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In the last few years, entropy has been a fundamental and essential concept in information theory.
It is also often used as a measure of the degree of chaos in systems; e.g., Lyapunov exponents, fractal
dimension, and entropy are usually used to describe the complexity of chaotic systems. Thus, it will
be important to study entropy in nonlinear systems. Additionally, there has been an increasing interest
in a new classification of nonlinear dynamical systems including two kinds of attractors: self-excited
attractors and hidden attractors. Self-excited attractors can be localized straightforwardly by applying
a standard computational procedure. Some interesting examples of systems with self-excited attractors
are chaotic systems with different kinds of symmetry, with multi-scroll attractors, with multiple
attractors, and with extreme multistability.

In systems with hidden attractors, we have to develop a specific computational procedure to
identify the hidden attractors because the equilibrium points do not help in their localization. Some
examples of this kind of system are chaotic dynamical systems with no equilibrium points, with
only stable equilibria, with curves of equilibria, with surfaces of equilibria, and with non-hyperbolic
equilibria. There is evidence that hidden attractors play a vital role in various fields ranging from
phase-locked loops, oscillators, describing convective fluid motion, a model of the drilling system,
information theory and cryptography to multilevel DC/DC converters. Furthermore, hidden attractors
may lead to unexpected and disastrous responses.

The overall purpose of this Special Issue lies in gathering the latest scientific trends on the
advanced topics of dynamics, entropy, fractional-order calculus, and applications in complex systems
with hidden attractors and self-excited attractors.

In the paper “A New Chaotic System with Multiple Attractors: Dynamic Analysis, Circuit
Realization and S-Box Design”, Qiang Lai, Akif Akgul, Chunbiao Li, Guanghui Xu, and Ünal
Çavuşoğlu report a novel three-dimensional chaotic system with three nonlinearities. The system
has one stable equilibrium, two stable equilibria, and one saddle-node, two saddle foci and one
saddle-node for different parameters. Also, an electronic circuit is given for implementing the chaotic
attractors of the system, and an S-Box is developed for cryptographic operations [1].

Entropy 2019, 21, 370; doi:10.3390/e21040370 www.mdpi.com/journal/entropy1
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In the paper “A New Chaotic System with a Self-Excited Attractor: Entropy Measurement, Signal
Encryption, and Parameter Estimation”, Guanghui Xu, Yasser Shekofteh, Akif Akgül, Chunbiao Li and
Shirin Panahi introduce a new chaotic system with an engineering application for signal encryption.
The implementation and manufacturing are performed via a real circuit as a random number generator.
Also, the authors provide a parameter estimation method to extract chaotic model parameters from
the real data of the chaotic circuit using a Gaussian mixture model (GMM) and two optimization
algorithms: WOA (Whale Optimization Algorithm), and MVO (Multi-Verse Optimizer) [2].

In the paper “A Novel Algorithm to Improve Digital Chaotic Sequence Complexity through
CCEMD and PE”, Chunlei Fan, Zhigang Xie, and Qun Ding introduce a three-dimensional chaotic
system with a hidden attractor. The complex dynamic behaviors of the system are analyzed by Poincaré
cross-sections, equilibria, and initial values. Further, they have designed a new algorithm based on
complementary ensemble empirical mode decomposition (CEEMD) and permutation entropy (PE)
that can effectively enhance digital chaotic sequence complexity [3].

In the paper “A New Two-Dimensional Map with Hidden Attractors”, Chuanfu Wang and Qun
Ding investigate the hidden dynamics of a new two-dimensional map inspired by Arnold’s cat map
and study the existence of fixed points and their stabilities in detail [4].

In the paper “Stochastic Entropy Solutions for Stochastic Nonlinear Transport Equations”,
Rongrong Tian and Yanbin Tang analyze the existence and uniqueness of the stochastic entropy
solution for a nonlinear transport equation with a stochastic perturbation. They prove the continuous
dependence of stochastic robust entropy solutions on the coefficients and the nonlinear functions [5].

In the paper “Multivariate Multiscale Complexity Analysis of Self-Reproducing Chaotic Systems”,
Shaobo He, Chunbiao Li, Kehui Sun and Sajad Jafari propose a chaotic system with infinitely
many attractors. Multiscale multivariate permutation entropy (MMPE) and multiscale multivariate
Lempel–Ziv complexity (MMLZC) are employed to analyze the complexity of these self-reproducing
chaotic systems with infinitely many chaotic attractors [6].

In the paper “A New Fractional-Order Chaotic System with Different Families of Hidden
and Self-Excited Attractors”, Jesus M. Munoz-Pacheco, Ernesto Zambrano-Serrano, Christos Volos,
Sajad Jafari, Jacques Kengne and Karthikeyan Rajagopal introduce a new fractional-order chaotic
system with a single parameter and four nonlinearities. One striking feature is that by varying
the system parameter, the fractional-order system generates several complex dynamics: self-excited
attractors, hidden attractors, the coexistence of hidden attractors, and multistability. Moreover, the
complexity of the system is analyzed by computing its spectral entropy and Brownian-like motions [7].

In the paper “A New Chaotic System with Stable Equilibrium: Entropy Analysis, Parameter
Estimation, and Circuit Design”, Tomasz Kapitaniak, S. Alireza Mohammadi, Saad Mekhilef,
Fawaz E. Alsaadi, Tasawar Hayat and Viet-Thanh Pham present a new three-dimensional chaotic
system with one stable equilibrium. This system is a multistable dynamic system in which the strange
attractor is hidden. To show the feasibility and ability in engineering applications of the proposed
system, an entropy analysis, parameter estimation, and circuit design are performed [8].

In the paper “Optimization of Thurston’s Core Entropy Algorithm for Polynomials with a
Critical Point of Maximal Order”, Gamaliel Blé and Domingo González discuss some properties
of the topological entropy systems generated by polynomials of degree d in their Hubbard tree.
An optimization of Thurston’s core entropy algorithm is developed for a family of polynomials of
degree d [9].

In the paper “Strange Attractors Generated by Multiple-Valued Static Memory Cell with
Polynomial Approximation of Resonant Tunneling Diodes”, Jiri Petrzela studies the multiple-valued
memory system (MVMS) composed by a pair of resonant tunneling diodes (RTD). For specific values
of system parameters, such a tunnel shows a double-spiral chaotic attractor. The existence of these
types of strange attractors is proved using the largest Lyapunov exponents (LLE) and computer-aided
simulation of the designed lumped circuit using only commercially available active elements [10].
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In the paper “The Co-existence of Different Synchronization Types in Fractional-order
Discrete-time Chaotic Systems with Non–identical Dimensions and Orders”, Samir Bendoukha,
Adel Ouannas, Xiong Wang, Amina-Aicha Khennaoui, Viet-Thanh Pham, Giuseppe Grassi, and
Van Van Huynh analyze the co-existence of different synchronization types for fractional-order
discrete-time chaotic systems with different dimensions. They show that through appropriate nonlinear
control, projective synchronization (PS), full state hybrid projective synchronization and inverse full
state hybrid projective synchronization (IFSHPS), generalized synchronization is achieved [11].

In the paper “The Complexity and Entropy Analysis for Service Game Model Based on Different
Expectations and Optimal Pricing”, Yimin Huang, Xingli Chen, Qiuxiang Li and Xiaogang Ma propose
a multichannel dynamic service game model to analyze the relations between the manufacturer and
the retailer under optimal pricing. Theoretical analysis of the model and numerical simulations from
the perspective of entropy theory, game theory, and chaotic dynamics are conducted. Chaotic and
complex behaviors are observed causing the system’s entropy to increase when the manufacturer
adjusts the service decision quickly [12].

