomposability of these Lie algebras as a direct

sum of ideals. However, the decomposition of [16] was not enough to characterize all Lie algebras

with bi-invariant pseudo-metrics, as some authors [17–19] remark that the so-called oscillator algebra

arising in quantum mechanics carried a bi-invariant pseudo-metric without being decomposable in

the sense of [16]. This leads, Medina and Revoy [20,21] and Keith [17] to build independently a
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classification of these Lie algebras, by showing that they all arise through direct sums and a structure,

called the double extension in [20,21] and the bi-extension in [17].

These results have been complemented by [22] and then generalized by Bordemann to any

non-associative algebras with the bi-invariant form through the T ∗-extension structure [23]. They

have been completely described for certain dimensions in specific cases. The classification of the

nilpotent quadratic Lie algebras of dimensions ≤ 7 is obtained in [24], of the real solvable quadratic

Lie algebras of dimensions ≤ 6 in [25] and the irreducible non-solvable Lie algebras of dimensions

≤ 13 in [26]. The specific cases of indecomposable quadratic Lie algebras with pseudo-metrics

of different indices have been studied: bi-invariant pseudo-metrics of index one are described in

[21,27], of index two in [28] and finally of the general index in [29]. The dimension of the space of

bi-invariant pseudo-metrics has been studied in [30] where bounds are provided.

Authors from other fields than pure algebra have also contributed to the study of bi-invariant

pseudo-metrics. For example in functional analysis, Manin triples are a special type of Lie

algebra with the bi-invariant pseudo-metric that allow one to interpret the solutions of the classical

Yang–Baxter equation [31]. In this context, the Manin triples have been themselves classified for

semi-simple Lie algebras in [32] and for complex reductive Lie algebra in [33].

Simultaneously, people started to gain interest in computational aspects on finite dimensional Lie

algebras, implementing the identification of a Lie algebra from its structure constants given in any

basis [34,35] or the Levi decomposition [36,37]. The state-of-the-art regarding implementations

on finite dimensional Lie algebra is summarized in [38]. However, computations deal with the

algebraic aspects of Lie algebras and, to the knowledge of the authors, do not consider metrics or

pseudo-metrics.

1.5. Contributions and Outline

Our contribution is an algorithmic reformulation of a classification theorem for Lie algebras

[20,21] that answers these questions. More precisely, taking a Lie group G as input, the algorithm

constructs a bi-invariant pseudo-metric on G in the case of existence. Using this algorithm, we

show that most Lie groups that have a locally unique bi-invariant mean do not possess a bi-invariant

pseudo-metric. We conclude that, for the purpose of statistics on general real Lie groups and, more

precisely, for the computational framework of the bi-invariant mean, generalizing the Riemannian

statistical framework to a pseudo-Riemannian framework may not be the optimal program.

The paper is organized as follows. In the first section, we introduce notions on quadratic Lie

groups that will be useful for the understanding of the paper. In the second section, we present the

(tree-structured) algorithm that constructs bi-invariant pseudo-metrics on a given Lie group, in the

case of existence. In the third section, we apply the algorithm on ST (n), H , UT (n) and SE(n) and

show that most of them do not have any bi-invariant pseudo-metric.

2. Introduction to Lie Groups with Bi-Invariant Pseudo-Metrics

Here, we define the algebraic and geometric notions that will be used throughout the paper.
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2.1. Quadratic Lie Groups and Lie Algebras

In the following, we consider finite dimensionalsimply connected Lie groups over the field F,

where F is R or C.

2.1.1. Lie Groups

A Lie Group G is a smooth manifold with a compatible group structure. It is provided with an

identity element e, a smooth composition law ∗ : (g, h) �→ g ∗ h ∈ G and a smooth inversion law

Inv : f �→ f (−1) ∈ G. Its tangent space at g is written TgG.

The map Lh : G � g �→ h ∗ g ∈ G is the left translation by hand is a diffeomorphism of G.

Therefore, its differential (at g), DLh(g) : TgG �→ TLhgG is an isomorphism that connects tangent

spaces of G. Similarly, one can define Rh : G � g �→ g ∗ h ∈ G, the right translation by h.

A vector field X on G is left invariant if (dLh)(X(g)) = X(Lh(g)) = X(h∗g) for each g, h ∈ G.

Similarly, one could define right invariant vector fields. The left invariant vector fields form a vector

space that we denote Γ(TG)L and that is isomorphic to TeG. The Lie bracket of two left invariant

vector fields is a left-invariant vector field [39].

2.1.2. Lie Algebras

As Γ(TG)L is closed under the Lie bracket of vector fields, we can look at TeG as a Lie algebra.

More precisely, we define g the Lie algebra of G as TeG with the Lie bracket induced by its

identification with Γ(TG)L. The Lie algebra essentially captures the local structure of the group.

In the case of Lie algebras of matrices, the Lie bracket corresponds to the commutator. For a more

complete presentation of Lie groups and Lie algebras, we refer the reader to [40].

Writing the expression of the Lie bracket [, ]g on a given basis Bg = {ei}ni=1 of g, we define the

structure constants fijk as:

[ei, ej]g = fijkek (2)

The structure constants fijk depend on the basis Bg chosen. They are always skew-symmetric

in the first two indices, but they may have additional symmetry properties if we write them in

a well-chosen basis (see below). The structure constants fijk completely determine the algebraic

structure of the Lie algebra. Therefore, the structure constants are often the starting point, or the

input, of algorithms on Lie algebras [34–36,38]. It will also be the case for the algorithm we present

in this paper.

2.1.3. Pseudo-Metrics

A pseudo-metric <,> on G is defined as a smooth collection of definite inner products <,> |g
on each tangent space TgG. Then, G becomes a pseudo-Riemannian manifold. A metric is defined

as a pseudo-metric whose inner products are all positive definite. In this case, G is called a

Riemannian manifold.
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The signature (p, q) of a pseudo-metric is the number (counted with multiplicity) of positive and

negative eigenvalues of the real symmetric matrix representing the inner product <,> |g at a point g

and with respect to a basis of TgG. The signature is independent of the choice of the point g and on

the basis at TgG. By definition, a pseudo-metric is definite; thus, there are no null eigenvalues, and

we have p + q = n, where n is the dimension of G. By definition, a metric is positive definite, and

thus, its signature is (n, 0). Again, further details about such differential geometry can be found in

[39].

2.1.4. Quadratic Lie Groups and Algebras

A left-invariant pseudo-metric is a pseudo-metric <,>, such that for all X, Y ∈ TgG and for all

g, h ∈ G, we have:

< DLh(g)X,DLh(g)Y > |Lhg =< X, Y > |g (3)

where Lh is the left translation by h. In other words, the left translations are isometries for this

pseudo-metric. Similarly, we can define right-invariant and bi-invariant pseudo-metrics <,>. Note

that any Lie group admits a left (or right) invariant pseudo-metric: we can define an inner product on

the Lie algebra g = TeG and propagate it on each tangent space TgG through DLg(e) (or DRg(e)).

However, no Lie group admits a bi-invariant pseudo-metric.

The Lie groups that admit a bi-invariant pseudo-metric are called quadratic Lie groups. The

corresponding Lie algebras are called quadratic Lie algebras. Note that quadratic Lie groups or

algebras are called differently in the literature. We find the appellation metrizable or metrized in

[14–16], metric in [28,29], quasi-classical in [25] and, finally, quadratic in [24,26].

Figure 2 shows a summary of the structures that we just introduced.

Manifold

Lie group (Pseudo-) Riemannian

Quadratic Lie group

adding (pseudo-) metricadding group structure

if bi-invariant pseudo-metric

manifold

Figure 2. Algebraic and geometric structures. If we require compatible algebraic and

geometric structures on the manifold, we get a quadratic Lie group: a Lie group with a

bi-invariant pseudo-metric.

We now recall that a non-degenerate bi-invariant inner product on a finite dimensional Lie algebra

g gives rise to a bi-invariant pseudo-metric on every Lie group whose Lie algebra is g (see, for

example, [41]). Therefore, we focus on Lie algebras from now on. We will still use the terms
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“pseudo-metric” or “metric” and the notation “<,>” in order to refer to the corresponding inner

products on the Lie algebra g = TeG.

2.1.5. Characterization of Quadratic Lie Algebras

We give here different formulations of an equation characterizing a pair (g, <,>) as a quadratic

Lie algebra. A Lie algebra g is quadratic if and only if it has a pseudo-metric <,> verifying:

∀x, y, t ∈ g, < [x, y]g, t > + < y, [x, t]g >= 0 (4)

A proof for this characterization is given in [39] and [12].

First, taking advantage of the linearity in x, y, t, we can rewrite Equation (4) on basis vectors. Let

Bg = {ei}ni=1 be a basis of g; we consider: x = ei, y = ej and z = ek. Thus, we can express the Lie

bracket in terms of the structure constants, and we get:

∀i, j, k ∈ {1, .., n} fijl < el, ek > +fjkl < el, ej >= 0 (5)

In particular, we observe that the structure constants written in a basis orthonormal with respect

to a bi-invariant metric are totally skew-symmetric. The structure constants written in a basis

orthonormal with respect to a bi-invariant pseudo-metric will have additional symmetric properties,

as well.

Then, as we consider finite dimensional Lie groups, we can also rewrite Equation (4) in terms

of matrices:

∀x ∈ g, A(x)T .Z + Z.A(x) = 0 (6)

where A(x) is the matrix of the endomorphism denoted [x, •], defined as y �→ [x, y], and Z a

symmetric invertible (not necessarily positive) matrix representing <,> on Bg, the basis of g. Note

that: x �→ A(x) is itself linear.

Finally, taking advantage of the linearity again and writing: A(ei) = Ai, we can again reformulate

Equation (4), and we get:

∀i ∈ {1, .., n}, AT
i .Z + Z.Ai = 0 (7)

which is now a linear system of n matrix equations. Note that Equation (5) corresponds to Equations

(7) written in coordinates.

2.1.6. How to Compute Bi-Invariant Pseudo-Metrics?

Given a Lie algebra g as input, we see now that the computation of bi-invariant pseudo-metrics

on g amounts to the resolution of the linear system of Equations (7) for Z. The solutions of the linear

system Equations (7) form a vector space, which is called the quadratic space Q(g) [30]:

Q(g) = {Z ∈ Sym(n) | ∀i ∈ {1, .., n}, AT
i .Z + Z.Ai = 0} (8)

Obviously, the vector space Q(g) contains invertible and non-invertible solutions. Recalling the

definition of a pseudo-metric, we emphasize that we will be interested in invertible solutions only.
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In order to solve the system of Equations (7) for Z, i.e., to compute the quadratic space Q(g), we

could adopt an analytic point of view. At i fixed, a single equation of the system of Equations (7) is

a particular case of a Lyapunov equation that is studied in the context of control theory [42]. Thus,

computational methods exist for studying one of our linear matrix equations [43]. For our purpose,

however, we want to understand the structure of a quadratic Lie group, in order to get an intuition for

the generalization to infinite dimensional Lie groups of diffeomorphisms. Thus, we do not rely on an

analytic point of view to solve the system of Equations (7).

We rather consider the whole system of Equations (7) from an algebraic point of view. The

pure algebraic point of view enables one to solve the system of Equations (7) completely in most

cases, like in the examples provided at the end of the paper. In the other cases, it leads to a smaller

system of equations that can be solved analytically or computationally. Thus, the algebraic point of

view provides not only a theoretical understanding of quadratic Lie groups, it also either solves the

problem or reduces the problem in order for the analytic point of view to solve it.

Therefore, we present in the next subsection the algebraic and geometric notions needed to set

up, and later implement, the algebraic point of view.

2.2. Lie Algebra Representations

How can we understand the structure of a Lie algebra? An idea is to represent the Lie algebra

elements as matrices acting on vectors. Then, the study of the behavior of these matrices helps to

understand the Lie algebra as a whole. This is the purpose of the theory of Lie algebra representations,

which we present briefly relying on [13,21,38,40] in all of this subsection.

2.2.1. Lie Algebras Representations

A g-representation on the vector space V is a Lie algebra homomorphism η : g �→ gl(V ), which

represents the elements of g as matrices acting on the vector space V . The g-representations θ1

and θ2 are said to be isomorphic if there is an isomorphism of representations between them, i.e., an

isomorphism of vector spaces l : V1 �→ V2 that verifies: θ2(x)◦l = l◦θ1(x). We denote Homg(V1, V2)

the vector space of isomorphisms of representations between V1 and V2.

In order to understand the representations of a Lie algebra g and, thus, the Lie algebra g

itself, a strategy is to decompose the representations into smaller bricks, and then study those

bricks. In this context, a g-subrepresentation of the g-representation V is a subspace of V stable

by the elements of η(g). An irreducible g-subrepresentation is a g-subrepresentation without proper

g-subrepresentation. An indecomposable g-subrepresentation is a g-subrepresentation that cannot be

decomposed into g-subrepresentations.

Note that irreducibility implies indecomposability, but the converse is false: a g-representation

can have a g-subrepresentation that does not have a supplementary that is also a g-subrepresentation

(it would be “only” a vector space). Thus, it is not always possible to decompose a g-representation

into irreducible g-subrepresentations, but only into indecomposable ones. In this context, a
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g-representation that can be decomposed into irreducible g-representations is called completely

reducible.

2.2.2. Adjoint and Co-adjoint Representation

We can choose the vector space V on which we represent g. Taking V = g, thus representing

the Lie algebra on itself, we define the so-called adjoint representation of g, ad : g � x �→ ad(x) =

[x, •]g ∈ gl(g). In its matricial version, we recognize the matrices A of the previous subsection.

We see also that the set of matrices Ai defining the adjoint representation is equivalent to the set of

structure constants of g.

We can rewrite again the Equation (4), but now in terms of the adjoint representation. We get:

∀x, y, t ∈ g, < ad(x).y, t > + < y, ad(x).t >= 0 (9)

Thus, the statement that g is quadratic with bi-invariant pseudo-metric <,> is equivalent to the

requirement that all endomorphisms ad(x) are skew-symmetric endomorphisms with respect to <

,>. Recalling the matrix version of Equation (4), that is Equation (6), we see that solving for a

bi-invariant Z amounts to finding a symmetric isomorphism of representations Z between the adjoint

representation of g, written in its matricial form as x �→ A(x) and the representation written in its

matricial form as x �→ −A(x)T .

If we choose to represent the Lie algebra g on the dual vector space g∗, i.e., we choose V = g∗,

we can define the co-adjoint representation θ: g � x �→ θ(x) ∈ gl(g∗), where < θ(x).f, t >=<

f, ad(x).t > for f ∈ g∗, x, y ∈ g and <,> the inner product used to define the dual basis. If we write

A(x) the matrix of the endomorphism ad(x), T (x) the matrix of the endomorphism θ(x) and Z the

inner product defining the dual basis, the previous definition states that Z is in fact an isomorphism of

representation between the co-adjoint representation x �→ T (x) and the representation: x �→ A(x)T .

Now, if the inner product <,> used to define the dual basis is bi-invariant, by identifying the

vector spaces g and g∗, we can again rewrite Equation (4) to get:

∀x, y, t ∈ g, < ad(x).y, t > + < θ(x).y, t >= 0 (10)

We conclude that the bi-invariance of the inner product implies the following relation between

the adjoint and co-adjoint representations: ad = −θ. As Z (that represents <,>) is an isomorphism

of representations between the co-adjoint and the representation x �→ A(x)T , we recover that

the statement of Z being a bi-invariant pseudo-metric on g is equivalent to Z being a symmetric

isomorphism of representations between x �→ A(x) and x �→ −A(x)T .

2.2.3. Some Vocabulary of Algebra

The adjoint representation is related to the structure constants of g and, thus, completely

characterizes g. Thus, it links the language of abstract algebras and the language of representations

for g.
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For the special case of the adjoint representation ad, g-subrepresentations are ideals of g,

irreducible g-representations are minimal ideals of g and indecomposable g-representations are ideals

of g that cannot be decomposed into a direct sum of ideals of g. We will use the two languages of

ideals or of representations.

If the adjoint representation is itself irreducible, but not one-dimensional, g is said to be simple.

If the adjoint representation is completely reducible, g is said to be reductive. If the adjoint

representation is completely reducible without one-dimensional subrepresentations, g is semi-simple.

If the adjoint representation is completely reducible with only one-dimensional subrepresentations,

g is abelian. A reductive Lie algebra is thus the sum (in the sense of subrepresentations) of a

semi-simple Lie algebra and an abelian Lie algebra.

2.2.4. Some Vocabulary of Geometry

An ideal I of a Lie algebra B is said to be isotropic with respect to a pseudo-metric given on B

if I ∩ I⊥ �= {0}. The ideal I is said to be totally isotropic if I ⊂ I⊥. The intersection between I

and I⊥ represents the vectors that are orthogonal to themselves and, thus, that have zero norm, even

if they are themselves non-zero.

Thus, isotropic ideals appear only in the case of a pseudo-metric that is not a metric. From the

intuition provided by theoretical physics, we can interpret the vectors in I ∩ I⊥ as photons: they have

zero mass even if they have non-zero velocity.

2.3. Constructions with Lie Algebra Representations

We have seen that we can study the structure of a given Lie algebra by looking at its

representations and more particularly at its adjoint representation. Here, we study decompositions of

the adjoint representation that will be pertinent for the characterization of quadratic Lie algebras:

the direct sum decomposition and the double extension decomposition. We show how these

decompositions can be implemented in a computational framework. In this subsection, we use the

notation (B, [, ]B) to denote the Lie algebra, because this is the notation that we will use in the core

of our algorithm (see Section 4).

2.3.1. Definition of Direct Sum

B = B1 ⊕B B2 is the direct sum of B1, B2 if:

• B = B1 ⊕ B2 in terms of vector spaces,

• [B,B1]B ⊂ B1 and [B,B2]B ⊂ B2, making B1 and B2 subrepresentations of the adjoint

representation of B, in other words: ideals of B.

This decomposition was first studied by [16]. We illustrate it with the matrices A representing the

adjoint representation b �→ [b, •]B of B, i.e., the matrices denoted: b �→ A(b) = [b, •]B. The direct
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sum of B is equivalent to the decomposition of the adjoint representation into the B-representations

B1 and B2 i.e.,:

A(b) =

(
A(b1) 0

0 A(b2)

)
(11)

on a basis respecting B = B1 ⊕B B2. Note that we write ⊕B to emphasize the fact that this direct

sum decomposition is more than the direct sum decomposition into vector spaces.

2.3.2. Direct Sum Decomposition and Bi-Invariant Pseudo-Metrics

We have the following property: B being quadratic is equivalent to B1 and B2 being quadratic.

Indeed, if <,>B1 , <,>B2 are bi-invariant pseudo-metrics on B1, B2 and represented by the matrices

ZB1 , ZB2 , then:

ZB1⊕BB2 =

(
ZB1 0

0 ZB2

)
(12)

is bi-invariant on B. Conversely, if <,>B is bi-invariant on B, its restrictions <,>B |B1 and <,>B

|B2 are bi-invariant on B1, B2 [20,21].

2.3.3. Computing the Direct Sum

The direct sum decomposition of a Lie algebra B into indecomposable subrepresentations is

unique, up to isomorphisms. In practice, writing BB = {ek}dim(B)
k=1 a basis of B and Ak = A(ek),

computing the direct sum decomposition of B into indecomposable Bi’s amounts to the simultaneous

bloc diagonalization of the matrices Ak.

2.3.4. Definition of Double Extension

B = W ⊕ S ⊕ S∗ is the double extension of W by a simple S if:

• B = W ⊕ S ⊕ S∗ in terms of vector spaces,

• (W , [, ]W ) is a Lie algebra and [S,W ]B ⊂ W makes W a S-representation,

• (S, [, ]S) is a simple Lie subalgebra of B: [s, s′]B = [s, s′]S ,

• S∗ is the dual space of S and [S, S∗]B ⊂ S∗ makes S∗ the co-adjoint representation,

• ∀w,w′ ∈ W : [w,w′]B = [w,w′]W +β(w,w′) where β : Λ2W �→ S∗ is a (skew-symmetric)

S-equivariant map, i.e., a map that commutes with the action of S.

This definition relies on the framework introduced in [21], or in [17] under the appellation

“bi-extension”. Here, we can illustrate it with the matrices representing the adjoint representation

b �→ [b, •]B of B, i.e., the matrices denoted: b �→ A(b). The double extension decomposition is

equivalent to the following decomposition of the adjoint representation of B:

A(b) =

⎛⎜⎝[w, •]W + [s, •]B [w, •]B 0

0 [s, •]S 0

β(w, •) [f, •]B [s, •]B

⎞⎟⎠ (13)
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on a basis respecting B = W ⊕ S ⊕ S∗ and b = w + s + f . Note that, in the blocks of the matrix

A(b), we have identified endomorphisms with their corresponding matrices.

The definition of double extension uses a number of different notations. First, we recognize

ad(s) = [s, •]S and ad(w) = [w, •]W to be respectively the adjoint representation of S (on S) and the

adjoint representation of W (on W ). However, [s, •]B is a S-representation on W that has nothing to

do with the adjoint (the adjoint is a representation of a Lie algebra on itself).

Then, we should be careful with the structures that are manipulated. For example, we can

consider the vector space S∗ as an abelian Lie subalgebra of B. However, we cannot consider W as

a subalgebra of B. The skew-symmetric map β represents precisely the corresponding obstruction.

2.3.5. Double Extension Decomposition and Bi-Invariant Pseudo-Metrics

We have the following property: B being quadratic is equivalent to W being quadratic. Indeed,

if <,>W is bi-invariant on W , represented by ZW , then:

ZW⊕S⊕S∗ =

⎛⎜⎝ZW 0 0

0 0 I

0 I 0

⎞⎟⎠ (14)

is bi-invariant on B. Conversely, if B is quadratic and written as a double extension of W with S

simple (or one-dimensional), then the restriction <,>W=<,>B |W is bi-invariant [20,21]. Note here

that we can write the I-blocks, because the basis of S and S∗ are chosen to be duals of each other. If

two different basis were chosen, the corresponding bi-invariant pseudo-metric on B = W ⊕ S ⊕ S∗

would have the form:

ZW⊕S⊕S∗ =

⎛⎜⎝ZW 0 0

0 0 L

0 LT 0

⎞⎟⎠ (15)

with L an invertible matrix representing precisely the change of basis. More precisely, by computing

Equation (6) on this last ZW⊕S⊕S∗ while choosing s ∈ S, we show that L is necessarily an

isomorphism of S-representations on S and I , i.e., L ∈ HomS(S, S
∗). This remark will be used

in practice in the algorithm (see Section 4).

2.3.6. Computing Double Extensions

Contrary to the direct sum decomposition, the decomposition of a quadratic Lie algebra B

as a double extension is not necessary unique. For example, given a quadratic indecomposable

non-simple B, we can build a double extension decomposition from each minimal ideal of B [21]. It

proceeds as follows. We take a minimal ideal I of B and consider I⊥ its orthogonal with respect to

a bi-invariant pseudo-metric <,>B. The decomposition:

B = W ⊕ S ⊕ S∗ where: W = I⊥/I, S = B/I⊥ and S∗ = I

is a double extension of W with S simple (or one-dimensional). Moreover, one can show that I and

I⊥ verify the following properties:
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• I is abelian,

• I⊥ is a maximal ideal,

• I ⊂ I⊥ (total isotropy),

• [I, I⊥] = 0 (commutativity),

• codim(I⊥) = dim(I).

These necessary conditions are taken from [16,20,21].

In practice, in our algorithm, we will have to build a double extension from a B

in order to compute a bi-invariant pseudo-metric on B, if it exists (see Section 4).

Therefore, even if we know an abelian minimal ideal I of B, we will not have its

orthogonal I⊥ needed for the construction shown above: we do not know any bi-invariant

pseudo-metric, as we want to build one!Thus, given an abelian minimal ideal I , we shall

test all ideals J that could be an I⊥ for a bi-invariant pseudo-metric, i.e., all ideals

J that verify the necessary conditions listed above.

We show here that the only plausible ideals that can play the role of I⊥ are either J = CB(I) the

centralizer of I in B in the case CB(I) �= B or the maximal ideals of codimension one containing I

in the case CB(I) = B.

We have seen above that the first necessary condition for a J to be an I⊥ is its commutativity

with I: [I, J ] = 0. We recall that the centralizer CB(I) of I in B is defined as the set of elements

that commute with I . Thus: J ⊂ CB(I).

Another necessary condition for a plausible J is to be a maximal ideal. As I is an ideal, CB(I) is

also an ideal. Thus, J is a maximal ideal included in the ideal CB(I): we have necessarily J = CB(I)

in the case CB(I) �= B. In this case, the condition I ⊂ J is fulfilled as I is abelian. The last necessary

condition to check is codim(CB(I)) = dim(I).

However, if CB(I) = B, then we shall look for maximal ideals of B. However, in this case,

I commutes with all elements of B, and therefore, I is necessarily of dimension one as a minimal

ideal. Therefore, we shall look for maximal ideals J of codimension one. Adding the last necessary

condition, we conclude that in the case CB(I) = B, we shall consider only maximal ideals of

codimension one containing I .

3. Structure of Quadratic Lie Groups

Here, we characterize the structure of quadratic Lie algebras, using the constructions defined

in the previous section. We first present a reformulation of a classification theorem of quadratic

Lie algebras. Then, we emphasize which Lie algebras we add by asking for a bi-invariant

pseudo-metric instead of a bi-invariant metric. We finally investigate how we can go from a

bi-invariant pseudo-metric to a bi-invariant dual metric on a special class of Lie algebra with

bi-invariant pseudo-metrics.
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3.1. A Classification Theorem

To characterize the structure of a quadratic Lie algebra, we use a reformulation of a classification

theorem than can be found in [21] or [17].

Theorem 1 (Classification of quadratic Lie algebras). The Lie algebra g is quadratic if and only
if its adjoint representation decomposes into indecomposable subrepresentations B that are of the
following types:

• Type (1): B is simple (or one-dimensional),
• Type (2): B = W ⊕ S ⊕ S∗ is a double extension of a quadratic W by S simple (or

one-dimensional).

This means that any quadratic Lie algebra writes g = B1 ⊕g ...⊕g BN , where each B is of Type

(1) or of Type (2). In particular, we can already conclude that any reductive (a fortiori, semi-simple

or abelian) Lie algebra g is quadratic. Moreover, if g is quadratic, but not reductive, then g has

non-irreducible indecomposable subrepresentations, and these are necessarily double extensions of

Type (2).

We recall that the notions of representation decomposition come from a simultaneous

diagonalization of matrices. Therefore, they depend on the base field F: a Lie algebra reductive

in R is reductive in C, but the converse is false. Thus, being quadratic also depends on the field that

we consider. A Lie algebra quadratic on R will be quadratic on C, but the converse is false.

3.1.1. Elementary Bi-Invariant Pseudo-Metrics

The previous characterization of quadratic Lie algebras in terms of their structure is useful in

practice. It enables one to construct a type of bi-invariant pseudo-metric <,>g that exists necessarily

on a quadratic g. We call this type of pseudo-metrics the elementary bi-invariant pseudo-metrics of

g.

The elementary bi-invariant pseudo-metric <,>B of a one-dimensional Lie algebra B is defined

to be the multiplication. The elementary bi-invariant pseudo-metric <,>B of a simple Lie algebra

B is defined to be the Killing form. Now, let us define recursively the elementary bi-invariant

pseudo-metrics of a general quadratic g.

Let us be given a quadratic Lie algebra g on which we know an auxiliary bi-invariant

pseudo-metric <,>g (not necessarily of the elementary type). First, we decompose the adjoint

representation of g into indecomposable subrepresentations B’s: g = B1 ⊕g ... ⊕g BN . Then, we

study separately the two cases: the B’s of Type (1) and the B’s of Type (2).

On the B’s of Type (1), we define the elementary bi-invariant pseudo-metric <,>B as above: the

multiplication if B is one-dimensional or the Killing form if B is simple.

On the B’s of Type (2), we build a double extension. To this aim, we consider a minimal ideal

I , and using the auxiliary bi-invariant pseudo-metric <,>g of g, we compute I⊥. We get the double

extension B = W ⊕ S ⊕ S∗ with W = I⊥/I , S = B/I⊥ and S∗ = I . We construct an elementary
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bi-invariant pseudo-metric <,>W on W recursively. We then define an elementary bi-invariant

pseudo-metric <,>B on the double extension B = W ⊕ S ⊕ S∗ to be of the form of Equation

(14).

Finally, we define the elementary bi-invariant pseudo-metric <,>g on the direct sum

decomposition g = B1 ⊕g ... ⊕g BN to be of the form of Equation (12). This construction defines

(and proves the existence of) elementary bi-invariant pseudo-metrics on a quadratic g.

3.2. Riemannian and Pseudo-Riemannian Quadratic Lie Groups

The previous characterization of quadratic Lie algebras can be refined to distinguish between

quadratic Lie algebras that admit bi-invariant metrics with respect to quadratic Lie algebras with

bi-invariant pseudo-metrics. In other words, it answers the questions: which Lie algebras do we add

by removing the positivity of the metric?

3.2.1. Studying the Signature

We recall from Section 2 that a metric on g of dimension n has signature (n, 0). Now, we take a

quadratic g that is decomposed into indecomposable pieces g = B1 ⊕g ... ⊕g BN , where the Bi are

either simple (or one-dimensional) or double extensions. The signature on the direct sum is the sum

of the signatures on the Bi [39]:

sgng = sgnB1
+ ...+ sgnBN

(16)

Therefore, asking for a positive definite signature on g is equivalent to asking for a positive definite

signature on each of the B’s.

If B is simple, it possesses a bi-invariant metric if and only if it is compact. If B is a double

extension, a bi-invariant pseudo-metric has necessary a non-positive definite signature of the form

[21]:

sgnB = sgnW + (m,m) (17)

where m is the dimension of the minimal ideal I used to build the double extension.

We conclude that g admits a bi-invariant metric if and only if its indecomposable parts are simple

compact or one-dimensional, i.e., if and only if g is reductive with compact simple parts.

3.2.2. Comparison

The trees of Figures 3 and 4 illustrate the comparison between Lie algebras with bi-invariant

metrics and Lie algebras with bi-invariant pseudo-metrics.
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Figure 3. Structure of a Lie algebra with bi-invariant metrics.
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Figure 4. Structure of a Lie algebra with bi-invariant pseudo-metrics.

Thus, going from Riemannian to pseudo-Riemannian enables to add the simple algebras that

generalize the compact algebras and the double extension structures (in blue) with its recursive

construction that is not present in the Riemannian case.

3.3. From a Bi-Invariant Pseudo-Metric to a Bi-Invariant Dual Metric?

We investigate here a special case of Lie algebras that we gain by going from Riemannian to

pseudo-Riemannian: the double extension of W = {0} by a compact simple Lie algebra K, which is

an example of a Manin triple (see [31,32]). We will see in this subsection that we can view this case

as a Riemannian case by changing the base field F (which is R or C for us) to its dual algebra D. This

development is a new contribution, which is a justification and an extension of the dual quaternions

for SE(3).

3.3.1. Dual Numbers and Vectors

Given a field F, the algebra D of dual numbers over this field is defined as D = F + εF, where

ε2 = 0 and ε �= 0 defines the multiplication [44]. We can define an m-dimensional dual vector space

Dm = Fm + εFm, whose elements are dual vectors. Note here that the term “vector” is abusive in the

sense that a vector space is usually defined on a field, not on an algebra. In the following, in order to

study the properties of the dual vector space, we will use the dual map:

ψ : Fm ⊕ Fm �→ Dm

x0 + xε �→ x0 + εxε

using the same notation ψ for mapping either to dual numbers or to dual vectors.
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3.3.2. From the Double Extension g = K ⊕K∗ to Its Dual g = K + εK∗

Now, we consider the double extension g = K⊕K∗, where K is compact simple and dim(K) =

m, so that dim(g) = 2m. We take the following elementary bi-invariant pseudo-metric on g:

ZK⊕K∗ =

(
I I

I 0

)
(18)

As K and K∗ have same F-dimension m, we consider the dual space g = K + εK∗, of

D-dimension m. Its dual vectors write x = x0 + ε.xε, where x0 ∈ K and xε ∈ K∗.

Proposition 1. The dual map:

ψ : g = K ⊕K∗ �→ g

x0 + xε �→ x0 + εxε

is an isomorphism of Lie algebras that respects the sum K ⊕K∗. The canonical inner product on g

is bi-invariant and corresponds to the bi-invariant pseudo-metric ZK⊕K∗ above.

This can been shown as follows. First, consider the Lie bracket on g inherited from ψ. We have:

[ψ(x), ψ(x′)] = [x0 + εxε, x
′
0 + εx′

ε]

= [x0, x
′
0] + ε([x0, x

′
ε] + [xε, x

′
0]) (as ε2 = 0)

= ψ([x, x′]) (definition of double extension)

which proves the isomorphism of Lie algebras.

We now show that the pseudo-metric ZK⊕K∗ on the Lie F-algebra g maps to the canonical metric

Z = I on the Lie D-algebra g:

ψ(x)T .ψ(x′) = (x0 + ε.xε)
T .(x′

0 + εx′
ε)

= xT
0 .x

′
0 + ε(xT

ε .x
′
0 + xT

0 .x
′
ε)

= ψ(xT .ZK⊕K∗ .x) (using ψ for dual numbers)

In others words, the spaces g and g are isometric. However, again, the term “isometric” is abusive,

as we recall that g and g are not defined on the same field, the latter being defined on an algebra.

3.3.3. Towards Statistics on Dual Riemannian Manifolds

We have shown that a double extension g = K ⊕ K∗ of W = {0} by a compact simple K,

endowed with a bi-invariant pseudo-metric, is isometrically isomorphic to a dual Lie algebra g with

a bi-invariant metric. Thus, we could think of generalizing the theory of statistics on Riemannian

manifolds to a theory of statistics on dual Riemannian manifolds. However, the fact that the space is

defined on an algebra may cause some problems.
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3.3.4. Generalization?

One could wonder if we can use this construction for any general double extension. However, we

should note that this construction takes advantage of the fact that K∗ is totally isotropic and abelian.

The element ε, such that ε2 = 0, enables one to represent the commutativity of K∗ (Lie bracket is

null) and the self-orthogonality of K∗ (the inner product is null) at the same time. A general Lie

algebra with the bi-invariant pseudo-metric is not necessarily decomposable into two subspaces of

same dimension, such that one of them is abelian and isotropic. For example, take a Lie algebra of

an odd dimension.

4. An Algorithm to Compute Bi-Invariant Pseudo-Metrics on a Given Lie Group

We go back to the general case of any quadratic Lie algebra over the field F (F = R or C). We

present in this section an algorithm that computes bi-invariant pseudo-metrics on a Lie algebra given

as input.

Then, we show how one could generalize the algorithm to compute all bi-invariant pseudo-metrics

on g. Finally, we apply the algorithm to some Lie groups known to possess a unique bi-invariant

mean: we find that most of them are not quadratic.

4.1. The Algorithm: Computation of One Bi-Invariant Pseudo-Metric

For the computations, we will use matrix representations Z of pseudo-metrics <,>, where the

basis will be specified. The input is Bg = {ei}ni=1, a basis of g and the structure constants fijk on this

basis. The output is a symmetric invertible matrix Zg on the basis Bg, representing an elementary

bi-invariant pseudo-metric, or a message of error: “the Lie algebra g is not quadratic”.

4.1.1. Core of the Algorithm

The core of the algorithm tests the structure of the Lie algebra given as input, to determine

if it matches the characteristic tree-structure of quadratic Lie algebras described in the Section 3

(see Figure 4). Simultaneously with the progress through the tree, the algorithm tries to construct

recursively an elementary bi-invariant pseudo-metric <,>g by testing all possible candidates. If it

succeeds, we return the bi-invariant elementary pseudo-metric, proving that g is quadratic. If not, we

conclude that g is not quadratic, and we return the error message. More precisely, the algorithm is

divided into four steps as follows.

Step 1, direct sum decomposition: In this step, we decompose the adjoint representation of g into

indecomposable B’s, in other words: we decompose g as a direct sum of B’s.

g = B1 ⊕g ...⊕g BN (19)

An implementation of this step can be found in [35].

From now on, we work on the basis B′
g that respects the direct sum: g = B1 ⊕g ... ⊕g BN . The

B’s are indecomposable Lie algebras; thus, we can take advantage of the classification theorem 1
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of Section 3. In the following two steps, we test if each B is either of Type (1) (one-dimensional

or simple) or of Type (2) (a double extension). testing Type (1): In this step, we test if the

indecomposable B is of Type (1), i.e., if B is one-dimensional or simple (see the dichotomy of

Theorem 1).

To test if B is one-dimensional, we can obviously count the number of basis vectors of B in

the basis B′
g. If B is found one-dimensional, we return the multiplication, which is an elementary

bi-invariant pseudo-metric on B.

To test if B is simple, we use a function that computes the radical of the Levi decomposition of

B [45]. The indecomposable piece B is simple if and only if the radical is null. Such a function can

be found in [36]. If B is found simple, we return the Killing form, which is an elementary bi-invariant

pseudo-metric.

If B is neither one-dimensional nor simple, we conclude that B is not of Type (1). We test in the

following step if B is of Type (2).

Step 3, testing Type (2): In this step, we test if B is of Type (2), i.e., if B is a double extension of

a quadratic W by a simple S (see the dichotomy of Theorem 1). We recall that the double extension

structure of B is not necessarily unique. Therefore, it might seem that we need to test all possible

candidates for a double extension structure of B, in order to answer if B is of Type (2). We proceed

slightly differently.

As B is indecomposable and not of Type (1) (see the previous steps), B being of Type (2) is

equivalent to B being quadratic. More precisely, at this step of the algorithm, the following assertions

are equivalents:

(a) B is of Type (2),

(b) B is quadratic,

(c) ∀I minimal, I abelian, there is a double extension decomposition of B,

(d) ∃I minimal, abelian, such that there is a double extension decomposition of B.

Thus, we will consider only one minimal ideal I of B and try to construct a double extension out

of it, of the form: B = W ⊕ S ⊕ I . Note that this step will need to call the algorithm recursively, to

determine if the candidate for W in the double extension structure is quadratic or not. The details of

this step are below.

Step 3.a: First, we compute a minimal ideal I . More precisely, recalling the necessary conditions

of the double extension structure of Section 2, we compute I , an abelian minimal ideal, which is also

a minimal abelian ideal. A function that finds a minimal abelian ideal of B can be derived from an

algorithm of [46] that computes all abelian ideals of B: we can choose one of minimal dimension

among those.

Step 3.b: Then, we compute CB(I), the maximal ideals J’s and the corresponding candidates for

the double extension structure of B. The computation of CB(I) is implemented in [47].

If CB(I) �= B, we take J = CB(I) and verify the condition codim(J) = dim(I). If the condition

is not fulfilled, there is no double extension structure possible for B. Therefore, we conclude that B

is not of Type (2).
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If CB(I) = B, we compute the maximal ideals J of B of codimension one containing I (see

Section 2). If no such ideals are found, there is no double extension structure possible for B. Again,

in this case, we conclude that B is not of Type (2).

If J’s are found, we compute the corresponding double extension candidates of B, one per J , as:

B = W ⊕ S ⊕ S∗ where: W = J/I , S = B/J and: S∗ = I . (20)

We call the algorithm recursively on W , i.e., we determine recursively if W is quadratic. If

there is no double extension candidate with a quadratic W , we conclude that B is not of Type (2).

Otherwise, we keep the double extension candidates that have a quadratic W (with an elementary

bi-invariant pseudo-metric ZW ).

Step 3.c: Then, we try to compute an elementary pseudo-metric for all double extension

candidates of the form: B = W ⊕ S ⊕ S∗, where W = J/I is quadratic with corresponding

ZW , S = B/J and S∗ = I . Given a double extension candidate, we know from Section 2 that an

elementary pseudo-metric on B has the form:

ZB=W⊕S⊕I =

⎛⎜⎝ZW 0 0

0 0 L

0 LT 0

⎞⎟⎠ (21)

where L ∈ HomS(S, I).

Therefore, we need to compute HomS(S, I). We recall that S is simple; thus, its adjoint

representation is irreducible. As we are in the case of a finite dimensional irreducible representation,

we can apply Schur’s lemma. Its general form states that HomS(S, S) is an associative division

algebra over F (= R or C), which is of finite degree, because S is finite dimensional [48]. When the

base field is F = C, we use the fact that a finite-dimensional division algebra over an algebraically

closed field is necessarily itself. Thus, HomS(S, S) = C and dimC(HomS(S, S)) = 1. When the

base field is F = R, we use the Frobenius theorem, which asserts that the only real associative

division algebras are R, C or H, the field of quaternionnumbers [49]. Thus, HomS(S, S) is R, C or

H, and dimR(HomS(S, S)) is 1, 2 or 4. Now, if I and S are isomorphic, HomS(S, I) is isomorphic to

HomS(S, S) and, thus, of maximal dimension four over F. Otherwise, if I and S are not isomorphic,

we have HomS(S, I) = {0}.
The computation of HomS(S, I) is implemented in [50], more generally for any

finite-dimensional modules of a finitely generated algebra.

Step 3.d: To conclude Step 3, we determine if one of the possible elementary pseudo-metrics

computed above is bi-invariant. To this aim, we plug the expression of ZB=W⊕S⊕I into Equations

(7) and solve it for L. Thus, the initial system of Equations (7) has been reduced to an equation in

maximum one (complex case) or in four (real case) parameters.

We run this step for each double extension candidate. If a bi-invariant elementary pseudo-metric

ZB is found on one of the candidates, we return ZB. Otherwise, we conclude that B is not of Type (2).

Step 4, construction of a bi-invariant pseudo-metric on the whole g: In this step, we construct a

bi-invariant (elementary) pseudo-metric on g, if it exists. If one B of the direct sum decomposition
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g = B1 ⊕g ... ⊕g BN is neither of Type (1), nor of Type (2), we conclude from Theorem 1 that g is

not quadratic. We return the error message. Otherwise, we glue together the elementary bi-invariant

pseudo-metrics ZB’s that have been returned on the B’s.

More precisely, we follow the construction of Section 2 to build the elementary bi-invariant

pseudo-metric Z ′
g on the basis B′

g of g that respects the direct sum decomposition:

Zg=B1⊕g...⊕gBN
=

⎛⎜⎝ZB1 0 0

0
. . . 0

0 0 ZBN

⎞⎟⎠ (22)

Finally, we perform a change of basis from B′
g to Bg in order to return Zg, an elementary

bi-invariant pseudo-metric on the basis of the Lie algebra given as input.

4.1.2. Tree Structure of the Algorithm

The algorithm has a natural tree structure presented in Figure 5. The bi-invariant pseudo-metric

Zg is computed in a postfix manner. A tree level corresponds to a reduction of an adjoint

representation: reduction of g into B’s for the first level, reductions of the W ’s into B’s for the

others. The arrows in dashes represent the cases that we investigate to test if g is quadratic. If B is

not in one of such cases, then B is not quadratic, so neither is g, and we exit the algorithm.

g

Bg
1 Bg

i Bg
N

1-dim. simple S ⊕g S
∗ W⊕g S ⊕g S

∗ EXIT

... ...

Figure 5. Tree structure of the algorithm.

In pseudo-code, the algorithm is written as follows.
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Algorithm 1 Computation of a bi-invariant pseudo-metric on g.

Input: Bg = {ei}i basis of g, Structure constants fijk on this basis.

Initialization: B = g.

Core:

switch (B):

• case B is decomposable:
decompose into B = B1 ⊕B ...⊕B BN ;

call algorithm recursively on the Bi’s;

return: ZB = Diag(ZB1 , . . . , ZBN
);

• case B is 1-dimensional:
return ZB =

(
1
)

;

• case B is simple:
return ZB = ZKilling;

• default:
compute I minimal abelian ideal; if no I exists: “EXIT”; break;

compute its centralizer CB(I); if codim(CB(I)) �= dim(I): “EXIT”; break;

compute S = B/CB(I), W = CB(I)/I;

call algorithm recursively on B = W ;

compute HomS(S, I);

solve Equation(7) for L ∈ HomS(S, I) = {0} by plugging:

ZB=W⊕S⊕I =

⎛⎜⎝ZW 0 0

0 0 L

0 LT 0

⎞⎟⎠ ,

if there is no solution: “EXIT”; break;

return ZB.

end switch
Output:

• if “EXIT”: return the message “The Lie algebra g is not quadratic”;

• else: return the elementary bi-invariant pseudo metric on g.

This gives a bi-invariant pseudo-metric on the Lie algebra g. We can then make it a bi-invariant

pseudo-metric on the Lie group G by propagating it through DLg(e) (or DRg(e)) on all tangent

spaces TgG (see Section 2).

All in all, the algorithm allows one to compute one bi-invariant pseudo-metric of g, i.e., one

invertible element of the quadratic spaceQ(g). We can generalize the algorithm, in order to compute
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all bi-invariant pseudo-metrics of g, thus the whole quadratic space Q(g). This is the purpose of the

next subsection.

4.2. Generalization of the Algorithm: Computation of All Bi-Invariant Pseudo-Metrics

Here, we present how one should proceed in order to compute all bi-invariant pseudo-metrics

of a given Lie algebra g, i.e., the whole quadratic space Q(g). Note that the dimension of Q(g) is

unknown in the general case [30]. However, the algorithmic procedure allows one to compute the

space anyway.

We follow the strategy of the previous algorithm: we decompose g into indecomposable B’s; we

compute the quadratic spacesQ(B) for each of them and then glue these spaces together to getQ(g).

4.2.1. Computing the Quadratic Space of Indecomposable Lie Algebras

In this step, we compute the quadratic space for all indecomposable pieces B’s of g, the simple

(or one-dimensional) and the double extensions.

The quadratic space of a one-dimensional piece B is the weighted multiplication, so the whole

base field F:

Q(B) = {ZB = αI | ∀α ∈ F} = F (23)

The quadratic space of a simple piece B is the vector space spanned by the Killing form.

Q(B) = {ZB = αZKilling | ∀α ∈ F} (24)

The quadratic space of a double extension B = W ⊕ S ⊕ S∗, where the basis of S and S∗ are

chosen duals, is given by:

Q(B) =

⎧⎪⎨⎪⎩ZB =

⎛⎜⎝ZW M N

MT αZKilling βI

NT βI (0)

⎞⎟⎠ ∣∣∣ ∀α,β ∈ F, ∀ZW ∈ Q(W ),

∀M,N solutions of equations derived from (7)

⎫⎪⎬⎪⎭
(25)

We leave to the reader the computations of the equations derived from Equations (7) that M

and N are solving. Because of the dimension reduction, these equations can be solved in a lot of

interesting cases. In our computations on selected Lie groups in the next subsection, N and N are

vectors or scalars, for example.

4.2.2. Computing the Quadratic Space of a Direct Sum

The second step is the computation of the quadratic space of a direct sum g = B1 ⊕g ... ⊕g BN ,

given the quadratic spaces of each of its indecomposable pieces Bi. This gives:

Q(g) =
{
Zg ∈ Sym(n) | s.t. for i ∈ {1, ..N} (block index):

Zgii = ZBi ∈ Q(Bi) if i = j

Zgij = Mij if i < j

}
(26)
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where Mij is a matrix that solves the following equation, derived from Equations (7):

A(bi)
T .Mij +Mij.A(bj) = 0 ∀bi ∈ Bi, ∀bj ∈ Bj (27)

In summary, the problem of computing all bi-invariant pseudo-metrics of a given g amounts to the

resolution of a reduced number of algebraic equations of lower dimension.

4.3. Results of the Algorithm on Selected Lie Groups

We run our algorithm manually to determine if a bi-invariant pseudo-metric exists on some real

Lie groups for which there is a locally unique bi-invariant mean: SE(n), ST (n), H and UT (n),

for n ∈ N∗ [2].

We run the computations manually and illustrate them, for each example, with the corresponding

progress through the tree of the algorithm. The results show that most of these Lie groups are

not quadratic.

4.3.1. Scalings and Translations ST (n)

The Lie group ST (n) comprises uniform scalings together with translations of Rn. It is the

semi-direct product R∗
+ �Rn, its elements being written (λ, t). More precisely, ST (n) is defined by

its action on Rn: (λ, t).x = λ.x + t. The group law and the group inversion are written as follows:

(λ1, t1) ∗ (λ2, t2) = (λ1.λ2, λ1 ∗ t2 + t1) and (λ, t)(−1) = (1/λ,−t/λ).
The Lie algebra st(n) comprises the (μ, u) ∈ R⊕ Rn with Lie bracket:

[(μ1, u1), (μ2, u2)] = (0,μ2.u1 − μ1.u2). (28)

Input: We choose the basis (D, {Pa}na=1) defined as: D = (1, 0) and Pa = (0, ea) with (ea)
n
a=1 the

canonical basis of Rn. In this basis, the structure constants can be read in the following Lie brackets:

[Pa, Pb] = 0,

[D,Pa] = Pa,

[D,D] = 0.

Step 1: From the expression of the Lie brackets above, we can compute all ideals of st(n)

manually and find: Span(P1), ..., Span(Pn) and their linear combinations. We remark that there

is no ideal containing D. Thus, st(n) cannot be written as the direct sum of ideals, i.e., st(n) is

indecomposable.

Step 2: First, as n ∈ N∗, we have dim(st(n)) > 1. Thus, st(n) is not one-dimensional. Then, as

Span(P1), for example, is an ideal, st(n) is not simple. We conclude that st(n) is not of Type (1).

Step 3: We take I = Span(P1), which is obviously a minimal abelian ideal. From the

commutation relations given by the Lie brackets, we see that Cst(n)(I) = Span({Pa}na=1), and

we are in the case Cst(n)(I) �= st(n). Thus, there is only one double extension candidate, with

J = Cst(n)(I). We define S = st(n)/J = Span(D) and W = J/I = Span(P2, ..Pn). We call the
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algorithm recursively on W , which decomposes into one-dimensional ideals on which we return the

multiplication.

The S-representation on S is the null representation: [D,D] = 0. The S-representation on I is

the trivial representation: [D,P1] = P1. Hence, I and S are not isomorphic S-representations, and

HomS(S, I) is zero. We conclude that st(n) is not of Type (2).

Output: We have found that st(n) is indecomposable and neither of Type (1) nor of Type (2).

Thus, st(n) is not quadratic: there is no bi-invariant pseudo-metric <,> on st(n).

This reasoning is illustrated on Figure 6 through the tree representation of the algorithm.

st(n)

B1 = st(n)

Exit: NO

Figure 6. Schematical result for ST (n). We see on the top level that st(n) is

indecomposable (it decomposes into itself). We see on the bottom level that st(n) is

neither one-dimensional, nor simple, nor a double extension, and therefore, we exit the

algorithm: st(n) is not quadratic.

4.3.2. Heisenberg Group H

The Heisenberg group H comprises 3D upper triangular matrices M of the form:

M =

⎛⎜⎝1 x z

0 1 y

0 0 1

⎞⎟⎠ .

Thus, an element of this group can be written as (x, y, z) ∈ R3, with corresponding group law

(x1, y1, z1) ∗ (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + x1 ∗ y2) and group inversion (x, y, z)(−1) =

(−x,−y,−z + xy).

The Lie algebra h comprises the nilpotent matrices:

N =

⎛⎜⎝0 p c

0 0 q

0 0 0

⎞⎟⎠ .

Input: A basis for h is thus (P,Q,C) with clear notations. In this basis, the structure constants

can be read in the following Lie brackets:

[C, P ] = 0,

[C,Q] = 0,

[P,Q] = C.
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Step 1: From the expression of the Lie brackets above, we can compute all ideals of h manually,

and we find: Span(C), Span(C, P ) and Span(C,Q). We remark that there is no ideal whose

supplementary is also an ideal. Thus, h is indecomposable.

Step 2: h is obviously not one-dimensional. Moreover, as Span(C), for example, is an ideal, h is

not simple. We conclude that h is not of Type (1).

Step 3: We take I = Span(C), which is a minimal abelian ideal of h. From the commutation

relations given by the Lie brackets, we compute the commutator of I , and we see that we are in the

case Ch(I) = h. Thus, we consider all maximal ideals of h that are of codimension one and contain

I . We get J = Span(C, P ) or J = Span(C,Q); thus, we have two double extension candidates. By

symmetry in P ↔ Q (see the structure constants), we can consider J = Span(C, P ) only, without

lost of generality. We define S = h/J = Span(Q) and W = J/I = Span(P ). We call the algorithm

recursively on W . As W is one-dimensional, W is quadratic, and we return ZW =
(
1
)

.

The S-representation on S is given by the bracket [Q,Q] = 0: it is the null representation. The

S-representation on I is given by the bracket [Q,C] = 0: it is also the null representation. The

isomorphism of vector spaces L that maps C on Q is an isomorphism of representations, whose

matricial form is the identity in our basis. The dimension of HomS(S, I) is obviously one.

Thus, we plug:

ZW⊕S⊕I =

⎛⎜⎝1 0 0

0 0 1

0 1 0

⎞⎟⎠
into Equation (6) to determine if it is bi-invariant. Computations show that it is not. We conclude

that h is not of Type (2).

Output: We have found that h is indecomposable and neither of Type (1) nor of Type (2). Thus,

h is not quadratic: there is no bi-invariant pseudo-metric <,> on h.

We try the algorithm on the general Heisenberg algebra h2m+1, which is defined abstractly by the

basis
{
C, {Pi}mi=1 , {Qj}mj=1

}
and the Lie bracket:

[C, Pi] = 0,

[C,Qj] = 0,

[Pi, Qj] = δij

where δ is the Kronecker symbol. We are in the same situation as with h, except that W is abelian

(but not necessarily one-dimensional). We thus decompose W into abelian one-dimensional ideals,

and we return the following elementary bi-invariant pseudo-metric:

ZW =

⎛⎜⎝1 0 0

0
. . . 0

0 0 1

⎞⎟⎠ .

However, we exit the algorithm as previously. Thus, the algorithm confirms that the general h2m+1

has no bi-invariant pseudo-metric [20].
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This reasoning is illustrated on the left hand side of Figure 7 through the tree representation of

the algorithm.

4.3.3. The Group of Scaled Upper Unitriangular Matrices UT (n)

The group UT (n) comprises the upper triangular matrices M of the form: M = λ.Id+N , where

λ > 0 and N an upper triangular nilpotent matrix.

The Lie algebra ut(n) comprises the matrices of the form X = μ.Id + Y , where μ ∈ R and Y

an upper triangular nilpotent matrix, the Lie bracket being the commutator of matrices.

Now, ut(n) is decomposable into the one-dimensional Lie algebra generated by I and the

Heisenberg algebra h. As h has no bi-invariant pseudo-metric, neither does ut(n).

This reasoning is illustrated on the right hand side of Figure 7 through the tree representation of

the algorithm.

Exit: NO

h

B1 = h

Exit: NO

ut(n)

B2 = hB1 = d

d=1-dim.

Figure 7. Schematical result for H and UT (n). The top level indicates the direct sum

decomposition step. Thus, h is indecomposable, and ut(n) decomposes into d and h. The

bottom level for h indicates that h is neither one-dimensional, nor simple, nor a double

extension, and therefore, we exit the algorithm: h is not quadratic. The bottom level

for ut(n) indicates that d is one-dimensional and therefore quadratic, but that h is not

quadratic: ut(n) is not quadratic.

4.3.4. Rigid Body Transformations SE(n)

The group of isometries SE(n) comprises rotations together with translations of Rn. It is the

semi-direct product SO(n)�Rn, its elements being written (R, t). More precisely, SE(n) is defined

by its action on Rn as (R, t).x = R.x + t. The group law and the group inversion are (R1, t1) ∗
(R2, t2) = (R1.R2, R1 ∗ t2 + t1) and (R, t)(−1) = (R(−1), R(−1).(−t)).

The Lie algebra se(n) comprises the (A, u) ∈ Skew(n)⊕ Rn with Lie bracket:

[(A1, u1), (A2, u2)] = (A1.A2 − A2.A1, A1.u2 − A2.u1) (29)



140

Input: We choose the basis: ({Jij}1≤i<j≤n , {Pa}na=1) with Jij = ei.e.,
T
j −ej.eTi and {Pa}na=1 the

canonical basis of Rn. In this basis, the structure constants can be read in the following Lie brackets:

[Jij, Jkl] = δik.Jjl − δjk.Jil + δjl.Jik − δil.Jjk,

[Jij, Pa] = δaj.Pi − δai.Pj,

[Pa, Pb] = 0,

with δ the Kronecker symbol.

As preliminaries, we show that P = Span({Pa}na=1) is the only proper ideal of se(n). First, we

see from the Lie brackets that P is a proper ideal of se(n). Suppose that se(n) has another proper

ideal K. Then, either K ∩ P is a proper ideal of se(n) included in P or K ⊂ so(n) is a proper

ideal of se(n). P does not contain any proper ideal of se(n), because so(n) acts transitively on P

with the Lie bracket. We can show that so(n) does not contain any proper ideal of se(n) (considering

independently the case n = 4). Thus, P is the only proper ideal of se(n).

Step 1: The Lie algebra se(n) has only one ideal P . Thus, se(n) cannot be decomposed as a

direct sum of ideals. We conclude that se(n) is indecomposable.

Step 2: If n = 1, se(1) is obviously one-dimensional. We return the multiplication, which is

a bi-invariant pseudo-metric on se(1). Otherwise, dim(se(n)) > 1. As P is an ideal of se(n),

se(n) is not simple. We conclude that se(1) is quadratic with the multiplication as the bi-invariant

pseudo-metric and that se(n) with n > 1 is not of Type(1). We go on with n > 1.

Step 3: We take I = P and J = Cse(n)(I) = P = I . The necessary condition codim(J) =

dim(I) is verified only for n = 3. We conclude that se(n) is not of Type (2) if n �= 3. We go on with

n = 3. We compute S = se(3)/P ∼ so(3) and W = P/P = {0}.
In order to study the S-representations, we write the Lie bracket as:

[Jm, Jn] = εmnp.Jp,

[Jm, Pa] = εmap.Pp,

[Pa, Pb] = 0

where we define J1 = J23, J2 = J31 and J3 = J12. The S-representation on S is the adjoint

representation: [Jm, Jn] = εmnp.Jp. The S-representation on I = P is given by: [Jm, Pa] = εmap.Pp.

It is also the adjoint representation. The isomorphism of vector spaces L that maps each Pa on Ja is

an isomorphism of representations whose matricial form is the identity in our basis.

Hence, we write Zse(3) on the decomposition S ⊕ I = so(3) ⊕ P with basis ({Ja}3a=1, {Pa}3a=1)

and get:

Zse(3) =

(
0 I3

I3 0

)
. (30)

We plug it into Equations (7). Running the computation shows that the pseudo-metric Zse(3) is

bi-invariant on se(3). Zse(3) is actually known as the Klein form [51].

Output: se(1) is quadratic; we return the multiplication, which is a bi-invariant pseudo-metric

on se(1). se(3) is quadratic; we return the Klein form, which a bi-invariant pseudo-metric on se(3).

Otherwise, se(n) is indecomposable and neither of Type (1) nor of Type (2): it is not quadratic.
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This reasoning is illustrated on Figure 8 through the tree representation of the algorithm.

We can build the whole quadratic space of se(3). This gives the two-dimensional vector space:

Q(se(3)) =
{(

αZKilling β.I

β.I 0

) ∣∣∣ ∀α,β ∈ F

}
(31)

Moreover, we have recognized in se(3) the special case of a double extension K⊕K∗ of W = {0}
by a compact Lie algebra K = so(3). Therefore, the dual structure presented in Section 3 can be

used in practice. We recall that we can represent the elements of SO(3) as unit quaternions. Thus,

we can represent the elements of SE(3) as unit dual quaternions [52]. A generalization of the theory

of Riemannian statistics to a theory of dual Riemannian statistics would thus be useful for rigid body

transformations, which are present in many different fields.

se(1) = R

B1 = se(1) = R

se(2)

B1 = se(2)

Exit: NO

se(3)

B1 = se(3)

se(3) = Skew(3)⊕ R3

se(n > 3)

B1 = se(n > 3)

Exit: NO

se(1)=1-dim.

Figure 8. Schematical result for SE(n). We recover the different cases depending on n.

5. Conclusions

In this paper, we have presented an algorithmic method to compute a bi-invariant pseudo-metric

on a Lie group, in the case of existence. The method allows one to test simultaneously if the

Lie group given as input is quadratic or not. We indicated how to compute all pf the bi-invariant

pseudo-metrics on the given Lie group. First, the algorithm by itself represents a contribution to the

field of computational Lie algebra.

Then, regarding statistics on Lie groups, which was our original motivation, we see two

consequences of this article. First, it enables one to distinguish, from a practical point of view, Lie

groups on which a future pseudo-Riemannian theory of statistics could be used and implemented.

This is the case of SE(3), the Lie group of rotations and translations of the 3D space, which is found

in various fields.
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Second, this paper shows that a general Lie group with bi-invariant mean does not admit a

bi-invariant metric. Therefore, if one wants to define a general theory of statistics that works

for all Lie groups, one needs to find a geometric framework beyond the Riemannian and the

pseudo-Riemannian ones.
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Koszul Information Geometry and Souriau Geometric 
Temperature/Capacity of Lie Group Thermodynamics 

Frédéric Barbaresco 

Abstract: The François Massieu 1869 idea to derive some mechanical and thermal properties of 
physical systems from “Characteristic Functions”, was developed by Gibbs and Duhem in 
thermodynamics with the concept of potentials, and introduced by Poincaré in probability. This 
paper deals with generalization of this Characteristic Function concept by Jean-Louis Koszul in 
Mathematics and by Jean-Marie Souriau in Statistical Physics. The Koszul-Vinberg Characteristic 
Function (KVCF) on convex cones will be presented as cornerstone of “Information Geometry” 
theory, defining Koszul Entropy as Legendre transform of minus the logarithm of KVCF, and 
Fisher Information Metrics as hessian of these dual functions, invariant by their automorphisms. In 
parallel, Souriau has extended the Characteristic Function in Statistical Physics looking for other 
kinds of invariances through co-adjoint action of a group on its momentum space, defining physical 
observables like energy, heat and momentum as pure geometrical objects. In covariant Souriau 
model, Gibbs equilibriums states are indexed by a geometric parameter, the Geometric (Planck) 
Temperature, with values in the Lie algebra of the dynamical Galileo/Poincaré groups, interpreted 
as a space-time vector, giving to the metric tensor a null Lie derivative. Fisher Information metric 
appears as the opposite of the derivative of Mean “Moment map” by geometric temperature, 
equivalent to a Geometric Capacity or Specific Heat. We will synthetize the analogies between 
both Koszul and Souriau models, and will reduce their definitions to the exclusive Cartan “Inner 
Product”. Interpreting Legendre transform as Fourier transform in (Min,+) algebra, we conclude 
with a definition of Entropy given by a relation mixing Fourier/Laplace transforms: Entropy = 
(minus) Fourier(Min,+) o Log o Laplace(+,X). 

Reprinted from Entropy. Cite as: Barbaresco, F. Koszul Information Geometry and Souriau 
Geometric Temperature/Capacity of Lie Group Thermodynamics. Entropy 2014, 16, 4521ï4565. 

1. Introduction 

The Koszul-Vinberg Characteristic Function (KVCF) is a dense knot in important mathematical 
fields such as Hessian Geometry, Kählerian Geometry and Affine Differential Geometry. As 
essence of Information Geometry, this paper develops KVCF as a transverse concept in 
Thermodynamics, in Statistical Physics and in Probability. From general KVCF definition, the 
paper introduces Koszul Entropy as the Legendre transform of minus the logarithm of KVCF, and 
compares both functions by analogy with the Dual Massieu-Duhem potentials in thermodynamics. 
This paper will also explore close inter-relations between these domains through geometric tools 
developed by Jean-Louis Koszul and Jean-Marie Souriau. The cornerstone of “Information 
Geometry” Theory will appear to be based on the fundamental property that derivatives of the 



147 
 

 

Koszul-Vinberg Characteristic Function Logarithm (KVCFL) 
Ω

−
Ω =

*

,log)(log ξψ ξ dex x
, 

defined on convex dual cone of , are invariant by the automorphisms of , and that its hessian 
defines a non-arbitrary Riemannian metric. 

In thermodynamics, François Massieu [1–3] was the first to introduce the concept of 
characteristic function φ . This characteristic function or thermodynamic potential is able to 
provide all the body properties from their derivatives. In thermodynamics, Entropy S is one of the 
Massieu-Duhem potentials [4–8], derived from the Legendre-Moreau transform of the 

characteristic function logarithm φ : 
β
φβφ

∂
∂−= .S  with 

kT
1=β  being the thermodynamic 

temperature. The most popular notion of “characteristic function” was introduced in a second step 
by Henri Poincaré in his lecture on probability [9,10], using the property that all moments of 
statistical laws could be deduced from its derivatives. Paul Levy then made systematic use of this 
concept in his 1925 book. We assume that Poincaré was influenced by his school fellow at Ecole 
des Mines de Paris, François Massieu, and his work on thermodynamic potentials (generalized by 
Pierre Duhem in an Energetic Theory). This assertion is corroborated by the observation that 
Poincaré added in his lecture on thermodynamics in the 2nd edition [9,10] in 1892, a chapter on the 
“Massieu characteristic function” with many developments and applications, before developing the 
concept in Probability [9,10], see Figure 1. 

In Thermodynamics, Statistical Physics and Probability, we can observe that the “characteristic 
function” and its derivatives capture all information of system or physical model and random 
variable. Furthermore, the general notion of Entropy could be naturally defined by the Legendre 
Transform of minus the Koszul characteristic function logarithm. In the general case, Legendre 
transform of minus the logarithm of the KVCF will be designated in the following as “Koszul 
Entropy”. 

[M. Massieu showed that, if we make choice for 
independent variables of v and T or of p and T, there is a 
function, moreover unknown, of which three functions of 
variables, p, U and S in the first case, v, U and S in the 
second, can be deducted easily. M. Massieu gave to this 
function, the form of which depends on the choice of 
variables, name of characteristic function.] 

[Because functions of M. Massieu, we can deduct the 
other functions of variables, all the equations of the 
Thermodynamics can be written not so as to contain more than 
these functions and their derivatives; it will thus result from it, 
in certain cases, a large simplification. We shall see soon an 
important application of these functions.] 

Figure 1. Text of Poincaré Lecture on Thermodynamic with development of the 
concept of “Massieu Characteristic Function”. 
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This general notion of “characteristic function” has been generalized by the French physicist 
Jean-Marie Souriau. In 1970, Souriau, that had followed the Elie Cartan Lecture at ENS Ulm in 
1946 (one year after his aggregation), introduced the concept of co-adjoint action of a group on its 
momentum space (or “moment map”: mapping induced by symplectic manifold symmetries), based 
on the orbit method works, that allows to define physical observables like energy, heat and 
momentum as pure geometrical objects (the moment map takes its values in a space attached to the 
group of symmetries in the dual space of its Lie algebra). The moment map is a constant of the 
motion and is associated to symplectic cohomology (assignment of algebraic invariants to a 
topological space that arises from the algebraic dualization of the homology construction). For 
Souriau, equilibrium states are indexed by a geometric parameter β  with values in the Lie algebra 
of the dynamical group (Galileo or Poincaré group). The Souriau approach generalizes the Gibbs 
equilibrium states, β  playing the role of temperature. The invariance with respect to the group, and 
the fact that the entropy S is a convex function of β , imposes very strict conditions, that allow 
Souriau to interpret β  as a space-time vector (the vector-valued temperature of Planck), giving to 
the metric tensor a null Lie derivative. For Souriau, all the details of classical mechanics appear as 
geometric necessities (e.g., mass is the measure of the symplectic cohomology of the action of a 
Galileo group). We will synthetize the analogies between the Koszul and Souriau models in tables 
(the Information Geometry case being a particular case of Koszul Hessian geometry). 

The Koszul-Vinberg characteristic function is a dense knot in mathematics and could be 
introduced in the framework of different geometries: Hessian Geometry (Jean-Louis Koszul’s 
work), Homogeneous convex cones geometry (Ernest Vinberg’s work [11]), Homogeneous 
Symmetric Bounded Domains Geometry [12,13] (Elie Cartan [14] and Carl Ludwig Siegel’s works 
[15,16]), Symplectic Geometry [17,18] (Thomas von Friedrich [19] & Jean-Marie Souriau’s work), 
Affine Geometry (Takeshi Sasaki and Eugenio Calabi’s works) and Information Geometry 
(Calyampudi Rao and Nikolai Chentsov’ works). Through Legendre duality, Contact Geometry 
(Vladimir Arnold’s work) is considered as the odd-dimensional twin of symplectic geometry and 
could be used to understand Legendre mapping in Information Geometry. Fisher metrics of 
Information Geometry could be introduced as hessian metrics from minus Koszul-Vinberg 
characteristic function logarithm or from Koszul Entropy (Legendre transform of minus Koszul-
Vinberg characteristic function logarithm). In a more general context, we can consider Information 
Geometry in the framework of “Geometric Science of Information”, a new “corpus” that also 
covers probability in metric space (Maurice Fréchet’s work), probability/geometry on structures 
(Yann Ollivier and Misha Gromov’s works [20–23]) and probability on Riemannian manifold 
(Michel Emery and Marc Arnaudon’s works). This link between “Information Theory” and 
“Geometry” is also deeply developed and influenced by fundamental works of  
Yann Ollivier [24,25] (initially described in his HDR report “Randomness and Curvature” in 2009 
and more recent papers on IGO flow). 
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2. Legendre Duality and Projective Duality 

In following chapters, we will see that the minus Logarithm of the Characteristic Function and 
Entropy will be related by the Legendre transform, that can be considered in the context of projective 
duality. Duality is an old and very fruitful idea in mathematics that has been constantly generalized 
[26–38]. A duality translates concepts, theorems or mathematical structures into other concepts, 
theorems or structures, in a one-to-one fashion, often by means of an involution operation and 
sometimes with fixed points. 

The simplest duality is linear duality in the plane with points and lines (two different points can 
be joined by a unique line. Two different lines meet in one point unless they are parallel). By 
adding some points at infinity (to avoid particular case of parallel lines) then we obtain the 
projective plane in which the duality is given symmetrical relationship between points and lines, 
and led to the classical principle of projective duality, where the dual theorem is also a theorem. 

Most Famous example is given by Pascal’s theorem (the Hexagrammum Mysticum Theorem) 
stating that: 

• If the vertices of a simple hexagon are points of a point conic, then its diagonal points are 
collinear: If an arbitrary six points are chosen on a conic (i.e., ellipse, parabola or 
hyperbola) and joined by line segments in any order to form a hexagon, then the three pairs 
of opposite sides of the hexagon (extended if necessary) meet in three points which lie on a 
straight line, called the Pascal line of the hexagon. 

The dual of Pascal’s Theorem is known as Brianchon’s Theorem, as illustrated in Figure 2: 

(a) (b) 

Figure 2. (a) Pascal’s theorem, (b) Brianchon’s theorem. 

• If the sides of a simple hexagon are lines of a line conic, then the diagonal lines are 
concurrent. 

The Legendre(-Moreau) transform [39,40] is an operation from convex functions on a vector 
space to functions on the dual space. The Legendre transform is related to projective duality and 
tangential coordinates in algebraic geometry, and to the construction of dual Banach spaces in 
analysis. Classical Legendre transform in Euclidean space is given by fixing a scalar product .,.

on Rn. For a function : nF R R , let: 
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( ) ( ) , ( )
x

G y LF y Sup y x F x  (1)

The Legendre transform is illustrated in Figure 3. 
This is an involution on the class of convex lower semi-continuous functions on Rn. There are 

two dual possibilities to describe a function. We can either use a function, or we may regard the 
curve as the envelope of its tangent planes. We give in Appendix A1 the historical context of 
Legendre Transform introduction on a Minimal Surface problem considered initially by Gaspard 
Monge. 

 

Figure 3. Legendre Transform G(y) of F(x). 

The Legendre Transform is very important in Information Geometry [39], which uses mutually 
dual (conjugate) affine connections, dual potentials in dual coordinates systems and dual metrics 
that are studied in the framework of Hessian or affine differential geometry. 

To illustrate the role of Legendre transform in Information Geometry, we provide a canonical 
example, with the relations for the Multivariate Normal Gaussian Law ,N m R : 

- Dual Coordinates systems: 

11, ) 2

, T

( R m, R

H H m, R mm
 (2)

- Dual potential functions: 

1 1 1 1

1 1 1 1

2 2 log det 2 log 2

2 log 1 2 log det 2 log 2

T

T

Tr n ( e)

H H ( H) n e
 (3)

related by Legendre transform: 

H ,H  with T T,H Tr H  (4)

where dual coordinate systems are given by derivatives of dual potential functions: 
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  and  
H

H

 (5)

with ( ) [ ]pEH log~~ =  being the Entropy. 
In the theory of Information Geometry introduced by Rao and Chentsov, a Riemannian manifold 

is then defined by a metric tensor given by hessian of these dual potential functions: 
2

ij
i j

g  and 
2

*
ij

i j

g
H H

 (6)

In this paper, we will develop the concept of “Hessian Manifolds” theory that was initially 
studied by Koszul in a more general framework. In the next section, we will expose the theory of 
the Koszul-Vinberg characteristic function on convex sharp cones that will be presented as a 
general framework of Information Geometry. 

3. Koszul Characteristic Function/Entropy by Legendre Duality 

We define the Koszul-Vinberg Hessian metric on a convex sharp cone, and observe that the 
Fisher information metric of Information Geometry coincides with the canonical Koszul Hessian 
metric (given by Koszul forms) [41–47]. We also observe, by Legendre duality (Legendre 
transform of minus Koszul characteristic function logarithm), that we are able to introduce a Koszul 
Entropy, that plays the role of the generalized Shannon Entropy. 

3.1. Koszul-Vinberg Characteristic Function and Metric for Convex Sharp Cone 

Jean-Louis Koszul [41,42,47] and Ernest B. Vinberg [48,49] have introduced an affinely 
invariant hessian metric on a sharp convex cone *  through its characteristic function ψ . In the 
following, *  is a sharp open convex cone in a vector space E  of finite dimension on R  (a convex 
cone is sharp if it does not contain any full straight line). In dual space *E  of E , *  is the set of 
linear strictly positive forms on 0 . *  is the dual cone of  and is a sharp open convex cone. 

If * , then the intersection / , 1x E x  is bounded. G Aut  is the group of 

linear transform of E  that preserves . G Aut  operates on *  by *,g G Aut E  

then 1.g g . 

Koszul-Vinberg Characteristic Function Definition: 

Let d  be the Lebesgue measure on *E , the following integral:  

Ω∈∀=
Ω

−
Ω xdex x    )(

*

, ξψ ξ
 (7)

with *  the dual cone is an analytic function on  , with ] [+∞∈Ω ,0)(xψ ,called the Koszul-
Vinberg characteristic function of cone . 
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The Koszul-Vinberg Characteristic Function has the following properties: 
• The Bergman kernel of 1++Ω niR  is written as ))(Re(zKΩ  up to a constant where K  is 

defined by the integral: 

( )
Ω

−
Ω

−
Ω =

*

*
1,)( ξξψξ dexK x  (8)

• Ωψ  is analytic function defined on the interior of  and +∞→Ω )(xψ  as x  

If ( )Ω∈ Autg  then ( ) )(det 1 xggx Ω
−

Ω = ψψ  and since ( )Ω=∈ AutGtI  for any 0>t , we have  

( ) ntxtx /)(ΩΩ =ψψ  (9)

• Ωψ  is logarithmically strictly convex, and ( ))(log)( xx ΩΩ = ψφ  is strictly convex. 

From the KVCF, could be introduced two forms defined by Koszul: 
Koszul 1-form  : The differential 1-form 

ΩΩΩΩ === ψψψφα /log ddd  (10)

is invariant by all automorphisms ( )Ω= AutG  of . If  and Eu∈  then 

Ω

−−=
*

,.,, ξξα ξ deuu x
x  and *Ω−∈xα  (11)

and: 

Koszul 2-form : The symmetric differential 2-form: 

Ω== ψαβ log2dD  (12)

is a positive definite symmetric bilinear form on invariant under G Aut . 0>αD  

This positivity is given by Schwarz inequality and: 

( )
Ω

−
Ω =

*

,2 ,,,log ξξξψ ξ devuvud u
 (13)

We can then introduce the Koszul metric based on previous definitions: 

Koszul Metric: αD  defines a Riemanian structure invariant by ( )ΩAut , and then the Riemanian 
metric is given by Ω= ψlog2dg  

( )

ξξξ

ξξξξξξξ
ψ

ψ

ξξ
,)(   and   )(with   

0 )().()(.)(
)(

1)()(log

,
2
1,

2
1

2

22
2

2

***

ueGeF

dGFdGdF
u

uxd

xx −−

ΩΩΩ

==

>−=
 (14)

E
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This result is obtained using Schwarz inequality, 
ψ
ψψ dd =log  and 

22
2 log −=

ψ
ψ

ψ
ψψ ddd  

where ( )
Ω

−−=
*

,)()( , ξξψ ξ dueuxd x  and ( )
Ω

−−=
*

2,2 ,)()( ξξψ ξ dueuxd x  

A diffeomorphism is used to define dual coordinate: 

)(log* xdx x Ω−=−= ψα  (15)

with 
0

( ), ( ) ( )u
t

ddf x u D f x f x tu
dt

. When the cone  is symmetric, the map 

xxx α−=*  is a bijection and an isometry with one unique fixed point (the manifold is a 

Riemannian Symmetric Space given by this isometry): 

xx =**)(  , nxx =*,  and cstexx =
ΩΩ )()( *

*ψψ  (16)

*x  is characterized by { }nyxyyx =Ω∈= ,,/)(minarg ** ψ  and *x  is the center of gravity of 

the cross section { }nyxy =Ω∈ ,,*  of *Ω : 

Ω

−

Ω

−
Ω

Ω

−

Ω

− −==−=
****

,,*,,* /,)(log,   and   /. ξξξψξξξ ξξξξ dedehxdhxdedex xx
h

xx  (17)

If we set )(log)( xx Ω−=Φ ψ , Misha Gromov [20,21] has observed that )(* xdx Φ=  is an 
injection where the closure of the image equals the convex hull of the support and the volume of 
this hull is the the n-dimensional volume defined by the integral of the determinant of the hessian 
of this function ( )x , where the map ( ) ( )( )

Ω

Φ=ΦΦ dxxHessM .)(det  obeys non-trivial 

convexity relation given by the Brunn-Minkowsky inequality 
( )[ ] ( )[ ] ( )[ ] nnn MMM /1

2
/1

1
/1

21 Φ+Φ≥Φ+Φ . 

3.2. Koszul Entropy and Its Barycenter 

From this last equation, we can deduce the “Koszul Entropy” defined as the Legendre Transform 
of ( )x  minus logarithm of Koszul-Vinberg characteristic function: 

* * *( ) , ( )x x x x  with *
xx D  and *

*
x

x D   

where )(log)( xx Ω−=Φ ψ  
(18)

1 1* * * * * *( ) ( ), ( )    ( ) /x x xx D x x D x x D x x  (19)

By the definition of the Koszul-Vinberg Characteristic function, and by using xex ,log, ξξ −=− , 

we can write: 

Ω

−

Ω

−−=−
**

,,,* /.log, ξξ ξξξ dedeexx xxx  (20)

and: 
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* * *

* * * *

* *

*

, , , ,* * *

, , , , ,* *

,
, ,* *

,

( ) , ( ) log . / log

( ) .log log . /

( ) log log .

x x x x

x x x x x

x
x x

x

x x x x e e d e d e d

x e d e d e e d e d

ex e d e d
e d

* * * *

* * *

* *

, , ,
, ,* *

, , ,

, ,
* *

, ,

( ) log . log .   with  

( ) .log

x x x
x x

x x x

x x

x x

e e ex e d d e d d
e d e d e d

e ex
e d e d*

d

(21)

In this last equation, −−=
*

,x,x
x deep /)(ξ  appears as a density, and the Legendre transform 

()*Φ  looks like the classical Shannon Entropy, named in the following Koszul Entropy: 

ξξξ dpp xx
Ω

−=Φ
*

)(log)(*  (22)

with: 

(x)x,
dex,

,x,x
x eedeep *

,x

*

+−
−−

−− ===
−log

/)(ξ  and 
Ω

=
*

)(.* ξξξ dpx x  (23)

We will call 
−

−

=

*

,x

,x

x de
ep )(ξ  the Koszul Density, with the property that: 

(x)x,dex,p
*

,x
x +−=−−= −log)(log ξ  (24)

and: 

[ ] (x)x,xpE x −=− *)(log ξξ  (25)

We can observe that: 
[ ]

1

log)(loglog)(

*

*

*

*

*

*

*

)(

)()()(,

=

−Φ=−=−=Φ

Ω

Φ−

Ω

Φ−

Ω

Φ+Φ−

Ω

−

ξ

ξξξ

ξ

ξξξ

de

dexdedex xx

 (26)
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But the development is not achieved and we have to make appear *x  in )( ** xΦ . For this 
objective, we have to write: 

)()()()(log)(

)(loglog)(log
****

*)()(,

**

*

xdpdpp

eep

xxx

xx
x

Φ=Φ=−=Φ

Φ−===

ΩΩ

Φ−Φ+−

ξξξξξξ

ξξ ξξ

 (27)

The last equality is true if and only if we have the following relation: 

Φ=Φ
ΩΩ **

)(.)()( ** ξξξξξξ dpdp xx  as 
Ω

=
*

)(.* ξξξ dpx x  (28)

This condition could be written more synthetically [50,51]: 

[ ] [ ]( ) ***   ,  )( Ω∈Φ=Φ ξξξ EE  (29)

The meaning of this relation is that “the Barycenter of Koszul Entropy is the Koszul Entropy  
of Barycenter”. 

This condition is achieved for Φ= xDx*  taking into account Legendre Transform property: 

[ ]
[ ]

Φ=

Φ≥Φ

Φ≥Φ

Φ−≥Φ

Φ−=Φ

Ω dx
dx

Ex

dpx

xxxx

xxxSupx

x

x

*

**

***

***

***

for  equality 

)()(

)()()(

)(,)(

)(,)(   :Transform Legendre

*

*

ξ

ξξξ

 (30)

3.3. Relation of Koszul Density with the Maximum Entropy Principle 

We will observe in this section that Koszul density is a solution of the Maximum Entropy. 
Classically, the density given by the Maximum Entropy Principle [52–58] is given by: 

*

*

*

(.) *

( ) 1

( ) log ( )    such  
. ( )x

x

x xp
x

p d

Max p p d
p d x

 (31)

If we take 
−−

−−
−

== *

,x

*

dex,
,x,x

x edeeq
log

/)(ξ  such that: 

−−==

==

Ω

−
−−

−−

−

*

,
log

log,log)(log

1/).(

ξξξ

ξ

ξ dexeq

dededq

x
dex,

x

,x,x
x

*

,x

***

 (32)

Then by using the fact that ( )11log −−≥ xx  with equality if and only if 1=x , we find the 
following: 
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ξ
ξ
ξξξ

ξ
ξξ d

p
qpd

q
pp

x

x
x

x

x
x

ΩΩ

−−≤−
** )(

)(1)(
)(
)(log)(  (33)

We can then observe that: 

0)()(
)(
)(1)(

***

=−=−
ΩΩΩ

ξξξξξ
ξ
ξξ dqdpd

p
qp xx

x

x
x  (34)

because
* *

( ) ( ) 1x xp d q d  

We can then deduce that: 

ξξξξξξξ
ξ
ξξ dqpdppd

q
pp xxxx

x

x
x

ΩΩΩ

−≤−≤−
***

)(log)()(log)(0
)(
)(log)(  (35)

If we develop the last inequality, using expression of )(ξxq : 

ξξξξξξξ ξ ddexpdpp x
xxx

Ω Ω

−

Ω

−−−≤−
* **

,log,)()(log)(  (36)

Ω

−

ΩΩ

+≤−
***

,log)(.,)(log)( ξξξξξξξ ξ dedpxdpp x
xxx  (37)

If we take ξξξ dpx x
Ω

=
*

)(.*  and 
Ω

−−=Φ
*

,log)( ξξ dex x , then we deduce that the Koszul density 

−−
−−

−

== *

,x

*

dex,
,x,x

x edeeq
log

/)(ξ  is the Maximum Entropy solution constrained by 

1)(
*

=
Ω

ξξ dpx  and *

*

)(. xdpx =
Ω

ξξξ : 

)(,)(log)( *

*

xxxdpp xx Φ−≤−
Ω

ξξξ  (38)

)()(log)( **

*

xdpp xx Φ≤−
Ω

ξξξ  (39)

We have then observed that Koszul Entropy provides density of Maximum Entropy: 
1

1( )

*

,

,

ep
e d

 with )(1 ξ−Θ=x  and 
dx

xdx )()( Φ=Θ=ξ  
(40)

where: 

ξξξξ ξ dp
Ω

=
*

)(.  and 
Ω

−−=Φ
*

,log)( ξξ dex x  (41)
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We can then deduce the Maximum Entropy solution without solving the classical variational 

problem with Lagrangian hyperparameters, but only by inversing function 
( )( ) d xx

dx
. 

This remark was made by Jean-Souriau in the paper [59]. If we take vector with tensor components 

⊗
=

zz
z

ξ , components of ξ  will provide moments of 1st and 2nd order of the density of  

probability )(ξξp , that is defined by Gaussian law. In this particular case, we can write: 

Hzzzax TT

2
1, +=ξ  (42)

with na R  and )(nSymH ∈ . By the change of variables given by 1/2 1/2'z H z H a , we can 
then compute the logarithm of the Koszul characteristic function: 

1 11( ) logdet log 2
2

Tx a H a H n  (43)

We can prove that the 1st moment is equal to aH 1−−  and that components of variance tensor are 
equal to elements of matrix 1H − , that induces the second moment. The Koszul Entropy, defined as 
the Legendre transform of the Koszul characteristic function, is then given by: 

[ ] ( )[ ]enH .2logdetlog
2
1)( 1* πξ +==Φ −  (44)

 
3.4. Crouzeix Relation on Hessian of Dual Potentials and Its Consequences 

In previous sections, we have used the duality between dual potential functions that is recovered 
by this relation: 

*** ,)()( xxxx =Φ+Φ  with 
dx
dx Φ=*  and *

*

dx
dx Φ=  where )(log)( xx Ω−=Φ ψ  (45)

If we develop relations, we can deduce that the hessian of one potential function is the inverse of 
the hessian of the dual potential function, then the Information Geometry metric could be given in two 
systems of dual coordinates: 

2*
2*

*22
*
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2*

*2
2

2

2
2

1

2*

*2

2

2

2*

*2

2

2

*2*

*2

*

2

2

*

*

*

...

1.

dx
dx
ddx

dx
d

dx
ddx

dx
dds

dx
d

dx
d

dx
d

dx
d

dx
dx

dx
d

dx
dx

dx
d

x
dx
d

x
dx
d

Φ−=ΦΦ−=Φ−=

Φ=Φ=ΦΦ

=Φ

=Φ

=Φ

=Φ

−

−

 (46)

Gromov [22] observed that the hessian of the entropy *  on the space of probability measure is 
positive definite by the Shannon inequality and defines a (non-complete) Riemannian metric, and that 
this metric is called the Fisher-Rao-Kramer, Antonelli-Strobeck, Svirezhev-Shahshahani,  
Karquist metric. 
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The relation 
1

2*

*2

2

2 −
Φ=Φ

dx
d

dx
d  has been established first by Crouzeix in 1977 in a short 

communication [60] for convex smooth functions and their Legendre transforms. This result has 
been extended for non-smooth function by Seeger [61] and Hiriart-Urruty [62], using a polarity 
relationship between the second-order sub-differentials. This relation was mentioned in texts of 
calculus of variations and theory of elastic materials (with work potentials) [62]. 

This last relation has also been used in the framework of the Monge-Ampere measure associated 
to a convex function, to prove equality with Lebesgue measure : 

{ }( )

[ ])(det)( and )in set  (Borel 

(x)/x )()(

2 xxB

dxxm

Φ∇=Ω∈Λ∀

Λ∈∇==Λ

Ω

Λ
Φ

ϕ

φλϕ
 (47)

That is proved using the Crouzeix relation 
12 2 * 2 *( ) ( ) ( )x y y : 

[ ]
( )[ ]

( )
[ ] { }( )Λ∈∇==Φ∇Φ∇Φ∇=Λ

Φ∇==Λ

ΛΦ∇Φ∇

Φ

ΛΛ
Φ

−

(x)/x.1)(det.)(det )(
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)(
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)(
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2

1*

φλ

ϕ

dydyyym

dxxdxxm

A

 (48)

3.5. Fisher Information Geometry Metric as a Particular Case of Koszul Metric 

To make the link with the classical Fisher metric given by Fisher Information matrix )(xI  in 
Information Geometry, we can observe that the second derivative of log ( )xp  is given by: 

(x)de(x)

dexpedeep

,x

,x
x

dex,
,x,x

x

*

*

*

,x

*

ψ

ξξξ

loglogwith   

log,)(log/)(
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−−===

−

−
−−

−−
−

 (49)
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2 )(log
x

(x)
x

p x

∂
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∂
∂ ξ  (50)
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2 log)(log
)(

x
(x)
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(x)
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p

ExI x

∂
∂

=
∂
Φ∂−=

∂
∂

−= Ωψξ
ξ  (51)

We could then deduce the close interrelation between Fisher metric and hessian of minus 
Koszul-Vinberg characteristic logarithm, that are totally equivalent. Information Geometry then 
appears as a particular case of Koszul Hessian Geometry. 

We can also observed that the Fisher metric or hessian of KVCF logarithm is related to the 
variance of ξ : 
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The Inverse of the Fisher/Information Matrix ( )I x  defines the lower bound of statistical 
estimators. Classically, this Lower bound is called Cramer-Rao Bound because it was described in 
the Rao’s paper of 1945 [63]. Historically, this bound has been published first by Maurice Fréchet 
in 1939 in his winter “Mathematical Statistics” Lecture at the Institut Henri Poincaré during winter 
1939–1940. Maurice Fréchet has published these elements in a paper as early as 1943 [64]. We can 
read at the bottom of the first page of his paper [64]: 

“Le contenu de ce mémoire a formé une partie de notre cours de statistique 
mathématique a l’Institut Henri Poincaré pendant l'hiver 1939–1940. Il constitue l’un 
des chapitres du deuxième cahier (en préparation) de nos «Leçons de Statistique 
Mathématique», dont le premier cahier, «Introduction: Exposé préliminaire de Calcul 
des Probabilités” (119 pages in-quarto, dactylographiées) vient de paraitre au «Centre 
de Documentation Universitaire, Tournois et Constans. Paris».” 
[The contents of this report formed a part of our lecture of mathematical statistics at 
the Henri Poincaré institute during winter 1939–1940. It constitutes one of the chapters 
of the second exercise book (in preparation) of our “Lessons of Mathematical 
Statistics”, the first exercise book of which, “Introduction: preliminary Presentation of 
Probability theory” (119 pages quarto, typed) has just been published in the “Centre 
de Documentation Universitaire, Tournois et Constans. Paris”.] 

3.6. Extended Results by Koszul, Vey and Sasaki 

Koszul [41,65] and Vey [66,67] have developed extended results with the following theorem for 
connected hessian manifolds: 

Koszul-Vey Theorem: Let M  be a connected hessian manifold with hessian metric g . Suppose 
that M admits a closed 1-form α  such that gD =α  and there exists a group G  of affine 
automorphisms of M  preserving α : 

• If GM /  is quasi-compact, then the universal covering manifold of M is affinely isomorphic 
to a convex domain  of an affine space not containing any full straight line. 

• If GM /  is compact, then  is a sharp convex cone. 
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On this basis, Koszul has given a Lie Group construction of a homogeneous cone that has been 
developed and applied in Information Geometry by Shima [68,69] and Boyom [70] in the 
framework of Hessian Geometry. 

After the pioneering work of Koszul, Sasaki has developed the study of hessian manifolds in 
Affine Geometry [71,72]. He has denoted by cS  the level surface of Ωψ : { }cxSc == Ω )(ψ which 

is a non-compact sub-manifold in , and by cω  the induced metric of Ωψlog2d  on cS , then 
assuming that the cone  is homogeneous under )(ΩG , he proved that cS  is a homogeneous 
hyperbolic affine hypersphere and every such hyperspheres can be obtained in this way .Sasaki also 
remarks that cω  is identified with the affine metric and cS  is a global Riemannian symmetric space 
when  is a self-dual cone. He concludes that, let  be a regular convex cone and let 

Ω= ψlog2dg  be the canonical Hessian metric, then each level surface of the characteristic 
function Ωψ  is a minimal surface of the Riemannian manifold ),( gΩ . 

3.7. Geodesics Equation for the Koszul Hessian Metric 

The last contribution has been given by Rothaus [73] who studied the construction of geodesics 
for this hessian metric geometry, using the following property: 
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or expressed also according the Christoffel symbol of the first kind: 
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Then geodesic is given by: 
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that could be developed with previous relation: 
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We can then observe that: 
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The geodesic equation can then be rewritten: 
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That we can put in vector form using notations Ω−= ψlog* dx  and Fisher matrix 

Ω= ψlog)( 2dxI : 

0)( 2

*2

2
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=−
ds

xd
ds

xdxI  or 2

*21

2

2

)(
ds

xd
ds

xdxI
−

=  (62)

 
3.8. Koszul Metric for Siegel Homogeneous Domains 

Koszul [42] has developed his previously described theory for Homogenous Siegel Domains 
SD. He has proved that there is a subgroup G in the group of the complex affine automorphisms of 
these domains (Iwasawa subgroup), such that G acts on SD simply transitively. The Lie algebra g  
of G has a structure that is an algebraic translation of the Kähler structure of SD. There is an 
integrable almost complex structure J on, g and there exists *g∈η  such that [ ]ηη ,,, YJXYX =  
defines a J-invariant positive definite inner product on g . Koszul has proposed as admissible form 

*g∈η , the form ξ : 

( ) ( )[ ] gXXadJJXadTrXX ∈∀−==Ψ     )(.,ξ  (63)

Koszul has proved that 
ξYX ,  coincides, up to a positive number multiple with the real part of 

the Hermitian inner product obtained by the Bergman metric of SD by identifying g  with the 
tangent space of SD. The First Koszul form is then given by: 

( )XdΨ−=
4
1α  (64)

We can illustrate this new Koszul expression for Poincaré’s Upper Half Plane 
 / 0V z x iy y  (most simple symmetric homogeneous bounded domain). 

Define vector fields 
dX y
dx

 and dY y
dy

, and J an almost complex structure on V defined by 

YJX =  
As: 

[ ] YYX −=,  and ( ) [ ]ZYZYad ,. =  then 
( ) ( )[ ]
( ) ( )[ ] =−

=−
0
2

YJadJYadTr
XJadJXadTr

 (65)

The Koszul 1-form and then the Koszul/Poincaré metric is given by: 

( ) 2

22
2

2 22
1

4
12

y
dydxds

y
dydxd

y
dxX +=∧−=Ψ−==Ψ α  (66)

This could be also applied for Siegel’s Upper Half Space 
0V Z X iY /  X,Y Sym(p), Y  (more natural extension of Poincaré Upper-half plane, 

and general notion of symmetric bounded homogeneous domains studied by Elie Cartan and  
Carl-Ludwig Siegel): 
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 (68)

To recover the metric of the space of Symmetric Positive Definite (HPD) matrices, we take 

 (with 0)Z iR X , and obtain the metric 
22 1ds Tr R dR . In the context of Information 

Geometry, this metric is the metric for multivariate Gaussian law of covariance matrix R and zero 
mean. For more development and application for Radar signal processing, we give reference to author 
papers [74–77]. 

4. Souriau Geometric Temperature and Covariant Definition of Thermodynamic 
Equilibriums 

Souriau, a student of Elie Cartan [78] at ENS Ulm in 1946, has given in [59,79–87] a covariant 
definition of thermodynamic equilibriums and has formulated statistical mechanics [88–90] and 
thermodynamics in the framework of Symplectic Geometry [59] by use of symplectic moments and 
distribution-tensor concepts, giving a geometric status for temperature, heat and entropy. This work 
has been extended by Vallée and de Saxcé [91–94], Iglésias [95,96] and Dubois [97]. Other recent 
works address equilibrium states on manifolds of negative curvature and could be analyzed in the 
framework of Information Geometry [98–103]. 

Other directions related to polarized surface have been developed by Donaldson, Guillemin and 
Abreu, in which invariant Kähler metrics correspond to convex functions on the moment polytope 
of a toric variety [104–108] based on precursor work of Atiyah and Bott [109] on moment map and 
its convexity by Bruguières [110], Condevaux [111], Delzant [112], Guillemin and Sternberg [113] 
and Kirwan [114]. More recently, Mikhail Kapranov has also given a thermodynamical 
interpretation of the moment map for toric varieties [115]. Readers may consult the tutorial paper 
of Biquard [116]. 

The first general definition of the “moment map” (constant of the motion for dynamical 
systems) was introduced by Souriau during 1970s, with geometric generalization of such earlier 
notions as the Hamiltonian and the invariant theorem of Noether describing the connection between 
symmetries and invariants (it is the moment map for a one-dimensional Lie group of symmetries). 
In symplectic geometry the analog of Noether’s theorem is the statement that the moment map of a 
Hamiltonian action which preserves a given time evolution is itself conserved by this time 
evolution. The conservation of the moment of a Hamilotnian action was called by Souriau the 
“Symplectic or Geometric Noether theorem” (considering phases space as symplectic manifold, 
cotangent fiber of configuration space with canonical symplectic form, if Hamiltonian has Lie 
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algebra, moment map is constant along system integral curves. Noether theorem is obtained by 
considering independently each component of moment map). 

In previous approach based on Koszul’s work, we have defined two convex functions ( )x  and 
)( ** xΦ  with dual system of coordinates x  and *x  on dual cones  and * : 

*

,( ) log    xx e d x and 
*

* * *( ) , ( ) ( ) log ( )x xx x x x p p d  (69)

where: 

*

* . ( )xx p d  and 
log

( ) /
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*

*

x, e d
,x ,x x, (x)

xp e e d e e  (70)

with 

* ( )xx
x

 and 
* *

*

( )xx
x

 (71)

Souriau introduced these relations in the framework of variational problems to extend them with 
a covariant definition. Let M  be a differentiable manifold with a continuous positive density d  
and let E a finite vector space and ( )U  a continuous function defined on M  with values in E. A 
continuous positive function ( )p  solution of this problem with respect to calculus of variations: 

( )

( ) 1

( ) log ( )   such that  
( ) ( )

M

p M

M

p d

ArgMin s p p d
U p d Q

 (72)

is given by: 
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 (73)

Entropy ( ) log ( )
M

s p p d  can be stationary only if there exist a scalar  and an element 

 belonging to the dual of E, where  and β  are Lagrange parameters associated to the previous 
constraints. Entropy appears naturally as Legendre transform of : 

)(.)( ββ Φ−= QQs  (74)

This value is a strict minimum of s, and the equation 

. ( )

. ( )

( ) U

M
U

M

U e d
Q

e d
 has a maximum of 

one solution for each value of Q. The function ( )  is differentiable and we can write .d d Q  
and identifying E with its dual: 
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β∂
Φ∂=Q  (75)

Uniform convergence of . ( )( ) ( ) U

M

U U e d  proves that 02

2

>
∂

Φ∂−
β

 and that ( )  is 

convex. Then, )(βQ  and )(Qβ  are mutually inverse and differentiable, where .ds dQ . 
Identifying E with its bidual: 

s
Q

 (76)

Classically, if we take ( )U  , components of Q will provide moments of first and 

second order of the density of probability )(ξp , that is defined by Gaussian law. 
Souriau has applied this approach for classical statistical mechanic systems. Considering a 

mechanical system with n parameters 1, , nq q , its movement could be defined by its phase at 
arbitrary time t on a manifold of dimension 2n: nn ppqq ,,,,, 11 . 

The Liouville theorem shows that coordinate changes have a Jacobian equal to unity, and a Liouville 
density could be defined on manifold M : 1 1n nd dq dq dp dp  that will not depend on choice to t. 

A system state is one point on 2n-Manifold M and a statistical state is a law of probability 
defined on M  such that 1)()( =

M

dp ξωξ , and its time evolution is driven by: 

j j j j

p p H p H
t p q q p

 (77)

where H is the Hamiltonian. 
A thermodynamic equilibrium is a statistical state that maximizes the entropy: 

( ) log ( )
M

s p p d  (78)

among all states giving the mean value of energy Q: 

QdpH
M

=ωξξ )().(  (79)

Applying this for free particles, for an ideal gas, equilibrium is given for 
kT
1=β  (with k being 

the Boltzmann constant) and if we set skS .= , the previous relation dQdS
T

 provides: 

dQS
T

 and 
dQS
T

 and ( )  is identified with the Massieu-Duhem Potential. We recover 

also the Maxwell Speed law: 

kT
H

ecstep
−

= .)(ξ  (80)
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The main discovery of Jean-Marie Souriau is that previous thermodynamic equilibrium is not 
covariant on a relativity point of view. Then, he has proposed a covariant definition of 
thermodynamic equilibrium where the previous definition is a particular case. In previous 
formalization, manifold M  was solution of the calculus of variations problem: 

0,,
1

0

=dt
dt

dq
qtld

t

t

j
j  with 

j
j q

lp
∂
∂=  (81)

We can then consider the time variable t like other variables jq  through an arbitrary parameter 

τ , and define the new calculus of variations problem by: 
1

0

, 0
t

J J
t

d L q q d  with 1nt q , 
τd

dqq J
J =  and 1, 2,..., 1J n  (82)

where: 

, , , j
J J j

q
L q q l t q t

t
 (83)

Variables jp  are not changed and we have the relation: 

1 . j
n j

j

dq
p l p

dt
 (84)

If we compare with classical mechanic, we have: 

Hpn −=+1  with l
dt

dq
pH

j

j
j −= .  (H is Legendre transform of l) (85)

H is the energy of the system that is conservative if the Lagrangian doesn’t depend explicitly of 
time t. It is a particular case of Noether Theorem: 

If Lagrangian L is invariant by an infinitesimal transform ( )J J KdQ F Q  ,then =
J

JJ dQpu is 

first integral of variations equations. 
As energy is not the conjugate variable of time t, or the value provided by Noether theorem by 

system invariance to time translation, the thermodynamic equilibrium is not covariant. Then, 
Souriau proposes a new covariant definition of thermodynamic equilibrium:  

Let a mechanical system with a Lagrangian invariant by a Lie Group G. Equilibrium states by 
Group G are statistical states that maximizes the Entropy, while providing given mean values to all 
variables associated by Noether theorem to infinitesimal transforms of group G. 

Neither theorem allows associating to all system movement , a value ( )U  belonging to the 
vector space dual of Lie Algebra g  of group G. )(ξU  is called the moment of the group. 

For each derivation  of this Lie algebra [83], we take: 

=
J

JJ QpU δδξ .))((  (86)
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With previous development, as *g  is dual of g , value  belongs to this Lie algebra g , 
geometric generalization of thermodynamic temperature. Value Q is a geometric generalization of 
heat and belongs to *g , the dual of g . 

An Equilibrium state exists having the largest entropy, with a distribution function ( )p  that is 
the exponential of an affine function of U [83]: 

)(.)()( ξββξ Uep −Φ=  with −−=Φ
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U de ωβ ξβ )(.log)(  and 
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de
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)(.

)(.)(
 (87)

with: 
)(.)( ββ Φ−= QQs , Qdd .β=Φ  and dQds .β=  (88)

A statistical state )(ξp is invariant by δ if ( ) 0p  for all  (then )(ξp  is invariant by finite 

transform of G generated by δ). 
Jean-Marie Souriau gave the following theorem: 

Souriau Theorem 1: An equilibrium state allowed by a group G is invariant by an element  of 
Lie Algebra g , if and only if , 0  (with [.], the Lie Bracket), with  the generalized 

equilibrium temperature. 

For classical thermodynamic, where G is an Abelian group of translation with respect to time t, all 
equilibrium states are invariant under G. For Group of transformation of Space-Time, elements of Lie 
Algebra of G could be defined as vector fields in Space-Time. The generalized temperature  
previously defined, would be also defined as a vector field. For each point of manifold M, we could 
then define: 

• Temperature Vector: 

kT
V

M =β  (89)

with: 

• Unitary Mean Speed: 

Unitary Mean Speed: M

M

V with 1=V  (90)

• Eigen Absolute Temperature: 
1

. M

T
k

 (91)

Classical formula of thermodynamics are thus generalized, but variables are defined with a 
geometrical status, like the geometrical temperature Mβ  an element of the Lie algebra of the 
Galileo or Poincaré groups, interpreted as the field of space-time vectors. Souriau proved that in 
relativistic version Mβ is a time like vector with an orientation that characterizes the arrow of time. 
The temperature vector and entropy flux are in duality. Souriau said “ β , c’est la flèche qui nous 
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indique dans quel sens coule le temps” [ β , it is the arrow that informs about the flow of time 
direction]. 

5. Souriau-Gibbs Canonical Ensemble of Dynamical Group and Lie Group Thermodynamics 

In statistical mechanics, a canonical ensemble [117–121] is the statistical ensemble that is used 
to represent the possible states of a mechanical system that is being maintained in thermodynamic 
equilibrium. Souriau has defined this Gibbs canonical ensemble on Symplectic manifold M for a 
Lie group action on M. 

In classical statistical mechanics, a state is given by the solution of Liouville equation on the 
phase space, the partition function. The seminal idea of Lagrange was to consider that a statistical 
state is simply a probability measure on the manifold of motions, as in the Souriau approach, where 
one movement of a dynamical system (classical state) is a point on manifold of movements. For 
statistical mechanics, the movement variable is replaced by a random variable where a statistical 
state is probability law on this manifold. As symplectic manifolds have a completely continuous 
measure, invariant by diffeomorphisms, the Liouville measure , all statistical states will be the 
product of Liouville measure by the scalar function given by the generalized partition function 

.Ue defined by the generalized energy U (the moment that is defined in dual of Lie Algebra of 
this dynamical group) and the geometric temperature β , where  is a normalizing constant such 
the mass of probability is equal to 1, −−=Φ

M

U de ωβ .log . Souriau then generalizes the Gibbs 

equilibrium state to all symplectic manifolds that have a dynamical group. To ensure that all 
integrals, that will be defined, could converge, the canonical Gibbs ensemble is the largest open 
proper subset (in Lie algebra) where these integrals are convergent. This canonical Gibbs 

ensemble is convex. The derivative of , Q  is equal to the mean value of the energy U (heat 

in thermodynamic). The minus derivative of this generalized heat Q, 
β∂

∂− Q  is symmetric and 

positive (it is a generalization of heat capacity). Entropy s  is then defined by Legendre transform 
of , .s Q . If this approach is applied for the group of time translation, this is the classical 

thermodynamic theory. But Souriau has observed that if we apply this theory for non-commutative 
group (Galileo or Poincaré groups), the symmetry has been broken. Classical Gibbs equilibrium 
states are no longer invariant by this group. This symmetry breaking provides new equations, 
discovered by Souriau. 

For each temperature β , Souriau has introduced a tensor βf , equal to the sum of cocycle f and 

Heat coboundary (with [.,.] Lie bracket): 

( ) ( ) [ ]21222121 ,)(   with   )(.,,
11

ZZZAdZAdQZZfZZf ZZ =+=β  (92)

This tensor βf  has the following properties: 
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• f  is a symplectic cocycle (we refer to books of Sympectic geometry for cocycle definition) 
• ββ fKer  ∈  
• The following symmetric tensor g , defined on all values of (.)βAd  is positive definite: 

[ ] [ ]( ) [ ]( )2121 ,,,,, ZZfZZg βββ ββ =  (93)

These equations are universal, because they are not dependent of the symplectic manifold but 
only of the dynamical group G, its symplectic cocycle f , the temperature  and the heat Q . 
Souriau called this model “Lie Groups Thermodynamics”. We can read in his paper this prophetical 
sentence “Peut-être cette thermodynamique des groups de Lie a-t-elle un intérêt 
mathématique”[Maybe this thermodynamics of Lie groups has a mathematical interest]. He 
explains that for dynamic Galileo group (rotation and translation) with only one axe of rotation, this 
thermodynamic theory is the theory of centrifuge where the temperature vector dimension is equal 
to 2 (sub-group of invariance of size 2), used to make “butter”, “uranium 235” and “ribonucleic 
acid”. The physical meaning of these 2 dimensions for vector-valued temperature are “thermic 
conduction” and “viscosity”. Souriau said that the model unifies “heat conduction” and “viscosity” 
(Fourier and Navier equations) in the same theory of irreversible process. Souriau has applied this 
theory in details for relativistic ideal gas with Poincaré group for dynamical group. 

We will give in the following the two others main theorems of Souriau on this Lie Group 
Thermodynamics. 

Souriau Theorem 2. Let  be the largest open proper subset of g , Lie algebra of G, such that 
−

M

U de ωξβ )(.  and −

M

U de ωξ ξβ )(..  are convergent integrals, this set  is convex and is invariant under 

every transformation ga , where a ag  is the adjoint representation of G. Then, the variables are 

changed according to: 

( )ag  
(94) 

1 . ( )a a ag  (95) 

s s  (96) 

( ) ( )Q a Q a a Q* *g g
 (97) 

)(ςς +→ Ma  (98) 

where θ  is the cocycle associated with the group G and the moment, and ( )Ma  is the image under 

Ma  of the probability measure ς . 
We observe that the entropy s is unchanged, and  is changed but with linear dependence to β , 

with consequence that Fisher Information Geometry metric is unchanged by the dynamical group: 
2 1 2

2 2( )
a

I a Ig  (99)

These transformations have been geometrically interpreted by Souriau in Figure 4: 
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Figure 4. Souriau figure on Lie Groups Thermodynamics. 

In previous notation, a ag  the adjoint representation of G can be written: 

1( )    with    ,    and  0a Z a b a b e b Z ag  (100)

a ag defines an action of G on its Lie algebrag , with ag  is called the adjoint representation, that 

is a linear representation of G on its Lie algebra g . 
Let a  be an arbitrary element of G and Ma  action of a  on the manifold M . Since 1−

Ma  is a 

symplectomorphism, the image under 1−
Ma  of the Liouville measure λ  is equal to λ . The integral 

. ( ) .U

M

e d  is equal with invariance property of Liouville measure to the integral 

1. ( ) .MU a

M

e d : 

1. ( ). ( ) . .MU aU

M M

e d e d  (101)

We can then use the following relation: 
1 1 1( ) ( )MU a a U a*g

 (102)

with  a symplectic cocycle of G. This cocycle is defined for: 

:
      
U M *g

 (103)

there exist then a differential map  defined by: 

( ) ( ))()(     
:

ξξ
θ

UaaUa
G

M *g

*g
−

→
 (104)

This differential map  satisfy the condition: 
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( ) ( ) ( )( )baaba θθθ *g
+=×  (105)

and its derivative ( )f D e  where e  is the identity element of G, is a 2-form on the Lie 

algebra g  of G which satisfies: 

1 2 3 2 3 1 3 1 2 1 2 3, , , , , , 0   ,   , ,f Z Z Z f Z Z Z f Z Z Z Z Z Z g  (106)

and the following identities: 

( , ( )) ( ). (.) ( , )M ZD U Z U Ad f Z Z  (107)

where ( )MZ  is the fundamental vector field on the manifold M associated to Z g : 

( )   for    ,    and  0M MZ a a e a Z  (108)

1, 2, 1 2 1 2( ), ( ) . , ,M MZ Z Z Z f Z Z  (109)

with  the Lagrange form. 
If we use previous relation 1 1 1( ) ( )MU a a U a*g

, and the property that 
1( ) ( ).a U U a* gg
, by defining: 

( )ββ ga='  (110)

the integral is then defined by: 
1 11 1. ( ). ( ) .'. ( ) . ( ). . . .M a a U aa U a aU U

M M M M

e d e d e d e e dg *g g  (111)

We can then deduce the equation of Souriau theorem on : 

1 .'. ( ) . ( ) 1' ' log . log .aU U

M M

a e d e e d ag
 (112)

The equation of Souriau theorem on Q  uses the relation 1.a Q Q a* gg
: 

1 .'. ( ) . ( ) 1' ' log . log .aU U

M M

a e d e e d ag  (113)

Finally, using 1.a Q Q a* gg
, we can prove that the Entropy is invariant: 

( ) ( )( ) ( )( ) ( ) ( ) ( ) sQQaaQaaaaaQaaQs =Φ−=Φ−=Φ−=+Φ−+=Φ−= ...)()(.'''.' ββββθθββ g
1-
gggggg **  (114)

Considering the density of probability . ( ) ( )( ) Up e  with ' ag , then: 
1. ( ) ( )

' ( ) a U ap e g . 

From which, we can recover Ma  the image under Ma  of the probability measure.  

The last Souriau theorem is given by: 
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Souriau Theorem 3. Let ( )( )f D e  be the derivative of θ  (symplectic cocycle of G) at the 
identity element and let us define: 

( ) ( ) [ ]21222121 ,)(   with   )(.,,   ,
11

ZZZAdZAdQZZfZZf ZZ =+=Ω∈∀ ββ  (115)

Then 
βf  is a symplectic cocycle of g  , that is independent of the moment of G 

( ) ) (     ,   0, ββ ββββ fKerf ∈Ω∈∀=  (116)

• There exists a symmetric tensor g  defined on the image of (.) .,Ad  such that: 

[ ]( ) ( ) ( )(.)Im  ,  ,,, 212121 βββ β AdZZZZfZZg ∈∀∈∀= g,  (117)

and: 

( ) ( )(.)Im,   ,   0, 2121 ββ AdZZZZg ∈∀≥  (118)

Last equation gives the structure of a positive Euclidean space. 
( )  0, =βββf could be deduced by differentiating ( ) . ( )a a ag g  and taking e a , 

2a Z  and 1 0Z . As ( )M MZ a  and (.)ZZ Adg , we have 1 2 1 2, ,Q Z Z f Z Z . 

If we differentiate ( ) ) ( )Q a a Q a*g g
, the following relation 

[ ]( ) ( ) ( )11111 ,(.).,,
1

ZZfAdQZZfZQ
Z ββ

β
=+=−

∂
∂  appears. Then, writing 1 2,Z Z , we have 

( ) 0,0. 21 ≥≥ ZZfQ βδβδ . 

See more details in appendix A.3. 

6. Synthesis of Analogies Between the Koszul Information Geometry Model and Souriau 
Statistical Physics Model 

6.1. Comparison of Koszul and Souriau Models 

We will synthetize in Table 1 results of previous chapters with Koszul Hessian Structure of 
Information Geometry and the Souriau model of Statistical Physics with the general concepts of 
geometric temperature, heat and capacity. Analogies between models will deal with characteristic 
function, Entropy, Legendre Transform, density of probability, dual coordinate systems, Hessian 
Metric and Fisher metric. 

As 
β∂
Φ∂=Q , we observe that the Information Geometry metric 

ββ
ββ

∂
∂−=

∂
Φ∂−= Q)(I 2

2

)(  could be 

considered as a generalization of “Heat Capacity”. Souriau called it  the “Geometric Capacity”. 

When 
kT
1=β , 

2

1
1Q Q QkTK

T T kT T
, then this geometric capacity is related to 

calorific capacity. Q is related to the mean, and K is related to the variance of U [122]: 

K
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2

2 )().()(.)()var()( −==
∂
∂−=

MM

dpUdpUUQI ωξξωξξ
β

β ββ  (119)

Table 1. Synthesis of Koszul and Souriau models. 

 Koszul Information Geometry 
Model 

Souriau Lie Groups 
Thermodynamics Model 

Characteristic function Ω∈∀−=Φ
Ω

− xdex x    log)(
*

, ξξ g∈∀−=Φ − βωβ ξβ    log)( )(.

M

U de

Entropy 
*

* *( ) ( ) log ( )x xx p p d  ( ) log ( )
M

s p p d  

Legendre Transform * * *( ) , ( )x x x x  ( ) . ( )s Q Q

Density of probability 

−

−

+−

=

=
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,x
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x

(x)x,
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de
ep

ep

)(

)(

ξ

ξ

 

. ( ) ( )

. ( )

. ( )

( )

( )

U

U
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p e

ep
e d

 

Dual Coordinate Systems 
 

* *   and   x x  

*

*

*

.
. ( )

*

,x

x ,x

e d
x p d

e d

 

   and   Q *g g  
. ( )

. ( )

( )
( ). ( )

U

M
U

M

M

U e d
Q U p d

e d

heat Geometricor       
MapMoment  Souriau   ofMean  :

mapMoment  Souriau  :
eTemperatur GeometricSouriau  :

Q
U
β

* *
*

*

( ) ( ) and x xx x
x x

  and sQ
Q

 

Hessian Metric 2 2 ( )ds d x  2 2ds d  

Fisher metric 

*

2

2

,2

2

2 2

log ( )( )

log
( )

x

x

pI x E
x

e d
(x)I x

x x

 

2

)(.2

2

2

2

2

log
)(

)(log
)(
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ω

β
ββ

β
ξ

β

ξβ

β
ξ

∂

∂
=

∂
Φ∂−=

∂
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−=

−

M

U de
)(I
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EI

 

Capacity  GeometricSouriau   :

)( 2

2

β

ββ
ββ

∂
∂−=

∂
∂−=

∂
Φ∂−=

QK

Q)(I

6.2. Invariances in Koszul and Souriau Models 

We have observed in previous chapters the main invariances characterizing the Koszul Model 
and the Souriau Model. We will synthetize these invariances in Table 2. 

In both the Koszul and Souriau models, the Information Geometry Metric and the Entropy are 
invariant respectively to the automosphisms g  of the convex cone  and to ga  adjoint 
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representation of Dynamical group G acting on , the convex cone considered as largest open 
subset of g , Lie algebra of G, such that −

M

U de ωξβ )(.  and −

M

U de ωξ ξβ )(..  are convergent integrals. 

 
6.3. Souriau Thermometer 

Souriau has built a thermometer ( ) device principle that could measure the Geometric 
Temperature using “Relative Ideal Gas Thermometer” based on a theory of Dynamical Group 
Thermometry, and has also recovered the Laplace barometric law rgmerp ,)( β−∝ . 

Table 2. Comparison of invariances for the Koszul and Souriau models. 

 Koszul Information Geometry 
Model 

Souriau Lie Groups Thermodynamics 
Model 

Convex Cone Ω∈x  
convex cone 

Ω∈β  
convex cone: largest open subset of g , 

Lie algebra of G, such that . ( )U

M

e d  

and . ( ). U

M

e d  are convergent 

integrals 
Transformation    with   x gx g Aut  ( )ag  
Transformation of 
Potential 
(non invariant) 

( ) ( ) ( ) log detx gx x g  1( )a ag  

Transformation of 
Entropy 
(invariant) 

( ) ( )*****
***

)( x
x
gxx

Ω
Ω

ΩΩ
Φ=

∂
Φ∂Φ→Φ  

x
xx

∂
Φ∂= Ω )(with  *  

( ) ( )

( )
( )( )

( ) ( )

( ) ( )( ) ( ) ( )βθβββ

θ
β

βθ
β

ββ

ββ

1''

)(
)(

'
''

'
.with

)(.'''.''

−−Φ=Φ=Φ=Φ

+=
∂

+Φ∂
=

∂
Φ∂=

=

=Φ−=Φ−=→

aa

aQa
a

aa
Q

a

QsQQQsQs

g

g
g

g

g

*

 

Information 
Geometry Metric 
(invariant) 

( ) ( )[ ]

( )xI
x

x
gxI

x
gx

gxI

=
∂
Φ∂

−=

∂
+Φ∂

−=

Ω

Ω

2

2

2

2

)(
)(

detlog)(
 ( ) ( ) ( )[ ] ( ) ( )β

β
β

β
βθββ IaaI =

∂
Φ∂−=

∂
−Φ∂−=

−

2

2

2

12

)(g  

7. From Characteristic Function to Generative Inner Product 

Cartan’s works have greatly influenced Koszul (Koszul’s PhD thesis extended previous work of 
Cartan) and Souriau (Souriau was a student of Elie Cartan at ENS, the year after his aggregation). We 
have shown that “Information Geometry” could be considered as a particular application domain of 
Hessian Geometry through Koszul’s work (Koszul-Vinberg metric deduced from the associated 
characteristic function having the main property of being invariant to all automorphisms of the convex 
cone), that could be extended in the framework of Souriau’s theory, as an extension towards “Lie 
Group Thermodynamics” with vector-valued geometric temperature (providing a geometric extension 
of Noether’s theorem). Should we deduce that the “essence” of Information Geometry is limited to the 
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“Koszul Characteristic Function”? This notion seems to not be the more general one, and we will 
explore the notion of Generative Inner Products. We will reduce Koszul’s and Souriau’s definitions to 
exclusive “Inner Product” selection using symmetric bilinear “Cartan-Killing form” introduced by 
Cartan in 1894. 

In Koszul Geometry, we have two convex dual functions ( )x  and * *( )x  with dual system of 
coordinates x  and *x  defined on dual cones  and * :

*

,( ) log    xx e d x  and 

)(,)( *** xxxx Φ−=Φ . We can then remark that if we can define an Inner Product .,. , we will be 

able to build a convex function )(log)( xx Ω−=Φ ψ  and its dual by Legendre transform because 
both are only dependent of the Inner product, and dual coordinate is also defined by 

* *

, ,* *arg min ( ) / , , . /x xx y y x y n e d e d  where *x  is also the center of 

gravity of the cross section { }nyxy =Ω∈ ,,*  of *  (with notation: )(log)( xx Ω−=Φ ψ ). 

It is not possible to define an ad(g)-invariant inner product for any two elements of a Lie 
Algebra, but a symmetric bilinear form, called “Cartan-Killing form”, could be introduced. This 
form has been introduced first by Cartan in 1894 in his PhD thesis. This form is defined according 
to the adjoint endomorphism xAd of g  that is defined for every element x  of g  with the help of 

the Lie bracket: 

( ) ,xAd y x y  (120)

The trace of the composition of two such endomorphisms defines a bilinear form, the  
Cartan-Killing form: 

( , ) x yB x y Tr Ad Ad  (121)

The Cartan-Killing form is symmetric: 

( , ) ( , )B x y B y x  (122)

and has the associativity property: 

[ ]( ) [ ]( )zyxBzyxB ,,,, =  (123)

given by: 

,, , , , , ,z x y z x y zx yB x y z Tr Ad Ad Tr Ad Ad Ad Tr Ad Ad Ad B x y z  (124)

Elie Cartan has proved that if g is a simple Lie algebra (the Killing form is non-degenerate) then 
any invariant symmetric bilinear form on g  is a scalar multiple of the Cartan-Killing form. The 
Cartan-Killing form is invariant under automorphisms )(gAut∈σ  of the algebra g : 

( ) ( )yxByxB ,)(),( =σσ  (125)

To prove this invariance, we have to consider: 
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1 1
( )

, ( ), ( )
, ( ) ( ),    rewritten   

( ) x x

x y x y
x z x z Ad Ad

z y
 (126)

Then: 
1

( ) ( )( ), ( ) ( , )x y x y x yB x y Tr Ad Ad Tr Ad Ad Tr Ad Ad B x y  (127)

A natural G-invariant inner product could be then introduced by Cartan-Killing form. 
Cartan Generative Inner Product: The following Inner product defined by Cartan-Killing form is 
invariant by automorphisms of the algebra 

, , ( )x y B x y  (128)

where g  is a Cartan involution (an involution on g is a Lie algebra automorphism θ  of g 
whose square is equal to the identity). 

From the Cartan Inner Product, we can generate logarithm of the Koszul Characteristic 
Function, and its Legendre Transform to define Koszul Entropy, Koszul Density and Koszul 
Metric, as explained in the following Figure 5: 

 

Figure 5. Generation of Koszul elements from Cartan Inner Product. 

In Appendix A2, we give the definition of another inner product, Gromov Inner product, in 
CAT( 1) space, that could be also used to generalize Koszul definition of Characteristic Function. 

On the concept of generative structure, we could also explore the notion of Generative 
Function [123–126] and come back to seminal paper of Chentsov about axiomatization of 
Information Geometry [127]. 
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8. Conclusions on General Definition of Entropy by Legendre Transform 

Definition of Entropy has been widely debated [128,129]. Based on the cornerstone concept of the 
Koszul Vinberg Characteristic Function, we have introduced Koszul Entropy as the Legendre transform 
of its logarithm. This definition of Entropy could be extended by interpretating Legendre transform as 
Fourier transform in (Min,+) algebra [130,131]. 

As we have observed previously, Koszul Entropy has a Shannon Entropy structure: 
[ ] [ ]

[ ]

(x)x,
dex,

,x

,x

x

xx

xxx

ee
de

ep

Edpxp

EdpdppEx

*

,x

*

+−
−−

−

−

Ω

ΩΩ

===

==−=Φ

Φ=Φ=−=Φ=Φ

−log

**

*****

)(  where

)(.  and  )(log)(with   

)()()()(log)()()(

*

**

ξ

ξξξξξξ

ξξξξξξξξ

 
(129)

In last equation, variable x could be defined by *E x  if function 
dx

xd )(Φ  could be 

inverted: 
( )

( )−

−

Θ−

Θ−

=

*

,

,

de

ep
ξ

ξ

ξ ξ 1

1

)(  with )(1 ξ−Θ=x  and 
dx

xdx )()( Φ=Θ=ξ  
(130)

where: 

ξξξξ ξ dp
Ω

=
*

)(.  and 
Ω

−−=Φ
*

,log)( ξξ dex x  (131)

In previous chapters, a definition of Koszul Entropy * *( )x  through Legendre transform of  
Koszul-Vinberg characteristic function ( )x  has been given: 

*

* * *

,

( ) , ( )

with   ( ) log    x

x x x x

x e d x  (132)

where ( )x  could be interpreted as opposite of logarithm of Laplace transform [132,133]: 

logEntropy Legendre Laplace  (133)

that we will write synthetically as: 

Ent Leg Log Lapl  (134)

The function LaplLogLeg  is sometimes called “Cramer transform”. 
If we remark that the Legendre transform is closely related to the idempotent analogue of the 

Fourier transform [130,131,134–136], we could then give a new definition of Entropy. 
If we consider the semiring minR R  with the operations Min=⊕  and +=• . In 

minR R  the idempotent analogues of integration on RN is given by the formula: 
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( ) ( ) ( )
N

N x RR

I f f x dx Inf f x  (135)

Then, the Legendre transform is equivalent to the Fourier transform in , ,Min  algebra 

[130]: 

*
,( ) , ( ) , ( ) ( )Min

x
Sup x x x x dx Four x  (136)

The Legendre transform generates an idempotent version of harmonic analysis for the space of 
convex functions. We can then give a general definition of Entropy: 

( , ) ( , )MinEnt Four Log Lapl  (137)

We can also observe the following properties deduced from the Laplace and Legendre  
transforms’ characteristics: 

( ) ( ) ( )γμγμ EntEntEnt •=⊗  (138)

where * is the convolution operator and ⊗  the inf-convolution operator (see [130] for the definition 
of inf-convolution) defined by: 

x
f g z Inf f x g y x  (139)

with  f and g, two functions minR R . 

“La théorie cinétique des gaz laisse encore subsister bien des points embarrassants 
pour ceux qui sont accoutumés à la rigueur mathématique… L’un des points qui 
m’embarrassaient le plus était le suivant: il s’agit de démontrer que l’entropie va en 
diminuant, mais le raisonnement de Gibbs semble supposer qu’après avoir fait varier 
les conditions extérieures on attend que le régime soit établi avant de les faire varier à 
nouveau. Cette supposition est-elle essentielle, ou en d’autres termes, pourrait-on 
arriver à des résultats contraires au principe de Carnot en faisant varier les conditions 
extérieures trop vite pour que le régime permanent ait le temps de s’établir? ”  

Henri Poincaré « Réflexions sur la théorie cinétique des gaz », 1906 

[The kinetic theory of gases leaves awkward points for those who are accustomed to 
mathematical rigor … One of the points which embarrassed me most was the following 
one: it is a question of demonstrating that the entropy keeps decreasing, but the reasoning 
of Gibbs seems to suppose that having made vary the outside conditions we wait that the 
regime is established before making them vary again. Is this supposition essential, or in 
other words, we could arrive at opposite results to the principle of Carnot by making 
vary the outside conditions too fast so that the permanent regime has time to become 
established ?] 

Henri Poincaré “Reflection on The kinetic theory of gases”, 1906 
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“Quel est l'objet de l'art ? Si la réalité venait frapper directement nos sens et notre 
conscience, si nous pouvions entrer en communication immédiate avec les choses et 
avec nous-mêmes, je crois bien que l'art serait inutile, ou plutôt que nous serions tous 
artistes, car notre âme vibrerait alors continuellement à l'unisson de la nature. ” 

Henri Bergson, Le rire, p.115, Éd. P.U.F 

[What is the object of art? Could reality come into direct contact with sense and 
consciousness, could we enter into immediate communion with things and with 
ourselves, probably art would be useless, or rather we should all be artists, for then our 
soul would continually vibrate in perfect accord with nature.] 

Henri Bergson, Laughter 
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Appendix 

A1. Legendre Transform and Minimal Surface 

Laplace contribution to probability was around 1774 [137]. At almost the same period, in 1787, 
Adrien-Marie Legendre has introduced the “Legendre Transform” [138] to solve the Minimal Surface 
Problem equation introduced by Lagrange and partially solved by Gaspard Monge in 1784 [139]. In 
1768, Lagrange considered the variational problem of least area surface stretched across a given closed 
contour. Based on Euler-Lagrange equation, Lagrange has introduced the equation of Minimal Surface 

( )yxz , : 
2 2 2

2 2
2 21 2 1 0   with      and   d z d z d z dz dzq pq p p q

dx dxdy dy dx dy
 (140)

Lagrange has observed that affine functions , . .z x y a x b y c  are solutions of this equation 

and minimal surfaces are planes. 
Jean-Baptiste Marie Meusnier de La Place, a student of Monge, has observed that for this 

surface, two curvature radiuses are everywhere equal but directed in opposite direction, because 
first equation is equal to two times the mean curvature zH : 
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2 2 2
2 2

2 2

2 22 2

1 2 1
2

1 1 1

z

dz d z d z d zdz q pq p
d d dy dx dxdy dydxH
dx dydz dz dz dz dz

dx dy dx dy dx

3/222 dz
dy

 (141)

Gaspard Monge integrated this equation in [139] but with a non-rigorous approach and asked 
Legendre to find a more classical solution. For this task, Legendre has introduced a change of 
variable that is the nowadays well-known “Legendre transform”. Adrien-Marie Legendre said “J’y 
suis parvenu simplement par un changement de variables qui peut être utile dans d’autres 
occasions”(“I reached there simply by a change of variables which can be useful in other 
opportunities”). 

Legendre reduced the problem to solve to determine p and q as functions of x and y such that: 

2 2
. .    and   

1
p.dy q.dxp dx q dy

p q
 (142)

are exact differentials. If we set 2221 uqp =++ , then these other expressions are complete 
differentials: 

++
u
qdx

u
pdydqydpx ..   and   ..  (143)

Legendre considered x and y as functions of p and q: 

dq
dy

dp
dxddqydpx ωωω ===+    and      with   ..  (144)

If we then develop +
u
qdx

u
pdy .. , we have: 

( )[ ] ( )[ ] 3
2

3
2 .1.1

u
dqypqxp

u
dpxpqyq ++−++  (145)

That should be an exact differential. By replacing x and y, we have a new equation: 

( ) ( ) 01.21 2

2
2

2

2

2
2 =++++

dp
dp

dpdq
dpq

dq
dq ωωω  (146)

This new equation is very similar to the previous one, but simpler because it depends on p and q 
and not their partial differentials of first order. When the function  will be known, then functions 
x, y and z will be also defined according to p and q thanks to “Legendre transform”: 

dq
dy

dp
dx

qpyqxpyxz
ωω

ω

==

−+=

   and   with   

),(..),(
 (147)

About this Legendre transform, Darboux [140] gave an interpretation by Chasles “Ce qui revient 
suivant une remarque de M. Chasles, à substituer à la surface sa polaire réciproque par rapport à 
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un paraboloïde” [What is equivalent according to M. Chasles’s remark, to substitute for the 
surface its mutual polar with regard to a paraboloid]. This equation could be also written as 
classical “Legendre transform” with our previous notations: 

1

1

2 2

1

12

2

. ,

( , )
with      ,      and   

( , )

s Q Q Q

d
d dQ

Q p d dQ
z x y Q dq

s Q p q dsx
dQy ds
ds dQ

dQ

 (148)

In the following relation, we recover the definition of Entropy 
T

dQdQds == .β : 

=

=

==

=+

dQ
ds

dsdQ

dq
dy

dp
dx

ddqydpx

β

β
ωω

ω .

   and   

 ..
 (149)

The equation of the surface is characterized by the following equation: 

2 2 2 2
2.    or   2.

1 1 1
1

d
d Q d Qd H div div H

d dQ Qd
d

 (150) 

We can then observed that when 1Q ,
2

( ) 2.
1

d Q dQ I H
d dQ

. 

We can also characterized Entropy with this 2nd equation: 
2 2 2

2 2
2 12 2

2 1 2 1

( ) ( ) ( )1 2 . 1 0d s Q d s Q d s QQ pq Q
dQ dQ dQ dQ

 (151)

We can also find direct equations for x, y and z, based on “Legendre transform” and  
Equation (146): 

2 2 2
2 2

2 21 2 . 1 2 2 0d x d x d x dx dxq pq p q p
dq dpdq dp dp dq

 (152)

We have exactly same equations for y and z. 
Legendre then solved Equations (145) and (148), by determining two constants a and b given by 

double integral of the equation: 
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( ) ( ) 01..21 2222 =++−+ dppdqdppqdpq  (153)

By selecting p aq A  with a and A two constants. Previous equation gives 2 21 0a A . 
Then a will be let an arbitrary function and 21 aA −−±= . Two integrals of Equation (129) will be: 

2

2

1

1

p aq a aq A

p bq b bq B
 (154)

with a and b two arbitrary constants, roots of the following Equation: 
2 2 2

2

2

2

1 2 .. 1 0

2
1

with   
1
1

q v pq v p

pqa b
q

pab
q

 (155)

Equations (145) and (148) could be then simplified: 

( )

0

0..

2

2

=

=+−−

dadb
xd

db
d

A
B

da
d

B
A

dadb
dba ωωω

 (156)

Then Legendre deduced that three coordinates could be given by two arbitrary functions: 

+−=

−+−=

+=

db
db
dBda

da
dAz

db
db

da
day

db
d

da
dx

2

2

2

2 ψϕ

ψψϕϕ

ψϕ

 (157)

This is the integral solution of “Minimal surface” Lagrange equation (Legendre recovered the 
solution given by Monge in 1784). 

A2. Gromov Inner Product 

As other generalization of inner product, we can consider for specific case CAT(-1)-
space[141,142] (generalization of simply connected Riemannian manifold of negative curvature 
lower than unity) or for an Homogeneous Symmetric Bounded domains, a “generative” Gromov 
Inner Product between points y–z (relatively to x) that is defined by the distance [143,144]: 

1, ( , ) ( , ) ( , )
2x

y z d x y d x z d y z  (158)

with d(.,.) the distance in CAT( 1). This Gromov Inner Product is illustrated in Figure 6. 
Intuitively, this inner product measures the distance of x to the geodesics between y to z. This Inner 
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product could be also defined for points on the Shilov Boundary of the domain through Busemann 
distance: 

( )),(),(
2
1', ' pxBpxB

x ξξξξ +=  (159)

 

Figure 6. Gromov Inner product in homogeneous bounded domains and its Shilov 
boundary. 

Independent of p, where ( , ) ( ) ( )
t

B x y Lim x r t y r t  is the horospheric distance, from x 

to y relatively to , with ( )r t  geodesic ray. We have the property that: 

x
y
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yyLim ',',
'' ξ

ξ
ξξ

→
→

=  (160)

We can then define a visual metric on the Shilov boundary by: 
, ', '    if   '

, ' 0   otherwise

x
x

x

d e

d
 (161)

We can then define the characteristic function according to the origin 0: 

0

*

,( ) log xx e d or 
*

1 (0, ) (0, ) ( , )
2( ) log

d x d d x
x e d  (162)

and: 

* * * * *

0

1( ) , ( ) (0, ) (0, ) ( , ) ( )
2

x x x x d x d x d x x x  (163)

( ) ( ))(2),0()(2),0(),( **** xxdxxdxxd Φ−+Φ−=  (164)

with the center of gravity: 
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All these relations are also true on the Shilov Boundary: 

( )
Ω∂Ω∂

− −=−=Φ
**

0 '.',log'log)( 0
', ξξξξξ ξξ ddde  (166)

where ( )
Ω∂ *

'.',0 ξξξ dd  is the functional of Busemann barycenter on the Shilov Boundary *Ω∂  

(existence and unicity of this barycenter have been proved by Cartan [14] for Cartan-Hadamard 
Spaces).  

A3. The Cohomology of a Dynamical Group 

In the following, we give some details of Souriau development about the Moment of the G 
action (see Figure 7) and the Cohomology of a dynamical group (see Figure 8). Other details about 
Symplectic Geometry could be found in [145] or [146]. 

 

Figure 7. Moment of the G action. 

 

Figure 8. The Cohomology of a dynamical group. 
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If G is a dynamical group of a symplectic manifoldV , torsor  is called a moment of the  
G-action, if there is a differential map x  from V  to *g  such that:  

( ) [ ]ZdxZV .)( μσ −≡  (167)

To every torsor , there corresponds a field x  of 1-forms (Maurer-Cartan forms) on G  
which is invariant under right translation and which takes the value μ  when x  is the identity 
element: 

ωσ dV =  (168)

Using the moment of the G action, Souriau has introduced the following theorem on the 
Cohomology of a dynamical group: 
Theorem. Let V  be a connected symplectic manifold and let G  be a dynamical group of V  
possessing a moment . Finally, let ψ  denote the map x  from V  to the space *g  of torsor of 
G: 

There exists a differential map : G *g : 

( ) ( ))()()( xaxaa V ψψθ *g
−≡  (169)

The derivative ))(( eDf θ=  is a 2-form on the Lie algebra g  of G : 

[ ]( ) [ ]( ) [ ]( ) 0',)''(,'')'('',')( ≡++ ZZZfZZZfZZZf  (170)

Then, the following identities hold: 
'( ) ( ) . , ' ( )( ')V VZ x Z x Z Z f Z Z  (171)

( ) ( ) ( ) )().()()( ZfZadxxZxD V +≡ψψ  (172)
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The Entropy-Based Quantum Metric
Roger Balian

Abstract: The von Neumann entropy S(D̂) generates in the space of quantum density matrices

D̂ the Riemannian metric ds2 = −d2S(D̂), which is physically founded and which characterises

the amount of quantum information lost by mixing D̂ and D̂ + dD̂. A rich geometric structure is

thereby implemented in quantum mechanics. It includes a canonical mapping between the spaces

of states and of observables, which involves the Legendre transform of S(D̂). The Kubo scalar

product is recovered within the space of observables. Applications are given to equilibrium and non

equilibrium quantum statistical mechanics. There the formalism is specialised to the relevant space of

observables and to the associated reduced states issued from the maximum entropy criterion, which

result from the exact states through an orthogonal projection. Von Neumann’s entropy specialises

into a relevant entropy. Comparison is made with other metrics. The Riemannian properties of the

metric ds2 = −d2S(D̂) are derived. The curvature arises from the non-Abelian nature of quantum

mechanics; its general expression and its explicit form for q-bits are given, as well as geodesics.

Reprinted from Entropy. Cite as: Balian, R. The Entropy-Based Quantum Metric. Entropy 2014, 16,

3878–3888.

1. A Physical Metric for Quantum States

Quantum physical quantities pertaining to a given system, termed as “observables” Ô, behave

as non-commutative random variables and are elements of a C*-algebra. We will consider below

systems for which these observables can be represented by n-dimensional Hermitean matrices in a

finite-dimensional Hilbert space H. In quantum (statistical) mechanics, the “state” of such a system

encompasses the expectation values of all its observables [1]. It is represented by a density matrix

D̂, which plays the rôle of a probability distribution, and from which one can derive the expectation

value of Ô in the form

< Ô >= Tr D̂Ô = (D̂; Ô) . (1)

Density matrices should be Hermitean (< Ô > is real for Ô = Ô†), normalised (the expectation

value of the unit observable is Tr D̂ = 1) and non-negative (variances < Ô2 > − < Ô >2 are

non-negative). They depend on n2 − 1 real parameters. If we keep aside the multiplicative structure

of the set of operators and focus on their linear vector space structure, Equation (1) appears as a linear

mapping of the space of observables onto real numbers. We can therefore regard the observables and

the density operators D̂ as elements of two dual vector spaces, and expectation values (1) appear as

scalar products.

It is of interest to define a metric in the space of states. For instance, the distance between an

exact state D̂ and an approximation D̂app would then characterise the quality of this approximation.

However, all physical quantities come out in the form (1) which lies astride the two dual spaces of

observables and states. In order to build a metric having physical relevance, we need to rely on

another meaningful quantity which pertains only to the space of states.
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We note at this point that quantum states are probabilistic objects that gather information about

the considered system. Then, the amount of missing information is measured by von Neumann’s

entropy

S(D̂) ≡ −Tr D̂ ln D̂ . (2)

Introduced in the context of quantum measurements, this quantity is identified with the

thermodynamic entropy when D̂ is an equilibrium state. In non-equilibrium statistical mechanics,

it encompasses, in the form of “relevant entropy” (see Section 5 below), various entropies defined

through the maximum entropy criterion. It is also introduced in quantum computation. Alternative

entropies have been introduced in the literature, but they do not present all the distinctive and natural

features of von Neumann’s entropy, such as additivity and concavity.

As S(D̂) is a concave function, and as it is the sole physically meaningful quantity apart from

expectation values, it is natural to rely on it for our purpose. We thus define [2] the distance ds

between two neighbouring density matrices D̂ and D̂ + dD̂ as the square root of

ds2 = −d2S(D̂) = Tr dD̂d ln D̂ . (3)

This Riemannian metric is of the Hessian form since the metric tensor is generated by taking second

derivatives of the function S(D̂) with respect to the n2 − 1 coordinates of D̂. We may take for such

coordinates the real and imaginary parts of the matrix elements, or equivalently (Section 6) some

linear transform of these (keeping aside the norm Tr D̂ = 1).

2. Interpretation in the Context of Quantum Information

The simplest example, related to quantum information theory, is that of a q-bit (two-level system

or spin 1
2
) for which n = 2. Its states, represented by 2 × 2 Hermitean normalised density matrices

D̂, can conveniently be parameterised, on the basis of Pauli matrices, by the components rμ =

D12 +D21, i(D12 −D21), D11 −D22 (μ = 1, 2, 3) of a 3-dimensional vector r lying within the unit

Poincaré–Bloch sphere (r ≤ 1). From the corresponding entropy

S =
1 + r

2
ln

2

1 + r
+

1− r

2
ln

2

1− r
, (4)

we derive the metric

ds2 =
1

1− r2

(
r · dr
r

)2

+
1

2r
ln

1 + r

1− r

∥∥∥∥r× dr

r

∥∥∥∥2 , (5)

which is a natural Riemannian metric for q-bits, or more generally for positive 2 × 2 matrices. The

metric tensor characterizing (5) diverges in the vicinity of pure states r = 1, due to the singularity of

the entropy (2) for vanishing eigenvalues of D̂. However, the distance between two arbitrary (even

pure) states D̂′ and D̂′′ measured along a geodesic is always finite. We shall see (Equation (29)) that

for n = 2 the geodesic distance s between two neighbouring pure states D̂′ and D̂′′, represented by

unit vectors r′ and r′′ making a small angle δϕ ∼ |r′ − r′′|, behaves as δs2 ∼ δϕ2 ln(4
√
π/δϕ). The

singularity of the metric tensor manifests itself through this logarithmic factor.
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Identifying von Neumann’s entropy to a measure of missing information, we can give a simple

interpretation to the distance between two states. Indeed, the concavity of entropy expresses that

some information is lost when two statistical ensembles described by different density operators

merge. By mixing two equal size populations described by the neighbouring distributions D̂′ =

D̂ + 1
2
δD̂ and D̂′′ = D̂ − 1

2
δD̂ separated by a distance δs, we lose an amount of information given

by

ΔS ≡ S
(
D̂
)
− S(D̂′) + S(D̂′′)

2
∼ δs2

8
, (6)

and thereby directly related to the distance δs defined by (3). The proof of this equivalence relies on

the expansion of the entropies S(D̂′) and S(D̂′′) around D̂, and is valid when Tr δD̂2 is negligible

compared to the smallest eigenvalue of D̂. If D̂′ and D̂′′ are distant, the quantity 8ΔS cannot be

regarded as the square of a distance that would be generated by a local metric. The equivalence

(6) for neighbouring states shows that ds2 is the metric that is the best suited to measure losses of

information my mixing.

The singularity of δs2 at the edge of the positivity domain of D̂ may suggest that the result (6)

holds only within this domain. In fact, this equivalence remains nearly valid even in the limit of

pure states because ΔS itself involves a similar singularity. Indeed, if the states D̂′ = |ψ′ >< ψ′|
and D̂′′ = |ψ′′ >< ψ′′| are pure and close to each other, the loss of information ΔS behaves as

8ΔS ∼ δϕ2 ln(4/δϕ) where δϕ2 ∼ 2Tr δD2. This result should be compared to various geodesic

distances between pure quantum states, which behave as δs2 ∼ δϕ2 ln(4
√
π/δϕ for the present

metric, and as δs2BH = 4δs2FS ∼ δϕ2 ∼ Tr(D̂′ − D̂′′)2 for the Bures – Helstrom and the quantum

Fubini – Study metrics, respectively (see Section 7; these behaviours hold not only for n = 2 but

for arbitrary n since only the space spanned by |ψ′ > and |ψ′′ > is involved). Thus, among these

metrics, only ds2 = −d2S can be interpreted in terms of information loss, whether the states D̂′ and

D̂′′ are pure or mixed.

At the other extreme, around the most disordered state D̂ = Î/n, in the region ‖ nD̂ − Î ‖� 1,

the metric becomes Euclidean since ds2 = Tr dD̂d ln D̂ ∼ nTr(dD̂)2 (for n = 2, ds2 = dr2). For

a given shift dD̂, the qualitative change of a state D̂, as measured by the distance ds, gets larger and

larger as the state D̂ becomes purer and purer, that is, when the information contents of D̂ increases.

3. Geometry of Quantum Statistical Mechanics

A rich geometric structure is generated for both states and observables by von Neumann’s entropy

through introduction of the metric ds2 = −d2S. Now, this metric (3) supplements the algebraic

structure of the set of observables and the above duality between the vector spaces of states and of

observables, with scalar product (1). Accordingly, we can define naturally within the space of states

scalar products, geodesics, angles, curvatures.

We can also regard the coordinates of dD̂ and d ln D̂ as covariant and contravariant components

of the same infinitesimal vector (Section 6). To this aim, let us introduce the mapping

D̂ ≡ eX̂

Tr eX̂
(7)
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between D̂ in the space of states and X̂ in the space of observables. The operator X̂ appears as a

parameterisation of D̂. (The normalisation of D̂ entails that X̂ , defined within an arbitrary additive

constant operator X0 Î , also depends on n2 − 1 independent real parameters.) The metric (3) can

then be re-expressed in terms of X̂ in the form

ds2 = Tr dD̂dX̂ = Tr

∫ 1

0

dξD̂e−ξX̂dX̂eξX̂dX̂ − (Tr D̂dX̂)2 = d2 ln Tr eX̂ = d2F , (8)

where we introduced the function

F (X̂) ≡ ln Tr eX̂ (9)

of the observable X̂(The addition of X0Î to X̂ results in the addition of the irrelevant constant X0

to F ). This mapping provides us with a natural metric in the space of observables, from which we

recover the scalar product between dX̂1 and dX̂2 in the form of a Kubo correlation in the state D̂.

The metric (8) has been quoted in the literature under the names of Bogoliubov–Kubo–Mori.

4. Covariance and Legendre Transformation

We can recover the above geometric mapping (7) between D̂ and X̂ , or between the covariant

and contravariant coordinates of dD̂, as the outcome of a Legendre transformation, by considering

the function F (X̂). Taking its differential dF = Tr eX̂dX̂/Tr eX̂ , we identify the partial derivatives

of F (X̂) with the coordinates of the state D̂ = eX̂/Tr eX̂ , so that D̂ appears as conjugate to X̂

in the sense of Legendre transformations. Expressing then X̂ as function of D̂ and inserting into

F − Tr D̂X̂ , we recognise that the Legendre transform of F (X̂) is von Neumann’s entropy F −
Tr D̂X̂ = S(D̂) = −Tr D̂ ln D̂. The conjugation between D̂ and X̂ is embedded in the equations

dF = Tr D̂dX̂ ; dS = −Tr X̂dD̂ . (10)

Legendre transformations are currently used in equilibrium thermodynamics. Let us show that

they come out in this context directly as a special case of the present general formalism. The entropy

of thermodynamics is a function of the extensive variables, energy, volume, particle numbers, etc.

Let us focus for illustration on the energy U , keeping the other extensive variables fixed. The

thermodynamic entropy S(U), a function of the single variable U , generates the inverse temperature

as β = ∂S/∂U . Its Legendre transform is the Massieu potential F (β) = S − βU . In order to

compare these properties with the present formalism, we recall how thermodynamics comes out in

the framework of statistical mechanics. The thermodynamic entropy S(U) is identified with the

von Neumann entropy (2) of the Boltzmann–Gibbs canonical equilibrium state D̂, and the internal

energy with U = Tr D̂Ĥ . In the relation (7), the operator X̂ reads X̂ = −βĤ (within an irrelevant

additive constant). By letting U or β vary, we select within the spaces of states and of observables a

one-dimensional subset. In these restricted subsets, D̂ is parameterised by the single coordinate U ,

and the corresponding X̂ by the coordinate −β.

By specialising the general relations (10) to these subsets, we recover the thermodynamic relations

dF = −Udβ and dS = βdU . We also recover, by restricting the metric (3) or (8) to these subsets,

the current thermodynamic metric ds2 =−(∂2S/∂U2)dU2 =−dUdβ.
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More generally, we can consider the Boltzmann–Gibbs states of equilibrium statistical mechanics

as the points of a manifold embedded in the full space of states. The thermodynamic extensive

variables, which parameterise these states, are the expectation values of the conserved macroscopic

observables, that is, they are a subset of the expectation values (1) which parameterise arbitrary

density operators. Then the standard geometric structure of thermodynamics simply results from the

restriction of the general metric (3) to this manifold of Boltzmann–Gibbs states. The commutation

of the conserved observables simplifies the reduced thermodynamic metric, which presents the same

features as a Fisher metric (see Section 6).

5. Relevant Entropy and Geometry of the Projection Method

The above ideas also extend to non-equilibrium quantum statistical mechanics [2–4]. When

introducing the metric (3), we indicated that it may be used to estimate the quality of an

approximation. Let us illustrate this point with the Nakajima–Zwanzig–Mori–Robertson projection

method, best introduced through maximum entropy. Consider some set {Âk} of “relevant

observables”, whose time-dependent expectation values ak ≡ < Âk > = Tr D̂Âk we wish to follow,

discarding all other variables. The exact state D̂ encodes the variables {ak} that we are interested in,

but also the expectation values (1) of the other observables that we wish to eliminate. This elimination

is performed by associating at each time with D̂ a “reduced state” D̂R which is equivalent to D̂ as

regards the set ak = Tr D̂RÂk, but which provides no more information than the values{ak}. The

former condition provides the constraints < Âk > = ak, and the latter condition is implemented

by means of the maximum entropy criterion: One expresses that, within the set of density matrices

compatible with these constraints, D̂R is the one which maximises von Neumann’s entropy (2), that

is, which contains solely the information about the relevant variables ak. The least biased state D̂R

thus defined has the form D̂R = eX̂R/Tr eX̂R , where X̂R ≡
∑

k λkÂk involves the time-dependent

Lagrange multipliers λk, which are related to the set ak through Tr D̂RÂk = ak.

The von Neumann entropy S(D̂R) ≡ SR{ak} of this reduced state D̂R is called the “relevant

entropy” associated with the considered relevant observables Âk. It measures the amount of missing

information, when only the values {ak} of the relevant variables are given. During its evolution, D̂

keeps track of the initial information about all the variables < Ô > and its entropy S(D̂) remains

constant in time. It is therefore smaller than the relevant entropy S(D̂R) which accounts for the

loss of information about the irrelevant variables. Depending on the choice of relevant observables

{Âk}, the corresponding relevant entropies SR{ak} encompass various current entropies, such as the

non-equilibrium thermodynamic entropy or Boltzmann’s H-entropy.

The same structure as the one introduced above for the full spaces of observables and states is

recovered in this context. Here, for arbitrary values of the parameters λk, the exponents X̂R =∑
k λkÂk constitute a subspace of the full vector space of observables, and the parameters {λk}

appear as the coordinates of X̂R on the basis {Âk}. The corresponding states D̂R, parameterised by

the set {ak}, constitute a subset of the space of states, the manifold R of “reduced states”(Note that

this manifold is not a hyperplane, contrary to the space of relevant observables; it is embedded in the
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full vector space of states, but does not constitute a subspace). By regarding SR{ak} as a function

of the coordinates {ak}, we can define a metric ds2 = −d2SR{ak} on the manifold R, which is the

restriction of the metric (3).

Its alternative expression ds2 =
∑

k dakdλk = d2FR{λk}, where FR{λk} ≡ ln Tr exp
∑

k λkÂk, is

a restriction of (8). The correspondence between the two parameterisations {ak} and {λk} is again

implemented by the Legendre transformation which relates SR{ak} and FR{λk}.
The projection method relies on the mapping D̂ �→ D̂R which associates D̂R to D̂. It consists

in replacing the Liouville–von Neumann equation of motion for D̂ by the corresponding dynamical

equation for D̂R on the manifold R, or equivalently for the coordinates {ak} or for the coordinates

{λk}, a programme that is in practice achieved through some approximations. This mapping is

obviously a projection in the sense that D̂ �→ D̂R �→ D̂R, but moreover the introduction of the metric

(3) shows that the vector D̂ − D̂R in the space of states is perpendicular to the manifold R at the

point D̂R. This property is readily shown by writing, in this metric, the scalar product Tr dD̂ dX̂ ′

of the vector dD̂ = D̂ − D̂R by an arbitrary vector dD̂′ in the tangent plane of R. The latter

is conjugate to any combination dX̂ ′ of observables Âk, and this scalar product vanishes because

Tr D̂Âk = Tr D̂RÂk. Thus the mapping D̂ �→ D̂R appears as an orthogonal projection, so that

the relevant state D̂R associated with D̂ may be regarded as its best possible approximation on the

manifoldR.

6. Properties of the Metric

The metric tensor can be evaluated explicitly in a basis where the matrix D̂ is diagonal. Denoting

by Di its eigenvalues and by dDij the matrix elements of its variations, we obtain from (3)

ds2 = Tr

∫ ∞

0

dξ

(
dD̂

D̂ + ξ

)2

=
∑
ij

lnDi − lnDj

Di −Dj

dDijdDji . (11)

(For Di = Dj ,whether or not i = j, the ratio is defined as 1/Di by continuity.) In the same basis, the

form (8) of the metric reads

ds2 =
1

Z

∑
ij

eXi − eXj

Xi −Xj

dXijdXji −
(∑

i e
XidXii

Z

)2

, (12)

with Z =
∑

i e
Xi(For Xi = Xj , the ratio is eXi). The singularity of the metric (11) in the vicinity

of vanishing eigenvalues of D̂, in particular near pure states (end of Section 2), is not apparent in the

representation (12) of this metric, because the mapping from D̂ to X̂ sends the eignevalue Xi to−∞
when Di tends to zero.

Let us compare the expression (11) with the corresponding classical metric, which is obtained

by starting from Shannon’s entropy instead of von Neumann’s entropy. For discrete probabilities pi,

we have then S{pi} = −
∑

i pi ln pi and hence the same definition ds2 = −d2S{pi} as above of an

entropy-based metric yields ds2 =
∑

i dp
2
i /pi, which is identified with the Fisher information metric.

The present metric thus appears as the extension to quantum statistical mechanics of the Fisher metric
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when the latter is interpreted in terms of entropy. In fact, the terms of (11) which involve the diagonal

elements i = j of the variations dD̂ reduce to dD2
ii/Di. This result was expected since density

matrices behave as probability distributions if both D̂ and dD̂ are diagonal.

Let us more generally consider in (11), instead of solely diagonal variations dDii, variations dDij

with indices i and j such that |Di −Dj| � Di+Dj . The expansion of Di and Dj around 1
2
(Di+Dj)

in the corresponding ratios of (11) yields (lnDi− lnDj)/(Di−Dj) ∼ 2/(Di+Dj). The considered

terms of (11) are therefore the same as in the Bures–Helstrom metric

ds2BH =
∑
ij

2

Di +Dj

dDijdDji , (13)

introduced long ago as an extension to matrices of the Fisher metric [5]. We thus recover this

Bures–Helstrom metric as an approximation of the present entropy-based metric ds2 = −d2S(D̂).

For n = 2, ds2BH is obtained from the expression (5) of ds2 by omitting the factor tanh−1 r/r entering

the second term.

In order to express the properties of the Riemannian metric (3) in a general form,

which will exhibit the tensor structure, we use a Liouville representation. There, the

observables Ô = OμΩ̂
μ, regarded as elements of a vector space, are represented by

their coordinates Oμ on a complete basis Ω̂μ of n2 observables. The space of states is

spanned by the dual basis Σ̂μ, such that Tr Ω̂νΣ̂μ = δνμ, and the states D̂ = DμΣ̂μ are

represented by their coordinates Dμ. Thus, the expectation value (1) is the scalar product

DμOμ. In the matrix representation which appears as a special case, μ denotes a pair of

indices i, j, Ω̂μ stands for | j >< i |, Σ̂μ for | i >< j |, Oμ denotes the matrix element Oji and Dμ

the element Dij . For the q-bit (n = 2) considered in Section 2, we have chosen the Pauli operators σ̂μ

as basis Ω̂μ for observables, and 1
2
σ̂μ as dual basis Σ̂μ for states, so that the coordinates Dμ = Tr D̂Ω̂μ

of D̂ = 1
2
(Î + rμσ̂μ) are the components rμ of the vector r (The unit operator Î is kept aside since

D̂ is normalised and since constants added to X̂ are irrelevant). The function F{X} = lnTr eX̂

of the coordinates Xμ of the observable X̂ , and the von Neumann entropy S{D} as function of the

coordinates Dμ of the state D̂, are related by the Legendre transformation F = S +DμXμ, and the

relations (10) are expressed by Dμ = ∂F/∂Xμ, Xμ = −∂S/∂Dμ. The metric tensor is given by

gμν =
∂2F

∂Xμ∂Xν

, gμν = − ∂2S

∂Dμ∂Dν
, (14)

and the correspondence issued from (7) between covariant and contravariant infinitesimal variations

of X̂ and D̂ is implemented as dDμ = gμνdXν , dXμ = gμνdD
ν .

These expressions exhibit the Hessian nature of the metric. This property simplifies the

expression of the Christoffel symbol, which reduces to

Γμνρ = −1

2

∂3S

∂Dμ∂Dν∂Dρ
, (15)

and which provides a parametric representation D̂(t) of the geodesics in the space of states through

d2Dμ

dt2
+ gμσΓσνρ

dDν

dt

dDρ

dt
= 0 . (16)
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Then, the Riemann curvature tensor comes out as

Rμρ νσ = gξζ(ΓμσξΓνρζ − ΓμνξΓρσζ) , (17)

the Ricci tensor and the scalar curvature as

Rμν = gρσRμρ νσ, R = gμνRμν , (18)

We have noted that the classical equivalent of the entropy-based metric ds2 = −d2S is the Fisher

metric
∑

i dp
2
i /pi, which as regards the curvature is equivalent to a Euclidean metric. While the

space of classical probabilities is thus flat, the above equations show that the space of quantum states

is curved. This curvature arises from the non-commutation of the observables, it vanishes for the

completely disordered state D̂ = Î/n. Curvature can thus be used as a measure of the degree of

classicality of a state.

7. Geometry of the Space of q-Bits

In the illustrative example of a q-bit, the operator X̂ = χμσ̂
μ associated with D̂ is parameterised

by the 3 components of the vector χμ (μ = 1, 2, 3), related to r by χ = tanh−1 r and χμ/χ = rμ/r.

The metric tensor given by (5) is expressed as

gμν = Krμrν +
χ

r
δμν , K ≡ 1

r

d

dr

χ

r
=

1

r2

(
1

1− r2
− χ

r

)
, (19)

gμν = (1− r2)pμν +
r

χ
qμν .

(We have defined rμ = rμ, δμν = δμν = δμν so as to introduce the projectors rμrν/r2 ≡ pμν ≡
δμν− qμν in the Euclidean 3-dimensional space, and thus to simplify the subsequent calculations.) In

polar coordinates r = (r, θ, ϕ), the infinitesimal distance takes the form

ds2 = drdχ+ rχ(dθ2 + sin2 θdϕ2) . (20)

We determine from (15) and (19) the explicit form

Γμνρ =
K

2
(rμδνρ + rνδμρ + rρδμν) +

1

2r

dK

dr
rμrνrρ (21)

of the Christoffel symbol. By raising its first index with gμν and using polar coordinates, we obtain

from (16) the equations of geodesics for n = 2. Within the Poincaré–Bloch sphere the geodesics

are deduced by rotations from a one-parameter family of curves which lie in the θ = 1
2
π, |ϕ| ≤ 1

2
π

half-plane and which are symmetric with respect to the ϕ = 0 axis. This family is characterized by

the equations (where χ = tanh−1 r):

d2r

dt2
+

r

1− r2

(
dr

dt

)2

− r

2

[
1 +

χ

r

(
1− r2

)](dϕ
dt

)2

= 0 , (22)

d2ϕ

dt2
+

1

r

dr

dt

dϕ

dt
+

1

χ

dχ

dt

dϕ

dt
= 0 , (23)
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and the boundary conditions at t = 0:

r (0) = a , ϕ (0) = 0 ,
dr (0)

dt
= 0 ,

dϕ (0)

dt
=

1

k
, k2 = a tanh−1 a . (24)

Equation (23) provides, using the boundary conditions (24):

dϕ

dt
=

k

rχ
. (25)

Insertion of (25) into (22) gives rise to an equation for r (t), which can be integrated by regarding t

as a function of ζ = arcsin r. One obtains:(
dr

dt

)2

=
(
1− r2

)(
1− k2

rχ

)
. (26)

The scale of t has been fixed by relating to r (0) the boundary condition (24) for dϕ (0) /dt, a choice

which ensures that ds2 = drdχ+rχdϕ2 = dt2, and hence that the parameter t measures the distance

along geodesics.

For k = 0, we obtain r = |sin t|, ϕ = ±π/2. Thus, the longest geodesics are the diameters of

the Poincaré–Bloch sphere. We find the value π for their “length”, that is, for the geodesic distance

between two orthogonal pure states. At the other extreme, when the middle point r = a, ϕ = 0 of

a geodesic lies close to the surface r = 1 of the sphere, the asymptotic form of the equation (26) is

solved as

t = ±2k√πe−k2 erf ξ , ξ =

√
1

2
ln

1− a

1− r
, k2 =

1

2
ln

2

1− a
(27)

(by taking ξ as variable instead of r). The determination of the explicit equations of such short

geodesic curves is achieved by integrating (25) into

ϕ =
t

k
= ±2√πe−k2 erf ξ . (28)

From (27) and (28) we can determine the geodesic distance between two neighbouring

pure states D̂′ = |ψ′ >< ψ′| and D̂′′ = |ψ′′ >< ψ′′| represented by the points

rmax = 1, ϕmax = ±1
2
δϕ with δϕ small. At these two points, we have

ξ → ∞, erf ξ = 1, and this determines k in terms of 1
2
δϕ through (28).

The length of the geodesic that joins them, given by (27), is:

δs2 = δϕ2 ln
4
√
π

δϕ
, δϕ = arccos |< ψ′ | ψ′′ >| . (29)

Thus, in spite of its singularity for r = 1, the present 3-dimensional metric (5) in the space r,

θ, ϕ defines distances between pure states represented by points on the surface r = 1 of the

Poincaré–Bloch sphere. However, It should be noted that the presence of the logarithmic factor

in (29) forbids such distances to be generated by a 2-dimensional metric in the space θ, ϕ. In fact,

the distance (29) is measured along a geodesic that penetrates the sphere r = 1, because no geodesic

is tangent to the surface of this sphere nor lies on its surface.
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In contrast, all geodesics produced by the Bures–Helstrom metric are tangent to the surface of

the sphere, or are its great circles. They are given by Equations (25) and (26), where χ is replaced by

r and k by a; the solution of these equations provides the ellipses

r cosϕ = a cos t , r sinϕ = sin t . (30)

Here as above, the largest distance π is reached for orthogonal pure states represented by opposite

points on the sphere, but now a peculiarity occurs. Whereas the metric ds2 = −d2S produces a

single geodesic, the diameter joining these two points (with “length” π), the Bures metric produces

a double infinity of geodesics, the half-ellipses (30) having as long axis this diameter, and having

all the same “length” π. Other pairs of pure states are joined by geodesics which are arcs of great

circles, and their Bures distance δsBH = δϕ is identified with the ordinary length of the arc. Here

for n = 2 as in the general case, the 3-dimensional Bures–Helstrom metric admits a restriction to

pure states generated by a 2-dimensional metric, which is identified with the quantum Fubini–Study

metric, itself defined only for pure states by sFS = arccos |< ψ′ | ψ′′ >| = 1
2
sBH.

Returning to the metric ds2 = d2S, the Riemann curvature is obtained from (17) as

Rμ
ρ νσ =

K

4

[
(r2 +

r

χ
− 1)(qμσqνρ − qμνqρσ) + (r2 − r

χ
+ 1)(pμσqνρ − pμνqρσ) (31)

+
r

χ

1

1− r2
(r2 − r

χ
+ 1)(qμσpνρ − qμνpρσ)

]
.

Contracting with gρσ the indices of (30) as in (18), we finally derive the Ricci curvature

Rμ
ν = −Kr

2χ

(
r2δμν +

χ− r

χ
pμν

)
, (32)

and the scalar curvature

R = −Kr

2χ

(
3r2 +

χ− r

χ

)
. (33)

Both are negative in the whole Poincaré sphere. In the limit r → 0, the curvature R vanishes as

R ∼ −10
9
r2, as expected from the general argument of Section 2: a weakly polarised spin behaves

classically. At the other extreme r → 1, R behaves as R ∼ −2 [(1− r) | ln(1− r) |]−1
; it diverges,

again as expected: pure states have the largest quantum nature.

The metric ds2 = −d2S, introduced above in the context of quantum mechanics for mixed states

(and their pure limit) and information theory, might more generally be useful to characterise distances

in spaces of positive matrices.
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Geometry of Fisher Information Metric and the Barycenter
Map

Mitsuhiro Itoh and Hiroyasu Satoh

Abstract: Geometry of Fisher metric and geodesics on a space of probability measures defined on

a compact manifold is discussed and is applied to geometry of a barycenter map associated with

Busemann function on an Hadamard manifold X . We obtain an explicit formula of geodesic and

then several theorems on geodesics, one of which asserts that any two probability measures can

be joined by a unique geodesic. Using Fisher metric and thus obtained properties of geodesics,

a fibre space structure of barycenter map and geodesical properties of each fibre are discussed.

Moreover, an isometry problem on an Hadamard manifold X and its ideal boundary ∂X—for a

given homeomorphism Φ of ∂X find an isometry of X whose ∂X-extension coincides with Φ—is

investigated in terms of the barycenter map.

Reprinted from Entropy. Cite as: Itoh, M.; Satoh, H. Geometry of Fisher Information Metric and the

Barycenter Map. Entropy 2015, 17, 1814–1849.

1. Introduction

The aim of this article is to deal with two subjects related with information geometry. One is

Fisher metric G defined on a space P(M) of probability measures having continuous positive density

function over a connected, compact manifold M , and another one is barycenter map from P(∂X) to

an Hadamard manifold X , where ∂X is the ideal boundary of X . This article is an extended version

of [1] presented at MaxEnt 2014, Amboise, France.

The Fisher metric G, remarkably important in information geometry, is defined in a natural way.

The metric G is push-forward invariant, and has an explicit formula of Levi–Civita connection and

its sectional curvature is constant 1/4, as shown in [2] by T. Friedrich.

Before introducing main results, we will explain motivation and background of our study.

An n-dimensional Hadamard manifold (X, g) is diffeomorphic to Rn, and hence to an open ball

Dn, whose actual boundary is Sn−1. X admits also the ideal boundary ∂X as a quotient space

of oriented geodesics on X . Then, we are able to consider Dirichlet problem at boundary ∂X;

given a f ∈ C0(∂X), find a solution u = u(x) on X satisfying Δu = 0, u|∂X = f . Using

the fundamental solution P = P (x, θ), called Poisson kernel, when its existence is guaranteed, the

solution is described as

u(x) =

∫
θ∈∂X

P (x, θ) dθ, x ∈ X. (1)

Refer to [3] for precise definition of Poisson kernel. We obtain then a probability measure P (x, θ)dθ

on ∂X parametrized in x ∈ X and have a map, called Poisson kernel map Θ : X → P(∂X).
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Theorem 1 ([4–6]). Let (X, g) be an n-dimensional Damek-Ricci space. Then the map Θ is
homothetic with respect to the Fisher metric G and g; Θ∗G = Q

n
g where Q is volume entropy of

(X, g). Further Θ is a harmonic map.

Here, for volume entropy Q refer to §4. The quantity Q is an invariant of Riemannian geometry

which is closely related to the topological entropy of geodesic flow ([7,8]). Refer to [9] with respect

to volume entropy treated in a framework of information geometry.

In the theorem a Damek-Ricci space is a solvable Lie group of a left invariant metric, one

dimensional extension of a generalized Heisenberg group. Refer to [10] for details. A Damek-Ricci

space is a harmonic, Einstein Hadamard manifold and any rank one symmetric space of non-compact

type, namely hyperbolic spaces over the real numbers R, the complex numbers C, the quaternions

H and 16-dimensional one over Cayley numbers O are also Damek-Ricci spaces. With respect to

Theorem 1, we have the following theorem.

Theorem 2 ([5]). Let (X, g) be an Hadamard manifold which is equipped with Poisson kernel
P (x, θ). Assume that the map Θ : X → P(∂X) is homothetic; Θ∗G = C g, C > 0, and harmonic
with respect to the metrics G and g. Then (X, g) is asymptotically harmonic and satisfies visibility
axiom. Moreover, C = Q/n and the Poisson kernel has the form P (x, θ) = exp{−QBθ(x)} in
terms of Busemann function Bθ on X .

The terminology with respect to asymptotical harmonicity, visibility axiom and Busemann

function will be explained in the subsequent sections.

Remark that the equality C = Q/n is derived from asymptotical formula related with mean

curvature of geodesic spheres and mean curvature of corresponding horospheres, level hypersurfaces

of Busemann function ([11]).

With respect to these theorems we are interested in characterization of Damek-Ricci space from

information geometry, especially from a viewpoint of Fisher metric G, since a Damek-Ricci space is

a counterexample of Lichnerowicz conjecture of non-compact version ([12]) and its characterization

is only given by Heber in [13] by Lie group theory argument. By approaching from a viewpoint

of the ideal boundary ∂X , we focus on barycenter of probability measures on ∂X with respect to

Busemann function and shed a light on information geometry of barycenter map bar : P(∂X)→ X .

2. Main Results and Conclusive Remarks

Before entering into the detailed argument, we give an outline of main results and remarks.

In Section 3 we deal with several results on Fisher metric G and also on geodesic, a basic notion

of geometry, defined on (P(M), G). We give a formula of geodesic μ(t) = expμ tτ on P(M) in a

simple form (Theorem 9);

μ(t) =

(
cos

t

2
+ sin

t

2

dτ

dμ
(x)

)2

μ, x ∈M
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for an initial condition; μ(0) = μ, μ̇(0) = τ (|τ |G,μ = 1). Here, (dτ/dμ)(x) denotes

Radon-Nikodym derivative of τ with respect to μ. From this, it is concluded in Corollary 2 that

any geodesic is periodic, of period 2π, while not definable over R. Moreover, from this formula

which is an improvement of the formula given by T. Friedrich ([2]) we obtain

Theorem 3. Let μ and μ∗ be arbitrary distinct probability measures in P(M). Then, a curve t ∈
R �→ μ(t) ∈ P(M) defined by

μ(t) = expμ tτ =

(
cos

t

2
+ sin

t

2

dτ

dμ
(x)

)2

μ (2)

is a unique geodesic such that μ(0) = μ and μ(�) = μ∗. Here � = �(μ, μ∗) is defined by (4) and τ is
a unit tangent vector at μ given by

τ =
1

sin �
2

(√
dμ∗

dμ
(x)−

∫
y∈M

√
dμ∗

dμ
(y) dμ(y)

)
μ(x). (3)

This theorem asserts that any μ, μ∗, μ �= μ∗ can be joined by a unique geodesic. The quantity

� = �(μ, μ∗), 0 < � < π is defined as

cos
�

2
=

∫
x∈M

√
dμ∗

dμ
(x) dμ(x), (4)

giving an apparent length of a geodesic joining μ and μ∗. Notice that the RHS is an f -divergence-like

quantity with respect to f(u) =
√
u (refer to [14]).

Another main subject is information geometry of barycenter map by applying results of Fisher

information geometry, thus obtained in Section 3. Related results on barycenter map will be

explained in Section 4 and Section 5.

Let (X, g) be an Hadamard manifold with a Riemannian metric g, a simply connected, complete

Riemannian manifold of non-positive curvature. Then, it admits the ideal boundary ∂X and by

using a probability measure defined on ∂X , we consider a function, a μ-average Busemann function

Bμ : X → R;

Bμ(x) =

∫
θ∈∂X

Bθ(x) dμ(θ)

whose critical point is called a barycenter of a probability measure μ so that we have a map,

barycenter map, from a space P(∂X) of probability measures on ∂X to an Hadamard manifold

X . Here, the integrand is a normalized Busemann function (for its detailed argument see Section 4).

Recall, here, an original definition of a barycenter, a center of mass, as follows. Let y1, . . . , yn be

points of a Euclidean space R3 and μ1, . . . , μn be non-negative real numbers satisfying
∑

i μi = 1.

A point p of R3 is called a barycenter of yi, i = 1, . . . , n of weights μi, i = 1, . . . , n, when p satisfies

p =
n∑

i=1

μiyi or
n∑

i=1

μi(yi − p) = 0.
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A barycenter is defined also by a critical point of a function on R3; f : R3 → R; f(q) =∑n
i=1 μid

2(q, yi).

This definition of barycenter for a finite points of R3 with weights with respect to the

square-distance can be generalized as one for points of R3 distributed continuously over a bounded

set D of R3;

f : R3 → R; f(q) =

∫
R3

d2(q, x)μ(x) dx,

where μ = μ(x) is a non-negative function with supp(μ) ⊂ D satisfying
∫
R3 μ(x) dx = 1. A critical

point of f can be regarded as a barycenter of a probability measure μ(x) dx. A famous theorem of

E. Cartan is regarded as a barycenter theorem ([15]). A choice of testing function d2(x, y) is not

essential. Convexity of testing function is crucial in a theory of barycenter. In our study we deal

with barycenter with respect to Busemann function, a convex testing function, by following the idea

of Douady, Earle ([16]) and Besson, Courtois and Gallot ([8,17]). Refer to [18,19] for studies and

results on barycenter of square-distance and of distance over a Riemannian manifold. Refer also to

[20] in this direction, which is a reference comment due to Professor M. Gromov at the conference.

In our situation, the existence of barycenter for any μ ∈ P(∂X) is assured in Theorem 12,

when (X, g) satisfies visibility axiom (for precise definition see Definition 4 and refer to [21]) and

Busemann function Bθ(x) on X is continuous with respect to θ ∈ ∂X . Uniqueness of barycenter for

any μ is assured, when, for some μ0, average Hessian ∇dBμ0 of Bμ0 is positive definite everywhere

on X (Proposition 6). Thus, we have the barycenter map bar : P(∂X) → X; μ �→ y, by

assigning to μ a barycenter point y of μ . This map turns out to be surjective, when (X, g) admits

Busemann-Poisson kernel P (x, θ) = exp{−QBθ(x)}, Poisson kernel of Busemann type. Denote by

μx the probability measure P (x, θ) dθ. Then, bar(μx) = x for any x ∈ X . Busemann-Poisson kernel

ensures also the uniqueness of barycenter for any μ from the identity (see Theorem 14)

(∇dBμx)x(u, v) = QGμx(ν
μx
x u, νμx

x v), u, v ∈ TxX, x ∈ X

where, Gμx is Fisher metric at the tangent space TμxP(∂X), and νμx
x : TxX → TμxP(∂X) is an

injective linear map associated to μ and a point x = bar(μ) (for its definition see Section 4).

The map bar : P(∂X) → X , being surjective gives us a projection of a fibre space whose total

space is P(∂X) and base space is X with fibres {bar−1(x); x ∈ X}. The image of the linear map νμ
x

for μ and x = bar(μ) yields a subspace of TμP(∂X), normal to Tμbar
−1(x), the subspace tangent to

a fibre bar−1(x) so that TμP(∂X) splits into a G-orthogonal direct sum (Theorem 15);

TμP(∂X) = Tμbar
−1(x)⊕ Im νμ

x .

Tμbar
−1(x) and Im νμ

x are the vertical, horizontal subspaces of TμP(∂X), respectively. Here,

dim Im νμ
x = dimX . Remark that the fibration asserted here is infinitesimal.

Each fibre bar−1(x), x ∈ X is a path-connected submanifold of P(∂X). Its geometry is

investigated in terms of the second fundamental form;

Hμ : Tμbar
−1(x)× Tμbar

−1(x)→ Im νμ
x ; Hμ(τ, τ1) = (∇ττ1)

⊥ , (5)
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which is the normal component of ∇ττ1, the covariant derivative of τ1 in direction to τ with respect

to the Levi–Civita connection ∇. Refer to [22,23] for definition of the second fundamental form.

Applying the results concerning geodesics on P(∂X) given in Section 3 to a submanifold bar−1(x),

we are able to determine a geodesic μ(t) = expμ tτ which is entirely contained in bar−1(x) as

Theorem 4. Let μ(t) = expμ tτ be a unit speed geodesic, of μ(0) = μ, μ̇(0) = τ , |τ |G,μ = 1. Then,
μ(t) lies entirely on fibre bar−1(x) if and only if, μ ∈ bar−1(x), τ ∈ Tμbar

−1(x) and Hμ(τ, τ) = 0.

Remark that the equation Hμ(τ, τ) = 0 on τ is written down in a manner of information geometry

as
∫
θ∈∂X(dBθ)x(u) (dτ/dμ)

2(θ) dμ(θ) = 0.

Moreover, by applying Theorem 11 in Section 3, it is possible to assert the following theorem.

Theorem 5. Let μ, μ∗ ∈ bar−1(x). Then, a geodesic joining μ and μ∗ is contained completely in the
same fibre bar−1(x) if and only if μ and μ∗ fulfill∫

θ∈∂X
(dBθ)x(u)

√
dμ∗

dμ
(θ)dμ = 0

for any u ∈ TxX .

Let φ be an isometry of an Hadamard manifold (X, g). Then, a μ-average Busemann function

Bμ satisfies a cocycle formula with respect to φ;

Bμ(φ
−1x) = B(φ̂�)μ

(x) +Bμ(φ
−1xo), x ∈ X, μ ∈ P(∂X),

where φ−1 is the inverse of φ, and φ̂ : ∂X → ∂X is a ∂X-extension of φ and φ̂� is a push-forward

induced by φ̂. See Theorem 18. From this formula we have

bar(φ̂�μ) = φ(bar(μ)), μ ∈ P(∂X)

from which each fibre bar−1(x) is mapped by φ̂� to a fibre bar−1(φx) over φx.

By the aid of information geometry we are able to apply above results to an isometry problem;

given a homeomorphism Φ of ∂X , find an isometry φ of (X, g) whose ∂X-extension coincides with

Φ. With respect to this problem we consider a bijective map φ of X satisfying bar(Φ�μ) = φ(bar(μ))

for any μ ∈ P(∂X) ( we call such a map φ as barycentrically associated to Φ ).

The following theorem gives us an answer to this problem, even partial, provided there exists a

cross section of the fibre space bar : P(∂X)→ X enjoying commutativity properties.

Theorem 6. Let ϕ : X → X be a C1-map barycentrically associated to a homeomorphism Φ :

∂X → ∂X . Assume that there exists a cross section Σ : X → P(∂X) of the fibre space bar :

P(∂X)→ X , a map satisfying bar ◦ Σ = idX such that a fibrewise diagram commutes

P(∂X)
Φ�−→ P(∂X)

↑ Σ ↑ Σ

X
ϕ−→ X
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and a diagram of tangent space level commutes

TxX
νμx
x−→ TμxP(∂X)

↓ (ϕ∗)x ↓ Φ�

TϕxX
ν
μϕx
ϕx−→ TμϕxP(∂X)

(6)

where we denote by μx := Σ(x) ∈ P(∂X). Then, ϕ is an isometry of (X, g) and ∂X-extension ϕ̂ of
ϕ coincides with Φ.

A particularly significant cross section Σ is given by a Poisson kernel map; Θ : X → P(∂X);

x �→ P (x, θ)dθ = exp{−QBθ(x)} dθ, where P (x, θ) is a Busemann-Poisson kernel on (X, g). The

differential map (Θ∗)x of Θ fulfills (Θ∗)x(u) = − Q νμx
x (u), u ∈ TxX in terms of the linear map

νμx
x , μx := P (x, θ)dθ, so that we have

Corollary 1 ([24]). Let Φ : ∂X → ∂X be a homeomorphism of ∂X and ϕ : X → X be a C1-map.
Assume the following diagram commutes with respect to Poisson kernel map Θ;

P(∂X)
Φ�−→ P(∂X)

↑ Θ ↑ Θ

X
ϕ−→ X

(7)

Then, ϕ is an isometry of (X, g) and its ∂X-extension coincides with Φ of ∂X .

Theorem 6 is a generalization of Corollary 1, a main result of [24,25].

The article is organized as follows. In Section 3 we introduce basic notions of information

geometry of a space P(M) of probability measures on a compact manifold M and define Fisher

metric G on it. We show several useful theorems on the Levi–Civita connection and geodesics on

P(M) with detailed proofs. We derive in Section 4 fundamental properties of Busemann function

on an Hadamard manifold, preliminarily. By using them, we investigate existence and uniqueness of

barycenter of a probability measure, following a proof given in [8]. We define the barycenter map

and develop information geometry of this map. A fibration theorem is similar to our earlier paper

[25]. However, geodesical arguments on fibres develop further the arguments of [25], by applying

the results of geodesics on P(M) in Section 3. Finally, in Section 5, we treat an isometry problem

for an Hadamard manifold and give a proof of Theorem 6.

3. A Space of Probability Measures and Fisher Metric

3.1. A Space of Probability Measures

Let M be a connected, compact smooth manifold. Let B(M) be the family of Borel sets of M .

Here B(M) is a family of subsets of M which satisfies the following; (i) B(M) is a σ-family of M ,

(ii) every open subset of M is an element of B(M) and (iii) ifF is a family of subsets of M satisfying

(i), (ii), then F ⊂ B(M).
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A function P : B(M) → R is called a probability measure of a measurable space (M,B(M)),

or a probability measure on M , when P satisfies

(i) P (A) ≥ 0 for any A ∈ B(M), P (M) = 1 and P (∅) = 0.

(ii) Let {Ej | j = 1, . . . , } be a countable sequence of sets of B(M) satisfying Ei∩Ej = ∅ for any

i, j, i �= j. Then

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei).

A smooth manifold M , even in an unorientable case, admits a measure induced by the volume

measure of M . We normalize this measure and denote this normalized measure by d θ. The measure

d θ is a probability measure on M .

For example, let M = Sn−1 = {x ∈ Rn ; |x| = 1} be a unit (n − 1)-sphere and let dω be

the standard (n− 1)-spherical volume measure on Sn−1. Then dθ = (1/An−1) dω is the normalized

measure, where An−1 is the volume of Sn−1.

Let μ, μ1 be probability measures on M . μ is called to be absolutely continuous with respect to

μ1, if μ(A) = 0 for any A ∈ B(M), whenever μ1(A) = 0.

Let μ be a probability measure on M , absolutely continuous with respect to dθ. Then, from

Radon-Nikodym theorem ([26]) there exists a p ∈ L1(M, dθ) such that μ is represented as μ = p dθ,

namely μ satisfies

μ(A) =

∫
x∈A

p(x) dθ(x), ∀A ∈ B(M).

The probability density function p = p(x) is called Radon-Nikodym derivative of μ with respect to

dθ, written by p = dμ/dθ.

We denote by P(M) a space of probability measures μ on M , dθ-absolutely continuous (denoted

by μ � dθ) such that μ has a positive continuous density function p = p(x), i.e., p ∈ C0(M),

p(x) > 0 for any x ∈M .

A manifold M admits an L2-function space L2(M, dθ) as

L2(M, dθ) =

{
h : M → R ;

∫
M

h2(x) dθ(x) <∞
}
.

We notice that there exists a natural embedding

ρ : P(M)→ L2(M, dθ); μ = p dθ �→ √
p =

√
dμ

dθ
. (8)

By using this embedding we induce a topology on P(M). Remark that a sequence {μi} of P(M)

does not necessarily admit a limit inside P(M).

Let μ, μ1 be probability measures in P(M). Then we can join μ and μ1 by a path μ(t) =

(1− t)μ+ tμ1, t ∈ [0, 1] inside P(M).

Differentiate μ(t) as a curve in P(M) to have

d

dt
((1− t)μ+ tμ1)) = μ1 − μ,
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which is a measure on M , represented as μ1 − μ = (p1 − p) dθ satisfying∫
M

d(μ1 − μ) = 0.

Based on this fact, a tangent space TμP(M) of P(M) at μ is defined as

TμP(M) =

{
τ = q(x) dθ(x) ; q ∈ C0(M),

∫
M

q(x) dθ(x) = 0

}
(9)

Notice that the RHS (right hand side) of (9) is independent of μ. So, if we denote by V the RHS

of (9), then V is an infinite dimensional vector space and an arbitrary τ ∈ V induces at any μ ∈ P(M)

a curve μ+ tτ ∈ P(M) for t ∈ (−ε, ε) with a sufficiently small ε.

We define a curve c : (a, b)→ P(M) as

c(t) = p(x, t) dθ,

where p(x, t) is of C1 in t for any fixed x ∈M . So, c = c(t) has velocity vector field along c

dc

dt
(t) =

∂

∂t
p(x, t) dθ ∈ Tc(t)P(M), t ∈ (a, b).

3.2. Fisher Metric

Definition 1. A positive definite inner product Gμ on TμP(M) at μ ∈ P(M) is defined as

Gμ : TμP(M)× TμP(M)→ R; Gμ(τ, τ1) =

∫
x∈M

dτ

dμ
(x)

dτ1
dμ

(x) dμ(x).

A family G = {Gμ | μ ∈ P(M)} is called Fisher metric.
√
Gμ(τ, τ) is denoted by |τ |G,μ.

The Fisher metric is a generalization of Fisher information matrices appeared in parametric

models.

The following is one of remarkable properties of the Fisher metric G.

Let Φ : M →M be a homeomorphism of M . Then, Φ induces a push-forward

Φ� : P(M)→ P(M); (Φ�(μ))(A) := μ(Φ−1(A)), A ∈ B(M). (10)

Here μ(A) =
∫
x∈A dμ(x). See [27]. We represent (10) in an integral form as∫

x∈A
q(x) d(Φ�μ)(x) =

∫
x∈Φ−1(A)

q(Φ(x)) dμ(x)

for any measurable function q : M → R.

When Φ is self-diffeomorphism of M , Φ�μ coincides with (Φ−1)∗μ, the pull-back of μ by the

inverse diffeomorphism Φ−1. Notice that

(Φ ◦Ψ)� = Φ� ◦Ψ�
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for homeomorphisms Φ, Ψ of M and that the push-forward Φ� : P(M) → P(M) has differential

map

(dΦ�)μ : TμP(M)→ TΦ�μP(M); (dΦ�)μ(τ) = Φ�(τ).

Here Φ�τ is defined similarly as (10). In fact, we have

(dΦ�)μ(τ) =
d

dt

∣∣∣∣
t=0

(Φ�(μ+ tτ)) =
d

dt

∣∣∣∣
t=0

(Φ�(μ) + tΦ�(τ)) = Φ�(τ).

Theorem 7 ([2]). Let Φ� be a push-forward. Then it acts on P(M) isometrically with respect to the
Fisher metric G. Namely,

GΦ�μ(Φ�τ,Φ�τ1) = Gμ(τ, τ1), ∀τ, τ1 ∈ TμP(M), ∀μ ∈ P(M).

Proof. We write μ = p(x) dθ(x) and τ = q(x) dθ(x), τ1 = q1(x) dθ(x). Set σ = Φ�μ. We have then

from definition of push-forward

σ = p(Φ−1(x)) Φ�dθ(x). (11)

This follows in fact from∫
M

h(x) d(Φ�μ)(x) =

∫
M

h(Φ(x)) dμ(x) =

∫
M

h(Φ(x)) p(x) dθ(x)

=

∫
M

(
h× (p ◦ Φ−1)

)
(Φ(x)) dθ(x)

(12)

for any measurable function h on M , which, by definition of push-forward, coincides with∫
M
h(x) (p ◦ Φ−1)(x) Φ�dθ(x) and the above is obtained.

In a similar way to (11) we have

Φ�τ = q(Φ−1(x)) Φ�dθ(x), Φ�τ1 = q1(Φ
−1(x)) Φ�dθ(x),

so that

Gσ(Φ�τ,Φ�τ1) =

∫
x∈M

(
dΦ�τ

dσ

)
(x)

(
dΦ�τ1
dσ

)
(x) dσ(x)

=

∫
x∈M

q(Φ−1(x))

p(Φ−1(x))

q1(Φ
−1(x))

p(Φ−1(x))
d(Φ�μ)(x)

=

∫
x∈M

dτ

dμ
(Φ−1(x))

dτ1
dμ

(Φ−1(x)) d(Φ�μ)(x).

Set F (x) = dτ
dμ
(Φ−1(x)) dτ1

dμ
(Φ−1(x)) and write the above as∫

M

F (x) d(Φ�μ)(x) =

∫
M

F (Φ(x)) dμ(x) =

∫
M

dτ

dμ
(x)

dτ1
dμ

(x) dμ(x)

which is the inner product Gμ(τ, τ1) of τ and τ1 at μ.



213

Note. The following is known. For any μ ∈ P(M) there exists a homeomorphism Φ : M → M

satisfying μ = Φ�dθ (refer to [28,29]). This fact implies that the action of Homeo(M), which is the

group of homeomorphisms on M , on the space P(M) is isometric and transitive.

Remark 1. The embedding ρ given in (8) satisfies ρ∗〈·, ·〉L2 = 1
4
G, that is,

〈(ρ∗)μτ, (ρ∗)μτ1〉L2 =
1

4
Gμ(τ, τ1), ∀τ, τ1 ∈ TμP(M), μ ∈ P(M).

where 〈·, ·〉L2 is the L2-inner product of L2(M, dθ);

〈f1, f2〉L2 :=

∫
x∈M

f1(x)f2(x)dθ(x), f1, f2 ∈ L2(M, dθ).

3.3. Levi–Civita Connection

The Fisher metric provides the space P(M) a Riemannian metric as above and then induces

on P(M) the Levi–Civita connection ∇ and the Riemannian curvature tensor R. To derive their

formulae we will introduce a constant vector fields on P(M).

Let τ ∈ V . Then, τ is considered as a constant vector field on P(M) by defining a vector field

{τμ | μ ∈ P(M)}, τμ = d
dt

∣∣
t=0

μ(t) ∈ TμP(M), that is, τ is a velocity vector of a curve μ(t) = μ+tτ

at t = 0. Notice that an integral curve of a constant vector field τ passing through μ ∈ P(M) is given

by the curve μ(t).

Theorem 8. Let τ , τ1 be constant vector fields on P(M). Then, the Levi–Civita connection of the
Fisher metric G at μ ∈ P(M) is represented as

∇ττ1 =− 1

2

(
dτ

dμ
(x)

dτ1
dμ

(x)−Gμ(τ, τ1)

)
μ

=− 1

2

(
dτ

dμ
(x)

dτ1
dμ

(x)−
∫
y∈M

dτ

dμ
(y)

dτ1
dμ

(y)dμ(y)

)
μ.

(13)

For this formula see [2].

Proof. Recall that on a Riemannian manifold N with a Riemannian metric g the Levi–Civita

connection ∇ of g is an affine connection on N , that is, ∇ is a bilinear map; (Y, Z) �→ ∇YZ

satisfying

∇fYZ =f ∇YZ,

∇Y (fZ) =Y f · Z + f∇YZ
(14)

for smooth vector fields Y , Z on N and a smooth function f on N , which satisfies (∇Y g)(Z,W ) = 0

together with a symmetry condition, that is, the torsion tensor T (Y, Z) := ∇YZ − ∇ZY − [Y, Z]

vanishes. Then, the Levi–Civita connection ∇ exists uniquely and one has Koszul’s formula for ∇

g(∇YZ,W ) =
1

2
{Y g(Z,W ) + Zg(W,Y )−Wg(Y, Z) + g([Y, Z],W )− g([Z,W ], Y )− g([Y,W ], Z)}.
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Here Y , Z, W are smooth vector fields on N ([22]).

We give a reference comment on a metric connection with non-trivial torsion, appeared in

information geometry. A non-trivial torsion T implies geometrically a breaking of the symmetry

in connection coefficients; Γk
ij = Γk

ji. In a framework of classical parametric model there are very

few study of a metric connection with non-trivial torsion. However, as far as the authors know, the

e-connection developed in a quantum model has non-trivial torsion. Refer to Chapter 7 of [14] and

references cited there.

Now we return back to our situation, that is, to the space (P(M), G) in which we have for constant

vector fields τ , τ1 and τ2

G(∇τ2τ, τ1) =
1

2
{τ2G(τ, τ1) + τG(τ1, τ2)− τ1G(τ, τ2)},

since [τ, τ1] = [τ, τ2] = [τ1, τ2] = 0.

Let μ(t) = μ+ t τ2 be a curve in P(M) of μ(0) = μ and μ̇(t) = τ2. We have then

(τ2)μG(τ, τ1) =
d

dt

∣∣∣∣
t=0

Gμ(t)(τ, τ1)

=
d

dt

∣∣∣∣
t=0

∫
M

dτ

dμ(t)
(x)

dτ1
dμ(t)

(x) dμ(t)(x)

=

∫
M

∂

∂t

∣∣∣∣
t=0

(
dτ

dμ(t)
(x)

dτ1
dμ(t)

(x) dμ(t)(x)

)
in which the integrand is

∂

∂t

∣∣∣∣
t=0

(
dτ

dμ(t)
(x)

dτ1
dμ(t)

(x) dμ(t)(x)

)
=

∂

∂t

(
dτ

dμ(t)
(x)

)∣∣∣∣
t=0

dτ1
dμ

(x) dμ(x) +
dτ

dμ
(x)

∂

∂t

(
dτ1
dμ(t)

(x)

)∣∣∣∣
t=0

dμ(x)

+
dτ

dμ
(x)

dτ1
dμ

(x)
∂

∂t
(dμ(t)(x))

∣∣∣∣
t=0

.

The partial derivative term becomes

∂

∂t

(
dτ

dμ(t)
(x)

)∣∣∣∣
t=0

= −dτ

dμ
(x)

dτ2
dμ

(x),

since by calculation

∂

∂t

(
dτ

dμ(t)
(x)

)∣∣∣∣
t=0

=
∂

∂t

(
q(x)

p(x) + tq2(x)

)∣∣∣∣
t=0

= − q(x)q2(x)

(p(x) + tq2(x))
2

∣∣∣∣
t=0

=− q(x)q2(x)

p2(x)
= −dτ

dμ
(x)

dτ2
dμ

(x).

Similarly
∂

∂t

(
dτ1
dμ(t)

(x)

)∣∣∣∣
t=0

= −dτ1
dμ

(x)
dτ2
dμ

(x).



215

Since
∂

∂t
(dμ(t)(x))

∣∣∣∣
t=0

= dτ2(x),

one obtains

(τ2)μG(τ, τ1) =

∫
M

(
−dτ

dμ
(x)

dτ2
dμ

(x)

)
dτ1
dμ

(x) dμ(x)

+

∫
M

dτ

dμ
(x)

(
−dτ1
dμ

(x)
dτ2
dμ

(x)

)
dμ(x) +

∫
M

(
dτ

dμ
(x)

dτ1
dμ

(x)

)
dτ2(x).

Here dτ2(x) =
dτ2
dμ

(x) dμ(x). So,

(τ2)μG(τ, τ1) = −
∫
M

dτ

dμ
(x)

dτ1
dμ

(x)
dτ2
dμ

(x) dμ(x).

One obtains similar formulae for the terms τμG(τ1, τ2), (τ1)μG(τ, τ2) and then finally

Gμ(∇τ2τ, τ1) = −
1

2

∫
M

dτ

dμ
(x)

dτ2
dμ

(x)
dτ1
dμ

(x) dμ(x).

On the other hand, one observes∫
M

Gμ(τ, τ2)
dτ1
dμ

(x) dμ(x) = Gμ(τ, τ2)

∫
M

dτ1(x) = 0

and hence

Gμ(∇τ2τ, τ1) =−
1

2

∫
M

(
dτ

dμ
(x)

dτ2
dμ

(x)−Gμ(τ, τ2)

)
dτ1
dμ

(x) dμ(x)

=Gμ

(
−1

2

(
dτ

dμ
(x)

dτ2
dμ

(x)−Gμ(τ, τ2)

)
μ, τ1

)
.

Since τ1 is arbitrary, (13) is derived.

Theorem 9. The Riemannian curvature tensor R of the Fisher metric G satisfies

Rμ(τ1, τ2)τ =
1

4
(Gμ(τ, τ2)τ1 −Gμ(τ, τ1)τ2)

for constant vector fields τ , τ1, τ2. Hence, sectional curvature of any section τ ∧ τ1 is K(τ ∧ τ1) = 1
4
.

Refer to [2] for this theorem. We omit proving this theorem. In general, a finite dimensional

Riemannian manifold of constant sectional curvature 1/4 is (locally) isometric to a sphere of radius 2.

So, the spaceP(M) with the metric G is considered to be isometrically an infinite dimensional sphere

of radius 2.

As is shown in the next section, this infinite dimensional Riemannian manifold (P(M), G) is not

geodesically complete, in other words, every geodesic is not necessarily extended over R.
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3.4. Geodesics

Theorem 10. Let μ ∈ P(M) and τ ∈ TμP(M). Assume τ is a unit tangent vector at μ, i.e.,
|τ |G,μ = 1. Then, the geodesic μ(t), denoted by expμ tτ , with μ(0) = μ, μ̇(0) = τ has the form
represented by

μ(t) =

(
cos

t

2
+ sin

t

2

dτ

dμ
(x)

)2

μ, (15)

in other words,

μ(t) =

(
cos

t

2
+ sin

t

2

q(x)

p(x)

)2

p(x) dθ(x) (16)

where μ = p(x) dθ and τ = q(x) dθ are density function representation of μ, τ .

Note. Set t = π into (15). Then μ(π) = ( dτ
dμ
(x))2μ = q(x)2

p(x)
dθ. However, τ is a tangent vector to

P(M) so τ satisfies
∫
x∈M q(x)dθ(x) = 0 from which there exists a point xo ∈ M with q(xo) = 0

and then the density function of μ(π) vanishes at point xo and then μ(π) �∈ P(M).

To prove Theorem 10, we will show the following lemma, obtained by T. Friedrich ([2]).

Lemma 1. Let μ(t) = p(x, t) dθ be a geodesic such that μ(0) = μ = p0(x) dθ, μ̇(0) = τ =

q(x) dθ ∈ TμP+(M), |τ |G,μ = 1. Then,

p(x, t) =
1

1 + tan2 t
2

{
p0(x) + 2 tan

t

2
q(x) + tan2 t

2

q2(x)

p0(x)

}
. (17)

From this lemma it is easy to see that μ(t) = p(x, t) dθ has the above form (15).

Proof of Lemma 1. A proof is given in [2]. However, we will give a proof for a later convenience

in proving Theorems 16 and 17. So, for simplicity we write by abbreviation μ(t) = p(t) dθ and

μ̇(t) = ṗ(t) dθ. Letting τ be a constant vector field, we have

G(∇μ̇(t)μ̇(t), τ) = μ̇(t) (G(μ̇(t), τ))−G(μ̇(t),∇μ̇(t)τ), (18)

since ∇ preserves the metric G.

Notice that from the rule (14) of Levi–Civita connection, the tangent vector μ̇(t) ∈ Tμ(t)P(M) of

∇μ̇(t), appeared in the second term of (18) can be extended as a constant vector field, denoted by the

same symbol. So, we can apply (13) to the above and have

∇μ̇(t)τ = −1

2

(
dμ̇(t)

dμ(t)

dτ

dμ(t)
−Gμ(t)(μ̇(t), τ)

)
μ(t).

Thus, the Radon-Nikodym derivative of ∇μ̇(t)τ with respect to μ(t) is

d ∇μ̇(t)τ

dμ(t)
= −1

2

(
dμ̇(t)

dμ(t)

dτ

dμ(t)
−Gμ(t)(μ̇(t), τ)

)
.
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Therefore, we have

G(μ̇(t),∇μ̇(t)τ) =

∫
M

(
dμ̇(t)

dμ(t)

){
−1

2

(
dμ̇(t)

dμ(t)

dτ

dμ(t)
−Gμ(t)(μ̇(t), τ)

)}
dμ(t)

=− 1

2

∫
M

(
dμ̇(t)

dμ(t)

)2
dτ

dμ(t)
dμ(t) +

1

2
Gμ(t)(μ̇(t), τ)

∫
M

(
dμ̇(t)

dμ(t)

)
dμ(t)

=− 1

2

∫
M

(
dμ̇(t)

dμ(t)

)2

dτ +
1

2
Gμ(t)(μ̇(t), τ)

∫
M

dμ̇(t)

=− 1

2

∫
M

(
dμ̇(t)

dμ(t)

)2

dτ = −1

2

∫
M

(
ṗ(t)

p(t)

)2

dτ.

On the other hand, the first term of (18) is

μ̇(t)G(μ̇(t), τ) =
d

dt
Gμ(t)(μ̇(t), τ) =

d

dt

∫
M

(
ṗ(t)

p(t)

)
dτ =

∫
M

∂

∂t

(
ṗ(t)

p(t)

)
dτ.

Then (18) becomes

G(∇μ̇(t)μ̇(t), τ) =

∫
M

{
∂

∂t

(
ṗ(t)

p(t)

)
+

1

2

(
ṗ(t)

p(t)

)2
}
dτ.

Here,

{
∂
∂t

(
ṗ(t)
p(t)

)
+ 1

2

(
ṗ(t)
p(t)

)2}
μ(t) is not necessarily a tangent vector at μ(t). We choose a real

valued function C(t) of t, independent of x ∈M satisfying{
∂

∂t

(
ṗ(t)

p(t)

)
+

1

2

(
ṗ(t)

p(t)

)2

+ C(t)

}
μ(t) ∈ Tμ(t)P+(M).

In fact, we define C(t) as

C(t) =−
∫
M

{
∂

∂t

(
ṗ(t)

p(t)

)
+

1

2

(
ṗ(t)

p(t)

)2
}
p(t) dθ

=−
∫
M

∂

∂t

(
dμ̇(t)

dμ(t)

)
dμ(t)− 1

2
G(μ̇(t), μ̇(t)).

Hence, we have

G(∇μ̇(t)μ̇(t), τ) = G

({
∂

∂t

(
ṗ(t)

p(t)

)
+

1

2

(
ṗ(t)

p(t)

)2

+ C(t)

}
μ(t), τ

)
for an arbitrary constant vector field τ .

Therefore we have

∇μ̇(t)μ̇(t) =

{
∂

∂t

(
ṗ(t)

p(t)

)
+

1

2

(
ṗ(t)

p(t)

)2

+ C(t)

}
μ(t)

Thus, it is concluded that μ(t) = p(t) dθ is a geodesic if and only if p(t) = p(x, t) satisfies

∂

∂t

(
ṗ(t)

p(t)

)
+

1

2

(
ṗ(t)

p(t)

)2

+ C(t) = 0,

∫
M

ṗ(t) dθ = 0. (19)
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Remark 2. Equation (19) is expressed as

∂

∂t

(
μ̇(t)

μ(t)

)
+

1

2

(
μ̇(t)

μ(t)

)2

+ C(t) = 0, μ̇(t) ∈ Tμ(t)P(M).

Now we will solve these equations.

Notice that if μ(t) is a geodesic, Gμ(t)(μ̇(t), μ̇(t)) is constant along μ(t) so from the initial

condition Gμ(t)(μ̇(t), μ̇(t)) ≡ 1. Therefore, we can write (19) as

∂

∂t

(
ṗ(t)

p(t)

)
+

1

2

(
ṗ(t)

p(t)

)2

−
∫
M

∂

∂t

(
ṗ(t)

p(t)

)
p(t) dθ − 1

2
= 0,∫

M

ṗ2(t)

p(t)
dθ = 1,

∫
M

ṗ(t)dθ = 0.