In the paper “Dynamics and Complexity of a New 4D Chaotic Laser System”, Hayder Natiq,
Mohamad Rushdan Md Said, Nadia M. G. Al-Saidi and Adem Kilicman introduce a new 4D chaotic
laser system with three equilibria and only two quadratic nonlinearities. Dynamics analysis, including
stability of symmetric equilibria and the existence of coexisting multiple Hopf bifurcations on these
equilibria, are investigated. Moreover, the complexity of the laser system reveals that system time
series can locate and determine the parameters and initial values that show coexisting attractors [13].

In the paper “Entropy Analysis and Neural Network-Based Adaptive Control of a
Non-Equilibrium Four-Dimensional Chaotic System with Hidden Attractors”, Hadi Jahanshahi,
Maryam Shahriari-Kahkeshi, Raúl Alcaraz, Xiong Wang, Vijay P. Singh, and Viet-Thanh Pham present
a non-equilibrium four-dimensional chaotic system with hidden attractors. Its dynamical behavior is
investigated using a bifurcation diagram, as well as three well-known entropy measures: approximate
entropy, sample entropy, and Fuzzy entropy. Additionally, an adaptive radial-basis-function neural
network (RBF-NN)-based control method is proposed [14].

In the paper “Adaptive Synchronization of Fractional-Order Complex Chaotic system with
Unknown Complex Parameters”, Ruoxun Zhang, Yongli Liu and Shiping Yang investigate the problem
of synchronization of fractional-order complex-variable chaotic systems (FOCCS) with unknown
complex parameters. Based on the complex-variable inequality and stability theory for fractional-order
complex-valued systems, a new scheme is presented for adaptive synchronization of FOCCS with
unknown complex parameters [15].

In the paper “Chaotic Map with No Fixed Points: Entropy, Implementation and Control”,
Van Van Huynh, Adel Ouannas, Xiong Wang, Viet-Thanh Pham, Xuan Quynh Nguyen, and Fawaz
E. Alsaadi propose a map without equilibrium. The map has no fixed point but exhibits chaos.
The entropy of this new map has been calculated. Also, experimental observations of the map using
an open micro-controller platform are given [16].

In the paper “Dynamics and Entropy Analysis for a New 4-D Hyperchaotic System with
Coexisting Hidden Attractors”, Licai Liu, Chuanhong Du, Xiefu Zhang, Jian Li, and Shuaishuai
Shi report a new no-equilibrium 4-D hyperchaotic multistable system with coexisting hidden attractors.
One prominent feature is that by varying a system parameter or initial value, the system can
generate several nonlinear complex attractors: periodic, quasiperiodic, multiple topologies chaotic,
and hyperchaotic [17].

The Guest Editors hope that you will enjoy reading this Special Issue devoted to this exciting and
fast-evolving field, and that it will motivate researchers to pursue further advances in the emerging
areas of complex systems with hidden and self-excited attractors.

Acknowledgments: We express our thanks to the authors of the above contributions, and to the journal Entropy
and MDPI for their support during this work.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This paper reports about a novel three-dimensional chaotic system with three nonlinearities.
The system has one stable equilibrium, two stable equilibria and one saddle node, two saddle foci
and one saddle node for different parameters. One salient feature of this novel system is its multiple
attractors caused by different initial values. With the change of parameters, the system experiences
mono-stability, bi-stability, mono-periodicity, bi-periodicity, one strange attractor, and two coexisting
strange attractors. The complex dynamic behaviors of the system are revealed by analyzing the
corresponding equilibria and using the numerical simulation method. In addition, an electronic
circuit is given for implementing the chaotic attractors of the system. Using the new chaotic system,
an S-Box is developed for cryptographic operations. Moreover, we test the performance of this
produced S-Box and compare it to the existing S-Box studies.

Keywords: new chaotic system; multiple attractors; electronic circuit realization; S-Box algorithm

1. Introduction

The discovery of the well-known Lorenz attractor [1] in 1963 opened the upsurge of chaos research.
In the decades thereafter, a large number of meaningful achievements on chaos control, chaotification,
synchronization and chaos application have emerged continuously. Great changes have also been
made to the understanding of chaos. Scholars began to think more about a way to produce chaos rather
than blindly suppress chaos. The generation of chaotic attractors in three-dimensional autonomous
ordinary differential systems has been of particular interest. As we all know, a multitude of typical
systems with chaotic attractors were found, including Rössler system, Chen system, Sprott system,
Lü system, etc. [2–8].

With the further research of chaos, scientists found that some nonlinear dynamic systems not
only have a chaotic attractor but also coexist with multiple attractors for a set of fixed parameter
values. The coexisting attractors may be fixed points, limit cycles, strange attractors, etc. The number
and type of attractors are usually associated with parameters and initial conditions of the system.
Each attractor has its own basin of attraction which is composed of the initial conditions leading
to long-term behavior that settles onto the attractor. The phenomenon of multiple attractors can be
seen in many biological systems and physical systems [9–11]. In recent years, the low-dimensional
autonomous chaotic systems with multiple attractors have aroused scholars’ research enthusiasm.

Entropy 2018, 20, 12; doi:10.3390/e20010012 www.mdpi.com/journal/entropy5
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Li and Sprott found multiple attractors in chaotic systems by numerical analysis and introduced
the offset boosting method and conditional symmetry method for producing multiple attractors
in differential systems [12–16]. Kengne et al. analyzed the multiple attractors of simple chaotic
circuits, which can be described by differential equations [17,18]. Bao and Xu put forward some
memristor-based circuit systems with multiple chaotic attractors [19,20]. Lai et al. proposed some
three-dimensional and four-dimensional continuous chaotic systems with multiple attractors [21–23].
Wei et al. attempted to reveal the intrinsic mechanism of the multiple attractors by analyzing the
bifurcation of the system [24]. The investigation of chaos and multiple coexisting attractors is indeed a
very interesting research issue in academia. It helps to recognize the dynamic evolution of the actual
system and promote the study of complexity science.

Chaotic systems have been found to be used in many areas. The most valuable application is
cryptology. Chaotic system, in view of its rich dynamic behaviors and initial sensitivity, provides the
mixing and spreading properties, which are the general requirements of encryption [25,26]. The S-Box
is known as the most basic unit with scrambling function in block encryption algorithms. A good
S-Box can make the encryption algorithm have higher security and better ability to withstand attacks.
Although there have been many works on chaotic S-Box design, it is still important to generate S-Box
according to some unique chaotic systems. Before applying the chaotic system to engineering fields,
it is necessary to realize it through electronic circuits in order to prove its real existence. Based on
circuit theory and simple circuit elements, chaotic signals can be generated in oscilloscopes. So far, the
electronic circuit has become an important tool for the analysis of chaotic systems [27–30].

This present paper considers a special polynomial chaotic system with the following features:
(i) it has three nonlinearities xz, yz, xyz and the invariance of transformation (x, y, z) �→ (−x, −y, z);
(ii) it performs a butterfly attractor; and (iii) it has a stable equilibrium, an unstable equilibrium and
two stable equilibria, three unstable equilibria for different parameter conditions, and experiences
mono-stability, bi-stability, mono-periodicity, bi-periodicity, one strange attractor and two coexisting
strange attractors. After investigating the dynamic behavior of the system, an electronic circuit and an
S-Box are designed according to the system.

The paper is arranged as follows: Section 2 describes the chaotic system and shows its butterfly
attractor. Section 3 analyzes the stability of the equilibria. Section 4 studies the dynamic behavior of
the system. Section 5 considers the electronic circuit realization of the system. Section 6 establishes the
S-Box according to the system, and Section 7 summarizes the conclusions of this paper.

2. The Description of a Chaotic System

The chaotic system proposed in this paper can be expressed as the following set of differential equations:⎧⎪⎨⎪⎩
ẋ = ax − yz,
ẏ = −by + xz,
ż = −cz + xyz + k,

(1)

with state vector (x, y, z) ∈ R3 and parameter vector (a, b, c, k) ∈ R4. A butterfly attractor can be
observed by numerical simulation on Matlab software (Matlab 8.0, MathWorks, Natick, MA, USA).
The phase portraits of system (1) under parameters (a, b, c, k) = (4, 9, 4, 4) and initial condition
(1, 1, 1) are shown in Figure 1. It visually demonstrates that system (1) displays an attractor as
the system trajectories will eventually move to a bounded region. The Lyapunov exponents of the
system are calculated as l1 = 1.7729, l2 = 0.0000, l3 = −7.5949. The Lyapunov dimension is
Dl = 2 − l1/l3 = 2.2334, so it can be determined that the attractor is a chaotic attractor. The time series
of z generated from two very close initial conditions (1, 1, 1) and (1, 1, 1.001) are plotted in Figure 2.
At the beginning, they are almost the same, but their differences are increasing after a number of
iterations. That is to say, system (1) is sensitive dependence on initial conditions and its future behavior
is unpredictable in the long term. The Poincaré map of system (1) is obtained via selecting the sections
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Δ1 = {(x, y) ∈ R2 |z = 10} and Δ2 = {(y, z) ∈ R2 |x = 0} . As shown in Figure 3, the Poincaré map is
a sheet of point set. It is consistent with the nature of chaos.
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Figure 1. The butterfly attractor of system (1): (a) x − y − z; (b) x − y; (c) x − z; (d) y − z.
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Figure 2. The time series of variable z generated from initial conditions (1, 1, 1) (red color) and
(1, 1, 1.001) (blue color).
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Figure 3. The Poincaré maps of system (1) with crossing sections: (a) Δ1; (b) Δ2.

3. The Stability of Equilibria

Suppose that parameters a, b, c, k are all positive real numbers. The equilibria of system (1) can
be obtained by solving ẋ = ẏ = ż = 0. If k ≥ c

√
ab, system (1) has only one equilibrium O(0, 0, k/c).

If k < c
√

ab, system (1) has three equilibria as follows:

O(0, 0, k/c),

O1(
√
(c

√
ab − k)/a,

√
(c

√
ab − k)/b,

√
ab),

O2(−
√
(c

√
ab − k)/a, −

√
(c

√
ab − k)/b,

√
ab).

Proposition 1. Suppose that b > a > 0, k > 0, and the parameter c satisfies the following condition:

k√
ab

< c <
2k[(a2 + b2)

√
ab + k(b − a)]√

ab[(a + b)2
√

ab + k(b − a)]
, (2)

then the equilibria O1 and O2 of system (1) are asymptotically stable.

Proof. By linearizing the system (1) at the equilibrium, the Jacobian matrix is given by

H =

⎛⎜⎝ a −z −y
z −b x

yz xz xy − c

⎞⎟⎠ . (3)

By using |λI − H| = 0, the corresponding characteristic equation evaluated at O1, O2 is obtained as

λ3 + w1λ2 + w2λ + w3 = 0, (4)

where

w1 = (b − a +
k√
ab

),

w2 = (a − b)(c − 2k√
ab

),

w3 = 4ab(c − k√
ab

).
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According to the Routh–Hurwitz criterion, the equilibria O1, O2 are stable if all the roots of
Equation (4) have negative real parts. This requires that w1 > 0, w2 > 0, w3 > 0 and w1w2 > w3. It is
easy to verify that w1 > 0, w2 > 0, w3 > 0 if b > a > 0, k > 0 and

k√
ab

< c <
2k√
ab

. (5)

To make w1w2 > w3, the parameter c should meet

c < c0 =
2k[(a2 + b2)

√
ab + k(b − a)]√

ab[(a + b)2
√

ab + k(b − a)]
. (6)

Since c0 < 2k√
ab

, then O1, O2 are asymptotically stable if b > a > 0, k > 0, k√
ab

< c < c0. When the
parameter c passes through the critical value c0, then double Hopf bifurcation occur with two limit
cycles branched from O1, O2 and system (1) loses its stability.

Proposition 2. Suppose that b > a > 0, c > 0, k > 0, then: (i) the equilibrium O is unstable for c > k√
ab

;

and (ii) the equilibrium O is asymptotically stable for c ≤ k√
ab

.

Proof. The characteristic equation evaluated at O is given by

(λ + c)[c2λ2 + (b − a)c2λ + k2 − abc2] = 0. (7)

If c > k√
ab

, then Equation (7) has a root with a positive real part. Thus, O is unstable. If c < k√
ab

,

all the roots of Equation (7) have negative real parts, which implies that O is stable. When c = k√
ab

,
Equation (7) has three roots λ1 = 0, λ2 = a − b, λ3 = −c. Therefore, O is non-hyperbolic equilibrium.
It can be verified that O is asymptotically stable by applying the center manifold theorem.

4. The Evolution of Multiple Attractors

Detailed investigation of the complex dynamic behaviors of system (1) is presented in this section.
Simulation experiments including bifurcation diagrams, phase portraits, Lyapunov exponents, and
Poincaré maps give a close and intuitive look at system (1). There is a wealth of chaotic dynamics
associated with the fractal properties of the attractor in system (1). With the change of parameters,
system (1) experiences stable state, periodic state and chaotic state. For different initial values,
system (1) performs different types of attractors with independent domains of attraction.

4.1. Dynamic Evolution with Parameter c

Consider the dynamic evolution of system (1) with respect to parameter c under the given
parameter conditions a = 2, b = 8, k = 4. The bifurcation diagrams of system (1) versus c ∈ (0, 6)
are shown in Figure 4a, where the red color branch and blue color branch are yielded from initial
values x01 = (1, 1, 1), x02 = (−1, −1, 1), respectively. The overlapped regions of the red color and blue
color branches indicate that the trajectories of x01, x02 eventually tend to the same attractor, while the
separated regions indicate that the trajectories of x01, x02 tend to different attractors. Figure 4b is the
Lyapunov exponents of system (1) with initial value x01. It shows that the system (1) experiences stable
state, periodic state, chaotic state with the variation of c. When c ∈ (0, 1), system (1) is mono-stable
as it has only one stable equilibrium. When c ∈ (1, 1.396), system (1) performs bi-stability with
respect to the existence of two stable equilibria. As c increases across the critical value c0 = 1.396,
system (1) occurs double Hopf bifurcation at the equilibria. When c ∈ (1.396, 1.516), system (1)
performs bi-periodicity. When c ∈ (1.516, 2.257), system (1) changes into mono-periodic state.
When c ∈ (2.821, 3.096), system (1) yields two strange attractors from initial values x01, x02. When
c ∈ (3.310, 4.167)∪ (4.370, 5.324)∪ (5.480, 6), system (1) has only one chaotic attractor. Table 1 describes
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the attractors of system (1) with different values of c. The phase portraits in Figure 5 illustrate the
existence of different types of attractors in system (1).

Table 1. Attractors of system (1) with different values of c.