(20)

The second equation means that |μ̇(t)|G,μ(t) = 1. Set g(t) :=
∫
M

∂
∂t

(
ṗ(t)
p(t)

)
p(t) dθ. We have then

g(t) =
d

dt

(∫
M

(
ṗ(t)

p(t)

)
p(t) dθ

)
−
∫
M

(
ṗ(t)

p(t)

)
ṗ(t) dθ

=
d

dt

(∫
M

dμ̇(t)

)
−Gμ(t)(μ̇(t), μ̇(t)) = 0− 1 = −1.

So Equations (20) reduce to

∂

∂t

(
ṗ(t)

p(t)

)
+

1

2

(
ṗ(t)

p(t)

)2

+
1

2
= 0,

∫
M

(
ṗ(t)

p(t)

)2

p(t)dθ = 1,

∫
M

ṗ(t)dθ = 0.

To solve these, we set w(t) = ṗ(t)
p(t)

. Then w(t) satisfies

ẇ(t) +
1

2

(
w2(t) + 1

)
= 0. (21)

By solving (21), we have w(t) = tan
(−1

2
t+ A(x)

)
, x ∈ M , where A(x) is an integral constant

depending on x. By integrating w(t) = ṗ(t)/p(t), where p(t) = p(x, t),

log p(x, t) = 2 log cos

(
−1

2
t+ A(x)

)
+ B1(x),

and hence

p(x, t) = B(x) cos2
(
−1

2
t+ A(x)

)
.

Here B(x) is an integral constant. The constants A(x), B(x) are given as

A(x) = arctan

(
ṗ(x, 0)

p(x, 0)

)
,

B(x) =
p2(x, 0) + ṗ2(x, 0)

p(x, 0)
,

where p(x, 0) = p0(x), ṗ(x, 0) = q(x).
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Corollary 2 ([2]). Every geodesic on (P(M), G) is periodic, of period 2π.

In fact, from (15) a geodesic μ(t) is represented as

μ(t) =

(
cos2

t

2
+ 2 sin

t

2
cos

t

2

dτ

dμ
(x) + sin2 t

2

(
dτ

dμ

)2

(x)

)
μ

and cos2 t
2
= 1

2
(1 + cos t). We have then the corollary.

Definition 2. Define � : P(M)× P(M)→ [0, π); (μ, μ∗) �→ � = �(μ, μ∗) by

cos
�

2
=

∫
x∈M

√
dμ∗

dμ
(x) dμ(x). (22)

One sees �(μ, μ∗) = �(μ∗, μ) and that � = 0 if and only if μ = μ∗. cos �
2

is an f -divergence-like

quantity with respect to f(u) =
√
u (See [14]).

Remark 3. In [2] T. Friedrich remarked that the distance between μ and μ∗ in P(M) is given by
� = �(μ, μ∗).

Theorem 11. Let μ and μ∗ be arbitrary probability measures in P(M), μ �= μ∗. Then, there exists
a unique geodesic μ(t), i.e., a curve; t ∈ I ⊂ R �→ μ(t) ∈ P(M) with μ(0) = μ, μ(�) = μ∗, where
� = �(μ, μ∗) is given by (22) and I is an open interval;

μ(t) = expμ tτ =

(
cos

t

2
+ sin

t

2

dτ

dμ
(x)

)2

μ, (23)

where τ is a unit tangent vector at μ represented by

τ =
1

sin �
2

(√
dμ∗

dμ
(x)−

∫
y∈M

√
dμ∗

dμ
(y) dμ(y)

)
μ(x). (24)

Proof. First we will show

Assertion 1. The measure τ given by (24) is a unit tangent vector to P(M) at μ.

In fact, ∫
M

dτ =
1

sin �
2

∫
x∈M

(√
dμ∗

dμ
(x)−

∫
y∈M

√
dμ∗

dμ
(y) dμ(y)

)
dμ(x)

=
1

sin �
2

(∫
x∈M

√
dμ∗

dμ
(x) dμ(x)−

∫
y∈M

√
dμ∗

dμ
(y) dμ(y)

)
= 0,

so that τ is a tangent vector to P(M). Moreover, τ is unit, i.e., Gμ(τ, τ) = 1, as we compute

straightforward

Gμ(τ, τ) =

∫
M

(
dτ

dμ
(x)

)2

dμ(x) (25)
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and substitute (24) into (25) to have

Gμ(τ, τ) =
1

sin2 �
2

∫
x∈M

(√
dμ∗

dμ
(x)−

∫
y∈M

√
dμ∗

dμ
(y)dμ(y)

)2

dμ(x)

=
1

sin2 �
2

∫
x∈M

{
dμ∗

dμ
(x)− 2

(∫
y∈M

√
dμ∗

dμ
(y) dμ(y)

) √
dμ∗

dμ
(x)

+

(∫
y∈M

√
dμ∗

dμ
(y)dμ(y)

)2
⎫⎬⎭ dμ(x)

=
1

sin2 �
2

⎧⎨⎩
∫
x∈M

dμ∗(x)− 2

(∫
y∈M

√
dμ∗

dμ
(y) dμ(y)

)2

+

(∫
y∈M

√
dμ∗

dμ
(y) dμ(y)

)2
⎫⎬⎭

=
1

sin2 �
2

(
1− cos2

�

2

)
= 1.

Assertion 2. A geodesic defined by (23) satisfies μ(0) = μ and μ(�) = μ∗.

It is seen μ(0) = μ from (23). At t = �

μ(�) =

(
cos

�

2
+ sin

�

2

dτ

dμ
(x)

)2

μ

and from (25)

sin
�

2

dτ

dμ
(x) =

√
dμ∗

dμ
(x)−

∫
y∈M

√
dμ∗

dμ
(y) dμ(y) =

√
dμ∗

dμ
(x)− cos

�

2
.

Hence, we find μ(�) = μ∗ as follows;

μ(�) =

{
cos

�

2
+

(√
dμ∗

dμ
(x)− cos

�

2

)}2

μ =

(√
dμ∗

dμ
(x)

)2

μ =
dμ∗

dμ
(x) μ = μ∗.

Assertion 3. A geodesic joining μ and μ∗ is unique for μ �= μ∗.

To verify this assertion let μ(t) = expμ tτ and μ̃(t) = expμ tτ̃ be unit speed geodesics satisfying

μ(0) = μ̃(0) = μ and μ(�) = μ̃(�) = μ∗. From the latter condition we have by using (15)(
cos

�

2
+ sin

�

2

dτ̃

dμ
(x)

)2

μ =

(
cos

�

2
+ sin

�

2

dτ

dμ
(x)

)2

μ, ∀x ∈M

from which

cos
�

2
+ sin

�

2

dτ̃

dμ
(x) = ±

(
cos

�

2
+ sin

�

2

dτ

dμ
(x)

)
for any x ∈M .

To assert

cos
�

2
+ sin

�

2

dτ̃

dμ
(x) = cos

�

2
+ sin

�

2

dτ

dμ
(x), ∀x ∈M
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define subsets M± of M by

M± =

{
x ∈M ; cos

�

2
+ sin

�

2

dτ̃

dμ
(x) = ±

(
cos

�

2
+ sin

�

2

dτ

dμ
(x)

)}
.

Then, M = M+ ∪M−. Moreover M+ ∩M− = ∅. This is because if otherwise, M+ ∩M− �= ∅, then

at a point x ∈M+ ∩M− it holds

cos
�

2
+ sin

�

2

dτ̃

dμ
(x) = 0.

So, at x, μ̃(�) =
(
cos �

2
+ sin �

2
dτ̃
dμ
(x)
)2

μ = 0. However, it must coincide at x with μ∗ which has a

positive density function. So M+ ∩M− = ∅.
We see that M+ = {x ∈M ; τ̃(x) = τ(x)} and M− = {x ∈M ; q(x)+ q̃(x) = −2 cot �

2
}. Here

we write τ = q(x) dθ and τ̃ = q̃(x) dθ. Then, M+ and M− are closed in M .

Suppose M− �= ∅. Then, M− must be a non-empty, proper subset of M . This is because,

otherwise if M− = M is assumed, then, since τ̃ , τ are tangent to P(M) we see, from 0 < � < π∫
M

dτ̃ = −
∫
M

dτ − 2 cot
�

2

∫
M

dθ = −2 cot �
2
�= 0.

This is a contradiction. So, M− is a proper subset and hence M+ = M \M− is a non-empty closed,

but open subset of M . Therefore, since M is connected, M+ = M , namely τ̃(x) = τ(x) for any

x ∈ X , from which the assertion is proved.

From these assertions Theorem 11 is verified.

Remark 4. For the � of (22)

μ∗ �= μ ⇐⇒ sin
�

2
�= 0.

It suffices for this to show
μ∗ = μ ⇐⇒ � = 0,

since, for � ∈ [0, π), sin �/2 = 0 if and only if � = 0. With respect to the embedding ρ : P(M) →
L2(M, dθ), given in (8), we have

||ρ(μ∗)− ρ(μ)||2L2 = 2− 2 cos
�

2

from which it follows that � = 0 implies ||ρ(μ∗) − ρ(μ)||L2 = 0 and hence μ∗ = μ, since ρ is an
embedding. Conversely, if μ∗ = μ, then

√
dμ∗/dμ(x) = 1 so cos �/2 =

∫
M

√
dμ∗/dμ(x)dμ = 1

and thus � = 0.

To guarantee completeness of geodesics we must extend the space P(M), for example, to the

space of probability measures on M , absolutely continuous with respect to dθ and with non-negative

density function.
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4. Hadamard Manifolds and Barycenter Map

4.1. Hadamard Manifolds and Ideal Boundary

Let (X, g) be an Hadamard manifold. Then the ideal boundary ∂X of (X, g) is defined by taking

quotient of space of geodesics of X and is homeomorphic to an (n−1)-sphere Sn−1. For any θ ∈ ∂X

Busemann function Bθ normalized at some point and parametrized in θ ∈ ∂X provides a μ-average

Busemann function Bμ on X in terms of a probability measure μ on ∂X . Under some geometrical

assumptions which X fulfills, Bμ admits a unique critical point so that we have a barycenter map

bar : P(∂X) → X by assigning to an arbitrary probability measure μ on ∂X a point in X as its

barycenter, a critical point of Bμ.

Let (X, g) be an Hadamard manifold, a simply connected, complete Riemannian manifold with

a metric g = 〈·, ·〉 of non-positive curvature. By Cartan-Hadamard theorem an Hadamard manifold

is diffeomorphic to a Euclidean space of same dimension. Refer, for this theorem, to [30,31]

A Euclidean space together with a real hyperbolic space Hn(R) are typical examples of

Hadamard manifold. Geometrical properties which an Hadamard manifold enjoys are the following;

(i) Any two points on X can be joined by a unique geodesic.

(ii) Let Δ be a geodesic triangle in X with interior angles α1, α2, α3 and lengths of opposite side,

�1, �2, �3. Then, we have a law of cosines;

�23 ≥ �21 + �22 − 2�1�2 cosα3.

(iii) The distance function from a fixed point xo ∈ X; dxo : X → R, x �→ d(x, xo) is convex, i.e.,
for any geodesic γ in X; t �→ γ(t) the restricted function dxo ◦ γ : t �→ dxo(γ(t)) is convex

on R.

Here a function f : R→ R is convex, if it satisfies

f(at1 + (1− a)t2) ≤ a f(t1) + (1− a) f(t2), ∀t1, t2 ∈ R, 0 ≤ a ≤ 1. (26)

Let us define for an Hadamard manifold (X, g) the ideal boundary ∂X , or a boundary at infinity.

Let γ, σ;R → X be unit speed geodesics on X . We say that γ is asymptotically equivalent

with σ, denoted by γ ∼ σ, when there exists a constant C > 0 such that d(γ(t), σ(t)) ≤ C for any

t ≥ 0. The relation ∼ is an equivalence relation on the space Geo(X) of all oriented, unit speed

geodesics on X . The quotient space Geo(X)/ ∼ is called the ideal boundary of X , denoted by ∂X .

An equivalence class represented by γ ∈ Geo(X) is called an asymptotic class, denoted by [γ] or

γ(∞). Notice that all geodesics on X are assumed to be of unit speed and oriented.

Let x ∈ X be an arbitrary point of X and SxX the space of unit tangent vectors at x;

SxX = {v ∈ TxX ; ||v|| = 1}.
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Then we define a map

β = βx : SxX → ∂X; v �→ [γ], (27)

where γ ∈ Geo(X) is a geodesic given by γ(t) = expx(tv), t ∈ R.

Proposition 1 ([30]). The map βx is bijective.

Moreover, we equip the space X ∪ ∂X with a topology, called a cone topology as follows. For

x ∈ X and θ1, θ2 ∈ X ∪ ∂X (x �= θ1, x �= θ2) we define  x(θ1, θ2) =  (γ̇1(0), γ̇2(0)) angles

between a geodesic γ1 from x to θ1 and a geodesic γ2 from x to θ2. For x ∈ X and θ ∈ ∂X ,

ε > 0 let Cx(θ, ε) = {θ1 ∈ X ∪ ∂X ; θ1 �= x,  x(θ, θ1) < ε} be a cone. Further, let Tx(θ, ε) =

Cx(θ, ε) \ B(x, r) be a truncated cone (B(x, r) = {y ∈ X|d(y, x) ≤ r} is a closed geodesic ball).

Then, a topology generated by open geodesic balls in X and such truncated cones is called a cone

topology of X∪∂X . Notice that thus defined cone topology when restricted to ∂X is homeomorphic

to the usual topology on SxX via the mapping βx. Refer to [31] for the detail.

Let (dθ)x be a standard volume measure on SxX , normalized by (dθ)x(SxX) = 1. Through βx

we obtain a measure (βx)�(dθ)x on ∂X , denoted by dθ.

4.2. Normalized Busemann Function

Busemann function on X is introduced to define an average Busemann function in terms of a

probability measure on ∂X .

Let γ : R→ X be a geodesic on X . Define a function ft : X → R for t > 0 by

ft(x) = dx(γ(t))− t = d(x, γ(t))− d(γ(0), γ(t)).

For any x ∈ X a limit limt→∞ ft(x) exists, as we will see in Proposition 2. We write this limit as

f∞(x) and define a function on X; x �→ f∞(x), called Busemann function, denoted by Bγ : X → R;

x �→ f∞(x).

Each level set of Bγ is called a horosphere, important in studying geometry of Hadamard

manifolds. See [11], for example.

Example 1. In a Euclidean space (X, g) = (Rn, go) let γ be a geodesic, γ(t) = (t, 0, . . . , 0). Then,
Bγ(x) = −x1 for x = (x1, . . . , xn) ∈ Rn from the following

ft(x) = d(x, γ(t))− t =

√√√√(x1 − t)2 +
n∑

i=2

(xi)2 − t =
−2tx1 +

∑n
i=2(x

i)2√
(x1 − t)2 +

∑n
i=2(x

i)2 + t
→ −x1,

as t→∞.

Example 2. Busemann function on Hn(R), an n-dimensional real hyperbolic space with standard
hyperbolic metric, normalized at o, is given

Bγ(x) = − log
1− |x|2
|x− θ|2 ,
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where θ = γ(∞) ∈ Sn−1.

Proposition 2. The functions ft : X → R, t > 0, introduced above, have a limit limt→∞ ft(x) for
each x ∈ X .

From the triangle inequality we have

t1 < t2 =⇒ ft1(x) ≥ ft2(x), ∀x ∈ X.

In fact, since d(γ(t1), γ(t2)) = t2 − t1, we see

d(x, γ(t2)) ≤ d(x, γ(t1)) + d(γ(t1), γ(t2)) = d(x, γ(t1)) + (t2 − t1)

from which the above is derived. On the other hand, we observe uniform boundedness of ft, that is

|ft(x)| ≤ d(γ(0), x) for any x ∈ X and t > 0 as follows;

ft(x) = d(x, γ(t))− t ≤ d(x, γ(0)) + d(γ(0), γ(t))− t = d(x, γ(0))

and

t− d(x, γ(t)) = d(γ(0), γ(t))− d(x, γ(t))

≤ d(γ(0), x) + d(x, γ(t))− d(x, γ(t)) = d(x, γ(0))

so −d(x, γ(0)) ≤ ft(x) ≤ d(x, γ(0)).

Therefore, the sequence {ft(x)|t > 0} is bounded and decreasing and then has a limit as t→∞.

Proposition 3. Let γ and σ be geodesics. If γ ∼ σ, then

Bγ(x)− Bσ(x) = c, ∀x ∈ X,

for a constant c.

See [30,31] for this proposition, from which, for θ ∈ ∂X Busemann function Bγ associated with

a geodesic γ, [γ] = θ, gives us a same function on X modulo additive constant. So, let xo ∈ X be

an arbitrary point of X as a base point. Then, from non-positive curvature of X there exists a unique

geodesic γ such that γ(0) = xo and [γ] = θ.

Definition 3. Let xo ∈ X and θ ∈ ∂X . Let γ : R → X be a geodesic satisfying γ(0) = xo and
[γ] = θ. The Busemann function Bγ associated to γ is called normalized Busemann function, denoted
by Bθ.

Properties of (normalized) Busemann function:

(i) Bθ(xo) = 0 for any θ ∈ ∂X ,

(ii) Bθ(γ(t)) = −t, t ∈ R, for any θ ∈ ∂X , where γ is a geodesic satisfying γ(0) = xo, [γ] = θ.
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(iii) Busemann function is Lipschitz continuous;

|Bθ(x)− Bθ(y)| ≤ d(x, y), x, y ∈ X.

(iv) Busemann function is of class C2 (refer to [32]).

(v) Gradient vector field∇Bθ satisfies |(∇Bθ)x| ≡ 1 for any x ∈ X and θ ∈ ∂X . Here (∇Bθ)x ∈
TxX is defined by 〈(∇Bθ)x, v〉 = v(Bθ), directional derivative of Bθ with respect to v ∈ TxX .

An integral curve x(t) of ∇Bθ passing through a point x is obtained by x(t) = σ(−t), where

σ is a geodesic of σ(0) = x and [σ] = θ. Moreover, for any x ∈ X and any vector v ∈ SxX

there exists a θ ∈ ∂X such that v = −(∇Bθ)x so that βx(v) = θ.

(vi) Busemann function is convex (see (26)), since it is a limit of convex functions.

(vii) From (vi), the Hessian of Busemann function (∇dBθ)x : Tx×Tx → R is positive semi-definite

at any point x ∈ X , i.e., (∇dBθ)x(v, v) ≥ 0, for any v ∈ TxX and x ∈ X , and satisfies

(∇dBθ)x((∇Bθ)x, v) = 0, v ∈ TxX.

Here, for a C2-function f on X the Hessian ∇df is a symmetric bilinear form, defined by

(∇df)x(u, v) = u (V f)− (∇uV )f, u, v ∈ TxX, x ∈ X

where V is a smooth vector field, an extension of v. Notice that for a unit vector u ∈ SxX

(∇df)x(u, u) = d2

dt2

∣∣∣∣
t=0

f(γ(t))

with respect to a geodesic γ such that γ(0) = x, γ̇(0) = u.

Example 3. On a Euclidean space ∇dBθ = 0 for any θ ∈ ∂X(due to Example 1).

Example 4. On a real hyperbolic space Hn(R), n ≥ 2,

(∇dBθ)x(u, v) = 〈u, v〉 − 〈∇Bθ, u〉 〈∇Bθ, u〉, u, v ∈ TxX.

See for this [8].

Let (X, g) be an Hadamard manifold and φ : X → X be an isometry of X , i.e., a smooth

transformation of X satisfying φ∗g = g. An isometry preserves the distance d of X , i.e.,
d(φ(x), φ(y)) = d(x, y), x, y ∈ X and transforms a geodesic σ into a new geodesic φ ◦ σ so that, if

σ ∼ γ, then φ ◦ σ ∼ φ ◦ γ. Therefore, φ induces a transformation φ̂ of ∂X , a ∂X-extension of φ as

φ̂ : ∂X → ∂X; θ = [γ] �→ [φ ◦ γ].

Notice that (φ̂)−1 = φ̂−1 for the inverse φ−1 of φ. φ̂ is a homeomorphism of ∂X in terms of cone

topology.
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Proposition 4 (Busemann cocycle formula [33]). Any normalized Busemann function enjoys a
cocycle formula with respect to an isometry φ of X;

Bθ(φ(x)) = Bφ̂−1(θ)(x) +Bθ(φ(xo)). (28)

Proof. Let γ : R → X be a geodesic, γ(0) = xo, [γ] = θ. Notice that φ ◦ γ is a geodesic with

φ ◦ γ(0) = φ(xo), which, in general, does not coincide with the base point xo. For the Busemann

function Bφ−1◦γ(x) with respect to a geodesic φ−1 ◦ γ we have

Bφ−1◦γ(x) = lim
t→∞

(
d(x, φ−1 ◦ γ(t))− t

)
= lim

t→∞
(d(φ(x), γ(t))− t) = Bγ(φ(x)).

(29)

On the other hand, φ−1 ◦ γ belongs to φ̂−1(θ) and (φ−1 ◦ γ)(0) = φ−1(xo). Let σ be a geodesic such

that [σ] = φ̂−1(θ), σ(0) = xo. Then, the normalized Busemann function Bφ̂−1(θ) is given by Bσ.

Since φ−1 ◦ γ and σ belong to the same φ̂−1(θ), from (29) Bσ −Bφ−1◦γ is a constant function on X .

This constant is given from the above by (Bσ − Bφ−1◦γ) (xo) = −Bφ−1◦γ(xo) = −Bγ(φ(xo)) so that

on X

Bσ(x)− Bφ−1◦γ(x) ≡ −Bγ(φ(xo)). (30)

Since Bθ is given by Bγ , (28) is obtained from (30).

In what follows, every normalized Busemann function Bθ on X is assumed to be continuous with

respect to θ ∈ ∂X for each fixed point x ∈ X . This assumption is guaranteed by a real hyperbolic

space. See Example 3. Rank one symmetric spaces of non-compact type and Damek-Ricci spaces

satisfy this assumption, as is seen in [25].

Definition 4 ([21]). An Hadamard manifold (X, g) is said to satisfy visibility axiom, if for any
distinct ideal point θ, θ1 of ∂X there exists a geodesic γ : R → X such that γ(+∞) = θ and
γ(−∞) = θ1. Here γ(−∞) ∈ ∂X defined by [γ−], where γ− is the geodesic of reversed orientation
given by γ−(t) = γ(−t), t ∈ R.

A Euclidean space does not satisfy visibility axiom.

Proposition 5. Let (X, g) be an Hadamard manifold. (X, g) satisfies visibility axiom if and only if,
for any θ ∈ ∂X

lim
x→θ1

Bθ(x) = +∞,

provided θ1 �= θ. Refer to [31] for this.

Notice Bθ(x) = −∞, if x→ θ, from property (i) of normalized Busemann function.
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4.3. Average Busemann Function and Barycenter

In what follows, an Hadamard manifold satisfies visibility axiom and Busemann function Bθ(x)

is continuous with respect to every θ.

Let ∂X be, as before, the ideal boundary of an Hadamard manifold (X, g), diffeomorphic to

Sn−1, n = dimX and dθ a normalized standard measure on ∂X .

Denote by P(∂X) a space of probability measures μ on ∂X which is absolutely continuous with

respect to dθ (μ� dθ) whose density function p = p(θ) is of C0 and positive;

P(∂X) =

{
μ = p(θ) dθ ;

∫
∂X

p(θ) dθ = 1, p ∈ C0(∂X), p(θ) > 0 (∀θ ∈ ∂X)

}
.

Definition 5. Let μ ∈ P(∂X). Then, a function Bμ : X → R, called μ-average Busemann function,
is defined by

Bμ(x) =

∫
θ∈∂X

Bθ(x) dμ(θ).

Average Busemann function for any μ ∈ P(∂X) fulfills the following;

(i) For any μ ∈ P(∂X) each Bμ is convex on X and Bμ(xo) = 0.

(ii) Bμ(γ(t))→ +∞, as t→∞, where γ : R→ X is an arbitrary geodesic in X (Theorem 12).

(iii) Bμ is Lipschitz continuous, in fact, |Bμ(x)−Bμ(y)| ≤ |d(x, y)| for x, y ∈ X .

(iv) The gradient vector field ∇Bμ is defined on X as

(∇Bμ)x =

∫
∂X

(∇Bθ)x dμ(θ), x ∈ X

and satisfies |(∇Bμ)x| ≤ 1, x ∈ X .

(v) the Hessian ∇dBμ can be defined as μ-average Hessian;

(∇dBμ)x(u, v) =

∫
∂X

(∇dBθ)x(u, v) dμ(θ), u, v ∈ TxX x ∈ X,

provided (X, g) is of bounded Ricci curvature and moreover ΔBθ, the Laplacian of Bθ

together with d(ΔBθ) are uniformly bounded with respect to x ∈ X and θ ∈ ∂X . Here

Δf = −trace ∇df for a C2-function f on X . This is derived from Bochner formula (see

[23]). If (X, g) is asymptotically harmonic ([34]), i.e., ΔBθ ≡ c for any θ, and of bounded

Ricci curvature, the average Hessian ∇dBμ, μ ∈ P(∂X) is defined.

Definition 6. Let μ ∈ P(∂X). A critical point of μ-average Busemann function Bμ is called a
barycenter of μ.

For a C1-function f : X → R, y ∈ X is called a critical point of f , if one of the following

equivalent conditions holds;



228

(i) the differential of f at y vanishes along all directional vector, i.e.,

d

dt

∣∣∣∣
t=0

f(x(t)) = 0

for any C1-curve x(t) of x(0) = y,

(ii) the one-form df , or the gradient vector field ∇f vanishes at y.

Observation. For μ = p(θ) dθ ∈ P(∂X), x ∈ X is a barycenter of μ if and only if (dBμ)x(u) = 0

for any u ∈ TxX , which is equivalent to stating that a measure τ defined by τ = (dBθ)x(u) dμ =

〈(∇Bθ)x, u〉 p(θ) dθ is a tangent vector to P(∂X) at μ for each u ∈ TxX .

Theorem 12. If, as is assumed, an Hadamard manifold (X, g) satisfies visibility axiom and
Busemann function is continuous with respect to any θ ∈ ∂X . Then, every μ ∈ P(∂X) admits
a barycenter.

Proof. This theorem is proved by Besson, Courtois and Gallot in [8] by showing Bμ(γ(t))→∞ as

t→ +∞ along any geodesic γ of X . However, they assume that all probability measures on ∂X are

without atom and an Hadamard manifold (X, g) is of special type, i.e., a rank one symmetric space

of non-compact type. We restrict the space of probability measures as P(∂X). However, we relax

the assumptions concerning an Hadamard manifold (X, g) and then, assume only that (X, g) satisfies

visibility axiom and Busemann function is continuous with respect to any θ ∈ ∂X .

Let C > 0 be a constant and set AC = {y ∈ X ; Bμ(y) ≤ C}. AC is a convex set and xo ∈ AC ,

since Bμ is convex and Bμ(xo) = 0. Note AC contains a geodesic ball {y ∈ X ; d(y, xo) ≤ C/2}
since Bμ is Lipschitz. Let μ ∈ P(∂X) and γ be a geodesic satisfying γ(0) = xo and [γ] = θ. Then

it is possible to verify limt→+∞ Bμ(γ(t)) = +∞ in the following steps;

Step I. Since Busemann function Bθ is convex and Bθ(x0) = 0 for any θ, we have

d(γ(t1), x0) Bθ(γ(t) ≥ d(γ(t), x0) Bθ(γ(t1) (31)

in other words

t1 Bθ(γ(t)) ≥ t Bθ(γ(t1)) (0 ≤ t1 ≤ t).

In fact, if we set a = t1/t, then, 0 ≤ a ≤ 1 and we have t1 = (1 − a) 0 + a t. The Convex function

Bθ(γ(t)) fulfills

Bθ(γ(t1)) ≤ (1− a) Bθ(γ(0)) + a Bθ(γ(t)) = a Bθ(γ(t)),

that is

Bθ(γ(t1)) ≤ aBθ(γ(t)) (32)

which is just (31).

Step II. Fix t1 > 0 of Step I. Take an arbitrary θ0 ∈ ∂X and fix it. Let γ be a geodesic of γ(0) = x0

and [γ] = θ0. For any t > 0 set

Jθ0(t) := {θ ∈ ∂X ; Bθ(γ(t)) < 0}.



229

We show that there exists a t1 ∈ (0,∞) such that μ(Jθ0(t1)) < 1, as follows.

Since Bθ(x) is continuous with respect to θ, the set Jθ0(t) is compact in ∂X . We see θ0 ∈ Jθ0(t).

From (32) it holds

Jθ0(t) ⊂ Jθ0(t1) (0 < t1 < t). (33)

It follows then ⋂
t∈[0,∞)

Jθ0(t) = {θ0},

because from the visibility axiom, we have from Proposition 3.4 for any θ ∈ ∂X such that θ �= θ0

limt→∞ Bθ(γ(t)) = +∞. Moreover, from (33) for the μ we find

lim
t→∞

μ(Jθ0(t)) = μ

⎛⎝ ⋂
t∈[0,∞)

Jθ0(t)

⎞⎠ = μ({θ0}) = 0. (34)

Therefore, we have a t1 ∈ (0,∞) such that μ(Jθ0(t1)) < 1. Here, notice μ(Jθ0(t)) ≤ μ(Jθ0(t1)) < 1

for any t ≥ t1 > 0.

Step III. Let K be a compact subset of ∂X \ Jθ0(t1) satisfying μ(K) > 0. It is possible to choose

such a K. Then, from (33) it holds for any t ≥ t1 that K ⊂ ∂X \ Jθ0(t), and Bθ(γ(t)) ≥ 0 for any

θ ∈ ∂X \ Jθ0(t). So,∫
∂X

Bθ(γ(t)) dμ(θ) =

∫
Jθ0 (t)

Bθ(γ(t)) dμ(θ) +

∫
∂X\Jθ0 (t)

Bθ(γ(t)) dμ(θ)

≥
∫
Jθ0 (t)

Bθ(γ(t)) dμ(θ) +

∫
K

Bθ(γ(t)) dμ(θ).

Since K is compact, we choose a constant C > 0 satisfying

Bθ(γ(t1)) ≥ C > 0, ∀θ ∈ K.

From (32), we have∫
∂X

Bθ(γ(t)) dμ(θ) ≥ t

t1

∫
Jθ0 (t)

Bθ(γ(t1)) dμ(θ) + C
t

t1
μ(K).

To estimate the first term of the RHS we choose D ≥ 0 satisfying

Bθ(γ(t1)) ≥ − sup{|Bθ(γ(t1))| ; θ ∈ ∂X} = −D.

In fact, since ∂X is compact, Bθ(γ(t1)), as a continuous function of θ, is bounded with respect to θ.

Therefore, the above is written as∫
∂X

Bθ(γ(t)) dμ(θ) ≥ t

t1
(−Dμ(Jθ0(t)) + C μ(K)) .

We let t→ +∞ and then, from (34) we have

lim
t→∞

Bμ(γ(t)) = lim

∫
∂X

Bθ(γ(t)) dμ(θ) = +∞

from which it follows that the closed set AC is bounded and hence is compact. Therefore, Bμ admits

a minimal point x ∈ X , namely, x is a barycenter of μ.
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Proposition 6. Let (X, g) be an Hadamard manifold of bounded Ricci curvature. If (X, g) is
asymptotically harmonic, then the following holds; If there exists μ0 ∈ P(∂X) such that μ-average
Hessian∇dBμ0 is positive definite at every point in X , then, for any μ ∈ P(∂X) μ-average Hessian
∇dBμ is also positive definite at every point in X .

Proof. Let x ∈ X and u ∈ TxX . Then, for a geodesic γ in X , γ(0) = x, γ̇(0) = u we have

(∇dBμ0)x(u, u) =
d2

dt2

∣∣∣∣
t=0

Bμ0(γ(t)) =

∫
θ∈∂X

d2

dt2

∣∣∣∣
t=0

Bθ(γ(t))dμ0(θ)

=

∫
∂X

(∇dBθ)x(u, u)dμ0(θ).

Similarly for any μ ∈ P(∂X), we have

(∇dBμ)x(u, u) =
d2

dt2

∣∣∣∣
t=0

Bμ(γ(t)) =

∫
θ∈∂X

∂2

∂t2

∣∣∣∣
t=0

Bθ(γ(t)) dμ(θ)

=

∫
∂X

(∇dBθ)x(u, u) dμ(θ).

(35)

Let C = minθ∈∂X
dμ
dμ0

(θ) > 0. It is concluded then from the above

(∇dBμ)x(u, u) ≥ C(∇dBμ0)x(u, u) > 0, ∀u ∈ TxX( �= 0), x ∈ X.

Theorem 13. Let (X, g) be an Hadamard manifold satisfying the above assumptions. Then, any
μ ∈ P(∂X) admits a unique barycenter.

In fact, Theorem 12 asserts an existence of a barycenter for any μ. From Proposition 6 a

barycenter must be unique, since, if, otherwise, μ admits barycenters y1, y2, y1 �= y2, then

f(t) := Bμ(γ(t)) along a geodesic γ : R → X joining y1 and y2 satisfies f ′(0) = f ′(d) = 0

(d = d(y1, y2)) and f ′′(t) > 0, t ∈ [0, d] because of the positive definiteness of μ-average Hessian

(35). So, f(t) must be constant along γ. This contradicts property (ii) of μ-average Busemann

function. Hence uniqueness is proved.

Proposition 7 (average Busemann cocycle formula). Let φ be an isometry of an Hadamard manifold
(X, g). Then for any μ ∈ P(∂X)

Bμ(φ
−1x) = B(φ̂)�μ

(x) +Bμ(φ
−1xo). (36)

Proof. Integrate the Busemann cocycle formula (28)

Bθ(φ
−1(x)) = Bφ̂(θ)(x) +Bθ(φ

−1xo)

for the inverse isometry φ−1 with respect to a measure μ. We then get (36).



231

From Theorem 13 we define a map, called barycenter map

bar : P(∂X)→ X; μ �→ y, (37)

by assigning a barycenter y to μ.

Example 5. The standard measure dθ has bar(dθ) = xo, the base point as its barycenter. In fact,
we observe ∫

∂X

〈(∇Bθ)xo , u〉 dθ = 0, ∀u ∈ TxoX,

since dθ = (βxo)�(dθ)xo is the push-forward of the spherical measure (dθ)xo of SxoX , where βxo is
a map given in (27), and one has βxo(−(∇Bθ)xo) = θ so that βxo(v) = θ implies v = −(∇Bθ)xo .
Then the LHS of the above is written as∫

v∈SxoX

〈(∇Bβxo (v))xo , u〉dθxo(v) = −
∫
v∈SxoX

〈v, u〉dθxo(v) = 0.

Here, the last integration is derived from a standard formula on Sn−1 which is described as∑n
i=1(θ

i)2 = 1 with respect to the standard coordinates θ = (θ1, . . . , θn) ∈ Rn;∫
θ∈Sn−1

θi(dθ)Sn−1 = 0, i = 1, · · · , n.

4.4. Barycenter Map

In this subsection we will verify that the barycenter map (37) enjoys a fibration over an Hadamard

manifold X in terms of Fisher metric G. Before giving a detailed argument, we prepare some special

probability measures on ∂X which play a crucial role in the barycenter map, that is, Poisson kernel

measures. Here, Poisson kernel is a fundamental solution of Dirichlet problem at ∂X; given a

C0-function f on ∂X , find a function u on X which satisfies the Laplace equation Δu = 0 and

the boundary condition limx→θ u(x) = f(θ) for θ ∈ ∂X .

Definition 7 ([3,35]). A function Pθ(x) = P (x, θ) on X is called a Poisson kernel, normalized at xo,
for θ ∈ ∂X if it satisfies

(i) ΔP (x, θ) = 0 and P (x, θ) > 0 for any x ∈ X and θ ∈ ∂X .

(ii) P (xo, θ) = 1 for any θ ∈ ∂X .

(iii) for any θ ∈ ∂X , P (x, θ) ∈ C0(X ∪ ∂X \ {θ}) as an extension function on X ∪ ∂X and
limx→θ1 P (x, θ) = 0 for θ1 �= θ.

The solution u = u(x) of the Dirichlet problem on ∂X is described as an integration form;

u(x) =

∫
θ∈∂X

P (x, θ) f(θ) dθ

so, P (x, θ) dθ ∈ P(∂X) for each x ∈ X .
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Example 6. On a real hyperbolic space Hn(R) of standard hyperbolic metric of Poicaré ball model,
the Poisson kernel is given by

P (x, θ) =

(
1− |x|2
|x− θ|2

)n−1

, θ ∈ ∂X = Sn−1.

Example 7. The Poisson integral formula, well known in potential theory, is for a bounded harmonic
function h = h(z), z = reiϕ ∈ {z ∈ C||z| ≤ 1}

h(reiϕ) =
1

2π

∫
0≤θ≤2π

1− r2

1− 2r cos(ϕ− θ) + r2
f(eiθ) dθ,

where f is a bounded function on S1. The kernel function (1− r2)/(1− 2r cos(ϕ− θ) + r2) is just
the Poisson kernel P (z, θ) = (1 − |z|2)/|z − θ|2 of the hyperbolic plane H2(R). See, for example
[20].

Definition 8. A Poisson kernel on an Hadamard manifold (X, g) is called Busemann-Poisson kernel,
when it has the following form

P (x, θ) = exp{−QBθ(x)}, x ∈ X, θ ∈ ∂X,

where Q > 0 is volume entropy of (X, g), the exponential growth rate of the volume of (X, g)

Q = lim
r→∞

1

r
log vol B(x, r)

for a geodesic ball B(x, r).

Remark 5. For volume entropy refer to [8] in which the following theorem, Theorem of Manning,
([7]) is cited; if Qtop denotes the topological entropy of a compact Riemannian manifold Y of
non-positive curvature, then one has

(i) Q(Ỹ ) ≤ Qtop(Y ),
(ii) Q(Ỹ ) = Qtop(Y ), provided the curvature of Y is negative or zero.
Here, Ỹ is the universal covering space of Y and the topological entropy Qtop(Y ) is defined by

Qtop(Y ) = lim
R→∞

1

R
log(�{γ | �(γ) ≤ R}),

where γ denotes a periodic geodesic in Y of length �(γ) and �{γ | �(γ) ≤ R} denotes the number of
periodic geodesics of length not greater than R.

For example Q = 0 for a Euclidean space and Q = n − 1 for a real hyperbolic space Hn(R) of

standard hyperbolic metric.

Remark 6. Any Damek-Ricci space admits a Busemann-Poisson kernel (refer to [4]). See also [8]

for a rank one symmetric space of non-compact type which is just a member of Damek-Ricci spaces,
as observed by using Iwasawa decomposition of isometry groups.
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Theorem 14. Let (X, g) be an Hadamard manifold satisfying the assumptions in Theorem 12 and
Proposition 6. If (X, g) admits a Busemann-Poisson kernel, then, for μx := P (x, θ) dθ ∈ P(∂X)

(i) bar(μx) = x for any x ∈ X and

(ii) at any point y ∈ X , (∇dBμx)y is positive definite.

The statement (i) is shown in [8]. From (i) the barycenter map bar is onto.

Definition 9. Let μ = p(θ) dθ ∈ P(∂X) and x ∈ X be a barycenter of μ. We define a linear map

νμ
x : TxX → TμP(∂X); u �→ νμ

x (u) = (dBθ)x(u) μ = 〈(∇Bθ)x, u〉 p(θ)dθ. (38)

Notice that the map νμ
x is injective.

Proof of Theorem 14. (i) Let u ∈ TxX and x(t) a C1-curve in X such that x(0) = x, ẋ(0) = u.

Differentiate
∫
∂X

P (x(t), θ) dθ ≡ 1 as

0 =
d

dt

∣∣∣∣
t=0

∫
P (x(t), θ) dθ

=

∫
∂

∂t

∣∣∣∣
t=0

exp{−QBθ(x(t))} dθ

=

∫
−Q(dBθ)x(ẋ(0)) exp{−QBθ(x(0))}dθ

=−Q
d

dt

∣∣∣∣
t=0

∫
∂X

Bθ(x(t)) dμx = −Q(dBμx)x(u).

So, x = bar μx.

For a proof of (ii) we first show

Assertion 4. The measure μx satisfies

(∇dBμx)x(u, v) = Q Gμx(ν
μx
x (u), νμx

x (v)), u, v ∈ TxX (39)

in terms of the Fisher metric G, where νμx
x is the linear map defined in (38).

It suffices to show this in case of u = v. Let γ be a geodesic in X satisfying γ(0) = x, γ̇(0) = u.

Then we have

0 =
d2

dt2

∣∣∣∣
t=0

∫
∂X

P (γ(t), θ) dθ.

However, this is ∫
∂X

∂2

∂t2

∣∣∣∣
t=0

exp{−QBθ(γ(t))} dθ

=−Q

∫
∂X

{
(∇dBθ)x(u, u)−Q {(dBθ)x(u)}2

}
exp{−Q Bθ(x)} dθ

=−Q {(∇dBμx)x(u, u)−Q Gμx(ν
μx
x (u), νμx

x (u))}
showing (39).
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From this assertion (ii) is proved as follows. At y ∈ X we have, since (∇dBθ)y(·, ·) is positive

semi-definite,

(∇dBμx)y(u, u) =

∫
(∇dBθ)y(u, u) dμx(θ) =

∫
(∇dBθ)y(u, u)P (x, θ) dθ

≥C

∫
(∇dBθ)y(u, u)P (y, θ) dθ = C (∇dBμy)y(u, u)

for any u ∈ TyX , where C = infθ∈∂X P (x, θ)/P (y, θ) > 0.

Now we will investigate the map bar : P(∂X)→ X .

Theorem 15. The barycenter map bar : P(∂X) → X gives a projection of a fibre space whose
total space is P(∂X) and base space is X with fibres bar−1(x) over x ∈ X . In fact, let x ∈ X and
μ ∈ bar−1(x). Then

TμP(∂X) = Tμbar
−1(x)⊕ Im νμ

x (dim Im νμ
x = n),

as an orthogonal direct sum of the vertical subspace Tμbar
−1(x) and the horizontal subspace Im νμ

x

with respect to Fisher metric Gμ.

This orthogonal decomposition indicates that N = {Nμ = Im νμ
x ; μ ∈ bar−1(x)} distributes a

normal bundle to each fibre bar−1(x), x ∈ X . Notice that bar−1(x) is path-connected, since, for μ,

μ1 ∈ bar−1(x) (1− t)μ+ tμ1, 0 ≤ t ≤ 1, also belongs to bar−1(x).

We will show that the vertical subspace Tμbar
−1(x) is orthogonal to Nμ = Im νμ

x . Let u ∈ TxX

and τ ∈ Tμbar
−1(x) and take μ(t) = μ + tτ for sufficiently small |t|. Then, μ(t) ∈ bar−1(x). So,

for a sufficiently small |t|, we have

0 =

∫
(dBθ)x(u)dμ(t)(θ) =

∫
(dBθ)x(u)d(μ+ tτ)(θ)

=

∫
(dBθ)x(u)dμ(θ) + t

∫
(dBθ)x(u)dτ(θ)

=t

∫
(dBθ)x(u)dτ(θ) = t Gμ(ν

μ
x (u), τ).

This means the orthogonality of Tμbar
−1(x) and Nμ = Im νμ

x .

Since the image Nμ = Im νμ
x is a finite dimensional subspace of TμP(∂X), the direct sum

decomposition is easily shown and so we skip.

4.5. Fibres bar−1(x) and Geodesics

We discussed in Section 3 several properties and propositions of geodesics on a space of

probability measures. In this section we will investigate under which condition a geodesic of P(∂X)

is contained in a fibre bar−1(x).
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Theorem 16. Let (X, g) be an Hadamard manifold satisfying the assumptions in Theorem 12 and
Proposition 6, and admitting a Busemann-Poisson kernel.

Let μ ∈ bar−1(x) and τ ∈ Tμbar
−1(x), |τ |G,μ = 1. Then a geodesic μ(t) = expμ tτ entirely

belongs to bar−1(x) for any t at which μ(t) is well-defined, if and only if τ fulfills Hμ(τ, τ) = 0.

Here H is the second fundamental form of a submanifold bar−1(x) of the ambient space P(∂X)

(see Equation (5) in Section 2).

Proof. From Theorem 10, Section 3 the geodesic μ(t) is given by

μ(t) =

(
cos

t

2
+ sin

t

2

dτ

dμ
(θ)

)2

μ.

Then μ(t) ∈ bar−1(x) for all t if and only if for any u ∈ TxX

0 =

∫
θ∈∂X

(dBθ)x(u) dμ(t)(θ).

However the RHS is

cos2
t

2

∫
(dBθ)x(u) dμ(θ)+2 cos

t

2
sin

t

2

∫
(dBθ)x(u)

dτ

dμ
(θ) dμ(θ)+sin2

t

2

∫
(dBθ)x(u)

(
dτ

dμ

)2

(θ) dμ(θ)

for all t. Since μ ∈ bar−1(x) and τ ∈ Tμbar
−1(x), this is equivalent to

0 =

∫
(dBθ)x(u)

(
dτ

dμ

)2

(θ) dμ(θ)

which is reduced by the aid of Levi–Civita connection formula to

0 =

∫
(dBθ)x(u)

(
d∇ττ

dμ

)
(θ) dμ(θ) = −2 Gμ(ν

μ
x (u),∇ττ)

which means that H(τ, τ) = 0. Conversely, if τ satisfies H(τ, τ) = 0, then it is easy to see that

μ(t) = expμ tτ belongs to the fibre bar−1(x) by following reversely the above argument.

Theorem 17. Let μ, μ∗ ∈ bar−1(x), x ∈ X (μ �= μ∗). Then, a geodesic μ(t) joining μ and μ∗ lies
entirely on bar−1(x) if and only if∫

∂X

(dBθ)x(u)

√
dμ∗

dμ
(θ) dμ(θ) = 0, ∀u ∈ TxX. (40)

Proof. The geodesic μ(t) joining μ and μ∗ is written from Theorem 11 by expμ tτ of an initial vector

τ =
1

sin �
2

{√
dμ∗

dμ
(θ)− cos

�

2

}
μ, � = �(μ, μ∗) > 0. (41)

Then, μ(t) lies on bar−1(x) if and only if the following conditions hold, that is, τ is tangent to

bar−1(x), namely,

Gμ(ν
μ
x (u), τ) = 0 (42)
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for any u ∈ TxX , and that

H(τ, τ) = −1

2

∫
∂X

(dBθ)x(u)

(
dτ

dμ

)2

(θ) dμ(θ) = 0. (43)

Equation (42) is equivalent to (40), since τ is given by (41). On the other hand, (43) is written as

0 =

∫
∂X

(dBθ)x(u)

(√
dμ∗

dμ
(θ)− cos

�

2

)2

dμ(θ)

=− 2 cos
�

2

∫
∂X

(dBθ)x(u)

√
dμ∗

dμ
(θ) dμ(θ)

for any u ∈ TxX . This condition is also (40), so we get Theorem 17.

Example 8. Let μ = dθ. Then, bar(dθ) = xo, as seen in Example 5. We exhibit tangent vectors τ ,
τ1 at dθ satisfying H(τ, τ) = 0, whereas H(τ1, τ1) �= 0, as follows;

(i) Identify ∂X with SxoX
∼= Sn−1 via βxo , and dθ with (dθ)xo . Choose on Sn−1 a function

q = q(θ) = θiθj , i �= j and define τ = q(θ) dθ as a measure on ∂X . Then, τ ∈
TdθP(∂X). Moreover, τ ∈ Tdθbar

−1(xo), since Gdθ(ν
dθ
xo
(u), τ) = 0 for any u ∈ TxoX

and H(τ, τ) = 0. These are directly from the integral formulae;
∫
Sn−1 θiθjθk(dθ)xo = 0,∫

Sn−1 (θ
iθj)2θk(dθ)xo = 0 for any k = 1, . . . , n. By normalizing τ ′ = τ/|τ |G in terms of G,

from Theorem 16 γ(t) = expdθ tτ
′ gives a geodesic lying on bar−1(xo).

(ii) Let q1 = q1(θ) is a function on Sn−1, n ≥ 3, defined by q1(θ) = θ1θ2θ3 + θ2θ3 and set
τ1 = q1(θ) dθ. Then (γ1)(t) = expdθ tτ

′
1, τ ′1 = τ1/|τ1|G, is a geodesic being not completely on

the fibre bar−1(xo).

5. Barycentrically Associated Maps

Let φ be an isometry of an Hadamard manifold (X, g). Then, from the average Busemann cocycle

formula (36).

Theorem 18 ([8]). For any isometry φ of (X, g), we have

bar(φ̂�μ) = φ(bar(μ)), μ ∈ P(∂X). (44)

Proof. Let y = bar(φ̂�μ). Then (dBφ̂�μ
)y(u) = 0 for any u ∈ TyX , namely, due to (36) φ−1y turns

out to be a critical point of Bμ, that is, y = φ(bar(μ)), so (44) is obtained.

Definition 10. Let Φ : ∂X → ∂X be a homeomorphism of ∂X . Then, a bijective map φ : X → X

is said to be barycentrically associated to Φ, if Φ and φ satisfy the relation bar ◦ Φ = φ ◦ bar, that
is, bar(Φ(μ)) = φ(bar(μ)) for any μ ∈ P(∂X).

Now we are ready to give a proof of Theorem 6.



237

Proof of Theorem 6. From the statement of the theorem, diagram (6) asserts for any x ∈ X , i.e.,

Φ� (ν
μx
x (u)) = νμϕx

ϕx ((ϕ∗)x(u)), ∀u ∈ TxX, (45)

namely

Φ� ((dBθ)x(u)μx(θ)) = (dBθ)ϕx ((ϕ∗)xu)μϕx(θ) (46)

for μx = Σ(x), where Σ : X → P(∂X) is a cross section whose existence is assumed in the theorem.

We write (46) as

(dBΦ−1θ)x(u) Φ�μx = (dBθ)ϕx((ϕ∗)xu) μϕx.

Since another diagram (6) implies Φ�μx = μϕx, we have

(dBΦ−1θ)x(u) μϕx = (dBθ)ϕx((ϕ∗)xu) μϕx, (47)

that is,

(dBΦ−1θ)x(u) = (dBθ)ϕx((ϕ∗)xu), u ∈ TxX, ∀θ ∈ ∂X,

or

〈(∇BΦ−1θ)x, u〉 = 〈(∇Bθ)ϕx, (ϕ∗)xu〉 u ∈ TxX, ∀θ ∈ ∂X.

Using the formal adjoint ((ϕ∗)x)∗ of (ϕ∗)x, we write the above as

(∇BΦ−1θ)x = ((ϕ∗)x)∗(∇Bθ)ϕx u ∈ TxX, ∀θ ∈ ∂X.

Let v ∈ SϕxX be a unit tangent vector at ϕx and choose θ ∈ ∂X such that (∇Bθ)ϕx = v so that the

above is written as (ϕ∗)∗xv = (∇BΦ−1θ)x and thus from property (v) in Section 4.2 it is concluded that

|(ϕ∗)∗xv| = |(∇BΦ−1θ)x| = 1 which implies that (ϕ∗)∗x and consequently (ϕ∗)x is a linear isometry.

Since x ∈ X is arbitrary, ϕ turns out to be an isometry of (X, g).

To show that Φ coincides with ∂X-extension ϕ̂ we make use of (47) together with the following

(dBϕ̂−1θ)x(u) μϕx = (dBθ)ϕx((ϕ∗)xu) μϕx (48)

which is derived by differentiating the Busemann cocycle formula (28) to get for any u ∈ TxX ,

x ∈ X

(dBϕ̂−1θ)x(u) = (dBΦ−1θ)x(u). (49)

Namely, we have d(Bϕ̂−1θ − BΦ−1θ) = 0 on X for any θ ∈ ∂X . Since X is connected, Bϕ̂−1θ(x) −
BΦ−1θ(x) = C for a constant C which depends on θ. From this it follows that ϕ̂ = Φ. In fact, assume

ϕ̂−1θ �= Φ−1θ for some θ ∈ ∂X , otherwise, and let x→ Φ−1θ. Then, from the visibility axiom (see

Proposition 5) Bϕ̂−1θ(x)− BΦ−1θ(x)→ −∞ contradicting that C is constant.
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Entropy, Information Theory, Information Geometry and
Bayesian Inference in Data, Signal and Image Processing and
Inverse Problems
Ali Mohammad-Djafari

Abstract: The main content of this review article is first to review the main inference tools

using Bayes rule, the maximum entropy principle (MEP), information theory, relative entropy and

the Kullback–Leibler (KL) divergence, Fisher information and its corresponding geometries. For

each of these tools, the precise context of their use is described. The second part of the paper is

focused on the ways these tools have been used in data, signal and image processing and in the

inverse problems, which arise in different physical sciences and engineering applications. A few

examples of the applications are described: entropy in independent components analysis (ICA)

and in blind source separation, Fisher information in data model selection, different maximum

entropy-based methods in time series spectral estimation and in linear inverse problems and, finally,

the Bayesian inference for general inverse problems. Some original materials concerning the

approximate Bayesian computation (ABC) and, in particular, the variational Bayesian approximation

(VBA) methods are also presented. VBA is used for proposing an alternative Bayesian computational

tool to the classical Markov chain Monte Carlo (MCMC) methods. We will also see that VBA

englobes joint maximum a posteriori (MAP), as well as the different expectation-maximization (EM)

algorithms as particular cases.

Reprinted from Entropy. Cite as: Mohammad-Djafari, A. Entropy, Information Theory, Information

Geometry and Bayesian Inference in Data, Signal and Image Processing and Inverse Problems.

Entropy 2015, 17, 3989–4027.

1. Introduction

As this paper is an overview and an extension of my tutorial paper in MaxEnt 2014 workshop [1],

this Introduction gives a summary of the content of this paper.

The qualification Bayesian refers to the influence of Thomas Bayes [2], who introduced

what is now known as Bayes’ rule, even if the idea had been developed independently by

Pierre-Simon de Laplace [3]. For this reason, I am asking a question of the community if we shall

change Bayes to Laplace and Bayesian to Laplacian or at least mention them both. Whatever

the answer, we assume that the reader knows what probability means in a Bayesian or Laplacian

framework. The main idea is that a probability law P (X) assigned to a quantity X represents

our state of knowledge that we have about it. If X is a discrete valued variable, {P (X = xn) =

pn, n = 1, · · · , N} with mutually exclusive values xn is its probability distribution. When X is

a continuous valued variable, p(x) is its probability density function from which we can compute

P (a ≤ X < b) =
∫ b

a
p(x) dx or any other probabilistic quantity, such as its mode, mean, median,

region of high probabilities, etc.
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In science, it happens very often that a quantity cannot be directly observed or, even when it

can be observed, the observations are uncertain (commonly said to be noisy), by uncertain or noisy,

here, I mean that, if we repeat the experiences with the same practical conditions, we obtain different

data. However, in the Bayesian approach, for a given experiment, we have to use the data as they

are, and we want to infer it from those observations. Before starting the observation and gathering

new data, we have very incomplete knowledge about it. However, this incomplete knowledge can

be translated in probability theory via an a priori probability law. We will discuss this point later on

regarding how to do this. For now, we assume that this can be done. When a new observation (data

D) on X becomes available (direct or indirect), we gain some knowledge via the likelihood P (D|X).

Then, our state of knowledge is updated combining P (D|X) and P (X) to obtain an a posteriori law

P (X|D), which represents the new state of knowledge on X . This is the main esprit of the Bayes

rule, which can be summarized as:

P (X|D) = P (D|X)P (X)/P (D). (1)

As P (X|D) has to be a probability law, we have:

P (D) =
∑
X

P (D|X)P (X). (2)

This relation can be extended to the continuous case. Some more details will be given in Section 2.

Associated with a probability law is the quantity of information it contains. Shannon [4]

introduced the notion of quantity of information In associated with one of the possible values of

xn of X with probabilities P (X = xn) = pn to be In = ln 1
pn

= − ln pn and the entropy H as the

expected value of In:

H = −
N∑

n=1

pn ln pn. (3)

The word entropy has also its roots in thermodynamics and physics. However, this notion of

entropy has no direct link with entropy in physics, even if for a particular physical system, we may

attribute a probability law to a quantity of interest of that system and then define its entropy. This

information definition of Shannon entropy became the main basis of information theory in many data

analyses and the science of communication. More details and extensions about this subject will be

given in Section 3.

As we can see up to now, we did not yet discuss how to assign a probability law to a quantity. For

the discrete value variable, when X can take one of the N values {x1, · · · , xN} and when we do not

know anything else about it, Laplace proposed the “Principe d’indifférence”, where P (X = xn) =

pn = 1
N
, ∀n = 1, · · · , N , a uniform distribution. However, what if we know more, but not enough to

be able to assign the probability law {p1, · · · , pN} completely?

For example, if we know that the expected value is
∑

n xnpn = d, this problem can be handled

by considering this equation as a constraint on the probability distribution {p1, · · · , pN}. If we have

a sufficient number of constraints (at least N ), then we may obtain a unique solution. However, very

often, this is not the case. The question now is how to assign a probability distribution {p1, · · · , pN}
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that satisfies the available constraints. This question is an ill-posed problem in the mathematical

sense of Hadamard [5] in the sense that the solution is not unique. We can propose many probability

distributions that satisfy the constraint imposed by this problem. To answer this question, Jaynes

[6–8] introduced the maximum entropy principle (MEP) as a tool for assigning a probability law to

a quantity on which we have some incomplete or macroscopic (expected values) information. Some

more details about this MEP, the mathematical optimization problem, the expression of the solution

and the algorithm to compute it will be given in Sections 3 and 4.

Kullback [9] was interested in comparing two probability laws and introduced a tool to measure

the increase of information content of a new probability law with respect to a reference one. This

tool is called either the Kullback–Leibler (KL) divergence, cross entropy or relative entropy. It

has also been used to update a prior law when new pieces of information in the form of expected

values are given. As we will see later, this tool can also be used as an extension to the MEP of

Jaynes. Furthermore, as we will see later, this criterion of comparison of two probability laws is not

symmetric: one of the probability laws has to be chosen to be the reference, and then, the second is

compared to this reference. Some more details and extensions will be given in Section 5.

Fisher [10] wanted to measure the amount of information that a random variable X carries about

an unknown parameter θ upon which its probability law p(x|θ) depends. The partial derivative with

respect to θ of the logarithm of this probability law, called the log-likelihood function for θ, is called

the score. He showed that the first order moment of the score is zero, but its second order moment

is positive and is also equivalent to the expected values of the second derivative of log-likelihood

function with respect to θ. This quantity is called the Fisher information. It is also been shown

that for the small variations of θ, the Fisher information induces locally a distance in the space of

parameters Θ, if we had to compare two very close values of θ. In this way, the notion of the

geometry of information is introduced [11,12]. We must be careful here that this geometrical property

is related to the space of the parameters Θ for small changes of the parameter for a given family of

parametric probability law p(x|θ) and not in the space of probabilities. However, for two probability

laws p1(x) = p(x|θ1) and p2(x) = p(x|θ2) in the same exponential family, the Kullback–Leibler

divergence KL [p1 : p2] induces a Bregman divergence B[θ1 : θ2] between the two parameters [13,14].

More details will be given in Section 8.

At this stage, we have almost introduced all of the necessary tools that we can use for different

levels of data, signal and image processing. In the following, we give some more details for each

of these tools and their inter-relations. Then, we review a few examples of their use in different

applications. As examples, we demonstrate how these tools can be used in independent components

analysis (ICA) and source separation, data model selection, in spectral analysis of the signals and

in inverse problems, which arise in many sciences and engineering applications. At the end, we

focus more on the Bayesian approach for inverse problems. We present some details concerning

unsupervised methods, where the hyper parameters of the problem have to be estimated jointly with

the unknown quantities (hidden variables). Here, we will see how the Kullback–Leibler divergence

can help approximate Bayesian computation (ABC). In particular, some original materials concerning

variational Bayesian approximation (VBA) methods are presented.
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2. Bayes Rule

Let us introduce things very simply. If we have two discrete valued related variables X and Y , for

which we have assigned probability laws P (X) and P (Y ), respectively, and their joint probability

law P (X, Y ), then from the sum and product rule, we have:

P (X, Y ) = P (X|Y )P (Y ) = P (Y |X)P (X) (4)

where P (X, Y ) is the joint probability law, P (X) =
∑

Y P (X, Y ) and P (Y ) =
∑

X P (X, Y ) are

the marginals and P (X|Y ) = P (X, Y )/P (Y ) and P (Y |X) = P (X, Y )/P (X) are the conditionals.

Now, consider the situation where Y can be observed, but not X . Because these two quantities are

related, we may want to infer X from the observations on Y . Then, we can use:

P (X|Y ) =
P (Y |X)P (X)

P (Y )
(5)

which is called the Bayes rule.

This relation is extended to the continuous valued variables using the measure theory [15,16]:

p(x|y) = p(y|x) p(x)
p(y)

(6)

with:

p(y) =

∫
p(y|x) p(x) dx. (7)

More simply, the Bayes rule is often written as:

p(x|y) ∝ p(y|x) p(x). (8)

This writing can be used when we want to use p(x|y) to compute quantities that are only dependent

on the shape of p(x|y), such as the mode, the median or quantiles. However, we must be careful

that the denominator is of importance in many other cases, for example when we want to compute

expected values. There is no need for more sophisticated mathematics here if we want to use this

approach.

As we mentioned, the main use of this rule is in particular when X can not be observed (unknown

quantity), but Y is observed and we want to infer X . In this case, the term p(y|x) is called the

likelihood (of unknown quantity X in the observed data y), p(x) is called a priori and p(x|y) a
posteriori. The likelihood is assigned using the link between the observed Y and the unknown X ,

and p(x) is assigned using the prior knowledge about it. The Bayes rule then is a way to do state of

knowledge fusion. Before taking into account any observation, our state of knowledge is represented

by p(x), and after the observation of Y , it becomes p(x|y).
However, in this approach, two steps are very important. The first step is the assigning of p(x) and

p(y|x) before being able to use the Bayes rule. As noted in the Introduction and as we will see later,

we need other tools for this step. The second important step is after: how to use p(x|y) to summarize
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it. When X is just a scalar value variable, we can do this computation easily. For example, we can

compute the probability that X is in the interval [a, b] via:

P (a ≤ X < b|y) =
∫ b

a

p(x|y) dx. (9)

However, when the unknown becomes a high dimensional vectorial variable X , as is the case in

many signal and image processing applications, this computation becomes very costly [17]. We may

then want to summarize p(x|y) by a few interesting or significant point estimates. For example,

compute the maximum a posteriori (MAP) solution:

x̂MAP = argmax
x

{p(x|y)} , (10)

the expected a posteriori (EAP) solution:

x̂EAP =

∫
x p(x|y) dx, (11)

the domains of X which include an integrated probability mass of more than some desired value

(0.95 for example):

[x1, x2] :

∫ x2

x1

p(x|y) dx = .95, (12)

or any other questions, such as median or any α-quantiles:

xq :

∫ xq

−∞
p(x|y) dx = (1− α). (13)

As we see, computation of MAP needs an optimization algorithm, while these last three cases need

integration, which may become very complicated for high dimensional cases [17].

We can also just explore numerically the whole space of the distribution using the Markov chain

Monte Carlo (MCMC) [18–26] or any other sampling techniques [17]. In the scalar case (one

dimension), all of these computations can be done numerically very easily. For the vectorial case,

when the dimensions become large, we need to develop specialized approximation methods, such as

VBA and algorithms to do these computations. We give some more details about these when using

this approach for inverse problems in real applications.

Remarks on notation used for the expected value in this paper: For a variable X with the probability

density function (pdf) p(x) and any regular function h(X), we use indifferently:

E {X} = Ep {X} =< X >=< X >p=

∫
x p(x) dx

and:

E {h(X)} = Ep {h(X)} =< h(X) >=< h(X) >p=

∫
h(x) p(x) dx.

As an example, as we will say later, the entropy of p(x) is noted indifferently:

H[p] = E {− ln(p(X))} = Ep {− ln p(X)} =< − ln p(X) >=< − ln p(X) >p= −
∫

p(x) ln p(x) dx.
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For any conditional probability density function (pdf) p(x|y) and any regular function h(X), we use

indifferently:

E {X|y} = Ep(x|y) {X} =< X|y >=< X >p(x|y)=
∫

x p(x|y) dx

and:

E {h(X)|y} = Ep(x|y) {h(X)} =< h(X)|y >=< h(X) >p(x|y)=
∫

h(x) p(x|) dx.

As another example, as we will see later, the relative entropy of p(x) over q(x) is noted indifferently:

D[p|q] = Ep

{
− ln

p(X)

q(X)

}
=< − ln

p(X)

q(X)
>p(x)= −

∫
p(x) ln

p(x)

q(x)
dx

and when there is not any ambiguity in the integration variable, we may omit it. For example, we

may note:

D[p|q] = Ep

{
− ln

p

q

}
=< − ln

p

q
>p= −

∫
p ln

p

q
.

Finally, when we have two variables X and Y with their joint pdf p(x, y), their marginals p(x) and

p(y) and their conditionals p(x|y) and p(y|x), we may use the following notations:

E {h(X)|y} = Ep(x|y) {h(X)} = EX|Y {h(X)} =< h(X)|y >=< h(X) >p(x|y)=
∫

h(x) p(x|y) dx.

3. Quantity of Information and Entropy

3.1. Shannon Entropy

To introduce the quantity of information and the entropy, Shannon first considered a discrete

valued variable X taking values {x1, · · · , xN} with probabilities {p1, · · · , pN} and defined the

quantities of information associated with each of them as In = ln 1
pn

= − ln pn and its expected

value as the entropy:

H [X] = −
N∑
i=1

pi ln pi. (14)

Later, this definition is extended to the continuous case by:

H [X] = −
∫

p(x) ln p(x) dx. (15)

By extension, if we consider two related variables (X, Y ) with the probability laws, joint p(x, y),

marginals, p(x), p(y), and conditionals, p(y|x), p(x|y), we can define, respectively, the joint entropy:

H [X, Y ] = −
∫∫

p(x, y) ln p(x, y) dx dy, (16)

as well as H [X], H [Y ], H [Y |X] and H [X|Y ].

Therefore, for any well-defined probability law, we can have an expression for its entropy. H [X],

H [Y ], H [Y |X], H [X|Y ] and H [X, Y ], which should better be noted as H [p(x)], H [p(y)], H [p(y|x)],
H [p(x|y)] and H [p(x, y)].
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3.2. Thermodynamical Entropy

Entropy is also a property of thermodynamical systems introduced by Clausius [27]. For a closed

homogeneous system with reversible transformation, the differential entropy δS is related to δQ the

incremental reversible transfer of heat energy into that system by δS = δQ/T with T being the

uniform temperature of the closed system.

It is very hard to establish a direct link between these two entropies. However, in statistical

mechanics, thanks to Boltzmann, Gibbs and many others, we can establish some link if we consider

the microstates (for example, the number, positions and speeds of the particles) and the macrostates

(for example, the temperature T , pressure P , volume V and energy E) of the system and if we assign

a probability law to microstates and consider the macrostates as the average (expected values) of some

functions of those microstates. Let us give a very brief summary of some of those interpretations.

3.3. Statistical Mechanics Entropy

The interpretation of entropy in statistical mechanics is the measure of uncertainty that remains

about the state of a system after its observable macroscopic properties, such as temperature (T ),

pressure (P ) and volume (V ), have been taken into account. For a given set of macroscopic variables

T , P and V , the entropy measures the degree to which the probability of the system is spread out over

different possible microstates. In contrast to the macrostate, which characterizes plainly observable

average quantities, a microstate specifies all atomic details about the system, including the position

and velocity of every atom. Entropy in statistical mechanics is a measure of the number of ways

in which the microstates of the system may be arranged, often taken to be a measure of “disorder”

(the higher the entropy, the higher the disorder). This definition describes the entropy as being

proportional to the natural logarithm of the number of possible microscopic configurations of the

system (microstates), which could give rise to the observed macroscopic state (macrostate) of the

system. The proportionality constant is the Boltzmann constant.

3.4. Boltzmann Entropy

Boltzmann described the entropy as a measure of the number of possible microscopic

configurations Ω of the individual atoms and molecules of the system (microstates) that comply with

the macroscopic state (macrostate) of the system. Boltzmann then went on to show that k ln Ω was

equal to the thermodynamic entropy. The factor k has since been known as Boltzmann’s constant.

In particular, Boltzmann showed that the entropy S of an ideal gas is related to the number of

states of the molecules (microstates Ω) with a given temperature (macrostate):

S = k ln Ω (17)
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3.5. Gibbs Entropy

The macroscopic state of the system is defined by a distribution on the microstates that are

accessible to a system in the course of its thermal fluctuations. Therefore, the entropy is defined

over two different levels of description of the given system. The entropy is given by the Gibbs

entropy formula, named after J. Willard Gibbs. For a classical system (i.e., a collection of classical

particles) with a discrete set of microstates, if Ei is the energy of microstate i and pi is its probability

that it occurs during the system’s fluctuations, then the entropy of the system is:

S = −k
N∑
i=1

pi ln pi. (18)

where k is again the physical constant of Boltzmann, which, like the entropy, has units of heat

capacity. The logarithm is dimensionless. It is interesting to note that Relation (17) can be obtained

from Relation (18) when the probability distribution is uniform over the volume Ω [28–30].

4. Relative Entropy or Kullback–Leibler Divergence

Kullback wanted to compare the relative quantity of information between two probability laws p1

and p2 on the same variable X . Two related notions have been defined:

• Relative Entropy of p1 with respect to p2:

D [p1 : p2] = −
∫

p1(x) ln
p1(x)

p2(x)
dx (19)

• Kullback–Leibler divergence of p1 with respect to p2:

KL [p1 : p2] = −D [p1 : p2] =

∫
p1(x) ln

p1(x)

p2(x)
dx (20)

We may note that:

• KL [q : p] ≥ 0,

• KL [q : p] = 0, if q = p and

• KL [q : p0] ≥ KL [q : p1] + KL [p1 : p0].

• KL [q : p] is invariant with respect to a scale change, but is not symmetric.

• A symmetric quantity can be defined as:

J [q, p] =
1

2
(KL [q : p] + KL [p : q]) . (21)
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5. Mutual Information

The purpose of mutual information is to compare two related variables Y and X . It can be defined

as the expected amount of information that one gains about Xif we observe the value of Y, and vice
versa. Mathematically, the mutual information between X and Y is defined as:

I [Y,X] = H [X]− H [X|Y ] = H [Y ]− H [Y |X] (22)

or equivalently as:

I [Y,X] = D [p(X, Y ) : p(X)p(Y )] . (23)

With this definition, we have the following properties:

H [X, Y ] = H [X] + H [Y |X] = H [Y ] + H [X|Y ] = H [X] + H [Y ]− I [Y,X] (24)

and:

I [Y,X] = EX {D [p(Y |X) : p(Y )]} �=
∫

D [p(y|x) : p(y)] p(x) dx

= EY {D [p(X|Y ) : p(X)]} �=
∫

D [p(x|y) : p(x)] p(y) dy.

(25)

We may also remark on the following property:

• I [Y,X] is a concave function of p(y) when p(x|y) is fixed and a convex function of p(x|y)
when p(y) is fixed.

• I [Y,X] ≥ 0 with equality only if X and Y are independent.

6. Maximum Entropy Principle

The first step before applying any probability rules for inference is to assign a probability law to

a quantity. Very often, the available knowledge on that quantity can be described mathematically as

the constraints on the desired probability law. However, in general, those constraints are not enough

to determine in a unique way that probability law. There may exist many solutions that satisfy those

constraints. We need then a tool to select one.

Jaynes introduced the MEP [8], which can be summarized as follows: When we do not have

enough constraints to determine a probability law that satisfies those constraints, we may select

between them the one with maximum entropy.

Let us be now more precise. Let us assume that the available information on that quantity X is

the form of:

E {φk(X)} = dk, k = 1, . . . , K. (26)

where φk are any known functions. First, we assume that such probability laws exist by defining:

P =

{
p(x) :

∫
φk(x)p(x) dx = dk, k = 0, . . . , K

}
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with φ0 = 1 and d0 = 1 for the normalization purpose. Then, the MEP is written as an optimization

problem:

pME(x) = argmax
p∈P

{
H [p] = −

∫
p(x) ln p(x) dx

}
(27)

whose solution is given by:

pME(x) =
1

Z(λ)
exp

[
−

K∑
k=1

λkφk(x)

]
(28)

where Z(λ), called the partition function, is given by: Z(λ) =

∫
exp[−∑K

k=1 λkφk(x)] dx and

λ = [λ1, . . . , λK ]
′ have to satisfy:

− ∂ lnZ(λ)

∂λk

= dk, k = 1, . . . , K (29)

which can also be written as−∇λ lnZ(λ) = d. Different algorithms have been proposed to compute

numerically the ME distributions. See, for example, [31–37]

The maximum value of entropy reached is given by:

Hmax = lnZ(λ) + λ′d. (30)

This optimization can easily be extended to the use of relative entropy by replacing H(p) by D[p : q]

where q(x) is a given reference of a priori law. See [9,38,39] and [34,40–42] for more details.

7. Link between Entropy and Likelihood

Consider the problem of the parameter estimation θ of a probability law p(x|θ) from an n-element

sample of data x = {x1, · · · , xn}.
The log-likelihood of θ is defined as:

L(θ) = ln
n∏

i=1

p(xi|θ) =
n∑

i=1

ln p(xi|θ). (31)

Maximizing L(θ) with respect to θ gives what is called the maximum likelihood (ML) estimate of θ.

Noting that L(θ) depends on n, we may consider 1
n
L(θ) and define:

L̄(θ) = lim
n �→∞

1

n
L(θ) = E {ln p(x|θ)} =

∫
p(x|θ∗) ln p(x|θ) dx, (32)

where θ∗ is the right answer and p(x|θ∗) its corresponding probability law. We may then remark

that:

D [p(x|θ∗) : p(x|θ)] = −
∫

p(x|θ∗) ln
p(x|θ)
p(x|θ∗)

dx = −
∫

p(x|θ∗) ln p(x|θ∗) dx+ L̄(θ). (33)
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The first term in the right-hand side being a constant, we derive that:

argmax
θ

{D [p(x|θ∗) : p(x|θ)]} = argmax
θ

{
L̄(θ)

}
.

In this way, there is a link between the maximum likelihood and maximum relative entropy

solutions [24].

There is also a link between the maximum relative entropy and the Bayes rule. See, for example,

[43,44] and their corresponding references.

8. Fisher Information, Bregman and Other Divergences

Fisher [10] was interested in measuring the amount of information that samples of a variable X

carries about an unknown parameter θ upon which its probability law p(x|θ) depends. For a given

sample of observation x and its probability law p(x|θ), the function L(θ) = p(x|θ) is called the

likelihood of θ in the sample x. He called the score of x over θ the partial derivative with respect to

θ of the logarithm of this function:

S(x|θ) = ∂ ln p(x|θ)
∂θ

(34)

He also showed that the first order moment of the score is zero:

E {S(X|θ)} = E

{
∂ ln p(x|θ)

∂θ

}
= 0 (35)

but its second order moment is positive and is also equivalent to the expected values of the second

derivative of the log-likelihood function with respect to θ.

E
{
S2(X|θ)} = E

{∣∣∣∣∂ ln p(x|θ)∂θ

∣∣∣∣2
}

= E

{
∂2 ln p(x|θ)

∂θ2

}
= F (36)

This quantity is called the Fisher information [14].

It is also shown that for the small variations of θ, the Fisher information induces locally a distance

in the space of parameters Θ, if we had to compare two very close values of θ. In this way, the notion

of the geometry of information is introduced. The main steps for introducing this notion are the

following: Consider D [p(x|θ∗) : p(x|θ∗ +Δθ)] and assume that ln p(x|θ) can be developed in a

Taylor series. Then, keeping the terms up to the second order, we obtain:

D [p(x|θ∗) : p(x|θ∗ +Δθ)] & 1

2
Δθ′F (θ∗)Δθ. (37)

where F is the Fisher information:

F (θ∗) = E

{
∂2 ln p(x|θ)

∂θ′∂θ
|θ=θ∗

}
. (38)

We must be careful here that this geometry property is related to the space of the parameters Θ for

a given family of parametric probability law p(x|θ) and not in the space of probabilities. However,
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for two probability laws p1(x) = p(x|θ1) and p2(x) = p(x|θ2) in the same exponential family, the

Kullback–Leibler divergence KL [p1 : p2] induces a Bregman divergence B[θ1|θ2] between the two

parameters [14,45–48].

To go further into detail, let us extend the discussion about the link between Fisher information

and KL divergence, as well as other divergences, such as f -divergences, Rényi’s divergences and

Bregman divergences.

• f -divergences:

The f -divergences, which are a general class of divergences, indexed by convex functions f ,

that include the KL divergence as a special case. Let f : (0,∞) �→ IR be a convex function for

which f(1) = 0. The f -divergence between two probability measures P and Q is defined by:

Df [P : Q] =

∫
q f

(
p

q

)
(39)

Every f -divergence can be viewed as a measure of distance between probability measures with

different properties. Some important special cases are:

– f(x) = x ln x gives KL divergence: KL [P : Q] =
∫
p ln(p

q
).

– f(x) = |x− 1|/2 gives total variation distance: TV[P,Q] =
∫ |p− q|/2.

– f(x) = (
√
x− 1)2 gives the square of the Hellinger distance: H2[P,Q] =

∫
(
√
p−√q)2.

– f(x) = (x− 1)2 gives the chi-squared divergence: χ2[P : Q] =
∫ (p−q)2

q
.

• Rényi divergences:

These are another generalization of the KL divergence. The Rényi divergence between two

probability distributions P and Q is:

Dα[P : Q] =
1

α− 1
ln

∫
pα q1−α. (40)

When α = 1, by a continuity argument, Dα[P : Q] converges to KL [P : Q].

D1/2[P,Q] = −2 ln ∫ √p q is called Bhattacharyya divergence (closely related to Hellinger

distance). Interestingly, this quantity is always smaller than KL:

D1/2[P : Q] ≤ KL [P : Q] . (41)

As a result, it is sometimes easier to derive risk bounds with D1/2 as the loss function as

opposed to KL.

• Bregman divergences:

The Bregman divergences provide another class of divergences that are indexed by convex

functions and include both the Euclidean distance and the KL divergence as special cases. Let

φ be a differentiable strictly convex function. The Bregman divergence Bφ is defined by:

Bφ[x : y] = φ(x)− φ(y)− 〈x− y,∇φ(y)〉 (42)
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where < x,y >=
∑

j xi yj here means the scalar product of x and y and where the domain of

φ is a space where convexity and differentiability make sense (e.g., whole or a subset of IRd or

an Lp space). For example, φ(x) = ‖x‖2 on IRd gives the Euclidean distance:

Bφ[x : y] = φ(x)−φ(y)−〈x− y,∇φ(y)〉 = ‖x‖2−‖y‖2−〈x− y, 2y〉 = ‖x−y‖2 (43)

and φ(x) =
∑

j xj ln xj on the simplex in IRd gives the KL divergence:

Bφ[x : y] =
∑
j

xj ln xj −
∑
j

yj ln yj −
∑
j

(xj − yj)(1 + ln yj) =
∑
j

xj ln
xj

yj
= KL [x : y]

(44)

where it is assumed
∑

j xj =
∑

j yj = 1.

Let X be a quantity taking values in the domain of φ with a probability distribution function p(x).

Then, Ep(x) {Bφ(X,m)} is minimized over m in the domain of φ at m = E {X}:
m̂ = argmin

m
{Bφ(X,m)} = E {X} .

Moreover, this property characterizes Bregman divergence. When applied to the Bayesian approach,

this means that, using the Bregman divergence as the loss function, the Bayes estimator is the

posterior mean. This point is detailed in the following.

Links between all of these through an example:

Let us consider the Bayesian parameter estimation where we have some data y, a set of parameters

x, a likelihood p(y|x) and a prior π(x), which gives the posterior p(x|y) ∝ p(y|x) π(x). Let us

also consider a cost function C[x, x̃] in the parameter space x ∈ X . The classical Bayesian point

estimation of x is expressed as the minimizer of an expected risk:

x̂ = argmin
x̃

{
C̄(x̃)

}
(45)

where:

C̄(x̃) = Ep(x|y) {C[x, x̃]} =
∫∫

C[x, x̃] p(x|y) dx

It is very well known that the mean squared error estimator, which corresponds to C[x, x̃] = ‖x −
x̃‖2, is the posterior mean. It is now interesting to know that choosing C[x, x̃] to be any Bregman

divergence Bφ[x, x̃], we obtain also the posterior mean:

x̂ = argmin
x̃

{
B̄φ(x̃)

}
= Ep(x|y)

{∫∫
x p(x|y) dx

}
(46)

where:

B̄φ(x̃) = Ep(x|y) {Dφ[x, x̃]} =
∫∫

Bφ[x, x̃] p(x|y) dx

Consider now that we have two prior probability laws π1(x) and π2(x), which give rise to two

posterior probability laws p1(x|y) and p2(x|y). If the prior laws and the likelihood are in the

exponential families, then the posterior laws are also in the exponential family. Let us note them

as p1(x|y;θ1) and p2(x|y;θ2), where θ1 and θ2 are the parameters of those posterior laws. We then

have the following properties:
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• KL [p1 : p2] is expressed as a Bregman divergence B[θ1 : θ2].

• A Bregman divergence B[x1 : x2] is induced when KL [p1 : p2] is used to compare the two

posteriors.

9. Vectorial Variables and Time Indexed Process

The extension of the scalar variable to the finite dimensional vectorial case is almost immediate.

In particular, for the Gaussian case p(x) = N (x|μ,R), the mean becomes a vector μ = E {X}, and

the variances are replaced by a covariance matrix: R = E {(X − μ)(X − μ)′}; and almost all of

the quantities can be defined immediately. For example, for a Gaussian vector p(x) = N (x|0,R),

the entropy is given by [49]:

H =
n

2
ln(2π) +

1

2
ln(|det (R) |) (47)

and the relative entropy of N (x|0,R) with respect to N (x|0,S) is given by:

D = −1

2

(
tr
(
RS−1

)− log
|det (R) |
|det (S) | − n

)
. (48)

The notion of time series or processes needs extra definitions. For example, for a random time

series X(t), we can define p(X(t)), ∀t, the expected value time series x̄(t) = E {X(t)} and what is

called the autocorrelation function Γ(t, τ) = E {X(t)X(t+ τ)}. A time series is called stationary

when these quantities does not depend on t, i.e., x̄(t) = m and Γ(t, τ) = Γ(τ) [50]. Another quantity

of interest for a stationary time series is its power spectral density (PSD) function:

S(ω) = FT{Γ(τ)} =
∫

Γ(τ) exp [−jωτ ] dτ. (49)

When X(t) is observed on times t = nΔT with ΔT = 1, we have X(n), and for a

sample {X(1), · · · , X(N)}, we may define the mean μ = E {X} and the covariance matrix

Σ = E {(X − μ)(X − μ)′}.
With these definitions, it can easily been shown that the covariance matrix of a stationary

Gaussian process is Toeplitz [49]. It is also possible to show that the entropy of such a process

can be expressed as a function of its PSD function:

lim
n−→∞

1

n
H(p) =

1

2π

∫ π

−π

lnS(ω) dω. (50)

For two stationary Gaussian processes with two spectral density functions S1(ω) and S2(ω), we

have:

lim
n−→∞

1

n
D [p1 : p2] =

1

4π

∫ π

−π

(
S1(ω)

S2(ω)
− ln

S1(ω)

S2(ω)
− 1

)
dω (51)

where we find the Itakura–Saito distance in the spectral analysis literature [50–53].

These definitions and expressions have often been used in time series analysis. In what follows,

we give a few examples of the different ways these notions and quantities have been used in different

applications of data, signal and image processing.
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10. Entropy in Independent Component Analysis and Source Separation

Given a vector of time series x(t), the independent component analysis (ICA) consists of finding

a separating matrix B, such that the components y(t) = Bx(t) are as independent as possible. The

notion of entropy is used here as a measure of independence. For example, to find B, we may choose

D
[
p(y) :

∏
j pj(yj)

]
as a criterion of independence of the components yj . The next step is to choose

a probability law p(x) from which we can find an expression for p(y) from which we can find an

expression for D
[
p(y) :

∏
j pj(yj)

]
as a function of the matrix B, which can be optimized to obtain

it.

The ICA problem has a tight link with the source separation problem, where it is assumed that

the measured time series x(t) is a linear combination of the sources s(t), i.e., x(t) = As(t), with

A being the mixing matrix. The objective of source separation is then to find the separating matrix

B = A−1.

To see how the entropy is used here, let us note y = Bx. Then,

pY (y) =
1

|∂y/∂x|pX(x) −→ H(y) = −E {ln pY (y)} = E {ln |∂y/∂x|} −H(x). (52)

H(y) is used as a criterion for ICA or source separation. As the objective in ICA is to obtain y in

such a way that its components become as independent as possible, the separating matrix B has to

maximize H(y). Many ICA algorithms are based on this optimization [54–65]

11. Entropy in Parametric Modeling and Model Selection

Determining the order of a model, i.e., the dimension of the vector parameter θ in a probabilistic

model p(x|θ), is an important subject in many data and signal processing problems. As an example,

in autoregressive (AR) modeling:

x(n) =
K∑
k=1

θkx(n− k) + ε(n) (53)

where θ = {θ1, · · · , θK}, we may want to compare two models with two different values of K.

When the order K is fixed, the estimation of the parameters θ is a very well-known problem,

and there are likelihood based [66] or Bayesian approaches for that [67]. The determination of the

order is however more difficult [68]. Between the tools, we may mention here the Bayesian methods

[69–74], but also the use of relative entropy D [p(x|θ∗) : p(x|θ)], where θ∗ represents the vector of

the parameters of dimension K∗ and θ and the vector θ with dimension K ≤ K∗. In such cases,

even if the two probability laws to be compared have parameters with different dimensions, we can

always use the KL [p(x|θ∗) : p(x|θ)] to compare them. The famous criterion of Akaike [75–78] uses

this quantity to determine the optimal order. For a linear parameter model with Gaussian probability

laws and likelihood-based methods, there are analytic solutions for it [68].
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12. Entropy in Spectral Analysis

Entropy and MEP have been used in different ways in the spectral analysis problem. It has been

an important subject of signal processing for the decades. Here, we are presenting, in a brief way,

these different approaches.

12.1. Burg’s Entropy-Based Method

A classical one is Burg’s entropy method [79], which can be summarized as follows: Let X(n)

be a stationary, centered process, and assume we have as data a finite number of samples (lags) of its

autocorrelation function:

r(k) = E {X(n)X(n+ k)} = 1

2π

∫ π

−π

S(ω) exp [jkω] dω, k = 0, . . . , K. (54)

The task is then to estimate its power spectral density function:

S(ω) =
∞∑

k=−∞
r(k) exp [−jkω]

As we can see, due to the fact that we have only the elements of the right-hand for k = −K, · · · ,+K,

the problem is ill posed. To obtain a probabilistic solution, we may start by assigning a probability

law p(x) to the vector X = [X(0), . . . , X(N − 1)]′. For this, we can use the principle of maximum

entropy (PME) with the data as constraints (54). As these constraints are the second order moments,

the PME solution is a Gaussian probability law: N (x|0,R). For a stationary Gaussian process, when

the number of samples N −→∞, the expression of the entropy becomes:

H =

∫ π

−π

lnS(ω) dω. (55)

This expression is called Burg’s entropy [79]. Thus, Burg’s method consists of maximizing H subject

to the constraints (54). The solution is:

S(ω) =
1∣∣∣∣∣

K∑
k=−K

λk exp [jkω]

∣∣∣∣∣
2 , (56)

where λ = [λ0, · · · , λK ]
′, the Lagrange multipliers associated with the constraints (54), are here

equivalent to the AR modeling of the Gaussian process X(n).

We may note that, in this particular case, we have an analytical expression for λ, which provides

the possibility to give an analytical expression for S(ω) as a function of the data {r(k), k =

0, · · · , K}:
S(ω) =

δ Γ−1δ

eΓ−1e
, (57)

where Γ = Toeplitz(r(0), · · · , r(K)) is the correlation matrix and δ and e are two vectors defined

by δ = [1, 0, · · · , 0]′ and e = [1, e−jω, e−j2ω, · · · , e−jKω]′.
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We may note that we first used MEP to choose a probability law for X(n). With the prior

knowledge that we have second order moments, the MEP results in a Gaussian probability density

function. Then, as for a stationary Gaussian process, the expression of the entropy is related to the

power spectral density S(ω), and as this is related to the correlation data by a Fourier transform, an

ME solution could be computed easily.

12.2. Extensions to Burg’s Method

The second approach consists of maximizing the relative entropy D [p(x) : p0(x)] or minimizing

KL [p(x) : p0(x)] where p0(x) is an a priori law. The choice of the prior is important. Choosing a

uniform p0(x), we retrieve the previous case [77].

However, choosing a Gaussian law for p0(x), the expression to maximize becomes:

D [p(x) : p0(x)] =
1

4π

∫ π

−π

(
S(ω)

S0(ω)
− ln

S(ω)

S0(ω)
− 1

)
dω (58)

when N �→ ∞ and where S0(ω) corresponds to the power spectral density of the reference process

p0(x). Now, the problem becomes: minimize D [p(x) : p0(x)] subject to the constraints (54).

12.3. Shore and Johnson Approach

Another approach is to decompose first the process X(n) on the Fourier basis {cos kωt, sin kωt},
to consider ω to be the variable of interest and S(ω), normalized properly, to be considered as its

probability distribution function. Then, the problem can be reformulated as the determination of the

S(ω), which maximizes the entropy:

−
∫ π

−π

S(ω) lnS(ω) dω (59)

subject to the linear constraints (54). The solution is in the form of:

S(ω) = exp

[
K∑

k=−K

λk exp [jkω]

]
. (60)

which can be considered as the most uniform power spectral density that satisfies those constraints.

12.4. ME in the Mean Approach

In this approach, we consider S(ω) as the expected value Z(ω) for which we have a prior law

μ(z), and we are looking to assign p(z), which maximizes the relative entropy D [p(z) : μ(z)] subject

to the constraints (54).

When p(z) is determined, the solution is given by:

S(ω) = E {Z(ω)} =
∫

Z(ω)p(z) dz. (61)
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The expression of S(ω) depends on μ(z). When μ(z) is Gaussian, we obtain the Rényi entropy:

H =

∫ π

−π

S2(ω) dω. (62)

If we choose a Poisson measure for μ(z), we obtain the Shannon entropy:

H = −
∫ π

−π

S(ω) lnS(ω) dω, (63)

and if we choose a Lebesgue measure over [0,∞], we obtain Burg’s entropy:

H =

∫ π

−π

lnS(ω) dω. (64)

When this step is done, the next step becomes maximizing these entropies subject to the constraints

of the correlations. The obtained solutions are very different. For more details, see [39,79–85].

13. Entropy-Based Methods for Linear Inverse Problems

13.1. Linear Inverse Problems

A general way to introduce inverse problems is the following: Infer an unknown signal f(t),

image f(x, y) or any multi-variable function f(r) through an observed signal g(t), image g(x, y) or

any multi-variable observable function g(s), which are related through an operator H : f �→ g. This

operator can be linear or nonlinear. Here, we consider only linear operators g = Hf :

g(s) =

∫∫
h(r, s)f(r) dr (65)

where h(r, s) is the response of the measurement system. Such linear operators are very common in

many applications of signal and image processing. We may mention a few examples of them:

• Convolution operations g = h ∗ f in 1D (signal):

g(t) =

∫∫
h(t− t′)f(t′) dt′ (66)

or in 2D (image):

g(x, y) =

∫∫
h(x− x′, y − y′)f(x′, y′) dx′ dy′ (67)

• Radon transform (RT) in computed tomography (CT) in the 2D case [86]:

g(r, φ) =

∫ ∫
δ(r − x cosφ− y sinφ) f(x, y) dx dy (68)

• Fourier transform (FT) in the 2D case:

g(u, v) =

∫ ∫
exp [−j(ux+ vy)] f(x, y) dx dy (69)

which arise in magnetic resonance imaging (MRI), in synthetic aperture radar (SAR) imaging

or in microwave and diffraction optical tomography (DOT) [86–90].
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No matter the category of the linear transforms, when the problem is discretized, we arrive at the

relation:

g = Hf + ε, (70)

where f = [f1, · · · , fn]′ represents the unknowns, g = [g1, · · · , gm]′ the observed data, ε =

[ε1, · · · , εm]′ the errors of modeling and measurement and H the matrix of the system response.

13.2. Entropy-Based Methods

Let us consider first the simple no noise case:

g = Hf , (71)

where H is a matrix of dimensions (M × N), which is in general singular or very ill conditioned.

Even if the cases M > N or M = N may appear easier, they have the same difficulties as those of

the underdetermined case M < N that we consider here. In this case, evidently the problem has an

infinite number of solutions, and we need to choose one.

Between the numerous methods, we may mention the minimum norm solution, which consists of

choosing between all of the possible solutions:

F = {f : Hf = g} (72)

the one that has the minimum norm:

Ω(f) = ‖f‖22 =
∑
j

f 2
j . (73)

This optimization problem can be solved easily in this case, and we obtain:

f̂NM = argmin
f∈F

{
Ω(f) = ‖f‖22

}
= H ′(HH ′)−1g. (74)

In fact, we may choose any other convex criterion Ω(f) and satisfy the uniqueness of the solution.

For example:

Ω(f) = −
∑
j

fj ln fj (75)

which can be interpreted as the entropy when fj > 0 and
∑

fj = 1, thus considering fj as a

probability distribution fj = P (U = uj). The variable U can correspond (or not) to a physical

quantity. Ω(f) is the entropy associated with this variable.

If we consider fj > 0 to represent the power spectral density of a physical quantity, then the

entropy becomes:

Ω(f) =
∑
j

ln fj (76)

and we can use it as criterion to select a solution to the problem (71).

As we can see, any convex criterion Ω(f) can be used. Here, we mentioned four of them with

different interpretations.
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• L2 or quadratic:

Ω(f) =
∑
j

f 2
j (77)

which can be interpreted as the Rényi’s entropy with q = 2.

• Lβ :

Ω(f) =
∑
j

|fj|β (78)

When β < 1 the criterion is not bounded at zero. When β ≥ 1 the criterion is convex.

• Shannon entropy:

Ω(f) = −
∑
j

fj ln fj (79)

which has a valid interpretation if 0 < fj < 1,

• The Burg entropy:

Ω(f) =
∑
j

ln fj (80)

which needs fj > 0.

Unfortunately, only for the first case, there is an analytical solution for the problem, which is

f̂ = H ′(HH ′)g. For all of the other cases, we may need an optimization algorithm to obtain a

numerical solution [91–95].

13.3. Maximum Entropy in the Mean Approach

A second approach consists of considering fj = E {Uj} or f = E {U} [41,41,42]. Again, here,

Uj or U can, but need not, correspond to some physical quantities. In any case, we now want to

assign a probability law p̂(u) to it. Noting that the data g = Hf = HE {U} = E {HU} can be

considered as the constraints on it, we may need again a criterion to determine p̂(u). Assuming then

having some prior μ(u), we may maximize the relative entropy as that criterion. The mathematical

problem then becomes:

minimize D[p(u) : μ(u)] subject to

∫
Hu p(u) du = g (81)

The solution is:

p̂(u) =
1

Z(λ)
μ(u) exp [−λ′Hu] (82)

where:

Z(λ) =

∫∫
μ(u) exp [−λ′Hu] du. (83)

When p̂(u) is obtained, we may be interested in computing:

f̂ = E {U} =
∫∫

up̂(u) du (84)
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which is the required solution.

Interestingly, if we focus on f̂ = E {U}, we will see that its expression depends on the choice

of the prior μ(u). When μ(u) is separable: μ(u) =
∏

j μj(uj), the expression of p̂(u) will also be

separable.

To go a little more into the details, let us introduce s = H ′λ and define:

G(s) = ln

∫∫
μ(u) exp [−s′u] du (85)

and its conjugate convex:

F (f) = sup
s
{f ′s−G(s)} . (86)

It can be shown easily that f̂ = E {U} can be obtained either via the dual λ̂ variables:

f̂ = G′(H ′λ̂) (87)

where λ̂ is obtained by:

λ̂ = argmin
λ

{D(λ) = lnZ(λ) + λ′g} , (88)

or directly:

f̂ = argmin
{f :Hf=g}

{F (f)} . (89)

D(λ) is called the dual criterion and F (f) primal. However, it is not always easy to obtain an

analytical expression for G(s) and its gradient G′(s). The functions F (f) and G(s) are conjugate

convex.

For the computational aspect, unfortunately, the cases where we may have analytical expressions

for Z(λ) or G(s) = lnZ or F (f) are very limited. However, when there is analytical expressions for

them, the computations can be done very easily. In Table 1, we summarizes some of those solutions:

Table 1. Analytical solutions for different measures μ(u)

μ(u) ∝ exp[−1
2

∑
j u

2
j ] f̂ = H ′λ f̂ = H ′(HH ′)−1g

μ(u) ∝ exp[−∑j |uj|] f̂ = 1./(H ′λ± 1) Hf̂ = g

μ(u) ∝ exp[−∑j u
α−1
j exp [−βuj]], uj > 0 f̂ = α1./(H ′λ+ β1) Hf̂ = g

14. Bayesian Approach for Inverse Problems

In this section, we present in a brief way the Bayesian approach for the inverse problems in signal

and image processing.
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14.1. Simple Bayesian Approach

The different steps to find a solution to an inverse problem using the Bayesian approach can be

summarized as follows:

• Assign a prior probability law p(ε) to the modeling and observation errors, here ε. From this,

find the expression of the likelihood p(g|f ,θ1). As an example, consider the Gaussian case:

p(ε) = N (ε|0, vεI) −→ p(g|f) = N (g|Hf , vεI). (90)

θ1 in this case is the noise variance vε.

• Assign a prior probability law p(f |θ2) to the unknown f to translate your prior knowledge on

it. Again, as an example, consider the Gaussian case:

p(f) = N (f |0, vfI) (91)

θ2 in this case is the variance vf .

• Apply the Bayes rule to obtain the expression of the posterior law:

p(f |g,θ1,θ2) =
p(g|f ,θ1) p(f |θ2)

p(g|θ1,θ2)
∝ p(g|f ,θ1) p(f |θ2), (92)

where the sign∝ stands for “proportionality to”, p(g|f ,θ1) is the likelihood, p(f |θ2) the prior

model, θ = [θ1,θ2]
′ their corresponding parameters (often called the hyper-parameters of the

problem) and p(g|θ1,θ2) is called the evidence of the model.

• Use p(f |g,θ1,θ2) to infer any quantity dependent of f .

For the expressions of likelihood in (90) and the prior in (91), we obtain very easily the expression

of the posterior:

p(f |g, vε, vf ) = N (f |f̂ , V̂ ) with V̂ = (H ′H +
vε
vf

I)−1 and f̂ = V̂ H ′g (93)

When the hyper-parameters θ can be fixed a priori, the problem is easy. In practice, we may use

some summaries, such as:

• MAP:

f̂MAP = argmax
f

{p(f |g,θ)} (94)

• EAP or posterior mean (PM):

f̂EAP =

∫∫
f p(f |g,θ) df (95)
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For the Gaussian case of (91), the MAP and EAP are the same and can be obtained by noting that:

f̂MAP = argmin
f

{J(f)} with J(f) = ‖g −Hf‖22 + λ‖f‖22, where λ = vε/vf . (96)

However, in real applications, the computation of even these simple point estimators may need

efficient algorithm:

• For MAP, we need optimization algorithms, which can handle the huge dimensional criterion

J(f) = − ln p(f |g,θ). Very often, we may be limited to using gradient-based algorithms.

• For EAP, we need integration algorithms, which can handle huge dimensional integrals. The

most common tool here is the MCMC methods [24]. However, for real applications, very often,

the computational costs are huge. Recently, different methods, called approximate Bayesian

computation (ABC) [96–100] or VBA, have been proposed [74,96,98,101–107].

14.2. Full Bayesian: Hyperparameter Estimation

When the hyperparameters θ have also to be estimated, a prior p(θ) is assigned to them, and the

expression of the joint posterior:

p(f ,θ|g) = p(g|f ,θ1) p(f |θ2) p(θ)

p(g)
(97)

is obtained, which can then be used to infer them jointly. Very often, the expression of this joint

posterior law is complex, and any computation may become very costly. The VBA methods try to

approximate p(f ,θ|g) by a simpler distribution, which can be handled more easily. Two particular

and extreme cases are:

• Bloc separable, such as q(f ,θ) = q1(f) q2(θ) or

• Completely separable, such as q(f ,θ) =
∏

j q1j(fj)
∏

k q2k(θk).

Any mixed solution is also valid. For example, the one we have chosen is:

q(f ,θ) = q1(f)
∏
k

q2k(θk) (98)

Obtaining the expressions of these approximated separable probability laws has to be done via a

criterion. The natural criterion with some geometrical interpretation for the probability law manifolds

is the Kullback–Leibler (KL) criterion:

KL [q : p] =

∫
q ln

q

p
=

〈
ln

q

p

〉
q

. (99)

For hierarchical prior models with hidden variables z, the problem becomes more complex,

because we have to give the expression of the joint posterior law:

p(f , z,θ|g) ∝ p(g|f ,θ1) p(f |z,θ2) p(z|θ3) p(θ) (100)
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and then approximate it by separable ones:

q(f , z,θ|g) = q1(f) q2(z) q3(θ) or q(f ,θ) =
∏
j

q1j(fj|zfj)
∏
j

q2j(zfj)
∏
k

q3k(θk) (101)

and then use them for estimation. See more discussions in [9,31,38,108–110]

In the following, first the general VBA method is detailed for the inference problems with

hierarchical prior models. Then, a particular class of prior model (Student t) is considered, and

the details of VBA algorithms for that are given.

15. Basic Algorithms of the Variational Bayesian Approximation

To illustrate the basic ideas and tools, let us consider a vector X and its probability density

function p(x), which we want to approximate by q(x) =
∏

j qj(xj). Using the KL criterion:

KL [q : p] =

∫∫
q(x) ln

q(x)

p(x)
dx =

∫∫
q(x) ln q(x) dx−

∫∫
q(x) ln p(x) dx

=
∑
j

∫
qj(xj) ln qj(xj) dxj − 〈ln p(x)〉q

=
∑
j

∫
qj(xj) ln qj(xj) dxj −

∫
qj(xj) < ln p(x) >q−j

dxj

(102)

where we used the notation: 〈ln p(x)〉q =
∫
q(x) ln p(x) dx and q−j(x) =

∏
i =j qi(xi).