Value of c Equilibrium Point Type of Attractor Figure

c = 0.8 Stable point: (0, 0, 5) A point attractor Figure 5a

c = 1.2
Saddle node: (0, 0, 3.3333)
Stable point: (±0.6325, ±0.3162, 4) A pair of point attractors Figure 5b

c = 1.4
Saddle node: (0, 0, 2.8571)
Saddle focus: (±0.8944, ±0.4472, 4) A pair of limit cycles Figure 5c

c = 1.6
Saddle node: (0, 0, 2.5)
Saddle focus: (±1.0954, ±0.5477, 4) A symmetric limit cycle Figure 5d

c = 2.9
Saddle node: (0, 0, 1.3793)
Saddle focus: (±1.9494, ±0.9748, 4) A pair of strange attractors Figure 5e

c = 3.1
Saddle node: (0, 0, 1.2903)
Saddle focus: (±2.0494, ±1.0247, 4) A pair of limit cycles Figure 5f

c = 3.2
Saddle node: (0, 0, 1.25)
Saddle focus: (±2.0976, ±1.0488, 4) A symmetric limit cycle Figure 5g

c = 3.6
Saddle node: (0, 0, 1.1111)
Saddle focus: (±2.2804, ±1.1402, 4) A butterfly strange attractor Figure 5h
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Figure 4. The bifurcation diagrams (a) and Lyapunov exponents (b) of system (1) versus c ∈ (0, 6).
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Figure 5. The phase portraits of system (1) with: (a) c = 0.8; (b) c = 1.2; (c) c = 1.4; (d) c = 1.6;
(e) c = 2.9; (f) c = 3.1; (g) c = 3.2; (h) c = 3.6.

4.2. Dynamic Evolution with Parameter k

The bifurcation diagrams of system (1) for parameters (a, b, c) = (4, 9, 4), k ∈ (5, 25) are shown in
Figure 6a, where the red color branch and blue color branch are yielded from initial values x01, x02,
respectively. Obviously, the state of system (1) changes from chaos to period and then to stable when
parameter k increases from 5 to 25. It also can be illustrated by the Lyapunov exponents in Figure 6b.
The maximum Lyapunov exponent is positive with c ∈ (5, 13.6) ∪ (13.9, 14.8) ∪ (15.4, 15.9), negative
with c ∈ (19.8, 25), and equal to zero with c ∈ (13.7, 13.8)∪ (14.9, 15.3)∪ (16, 19.7). For c = 5, 15, 18, 25,
we can observe a strange attractor, a limit cycle, and a stable point of system (1), with their phase
portraits are shown in Figure 7. For c = 19, 20, we can observe two coexisting periodic attractors and
two coexisting point attractors of system (1), as shown in Figure 8.
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Figure 6. The bifurcation diagrams (a) and Lyapunov exponents (b) of system (1) versus k ∈ (5, 25).
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Figure 7. The phase portraits of system (1) with: (a) k = 5; (b) k = 15; (c) k = 18; (d) k = 25.
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Figure 8. The coexisting attractors of system (1): (a) projections on x − y with k = 19; (b) time series of
y with k = 19; (c) projections on x − y with k = 20; (d) time series of y with k = 20.

5. Electronic Circuit Realization

There are many works that are related to chaos based applications in the literature [31–36]. Here,
we will present the circuit realization of system (1) for realistically obtaining its chaotic attractors.
The numerical simulation in Figure 5e displays two coexisting strange attractors in system (1) for
(a, b, c, k) = (2, 8, 2.9, 4) and initial conditions (±1, ±1, 1). For circuit realization of this state of
system (1), we need to refrain from saturation of circuit elements, and the effective way to achieve this
goal is to reduce the voltage values of the circuit via scaling the variables of system (1). In the process
of scaling, we assume (X, Y, Z) = (x, y, z/2) and then the scaled system is obtained as⎧⎪⎨⎪⎩

Ẋ = aX − 2YZ,
Ẏ = −bY + 2XZ,
Ż = −cZ + XYZ + k

2 .
(8)

Figure 9 gives the new phase portraits of the scaled system (8) for (a, b, c, k) = (2, 8, 2.9, 4).
Evidently, the scaling process does not cause fundamental changes to the system (1), but just limits the
variables to a smaller region Ω = {(x, y, z) |x, y ∈ (−5, 5), z ∈ (0, 10)}.

The circuit diagram of system (8) raised by the OrCAD-PSpice programme (OrCAD 16.6,
OrCAD company, Hillsboro, OR, USA) is presented in Figure 10. It has three input (or output)
signals with respect to the variables X, Y, Z, and the operations between signals realized via the basic
electronic materials including resistors, capacitor, TL081 operational amplifiers (op-amps), and AD633
multipliers. By fixing R1 = R3 = 20 KΩ, R2 = 200 KΩ, R4 = 50 KΩ, R5 = R6 = 100 KΩ, R7 = 138
KΩ, R8 = 3000 KΩ, R9 = 4 KΩ, C1 = C2 = C3 = 1 nF, Vn = −15 V, Vp = 15 V and executing the
circuit on electronic card shown in Figure 11, we can obtain the outputs of circuit in the oscilloscope.
The oscilloscope graphics in Figure 12 show good consistency with the numerical simulations in
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Figure 9. Hence, we can come to a conclusion that the coexisting chaotic attractors in system (1) are
physically obtained.
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Figure 9. The phase portraits of the scaled system (8) for (a, b, c, k) = (2, 8, 2.9, 4): (a) x − y; (b) x − z;
(c) y − z.

Figure 10. The circuit diagram of system (8).
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Figure 11. The experimental circuit of system (8).

(a) (b) (c)

(d) (e) (f)

Figure 12. The phase portraits of two coexisting attractors of system (8) on the oscilloscope for
(a, b, c, k) = (2, 8, 2.9, 4): (a,b) x − y; (c,d) x − z; (e,f) y − z.

6. S-Box Design and Its Performance Analysis

This section aims to raise a new chaotic S-Box algorithm by applying system (1). In the algorithm
design, first random number generation is performed and then S-Box is produced. The S-Box generation
algorithm pseudo code is shown in Algorithm 1. For establishing the S-Box production algorithm, we first
input the parameters (a, b, c, k) = (2, 8, 2.9, 4) and initial value (x0, y0, z0) = (−1,−1, 1) of the system
and then the float number outputs are produced. In order to generate more random outputs in the
analysis of the chaotic system, we select an appropriate step interval Δh and used it as a sample value.
More random sequences are obtained by setting the appropriate step interval Δh = 0.000001. System
(1) is solved by using the RK4 algorithm with the initial conditions and the specified sampling value,
and time series are obtained. In our designed chaotic S-Box algorithm, the outputs of y, z phases of
system (1) are used. Float number values (32 bits) obtained from these phases are converted to a binary
system. By taking 8 bits from the low significance parts (LSB) of the 32-bit number sequences generated
from both phases, these values are XORed. The obtained new 8-bit value is converted to a decimal
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number. This value is discarded if the decimal number was previously generated and included in
the S-Box, if not produced before, it is added to the S-Box. In this way, this process continues until
the distinct 256 values (between 0 and 255) are obtained on the S-Box. The generated S-Box is shown
in Table 2.

Algorithm 1 The S-Box generation algorithm pseudo code.

1: Start;
2: Inputting parameters and initial value of the system;
3: Sampling with step interval Δh;
4: i = 1, S-Box = [];
5: while (i < 257) do

6: Solving system with RK4 algorithm and obtaining time series (y, z);
7: Convert float to binary number;
8: Take LSB-8 bit value from RNG y ⊕ z phase;
9: Convert binary to decimal number (8 bit)

10: if (Is there decimal value in S-Box = yes) then

11: Go step 6.
12: else(Is there decimal value in S-Box = no)
13: Sbox[i] ← decimal value;
14: i++;

15: end

16: end

17: S-Box ← reshape(Sbox,16,16);
18: Ready to use 16 × 16 chaos-based S-Box;
19: End.

Table 2. The chaotic S-Box of system (1).

199 30 5 41 38 140 230 139 66 0 11 195 76 204 54 23
254 198 50 108 231 92 87 182 217 28 56 253 219 232 215 49
102 151 68 86 176 248 12 32 126 249 141 154 82 138 174 165
145 62 115 150 201 104 170 148 78 97 192 247 252 96 211 153
45 98 40 91 109 113 196 107 209 83 144 120 191 75 242 208
175 246 100 181 85 70 197 136 235 210 93 216 71 105 162 149
88 240 31 238 42 171 90 73 112 243 255 128 239 121 26 34
25 226 59 244 135 142 53 36 146 157 117 124 116 10 205 60
173 29 2 72 203 3 214 224 127 241 143 74 6 156 122 61
110 8 1 233 79 51 77 47 236 222 185 152 180 15 103 234
206 227 169 202 137 221 177 179 163 52 245 67 89 80 220 7
237 183 17 4 101 37 39 57 178 194 58 69 213 147 18 228
46 35 225 84 14 125 95 134 129 63 99 55 106 161 218 27
250 21 13 24 207 193 48 184 189 114 111 167 16 160 188 123
155 132 158 130 118 166 164 168 33 159 223 64 44 81 190 172
212 20 229 186 65 251 133 22 131 43 119 94 19 9 187 200

In order to determine that the produced S-Boxes are robust and strong against attack, some
performance tests are applied. We mainly focus on these tests: nonlinearity, outputs’ bit independence
criterion (BIC), strict avalanche criterion (SAC), and differential approach probability (DP). In addition,
the comparisons of the performance between this new S-Box and the existing chaotic S-Box proposed by
Chen [37], Khan [38], Wang [39], Ozkaynak [40], Jakimoski [41], Hussain [42], Tang [43] are presented
in Table 3.

Nonlinearity is regarded to be the most core part of all the performance tests. The nonlinearity
values of the S-Box yielded by system (1) are obtained as 104, 106, 104, 104, 108, 104, 110 and 104.
Accordingly, its average value, minimum value and maximum value are computed as 105, 104 and 110.
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By comparing the nonlinearity of other S-Box shown in Table 3, we can claim that the new S-Box is
better than others in some measure.

Table 3. The comparison of different chaotic S-Boxes (BIC: bit independence criterion; SAC: strict
avalanche criterion; DP: differential approach probability).

S-Box
Nonlinearity

BIC-SAC
BIC SAC

DP
Min Avg Max Nonlinearity Min Avg Max

Proposed S-Box 104 105 110 0.5028 102.75 0.3906 0.5014 0.5937 10
Chen [37] 100 103 106 0.5024 103.1 0.4218 0.5000 0.6093 14
Khan [38] 96 103 106 0.5010 100.3 0.3906 0.5039 0.6250 12
Wang [39] 102 104 106 0.5070 103.8 0.4850 0.5072 0.5150 12

Ozkaynak [40] 100 103.2 106 0.5009 103.7 0.4218 0.5048 0.5938 10
Jakimoski [41] 98 103.2 108 0.5031 104.2 0.3761 0.5058 0.5975 12
Hussain [42] 102 105.2 108 0.5053 104.2 0.4080 0.5050 0.5894 12

Tang [43] 99 103.4 106 0.4995 103.3 0.4140 0.4987 0.6015 10

SAC is put forward by Webster et al. [44]. Generally speaking, the establishment of SAC implies a
possibility that half of each output bit will be changed with the change of a single bit. Table 3 tells the
average, minimum and maximum SAC values of the new S-Box as 0.5014, 0.3906, 0.5937. Evidently,
the average value of the new S-Box is close to the ideal value 0.5. BIC is also an important criterion
found by Webster et al. [44]. It can partially measure the security of cryptosystems. The set of vectors
generated by reversing one bit of the open text is tested to be independent of all the pairs of avalanche
variables. While the relation between avalanches is measured, variable pairs are necessary to calculate
the correlation value [45]. BIC-SAC and BIC-Nonlinearity values are calculated when the BIC value is
calculated. When the values in Table 3 are examined, the BIC-SAC values are calculated as follows:
average value 0.5028, minimum value 0.4394 and maximum value 0.5312. The average value is almost
equal to the optimum value 0.5.

DP is another performance index for testing the S-Box, which is established by Biham et al. [46].
In this analysis, the XOR distribution balance between the input and output bits of the S-Box is
determined. The very close probability of XOR distribution between input and output bits often
indicates the ability to resist the differential attack of the S-Box. The low DP value suggests that
the S-Box is more resistant to attack. The minimum and maximum DP values of the new S-Box are
determined as 4.0 and 10. From Table 3, we know that the DP value of the new S-Box is the same as
the S-Boxes presented by Tang and Ozkaynak.

After testing the performance of the new S-Box by using some important indices and
comparing with other S-Boxes, we can determine that the new S-Box generated by system (1)
has better performance than other S-Boxes. Thus, it will be more suitable for attack resistant and
strong encryption.

7. Conclusions

A special chaotic system with multiple attractors was studied in this letter. The complex dynamic
behaviors of the system were mainly presented by numerical simulations. Bifurcation diagrams and
phase portraits indicated that the system exhibits a pair of point attractors, a pair of periodic attractors,
and a pair of strange attractors with the variation of system parameters. In addition, an electronic
circuit was designed for realizing the chaotic attractors of the system. Moreover, a new S-Box was
generated by applying the chaotic system, and the performance evaluation and comparison of the
S-Box were presented. It showed that the new S-Box has better performance than some existing S-Boxes.
Actually, the study of chaotic system with multiple attractors is of recent interest. More important
issues corresponding to this topic will be addressed in our future paper.
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Abstract: In this paper, we introduce a new chaotic system that is used for an engineering application
of the signal encryption. It has some interesting features, and its successful implementation and
manufacturing were performed via a real circuit as a random number generator. In addition,
we provide a parameter estimation method to extract chaotic model parameters from the real data of
the chaotic circuit. The parameter estimation method is based on the attractor distribution modeling in
the state space, which is compatible with the chaotic system characteristics. Here, a Gaussian mixture
model (GMM) is used as a main part of cost function computations in the parameter estimation
method. To optimize the cost function, we also apply two recent efficient optimization methods:
WOA (Whale Optimization Algorithm), and MVO (Multi-Verse Optimizer) algorithms. The results
show the success of the parameter estimation procedure.

Keywords: chaotic systems; circuit design; parameter estimation; optimization methods; Gaussian
mixture model

1. Introduction

A chaotic system has been considered with great potential in engineering applications, in which
many chaotic systems with different properties have been studied. Specifically, some systems have the
properties of amplitude control and offset boosting [1–4]. In this paper, we use a new three-dimensional
(3D) chaotic system in random number generation and signal encryption, which are important
engineering applications of chaotic systems [5–10]. To do this, an electronic design of the system is
implemented as a real electronic circuit to generate random numbers. Finally, the one-dimensional (1D)
and two-dimensional (2D) parameter estimation of the system is reported based on a non-traditional
parametric model cost function and two new optimization methods.