From here, trying to find the solution qi, the basic method is an alternate optimization algorithm:

qj(xj) ∝ exp
[
< ln p(x) >q−j

]
. (103)

As we can see, the expression of qj(xj) depends on qi(xi), i �= j. It is not always possible to

obtain analytical expressions for qj(xj). It is however possible to show that, if p(x) is a member

of exponential families, then qj(xj) are also members of exponential families. These iterations then

become much simpler, because at each iteration, we need to update the parameters of the exponential

families. To go a little more into the details, let us consider some particular simple cases.

15.1. Case of Two Gaussian Variables

In the case of two variables x = [x1, x2]
′, we have:{

q1(x1) ∝ exp
[
< ln p(x) >q2(x2)

]
q2(x2) ∝ exp

[
< ln p(x) >q1(x1)

] (104)

As an illustrative example, consider the case where we want to approximate p(x1, x2) by q(x1, x2) =

q1(x1) q2(x2) to be able to compute the expected values:{
m1 = E {x1} =

∫ ∫
x1 p(x1, x2) dx1 dx2

m2 = E {x2} =
∫ ∫

x2 p(x1, x2) dx1 dx2

(105)
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which need double integrations when p(x1, x2) is not separable in its two variables. If we can do that

separable approximation, then, we can compute:{
μ̃1 = E {x1} =

∫
x1 q1(x1) dx1

μ̃2 = E {x2} =
∫
x2 q2(x2) dx2

(106)

which needs only 1D integrals. Let us see if (μ̃1, μ̃2) will converge to (m1,m2). To illustrate this, let

us consider the very simple case of the Gaussian:

p(x1, x2) = N
( [

x1

x2

] [
m1

m2

]
,

[
v1 ρ

√
v1v2

ρ
√
v1v2 v2

] )
. (107)

It is then easy to see that q1(x1) = N (x1|μ̃1, ṽ1) and q2(x2) = N (x2|μ̃2, ṽ2) and that:⎧⎨⎩ q
(k+1)
1 (x1) = p(x1|x2 = μ̃

(k)
2 ) = N

(
x1|μ̃(k)

1 , ṽ
(k)
1

)
q
(k+1)
2 (x2) = p(x2|x1 = μ̃

(k)
1 ) = N

(
x1|μ̃(k)

2 , ṽ
(k)
2

) (108)

with: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ̃
(k+1)
1 = m1 + ρ

√
v1/v2(μ̃

(k)
2 −m2)

ṽ
(k+1)
1 = (1− ρ2)v1

μ̃
(k+1)
2 = m2 + ρ

√
v2/v1(μ̃

(k)
1 −m1)

ṽ
(k+1)
2 = (1− ρ2)v2

. (109)

See [111] for details and where we showed that, initializing the algorithm with μ̃
(0)
1 = 0 and

μ̃
(0)
2 = 0, the means converges to the right values m1 and m2, However, we may be careful about the

convergence of the variances.

15.2. Case of Exponential Families

As we could see, to be able to use such an algorithm in practical cases, we need to be able

to compute < ln p(x) >q2(x2) and < ln p(x) >q1(x1). Only for a few cases can we can do this

analytically. Different algorithms can be obtained depending on the choice of a particular family for

qj(xj) [103,112–120].

To show this, let us consider the exponential family:

p(x|θ) = g(θ) exp [θ′u(x)] (110)

where θ is a vector of parameter and g(θ) and u(x) are known functions.

This parametric exponential family has the following conjugacy property: For a given prior p(θ)

in the family:

p(θ|η,ν) = h(η,ν) g(θ)η exp [ν ′θ] (111)

the corresponding posterior:

p(θ|x) ∝ p(x|θ) p(θ|η,ν)
∝ g(θ)η+1 exp [[ν + u(x)]′θ]

∝ p(θ|η + 1,ν + u(x))

(112)
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is in the same family.

For this family, we have:

〈ln p(x|θ)〉q = ln g(θ) + θ′ 〈u(x)〉q . (113)

It is then easy to show that:

qj(xj) ∝ g(θ) exp
[
θ′ 〈u(x)〉q−j

]
(114)

which are in the same exponential family. This simplifies greatly the computations, thanks to the fact

that, in each iteration, we only need to compute ũ(x) = 〈u(x)〉q−j
and update the parameters.

Now, if we consider:

p(x|θ) = g(θ) exp [θ′u(x)] (115)

with a prior on θ:

p(θ|η,ν) = h(η,ν) g(θ)η exp [ν ′θ] (116)

and the joint p(x,θ|η,ν) = p(x|θ) p(θ|η,ν), which is not separable in x and θ, and we want to

approximate it with the separable q(x,θ) = q1(x) q2(θ), then we will have:{
q(θ) = h(η̃, ν̃) g(θ)η̃ exp

[
ν̃ ′θ
]

q(x) = g(θ̃) exp
[
θ̃
′
u(x)

] with

⎧⎪⎨⎪⎩
η̃ = η + 1

ν̃ = ν + ũ(x)

θ̃ = ν̃

(117)

where ũ = 〈u(x)〉q1(x).

16. VBA for the Unsupervised Bayesian Approach to Inverse Problems

Before going into the details and for similarity with the notations in the next sections, we replace

x by f , such that now we are trying to approximate p(f ,θ) = p(f |θ) p(θ) by a separable q(f ,θ) =

q1(f) q2(θ). Interestingly, depending on the choice of the family laws for q1 and q2, we obtain

different algorithms:

• q1(f) = δ(f − f̃) and q2(θ) = δ(θ − θ̃). In this case, we have:⎧⎨⎩ q1(f) ∝ exp [< ln p(f ,θ) >q2 ] ∝ exp
[
ln p(f , θ̃)

]
∝ p(f ,θ = θ̃) ∝ p(f |θ = θ̃)

q2(θ) ∝ exp [< ln p(f ,θ) >q1 ] ∝ exp
[
ln p(f̃ ,θ)

]
∝ p(f = f̃ ,θ) ∝ p(θ|f = f̃)

(118)

and so: ⎧⎨⎩ f̃ = argmaxf

{
p(f ,θ = θ̃)

}
θ̃ = argmaxθ

{
p(f = f̃ ,θ)

} (119)

which can be interpreted as an alternate optimization algorithm for obtaining the

JMAPestimates:

(f̃ , θ̃) = argmax
(f ,θ)

{p(f ,θ)} . (120)

The main drawback here is that the uncertainties of the f are not used for the estimation of θ

and the uncertainties of θ are not used for the estimation of f .



269

• q1(f) is free form and q2(θ) = δ(θ − θ̃). In the same way, this time we obtain:

{
< ln p(f ,θ) >

q2(θ)
= ln p(f , θ̃)

< ln p(f ,θ) >
q1(f )

=< ln p(f ,θ) >
q1(f |θ̃)

= Q(θ, θ̃)
(121)

which leads to: ⎧⎨⎩ q1(f) ∝ exp
[
ln p(f ,θ = θ̃)

]
∝ p(f , θ̃)

q2(θ) ∝ exp
[
Q(θ, θ̃)

]
−→ θ̃ = argmaxθ

{
Q(θ, θ̃)

} (122)

which can be compared with the Bayesian expectation maximization (BEM) algorithm.

The E-step is the computation of the expectation Q(θ, θ̃) in (121), and the M-step is the

maximization in (122). Here, the uncertainties of the f are used for the estimation of θ, but

the uncertainties of θ are not used for the estimation of f .

• q1(f) = δ(f − f̃) and q2(θ) is free form. In the same way, this time we obtain:

{
< ln p(f ,θ) >

q1(f )
= ln p(f = f̃ ,θ)

< ln p(f ,θ) >
q2(θ)

=< ln p(f ,θ) >
p(θ|f=f̃ )

= Q(f̃ ,f)
(123)

{
q2(θ) ∝ ln p(f = f̃ ,θ) = p(θ|f = f̃)

q1(f) ∝ exp
[
Q(f̃ ,θ)

]
−→ θ̃ = argmaxθ

{
Q(f = f̃ ,θ)

} (124)

which can be compared with the classical EM algorithm. Here, the uncertainties of the f are

used for the estimation of θ, but the uncertainties of θ are not used for the estimation of f .

• Both q1(f) and q2(θ) have free form. The main difficulty here is that, at each iteration, the

expression of q1 and q2 may change. However, if p(f ,θ) is in the generalized exponential

family, the expressions of q1(f) and q2(θ) will also be in the same family, and we have only to

update the parameters at each iteration.

17. VBA for a Linear Inverse Problem with Simple Gaussian Priors

As a simple example, consider the Gaussian case where p(g|f , θ1) = N (g|Hf , (1/θ1)I),

p(f |θ2) = N (f |0, (1/θ2)I) and p(θ1) = G(θ1|α10, β10) p(θ2) = G(θ2|α20, β20), and so, we have:

ln p(f , θ1, θ2|g) = M

2
ln θ1 − θ1

2
‖g −Hf‖22 +

N

2
ln θ2 − θ2

2
‖f‖22

+ (α10 − 1) ln θ1 − β10θ1 + (α20 − 1) ln θ2 − β20θ2.
(125)
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From this expression J(f , θ1, θ2) = ln p(f , θ1, θ2|g), it is easy to obtain the equations of an alternate

JMAP algorithm by computing the derivatives of it with respective to its arguments and equating

them to zero:

∂J

∂f
= 0 −→ f = (H ′H + λI)−1H ′g with λ =

θ2
θ1

∂J

∂θ1
= 0 −→ θ1 =

α̃1

β̃1

with α̃1 = (α10 − 1) +
M

2
and β̃1 = β10 +

1

2
‖g −Hf‖22

∂J

∂θ2
= 0 −→ θ1 =

α̃2

β̃2

with α̃2 = (α20 − 1) +
M

2
and β̃2 = β20 +

1

2
‖f‖22

(126)

From the expression of the joint probability law p(f , θ1, θ2|g), we can also obtain the expressions

of the conditionals:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(f |g, θ1, θ2) = N (f |f̃ , Ṽ )

with Ṽ = (H ′H + λI)−1, f̃ = Ṽ H ′g, λ = θ2
θ1

p(θ1|g,f , θ2) = G(θ1|α̃1, β̃1)

with α̃1 = (α10 − 1) + M
2
, β̃1 = β10 +

1
2
‖g −Hf‖22

p(θ2|g,f , θ1) = G(θ2|α̃2, β̃2)

with α̃2 = (α20 − 1) + M
2
, β̃2 = β20 +

1
2
‖f‖22

(127)

However, obtaining analytical expressions of the marginals p(f |g), p(θ1|g) and p(θ2|g) is not easy.

We can then obtain approximate expressions q1(f |g), q2(θ1|g) and q3(θ2|g) using the VBA method.

For this case, thanks to the conjugacy property, we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(f) = N (f |f̃ , Ṽ )

with Ṽ = (H ′H + λ̃I)−1, f̃ = Ṽ H ′g, λ̃ = <θ2>
<θ1>

;

q(θ1) = G(θ1|α̃1, β̃1)

with α̃1 = (α10 − 1) + M
2
, β̃1 = β10 +

1
2
< ‖g −Hf‖22 >

p(θ2|g,f) = G(θ2|α̃2, β̃2)

with α̃2 = (α20 − 1) + N
2
, β̃2 = β20 +

1
2
< ‖f‖22 >

(128)
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We can then compare the three algorithms in Table 2:

Table 2. Comparision of three algorithms: JMAP, BEM and VBA

JMAP BEM VBA

q(f) = δ(f − f̃)

Ṽ = (H ′H + λ̃I)−1

f̃ = Ṽ H ′g

q(θ1) = δ(θ1 − θ̃1)

α̃1 = (α10 − 1) + M
2

β̃1 = β10 +
1
2
‖g −Hf‖22

θ̃1 =
α̃1

β̃1

q(θ2) = δ(θ2 − θ̃2)

α̃2 = (α20 − 1) + M
2

β̃2 = β10 +
1
2
‖f‖22

θ̃2 =
α̃2

β̃2

λ̃ = θ̃2
θ̃1

q(f) = N (f |f̃ , Ṽ )

Ṽ = (H ′H + λ̃I)−1

f̃ = Ṽ H ′g

q(θ1) = δ(θ1 − θ̃1)

α̃1 = (α10 − 1) + M
2

β̃1 = β10 +
1
2
< ‖g −Hf‖22 >

θ̃1 =
α̃1

β̃1

q(θ2) = δ(θ2 − θ̃2)

α̃2 = (α20 − 1) + M
2

β̃2 = β20 +
1
2
< ‖f‖22 >

θ̃2 =
α̃2

β̃2

λ̃ = θ̃2
θ̃1

q(f) = N (f |f̃ , Ṽ )

Ṽ = (H ′H + λ̃I)−1

f̃ = Ṽ H ′g

q(θ1) = G(θ1|α̃1, β̃1)

α̃1 = (α10 − 1) + M
2

β̃1 = β10 +
1
2
< ‖g −Hf‖22 >

θ̃1 =
α̃1

β̃1

q(θ2) = G(θ2|α̃2, β̃2)

α̃2 = (α20 − 1) + N
2

β̃2 = β20 +
1
2
< ‖f‖22 >

θ̃2 =
α̃2

β̃2

λ̃ = θ̃2
θ̃1

It is important to remark that, in JMAP, the computation of f can be done via the optimization

of the criterion J(f , θ1, θ2) = ln p(f , θ1, θ2|g), which does not need explicitly the matrix inversion

of Ṽ = (H ′H + λ̃I)−1. However, in BEM and VBA, we need to compute it due to the following

requirements:

< f >q = f̃ ,

< ‖f‖2 >q = tr
(
< f̃ f̃

′
>q

)
= tr

(
f̃ f̃

′
+ Ṽ

)
= ‖f̃‖2 + tr

(
Ṽ
)
,

< f 2
j >q = [Ṽ ]jj + f̃ 2

j ,

< ‖g −Hf‖2 >q = [g′g − 2 〈f〉′q H ′g +H ′ 〈f ′f〉q H ]

= [g′g − 2f̃
′
H ′g +H ′(Ṽ + f̃ f̃

′
)H ]

= ‖g −Hf̃‖2 + tr
(
H ′Ṽ H

)
]

(129)

For some extensions and more details, see [111].

18. Bayesian Variational Approximation with Hierarchical Prior Models

For a linear inverse problem:

M : g = Hf + ε (130)
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with an assigned likelihood p(g|f ,θ1), when a hierarchical prior model p(f |z,θ2) p(z|θ3) is used

and when the estimation of the hyper-parameters θ = [θ1,θ2,θ3]
′ has to be considered, the joint

posterior law of all the unknowns becomes:

p(f , z,θ|g) = p(f , z,θ|g)
p(g)

=
p(g|f ,θ1) p(f |z,θ2) p(z|θ3) p(θ)

p(g)
. (131)

The main idea behind the VBA is to approximate this joint posterior by a separable one, for

example: q(f , z,θ|g) = q1(f) q2(z) q3(θ) and where the expressions of q(f , z,θ|g) are obtained by

minimizing the Kullback–Leibler divergence (99), as explained in previous section. This approach

can also be used for model selection based on the evidence of the model ln p(g) [121] where:

p(g) =

∫∫ ∫∫ ∫∫
p(f , z,θ, g) df dz dθ. (132)

Interestingly, it is easy to show that:

ln p(g) = KL [q : p] + F(q) (133)

where F(q) is the free energy associated with q defined as:

F(q) =
〈
ln

p(f , z,θ, g)

q(f , z,θ)

〉
q

(134)

Therefore, for a given modelM, minimizing KL [q : p] is equivalent to maximizing F(q) and when

optimized, F(q∗) gives a lower bound for ln p(g). Indeed, the name variational approximation is due

to the fact that ln p(g) ≥ F(q), and so, F(q) is a lower bound to the evidence ln p(g).

Without any other constraint than the normalization of q, an alternate optimization of F(q) with

respect to q1, q2 and q3 results in:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q1(f) ∝ exp

[
−〈ln p(f , z,θ, g)〉

q(z)q(θ)

]
,

q2(z) ∝ exp
[
−〈ln p(f , z,θ, g)〉

q(f )q(θ)

]
,

q3(θ) ∝ exp
[
−〈ln p(f , z,θ, g)〉

q(f )q(z)

]
.

(135)

Note that these relations represent an implicit solution for q1(f), q2(z) and q3(θ), which need, at

each iteration, the expression of the expectations in the right hand of exponentials. If p(g|f , z,θ1)

is a member of an exponential family and if all of the priors p(f |z,θ2), p(z|θ3), p(θ1), p(θ2) and

p(θ3) are conjugate priors, then it is easy to see that these expressions lead to standard distributions

for which the required expectations are easily evaluated. In that case, we may note:

q(f , z,θ) = q1(f |z̃, θ̃) q2(z|f̃ , θ̃) q3(θ|f̃ , z̃) (136)

where the tilded quantities z̃, f̃ and θ̃ are, respectively, functions of (f̃ ,θ̃), (z̃,θ̃) and (f̃ ,z̃). This

means that the expression of q1(f |z̃, θ̃) depends on (f̃ ,θ̃), the expression of q2(z|f̃ , θ̃) depends

on (z̃,θ̃) and the expression of q3(θ|f̃ , z̃) depends on (f̃ ,z̃). With this notation, the alternate
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optimization results in alternate updating of the parameters (z̃, θ̃) of q1, the parameters (f̃ , θ̃) of

q2 and the parameters (f̃ , z̃) of q3. Finally, we may note that, to monitor the convergence of the

algorithm, we may evaluate the free energy:

F(q)= 〈ln p(f , z,θ, g)〉q − 〈ln q(f , z,θ)〉q
= 〈ln p(g|f , z,θ)〉q + 〈ln p(f |z,θ)〉q + 〈ln p(z|θ)〉q + 〈ln p(θ)〉q
− 〈ln q(f)〉q − 〈ln q(z)〉q − 〈ln q(θ)〉q .

(137)

Other decompositions for q(f , z,θ) are also possible. For example: q(f , z,θ) =

q1(f |z) q2(z) q3(θ) or even: q(f , z,θ) =
∏

j q1j(fj)
∏

j q2j(zfj)
∏

l q3l(θl). Here, we consider

the first case and give some more details on it.

19. Bayesian Variational Approximation with Student t Priors

The Student t model is:

p(f |ν) =
∏
j

St(fj|ν) with St(fj|ν) = 1√
πν

Γ((ν + 1)/2)

Γ(ν/2)

(
1 + f 2

j /ν
)−(ν+1)/2

(138)

The Cauchy model is obtained when ν = 1. Knowing that:

St(fj|ν) =
∫ ∞

0

N (fj|0, 1/zfj)G(zfj |ν/2, ν/2) dzfj (139)

we can write this model via the positive hidden variables zfj :⎧⎨⎩ p(fj|zfj) = N (fj|0, 1/zfj) ∝ exp
[−1

2
zfjf

2
j

]
p(zfj |α, β)= G(zfj |α, β) ∝ z

(α−1)
fj

exp
[−βzfj] (140)

Now, let us consider the forward model g = Hf + ε and assign a Gaussian law with unknown

variance vεi to the noise εi, which results in p(ε) = N (g|0,V ε) with V ε = diag [vε] with vε =

[vε1 , · · · , vεM ], and so:

p(g|f ,vε) = N (g|Hf ,V ε) ∝ exp

[
−1

2
(g −Hf)V −1

ε (g −Hf)

]
. (141)

Let us also note by zεi = 1/vεi , zε = [zε1 , · · · , zεM ] and Zε = diag [zε] = V −1
ε and assign a prior on

it p(vεi |αε0 , βε0) = IG(vεi |αε0 , βε0) or equivalently:

p(zεi |αε0 , βε0) = G(zεi |αε0 , βε0) and p(zε|αε0 , βε0) =
∏
i

G(zεi |αε0 , βε0). (142)

Let us also note vf = [vf1 , · · · , vfN ], V f = diag [vf ], zfj = 1/vfj , Zf = diag [zf ] = V −1
f and

note:

p(f |vf ) =
∏
j

p(fj|vfj) =
∏
j

N (fj|0, vfj) = N (f |0,V f ) (143)
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and finally,

p(vf |αf0 , βf0) =
∏
j

G(vfj |αf0 , βf0). (144)

Then, we obtain the following expressions for the VBA:⎧⎪⎪⎨⎪⎪⎩
q1(f |μ̃, Ṽ f ) = N (f |μ̃, Ṽ ) with μ̃ = Ṽ H ′g, Ṽ = (H ′Ṽ

−1

ε H + Z̃f )
−1;

q2j(zfj) = G(zfj |α̃j, β̃j) with α̃j = α00 + 1/2, β̃j = β00+ < f 2
j > /2;

q3(zεi) = G(zεi |α̃εi , β̃εi) with α̃εi = αε0 + (N + 1)/2, β̃εi = βε0 +
1
2
< |gi − [Hf ]i|2 >;

(145)

where:

< |gi − [Hf ]i|2 >= |gi −H < f >]i|2 + [H ′Ṽ H ]ii,

< f >= μ̃, < ff ′ >= Ṽ + μ̃μ̃′,

< f 2
j >= [Ṽ ]jj + μ̃2

j

We have implemented these algorithms for many linear inverse problems [102], such as periodic

components estimation in time series [122] or computed tomography [123], blind deconvolution

[124], blind image separation [125,126] and blind image restoration [89].

20. Conclusions

The main conclusions of this paper can be summarized as follows:

• A probability law is a tool for representing our state of knowledge about a quantity.

• The Bayes or Laplace rule is an inference tool for updating our state of knowledge about an

inaccessible quantity when another accessible, related quantity is observed.

• Entropy is a measure of information content in a variable with a given probability law.

• The maximum entropy principle can be used to assign a probability law to a quantity when

the available information about it is in the form of a limited number of constraints on that

probability law.

• Relative entropy and Kullback–Leibler divergence are tools for updating probability laws in

the same context.

• When a parametric probability law is assigned to a quantity and we want to measure the amount

of information gain about the parameters when some direct observations of that quantity is

available, we can use the Fisher information. The structure of the Fisher information geometry

in the space of parameters is derived from the relative entropy by a second order Taylor series

approximation.

• All of these rules and tools are used currently in different ways in data and signal processing.

In this paper, a few examples of the ways these tools are used in data and signal processing
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problems are presented. One main conclusion is that each of these tools has to be used in

appropriate contexts. The example in spectral estimation shows that it is very important to

define the problems very clearly at the beginning and to use appropriate tools and interpret the

results appropriately.

• The Laplacian or Bayesian inference is the appropriate tool for proposing satisfactory solutions

to inverse problems. Indeed, the expression of the posterior probability law represents the

combination of the state of the knowledge in the forward model and the data and the state of

the knowledge before using the data.

• The Bayesian approach can also easily be used to propose unsupervised methods for the

practical application of these methods.

• One of the main limitation of those sophisticated methods is the computational cost. For this,

we proposed to use VBA as an alternative to MCMC methods to propose realistic algorithms in

huge dimensional inverse problems where we want to estimate an unknown signal (1D), image

(2D), volume (3D) or even more (3D + time or 3D + wavelength), etc.
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Black-Box Optimization Using Geodesics in Statistical
Manifolds

Jérémy Bensadon

Abstract: Information geometric optimization (IGO) is a general framework for stochastic

optimization problems aiming at limiting the influence of arbitrary parametrization choices: the

initial problem is transformed into the optimization of a smooth function on a Riemannian

manifold, defining a parametrization-invariant first order differential equation and, thus, yielding

an approximately parametrization-invariant algorithm (up to second order in the step size). We

define the geodesic IGO update, a fully parametrization-invariant algorithm using the Riemannian

structure, and we compute it for the manifold of Gaussians, thanks to Noether’s theorem. However,

in similar algorithms, such as CMA-ES (Covariance Matrix Adaptation - Evolution Strategy) and

xNES (exponential Natural Evolution Strategy), the time steps for the mean and the covariance

are decoupled. We suggest two ways of doing so: twisted geodesic IGO (GIGO) and blockwise

GIGO. Finally, we show that while the xNES algorithm is not GIGO, it is an instance of blockwise

GIGO applied to the mean and covariance matrix separately. Therefore, xNES has an almost

parametrization-invariant description.

Reprinted from Entropy. Cite as: Bensadon, J. Black-Box Optimization Using Geodesics in

Statistical Manifolds. Entropy 2015, 17, 304–345.

1. Introduction

Consider an objective function f : X → R to be minimized. We suppose we have absolutely no

knowledge about f : the only thing we can do is ask for its value at any point x ∈ X (black-box

optimization) and that the evaluation of f is a costly operation. We are going to study algorithms that

can be described in the IGO framework (see [1]).

We consider the following optimization procedure:

We choose (Pθ)θ∈Θ a family of probability distributions (which will be given a Riemannian

manifold structure, following [2]) on X and an initial probability distribution Pθ0 . Now, we replace

f by F : Θ → R (for example F (θ) = Ex∼Pθ
[f(x)]), and we optimize F by gradient descent,

corresponding to the gradient flow:

dθt

dt
= −∇θEx∼Pθ

[f(x)]. (1)

However, because of the gradient, this equation depends entirely on the parametrization we chose

for Θ, which is disturbing: we do not want to have two different updates, because we chose different

parameters to represent the objects with which we are working. Moreover, in the case of a function

with several local minima, changing the parametrization can change the attained optimum (see [3],

for example). That is why invariance is a design principle behind IGO. More precisely, we want
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invariance with respect to monotone transformations of f and invariance under reparametrization of

Θ.

The IGO framework uses the geometry of the family Θ, which is given by the Fisher metric to

provide a differential equation on θ with the desired properties, but because of the discretization of

time needed to obtain an explicit algorithm, we lose invariance under reparametrization of θ: two IGO

algorithms applied to the same function to be optimized, but with different parametrizations, coincide

only at first order in the step size. A possible solution to this problem is geodesic IGO (GIGO),

introduced here (see also IGO-Maximum Likelihoodin [1], for example.): the initial direction of the

update at each step of the algorithm remains the same as in IGO, but instead of moving straight for

the chosen parametrization, we use the Riemannian manifold structure of our family of probability

distributions (see [2]) by following its geodesics.

Finding the geodesics of a Riemannian manifold is not always easy, but Noether’s theorem will

allow us to obtain quantities that are preserved along the geodesics, thus allowing, in the case of

Gaussian distributions, one to obtain a first order differential equation satisfied by the geodesics,

which makes their computation easier.

Although the geodesic IGO algorithm is not, strictly speaking, parametrization-invariant when no

closed form for the geodesics is known, it is possible to compute them at arbitrary precision without

increasing the numbers of objective function calls.

The first two sections are preliminaries: in Section 2, we recall the IGO algorithm, introduced

in [1], and in Section 3, after a reminder about Riemannian geometry, we state Noether’s theorem,

which will be our main tool to compute the GIGO update for Gaussian distributions.

In Section 4, we consider Gaussian distributions with a covariance matrix proportional to the

identity matrix: this space is isometric to the hyperbolic space, and the geodesics of the latter are

known.

In Section 5.1, we consider the general Gaussian case, and we use Noether’s theorem to obtain

two different sets of equations to compute the GIGO update. The equations are known (see [4–6]),

but the connection with Noether’s theorem has not been mentioned. We then give the explicit solution

for these equations, from [5].

In Section 6, we recall quickly the xNES and CMA-ESupdates, and we introduce a slight

modification of the IGO algorithm to incorporate the direction-dependent learning rates used in

CMA-ESand xNES. We then compare these different algorithms and prove that xNES is not GIGO in

general, and we finally introduce a new family of algorithms extending GIGO and recovering xNES

from abstract principles.

Finally, Section 7 presents numerical experiments, which suggest that when using GIGO with

Gaussian distributions, the step size must be chosen carefully.

2. Definitions: IGO, GIGO

In this section, we recall what the IGO framework is and we define the geodesic IGO update.

Consider again Equation (1):
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dθt

dt
= −∇θEx∼Pθ

[f(x)].

As we saw in the Introduction:

• The gradient depends on the parametrization of our space of probability distributions (see

Section 2.3 for an example).

• The equation is not invariant under monotone transformations of f . For example, the

optimization for 10f moves ten times faster than the optimization for f .

In this section, we recall how IGO deals with this (see [1] for a better presentation).

2.1. Invariance under Reparametrization of θ: Fisher Metric

In order to achieve invariance under reparametrization of θ, it is possible to turn our family of

probability distributions into a Riemannian manifold (this is the main topic of information geometry;

see [2]), which allows us to use a canonical, parametrization-invariant gradient (called the natural

gradient).

Definition 1. Let P,Q be two probability distributions on X . The Kullback–Leibler divergence of Q
from P is defined by:

KL(Q‖P ) =

∫
X

ln(
Q(x)

P (x)
)dQ(x). (2)

By definition, it does not depend on the parametrization. It is not symmetrical, but if for all x, the

application θ �→ Pθ(x) is C2, then a second-order expansion yields:

KL(Pθ+dθ‖Pθ) =
1

2

∑
i,j

Iij(θ)dθidθj + o(dθ2), (3)

where:

Iij(θ) =

∫
X

∂ lnPθ(x)

∂θi

∂ lnPθ(x)

∂θj
dPθ(x) = −

∫
X

∂2 lnPθ(x)

∂θi∂θj
dPθ(x). (4)

This is enough to endow the family (Pθ)θ∈Θ with a Riemannian manifold structure: a Riemannian

manifold M is a differentiable manifold, which can be seen as pieces of Rn glued together, with a

metric. The metric at x is a symmetric positive-definite quadratic form on the tangent space of M at

x: it indicates how expensive it is to move in a given direction on the manifold. We will think of the

updates of the algorithms that we will be studying as paths on M .

The matrix I(θ) is called the “Fisher information matrix”, and the metric it defines is called the

“Fisher metric”.

Given a metric, it is possible to define a gradient attached to this metric; the key property of the

gradient is that for any smooth function f :

f(x+ h) = f(x) +
∑
i

hi
∂f

∂xi

+ o(‖h‖) = f(x) + 〈h,∇f(x)〉+ o(‖h‖), (5)
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where 〈x, y〉 = xT Iy is the dot product in metric I . Therefore, in order to keep the property of

Equation (5), we must have ∇f = I−1 ∂f
∂x

.

We have therefore the following gradient (called the “natural gradient”; see [2]):

∇̃θ = I−1(θ)
∂

∂θ
, (6)

and since the Kullback–Leibler divergence does not depend on the parametrization, neither does the

natural gradient.

Later in this paper, we will study families of Gaussian distributions. The following proposition

gives the Fisher metric for these families.

Proposition 1. Let (Pθ)θ∈Θ be a family of normal probability distributions: Pθ = N (μ(θ),Σ(θ)).
If μ and Σ are C1, the Fisher metric is given by:

Ii,j(θ) =
∂μT

∂θi
Σ−1 ∂μ

∂θj
+

1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
. (7)

Proof. This is a non-trivial calculation. See [7] or [8] for more details.

As we will often be working with Gaussian distributions, we introduce the following notation:

Notation 1. Gd is the manifold of Gaussian distributions in dimension d, equipped with the
Fisher metric. G̃d is the manifold of Gaussian distributions in dimension d, with the covariance
matrix proportional to identity in the canonical basis of Rd, equipped with the Fisher metric.

2.2. IGO Flow, IGO Algorithm

In IGO [1], invariance with respect to monotone transformations is achieved by replacing f by

the following transform; we set:

q(x) = Px′∼Pθ
(f(x′) � f(x)), (8)

a non-increasing function w : [0; 1] → R is chosen (the selection scheme), and finally, W f
θ (x) =

w(q(x)) (this definition has to be slightly changed if the probability of a tie is not zero, see [1] for

more details). By performing a gradient descent on Ex∼Pθ
[W f

θt(x)], we obtain the “IGO flow”:

dθt

dt
= ∇̃θ

∫
X

W f
θt(x)Pθ(dx) =

∫
X

W f
θt(x)∇̃θ lnPθ(x)Pθt(dx). (9)

Notice that the function we are optimizing is Ex∼Pθ
[W f

θt(x)] and not Ex∼Pθ
[W f

θ (x)] (the second

function is constant and always equal to
∫ 1

0
w). In particular, the function for which we are

performing the gradient descent changes at each step, although their optimum (a Dirac at the

minimum of f ) does not: the IGO flow is not a gradient flow; it is simply a vector flow given by

the gradient of interrelated functions.
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For practical implementation, the integral in (9) has to be approximated. For the integral itself,

the Monte-Carlo method is used; N values (x1, ..., xN) are sampled from the distribution Pθt , and

the integral becomes:

1

N

N∑
i=1

W f
θt(xi)∇̃θ lnPθ(xi) (10)

and we approximate 1
N
W f

θ (xi) =
1
N
w(q(xi)) by ŵi =

1
N
w( rk(xi)+1/2

N
), where rk(xi) = |{j, f(xj) <

f(xi)}|: it can be proven (see [1]) that limN→∞ Nŵi = W θt

f (xi) (here again, we are assuming that

there are no ties).

We now have an algorithm that can be used in practice if the Fisher information matrix is known.

Definition 1. The IGO update associated with parametrization θ, sample size N , step size δt and
selection scheme w is given by the following update rule:

θt+δt = θt + δtI−1(θt)
N∑
i=1

ŵi
∂ lnPθ(xi)

∂θ
. (11)

We call IGO speed the vector I−1(θt)
∑N

i=1 ŵi
∂ lnPθ(xi)

∂θ
.

Notice that one could start directly with the ŵi rather than w, as we will do later.

Replacing f by its expected value under a probability distribution Pθ and optimizing over θ using

the natural gradient have already been discussed. For example, in the case of a function f defined

on {0, 1}n, IGO with the Bernoulli distributions yields the algorithm, PBIL[9]. Another similar

approach (stochastic relaxation) is given in [10]. For a continuous function, as we will see later,

the IGO framework recovers several known ranked-based natural gradient algorithms, such as pure

rank-μ CMA-ES [11], xNES or SNES (Separable Natural Evolution Strategies) [12]. See [13] or

[14] for other, not necessarily gradient-based, optimization algorithms on manifolds.

2.3. Geodesic IGO

Although the IGO flow associated with a family of probability distributions is intrinsic (it only

depends on the family itself, not the parametrization we choose for it), the IGO update is not.

However, the difference between two steps of IGO that differ only by the parametrization is only

O(δt2), whereas the different between two vanilla gradient descents with different parametrizations

is O(δt).

Intuitively, the reason for this difference is that two IGO algorithms start at the same point and

follow “straight lines” with the same initial speed, but the definition of “straight lines” changes with

the parametrization.

For instance, in the case of Gaussian distributions, let us consider two different IGO updates with

Gaussian distributions in dimension one, the first one with parametrization (μ, σ) and the second

one with parametrization (μ, c := σ2). We suppose that the IGO speed for the first algorithm is

(μ̇, σ̇). The corresponding IGO speed in the second parametrization is given by the identity ċ = 2σσ̇.
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Therefore, the first algorithm gives the standard deviation σnew,1 = σold + δtσ̇ and the variance

cnew,1 = (σnew,1)
2 = cold + 2δtσoldσ̇ + δt2σ̇2 = cnew,2 + δt2σ̇2.

The geodesics of a Riemannian manifold are the generalization of the notion of a straight line:

they are curves that locally minimize length. In particular, given two points a and b on the Riemannian

manifold M , the shortest path from a to b is always a geodesic (the converse is not true, though).

The notion will be explained precisely in Section 3, but let us define the geodesic IGO algorithm,

which follows the geodesics of the manifold instead of following the straight lines for an arbitrary

parametrization.

Definition 2 (GIGO). The geodesic IGO update (GIGO) associated with sample size N , step size δt

and selection scheme w is given by the following update rule:

θt+δt = expθt(Y δt) (12)

where:

Y = I−1(θt)
N∑
i=1

ŵi
∂ lnPθ(xi)

∂θ
, (13)

is the IGO speed and expθt is the exponential of the Riemannian manifold Θ. Namely, expθt(Y δt) is
the endpoint of the geodesic of Θ starting at θt, with initial speed Y , after a time δt. By definition,
this update does not depend on the parametrization θ.

Notice that while the GIGO update is compatible with the IGO flow (in the sense that when

δt → 0 and N → ∞, a parameter θt updated according to the GIGO algorithm is a solution of

Equation (9), the equation defining the IGO flow), it not necessarily an IGO update. More precisely,

the GIGO update is an IGO update if and only if the geodesics of Θ are straight lines for some

parametrization (by Beltrami’s theorem, this is equivalent to Θ having constant curvature).

This is a particular case of a retraction [14]: a map from the tangent bundle of a manifold to

the manifold itself satisfying a rigidity condition. Arguably, the Riemannian exponential is the

most natural retraction, since it depends only on the Riemannian manifold itself and not on any

decomposition. However, in general, the geodesics are difficult to compute.

In the next section, we will state Noether’s theorem, which will be our main tool to compute the

GIGO update for Gaussian distributions.

3. Riemannian Geometry, Noether’s Theorem

3.1. Riemannian Geometry

The goal of this section is to state Noether’s theorem. See [15] for the proofs and [16] or [17] for

a more detailed presentation. Noether’s theorem states that if a system has symmetries, then there

are invariants attached to these symmetries. Firstly, we need some definitions.

Definition 3 (Motion in a Lagrangian system). Let M be a differentiable manifold, TM the set of
tangent vectors on M (a tangent vector is identified by the point at which it is tangent and a vector in
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the tangent space) and
L : TM → R

(q, v) �→ L(q, v) a differentiable function called the Lagrangian

function (in general, it could depend on t). A “motion in the Lagrangian system (M,L) from x to y”
is map γ : [t0, t1]→M , such that:

• γ(t0) = x

• γ(t1) = y

• γ is a local extremum of the functional:

Φ(γ) =

∫ t1

t0

L(γ(t), γ̇(t))dt, (14)

among all curves c : [t0, t1]→M , such that c(t0) = x, and c(t1) = y.

For example, when (M, g) is a Riemannian manifold, the length of a curve γ between γ(t0) and

γ(t1) is: ∫ t1

t0

√
g(γ̇(t), γ̇(t))dt. (15)

The curves that follow the shortest path between two points x, y ∈M are therefore the minima γ

of the functional (15), such that γ(t0) = x and γ(t1) = y, and the corresponding Lagrangian function

is (q, v) �→ √
g(v, v). However, any curve following the shortest trajectory will have minimum

length. For example, if γ1 : [a, b] → M is a curve of the shortest path, so is γ2 : t �→ γ1(t
2): these

two curves define the same trajectory in M , but they do not travel along this trajectory at the same

speed. This leads us to the following definition:

Definition 4 (Geodesics). Let I be an interval of R and (M, g) be a Riemannian manifold. A curve
γ : I → M is called a geodesic if for all t0, t1 ∈ I , γ|[t0,t1] is a motion in the Lagrangian system
(M,L) from γ(t0) to γ(t1), where:

L(γ) =
∫ t1

t0

g(γ̇(t), γ̇(t))dt. (16)

It can be shown (see [16]) that geodesics are curves that locally minimize length, with constant

velocity, in the sense that
dg(γ̇(t),(γ̇(t))

dt
= 0. In particular, given a starting point and a starting speed,

the geodesic is unique. This motivates the definition of the exponential of a Riemannian manifold.

Definition 5. Let (M, g) be a Riemannian manifold. We call the exponential of M the application:

exp : TM → M

(x, v) �→ expx(v),

such that for any x ∈ M , if γ is the geodesic of M satisfying γ(0) = x and γ′(0) = v, then
expx(v) = γ(1).
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In order to find an extremal of a functional, the most commonly-used result is called the

“Euler–Lagrange equations” (see [15], for example); a motion γ in the Lagrangian system (M,L)
must satisfy:

∂L
∂x

(γ(t))− d

dt

(
∂L
∂ẋ

(γ̇(t))

)
= 0. (17)

By applying this equation with the Lagrangian given by (16), it is possible to show that the geodesics

of a Riemannian manifold follow the “geodesic equations”:

ẍk + Γk
ijẋ

iẋj = 0, (18)

where the

Γk
ij =

1

2
glk
(
∂gjl
∂qi

+
∂gli
∂qj

− ∂gij
∂ql

)
(19)

are called “Christoffel symbols” of the metric g. However, these coefficients are tedious (and

sometimes difficult) to compute, and (18) is a second order differential equation. Noether’s theorem

will give us a first order equation to compute the geodesics.

3.2. Noether’s Theorem

Definition 6. Let h : M →M , a diffeomorphism. We say that the Lagrangian system (M,L) admits
the symmetry h if for any (q, v) ∈ TM ,

L (h(q), dh(v)) = L(q, v), (20)

where dh is the differential of h.

If M is clear in the context, we will sometimes say that L is invariant under h.

An example will be given in the proof of Theorem 3.

We can now state Noether’s theorem (see, for example, [15]).

Theorem 1 (Noether’s Theorem). If the Lagrangian system (M,L) admits the one-parameter group
of symmetries hs : M → M , s ∈ R, then the following quantity remains constant during motions in
the system (M,L). Namely,

I(γ(t), γ̇(t)) =
∂L
∂v

(
dhs(γ(t))

ds
|s=0

)
(21)

does not depend on t if γ is a motion in (M,L).

Now, we are going to apply this theorem to our problem: computing the geodesics of Riemannian

manifolds of Gaussian distributions.
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4. GIGO in G̃d

If we force the covariance matrix to be either diagonal or proportional to the identity matrix, the

geodesics have a simple expression that we give below. In the former case, the manifold we are

considering is (G1)
d, and in the latter case, it is G̃d.

The geodesics of (G1)
d are given by:

Proposition 2. Let M be a Riemannian manifold; let d ∈ N; let Φ be the Riemannian exponential
of Md; and let φ be the Riemannian exponential of M . We have:

Φ(x1,...,xn)((v1, ..., vn)) = (φx1(v1), ..., φxn(vn)) (22)

In particular, knowing the geodesics of G1 is enough to compute the geodesics of (G1)
d.

This is true, because a block of the product metric does not depend on variables of the other

blocks.

Consequently, a GIGO update with a diagonal covariance matrix with the sample (xi) is

equivalent to d separate one-dimensional GIGO updates using the same samples. Moreover, G1
∼=

G̃1, the geodesics of which are given below.

We will show that G̃d and the “hyperbolic space”, of which the geodesics are known, are

isometric.

4.1. Preliminaries: Poincaré Half-Plane, Hyperbolic Space

In dimension two, the hyperbolic space is called the “hyperbolic plane” or the Poincaré half-plane.

We recall its definition:

Definition 7 (Poincaré half-plane). We call the “Poincaré half-plane” the Riemannian manifold:

H = {(x, y) ∈ R2, y > 0},

with the metric ds2 = dx2+dy2

y2
.

We also recall the expression of its geodesics (see, for example, [18]):

Proposition 3 (Geodesics of the Poincaré half-plane). The geodesics of the Poincaré half-plane are
exactly the:

t �→ (Re(z(t)), Im(z(t))) ,

where:

z(t) =
aievt + b

cievt + d
, (23)

with ad− bc = 1 and v > 0.

The geodesics are half-circles perpendicular to the line y = 0 and vertical lines, as shown in

Figure 1 below.
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μ

σ
γ1

γ2

Figure 1. Geodesics of the Poincaré half-plane.

The generalization to the higher dimension is the following:

Definition 8 (Hyperbolic space). We call the “hyperbolic space of dimension n” the Riemannian
manifold:

Hn = {(x1, ..., xn−1, y) ∈ Rn, y > 0},
with the metric ds2 =

dx2
1+...+dx2

n−1+dy2

y2
(or equivalently, the metric given by the matrix Diag( 1

y2
) ).

The Lagrangian for the geodesics is invariant under all translations along the xi, so by Noether’s

theorem, its geodesics stay in a plane containing the direction y and the initial speed . The induced

metric on this plane is the metric of the Poincaré half-plane. The geodesics are therefore given by the

following proposition:

Proposition 4 (Geodesics of the hyperbolic space). If γ : t �→ (x1(t), ..., xn−1(t), y(t)) = (x(t), y(t))
is a geodesic ofHn, then there exists a, b, c, d ∈ R, such that ad− bc = 1, and v > 0, such that

x(t) = x(0) + ẋ0
‖ẋ0‖ x̃(t), y(t) = Im(γC(t)), with x̃(t) = Re(γC(t)) and:

γC(t) :=
aievt + b

cievt + d
. (24)

4.2. Computing the GIGO Update in G̃d

If we want to implement the GIGO algorithm in G̃d, we need to compute the natural gradient in

G̃d and to be able to compute the Riemannian exponential of G̃d.

Using Proposition 1, we can compute the metric of G̃d in the parametrization (μ, σ) �→
N (μ, σ2I). We find: ⎛⎜⎜⎜⎜⎝

1
σ2 0 . . . 0

0
. . .

. . .
...

...
. . . 1

σ2 0

0 . . . 0 2d
σ2

⎞⎟⎟⎟⎟⎠ . (25)

Since this matrix is diagonal, it is easy to invert, and we immediately have the natural gradient

and, consequently, the IGO speed.
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Proposition 5. In G̃d, the IGO speed Y is given by:

Yμ =
∑
i

ŵi(xi − μ), (26)

Yσ =
∑
i

ŵi

(
(xi − μ)T (xi − μ)

2dσ
− σ

2

)
. (27)

Proof. We recall the IGO speed is defined by Y = I−1(θt)
∑N

i=1 ŵi
∂ lnPθ(xi)

∂θ
. Since Pμ,σ(x) =

(2πσ2)−d/2 exp(− (x−μ)T (x−μ)
2σ2 ), we have:

∂ lnPμ,σ(x)

∂μ
= x− μ,

∂ lnPμ,σ(x)

∂σ
= −d

σ
+

(x− μ)T (x− μ)

σ3
.

The result follows.

The metric defined by Equation (25) is not exactly the metric of the hyperbolic space, but with the

substitution μ← μ√
2d

, the metric becomes 2d
σ2 I , which is proportional to the metric of the hyperbolic

space and, therefore, defines the same geodesics.

Theorem 2 (Geodesics of G̃d). If γ : t �→ N (μ(t), σ(t)2I) is a geodesic of G̃d, then there exists
a, b, c, d ∈ R, such that ad− bc = 1, and v > 0, such that:

μ(t) = μ(0) +
√
2d μ̇0

‖μ̇0‖ r̃(t), σ(t) = Im(γC(t)), with r̃(t) = Re(γC(t)) and

γC(t) :=
aievt + b

cievt + d
. (28)

Now, in order to implement the corresponding GIGO algorithm, we only need to be able to find

the coefficients a, b, c, d, v corresponding to an initial position (μ0, σ0) and an initial speed (μ̇0, σ̇0).

This is a tedious but easy computation, the result of which is given in Proposition 17.

The pseudocode of GIGO in G̃d is also given in the Appendix: it is obtained by concatenating

Algorithms 1 and 7 (Proposition 17 and the pseudocode in the Appendix allow the metric to be

slightly modified; see Section 6.2).

5. GIGO in Gd

5.1. Obtaining a First Order Differential Equation for the Geodesics of Gd

In the case where both the covariance matrix and the mean can vary freely, the equations of the

geodesics have been computed in [4] and [5]. However, these articles start with the equations of the

geodesics obtained with the Christoffel symbols, then partially integrate them . These equations are

in fact a consequence of Noether’s theorem and can be found directly.
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Theorem 3. Let γ : t �→ N (μt,Σt) be a geodesic of Gd. Then, the following quantities do not
depend on t:

Jμ = Σ−1
t μ̇t, (29)

JΣ = Σ−1
t (μ̇tμ

T
t + Σ̇t). (30)

Proof. This is a direct application of Noether’s theorem, with suitable groups of diffeomorphisms.

By Proposition 1, the Lagrangian associated with the geodesics of Gd is:

L(μ,Σ, μ̇, Σ̇) = μ̇TΣ−1μ̇+
1

2
tr(Σ̇Σ−1Σ̇Σ−1). (31)

Its derivative is:
∂L
∂θ̇

=
[
(h,H) �→ 2μ̇TΣ−1h+ tr(HΣ−1Σ̇Σ−1)

]
. (32)

Let us show that this Lagrangian is invariant under affine changes of basis (thus illustrating

Definition 6).

The general form of an affine change of basis is φμ0,A : (μ,Σ) �→ (Aμ + μ0, AΣA
T ), with

μ0 ∈ Rd and A ∈ GLd(R).

We have:
L(φμ0,A(μ,Σ), dφμ0,A(μ̇, Σ̇)) = Ȧμ

T

(AΣAT )−1Ȧμ+
1

2
tr
(

˙
AΣAT (AΣAT )−1 ˙

AΣAT (AΣAT )−1
)
,

(33)

and since Ȧμ = Aμ̇ and
˙

AΣAT = AΣ̇AT , we find easily that:

L(φμ0,A(μ,Σ), dφμ0,A(μ̇, Σ̇)) = L(μ,Σ, μ̇, Σ̇), (34)

or in other words: L is invariant under φμ0,A for any μ0 ∈ Rd, A ∈ GLd(R).

In order to use Noether’s theorem, we also need one-parameter groups of transformations. We

choose the following:
(1) Translations of the mean vector. For any i ∈ [1, d], let hs

i : (μ,Σ) �→ (μ+ sei,Σ), where ei is the

i-th basis vector. We have
dhs

i

ds
|s=0 = (ei, 0), so by Noether’s theorem,

∂L
∂θ̇

(ei, 0) = 2μ̇TΣ−1ei = 2eTi Σ
−1μ̇

remains constant for all i. The fact that Jμ is an invariant immediately follows.

(2) Linear base changes. For any i, j ∈ [1, d], let hs
i,j : (μ,Σ) �→

(exp(sEij)μ, exp(sEij)Σ exp(sEji)), where Eij is the matrix with a one at position (i, j)

and zeros elsewhere. We have:

dhs
Eij

ds
|s=0 = (Eijμ,EijΣ + ΣEji).

Therefore, by Noether’s theorem, we then obtain the following invariants:

Jij :=
∂L
∂θ̇

(Eijμ,EijΣ + ΣEji) (35)

=2 μ̇TΣ−1Eijμ+ tr((EijΣ + ΣEji)Σ
−1Σ̇Σ−1) (36)

=2 (Σ−1μ̇)TEijμ+ tr(EijΣ̇Σ
−1) + tr(EjiΣ

−1Σ̇) (37)

=2(Jμμ
T )ij + 2(Σ−1Σ̇)ij, (38)

and the coefficients of JΣ in (30) are the (Jij/2).
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This leads us to first order equations satisfied by the geodesics mentioned in [4–6].

Theorem 4 (GIGO-Σ). t �→ N (μt,Σt) is a geodesic of Gd if and only if μ : t �→ μt and Σ : t �→ Σt

satisfy the equations:

μ̇t = ΣtJμ (39)

Σ̇t = Σt(JΣ − Jμμ
T
t ) = ΣtJΣ − μ̇tμ

T
t , (40)

where:

Jμ = Σ−1
0 μ̇0,

and:

JΣ = Σ−1
0

(
μ̇0μ

T
0 + Σ̇0

)
.

Proof. This is an immediate consequence of Proposition 3.

These equations can be solved analytically (see [5]); however, usually, that is not the case, and

they have to be solved numerically, for example with the Euler method (the corresponding algorithm,

which we call GIGO-Σ, is described in the Appendix). The goal of the remainder of the subsection

is to show that having to use the Euler method is fine.

To avoid confusion, we will call the step size of the GIGO algorithm (δt in Proposition 2) “GIGO

step size” and the step size of the Euler method (inside a step of the GIGO algorithm) “Euler step

size”.

Having to solve our equations numerically brings two problems:

The first one is a theoretical problem: the main reason to study GIGO is its invariance under

reparametrization of θ, and we lose this invariance property when we use the Euler method. However,

GIGO can get arbitrarily close to invariance by decreasing the Euler step size. In other words, the

difference between two different IGO algorithms is O(δt2), and the difference between two different

implementations of the GIGO algorithm is O(h2), where h is the Euler step size; it is easier to reduce

the latter. Still, without a closed form for the geodesics of Gd, the GIGO update is rather expensive

to compute, but it can be argued that most of the computation time will still be the computation of

the objective function f .

The second problem is purely numerical: we cannot guarantee that the covariance matrix remains

positive-definite along the Euler method. Here, apart from finding a closed form for the geodesics,

we have two solutions.

We can enforce this a posteriori: if the covariance matrix we find is not positive-definite after a

GIGO step, we repeat the failed GIGO step with a reduced Euler step size (in our implementation,

we divided it by four; see Algorithm 2 in the Appendix.).

The other solution is to obtain differential equations on a square root of the covariance matrix

(any matrix A, such that Σ = AAT ).
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Theorem 5 (GIGO-A). If μ : t �→ μt and A : t �→ At satisfy the equations:

μ̇t = AtA
T
t Jμ, (41)

Ȧt =
1

2
(JΣ − Jμμ

T
t )

TAt, (42)

where:

Jμ = (A−1
0 )TA−1

0 μ0

and:

JΣ = (A−1
0 )TA−1

0 (μ̇0μ
T
0 + Ȧ0A

T
0 + A0Ȧ

T
0 ),

then t �→ N (μt, AtA
T
t ) is a geodesic of Gd.

Proof. This is a simple rewriting of Theorem 4: if we write Σ := AAT , we find that Jμ and JΣ are

the same as in Theorem 4, and we have:

μ̇ = ΣJμ,

and:

Σ̇ = (ȦAT + AȦT ) =
1

2
(JΣ − Jμμ

T )TAAT +
1

2
AAT (JΣ − Jμμ

T )

=
1

2
(JΣ − Jμμ

T )TΣ +
1

2
Σ(JΣ − Jμμ

T ) =
1

2
Σ(JΣ − Jμμ

T ) +
1

2
[Σ(JΣ − Jμμ

T )]T .

By Theorem 4, Σ(JΣ − Jμμ
T ) is symmetric (since Σ̇ has to be symmetric). Therefore, we have

Σ̇ = Σ(JΣ − Jμμ
T ), and the result follows.

Notice that Theorem 5 gives an equivalence, whereas Theorem 4 does not. The reason is that

the square root of a symmetric positive-definite matrix is not unique. Still, it is canonical; see the

discussion in Section 6.1.2.

As for Theorem 4, we can solve Equations (41) and (42) numerically, and we obtain another

algorithm (Algorithm 3 in the Appendix; we will call it GIGO-A), with a behavior similar to the

previous one (with Equations (39) and (40)). For both of them, numerical problems can arise when

the covariance matrix is almost singular.

We have not managed to find any example where one of these two algorithms converged to the

minimum of the objective function, whereas the other did not, and their behavior is almost the same.

More interestingly, the performances of these two algorithms are also the same as the

performances of the exact GIGO algorithm, using the equations of Section 5.2.

Notice that even though GIGO-A directly maintains a square root of the covariance matrix, which

makes sampling new points easier (to sample a point from N (μ,Σ), a square root of Σ is needed),

both GIGO-Σ and GIGO-A still have to invert the covariance matrix (or its square root) at each

step, which is as costly as the decomposition, so one of these algorithms is roughly as expensive to

compute as the other.
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5.2. Explicit Form of the Geodesics of Gd (from [5])

We now give the exact geodesics of Gd: the following results are a rewriting of Theorem 3.1 and

its first corollary in [5].

Theorem 6. Let (μ̇0, Σ̇0) ∈ TN (0,I)Gd. The geodesic of Gd starting from N (0, 1) with initial speed
(μ̇0, Σ̇0) is given by:

expN (0,I)(sμ̇0, sΣ̇0) = N
(
2R(s)sh(

sG

2
)G−μ̇0, R(s)R(s)T

)
, (43)

where exp is the Riemannian exponential of Gd, G is any matrix satisfying:

G2 = Σ̇2
0 + 2μ̇0μ̇

T
0 , (44)

R(s) =

((
ch(

sG

2
)− Σ̇0G

−sh(
sG

2
)

)−1
)T

(45)

and G− is a pseudo-inverse of G

In [5], the existence of G (as a square root of Σ̇2
0 + 2μ̇0μ̇

T
0 ) is proven. Notice that, anyway, in the

expansions of (43) and (45), only even powers of G appear.

Additionally, since, for all A ∈ GLd(R), for all μ0 ∈ Rd, the application:

φ : Gd → Gd

N (μ,Σ) �→ N (Aμ+ μ0, AΣA
T )

(46)

preserves the geodesics, we find the general expression for the geodesics of Gd.

Corollary 1. Let μ0 ∈ Rd, A ∈ GLd(R) and (μ̇0, Σ̇0) ∈ TN (μ0,A0AT
0 )Gd. The geodesic of Gd starting

from N (μ,Σ) with initial speed (μ̇0, Σ̇0) is given by:

expN (μ0,A0AT
0 )(sμ̇0, sΣ̇0) = N (μ1, A1A

T
1 ), (47)

with:

μ1 = 2A0R(s)sh(
sG

2
)G−A−1

0 μ̇0 + μ0, (48)

A1 = A0R(s), (49)

where exp is the Riemannian exponential of Gd, G is any matrix satisfying:

G2 = A−1
0 (Σ̇0Σ

−1
0 Σ̇0 + 2μ̇0μ̇

T
0 )(A

−1
0 )T , (50)

R(s) =

((
ch(

sG

2
)− A−1

0 Σ̇0(A
−1
0 )TG−sh(

sG

2
)

)−1
)T

, (51)

and G− is a pseudo-inverse of G.
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It should be noted that the final values for mean and covariance do not depend on the choice of G

as a square root of:

A−1
0 (Σ̇0Σ

−1
0 Σ̇0 + 2μ̇0μ̇

T
0 )(A

−1
0 )T .

The reason for this is that ch(G) is a Taylor series in G2, and so are sh(G)G− and G−sh(G).

For our practical implementation, we actually used these Taylor series instead of the expression

of the corollary.

6. Comparing GIGO, xNES and Pure Rank-μ CMA-ES

6.1. Definitions

In this section, we recall the xNES and pure rank-μ CMA-ES, and we describe them in the IGO

framework, thus allowing a reasonable comparison with the GIGO algorithms.

6.1.1. xNES

We recall a restriction of the xNES algorithm, introduced in [19] (this restriction is sufficient to

describe the numerical experiments in [19]).

Definition 9 (xNES algorithm). The xNES algorithm with sample size N , weights wi and learning
rates ημ and ηΣ updates the parameters μ ∈ Rd, A ∈ Md(R) with the following rule: At each step,
N points x1, ..., xN are sampled from the distribution N (μ,AAT ). Without loss of generality, we
assume f(x1) < ... < f(xN). The parameter is updated according to:

μ← μ+ ημAGμ,

A← A exp(ηΣGM/2),

where, setting zi = A−1(xi − μ):

Gμ =
N∑
i=1

wizi,

GM =
N∑
i=1

wi(ziz
T
i − I).

The more general version decomposes the matrix A as σB, where detB = 1, and uses two

different learning rates for σ and for B. We gave the version where these two learning rates are equal

(in particular, for the default parameters in [19], these two learning rates are equal). This restriction

of the xNES algorithm can be described in the IGO framework, provided all of the learning rates are

equal (most of the elements of the proof can be found in [19] (the proposition below essentially states

that xNES is a natural gradient update) or in [1]):
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Proposition 6 (xNES as IGO). The xNES algorithm with sample size N , weights wi and learning
rates ημ = ηΣ = δt coincides with the IGO algorithm with sample size N , weights wi, step size δt

and in which, given the current position (μt, At), the set of Gaussians is parametrized by:

φμt,At : (δ,M) �→ N
(
μt + Atδ,

(
At exp(

1

2
M)

)(
At exp(

1

2
M)

)T
)
,

with δ ∈ Rm and M ∈ Sym(Rm).
The parameters maintained by the algorithm are (μ,A), and the xi are sampled fromN (μ,AAT ).

Proof. Let us compute the IGO update in the parametrization φμt,At : we have δt = 0, M t = 0, and

by using Proposition 1, we can see that for this parametrization, the Fisher information matrix at

(0, 0) is the identity matrix. The IGO update is therefore,

(δ,M)t+δt = (δ,M)t + δtYδ(δ,M) + δtYM(δ,M) = δtYδ(δ,M) + δtYM(δ,M),

where:

Yδ(δ,M) =
N∑
i=1

wi∇δ ln(p(xi|(δ,M))

and:

YM(δ,M) =
N∑
i=1

wi∇M ln(p(xi|(δ,M)).

Since tr(M) = log(det(exp(M))), we have:

lnPδ,M(x) = −d

2
ln(2π)− ln(detA)− 1

2
trM − 1

2
‖ exp(−1

2
M)A−1(x− μ− Aδ)‖2,

and a straightforward computation yields:

Yδ(δ,M) =
N∑
i=1

wizi = Gμ,

and:

YM(δ,M) =
1

2

N∑
i=1

wi(ziz
T
i − I) = GM .

Therefore, the IGO update is:

δ(t+ δt) = δ(t) + δtGμ,

M(t+ δt) = M(t) + δtGM ,

or, in terms of mean and covariance matrix:

μ(t+ δt) = μ(t) + δtA(t)Gμ

A(t+ δt) = A(t) exp(δtGM/2),

or:

Σ(t+ δt) = A(t) exp(δtGM)A(t)T .

This is the xNES update.
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6.1.2. Using a Square Root of the Covariance Matrix

Firstly, we recall that the IGO framework (on Gd, for example) emphasizes the Riemannian

manifold structure on Gd. All of the algorithms studied here (including GIGO, which is not strictly

speaking an IGO algorithm) define a trajectory in Gd (a new point for each step), and to go from a

point θ to the next one (θ′), we follow some curve γ : [0, δt] → Gd, with γ(0) = θ, γ(δt) = θ′ and

γ̇(0) given by the natural gradient (γ̇(0) =
∑N

i=1 ŵi∇̃θPθ(xi) ∈ TθGd).

To be compatible with this point of view, an algorithm giving an update rule for a square root

(any matrix A such that Σ = AAT : since we do not force A to be symmetric, the decomposition

is not unique) of the covariance matrix A has to satisfy the following condition: for a given initial

speed, the covariance matrix Σt+δt after one step must depend only on Σt and not on the square root

At chosen for Σt.

The xNES algorithm does satisfy this condition: consider two xNES algorithms, with the same

learning rates, respectively, at (μ,At
1) and (μ,At

2), with At
1(A

t
1)

T = At
2(A

t
2)

T (i.e., they define the

same Σt), using the same samples xi to compute the natural gradient update , then we will have

Σt+δt
1 = Σt+δt

2 . Using the definitions of Section 6.3, we have just shown that what we will call the

“xNES trajectory” is well defined.

It is also important to notice that, in order to be well defined, a natural gradient algorithm updating

a square root of the covariance matrix has to specify more conditions than simply following the

natural gradient.

The reason for this is that the natural gradient is a vector tangent to Gd: it lives in a space of

dimension d(d+3)/2 (the dimension of Gd), whereas the vector (μ,A) lives in a space of dimension

d(d+1) (the dimension of Rn×GLn(R)), which is too large: there exists infinitely many applications

t �→ At, such that a given curve γ : t �→ N (μt,Σt) can be written γ(t) = N (μt, AtA
T
t ). This is why

Theorem 5 is simply an implication, whereas Theorem 4 is an equivalence.

More precisely, let us consider A in GLd(R) and vA, v′A two infinitesimal updates of A. Since

Σ = AAT , the infinitesimal update of Σ corresponding to vA (resp. v′A) is vΣ = AvTA + vAA
T (resp.

v′Σ = Av′TA + v′AA
T ).

It is now easy to see that vA and v′A define the same direction for Σ (i.e., vΣ = v′Σ) if and only if

AMT +MAT = 0, where M = vA − v′A. This is equivalent to A−1M antisymmetric.

For any A ∈ Md(R), let us denote by TA the space of the matrices M , such that A−1M is

antisymmetric or, in other words, TA := {u ∈ Md(R), Au
T + uAT = 0}. Having a subspace SA

in direct sum with TA for all A is sufficient (but not necessary) to have a well-defined update rule.

Namely, consider the (linear) application:

φA : Md(R) → Sd(R)

vA �→ AvTA + vAA
T
,

sending an infinitesimal update of A to the corresponding update of Σ. It is not bijective, but as we

have seen before, KerφA = TA, and therefore, if we have, for some UA,

Md(R) = UA ⊕ TA, (52)
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then φA|UA
is an isomorphism. Let vΣ be an infinitesimal update of Σ. We choose the following

update of A corresponding to vΣ:

vA := (φA|UA
)−1(vΣ). (53)

Any UA, such that UA⊕TA = Md(R), is a reasonable choice to pick vA for a given vΣ. The choice

SA = {u ∈ Md(R), Au
T − uAT = 0} has an interesting additional property; it is the orthogonal of

TA for the norm:

‖vA‖2Σ := Tr(vTAΣ
−1vA) = Tr((A−1vA)

TA−1vA). (54)

and consequently, it can be defined without referring to the parametrization, which makes it a

canonical choice. To prove this, remark that TA = {M ∈ Md(R), A
−1M antisymmetric} and

SA = {M ∈ Md(R), A
−1M symmetric} and that if M is symmetric and N is antisymmetric, then

Tr(MTN) =
d∑

i,j=1

mijnij =
d∑

i=1

miinii +
∑

1�i<j�d

mij(nij + nji) = 0. (55)

Let us now show that this is the choice made by xNES and GIGO-A (which are well-defined

algorithms updating a square root of the covariance matrix).

Proposition 7. Let A ∈ Mn(R). The vA given by the xNES and GIGO-A algorithms lies in SA =

{u ∈ Md(R), Au
T − uAT = 0} = SA.

Proof. For xNES, let us write γ̇(0) = (vμ, vΣ) and vA := 1
2
AGM . We have A−1vA = 1

2
GM , and

therefore, forcing M (and GM ) to be symmetric in xNES is equivalent to A−1vA = (A−1vA)
T ,

which can be rewritten as AvTA = vAA
T . For GIGO-A, Equation (40) shows that Σt(JΣ − Jμμ

T
t )

is symmetric, and with this fact in mind, Equation (42) shows that we have AvTA = vAA
T (vA is

Ȧt).

6.1.3. Pure Rank-μ CMA-ES

We now recall the pure rank-μ CMA-ES algorithm. The general CMA-ES algorithm is described

in [21].

Definition 10 (Pure rank-μ CMA-ES algorithm). The pure rank-μ CMA-ES algorithm with sample
size N , weights wi and learning rates ημ and ηΣ is defined by the following update rule: At each
step, N points x1, ..., xN are sampled from the distribution N (μ,Σ). Without loss of generality, we
assume f(x1) < ... < f(xN). The parameter is updated according to:

μ← μ+ ημ

N∑
i=1

wi(xi − μ),

Σ← Σ + ηΣ

N∑
i=1

wi((xi − μ)(xi − μ)T − Σ).

The pure rank-μ CMA-ES can also be described in the IGO framework; see, for example, [20].
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Proposition 8 (Pure rank-μ CMA-ES as IGO). The pure rank-μ CMA-ES algorithm with sample
size N , weights wi and learning rates ημ = ηΣ = δt coincides with the IGO algorithm with sample
size N , weights wi, step size δt and the parametrization (μ,Σ).

6.2. Twisting the Metric

As we can see, the IGO framework does not allow one to recover the learning rates for xNES and

pure rank-μ CMA-ES, which is a problem, since usually, the covariance learning rate is set much

smaller than the mean learning rate (see either [19] or [21]).

A way to recover these learning rates is to incorporate them directly into the metric (see also

blockwise GIGO, in Section 6.4). More precisely:

Definition 11 (Twisted Fisher metric). Let ημ, ηΣ ∈ R, and let (Pθ)θ∈Θ be a family of normal
probability distributions: Pθ = N (μ(θ),Σ(θ)), with μ and Σ C1. We call the “(ημ, ηΣ)-twisted
Fisher metric” the metric defined by:

Ii,j(ημ, ηΣ)(θ) =
1

ημ

∂μT

∂θi
Σ−1 ∂μ

∂θj
+

1

ηΣ

1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
. (56)

All of the remainder of this section is simply a rewriting of the work in Section 2 with the twisted

Fisher metric instead of the regular Fisher metric. We will use the term “twisted geodesic” instead of

“geodesic for the twisted metric”.

This approach seems to be somewhat arbitrary: arguably, the mean and the covariance play a

“different role” in the definition of a Gaussian (only the covariance can affect diversity, for example),

but we lack a reasonable intrinsic characterization that would make this choice of twisting more

natural. This construction can be slightly generalized (see the Appendix).

The IGO flow and the IGO algorithms can be modified to take into account the twisting of the

metric; the (ημ, ηΣ)-twisted IGO flow reads:

dθt

dt
= I(ημ, ηΣ)

−1(θ)

∫
X

W f
θt(x)∇θ lnPθ(x)Pθt(dx). (57)

The only difference with (9) is that I−1(θ) has been replaced by I(ημ, ηΣ)
−1(θ).

This leads us to the twisted IGO algorithms.

Definition 12. The (ημ, ηΣ)-twisted IGO algorithm associated with parametrization θ, sample size
N , step size δt and selection scheme w is given by the following update rule:

θt+δt = θt + δtI(ημ, ηΣ)
−1(θt)

N∑
i=1

ŵi
∂ lnPθ(xi)

∂θ
.

Definition 13. The (ημ, ηΣ)-twisted geodesic IGO algorithm associated with sample size N , step size
δt and selection scheme w is given by the following update rule:

θt+δt = expθt(Y δt) (58)
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where:

Y = I(ημ, ηΣ)
−1(θt)

N∑
i=1

ŵi
∂ lnPθ(xi)

∂θ
. (59)

By definition, the twisted geodesic IGO algorithm does not depend on the parametrization (but it
does depend on ημ and ηΣ).

There is some redundancy between δt, ημ and ηΣ: the only values actually appearing in the

equations are δtημ and δtηΣ. More formally:

Proposition 9. Let k, d,N ∈ N, ημ, ηΣ, δt, λ1, λ2 ∈ R and w : [0; 1]→ R.
The (ημ, ηΣ)-twisted IGO algorithm with sample size N , step size δt and selection scheme w

coincides with the (λ1ημ, λ1ηΣ)-twisted IGO algorithm with sample size N , step size λ2δt and
selection scheme 1

λ1λ2
w. The same is true for geodesic IGO.

In order to obtain the twisted algorithms, the Fisher metric in IGO has to be replaced by the metric

from Definition 11. In practice, the equations found by twisting the metric are exactly the equations

without twisting, except that we have “forced” the learning rates ημ, ηΣ to appear by multiplying the

increments of μ and Σ by ημ and ηΣ.

We can now describe pure rank-μ CMA-ES and xNES with separate learning rates as twisted

IGO algorithms:

Proposition 10 (xNES as IGO). The xNES algorithm with sample size N , weights wi and learning
rates ημ, ησ = ηB = ηΣ coincides with the ημ

δt
, ηΣ
δt

-twisted IGO algorithm with sample size N , weights
wi, step size δt and in which, given the current position (μt, At), the set of Gaussians is parametrized
by:

(δ,M) �→ N
(
μt + Atδ,

(
At exp(

1

2
M)

)(
At exp(

1

2
M)

)T
)
,

with δ ∈ Rm and M ∈ Sym(Rm).
The parameters maintained by the algorithm are (μ,A), and the xi are sampled fromN (μ,AAT ).

Proposition 11 (Pure rank-μ CMA-ES as IGO). The pure rank-μ CMA-ES algorithm with sample
size N , weights wi and learning rates ημ and ηΣ coincides with the (ημ

δt
, ηΣ
δt
)-twisted IGO algorithm

with sample size N , weights wi, step size δt and the parametrization (μ,Σ).

The proofs of these two statements are an easy rewriting of their non-twisted counterparts: one

can return to the non-twisted metric (up to a ηΣ factor) by changing μ to
√
ησ√
ημ
μ.

We give the equations of the twisted geodesics of Gd in the Appendix.

6.3. Trajectories of Different IGO Steps

As we have seen, two different IGO algorithms (or an IGO algorithm and the GIGO algorithm)

coincide at first order in δt when δt → 0. In this section, we study the differences between pure
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rank-μ CMA-ES, xNES and GIGO by looking at the second order in δt, and in particular, we show

that xNES and GIGO do not coincide in the general case.

We view the updates done by one step of the algorithms as paths on the manifold Gd, from

(μ(t),Σ(t)) to (μ(t+ δt),Σ(t+ δt)), where δt is the time step of our algorithms, seen as IGO

algorithms. More formally:

Definition 14. (1) We call the GIGO update trajectory the application:

TGIGO : (μ,Σ, vμ, vΣ) �→
(
δt �→ expN (μ,AAT )(δtημvμ, δtηΣvΣ)

)
.

(exp is the exponential of the Riemannian manifold Gd(ημ, ηΣ))

(2) We call the xNES update trajectory the application:

TxNES : (μ,Σ, vμ, vΣ) �→
(
δt �→ N (μ+ δtημvμ, A exp[ηΣδtA

−1vΣ(A
−1)T ]AT )

)
,

with AAT = Σ. The application above does not depend on the choice of a square root A.

(3) We call the CMA-ES update trajectory the application:

TCMA : (μ,Σ, vμ, vΣ) �→
(
δt �→ N (μ+ δtημvμ, AA

T + δtηΣvΣ)
)
.

These applications map the set of tangent vectors to Gd (TGd) to the curves in Gd(ημ, ηΣ).
We will also use the following notation: μGIGO := φμ ◦ TGIGO, μxNES := φμ ◦ TxNES, μCMA :=

φμ ◦ TCMA, ΣGIGO := φΣ ◦ TGIGO, ΣxNES := φΣ ◦ TxNES and ΣCMA := φΣ ◦ TCMA, where φμ (resp. φΣ)
extracts the μ-component (resp. the Σ-component) of a curve.

In particular, Im(φμ) ⊂ Rd and Im(φΣ) ⊂ Pd, where Pd (the set of real symmetric
positive-definitematrices of dimension d) is seen as a subset of Rd2 .

For instance, TGIGO(μ,Σ, vμ, vΣ)(δt) gives the position (mean and covariance matrix) of the

GIGO algorithm after a step of size δt, while μGIGO and ΣGIGO give, respectively, the mean component

and the covariance component of this position.

This formulation ensures that the trajectories we are comparing had the same initial position and

the same initial speed, which is the case provided the sampled points (the values directly sampled

from N (μ,Σ), not from N (0, I) and transformed) are the same.

Different IGO algorithms coincide at first order in δt. The following proposition gives the second

order expansion of the trajectories of the algorithms.

Proposition 12 (Second derivatives of the trajectories). We have:

μGIGO(μ,Σ, vμ, vΣ)
′′(0) = ημηΣvΣΣ

−1
0 vμ,

μxNES(μ,Σ, vμ, vΣ)
′′(0) = μCMA(μ,Σ, vμ, vΣ)

′′(0) = 0,

ΣGIGO(μ,Σ, vμ, vΣ)
′′(0) = η2ΣvΣΣ

−1vΣ − ημηΣvμv
T
μ ,

ΣxNES(μ,Σ, vμ, vΣ)
′′(0) = η2ΣvΣΣ

−1vΣ,

ΣCMA(μ,Σ, vμ, vΣ)
′′(0) = 0.
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Proof. We can immediately see that the second derivatives of μxNES, μCMA and ΣCMA are zero. Next,

we have:

ΣxNES(μ,Σ, vμ, vΣ)(t) = A exp[tA−1ηΣvΣ(A
−1)T ]AT

= AAT + tηΣvΣ +
t2

2
η2ΣvΣ(A

−1)TA−1vΣ + o(t2)

= Σ + tηΣvΣ +
t2

2
η2ΣvΣΣ

−1vΣ + o(t2).

The expression of ΣxNES(μ,Σ, vμ, vΣ)
′′(0) follows.

Now, for GIGO, let us consider the geodesic starting at (μ0,Σ0) with initial speed (ημvμ, ηΣvΣ).

By writing Jμ(0) = Jμ(t), we find μ̇(t) = Σ(t)Σ−1
0 μ̇0. We then easily have μ̈(0) = Σ̇0Σ

−1
0 μ̇0.

In other words:

μGIGO(μ,Σ, vμ, vΣ)
′′(0) = ημηΣvΣΣ

−1
0 vμ.

Finally, by using Theorem 4 and differentiating, we find:

Σ̈ = ηΣΣ̇(JΣ − Jμμ
T )− ηΣΣJμμ̇

T ,

Σ̈0 = ηΣΣ̇0
1

ηΣ
Σ−1

0 Σ̇0 − ηΣ
ημ

μ̇0μ̇
T
0 = η2ΣvΣΣ

−1
0 vΣ − ηΣημvμv

T
μ .

In order to interpret these results, we will look at what happens in dimension one. In higher

dimensions, we can suppose that the algorithms exhibit a similar behavior, but an exact interpretation

is more difficult for GIGO in Gd.

• In [19], it has been noted that xNES converges to quadratic minima slower than CMA-ES and

that it is less subject to premature convergence. That fact can be explained by observing that

the mean update is exactly the same for CMA-ES and xNES, whereas xNES tends to have a

higher variance (Proposition 12 shows this at order two, and it is easy to see that in dimension

one, for any μ, Σ, vμ, vΣ, we have ΣxNES(μ,Σ, vμ, vΣ) > ΣCMA(μ,Σ, vμ, vΣ)).

• At order two, GIGO moves the mean faster than xNES and CMA-ES if the standard deviation

is increasing and more slowly if it is decreasing. This seems to be a reasonable behavior (if the

covariance is decreasing, then the algorithm is presumably close to a minimum, and it should

not leave the area too quickly). This remark holds only for isolated steps, because we do not

take into account the evolution of the variance.

• The geodesics of G1 are half-circles (see Figure 2 below; we recall that G1 is the Poincaré

half-plane). Consequently, if the mean is supposed to move (which always happens), then

σ → 0 when δt → ∞. For example, a step whose initial speed has no component on the

standard deviation will always decrease it. See also Proposition 15, about the optimization of

a linear function.

• For the same reason, for a given initial speed, the update of μ always stays bounded as a

function of δt: it is not possible to make one step of the GIGO algorithm go further than a fixed

point by increasing δt. Still, the geodesic followed by GIGO changes at each step, so the mean

of the overall algorithm is not bounded.
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θt+dt

θt

μ

σ

Y

Figure 2. One step of the geodesic IGO (GIGO) update.

We now show that xNES follows the geodesics of Gd if the mean is fixed, but that xNES and

GIGO do not coincide otherwise.

Proposition 13 (xNES is not GIGO in the general case). Let μ, vμ ∈ Rd, A ∈ GLd, vΣ ∈ Md.

Then, the GIGO and xNES updates starting at N (μ,Σ) with initial speeds vμ and vΣ follow the
same trajectory if and only if the mean remains constant. In other words:

TGIGO(μ,Σ, vμ, vΣ) = TxNES(μ,Σ, vμ, vΣ) if and only if vμ = 0.

Proof. If vμ = 0, then we can compute the GIGO update by using Theorem 4: since Jμ = 0, μ̇ = 0,

and μ remains constant. Now, we have JΣ = Σ−1Σ̇; this is enough information to compute the

update. Since this quantity is also preserved by the xNES algorithm (see, for example, the proof of

Proposition 14), the two updates coincide.

If vμ �= 0, then ΣxNES(μ,Σ, vμ, vΣ)
′′(0) − ΣGIGO(μ,Σ, vμ, vΣ)

′′(0) = ημηΣvμv
T
μ �= 0 and, in

particular, TGIGO(μ,Σ, vμ, vΣ) �= TxNES(μ,Σ, vμ, vΣ).

6.4. Blockwise GIGO

Although xNES is not GIGO, it is possible to define a family of algorithms extending GIGO

and including xNES, by decomposing our family of probability distributions as a product and by

following the restricted geodesics simultaneously.

Definition 15 (Splitting). Let Θ be a Riemannian manifold. A splitting of Θ is n manifolds Θ1, ...,Θn

and a diffeomorphism Θ ∼= Θ1 × ... × Θn. If for all x ∈ Θ, for all 1 � i < j � n, we also have
Ti,xM ⊥ Tj,xM as subspaces of TxM (see Notation 2), then the splitting is said to be compatible
with the Riemannian structure. If the Riemannian manifold is not ambiguous, we will simply write a
“compatible splitting”.

We now give some notation, and we define the blockwise GIGO update:

Notation 2. Let Θ be a Riemannian manifold, Θ1, ...,Θn a splitting of Θ, θ = (θ1, ..., θn) ∈ Θ,
Y ∈ TθΘ and 1 � i � n.
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• We denote by Θθ,i the Riemannian manifold

{θ1} × ...× {θi−1} ×Θi × {θi+1} × ...× {θn},
with the metric induced from Θ. There is a canonical isomorphism of vector spaces TθΘ =

⊕n
i=1TΘθ,i. Moreover, if the splitting is compatible, it is an isomorphism of Euclidean spaces.

• We denote by Φθ,i the exponential at θ of the manifold Θθ,i.

Definition 16 (Blockwise GIGO update). Let Θ1, ...,Θn be a compatible splitting. The blockwise
GIGO algorithm in Θ with splitting Θ1, ...,Θn associated with sample size N , step sizes δt1, ..., δtn
and selection scheme w is given by the following update rule:

θ ← (θt+δt1
1 , ..., θt+δtn

n ) (60)

where:

Y = I−1(θt)
N∑
i=1

ŵi
∂ lnPθ(xi)

∂θ
, (61)

θt+δtk
k = Φθt,k(δtkYk), (62)

with Yk the TΘθ,k-component of Y . This update only depends on the splitting (and not on the
parametrization inside each Θk).

The compatibility condition ensures that the natural gradient of W f
θt (defined in Section 2.2) in

the whole manifold Θ really is the sum of the gradients of this same function in the submanifolds

Θk. A practical consequence is that the Yk in Equation (62) can be computed simply by taking the

natural gradient in Θk:

Yk = I−1
k (θti)

N∑
i=1

ŵi
∂ lnPθ(xi)

∂θk
, (63)

where Ik is the metric of Θk.

Since blockwise GIGO only depends on the splitting (and the tunable parameters: sample size,

step sizes and selection scheme), it can be thought of as almost parametrization-invariant.

Notice that blockwise GIGO updates and twisted GIGO updates are two different things: firstly,

blockwise GIGO can be defined on any manifold with a compatible splitting, whereas twisted GIGO

(and twisted IGO) are only defined for Gaussians. However, even in Gd(ημ, ηΣ), with the splitting

(μ,Σ), these two algorithms are different: for instance, if ημ = ηΣ and δt = 1, then the twisted

GIGO is the regular GIGO algorithm, whereas blockwise GIGO is not (actually, we will prove that

it is the xNES algorithm). The only thing blockwise GIGO and twisted GIGO have in common is

that they are compatible with the (ημ, ηΣ)-twisted IGO flow Equation (57): a parameter θt following

these updates with δt→ 0 and N →∞ is a solution of Equation (57).

We now have a new description of the xNES algorithm:

Proposition 14 (xNES is a Blockwise GIGO algorithm). The Blockwise GIGO algorithm in Gd with
splitting Φ : N (μ,Σ) �→ (μ,Σ), sample size N , step sizes δtμ, δtΣ and selection scheme w coincides
with the xNES algorithm with sample size N , weights wi and learning rates ημ = δtμ, ησ = ηB = δtΣ.
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Proof. Firstly, notice that the splitting (μ,Σ) is compatible, by Proposition 1.

Now, let us compute the Blockwise GIGO update: we have Gd
∼= Rd × Pd, where Pd is the

space of real positive-definite matrices of dimension d. We have Θθt,1 = (Rd × {Σt}) ↪→ Gd,

Θθt,2 = ({μt} × Pd) ↪→ Gd. The induced metric on Θθt,1 is the Euclidean metric, so we have:

μ← μt + δt1Yμ.

Since we have already shown (using the notation in Definition 9) that Yμ = AGμ (in the proof of

Proposition 6), we find:

μ← μt + δt1AGμ.

On Θθt,2, we have the following Lagrangian for the geodesics:

L(Σ, Σ̇) = 1

2
tr(Σ̇Σ−1Σ̇Σ−1).

By applying Noether’s theorem, we find that

JΣ = Σ−1Σ̇

is invariant along the geodesics of Θθt,2, so they are defined by the equation Σ̇ = ΣJΣ = ΣΣ−1
0 Σ̇0

(and therefore, any update preserving the invariant JΣ will satisfy this first-order differential equation

and follow the geodesics of Θθt,2). The xNES update for the covariance matrix is given by A(t) =

A0 exp(tGM/2). Therefore, we have Σ(t) = A0 exp(tGM)AT
0 , Σ−1(t) = (A−1

0 )T exp(−tGM)A−1
0 ,

Σ̇(t) = A0 exp(tGM)GMAT
0 and, finally, Σ−1(t)Σ̇(t) = (A−1

0 )TGMAT
0 = Σ−1

0 Σ̇0. Therefore, xNES

preserves JΣ, and therefore, xNES follows the geodesics of Θθt,2 (notice that we had already proven

this in Proposition 13, since we are looking at the geodesics of Gd with a fixed mean).

Although blockwise GIGO is somewhat “less natural” than GIGO, it can be easier to compute

for some splittings (as we have just seen), and in the case of the Gaussian distributions, the

mean-covariance splitting seems reasonable.

7. Numerical Experiments

We conclude this article with some numerical experiments to compare the behavior of GIGO,

xNES and pure rank-μ CMA-ES (we give the pseudocodes for these algorithms in the Appendix).

We made two series of tests. The first one is a performance test, using classical benchmark functions

and the settings from [19]. The goal of the second series of tests is to illustrate the computations in

Section 6.3 by plotting the trajectories (standard deviation versus mean) of these three algorithms in

dimension one.

The source code is available at [22].
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7.1. Benchmarking

For the first series of experiments, presented in Figure 3, we used the following parameters, taken

from [19] (we recall that xNES and pure rank-μ CMA-ES are seen as IGO algorithms):

• Varying dimension.

• Sample size: )4 + 3 log(d)*.
• Weights: wi =

max(0,log(n
2
+1)−log(i)∑N

j=1 max(0,log(n
2
+1)−log(j)

− 1
N

.

• IGO step size and learning rates: δt = 1, ημ = 1, ηΣ = 3
5
3+log(d)

d
√
d

..

• Initial position: θ0 = N (x0, I), where x0 is a random point of the circle with center zero, and

radius 10.

• Euler method for GIGO: Number of steps: 100. We used the GIGO-A variant of the algorithm.

No significant difference was noticed with GIGO-Σ or with the exact GIGO algorithm. The

only advantage of having an explicit solution of the geodesic equations is that the update is

quicker to compute.

• We chose not to use the exact expression of the geodesics for this benchmarking to show that

having to use the Euler method is fine. However, we did run the tests, and the results are

basically the same as GIGO-A.

We plot the median number of runs to achieve target fitness (10−8). Each algorithm has been

tested in dimension 2, 4, 8, 16, 32 and 64: a missing point means that all runs converged prematurely.

7.1.1. Failed Runs

In Figure 3, a point is plotted even if only one run was successful. Below is the list of the settings

for which at least one run converged prematurely.

• Only one run reached the optimum for the cigar-tablet function with CMA-ES in dimension

eight.

• Seven runs (out of 24) reached the optimum for the Rosenbrock function with CMA-ES in

dimension 16.

• About half of the runs reached the optimum for the sphere function with CMA-ES in dimension

four.
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Dimension d From 2 to 64

Sample size N 4 + 3 log(d)

Weights (wi)i∈[1,N ]
max(0,log(n

2 +1)−log(i)
∑N

j=1 max(0,log(n
2 +1)−log(j)

− 1
N

IGO step size δt 1

Mean ημ 1

learning rate

Covariance ηΣ
3
5
3+log(d)

d
√
d

learning rate

Euler step-size h 0.01(100 steps)

(for GIGO only)

GIGO implementation GIGO-A

Sphere function x �→∑d
i=1 x

2
i

Cigar-tablet x �→ x2
1 +
∑d−1

i=2 104x2
i + 108x2

d

Rosenbrock x �→∑d−1
i=1 (100(x

2
i − xi+1)

2 + (xi − 1)2)

x-axis Dimension

y-axis Number of function calls

to reach fitness 10−8.

102

103

104

105

2 4 8 16 32 64

Cigar-tablet

CMA
GIGO
xNES

102

103

104

105

2 4 8 16 32 64

Sphere

CMA
GIGO
xNES

102

103

104

105

2 4 8 16 32 64

Rosenbrock

CMA
xNES

Figure 3. Median number of function calls to reach 10−8 fitness on 24 runs for: sphere

function, cigar-tablet function and Rosenbrock function. Initial position θ0 = N (x0, I),

with x0 uniformly distributed on the circle of center zero and radius 10. We recall that

the “CMA-ES” algorithm here is using the so-called pure rank-μ CMA-ES update.

For the following settings, all runs converged prematurely.

• GIGO did not find the optimum of the Rosenbrock function in any dimension.

• CMA-ES did not find the optimum of the Rosenbrock function in dimension 2, 4, 32 and 64.

• All of the runs converged prematurely for the cigar-tablet function in dimension two with

CMA-ES, for the sphere function in dimension two for all algorithms and for the Rosenbrock

function in dimension two and four for all algorithms.
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7.1.2. Discussion

As the last item in Section 7.1.1 shows, all of the algorithms converge prematurely in a low

dimension, probably because the covariance learning rate has been set too high (or because the sample

size is too small). This is different from the results in [19].

This remark aside, as noted in [19], the xNES algorithm shows more robustness than CMA-ES

and GIGO: it is the only algorithm able to find the minimum of the Rosenbrock function in high

dimensions. However, its convergence is consistently slower.

In terms of performance, when both of them work, pure rank-μ CMA-ES (or equivalently, IGO

in the parametrization (μ,Σ)) and GIGO are extremely close (GIGO is usually a bit better). An

advantage of GIGO is that it is theoretically defined for any δt, ηΣ, whereas the covariance matrix

maintained by CMA-ES (not only pure rank-μ CMA-ES) can stop being positive definite if ηΣδt > 1.

However, in that case, the GIGO algorithm is prone to premature convergence (remember Figure 2

and see Proposition 15 below), and in practice, the learning rates are much smaller.

7.2. Plotting Trajectories in G1

We want the second series of experiments to illustrate the remarks about the trajectories of the

algorithms in Section 6.3, so we decided to take a large sample size to limit randomness, and we

chose a fixed starting point for the same reason. We use the weights below because of the property

of quantile improvement proven in [23]: the 1/4-quantile will improve at each step. The parameters

we used were the following:

• Sample size: λ = 5, 000

• Dimension one only.

• Weights: w = 41q�1/4 (wi = 4.1i�1,250)

• IGO step size and learning rates: ημ = 1, ηΣ = 3
5
3+log(d)

d
√
d

= 1.8, varying δt.

• Initial position: θ0 = N (10, 1)

• Dots are placed at t = 0, 1, 2 . . . (except for the graph δt = 1.5, for which there is a dot for

each step).

Figures 4–8 show the optimization of x �→ x2, and Figures 9–11 show the optimization of x �→
−x.
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Figure 4. Trajectories of GIGO, CMA and xNES optimizing x �→ x2 in dimension one

with δt = 0.01, sample size 5000, weights wi = 4.1i�1250 and learning rates ημ = 1,

ηΣ = 1.8. One dot every 100 steps. All algorithms exhibit a similar behavior
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Figure 5. Trajectories of GIGO, CMA and xNES optimizing x �→ x2 in dimension one

with δt = 0.5, sample size 5000, weights wi = 4.1i�1250 and learning rates ημ = 1,

ηΣ = 1.8. One dot every two steps. Stronger differences. Notice that after one step, the

lowest mean is still GIGO (∼ 8.5, whereas xNES is around 8.75), but from the second

step, GIGO has the highest mean, because of the lower variance.
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Figure 6. Trajectories of GIGO, CMA and xNES optimizing x �→ x2 in dimension one

with δt = 0.1, sample size 5000, weights wi = 4.1i�1250 and learning rates ημ = 1, ηΣ =

1.8. One dot every 10 steps. All algorithms exhibit a similar behavior, and differences

start to appear. It cannot be seen on the graph, but the algorithm closest to zero after 400

steps is CMA (∼ 1.10−16, followed by xNES (∼ 6.10−16) and GIGO (∼ 2.10−15).
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Figure 7. Trajectories of GIGO, CMA and xNES optimizing x �→ x2 in dimension

one with δt = 1, sample size 5000, weights wi = 4.1i�1250 and learning rates

ημ = 1, ηΣ = 1.8. One dot per step. The CMA-ES algorithm fails here, because at

the fourth step, the covariance matrix is not positive definite anymore (it is easy to see

that the CMA-ES update is always defined if δtηΣ < 1, but this is not the case here).

Furthermore, notice (see also Proposition 15) that at the first step, GIGO decreases the

variance, whereas the σ-component of the IGO speed is positive.
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Figure 8. Trajectories of GIGO, CMA and xNES optimizing x �→ x2 in dimension one

with δt = 1.5, sample size 5000, weights wi = 4.1i�1250 and learning rates ημ = 1,

ηΣ = 1.8. One dot per step. Same as δt = 1 for CMA. GIGO converges prematurely.
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Figure 9. Trajectories of GIGO, CMA and xNES optimizing x �→ −x in dimension one

with δt = 0.01, sample size 5000, weights wi = 4.1i�1250 and learning rates ημ = 1,

ηΣ = 1.8. One dot every 100 steps. Almost the same for all algorithms.
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Figure 10. Trajectories of GIGO, CMA and xNES optimizing x �→ −x in dimension

one with δt = 0.1, sample size 5000, weights wi = 4.1i�1250 and learning rates ημ = 1,

ηΣ = 1.8. One dot every 10 steps. It is not obvious on the graph, but xNES is faster than

CMA, which is faster than GIGO.
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Figure 11. Trajectories of GIGO, CMA and xNES optimizing x �→ −x in dimension

one with δt = 1, sample size 5, 000, weights wi = 4.1i�1,250 and learning rates ημ = 1,

ηΣ = 1.8. One dot per step. GIGO converges, for the reasons discussed earlier.

Figures 7, 8 and 11 show that when δt � 1, GIGO reduces the covariance, even at the first step.

More generally, when using the GIGO algorithm in G̃d for the optimization of a linear function,

there exists a critical step size δtcr (depending on the learning rates ημ, ησ and on the weights wi),
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above which, GIGO will converge, and we can compute its value when the weights are of the form

1q�q0 (for q0 � 0.5, the discussion is not relevant, because in that case, even the IGO flow converges

prematurely. Compare with the critical δt of the smoothed cross entropy method and IGO-ML in

[1]).

Proposition 15. Let d ∈ N, k, ημ, ησ ∈ R∗
+; let w = k.1q�q0; and let

g : Rd → R

x �→ −x1

.

Let μn be the first coordinate of the mean, and let σ2
n be the variance (at step n) maintained by

the (ημ, ησ)-twisted geodesic IGO algorithm in G̃d associated with selection scheme w, sample size
∞ and step size δt, when optimizing g (“sample size ∞" meaning the limit of the update when the
sample size tends to infinity, which is deterministic [1]).

There exists δtcr, such that:

• if δt > δtcr, (σn) converges to zero with exponential speed and (μn) converges.
• if δt = δtcr, (σn) remains constant and (μn) tends to∞ with linear speed.
• if 0 < δt < δtcr, both (σn) and μn tend to∞ with exponential speed.

The proof and the expression of δtcr can be found in the Appendix.

In the case corresponding to k = 4, n = 1, q0 = 1/4, ημ = 1, ησ = 1.8, we find:

δtcr ≈ 0.84. (64)

8. Conclusions

We introduced the geodesic IGO algorithm, and we showed that in the case of Gaussian

distributions, Noether’s theorem directly gives a first order equation satisfied by the geodesics. In

terms of performance, the GIGO algorithm is similar to pure rank-μ CMA-ES, which is rather

encouraging: it would be interesting to test GIGO on real problems. Moreover, GIGO is a

reasonable and totally parametrization-invariant algorithm (provided we can compute the solution

of the equations of the geodesics), and as such, it should be studied for other families of probability

distributions, like Bernoulli distributions (although in that case, the Riemannian exponential is not

defined if the step size is too large, because the length of the geodesics is finite). Noether’s theorem

could be a crucial tool for this.

We also showed that xNES and GIGO are not the same algorithm, and we defined blockwise

GIGO, a simple extension of the GIGO algorithm, showing that xNES has a special status, as it

admits a definition that is “almost” parametrization-invariant.
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Appendix A

Proof of Proposition 15. Let us first consider the case k = 1.

When optimizing a linear function, the non-twisted IGO flow in G̃d with the selection function

w : q �→ 1q�q0 is known [1], and in particular, we have:

μt = μ0 +
β(q0)

α(q0)
σt, (65)

σt = σ0 exp(α(q0)t), (66)

where, if we denote by N a random vector following a standard normal distribution and F the

cumulative distribution of a standard normal distribution,

α(q0, d) =
1

2d

(∫ q0

0

F−1(u)2du− q0

)
, (67)

and:

β(q0) = E(N1N�F−1(q0)). (68)

In particular, α := α(1
4
, 1) ≈ 0.107 and β := β(1

4
) ≈ −0.319.

With a minor modification of the proof in [1], we find that the (ημ, ησ)-twisted IGO flow is given

by:

μt = μ0 +
β(q0)

α(q0)
σ0 exp(ημα(q0)t), (69)

σt = σ0 exp(ησα(q0)t), (70)

Notice that Equation (69) shows that the assertions about the convergence of (σn) immediately

imply the assertions about the convergence of (μn).

Let us now consider a step of the GIGO algorithm: The twisted IGO speed is Y =

(ημβσ0, ησασ0), with ασ0 > 0 (i.e., the variance should be increased: this is where we need q0 < 0.5).

Proposition 17 shows that the covariance at the end of the step is (using the same notation):

σ(δt) = σ(0)Im(
dievδt − c

cievδt + d
) = σ(0)

evδt(d2 + c2)

c2e2vδt + d2
=: σ(0)f(δt), (71)

and it is easy to see that f only depends on δt (and on q0). In other words, f(δt) will be the same

at each step of the algorithm. The existence of δtcr easily follows (furthermore, recall Figure 1 in

Section 4.1), and δtcr is the positive solution of f(x) = 1.

After a quick computation, we find:

exp(vδtcr) =

√
1 + u2 + 1√
1 + u2 − 1

. (72)

where:

u :=

√
ημ

2nησ

β

α
, (73)
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and:

v :=

√
η2σα

2 +
ημησ
2n

β2. (74)

Finally, for w = k.1q�q0 , Proposition 9 shows that:

δtcr =
1

k

1

v
ln

(√
1 + u2 + 1√
1 + u2 − 1

)
. (75)

A1. Generalization of the Twisted Fisher Metric

The following definition is a more general way to introduce the twisted Fisher metric.

Definition 17. Let (Θ, g) be a Riemannian manifold, (Θ1, g|Θ1), ..., (Θn, g|Θn), a splitting (as defined
in Section 6.4) of Θ compatible with the metric g.

We call (η1, ..., ηn)-twisted metric on (Θ, g) for the splitting Θ1, ...,Θn the metric g′ on Θ defined
by g′|Θi

= 1
ηi
g|Θi

for 1 � i � n, and Θi ⊥ Θj for i �= j.

Proposition 16. The (ημ, ηΣ)-twisted metric on Gd with the Fisher metric for the splitting
N (μ,Σ) �→ (μ,Σ) coincides with the (ημ, ηΣ)-twisted Fisher metric from Definition 11.

Proof. It is easy to see that the (ημ, ηΣ)-twisted Fisher metric satisfies the condition in Definition

17.

A2. Twisted Geodesics

The following theorem can be used to compute the twisted geodesics from the non twisted

geodesics. It is a simple calculation.

Theorem 7. Let ημ, ηΣ ∈ R, μ0 ∈ Rd, A0 ∈ GLd(R), and (μ̇0, Σ̇0) ∈ TN (μ0,A0AT
0 )Gd. Let

h : Gd → Gd

N (μ,Σ) �→ N (
√

ημ
ηΣ
μ,Σ)

. (76)

We denote by φ (resp. ψ) the Riemannian exponential of Gd (resp. Gd with the (ημ, ηΣ)-twisted
Fisher metric) at N (

√
ημ
ηΣ
μ0, A0A

T
0 ) (resp. N (μ0, A0A

T
0 )). We have:

ψ(μ̇0, Σ̇0) = h ◦ φ(
√

ηΣ
ημ

μ̇0, Σ̇0) (77)

Proof. Let us denote by:

(
Iμ 0

0 IΣ

)
the Fisher metric in the parametrization μ,Σ, and consider the

following parametrization of Gd: (μ̃,Σ) �→ N (
√
ηΣ√
ημ
μ̃,Σ).
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The Riemannian exponential at N (μ0, A0A
T
0 ) in this parametrization is:

h ◦ φ ◦ (dh(μ0, A0A
T
0 ))

−1 (78)

However, in this parametrization, the Fisher metric reads:(
ηΣ
ημ
Iμ 0

0 IΣ

)
, (79)

which is proportional to the (ημ, ηΣ)-twisted Fisher metric up to a factor 1
ηΣ

. Consequently, the

Christoffel symbols are the same as the Christoffel symbols of the (ημ, ηΣ)-twisted Fisher metric,

and so are the geodesics. Therefore, we have:

ψ = h ◦ φ ◦ (dh(μ0, A0A
T
0 ))

−1, (80)

which is what we wanted.

For the remainder of this section, we fix ημ and ηΣ; Gd is endowed with the (ημ, ηΣ)-twisted

Fisher metric, and G̃d is endowed with the induced metric. The proofs of the propositions below are

a simple rewriting of their non-twisted counterparts that can be found in Sections 4 and 5.1 and can

be seen as corollaries of Theorem 7.

Theorem 8. If γ : t �→ N (μ(t), σ(t)2I) is a twisted geodesic of G̃d, then there exists a, b, c, d ∈ R,
such that ad− bc = 1, and v > 0, such that

μ(t) = μ(0) +
√

2dημ
ησ

μ̇0

‖μ̇0‖ r̃(t), σ(t) = Im(γC(t)), with r̃(t) = Re(γC(t)) and:

γC(t) :=
aievt + b

cievt + d
. (81)

Proposition 17. Let n ∈ N, vμ ∈ Rn, vσ, ημ, ησ, σ0 ∈ R, with σ0 > 0.

Let vr := ‖vμ‖, λ =
√

2nημ
ησ

v :=

√
1
λ2

v2r+v2σ

σ2
0

, M0 :=
1
λ

vr
vσ2

0
and S0 :=

vσ
vσ2

0
.

Let c :=
(√

M2
0+S2

0−S0

2

) 1
2

and d :=

(√
M2

0+S2
0+S0

2

) 1
2

.

Let γC(t) := σ0
dievt−c
cievt+d

.
Then:

γ : t �→ N
(
μ0 + λ

vμ
‖vμ‖Re(γC(t)), Im(γC(t))

)
(82)

is the twisted geodesic of G̃n satisfying γ(0) = (μ0, σ0) and γ̇(0) = (vμ, vσ). The regular geodesics
of G̃n are obtained with ημ = ησ = 1.