The topic of self-excited and hidden attractors is a new attractive topic in dynamical systems [11–13].
Recent studies have classified dynamical attractors as self-excited or hidden [14–17]. A self-excited
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attractor has a basin of attraction which intersects with at least one unstable equilibrium. If that is
not the case, the attractor is hidden [18–21]. According to the above definition, most of the classical
chaotic attractors are self-excited [22,23]. It has been demonstrated that the attractors in dynamical
systems with no equilibria [24–32], with stable equilibria [33,34], with lines [35,36] and curves of
equilibria [37–41], and with plane [42] or surface of equilibria [43] are hidden attractors. Even some
systems can belong to more than one category [3,44–47]. Hidden attractors cannot simply be located.
There have been some efforts in literature to solve this problem [18,48,49].

As we know, modeling of the real world chaotic systems has received great attention in recent
decades [50–55]. Choosing proper values for model parameters is essential in chaotic systems, since
they are very sensitive, both to model parameters and initial conditions. A slight change in the
parameters of the chaotic system may cause important bifurcation in its behavior, because of the
butterfly effect of the chaotic system [56]. Therefore, the parameter estimation problem of chaotic
system models is a complex problem [57–59].

There are some widely used methods for the parameter estimation of the chaotic systems which are
based on optimization methods [60–62]. In these methods, the problem of the parameter estimation is
generally formulated as a cost function based on an error function between a time series obtained from
a real system and a time series obtained from a known model with unknown parameters of that system.
The goal of the parameter estimation method will then be to find the best values of the unknown
parameters of the model which minimize the cost function. In addition, the optimization approaches
have been used algorithms for this problem to find the best values of the unknown parameters
as quickly as possible. They are algorithms such as genetic [63], particle swarm optimization [64],
and evolutionary programming [65]. However, approaches that utilize cost function based on the error
function seem to bear major limitations because of the butterfly effect of the chaotic systems [57–59].

It was remarked that the state space would be a proper domain to analyze the chaotic systems
rather than the time-domain. The time series generated by the chaotic systems have random-like
behavior in the time-domain, but they are ordered in the state space. They can show specific topologies
in the state space named strange attractors. In this paper, we use a non-conventional metric as a useful
cost function for the parameter estimation method. Accordingly, we model the attractor distribution
of a real chaotic system by a parametric model named the Gaussian mixture model (GMM). It can
provide flexible and probabilistic modeling for data distributions. GMM is also a commonly used
parametric model in the pattern recognition and machine learning domain [66]. For example, in the
speech recognition field, a set of GMMs was introduced to model phone attractors in a reconstructed
phase space (RPS) in which the RPS is a time-independent domain similar to the state space [67–69].
The phone classification results showed that the GMM could be a useful model to capture the structure
and topology of the speech attractors in the RPS. In addition, models of Gaussian mixture were recently
used as the parameter identification method for some chaotic systems [70–72].

Here, to optimize the cost function, two recent efficient optimization methods are applied,
including the WOA (Whale Optimization Algorithm), and MVO (Multi-Verse Optimizer) algorithm.
Also, for testing the parameter estimation method in the chaotic systems, a real circuit is utilized based
on a new chaotic system in this paper. All the data (time series) are obtained from the circuit that is
designed based on the new chaotic system.

The contributions of this paper are described as:

• A new 3D chaotic system with saddle equilibriums is proposed by a set of ordinary
differential equations.

• Dynamical properties of the 3D chaotic system are then reported that exhibit its dynamics.
• The electronic circuit implementation of the 3D chaotic system is studied and used to present

a random number generator (RNG), and its signal encryption is then introduced as an
engineering application.

• 1D and 2D parameter estimation of the electronic circuit is done by a GMM based cost function.
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• The cost function is optimized using two new efficient optimization methods called the WOA
and the MVO algorithms.

• By comparing the experimental data with numerically generated time series, the best-fitting
parameters are found because the circuit had (almost) the same dynamics as the 3D chaotic system.

The structure of the paper is organized as follows: in the next section we introduce and analyze
the new chaotic system with saddle equilibriums. In Section 2, we investigate it carefully through
bifurcation analysis, spectrum of Lyapunov exponents, and its entropy. Section 3 deals with the circuit
implementation of this new system and a real circuit application based on mobile RNG design. In the
next section, the cost function based on the GMM is introduced. Two meta-heuristic optimization
algorithms (WOA and MVO) are presented in Section 5. Results of the cost function and the parameter
estimation of the new chaotic system using the WOA and MVO methods are available in Section 6.
Finally, Section 7 is the conclusion of the paper.

2. A New Chaotic System and Its Analysis

In this section we introduce a new 3D system which can show chaotic behavior. Consider a system
described with the following ordinary differential equations:

.
x = gz

.
y = dx2 + ey2 − f

.
z = −ax − bx2 + cy2

(1)

This system is in the chaotic state when a = 4.0, b = 1.0, c = 1.0, d = 1.0, e = 1.0, f = 4.0 and g = 1.0.
Different projections of the phase portrait for this system are plotted in Figure 1, which shows its
strange attractor in 2D state spaces. System (1) is a new offset-boostable one [1–4] in which the variable
z can be boosted with a direct constant in the first dimension.

Figure 1. Different projections of the chaotic attractor of system (1) with the initial conditions
(−1.8, −1.5, −2.5).

This system has fixed-points in every (x∗, y∗, z∗) which satisfy the following equation,⎧⎪⎨⎪⎩
.
x = 0
.
y = 0
.
z = 0

→

⎧⎪⎨⎪⎩
0 = z
0 = x2 + y2 − 4
0 = −4x − x2 + y2

(2)

According to Equation (2), the system (1) has two equilibria in A = (0.7321, 3.4641, 0) and
B = (0.7321, −3.4641, 0). The Jacobian matrix of the system (1) is

J =

⎡⎢⎣ 0 0 1
2x 2y 0

−4 − 2x 2y 0

⎤⎥⎦ (3)

22



Entropy 2018, 20, 86

and the corresponding eigenvalues for A and B are

A :

{
λ1 = 3.9784
λ2,3 = −0.12798 ± i2.5428

B :

{
λ1 = −3.9784
λ2,3 = 0.12798 ± i2.5428

(4)

Therefore, both equilibria are saddle-foci. Thus, the attractor is self-excited.

3. Bifurcation and Entropy Analysis

3.1. Bifurcation Analysis

In this part, we investigate the behaviors of the system (1) with respect to changing parameter g.
In part (A) of Figure 2 the bifurcation diagram of the system is shown and in part (B) of this figure
Lyapunov exponents can be observed. It is important to be careful about numerical calculation of
Lyapunov exponents, since improper use of usual methods may cause some issues [14,15,73–77].
We have used the algorithm of [78] for computation of Lyapunov exponents.

Figure 2. (A) Bifurcation diagram of the system (1) with respect to parameter g, and (B) Lyapunov
exponents of the system (1) with respect to parameter g.

As can be seen in Figure 2A, changing parameter g causes a familiar period doubling route to
chaos. In addition, positive values of the Lyapunov exponents in Figure 2B show that the underlying
system is the chaotic system.