Theorem 9. Let γ : t �→ N (μt,Σt) be a twisted geodesic of Gd. Then, the following quantities are
invariant:

Jμ =
1

ημ
Σ−1

t μ̇t, (83)

JΣ = Σ−1
t (

1

ημ
μ̇tμ

T
t +

1

ηΣ
Σ̇t). (84)
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Theorem 10. If μ : t �→ μt and Σ : t �→ Σt satisfy the equations:

μ̇t = ημΣtJμ (85)

Σ̇t = ηΣΣt(JΣ − Jμμ
T
t ) = ηΣΣtJΣ − ηΣ

ημ
μ̇tμ

T
t , (86)

where:

Jμ =
1

ημ
Σ−1

0 μ̇0,

and:

JΣ = Σ−1
0

(
1

ημ
μ̇0μ

T
0 +

1

ηΣ
Σ̇0

)
.

then t �→ N (μt,Σt) is a twisted geodesic of Gd.

Theorem 11. If μ : t �→ μt and A : t �→ At satisfy the equations:

μ̇ = ημAtA
T
t Jμ, (87)

Ȧt =
ηΣ
2
(JΣ − Jμμ

T
t )

TAt, (88)

where:

Jμ =
1

ημ
(A−1

0 )TA−1
0 μ̇0

and:

JΣ = (A−1
0 )TA−1

0 (
1

ημ
μ̇0μ

T
0 +

1

ηΣ
Ȧ0A

T
0 +

1

ηΣ
A0Ȧ

T
0 ),

then t �→ N (μt, AtA
T
t ) is a twisted geodesic of Gd.

A3. Pseudocodes

A3.1. For All Algorithms

All studied algorithms have a common part, given here:

Variables: μ,Σ (or A such that Σ = AAT ).

List of parameters: f : Rd → R, step size δt, learning rates ημ, ηΣ, sample size λ, weights

(wi)i∈[1,λ], N number of steps for the Euler method, r Euler step size reduction factor (for GIGO-Σ

only).
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Algorithm 1 For all algorithms.

μ← μ0

if The algorithm updates Σ directly then
Σ← Σ0

Find some A, such that Σ = AAT

else {The algorithm updates a square root A of Σ}

A← A0

Σ = AAT

end if
while NOT (Termination criterion) do

for i = 1 to λ do
zi ∼ N (0, I)

xi = Azi + μ

end for
Compute the IGO initial speed, and update the mean and the covariance (the updates are

Algorithms 2 to 6).

end while

Notice that we always need a square root A of Σ to sample the xi, but the decomposition

Σ = AAT is not unique. Two different decompositions will give two algorithms, such that one is

a modification of the other as a stochastic process: same law (the xi are abstractly sampled from

N (μ,Σ)), but different trajectories (for given zi, different choices for the square root will give

different xi). For GIGO-Σ, since we have to invert the covariance matrix, we used the Cholesky

decomposition (A lower triangular. The the other implementation directly maintains a square root of

Σ). Usually, in CMA-ES, the square root of Σ (Σ = AAT , A symmetric) is used.

A3.2. Updates

When describing the different updates, μ, Σ, A, the xi and the zi are those defined in Algorithm 1.

For Algorithm 2 (GIGO-Σ), when the covariance matrix after one step is not positive-definite, we

compute the update again, with a step size divided by r for the Euler method (we have no reason to

recommend any particular value of r, the only constraint is r > 1).
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Algorithm 2 GIGO Update, one step, updating the covariance matrix.

1. Compute the IGO speed:

vμ = A

λ∑
i=1

wizi,

vΣ = A
λ∑

i=1

wi

(
ziz

T
i − I

)
AT .

2. Compute the Noether invariants:

Jμ ← Σ−1vμ,

JΣ ← Σ−1(vμ
tμ+ vΣ).

3. Solve numerically the equations of the geodesics:

Unhappy← true

μ0 ← μ

Σ0 ← Σ

k = 0

while Unhappy do
μ← μ0

Σ← Σ0

h← δt/(Nrk)

for i = 1 to Nrk do
μ← μ+ hημΣJμ

Σ← Σ + hηΣΣ(JΣ − Jμμ
T )

end for
if Σ positive-definite then

Unhappy← false

end if
k ← k + 1

end while
return μ, Σ
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Algorithm 3 GIGO Update, one step, updating a square root of the covariance matrix.

1. Compute the IGO speed:

vμ = A

λ∑
i=1

wizi,

vΣ = A

λ∑
i=1

wi

(
ziz

T
i − I

)
AT .

2. Compute the Noether invariants:

Jμ ← Σ−1vμ,

JΣ ← Σ−1(vμ
tμ+ vΣ).

3. Solve numerically the equations of the geodesics:

h← δt/N

for i = 1 to N do
μ← μ+ hημAA

TJμ

A← A+
h

2
ηΣ(JΣ − Jμμ

T )TA

end for
return μ, A

Algorithm 4 Exact GIGO, one step. Not exactly our implementation; see the discussion after

Corollary 1.

1. Compute the IGO speed:

vμ = A

λ∑
i=1

wizi,

vΣ = A
λ∑

i=1

wi

(
ziz

T
i − I

)
AT .

2. Learning rates

λ←
√

ηΣ
ημ

μ← λμ

vμ ← ημλvμ

vΣ ← ηΣvΣ

3. Intermediate computations.

G2 ← A−1
(
vΣ(A

−1)TA−1vΣ + 2vμv
T
μ

)
(A−1)T

C1 ← ch(
G

2
)

C2 ← sh(
G

2
)G−1

R← ((C1 −A−1vΣ(A
−1)TC2)

−1
)T

4. Actual update

μ← μ+ 2ARC2A
−1vμ

A← AR

5. Return to the “real” μ

μ← μ

λ
return μ, A



325

Algorithm 5 xNES update, one step.

1. Compute Gμ and GM (equivalent to the computation of the IGO speed):

Gμ =

λ∑
i=1

wizi

GM =

λ∑
i=1

wi

(
ziz

T
i − I

)
2. Actual update:

μ← μ+ ημAGμ

A← A+A exp(ηΣGM/2)

return μ, A

Algorithm 6 pure rank-μ CMA-ES update, one step

1. Computation of the IGO speed:

vμ =

λ∑
i=1

wi(xi − μ)

vΣ =

λ∑
i=1

wi

(
(xi − μ)(xi − μ)T − Σ

)
2. Actual update:

μ← μ+ ημvμ

Σ← Σ+ ηΣvΣ

return μ, Σ

Algorithm 7 GIGO in G̃d, one step.

1. Compute the IGO speed:

Yμ =

λ∑
i=1

wi(xi − μ) ; Yσ =

λ∑
i=1

wi

(
(xi − μ)T (xi − μ)

2dσ
− σ

2

)
2. Better parametrization:

λ :=

√
2dημ
ησ

vr :=
ημ
λ
‖Yμ‖ ; vσ := ησYσ

3. Find a, b, c, d, v corresponding to μ, σ, μ̇, σ̇:

v =

√
v2r + v2σ

σ2

S0 :=
vσ
vσ2

; M0 :=
vr
vσ2

C :=

√
S2
0 +M2

0 − S0

2
; D :=

√
S2
0 +M2

0 + S0

2
c :=

√
C ; d :=

√
D

4. Actual Update:

z := σ
dievδt − c

cievδt + d

μ := μ+ λRe(z)
Yμ

‖Yμ‖ ; σ := Im(z)

return μ, σ
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Natural Gradient Flow in the Mixture Geometry of a Discrete
Exponential Family

Luigi Malagò and Giovanni Pistone

Abstract: In this paper, we study Amari’s natural gradient flows of real functions defined on the

densities belonging to an exponential family on a finite sample space. Our main example is the

minimization of the expected value of a real function defined on the sample space. In such a case,

the natural gradient flow converges to densities with reduced support that belong to the border of the

exponential family. We have suggested in previous works to use the natural gradient evaluated in the

mixture geometry. Here, we show that in some cases, the differential equation can be extended to a

bigger domain in such a way that the densities at the border of the exponential family are actually

internal points in the extended problem. The extension is based on the algebraic concept of an

exponential variety. We study in full detail a toy example and obtain positive partial results in the

important case of a binary sample space.

Reprinted from Entropy. Cite as: Malagò, L.; Pistone, G. Natural Gradient Flow in the Mixture

Geometry of a Discrete Exponential Family. Entropy 2015, 17, 4215–4254.

1. Introduction

For the purpose of obtaining a clear presentation of our approach to the geometry of statistical

models, we start with a recap of nonparametric statistical manifold; see, e.g., the review paper [1].

However, we will shortly move to the actual setup of the present paper, i.e., the finite state space case.

Let (Ω,A, μ) be a measured space of sample points x ∈ Ω. We denote by P≥ ⊂ L1(μ) the

simplex of (probability) densities and by P> ⊂ P≥ the convex set of strictly positive densities. If

Ω is finite, then P> is the topological interior of P≥. We denote by P1 the affine space generated

by P≥.

The set P> holds the exponential geometry, which is an affine geometry, whose geodesics are

curves of the form t �→ pt ∝ p1−t
0 pt1. The set P1 holds the mixture geometry, whose geodesics are

of the form t �→ pt = (1− t)p0 + tp1. A proper definition of the exponential and mixture geometry,

where probability densities are considered points, requires the definition of the proper tangent space

to hold the vectors representing the velocity of a curve. In both cases, the tangent space Tp at a

point p is a space of random variables V with zero expected value, Ep [V ] = 0. On the tangent

space Tp, a natural scalar product is defined, 〈U, V 〉p = Ep [UV ], so that a pseudo-Riemannian

structure is available. Note that the Riemannian structure is a third geometry, different from both the

exponential and the mixture geometries. Note also that both the expected value and the covariance

can be naturally extended to be defined on P1.

For each lower bounded objective function f : Ω → R and each statistical model M ⊂ P>,

the (stochastic) relaxation of f to M is the function F (p) = Ep [f ] ∈ R, p ∈ M; cf. [2]. The
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minimization of the stochastic relaxation as a tool to minimize the objective function has been studied

by many authors [3–7].

If we have a parameterization ξ �→ pξ ofM, the parametric expression of the relaxed function is

F̂ (ξ) = Epξ [f ]. Under integrability and differentiability conditions on both ξ �→ pξ and x �→ f(x),

F̂ is differentiable, with ∂jF̂ (ξ) = Epξ [∂j log (pξ) f ] and Epξ [∂j log (pξ)] = 0; see [1,8]. In order

to properly describe the gradient flow of a relaxed random variable, these classical computations are

better cast into the formal language of information geometry (see [9]) and, even better, in the language

of non-parametric differential geometry [10] that was used in [11]. The previous computations

suggest to take the Fisher score ∂j log (pξ) as the definition of a tangent vector at the j-th coordinate

curve. While the development of this analogy in the finite state space case does not require a special

setup, in the non-finite state space, some care has to be taken.

In this paper, we follow the non-parametric setup discussed in [1] and, in particular, the notion

of an exponential family E and the identification of the tangent space at each p ∈ E with a space of

p-centered random variables.

The paper is organized as follows. We discuss in Section 2 the generalities of the finite state

space case; in particular, we carefully define the various notions of the Fisher information matrix and

natural gradient that arise from a given parameterization. In Section 3, we discuss a toy example

in order to introduce the construction of an algebraic variety extending the exponential family from

positive probabilitiesP> to signed probabilitiesP1; this construction is applied to the natural gradient

flow in the expectation parameters; moreover, it is shown that this model has a variety that is ruled.

The last Section 4 is devoted to the treatment of the special important case when the sample space is

binary.

The present paper is a development of the paper [12], which was presented as a poster at the

MaxEnt Conference 2014. While the topic is the same, the actual overlapping between the two

papers is minimal and concerns mainly the generalities that are repeated for the convenience of the

reader.

2. Gradient Flow of Relaxed Optimization

Let Ω be a finite set of points x = (x1, . . . , xn) and μ the counting measure of Ω. In this case, a

density p ∈ P≥ is a probability function, i.e., p : Ω→ R+, such that
∑

x∈Ω p(x) = 1.

Let B = {T1, . . . , Td} be a set of random variables, such that, if
∑d

j=1 cjTj is constant, then

c1 = · · · = cd = 0; for instance consider B such that
∑

x∈Ω Tj(x) = 0, j = 0, . . . , d, and B is a

linear basis. We say that B is a set of affinely independent random variables. If B is a linear basis, it

is affinely independent if and only if {1, T1, . . . , Td} is a linear basis.

We consider the statistical model E whose elements are uniquely identified by the natural

parameters θ in the exponential family with sufficient statistics B, namely:

pθ ∈ E ⇔ log pθ(x) =
d∑

i=1

θiTi(x)− ψ(θ), θ ∈ Rd ,

see [13].
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The proper convex function ψ : Rd,

θ �→ ψ(θ) = log
∑
x∈Ω

eθ·T (x) = θ · Epθ [T ]− Epθ [log (pθ)]

is the cumulant generating function of the sufficient statistics T , in particular,

∇ψ(θ) = Eθ [T ] , Hessψ(θ) = Covθ (T ,T ) .

Moreover, the entropy of pθ is:

H(pθ) = −Epθ [log (pθ)] = ψ(θ)− θ · ∇ψ(θ) .

The mapping ∇ψ is one-to-one onto the interior M◦ of the marginal polytope, that is the convex

span of the values of the sufficient statistics M = {T (x)|x ∈ Ω}. Note that no extra condition is

required, because on a finite state space, all random variables are bounded. Nonetheless, even in this

case, the proof is not trivial; see [13].

Convex conjugation applies [14] (Section 25) with the definition:

ψ∗(η) = sup
{
θ ∈ Rd

∣∣θ · η − ψ(θ)
}
, η ∈ Rd .

The concave function θ �→ η · θ − ψ(θ) has divergence mapping θ �→ η − ∇ψ(θ), and the

equation η = ∇ψ(θ) has a solution if and only if η belongs to the interior M ◦ of the marginal

polytope. The restriction φ = ψ∗|M◦ is the Legendre conjugate of ψ, and it is computed by:

φ : M◦ � η �→∈ (∇ψ)−1(η) · η − ψ ◦ (∇ψ)−1(η) ∈ R .

The Legendre conjugate φ is such that ∇φ = (∇ψ)−1, and it provides an alternative

parameterization of E with the so-called expectation or mixture parameter η = ∇ψ(θ),

pη = exp ((T − η) · ∇φ(η) + φ(η)) . (1)

While in the θ parameters, the entropy is H(pθ) = ψ(θ)− θ · ∇ψ(θ), in the η parameters, the φ

function gives the negative entropy: −H(pη) = Epη [log pη] = φ(η).

Proposition 1.

1. Hessφ(η) = (Hessψ(θ))−1 when η = ∇ψ(θ).

2. The Fisher information matrix of the statistical model given by the exponential family in the θ

parameters is Ie(θ) = Covpθ (∇ log pθ,∇ log pθ) = Hessψ(θ).

3. The Fisher information matrix of the statistical model given by the exponential family in the η

parameters is Im(θ) = Covpη (∇ log pη,∇ log pη) = Hessφ(η).

Proof. Derivation of the equality ∇φ = (∇ψ)−1 gives the first item. The second item is a property

of the cumulant generating function ψ. The third item follows from Equation (1).
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2.1. Statistical Manifold

The exponential family E is an elementary manifold in either the θ or the η parameterization,

named respectively exponential or mixture parameterization. We discuss now the proper definition

of the tangent bundle TE .

Definition 1 (Velocity). If I � t �→ pt, I open interval, is a differentiable curve in E , then its velocity
vector is identified with its Fisher score:

D

dt
p(t) =

d

dt
log (pt) .

The capital D notation is taken from differential geometry; see the classical monograph [15].

Definition 2 (Tangent space). In the expression of the curve by the exponential parameters,
the velocity is:

D

dt
p(t) =

d

dt
log (pt) =

d

dt
(θ(t) · T − ψ(θ(t))) = θ̇(t) · (T − Eθ(t) [T ]

)
, (2)

that is it equals the statistics whose coordinates are θ̇(t) in the basis of the sufficient statistics
centered at pt. As a consequence, we identify the tangent space at each p ∈ E with the vector
space of centered sufficient statistics, that is:

TpE = Span (Tj − Ep [Tj]|j = 1, . . . , d) .

In the mixture parameterization of Equation (1), the computation of the velocity is:

D

dt
p(t) =

d

dt
log (pt) =

d

dt
(∇φ(η(t)) · (T − η(t)) + φ(η(t))) =

(Hessφ(η(t))η̇(t)) · (T − η(t)) = η̇(t) · [Hessφ(η(t)) (T − η(t))] . (3)

The last equality provides the interpretation of η̇(t) as the coordinate of the velocity in the conjugate

vector basis Hessφ(η(t)) (T − η(t)), that is the basis of velocities along the η coordinates.

In conclusion, the first order geometry is characterized as follows.

Definition 3 (Tangent bundle TE). The tangent space at each p ∈ E is a vector space
of random variables TpE = Span (Tj − Ep [Tj]|j = 1, . . . , d), and the tangent bundle TE =

{(p, V )|p ∈ E , V ∈ TpE}, as a manifold, is defined by the chart:

TE � (eθ·T−ψ(θ),v · (T − Eθ [T ])) �→ (θ,v). (4)

Proposition 2.

1. If V = v · (T − η) ∈ TpηE , then V is represented in the conjugate basis as:

V = v · (T − η) = v · (Hessφ(η))−1 Hessφ(η) (T − η) =(
(Hessφ(η))−1 v

) · Hessφ(η) (T − η) . (5)
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2. The mapping (Hessφ(η))−1 maps the coordinates v of a tangent vector V ∈ TpηE with respect
to the basis of centered sufficient statistics to the coordinates v∗ with respect to the conjugate
basis.

3. In the θ parameters, the transformation is v �→ v∗ = Hessψ(θ)v.

Remark 1. In the finite state space case, it is not necessary to go on to the formal construction of a
dual tangent bundle, because all finite dimensional vector spaces are isomorphic. However, this step
is compulsory in the infinite state space case, as was done in [1]. Moreover, the explicit construction
of natural connections and natural parallel transports of the tangent and dual tangent bundle is
unavoidable when considering the second-order calculus, as was done in [1,8], in order to compute
Hessians and implement Newton methods of optimization. However, the scope of the present paper
is restricted to a basic study of gradient flows; hence, from now on, we focus on the Riemannian
structure and disregard all second-order topics.

Proposition 3 (Riemannian metric). The tangent bundle has a Riemannian structure with the natural
scalar product of each TpE , 〈V,W 〉p = Ep [VW ]. In the basis of sufficient statistics, the metric is
expressed by the Fisher information matrix I(p) = Covp (T ,T ), while in the conjugate basis, it is
expressed by the inverse Fisher matrix I−1(p).

Proof. In the basis of the sufficient statistics, V = v · (T − Ep [T ]), W = w · (T − Ep [T ]), so that:

〈V,W 〉p = v′Ep

[
(T − Ep [T ]) (T − Ep [T ])′

]
w = v′ Covp (T ,T )w = v′I(p)w , (6)

where I(p) = Covp (T ,T ) is the Fisher information matrix.

If p = pθ = pη, the conjugate basis at p is:

Hessφ(η)(T − η) = Hessψ(θ)−1(T −∇φ(θ)) = I−1(p)(T − Ep [T ]), (7)

so that for elements of the tangent space expressed in the conjugate basis, we have V = v∗ ·
I−1(p) (T − Ep [T ]), W = w∗ · I−1(p) (T − Ep [T ]); thus:

〈V,W 〉p = v∗′Ep

[
I−1(p) · (T − Ep [T ]) (T − Ep [T ])′ I−1(p)

]
w∗ = v∗′I−1(p)w∗. (8)

2.2. Gradient

For each C1 real function F : E → R, its gradient is defined by taking the derivative along a C1

curve I �→ p(t), p = p(0), and writing it with the Riemannian metrics,

d

dt
F̂ (θ(t))

∣∣∣∣
t=0

=

〈
∇F (p),

D

dt
p(t)

∣∣∣∣
t=0

〉
p

, ∇F (p) ∈ TpE . (9)
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If θ �→ F̂ (θ) is the expression of F in the parameter θ and t �→ θ(t) is the expression of the

curve, then d
dt
F̂ (θ(t)) = ∇F̂ (θ(t)) · θ̇(t), so that at p = pθ(0), with velocity V = D

dt
p(t)
∣∣
t=0

=

θ̇(0) · (T −∇ψ(θ(0)), so that we obtain the celebrated Amari’s natural gradient of [16]:

〈∇F (p), V 〉p =
(
Hessψ(θ(0))−1∇F̂ (θ(0)

)′
Hessψ(θ(0))θ̇(0) . (10)

If η �→ F̌ (η) is the expression of F in the parameter η and t �→ η(t) is the expression of the

curve, then d
dt
F̌ (η(t)) = ∇F̌ (η(t)) · η̇(t) so that at p = pη(0), with velocity V = d

dt
log (p(t))

∣∣
t=0

=

η̇(0) · Hessφ(η(0))(T − η(0)),

〈∇F (p), V 〉p = (Hessφ(η(0))−1∇F̂ (η(0))′ Hessφ(η(0))η̇(0). (11)

We summarize all notions of gradient in the following definition.

Definition 4 (Gradients).

1. The random variable ∇F (p) uniquely defined by Equation (9) is called the (geometric)
gradient of F at p. The mapping ∇F : E � p �→ ∇F (p) is a vector field of TE .

2. The vector ∇̃ F̂ (θ) = Hessψ(θ)−1∇F̂ (θ) of Equation (10) is the expression of the geometric
gradient in the θ in the basis of sufficient statistics, and it is called the natural gradient, while
∇F̂ (θ), which is the expression in the conjugate basis of the sufficient statistics, is called the
vanilla gradient.

3. The vector ∇̃ F̌ (η) = Hessφ(η)−1∇F̌ (η) of Equation (10) is the expression of the geometric
gradient in the η parameter and in the conjugate basis of sufficient statistics, and it is called
the natural gradient, while ∇F̌ (η), which is the expression in the basis of sufficient statistics,
is called the vanilla gradient.

Given a vector field of E , i.e., a mapping G defined on E , such that G(p) ∈ TpE , which is called

a section of the tangent bundle in the standard differential geometric language, an integral curve

from p is a curve I � t �→ p(t), such that p(0) = p and D
dt
p(t) = G(p(t)). In the θ parameters,

G(pθ) = Ĝ(θ) · (T −∇ψ(θ)), so that the differential equation is expressed by θ̇(t) = Ĝ(θ(t)). In

the η parameters, G(pη) = Ǧ(η)·Hessφ(η)(T−η), and the differential equation is η̇(t) = Ǧ(η(t)).

Definition 5 (Gradient flow). The gradient flow of the real function F : E is the flow of the
differential equation D

dt
p(t) = ∇F (p(t)), i.e., d

dt
p(t) = p(t)∇F (p(t)). The expression in the θ

parameters is θ̇(t) = ∇̃ F̂ (θ(t)), and the expression in the η parameters is η̇(t) = ∇̃ F̌ (η(t)).

The cases of gradient computation we have discussed above are just a special case of a generic

argument. Let us briefly study the gradient flow in a general chart f : ζ �→ pζ . Consider the change

of parametrization from ζ to θ,

ζ �→ pζ �→ θ(pζ) = I(pζ)
−1 Covpζ (T , log pζ) ,
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and denote the Jacobian matrix of the parameters’ change by J(ζ). We have:

log pζ = T · θ(ζ)− ψ(θ(ζ))

= T · I(pζ)−1 Covpζ (T , log pζ)− ψ
(
I(pζ)

−1 Covpζ (T , log pζ)
)
,

and the ζ coordinate basis of the tangent space TpζE consists of the components of the gradient with

respect to ζ,

∇(ζ �→ log pζ) = J−1(ζ)
(
T − Epζ [T ]

)
It should be noted that in this case, the expression of the Fisher information matrix does not have

the form of a Hessian of a potential function. In fact, the case of the exponential and the mixture

parameters point to a special structure, which is called the Hessian manifold; see [17].

2.3. Gradient Flow in the Mixture Geometry

From now on, we are going to focus on the expression of the gradient flow in the η parameters.

From Definition 4, we have:

∇̃ F̌ (η) = Hessφ(η)−1∇F̌ (η) = Hessψ(∇φ(η))∇F̌ (η) = I(pη)∇F̌ (η) ,

where I(p) = Covp (T ,T ). As p �→ Covp (T ,T ) is the restriction to the simplex of a quadratic

function, while p �→ η is the restriction to the exponential family E of a linear function, in some

cases, we can naturally consider the extension of the gradient flow equation outside M ◦. One notable

case is when the function F is a relaxation of a non-constant state space function f : Ω→ R, as it is

defined in, e.g., [3].

Proposition 4. Let f : Ω→ R, and let F (p) = Ep [f ] be its relaxation on p ∈ E . It follows:

1. ∇F (p) is the least square projection of f onto TpE , that is:

∇F (p) = I(p)−1 Covp (f,T ) · (T − Ep [T ]) .

2. The expressions in the exponential parameters θ are ∇̃ F̂ (θ) = (Hessψ(θ))−1 Covθ (f,T ),
∇F̂ (θ) = Covθ (f,T ), respectively.

3. The expressions in the mixture parameters η are ∇̃ F̌ (η) = Covη (f,T ) and ∇F̌ (η) =

Hessφ(η) Covη (f,T ), respectively.

Proof. On a generic curve through p with velocity V , we have d
dt
Ep(t) [f ]

∣∣
t=0

=

Covp (f, V ) = 〈f, V 〉p. If V ∈ TpE , we can orthogonally project f to get 〈∇F, V 〉p =

〈(I−1(p) Covp (f,T )) · (T − Ep [T ]), V 〉p.

Remark 2. Let us briefly recall the behavior of the gradient flow in the relaxation case. Let θn,
n = 1, 2, . . . , be a minimizing sequence for F̂ , and let p̄ be a limit point of the sequence (pθn)n.
It follows that p̄ has a defective support, in particular p̄ /∈ E; see [18,19]. For a proof along lines
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coherent with the present paper, see [20] (Theorem 1). It is found that the support F ⊂ Ω is exposed,
that is T (F ) is a face of the marginal polytope M = con {T (x)|x ∈ Ω}. In particular, Ep̄ [T ] = η̄

belongs to a face of the marginal polytope M . If a is the (interior) orthogonal of the face, that is
a·T (x)+b ≥ 0 for all x ∈ Ω and a·T (x)+b = 0 on the exposed set, then a·(T (x)−η̄) = 0 on the
face, so that a ·Covp̄ (f,T ) = 0. If we extend the mapping η �→ Covη (f,T ) on the closed marginal
polytope M to be the limit of the vector field of the gradient on the faces of the marginal polytope, we
expect to see that such a vector field is tangent to the faces. This remark is further elaborated below
in the binary case.

2.4. The Saturated Model

A case of special tutorial interest is obtained when the exponential family contains all probability

densities, that is when E = P>. This case has been treated by many authors; here, we use the

presentation of [21].

It is convenient to recode the sample space as Ω = {0, . . . , d}, where x = 0 is a distinguished

point. If X is the identity on Ω, we define the sufficient statistics to be the indicator functions of

points Tj = (X = j), j = 1, . . . , d. The saturated exponential family consists of all of the positive

densities written as:

p(x;θ) = exp

(
d∑

j=1

θj(X = j)− ψ(θ)

)
,

where:

ψ(θ) = log

(
1 +

d∑
j=1

eθj

)
.

Note that, in this case, the expectation parameter ηj = E ((X = j)) is the probability of case x = j

and the marginal polytope is the probability simplex Δd.

The gradient mapping is:

η = ∇ψ(θ) =
(

eθj

1 +
∑d

i=1 e
θi

∣∣∣∣∣j = 1, . . . , d

)
,

the inverse gradient mapping is defined for η ∈]0, 1[d by:

θ = (∇ψ)−1(η) = ∇φ(η) =
(
log

(
ηj

1−∑d
i=1 ηi

)∣∣∣∣∣j = 1, . . . , d

)
,

the negative entropy (Legendre conjugate) is:

φ(η) = η · ∇φ(η)− ψ ◦ ∇φ(η) =
d∑

j=1

ηj log

(
ηj

1−∑d
i=1 ηi

)
+ log

(
1−

d∑
i=1

ηi

)
,
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the η parameterization (1) of the probability is:

pη = exp ((T − η) · ∇φ(η) + φ(η)) =

exp

(
d∑

j=1

((X = j)− ηj) log

(
ηj

1−∑d
i=1 ηi

)
+

d∑
j=1

ηj log

(
ηj

1−∑d
i=1 ηi

)
+ log

(
1−

d∑
i=1

ηi

))
=

exp

(
d∑

j=1

(X = j) log

(
ηj

1−∑d
i=1 ηi

)
+ log

(
1−

d∑
i=1

ηi

))
=

d∏
j=1

(
ηj

1−∑d
i=1 ηi

)(X=j)(
1−

d∑
i=1

ηi

)
=

(
1−

d∑
i=1

ηi

)(X=0) d∏
j=1

η
(X=j)
j .

Remark 3. The previous equation prompts three crucial remarks:

1. The expression of the probability in the η parameters is a normalized monomial in the
parameters.

2. The expression continuously extends the exponential family to the probabilities in P≥.

3. The expression actually is a polynomial parameterization of the signed densities P1.

We proceed to approach the three issues above. The Hessian functions are:

Hessψ(θ) = diag (p)− p⊗ p, p = (1−
d∑

j=1

eθj)−1ep ,

Hessφ(η) = diag (η)−1 − η−1
0 [1]di,j=1, η0 = 1−

d∑
j=1

ηj .

The matrix Hessψ(θ) is the Fisher information matrix I(p) of the exponential family at p = pθ,

and the matrix Hessφ(η) is the inverse Fisher information matrix I−1(p) at p = pη. It follows that

the natural gradient of a function η �→ h(η) will be:

∇̃h(η) = Hessφ(η)∇h(η) ,

whose behavior depends on the following theorem; see [21] (Proposition 3).

Proposition 5.

1. The inverse Fisher information matrix I(p)−1 is zero on the vertexes of the simplex, only.

2. The determinant of the inverse Fisher information matrix I(p)−1 is:

det
(
I(p)−1

)
=

(
1−

n∑
i=1

pi

)
n∏

i=1

pi.
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3. The determinant of the inverse Fisher information matrix I(p)−1 is zero on the borders of the
simplex, only.

4. On the interior of each facet, the rank of the inverse Fisher information matrix I(p)−1 is (n−
1), and the (n − 1) linear independent column vectors generate the subspace parallel to the
facet itself.

A generic statistical model can be seen as a submanifold of the saturated model, so that the form

of the gradient in the submanifold is derived according to the general results in differential geometry.

We do not do that here, and we switch to some very specific examples.

3. Toric Models: A Tutorial Example

Exponential families whose sample space is an integer lattice, such as finite subsets of Z2

or {+1,−1}d, have special algebro-combinatorial features that fall under the name of algebraic

statistics. Seminal papers have been [22,23]. Monographs on the topic are [24–26]. The book

[27] covers both information geometry and algebraic statistics.

We do not assume the reader has detailed information about algebraic statistics. In this section,

we work on a toy example intended to show both the basic mechanism of algebraic statistics and how

the algebraic concepts are applied to the gradient flow problem as it was described in the previous

section.

First, we give a general definition of the object on which we focus. A toric model is an exponential

family, such that the orthogonal space of the space generated by the sufficient statistics and the

constant has a vector basis of integer-valued random variables. We consider this example:

Ω T1 T2 T3

1 0 0 −2
2 0 1 1

3 1 0 2

4 2 1 −1

, (12)

which corresponds to a variation of the classical independence model, where the design corresponds

to the vertices of a square. It this example we moved the point {4} from (1, 1) to (2, 1).

In Equation (12), T1 and T2 are the sufficient statistics of the exponential family:

pθ = exp (θ1T1 + θ2T2 − ψ(θ)) , ψ(θ) = log
(
1 + eθ2 + eθ1 + e2θ1+θ2

)
, (13)

T3 is an integer-valued vector basis of the orthogonal space Span (1, T1, T2)
⊥

.

For the purpose of the generalization to less trivial examples, it should be noted that T3 = T+
3 −

T−
3 , that is (−2, 1, 2,−1) = (0, 1, 2, 0) − (2, 0, 0, 1). The couple (T+

3 , T−
3 ) connects the lattice

defined by:

L =
{
(Y, Z) ∈ Z4

≥ × Z4
≥
∣∣BTy = BTZ

}
, B =

[
1 T1 T2

]
.
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Such a set of generators is called a Markov basis of the lattice; see [22]. Algorithms are available

to compute such a set of generators and are implemented, for instance, in the software suite 4ti2; see

[28].

Figure 1. Marginal polytope of the exponential family in Equations (12) and (13). The

coordinates of the vertices are given by (T1, T2).

The sample space can be identified with the value of the sufficient statistics, hence with a finite

subset of Q2 ⊃ Ω, Ω = {(0, 0), (0, 1), (1, 0), (2, 1)}; see Figure 1. Given a finite subset of Rd, it is a

general algebraic fact that there exists a filtering set of monomial functions that is a vector basis of all

real functions on the subset itself; see an exposition and the applications to statistics in [24] or [27].

In our case, the monomial basis is 1, T1, T2, T1T2, and we define the matrix of the saturated model to

be:

A =

⎡⎢⎢⎢⎣
1 T1 T2 T1T2

1 1 0 0 0

2 1 0 1 0

3 1 1 0 0

4 1 2 1 2

⎤⎥⎥⎥⎦ , A−1 =
1

2

⎡⎢⎢⎢⎣
2 0 0 0

−2 0 2 0

−2 2 0 0

2 −1 −2 1

⎤⎥⎥⎥⎦ . (14)

The matrix A one-to-one maps probabilities into expected values,

[
1 η1 η2 η12

]
=
[
1 E[T1] E[T2] E[T1T2]

]
=
[
p1 p2 p3 p4

]⎡⎢⎢⎢⎣
1 0 0 0

1 0 1 0

1 1 0 0

1 2 1 2

⎤⎥⎥⎥⎦ , (15)

and vice versa,

[
p1 p2 p3 p4

]
=
[
1 η1 η2 η12

]⎡⎢⎢⎢⎣
1 0 0 0

−1 0 1 0

−1 1 0 0

1 −1
2
−1 1

2

⎤⎥⎥⎥⎦ . (16)
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On Model (13), the (positive) probabilities are constrained by the model:

Ω pθ exp
(
θ1T1 + θ2T2 − log

(
1 + eθ2 + eθ1 + e2θ1+θ2

))
1 p(1;θ) exp

(− log
(
1 + eθ2 + eθ1 + e2θ1+θ2

))
2 p(2;θ) exp

(
θ2 − log

(
1 + eθ2 + eθ1 + e2θ1+θ2

))
3 p(3;θ) exp

(
θ1 − log

(
1 + eθ2 + eθ1 + e2θ1+θ2

))
4 p(4;θ) exp

(
2θ1 + θ2 − log

(
1 + eθ2 + eθ1 + e2θ1+θ2

))
. (17)

If we introduce the parameters ζ1 = exp (θ1), ζ2 = exp (θ2), the model is shown to be a (piece of

an) algebraic variety, that is a set described by the rational parametric equations:

Ω pζ ζT1ζT2/(1 + ζ2 + ζ1 + ζ21ζ2)

1 p(1; ζ) 1/(1 + ζ2 + ζ1 + ζ21ζ2)

2 p(2; ζ) ζ2/(1 + ζ2 + ζ1 + ζ21ζ2)

3 p(3; ζ) ζ1/(1 + ζ2 + ζ1 + ζ21ζ2)

4 p(4; ζ) ζ21ζ2/(1 + ζ2 + ζ1 + ζ21ζ2)

. (18)

The peculiar structure of the toric model is best seen by considering the unnormalized

probabilities:

Ω qζ ζT1ζT2

1 q(1; ζ) 1

2 q(2; ζ) ζ2

3 q(3; ζ) ζ1

4 q(4; ζ) ζ21ζ2

, p(x; ζ) =
q(x; ζ)

1 + ζ2 + ζ1 + ζ21ζ2
. (19)

In algebraic terms, the homogeneous coordinates [q1 : q2 : q3 : q4] belong to the projective space

P 3. Precisely, the (real) projective space P 3 is the set of all non-zero points of R4 together with

the equivalence relation [q1 : q2 : q3 : q4] = [q̄1 : q̄2 : q̄3 : q̄4] if, and only if, [q1, q2, q3, q4] =

k[q̄1, q̄2, q̄3, q̄4], k �= 0. The domain of unnormalized signed probabilities as projective points is the

open subset P3
∗ of P3 where q1 + q2 + q3 + q4 �= 0. On this set, we can compute the normalization:

P3
∗ � [q1 : q2 : q3 : q4] �→ [q1, q2, q3, q4]/(q1 + q2 + q3 + q4) ∈ ∗E ,

where ∗E is the affine space generated by the simplex Δ3. Notice that this embedding produces a

number of natural geometrical structures on ∗E .

Because of the form of (13), a positive density p belongs to that family if, and only if, log p ∈
Span (1, T1, T2), which, in turn, is equivalent to log p ⊥ T3. We can rewrite the orthogonality as:

0 =
∑
x∈Ω

log p(x)T3(x) =
∑

x : T3(x)>0

log p(x)T+
3 (x)−

∑
x : T3(x)<0

log p(x)T−
3 (x)

= log

⎛⎝ ∏
x : T3(x)>0

p(x)T
+
3 (x)

⎞⎠− log

⎛⎝ ∏
x : T3(x)<0

p(x)T
−
3 (x)

⎞⎠ .
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Dropping the log function in the last expression, we observe that the positive probabilities described

by either Equation (17) with θ1, θ2 ∈ R or Equation (18) with ζ1, ζ2 ∈ R> are equivalently described

by the equations:

p1 + p2 + p3 + p4 − 1 = 0 , (20)

p21p4 − p2p
2
3 = 0 . (21)

Equation (21) identifies a surface within the probability simplex Δ3, which is represented in

Figure 2 by the triangularization of a grid of points that satisfy the invariant.

δ 1

δ 3

δ 4

δ 2

Figure 2. Representation of the exponential family in Equations (12) and (13) as

a surface that intersects the probability simplex Δ3. The surface is obtained by the

triangularization of a grid of points that satisfy the invariant in Equation (21).

By choosing a basis for the space orthogonal to Span (1, T1, T2)
⊥

, we can embed the marginal

polytope of Figure 1 into the associated full marginal polytope. By expressing probabilities as a

function of the expectation parameters, Equation (21) identifies a relationship between η1, η2 and the

expected values of the chosen basis for the orthogonal space. This corresponds to an equivalent

invariant in the expectation parameters, which, in turn, identifies a surface in the full marginal

polytope.

For instance, consider the full marginal polytope parametrized by η = (η1, η2, η3), with η3 =

E[T3], which corresponds to the choice of T3 as a basis for the space orthogonal to the span of the

sufficient statistics of the model, together with the constant 1, as in Equation (12). We introduce the

following matrix:

B =

⎡⎢⎢⎢⎣
1 T1 T2 T3

1 1 0 0 −2
2 1 0 1 1

3 1 1 0 2

4 1 2 1 −1

⎤⎥⎥⎥⎦ , (22)
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and similarly to Equation (15), we use the B matrix to one-to-one map probabilities into expected

values, that is: ⎡⎢⎢⎢⎣
1

η1

η2

η3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 1 1 1

0 0 1 2

0 1 0 1

−2 1 2 −1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

p1

p2

p3

p4

⎤⎥⎥⎥⎦ , (23)

and: ⎡⎢⎢⎢⎣
p1

p2

p3

p4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
3
5

−1
5
−2

5
−1

5
1
5

−2
5

7
10

1
10

2
5

1
5

−3
5

1
5

−1
5

2
5

3
10

− 1
10

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1

η1

η2

η3

⎤⎥⎥⎥⎦ . (24)

Then, by expressing probabilities as a function of the expectation parameters in Equation (21),

we obtain the following invariant in η associated with the model:

(4η1 + 3η2 − η3 − 2)(η1 + 2η2 + η3 − 3)2 + (4η1 − 7η2 − η3 − 2)(η1 − 3η2 + η3 + 2)2 = 0 . (25)

From the linear relationship between probabilities and expectation probabilities, we know that on the

interior of the full marginal polytope, there exists a unique η3 which can be computed as a function

of the other expectation parameters. Solving Equation (25) for η3 allows one to express explicitly the

value of η3 given (η1, η2) and represent the surface associated with the invariant in the full marginal

polytope. However, the cubic polynomial in Equation (25) in general admits three roots. The unique

value of η3 can be obtained from the roots of the cubic polynomial, by imposing that η3 must be real

and belong to the full marginal polytope given by Conv {(T1(x), T2(x), T3(x))|x ∈ Ω}.
We remind that the determinant Δ associated with the cubic function in Equation (25) in the

η3 variable:

aη33 + bη23 + cη3 + d = 0 , (26)

with:

a = 1 (27)

b = −2η1 + η2 + 1 (28)

c = −(4η1 + 3η2 − 2)(η1 + 2η2 − 3) +
1

2
(η1 + 2η2 − 3)2 − (4η1 − 7η2 − 2)(η1 − 3η2 + 2)+

+
1

2
(η1 − 3η2 + 2)2 (29)

d = −1

2
(4η1 + 3η2 − 2)(η1 + 2η2 − 3)2 − 1

2
(4η1 − 7η2 − 2)(η1 − 3η2 + 2)2 (30)

is given by:

Δ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 . (31)
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For Δ = 0, the polynomial has a real root with multiplicity equal to three; for Δ < 0, we have one

real root and two complex conjugates roots, while for Δ > 0, there exist three real roots. The three

roots of the polynomial as a function of the coefficients are given by:

η3,k = −1

3

(
b+ ukC +

Δ0

ukC

)
, (32)

for k ∈ {1, 2, 3}, with:

u1 = 1 , (33)

u2 =
−1 + i

√
3

2
, (34)

u3 =
−1− i

√
3

2
, (35)

and:

C =
3

√
Δ1 +

√
(Δ2

1 − 4Δ3
0)

2
, (36)

Δ0 = b2 − 3ac , (37)

Δ1 = 2b3 + 9abc+ 27a2d . (38)

For the cubic polynomial in η3 of Equation (25), Δ < 0 for η2 − 1 �= 0 and for:

4η41−8η31η2+24η21η
2
2−20η1η32−2η42−8η31−12η21η2+4η32+8η21+16η1η2−η22−4η1−2η2+1 > 0 . (39)

In Figure 3(a), we represent in blue the region of the space (η1, η2) where Δ < 0, in red where Δ > 0,

and the points where Δ = 0 with a dashed line. For Δ < 0, the only real root is η3,1, which identifies

the blue surface in the full marginal polytope in Figure 3(b). For Δ > 0, it is easy to verify that only

η3,2 belongs to the interior of the full marginal polytope parametrized by (η1, η2, η3), since it satisfies

the inequalities given by the facets of the marginal polytope, and is represented in Figure 3(b) by the

red surface. Finally, the three real roots coincide for Δ = 0, that is, for η2 = 1, and where:

4η41−8η31η2+24η21η
2
2−20η1η32−2η42−8η31−12η21η2+4η32+8η21+16η1η2−η22−4η1−2η2+1 = 0 . (40)
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(a) (b)

Figure 3. Marginal polytope of the exponential family in Equations (12) and (13) (a).

The dashed lines correspond to the points where Δ = 0, where Δ is the discriminant

in Equation (31); over the red regions Δ > 0 and over the blue regions Δ < 0.

Representation of the exponential family as a surface in the full marginal polytope

parametrized by (η1, η2, η3) (b). The blue surface is given by the unique real root η3,1

in Equation (32); the red surface corresponds to the unique real root η3,2, which belongs

to the full marginal polytope; over the dashed lines, which have been computed solving

Equation (40) numerically, Equation (26) admits a real root with multiplicity equal to

three.

In the polynomial ring Q[p1, p2, p3, p4], the model ideal:

I =
〈
p1 + p2 + p3 + p4 − 1, p21p4 − p2p

2
3

〉
(41)

consists of all the polynomials of the form:

A (p1 + p2 + p3 + p4 − 1) +B
(
p21p4 − p2p

2
3

)
, ∀A,B ∈ Q[p1, p2, p3, p4] .

The algebraic variety of I uniquely extends the exponential family outside the positive octant. In

the language of commutative algebra, it is the real Zariski closure of the exponential family model,

cf. [29]. It is a notable example of toric variety. The general theory is in the monograph [30], and the

applications to statistical models were first discussed in [31,32].

Let us discuss in some detail the parameterization of the toric variety as the submanifold of R4

defined by Equations (20) and (21). The Jacobian matrix is:

J =

[
1 1 1 1

2p1p4 −p23 −2p2p3 p21

]
.

It has rank one, that is, there is a singularity, if, and only if,

2p1p4 = −p23 = −2p2p3 = p21 .
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This is equivalent to p21 = p23 = 0, which is a subspace of dimension two, whose intersection with

Equation (20), is a line C in the affine space ∗E = {p ∈ R4|p1 + p2 + p3 + p4 = 1}. This (double)

critical line intersects the simplex along the edge δ2 ↔ δ4. Outside C, that is in the open complement

set, the equations of the toric variety are locally solvable in two among the pi’s under the condition

that the corresponding minor is not zero. To have a picture of what this critical set looks like, let us

intersect our surface with the plane p3 = 0. On the affine space p1 + p2 + p4 = 1, we have p21p4 = 0,

that is the union of the double line p21 = 0 with the line p4 = 0.

In the following, we derive a parameterization based on an algebraic argument, the Bézout

theorem. In fact, it is remarkable that the cubic surface defined by Equations (20) and (21) is a

well known example of ruled surface, see Exercise 5.8.15 in [33]. In fact, the singular line is a

double line, so that the intersection of the cubic surface with any plane through the singular line is of

degree 1 = 3− 2, by the Bézout theorem, and thus, it is a line.

The line C is said to be double because the polynomial p21p4− p2p
2
3 belongs to the ideal generated

by p21 and p23. Let us consider the sheaf of planes through the singular line defined for each [α : β] ∈
P 1 by the equations:

P [α : β] = {p1 + p2 + p3 + p4 − 1 = 0, αp1 + βp3 = 0} .

Let us intersect each plane P [α : β] of the sheaf with the model varietyM by solving the system

of equations: ⎧⎪⎪⎨⎪⎪⎩
p1 + p2 + p3 + p4 = 1

p21p4 − p2p
2
3 = 0

αp1 + βp3 = 0

. (42)

On the critical line C, a generic point is parameterized as p(τ, 0) = (0, τ, 0, 1−τ), which satisfies

Equation (42) for τ ∈ R. If 0 ≤ τ ≤ 1, then p(τ, 0) belongs to the edge δ2 ↔ δ4.

As the critical line is double and the intersection of the model variety with the plane of the sheaf

is a cubic curve, we expect the remaining part to be of degree 3 − 2 = 1, that is to be a line.

Assume first α, β �= 0. Outside the critical line, as p1, p3 are not both zero and αp1 + βp3 = 0, then

αp1 = −βp3 �= 0. It follows (αp1)
2 = (βp3)

2 �= 0; hence:

p21p4 − p2p
2
3 = 0⇒ β2(αp1)

2p4 − α2p2(βp3)
2 = 0⇒ β2p4 − α2p2 = 0 .

We have found that for α, β �= 0, the intersection between the plane P [α : β] and the model

varietyM is the union of the critical line C and the line of equations:⎧⎪⎪⎨⎪⎪⎩
p1 + p2 + p3 + p4 = 1

αp1 + βp3 = 0

−α2p2 + β2p4 = 0

. (43)

This line intersects the critical line where:

p1 = p3 = 0, p2 + p4 = 1,−α2p2 + β2p4 = 0 ,
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that is in the point:

p([α : β], 0)) =

(
0,

β2

α2 + β2
, 0,

α2

α2 + β2

)
.

In parametric form, the line in Equations (43) is:

p([α : β], t) = p([α : β], 0) + ut ,

with u =
(
β, β

2(α−β)
α2+β2 ,−α, α2(α−β)

α2+β2

)
,

p1([α : β], t) = βt

p2([α : β], t) =
β2

α2 + β2
+

β2(α− β)

α2 + β2
t

p3([α : β], t) = −αt

p4([α : β], t) =
α2

α2 + β2
+

α2(α− β)

α2 + β2
t

. (44)

The same equations hold in the previously excluded case αβ = 0.

Positive values of components 1 and 3 of the probability are obtained in Equation (44) for αβ < 0

and βt > 0, say α < 0, β > 0, t > 0. In this case, we have for component 2:

β2

α2 + β2
+

β2(α− β)

α2 + β2
t =

β2

α2 + β2
(1− (β − α)t) ,

which is positive if t < (β − α)−1. The same condition applies to component 4. As [α : β] =[
α

β−α
: β
β−α

]
, we can always assume β > 0 and β − α = 1 that is, α = β − 1; hence β < 1. The

parameterization of the positive probabilities in the model becomes:

p1(α, t) = (α + 1)t

p2(α, t) =
α2 − (α2 + 2α + 1)t+ 2α + 1

2α2 + 2α + 1

p3(α, t) = −αt

p4(α, t) = − α2t− α2

2α2 + 2α + 1

, 0 < t < 1,−1 < α < 0 . (45)

For example, with α = −1
2
, we have:

p1(α, t) =
1

2
t

p2(α, t) =
1

2
(1− t)

p3(α, t) =
1

2
t

p4(α, t) =
1

2
(1− t)

, 0 < t < 1 .

In Figure 4(a), we represented the surface associated with the invariant of Equation (21) as a ruled

surface in the probability simplex, according to Equations (45), where the blue line corresponds to
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the case α = −1
2
. The ruled surface corresponds to the surface in Figure 2 that was approximated by

the triangularization of a grid of points satisfying the invariant. In Figure 4(b), we represent the same

lines of Figure 4(a) in the chart (α, t).

δ 1

δ 3

δ 4

δ 2

(a)

−1 0
0

1

δ4

δ3 δ1

δ2

α

t

(b)

Figure 4. Representation of the exponential family in Equations (12) and (13) as a ruled

surface in the probability simplex (a) and in the parameter space (α, t) (b). The dashed

line corresponds to the critical edge δ2 ↔ δ4 and the blue line to the case α = −1
2
.

From Equation (45), we can express the expectation parameters η as a function of (α, t), i.e.,

η1 =
2α2 − (2α3 + 4α2 + α)t

2α2 + 2α + 1
, (46)

η2 = −t+ 1 , (47)

η3 = −(8α3 + 12α2 + 10α + 3)t− 2α− 1

2α2 + 2α + 1
. (48)

Notice that the dependence on (α, t) is rational. In Figure 5(a), the ruled surface has been represented

in the full marginal polytope, while in Figure 5(a), the lines have been projected over the marginal

polytope.

Let us invert Equation (45) to obtain the corresponding chart p �→ (β, t). From p1 and p3, we

obtain β = p1/(p1 + p3). As p2 + p4 = 1− t, we have the chart:

β =
p1

p1 + p3
,

t = 1− p2 − p4 = p1 + p3 .
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0 1 2
0

1

η1

η2

(a)

0
1

2

0

1
−2

−1

0

1

2

η1

η2
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Figure 5. Representation of the exponential family in Equations (12) and (13) as a

ruled surface in the marginal polytope (η1, η2) (a) and in the full marginal polytope

parametrized by (η1, η2, η3) (b). The dashed line corresponds to the critical line δ2 ↔ δ4

and the red line to the case α = −1
2
.

It is remarkable that the model depends on the probability restricted to {1, 3}; similarly, the

expectation parameters depend on p1 and p3 only.

From the theory of exponential families, we know that the gradient mapping:

(θ1, θ2) �→ ∇ψ(θ1, θ2) =
[

2 e(2 θ1+θ2)+eθ1

e(2 θ1+θ2)+eθ1+eθ2+1
e(2 θ1+θ2)+eθ2

e(2 θ1+θ2)+eθ1+eθ2+1

]
is one-to-one from R2 onto the interior of the marginal polytope M ; see Figure 3(b). The equations:

η1 =
ζ1 + 2ζ21ζ2

1 + ζ2 + ζ1 + ζ21ζ2
,

η2 =
ζ2 + ζ21ζ2

1 + ζ2 + ζ1 + ζ21ζ2
,

are uniquely solvable for (η1, η2) ∈M◦. We study the local solvability in ζ1, ζ2 of:

(1 + ζ2 + ζ1 + ζ21ζ2)η1 = ζ1 + 2ζ21ζ2 ,

(1 + ζ2 + ζ1 + ζ21ζ2)η2 = ζ2 + ζ21ζ2 ,

that is,

0 = η1 + (η1 − 1)ζ1 + η1ζ2 + (η1 − 2)ζ21ζ2 ,

0 = η2 + η2ζ1 + (η2 − 1)ζ2 + (η2 − 1)ζ21ζ2 .

The Jacobian is: [
(η1 − 1) + 2(η1 − 2)ζ1ζ2 η1 + (η1 − 2)ζ21

η2 + 2(η2 − 1)ζ1ζ2 (η2 − 1) + (η2 − 1)ζ21

]
.
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If we introduce the extra variable η12, from Equations (15) and (18) we have the system:

(1 + ζ2 + ζ1 + ζ21ζ2)η1 = ζ1 + 2ζ21ζ2 ,

(1 + ζ2 + ζ1 + ζ21ζ2)η2 = ζ2 + ζ21ζ2 ,

(1 + ζ2 + ζ1 + ζ21ζ2)η12 = 2ζ21ζ2 ,

Instead, if we use the variable η3, from Equations (16) and (41), it is possible to derive the equation

of the model variety in the η1, η2, η3 parameters. From Equation (18), we have:

η1 = Eζ [T1] =
ζ1 + 2ζ21ζ2

1 + ζ2 + ζ1 + ζ21ζ2
,

η2 = Eζ [T2] =
ζ2 + ζ21ζ2

1 + ζ2 + ζ1 + ζ21ζ2
,

η3 = Eζ [T3] =
−2 + ζ2 + 2ζ1 − ζ21ζ2
1 + ζ2 + ζ1 + ζ21ζ2

.

Let us solve for the ζ, that is:

(1 + ζ2 + ζ1 + ζ21ζ2)η1 = ζ1 + 2ζ21ζ2 ,

(1 + ζ2 + ζ1 + ζ21ζ2)η2 = ζ2 + ζ21ζ2 ,

(1 + ζ2 + ζ1 + ζ21ζ2)η3 = −2 + ζ2 + 2ζ1 − ζ21ζ2 .

There is another way to derive the model constraint in the η. In the example, the sample space

has four points; the monomials 1, T1, T2, T1T2 are a vector basis of the linear space of the columns of

the matrix A, in particular T3 is a linear combination:

Ω 1 T1 T2 T1T2 T3

1 1 0 0 0 −2
2 1 0 1 0 1

3 1 1 0 0 2

4 1 2 1 2 −1
−2 4 3 −5 =

.

It follows that:

η3 = Eθ [T3] = Eθ [−2 + 4T1 + 3T2 − 5T1T2]

= −2 + 4Eθ [T1] + 3Eθ [T2] + 3Covθ (T1, T2) + 3Eθ [T1] Eθ [T2]

= −2 + 4∂1ψ(θ) + 3∂2ψ(θ)− 5∂1∂2ψ(θ)− 5∂1ψ(θ)∂2ψ(θ)

= −2 + 4η1 + 3η2 − 5∂1∂2ψ(θ)− 5η1η2 .



349

3.1. Border

Let us consider the points in the model variety that are probabilities, that is,

p1 + p2 + p3 + p4 = 1, p21p4 = p2p
2
3, p1, p2, p3, p4 ≥ 0 . (49)

From the equation above, we see that single zeros are not allowed, that is to say there are no

intersections between the model in Equation (49) and the open facets of the probability simplex.

We now consider the full marginal polytope obtained by adding the sufficient statistics T1T2,

and parametrized by (η1, η2, η12). By Equation (16), the marginal polytope is represented by the

inequalities:

p1 = 1− η1 − η2 + η12 ≥ 0 ,

p2 = η2 − 1

2
η12 ≥ 0 ,

p3 = η1 − η12 ≥ 0 ,

p4 =
1

2
η3 ≥ 0 ,

which is a convex set with vertexes (0, 0, 0), (0, 1, 0), (1, 0, 0), (2, 1, 2), which corresponds to the full

marginal polytope associated to the sufficient statistics {T1, T2, T1T2}. As the critical set is the edge

δ2 ↔ δ4 in the p space, it is the edge (0, 1, 0)↔ (2, 1, 2) in the η space.

We have the following possible models on the border of the probability simplex and on the border

of the full marginal polytope, where the values for η1 and η2 are obtained from Equation (15).

p1 p2 p3 p4 η1 η2

0 0 + + p3 + 2p4 p4

0 + 0 + 2p4 p2 + p4

+ 0 + 0 p3 0

+ + 0 0 0 p2

p1 p2 p3 p4 η1 η2

+ 0 0 0 0 0

0 + 0 0 0 1

0 0 + 0 1 0

0 0 0 + 2 1

That is, the domains that can be support of probabilities in the algebraic model are the faces of the

marginal polytope. This is general; see [20,34].

3.2. Fisher Information

Let us consider the covariance matrix of the sufficient statistics. Let us denote by A|12 the block

of the two central columns in A in Equation (14) and by p the row vector of probabilities. Then, the

variance matrix is:

AT
|12 diag (p)A|12−(pA|12)TpA|12 = AT

|12 diag (p)A|12−AT
|12p

TpA|12 = AT
|12
(
diag (p)− pTp

)
A|12 .

On each of the cases of probabilities supported by a single point, the matrix p − pTp is zero;

hence, the covariance matrix is zero. In each of the cases where the probability is supported by a
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facet, say {1, 2}, the matrix p− pTp reduces to the corresponding block, and the covariance matrix

is:

[
0 0 1 1

0 1 0 1

]⎡⎢⎢⎢⎣
p1 − p21 −p1p2 0 0

−p1p2 p2 − p22 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
0 0

0 1

1 0

2 1

⎤⎥⎥⎥⎦
=

[
0 0

0 1

][
p1 − p21 −p1p2
−p1p2 p2 − p22

][
0 0

0 1

]

=

[
0 0

0 p2 − p22

]
.

The space generated by the covariance matrix is Q(0, 1), that is the affine space that contains the

facets itself. Analogous results hold for each facet, and this result is general.

We note that the determinant of the covariance matrix is a polynomial of degree six in the

indeterminates p1, p2, p3. This polynomial is zero on each facet.

The η parameters can be given as a function of either θ or ζ. We have:

η AT [pζ]

η1 (ζ1 + 2ζ21ζ2)/(1 + ζ2 + ζ1 + ζ21ζ2)

η2 (ζ2 + ζ21ζ2)/(1 + ζ2 + ζ1 + ζ21ζ2)

η3 (−2 + ζ2 + 2ζ1 − ζ21ζ2)/(1 + ζ2 + ζ1 + ζ21ζ2)

(50)

We know from the theory of exponential families that the mapping:

]0,∞[×]0,∞[� (ζ1, ζ2) �→ (η1, η2) ∈ Conv {(T1(x), T2(x))|x ∈ Ω}◦

is one-to-one. We look for an algebraic inversion of the equations:

(1 + ζ2 + ζ1 + ζ21ζ2)η1 = ζ1 + 2ζ21ζ2 ,

(1 + ζ2 + ζ1 + ζ21ζ2)η2 = ζ2 + ζ21ζ2 .

If we rewrite Equations (50) as polynomials in ζ1, ζ2, we obtain:

η1 + (η1 − 1)ζ1 + η1ζ2 + (η1 − 2)ζ21ζ2 = 0 , (51)

η2 + η2ζ1 + (η2 − 1)ζ2 + (η2 − 1)ζ21ζ2 = 0 , (52)

−η3 + (η3 − 2)ζ1 + (η3 − 1)ζ2 + (η3 + 1)ζ21ζ2 = 0 . (53)

Gauss elimination produces a linear system in ζ1, ζ2 with coefficients that are polynomials in

η1, η2, η3 to be considered with the implicit equation derived from p21p4 − p2p
2
3 = 0. The system is:

−2η2η3 − 2η1 + 2η2 = (−2η2η3 − 2η1 + 2)ζ1 + (−2η2η3 + 2η2 + 2η3 − 2)ζ2 ,

η2 = η2ζ1 + (η2 − 1)ζ2 .
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3.3. Extension of the Model

In this subsection, we study an extension to signed probabilities of the exponential family in

Equations (12) and (13) based on the representation of the statistical model as a ruled surface in the

probability simplex. Our motivation for such an analysis is the study of the stability of the critical

points of a gradient field in the η parameters, in particular when the critical points belong to the

boundary of the model. Indeed, by extending the gradient field outside the marginal polytope, we

can identify open neighborhoods for critical points on the boundary of the polytope, which allow one

to study the convergence of the differential equations associated with the gradient flows, for instance

by means of Lyapunov stability.

In the following, we describe more in detail how the extension can be obtained. Let a be a

point along the edge δ2 ↔ δ4 of the full marginal polytope parametrized by (η1, η2, η3) and b the

coordinates of the corresponding point over δ1 ↔ δ3 obtained by intersecting the line of the ruled

surface through a with the edge δ1 ↔ δ3. The values of the η2 coordinate for a and b are one and

zero, respectively. The other coordinates of b depend on those of a though α. First, we obtain the

values of the η3 coordinates as a function of the η1 coordinate. For a, we find the equation of the line

to which δ2 ↔ δ4 belongs, given by:⎛⎜⎝ η1

η2

η3

⎞⎟⎠ =

⎛⎜⎝ 0

1

1

⎞⎟⎠+ u

⎛⎜⎝ 2

0

−2

⎞⎟⎠ =

⎛⎜⎝ 2u

1

1− 2u

⎞⎟⎠ , (54)

from which we obtain η3 = 1− η1. Similarly, for the η3 coordinate of b, we consider the line through

δ1 ↔ δ3, that is: ⎛⎜⎝ η1

η2

η3

⎞⎟⎠ =

⎛⎜⎝ 0

0

−2

⎞⎟⎠+ u

⎛⎜⎝ 1

0

4

⎞⎟⎠ =

⎛⎜⎝ u

0

4u− 2

⎞⎟⎠ , (55)

which gives us η3 = 4η1 − 2. Finally, for the η1 coordinate, we use Equations (44). In a, since t = 0

and p1 = p3 = 0, then p2 =
β2

α2+β2 and p4 =
α2

α2+β2 . From Equation (24), it follows that:

η1 =
2α2

2α2 + 2α + 1
. (56)

Similarly, for b, we have p2 = p4 = 0 and t = 1, so that p1 = α + 1 and p3 = −α. From

Equation (24), it follows that:

η1 = −α . (57)

As a result, the coordinates of a and b both depend on α as follows,

a =

(
2α2

2α2 + 2α + 1
, 1,

2α + 1

2α2 + 2α + 1

)
(58)

b = (−α, 0,−4α− 2) (59)
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The ruled surface in the full marginal polytope is given by the lines through a and b described by

the following implicit representation, for −1 < α < 1 and 0 < t < 1,

⎡⎢⎣ η1

η2

η3

⎤⎥⎦ =

⎡⎢⎣ −α
0

−4α− 2

⎤⎥⎦+ t

⎡⎢⎣
2α3+4α2+α
2α2+2α+1

1
8α3+12α2+10α+3

2α2+2α+1

⎤⎥⎦ . (60)

The ruled surface can be extended outside the marginal polytope by taking values of α, t ∈ R and

considering the set of lines through a and b for different values of α. For α→ ±∞, the η1 coordinate

of b tends to ∓∞, while the η1 of a tends to one. For α → ±∞, the ruled surface admits the same

limit given by the line parallel to δ1 ↔ δ3 passing through (1, 1, 0). The surface intersects the interior

of the marginal polytope for t ∈ (0, 1) and α ∈ (−1, 0). Moreover, the surface intersects the critical

line twice, for t = 0, α ∈ [−1, 0] and for t = 0, α /∈ [−1, 0].
In Figures 6 and 7, we represent the extension of the ruled surface outside the probability simplex

and in the (α, t) chart, while in Figures 8 and 9, the extended surface has been represented in the full

marginal polytope parametrized by (η1, η2, η3) and in the marginal polytope parametrized by (η1, η2).

−1 0

0

1

α

t

(a)

δ4

δ3

δ2

δ1

(b)

Figure 6. The segments that form the ruled surface in Figure 4 have been extended, for

−0.5 < t < 1.5. New lines described by Equations (60) have been represented for 0 <

α < exp(0.7) (shading from red to black for increasing values of α) and for exp(0.7) −
1 < α < −1 (shading from red to white for decreasing values of α). The simplex in (b)

has been rotated with respect to Figure 4(a) to better visualize the intersection of the lines

with the critical edge δ2 ↔ δ4.
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δ4

δ3

δ2

δ1

Figure 7. Extension of the ruled surface associated with the exponential family in

Equations (12) and (13) as in Figure 6(b), for exp(3.5) − 1 < α < exp(3.5) and

−0.5 < t < 1.5; for α→ ±∞, the lines of the extended surface admit the same limit.

−1 0 1 2 3

0

1

η1

η2

(a)

−1
0

1
2

3

−1

0

1

2

−3

−2

−1

0

1

2

3

η2
η1

η3

(b)

Figure 8. The segments that form the ruled surface in Figure 5 have been extended, for

−0.5 < t < 1.5. New lines described by Equations (60) have been represented for 0 <

α < exp(1) (shading from blue to black for increasing values of α) and exp(1)−1 < α <

−1 (shading from blue to white for decreasing values of α). The full marginal polytope

in (b) has been rotated with respect to Figure 5(b) to better visualize the intersection of

the lines with the critical edge δ2 ↔ δ4.



354

−2

−1

0

1
2

3

4

−2

−1

0

1

2

3

−4

−3

−2

−1

0

1

2

3

4

η2

η1

η3

Figure 9. Extension of the ruled surface associated with the exponential family in

Equations (12) and (13) as in Figure 8(b), for exp(3) − 1 < α < exp(3) and

−0.5 < t < 1.5; notice that for α → ±∞, the lines of the extended surface admit

the same limit.

3.4. Optimization and Natural Gradient Flows

We are interested in the study of natural gradient flows of functions defined over statistical

models. Our motivation is the study of the optimization of the stochastic relaxation of a function,

i.e., the optimization of the expected value of the function itself with respect to a distribution p in

a statistical model. Natural gradient flows associated with the stochastic relaxation converge to the

boundary of the model, where the probability mass is concentrated on some instances of the search

space. To study the convergence over the boundary, we proposed to extend the natural gradient field

outside the marginal polytope and the probability simplex, by employing a parameterization that

describes the model as a ruled surface, as we described in the tutorial example of this section.

In the following, we focus on the optimization of a function f : Ω → R, and we consider

its stochastic relaxation with respect to a probability distribution in the exponential family in

Equations (12) and (13). First, we compute a basis for all real-valued functions defined over Ω

using algebraic arguments. Consider the zero-dimensional ideal I associated with the set of points
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in Ω, and let R be the polynomial ring with the field of real coefficients; a vector space basis for

the quotient ring R/I defines a basis for all functions defined over Ω. In CoCoA [36], this can be

computed with the command QuotientBasis.

Coming back to our example, with Ω = {1, 2, 3, 4}, by fixing the graded reverse lexicographical

monomial order, which is the default one in CoCoA [36], we obtain a basis given by {1, x1, x2, x1x2},
so that any f : Ω→ R can be written as:

f = c0 + c1x1 + c2x2 + c12x1x2 . (61)

We are interested in the study of the natural gradient field of F (p) = Ep[f ]. Recall that

T3 = 4x1 + 3x2 − 5x1x2 − 2 and η3 = E[T3], so that:

E[x1x2] =
1

5
(4η1 + 3η2 − η3 − 2) , (62)

which implies:

Fη(η) = c0 − 2

5
c12 +

(
c1 +

4

5
c12

)
η1 +

(
c2 +

3

5
c12

)
η2 − 1

5
c12η3 . (63)

In order to study the gradient field of Fη(η) over the marginal polytope parameterized by (η1, η2),

we need to express η3 as a function of η1 and η2. In order to do that, we parametrize the exponential

family as a ruled surface by means of the (α, t) parameters. Moreover, this parametrization has a

natural extension outside the marginal polytope, which allows one to study the stability of the critical

points on the boundary of the marginal polytope. We start by evaluating the gradient field of Fα,t(α, t)

in the (α, t) parametrization, then we map it to the marginal polytope in the η parameterization.

By expressing (η1, η2) as a function of (α, t), we obtain:

Fα,t(α, t) =
2α2(c1 + c12) + (2α2 + 2α + 1)(c0 + c2)− (2α2(c1 + c12) + (2α2 + 2α + 1)(c1α + c2))t

2α2 + 2α + 1
.

(64)

If we take partial derivatives of Equation (64) with respect to α and t, we have:

∂αFα,t(α, t) =
4(α2 + α)(c1 + c12)− ((4α4 + 8α3 + 12α2 + 8α + 1)c1 + 4(α2 + α)c12)t

4α4 + 8α3 + 8α2 + 4α + 1
, (65)

∂tFα,t(α, t) = −2α2c12 + (2α3 + 4α2 + α)c1 + (2α2 + 2α + 1)c2
2α2 + 2α + 1

. (66)

In the (α, t) parameterization, the Fisher information matrix reads:

Iα,t(α, t) = Eα,t[−∂2 log p(x;α, t)] =

[
4α2−(4α4+8α3+12α2+8α+1)t+4α
4α6+12α5+16α4+12α3+5α2+α

0

0 −(t2 − t)−1

]
. (67)

Finally, the natural gradient becomes:

∇̃Fα,t(α, t) = Iα,t(α, t)
−1∇Fα,t(α, t) (68)

=

[
(4α6+12α5+16α4+12α3+5α2+α)(4(α2+α)c1+4(α2+α)c12−((4α4+8α3+12α2+8α+1)c1+4(α2+α)c12)t)

(4α4+8α3+8α2+4α+1)(4α2−(4α4+8α3+12α2+8α+1)t+4α)
(2α2c12+(2α3+4α2+α)c1+(2α2+2α+1)c2)(t2−t)

2α2+2α+1

]
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We obtained a rational formula for the natural gradient in the (α, t) parameterization, which can

be easily extended outside the marginal polytope. However, notice that the inverse Fisher information

matrix and the natural gradient are not defined for:

t =
4(α2 + α)

4α4 + 8α3 + 12α2 + 8α + 1
. (69)

We also remark that over the boundary of the model, for t ∈ {0, 1} and α ∈ {−1, 0}, the determinant

of the inverse Fisher information vanishes, so that the matrix is not full rank. It follows that the

trajectories associated with natural gradient flows with initial conditions in the interior of the marginal

polytope remain in the marginal polytope.

In order to study the natural gradient field over the marginal polytope, we apply

a reparameterization of a tangent vector from the (α, t) parameterization to the (η1, η2)

parameterization. Indeed, by the chain rule and the inverse function theorem, we have:

∇Fη(α, t) = ∇Fα,t(α, t)
TJ(α, t)−1 (70)

The Jacobian of the map (α, t) �→ (η1, η2) is:

J(α, t) =

⎡⎣ − (6α2+8α+1)t−4α
2α2+2α+1

− 2(2α2−(2α3+4α2+α)t)(2α+1)
(2α2+2α+1)2

−2α3+4α2+α
2α2+2α+1

0 −1

⎤⎦ , (71)

with inverse:

J(α, t)−1 =

⎡⎣ 4α4+8α3+8α2+4α+1
4α2−(4α4+8α3+12α2+8α+1)t+4α

− 4α5+12α4+12α3+6α2+α
4α2−(4α4+8α3+12α2+8α+1)t+4α

0 −1

⎤⎦ . (72)

It follows that:

∇Fη(α, t) =

⎡⎣ 4(α2+α)c1+4(α2+α)c12−((4α4+8α3+12α2+8α+1)c1+4(α2+α)c12)t
4α2−(4α4+8α3+12α2+8α+1)t+4α

−4(α3+α2)c12−4(α2+α)c2+(2(2α4−α2)c12+(4α4+8α3+12α2+8α+1)c2)t
4α2−(4α4+8α3+12α2+8α+1)t+4α

⎤⎦ . (73)

Notice that, as for the inverse Fisher information matrix, the inverse Jacobian J(α, t)−1 is not defined

for t which satisfies Equation (69).

We compute the inverse Fisher information matrix by evaluating the covariance between the

sufficient statistics of the exponential family. Since over Ω, we have x2
1 = x1 + x1x2 and x2

1 = x1, it

follows that:

Iη(η)
−1 =

[
1
5
(9η1 + 3η2 − η3 − 2)− η21

1
5
(4η1 + 3η2 − η3 − 2)− η1η2

1
5
(4η1 + 3η2 − η3 − 2)− η1η2 η2 − η22

]
. (74)
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By parameterizing I−1
η with (α, t), we have:

Iη(α, t)
−1 (75)

=

⎡⎣ 4α4+8α3−(4α6+16α5+20α4+8α3+α2)t2+4α2+(4α5−12α3−8α2−α)t
4α4+8α3+8α2+4α+1

− (2α3+4α2+α)t2−(2α3+4α2+α)t
2α2+2α+1

− (2α3+4α2+α)t2−(2α3+4α2+α)t
2α2+2α+1

−t2 + t

⎤⎦ .

Finally, we derive the following rational formula for the natural gradient over the marginal polytope

parametrized as a ruled surface by (α, t):

∇̃Fη(α, t) = Iη(α, t)
−1∇Fη(α, t) (76)

=

⎡⎢⎣ −
((4α6+16α5+20α4+8α3+α2)c1+ 2(2α5+4α4+α3)c12+(4α5+12α4+ 12α3+6α2+α)c2)t2−4(α4+2α3+ α2)c1+

−4(α4+2α3+α2)c12−((4α5− 12α3−8α2−α)c1+2(2α5+2α4− 3α3−2α2)c12+(4α5+12α4+12α3+ 6α2+α)c2)t
4α4+8α3+8α2+4α+1

− (2α2c12+(2α3+4α2+α)c1+(2α2+2α+1)c2)t2−(2α2c12+(2α3+4α2+α)c1+(2α2+2α+1)c2)t
2α2+2α+1

⎤⎥⎦ .

3.5. Examples with Global and Local Optima

We conclude this section with two examples of natural gradient flows associated with two

different f functions. First, consider the case where c0 = 0, c1 = 1, c2 = 2, c3 = 3, so that:

Ω x1 x2 f1

1 0 0 0

2 0 1 2

3 1 0 1

4 2 1 10

. (77)

The function admits a minimum on {1}. In Figure 10, we plotted the vector fields associated with

the vanilla and natural gradient, together with some gradient flows for different initial conditions,

in the (α, t) parameterization. In Figure 11, we represent the vanilla and natural gradient field over

the marginal polytope in the (η1, η2) parameterization. Notice that, as expected, differently from the

vanilla gradient, the natural gradient flows converge to the unique global optima, which corresponds

to the vertex where all of the probability is concentrated over {1}. In the (α, t) parameterization, the

flows have been extended outside the statistical model by prolonging the lines of the ruled surface,

and as we can see, they remain compatible with the flows on the interior of the model, in the sense

that the nature of the critical point is the same for trajectories with initial conditions on the interior

and on the exterior of the model. In other words, the global optima is an attractor from both the

interior and the exterior of the model and similarly for the other critical points on the vertices, both

for saddle points and the unstable points, where the natural gradient vanishes.
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Figure 10. Vanilla gradient field and flows in blue (a) and natural gradient field

and flows in red (b), together with level lines associated with Fα,t(α, t) in the (α, t)

parameterization, for c0 = 0, c1 = 1, c2 = 2 and c3 = 3; the dashed blue lines in (b)

represent the points where ∇̃Fα,t(α, t) is not defined; see Equation (68).
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Figure 11. Vanilla gradient field in blue (a) and natural gradient field and flows in red (b),

together with level lines associated with Fη(α, t) over the marginal polytope, for c0 = 0,

c1 = 1, c2 = 2 and c3 = 3.

In the second example, we set c0 = 0, c1 = 1, c2 = 2, c3 = −5/2, and we have:

Ω x1 x2 f2

1 0 0 0

2 0 1 2

3 1 0 1

4 2 1 −1

(78)

so that f2 admits a minimum on {4}. In Figures 12 and 13, we plotted the vector fields associated with

the vanilla and natural gradient, together with some gradient flows for different initial conditions, in

the (α, t) and (η1, η2) parameterization, respectively. As in the previous example, natural gradient

flows converge to the vertices of the model; however, in this case, we have one local optima in {1}
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and one global optima in {4}, together with a saddle point in the interior of the model. Similarly to the

previous example, in the (α, t) parameterization, the flows have been extended outside the statistical

model, and the nature of the critical points is the same for trajectories with initial conditions in the

statistical model and in the extension of the statistical model.
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Figure 12. Vanilla gradient field and flows in blue (a) and natural gradient field and flows

in red (b) as in Figure 10, for c0 = 0, c1 = 1, c2 = 2 and c3 = −5
2
.
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Figure 13. Vanilla gradient field in blue (a) and natural gradient field and flows in red

(b) as in Figure 11, for c0 = 0, c1 = 1, c2 = 2 and c3 = −5
2
.

We conclude the section by noticing that in both examples, for certain values of t in Equation (69),

the natural gradient flows are not defined on the extension of the statistical model. As represented in

the figures, once a trajectory encounters the dashed blue line in the (α, t) parameterization, the flow

stops at that point.

4. Pseudo-Boolean Functions

We turn to discuss a case of considerable practical interest to see which of the results obtained in

the example of the previous section we are able to extend.

For binary variables, we use the coding ±1, that is x = (x1, . . . , xn) ∈ {+1,−1}n = Ω. For

any function f : Ω �→ R, with multi-index notation, f(x) =
∑

α∈L aαx
α, with L = {0, 1}n and

xα =
∏n

i=1 x
αi
i , 00 = 1. If M ⊂ L∗ = L \ {0}, the model where p ∈ E if:
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p ∝ exp

(∑
α∈M

θαX
α

)
=
∏
α∈M

(
eθα
)Xα

has been considered in a number of papers on combinatorial optimization; see [3–5]. The following

statements are results in algebraic statistics; cf. [20,35]. Let P1 =
{
f ∈ RΩ

∣∣∑
x∈Ω p(x) = 1

}
.

Proposition 6 (Implicitization of the exponential family). Given a function p : Ω → R, then p ∈ E
if, and only if, the following conditions all hold:

1. p(x) > 0, x ∈ Ω;

2.
∑

x∈Ω p(x) = 1;

3.
∏

x : xβ=1 p(x) =
∏

x : xβ=−1 p(x) for all β ∈ L∗ \M .

Proof. (⇒) If p ∈ E , then p(x) > 0, x ∈ Ω (Item 1) and
∑

x∈Ω p(x) = 1 (Item 2). Moreover,

log p(x) =
∑

α∈M θαx
α − ψ(θ). The function log p is orthogonal to each Xβ , β ∈ L∗ \M .

Hence:

0 =
∑
x∈Ω

log p(x)xβ =
∑

x : xβ=1

log p(x)−
∑

x : xβ=−1

log p(x) =

log
∏

x : xβ=1

p(x)− log
∏

x : xβ=−1

p(x) , (79)

which is equivalent to Item 3.

(⇐) Oppositely, the computation in Equation (79) implies that log p is orthogonal to each Xβ;

hence, there exists θ, such that log p =
∑

α∈M θαX
α + C. Now, Item 2 implies C = −ψ(θ).

Let R[Ω] denote the ring of polynomials in the indeterminates {p(x)|x ∈ Ω}. Given a binary

model M , the set of polynomials:⎧⎨⎩ ∏
x : xβ=1

p(x)−
∏

x : xβ=−1

p(x)

∣∣∣∣∣∣β ∈ L∗ \M
⎫⎬⎭ ,

generates an ideal J (M), which is called the toric ideal of the model M . Its variety V(M) is called

the exponential variety of M .

Proposition 7.

1. The exponential variety of M is the Zariski closure of the exponential model E .

2. The closure E of E in P≥ is characterized by p(x) ≥ 0, x ∈ Ω, together with Items 2 and 3 of
Proposition 6.
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3. The algebraic variety of the ring R[p(x) : x ∈ Ω], which is generated by the polynomials∑
x∈Ω p(x)− 1,

∏
x : xβ=1 p(x)−

∏
x : xβ=−1 p(x), β ∈ L∗ \M , is an extension E1 of E to P1.

4. Define the moments ηα =
∑

x∈Ω xαp(x), α ∈ L, i.e., the discrete Fourier transform of p, with
inverse p(x) = 2−n

∑
α∈L x

αηα. There exists an algebraic extension of the moment function
E � p �→ η(p) ∈M◦ to a mapping defined on E1.

Proof. 1. According to the implicitization Proposition 6, the exponential family is characterized

by the positivity condition together with the algebraic binomial conditions.

2. This follows from the implicit form, and it is proven, for example, in [20].

3. By definition.

4. As the mapping from the probabilities to the moments is affine and one-to-one, such a

transformation extends to a one-to-one mapping from the extended model to the affine space

of the marginal polytope.

We conclude this section by introducing the so-called no three-way interaction example.

On Ω = {0, 1}3, the full model in the statistics 0 �→ 1, 1 �→ −1, that is t = (−1)x = 1 − 2x,

is described by the matrix:

D3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 T3 T2 T2T3 T1 T1T3 T1T2 T1T2T3

000 1 1 1 1 1 1 1 1

001 1 −1 1 −1 1 −1 1 −1
010 1 1 −1 −1 1 1 −1 −1
011 1 −1 −1 1 1 −1 −1 1

100 1 1 1 1 −1 −1 −1 −1
101 1 −1 1 −1 −1 1 −1 1

110 1 1 −1 −1 −1 −1 1 1

111 1 −1 −1 1 −1 1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (80)

Note the lexicographic order of both the sample points and the statistics’ exponents.

The exponential family without the interaction term T1T2T3 is the same model as the toric model

without the three-way interaction, which is based on the matrix:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

000 1 0 0 0 0 0 0

001 1 1 0 1 0 1 0

010 1 0 1 1 0 0 1

011 1 1 1 0 0 1 1

100 1 0 0 0 1 1 1

101 1 1 0 1 1 0 1

110 1 0 1 1 1 1 0

111 1 1 1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (81)
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that is the probabilities as a function of the ζ’s are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 = c

p2 = cζ1ζ3ζ5

p3 = cζ2ζ3ζ6

p4 = cζ1ζ2ζ5ζ6

p5 = cζ4ζ5ζ6

p6 = cζ1ζ3ζ4ζ6

p7 = cζ2ζ3ζ4ζ5

p8 = cζ1ζ2ζ4

. (82)

The toric ideal of the toric model in Equation (82) is generated by the polynomial:

p2p3p5p8 − p1p4p6p7 = 0 , (83)

this means that the closure of the exponential family is given by the solution of the equations:⎧⎨⎩ p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 = 1

p2p3p5p8 − p1p4p6p7 = 0
. (84)

The η parameters are the expected values of the sufficient statistics of the full model,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η1

η2

η3

η4

η5

η6

η7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

000 001 010 011 100 101 110 111

001 1 −1 1 −1 1 −1 1 −1
010 1 1 −1 −1 1 1 −1 −1
011 1 −1 −1 1 1 −1 −1 1

100 1 1 1 1 −1 −1 −1 −1
101 1 −1 1 −1 −1 1 −1 1

110 1 1 −1 −1 −1 −1 1 1

111 1 −1 −1 1 −1 1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1

p2

p3

p4

p5

p6

p7

p8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (85)

In the ring:

R = Q[p1, p2, p3, p4, p5, p6, p7, p8, η1, η2, η3, η4, η5, η6, η7] (86)

we can consider the ideal I generated by the Equations (84) together with Equations (85). The

elimination ideal:

J = I ∩Q[η1, η2, η3, η4, η5, η6, η7] (87)

will express the model as a dependence between the η’s.
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Computation with CoCoA [36] gives the following polynomial:

f(η1, η2, η3, η4, η5, η6; η7) =

η21η3η4+η22η3η4−η33η4−η3η34+η21η2η5−η32η5+η2η
2
3η5+η2η

2
4η5+η3η4η

2
5−η2η35−η31η6+η1η

2
2η6+η1η

2
3η6

+η1η
2
4η6+η1η

2
5η6+η3η4η

2
6+η2η5η

2
6−η1η36−2η1η2η4−2η1η3η5−2η2η3η6−2η4η5η6+η3η4+η2η5+η1η6

+
(−2η1η2η3 − 2η1η4η5 − 2η2η4η6 − 2η3η5η6 + η21 + η22 + η23 + η24 + η25 + η26 − 1

)
η7

+ (η3η4 + η2η5 + η1η6) η
2
7 + (−1)η37 . (88)

The equation:

f(η1, η2, η3, η4, η5, η6; η7) = 0 (89)

is an expression of the model in the expectation parameters, and this expression is a polynomial

equation. We know unique solvability in η7 if (η1, η2, η3, η4, η5, η6) is in the interior of the marginal

polytope. As in the example of the previous section, it is possible to intersect the polynomial invariant

in Equation (83) with one or more sheaves of hyperplanes around some faces of the simplex, in order

to lower the degree of the invariant and thus decompose the model as the convex hull of probabilities

on the boundary of the model. We do not describe the details here, and we postpone the discussion

of this example to a paper which is in preparation.

5. Conclusions

Geometry and algebra play a fundamental role in the study of statistical models, and in particular

in the exponential family. In the fist part of the paper, starting from the definition of the natural

gradient over an exponential family, we described the relationship between its expression in the

basis of the sufficient statistics and in the conjugate basis. From this perspective, the terms natural

gradient and vanilla gradient, to denote gradients evaluated with respect to the Fisher and the

Euclidean geometry, together with their duality in the natural and expectation parameters, assume

a new meaning, since these definitions depend on the choice of the basis for the tangent space.

In order to study natural gradient flows for a generic discrete exponential model and, in particular,

their convergence, it is convenient to move to the mixture geometry of the expectation parameters

and to study trajectories over the marginal polytope. However, in order to obtain explicit equations

for the flows, it is necessary to determine the dependence between the moments associated with the

sufficient statistics of the model, which are constrained to belong to the marginal polytope, and the

remaining moments, which on the other side are not free. Such a relationship, which for finite search

spaces is given by a system of polynomial invariants, cannot be easily solved explicitly in general. In

the second part of the paper, by using algebraic tools, we proposed a novel parameterization based

on ruled surfaces for an exponential family, which does not require to solve the polynomial invariant

explicitly. We applied our approach to a simple example, and we showed that the surface associated

with the model in the full marginal polytope is a ruled surface. We claim that these results are not

peculiar to the example we described, and we are working towards an extension of this approach in a

more general case.
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Distributed Consensus for Metamorphic Systems Using a
Gossip Algorithm for CAT (0) Metric Spaces
Anass Bellachehab

Abstract: We present an application of distributed consensus algorithms to metamorphic systems.

A metamorphic system is a set of identical units that can self-assemble to form a rigid structure. For

instance, one can think of a robotic arm composed of multiple links connected by joints. The system

can change its shape in order to adapt to different environments via reconfiguration of its constituting

units. We assume in this work that several metamorphic systems form a network: two systems are

connected whenever they are able to communicate with each other. The aim of this paper is to

propose a distributed algorithm that synchronizes all of the systems in the network. Synchronizing

means that all of the systems should end up having the same configuration. This aim is achieved in

two steps: (i) we cast the problem as a consensus problem on a metric space; and (ii) we use a recent

distributed consensus algorithm that only makes use of metrical notions.

Reprinted from Entropy. Cite as: Bellachehab, A. Distributed Consensus for Metamorphic Systems

Using a Gossip Algorithm for CAT (0) Metric Spaces. Entropy 2015, 17, 1165–1180.

1. Introduction

Many problems in robotics, computer science and biology involve systems that can be described

as reconfigurable or metamorphic. These systems change their state through a set of local rules,

and in order to move from a given State A to another given State B, the system has to determine

the sequence of local moves that it should perform. Examples of such systems are: metamorphic

manufacturing systems [1], phylogenetic trees [2] and metamorphic robots [3].

The examples we will deal with in this paper will be about metamorphic robots, which consists

of a collection of individual modules that can connect/disconnect from each other and form a rigid

structure, referred to as a configuration or a state. Individual modules can change their position

relative to their neighbors, as long as the whole system remains connected and according to a set of

local rules. This allows the system to dynamically change its configuration and position. We assume

here that we have many identical metamorphic robots that are able to communicate with each other

and share information about their respective states. These robots form a communication network

that we will assume to be decentralized (i.e., without a central fusion node). We are interested in

the problem of distributed consensus among metamorphic systems: each system is in its own initial

state, and we would like all of them to end up in a common configuration.

Distributed consensus algorithms have been thoroughly studied, mainly in the cases of vector

data [4–6] or ordered data (e.g., [7]). The algorithm in [5], for example, is a distributed algorithm that

uses pairwise arithmetic averages of the data. However, without specific assumptions, configurations

cannot be averaged. The algorithm presented in [7] relies on pairwise maximum computations. In

the setting of metamorphic robots, however, configurations cannot be easily ordered, hence the need

to find an appropriate framework.
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In [8,9], the authors introduce a mathematical framework for analyzing metamorphic systems

based on embedding the state space—the space of all possible states of a given metamorphic

system—into a continuous space. This embedding, called the state complex is well suited to a recent

consensus algorithm [10] that relies on pairwise midpoint computations. Indeed, the state complex

can be equipped with an adequate metric, so as to yield a CAT (0) metric space. Hence, the main

contribution of this paper is to propose a distributed consensus algorithm that provably converges and

is well adapted to the state space of metamorphic systems.

The paper is organized as follows. The first section details the mathematical background

underpinning the metamorphic systems state space embedding, as well as gives a formal description

of the consensus problem. The second section exposes the random pairwise midpoint algorithm.

Section 3 explains how to compute the midpoint of any two points in a cubical complex. Finally,

Section 4 provides numerical simulations for the proposed consensus algorithm.

2. Framework

2.1. Metamorphic Systems: Definition and Examples

There are many examples of metamorphic/reconfigurable systems, such as reconfigurable

manufacturing systems [1] and phylogenetic trees [2]. Another example, one in which we will be

more interested in this paper, is that of metamorphic robots, which were described by Østergaard et
al. in [11] as robotic systems:

(1) That consist of several identical and physically independent unit modules;

(2) For which its modules can be connected to each other in many possible ways in order to form

rigid structures;

(3) For which its modules can disconnect and reconnect while the system is active;

(4) For which it can change the way its modules are connected, i.e., it is fully automatic.

Some of these robots are lattice-based, meaning that the robotic modules occupy a discrete set of

possible positions, this set of possible positions forming a lattice. The nature of the lattice depends on

the geometry of the modules: it can be hexagonal, squared, dodecahedral, etc. These metamorphic

systems can be mathematically described as a collection of states on a graph (see Appendix A).

Representing the various states of a metamorphic system by their lattice configuration will prove

to be insufficient for finding a simple consensus protocol. Indeed, the lattice representation does

not provide an ordering of states. Following [8], we represent a system configuration as a point

in a cubical complex S , called the state complex (see, also, Appendix B for a definition). The

zero-dimensional skeleton of this complex is the set of states, and two vertices are linked by an edge

if their corresponding states differ by a single action of a generator (see Appendix A). A k-cube of the

complex represents k commutative movements, i.e., movements that are non-overlapping whatever

their order (see [8] for a rigorous definition).

An example of a metamorphic system is the robotic arm, which consists of attached links, inside

a grid with one of its extremities attached to the base point (0, 0) of the grid (see Figure 1).
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Figure 1. Example of a lattice-based reconfigurable system: the robotic arm. The edges

in color indicate the presence of a unit module; a black edge indicates its absence.

The arm is attached at its base point (0, 0). Here, an elementary movement has been

performed by the module at the end of the arm, which changes the overall form of the

system.

We assume in this work that the metamorphic systems form a network; two systems are connected

whenever they are able to communicate with each other. The aim is to synchronize all of the systems

that compose the network, i.e., all of the systems should have the same configuration, as shown in

the example of Figure 2.

Having described the model chosen for metamorphic systems, we next review the mathematical

framework of the consensus problem.

2.2. Framework of the Consensus Problem

2.2.1. Network

Following the approach of [5], we model the network of metamorphic systems by a connected

graph G = (V,E) with vertices V representing the metamorphic systems (agents) and whose

edges E represent the communication links between these agents. We assume the graph to be

undirected, which means that if an agent can communicate with another agent, then the converse

is also true; this hypothesis is not too unrealistic if we suppose that all of the agents are identical

and that the movement speed of the agents is very small compared to their communication speed.

When a communication link exists between two agents, we say that the two agents are neighbors.

We denote by N (v) the set of all neighbors of the agent v ∈ V .
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Figure 2. In this example, we are given five robotic arms. In the leftmost figure

(describing the initial state), each arm has its own configuration. The rightmost figure

represents a consensus state, in which all of the arms share a common configuration.

As in [5], we assume that the time model is asynchronous, i.e., that each agent has its own

Poisson clock that ticks with a common intensity λ (the clocks are identically made), and moreover,

each clock is independent of the other clocks. When an agent clock ticks, the agent is able to perform

some computations and wake up some neighboring agents. This time model has the same probability

distribution as a global single clock ticking with intensity Nλ and selecting uniformly randomly a

single agent at each tick. This equivalence is described, e.g., in [5]. Notice also that link e = {v, w}
is not necessarily used by agents v and w at a given time: v or w might not be awakened.

2.3. Communication

At a given time k, we denote by Vk the agent whose clock ticked and by Wk the neighbor that

was in turn awaken. Therefore, at time k, the only communicating agents in the whole network are

Vk and Wk. A single link is then active at each time; hence, at a given time, most links are not used.

We assume that (Vk,Wk) are independent and identically distributed and that the distribution of Vk is

uniform over the network, while the distribution of Wk is uniform in the neighborhood of Vk. More

precisely, the probability distribution of (Vk,Wk) is given by:

P[Vk = v,Wk = w] =

⎧⎨⎩ 1
N

1
deg(v)

if v ∼ w

0 otherwise

Notice that this probability is not symmetric in (v, w). It is going to turn out to be convenient to also

consider directly the link {Vk,Wk}, forgetting which node was the first to wake up and which node

was second. In this case, P[{Vk,Wk} = {v, w}] is of course symmetric in (v, w). One has:

P[{Vk,Wk} = {v, w}] =
⎧⎨⎩ 1

N
( 1
deg(v)

+ 1
deg(w)

) if v ∼ w

0 otherwise

The communication framework considered here is standard [5].
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2.3.1. Data Space

Each node v ∈ V can store a value xv ∈ S that lies in a cubical complex S (see Appendix B).

We assume that the cubical complex is equipped with the metric d induced from the Euclidean

metric on each cube. The skeleton of the complex is a metric graph called the transition graph and is

denoted.

Initially, each node v has an initial value xv(0), and X0 = (x1(0), . . . , xN(0)) is the tuple of

initial values. A consensus state has the form X∞ = (x∞, . . . , x∞) with: x∞ ∈ S . We denote by

xv(k) the value stored by the agent v ∈ V at time k and Xk = (x1(k), . . . , xN(k)) the global state of

the system at that instant.

We want to apply a distributed algorithm in order to achieve the consensus state. (S, d) being

a metric space, a candidate algorithm could be the average pairwise midpoint [10] algorithm. This

algorithm requires (S, d) to be a CAT (0) metric space.

Definition 1. Let (M, d) be a metric space. A geodesic curve c in X is a map c : [0, l] → X from a
closed interval I = [0, l] to X , such that, for all t.t′ ∈ I:

d(c(t), c(t′)) = |t− t′|
A metric space is said to be geodesic if and only if, for any two points x, y ∈ X , there exists a

geodesic c : [0, l]→ X , such that c(0) = x and c(l) = y.

Definition 2 (CAT (0) inequality). Assume (X, d) is a geodesic metric space (a metric space in which
any two points can be related by a geodesic) and Δ = (c0, c1, c2) is a geodesic triangle with vertices
p = c0(0), q = c1(0) and r = c2(0). Let Δ̄ = (p̄, q̄, r̄) denote a comparison triangle (a triangle with
the same edge lengths as Δ) in the Euclidean space R2. Δ is said to satisfy the CAT (0) inequality
if, for any x = c0(t) and y = c2(t

′), one has:

d(x, y) ≤ d̄(x̄, ȳ)

where x̄ is the unique point of [p̄, q̄], such that d(p, x) = d̄(p̄, x̄), and ȳ on [p̄, r̄], such that d(p, y) =
d̄(p̄, ȳ).

A geodesic metric space is said to be locally CAT (0) if any geodesic triangle of sufficiently small
perimeter verifies the CAT (0) inequality. It is said to be globally CAT (0) if any geodesic triangle
verifies the CAT (0) inequality.

For a thorough introduction to the subject, see [12,13].

Any state complex can be shown to be a locally CAT (0) space [14]. The global CAT (0)

proprietyrequires an additional constraint on the state complex. In [14], a combinatorial criterion

based on the notion of posets with inconsistent pairs is provided to verify whether a state complex is

globally CAT (0).

Assumption 1. We shall make the fundamental assumption that the state complex of any
metamorphic system involved in this paper is globally CAT (0). This assumption, while restrictive,
still covers many interesting examples, like the robotic arm [3], phylogenetic trees [2], the hexagonal
system [8], etc.
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The following proposition links the existence and uniqueness of geodesics and midpoints with

the CAT (0) property:

Proposition 1. If x and y are two points in a globally CAT (0) space X , then there is but one
geodesic γ : [0, 1] → X , such that γ(0) = x and γ(1) = y, which we will denote from now on
as [x, y]. The midpoint of x and y is defined as

〈
x+y
2

〉
:= [x, y](1

2
) and is always well defined and

unique.

Now that the working framework is set (connected and undirected communications graph,

Poisson clocks, data space, etc.), we will propose in the next section a consensus algorithm based on

the gossip protocol [5] adapted to CAT (0) metric spaces.

3. Algorithm

3.1. Description

In this section, we expose a distributed algorithm that relies on distributed midpoint computation

in S to drive a system of identical metamorphic systems into a consensus configuration—the random

pairwise midpoint algorithm [10]—which works as follows: At each count of the virtual global clock,

one node v is selected uniformly randomly from the set of agents V . The node v then randomly selects

a node w from the neighbors of v in the communications graph. Both node v and w then compute

and update their value to 〈xv+xw

2
〉.

This algorithm is well defined, since for any couple of points x, y ∈ S , their midpoint exists and

is unique. This is due to the fact that S is a globally CAT (0) space.

Algorithm 1 Random Pairwise Midpoint.

Input: a graph G = (V,E) and the initial nodes configuration Xv(0), v ∈ V

for all k > 0 do
At instant k, uniformly randomly choose a node Vk from V and a node Wk uniformly randomly

from N (Vk).

Update:

XVk
(k) =

〈
XVk

(k−1)+XWk
(k−1)

2

〉
XWk

(k) =
〈

XVk
(k−1)+XWk

(k−1)

2

〉
Xv(k) = Xv(k − 1) for v �∈ {Vk,Wk}

end for

This algorithm belongs to the class of consensus protocols, which has been shown to achieve

convergence towards a consensus state in [15]; the convergence rate is established as linear in [10].

This assumes, however, that it is possible to compute the midpoint of any two points with reasonable

complexity. While there is no closed expression for the midpoint of any two points in S , there is a

procedure described in the next section that permits the computation of the midpoint.
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4. Computing the Midpoint

In [16], an algorithm is given for computing means and medians in general CAT (0) metric

spaces; we are here interested in finding the midpoint
〈
x+y
2

〉
of any two given points x and y of

a CAT (0) cubical complex S , so we first determine the geodesic [x, y] between x and y.

Let x = (x1 . . . xN) and y = (y1 . . . yN) be the coordinates of x and y in the current standard

embedding of S in ZN (see Appendix C for an exposition of the standard embedding).

Then, we define v = (v1, . . . , vN) and w = (w1, . . . , wN), such that for i ∈ {1, . . . , N}:⎧⎨⎩vi = 0 if xi ≤ 0.5

vi = 1 if xi > 0.5

Additionally: ⎧⎨⎩wi = 0 if yi ≤ 0.5

wi = 1 if yi > 0.5

v and w are, respectively, the closest vertices of S to x and y (see Figure 3).

{3}
r

{2, 3}

{1, 2}
{4}

{2}

{1}

{2, 4}

{5}

{2, 4, 5}

x

y

Figure 3. Example of a cubical complex with an initial root vertex r. We want the

geodesic between the points x = (1, 0.25, 0, 0, 0) and y = (0, 0.75, 0, 1, 0.75).

Next, we re-root the cubical complex at v and change the labeling of its vertices consequently, as

well as the coordinates of x and y. To obtain the new coordinates of any point a = (a1, . . . , aN) in

the new standard embedding, we update: ai,new = 1 − ai,old if vi = 1 and ai,new = ai,old if vi = 0

(see Figures 3 and 4).
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{1, 3} {1}

{1, 2, 3}

{2}
{1, 4}

{1, 2}

r

{1, 2, 4}

{1, 4, 5}

{1, 2, 4, 5}

x

y

Figure 4. We re-root the cubical complex at v, and the new coordinates are: x =

(0, 0.25, 0, 0, 0) and y = (1, 0.75, 0, 1, 0.75). The coordinates of w are (0, 1, 0, 1, 1).

We denote by Iw = {i ∈ {1, . . . N}|wi = 1}, the order ideal associated with the vertex w. Now

that the complex is re-rooted, we need to find the cubical sequence that contains the geodesic between

x and y. According to [14], a valid sequence (Ck)1≤k≤n = (Ik,Mk)1≤k≤n of cubes containing the

geodesic, consists of a sequence of order ideals I1 ⊂ I2 ⊂ · · · ⊂ In = Iw and maximal antichains

Mk ⊂ Ik, 1 ≤ k ≤ n (see Appendix B for the representation of individual cubes of a complex). To

find this sequence, we take the subset of minimal elements of Iw and I1, and set M1 = I1. Then, in

order to form Ck = (Ik,Mk) from Ck−1 = (Ik−1,Mk−1), we take the subset of minimal elements mk

of Q−Ik−1, put Ik = Ik−1∪mk and let Mk be the maximal antichain of Ik. Using this procedure until

Ik = P , we obtain a valid cube sequence, which contains the geodesic. In the example of Figures 3

and 4, we have: I1 = {2, 3}, M1 = {2, 3} and I2 = {2, 3, 4}, M2 = {2}.
After the cube sequence has been determined, we then have to find the ‘breakpoints’ from which

the geodesic passes. The points {p1, . . . , pn−1} are such that: ‖x− p1‖+ ‖p1− p2‖+ · · ·+ ‖pn−1−
pn‖+ ‖pn − y‖ is minimal and that for each k ∈ {1, . . . , n− 1} pk ∈ Fk with Fk being the common

frontier of (Ik,Mk) and (Ik+1,Mk+1), which is the cubical cell (Ik,Mk ∩Mk+1). This problem can

be cast as a touring problem with n polyhedral regions and 2n facets [14].

min t0 + t1 + · · ·+ tn

∀k ∈ {0 . . . n} : tk ≥ ‖pk − pk+1‖
pk ∈ Fk, k = 1 . . . n

p0 = x, pn+1 = y

The touring problem is a second order cone optimization problem, for which numerical solvers

exist. We solve the touring problem and obtain a series of points p1 . . . pn and the distances t1 . . . tn−1

between pk and pk+1 (see Figure 5).
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{1, 3} {1}

{1, 2, 3}

{2}
{1, 4}

{1, 2}

r

{1, 2, 4}

{1, 4, 5}

{1, 2, 4, 5}

x

y

p1

p2

Figure 5. In this example, the cube complex and the points x and y are such that we have

a non-co-linear sequence of points {p1, p2} that the geodesic between x and y (drawn in

red) passes through. The cube sequence {C1, C2, C3} contains this geodesic.