3.2. Entropy Analysis

There are many techniques to evaluate the system complexity from data. One of the most famous
method which had been used since 1991 is Approximate Entropy (ApEn) [79]. ApEn can be applied
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to short and noisy data with outliers [80]. Therefore, many systems can be categorized by means
of complexity [81]. Consider the N data sample u(1), u(2), . . . , u(N) with the vector sequence
x(1), x(2), . . . , x(N − m + 1) ∈ Rm which can be defined as:

x(i) = [u(i), u(i + 1), . . . , u(i + m − 1)] (5)

where m is an integer and determines the dimension of x(i) as the length of compared run of data.
Then, for each i in the 1 ≤ i ≤ N − m + 1, the following equation is defined:

cm
i (r) =

J
N − m + 1

(6)

d[x(i), x(j)] ≤ r , 1 ≤ j ≤ N − m + 1 (7)

d[x(i), x(j)] = max
k=1,2,...,D

(|u(i + k − 1)− u(j + k − 1)|) (8)

where J is the number of correct vectors in Equation (7), the number of vectors that the distance (infinity
norm or maximum norm) between them and x(i) is lower than r, and r is also a tolerance threshold
that is defined by the product of a constant C to the standard deviation of data.

r = C × std(u(t)) 0.1 ≤ C ≤ 0.2 (9)

Then, the ApEn can be written as:

φm(r) =
∑N−m+1

i=1 logCm
i (r)

N − m + 1
(10)

ApEn(m, r) = lim
N→∞

[
φm(r)−φm+1(r)

]
(11)

The estimation of Equation (11) for N data sample is as follows,

ApEn(m, r, N) = φm(r)−φm+1(r) (12)

It can be derived that the ApEn values determine the similarity between chosen window and the
sliding window of the data. Therefore, m determines the length of the window to be compared, and r
is the tolerance threshold for accepting similar pattern between two windows. Figure 3 represents the
ApEn diagram of the system (1) with respect to parameter g.

Figure 3. ApEn of the system (1) with respect to parameter g.
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4. Real Circuit Design of the New Chaotic System as a Mobile RNG and Its Application for
Signal Encryption

Random number generator (RNG) algorithms produce a sequence of numbers with properties of
randomness and they are a research subject since a few decades. Chaotic systems are commonly used
in the random numbers generation algorithms because they are complex and very sensitive. In this
section, a mobile RNG design is implemented based on the introduced chaotic system (1) and then
signal encryption application is realized with the RNG.

The micro-computer based mobile RNG can be used in many fields especially in encryption
studies with low cost and high performance. It is aimed at encryption of multimedia data (audio,
image, video, text etc.) with the realized mobile RNG to be flexible and user friendly.

As far as we know, random number generators require high cost hardware like computers
and FPGA in order to successfully pass the universal tests [82–86]. In this paper, the design of a
microcomputer-based mobile RNG and a signal encryption application with the designed RNG is
realized without needing hardware such as FPGA, computers, etc. Therefore, “Raspberry Pi 3” is used
here as hardware which supports 64-bit processing capability. Since the “Raspberry Pi 3” card has
64-bit processing capability, it can generate very sensitive decimal numbers; thus, randomness of these
generated numbers is very high. BCM2837 SoC (system-on-chip) 64-bit ARMv8 quad core Cortex
A53 processor running @1.2GHz produced by Broadcom is available on the card. The general view of
“Raspberry Pi 3” is as given as in Figure 4.

Figure 4. The general outlook of “Raspberry Pi 3”.

Our proposed circuit is used as an entropy source for RNG. Then, the NIST-800-22 tests are
performed on random numbers to evaluate the performance of the designed RNG. In the next
step, a signal encryption application is realized as an example application in “Raspberry Pi 3”.
Also, an electronic circuit implementation of the chaotic circuit is done in OrCAD-PSpice and on
the oscilloscope.

4.1. Micro-Computer-Based Mobile RNG Design

As before mentioned, the “Raspberry Pi 3” board is used as a micro-computer for RNG design
and encryption application. The chaotic system of (1) is also utilized in the RNG design. The RNG
design steps are given in Algorithm 1 as a pseudo code.
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Algorithm 1. Mobile RNG design algorithm pseudo code.

1: Start

2: Entering parameters and initial condition of the chaotic system
3: Determination of the value of Δh
4: Sampling with determination Δh value
5: while (least 1 M. Bit data) do
6: Solving the chaotic system with RK4
7: Convert float to binary number (32 bit)
8: Select the bits (LSB-16 bit) from 32 bit binary number
9: end while

10: The implementation of NIST Tests for 1 M. Bit data
11: if test results == pass then
12: Successful results (Ready tested 1 M. Bit data)
13: RNG applications (Cryptology, data hiding, watermarking, etc.)
14: else (test results == false)
15: return the previous steps and generate bits again
16: end if

17: End

After entering parameters and initial condition of the system (1), the outputs are discretized with
the RK4 differential equation solving method. Then, float numbers are obtained and converted into
32 bits binary numbers. Later, the RNG design is executed with obtained binary numbers. The last
16 bits of the outputs (x, y and z variables) are used in the design. The NIST-800-22 statistical tests are
also used to prove the success of the RNG design [87]. The NIST-800-22 tests consist of 16 different
tests such as monobit, serial and discrete Fourier transform tests. The p-values of the test should be
greater than 0.001 in order to be counted as successful in NISTS-800-22 tests.

Our experiments show that the random numbers generated from x, y and z outputs successfully
passed all the tests with the last 16 bits. The NIST-800-22 tests results are given in Table 1. The ready
tested random numbers that pass all of the NIST-800-22 tests can be used in applications that require
high security such as cryptology, data hiding, watermarking, etc.

Table 1. RNG NIST-800-22 tests for x, y and z outputs.

Statistical Tests
p-Value-x
(X_16bit)

p-Value-y
(Y_16bit)

p-Value-z
(Z_16bit)

Result

Frequency (Monobit) Test 0.5741 0.2209 0.9904 Successful
Block-Frequency Test 0.5692 0.2711 0.4011 Successful

Cumulative-Sums Test 0.6255 0.1218 0.4619 Successful
Runs Test 0.7012 0.1846 0.5313 Successful

Longest-Run Test 0.6207 0.1881 0.6901 Successful
Binary Matrix Rank Test 0.4378 0.9036 0.9755 Successful

Discrete Fourier Transform Test 0.0796 0.5819 0.6931 Successful
Non-Overlapping Templates Test 0.1685 0.0011 0.0803 Successful

Overlapping Templates Test 0.8824 0.1699 0.5441 Successful
Maurer’s Universal Statistical Test 0.5665 0.3602 0.8932 Successful

Approximate Entropy Test 0.1364 0.7072 0.6264 Successful
Random-Excursions Test (x = −4) 0.9005 0.3467 0.6683 Successful

Random-Excursions Variant Test (x = 9) 0.5249 0.9845 0.5880 Successful
Serial Test-1 0.1784 0.6299 0.5716 Successful
Serial Test-2 0.5467 0.4709 0.7633 Successful

Linear-Complexity Test 0.7039 0.3601 0.2000 Successful

26



Entropy 2018, 20, 86

To obtain the random numbers, the pins x, y, and z GPIO (General purpose input/output) are
utilized as shown in Figure 5. They are the 37th pin for x output, the 35th pin for y output, and the
38th pin for z output from “Raspberry Pi 3”.

 

Figure 5. Pins of x, y and z for chaotic system outputs from “Raspberry Pi 3”.

The generated x, y and z outputs (first 50 bits) are shown in Figure 6 as real-time oscilloscope
outputs. The 35th, 37th, and 38th GPIO pins give x, y and z outputs in Figure 5, respectively. They are
used for real-time oscilloscope outputs.

 

Figure 6. x, y and z outputs on the oscilloscope (first 50 bits).
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4.2. Signal Encryption Application Using “Raspberry Pi 3”

In this section, a signal encryption application with RNG that was generated from the proposed
chaotic system is realized in “Raspberry Pi 3”. The steps of the encryption and decryption process
are given in Algorithm 2. In the encryption application, a signal that consists of 512 bits is used and
shown (first 50 bits) in Figure 7 as the real-time oscilloscope outputs.