Knowing the sequence of points (pi)1≤i≤n and distances (ti)0≤i≤n, we want to determine the

midpoint of x and y; we have two cases:

Case 1: n > 0.

First, we determine the cubical cell of (Ck)1≤k≤n+1 that contains the midpoint. Let i0 =

min
{
1 ≤ i ≤ n|d(x, pi) ≥ d(x,y)

2

}
; then, we have:

〈
x+y
2

〉 ∈ Ci0 and
〈
x+y
2

〉 ∈ [pi0 , pi0+1]. Using

the convention p0 = x and pn+1 = y, the analytic expression of
〈
x+y
2

〉
is:〈

x+ y

2

〉
= pi0 +

D

ti0
(pi0+1 − pi0)

with:

• D = 1
2

∣∣∣∑i0−1
k=0 tk −

∑n+1
k=i0+1 tk − ti0

∣∣∣: If 2 ≤ i0 ≤ n− 1.

• D = 1
2
ti0: If i0 = 1.

• D = 1
2

∣∣∣ti0 −∑i0−1
k=0 tk

∣∣∣: If i0 = n.

Case 2: n = 0.

In this case, x and y belong to the same cubical cell, and we have:
〈
x+y
2

〉
= x+y

2
.

5. Numerical Results

In this section, we apply the previously described algorithm to two examples of a lattice-based

metamorphic systems, the robotic arm, and the hexagonal lattice robot.

To understand why the robotic arm is CAT (0), one must construct a poset with inconsistent pairs

associated with the state complex of the arm (see Appendix B.2).

Definition 3. Define for any robotic arm with n articulations Rn the set Pn = {(x, y)|y ≥ 0,
y ≤ x, x ≤ n− 1}, and define the partial order relation ≤, such that (x1, y1) ≤ (x2, y2) if and only
if x1 ≤ x2 and y1 ≤ y2.

Using the partially ordered set Pn, we can show that the state complex of Rn is CAT (0) through

the following proposition:
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Proposition 2. [3] Let Sn be the cubical complex of Rn rooted at the state where the arm is
completely horizontal.

Then, there is a bijection between the possible states of Rn and the order ideals of Pn.

We analyze the convergence of the pairwise midpoint algorithm using as a criterion the

variance function:

Definition 4. Given a configuration x = (x1, . . . , xN) ∈ SN , the variance function is defined as:

σ2(x) =
1

N

∑
{v,w}∈P2(V )

d2(xv, xw)

where d is the distance between two points in S
If σ2(x) = 0, then x1 = x2 · · · = xN , and we have achieved a consensus state. In [10], it is

proven that for a sequence of points X(k) = (x1(k), . . . , xN(k)) generated according to the pairwise

midpoint algorithm, the function σ2 converges to zero at a linear rate.

Theorem 1. Let Xk = (x1(k), ..., xN(k)) denote the sequence of random variables generated by
Algorithm 1; then, there exists L < 0, such that,

lim sup
k→∞

logE[σ(Xk)]

k
≤ L

In order to randomly sample a set of initial coordinates, we begin by assigning to each

metamorphic system a vector (x1, . . . , xN), where each xi is sampled randomly and uniformly from

the interval [0, 1]. Then, we do the following: we check if there exists i, j, such that i ≺ j and xj �= 0;

if so, then set xi = 1 (the ≺ relation being the partial order of the poset associated with the cubical

complex S in its initial rooting).

5.1. Results for the Robotic Arm

We plot the log-variance log σ2 as a function of the number of iterations k, for a complete graph

of 10 robotic arms of n = 7 joints (see Figure 6), then for a path graph of 10 robotic arms of the same

type. In both cases, we observe in Figure 7 a linear curve with a negative slope in accordance with

the results of [10]. In the case of the path graph, however, the slope is smaller than for the complete

graph.

Figure 6. On the right, a robotic arm with n = 7 articulations and the associated state

graph.
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Figure 7. Plot of n → log σ2 for a network of k = 10 robotic arms with n = 7

articulations. (a) The underlying communications graph is the complete graph, while on

(b), it is the path graph. Because of the stochastic nature of the algorithm, the procedure

is averaged over 30 runs. The resulting curve is a line of a negative slope of bigger

magnitude for the complete graph than for the path graph.

5.2. Results for the Planar Hexagonal Lattice

The same analysis is applied to the hexagonal lattice system [8], which is a connected aggregate

of hexagonally-shaped modules that occupy a planar lattice. Its graph representation and associated

cubical complex can be seen in Figure 8.

We observe similar patterns as for the robotic arms experiment; in Figure 9 the function log σ2

decreases at a linear rate for both the complete graph and the path graph cases.

Figure 8. On the right, a hexagonal lattice system and its associated state graph.



380

0 10 20 30 40 50
−10

−8

−6

−4

−2

0

2

4

6

8

10

n−iterations

lo
g 

va
ria

nc
e

 

 
Pairwise midpoint algorithm for the hex system
95% confidence range

0 10 20 30 40 50 60 70 80
−4

−3

−2

−1

0

1

2

3

4

5

n−iterations

lo
g 

va
ria

nc
e

 

 
Random pairwise midpoint for the path graph
95% confidence range

(a) (b)

Figure 9. Plot of n → log σ2 for a network of k = 10 hexagonal systems. (a) The

underlying communications graph is the complete graph, while on (b), it is the path

graph. Because of the stochastic nature of the algorithm, the procedure is averaged over

30 runs. The resulting curve is a line of a negative slope of bigger magnitude for the

complete graph than for the path graph.

6. Conclusions

The random pairwise midpoint algorithm can be successfully applied to discrete combinatorial

systems, like the case of metamorphic systems. This is a non-trivial example of a purely metric

application of this algorithm, whose exponential convergence towards a consensus state has been

confirmed through numerical experiments on two examples of metamorphic systems. The same

method could be applied to the space of phylogenetic trees. Another application could be that of

distributed optimization, where N identical metamorphic systems, each with its own utility function

fi : S → R: i ∈ {1, . . . , N}, try to minimize a collective objective function 1
N

∑N
i=1 fi; the

underlying communication network has no fusion node.

Appendix

A. Modeling Metamorphic Systems

For a rigorous definition of metamorphic systems, we follow the approach of [8]. We represent

the lattice by its dual graph G = (V(G), E(G)), whose vertices represent the individual cells of the

lattice; two vertices are joined by an edge if and only if their corresponding cells are adjacent in the

lattice. We associate with this graph a set of labels A on the set of vertices to indicate whether

the corresponding cell is occupied or not and, in the former case, whether it is occupied by an

obstacle or by a module and of which type. A state of the system is any map U : G → A.

The metamorphic system dynamically changes its state through a set of elementary movements
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that satisfy the following rules: (i) units cannot overlap during reconfiguration; and (ii) overall

connectivity should always be maintained. This is done via generators, which are defined below:

Definition 5. [9] Let G = (V(G), E(G)) be a graph and A a set of labels. A generator φ is a
collection of three objects:

• A support SUP(φ) ⊂ G, which is a subgraph of G;
• A trace, TR(φ) ⊂ SUP(φ), which is a subgraph of SUP(φ);
• An non-ordered pair of states u0, u1 : V(SUP(φ))→ A, verifying:

u0|V(SUP(φ))−V(TR(φ)) = u1|V(SUP(φ))−V(TR(φ))

where V(SUP(φ)) are the vertices of SUP(φ).

The support of the generator corresponds to the region of the graph that contains the necessary

information to verify whether the movement is feasible (i.e., the absence of obstacles, no modules

overlapping and the connectivity of the system is maintained). The trace of the generator is the region

of the graph where the movement actually takes place.

Definition 6. [9] A generator is said to be admissible at a state U if: U |V(SUP(φ)) = û0. The action
of φ, denoted Φ, maps a state u : V(G)→ A to a new one Φ[u] : V(G)→ A, given by:

Φ[U ] :=

⎧⎨⎩U : on V(G)− V(TR(φ))
û1 : on V(TR(φ))

Thus, a generator φ acts on a state U by modifying its restriction on the vertices of TR(φ) from

u0 to u1. This corresponds to an elementary movement of unit modules. However, a metamorphic

system should be able to perform many such elementary movements simultaneously; in order for that

to be feasible, the movements have to be compatible, i.e., their simultaneous execution does not lead

to module overlap or loss of system connectivity. For that, we introduce the following definition:

Definition 7. [9] In a metamorphic system, a collection of generators {φi} is said to be
commutative if:

i �= j ⇒ TR(φi) ∩ SUP(φj) = ∅,

B. The State Complex

B.1. Definition

A cubical complex can be seen as a collection of cubes glued together using isometries.

Definition 8. [17] (p.112) Let Γ ⊂ N and (Ci)i∈Γ be a collection of Euclidean unit cubes of various
dimensions. Additionally, let X =

∐
i∈Γ Ci be a disjoint union of these cubes. A cubical complex S

is the quotient of X by an equivalence relation ∼, such that if p : X → S is the natural projection,
then:
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• For every i ∈ Γ, the restriction pi of p to the cube Ci is injective.
• If pi(Ci) ∩ pj(Cj) �= ∅, then there is an isometry hi,j from a face Ti ⊂ Ci onto a face Tj ⊂ Cj ,

such that pi(x) = pj(x
′) if and only if x′ = hi,j(x).

Definition 9. [9] The state complex S of a metamorphic system is a cubical complex. Each k-cube
e(k) of S is an equivalence class [u, (φi)

k
i=1], where:

• (φi)
k
i=1 is a k-upletof commuting generators.

• u is a state for which the generators (φi)
k
i=1 are admissible.

• [u0, (φi)
k
i=1] = [u1; (φ

′
i)
k
i=1] if and only if ∃σ ∈ �k, such that: ∀i ∈ {1, . . . , k}; we have:

φi = φ′
σ(i); and u0 = u1 on the subgraph: G −⋃TR(φαi

).

The boundary of each k-cube is a collection of 2k faces:

∂[u; (φαi
)ki=1] =

k⋃
i=1

([u; (φαj
)j =i] ∪ [φαi

[u]; (φαj
)j =i])

One advantage of using the cubical complex representation over that of the transition graph is that

it shows which elementary movements can be performed simultaneously; and, thus, contains more

information than the transition graph. It is not generally computationally feasible to construct the

cubical complex associated with a given reconfigurable system, but there are some interesting cases

where it is possible to do so, like the case of the robotic arm [3].

B.2. Encoding as a Partially-Ordered Set

Given a cubical complex S and a vertex v (called the root vertex) of S , one can introduce a partial

order relation in the set of vertices of S by stating that a u ≺ w if and only if there is an edge path

geodesic (i.e., a geodesic on the metric graph associated with S) from the root v to w that passes

through u. The complex S can thus be seen as a partially-ordered set. In [14], it is shown that if

one can choose the special node v, such that the set of vertices of S equipped with the partial order

relation ≺ is a poset with inconsistent pairs, then S is a globally CAT (0) cubical complex. This

last propriety guarantees the existence and uniqueness of the midpoint of any given two points and

allows us to apply the random midpoint algorithm on a network of agents whose data are encoded in

a cubical complex. We assume in this paper that all of the studied complexes are CAT (0).

Reciprocally, given a poset with inconsistent pairs (P,≺), one can build a lattice whose summits

are the order ideals of (P,≺) that do not contain any inconsistent pairs (such order ideals are said to

be consistent). An edge is drawn between two summits if their corresponding ideals differ by exactly

one element. The vertices are ordered according to their corresponding ideals, u < w if and only if

the order ideal Iu corresponding to the vertex u is a subset of Iw, the order ideal associated with the

vertex w (u < w ⇔ Iu ⊂ Iw), as shown in Figure B1.
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v
{1}

{2}

{3}

{1,2}

{1,3}

{2,3} {1,2,3}

{1,4}

{1,3,4}

{1,4,5}

{1,3,4,5}

{1,4,6}

{1,3,4,6}

{1,3,4,5,6}

{1,4,5,6}

Figure B1. The cubical complex associated with the poset (P = {1, 2, 3, 4, 5, 6},≺),
such that: 1 ≺ 4, 1 ≺ 5 and 4 ≺ 6. Each vertex is labeled by a consistent order ideal of

P .

Individual cubes are represented by a pair (I,M), with I a consistent order ideal and M a subset

of the maximal element of I; such a cube is of dimension |M |, and its vertices are found by removing

from I all of the possible subsets of M (Figure B2 gives an example).

v
{1}

{2}

{3}

{1,2}

{1,3}

{2,3} {1,2,3}

Figure B2. In this example, the 2-dimensional cube highlighted in color is represented

by the pair (I,M) with I = {1, 2, 3} and M = {1, 3}.

C. The Standard Embedding

One way to embed the cubical complex associated with a poset with inconsistent pairs of cardinal

N is the so-called standard embedding [14]. An element u ∈ S is represented by an N -tuple u =

(u1, . . . , uN), where ∀i ui ∈ [0, 1], and if for some (i, j) ∈ {1, . . . , N}2, we have uj �= 0 and uj > ui,

then we must have ui = 1. Furthermore, if xi and xj are inconsistent, then: uiuj = 0.

Figure 3 shows an example of a cubical complex where the standard embedding coordinates of

the points x and y are: x = (1; 0.25; 0.25; 0) and y = (1; 0.75; 1; 0.75).
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Geometric Shrinkage Priors for Kählerian Signal Filters

Jaehyung Choi and Andrew P. Mullhaupt

Abstract: We construct geometric shrinkage priors for Kählerian signal filters. Based on the

characteristics of Kähler manifolds, an efficient and robust algorithm for finding superharmonic

priors which outperform the Jeffreys prior is introduced. Several ansätze for the Bayesian predictive

priors are also suggested. In particular, the ansätze related to Kähler potential are geometrically

intrinsic priors to the information manifold of which the geometry is derived from the potential. The

implication of the algorithm to time series models is also provided.

Reprinted from Entropy. Cite as: Choi, J.; Mullhaupt, A.P. Geometric Shrinkage Priors for Kählerian

Signal Filters. Entropy 2015, 17, 1347–1357.

1. Introduction

In information geometry, signal processing is one of the most important applications. In

particular, an information geometric approach to various linear time series models has been also

well-known [1–7]. The geometric description of the linear systems is not confined to the pursuit of

mathematical beauty. Komaki’s work [8] is in the line of developing practical tools for Bayesian

inference. Using the Kullback–Leibler divergence as a risk function for estimation, he found that

superharmonic shrinkage priors outperform the Jeffreys prior in the viewpoint of information theory.

Better prediction in the Bayesian framework is attainable by the Komaki priors.

However, a difficult part of Komaki’s idea in practice is verifying whether or not a prior function

is superharmonic. In particular, when high-dimensional statistical manifolds are considered, it is

technically tricky to test the superharmonicity of prior functions because Laplace–Beltrami operators

on the manifolds are non-trivial. Although some superharmonic priors for the autoregressive (AR)

models were found not only in the two-dimensional cases [5,7] but also in arbitrary dimensions

[6], there is no clue about the Bayesian shrinkage priors of more complicated models such as

the autoregressive moving average (ARMA) models, the fractionally integrated ARMA (ARFIMA)

models, and any arbitrary signal filters. Additionally, generic algorithms for systematically obtaining

the information shrinkage priors are not known yet.

The connection between Kähler manifolds and information geometry has been reported [4,9–12]

and the mathematical correspondence between a Kähler manifold and the information geometry of

a linear system is recently revealed. It is found that the information geometry of a signal filter with

a finite complex cepstrum norm is a Kähler manifold [7]. In particular, the Hermitian condition on

the Kählerian information manifolds is clearly seen under conditions on the transfer function of the

linear system. Moreover, many practical aspects of introducing Kähler manifolds to information

geometry for signal processing were also reported in the same literature [7]. One of the benefits in

the Kählerian information geometry is that the simpler form of the Laplace–Beltrami operator on the

Kähler manifold is beneficial to finding the Komaki priors.
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In this paper, we construct Komaki-style shrinkage priors for Kählerian signal filters. By

introducing an algorithm which is based on the characteristics of Kähler manifolds, the Bayesian

predictive priors outperforming the Jeffreys prior can be obtained in a more efficient and more robust

way. Several prior ansätze are also suggested. Among the ansätze, the geometric shrinkage priors

related to Kähler potential are intrinsic priors on the information manifold because the geometry

is given by the Kähler potential. We also provide the geometric priors for the ARFIMA models

where the Komaki priors have not been reported. The structure of this paper is as follows. In next

section, theoretical backgrounds of Kählerian information geometry and superharmonic priors are

introduced. In Section 3, an algorithm and ansätze for the geometric shrinkage priors are suggested.

The implication of the algorithm to the ARFIMA models is given in Section 4. We conclude the

paper in the last section.

2. Theoretical Backgrounds

2.1. Kählerian Filters

A linear filter with n-dimensional complex parameters ξ is characterized by a transfer function

h(w; ξ) in the frequency domain w with

y(w) = h(w; ξ)x(w)

where y and x are complex output and input signals, respectively. A spectral density function S(w; ξ)

is defined as the absolute square of the transfer function

S(w; ξ) = |h(w; ξ)|2

and it is a real-valued measurable quantity.

In information geometry, it is well-known by Amari and Nagaoka [1] that the geometry of a linear

system is determined by the spectral density function S(w; ξ) under the stability condition, minimum

phase, and
1

2π

∫ π

−π

| logS(w; ξ)|2dw <∞.

The last condition is also known as the finite unweighted norm of the power cepstrum of a filter

[13,14]. For a linear system with the spectral density function satisfying the above conditions, the

metric tensor of the information geometry is given by

gμν(ξ) =
1

2π

∫ π

−π

(∂μ logS)(∂ν logS)dw

where the partial derivatives are taken with respect to the model parameters ξ.

The metric tensor can be expressed in a complexified coordinate system and the Z-transformed

transfer function. With the Z-transformation, the holomorphic transfer function can be written in the

form of series expansion of z

h(z; ξ) =
∞∑
r=0

hr(ξ)z
−r (1)
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where hr is an impulse response function. The Z-transformed power spectrum is also defined in

the similar way. In this case, the conditions on the transfer function for constructing information

geometry are identical to the spectral density function representation except for

1

2πi

∮
|z|=1

| log h(z; ξ)|2dz
z

<∞

and it is a necessary condition for the finite power cepstrum norm. The condition indicates that the

Hardy norm of the logarithmic transfer function, also known as the unweighted complex cepstrum

norm [14,15], is finite. The metric tensor of the geometry is given by the transfer function,

gij(ξ) =
1

2πi

∮
|z|=1

∂i log h(z; ξ)∂j log h(z; ξ)
dz

z
(2)

gij̄(ξ) =
1

2πi

∮
|z|=1

∂i log h(z; ξ)∂j̄ log h̄(z̄; ξ̄)
dz

z
(3)

where i, j run from 1 to n and gīj̄, gīj are the complex conjugates of gij and gij̄ , respectively.

After plugging the Z-transformed transfer function, Equation (1), into the metric tensor

expressions, Equations (2) and (3), the metric tensor is expressed with the series expansion

coefficients in z of the logarithmic transfer function by

gij = ∂iη0∂jη0

gij̄ = ∂iη0∂j̄ η̄0 +
∞∑
r=1

∂iηr∂j̄ η̄r

where ηr is the coefficient of z−r in the series expansion of the logarithmic transfer function, also

known as a complex cepstrum coefficient [15]. It is obvious that η0 = log h0.

Recently, it is found by Choi and Mullhaupt [7] that the information geometry of a linear system

with a finite Hardy norm of a logarithmic transfer function (or the complex cepstrum norm) is the

Kähler manifold that is the Hermitian manifold with the closed Kähler two-form: gij = gīj̄ = 0

for the Hermitian manifold and ∂igjk̄ = ∂jgik̄, ∂īgkj̄ = ∂j̄gkī for the closed Kähler two-form.

Additionally, the Hermitian structure can be explicitly seen in the metric tensor if and only if the

impulse response function with the highest degree in z, i.e., h0 in the unilateral transfer function

case, is a constant in model parameters ξ. In this paper, for simplicity, we only consider unilateral

transfer functions with non-zero h0 and the Kähler manifolds with the explicit Hermitian conditions

on the metric tensors because complex manifolds are always Hermitian manifolds [16]. In this case,

the necessary and sufficient condition for being a Kähler manifold is that h0(ξ) is a constant in ξ [7].

According to Choi and Mullhaupt [7], the benefits of the Kählerian description are the followings.

First of all, geometric objects are straightforwardly computed on a Kähler manifold. The non-trivial

metric tensor component is simply derived from the following formula

gij̄ = ∂i∂j̄K (4)
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where K is the Kähler potential of the geometry. The Kähler potential in the information geometry

of a linear filter is the square of the Hardy norm (or H2-norm) of the logarithmic transfer function

(or the square of the complex cepstrum norm) on the unit disk D

K =
1

2πi

∮
|z|=1

| log h(z; ξ)|2dz
z

= || log h(z; ξ)||2H2 (5)

and the details of the derivation are given in the literature [7]. The non-trivial components of the

Levi–Civita connection are expressed as

Γij,k̄ = ∂igjk̄ = ∂i∂j∂k̄K (6)

and the other connection components are all vanishing. Notice that it is much simpler than the

connection components on a non-Kähler manifold given by

Γij,k =
1

2
(∂igjk + ∂jgik − ∂kgij)

and it is obvious that the number of calculation steps is significantly reduced in the Kähler case. The

Riemann curvature tensor of the linear system geometry is also represented in the simpler form which

is given in Choi and Mullhaupt [7]. The Ricci tensor on the Kähler manifold is obtained as

Rij̄ = −∂i∂j̄ log G (7)

where G is the determinant of the metric tensor. It is evident that we can skip the calculation of the

Riemann curvature tensor in order to compute the Ricci tensor on a Kähler manifold.

Additionally, the α-generalization of the geometric objects is linear in α on Kähler manifolds.

Since the Riemann curvature tensor on a Kähler manifold is linear in the α-connection which is

α-linear, the Riemann tensor also exhibits the α-linearity which leads to the α-linear Ricci tensor and

scalar curvature.

In addition to these advantages, any submanifolds of a Kähler manifold are also Kähler manifolds.

If the information geometry of a given statistical model is a Kähler manifold, its submodels also have

Kähler manifolds as the information geometry and all the properties of the ambient manifold are also

equipped with the submanifolds.

Lastly, the Kählerian information geometry is also useful to find superharmonic priors because

of the simpler Laplace–Beltrami operators on the manifolds. We will cover the details of the

superharmonic priors soon.

2.2. Superharmonic Priors

For further discussions, we need to introduce the superharmonic priors suggested by Komaki [8].

When we want to find the true probability distribution p(y|ξ) based on given samples x of size N ,

one of the best approaches is using Bayesian predictive density pπ(y|x(N)) with a prior π(ξ):

pπ(y|x(N)) =

∫
p(y|ξ)p(x(N)|ξ)π(ξ)dξ∫

p(x(N)|ξ)π(ξ)dξ .
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The superharmonic priors πI are derived from the difference between two risk functions with respect

to the true probability density, one from the Jeffreys prior and another from the superharmonic prior:

E[DKL(p(y|ξ)||pπJ
(y|x(N)))|ξ]− E[DKL(p(y|ξ)||pπI

(y|x(N)))|ξ]
=

1

2N2
gij∂i log

(πI

πJ

)
∂j log

(πI

πJ

)
− 1

N2

πJ

πI

Δ
(πI

πJ

)
+ o(N−2)

where DKL is the Kullback–Leibler divergence and πJ is the Jeffreys prior which is the volume form

of the statistical manifold. Each risk function indicates how far a given Bayesian predictive density

is from the true distribution in the Kullback–Leibler divergence in average. Sine better priors are

obtained from smaller risk functions, the priors outperforming the Jeffreys prior make the above

expression greater than zero. Since the first term on the right-hand side is non-negative, the risk

function of the Komaki prior is decreased with respect to the risk function of the Jeffreys prior if

a prior function ψ = πI/πJ is superharmonic. If a superharmonic prior function ψ can be found,

it is possible to do better Bayesian prediction in the viewpoint of information theory. In the same

paper, Komaki also pointed out that shrinkage priors are information-theoretically more improved in

prediction than the Jeffreys prior if and only if the square root of a prior function is superharmonic.

Since Komaki’s paper [8], several superharmonic priors for the AR models have been found

[5–7]. The Komaki prior for the AR(2) model in the pole coordinates [5] is given by

ψ = 1− ξ1ξ2

where ξi is a pole of the transfer function. Tanaka [6] generalized the two-dimensional case to

superharmonic priors for the AR model in an arbitrary dimension p. The shrinkage prior function for

the AR(p) model is in the form of

ψ =

p∏
i<j

(1− ξiξj)

where ξi is a pole of the AR transfer function.

As mentioned before, one of the advantages in the Kählerian description is that finding the

Komaki prior functions becomes more efficient than those in non-Kähler description because the

Laplace–Beltrami operators on Kähler manifolds are in the simpler forms. For a differentiable

function ψ, the Laplace–Beltrami operator in the Kähler geometry is represented with

Δψ = 2gij̄∂i∂j̄ψ.

Meanwhile, the Laplace–Beltrami operator on a non-Kähler manifold is expressed as

Δψ =
1√G ∂i

(√Ggij∂jψ)
= gij∂i∂jψ +

1

2
gij∂i log G∂jψ + ∂ig

ij∂jψ

where G is the determinant of the metric tensor. It is obvious that additional calculations for the latter

two terms in the right-hand side are indispensable in the non-Kähler cases.
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With the computational benefits on the Kählerian information manifolds, the superharmonic prior

function for the Kähler-AR(2) model [7] is found

ψ = (1− |ξ1|2)(1− ξ1ξ̄2)(1− ξ2ξ̄1)(1− |ξ2|2)

where ξi is the i-th pole of the transfer function and ξ̄i is the complex conjugate of ξi. However, its

generalization to any arbitrary dimensions has been unknown. Moreover, the Komaki priors for the

ARMA models and the ARFIMA models are not reported yet.

3. Geometric Shrinkage Priors

As shown in the previous section, Kähler manifolds in information geometry are useful in order

to obtain the superharmonic priors. In this section, we introduce an algorithm to find the geometric

shrinkage priors by using the properties of Kähler geometry. Moreover, several ansätze for the priors

are suggested.

For further discussions, let us set τ = u∗ − κ(ξ, ξ̄) where u∗ is a constant in ξ = (ξ1, ξ2, · · · , ξn)
and its complex conjugate ξ̄. The following lemma is worthwhile when the algorithm for the prior

functions is constructed.

Lemma 1. On a Kähler manifold, a function ψ(ξ, ξ̄) is superharmonic if ψ(ξ, ξ̄) is in the form of
ψ(ξ, ξ̄) = Ψ(u∗ − κ(ξ, ξ̄)) such that κ is subharmonic (or harmonic) and Ψ′(τ) > 0,Ψ′′(τ) ≤ 0 (or
Ψ′(τ) > 0,Ψ′′(τ) < 0).

Proof. The Laplace–Beltrami operator on ψ is given by

Δψ = 2gij̄∂i∂j̄ψ = 2gij̄∂i

((− ∂j̄κ
)
Ψ′
)

= 2Ψ′′gij̄∂iκ∂j̄κ− 2Ψ′gij̄∂i∂j̄κ

= 2Ψ′′||∂κ||2g −Ψ′Δκ

where the derivatives on Ψ are taken with respect to τ . It is obvious that if κ is subharmonic (or

harmonic) and if Ψ′(τ) > 0,Ψ′′(τ) ≤ 0 (or Ψ′(τ) > 0,Ψ′′(τ) < 0), then the right-hand side is

negative, i.e., ψ is a superharmonic function.

According to Lemma 1, superharmonic functions are easily obtained from subharmonic or

harmonic functions by simply plugging the (sub-)harmonic functions as κ into Lemma 1.

By considering that a prior function should be positive, it is able to utilize Lemma 1 for obtaining

the superharmonic prior functions. Let us confine the function ψ in Lemma 1 to be positive.

Theorem 1. On a Kähler manifold, a positive function ψ = Ψ(u∗ − κ) is a superharmonic prior
function if κ is subharmonic (or harmonic) and Ψ′(τ) > 0, Ψ′′(τ) ≤ 0 (or Ψ′(τ) > 0,Ψ′′(τ) < 0).

Proof. Since this is a special case of Lemma 1, the proof is obvious.
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Although any (sub-)harmonic function κ can be used for constructing superharmonic priors,

restriction on κ makes finding the ansätze of the geometric priors easier. From now on,

upper-bounded functions are only our concerns. Additionally, we assume that κ and u∗ are real.

With these assumptions, it is possible to set u∗ as a constant greater than the upper bound of κ in

order for τ to be positive.

Ansätze for Ψ can be found in the following example.

Example 1. Given subharmonic (or harmonic) κ and positive τ , i.e., upper-bounded κ, the following
functions are candidates for Ψ

Ψ1(τ) = τa

Ψ2(τ) = log (1 + τa)

where 0 < a ≤ 1 (or 0 < a < 1).

Proof. We only cover a subharmonic case for κ here and it is also straightforward for the harmonic

case. First of all, Ψ1 and Ψ2 are all positive. For Ψ1, it is easy to verify the followings:

Ψ′
1(τ) = aτa−1 > 0

Ψ′′
1(τ) = a(a− 1)τa−2 ≤ 0

for 0 < a ≤ 1. The similar calculation is repeated for Ψ2:

Ψ′
2(τ) =

aτa−1

(1 + τa)
> 0

Ψ′′
2(τ) =

aτa−2(a− (1 + τa))

(1 + τa)2
≤ 0

for 0 < a ≤ 1.

Both functions Ψ1 and Ψ2 satisfy the conditions for Ψ in Lemma 1.

It is also possible to find ansätze for upper-bounded subharmonic κ. The following functions are

candidates for upper-bounded and subharmonic κ.

Example 2. For positive real numbers ar and bi, the following subharmonic functions are candidates
for κ in the cases that those are upper-bounded:

κ1 = K

κ2 =
∞∑
r=0

ar|hr(ξ)|2

κ3 =
n∑

i=1

bi|ξi|2.
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Proof. Let us assume that the ansätze are upper-bounded in given domains. For κ1, it is easy to show

that the Kähler potential K is subharmonic:

Δκ1 = ΔK = 2gij̄∂i∂j̄K
= 2gij̄gij̄ = 2n > 0.

The proof for subharmonicity of κ2 is as follows:

Δκ2 = Δ

( ∞∑
r=0

ar|hr(ξ)|2
)

= 2gij̄∂i∂j̄

( ∞∑
r=0

ar|hr(ξ)|2
)

=
∞∑
r=0

2arg
ij̄∂ihr∂j̄h̄r =

∞∑
r=0

2ar||∂hr||2g > 0.

The subharmonicity of κ3 is tested by

Δκ3 = Δ

( n∑
i=1

bi|ξi|2
)

= 2gij̄∂i∂j̄

( n∑
i=1

bi|ξi|2
)

=
n∑

i=1

2big
īi > 0.

If the upper-boundedness is satisfied, the above subharmonic functions are ansätze for κ.

Superharmonic prior functions on the Kähler manifolds are efficiently constructed from the

following algorithm which exploits Theorem 1 and the ansätze for Ψ and κ. When we find positive

and superharmonic functions, it is automatically the Komaki-style prior functions as usual. If

positive, upper-bounded, and (sub-)harmonic functions are found, those functions are plugged into

Theorem 1 in order to obtain superharmonic prior functions. Multiplying the Jeffreys prior by the

superharmonic prior functions, we finally acquire the geometric shrinkage priors. Additionally,

since the ansätze are already given, there is no extra cost to find the Komaki prior functions except

for verifying whether or not the information geometry is a Kähler manifold. Comparing with the

literature on the Komaki priors of the time series models [5–7], obtaining the geometric priors on the

Kähler manifolds becomes more efficient and more robust.

4. Example: ARFIMA Models

The ARFIMA model is the generalization of the ARMA model with a fractional differencing

parameter in order to model the long memory process. The transfer function of the ARFIMA(p, d, q)

model with parameters ξ = (ξ−1, ξ0, ξ1, · · · , ξp+q) = (σ, d, λ1, · · · , λp, μ1, · · · , μq) is given by

h(z; ξ) =
σ2

2π

(1− μ1z
−1)(1− μ2z

−1) · · · (1− μqz
−1)

(1− λ1z−1)(1− λ2z−1) · · · (1− λpz−1)
(1− z−1)d

where d is the differencing parameter and μi, λi, σ are a pole, a root, and a gain in the ARMA model,

respectively. It is noteworthy that the transfer function of the ARFIMA model is decomposed into

the ARMA model part and the fractionally integration part. Additionally, every poles and roots of

the linear system are located inside the unit disk, i.e., |λi| < 1 for i = 1, · · · , p and |μi| < 1 for

i = 1, · · · , q.
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Similar to the ARMA case [7], the full geometry of the ARFIMA model is a Kähler manifold

and the submanifold of a constant gain σ is also Kähler geometry. This submanifold also exhibits the

explicit Hermitian condition on the metric tensor. It is easy to cross-check the Hermitian structure by

fixing h0 = 1 up to the gain of the signal filter. We will work on this submanifold.

Since the information geometry of the ARFIMA model is a Kähler manifold, the Kähler potential

of the ARFIMA geometry is obtained from the square of the Hardy norm of the logarithmic transfer

function (or the square of the complex cepstrum norm), Equation (5), represented with

K =
∞∑
r=1

∣∣∣d+ (μr
1 + · · ·+ μr

q)− (λr
1 + · · ·+ λr

p)

r

∣∣∣2. (8)

It is obvious that the Kähler potential for the ARFIMA model, Equation (8), is reducible to the Kähler

potential of the ARMA geometry by setting d = 0. It is easy to verify that the Kähler potential of the

ARFIMA geometry is upper-bounded by (d+ p+ q)2 π
2

6
.

By using Equation (4), the metric tensor of the Kähler geometry is simply derived from the Kähler

potential. The metric tensor of the Kähler-ARFIMA geometry is given by

gij̄ =

⎛⎜⎜⎝
π2

6
1
λ̄j

log (1− λ̄j) − 1
μ̄j

log (1− μ̄j)
1
λi
log (1− λi)

1
1−λiλ̄j

− 1
1−λiμ̄j

− 1
μi
log (1− μi) − 1

1−μiλ̄j

1
1−μiμ̄j

⎞⎟⎟⎠
and it is easy to show that the metric tensor contains the pure ARMA metric. The metric tensor is

also in the similar form to the ARFIMA geometry in non-complexified coordinates [3]. The metric

tensor indicates that the ARMA geometry is embedded in the ARFIMA geometry and corresponds to

the submanifold of the ARFIMA manifold. The ARMA part of the metric tensor is the same metric

with the Kähler-ARMA geometry in Choi and Mullhaupt [7]. In addition to that, we can cross-check

the fact that the ARMA geometry is also a Kähler manifold based on a property of a Kähler manifold

that a submanifold of the Kähler geometry is Kähler.

Other geometric objects can be derived from the metric tensor. For example, the non-trivial

components of the 0-connection are given by Equation (6). It is noteworthy that any connection

components with the d-coordinate in the first two indices of the connection are trivially zero and the

others might not be vanishing. Similar to the 0-connection, the Ricci tensor components along the

fractionally integrated direction are also zero because there is no dependence on d in the metric tensor.

Considering the Schur complement, the non-vanishing Ricci tensor components are decomposed into

the Ricci tensor from the pure ARMA part and the term from the mixing between the ARMA part

and the fractionally integrated (FI) part:

Rij̄ = RARMA
ij̄ +RARMA−FI

ij̄

where i and j are not along the d-coordinate.

It is the time to be back to the geometric shrinkage priors. Since the Kähler potential of a given

ARFIMA model is upper-bounded by a constant u∗ = (d + p + q)2 π
2

6
, the intrinsic priors on the

Kähler manifold can be found as it is proven in the previous section. By using the algorithm and the
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ansätze related to the Kähler potential, some geometric shrinkage prior functions for the ARFIMA

model are constructed as

ψ1 = (u∗ −K)a
ψ2 = log (1 + (u∗ −K)a)

where 0 < a ≤ 1. It is also noteworthy that when d = 0 in the Kähler potential, superharmonic priors

of the ARMA (or AR/MA) models are obtained and finding the priors becomes much simpler than

the literature on the Komaki priors of the AR models [5–7]. Similarly, κ2 and κ3 are also utilized

for the superharmonic prior function ansätze in the ARFIMA models because the both functions are

upper-bounded on the ARFIMA manifold. Moreover, if we set d = 0 for κ2 or b0 = 0 for κ3, the

ansätze for the ARFIMA models are reducible to the Komaki priors of the ARMA models.

5. Conclusion

In this paper, we build up an algorithm and ansätze for the geometric shrinkage priors of Kählerian

signal filters. By using the properties of Kähler manifolds, an algorithm to find the Komaki priors is

constructed and ansätze for the prior functions are suggested. Additionally, some ansätze associated

with the Kähler potential are geometrically intrinsic to Kählerian information manifolds because the

geometry is derived from the Kähler potential which is the square of the complex cepstrum norm of

a linear system.

Comparing with the literature on the Komaki priors of the time series models, verification of

the geometric priors is much easier on the Kähler manifold and it is also possible to acquire the

geometric shrinkage priors for highly complicated models in the more efficient and robust way. For

example, Bayesian predictive priors for the ARFIMA model are obtained from the algorithm and

ansätze for the prior functions. The shrinkage priors of the ARMA cases are simply found from the

geometric shrinkage priors of the ARFIMA models by using the property of submanifolds in the

Kähler geometry.
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Kählerian Information Geometry for Signal Processing

Jaehyung Choi and Andrew P. Mullhaupt

Abstract: We prove the correspondence between the information geometry of a signal filter and a

Kähler manifold. The information geometry of a minimum-phase linear system with a finite complex

cepstrum norm is a Kähler manifold. The square of the complex cepstrum norm of the signal filter

corresponds to the Kähler potential. The Hermitian structure of the Kähler manifold is explicitly

emergent if and only if the impulse response function of the highest degree in z is constant in model

parameters. The Kählerian information geometry takes advantage of more efficient calculation steps

for the metric tensor and the Ricci tensor. Moreover, α-generalization on the geometric tensors

is linear in α. It is also robust to find Bayesian predictive priors, such as superharmonic priors,

because Laplace–Beltrami operators on Kähler manifolds are in much simpler forms than those of the

non-Kähler manifolds. Several time series models are studied in the Kählerian information geometry.

Reprinted from Entropy. Cite as: Choi, J.; Mullhaupt, A.P. Kählerian Information Geometry for

Signal Processing. Entropy 2015, 17, 1581–1605.

1. Introduction

Since the introduction of Riemannian geometry to statistics [1,2], information geometry has been

developed along various directions. The statistical curvature as the differential-geometric analogue

of information loss and sufficiency was proposed by Efron [3]. The α-duality of information

geometry was found by Amari [4]. Not being limited to statistical inference, information geometry

has become popular in many different fields, such as information-theoretic generalization of the

expectation-maximization algorithm [5], hidden Markov models [6], interest rate modeling [7], phase

transition [8,9] and string theory [10]. More applications can be found in the literature [11] and the

references therein.

In particular, time series analysis and signal processing are well-known applications of

information geometry. Ravishanker et al. [12] found the information geometry of autoregressive

moving average (ARMA) models in the coordinate system of poles and zeros. It was also extended to

fractionally-integrated ARMA (ARFIMA) models [13]. The information geometry of autoregressive

(AR) models in the reflection coefficient coordinates was also reported by Barbaresco [14]. In the

information-theoretic framework, Bayesian predictive priors outperforming the Jeffreys prior were

derived for the AR models by Komaki [15].

Kähler manifolds are interesting topics in differential geometry. On a Kähler manifold, the metric

tensor and the Levi–Civita connection are straightforwardly calculated from the Kähler potential, and

the Ricci tensor is obtained from the determinant of the metric tensor. Moreover, its holonomy group

is related to the unitary group. Because of these properties, many implications of Kähler manifolds

are found in mathematics and theoretical physics. In addition to these fields, information geometry

is one of those fields where the Kähler manifolds are intriguing. After the symplectic structure in
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information geometry and its connection to statistics were discovered [16], Barbaresco [14] notably

introduced Kähler manifolds to information geometry for time series models and also generalized

the differential-geometric approach with mathematical structures, such as Koszul geometry [17,18].

Additionally, Zhang and Li [19] found symplectic and Kähler structures in divergence functions.

In this paper, we prove that the information geometry of a signal filter with a finite complex

cepstrum norm is a Kähler manifold. The Kähler potential of the geometry is the square of the

Hardy norm of the logarithmic transfer function of a linear system. The Hermitian structure of the

manifold is explicitly seen in the metric tensor under certain conditions on the transfer functions of

linear models and filters. The calculation of geometric objects and the search for Bayesian predictive

priors are simplified by exploiting the properties of Kähler geometry. Additionally, α-correction

terms on the geometric objects exhibit α-linearity. This paper is structured as follows. In the next

section, we shortly review information geometry for signal processing and derive basic lemmas

in terms of the spectral density function and transfer function. In Section 3, main theorems for

Kählerian information manifolds are proven and the consequences of the theorems are provided. The

implications of Kähler geometry to time series models are reported in Section 4. We conclude the

paper in Section 5.

2. Information Geometry for Signal Processing

2.1. Spectral Density Representation in the Frequency Domain

We model an output signal y(w) as a linear system with a transfer function h(w; ξ) of model

parameters ξ = (ξ1, ξ2, · · · , ξn):
y(w) = h(w; ξ)x(w)

where x(w) is an input signal in frequency domain w. Complex inputs, outputs and model parameters

are considered in this paper. The properties of a given signal filter are characterized by the transfer

function h(w; ξ) and the model parameters ξ.

In signal processing, one of the most important quantities is the spectral density function. The

spectral density function S(w; ξ) is defined as the absolute square of the transfer function:

S(w; ξ) = |h(w; ξ)|2. (1)

The spectral density function describes the way that energy in the frequency domain is distributed by

a given signal filter. In terms of signal amplitude, the spectral density function encodes an amplitude

response to a monochromatic input eiw. For example, the spectral density function of the all-pass

filter is constant in the frequency domain, because the filter passes all inputs to outputs up to the phase

difference regardless of frequency. The high-pass filters only allow the signals in the high-frequency

domain. Meanwhile, the low-pass filters only permit low-frequency inputs. The properties of other

well-known filters are also described by their specific spectral density functions.

The spectral density function is also important in information geometry, because the

information-geometric objects of the signal processing geometry are derived from the spectral
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density function [20,21]. Among the geometric objects, the length and distance concepts are most

fundamental in geometry. One of the most important distance measures in information geometry is

the α-divergence, also known as Chernoff’s α-divergence, that is the only divergence which is both

an f -divergence and a Bregman divergence [22]. The α-divergence between two spectral density

functions S1 and S2 is defined as

D(α)(S1||S2) =

{
1

2πα2

∫ π

−π

{(
S2

S1

)α
− 1− α log S2

S1

}
dw (α �= 0)

1
4π

∫ π

−π

(
logS2 − log S1

)2
dw (α = 0)

and the divergence conventionally measures the distance from S1 to S2. The α-divergence, except for

α = 0, is a pseudo-distance, because it is not symmetric under exchange between S1 and S2. In spite

of the asymmetry, the α-divergence is frequently used for measuring differences between two linear

models or two filters. Some α-divergences are more popular than others, because those divergences

have been already known in information theory and statistics. For example, the (−1)-divergence

is the Kullback–Leibler divergence. The 0-divergence is well known as the square of the Hellinger

distance in statistics. The Hellinger distance is locally asymptotically equivalent to the information

distance and globally tightly bounded by the information distance [23].

The metric tensor of a statistical manifold, also known as the Fisher information matrix, is derived

from the α-divergence. In order to define the information geometry of a linear system, the conditions

on a signal filter are found in Amari and Nagaoka [21]: stability, minimum phase and

1

2π

∫ π

−π

| logS(w; ξ)|2dw <∞
which imposes that the unweighted power cepstrum norm [24,25] is finite. According to the

literature [20,21], the metric tensor of the linear system geometry is given by

gμν(ξ) =
1

2π

∫ π

−π

(∂μ logS)(∂ν logS)dw (2)

where the partial derivatives are taken with respect to the model parameters ξ, i.e., ∂μ = ∂
∂ξμ

. Since

the dimension of the manifold is n, the metric tensor is an n× n matrix.

Other information-geometric objects are also determined by the spectral density function. The

α-connection, which encodes the change of a vector being parallel-transported along a curve, is

expressed with

Γ(α)
μν,ρ(ξ) =

1

2π

∫ π

−π

(∂μ∂ν logS − α(∂μ logS)(∂ν logS))(∂ρ logS)dw (3)

where α is a real number. Notice that the α-connection is not a tensor. The α-connection is related

to the Levi–Civita connection, Γμν,ρ(ξ), also known as the metric connection. The relation is given

by the following equations:

Γ(α)
μν,ρ(ξ) = Γμν,ρ(ξ)− α

2
Tμν,ρ(ξ) (4)

Tμν,ρ(ξ) =
1

π

∫ π

−π

(∂μ log S)(∂ν logS)(∂ρ logS)dw (5)
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where the tensor T is symmetric under the exchange of the indices. The Levi–Civita connection

corresponds to the α = 0 case.

These information-geometric objects have interesting properties with the reciprocality of spectral

density functions. The spectral density function of an inverse system is the reciprocal spectral density

function of the original system. The geometric properties of the inverse system are described by the

α-dual description. The following lemma shows the correspondence between the reciprocality of the

spectral density function and the α-duality.

Lemma 1. The information geometry of an inverse system is the α-dual geometry to the information
geometry of the original system.

Proof. The metric tensor is invariant under the reciprocality of spectral density functions, i.e.,
plugging S−1 into Equation (2) provides the identical metric tensor.

Meanwhile, the α-connection is not invariant under the reciprocality and exhibits a more

interesting property. The α-connection from the reciprocal spectral density function is given by

Γ(α)
μν,ρ(S

−1; ξ) =
1

2π

∫ π

−π

(∂μ∂ν logS + α(∂μ logS)(∂ν log S))(∂ρ logS)dw

= Γ(−α)
μν,ρ (S; ξ)

and the above equation shows that the α-connection induced by the reciprocal spectral density

function corresponds to the (−α)-connection of the original geometry.

Similar to the α-connection, the α-divergence is equipped with the same property. The

α-divergence between two reciprocal spectral density functions is straightforwardly found from the

definition of the α-divergence, and it is represented by the (−α)-divergence between the two spectral

density functions:

D(α)(S−1
1 ||S−1

2 ) = D(−α)(S1||S2).

Using the inverse systems, we can construct the α-dual description of signal processing models in

information geometry. The multiplicative inverse of a spectral density function corresponds to the

α-duality of the geometry.

Lemma 1 indicates that given a linear system geometry, there is no way to discern whether the

metric tensor is derived from the filters with S or S−1. Additionally, the model S−1 is (−α)-flat

if and only if S is α-flat. The 0-connection is self-dual under the reciprocality. A consequence of

Lemma 1 is the following multiplication rule:

D(α)(S1||S−1
2 ) =

1

2πα2

∫ π

−π

{
(S1S2)

−α − 1 + α log (S1S2)
}
dw

= D(−α)(S0||S1S2) = D(α)(S1S2||S0)

where S0 is the unit spectral density function of the all-pass filter. Plugging S1 = S0 and S2 = S, we

have D(0)(S0||S−1) = D(0)(S0||S) = D(0)(S||S0).

We observe that the bilateral transfer functions log |h(eiw; ξ)|2 ∈ L2 (T) are isomorphically

embedded in the space R⊕ zH2 (D).
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Lemma 2. Let log |h(eiw; ξ)|2 ∈ L2 (T). Then, there is an analytic function f ∈ exp (H2 (D)), such
that ∣∣h(eiw; ξ)∣∣2 = ∣∣f(eiw; ξ)∣∣2
and ∥∥∥log ∣∣h(eiw; ξ)∣∣2 − log |h(1; ξ)|2

∥∥∥
L2(T)

=
∥∥∥log ∣∣f(eiw; ξ)∣∣2 − log |f(1; ξ)|2

∥∥∥
H2(D)

.

This has the interpretation that the information manifold of log |h(eiw; ξ)|2 ∈ L2 is isometric to the
Hardy–Hilbert space.

Proof. log h(eiw; ξ) is represented by the Fourier series:

log
∣∣h(eiw; ξ)∣∣2 = ∞∑

r=−∞
are

irw

and since log |h(eiw; ξ)|2 is real, we have a−r = ār, and in particular, a0 is real. We define the

conjugate series by the coefficients ãr, so that ar + iãr = 0 for r < 0 and ãr for r > 0; so that ã
(
eiθ
)

is real valued, we choose ã0 = 0. This implies

ãr =

{
−1

i
ar (r < 0)

1
i
ar (r > 0)

and if {ar} ∈ lp for 1 ≤ p ≤ ∞, then {ãr} ∈ lp, in particular,∑
r =0

|ar|2 =
∑
r =0

|ãr|2 . (6)

The analytic function f (z) = exp (a0 + a (z) + iã (z)) has

log
∣∣h(eiw; ξ)∣∣2 = log

∣∣f(eiw; ξ)∣∣2
and

‖ log f(z; ξ)− log f (1; ξ) ‖2H2 =
∥∥∥log ∣∣h(eiw; ξ)∣∣2 − log |h(1; ξ)|2

∥∥∥2
L2(T)

<∞

and because f ∈ exp (zH2 (D)), f (and f−1) is outer, we may write

h(eiw; ξ) = u(eiw; ξ)f(eiw; ξ)

where log u(eiw; ξ) ∈ L2 is pure imaginary, that is, |u(eiw; ξ)| = 1.

This has the interpretation that h has a well-defined outer factor, and the information geometry

of h depends only on h. In the case that the power series coefficients ak (ξ) are continuous, smooth,

analytic, etc., then the embedding is likewise smooth.
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2.2. Transfer Function Representation in the z Domain

By using transfer functions, it is also possible to reproduce all of the previous results with the

spectral density function. With Fourier transformation and Z-transformation, z = eiw, a transfer

function h(z; ξ) is expressed with a series expansion of z,

h(z; ξ) =
∞∑

r=−∞
hr(ξ)z

−r (7)

where hr(ξ) is an impulse response function. It is a bilateral (or two-sided) transfer function

expression, which has both positive and negative degrees in z, including the zero-th degree. In

the causal response case that hr(ξ) = 0 for all negative r, the transfer function is unilateral. In many

applications, the main concern is the causality of linear filters, which is represented by unilateral

transfer functions. In this paper, we start with bilateral transfer functions as generalization and then

will focus on causal filters.

In the complex z-domain, all formulae for the information-geometric objects are identical to the

expressions in the frequency domain, except for the change of the integral measure:

1

2π

∫ π

−π

G(eiw; ξ)dw → 1

2πi

∮
|z|=1

G(z; ξ)
dz

z

for an arbitrary integrand G. Since the evaluation of the integration is obtained from the line integral

along the unit circle on the complex plane, it is easy to calculate the above integration with the aid of

the residue theorem. According to the residue theorem, the poles only inside the unit circle contribute

to the value of the integration. If G(z; ξ) is analytic on the unit disk, the constant term in z of G(z; ξ)

is the value of the integration. For more details, see Cima et al. [26] and the references therein.

One advantage of using Z-transformation is that a transfer function can be understood in the

framework of functional analysis. A transfer function defined on the complex plane is expanded

by the orthonormal basis z−r for integers r with impulse response functions as the coefficients. In

functional analysis, it is possible to define the inner product between two complex functions F and

G in the Hilbert space:

〈F,G〉 = 1

2πi

∮
|z|=1

F (z)G(z)
dz

z
.

By using this inner product, the condition for the stationarity,
∑∞

r=0 |hr|2 < ∞, is written as the

Hardy norm (H2-norm) in complex functional analysis,

‖h(z; ξ)‖2H2 = 〈h(z; ξ), h(z; ξ)〉 =
∞∑
r=0

|hr|2 <∞.

Since the functional space with a finite Hardy norm is called the Hardy–Hilbert space H2, the

unilateral transfer functions satisfying the stationarity condition live on the H2-space. A transfer

function of a stationary system is a function in the L2-space if the transfer function is in the

bilateral form.
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The conditions on the transfer function of a signal filter are also necessary for defining the

information geometry of a linear system in terms of the transfer function. Similar to the spectral

density representation, the conditions on the linear filters are stability and minimum phase. In

addition to these conditions, we also need the following condition on the finite H2-norm of the

logarithmic transfer function,

1

2πi

∮
|z|=1

| log h(z; ξ)|2dz
z

<∞

and for the above condition, it is also known that the unweighted complex cepstrum norm [25,27]

is finite. From now on, signal filters in this paper are the linear systems satisfying the above norm

conditions. This is a necessary condition for a finite power cepstrum norm.

It is natural to complexify the coordinate system as being used in the complex differential

geometry. In holomorphic and anti-holomorphic coordinates, the metric tensor of a linear system

geometry is represented by

gμν =
1

2πi

∮
|z|=1

∂μ
(
log h(z; ξ) + log h̄(z̄; ξ̄)

)
∂ν
(
log h(z; ξ) + log h̄(z̄; ξ̄)

)dz
z

where both μ and ν run over all holomorphic and anti-holomorphic coordinates, i.e., μ, ν =

1, 2, · · · , n, 1̄, 2̄, · · · , n̄.

The components of the metric tensor are categorized into two classes: one with pure indices from

holomorphic coordinates and anti-holomorphic coordinates, and another with the mixed indices. The

metric tensor components in these categories are given by

gij(ξ) =
1

2πi

∮
|z|=1

∂i log h(z; ξ)∂j log h(z; ξ)
dz

z
(8)

gij̄(ξ) =
1

2πi

∮
|z|=1

∂i log h(z; ξ)∂j̄ log h̄(z̄; ξ̄)
dz

z
(9)

where gīj̄ = (gij)
∗ and gīj = (gij̄)

∗, and the indices i and j run from one to n. It is also possible to

express the α-connection and the α-divergence in terms of the transfer function by using Equation

(1), the relation between the transfer function and the spectral density function.

It is noteworthy that the information geometry of a linear system is invariant under the

multiplicative factor of z in the transfer function, because the metric tensor is not changed by the

factorization. The invariance is also true for the geometry induced by the spectral density function.

Lemma 3. The information geometry of a signal filter is invariant under the multiplicative factor of
z.

Proof. Any transfer function can be factored zR out in the form of

h(z; ξ) = zRh̃(z; ξ)

where R is an integer and h̃ is the factored-out transfer function. In the spectral density function

representation, the contribution of the factorization is |z|2R, and it is a unity in the line integration.



403

It imposes that the metric tensor, the α-connection and the α-divergence are independent of the

factorization.

When a transfer function is considered, the same conclusion is obtained. Since the contribution

from the factorization parts, log zR, is canceled by the partial derivatives in the metric tensor and the

α-connection expression, the geometry is invariant under the factorization. It is also easy to show

that α-divergence is also not changed by the factorization. Another explanation is that the terms of

∂ih/h in the metric tensor and the α-connection are invariant under zR-scaling.

Based on Lemma 3, it is possible to obtain the unilateral transfer function from a transfer function

with a finite upper bound in degrees of z. In particular, this factorization invariance of the geometry is

useful in the case that the transfer function has a finite number of terms in the non-causal direction of

the bilateral transfer function. If the highest degree in z of the transfer function is finite, the transfer

function is factored out as

h(z; ξ) = zR(h−R + h−(R−1)z
−1 + · · · )

= zRh̃(z; ξ)

where R is the maximum degree in z of the transfer function and h̃ is a unilateral transfer function.

A bilateral transfer function can be expressed with the multiplication of a unilateral transfer

function f(z; ξ) and an analytic function a(z; ξ) on the disk:

h(z; ξ) = f(z; ξ)a(z; ξ)

= (f0 + f1z
−1 + f2z

−2 + · · · )(a0 + a1z
1 + a2z

2 + · · · )

where fr and ar are functions of ξ. For a causal filter, all ai’s are zero, except for a0. This

decomposition also includes the case of Lemma 3 by setting ai = 0 for i < R and aR = 1. However,

it is natural to take f0 and a0 as non-zero functions of ξ. This is because powers of z could be factored

out for non-zero coefficient terms with the maximum degree in f(z; ξ) and the minimum degree in

a(z; ξ), and the transfer function is reducible to

h(z; ξ) = zRh̃(z; ξ)

where h̃(z; ξ) has non-zero f̃0 and ã0 and R is an integer, which is the sum of the degrees in z with the

first non-zero coefficient terms from f(z; ξ) and a(z; ξ), respectively. By Lemma 3, the information

geometry of the linear system with the transfer function h(z; ξ) is the same as the geometry induced

by the factored-out transfer function h̃(z; ξ).

The relation between f(z; ξ), a(z; ξ) and h(z; ξ) is described by the following Toeplitz system:⎛⎜⎜⎜⎜⎝
h0 h1 h2 . . .

h−1 h0 h1 . . .

h−2 h−1 h0 . . .
...

...
...

. . .

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
f0 f1 f2 . . .

0 f0 f1 . . .

0 0 f0 . . .
...

...
...

. . .

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
a0 0 0 . . .

a1 a0 0 . . .

a2 a1 a0 . . .
...

...
...

. . .

⎞⎟⎟⎟⎟⎠ .
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For a given h(z; ξ), fr is determined by the coefficients of a(z; ξ), i.e., if we choose a(z; ξ), f(z; ξ)

is conformable to the choice under the above Toeplitz system. The following lemma is noteworthy

for further discussions. It is the generalization of Lemma 3.

Lemma 4. The information geometry of a signal filter is invariant under the choice of a(z; ξ).

Proof. It is obvious that the information geometry of a linear system is only decided by the transfer

function h(z; ξ). Whatever a(z; ξ) is chosen, the transfer function is the same, because f(z; ξ) is

conformable to the Toeplitz system.

For further generalization, the transfer function is extended to the consideration of the Blaschke

product b(z), which corresponds to the all-pass filter in signal processing. The transfer function can

be decomposed into the following form:

h(z; ξ) = f(z; ξ)a(z; ξ)b(z)

where the Blaschke product b(z) is given by

b(z) =
∏
s

b(z, zs) =
∏
s

|zs|
zs

zs − z

1− z̄sz

and every zs is on the unit disk. Although the Blaschke product can be written in z−1 instead of z,

our conclusion is not changed, and we choose z for our convention. When zs = 0, the Blaschke

product is given by b(z, zs) = z. Regardless of zs, the Blaschke product is analytic on the unit

disk. Since the Taylor expansion of the Blaschke product provides positive order terms in z, it is

also possible to incorporate the Blaschke product into a(z; ξ). However, the Blaschke product is

separately considered in the paper.

The logarithmic transfer function of a linear system is represented in terms of f, a and b:

log h(z; ξ) = log (f0a0) + log (1 +
∞∑
r=1

fr
f0
z−r) + log (1 +

∞∑
r=1

ar
a0

zr) + log b(z)

= φ0 +
∑
s

log |zs|+
∞∑
r=1

φr(ξ)z
−r +

∞∑
r=1

αr(ξ)z
r +

∞∑
r=1

βrz
r

where φ0 = log (f0a0) and φr, αr are the r-th coefficients of the logarithmic expansions. φr and

αr are functions of ξ unless all fr/f0 and ar/a0 are constant. Meanwhile, βr = 1
r

∑
s
|zs|2r−1

zrs
is a

constant in ξ.

It is also straightforward to show that the information geometry is independent of the Blaschke

product.

Lemma 5. The information geometry of a signal filter is independent of the Blaschke product.
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Proof. It is obvious that the Blaschke product is independent of the coordinate system ξ. Plugging

the above series into the expression of the metric tensor in complex coordinates, Equations (8) and

(9), the metric tensor components are expressed in terms of φr and αr:

gij = ∂iφ0∂jφ0 +
∞∑
r=1

∂iφr∂jαr +
∞∑
r=1

∂iαr∂jφr

gij̄ =
∞∑
r=0

∂iφr∂j̄φ̄r +
∞∑
r=1

∂iαr∂j̄ᾱr

and it is noteworthy that the metric tensor components are independent of the βr terms, which are

related to the Blaschke product, because those are not functions of ξ. This is why the z-convention

for the Blaschke product is not important. It is straightforward to repeat the same calculation for the

α-connection. Based on these, the information geometry of a linear system is independent of the

Blaschke product.

According to Lemma 4, the geometry is invariant under the degree of freedom in choosing a(z; ξ).

By using the invariance of the geometry, it is possible to fix the degree of freedom as ar/a0 constant.

With the choice of the degree of freedom, the metric tensor components of the information manifold

are given by

gij = ∂iφ0∂jφ0 (10)

gij̄ =
∞∑
r=0

∂iφr∂j̄φ̄r (11)

and it is easy to verify that the metric tensor components are only dependent on φr and φ̄r. In other

words, the metric tensor is dependent only on the unilateral part of the transfer function and a constant

term in z of the analytic part.

By Lemma 3, any transfer function with the upper-bounded degree in z is reducible to a unilateral

transfer function with a constant term. For this class of transfer functions, a similar expression for

the metric tensor can be obtained. First of all, the logarithmic transfer function is given in the series

expansion:

log h(z; ξ) = log zR + log h−R + log (1 +
∞∑
r=1

h−R+r

h−R

z−r)

= log zR +
∞∑
r=0

ηrz
−r

where R is the highest degree in z. The coefficients ηr are also known as the complex cepstrum [27],

and η0 = log h−R. After the series expansion of this logarithmic transfer function is plugged into the

formulae of the metric tensor components, Equations (8) and (9), the metric tensor components are

obtained as
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gij = ∂iη0∂jη0 (12)

gij̄ =
∞∑
r=0

∂iηr∂j̄ η̄r (13)

and these expressions for the metric tensor components are similar to Equations (10) and (11) with

the exchange of φr ↔ ηr.

As an extension of Lemma 5, it is possible to generalize it to the inner-outer factorization of

the H2-functions. A function in the H2-space can be expressed as the product of outer and inner

functions by the Beurling factorization [28]. The generalization with the Beurling factorization is

given by the following lemma.

Lemma 6. The information geometry of a signal filter is independent of the inner function.

Proof. A transfer function h(z; ξ) in the H2-space can be decomposed by the inner-outer

factorization:

h(z; ξ) = O(z; ξ)I(z; ξ)
where O(z; ξ) is an outer function and I(z; ξ) is an inner function. The α-divergence is expressed

with S(z; ξ) = |h(z; ξ)|2 = |O(z; ξ)I(z; ξ)|2 = |O(z; ξ)|2 on the unit circle, because the inner

function has the unit modulus on the unit circle. Since the α-divergence is represented only with

the outer function, other geometric objects, such as the metric tensor and the α-connection, are also

independent of the inner function.

3. Kähler Manifold for Signal Processing

An advantage of the transfer function representation in the complex z-domain is that it is easy to

test whether or not the information geometry of a given signal processing filter is a Kähler manifold.

As mentioned before, choosing the coefficients in a(z; ξ) is considered as fixing the degrees of

freedom in calculation without changing any geometry. By setting a(z; ξ)/a0(ξ) a constant function

in ξ, the description of a statistical model becomes much simpler, and the emergence of Kähler

manifolds can be easily verified. Since causal filters are our main concerns in practice, we concentrate

on unilateral transfer functions. Although we will work with causal filters, the results in this section

are also valid for the cases of bilateral transfer functions.

Theorem 1. For a signal filter with a finite complex cepstrum norm, the information geometry of the
signal filter is a Kähler manifold.

Proof. The information manifold of a signal filter is described by the metric tensor g with the

components of the expressions, Equation (10) and Equation (11). Any complex manifold admits

a Hermitian manifold by introducing a new metric tensor ĝ [29]:

ĝp(X, Y ) =
1

2

(
gp(X, Y ) + gp(JpX, JpY )

)
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where X, Y are tangent vectors at point p on the manifold and J is the almost complex structure,

such that

Jp
∂

∂ξi
= i

∂

∂ξi
, Jp

∂

∂ξ̄i
= −i ∂

∂ξ̄i
.

With the new metric tensor ĝ, it is straightforward to verify that the information manifold is equipped

with the Hermitian structure:

ĝij = ĝ(∂i, ∂j) = 0

ĝij̄ = ĝ(∂i, ∂j̄) = gij̄.

Based on the above metric tensor expressions, it is obvious that the information geometry of a linear

system is a Hermitian manifold.

The Kähler two-form Ω of the manifold is given by

Ω = iĝij̄dξ
i ∧ dξ̄j

where ∧ is the wedge product. By plugging Equation (11) into Ω, it is easy to check that the Kähler

two-form is closed by satisfying ∂kĝij̄ = ∂iĝkj̄ and ∂k̄ĝij̄ = ∂j̄ ĝik̄.

Since Kähler manifolds are defined as the Hermitian manifolds with the closed Kähler two-forms,

the information geometry of a signal filter is a Kähler manifold.

An information manifold for a linear system with purely real parameters is a submanifold

of a Kählerian information manifold where the metric tensor has the isometry of exchanging

holomorphic- and anti-holomorphic coordinates. In addition to that, a given linear system can be

described by two manifolds: one is Kähler, and another is non-Kähler. Although the dimension is

doubled, working with Kähler manifolds has many advantages, which will be reiterated later.

In Theorem 1, the Hermitian condition is clearly seen after introducing the new metric tensor ĝ.

It is also possible to find a condition for which the metric tensor g shows the explicit Hermitian

structure. To impose the explicit Hermitian condition, the following theorem is worthwhile to

mention.

Theorem 2. In the Kählerian information geometry of a signal filter, the Hermitian structure is
explicit in the metric tensor if and only if φ0 (or f0a0) is a constant in ξ. Similarly, for the transfer
function of which the highest degree in z is finite, the Hermitian condition is directly found if and
only if the coefficient of the highest degree in z of the logarithmic transfer function is a constant in ξ.

Proof. Let us prove the first statement.

(⇒) If the geometry is Kähler, it should be the Hermitian manifold satisfying

gij = ∂iφ0∂jφ0 = 0

for all i and j. This equation exhibits that f0a0 is a constant in ξ, because φ0 = log (f0a0).
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(⇐) If φ0 (or f0a0) is a constant in ξ, the metric tensor is found from Equations (10) and (11),

gij = 0

gij̄ =
∞∑
r=0

∂iφr∂j̄φ̄r (14)

and these metric tensor conditions impose that the geometry is the Hermitian manifold. It is

noteworthy that the non-vanishing metric tensor components are expressed only with φr and φ̄r,

which are functions of the impulse response functions fr in f(z; ξ), the unilateral part of the transfer

function. For the manifold to be a Kähler manifold, the Kähler two-form Ω needs to be a closed

two-form. The condition for the closed Kähler two-form Ω is that ∂kgij̄ = ∂igkj̄ and ∂k̄gij̄ = ∂j̄gik̄. It

is easy to verify that the metric tensor components, Equation (14), satisfy the conditions for the closed

Kähler two-form. The Hermitian manifold with the closed Kähler two-form is a Kähler manifold.

The proof for the second statement is straightforward, because it is similar to the proof of the first

one by exchanging φr ↔ ηr. Let us assume that the highest degree in z is R. According to Lemma

3, it is possible to reduce a bilateral transfer function with finite terms along the non-causal direction

to the unilateral transfer function by using the factorization of zR. After that, we need to replace η0

with φ0 in the proof. The two theorems are equivalent.

Theorem 2 can be applied to submanifolds of the information manifolds. For example, a

submanifold of a linear system is a Kähler manifold if and only if φ0 (or f0a0) is constant on the

submanifold, i.e., φ0 is a function of the coordinates orthogonal to the submanifold.

On a Kähler manifold, the metric tensor is derived from the following equation:

gij̄ = ∂i∂j̄K (15)

where K is the Kähler potential. There exists the degree of freedom in Kähler potential up to the

holomorphic and anti-holomorphic function: K(ξ, ξ̄) = K′(ζ, ζ̄) + φ(ζ) + ψ(ζ̄). However, geometry

is derived from the same relation: gij̄ = ∂i∂j̄K. By using Equation (15), the information on the

geometry can be extracted from the Kähler potential. It is necessary to find the Kähler potential for

the signal processing geometry. The following corollary shows how to get the Kähler potential for

the Kählerian information manifold.

Corollary 1. For a given Kählerian information geometry, the Kähler potential of the geometry is the
square of the Hardy norm of the logarithmic transfer function. In other words, the Kähler potential
is the square of the complex cepstrum norm of a signal filer.

Proof. Given a transfer function h(z; ξ), the non-trivial components of the metric tensor for a

signal processing model are given by Equation (9). By using integration by parts, the metric tensor

component is represented by

gij̄ =
1

2πi

∮
|z|=1

{
∂i

(
log h(z; ξ)∂j̄ log h̄(ξ̄; ξ̄)

)
− log h(z; ξ)∂i∂j̄ log h̄(ξ̄; ξ̄)

}
dz

z
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where the latter term goes to zero by holomorphicity. When we integrate by parts with respect to the

anti-holomorphic derivative once again, the metric tensor is expressed with

gij̄ =
1

2πi

∮
|z|=1

{
∂i∂j̄

(
log h(z; ξ) log h̄(ξ̄; ξ̄)

)
− ∂i

(
∂j̄ log h(z; ξ) log h̄(ξ̄; ξ̄)

)}dz

z

and the latter term is also zero, because h(z; ξ) is a holomorphic function.

Finally, the metric tensor is obtained as

gij̄ = ∂i∂j̄

(
1

2πi

∮
|z|=1

(
log h(z; ξ)

)(
log h(z; ξ)

)∗dz
z

)

and by the definition of the Kähler potential, Equation (15), the Kähler potential of the linear system

geometry is given by

K =
1

2πi

∮
|z|=1

(
log h(z; ξ)

)(
log h(z; ξ)

)∗dz
z

up to a holomorphic function and an anti-holomorphic function. The right-handed side of the above

equation is known as the square of the Hardy norm for the logarithmic transfer function. It is

straightforward to derive the relation between the Kähler potential and the square of the Hardy norm

of the logarithmic transfer function:

K =
1

2πi

∮
|z|=1

(
log h(z; ξ)

)(
log h(z; ξ)

)∗dz
z

= ‖ log h(z; ξ)‖2H2 . (16)

Additionally, the Hardy norm of the logarithmic transfer function is also known as the complex

cepstrum norm of a linear system [25,27].

For a given linear system, the Kähler potential of the geometry is given by φr, αr and the complex

conjugates of φr, αr:

K =
∞∑
r=0

(φrφ̄r + αrᾱr).

However, the geometry is not dependent on α and ᾱ, because those are not the functions of the model

parameters ξ under fixing the degree of the freedom. By using Equation (14), the Kähler potential is

expressed with

K =
∞∑
r=0

φrφ̄r

and it is noticeable that the Kähler potential only depends on φr and φ̄r, which come from the

unilateral part of the transfer function decomposition. It is possible to obtain a similar expression

for the finite highest upper-degree case by changing φr to ηr.

Since we assume that the complex cepstrum norm is finite, a transfer function h(z; ξ) in the

H2-space also lives in the Hardy space of

K = ‖ log h(z; ξ)‖2H2 <∞.
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This implies that the transfer function lives not only in H2, but also in exp (H2), equivalently log h

in the H2-space.

From Equation (15), the metric tensor is derived from the Kähler potential. Additionally, the

metric tensor is also calculated from the α-divergence. These facts indicate that there exists a

connection between the Kähler potential and the α-divergence.

Corollary 2. The Kähler potential is a constant term in α, up to purely holomorphic or purely
anti-holomorphic functions, of the α-divergence between a signal processing filter and the all-pass
filter of a unit transfer function.

Proof. After replacing the spectral density function with the transfer function, the 0-divergence

between a signal filter and the all-pass filter with a unit transfer function is given by

D(0)(1||h) = 1

2πi

∮
|z|=1

1

2
(log h+ log h̄)2

dz

z

= K +
1

2πi

∮
|z|=1

1

2

(
(log h)2 + (log h̄)2

)dz
z

= K + F (ξ) + F̄ (ξ̄)

where F (ξ) = 1
2
φ2
0 =

1
2
(log (f0a0))

2. For a bilateral transfer function, F (ξ) = 1
2
(φ0+

∑
log |zs|)2+∑

r=1 φr(αr + βr).

For non-zero α, the α-divergence between a signal and the white noise is also obtained as

D(α)(1||h) = 1

2πiα2

∮
|z|=1

{
hα − 1− α(log h+ log h̄)

}dz
z

=
1

2πi

∮
|z|=1

(1
2
(log h+ log h̄)2 +

∞∑
n=1

1

(n+ 2)!
αn(log h+ log h̄)n+2

)dz
z

= D(0)(1||h) +O(α)
= K + F (ξ) + F̄ (ξ̄) +O(α).

When f0a0 is unity, a constant term in α of the α-divergence is the Kähler potential. This shows the

relation between the α-divergence and the Kähler potential.

The α-connection on a Kähler manifold is expressed with the transfer function by using Equation

(1) and Equation (3). It is also cross-checked from the α-divergence in the transfer function

representation.

Corollary 3. The α-connection components of the Kählerian information geometry are found as

Γ
(α)

ij,k̄
=

1

2πi

∮
|z|=1

(
∂i∂j log h(z; ξ)− α∂i log h(z; ξ)∂j log h(z; ξ)

)(
∂k log h(z; ξ)

)∗dz
z

Γ
(α)
ij,k =

1

2πi

∮
|z|=1

(
∂i∂j log h(z; ξ)− α∂i log h(z; ξ)∂j log h(z; ξ)

)(
∂k log h(z; ξ)

)dz
z

Γ
(α)

ij̄,k
=

1

2πi

∮
|z|=1

−α(∂i log h(z; ξ))(∂j log h(z; ξ))∗(∂k log h(z; ξ))dz
z

Γ
(α)

ij̄,k̄
=

1

2πi

∮
|z|=1

−α(∂i log h(z; ξ))(∂j̄ log h(z; ξ))∗(∂k log h(z; ξ))∗dzz
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and the non-trivial components of the symmetric tensor T are given by

Tij,k̄ =
1

πi

∮
|z|=1

(
∂i log h(z; ξ))(∂j log h(z; ξ)

)(
∂k log h(z; ξ)

)∗dz
z

(17)

Tij,k =
1

πi

∮
|z|=1

(
∂i log h(z; ξ))(∂j log h(z; ξ)

)(
∂k log h(z; ξ)

)dz
z
.

In particular, the non-vanishing 0-connection components are expressed with

Γ
(0)

ij,k̄
= (Γ

(0)

īj̄,k
)∗ =

1

2πi

∮
|z|=1

(
∂i∂j log h(z; ξ)

)(
∂k log h(z; ξ)

)∗dz
z

and the 0-connection is directly derived from the Kähler potential:

Γ
(0)

ij,k̄
= ∂i∂j∂k̄K. (18)

Additionally, the α-connection and the (−α)-connection are dual to each other.

Proof. After plugging Equation (1) into Equation (3), the derivation of the α-connection is

straightforward by considering holomorphic and anti-holomorphic derivatives in the expression. The

same procedure is applied to the derivation of the symmetric tensor T .

The 0-connection is also directly derived from the Kähler potential. The proof is as follows:

Γ
(0)

ij,k̄
=

1

2πi

∮
|z|=1

(
∂i∂j log h(z; ξ)

)(
∂k log h(z; ξ)

)∗dz
z

= ∂i∂j∂k̄

( 1

2πi

∮
|z|=1

(
log h(z; ξ)

)(
log h(z; ξ)

)∗dz
z

)
= ∂i∂j∂k̄

(|| log h(z; ξ)||2H2

)
= ∂i∂j∂k̄K.

To prove the α-duality, we need to test the following relation:

∂μgνρ = Γ(α)
μν,ρ + Γ(−α)

μρ,ν

where the Greek letters run from 1, · · · , n, 1̄, · · · , n̄. After tedious calculation, it is obvious that the

above equation is satisfied regardless of combinations of the indices. Therefore, the α-duality also

exists on the Kählerian information manifolds.

The 0-connection and the symmetric tensor T are expressed in terms of φr and φ̄r,

Γ
(0)

ij,k̄
=

∞∑
r=0

∂i∂jφr∂k̄φ̄r

Γ
(0)
ij,k = ∂i∂jφ0∂kφ0

Tij,k̄ = 2
∞∑

r,s=0

∂iφr∂jφs∂k̄φ̄r+s

Tij,k = 2∂iφ0∂jφ0∂kφ0.
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With the degree of freedom that φ0 is a constant in the model parameters ξ, the non-trivial

components of the 0-connection and the symmetric tensor T are Γ
(0)

ij,k̄
and Tij,k̄, respectively. In

this degree of freedom, the Hermitian condition on the metric tensor is obviously emergent, and it is

also beneficial to check the α-duality condition for non-vanishing components:

∂kgij̄ = Γ
(α)

ki,j̄
+ Γ

(−α)

kj̄,i

∂k̄gij̄ = Γ
(α)

k̄i,j̄
+ Γ

(−α)

k̄j̄,i
.

We can cross-check these formulae for the geometric objects of the linear system geometry

with the well-known results on a Kähler manifold. First of all, the fact that the 0-connection is

the Levi–Civita connection can be verified as follows:

Γ(0)k
ij = gkm̄Γ

(0)
ij,m̄ = gkm̄∂i∂j∂m̄K = gkm̄∂igjm̄ = ∂i(log gmn̄)

k
j = Γk

ij

where the last equality comes from the expression for the Levi–Civita connection on a Kähler

manifold. This is well-matched to the Levi–Civita connection on a Kähler manifold.

In Riemannian geometry, the Riemann curvature tensor, corresponding to the 0-curvature tensor,

is given by

Rρ
σμν = ∂μΓ

ρ
νσ − ∂νΓ

ρ
μσ + Γρ

μλΓ
λ
νσ − Γρ

νλΓ
λ
μσ

where the Greek letters can be any holomorphic and anti-holomorphic indices. Similar to a Hermitian

manifold, the non-vanishing components of the 0-curvature tensor on a Kähler manifold are Rρ
σμ̄j and

its complex conjugate, i.e., the components with three holomorphic indices and one anti-holomorphic

index (and the complex conjugate component). The non-trivial components of the Riemann curvature

tensor are represented by

R(0)l
kīj = ∂īΓ

l
jk − ∂jΓ

l
īk + Γl

īmΓ
m
jk − Γl

jmΓ
m
īk

= ∂īΓ
l
jk = ∂ī(g

lm̄∂j∂l∂m̄K) =
(
R(0) l̄

k̄ij̄

)∗
because the 0-connection components with the mixed indices are vanishing.

Taking index contraction on holomorphic upper and lower indices in the Riemann curvature

tensor, the 0-Ricci tensor is found as

R
(0)

ij̄
= R(0)k

kij̄ = −R(0)k
kj̄i

= −∂j̄∂i(log gmn̄)
k
k = −∂j̄∂itr(log gmn̄)

= −∂j̄∂i log G (19)

where G is the determinant of the metric tensor. This result is consistent with the expression of

the Ricci tensor on a Kähler manifold. It is also straightforward to obtain the 0-scalar curvature by

contracting the indices in the 0-Ricci tensor:

R(0) = gij̄R
(0)

ij̄
= −1

2
Δ log G

where Δ is the Laplace–Beltrami operator on the Kähler manifold.
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The α-generalization of the curvature tensor, the Ricci tensor and the scalar curvature is based on

the α-connection, Equation (4). The α-curvature tensor is given by

R(α)l
kīj = ∂īΓ

(α)l
jk = ∂ī

(
Γ(0)l

jk −
α

2
glm̄Tjk,m̄

)
= R(0)l

kīj −
α

2
∂ī

(
glm̄Tjk,m̄

)
.

The α-Ricci tensor and the α-scalar curvature are obtained as

R
(α)

ij̄
= R(α)k

kij̄ = −R(α)k
kj̄i

= −∂j̄
(
Γ(0)k

ik −
α

2
gkl̄Tik,l̄

)
= R

(0)

ij̄
+

α

2
∂j̄T

k
ik

R(α) = R(0) +
α

2
gij̄∂j̄T

ρ
iρ.

It is noteworthy that the α-curvature tensor, the α-Ricci tensor and the α-scalar curvature on a Kähler

manifold have the linear corrections in α comparing with the quadratic corrections in α on non-Kähler

manifolds. A submanifold of a Kähler manifold is also a Kähler manifold. When a submanifold of

dimension m exists, the transfer function of a linear system can be decomposed into two parts:

h(z; ξ) = h‖(z; ξ1, · · · , ξm)h⊥(z; ξm+1, · · · , ξn)

where h‖ is the transfer function on the submanifold and h⊥ is the transfer function orthogonal to

the submanifold. When it is plugged into Equation (16), the Kähler potential of the geometry is

decomposed into three terms as follows:

K =
1

2πi

∮
|z|=1

(log h‖ + log h⊥)(log h‖ + log h⊥)∗
dz

z

=
1

2πi

∮
|z|=1

log h‖ log h̄‖
dz

z
+

1

2πi

∮
|z|=1

log h⊥ log h̄⊥
dz

z
+

1

2πi

∮
|z|=1

log h‖ log h̄⊥
dz

z
+ (c.c.)

= K‖ +K⊥ +K×

where K‖ contains the coordinates from the submanifold, K× is for the cross-terms and K⊥ is

orthogonal to the submanifold.

It is obvious that each part in the decomposition of the Kähler potential provides the metric tensors

for submanifolds,

gMN̄ = ∂M∂N̄K‖

gMn̄ = ∂M∂n̄K×

gmn̄ = ∂m∂n̄K⊥

where an uppercase index is for the coordinates on the submanifold and a lowercase index is for

the coordinates orthogonal to the submanifold. As we already know, the induced metric tensor

for the submanifold is derived from K‖, the Kähler potential of the submanifold. Based on this
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decomposition, it is also possible to use K as the Kähler potential of the submanifold, because it

endows the same metric with K‖. However, the Riemann curvature tensor and the Ricci tensors

include the mixing terms from embedding in the ambient manifold, because the inverse metric tensor

contains the orthogonal coordinates by the Schur complement. In statistical inference, connections,

tensors and scalar curvature play important roles. If those corrections are negligible, dimensional

reduction to the submanifolds is meaningful from the viewpoints not only of Kähler geometry, but

also of statistical inference.

The benefits of introducing a Kähler manifold as an information manifold are as follows. First

of all, on a Käher manifold, the calculation of geometric objects, such as the metric tensor, the

α-connection and the Ricci tensor, is simplified by using the Kähler potential. For example, the

0-connection on a non-Kähler manifold is given by

Γ
(0)
ij,k =

1

2
(∂igkj + ∂jgik − ∂kgij)

demanding three-times more calculation steps than the Kähler case, Equation (18). Additionally,

the Ricci tensor on a Kähler manifold is directly derived from the determinant of the metric tensor.

Meanwhile, the Ricci tensor on a non-Kähler manifold needs more procedures. In the beginning, the

connection should be calculated from the metric tensor. Additionally, then, the Riemann curvature

is obtained after taking the derivatives on the connection and considering quadratic terms of the

connection. Finally, the Ricci tensor on the non-Kähler manifold is found by the index contraction

on the curvature tensor indices.

Secondly, α-corrections on the Riemann curvature tensor, the Ricci tensor and the scalar curvature

on the Kähler manifold are linear in α. Meanwhile, there exist the quadratic α-corrections in

non-Kähler cases. The α-linearity makes it much easier to understand the properties of α-family.

Moreover, submanifolds in Kähler geometry are also Kähler manifolds. When a statistical model

is reducible to its lower-dimensional models, the information geometry of the reduced statistical

model is a submanifold of the geometry. If the ambient manifold is Kähler, the dimensional

reduction also provides a Kähler manifold as the information geometry of the reduced model, and

the submanifold is equipped with all of the properties of the Kähler manifold.

Lastly, finding the superharmonic priors suggested by Komaki [15] is more straightforward in the

Kähler setup, because the Laplace–Beltrami operator on a Kähler manifold is of the more simplified

form compared to that in non-Kähler cases. For a differentiable function ψ, the Laplace–Beltrami

operator on a Kähler manifold is given by

Δψ = 2gij̄∂i∂j̄ψ (20)

comparing with the Laplace–Beltrami operator on a non-Kähler manifold:

Δψ =
1√G ∂i

(√Ggij∂jψ) (21)

where G is the determinant of the metric tensor. On a Kähler manifold, the partial derivatives only

act on the superharmonic prior functions. Meanwhile, the contributions from the derivatives acting
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on G and gij should be considered in the non-Kähler cases. This computational redundancy is not on

the Kähler manifold.

4. Example: AR, MA and ARMA Models

In the previous section, we show that the information geometry of a signal filter is a Kähler

manifold. From the viewpoint of signal processing, time series models can be interpreted as a signal

filter that transforms a randomized input x(z) to an output y(z). The geometry of a time series model

can also be found by using the results in the previous section. In particular, we cover the AR, the MA

and the ARMA models as examples.

First of all, the transfer functions of these time series models need to be identified. The transfer

functions of the AR, the MA and the ARMA models with model parameters ξ = (σ, ξ1, · · · , ξn) are

represented by

h(z; ξ) =
σ2

2π

n∏
i=1

(1− ξiz−1)ci

where ci = −1 if ξi is an AR pole and ci = 1 if ξi is an MA root.

The ARMA models can be considered as the fraction of two AR models or two MA models. By

Lemma 1, the correspondence between the α-duality and the reciprocality of transfer functions is

also valid for the ARMA(p, q) models. For example, the ARMA(p, q) model with α-connection is

α-dual to the ARMA(q, p) model with the (−α)-connection under the reciprocality of the transfer

function. Simply speaking, the AR model and the MA model are exchangeable by Lemma 1. The

correspondence is given as follows:

ARMA(p, q)↔ ARMA(q, p)

poles ↔ zeros

zeros ↔ poles

σ/
√
2π ↔

√
2π/σ

α↔ −α
Γ(α) ↔ Γ(−α)

D(α)(h(0)||h)↔ D(−α)(h(0)||h)

where h(0) is the unit transfer function of an all-pass filter.

4.1. Kählerian Information Geometry of ARMA(p, q) Models

The ARMA(p, q) model is the (p+q+1)-dimensional model with ξ = (σ, ξ1, · · · , ξp+q), and the

time series model is characterized by its transfer function:

h(z; ξ) =
σ2

2π

(1− ξp+1z−1)(1− ξp+2z−1) · · · (1− ξp+qz−1)

(1− ξ1z−1)(1− ξ2z−1) · · · (1− ξpz−1)



416

where σ is the gain and ξi is a pole with the condition of |ξi| < 1. The logarithmic transfer function

of the ARMA(p, q) model is given by

log h(z; ξ) = log
σ2

2π
+

p+q∑
i=1

ci log (1− ξiz−1)

and it is easy to verify that f0a0 = σ2/2π.

According to Theorem 1, the information geometry of the ARMA model is a Kähler manifold

because of stability, minimum phase and the finite complex cepstrum norm of the ARMA filter.

By using Theorem 2, the Hermitian condition on the metric tensor is explicitly checked on the

submanifold of the ARMA model, where σ is a constant. In addition to that, this submanifold is also

a Kähler manifold, because a submanifold of a Kähler manifold is also Kähler. Since it is possible

to gauge σ by normalizing the amplitude of an input signal, the σ-coordinate can be considered as

the denormalization coordinate [21]. Similar to the non-complexified ARMA models [12], g0i for all

non-zero i vanish by direct calculation using Equation (2). Considering these facts, we work only

with the submanifolds of a constant gain.

As mentioned, the Käher potential is crucial for the Kähler manifolds and defined as the square of

the Hardy norm of the logarithmic transfer function, equivalently the square of the complex cepstrum

norm, Equation (16). For the ARMA(p, q) model, the Kähler potential is given by

K =
∞∑
r=1

1

r2

∣∣∣ p+q∑
i=1

ci(ξ
i)r
∣∣∣2

Since the metric tensor is simply derived from taking the partial derivatives on the Kähler potential,

Equation (15), the metric tensor of the ARMA(p, q) model is represented as

gij̄ =
cicj

1− ξiξ̄j
.

where other fully holomorphic- and fully anti-holomorphic-indexed components are all zero. It is

easily verified that if ci and cj are both from the AR or the MA models, ci and cj exhibit the same

signature, which imposes that the AR(p)- and the MA(q)-submanifolds of the ARMA(p, q) model

have the same metric tensors with the AR(p) and the MA(q) models, respectively. If two indices

are from the different models, there exists only the sign difference in the metric tensor. The metric

tensor of the geometry is of a similar form as the metric tensor in Ravishanker’s work on the ARMA

geometry [12].

By considering the Schur complement, the inverse metric tensor can be deduced from the inverse

metric tensor of the AR(p+q) model. The inverse metric tensor of the geometry is represented by

gij̄ = cicj
(1− ξiξ̄j)

∏
k =i(1− ξkξ̄j)

∏
k =j(1− ξiξ̄k)∏

k =i(ξ
k − ξi)

∏
k =j(ξ̄

k − ξ̄j)

and the only difference with the AR case is the signature cicj in the AR-MA mixed components. With

the sign difference in the metric tensor components with the AR-MA mixed indices, the determinant
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of the metric tensor can be calculated with the aid of the Schur complement. The determinant of the

metric tensor is found as

G = det gij̄ =

∏
1≤j<k≤n |ξk − ξj|2∏

j,k(1− ξj ξ̄k)
.

The 0-connection and the symmetric tensor T for the Kähler-ARMA model can be found from

the results in the previous section. The non-trivial 0-connection components are calculated from

Equation (18):

Γ
(0)

ij,k̄
=

cjckδij ξ̄
k

(1− ξj ξ̄k)2

and the non-zero components of the symmetric tensor T are given by Equation (17):

Tij,k̄ =
2cicjckξ̄

k

(1− ξiξ̄k)(1− ξj ξ̄k)
.

Based on the above expressions, the α-connection is easily obtained from Equation (4).

The 0-Ricci tensor of the ARMA geometry is represented by Equation (19):

R
(0)

ij̄
= − 1

(1− ξiξ̄j)2

and it is noteworthy that the Ricci tensor is not dependent on ci. The 0-scalar curvature is calculated

from the 0-Ricci tensor by index contraction:

R(0) = −
∑
i,j

cicj
∏

k =i(1− ξkξ̄j)
∏

k =j(1− ξiξ̄k)

(1− ξiξ̄j)
∏

k =i(ξ
k − ξi)

∏
k =j(ξ̄

k − ξ̄j)

where ci, cj are from the inverse metric tensor of the ARMA model.

It is straightforward to derive the α-generalization of the Riemann curvature tensor, the Ricci

tensor and the scalar curvature by using the results in Section 3.

4.2. Superharmonic Priors for Kähler-ARMA(p, q) Models

As mentioned before, the Laplace–Beltrami operator on a Kähler manifold is of a much simpler

form than that on a non-Kähler manifold. The simplified Laplace–Beltrami operator of the geometry

makes finding superharmonic priors easier. Although it is also valid in any arbitrary dimension, let

us confine ourselves to the ARMA(1,1) model as a simplification. For the ARMA(1, 1) model, the

metric tensor is expressed with

gij̄ =
( 1

1−|ξ1|2 − 1
1−ξ1ξ̄2

− 1
1−ξ2ξ̄1

1
1−|ξ2|2

)
.

It is trivial to show that ψ1 = (1−|ξ1|2)+(1−|ξ2|2) and ψ2 = (1−|ξ1|2)(1−|ξ2|2) are superharmonic

prior functions.
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In order to compare with the literature on superharmonic priors for the non-Kählerian AR

models [30,31], let us consider the Kähler-AR(p) models. For p = 2, the metric tensor is given

by

gij̄ =
( 1

1−|ξ1|2
1

1−ξ1ξ̄2

1
1−ξ2ξ̄1

1
1−|ξ2|2

)
.

With the Laplace–Beltrami operator on a Kähler manifold, it is obvious that (1 − |ξk|2) for

k = 1, · · · , p is a superharmonic function in arbitrary p-dimensional AR geometry. The proof for

superharmonicity is as follows:

Δ(1− |ξk|2) = 2gij̄∂i∂j̄(1− |ξk|2)
= −2gij̄δi,kδj,k = −2gkk̄ < 0

because the diagonal components of the inverse metric tensor are all positive. By additivity, the sum

of these prior functions,
∑n

k=1(1 − |ξk|2), are also superharmonic. Obviously, ψ1 = (1 − |ξ1|2) +
(1− |ξ2|2) is a superharmonic prior function in the two-dimensional case.

Another superharmonic prior function for the AR(2) model is ψ2 = (1 − |ξ1|2)(1 − |ξ2|2). The

Laplace–Beltrami operator acting on ψ2 is represented by(Δψ2

ψ2

)
= −2(2− ξ1ξ̄2 − ξ2ξ̄1)

|ξ1 − ξ2|2

and it is simply verified that
(

Δψ2

ψ2

)
< 0, because 2− ξ1ξ̄2 − ξ2ξ̄1 > 0. In addition to that, since ψ2

is positive, ψ2 = (1− |ξ1|2)(1− |ξ2|2) is a superharmonic prior function.

Additionally, it is found that ψ3 = (1−ξ1ξ̄2)(1−ξ2ξ̄1)(1−|ξ1|2)(1−|ξ2|2) is also a superharmonic

prior function. The Laplace–Beltrami operator acting on this prior function gives

(
Δψ3

ψ3

) = − 6

G
|ξ1 − ξ2|2

(1− ξ1ξ̄2)(1− ξ2ξ̄1)(1− |ξ1|2)(1− |ξ2|2) = −6

and it is straightforward that ψ3 is superharmonic, because ψ3 is positive. This prior function is

similar to the prior function found in the literature [30,31]. If the prior function is represented in the

complexified coordinates, the prior function is (1 − |ξ1|2), because the two coordinates in his paper

are complex conjugate to each other.

To obtain superharmonic priors, the superharmonic prior functions found above are multiplied

by the Jeffreys prior, which is the volume form of the information manifold. After that, the

superharmonic priors outperform the Jeffreys prior [15].

5. Conclusion

In this paper, we prove that the information geometry of a signal filter with a finite complex

cepstrum norm is a Kähler manifold. The conditions on the transfer function of the filter make the

Hermitian structure explicit. The first condition on the transfer function for the Kählerian information
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manifold is whether or not multiplication between the zero-th degree terms in z of the unilateral part

and the analytic part in the transfer function decomposition is a constant. The second condition is

whether or not the coefficient of the highest degree in z is a constant in the model parameters. These

two conditions are equivalent to each other for some transfer functions.

It is also found that the square of the Hardy norm of a logarithmic transfer function is the Kähler

potential of the information geometry. It is also known as the unweighted complex cepstrum norm

of a linear system. Using the Kähler potential, it is easy to derive the geometric objects, such as the

metric tensor, the α-connection and the Ricci tensor. Additionally, the Kähler potential is a constant

term in α of the α-divergence, i.e., it is related to the 0-divergence.

The Kählerian information geometry for signal processing is not only mathematically interesting,

but also computationally practical. Contrary to non-Kähler manifolds where tedious and lengthy

calculation is needed in order to obtain the tensors, it is relatively easier to calculate the metric tensor,

the connection and the Ricci tensor on a Kähler manifold. Taking derivatives on the Kähler potential

provides the metric tensor and the connection on a Kähler manifold. The Ricci tensor is obtained

from the determinant of the metric tensor. Moreover, α-generalization on the curvature tensor, the

Ricci tensor and the scalar curvature is linear in α. Meanwhile, there exist the non-linear corrections

in the non-Kähler cases. Additionally, since the Laplace–Beltrami operator in Kähler geometry is of

the simpler form, it is more straightforward to find superharmonic priors.

The information geometries of the AR, the MA and the ARMA models, the most well-known time

series models, are the Kähler manifolds. The metric tensors, the connections and the divergences of

the linear system geometries are derived from the the Kähler potentials with simplified calculation. In

addition to that, the superharmonic priors for those models are found with much less computational

efforts.
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Most Likely Maximum Entropy for Population Analysis with
Region-Censored Data
Youssef Bennani, Luc Pronzato and Maria João Rendas

Abstract: The paper proposes a new non-parametric density estimator from region-censored

observations with application in the context of population studies, where standard maximum

likelihood is affected by over-fitting and non-uniqueness problems. It is a maximum entropy

estimator that satisfies a set of constraints imposing a close fit to the empirical distributions associated

with the set of censoring regions. The degree of relaxation of the data-fit constraints is chosen, such

that the likelihood of the inferred model is maximal. In this manner, the estimator is able to overcome

the singularity of the non-parametric maximum likelihood estimator and, at the same time, maintains

a good fit to the observations. The behavior of the estimator is studied in a simulation, demonstrating

its superior performance with respect to the non-parametric maximum likelihood and the importance

of carefully choosing the degree of relaxation of the data-fit constraints. In particular, the predictive

performance of the resulting estimator is better, which is important when the population analysis is

done in the context of risk assessment. We also apply the estimator to real data in the context of

the prevention of hyperbaric decompression sickness, where the available observations are formally

equivalent to region-censored versions of the variables of interest, confirming that it is a superior

alternative to non-parametric maximum likelihood in realistic situations.

Reprinted from Entropy. Cite as: Bennani, Y.; Pronzato, L.; Rendas, M.J. Most Likely Maximum

Entropy for Population Analysis with Region-Censored Data. Entropy 2015, 17, 3963–3988.

1. Introduction

1.1. Motivation

The paper presents a new density estimator motivated by problems of population modeling, where

the interest is in estimating the probability distribution πθ, θ ∈ Θ, of the parameters of a mathematical

model M(·|θ) characterizing the response y(t|θ) of individuals to applied stimuli x(t). The ultimate

goal is in general to be able to predict the dispersion of the response of the population to an arbitrary

future stimulus x(t), rather than to make a “tomography” of the population itself. These types of

problems are frequent in domains like biomedical engineering, insurance studies or environmental

management.

If the parameter θ can be estimated from each observation y(t|θ) and each individual’s parameter

is chosen independently from πθ, the problem of estimating πθ from a collection of responses

{(yi(t|θi), xi(t))}Ni=1 is formally equivalent to the usual density estimation problem from a set of

independent and identically distributed samples {θi}Ni=1 ∼ πθ and can be solved using standard

parametric or non-parametric methods; see the abundant literature on non-linear mixed-effects

models. The situation considered in this paper is more complex, in that the response y(·|θ) of the

model is not observable, and we only have access to the result of the classification of its assignment
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to a finite number (L + 1) of possible labels by a known classifier C(·). Figure 1 illustrates the

structural modeling/observation framework that we consider.

x(t)
M(·, θ)

θ

y(t|θ)
C(·) z ∈ {0, . . . , L}

Figure 1. Partial response observation: z is the classification of the response to stimulus

x(t) in a finite set.

In this setup, each observation can no longer be related to a single point θ ∈ Θ, the same label

z being assigned, for the same stimulus x(t), to all responses inside a subset R ⊂ Θ. The set R is

completely determined by the pair (z, x(t)) together with knowledge of the model M(·|θ) and of the

classifier rule C(·). This situation, when a single observation does not give information with respect

to the individual value θ, but only the indication that it belongs to a set, is commonly known in the

statistical literature as “censored observations”. While in general studies of the density estimation

under censored observations have assumed that the censoring sets R are intervals, the geometry of our

censoring regions is determined by the structure of the (possibly highly non-linear) operators M(·|θ)
and C(·) and can have an arbitrary morphology, requiring modification of the existing methods.

In Section 4, we detail a particular instance of the problem formally presented above, relevant in

the context of the prevention of decompression sickness in hyperbaric diving. Readers may want to

read the material in Section 4.1 to have a concrete instantiation of the generic stimuli and operators

used in the presentation above.

1.2. Notation and Problem Formulation

Consider the notation introduced in Section 1.1 (see also Figure 1), and let {(zn, xn(·))}Nn=1

denote the available set of observations, where label zn ∈ {0, . . . , L} has been observed for input

X(n) = {xn(t), t ∈ Tn}, where Tn is the duration of the stimulus. Denote by Rn ⊂ Θ the set of all

individual parameters whose response to X(n) receives label zn:

Rn =
{
θ ∈ Θ : C(M(X(n)|θ)) = zn

}
We assume that for all possible stimuli X(n), the composition C

(
M(X(n)|·)) (of the model and

the classifier) is a measurable function from Θ to {0, . . . , L} with respect to the restriction of the

Lebesgue measure to the set Θ. Under this assumption, the probability of the sets M−1
X(n) (C

−1(�)) is

well defined for all 0 ≤ � ≤ L and all stimuli for any distribution absolutely continuous with respect

to the Lebesgue measure.
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Usually, in population studies, the same stimulus is applied to several individuals. We assume

here that stimuli X(j) are chosen in a finite set X =
{
X(1), . . . , X(J)

}
. Each possible input function

X(j) in X determines a partition of Θ in L+ 1 sets, that we denote by Q(j) = {R(j)
0 , . . . , R

(j)
L }:

R
(j)
� =

{
θ ∈ Θ : C(M(t|X(j), θ)) = �

}
, Θ = ∪L

�=0R
(j)
� , �1 �= �2 ⇒ R

(j)
�1
∩R

(j)
�2

= ∅

The top row of Figure 2 illustrates schematically partitions that correspond to classification in

two (L1 = 1) and three (L2 = 2) classes of the response to two distinct stimuli.

Θ

R
(1)
1

R
(1)
2

Θ

R
(2)
1

R
(2)
2

R
(2)
3

Θ

E1

E2

E3

E4

E6

E5

Figure 2. Two partitions associated with distinct stimuli, Q(1) = {R1
1, R

1
2} (top left) and

Q(2) = {R2
1, R

2
2, R

2
3} (top right) and the resulting partition Q (bottom); see Definition 1.

Let nj be the number of times that stimulus X(j) has been used in the N observations and n
(j)
�

the number of times label � occurred in these nj experiences. The observed dataset determines J

empirical laws f̃ (j), each one associated with a distinct partition Q(j):

f̃
(j)
� =

n
(j)
�

nj

, � = 0, . . . , L, j = 1, . . . , J,
L∑

�=0

n
(j)
� = nj,

J∑
j=1

nj = N (1)

When we want to emphasize the number of observations on which these empirical laws are based,

we will call f̃ (j) an nj-type. With the notation defined above, we can finally state the problem

addressed in this paper with full generality.

Problem 1. (Density estimation from region-censored data)
Find the non-parametric estimate of πθ from the set of J nj-types f̃ (j), j = 1, . . . , J (see Equation
(1)) of the discrete random variables associated with the known partitions {Q(j)}Jj=1 (see Equation
(4)).

Before initiating the study of this estimation problem, we show below how a set of constraints

can be related to the observations (1) leading to an alternative problem formulation.
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Let 1A(θ) be the indicator function of set A ⊂ Θ and π̃
(nj)
θ the (non-observed) empirical

distribution:

π̃
(nj)
θ (θ) =

1

nj

nj∑
i=1

δ
(
θ − θ

(j)
i

)
, j = 1, . . . , J

where θ
(j)
i , i = 1, . . . , nj , is the parameter of the i-th individual to whom stimulus X(j) has been

applied. It is immediate that f̃
(j)
� in Equation (1) can be written as the statistical expectation of the

indicator function of R
(j)
� with respect to π̃

(nj)
θ :

f̃
(j)
� = E

π̃
(nj)

θ

[
1
R

(j)
�
(θ)
]
, � = 0, . . . , L, j = 1, . . . , J (2)

We stress that in our context, the (virtual) datasets θ(j) =
{
θ
(j)
i

}nj

i=1
are distinct for different

values of j ∈ {1, . . . , J}, since they correspond to statistically-independent samples from πθ.

The remarks above allow us to relate Problem 1 to two alternative problems: Problem 2

formulated below and Problem 3 presented in the next subsection.

Problem 2. (Density estimation under moment constraints)
Consider a set of partitions R(j), j ∈ {0 . . . L} all of size L + 1, and let {gm(·)}Mm=1, with M =

(L + 1)J , be the set of indicator functions {1
R

(j)
�
(·)}J,Lj=1,�=0. Denote by g̃m,m = 1, . . . ,M , the

corresponding empirical moments as in (2). Find the non-parametric estimate of πθ that satisfies the
set of constraints:

Eπθ
[gm(θ)] = g̃m, m = 1, . . . ,M

Note that the existence and unicity of the solution to this problem is not guaranteed: depending

on the set of partitions and empirical moments, the problem may have no solution or admit a solution

(possibly non-unique).

The next subsection summarizes the present background on the two problems formulated above.

Prior to that, we present three definitions that will be useful in the sequel.

Definition 1. Let Q be the smallest partition of Θ whose generated σ-algebra, σ(Q), contains all
partitions {Q(j)}Jj=1 (elements of Q are the minimal elements of the closure of the union of all
partitions Q(j) with respect to set intersection). The size Q = |Q| is necessarily finite. We denote by
Em,m ∈ {1, . . . , Q} a generic element of Q.

The bottom row of Figure 2 shows the partition Q generated by the two partitions in the top.

Definition 2. E(j)
� is the set of elements of Q that intersect R(j)

� , such that:

R
(j)
� =

⋃
Em∈E(j)

�

Em, � = 0, . . . , L, j = 1, . . . , J (3)

Definition 3. Let πθ be a probability distribution over Θ and Q a finite partition of Θ. We denote by
πθ,Q the probability law induced by πθ over the elements of Q:

πθ,Q(Em) = πθ (Em) , ∀Em ∈ Q (4)
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1.3. Background

1.3.1. Density Estimation from Region-Censored Data

Determination of π̂θ, the NPMLE (non-parametric maximum likelihood estimate) of πθ from

censored observations, i.e., the solution of Problem 1, has been studied by many authors, starting

with the pioneering formulation of the Kaplan–Meier product-limit estimator [1]. Several types of

censoring (one-sided, interval, etc.) have been considered since, first for scalar and more recently for

multivariate distributions.

The problem assessed here departs from previous studies in that our (multi-dimensional)

censoring regions R
(j)
� ⊂ Θ can have arbitrary geometry. To emphasize this, we speak of

“region-censoring”, instead of the more common term “interval-censoring.” Another important

difference concerns the fact that our regions are elements of a known set of partitions, being in general

observed several times, while in general, no relation between the censoring intervals is assumed in

the literature, each one being usually applied once.

Several facts are known about the NPMLE for censored observations.

Proposition 1.

(i) The support of π̂θ, SNPMLE = {θ, : π̂θ(θ) > 0} is confined to a finite number K ≤ Q of
elements of Q, the so-called “elementary regions”:

SNPMLE = ∪K
k=1Ek, Ek ∈ Q (5)

This set necessarily has a non-empty intersection with all observed lists E(j)
� , i.e.,

n
(j)
� �= 0⇒ E

(j)
� ∩ SNPMLE �= ∅

(ii) all distributions that put the same probability mass wk = {πθ(Ek)}, k = 1, . . . , K in the
elementary regions have the same likelihood;

(iii) there is in general no unique assignment of probabilities {ŵk}Kk=1 that maximizes the
likelihood.

Turnbull [2] has first demonstrated (i) giving an algorithm to find the pairs {(Ek, wk)}Kk=1 for the

scalar case. Gentleman and Vandal [3] addressed the multivariate interval-censored case, showing

that the Ek’s are the intersections of the elements of the maximal cliques of the intersection graph of

the set of observed intervals; see Figure 3a for a bi-dimensional example. We have shown elsewhere

[4] that (i) also holds when the censoring sets have arbitrary geometry, but that some elementary

regions are now associated with non-maximal cliques of the intersection graph, as shown in Figure

3b, requiring a slightly more complex identification of the sets Ek, which we do not detail here.

Facts (i) and (ii) together imply that the NPMLE problem can be studied in the K-dimensional

probability simplex SK , since π̂θ(·) is determined only up to the probability vector ŵ =

{ŵ1, . . . , ŵK}. The two types of “non-uniqueness” of the NPMLE, (ii) and (iii), have been first
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pointed out by Turnbull [2]. More recently, they were studied in detail for the multi-variate case

in [3], where the authors coined the terms representational (ii) and mixture (iii) non-uniqueness,

further showing that the set of probability laws π̂θ defining NPMLEs is a polytope.

R1

R2

R3

(a)

R1

R2R3

(b)

Figure 3. Definition of elementary regions from the cliques of the intersection graph.

(a) Three intervals: maximal clique and corresponding elementary region Ek (shaded

region); (b) three regions with empty intersection resulting in three disjoint elementary

regions Ek (the shaded regions).

The NPMLE under censored observations retains the typical consistency properties of the

maximum likelihood estimates, in particular π̂θ(R(j)
� ) tends to πθ,R(j)(�) (see Equation (4)) when

nj → ∞. It is not possible to guarantee the consistency of the estimate of the distribution of πθ,Q
over the finer partition Q. However, the simulations studies presented in Section 3 show that as the

number of partitions J tends to infinity and this σ-algebra gets finer, while keeping fixed each nj

(and thus, n→∞ with J), the distance between the true and estimated probability laws decreases to

zero.

Facts (i)–(iii) seriously hinder application of NPMLEs in many domains, in particular when, as is

the case in our study, they provide a model of the diversity of the population under analysis that will

be used for subsequent risk assessment. Besides being affected by some degree of arbitrariness (Facts

(ii) and (iii)), the concentration of the probability mass in a small number of bounded regions reveals

a tendency to underestimate population diversity, which may result in strong biases when estimating

risk under unobserved stresses. The simulation studies that will be presented in Section 4 illustrates to

what extent a lack of identifiability and a tendency to concentrate its support compromise the ability

to predict the empirical laws corresponding to stimuli that were not used in the available dataset.

1.3.2. Density Estimation under Moment Constraints

Eventual non-unicity problems in density estimation under constraints on moments, like

Problem 2, have been most often solved by relying on the maximum entropy (MaxEnt) principle [5]

to select the most un-informative density that can match the observed moments {g̃m}Mm=1. Several

information entropies have been considered in this context, the original Shannon entropy H1(·)
remaining the most commonly used due to its simple interpretation in terms of coding theory and
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its intimate link to fundamental results in estimation theory, while amongst generalized entropies,

the Rényi entropy Hα(·), coinciding with Shannon when α→ 1, is often chosen due to its appealing

numerical and analytical tractability for α = 2:

H1(π) = Eπ [− log(π)] , Hα(π) =
1

1− α
log
(
Eπ

[
πα−1

])
Problem 3. (H-MaxEnt density estimator)
Let H(·) be a generalized entropy. The H-MaxEnt estimate π̂H

θ of Problem 2 is the solution of:

π̂H
θ = argmax

πθ∈G
H(πθ) , G = {πθ s.t. Eπθ

[gm(θ)] = g̃m, m = 1, . . . , Q}

When G is non-empty (i.e., the constraints are compatible) the MaxEnt density can be analytically

determined for some choices of H(·).
Proposition 2. (Equivalence to ML estimation in the exponential family)
Assume that the constraints {g̃m}Mm=1 of Problem 2 are statistical averages with respect to the

empirical distribution of a common dataset θ(N) = {θn}Nn=1, i.e., π̃(nj)
θ = π̃

(n)
θ in Equation (2),

such that:

g̃m =
1

N

N∑
n=1

gm(θn), m = 1, . . . ,M

Then:

(1) (Boltzmann theorem [6]) the H1-MaxEnt estimate π̂H1
θ maximizes the likelihood of the

observations in the exponential family,

π̂H1
θ (θ) =

1

Zλ

M∏
m=1

exp (λmgm(θ)) (6)

where Zλ is a normalizing constant (the partition function), and the {λm}Mm=1 are determined
such that the M constraints are satisfied.
In short, the MaxEnt (non-parametric) estimate coincides with the maximum likelihood
parametric estimate inside the exponential distributions.

(2) the H2-MaxEnt estimate [7] π̂H2
θ is:

π̂H2
θ (θ) =

[
−1

2

M∑
m=1

λmgm(θ)

]
+

where [·]+ = max(·, 0) and the {λm}Mm=1 are such that the M constraints are satisfied.

Note that the H1-MaxEnt/ML equivalence is lost when the empirical averages g̃m are not all

obtained from the same dataset, as is the case in our problem, where (see Equation (2)) constraints

associated with distinct stimuli are being derived from distinct empirical distributions.

When the constraints are not compatible, i.e., G = ∅ and Problem 2 has no solution, π̂H
θ is not

defined, and only a relaxed version of the original problem can be solved.
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Problem 4. (Relaxed H–MaxEnt density estimator)
Let H be a generalized entropy, and ε ∈ R+M

. The ε-relaxed H-MaxEnt density estimate π̂ME,ε
θ is

the solution of:

π̂ME,ε
θ = argmax

πθ∈G(ε)

H(πθ) , G(ε) =
{
πθ s.t. ‖g − g̃‖πθ

≤ ε
}

where g is the M -dimensional vector function with m-th component gm(·), g̃ is the M -dimensional
vector of empirical expectations of g, ‖·‖π is a vector of norms depending on π and inequality is
understood component-wise.

This estimator has been studied in detail in [8,9] for the Shannon entropy and moment constraints

derived from a single empirical distribution, where the authors fully exploit the equivalence between

regularized MaxEnt as formulated above and �1-penalized maximum likelihood in the exponential

family, showing that Proposition 2 holds in a more generic sense.

Proposition 3. (Equivalence of �1-regularized H1-MaxEnt and penalized log-likelihood [9])
Problem 4 with H = H1 (Shannon entropy) and ‖·‖π the �1 norm for the expected value:[‖g − g̃‖πθ

]
m
= |Eπθ

[gm(·)]− g̃m|

where the constraints g̃ are empirical averages computed using a dataset Θ, is equivalent to the
maximization of the sum of the log-likelihood of Θ for the exponential family (6) penalized by the
term

∑
m εm|λm|, where εm is the m-th element of ε.

By linking the relaxation level (the parameter ε in Problem 4) to the expected level of accuracy

of the empirical averages g̃m, in [8,9], the authors are able to establish performance guarantees for

the resulting density estimate, in terms of log-likelihood loss.

As before, this regularized-MaxEnt/penalized-ML equivalence only holds when all constraints

are on the empirical moments with respect to the same underlying empirical distribution. This is not

true in population analysis, where an individual is observed only through one of the partitions, and

we cannot invoke the properties of maximum likelihood estimators to characterize the properties of

regularized MaxEnt estimators, as is done in [8].

We remark that the regularized MaxEnt estimates are unique for strictly concave entropy

functionals and always exist for sufficiently large ε. They do not suffer from neither representational

non-unicity, the optimal continuous distribution being constant inside each element of Q, nor from

mixture non-uniqueness, being the solution of a concave criterion under linear inequality constraints.

1.4. Contributions

As largely documented in the literature, the NPMLE using censored data frequently exhibits a

singular behavior. By concentrating probability mass in a subset of Θ of a small Lebesgue measure,

they favor “over-homogenous” population models that may lead to dangerous biases in the context of

risk assessment, by masking the existence of individuals for which risk can be large. As shown above,
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the problem of density estimation from censored observations addressed in the paper can be recast as

the problem of density estimation under a set of constraints derived from the censored observations,

each constraint being associated with one of the censoring regions.

While MaxEnt has been frequently used for density estimation from the joint observation of

empirical moments of a set of features, its use for region-censored data arising from strongly

quantified data, as we consider in this paper, violates the conditions under which previous equivalence

to maximum likelihood estimation in the Gibbs family can be established. In these circumstances,

guarantees on the likelihood of the original data can be no longer given.

We propose a novel estimator that explicitly relies on the two criteria, the most likely maximum

entropy estimator (MLME), where the degree ε of regularization of a MaxEnt estimate (i.e., of the

solutions to Problem 4) is chosen such that the resulting estimate has maximum likelihood. The

duality of the two criteria is exploited to allow suppression of singularities that are due to inconsistent

or small datasets, and the resulting solution converges to the non-parametric maximum likelihood

solution as the size of the datasets associated with each constraint (censoring region) grows. By using

the Rényi entropy of order two instead of the Shannon entropy, we are led to a quadratic optimization

problem with linear inequality constraints that has an efficient numerical implementation.

While no theoretical performance guarantees are given, the paper presents numerical studies

of the performance of the proposed MLME estimator in real and simulated data, comparing it to

the NPMLE and to the best fitting MaxEnt solutions. The results of cross-validation on a real

dataset show that our novel estimator is better than the NPMLE or the minimally-regularized MaxEnt

estimator, leading to better predictions of the population risk under unobserved stress conditions.

The paper is organized as follows. Section 2 illustrates the poor behavior of the NPMLE using

simulated data. We show (Section 2.4) that even the most uncertain of the NPMLEs still presents

singularities that are unlikely to occur in a natural population. The section starts by presenting the

likelihood function and defining the polytope of NPMLE solutions. It also addresses the numerical

determination of the NPMLE, and two optimization algorithms are presented.

Section 3 presents the main contribution of the paper, introducing the most likely Rényi MaxEnt

estimator (MLME; see Definition 4). We compare our estimator to the NPMLE, demonstrating

using simulated datasets that it performs better. We also present numerical studies of its asymptotic

behavior as the number J of different stimuli becomes large, revealing a remarkably better behavior.

In Section 4, the proposed estimator is applied to the real problem that motivated this study, in

the context of the prevention of decompression sickness in hyperbaric deep sea diving. The new

estimator is compared to classical maximum likelihood and maximum entropy estimators on real and

simulated data, illustrating the superior performance of the new estimator in a realistic situation.
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2. The NPMLE

2.1. Simulated Data Generation Mechanism

Before presenting the NPMLE and discussing its determination, we present the data generation

mechanism that will be used to illustrate the different estimators presented in this and the next

sections. The simulated population distribution πθ is the restriction of the joint distribution of two

independent and identically distributed normal variables of mean μ = 0.5 and variance σ2 = 0.2 to

the unit square Θ = [0, 1]2.

Partitions R(j) are randomly generated by considering random unions of the elements of

the Voronoi tessellation of S = 50 points uniformly drawn in Θ; see Figure 4. The

partition Q induced by 10 random binary splits of Θ is shown in Figure 5a, and Figure

5b is a color-coded representation of the probability law pπ,Q, where the fine partition Q
is easily recognizable (black delimited polygonal regions). We remark that the size of the

elements of the partitions generated by our simulation mechanism tends have low dispersion,

following approximately a gamma distribution with both parameters equal to (7/2)λ−2, where

λ is the intensity of the homogenous Poisson process [10] (λ = 1/50 in our simulations).

In Section 4, we will see that this may not be the case in practical applications.

Figure 4. Two randomly-generated partitions of the unit square.

Observations are then generated by independently sampling nj times from each of the probability

laws associated with the individual partitions R(j), for j = 1, . . . , J . In the numerical studies

presented in this section, J = 10. To simulate the situation when some stimuli are seldom applied

(for instance, if they may have compromised the safety of the individual to which they are applied),

the partitions are divided into two groups, representing “safe” and “dangerous” stimuli, of sizes seven

and three, respectively. The probability that a dangerous partition is chosen is 10−3, and inside each

group, partitions are chosen uniformly. Except when indicated otherwise, we will consider a total of

N = 104 observations.
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(a) (b)

Figure 5. (a) Partition Q determined by J = 10 random binary partitions of Θ.

(b) Probability law πθ,Q induced over the elements of the partition Q.

2.2. Likelihood Function

The log-likelihood function for Problem 1 is:

L(πθ; {f̃ (j),Q(j)}) = 1

N

J∑
j=1

nj

L∑
�=0

f̃
(j)
� log pπθ,Q(j)(�) (7)

Consider the partition Θ = SNPMLE ∪ SNPMLE, with A the complement of set A, and where

SNPMLE is the union of the elementary regions {Ek}Kk=1 in Proposition 1 (i), such that pπθ,Q(j)(�) =

πθ(R
(j)
� ∩ SNPMLE) + πθ(R

(j)
� ∩ SNPMLE).

Note that since the elementary regions {Ek}Kk=1 are elements of Q, notation E
(j)
i introduced in

Definition 2 is well defined.

From Proposition 1 (i) π̂θ(R
(j)
� ∩ SNPMLE) = 0 and, thus, using (3):

pπθ,Q(j)(�) =
∑

Em∈E(j)
�

πθ(Em) = B
(j)
�. w (8)

where B
(j)
�. is the �-th row of B(j), the (L+ 1)×K binary matrix, with B

(j)
�k = 1⇔ Ek ∈ E

(j)
� , and

w ∈ SK is the vector of probabilities of the elementary regions Ek: wk = πθ(Ek), k = 1, . . . , K,

with SK the K-dimensional probability simplex:

SK = {w ∈ RK : wk ≥ 0,
K∑
k=1

wk = 1}

Equations (7) and (8) show that (Proposition 1 (iii)) all πθ leading to the same w have the

same likelihood.

Proposition 4. There is in general no single w maximizing (7) and all elements of:

P =
{
w ∈ SK , s.t. ∀j, B(j)w = B(j)ŵ

}
(9)

where ŵ is a NPMLE are also NPMLEs. We call P the NPMLE polytope.
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Note that the non-unicity statement above concerns w the probabilities of the elementary regions

Ek, but that the probability of the censoring regions R
(j)
� is uniquely estimated, all w ∈ P assigning

the same probabilities to the elements of the partitions Q(j). It is obvious that the estimator is

consistent for these, but no stronger statement seems to be possible.

2.3. Optimizing the Likelihood

Several algorithms have been proposed to maximize (7); see e.g., [11]. Gentleman and

Vandal [3] discussed several methods and summarized them in two categories: those based on convex

optimization and those based on finite mixture estimation. Two algorithms are compared in [11]: the

iterative convex minorant (ICM), initially presented by Groeneboom and Wellner [12], and the vertex

exchange method [13].

We show below that a multiplicative algorithm, known as the Richardson–Lucy algorithm [14]

in the framework of image deconvolution, can be used to maximize L. This follows from the fact

that maximization of L is equivalent to an optimal design problem, enabling application of a vast

collection of efficient algorithms originating from optimal design theory. As far as we know, this

link of NPMLE estimation using censored observations to a D-optimal design problem has not been

remarked on before.

Consider the nj(L + 1) × K matrices B(j)′ , obtained from the ((L + 1) × K) matrix B(j) by

repeating n
(j)
� times line �, the N × K matrix B′ that stacks all B(j)′ , j = 1, . . . , J , the N × N

diagonal matrix Hk = diag(B′
·k) and the matrix M(w) =

∑K
k=1 wkHk. Then, it is easy to show that

L can be written as:

L(w; {f̃ (j),Q(j)}) = log detM(w)

demonstrating that the determination of ŵ maximizing L(w; {f̃ (j),Q(j)}) with respect to w ∈ SK

corresponds to a D-optimal design problem for the matrix M(w), with w considered as a design

measure allocating weight wk to the elementary design matrix Hk (see, e.g., [15]). A number of

important properties follow from this equivalence with a D-optimal design problem. In particular,

see [16,17], the iterations:

w
(t+1)
k =

1

N

(
J∑

j=1

L∑
�=0

n
(j)
�

B
(j)
(�+1)k

B
(j)
(�+1).w

(t)

)
w

(t)
k (10)

initialized at some strictly positive w(0) converge to a maximizer of (7). This multiplicative algorithm

is easy to implement, but the following vertex exchange method (VEM) [13] ensures a faster

convergence to the optimum. The VEM updating rule is:

w(t+1) = w(t) + αwk	(ek	 − ek	) (11)

where:

w(0) ∈ SK , k� = argmax
k∈{1,...,K}

d(w(t), k), k� = argmin
k∈{1,...,K},w(t)

k >0

d(w(t), k), d(w, k) = trace
[
M−1(w)Hk

]
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and α is chosen to maximize a quadratic approximation of the log-likelihood evaluated at w(t+1). In

the multiplicative and VEM algorithms, we use the stopping condition max
k∈{1,...,K}

d(w, k)

N
− 1 < δ �

1.

Our numerical studies show that the VEM Algorithm (11) is faster than the multiplicative

Algorithm (10) requiring on average three-times less iterations to converge. We stress that

these optimization algorithms can be applied to all Q elements of the complete partition Q and

automatically sets to zero the entries of w that do not correspond to the elementary sets {Ek}Kk=1 (in

particular, when using the result in [18] to detect the entries of w that can be set to zero), so that the

computationally-expensive analysis of the intersection graph presented in [4] is not required.

Figure 6a shows one of the NPMLE estimates (i.e., one element of the NPMLE polytope) for a

simulated dataset produced, as we explained in the beginning of the section. This example clearly

displays the NPMLE singularities that have been mentioned before: while πθ is strictly positive

inside the complete unit square, significant regions of Θ are assigned zero probability mass (the

white regions in the figure), and the support of π̂θ is strictly contained in Θ.

(a) (b)

Figure 6. (a) π̂θ, one non-parametric maximum likelihood estimate (NPMLE) solution

found by (10). (b) π̂L
θ , the Rényi-MaxEnt NPMLE. The white regions have zero

probability mass.

2.4. Least Informative NPMLE

As stated in Proposition 1 (iii), the NPMLE is not unique, and we have seen (Proposition (4)) that

the set of solutions is the polytope P defined in Equation (9), associated with the matrix B,

B =

⎡⎢⎣ B(1)

...

B(J)

⎤⎥⎦
Motivated by the ultimate goal of capturing the largest possible diversity of the underlying

population, we select from the NPMLE polytope P the distribution that is least informative, i.e.,
that has maximum entropy.
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Let ŵ be an NPMLE, and define f̂ (j) = B(j)ŵ, with ŵ the vector of probabilities π̂θ(Ek), k =

1, . . . , K. We denote by π̂L
θ the distribution in P maximizing the entropy H; it satisfies:

π̂L
θ (R

(j)
� ) = f̂

(j)
� = π̂θ(R

(j)
� ) , � = 0, . . . , L; j = 1, . . . , J (12)

Determining π̂L
θ for the Shannon entropy, i.e., for H = H1, is a non-trivial non-linear constrained

optimization problem. However, for H = H2, the Rényi-MaxEnt NPMLE probability vector w̃ is

the solution to the following quadratic program with linear equality constraints:

w̃ = argmin
w∈SK

K∑
k=1

1

ν(Ek)
w2

k, s.t. Bw = Bŵ

with ν(Ek) the volume of Ek, for which efficient solutions exist.

The Rényi-MaxEnt NPMLE for the same dataset that leads to the NPMLE in Figure 6a is

displayed in Figure 6b. We can see that the restriction to the NPMLE polytope still forces the density

to be concentrated in a strict subset of Θ, with areas of zero measure (white zones in Figures 6a,b).

This is inherent to the likelihood criterion, which favors the most concentrated densities that are able

to explain the observed data.

Indeed, it is easy to see that the support of a NPMLE density may importantly shrink when

a stimulus that is applied only once is added to the dataset, confirming the ill-conditioning of the

NPMLE for small datasets. Suppose a new stimulus X(J+1) applied only once with resulting label ��

is added to a dataset already containing J stimuli:

n
(J+1)
�	 = nJ+1 = 1, n

(J+1)
� = 0, � �= ��

LetQ be the partition of Θ corresponding to “old” stimuli j ≤ J andQ′ the new partition, which

also integrates (X(J+1), n(J+1)). If R
(J+1)
�	 intersects an elementary set Ek ∈ Q, such that:

E ′
k = Ek ∩R

(J+1)
�	 ∈ Q′

then Ek \E ′
k will no longer be an elementary set, showing that the support of the NPMLE will shrink.

Note that we may have ν(E ′
k)� ν(Ek), with ν(·) the Lebesgue measure.

3. Most Likely Rényi-MaxEnt

To avoid the singular behavior of the NPMLE, we must estimate πθ with a criterion other than

maximum likelihood. Relying on the link of our problem with density estimation under constraints,

we propose to estimate πθ through the maximum entropy principle.

If there exists a π that can satisfy all constraints, i.e., if there exists a solution to Problem 2,

the corresponding w belongs to the NPMLE polytope P . However, being derived from J distinct

empirical distributions, the J constraints are in general inconsistent, and as in [9], we consider

entropy maximization under relaxed constraints, i.e., Problem 4. For reasons of numerical efficiency,

we consider the Rényi entropy H2.
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Problem 5. (Relaxed ME estimator)
For ε ∈ R+, define the ε-relaxed MaxEnt estimator as:

π̂H2,ε
θ = argmax

π
H2(π)

s.t.
∥∥∥Σ(j)−1/2

(
Eπ[f

(j)
+ ]− f̃

(j)
+

)∥∥∥
∞
≤ ε, ∀j = 1, . . . , J (13)

where Σ(j) is the covariance of the empirical estimate f̃
(j)
+ and f

(j)
+ is obtained from f (j) by retaining

all but one of its non-zero elements.

We remark that the constraints in Problem 5, the relaxed MaxEnt problem that we solve, take into

account the correlation between the observed frequencies, contrary to what is done in [9], where the

degrees of relaxation of each constraint are fixed independently, as in Problem 4. As we will verify in

Section 4 (see also the discussion around Figure 8), use of an inappropriate metric in the constraints

directs the estimator towards sets of solutions that have have lower likelihood, resulting in a poor

ability to reproduce the observed empirical moments.

Denote by ε� ≥ 0 the smallest value of ε for which there exists a solution to Problem 5. Since

in (13) we use the �∞ metric to evaluate the deviation of a model π with respect to the empirical

moments and �∞ is not equivalent to the (Riemannian) metric induced by maximum likelihood in

the simplex SK , we cannot guarantee that likelihood is monotonically decreasing with the degree of

relaxation, i.e., that L(π̂H2,ε
θ ) < L(π̂H2,ε	

θ ), for ε > ε�. In fact, as the plot of the log-likelihood of π̂H2,ε
θ

as a function of ε/ε� in Figure 7 shows, this is not necessarily true for values of ε close to ε�. More

importantly, this figure shows that a suitable choice of the relaxation term can lead to a likelihood loss

with respect to the NPMLE that is minimal, improving the fit to the data. These remarks motivate

the definition of the new estimator proposed in this paper.

Figure 7. Log likelihood variation of π̂H2,ε
θ as a function of ε/ε�. Red line: L(π̂θ).

Definition 4. (MLME: the most likely MaxEnt estimator)
Let π̂H2,ε

θ denote the solution of Problem 5 for a generic ε ≥ ε�. The most likely Rényi-MaxEnt
estimator is:

π̂H2,ml
θ = argmax

π̂
H2,ε
θ , ε≥ε	

L(π̂H2,ε
θ ; {f̃ (j),Q(j)}) (14)
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Proposition 5. (ε� = 0)
If ε� = 0, then the feasible set of the constrained optimization Problem 5 coincides with the NPMLE
polytope. Since the likelihood of all solutions with ε > 0 will be smaller, the MLME estimate
coincides in this case with the MaxEnt NPMLE: ε� = 0⇒ π̂H2,ml

θ = π̂H2,ε	

θ = π̂L
θ .

Since the probability that ε� = 0 is small for finite datasets, the solution space of our constrained

optimization problem is in general larger than the NPMLE polytope P . We illustrate now the

geometry of the NLME π̂H2,ml
θ using the following simple example for which L = 1, J = 2, K = 3

and:

B =

⎡⎢⎣ B(1)

B(2)

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎣
[

1 0 0

0 1 1

]
[

1 1 0

0 0 1

]
⎤⎥⎥⎥⎥⎦

This choice allows us to represent graphically the elements of S3; see Figure 8. The empirical

moments (f̃
(1)
0 , f̃

(1)
1 , f̃

(2)
0 , f̃

(2)
1 ) have been chosen such that the constraints are incompatible, avoiding

the trivial case where π̂L
θ , π̂H2,ε	

θ and π̂H2,ml
θ all coincide.

Figure 8 illustrates in S3 the geometry behind the MLME. Black lines w1 = f̃
(1)
0 and w3 = f̃

(2)
1

correspond to the constraints, which do not intersect since they are incompatible. For this example,

the NPMLE (orange dot on the boundary of S3, its second component being zero) is unique. All

distributions that satisfy the minimally-relaxed constraints (i.e., with ε = ε�) belong to the two gray

areas, their intersection defining π̂H2,ε	

θ (the green dot, also on the boundary of S3). The dashed

green line is the curve defined by π̂H2,ε
θ in S3 for ε ≥ ε�, which has an accumulation point in the

uniform distribution w1 = w2 = w3 =
1
3

as ε becomes sufficiently large for the uniform distribution

to satisfy the constraints. Our estimator MLME is the point in this green curve at which the value

of the likelihood is the largest, that is the highest level set of the likelihood function over S3 whose

intersection with the green curve is a single point. The orange curve shows this level set, the contact

point (red dot) being the MLME π̂H2,ml
θ .

The MLME estimator π̂H2,ml
θ corresponds in general to an ε > ε� in the constraints (13). In terms

of vector w of probabilities of the elementary regions Ek, this set is a polytopePε, defined by its linear

boundaries, which characterizes all solutions compatible with the data. One may notice that although

the determination of its vertices is a difficult task, approximation of Pε by the maximum-volume

interior ellipsoid is feasible at a reasonable computational cost [19], providing directly a lower bound

on the volume of Pε.

Figure 9 shows the proposed estimator π̂H2,ml
θ for the same dataset as in Figure 6. Note that the

distribution of the probability mass is much smoother than in Figure 6 and that the support of π̂H2,ml
θ

is now the entire Θ. This example shows that the new estimator π̂H2,ml
θ is able to exploit the dual

characteristics of the ML and MaxEnt criteria to produce an estimate that is not too informative while

still fitting the observed data reasonably well.

Two common measures of the difference between two distributions are the Kolmogorov and

the total variation distances. The Kolmogorov distance dK is the maximum value of the absolute
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difference between the two cumulative distributions, while the total variation distance dTV is the

sum of all absolute differences [20]. Figure 10 addresses the performance of the estimation of

the true probability law over Q, showing box-plots of the Kolmogorov–Smirnov (left) and total

variation (right) distances between πθ,Q and the NPMLE and the MLME estimates observed in 200

simulations, each for N = 103 observations. In each plot, the box in the left corresponds to the

MaxEnt-NPMLE estimator π̂L
θ and the one on the right to the the proposed estimator π̂H2,ml

θ . This

clearly demonstrates the superiority of the estimator proposed in the paper. Note that the difference

is more pronounced for the total variation, which is the criterion that best indicates the predictive

power of the identified population model.

w1

w2

w3

w1 = f̃
(1)
0

w3 = f̃
(2)
1

π̂L
θ

π̂H2,ε	

θ

π̂H2,ml
θ

Figure 8. Illustration of the three proposed estimators in a simple example.

Figure 9. π̂H2,ml
θ .

Finally, Figure 11 shows the behavior under an increasing number of randomly-generated binary

partitions. The total number of observations grows with J : N = 100J . The plots show the empirical

average of the two Kullback–Leibler divergences D(·‖πθ) (Figure 11a) and D(πθ‖·) (Figure 11b)
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over 100 randomly-generated datasets for each value of J , with J varying from 10 to 100 in steps

of 10. Here, the probability of “dangerous” partitions has been increased to 10−2, to guarantee a

sufficient number of samples censored by them. Figure 11a suggests that π̂H2,ml
θ may be consistent,

which is strongly contradicted by the behavior observed for the NPMLE. The divergence D(πθ||π̂L
θ )

was infinite in all simulations (due to π̂L
θ (Ek) = 0 for some Ek ∈ Q) and, thus, cannot be presented

in Figure 11b.

Figure 10. Box-plots of the Kolmogorov–Smirnov (Top) and total variation (Bottom)

distances between πθ,Q and estimates π̂L
θ and π̂H2,ml

θ observed in 200 simulations.

(a) (b)

Figure 11. Kullback–Leibler divergence for an increasing number J of partitions.

(a) Empirical average of D(π̂H2,ml
θ ‖πθ) and D(π̂L

θ ‖πθ); (b) empirical average of

D(πθ‖π̂H2,ml
θ ).
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4. Numerical Results

4.1. Application to a Real Problem: Modeling Decompression Sickness

The density estimation problem studied in this paper has been motivated by a problem of

population analysis in the context of the prevention of decompression sickness (DCS) in deep sea

diving, which is known to be highly correlated with the presence of gas bubbles in the diver’s blood.

The ability to correctly predict the probability that this volume becomes exceedingly high can thus

be exploited to establish safe diving rules, avoiding diving profiles (duration/depth) that may be

dangerous for a non-negligible part of the population.

More precisely, we are interested in estimating the distribution πθ of the biophysical parameters

θ of a mathematical model [21] for the instantaneous volume B(t) of micro-bubbles flowing through

the right ventricle of a diver’s heart when executing a decompression profile P (t) (see Figure 12a):

(θ, {P (u)}u≤t)→ B(t|θ, {P (u)}u≤t)) (15)

Gas presence in the diver’s circulatory system is only observed through “bubble grades”,

which are strongly quantified samples of B(t) (the red horizontal lines in Figure 12b indicate the

quantification levels τ = {τ�}L�=1 applied to B(t), represented by the blue curve). In our case L = 4,

as shown in Figure 12b, and thresholds τ0 = 0 < τ1 < · · · < τL < τL+1 = ∞ are assumed known.

Since it is usually accepted that DCS is related to the maximum observed grade, only the grade

corresponding to the peak volume:

b(θ, P ) = max
t

B(t|θ, {P (u)}u≤t)

is retained, such that for each executed dive Dn where (the known) profile Pn has been followed by

a diver with (unknown) bio-physical parameter θn, a single grade measure Gn is recorded:

Gn = �⇔ b(θn, Pn) ∈ [τ�, τ�+1[ , � ∈ {0, . . . , L} (16)

In Figure 12, a simplified model with θ ∈ Θ ⊂ R2, with Θ the rectangular colored region

in Figure 12c, has been used, all other parameters of model (15) being held fixed. Note that all

biophysical parameters θ in region Rn:

Rn = RPn
n ≡ {θ ∈ Θ : b(θ, Pn) ∈ [τGn , τGn+1[} (17)

yield the same grade Gn for all dives that use profile Pn. Each diving profile P induces in this manner

a partition Q(P ) of Θ:

Θ = ∪�R
P
� , RP

�1
∩RP

�2
= ∅, �1 �= �2

Figure 12c displays the regions corresponding to the L + 1 = 5 possible grade values for the

profile P in Figure 12a. In this example, observation of a grade G = 3 indicates that the diver’s

biophysical parameters θ belong to the orange region.

The dataset available for this study contains records of the bubble grades observed over a total of

J = 19 distinct profiles, repeated a number nj of times ranging from 12 to 41 (see Table 1; the most
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dangerous profiles have been executed less often) and leads to the partition Q shown in Figure 13.

We remark on the strong dispersion of the sizes of the elements of Q in this case, in particular the

presence of very narrow regions that are contained in the elements of several partitions. The elements

of Q have in this case strongly elongated shapes, markedly different from the partitions built from

Voronoi cells used in the simulations of the previous sections.

(a) (b) (c)

Figure 12. Definition of bubble grades G and regions RP
� . (a) Diving profile P (t);

(b) blue: gas volume B; red: thresholds τ�; (c) regions corresponding to the L + 1 = 5

bubble grades G.

Table 1. Number of experiments by profile in a real dataset.

Profile 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

nj 31 41 24 31 28 12 18 14 14 17 16 26 14 16 18 30 12 41 30

Figure 13. Partition induced by the 19 profiles in the real diving dataset.
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4.1.1. Simulated Data

Before showing the results obtained in the real dataset of grade measures for the set of profiles

available, we study the performance of the method proposed on the set of partitions corresponding

to the set of observed profiles using simulated data. We considered the simulation of two normally

and independent random variables restricted to a (biologically motivated) rectangular domain Θ. We

kept the same nj as shown in Table 1 and, thus, the same total N = 433.

Figures 14 and 15 show the results obtained with a total of N = 104 observations. The singularity

of both π̂L
θ and π̂H2,ε	

θ , represented in Figure 14, is very strong in this case, the probability mass being

concentrated in a subset of Θ of small Lebesgue measure. On the contrary, even for a partition of

complex geometry like this one, the proposed MLME estimator (see Figure 15b) is able to overcome

the shortcomings of the maximum-likelihood based estimates, producing an estimate that resembles

the simulated law (in Figure 15a). The resulting population model has limited complexity while still

retaining a superior predictive power, as is obvious from these plots.

(a) (b)

Figure 14. (a) Rényi-MaxEnt NPMLE π̂L
θ . (b) Rényi-MaxEnt π̂H2,ε	

θ . White regions

have zero probability mass.

(a) (b)

Figure 15. (a) Simulated distribution πθ,Q. (b) MLME estimate π̂H2,ml
θ . White regions

have zero probability mass.

Figure 16 shows the evolution of the likelihood along the curve π̂H2,ε
θ , ε > ε�. We can see that

the likelihood loss is larger than for the random partitions and that π̂H2,ml
θ is obtained for ε & ε�.
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The larger likelihood loss can be explained by a smaller number of observations (N = 433 here,

while for the previous simulation study N = 104) and also by the more irregular geometry of the

partition Q, with a large number of small elongated sets, which can produce over-optimistic values

of the likelihood by concentrating mass over those sets.

Figure 16. Variation of L(π̂H2,ε
θ ) with ε/ε�. Red line: L(π̂L

θ ).

4.1.2. Real Data (Part of the Material in this Section Has Been Previously Presented in [22])

Figure 17 shows the densities obtained for the real dataset by the three different estimators

discussed in the previous sections: the least informative NPMLE π̂L
θ , the minimally-regularized

MaxEnt estimate π̂H2,ε	

θ and the new most likely MaxEnt estimate π̂H2,ml
θ . Analysis of this figure

reveals the marked singularity of the first two estimates, which are highly concentrated in regions

of small Lebesgue measure. The estimator proposed in the paper, π̂H2,ml
θ , leads to a much smoother

solution, resembling πθ,Q and covering nearly all of the domain, which seems to provide a more

natural model of a biological population than the solution found by the two other estimators.

For the dataset sizes of our study with Q = 665, we observed very fast convergence of (11) for

the complete Q (35 iterations for δ = 10−4), confirming the applicability of the proposed algorithm.

We now assess the likelihood loss of our solution. Figure 18 shows the variation of L(π̂H2,ε
θ )

with ε/ε� for this real dataset. Compared to what we observed with random partitions in Figure 7,

there is now a significant likelihood loss, the blue curve staying well below the maximum likelihood

value for all values of the regularization parameter. This is natural, being an expected consequence of

eventual misfits of the biophysical/classification model, which induce errors in the definition of the

partitions Q(j) associated with the distinct profiles P (j) and, thus, compromise the ability to closely

fit the data.

Finally, we show, for this real dataset, the importance of accounting for the correlation of the

empirical distributions in the constrained optimization problem. Figure 19 shows the estimates π̂H2,ε	

θ

(top) and π̂H2,ml
θ (bottom) obtained using the entire matrix Σ (left) or just its diagonal elements
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(right). We can see that simple independent relaxation of the empirical laws is not able to prevent the

estimates from becoming highly concentrated, indicating an over-homogeneous population.

(a) (b) (c)

Figure 17. Estimates of πθ with real dataset. (a) Least informative NPMLE π̂L
θ .

(b) Rényi-MaxEnt π̂H2,ε	

θ . (c) MLME π̂H2,ml
θ . White regions have zero probability mass.

Figure 18. Variation of L(π̂H2,ε
θ ) with ε/ε�. Red line: L(π̂L

θ ).

(a) (b)

(c) (d)

Figure 19. (a) π̂H2,ε	

θ , full Σ(j)−1/2
; (b) π̂H2,ε	

θ , diag(Σ(j)−1/2
); (c) π̂H2,ml

θ , full Σ(j)−1/2

;

(d) π̂H2,ml
θ , diag(Σ(j)−1/2

).
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4.2. Assessing Predictive Power

To assess the predictive power of the three estimators π̂L
θ , π̂H2,ε	

θ and π̂H2,ml
θ , we performed

leave-one-out cross-validation, removing at each time all observations relative to one profile P (j)

and computing the three estimators using the data for the remaining 18 profiles. We then compare

the estimated and observed grades’ frequencies f̃ (j) for the retained profile.

Figure 20 represents boxplots of the total variation distance for each of the 19 profiles in the

dataset, confirming the superiority of the estimator proposed for prediction purposes. In the sense of

the total variation distance, π̂H2,ml
θ is on average the closest distribution to the empirical frequencies

in the dataset.

Figure 20. Boxplots of the total variation distance dTV for the 19 datasets in the

leave-on-out cross-validation study.

5. Conclusions

The paper studied the estimation of a probability density from region-censored observations, with

application to the prevention of decompression sickness during hyperbaric diving. We show that the

NPMLE is intrinsically ill-posed, leading to unstable solutions that are biologically implausible.

Expressing counts of the censored observations as empirical means of a set of features, we derive

the MaxEnt solution that best approximates the empirical distributions. The degree of fitting to the

observed frequencies is chosen by selecting the MaxEnt solution that has the largest likelihood. The

tests conducted show that the proposed most likely Rényi-MaxEnt estimator has superior behavior

compared to the minimally-relaxed MaxEnt estimator, being able to approximate the observed dataset

while at the same time being plausible as a description of a natural population. In particular,

our numerical experiments show that our construction leads to a distribution estimate with good

generalization properties, being able to predict grade probabilities for unseen profiles well, and can

thus be used to detect profiles with a high risk of decompression sickness.
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General Hyperplane Prior Distributions Based on Geometric
Invariances for Bayesian Multivariate Linear Regression
Udo von Toussaint

Abstract: Based on geometric invariance properties, we derive an explicit prior distribution for the

parameters of multivariate linear regression problems in the absence of further prior information.

The problem is formulated as a rotationally-invariant distribution of L-dimensional hyperplanes in

N dimensions, and the associated system of partial differential equations is solved. The derived prior

distribution generalizes the already known special cases, e.g., 2D plane in three dimensions.

Reprinted from Entropy. Cite as: von Toussaint, U. General Hyperplane Prior Distributions Based on

Geometric Invariances for Bayesian Multivariate Linear Regression. Entropy 2015, 17, 3898–3912.

1. Introduction

In the context of Bayesian probability theory, a proper assignment of prior probabilities is crucial.

Depending on the domain, quite different prior information can be available. It may be in the form

of point estimates provided by domain experts (see, e.g., [1] for prior distribution elicitation) or in

the form of invariances (of the prior knowledge) of the system of interest, which should be reflected

in the prior probability density [2]. However, especially for the ubiquitous case of the estimation of

parameters of linear equation systems (like a straight line or hyperplane fitting), the latter requirement

is often violated. Consider, for concreteness, the simple case of y = ax, a straight line through the

origin, with a the parameter of interest. Here, the commonly-applied prior is constant, p (a | I) =

const., often accompanied by statements like “Since we do not have specific prior information, we

chose a uniform prior on a...”. In Figure 1 on the left-hand side, 15 random samples generated from

this prior distribution with a ∈ [0, 50] are displayed. Confronted with this result, the typical response

is (at least in the experience of the author) that instead, a more “uniform” prior distribution of the

slopes was intended, which is often depicted like in Figure 1 on the right-hand side. This plot was

generated from a prior distribution that has an equal probability density for the angle of the line to

the abscissa, corresponding to

p (a | I) ∼ 1

(1 + a2)3/2
. (1)

Additionally, in fact, in practice, the units of the axes are commonly chosen in such a way that

extreme values of the slopes are not a priori overrepresented. If we generalize this requirement

to more than one independent or dependent variable, then the desired prior probability should be

invariant under arbitrary rotations in this parameter space. Some important special cases have been

given already in [3], e.g., for a 1D line in two dimensions or a 2D plane in three dimensions. There

also, the governing transformation invariance equation underlying invariant priors is derived. These

special cases have since then been generalized to invariant priors for (N−1)-dimensional hyperplanes

in N -dimensional space; see, e.g., [4]. These hyperplane priors proved to be valuable for Bayesian

neural networks [5], where the specific properties of the prior density favored node-pruning instead
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of simple edge pruning of standard (quadratic) weight regularizers. This is especially helpful for a

Bayesian approach to fully-connected deep convolutional networks; see e.g., [6,7].
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Figure 1. Comparison of two different priors. (a) 15 random samples drawn from

p (a | I) = 1/50, i.e., a uniform distribution in the slope with 0 ≤ a ≤ 50. (b) the

density p (a | I) ∼ (1 + a2)
−3/2

, corresponding to a distribution uniform in the angle, is

visualized by 15 samples.

Nevertheless, the general case of prior probability densities for L-dimensional hyperplanes in

N -dimensions (N > L) in a suitable parameterization has not been available so far. It has even been

conjectured that it is impossible to derive a general solution [8]. Luckily, this conjecture has been

too pessimistic, and an explicit formula for the prior density, which can directly be applied to linear

regression problems, is derived below.

It should be pointed out that multivariate regression is of course a longstanding topic in Bayesian

inference. with classical contributions, e.g., by Box and Tiao [9], Zellner [10] or West [11]. However,

the standard approach is based on the use of conjugate priors (instead of invariance priors), mostly

for computational convenience [12]. In contrast, the subsequently derived prior distribution is

determined by the basic desideratum of consistency if the available prior information is invariant

under the considered transformations (i.e., rotations). Whether this invariance holds depends on the

considered problem and must not be assumed without further consideration (similar to the case of flat

priors for the coefficients). For example, the assumption of rotation invariance may not be suitable

for covariates with different underlying units (e.g., m2, kg).
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2. Problem Statement

In standard notation, a multivariate regression model is notated as follows:

yi = Axi + t, xi ∈ RL,A ∈ RM×L, t ∈ RM and yi ∈ RM , (2)

with:

zi = yi + εi, εi ∈ RM , (3)

where zi is the response vector, yi the model value vector, xi the vector of the L covariates for

observation i, t the intercept vector and A the M × L-dimensional matrix of adjacent regression

coefficients. The observation noise εi of each data point is often considered as Gaussian distributed,

εi ∼ N (0,Σ). This regression model can also be considered as estimating the “best” L-dimensional

hyperplane in an N -dimensional space, because in an N -dimensional space, an L-dimensional

hyperplane is given by:

y1 = a11x1 + a12x2 + · · ·+ a1LxL + t1

y2 = a21x1 + a22x2 + · · ·+ a2LxL + t2

y3 = a31x1 + a32x2 + · · ·+ a3LxL + t3 (4)
...

yM = aM1x1 + aM2x2 + · · ·+ aMLxL + tM

with M = N − L.

The quantity of interest is the prior probability density F (A) = F (a11, · · · , aML, t1, · · · , tM |I)
for the coefficients a11, · · · , aML, t1, · · · , tM , which remains invariant under translations and

rotations of the coordinate system.

3. Derivation

Using the transformation invariance equation derived in [3]:

N∑
i=1

∂

∂zi
(F (z1, · · · , zN) gi (z1, · · · , zN)) = 0 (5)

for infinitesimal transformations of the form z
′
i = zi + εgi (z1, · · · , zN), we can establish a partial

differential equation system for F .

3.1. Invariance under Translations

Let us first consider a translation with respect to yi : y
′
i = yi + ε, i.e., gi = 1, gj,j =i = 0. Then,

the equation in the primed variables reads:

y
′
i = yi + ε = a

′
i1x1 + a

′
i2x2 + · · ·+ a

′
iLxL + t

′
i (6)



451

Collecting the coefficients yields t
′
i = ti + ε, and therefore, Equation (5) results in:

0 + · · ·+ 0 +
∂

∂ti
(F (A, t) · 1) + 0 + · · ·+ 0 = 0, (7)

which holds for any i. Therefore, F (A, t) can be a function of �a only. Since F (A | I) does not

depend on �t, the prior distribution is improper (not normalizable in t) as long as there are no limits

on the magnitude of t.

The translation with respect to xi results in the same conclusion.

3.2. Invariance under Rotations

The general rotation in n-dimensional space may be expressed as a sequence of rotations around

rotation axes, which are perpendicular to the planes spanned by appropriately-chosen pairs of

coordinate system basis vectors [13]. This is based on the fact that any orthogonal matrix, i.e.,
rotation matrices, can be written uniquely as a product of 2 × 2 rotations. To avoid convoluted

language, we denote in the following the rotation around the rotation axis that is perpendicular to

the plane spanned by the linear combination of the basis vectors ei and ej simply as rotation in the

xixj-plane.

3.2.1. Rotation in the xixj-Plane

Now, we perform one such infinitesimal 2 × 2-rotation for independent parameters around

an arbitrary rotation axis perpendicular to the plane spanned by ei and ej , preserving all other

coordinates: x
′
k = xk ∀ k �= (j, i) and

x
′
i = xi − εxj, (8)

x
′
j = εxi + xj. (9)

Substituting the primed coordinates into Equation (5) yields the implied transformations:

a
′
ki = aki − akjε, (10)

a
′
kj = akj + akiε, (11)

t
′
k = tk (12)

and, therefore, the partial differential equation:

M∑
k=1

∂

∂aki
(F (A) · (−akj)) +

M∑
k=1

∂

∂akj
(F (A) · (aki)) = 0. (13)

3.2.2. Rotation in the yiyj-Plane

Now, we perform one such rotation in the plane of two dependent parameters ei and ej; thus

y
′
k = yk ∀ k �= (j, i) and:
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y
′
i = yi − εyj, (14)

y
′
j = εyi + yj. (15)

Substituting the primed coordinates into Equation (5) yields the implied transformations:

a
′
ik = aik − ajkε, (16)

a
′
jk = ajk + aikε, (17)

t
′
i = ti − tjε, (18)

t
′
j = tj + tiε, (19)

t
′
k = tk (20)

and, therefore, the partial differential equation:

M∑
k=1

∂

∂aik
(F (A) · (−ajk)) +

M∑
k=1

∂

∂ajk
(F (A) · (aik)) = 0. (21)

3.2.3. Rotation in a Plane Spanned by xiyj-Axes

Performing a rotation in the xy-plane, we obtain:

x
′
i = xi − εyj, (22)

y
′
j = εxi + yj. (23)

which yields (see the Appendix):

a
′
ji = aji +

(
1 + a2ji

)
ε, (24)

a
′
kl = akl + (ajlaki) ε, (25)

t
′
k = tk + (akitj) ε (26)

and therefore:
M∑
k=1

L∑
l=1

∂

∂akl
(F · (ajlaki)) + ∂

∂aji
F + F · aji = 0. (27)

4. The PDE System

The translation invariance of Equation (5) excludes a dependence of F on t1, · · · , tM , so F is

of the form F (a11, · · · , aML|I). Rotation invariance with respect to the y-axis requires F to fulfill

the homogeneous, linear system of first order partial differential equations (i, j ∈ [1,M ] , i �= j) (i.e.,
Equation (21)):

L∑
k=1

∂

∂ajk
(F · aik)−

L∑
k=1

∂

∂aik
(F · ajk) = 0 (28)

and similar for rotations around the x-axis (i, j ∈ [1, L] , i �= j) (Equation (13)):

M∑
k=1

∂

∂akj
(F · aki)−

M∑
k=1

∂

∂aki
(F · akj) = 0. (29)
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Rotations around an axis perpendicular to a plane given by an x,y-pair require the probability

distribution to obey also (i ∈ [1, L] , j ∈ [1,M ]):

M∑
k=1

L∑
l=1

∂

∂akl
(F · (ajlaki)) + ∂

∂aji
F + F · aji = 0. (30)

Using the product rule, the double sum can be rewritten as

M∑
k=1

L∑
l=1

∂

∂akl
(F · (ajlaki)) =

M∑
k=1

L∑
l=1

ajlaki
∂

∂akl
F + F ·

M∑
k=1

L∑
l=1

∂

∂akl
(ajlaki) (31)

and the last term of the previous equation can be split into three parts and simplified:

F ·
M∑
k=1

L∑
l=1

∂

∂akl
(ajlaki) =

F ·
M∑

k=1,k =j

∂

∂aki
(ajiaki) + F ·

L∑
l=1,l =i

∂

∂ajl
(ajlaji) + F · ∂

∂aji
a2ji =

(M − 1) ajiF + (L− 1) ajiF + 2ajiF = (M + L) ajiF. (32)

Using this, Equation (30) can be written as:

M∑
k=1

L∑
l=1

ajlaki
∂

∂akl
F +

∂

∂aji
F + (M + L+ 1) ajiF = 0. (33)

5. Solution

This system of PDEs (Equations (28), (29) and (33)) can be tackled with the theory of Lie groups,

which provides a systematic, though algebraically-intensive solution strategy, which is implemented

in contemporary computer algebra systems. The solutions of several test cases computed by

the Maple computer algebra system (http://www.maplesoft.com/) (it proved to be superior to

MATHEMATICA (www.http://www.wolfram.com/mathematica/) for the present PDE-systems) led

to the conjecture that a general solution to this PDE system is given by the sum of the squares of all

possible minors of the coefficient matrix:

F (a11, · · · , aML|I)

=

⎡⎢⎣1 + (MP )(
L
P)∑

k=1

(
det
(
AP,k

))2
+

( M
P−1)(

L
P−1)∑

k=1

(
det
(
AP−1,k

))2
+ · · ·+

(M1 )(
L
1)∑

k=1

(
det
(
A1,k
))2⎤⎥⎦

−M+L+1
2

(34)

where An denotes a submatrix (minor) of size n×n (this notation is used at various places throughout

the paper and should not be confused with the power of a matrix, which does not occur in this

paper) and P = Min (M,L). Equation (34) does not appear unreasonable from the onset as prior

density, because it preserves the underlying symmetry of the problem (permutation invariance of the

parameters) and it is non-negative.
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An explicit example for the case N = 4, L = 2 is:

F (a11, a12, a21, a22|I) =
[
1 + a211 + a212 + a221 + a222 + (a11 · a22 − a12 · a21)2

]−5/2
. (35)

A two-dimensional slice of this probability density is given in Figure 2. The high symmetry of

the prior distribution with respect to parameter permutations results in similar, “Cauchy”-like shapes

if slices along other parameter axis are displayed.
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Figure 2. Probability density of p (a11, a21 | a12, a22, I) for a12 = 3 and a22 = 5 for the

case N = 4, L = 2. The probability density exhibits the typical “Cauchy-”like shape

with heavy tails compared to a binormal distribution. Due to the symmetry of the prior

distribution, slices with respect to the other parameters display the same basic features.

For the case N = 6, L = 3, the solution is given by:

F (a11, · · · , a33|I)
= (1 + a211 + a212 + a213 + a221 + a222 + a223 + a231 + a232 + a233 +

(a22a33 − a23a32)
2 + (a21a33 − a23a31)

2 + (a21a32 − a22a31)
2 +

(a12a33 − a13a32)
2 + (a11a33 − a13a31)

2 + (a11a32 − a12a31)
2 +

(a12a23 − a13a22)
2 + (a11a23 − a13a21)

2 + (a11a22 − a12a21)
2 +

(a11 · (a22a33 − a23a32)− a12 · (a21a33 − a23a31) + a13 · (a21a32 − a22a31))
2)−7/2.

6. Proof

6.1. Preliminaries

To prove that Equation (34) fulfills the equation system given by Equations (28), (29) and (33),

we verify directly that Equation (34) solves the PDEs.

We will make repeated use of the Laplace expansion of determinants:

det (An) =
n∑

j=1

aij (−1)i+j det
(
Mn−1

ij

)
(36)
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where the minor Mn−1
ij is the (n− 1)× (n− 1)-matrix derived from the n×n-matrix An by deletion

of the i-th row and j-th column (by definition M0 := 1). The cofactor matrix An−1
ij is defined to be:

An−1
ij = (−1)i+j Mn−1

ij (37)

and satisfies the following n-equations (i, j, k = 1, 2, · · · , N):

n∑
j=1

aijdet
(
An−1

kj

)
= δikdet (A

n) ,
n∑

i=1

aijdet
(
An−1

ik

)
= δjkdet (A

n) . (38)

Further useful is the following form of the Laplace expansion, taking into account index shifts of

a previous deletion of row k and column i of an (n+ 1)-matrix An+1, resulting in the minor Mn
ki:

det (Mn
ki) =

n+1∑
l=1,l =i

ajl (−1)(l
′+j′) det

(
Mn−1

(jk)(li)

)
(39)

where Mn−1
(jk)(li) is the minor given by deletion of the j-th and k-th row and the l-th and i-th column.

l′ and j′ are defined as:

l′ = l ∀ (l < i) and l′ = l − 1 ∀ (l > i)

j′ = j ∀ (j < k) and j′ = j − 1 ∀ (j > k). (40)

In the following, we face the problem of possibly too heavy of a nomenclature, because we

need summation indices, while we also need to keep track of the original indices underlying the

entries in the minors, where some rows and columns have been deleted, although the relative order

is preserved. The mapping could be expressed, e.g., as ai(i′)j(j′) with i′, j′ ∈ [1,m] and i (:) ∈ [1,M ]

and j (:) ∈ [1, L]. To avoid this cumbersome notation, we implicitly assume from now on (up to the

Conclusion Section) this mapping for all summations that are indexed by either k or l. Therefore:

m∑
k=1

akidet
(
Am−1

kj

)
has to be read as

m∑
k′=1

ak(k′)idet
(
Am−1

k(k′)j

)
. (41)

6.2. xixj- and yiyj-Rotations

We now verify that Equation (34) solves Equation (29). It is obvious that only those determinants

of Equation (34) that contain column i or column j have the potential to provide non-zero

contributions in Equation (29): if column j is missing, the derivative in the first term is zero. If,

instead, column i is missing, then the derivative in the second term of Equation (29) yields zero. To

proceed, we introduce H(A) via:

F (A) = H(A)−
L+M+1

2 . (42)

It is noteworthy that H(A) has a very simple form: it is given by a sum of positive terms. This almost

decouples the problem, and we can largely proceed on a term-by-term basis. Using the equality:

∂

∂apq
(det (Am))2 = 2det (Am) det

(
Am−1

pq

)
(43)
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the left-hand side of Equation (29) transforms to (i, j ∈ [1, L] , i �= j):

− (M + L+ 1)H (a)−
L+M+3

2 det (Am) ·
(

m∑
k=1

akidet
(
Am−1

kj

)− m∑
k=1

akjdet
(
Am−1

ki

))
(44)

and using Equation (38), we obtain:

− (M + L+ 1)H (a)−
L+M+3

2 det (Am) · (δijdet (Am)− δijdet (A
m)) = 0 (45)

and, therefore, Equation (34) solves Equation (29). The calculation is similar for Equation (28) and

yields the result that Equation (34) solves also the system Equation (28).

6.3. (xiyj)-Rotations

The verification of the successful solution of Equation (33) by Equation (34) requires some more

steps. As before, Equation (33) can be written as:

−M + L+ 1

2

(
M∑
k=1

L∑
l=1

ajlakiH (A)−
L+M+3

2
∂H (A)

∂akl
+H (A)−

L+M+3
2

∂H (A)

∂aji
− 2ajiH (A)−

L+M+1
2

)
= 0

(46)

and after multiplication with H (A)
L+M+3

2 as:

− (M + L+ 1) · (47)⎛⎜⎝ P∑
m=1

(Mm)(
L
m)∑

r=1

(
m∑
k=1

m∑
l=1

ajlakidet (A
m,r) det

(
Am−1,r

kl

)
+ det (Am,r) det

(
Am−1,r

ji

))
− ajiH(A)

⎞⎟⎠
= 0

6.3.1. Matrices with Either Row j or Column i

The inner double sum can be simplified for all matrices containing either row j or column i (i.e.,
all matrices of size P × P and all matrices Am,r of size m × m,m ∈ (1, 2, · · · , P − 1) with label

r = 1, 2, · · · , (M
m

)(
L
m

)− (M−1
m

)(
L−1
m

)
) using the Laplace expansion (here, the expansion with respect

to row j is shown):

m∑
k=1

m∑
l=1

ajlakidet (A
m,r) det

(
Am−1,r

kl

)
= det (Am,r)

m∑
k=1

aki

m∑
l=1

ajldet
(
Am−1,r

kl

)
(48)

= det (Am,r)
m∑
k=1

akiδjkdet (A
m,r) = aji (det (A

m,r))2

which cancels the corresponding determinant of H (A) in the last term of Equation (48).
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6.3.2. Matrices with Neither Row j nor Column i

The basic idea is to show that
(
M−1
m

)(
L−1
m

)
-matrices with neither row j nor column i,

m ∈ (1, 2, · · · , P − 1), cancel with the contributions of the corresponding matrices including row j

and column i of size (m+ 1)× (m+ 1) of the second term.

Please note that there is a one-to-one correspondence of minors of size m×m without the j-th row

and i-th column and the matrices of size (m+ 1) × (m+ 1) with row j and column i in the second

term, therefore allowing one to label both with the same index r. After division by − (M + L+ 1),

the remaining terms of Equation (48) are (taking into account that the labeling of the rows and

columns of the matrices of size (m+ 1)× (m+ 1) and (m)× (m) must be consistent):

m+1∑
k=1,k =j

m+1∑
l=1,l =i

ajlakidet
(
Am,r

ji

)
det
(
Am−1,r

(jk)(il)

)
+ det

(
Am+1,r

)
det
(
Am,r

ji

)− ajiHji(A) = 0 (49)

with Hji now only containing determinants with neither row j nor column i. If we now only consider

the relevant term of Hji, we can write:

m+1∑
k=1,k =j

m+1∑
l=1,l =i

ajlakidet
(
Am,r

ji

)
det
(
Am−1,r

(jk)(il)

)
+ det

(
Am+1,r

)
det
(
Am,r

ji

)− ajidet
(
Am,r

ji

)2
= 0.

(50)

The equation is trivially true if det
(
Am,r

ji

)
= 0; otherwise, we can divide by det

(
Am,r

ji

)
and

obtain:
m+1∑

k=1,k =j

m+1∑
l=1,l =i

ajlakidet
(
Am−1,r

(jk)(il)

)
+ det

(
Am+1,r

)− ajidet
(
Am,r

ji

)
= 0. (51)

Replacing the various cofactors by the corresponding minors (cf. Equations (36) and (37)) yields:

m+1∑
k=1,k =j

m+1∑
l=1,l =i

ajlaki (−1)(i+j+k′+l′) det
(
Mm−1,r

(jk)(il)

)
+ det

(
Am+1,r

)− aji (−1)(i+j) det
(
Mm,r

ji

)
= 0

(52)

and after replacing det (Am+1,r) by its Laplace expansion together with multiplication by (−1)(i+j)
,

the equation reads:

m+1∑
k=1,k =j

m+1∑
l=1,l =i

ajlaki (−1)(k
′+l′) det

(
Mm−1,r

(jk)(il)

)
+

(−1)(i+j)
∑
k=1

aki (−1)(i+k) det (Mm,r
ki )− ajidet

(
Mm,r

ji

)
= 0 (53)

and can be simplified to:

m+1∑
k=1,k =j

m+1∑
l=1,l =i

ajlaki (−1)(k
′+l′) det

(
Mm−1,r

(jk)(il)

)
+
∑
k=1

aki (−1)(j+k) det (Mm,r
ki )− ajidet

(
Mm,r

ji

)
= 0

(54)
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because (−1)2i equals one in the second term. Therefore, the third term cancels with the second term

for k = j, and the remaining equation is given by:

m+1∑
k=1,k =j

aki (−1)k
′

m+1∑
l=1,l =i

ajl (−1)l
′
det
(
Mm−1,r

(jk)(il)

)
+
∑

k=1,k =j

aki (−1)(j+k) det (Mm,r
ki ) = 0. (55)

Using Equation (39) together with the definition Equation (40), the inner sum of the first term of

Equation (55) can be rewritten as:

m+1∑
l=1,l =i

ajl (−1)l
′
det
(
Mm−1,r

(jk)(il)

)
= (−1)j Mm,r

ki ∀ (j < k) (56)

and:
m+1∑

l=1,l =i

ajl (−1)l
′
det
(
Mm−1,r

(jk)(il)

)
= (−1)j−1 Mm,r

ki ∀ (j > k) . (57)

Splitting the summation over k into two parts (k < j) and (k > j) and inserting the definition for

k′, we obtain: ∑
k=1,k<j

aki (−1)(j+k) det (Mm,r
ki ) +

∑
k>j

aki (−1)(j+k) det (Mm,r
ki ) +∑

k=1,k<j

aki (−1)((j−1)+k) det (Mm,r
ki ) +

∑
k>j

aki (−1)(j+(k−1)) det (Mm,r
ki ) = 0 (58)

where the first two terms cancel the last two terms.

Summarizing the previous approach, we have shown that for an arbitrary n × n-determinant,

the first and third term of Equation (48) almost cancel. Only determinants not containing the j-th

row and the i-th column remain. These remaining contributions are canceled by the (n + 1)-order

determinant (required to contain the matrix element aji) of the second term in Equation (48). This

schema can be repeated down to n = 1, and the last step (n = 0) is easily explicitly calculated. This

finishes our derivation.

7. Relation to Previously-Derived Special Cases

The underlying equation systems of the special case of an (n − 1)-dimensional hyperplane in

an n-dim space used in [8] and in this paper differ slightly due to a different parameterization, and

therefore, the derived priors appear on first glance to be different, although they are identical, as will

be shown below.

For probability density functions in different coordinate systems, the following equation holds:

p (�a) d�a = p
(
�b (�a)

) ∣∣∣∣∣∣
∂
(
�b
)

∂ (�a)

∣∣∣∣∣∣ d�a, (59)

where |· · · | denotes the absolute value of the Jacobi determinant:∣∣∣∣∣∣
∂
(
�b
)

∂ (�a)

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣det

⎛⎜⎝
∂b1
∂a1

∂b1
∂a2

· · · ∂b1
∂an

...
...

∂bn
∂a1

∂bn
∂a2

· · · ∂bn
∂an

⎞⎟⎠
∣∣∣∣∣∣∣ . (60)
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The equation describing the (n-1)-dim hyperplane in an n-dim space in this paper is given by:

y1 = a11x1 + a12x2 + · · ·+ a1(n−1)xn−1 + t1 (61)

and results in the following prior:

p
(
a11, a12, · · · , a1(n−1), t1

)
=

(
1 +

n−1∑
i=1

a21i

)−n+1
2

. (62)

In [8], the corresponding hyperplane equation reads:

0 = b1x1 + b2x2 + · · ·+ bnxn + 1 (63)

with prior distribution:

p (b1, b2, · · · , bn) =
(

n∑
i=1

b2i

)−n+1
2

,with
n∑

i=1

b2i > R2
0. (64)

The latter constraints yield a proper (normalizable) prior. The relation of the two different

parameterizations is given by:

bi =
a1i
t1

∀i �= n and bn = − 1

t1
(65)

which yields the Jacobian:

∣∣∣∣∣∣
∂
(
�b
)

∂ (�a)

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣
det

⎛⎜⎜⎜⎜⎜⎜⎝

1
t1

0 0 · · · 0 −a11
t1

0 1
t1

0 · · · 0 −a12
t1

...
. . . · · · ...

0 0 0 · · · 1
t1
−a1(n−1)

t1

0 0 0 · · · 0 − 1
t21

⎞⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣
=

1

tn+1
1

(66)

Using this result and Equation (65), we can write:

p
(
�b (�a)

) ∣∣∣∣∣∣
∂
(
�b
)

∂ (�a)

∣∣∣∣∣∣ d�a =
1(∑n−1

i=1

(
a1i
t1

)2
+ 1

t21

)n+1
2

tn+1
1

d�a =
1(

1 +
∑n−1

i=1 a21i
)n+1

2

d�a (67)

which shows the equivalence of the two priors (Equations (62) and (64)). The requirement of
∑

b2i >

R2
0 leads to:

R2
0 ≤

n∑
i=1

b2i =
n−1∑
i=1

(
a1i
t1

)2

+
1

t21
=

1

t21

(
1 +

n−1∑
i=1

a21i

)
. (68)

In the case of all a1i = 0, we obtain:

t21 ≤
1

R2
0

(69)

which means that the lower limit R2
0 corresponds to an upper limit of t21.
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8. Practical Hints

In the worst case, the hyperplane prior has an exponentially-increasing number of determinants

with increasing dimension. The total number of individual determinants for an N -dimensional plane

in a 2N -dimensional space is given by:

N∑
k=0

(
N

k

)2

=

(
2N

N

)
(70)

which is already 70 for a 4D hyperplane in an 8D space. Therefore, it is advantageous to compute the

determinants using iteratively the Laplace expansion, starting from small determinants, storing the

determinants of the previous step. This requires the storage of at most
(

N
N/2

)2
terms. As a proposal

density for Markov chain Monte Carlo (MCMC) sampling methods (e.g., rejection sampling), the

dominating multivariate Cauchy distribution is a good candidate. Source code for the set up of the

PDE system and for the solution, together with a Maple script for the verification of the solution, can

be obtained from the author.

9. Conclusions

This paper has derived a prior density for L-dimensional hyperplanes in N -dimensional space,

based on geometric invariances. It is suited, e.g., to parameter estimation of multilinear regression

problems in the absence of further prior knowledge or Bayesian model estimation for neural

networks. In the latter case, the prior has to be made proper by suitable restriction of the range

of the offset parameters, which depends on domain knowledge. The obtained prior density avoids

the too strong weight of “large” values of the regression coefficients typically assigned by uniform

priors. Being a rational function, its influence on the parameter estimates on standard problems with

Gaussian uncertainties (resulting in an exponential likelihood) on the data will be limited. However,

this can be different for robust estimation approaches with heavy-tailed likelihood distributions.

Appendix

In this section, the relation between the primed coefficient a
′
nm and the unprimed coefficient anm

is derived. A rotation perpendicular to the xiyj-plane relates xi, yj with x
′
i, y

′
j by:

x
′
i = xi − εyj, (A1)

y
′
j = εxi + yj. (A2)

and x
′
k = xk, k = 1, · · · , L; k �= i and y

′
k = yk, k = 1, · · · ,M ; k �= j. Using this, the system

Equation (5) in the transformed coordinate system reads (n = 1, · · · ,M ;n �= j):

yn = a
′
n1x1 + a

′
n2x2 + · · ·+ a

′
ni (xi − εyj) + a

′
n(i+1)x(i+1) + · · ·+ a

′
nLxL + t

′
n

yj + εxi = a
′
j1x1 + a

′
j2x2 + · · ·+ a

′
ji (xi − εyj) + a

′
j(i+1)x(i+1) + · · ·+ a

′
jLxL + t

′
j. (A3)
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Solving for yj , we obtain:

yj =
1

1 + a
′
jiε

(
t
′
j − xiε+

L∑
k=1

a
′
jkxk

)
(A4)

and subsequently:

yn =

(
t
′
n +

L∑
k=1

a
′
nkxk

)
− a

′
niε

1

1 + a
′
jiε

(
t
′
j − xiε+

L∑
k=1

a
′
jkxk

)
. (A5)

Using the Taylor expansion 1/
(
1 + a

′
jiε
)
= 1− a

′
jiε+O (ε2) up to first order and collecting the

coefficients, the previous equations yield:

aji = a
′
ji − a

′
ji

2
ε− ε ; tj = t

′
j − t

′
ja

′
jiε

ank = a
′
nk − a

′
nia

′
jkε ; tn = t

′
n − t

′
ja

′
niε. (A6)

First, we solve for a
′
ji:

a
′
ji

2
ε− a

′
ji + ε+ aji = 0→ a

′
ji =

1−√1− 4ε (ε+ aji)

2ε
= aji +

(
1 + aji

2
)
ε+O

(
ε2
)

(A7)

and next for a
′
jk:

ajk = a
′
jk

(
1− a

′
jiε
)
→

a
′
jk =

ajk
1− a

′
jiε

= ajk

(
1 + a

′
jiε
)
+O

(
ε2
)

= ajk (1 + ajiε) +O
(
ε2
)
. (A8)

A similar calculation for a
′
ni yields:

a
′
ni = ani (1 + ajiε) +O

(
ε2
)

(A9)

which then allows one to compute a
′
nk for index pairs with {nk} �= {ji}:

a
′
nk = ank + (ani + aniajiε) (ajk + ajkajiε) ε = ank + aniajkε+O

(
ε2
)
. (A10)

The offset variable tj is given by:

tj = t
′
j

(
1− a

′
jiε
)
→

t
′
j =

tj
1− a

′
jiε

= tj

(
1 + a

′
jiε
)
+O

(
ε2
)

= tj (1 + ajiε) +O
(
ε2
)
. (A11)

and the other offset variables tn by:

t
′
n = tn + (ani + aniajiε) (tj + tjajiε) ε = tn + anitjε+O

(
ε2
)

(A12)
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which concludes the derivation of Equations (24)–(26).
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A New Robust Regression Method Based on Minimization of
Geodesic Distances on a Probabilistic Manifold: Application to
Power Laws
Geert Verdoolaege

Abstract: In regression analysis for deriving scaling laws that occur in various scientific disciplines,

usually standard regression methods have been applied, of which ordinary least squares (OLS) is the

most popular. In many situations, the assumptions underlying OLS are not fulfilled, and several other

approaches have been proposed. However, most techniques address only part of the shortcomings

of OLS. We here discuss a new and more general regression method, which we call geodesic least

squares regression (GLS). The method is based on minimization of the Rao geodesic distance on a

probabilistic manifold. For the case of a power law, we demonstrate the robustness of the method on

synthetic data in the presence of significant uncertainty on both the data and the regression model.

We then show good performance of the method in an application to a scaling law in magnetic

confinement fusion.

Reprinted from Entropy. Cite as: Verdoolaege, G. A New Robust Regression Method Based on

Minimization of Geodesic Distances on a Probabilistic Manifold: Application to Power Laws.

Entropy 2015, 17, 4602–4626.

1. Introduction

Regression analysis is an essential instrument for data analysis in numerous branches of science.

It is used for investigating deterministic relations between variables, for model building and for

prediction by extrapolation to a previously unseen range of the involved variables. In this paper, we

focus on regression analysis applied to the estimation of scaling laws. In various scientific disciplines,

such as astronomy, biology, ecology and geology, scaling laws are used to characterize the underlying

mechanisms at work in the respective complex systems under study. In general, a scaling law

describes how a quantity of interest y scales when changing other quantities x1, x2, . . . , xP , on which

it depends. Scaling laws are often expressed in terms of a power law:

y = β0x
β1
1 xβ2

2 . . . xβP

P . (1)

A crucial property of such a power law is scale-invariance, i.e., when multiplying any of the

variables xi by a constant a, the power law in Equation (1) essentially remains the same, being

multiplied only by a constant aβi .

In nuclear fusion experiments based on magnetic confinement of a hot hydrogen plasma, scaling

laws are crucial for predicting the performance of future fusion reactors, which will have a larger

size, magnetic field, plasma density, etc., compared to present-day experimental devices [1]. These

scaling laws can be estimated on the basis of datasets from multiple fusion devices, spanning a

significant part of the parameter space. Ordinary least squares regression (OLS) combined with
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frequentist theory is the statistical workhorse that is employed for this purpose in the vast majority

of cases. However, often, there is considerable uncertainty in the experimental data, including the

predictor variables, and in the model equations (regression model). However, OLS only deals with

uncertainty on the response variables and does not cover additional complications, including atypical

observations (outliers), heteroscedasticity, correlations, non-Gaussian distributions, etc. As such,

OLS regression is often unsuitable for deriving scaling laws [2,3], and many scientific fields could

benefit greatly from a unified regression methodology that is flexible and robust and yet relatively

simple to implement.

In order to be able to handle the complications mentioned above, we have developed a new

regression method, called geodesic least squares regression (GLS). It is based on minimization of

the Rao geodesic distance between probability distributions on a manifold equipped with the Fisher

metric. In this paper, we briefly introduce the method by means of a simple example involving

a power law and Gaussian noise. We show the good performance of the method on synthetic data,

introducing outliers in the first case and studying the effect of a logarithmic transformation of the data

in the second case. Finally, we present an application to the important scaling concerning the power

threshold for the transition into the high confinement regime (H-mode) in nuclear fusion experiments

based on magnetic plasma confinement. The details of the quantities involved in this scaling, their

experimental determination and the underlying physics are not important for the purpose of this

paper. Rather, we here aim at showing the performance of GLS on a challenging and heterogeneous

real-life dataset.

The paper is structured as follows. The method of geodesic least squares regression is described in

Section 2, including a short discussion on calculating geodesic distances on a Gaussian probabilistic

manifold, within the framework of information geometry. The next section, Section 3, briefly

introduces the database that is used in the subsequent regression experiments, in relation to the scaling

law for the H-mode power threshold in fusion plasmas. The experiments involving synthetic data are

described in Section 4, while the real power threshold scaling is derived in Section 5. Section 6

concludes the paper and contains an outlook towards future work related to the methodology.

2. Geodesic Least Squares Regression

We start by describing the GLS methodology, which was already introduced in [4,5], but here,

we go into some more detail. We describe a specific form of GLS regression, and it should be

stressed that various aspects can be generalized, as will be noted accordingly. Furthermore, several

elements on which GLS is based are also found in other regression techniques. The strength of GLS

regression is that it integrates many of these aspects in an elegant way, resulting in a method that

is very general, flexible and robust. From one point of view, GLS is similar to a class of parameter

estimation methods that are collectively referred to in the statistics community as minimum distance

estimation, in that GLS minimizes a distance between a parametric model distribution of the data and

an empirical distribution [6]. We use the Rao geodesic distance (GD) as a similarity measure, which
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has the advantage that it offers an intuitive geometric interpretation. In addition, there are similarities

between GLS and the generalized linear model [7].

We will consider the case of regression with multiple predictor variables (regressors) and a single

response variable. For this case, we will show that GLS regression can be regarded as a generalization

of OLS. However, GLS takes place on a probabilistic manifold, whereas classic OLS operates in a

flat Euclidean space. Indeed, OLS is based on minimizing the difference, i.e., the Euclidean distance,

between the predicted and measured values of the response variable. Likewise, GLS is based on

minimizing the GD between distributions on the probabilistic manifold. Therefore, we start by briefly

introducing some concepts from information geometry related to distance calculation.

2.1. Distance in Information Geometry

In information geometry, a parametric family of probability densities is interpreted as a

Riemannian differentiable manifold [8]. Each point on the manifold corresponds to a specific

probability density function (pdf) within the family, and the family parameters represent a coordinate

system on the manifold. The Fisher information (covariance of the score) provides a unique

metric tensor. For a probability model p({xm}|{θk}) [9] describing a set {xm} of M variables

(m = 1, . . . ,M ), parameterized by a set {θk} of P parameters (k = 1, . . . , P ), the entries gij of the

Fisher information matrix are given by (no summation):

gij
({θk}) = E

[
∂

∂θi
ln p
({xm}|{θk}) ∂

∂θj
ln p
({xm}|{θk})]

= −E
[

∂2

∂θi∂θj
ln p
({xm}|{θk})] , i, j, k = 1, . . . , P.

The metric provides the basis for distance measurement between pdfs. Specifically, a geodesic

curve locally minimizes the distance between two points on the manifold equipped with that metric.

Through calculus of variations, it can be shown that a geodesic is the solution of the following system

of nonlinear second-order ordinary differential equations, known in the language of variational

analysis as Euler–Lagrange equations [10] and in the present context as geodesic equations:

θ̈r(t) +
P∑

i,j=1

Γr
ij θ̇

i(t)θ̇j(t) = 0, r = 1, . . . , P. (2)

Here, the θi have been parameterized along the geodesic by t and Γr
ij are the Christoffel symbols

of the second kind, defined through the metric as:

Γk
ij =

1

2

∑
r

gkr
(
∂gjr
∂θi

+
∂gir
∂θj

− ∂gij
∂θr

)
,

where gij denotes the components of the inverse metric. The boundary value problem Equation (2)

needs to be solved assuming the known values of the coordinates at the boundary points of the

geodesic.
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From the metric and the solution of the geodesic equations, the length Lg of the geodesic curve

between two distributions with parameter sets {θi
1} and {θi

2}, i.e., the geodesic distance between

these distributions, may be locally calculated as follows (assuming t runs from zero to one):

Lg =

∫ {θi2}

{θi1}
ds =

∫ 1

0

(∑
i,j

gijθ̇iθ̇j

)1/2

dt, (3)

where s represents the arc length. In the framework of information geometry, the geodesic distance

based on the Fisher metric is often referred to as the Rao geodesic distance (GD).

Coming back to Equations (2) and (3), it should be noted that closed-form expressions for the

GD are rarely available. On the other hand, provided the Fisher metric can be calculated relatively

easily, the framework of information geometry is very useful, since straightforward approximations

of the geodesic curves can be found in a geometrically intuitive way [11]. This intuitive approach by

means of geometry is an important and attractive aspect of the theory, as it provides enhanced insight

into various concepts and algorithms in probability theory and statistics [12]. This is also the case

for GLS, as will be demonstrated below. Furthermore, as far as the GD is concerned, visualization of

geodesics may guide controlled approximations to the geodesic paths and geodesic distances [11].

Besides the attractive feature of providing intuitive geometrical insight into problems involving

similarity measurement between probability distributions, the GD has several more advantages over

other similarity measures for distributions. First, it is a distance measure (a metric) in the strict sense

of the word. As a result, it is symmetric in its arguments, a desirable property for measuring the

similarity between two given states of information in terms of probability distributions. In addition,

it obeys the triangle inequality, yielding various practical advantages, for instance in the field of data

retrieval from large databases [13]. Furthermore, closed-form expressions may be available for the

GD, or its approximation, for various families of distributions where no such analytic form has been

found in the case of, for instance, the Kullback–Leibler divergence (KLD) [11]. Finally, there is

considerable experimental evidence suggesting that the GD in general is a more effective similarity

measure between distributions than the KLD (see [11] and the references therein). We note that

for distributions that lie infinitesimally close on the probabilistic manifold, it can be proven that the

Kullback–Leibler divergence equals half of the squared geodesic distance between the distributions

(see, e.g., [14]). Hence, in such a case, the KLD and GD yield similar results, but in general, they are

quite different measures of similarity between distributions.

2.2. Geodesics for the Univariate Normal Distribution

In this paper, we discuss applications that are based on a univariate normal distributionN (μ,σ2),

parameterized by its mean μ and standard deviation σ. In this case, an analytic expression for the

Fisher–Rao metric is available. It turns out to be the familiar Poincaré metric, which, when applied

to a half-plane, is a well-known model for hyperbolic geometry that has constant negative scalar

curvature. The line-element is given by [15,16]:

ds2 =
dμ2

σ2
+ 2

dσ2

σ2
. (4)
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Figure 1. (a) Illustration of the Poincaré half-plane with several half-circle geodesics in

the background, together with the geodesic between the points p1 and p2 and between p3

and p4, defined in the main text. (b) Probability densities corresponding to the points p1,

p2, p3 and p4 indicated in (a). The densities associated with some intermediate points on

the geodesics between p1 and p2 and between p3 and p4 are also drawn. (c) Rendering of

one blade of the tractroid, again with the two geodesics superimposed. The parallels of

the tractroid are lines of constant standard deviation σ, while the meridians (the tractrices)

are lines of constant mean μ. This representation of the normal manifold is periodic in

the μ-direction, and a rescaled version (longer period along μ) is shown in (d).
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As an illustration, the Poincaré half-plane is pictured in Figure 1a, together with two geodesics

between, on the one hand, the points p1 = N (4, 1.22) and p2 = N (16, 1.52) and, on the other

hand, p3 = N (4, 4.02) and p4 = N (16, 5.02). The corresponding normal density functions are

drawn in Figure 1b, as well as a number of densities associated with some intermediate points on

each geodesic. As a further illustration, Figure 1c shows one blade of a particular pseudosphere,

namely the tractroid, which is locally isometric to the Poincaré half-plane and the univariate normal

manifold for σ > 1, with periodicity in μ. In order to better visualize the geodesics, a rescaled

version of the tractroid is shown in Figure 1d. This surface has a longer period in the μ-direction.

However, it should be kept in mind that only the visualization in Figure 1c can be used to measure

absolute distances on the surface, for in Figure 1d, the pictured geodesics are no longer the shortest

curves between the points in question. It is clear that the geodesics on the Gaussian manifold are

different from straight lines in the Euclidean space, wherein the manifold has been immersed. The

shape of the geodesics can be made intuitively clear by noting that they always pass through a region

of increased standard deviation relative to that of the boundary points. This provides the shortest

route, as can be seen from the line element Equation (4). Interestingly, similar arguments will be

shown to enable a deeper insight into the operation of GLS regression. We further note that various

alternative models exist to visualize hyperbolic geometry; see, e.g., [17].

A closed-form expression is available for the GD on the normal manifold, permitting fast

evaluation. Indeed, for two univariate normal distributions p1 (x|μ1,σ
2
1) and p2 (x|μ2,σ

2
2), the GD is

given by [16]:

GD(p1, p2) =
√
2 ln

1 + δ

1− δ
= 2
√
2 tanh−1 δ, δ ≡

[
(μ1 − μ2)

2 + 2(σ1 − σ2)
2

(μ1 − μ2)2 + 2(σ1 + σ2)2

]1/2
. (5)

Furthermore, since the injectivity radius of the hyperbolic plane is infinite, the geodesics are

globally length-minimizing [10].

2.3. Geodesic Least Squares Methodology

GLS starts from the premise that the probability distribution underlying experimental

measurements is the fundamental object resulting from the measurement. As such, GLS does not

perform regression based on data points in a Euclidean space, but rather operates on probability

distributions lying on a probabilistic manifold. This introduces additional flexibility that renders the

method robust in the presence of large uncertainties, as will be demonstrated in the experiments.

Briefly, the idea is to consider two different proposals for the distribution of the response

(dependent) variable y, conditional on the predictor variables. On the one hand, there is the

distribution that one would expect if all assumptions were correct regarding the deterministic

component of the regression model (regression function) and the stochastic component. We call

this the modeled distribution. On the other hand, we try to capture the conditional distribution of y

by relying less on the model assumptions, but directly on the measurements of y. For this, we will use

the term observed distribution. It is in this sense that GLS is similar to minimum distance estimation

(MDE), where the Hellinger distance is a popular similarity measure [18]. This was first applied to
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regression in [19], but there are several differences with GLS. First and foremost, GLS calculates

the geodesic distance between each individual pair of modeled and observed distributions of the

response variable, corresponding to an individual measurement point. As such, each individual data

point acquires the status of a probability distribution in its own right. Consequently, GLS performs

regression between probability distributions on a probabilistic manifold. In contrast, MDE usually

considers a distance between a kernel density estimate of the distribution of residuals, on the one

hand, and the parametric model, on the other hand, based on the entire data sample. Secondly, we

explicitly model all parameters of the modeled distribution, which is similar to the ideas behind

the link function in the generalized linear model (GLM) [7]. In the present work, this will be

accomplished by explicitly modeling both the mean and standard deviation of the Gaussian modeled

distribution. Additionally, a final difference is that we use the Rao geodesic distance as a similarity

measure.

As a simple example that we will use also in the experiments, consider a linear relation η = βξ

between a single predictor variable ξ and a response variable η, with β a constant. In accordance

with the discussion above, we explicitly wish to allow for the challenging case of uncertainty on the

predictor variable ξ. Therefore, we assume that, in reality, N samples of a stochastic (noisy) variable

x are observed, together with N samples of a stochastic response variable y. We take the simple case

of normally distributed (Gaussian) noise:

y = η+ εy = βξ+ εy, εy ∼ N
(
0,σ2

y

)
,

x = ξ+ εx, εx ∼ N
(
0,σ2

x

)
.

(6)

The observations xn (n = 1, . . . , N ) are taken as mutually independent and so are the yn. σx and

σy are assumed to be known, and in this example, they are taken constant for all measurements, i.e.,
we have homoscedasticity. However, we will also consider heteroscedasticity later on. According to

the regression model, conditionally on xn, each measurement yn is drawn from a normal distribution:

pmod(y|xn) = N
(
βxn,σ

2
mod

)
, where σ2

mod ≡ σ2
y + β2σ2

x, (7)

with the subscript “mod” referring to the modeled distribution. In our simple example, Equation (7)

follows from standard Gaussian error propagation rules. However, for nonlinear regression laws,

the conditional distribution for y has to be obtained by marginalizing the unknown true values

ξn. Nevertheless, the Gaussian error propagation laws may be used in the nonlinear case as well,

to approximate the conditional distribution p(y|xn) by a normal distribution, as will be shown

in the experiments.

We next choose a specific form of the observed distribution corresponding to each realization

of the variable y, conditional on the observations, i.e., pobs(y|yn). In this example, we take again

the normal distribution, but centered on each data point: N (yn,σ
2
obs), where σobs is to be estimated

from the data. In the context of the GLM, this is known as the saturated model. The extra parameter

σobs gives the method added flexibility, since it is not a priori required to equal σmod. As a result,

GLS is less sensitive to incorrect model assumptions. Note that in this example, we have chosen

the observed distribution from the same model (Gaussian) as the modeled distribution. Furthermore,
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σmod is taken as a fixed value for all measurements and so is σobs. These assumptions can of course

be relaxed, leading to a more general method. However, the transition from OLS to GLS is best

explained by means of a Gaussian observed distribution, which, in addition, offers computational

advantages, since the expression for the GD has a closed form; see Equation (5).

GLS now proceeds by minimizing the total GD between, on the one hand, the joint observed

distribution of the N realizations of the variable y and, on the other hand, the joint modeled

distribution. Thanks to the independence assumption in this example, we can write this in terms

of products of the corresponding marginal distributions:

β̂ = argmin
β∈R

GD

[
N∏

n=1

pobs(y|yn),
N∏

n=1

pmod(y|xn)

]

= argmin
β∈R

N∑
n=1

GD2
[
pobs(y|yn), pmod(y|xn)

]
. (8)

The last equality entails a considerable simplification, owing to the property that the squared

GD between products of distributions can be written as the sum of squared GDs between the

corresponding factors [16]. Hence, the optimization procedure involves matching not only yn with

bxn, but also σ2
obs with σ2

y + β2σ2
x. Note that the parameter β occurs both in the mean and the

variance of the modeled distribution. Incidentally, forcing σ2
obs ≡ σ2

y + β2σ2
x would take us back to

standard maximum likelihood estimation, for the Rao GD between the two Gaussians pobs and pmod

with means yn and bxn, respectively, but with identical standard deviations (fixed along the geodesic

path), is precisely the Mahalanobis distance [20]:

GD(pobs, pmod) =
|yn − bxn|
σ2
y + β2σ2

x

, if σ2
obs ≡ σ2

y + β2σ2
x.

We note that the GLS scheme addresses many of the difficulties with classic OLS regression.

First, GLS explicitly allows uncertainty on the predictor variables, and it is not restricted to normal

or symmetric noise distributions, nor does it necessarily assume homoscedasticity. In addition,

correlations among variables and among observations can be built into the stochastic component

of the regression model. Furthermore, GLS can operate with any (nonlinear) regression function.

Moreover, it will be shown in the experiments that GLS is relatively insensitive to uncertainties in

both the stochastic and deterministic components of the regression model. The same quality renders

the method also robust against outliers.

In the experiments below, we employed a classic active-set algorithm to carry out the

optimization [21]. Furthermore, presently, the GLS method does not directly offer confidence (or

credible) intervals on the estimated quantities. Future work will address this issue in more detail,

but for now, error estimates were derived by Monte Carlo sampling in the case of the numerical

simulations (Section 4) and by bootstrapping in the case of the real data (Section 5) [22]. The

bootstrapping involved creating, from the measured dataset, a large number of artificial datasets of

the same size, by resampling with replacement. The regression analysis was then carried out on each

of the datasets, and the mean and standard deviation, over all datasets, of each estimated regression
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parameter and of the predicted quantities were used as estimates of the parameter or prediction value

and its error bar, respectively. This scheme typically results in rather conservative error bars, which

could possibly be narrowed down using more sophisticated methods.

3. The L-H Power Threshold and Database

We now provide some background information regarding the main regression application that

will be treated in the experiments with synthetic and real data. It concerns one of the most important

scaling relations in fusion science based on magnetic plasma confinement, related to the threshold

Pthr for the heating power that is required for the plasma to make the transition into a desired

regime of high energy confinement (H-mode) in the next-step fusion device ITER (International

Thermonuclear Experimental Reactor) [1,23,24]. To a good approximation, this so-called L-H (or

H-mode) power threshold depends on the electron density in the plasma n̄e (in 1020 m−3), the main

magnetic field Bt (in tesla (T)) and the total surface area S of the confined plasma (in m2). This is

usually expressed by means of the following scaling relation:

Pthr = β0 n̄
β1
e Bβ2

t Sβ3 . (9)

To estimate the coefficients in this relation, we employed data from eight fusion devices of the

tokamak type (ASDEX, AUG, CMOD, DIII-D, JET, JFT-2M, JT-60U, PBXM) in the International

Tokamak Physics Activity (ITPA) multi-machine database for the L-H power threshold (subset

IAEA02 [23,25–27]). This yields 616 measurement sets of power, density, magnetic field and surface

area, each set obtained during a brief time of plasma operation under stationary conditions in one of

the eight devices involved in the study [28].

The ITPA database contains some information regarding the error bars on the measurements,

specifically relative errors expressed as percentages. This is important for our purposes, because

we need the error bars to calculate σmod. Unfortunately, the error estimates are not available in

some cases, and if they are, the precise definition of the error bars is not always clear. Usually, an

error bar in the database represents an estimate by the experimentalist of the typical range in which

the “true” quantity can be expected to lie, where the uncertainty is assumed to be caused by both

stochastic and systematic effects. Moreover, it is difficult to assess the probability that is covered

by the stochastic component of the errors mentioned in the database. Since a detailed investigation

of the uncertainty of the threshold data is beyond the scope of the present paper, we will assume

that the error bars pertain to a stochastic uncertainty corresponding to a single standard deviation

of a Gaussian distribution. For some derived quantities, the error bars had to be calculated from

the uncertainty on more fundamental measurements. In those cases, we employed Gaussian error

propagation rules to estimate the standard deviation on the derived quantities. For the case of the

global H-mode confinement database, this strategy has been shown to provide reasonable information

on the actual error bars [29].

It is important to mention that the main source of uncertainty in the data used for power threshold

scaling, when compared to the predictions of a simple power law regression model, is not expected
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to be due to the measurement uncertainty on the individual variables. There are far larger sources

owing to the variability of the experiments that produced the data. To estimate the variability of each

of the physical quantities with respect to the scaling law, we performed the following calculation.

First, the nonlinear scaling law was estimated using OLS, as explained in Section 5.2. Then, for a

specific variable z (one of the predictor variables or the dependent variable) and for each data point,

the relative difference was computed between the z-value of the data point itself and the z-value

of the projection of the data point on the hypersurface given by the scaling law, keeping the values

of the other variables fixed. This difference can be interpreted as the deviation of the point from

the theoretical scaling law, assuming the deviation is solely due to the variability of the variable

z. Finally, the standard deviation of these relative differences was taken, and the procedure was

repeated for every predictor variable and the dependent variable. The resulting standard deviations

can be interpreted as upper bounds of the relative variability of each of the variables around their

‘theoretical’ values given by the scaling law. This way, for n̄e, Bt, S and Pthr, we obtained 39%,

31%, 28% and 38%, respectively. These levels are clearly much larger than the relative uncertainties

due to measurement error alone. Indeed, the typical measurement error bars quoted in the ITPA

database, on average, over all devices, are estimated at 4% for n̄e, 1% for Bt, 3% for S and 15% for

Pthr [25,26].

4. Numerical Simulations

We next demonstrate some of the potential of the GLS regression scheme by means of a

number of experiments with synthetically-generated data. We treat two particular cases of deviation

from the model according to which the data were created and show that, in comparison with

a number of standard regression techniques, GLS yields the most accurate results across all

experiments. The first case concerns the effect of outliers, while in the second case, the influence

of a logarithmic transformation is studied. In each case, we start with a very simple experiment that

is easily reproduced, using a single predictor variable, providing some intuitive feeling regarding the

performance of the method. We then proceed to a more elaborate test, still based on partly synthetic

data, but using a regression challenge similar to that used in the real-world experiment for scaling of

the L-H power threshold in fusion plasmas, presented in Section 5.

4.1. Effect of Outliers

The robustness of minimum distance estimators to outliers in the data was noted in the classic

literature of minimum distance estimation [18]. We now show that this is a quality also enjoyed by

GLS regression.



473

4.1.1. Single Predictor Variable

We first concentrate on estimating the slope of a regression line with a single predictor variable.

To this end, a dataset was generated consisting of ten points labeled by coordinates ξn and

ηn (n = 1, . . . , 10), with the ξn chosen unevenly between zero and 50 and ηn = βξn, taking β = 3.

Then, Gaussian noise was added to all coordinates according to Equation (6), with σy = 2.0 and

σx = 0.5, resulting in values xn for the predictor variable and yn for the response variable. Finally,

one outlier was created by multiplying the value of yk by a factor distributed uniformly between 1.5

and 2.5, with k chosen uniformly among the indices 8, 9 and 10.

We next estimated β by means of GLS and compared the estimates with those obtained

by OLS, maximum a posteriori (MAP) using the model in Equation (7) for the likelihood

and an uninformative prior [30], total least squares (TLS), which is a typical errors-in-variables

technique [31], and a robust method (ROB) based on iteratively reweighted least squares (bisquare

weighting) [32], included in the MATLAB Statistics toolbox [33]. It should be noted that MAP takes

into account the error bars on the predictor variables. In all cases, we assumed knowledge of the

values of σx and σy. In order to get an idea of the variability of the estimates, Monte Carlo sampling

of the data-generating distributions was performed, and the estimation was carried out 100 times.

The results are given in Table 1, mentioning the sample average and standard deviation of the

estimates β̂ over the 100 runs for each of the methods. GLS is seen to perform very well and

similar to the robust method ROB, but the other techniques yield considerably worse results. The

average estimate of σobs was 5.43 with a standard deviation of 0.24. On the other hand, the modeled

value of the standard deviation in the conditional distribution for y was σmod =
√
σ2
y + 9σ2

x = 2.5.

Hence, GLS succeeds in ignoring the outlier by increasing the estimated variability of the data. Put

differently, the effect of the outlier is, in a sense, to increase the overall variability of the data, which

GLS takes into account by increasing the observed standard deviation of the data (σobs) with respect

to the standard deviation predicted by the model (σmod).

Table 1. Monte Carlo estimates of the mean and standard deviation for the slope

parameter in linear regression with errors on both variables and one outlier. GLS,

geodesic least squares regression; TLS, total least squares; ROB, robust method.

Original GLS OLS MAP TLS ROB

β = 3.00 3.031 ± 0.035 3.68 ± 0.29 3.83 ± 0.36 4.6 ± 1.0 2.992 ± 0.041

As mentioned before, this result can also be understood in terms of the pseudosphere as a

geometrical model for the normal distribution. To see this, we refer to Figure 2, where several sets

of points (distributions) are drawn on a portion of the surface of the pseudosphere for one particular

dataset generated as described above. First, the modeled distributions are plotted with their means

β̂xn (see Equation (7)) and standard deviations σmod = 2.5, using the average estimate β̂ = 3.031

obtained by GLS. These are the green points on the surface, and they lie on a parallel, since they all

correspond to Gaussians with the same standard deviation σmod. In this particular dataset, the index
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of the outlier was k = 10, so the point β̂x10 is indicated individually. Obviously, according to the

model, no outlier is expected, so the modeled distribution corresponding to k = 10, which is the

green point just mentioned, lies close to the other predicted points (distributions). Next, we plot the

observed distributions with their means yn and standard deviations σobs (for this dataset estimated

at σ̂obs = 5.43). These are the blue points, lying at a constant standard deviation σobs, which is

higher than σmod (5.43 > 2.5). The outlier y10 can clearly be observed, and being an outlier, it lies

relatively far away from the rest of the blue points (observed distributions). Now suppose that, like

MAP, GLS would not be able to increase σobs relative to σmod in order to accommodate the outlier.

Then, the observed distributions would have the same observed means (the measured values yn), but

they would have the standard deviation predicted by the model. Hence, they would lie on the parallel

corresponding to σmod, just like the green points. We have plotted these fictitious distributions as the

red points at the level of σmod, and they are labeled ỹ. Again, the outlier (labeled ỹ10) can be seen,

but it seems to lie further away from the other red points (the points ỹn) compared to the actually

observed situation, i.e., the distance from y10 to the other yn (blue points). At least this is the case

when using (visually) the Euclidean distance in the embedding Euclidean space. We can verify that

this is indeed so by using the proper geodesic distance on the surface: overall, the blue points lie

closer together (including the outlier) than the red points. Now, in fact, GLS aims at minimizing the

distance between each green point (modeled distribution) and its corresponding blue point (observed

distribution), so as far as the outlier is concerned, we should really be looking at the geodesic between

the point (β̂x10,σmod) and the point (y10,σobs). The geodesic (labeled “Geo1”) between these points

is also drawn on the surface, and again, we compare this to the fictitious situation, represented by

the geodesic (labeled “Geo2”) between (β̂x10,σmod) and (ỹ10,σmod). Indeed, again, we see that the

geodesic Geo1 is shorter than Geo2. Therefore, by increasing σobs relative to σmod, the outlier is

not so much an outlier anymore, as measured on the pseudosphere! When calculating the GD, one

finds 2.4 for Geo1 and 2.8 for Geo2. Therefore, GLS obtains a lower value of the objective function

(sum of squared geodesic distances) if it increases σobs with respect to σmod. Of course, there is a

limit to this: GLS cannot continue raising σobs indefinitely, trying to mitigate the distorting effect

of the outlier, for then, the other points would get a too high observed standard deviation, which

is not supported by the data. The image that we see in Figure 2 is the best compromise that GLS

could find. In fact, we note that, in the case we suspect that y10 could be an outlier, it may very well

be worthwhile to introduce two parameters to describe the observed standard deviation: one for the

nine points that seem to follow the model and one to take care of the outlier. This would be a very

straightforward extension of the method, and we explore this to some extent when using data from

the ITPA database below. There, we assign a separate parameter to describe the observed standard

deviation of all data coming from a specific tokamak, hence defining an individual parameter for each

machine.
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Figure 2. A portion of the pseudosphere together with the regression results on synthetic

data with an outlier, as described in the main text.

4.1.2. Multiple Predictor Variables

In this experiment, a regression problem with multiple predictor variables and a power law is

studied. The deterministic part of the regression model is based on the real-world problem for the

L-H power threshold in fusion plasmas, which we are going to consider in Section 5. Furthermore,

the values of the predictor variables are taken from the same international power threshold database,

and values of the response variable are synthetically generated from this.

More specifically, the dataset for this experiment was created as follows. First, an artificial linear

regression law was put forward for a variable η, depending on the predictor variables n̄e, Bt and

S, which were introduced in the context of the power threshold scaling law in Section 3 [34]. In

particular, we generated a number of realizations of the variable η from the following prescription:

η = β0 + β1n̄e + β2Bt + β3S. (10)

This was considered as the “true” relation between the predictor and response variables, where,

as mentioned above, the values of the predictor variables were chosen to be exactly those from the

ITPA database, which are normally used in the real power threshold scaling law. A whole range of

datasets was created using the following values of the coefficients β0, β1, β2 and β3:

β0 = 1, 1.1, . . . , 20,

β1,β2,β3 = 0.1, 0.2, . . . , 2.
(11)

Thus, for each combination of values of β0, β1, β2 and β3, all 616 values of η were calculated

according to Equation (10), based on the values of n̄e, Bt and S from the ITPA database. The range

of coefficient values in Equation (11) was chosen to be representative for the values that are typically

obtained from a regression analysis on the true scaling law (see Section 5). The exception is β0, for
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which the range was chosen of roughly the same order as η− β0 (much smaller values of β0 would

not be estimable in comparison with η− β0).

Next, Gaussian noise was added to both the predictor and response variables. The noise level was

chosen according to the typical relative measurement errors in the ITPA database, i.e., 4% for n̄e,

resulting in a variable x1, 1% for Bt (variable x2), 3% for S (variable x3) and 15% for the dependent

variable (variable y, which is Pthr in the real-world regression problem). It should be stressed that,

in the light of our comments in Section 3 regarding the variability of the predictor variables, these

are rather low noise levels. We further note that fixed relative noise levels lead to a different standard

deviation for each measurement (heteroscedasticity).

Furthermore, in this experiment studying the effect of atypical observations, 10 outliers were

created in each of the datasets. In particular, from the total of 616 points in each dataset, 10

points were randomly chosen, and the associated value of y was multiplied with a factor F , where

F was distributed uniformly between 1.5 and 2.5. For each combination of coefficient values βi

(i = 0, . . . , 3) taken from Equation (11), 10 datasets were realized, each time performing the

sampling of noise and outliers.

Figure 3. (a) Histograms of the relative error in estimating the regression coefficients

βi by means of OLS, MAP and GLS for a linear regression problem with outliers.

Horizontal axes represent the error in percent and vertical axes probability, normalized to

one. (b) Similar, for TLS and ROB.
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Finally, the regression analysis was carried out for every dataset, and for each choice of the βi,

the obtained estimates β̂i were defined as the average over the 10 data realizations. Next, histograms

were created based on these averages for the estimated coefficients, specifically the normalized

histograms of the relative difference (βi− β̂i)/βi (i = 0, . . . , 3), expressed as a percentage, between

the true value βi and the estimated value β̂i of each regression parameter. The histograms of these

percentage errors are shown in Figure 3. In order to avoid a cluttered figure, the results of OLS, MAP

and GLS are plotted in one panel and those of TLS and ROB in another.

From these histograms, it is clear that, for each parameter, GLS performs much better than OLS,

MAP and TLS, with the latter failing completely. In case of GLS, the vast majority of relative

errors is of the order of a few percent and certainly smaller than 20%. Overall, the most difficult to

estimate parameter turns out to be β1, which is associated with n̄e. The robust estimation technique

in MATLAB also delivers good results (in fact, not much worse than GLS), as it is designed to cope

with outliers. However, we will see that in the next experiment ROB does not perform well at all.

4.2. Effect of Logarithmic Transformation

We next tested the effect of a logarithmic transformation, which is often used to transform a

power-law regression model into a linear form. However, the logarithm alters the data distribution,

which may lead to misguided inferences from OLS [2,3]. Therefore, the flexibility offered by GLS

is expected to be beneficial in this case, as it allows the observed distribution to deviate from the

modeled distribution.

4.2.1. Single Predictor Variable

Again, we first performed a simple regression experiment involving a single predictor variable,

with a power law deterministic model and additive Gaussian noise on all variables. In accordance

with the typical situation of fitting fusion scaling laws to multi-machine data, the noise standard

deviation was taken proportional to the simulated measurements, corresponding to a given set of

relative error bars. As a result, in the logarithmic space the distributions were only approximately

Gaussian, with the standard deviation given by the constant relative error on the original measurement

(homoscedasticity). Ten points were chosen with predictor values ξn unevenly spread between zero

and 60. A power law was proposed to relate the unobserved ξn and ηn:

ηn = β0 ξ
β1
n , n = 1, . . . , 10.

Then, Gaussian noise was added to the ξn and ηn, corresponding to a substantial relative error of

40%. We finally took the natural logarithm of all observed values xn and yn, enabling application of

the same linear regression methods that were used in the previous experiment. In this particular

experiment, we chose β0 = 0.8 and β1 = 1.4, but we found that other values yield similar

conclusions. Again, 100 data replications were generated, allowing calculation of Monte Carlo

averages.
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The averages and standard deviations over all 100 runs are given in Table 2. Again, the results

show that GLS is robust against the flawed model assumptions, now performing similar to TLS.

Table 2. Monte Carlo estimates of the mean and standard deviation for the parameters in

a log-linear regression experiment with proportional additive noise on both variables.

Parameter Original GLS OLS MAP TLS ROB

β0 0.80 0.94 ± 0.47 2.2 ± 2.3 3.0 ± 1.7 0.99 ± 0.70 2.72 ± 0.77

β1 1.40 1.39 ± 0.11 1.19 ± 0.16 1.08 ± 0.26 1.41 ± 0.14 1.17 ± 0.11

4.2.2. Multiple Predictor Variables

In the last experiment with synthetic data, we studied the effect of a logarithmic transformation in

a similar problem as the one described in Section 4.1.2, but in the case of a power law. In particular,

the variable η was calculated for the same range of values of the parameters βi as given in Equation

(11), but now according to a power law:

η = β0n̄
β1
e Bβ2

t Sβ3 .

Then, Gaussian noise was added to all variables. However, when applying the relatively low noise

levels used in Section 4.1.2, no significant differences were observed in the performance of GLS and

MAP. Therefore, the noise levels for the predictor variables were augmented to 20% for n̄e (variable

x1), 5% for Bt (variable x2) and 15% for S (variable x3). The level for Pthr was kept at 15%, as

before. This is still well within the maximum variability range that can be expected for the predictor

variables in the ITPA database, as discussed in Section 3.

After adding the noise, all data were transformed to the logarithmic domain, and 10 datasets were

generated for each combination of regression coefficients. Subsequently, linear regression analysis

was applied to each of the log-transformed datasets. The coefficient estimates, defined as the average

over the 10 replications, were then compared among the various regression methods, as shown

in Figure 4. Again, the normalized histograms of the relative error on the estimated parameters

are displayed, showing the consistently better performance of GLS over all other methods tested,

including TLS and ROB. For GLS, the errors on β0 and β1 are the largest, compared to those on

β2 and β3, but the majority is still below 20%. As for β0, the slightly inferior performance of GLS

relative to the results with outliers in Section 4.1.2 is simply due to the fact that logβ0 for the lowest

values of β0 is negligibly small compared to log η− logβ0.
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Figure 4. Histograms of the relative error in estimating the regression coefficients

βi by means of OLS, MAP and GLS for a power-law regression problem after a

logarithmic transformation. Horizontal axes represent the error in percent and vertical

axes probability, normalized to one. (b) Similar, for TLS and ROB.

5. Power Threshold Scaling

We finally come to the application of power threshold scaling using real-world data from the ITPA

database for all variables, including the response variable Pthr. We start with log-linear regression

and then apply nonlinear regression analysis. Next, we perform a simple analysis of the influence

of the error bars on the estimation results, and we finally provide a discussion of the results in this

section.

5.1. Linear Scaling

We first followed the standard practice of transforming to the logarithmic scale to estimate the

coefficients β0, β1, β2 and β3 in Equation (9) via linear regression. In the GLS method, we

introduced additional parameters σobs,α (α = 1, . . . , Nt), one for each of the Nt = 8 tokamaks

contributing data to the scaling. That is, if a certain data point with index n originated from

tokamak α, then in term n of the objective function in Equation (8), an observed distribution was

used, parameterized by means of the σobs,α corresponding to that machine. The σobs,α serve a

similar purpose as the parameter σobs defined above, except that they describe the observed standard

deviations of the logarithmic power threshold. This, of course, corresponds to the relative errors on
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the power threshold itself. To calculate σmod for each data point, we used the relative measurement

error bars quoted in the database (typically 4% for n̄e, 1% for Bt, 3% for S and 15% for Pthr).

Considering the discussion in Section 3 regarding other sources of uncertainty, it is clear that the

σobs,α will need to take into account other, “unexpected” uncertainty sources, hence increasing the

flexibility of the method.

In this analysis, we compared GLS only with OLS and the powerful MAP method. The results

on the IAEA02 data are given in Table 3. The predictions for ITER are also shown, for two typical

densities (0.5 and 1.0 × 1020 m−3). All estimates are accompanied by their 95% credible intervals

obtained from 100 bootstrap samples (artificial datasets). We stress that this notion of a credible

interval corresponds to the standard Bayesian definition of an interval wherein the true value of a

stochastic variable is assumed to lie with a certain probability (e.g., 0.95).

Table 3. Estimates of regression parameters and predictions for ITER in log-transformed

linear scaling of the H-mode threshold power using the IAEA02 dataset. The bootstrap

averages are given, as well as the 95% credible intervals (CI).

Method β̂0 β̂1 β̂2 β̂3 P̂thr,0.5 (MW) P̂thr,1.0 (MW)

OLS
Average 0.0507 0.485 0.873 0.843 38.0 53.2

CI ±0.0060 ±0.073 ±0.061 ±0.041 ±4.4 ±8.0

MAP
Average 0.0449 0.567 0.867 0.901 45.6 67.6

CI ±0.0051 ±0.078 ±0.069 ±0.039 ±5.0 ±9.6

GLS
Average 0.0426 0.660 0.795 0.946 48.3 76.4

CI ±0.0042 ±0.069 ±0.059 ±0.034 ±4.7 ±9.8

Table 4. Estimates of the observed standard deviations σobs,α of the logarithmic power

threshold, expressed as percentage errors on Pthr itself, for the tokamaks contributing

to the IAEA02 dataset, obtained using log-transformed linear scaling. The bootstrap

averages are given, as well as the 95% credible intervals (CI).

ASDEX AUG CMOD DIII-D JET JFT-2M JT-60U PBXM

Average (%) 41.8 23.0 22.0 15.7 24.6 15.9 22.8 27.6

CI (%) ±5.3 ±1.4 ±1.1 ±1.8 ±2.0 ±1.2 ±2.3 ±2.9

The estimates by GLS of the parameters σobs,α (observed standard deviation on logPthr), for

each of the devices contributing to the IAEA02 data, were expressed as a relative error on the

bootstrap-averaged Pthr. These relative errors and their credible intervals are given in Table 4.

The relative error on the power threshold lies around 15% to 30% for the various machines, except

for ASDEX, where the uncertainty reaches a higher level of about 40%. On average, this yields

an estimated error of 24.2% for Pthr, which is quite somewhat higher than the average of 15%
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mentioned in the database, although still considerably lower than the upper bound of 38%, as

calculated in Section 3. Again, this is an indication of additional sources of uncertainty, on top

of mere measurement error, causing the data points to deviate from the proposed regression model,

as discussed already in Section 3. That extra uncertainty is captured by the GLS method.

5.2. Nonlinear Scaling

Next, we show the results of nonlinear regression in the original data space, i.e., without

logarithmic transformation. Whereas this prevents an analytic solution using OLS, the advantage is

that the distribution of the data is left undistorted [2,3], while the implementation of OLS, MAP and

GLS is not significantly more complex. Indeed, the distribution of the right-hand side in Equation (9)

can be approximated by a Gaussian with mean μmod = β0 n̄
β1
e Bβ2

t Sβ3 and standard deviation σmod,

given by:

σ2
mod = σ2

Pthr
+ μ2

mod

[
β2
1

(
σn̄e

n̄e

)2

+ β2
2

(
σBt

Bt

)2

+ β2
3

(σS

S

)2]
.

Hence, the modeled standard deviations depend on the measurements (heteroscedasticity).

Nevertheless, in defining the observed standard deviations σobs,α, we introduced an approximation

assuming constant error bars for all measurements from a single machine. This assumption may be

relaxed in the future.

The results of the scalings and predictions are presented in Tables 5 and 6. We compared GLS

with OLS and MAP using uniform priors. It may be possible to derive even less informative priors

for MAP, as was done in the log-linear case in Section 5.1 (and see [30,35]), but this was not pursued

here. Moreover, even in the log-linear analysis, we observed only a marginal difference between the

results under various choices of priors.

Table 5. Estimates of regression parameters and predictions for ITER in power-law

scaling on the original scale of the H-mode threshold power using the IAEA02 dataset.

The bootstrap averages are given, as well as the 95% credible intervals (CI).

Method β̂0 β̂1 β̂2 β̂3 P̂thr,0.5 (MW) P̂thr,1.0 (MW)

OLS
Average 0.0274 0.773 0.96 1.038 69 118

CI ±0.0083 ±0.090 ±0.10 ±0.071 ±15 ±32

MAP
Average 0.0425 0.643 0.788 0.933 44.2 69.1

CI ±0.0041 ±0.074 ±0.079 ±0.034 ±3.8 ±8.2

GLS
Average 0.0397 0.715 0.751 0.984 51.6 84.7

CI ±0.0036 ±0.071 ±0.081 ±0.031 ±4.0 ±8.8
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Table 6. Estimates of the observed standard deviations σobs,α of the power threshold Pthr,

expressed as percentage errors, for the machines contributing to the IAEA02 dataset,

obtained using power-law scaling. The bootstrap averages are given, as well as the 95%

credible intervals (CI).

ASDEX AUG CMOD DIII-D JET JFT-2M JT-60U PBXM

Average (%) 35.8 21.2 20.4 15.9 22.4 15.7 22.3 27.7

CI (%) ±9.1 ±4.3 ±3.4 ±2.4 ±3.8 ±2.2 ±4.6 ±8.1

It should also be mentioned that, in obtaining Table 6, we again calculated relative errors from

the observed standard deviations estimated by GLS. However, this time, the relative errors are not

the same for all measurements coming from a single machine, so we calculated an average for each

machine (and similar for the credible interval). The resulting errors on Pthr are relatively similar to

those using log-linear scaling, with an average over all devices of 22.7%, which is again higher than

the 15% expected from measurement error only.

5.3. Influence of Error Bars

In the last couple of experiments, we intended to assess the sensitivity of the regression analysis

on the accuracy of the error bars on the ITPA data. A systematic study of this influence is outside

the scope of this paper, and as a first simple test, we doubled the error bars on all root ITPA

variables (basically the electron density and the magnetic field together with various geometrical

plasma parameters and sources of input power), which were used for calculation of the variables

involved in the power threshold scaling law. On average, over all machines, this resulted in the

following derived error bars: 9% on n̄e, 2% on Bt, 5% on S and 32% on Pthr. Again, these are all

below the maxima quoted in Section 3.

We then performed power-law regression with MAP and GLS on the ITPA data using these larger

error bars; the results are given in Table 7 [36]. It is observed that, based on MAP, the predictions

for ITER are lowered relative to the analysis with the original error bars in Section 5.2. In contrast,

the predictions by GLS remain about the same as before. On the other hand, the GLS estimates of

the observed standard deviations, listed in Table 8, are increased for all devices. This is how GLS

accommodates the increased error bars on the data.

Table 7. Estimates of regression parameters and predictions for ITER in power-law

scaling on the original scale of the H-mode threshold power using the IAEA02 dataset

with all error bars (on the root quantities) doubled.

Method β̂0 β̂1 β̂2 β̂3 P̂thr,0.5 (MW) P̂thr,1.0 (MW)

MAP 0.0436 0.581 0.828 0.900 41.0 61.3

GLS 0.0393 0.725 0.742 0.990 52.1 86.2
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Table 8. Estimates of the observed standard deviations σobs,α of the power threshold Pthr,

expressed as percentage errors, for the machines contributing to the IAEA02 dataset with

all error bars doubled, obtained using power-law scaling.

ASDEX AUG CMOD DIII-D JET JFT-2M JT-60U PBXM

49.5 35.9 31.7 24.9 32.9 27.6 38.9 47.7

In another simple test, we changed the error bars on n̄e, Bt, S and Pthr to values computed from

the average percentages mentioned earlier in Section 3: 4% for n̄e, 1% for Bt, 3% for S and 15%

for Pthr. These are averages over all machines, rendering the final absolute error bars (standard

deviations), computed from the relative errors, less precise. The estimation results using power-law

regression with MAP and GLS are shown in Table 9. The results of both methods are clearly affected

by the averaging step, but again, MAP is seen to be more sensitive to the change in the error bars

compared to GLS, which maintains estimates in a similar range as those given in Tables 3 and 5. The

estimates of the observed standard deviations, given in Table 10, are adjusted accordingly by GLS.

Table 9. Estimates of regression parameters and predictions for ITER in power-law

scaling on the original scale of the H-mode threshold power using the IAEA02 dataset

with averaged error bars.

Method β̂0 β̂1 β̂2 β̂3 P̂thr,0.5 (MW) P̂thr,1.0 (MW)

MAP 0.0488 0.552 0.807 0.862 35.1 51.5

GLS 0.0429 0.647 0.780 0.938 45.7 71.5

Table 10. Estimates of the observed standard deviations σobs,α of the power threshold

Pthr, expressed as percentage errors, for the machines contributing to the IAEA02 dataset

with averaged error bars, obtained using power-law scaling.

ASDEX AUG CMOD DIII-D JET JFT-2M JT-60U PBXM

29.6 19.1 20.5 19.5 22.5 18.1 18.7 20.4

5.4. Discussion

Several interesting observations can be made from the experiments regarding the power threshold

scaling in this section. First, considering Tables 3 and 5, it should be noted that there are several

instances where the regression parameters estimated by OLS differ significantly from those obtained

by GLS. For log-linear regression, this is particularly the case for the dependence of the power

threshold on density and surface area and for the predicted power thresholds for ITER, as shown by

the non-overlapping credible intervals. For power-law regression, the difference is rather situated
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in the dependence on the magnetic field. In this case, the power thresholds predicted by OLS are

also quite different from the results given by GLS, but this time, the credible intervals on the OLS

estimates are so wide, that they overlap with those obtained from GLS. Apart from this discrepancy,

the three methods provide comparable absolute error bars on their estimates.

Furthermore, we see that the correspondence between GLS and MAP is significantly better,

although the remaining differences become particularly clear for the predicted power at higher

density in ITER. The estimate by GLS is higher than that provided by MAP, especially for power-law

scaling.

In addition, and quite remarkably, when comparing the coefficient estimates and predictions

obtained by GLS between the linear and nonlinear case, relatively consistent results can be noted.

The same goes for the MAP estimates. In contrast, OLS provides widely different results, depending

on whether a linear (log-transformed) or nonlinear (power-law) model is used. The relatively good

consistency of the GLS estimates across regression models is a solid argument in favor of the method.

Another noteworthy point comes from the results of the two additional tests with increased and

averaged error bars. They indicate that for MAP (and maximum likelihood) regression, reliable

estimates of the variability of the measurements is important. However, as discussed in Section 3, the

standard error bars that were used in the analysis in Sections 5.1 and 5.2 are small compared to the

actual variability of the data around the theoretical scaling law. Hence, one could speculate whether

the results of the MAP analysis are in fact trustworthy, given its sensitivity to the error bars on the

data. Therefore, at least for MAP, it would be better to encode the available information on the error

bars in sufficiently wide prior distributions (which, incidentally, would be possible for GLS, too).

A related comment is that GLS is clearly less vulnerable to inaccurate error specification

compared to MAP. The mechanism behind this behavior is similar to the one that makes GLS

less sensitive to outliers, i.e., the observed standard deviation is able to capture deviations from the

expected data variability with respect to the model. In the simple implementation of the GLS method

used in the present paper, the distinction that is made between the modeled and observed standard

deviation is the main difference between GLS and MAP.

6. Conclusions

Regression and scaling laws represent crucial tools in science in general and in the analysis of

complex physical systems in particular. We have presented geodesic least squares regression (GLS)

as a method that is able to handle large uncertainties on the data and on the regression model, and we

have demonstrated its application to power-law regression. Operating on a manifold of probability

distributions, GLS has the advantage that its results can be easily visualized in the case of the

univariate Gaussian distribution. However, GLS is sufficiently flexible to allow tackling much more

general regression problems within the same framework.

We have shown two examples of the enhanced robustness of the method using synthetic data.

GLS showed a better stability in the presence of outliers and under a logarithmic transformation of a

power-law, compared to established techniques. In addition, we have addressed the scaling of the L-H
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power threshold in magnetically-confined fusion plasmas. On the basis of data from a multi-machine

database, it was observed that geodesic least squares provides estimates of regression parameters and

predictions that are consistent across different regression models, in contrast to ordinary least squares.

Furthermore, because GLS allows the data uncertainty predicted by the model to be different from

the empirically observed uncertainty, whereas with maximum a posteriori they are, by design, the

same, GLS is more flexible and robust at the same time. As a consequence, the degrees of freedom

provided by the parameters of the regression model better serve their actual purpose: to parameterize

a model that best describes a trend in the data, with minimal distraction by the data “noise”.

In future work, we intend to present a more general formulation of geodesic least squares, targeted

at a wider class of regression problems. In addition, various theoretical performance issues need to be

addressed, including uniqueness and convergence properties of the optimization problem, asymptotic

behavior of the parameter estimates, etc. On the practical side, we aim at establishing a broader basis

for the performance of the GLS method on simulated data. This should increase the confidence over

a wider range of regression problems, as well as deviations from the regression model.

Finally, although we have noted that GLS performs regression on a probabilistic manifold, we

have actually made little use of the geometrical structure of the manifold, save for calculating

geodesic distances. Nowadays, there are various schemes, more sophisticated than a least-squares

approach, to perform regression on manifold-valued data. From that point of view, one can expect

advantages of a method performing regression between probability distributions, each of them

containing more information than structureless data points in a Euclidean space. One possibility

that we will explore in future work is a Bayesian regression method on a probabilistic manifold, by

describing the distribution corresponding to the regression model intrinsically on the manifold [37].

At the same time, this will provide uncertainty estimates on the parameters through the posterior

distribution.
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On Monotone Embedding in Information Geometry
Jun Zhang

Abstract: A paper was published (Harsha and Subrahamanian Moosath, 2014) in which the

authors claimed to have discovered an extension to Amari’s α-geometry through a general monotone

embedding function. It will be pointed out here that this so-called (F,G)-geometry (which includes

F -geometry as a special case) is identical to Zhang’s (2004) extension to the α-geometry, where the

name of the pair of monotone embedding functions ρ and τ were used instead of F and H used

in Harsha and Subrahamanian Moosath (2014). Their weighting function G for the Riemannian

metric appears cosmetically due to a rewrite of the score function in log-representation as opposed

to (ρ, τ)-representation in Zhang (2004). It is further shown here that the resulting metric and

α-connections obtained by Zhang (2004) through arbitrary monotone embeddings is a unique

extension of the α-geometric structure. As a special case, Naudts’ (2004) φ-logarithm embedding

(using the so-called logφ function) is recovered with the identification ρ = φ, τ = logφ, with

φ-exponential expφ given by the associated convex function linking the two representations.

Reprinted from Entropy. Cite as: Zhang, J. On Monotone Embedding in Information Geometry.

Entropy 2015, 17, 4485–4499.

In a recent paper that appeared in Entropy (Harsha and Subrahamanian Moosath, 2014) [1], the

authors proposed an extension to Amari’s α-geometry, which they call F - or (F,G)-geometry, where

F is a monotone embedding function and G is the weighting function for taking the expectation of

random variables in calculating the Riemannian metric (G = 1 reduces to F -geometry, with the

standard Fisher–Rao metric). This paper serves the purpose of pointing out that (F,G)-geometry

as proposed is the same as what Zhang (2004) [2] has obtained for extending the α-geometry and

captured in his subsequent work [4–8]. The metric and affine connections proposed by [1] are

identical to [2] apart from the notations: the embedding functions F and H in [1] were denoted

as ρ and τ in [2], and weighting function G in [1] is a trivial rewriting of the convex function f used

by [2].

This paper will start in Section 1 with a review of Amari’s α-geometry and α-embedding, a

review of Zhang’s (2004) [2] extension to ρ-embedding with an arbitrary monotone function and a

summary of Harsha and Subrahamanian Moosath (2014) [1]. Then, the equivalence of [1] to [2]

is shown. In Section 2, after analyzing the group of monotone embedding functions, a stronger

statement is made: the construction of [2] is a unique dualistic extension of Amari’s α-geometry

through arbitrary monotone embedding in place of α-embedding. As an important special case, we

illustrate how the deformed logarithm logφ associated with an arbitrary strictly increasing function

φ as investigated by Naudts (2004) [3] arises naturally from identifying φ with ρ and with a proper

choice of the auxiliary function f as a part of Zhang’s theory.
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1. Equivalence of (F,G)-Geometry to Zhang’s (2004) [2] (ρ, τ)-Geometry

1.1. Amari’s α-Geometry and α-Embedding

The now standard differential geometric characterization of the manifold MΘ = { p(· | θ), θ ∈
Θ ⊆ Rn} of parametric probability functions p (probability density or probability distributions) is

through the Fisher–Rao metric gij as its Riemannian metric:

gij(θ) = Eμ

{
p(ζ|θ) ∂ log p(ζ|θ)

∂θi
∂ log p(ζ|θ)

∂θj

}
(1)

and a family of α-connections (given by Amari [9,10]) with coefficients Γ(α) (α ∈ R):

Γ
(α)
ij,k(θ) = Eμ

{(
1− α

2

∂ log p(ζ|θ)
∂θi

∂ log p(ζ|θ)
∂θj

+
∂2 log p(ζ|θ)

∂θi∂θj

)
∂p(ζ|θ)
∂θk

}
. (2)

Here, Eμ denotes the expectation with respect to a background measure μ of the random variable

denoted by ζ:

Eμ{·} =
∫

(·)dμ(ζ). (3)

The α-connection is constructed as a convex combination of a pair of conjugate connections Γ,Γ∗

Γ
(α)
ij,k(θ) =

1 + α

2
Γij,k(θ) +

1− α

2
Γ∗
ij,k(θ), (4)

where Γ ≡ Γ(1) is frequently called e-connection (α = 1) and Γ∗ ≡ Γ(−1) called m-connection

(α = −1). A Riemannian manifold Mμ with its metric g and the family of α-connections Γ(α) in

the form of (1) and (2) has been called α-geometry. Amari’s α-geometry can be specified in terms

of a symmetric (0, 2)-tensor gij (the Fisher–Rao metric) and a totally symmetric (0, 3)-tensor Tijk

(sometimes called the Amari–Chentsov tensor), which is linked to the α-connections via:

Γ
(α)
ij,k = ΓLC

ij,k(θ)−
α

2
Tijk(θ) , (5)

where ΓLC
ij,k is the Levi–Civita connection corresponding to the Riemannian metric g.

As an extension of the logarithmic embedding l(p) = log p of probability density function p, an

α-embedding function [10] is defined through l(α) : R+ → R:

l(α)(t) =

{
log t α = 1

2
1−α

t(1−α)/2 α �= 1
. (6)

It is an interesting observation (e.g., p. 46 in [11]) that the α-geometry can be recovered under such

α-representation (scaling) of the probability function, that is the Fisher–Rao metric turns out to be

α-independent (i.e., embedding independent) and the ±1-connections precisely the α-connections:

gij(θ) = Eμ

{
∂l(α)(p(ζ|θ))

∂θi
∂l(−α)(p(ζ|θ))

∂θj

}
, (7)

Γ
(α)
ij,k(θ) = Eμ

{
∂2l(α)(p(ζ|θ))

∂θi∂θj
∂l(−α)(p(ζ|θ))

∂θk

}
. (8)
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A variance of α-embedding of a probability function plays an important role in Tsallis statistics;

see [12–14]. On the geometric side, [15,16] illuminated that the α-scaling of the probability functions

leads to a conformal transformation.

1.2. Zhang (2004) [2] Extension: ρ-Embedding and (ρ, τ)-Geometry

Zhang [2,4,6] obtained generalizations of the α-geometry for a pair of monotone embeddings,

called ρ- and τ -embeddings generalizing α-embedding. Given any smooth strictly convex function

f : R→ R, with convex conjugate f ∗ given by:

f ∗(t) = t (f ′)−1(t)− f((f ′)−1(t)) , (9)

Zhang (2004) defines a pair of conjugate representations [2] (Section 3.2) using two strictly

increasing functions ρ, τ from R→ R:

(1) we call ρ-representation of a probability function p the mapping p �→ ρ(p);

(2) we say τ -representation of the probability function p �→ τ(p) is conjugate to ρ-representation

with respect to a smooth and strictly convex function f , or simply τ is f -conjugate to ρ, if:

τ(p) = f ′(ρ(p)) = ((f ∗)′)−1(ρ(p)) , (10)

which can be equivalently written as:

ρ(p) = (f ′)−1(τ(p)) = (f ∗)′(τ(p)) . (11)

These equalities in (10) and (11) hold, and they are equivalent, because f ′ and (f ∗)′ are both strictly

increasing (due to their strict convexity) and that (f ∗)∗ = f, (f ∗)′ = (f ′)−1. Sometimes, we write

f ′ = σ, (f ∗)−1 = σ−1 for convenience, so σ(ρ) = τ, σ−1(τ) = ρ, for a strictly increasing function τ .

As a first example, we may set ρ(t) = t, τ(t) = log t. Then, we can derive that f∗(t) = exp(t)

and f(t) = t log t − t + 1. That ρ(p) and τ(p) are just the p and log p representation reflects the

conventional dual embeddings that have later been extended to φ- and logφ-embedding in ([3]). In

Section 2.2, it will be shown that Naudts’ φ-logarithm formulation is recovered as a special case of

the (ρ, τ)-embedding.

As another example, we may set ρ(p) = l(β)(p) to be the β-representation given by Equation (6);

this would have been traditionally called “alpha-embedding”, except we use the symbol β, so that the

α-parameter will be reserved for indexing α-connections. In this case, the conjugate representation

is the (−β)-representation τ(p) = l(−β)(p):

ρ(p) = l(β)(p)←→ τ(p) = l(−β)(p) . (12)

In this case, ρ and τ are conjugate with respect to f , where f is given by:

f(t) =
2

1 + β

((
1− β

2

)
t

) 2
1−β

, f ∗(t) =
2

1− β

((
1 + β

2

)
t

) 2
1+β

. (13)

Based on divergence functions constructed under monotone embedding, Zhang ([2]) showed:
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Proposition 1. ([2], Proposition 7) Using an arbitrary monotone embedding function ρ and an
arbitrary smooth strictly convex function f , a generalization of α-geometry is obtained, with metric
and α-connections taking the form:

gij(θ) = Eμ

{
f ′′(ρ(p(ζ|θ)) ∂ρ(p(ζ|θ))

∂θi
∂ρ(p(ζ|θ))

∂θj

}
(14)

Γ
(α)
ij,k(θ) = Eμ

{
1− α

2
f ′′′(ρ(p(ζ|θ)))Aijk + f ′′(ρ(p(ζ|θ)))Bijk

}
, (15)

where:

Aijk(ζ, θ) =
∂ρ(p(ζ|θ))

∂θi
∂ρ(p(ζ|θ))

∂θj
∂ρ(p(ζ|θ))

∂θk
, Bijk(ζ, θ) =

∂2ρ(p(ζ|θ))
∂θi∂θj

∂ρ(p(ζ|θ))
∂θk

. (16)

As special cases,

Γij,k(θ) = Eμ

{
f ′′(ρ(p))

∂2ρ(p)

∂θi∂θj
∂ρ(p)

∂θk

}
, (17)

Γ∗
ij,k(θ) = Eμ

{
∂ρ(p)

∂θk

(
f ′′′(ρ(p))

∂ρ(p)

∂θi
∂ρ(p)

∂θj
+ f ′′(ρ(p))

∂2ρ(p)

∂θi∂θj

)}
. (18)

Furthermore, taking a pair of monotone representations, the metric tensor and affine connections

stated in Proposition 1 have dualistic expressions:

Corollary 1. ([2], Proposition 8) Using two arbitrary monotone embedding functions ρ and τ , the
metric and α-connections of (14)–(16) are:

gij(θ) = Eμ

{
∂ρ(p(ζ|θ))

∂θi
∂τ(p(ζ|θ))

∂θj

}
, (19)

Γ
(α)
ij,k(θ) = Eμ

{
1− α

2

∂2τ(p(ζ, θ))

∂θi∂θj
∂ρ(p(ζ|θ))

∂θk
+

1 + α

2

∂2ρ(p(ζ|θ))
∂θi∂θj

∂τ(p(ζ|θ))
∂θk

}
. (20)

As a special case, when ρ, τ take the familiar alpha-embeddings (12) (using β as the parameter),

the α-connections becomes (αβ)-connections:

Γ
(α)
ij,k(θ) = Eμ

{(
1− αβ

2

∂ log p(ζ|θ)
∂θi

∂ log p(ζ|θ)
∂θj

+
∂2 log p(ζ|θ)

∂θi∂θj

)
∂p(ζ|θ)
∂θk

}
, (21)

with the product α · β playing the role of the alpha-parameter indexing the family of connections.

1.3. Harsha and Subrahamanian Moosath’s (2014) Work [1]

Using a monotone embedding function denoted as F and a weighting function denoted as G

(G = 1 is a special case to reduce to what they called F -geometry), these authors [1] proposed

(F,G)-metric as (their Equation (33) in [1]):

gF,Gij = Eμ

{
pG(p)

∂ log p

∂θi
∂ log p

∂θj

}
(22)
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with affine connection given as (their Equation (34)):

ΓF,G
ijk = Eμ

{
pG(p)

∂ log p

∂θk

(
∂2 log p

∂θi∂θj
+

(
1 +

pF ′′(p)
F ′(p)

)
∂ log p

∂θi
∂ log p

∂θj

)}
. (23)

Note Ep{(·)} = Eμ{(·)p}. (23) is the expression for the e-connection (α = 1), ΓF,G
ijk . To express the

conjugate connection (m-connection, α = −1), ΓH,G
ijk , a dual embedding function H is introduced,

which is shown ([1], Theorem 3.2) to be related to F and G via (their Equation (36)):

H ′(p) =
G(p)

pF ′(p)
. (24)

In such a case, the conjugate connection ΓH,G
ijk (sic, more accurately (ΓF,G)∗ijk) is expressed as (their

Equation (37)):

ΓH,G
ijk = Eμ

{
pG(p)

∂ log p

∂θk

(
∂2 log p

∂θi∂θj
+

(
pG′(p)
G(p)

− pF ′′(p)
F ′(p)

)
∂ log p

∂θi
∂ log p

∂θj

)}
. (25)

We now show the equivalence of the three expressions (14), (17), (18) from the work [2] with the

three corresponding expressions (22), (23), (25) from the work [1].

Statement 1. Equations (14) and (22) give the same Riemannian metric; Equations (17) and (23)
give the same affine connection; and Equations (18) and (25) give the same conjugate connection,
as long as:

F (p) = ρ(p) , G(p) = (ρ′)2 p f ′′(ρ(p)). (26)

Proof. Re-writing (14), and keeping in mind:

∂ρ(p)

∂θi
= ρ′(p)

∂p

∂θi
= p ρ′(p)

∂ log p

∂θi
, (27)

so:

gij(θ) = Eμ

{
f ′′(ρ(p)(p ρ′(p))2

∂ log p

∂θi
∂ log p

∂θj

}
. (28)

Comparing the above with (22), obviously, F is just ρ, and G is linked to f and ρ:

G(p) = (ρ′)2 p f ′′(ρ(p)) = p ρ′(p)τ ′(p) (29)

where we have used (10).

Next, differentiate (27); we obtain:

∂2ρ(p)

∂θi∂θj
=

∂p

∂θj
ρ′(p)

∂ log p

∂θi
+ p ρ′′(p)

∂p

∂θj
∂ log p

∂θi
+ p ρ′(p)

∂2 log p

∂θi∂θj
(30)

= p ρ′(p)
(
∂ log p

∂θi
∂ log p

∂θj
+

∂2 log p

∂θi∂θj
+

pρ′′(p)
ρ′(p)

∂ log p

∂θi
∂ log p

∂θj

)
(31)

= p ρ′(p)
(
∂2 log p

∂θi∂θj
+

(
1 +

pρ′′(p)
ρ′(p)

)
∂ log p

∂θi
∂ log p

∂θj

)
. (32)

Identifying F = ρ and making use of (29), we see that (17) is precisely (23).
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Finally, differentiate (29),

G′(p) = (ρ′)2f ′′(ρ(p)) + (ρ′)3 p f ′′′(ρ(p)) + 2ρ′(p)ρ′′(p) p f ′′(ρ(p)). (33)

Therefore,
pG′(p)
G(p)

− pF ′′(p)
F ′(p)

= 1 +
pρ′(p)f ′′′(ρ(p))

f ′′(ρ(p))
+

pρ′′(p)
ρ′(p)

. (34)

After substituting (34) and (29) into (25) and making use of (31), the expression (18) results.

Statement 2. The conjugate embedding function H is the same as τ . The conjugate connection (25),
when expressed using H , has the same form as (23) for ΓG,F

ij,k using F .

Proof. Applying Definition (24) immediately yields H ′ = τ ′. Therefore, (apart from constant)

H(p) = τ(p). Next, we will express (25) explicitly using the conjugate embedding function H

(rather than F ) and the weighting function G. That is to say, we will simplify the terms in the middle

parenthesis of (25):

pG′(p)
G(p)

− pF ′′(p)
F ′(p)

= p

(
log

G(p)

F ′(p)

)′
= p (log(pH ′(p))′ = p (log p+ logH ′(p))′ (35)

= p

(
1

p
+

H ′′(p)
H ′

)
= 1 +

pH ′′

H ′(p)
. (36)

Hence, (25) has the same expression as (23) showing the duality between the embedding function H

and the embedding function F .

By Statement 1, starting from F (that is, ρ) and G and imposing conjugacy requirement on the

pair of affine connections, one is guaranteed to derive H (that is, τ ) as the conjugate embedding

function.

From Statements 1 and 2, we conclude that, Harsha and Moosath’s F -embedding [1] replicates

the ρ-embedding of Zhang (2004) [2]; the conjugate H-embedding turns out to be identical to

τ -embedding of [2]. Contrary to the authors’ claim (Remark 3.7 of [1], p. 2480), (F,G)-geometry

is identical to Zhang’s (ρ, τ) geometry [2]. In particular, their F -geometry is recovered by simply

choosing f to satisfy f ′′(t) = 1/(ρ−1(t) (ρ′(ρ−1(t)))2), for a given ρ. The subsequent development

in their paper [1], e.g., the definition of the F -affine manifold (their Equation (50)), replicates the

definition of ρ-affine manifold in [2] (Section 3.4).

During the review of their manuscript [1] and in subsequent personal communications, these

authors argued that they used a different approach: (F,G)-geometry is derived by embedding the

manifold into the space of random variables and suitably defining the inner product through using

the F -expectation (their Equation (15)) and (F,G)-expectation (their Equation (32)) as a general

weighted expectation of a random variable, while Zhang (2004) [2] derived the geometry through

constructing a divergence function. This difference, however, is entirely superficial, because the

relationship between divergence functions and geometric structure (metric and affine connection) is

well-established by Eguchi’s work [17,18] and known to information geometers. Therefore, neither

the approach nor the results of Harsha and Moosath’s proposed (F,H,G) extension to Amari’s
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α-geometry differs from Zhang’s proposed (ρ, τ, f) extension, with the following correspondence

in different symbols by the two papers:

F ⇐⇒ ρ , H ⇐⇒ τ , (37)

G(t)⇐⇒ tρ′(t)τ ′(t) = tf ′′(ρ(t))(ρ′(t))2 = t(f∗)′′(τ(t))(τ ′(t))2 ; (38)

the difference in the representation of score function as log-representation in [1] or under ρ or

τ -representation in [2] is cosmetic.

2. Uniqueness of (ρ, τ)-Geometry and Representation Duality

2.1. Monotone Embedding as a Transformation Group

Monotone representations of any given probability function form a transformation group, with

functional composition as group composition operation and the functional inverse as the group

inverse operation. This was pointed out by Zhang [6] (Section 2.2.2). We state it as a lemma here.

Lemma 1. Denote Ω as the set of strictly increasing functions from R → R. Then, (Ω, ◦) forms a
group, with ◦ denoting functional composition.

Proof. We easily verify that:

(1) closure for ◦: for any ρ1, ρ2 ∈ Ω, ρ2 ◦ρ1, defined as ρ2(ρ1(·)), is strictly increasing, and hence,

ρ2 ◦ ρ1 ∈ Ω;

(2) existence of unique identity element: the identity function ι, which satisfies ρ ◦ ι = ι ◦ ρ = ρ,

is strictly increasing, and hence, ι ∈ Ω and is unique;

(3) existence of inverse: for any ρ ∈ Ω, its functional inverse ρ−1, which satisfies ρ−1 ◦ ρ =

ρ−1 ◦ ρ = ι, is also strictly increasing, and hence, ρ−1 ∈ Ω;

(4) associativity of ◦: for any three ρ1, ρ2, ρ3 ∈ Ω, then (ρ1 ◦ ρ2) ◦ ρ3 = ρ1 ◦ (ρ2 ◦ ρ3).

Recall that the derivative of smooth strictly convex functions are strictly increasing functions.

From this perspective, f ′ = τ ◦ ρ−1 = τ(ρ−1(·)), (f ∗)′ = ρ ◦ τ−1 = ρ(τ−1(·)), encountered

above, are themselves two mutually inverse strictly increasing functions. This is the rationale behind

Zhang’s ([2]) choice of f (and f ∗) as the auxiliary function to capture conjugate embedding, rather

than using G as in [1]. The following identities are useful; they are obtained by differentiating (10)

and (11):

f ′′(ρ(t)) ρ′(t) = τ ′(t) , (f ∗)′′(τ(t)) τ ′(t) = ρ′(t) ; (39)

therefore:

f ′′(ρ(t)) (ρ′(t))2 = (f ∗)′′(τ(t)) (τ ′(t))2 , (40)
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and:

f ′′(ρ(t)) (f∗)′′(τ(t)) = 1. (41)

With respect to (41), taking log on both sides yields:

log f ′′(ρ(t)) + log(f ∗)′′(τ(t)) = 0 . (42)

Move and differentiate:
f ′′′(ρ(t)) ρ′(t)

f ′′(ρ(t))
= −(f∗)′′′(τ(t)) τ ′(t)

(f ∗)′′(τ(t))
. (43)

Making use of (40) yields:

f ′′′(ρ(t)) (ρ′(t))3 = −(f ∗)′′′(τ(t)) (τ ′(t))3 . (44)

Note the coupling between f and ρ, τ given by (10), (11), (40) and (44). They allow us to cast (14)

and (15) in terms of f ∗ and τ .

Among the triple (f, ρ, τ), given any two, the third is specified. In particular, if we arbitrary

choose two strictly increasing functions ρ and τ as embedding functions and require them to be

conjugate embeddings, then f is specified by f ′(t) = τ(ρ−1(t)). In terms of conjugate function f ∗,

the relation is (f ∗)′(t) = ρ(τ−1(t)). The function f (or f ∗) is important in constructing the general

class of divergence function.

2.2. Naudts’ φ-Logarithm as a Special Case

In his 2004 publication [3], Naudts considered the “deformed” logarithm function as an extension

to the exponential family of densities that is log-linear. Given a strictly increasing and strictly positive

function φ : R+ → R+, the φ-logarithm is defined as:

logφ(t) =

∫ t

1

1

φ(s)
ds , (t > 0). (45)

The deformed exponential denoted expψ, is defined by:

expψ(t) = 1 +

∫ t

0

ψ(s) ds. (46)

(Naudts (2004) used the notation expφ, so our current rendition has a subtle difference shown as

(48) and (49) below.) It can be shown that the deformed functions logφ and expψ are in fact inverse

functions of each other if:

ψ(logφ(t)) = φ(t), ψ(t) = φ(expψ(t)). (47)

Stated alternatively, the deformed logarithmic function h(t) = logφ(t) can be viewed as the solution

to the following integral and its equivalent differential equation:

h(t) =

∫ t

1

1

ψ(h(s))
ds ⇐⇒ dh

dt
=

1

ψ(h(t))
, (48)
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whereas the deformed exponential function h(t) = expψ(t) can be viewed as the solution to the

following integral and its equivalent differential equation:

h(t) = 1 +

∫ t

0

φ(h(s))ds ⇐⇒ dh

dt
= φ(h(t)). (49)

We now show that the above formulation can be re-written as (ρ, τ)-embeddings with a particular

choice of f (or equivalently, f∗) function. Set φ(t) = ρ(t) and f ∗(t) = expψ(t), so that (f∗)′(t) =
ψ(t) from (46). Therefore, we derive:

logφ(t) = ψ−1(φ(t)) = ((f∗)′)−1(ρ(t)) = f ′(ρ(t)) = τ(t).

That is, when φ is chosen as ρ-representation, the deformed logarithm logφ turns out to be the

τ -representation, while the deformed exponential is nothing but f ∗. The relationship (47) is identical

to (10) and (11).

In the φ-logarithm approach, once φ (that is, ρ) is specified, then logφ (that is, τ ) is specified,

through the integral relation (45). Viewing τ(·) = f ′(ρ(·)), the relation (45) essentially specifies a

strictly convex function f , through its derivative f ′, which operates on ρ.

Proposition 2. Denote ρ ≡ φ. The deformed logarithmic transformation φ → logφ given by (45)
can be viewed as the function composition f ′ : ρ→ f ′(ρ), where f is given by:

f(ρ(t)) = ρ(t)f ′(ρ(t))− t. (50)

Equivalently, using conjugate function f ∗ given by (9),

ρ = (f ∗)′ ◦ (f ∗)−1, (51)

or
ρ =

1

((f ∗)−1)′
. (52)

Proof. From (45), we write:

f ′(ρ(t)) =
∫ t

1

1

ρ(s)
ds, (53)

with unknown f . Multiply both sides by ρ′(t) and then integrate from one to x; the left-hand side of

(53) is: ∫ x

1

f ′(ρ(t)) ρ′(t) dt =
∫ x

1

f ′(ρ(t))d(ρ(t)) = f(ρ(x))− f(ρ(1)).

The right-hand side of (53), after the same operation, is:∫ x

1

ρ′(t) dt
∫ t

1

1

ρ(s)
ds =

∫ x

1

1

ρ(s)
ds

∫ x

s

ρ′(t) dt =
∫ x

1

ρ(x)− ρ(s)

ρ(s)
ds

=

∫ x

1

(
ρ(x)

ρ(s)
− 1

)
ds = ρ(x)

(∫ x

1

1

ρ(s)
ds

)
−
∫ x

1

ds = ρ(x) f ′(ρ(x))− (x− 1).

Clearly, f ′(ρ(1)) = 0 by (53). We set f(ρ(1)) = −1. Comparing expressions from the left- and

right-hand side, we obtain (50).
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Applying (9), we obtain the equivalent expression:

f ∗(f ′(ρ(t))) = t.

That is, f is chosen, such that f ∗ ◦ f ′ is the inverse function of ρ, or:

ρ = (f ∗ ◦ f ′)−1 = (f ′)−1 ◦ (f ∗)−1 = (f ∗)′ ◦ (f ∗)−1.

Hence, (51) holds.

Finally, differentiate the identity:

f ∗((f ∗)−1(t)) = t,

we obtain:

1 = (f∗)′((f ∗)−1(t)) · (f ∗)−1(t) = ρ(t) · (f∗)−1(t)

upon substituting (51). Hence, (52) holds.

The expression (51) in Proposition 2 shows that for any ρ, if one can find a decomposition:

ρ = g′ ◦ g−1 in terms of g, then g would be the ρ-exponential, g−1 the ρ-logarithm and g′ the linking

function. In the case of φ �→ logφ transformation, g = f ∗(t).
Naudts’ ([3]) deformed logarithm/exponential embedding approach and Zhang’s ([2])

(ρ, τ)-embedding approach can be seen as playing complementary roles in information geometry:

the former makes it easy to generalize the exponentiation and logarithm as inverse operations

obeying desired differential/integral equations, while the latter makes it apparent how conjugate

(ρ, τ)-embeddings lead to bidualistic expressions for the underlying geometric structures (metric

and conjugate connections).

2.3. Uniqueness of (ρ, τ)-Geometry

It is known [19,20] that the Fisher–Rao metric and α-connections (equivalently, Amari–Chentsov

tensor T ) are the only invariants of sufficient statistics under the Markov morphism of a random

variable. In [22,23], the Fisher–Rao metric has been extended to allow a weighting function. In [2,6],

general weighting functions for affine connections were made compatible with the generalized (i.e.,
weighted) Fisher–Rao metric, since they result from divergence functions that are allowed to have the

freedom of monotone embedding. The recent reinvention [1] constructed weighted connections that

turned out to be identical to the expressions given by [2]. A natural question is, then, whether Zhang’s

(ρ, τ) geometry is the unique construction given the freedom of arbitrary monotone embedding.

Below, arguments will be provided, along with a proof, for a positive answer to this question.

First, when a probability function p(ζ|θ) (as a function of a random variable indexed by ζ and

a background measure of μ) is embedded into the parametric manifold MΘ, there are several

traditional choices for tangent vectors: ∂ip, ∂i log p, ∂i
√
p, etc. Each of these are linked with

a weighting function (expectation operator), so that the tangent vectors are zero-mean random

variables:

0 = Eμ{∂ip} = Eμ{(p) ∂i log p} = Eμ{(√p) ∂i(√p)} = · · · (54)
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where the weighting functions are, respectively, one, p,
√
p:

0 = Eμ{∂ip} = Ep{∂i log p} = E√
p{∂i(√p)} = · · ·

For these various choices, the direction of the tangent vectors are all the same. We can consider the

above as special cases of ρ-embedding, with ρ(t) = t, log t,
√
t, respectively. Because ∂i(ρ(p)) =

ρ′(p)∂ip, so a tangent vector retains its direction with any choice of monotone embedding function.

To investigate the weighting function for general monotone ρ-embedding, let us consider the

f -normalization (foliation) condition, cf. [21],

Eμ{f(ρ(p)} = 1, (55)

where f is a given convex function. Differentiate the above; we get:

0 = Eμ

{
f ′(ρ(p))

∂ρ′(p)
∂θi

}
= Eμ{τ(p) ∂iρ}. (56)

Therefore, we can see that τ(p) = f ′(ρ(p)), what we have called the f -conjugate of ρ, is precisely

the weighting function to make ∂iρ a zero-mean random function at any point of MΘ (i.e., for any

value of θ ∈ Θ).

Next, consider the Fisher–Rao metric (1), which can be written as Eμ{∂ip ∂j log p} =

Eμ{∂i log p ∂jp}, the pairing of a random function with a random functional under two embeddings

p and log p. A natural generalization (see [6]) is to use two (independently chosen) monotone

embeddings ρ, τ :

gij(θ) = Eμ{∂iρ ∂jτ} = Eμ{∂jρ ∂iτ} = Eμ{ρ′(p) τ ′(p) ∂ip ∂jp} . (57)

This is precisely (14), with the weighting function for the Riemannian metric as f ′′(ρ(p))(ρ′(p))2 =
τ ′(p)ρ′(p), when tangent vectors are expressed as ∂ip (identity representation). When

ρ-representation or τ -representation is adopted, the weighting function is simply f ′′(ρ(p)) or

(f ∗)′′(τ(p)), respectively.

Third, given ρ, τ embedding, we can construct two affine connections on the manifold as follows.

Differentiate (57),
∂gij(θ)

∂θk
= Eμ

{
∂2ρ(p)

∂θk∂θi
∂τ

∂θj
+

∂2τ(p)

∂θk∂θj
∂ρ(p)

∂θi

}
, (58)

and compare with the relation that defines conjugate connections:

∂gij(θ)

∂θk
= Γki,j(θ) + Γ∗

kj,i(θ) ; (59)

we can identify:

Eμ

{
∂2ρ(p)

∂θk∂θi
∂τ(p)

∂θj

}
(60)

with Γki,j and:

Eμ

{
∂2τ(p)

∂θk∂θi
∂ρ(p)

∂θj

}
(61)
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with Γ∗
kj,i, respectively. Their difference is, by definition, the Amari–Chentsov (0,3)-tensor T :

Tijk(θ) ≡ Eμ

{
∂2τ(p)

∂θi∂θj
∂ρ(p)

∂θk
− ∂2ρ(p)

∂θi∂θj
∂τ(p)

∂θk

}
. (62)

Proposition 3. T as given by (62) is a totally symmetric (0,3)-tensor.

Proof. First, we prove that T (θ) is totally symmetric:

Tijk = Tjik = Tikj = Tjki = Tkij = Tkji. (63)

Since (62) clearly implies Tijk = Tjik, we only need to establish Tijk = Tikj . Applying the chain-rule

of differentiation,

∂

∂θi

(
∂τ(p)

∂θj
∂ρ(p)

∂θk

)
=

∂2τ(p)

∂θi∂θj
∂ρ(p)

∂θk
+

∂2ρ(p)

∂θi∂θk
∂τ(p)

∂θj
, (64)

∂

∂θi

(
∂ρ(p)

∂θj
∂τ(p)

∂θk

)
=

∂2ρ(p)

∂θi∂θj
∂τ(p)

∂θk
+

∂2τ(p)

∂θi∂θk
∂ρ(p)

∂θj
, (65)

and taking into account:

∂τ(p)

∂θj
∂ρ(p)

∂θk
=

∂τ(p)

∂θk
∂ρ(p)

∂θj
= τ ′(p)ρ′(p)

∂p

∂θj
∂p

∂θk
, (66)

(62) becomes:

Tijk(θ) = Eμ

{
−
(
∂2ρ(p)

∂θi∂θk
∂τ(p)

∂θj
− ∂2τ(p)

∂θi∂θk
∂ρ(p)

∂θj

)}
= Tikj(θ) . (67)

Next, we prove that Tijk is indeed a (0,3)-tensor. This is done through examining the behavior of

T under a coordinate transform θ �→ θ̄, with the (inverse) Jacobian matrix ∂θk

∂θ̄l
, which affects:

∂ρ(p)

∂θ̄i
=
∑
l

∂ρ(p)

∂θl
∂θl

∂θ̄i
,

∂τ(p)

∂θ̄i
=
∑
l

∂τ(p)

∂θl
∂θl

∂θ̄i
, (68)

and:

∂2ρ(p)

∂θ̄i∂θ̄j
=
∑
l,m

∂2ρ(p)

∂θl∂θm
∂θl

∂θ̄i
∂θm

∂θ̄j
+
∑
l

∂ρ(p)

∂θ̄l
∂2θl

∂θ̄i∂θ̄j
, (69)

∂2τ(p)

∂θ̄i∂θ̄j
=
∑
l,m

∂2τ(p)

∂θl∂θm
∂θl

∂θ̄i
∂θm

∂θ̄j
+
∑
l

∂τ(p)

∂θ̄l
∂2θl

∂θ̄i∂θ̄j
. (70)

Therefore:

T̄ijk(θ̄) ≡ Eμ

{
∂2τ(p)

∂θ̄i∂θ̄j
∂ρ(p)

∂θ̄k
− ∂2ρ(p)

∂θ̄i∂θ̄j
∂τ(p)

∂θ̄k

}
=
∑
lmn

∂θi

∂θ̄l
∂θj

∂θ̄m
∂θk

∂θ̄n
Tlmn(θ) . (71)

after substituting (69), (70) and (62). T indeed transforms to T̄ in a manner that defines a

(0, 3)-tensor. Therefore, the proposition is proven.
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We now cast the Amari–Chentsov tensor T in an alternative form that gives an explicit form of

weighting function. Given ρ, τ , because of Lemma 1, there exists another monotone embedding σ,

such that σ(ρ) = τ . Differentiating,

∂σ(ρ(p))

∂θi
= σ′(ρ(p))

∂ρ(p)

∂θi
. (72)

Differentiate again, we obtain:

∂2σ(ρ(p))

∂θi∂θj
= σ′′(ρ(p))

∂ρ(p)

∂θj
∂ρ(p)

∂θi
+ σ′(ρ(p))

∂2ρ(p)

∂θi∂θj
. (73)

Substituting the above into (62), we obtain an expression of T in terms of ρ (which plays the role of

embedding function) and σ (which plays the role of weighting function):

Tijk(θ) = Eμ

{
σ′′(ρ(p))

∂ρ(p)

∂θi
∂ρ(p)

∂θj
∂ρ(p)

∂θk

}
. (74)

Similarly, we can obtain:

Tijk(θ) = −Eμ

{
(σ−1)′′(τ(p))

∂τ(p)

∂θi
∂τ(p)

∂θj
∂τ(p)

∂θk

}
. (75)

Therefore, under τ -representation, σ−1 (the inverse function of σ) serves as the weighting function.

Note that σ = f ′, σ−1 = (f ∗)′ when ρ and τ are said to be conjugate. Furthermore, note the negative

sign in (75) compared with (74); this precisely reflects “representation duality” with a ρ ←→ τ

exchange.

To summarize, because α-geometry {M, g, T} is uniquely specified given a Riemannian

metric g and the Amari–Chentsov tensor T , the above derivations show that they both enjoy

the freedom of two monotone/convex functions, with the freedom in specifying g coupled to

the freedom in specifying T in the same way that the metric and connections are coupled via

Codazzi relation for statistical manifolds. That the weighting functions used to construct linear,

symmetric bilinear and totally symmetric trilinear functionals (on random functions) turns out to be

f ′(ρ(·)), f ′′(ρ(·)), f ′′′(ρ(·)), respectively, is noteworthy. See [6] for more discussions.

2.4. Representation Duality versus Reference Duality

Going beyond extending α-embedding to dual monotonic embeddings, Reference [2] illuminated

two different senses of duality in the α-geometry. Prior to [2], there have been several different usages

of α-parameter in Amari’s theory of information geometry [10,11]:

(1) parameterizing the divergence functions (α-divergences);

(2) parameterizing monotone embedding of probability functions (α-embedding);

(3) parameterizing the convex mixture of connections (α-connections).
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Zhang (2004) [2] showed that (1) and (2) reflect two different types of duality in information

geometry, with (1) concerning the reference/comparison status of a pair of points (functions)

expressed in the divergence function (“reference duality”) and (2) concerning their representation

under arbitrary monotone scaling (“representation duality”). Both can lead to (3), the family of

α-connections. Therefore, care has to be taken in carefully delineating these two kinds of duality;

for instance, the αβ-connection we derived in (21) reflects how reference duality and representation

duality interacts in the alpha-connections.

The present analysis elaborated representation duality in information geometry by working out

the freedom in allowing two (independently chosen) embedding functions ρ, τ or, equivalently, one

embedding function ρ along with a weighting function f , while the (ρ, f) pair can be dually chosen to

be the (τ, f∗) pair. Naudts’ (2004) [3] φ-logarithm is but a special case of the (ρ, τ) duality, in which

f ′ plays the role of the “integral-of-the-reciprocal” operation, that is taking the log of a function.

This linkage then leads to f ∗ and τ as inverse functions. The phenomena of biduality emerges

when exchanging ρ ←→ τ or (ρ, f) ←→ (τ, f∗) leads to invariance of the Riemannian metric, but

switches the two connections (the latter half of the statement is equivalent to changing signs of the

Amari–Chentsov tensor). Therefore, the present paper, while elaborating the theory developed in

[2], re-asserts the distinction between two distinct kinds of duality that was originally confounded in

Amari’s theory of α-geometry, one through the freedom of selecting monotone embedding functions

(“representation duality”) and the other through the freedom of assigning referential status to points

for pair comparison (“reference duality”).

Finally, it is noted that the (bi)dualistic structure of the (ρ, τ)-geometry (generalizing α-geometry)

is preserved in the non-parametric (infinite-dimensional) setting, as well [4,6], with the α-connection

structure cast in a more general way. Theorem 1 of [4] gives non-parametric expressions of the metric

and connections under monotone embedding, mirroring the forms (14) and (15) in the parametric

case.

3. Conclusion

The Riemannian metric with the pair of conjugate connections derived by Harsha and Moosath [1]

are identical to the (ρ, τ)-geometry obtained by Zhang in [2]. The (ρ, τ)-embedding also recovers

Naudts’ deformed logarithm/exponential formulation. It is further shown in this paper that such

(ρ, τ)-geometry obtained is, when α-embedding is relaxed to arbitrary monotone embeddings, the

unique extension of Amari’s α-geometry in terms of its representational freedom.
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Binary Classification with a Pseudo Exponential Model and Its
Application for Multi-Task Learning

Takashi Takenouchi, Osamu Komori and Shinto Eguchi

Abstract: In this paper, we investigate the basic properties of binary classification with a pseudo

model based on the Itakura–Saito distance and reveal that the Itakura–Saito distance is a unique

appropriate measure for estimation with the pseudo model in the framework of general Bregman

divergence. Furthermore, we propose a novel multi-task learning algorithm based on the pseudo

model in the framework of the ensemble learning method. We focus on a specific setting of the

multi-task learning for binary classification problems. The set of features is assumed to be common

among all tasks, which are our targets of performance improvement. We consider a situation

where the shared structures among the dataset are represented by divergence between underlying

distributions associated with multiple tasks. We discuss statistical properties of the proposed method

and investigate the validity of the proposed method with numerical experiments.

Reprinted from Entropy. Cite as: Takenouchi, T.; Komori, O.; Eguchi, S. Binary Classification

with a Pseudo Exponential Model and Its Application for Multi-Task Learning. Entropy 2015, 17,

4892–4910.

1. Introduction

In the framework of multi-task learning problems, we assume that there are multiple related

tasks (datasets) sharing a common structure and can utilize the shared structure to improve the

generalization performance of classifiers for multiple tasks [1,2]. This framework has been

successfully employed in various kind of applications, such as medical diagnosis. Most methods

utilize the similarity among tasks to improve the performance of classifiers by representing the shared

structure as a regularization term [3,4]. We tackle this problem using a boosting method, which makes

it possible to adaptively learn complicated problems with low computational cost. The boosting

methods are notable implementations of the ensemble learning and try to construct a better classifier

by combining weak classifiers. AdaBoost is the most popular boosting method, and many variations,

including TrAdaBoost for the multi-task learning [5], have been developed. In face recognition [6],

as well as web search ranking [7], the computational efficiency of boosting is paid attention to in the

framework of multi-task learning.

In this paper, we firstly reveal that AdaBoost can be derived by a sequential minimization of the

Itakura–Saito (IS) distance between an empirical distribution and a pseudo measure model associated

with a classifier. The IS distance is a special case of the Bregman divergence [8] between two positive

measures and is frequently used for non-negative matrix factorization (NMF) in the region of signal

processing [9,10]. Secondly, we propose a novel boosting algorithm for the multi-task learning based

on the IS distance. We utilize the IS distance as a discrepancy measure between pseudo models

associated with tasks and incorporate the IS distance as a regularizer into AdaBoost. The proposed
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method can capture the shared structure, i.e., the relationship between underlying distributions by

considering the IS distance between pseudo models constructed by classifiers. We discuss the

statistical properties of the proposed method and investigate the validity of the regularization by

the IS distance with small experiments using synthetic datasets and a real dataset.

This paper is organized as follows. In Section 2, basic settings are described, and a divergence

measure is introduced. In Section 3, we briefly introduce the IS distance, which is a special case of

the Bregman divergence, and investigate the relationship between a well-known ensemble algorithm,

AdaBoost and estimation with a pseudo model using the Itakura–Saito distance. In Section 4, we

propose a method for multi-task learning, which is derived from a minimization of the weighted

sum of divergence, and the performance of the proposed methods is examined in Section 5 using a

synthetic dataset and a real dataset (a short version of this article has been presented as a conference

paper [11]; some theoretical results and numerical experiments are added to the current version).

2. Settings

In this study, we focus on binary classification problems. Let x be an input and y ∈ Y = {±1}
be a class label. Let us assume that J datasets Dj = {x(j)

i , y
(j)
i }nj

i=1 (j = 1, . . . , J) are given, and let

pj(y|x)rj(x) and p̃j(y|x)r̃j(x) be an underlying distribution and an empirical distribution associated

with the dataset Dj , respectively. Here, we assume that each conditional distribution of y given x is

written as:

pk(y|x) = p0(y|x) + δk(x)y (1)

where p0(y|x) is a common conditional distribution for all datasets and δk(x) is a term that is specific

to the dataset Dk. Note that
∑

y∈Y δk(x)y = 0 holds, because pk(y|x) is a probability distribution.

While a discriminant function Fk is usually constructed using only the dataset Dk, the multi-task

learning aims to improve the performance of the discriminant function for each dataset Dk with the

help of datasets Dj (j �= k). For this purpose, we consider a risk minimization problem defined with

a pseudo model and the Itakura–Saito (IS) distance, which is a discrepancy measure frequently used

in a region of signal processing.

Let M =

{
m(y)

∣∣∣∣ 0 ≤ ∑y∈Y m(y) < ∞
}

be a space of all positive finite measures over Y .

The Itakura–Saito distance between p, q ∈M is defined as:

IS(p, q; r) =

∫
r(x)

∑
y∈Y

{
log

q(y|x)
p(y|x) − 1 +

p(y|x)
q(y|x)

}
dx (2)

where r(x) is a marginal distribution of x shared by p, q ∈ M. Note that the IS distance is a kind

of statistical version of the Bregman divergence [12], which makes it possible to directly plug-in

the empirical distribution. We observe that IS(p, q; r) ≥ 0 and IS(p, q; r) = 0 if and only if p =

q. Banerjee et al. [13] showed that there exists a unique Bregman divergence corresponding to

every regular exponential family, and the Itakura–Saito distance is associated with the exponential

distribution.
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3. Itakura–Saito Distance and Pseudo Model

3.1. Parameter Estimation with the Pseudo Model

Let qF (y|x) be an (un-normalized) pseudo model associated with a function F (x),

qF (y|x) = exp(F (x)y). (3)

Note that qF (y|x) is not a probability function, i.e.,
∑

y∈Y qF (y|x) �= 1 in general. If qF (y|x) is

normalized, the model reduces to the classical logistic model as:

q̄F (y|x) = exp(F (x)y)

exp(F (x)) + exp(−F (x))
. (4)

When the function F is parameterized by θ, the maximum likelihood estimation (MLE)

argmaxθ
∑n

i=1 log q̄F (yi|xi) or equivalently minimization of the (extended) Kullback–Leibler (KL)

divergence is a powerful tool for the estimation of θ, and the MLE has properties such as asymptotic

consistency and efficiency under some regularity conditions. Here, we consider parameter estimation

with the pseudo model Equation (3) rather than the normalized model Equation (4).

Proposition 1. Let p(y|x) = q̄F0(y|x) be the underlying distribution. Then, we observe:

argmin
F

IS(p, qF ; r) = F0, (5)

argmin
F

IS(qF , p; r) = F0. (6)

Proof. See Appendix A

On the other hand, when we consider an estimation based on the extended KL divergence, i.e.,
argminF KL(p, qF ; r) where:

KL(p, q; r) =

∫
r(x)

∑
y∈Y
{p(y|x) log p(y|x)

q(y|x) − p(y|x) + q(y|x)}dx, (7)

we observe the following.

Proposition 2. Let F0 be a function F0(�= 0) and p(y|x) = q̄F0(y|x) be the underlying distribution.
Then, we observe:

FKL,1 = argmin
F

KL(p, qF ; r) �=F0, (8)

FKL,2 = argmin
F

KL(qF , p; r) �=F0. (9)

Proof. See Appendix B.

Remark 1. Let p(y|x) = q̄F0(y|x) be the underlying distribution. Then, minimizer Equation (8) or
(9) of the extended KL divergence attains the Bayes rule, i.e.,

sgn(FKL,1(x)) = sgn(FKL,2(x)) = sgn

(
1

2
log

p(+1|x)
p(−1|x)

)
. (10)
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The proposition and the remark show that the extended KL divergence is not completely

appropriate for estimation with the pseudo model.

3.2. Characterization of the Itakura–Saito Distance

In this section, we investigate the characterization of the Itakura–Saito distance for estimation

with the pseudo model, in the framework of the Bregman U -divergence. Firstly, we briefly

introduce the statistical version of Bregman U -divergence [12]. The statistical version of Bregman

U -divergence is a discrepancy measure between positive measures in M defined by a generating

function U and enables us to directly plug-in the empirical distribution for estimation. [12] proposed

a general boosting-type algorithm for classification using the Bregman U -divergence and discussed

properties of the method from the viewpoint of information geometry [14]. By changing the

generating function U , the Bregman U -divergence can have a useful property as robustness against

noise. For example, the β-divergence is a special case of the Bregman U -divergence and is frequently

used for robust estimation in the context of unsupervised learning, such as clustering or component

analysis [15,16]. Another example of the Bregman U -divergence is the η-divergence, which is

employed to robustify the classification algorithm and is closely related to probability models of

mislabeling [17,18].

Let U be a monotonically-increasing convex function and ξ be an inverse function of U ′, the

derivative of U . From the convexity of the function U , the function ξ is a monotonically-increasing

function. The statistical version of Bregman U -divergence between two measures p, q ∈ M is

defined as follows.

DU(p, q; r) =

∫
r(x)

∑
y∈Y
{U(ξ(q(y|x)))− U(ξ(p(y|x)))− p(y|x) (ξ(q(y|x))− ξ(p(y|x)))} dx.

(11)

Note that the function ξ should be defined at least on z > 0.

Remark 2. The KL divergence and the Itakura–Saito distance are special cases of the Bregman
U -divergence Equation (11) with generating functions U(z) = exp(z) and U(z) = − log(c− z)+ c1

(z < c), where c and c1 are constants, respectively.

Here, we introduce the concept of reflection-symmetric for characterization of the IS distance.

Definition 3. A function f(z) is reflection-symmetric if:

f(z) = f
(
z−1
)

(12)

holds for all z �= 0.

If the function f is reflection-symmetric, we observe that:

lim
z→0

f(z) = lim
z→∞

f(z). (13)
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Because of this property, the reflection-symmetric function often has a singular point at z = 0,

and to investigate the behavior of the function, we can employ the Laurent series as:

f(z) = c+
∞∑
k=1

(
akz

k + bkz
−k
)
. (14)

Note that if the function f is holomorphic over R, bk = 0 for all k, and the Laurent series is

equivalent to the Taylor series.

Remark 3. If the function f is reflection-symmetric and holomorphic over R, ak = bk = 0 holds for
all k, and then, f is a constant function.

For the Bregman U -divergence Equation (11), we observe the following Lemma.

Lemma 4. Let F0 be an arbitrary function, p(y|x) = q̄F0(y|x) be the underlying distribution and
qF (x) be the pseudo model Equation (3). If the Bregman U -divergence associated with the function
U attains:

F0 = argmin
F

DU(p, qF ; r), (15)

a function ξ′(z)z2 derived from U is reflection-symmetric. In addition, if the Bregman U -divergence
associated with the function U attains:

F0 = argmin
F

DU(qF , p; r), (16)

a function z
{
ξ(z)− ξ

(
z

z+z−1

)}
derived from U is reflection-symmetric.

Proof. See Appendix C.

Remark 4. Proposition 1 implies that the function ξ associated with the IS distance
satisfies Lemma 4.

Remark 5. Propositions imply that the function U , i.e., Bregman U -divergence, attains Equation
(15) or (16) is not unique and there exists divergences satisfying Equation (15) or (16), other than
the Itakura–Saito distance. For example, a function:

ξ(z) = −2z− 2
3 − z−

4
3 (17)

satisfies ξ′(z)z2 = 4
3
(z1/3 + z−1/3), and then, ξ′(z)z2 is reflection-symmetric. The associated

generating function U is written as:

U(z) =

∫ z

ξ−1(z′)dz′ = −4 −2 +
√
1− z√

−1 +√1− z
+ C1 (18)

where C1 is a constant.
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In the following theorem, we reveal the characterization of the Itakura–Saito distance for

estimation with the pseudo model Equation (3) and the Bregman U -divergence.

Theorem 5. Let p(y|x) = q̄F0(y|x) be the underlying distribution and qF (x) be the pseudo model
Equation (3). If conditions:

F0 = argmin
F

DU(p, qF ; r), (19)

F0 = argmin
F

DU(qF , p; r) (20)

simultaneously hold, then U(z) = − log(−z), i.e., DU(p, q; r) is the Itakura–Saito distance
IS(p, q; r).

Proof. See Appendix D.

Remark 6. If we assume that a function ξ′(z)z2 derived from U is reflection-symmetric and
holomorphic over R, ξ′(z)z2 is a constant function from Remark 3. Then, we obtain ξ(z) = c + b1

z

where c, b1 are constants, implying that the associated divergence is equivalent to the Itakura–Saito
distance.

3.3. Relationship with AdaBoost

The IS distance between the underlying conditional distribution p(y|x) and the pseudo model

qF (y|x) is written as:

IS(p, qF ; r) = C +

∫
r(x)

∑
y∈Y

{
F (x)y +

p(y|x)
qF (y|x)

}
dx

= C +

∫
r(x)

∑
y∈Y

p(y|x)e−F (x)ydx, (21)

where C is a constant, and Equation (21) is equivalent to an expected loss of AdaBoost, except

for the constant term. Then, sequential minimization of an empirical version of Equation (21)

is equivalent to the algorithm of AdaBoost, which is the most popular boosting method for the

binary classification. Furthermore, [12,19] discussed that a gradient-based boosting algorithm can

be derived from the minimization of the KL divergence or the Bregman U -divergence between the

underlying distribution and a pseudo model. An important difference between these frameworks and

our framework Equation (21) is the employed pseudo model. The pseudo model employed by the

previous frameworks assumes a condition called “consistent data assumption” and is defined with the

empirical distribution, implying that the pseudo model varies depending on the dataset. On the other

hand, the pseudo model Equation (3) employed in Equation (21) is fixed against the dataset as usual

statistical models.
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The IS distance between two pseudo models qF (y|x) and qF ′(y|x) is written as,

IS(qF , qF ′ ; r) =

∫
r(x)

∑
y∈Y
{F ′(x)y − F (x)y − 1 + exp(F (x)y − F ′(x)y)} dx

= 2 +

∫
r(x) {exp(F (x)− F ′(x)) + exp(F ′(x)− F (x))} dx. (22)

Note that IS(qF ′ , qF ; r) = IS(qF , qF ′ ; r) holds for arbitrary qF and qF ′ , while the IS distance

itself is not necessarily symmetric. Furthermore, note that the symmetric property does not hold for

normalized models q̄F and q̄F ′ .

4. Application for Multi-Task Learning

There are two main types of frameworks for multi-task learning [20,21].

Case 1 : There is a target datasetDk, and our interest is to construct a discriminant function Fk utilizing

remaining datasets Dj (j �= k) or a priori constructed discriminant functions Fj (j �= k).

Case 2 : Our interest is to simultaneously construct better discriminant functions F1, . . . , FJ using all

J datasets D1, . . . ,DJ by utilizing shared information among datasets.

4.1. Case 1

In this section, we focus on the above first framework. Let us assume that discriminant functions

Fj(x) (j �= k) are given or are constructed by an arbitrary binary classification method. Then, let us

consider a risk function:

Lk(Fk) = IS(pk, qFk
; rk) +

∑
j =k

λk,j IS(qFk
, qFj

; rk)

=

∫
rk(x)

{∑
y∈Y

pk(y|x)e−Fk(x)y +
∑
j =k

λk,j
{
eFk(x)−Fj(x) + eFj(x)−Fk(x)

}}
dx, (23)

where λk,j ≥ 0 (j �= k) are regularization constants. Note that the risk function depends on functions

Fj (j �= k), and the second term becomes small when the target discriminant function Fk is similar to

functions Fj(j �= k) in the sense of the IS distance; and the second term corresponds to a regularizer

incorporating the shared information among datasets into the target function Fk. Furthermore, note

that the marginal distribution rk is shared in the second term for the ease of implementation and the

simplicity of theoretical analysis.

An empirical version of Equation (23) is written as:

L̄k(Fk) =
1

nk

nk∑
i=1

(
e−Fk(x

(k)
i )y

(k)
i +

∑
j =k

λk,j

(
eFk(x

(k)
i )−Fj(x

(k)
i ) + eFj(x

(k)
i )−Fk(x

(k)
i )
))

. (24)

An algorithm is derived by sequential minimization of Equation (24) by updating Fk to Fk +αf ,

i.e., (α, f) = argminα,f L̄k(Fk + αf), where f is a weak classifier and α is a coefficient [22].



511

(1) Initialize the function to F 0
k , and define weights for the i-th example with a function F as:

w1(i;F ) =
e−F (x

(k)
i )y

(k)
i

Z1(F )
,

w2(i;F ) =

∑
j =k λk,je

f(x
(k)
i )(F (x

(k)
i )−Fj(x

(k)
i ))

Z2(F )

where:

Z1(F ) =

nk∑
i=1

e−F (x
(k)
i )y

(k)
i ,

Z2(F ) =

nk∑
i=1

∑
j =k

λk,j

(
eF (x

(k)
i )−Fj(x

(k)
i ) + e−F (x

(k)
i )+Fj(x

(k)
i )
)
.

(2) For t = 1, . . . , T

(a) Select a weak classifier f t
k ∈ {±1}, which minimizes the following quantity:

ε(f) =
Z1(F

t−1
k )

Z1(F
t−1
k ) + Z2(F

t−1
k )

ε1(f) +
Z2(F

t−1
k )

Z1(F
t−1
k ) + Z2(F

t−1
k )

ε2(f). (25)

where ε1(f) =
∑nk

i=1 w1(i;F
t−1
k ) I(f(x

(k)
i ) �= y

(k)
i ) and ε2(f) =

∑n
i=1w2(i;F

t−1
k ).

(b) Calculate a coefficient of f t
k by αt

k =
1
2
log

1−ε(f t
k)

ε(f t
k)

.

(c) Update the discriminant function as F t
k = F t−1

k + αt
kf

t
k.

(3) Output F T
k (x) = F 0

k (x) +
∑T

t=1 α
t
kf

t
k(x).

In Step 1, F 0
k is typically initialized as F 0

k (x) = 0. The quantity Equation (25) is a mixture of two

terms: ε1(f) is a weighted error rate of the classifier f , and ε2(f) is the sum of weights w2(f), which

represents the degree of discrepancy between f and F −Fj . ε2(f) becomes large when F is updated

by f as departed from Fj . Note that if we set λk,j = 0 for all j, the risk function Equation (24)

coincides with that of AdaBoost, and the above derived algorithm reduces to the usual AdaBoost.

Because the empirical risk function Equation (24) is convex with respect to F or F ′, we can

consider another version of the risk function as:

L̄k(Fk) =
1

nk

nk∑
i=1

(
e−Fk(x

(k)
i )y

(k)
i + λk

(
eFk(x

(k)
i )−F̄k(x

(k)
i ) + e−Fk(x

(k)
i )+F̄k(x

(k)
i )
))

(26)

where F̄k(x) =
∑

j =k
λk,j
λk

Fj(x). The risk function is upper bounded by the risk function Equation

(24), implying that the effect of regularization by the shared information is weakened. The derived

algorithm is almost the same as the one derived from Equation (24).
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4.2. Case 2

In this section, we consider simultaneous construction of discriminant functions F1, . . . , FJ by

minimizing the following risk function:

L(F1, . . . , FJ) =
J∑

j=1

πjLj(Fj) (27)

where πj(j = 1, . . . , J) is a positive constant satisfying
∑J

j=1 πj = 1 and Lk is defined in

Equation (23).

Though we can directly minimize the empirical version of Equation (27), a derived algorithm

is complicated and is computationally heavy. Then, we derive a simplified algorithm utilizing the

algorithm shown in Case 1 in which a target dataset is fixed.

(1) Initialize functions F1, . . . , FJ .

(2) For t = 1, . . . , T :

(a) Randomly choose a target index k ∈ {1, . . . , J}.
(b) Update the function Fk using the algorithm in Case 1 by S steps, with fixed functions Fj

(j �= k).

(3) Output learned functions F1, . . . , FJ .

Note that the empirical risk function cannot be monotonically decreased because the

minimization of Lk(Fk) is a trade-off of the first term and the second regularization term, and a

decrease of Lk(Fk) does not necessarily mean a decrease of the regularization term.

4.3. Statistical Properties of the Proposed Methods

In this section, we discuss the statistical properties of the proposed methods. Firstly, we focus on

Case 1, and the minimizer F ∗
k of the risk function Equation (23) satisfies the following:

δLk(Fk)

δFk(x)

∣∣∣∣
Fk=F ∗

k

∝ −pk(+1|x)e−F ∗
k (x) + pk(−1|x)eF ∗

k (x) +
∑
j =k

λk,j

{
eF

∗
k (x)−Fj(x) − eFj(x)−F ∗

k (x)
}
= 0,

(28)

which implies:

F ∗
k (x) =

1

2
log

pk(+1|x) +∑j =k λk,j exp(Fj(x))

pk(−1|x) +
∑

j =k λk,j exp(−Fj(x))
, (29)

or equivalently:

pk(y|x) = p0,k(y|x)
(
1 +
∑
j =k

λk,j exp(−Fj(x)y)

)
− p0,k(−y|x)

∑
j =k

λk,j exp(Fj(x)y), (30)
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where p0,k(y|x) =
exp(F ∗

k (x)y)

exp(F ∗
k (x))+exp(−F ∗

k (x))
. This can be interpreted as a probabilistic model of

asymmetric mislabeling [17,18]. In Equation (29), the confidence of classification is discounted

by the results of remaining discriminant functions when the classifier sgn(F ∗
k (x)) makes a different

decision from these of sgn(Fj(x)) (j �= k).

Remark 7. F ∗
k (x) ≥ 0 does not mean pk(+1|x) ≥ 1

2
unless Fj(x) =

1
2
log pk(+1|x)

pk(−1|x) holds.

Proposition 6. Let us assume that Fj(x) satisfies:

exp(Fj(x)y)

exp(Fj(x)) + exp(−Fj(x))
= p0(y|x) + εj(x)y, ||εj(x)|| � 1. (31)

Then, Equation (29) can be approximated as:

F ∗
k (x) &

1

2
log

p0(+1|x)
p0(−1|x) +

1

2P 2

Pδk(x) +
∑

j =k λk,jεj(x)

P + λk
(32)

where P =
√

p0(+1|x)p0(−1|x) and λk =
∑

j =k λk,j .

Proof. We obtain Equation (32) by considering the Taylor expansion of Equation (29).

We observe that a discrepancy derived by δk is moderated by the mixture of εj when perturbations

εj are independently and identically distributed.

Proposition 7. Let ηj(x) = Fj(x)− Fk(x) be a difference between two functions. Then, F ∗
k can be

approximated as:

F ∗
k (x) &

1

2
log

pk(+1|x)
pk(−1|x) +

1

P

∑
j =k

λk,jηj(x). (33)

Proof. See Appendix E.

Proposition 8. Let F̄ ∗
k be a minimizer of the risk function Equation (23) with λk,j = 0(j �= k).

Then, we observe:(
F̄ ∗
k (x)−

1

2
log

p0(+1|x)
p0(−1|x)

)2

≥
(
F ∗
k (x)−

1

2
log

p0(+1|x)
p0(−1|x)

)2

, (34)

i.e., the proposed method improves the performance in the sense of the squared error, when:

|δk(x)| ≥
|∑j =k λk,jεj(x)|

λk

(35)

holds.

Proof. See Appendix F.

Secondly, we consider a property of the algorithm for Case 2.
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Proposition 9. Let r(x) = rj(x) (j = 1, . . . , J) be a common marginal distribution shared by all
tasks. Then, the minimizer of the risk function is written as:

Fk(x) =
1

2
log

pk(+1|x) +∑j =k λjke
Fj(x)

pk(−1|x) +
∑

j =k λjke
−Fj(x)

, (36)

where λjk = λk,j +
πj

πk
λk,j .

Proof. See Appendix G.

The only difference from Equation (28) is that regularization is strengthened by
πj

πk
λj,k, and then,

the same propositions in Section 4.1 hold for Equation (36).

4.4. Comparison of Regularization Terms

The proposed method incorporates the regularization term defined by the IS distance into

AdaBoost. In this section, we discuss a property of the regularization term.

Proposition 10. Let ε(x) be a perturbation function satisfying |ε(x)| � 1. Then, we observe:

KL(q̄F , q̄F+ε; r) &
∫

2r(x)ε(x)2q̄F (+1|x)q̄F (−1|x)dx, (37)

KL(qF , qF+ε; r) &
∫

r(x)

2
ε(x)2

1√
q̄F (+1|x)q̄F (−1|x)

dx, (38)

IS(q̄F , q̄F+ε; r) &
∫

2r(x)ε(x)2
∑
y∈Y

q̄F (y|x)2dx, (39)

IS(qF , qF+ε; r) &
∫

r(x)ε(x)2dx. (40)

Proof. We obtain these approximations by considering the Taylor expansion up to second order.

Figure 1 shows values of divergences against a value of q̄F (x). Those relations implies that the

KL divergence Equation (37) emphasizes a region of input x whose conditional distribution q̄F (x)

is nearly equal to 1
2
, i.e., the classification boundary, while the IS distance Equation (39) focuses on

a region of x whose conditional distribution is nearly equal to zero or one. The IS distance between

pseudo model Equation (40), i.e., the proposed method, considers the intermediate of Equations (37)

and (39). This implies that the regularization Equation (40) with the IS distance puts more focus on a

region far from the classification boundary compared to Equation (37), while Equation (39) tends to

relatively ignore the region near the classification boundary. Furthermore, note that the employment

of Equation (40) makes it possible to derive the simple algorithm shown in Section 4.1.
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Figure 1. Values of divergences (regularization terms) against q̄F .

5. Experiments

In this section, we investigate the performance of the proposed multi-task algorithm with

synthetic datasets and a real dataset.

5.1. Synthetic Dataset

Firstly, we investigate the performance of the proposed method using two synthetic datasets

within the situation described in Case 2. We compared the proposed method with AdaBoost trained

with an individual dataset and AdaBoost trained with all datasets simultaneously. We employed the

boosting stump (the boosting stump is a decision tree with only one node) as the weak classifier

and fixed as πj = 1/J . A boosting-type method has a hyper-parameter T , the step number of

boosting, and the proposed method additionally has the hyper-parameter λk,j . In the experiment, we

determined these parameters T and λk,j by the validation technique. Especially, we investigated two

kinds of scenarios for the determination of λk,j .

1. We set that λk,j = λ for all j, k and determined λ.

2. We set that λk,j =
λ

IS

(
qF̂k

,qF̂j
;rk

) where F̂j is a discriminant function constructed by AdaBoost

with the dataset Dj and determined λ.

Scenario 2 can incorporate more detailed information about the relationship between tasks, and

the proposed method can ignore the information of tasks having less shared information. In summary,

we compared the following four methods:

A : The proposed method with λk,j determined by Scenario 1.
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B : The proposed method with λk,j determined by Scenario 2.

C : AdaBoost trained with an individual dataset.

D : AdaBoost trained with all datasets simultaneously.

We utilized 80% of the training dataset for training of classifiers and the remaining 20% for the

validation. We repeated the above procedure 20 times and observed the averaged performance of the

methods.

5.1.1. Dataset 1

We set the number J of tasks to three and assume that a marginal distribution of x is a uniform

distribution on [−1, 1]2, and a discriminant function Fj (j = 1, 2, 3) associated with each dataset is

generated by Fj(x) = (1 + cj,2)(x1 − cj,1) − x2, where cj,1 ∼ N (0, 0.22) and cj,2 ∼ N (0, 0.12). In

addition, we randomly added a contamination noise on label y. Under these settings, we generated

a training dataset, including 400 examples, and a test dataset, including 600 examples. Generated

datasets are shown in Figure 2. We observe that each discriminant function and noise structure are

different from the other two.

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x2

Dataset 1

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x2

Dataset 2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x2
Dataset 3

Figure 2. The three generated datasets and decision boundaries.

Figure 3 shows boxplots of the test errors of each method for datasetsDj (j = 1, 2, 3). We observe

that the proposed method consistently outperforms individually trained AdaBoost, and AdaBoost

trained with all datasets simultaneously. The figure shows that the proposed method can incorporate

shared information among datasets into classifiers.
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Figure 3. Boxplots of the test error of each method: A—proposed method with λ

in Scenario 1; B—proposed method with λ in Scenario 2; C—AdaBoost trained with

the individual dataset; D—AdaBoost trained with all datasets simultaneously; for three

datasets, over the 20 simulation trials.

5.1.2. Dataset 2

We set the number J of tasks to 6 and assume that a marginal distribution of x is a uniform

distribution on [−1, 1]2. Discriminant functions associated with each dataset are generated by:

Fj(x) =

⎧⎨⎩(1 + cj,2)(x1 − cj,1)− x2, j = 1, 2, 3,

−(1 + cj,2)(x1 − cj,1) + x2, j = 4, 5, 6,

where cj,1 ∼ N (0, 0.12) and cj,2 ∼ N (0, 0.12). In addition, we randomly added a contamination

noise on label y. Under these settings, we generated training dataset, including 400 examples, and

the test dataset, including 600 examples. Generated datasets are shown in Figure 4. We observe that

Datasets 1, 2 and 3 share a structure, and Datasets 4, 5 and 6 share another structure.

Figure 5 shows boxplots of the test errors of each method for datasets Dj (j = 1, . . . , 6). We

omitted the result of AdaBoost trained with all datasets simultaneously (D) from the figure, because

its performance is significantly worse than those of the other methods: the median of classification

errors is around 0.5. This is because the structures of Datasets 1, 2, 3 and Datasets 4, 5, 6 are

opposite, and the labeling of concatenated dataset seems to be random. We observe that the proposed

method with Scenario 2 (B) improves performance against individually-trained AdaBoost (C) and

the proposed method in Scenario 1 (A). This is because the structure shared among Datasets 1, 2 and

3 does not have information about Datasets 4, 5 and 6 (and vice versa), and Method (B) can ignore

the influence of the irrelevant information by adjusting λk,j responding to IS(qF̂j
, qF̂k

; rk). Note that

the performance of Method (A) is not so degraded, because the regularization parameter λk,j was

determined, so as to be zero, implying AdaBoost trained with the individual dataset.

Figure 6 shows examples of classification boundaries estimated by Methods A, B, C and D, for

Dataset 6.
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Figure 4. The six generated datasets and decision boundaries.
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Figure 5. Boxplots of the test error of each method: A, Proposed method with λ in

Scenario 1; B, proposed method with λ in Scenario 2; C, AdaBoost trained with the

individual dataset ; for 6 datasets, over the 20 simulation trials.
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Figure 6. Classification boundaries by Methods A, B, C and D for Dataset 6. The

blue line is the true classification boundary, and the red line represents the estimated

classification boundary.

5.2. Real Dataset: School Dataset

In this section, we compared the proposed method (Scenario 2) to the a binary decision tree-based

ensemble method, called extremely randomized trees (ExtraTrees) [23], applying to a real dataset,

“school data”, reported from the Inner London Education Authority [24]. The dataset consists

of examination records of 15,362 students from 139 secondary schools, i.e., we had 139 tasks.

The dimension of input x is 27, in which original variables that are categorical were transformed

into dummy variables. The original target variable y0 represents score values in the range [1, 70], and

we transformed the target variable y0 to a binary variable as:

y = sgn(y0 − 20).

We set the threshold to 20 to balance the ratio of classes (−1 : +1 = 7930 : 7432). We randomly

divided the dataset of each tasks into 80% of the training dataset and remaining 20% test dataset.

In addition, we used 20% of the divided training dataset as a validation dataset to determine the

hyper-parameter λ and step number T . We repeated the above procedure 20 times and observed the

average performance of the methods. Figure 7 shows the medians of error rates over 20 trials, by the

proposed method and the ExtraTrees for 139 tasks. The horizontal axis indicates an index of a task,

which is ranked in increasing order of the median error rate of the ExtraTrees. We observe that the

proposed method is comparable to the ExtraTrees and especially has an advantage for tasks, in which

the error rates of the ExtraTrees are large.
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Figure 7. Medians of error rates by the proposed method and extremely randomized

trees (ExtraTrees) for 139 tasks. The horizontal axis represents an index of a task, and

the vertical axis indicates the median of error rates over 20 trials. Tasks are ranked in

increasing order of the median error rate of the ExtraTrees.

6. Conclusions

In this paper, we investigate the properties of binary classification with the pseudo model and

reveal that minimization of the Itakura–Saito distance between the empirical distribution and the

pseudo model is equivalent to AdaBoost and provides suitable properties for the binary classification.

In addition, we pointed out that the Itakura–Saito distance is a unique divergence, having a suitable

property for estimation with the pseudo model in the framework of the Bregman divergence. Based

on the framework, we proposed a novel binary classification method for the multi-task learning,

which incorporates shared information among tasks into the targeted task. The risk function of the

proposed method is defined by the mixture of IS distance. The IS distance between pseudo models

can be interpreted as the regularization term, incorporating shared information among tasks into

the binary classifier for the target task. We investigated statistical properties of the risk function

and derived computationally-feasible boosting-based algorithms. Furthermore, we considered a

mechanism for the adjustment of the degree of information sharing and numerically investigated

the validity of the proposed methods.
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Appendix

A. Proof of Proposition 1

By a variational calculation, a minimizer of Equation (5) satisfies:

δ IS(p, qF ; r)

δF (x)
∝ eF0(x)−F (x) − e−F0(x)+F (x)

eF0(x) + e−F0(x)
= 0, (41)

and F = F0 satisfies the above equation for an arbitrary F0, which concludes Equation (5).

Furthermore,

δ IS(qF , p; r)

δF (x)
∝ (eF0(x) + e−F0(x)

) (
eF (x)−F0(x) − e−F (x)+F0(x)

)
= 0, (42)

and F = F0 satisfies the above equation for an arbitrary F0, concluding Equation (6).

B. Proof of Proposition 2

By a straightforward variational calculation, we observe that a minimizer FKL,1 of

Equation (8) satisfies:

δKL(p, qF ; r)

δF (x)
∝ −p(+1|x) + p(−1|x) + exp(FKL,1(x))− exp(−FKL,1(x))

=
−eF0(x) + e−F0(x)

eF0(x) + e−F0(x)
+ eFKL,1(x) − e−FKL,1(x) = 0, (43)

and FKL,1 = F0 means F0(x) = 0 (∀x), which concludes Equation (8). Furthermore, for Equation

(9), FKL,2 satisfies:

δKL(qF , p; r)

δF (x)

∝(FKL,2(x)− F0(x))(e
FKL,2(x) + e−FKL,2(x)) + (eFKL,2(x) − e−FKL,2(x)) log(eF0(x) + e−F0(x))

=0,

and FKL,2 = F0 means F0(x) = 0 (∀x), concluding Equation (9).

C. Proof of Lemma 4

If Equation (15) holds, F0 satisfies:

δDU(p, qF ; r)

δF (x)

∣∣∣∣
F=F0

=

(
1− 1∑

y∈Y qF0(y|x)

)∑
y∈Y

yξ′(qF0(y|x))qF0(y|x)2

∝ ξ′(eF0(x))e2F0(x) − ξ′(e−2F0(x))e−2F0(x)

= 0.
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By setting z = eF0(x), we have z2ξ′(z) = z−2ξ′(z−1), and the function ξ′(z)z2 is

reflection-symmetric.

If Equation (16) holds, F0 satisfies:

δDU(qF , p; r)

δF (x)

∣∣∣∣
F=F0

=
∑
y∈Y

yqF0(y|x) {ξ(qF0(y|x))− ξ(q̄F0(y|x))}

=eF0(x)

{
ξ(eF0(x))− ξ

(
eF0(x)

eF0(x) + e−F0(x)

)}
− e−F0(x)

{
ξ(e−F0(x))− ξ

(
e−F0(x)

eF0(x) + e−F0(x)

)}
=0,

implying that the function z
{
ξ(z)− ξ

(
z

z+z−1

)}
is reflection-symmetric.

D. Proof of Theorem 5

For the proof of the theorem, we firstly prepare the following lemmas.

Lemma 11. Let f(z) be a reflection-symmetric and holomorphic function on z �= 0. Then, ak = bk

holds for all k ≥ 1.

Proof. The function f can be expressed as Equation (14), and let us assume that there exists an

integer k0, such that ak0 �= bk0 . From the reflection-symmetric property, we have:

(ak0 − bk0)(z
k0 − z−k0) = 0 (44)

for all z > 0, which contradicts ak0 �= bk0 .

Lemma 12. Let ξ(z) be a holomorphic function on z �= 0. If two functions:

ξ′(z)z2, and z

{
ξ(z)− ξ

(
z

z + z−1

)}
(45)

are both reflection-symmetric, then ξ(z) = c1
z
+ c0.

Proof. We can express the function ξ(z) by a Laurent series as:

ξ(z) = c+
∞∑
k=1

(
akz

k + bkz
−k
)
. (46)

Then, we have:

ξ′(z)z2 =
∞∑
k=1

k
(
akz

k+1 − bkz
−k+1

)
= −b1 − 2b2z

−1 +
∞∑
k=1

(
kakz

k+1 − (k + 2)bk+2z
−k−1

)
. (47)
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Because of the assumption of reflection-symmetry for z2ξ′(z) and Lemma 11, we have b2 = 0

and kak = −(k + 2)bk+2 for all k ≥ 1. Thus, we obtain:

ξ(z) =

∫
− b1
z2

+
∞∑
k=1

ak
(
kzk−1 + kz−k−3

)
dz

= c+ b1z
−1 +

∞∑
k=1

ak

(
zk − k

k + 2
z−k−2

)
. (48)

Then, we have:

z

{
ξ(z)− ξ

(
z

z + z−1

)}
=b1(1− (z + z−1)) +

∞∑
k=1

ak

{
zk+1(1− (z + z−1)−k)− k

k + 2
z−k−1(1− (z + z−1)k+2)

}
. (49)

From Equation (48) and the assumption of the reflection-symmetry of the function

z
{
ξ(z)− ξ

(
z

z+z−1

)}
, we observe that for all z,

z

{
ξ(z)− ξ

(
z

z + z−1

)}
− z−1

{
ξ(z−1)− ξ

(
z−1

z + z−1

)}
=

∞∑
k=1

akhk(z)

=0 (50)

where:

hk(z) =
(
zk+1 − z−k−1

){
1− (z + z−1)−k +

k

k + 2

{
1− (z + z−1)k+2

}}
. (51)

Since {hk(z)}∞k=1 is functionally independent, we conclude that ak = 0 for all k ≥ 1 or,

equivalently, ξ(z) = c+ b1
z

.

We now give a proof for Theorem 5 using Lemma 12.

Proof. If condition Equations (19) and (20) hold, functions ξ′(z)z2 and z
{
ξ(z)− ξ

(
z

z+z−1

)}
are

both reflection-symmetric from Lemma 4. From Lemma 12, the reflection-symmetric property of

these two functions implies ξ(z) = b1
z
+ c. Since the function ξ should be defined on z > 0, the

generating function U derived from ξ is written as:

U(z) =

∫
ξ−1(z)dz = b1 log(c− z) + c1 (z < c) (52)

where c1 is a constant and b1 < 0 holds because of the convexity of function U . Then, we have

U(ξ(z))) = b1 log(−b1)− b1 log z + c1(z > 0), and the associated divergence is equivalent to the IS

distance, i.e.,

DU(p, q; r) =

∫
r(x)

∑
y∈Y

{
−b1 log q(y|x)

p(y|x) − p(y|x)
{

b1
q(y|x) −

b1
p(y|x)

}}
dx

= −b1
∫

r(x)
∑
y∈Y

{
log

q(y|x)
p(y|x) +

p(y|x)
q(y|x) − 1

}
dx (53)

= −b1 IS(p, q; r),
up to the constant −b1.
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E. Proof of Proposition 7

From Equation (28), we observe:

F ∗
k (x)

= log

√
pk(+1|x) + 1

4pk(−1|x)(
∑

j =k λk,j

{
e−ηj(x) − eηj(x)

}
)2 − 1

2
√

pk(−1|x)
∑

j =k λk,j

{
e−ηj(x) − eηj(x)

}
√
pk(−1|x)

&1

2
log

pk(+1|x)
pk(−1|x) +

1

P

∑
j =k

λk,jηj(x).

F. Proof of Proposition 8

We observe that:(
F̄ ∗
k (x)−

1

2
log

p0(+1|x)
p0(−1|x)

)2

−
(
F ∗
k (x)−

1

2
log

p0(+1|x)
p0(−1|x)

)2

=
1

4P 4(P + λk)2

(
λkδk(x)−

∑
j =k

λk,jεj(x)

)(
(λk + 2P )δk(x) +

∑
j =k

λk,jεj(x)

)
,

which implies the proposition.

G. Proof of Proposition 9

The minimizer of the risk function Equation (27) satisfies:

δL(F1, . . . , FJ)

δFk

∝eFk(x)

{
πkpk(−1|x) +

∑
j =k

(πkλk,j + πjλj,k)e
−Fj(x)

}

− e−Fk(x)

{
πkpk(+1|x) +

∑
j =k

(πkλk,j + πjλj,k)e
Fj(x)

}
=0,

implying Equation (36).
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