 

Figure 7. Original signal data (first 50 bits).

Algorithm 2. Chaos based encryption and decryption algorithm pseudo code.

1: Start

2: Getting ready to test random numbers for keys
3: Getting signal data to be encrypted
4: for i = 1 for all original data
5: random number bit xor original data bit
6: end

7: Encrypted data
8: for i = 1 for all encrypted data
9: random number bit xor encrypted data bit
10: end

11: Decrypted data
12: End

For the encryption process, the ‘XOR’ operator is used. Figure 8 shows the first 50 bits of the
encrypted signal as real-time oscilloscope outputs. Since the encryption process is performed for each
bit, the size of the encrypted data is also 512.

 

Figure 8. Encrypted signal data (first 50 bits).

The same keys generated from the chaotic system are needed for decryption. With these keys,
the original data can be obtained, again. The first 50 bits of the decrypted signal are shown in Figure 9
as the real-time oscilloscope outputs. As can be seen, comparing Figures 7 and 9, for the first 50 bits,
there is no deformation.

In the implemented method, a cryptoanalyser who wants to crack the encrypted data must know
exactly all of the parameters and initial values of the chaotic system used in the encryption. Also,
encrypted data will be not decrypted without “Raspberry Pi 3”.
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Figure 9. Decrypted Signal Data (first 50 bits).

4.3. Electronic Circuit Implementation of the Chaotic System in OrCAD-PSpice and on the Oscilloscope

In this part, we design an electronic circuit based on system (1) in OrCAD-PSpice (Figure 10) and
on the board (Figure 11). The circuit includes simple electronic elements such as resistors, multipliers,
capacitor, and opamps. Note that PSPICE simulation of chaotic circuits is quite trivial. In the literature,
such systems are implemented with integrated circuit technology [88].

Figure 10. The electronic circuit schematic of system (1).
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Figure 11. The experimental circuit of the chaotic circuit and the phase portraits of system (1) on
the oscilloscope.

The OrCAD-PSpice simulation outputs, which are two-dimensional phase portraits of the chaotic
system, are seen in Figures 12 and 13, respectively. As can be seen from the ORCAD-PSpice outputs in
Figure 12 and oscilloscope outputs in Figure 13, the results are similar.
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Figure 12. The phase portraits of the system (1) in ORCAD-Pspice.

Figure 13. The phase portraits of system (1) on the oscilloscope.

5. Parameter Estimation of the Chaotic System

In this section, we introduce the parameter estimation method used for the chaotic circuit.
This method utilizes a cost function which was adopted for the chaotic systems. The cost function of
the parameter estimation method is based on a similarity metric using a parametric model of strange
attractors in the state space. It was shown that this cost function could yield better results than the
conventional error-based cost function over the time-domain [71]. The time-independent property of
the state space is a sufficient reason to use this cost function because the state space can show complex
behaviors of the strange attractor of chaotic systems [89].
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As before mentioned, the utilized cost function is based on the attractor modeling; therefore,
we need a model to represent the distribution of the attractor points in the state space. As a smooth
parametric model, a Gaussian mixture model (GMM) can model the chaotic attractor geometry in the
state space [67]. The GMM is a parametric probability density function represented by a weighted sum
of Gaussian component densities [90]. It can model the distribution of the attractor points in the state
space based on its powerful characteristics [91]. So far, metrics such as Kullback–Leibler divergence
(also called relative entropy) were defined to measure distance between GMMs [90]. In addition,
similarity-based metrics such as likelihood functions have been used to measure distance between a
time series and a GMM. This idea was recently used as phone classification methods by parametric
models of the distribution points of the speech signal in a high-dimension domain named RPS [67–69].

The GMMs have also been used for parameter estimation of some chaotic systems [70,71].
They were utilized similar to the task of the phone classification method. Suppose we have a chaotic
system with a known model and its trajectory was recorded. We can then generate a GMM for
the strange attractor of the chaotic system in the state space. Utilizing a distance-like metric over a
likelihood function, we can compute dissimilarity between the learned GMM model of the real system
attractor (with unknown parameters) and a distribution of a new attractor obtained by a system’s
model (with known parameters) in the state space to complete the parameter estimation method.
Therefore, the score of the distance-based metric will be equal to the cost function of the parameter
estimation method.

5.1. The GMM Computation as a Cost Function

A GMM with M mixtures is a weighted sum of M individual Gaussian densities. Each Gaussian
density as a component of the GMM is represented by three main factors, mixture weight, mean vector,
and covariance matrix. Therefore, they can be shown by a set of parameters, λ, as follows,

λ = {wm,μm, Σm}, m = 1, . . . , Mp(v|λ ) =
M
∑

m=1
wm

1
(2π)D/2

1
|Σm |1/2 exp

{
−1
2 (v − μm)

TΣm
−1(v − μm)

}
(13)

and p(v|λ ) is the conditional probability of a D-dimensional single observation vector v given
the GMM of λ. The p(v|λ ) can show a likelihood score. It expresses how probable the observed
vector v is for the GMM of λ. In Equation (13) |.| is the determinant operator, exp(.) denotes the
exponential function, and M is the number of mixtures (Gaussian components). In addition, for m-th
mixture, wm ∈ [0, 1] is an scalar and named m-th mixing coefficient or mixture weight, μm is the m-th
D-dimensional mean vector, and Σm is the m-th D × D covariance matrix. The mean vector and
covariance matrix of a Gaussian component can show the center and the shape of points distribution
around those of the component. It should be noted that the mixing coefficients wm are constrained to
sum to 1, i.e., ∑M

m=1 wm = 1.
As a problem which depends on the complexity of the data distribution, there is no analytical

solution to determine the optimum number of GMM mixtures, M, needed for modeling of the
attractors. Therefore, it is common to use a trial-and-error method to choose an adequate value
of M. In our attractor modeling problem, to obtain a proper GMM model of the attractor in the state
space, we evaluate some values of M. Generally, we need a higher value of M for attractor modeling
if it has a very complex dynamic in the state space. One should note that while a higher number of
mixtures can increase the performance of the cost function, it also increases the computational cost.

To find the similarity score between the attractor of a real system and the state space points of a
specific model obtained from a chaotic system with known parameters (for example chaotic system
(1)), the likelihood score can be calculated. Therefore, the parameter estimation of a known chaotic
system with unknown parameters can be performed using the following two phases; a learning phase,
here named “phase A”, which includes fitting the GMM to the attractor of the real system, and an
evaluation phase, named “phase B”, to select the best values of parameters for the known chaotic
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model which causes the maximum similarity score or equally minimum distance score (cost function)
over the learned GMM. Following are those phases in details:

5.2. Phase A

The first phase of the parameter estimation approach is the learning phase to find the GMM
parameters, λ in Equation (13). The GMM learns the attractor’s distribution of a real system, e.g., a chaotic
circuit. Suppose S = {s1, s2, . . . , sN} is an N × D matrix consisting of N-samples of the time series of
the real data in the D-dimensional state space. Therefore, each sample is a D-dimensional observation
vector. To find the GMM parameters, an iterative expectation-maximization (EM) algorithm is utilized
as follows:

5.2.1. Initialization Step

Initialize the mean vector μm, covariance matrix Σm and mixing coefficients wm in Equation (13)
and evaluate the initial value of the logarithm of the likelihood score obtained from the input time
series as follows,

logp(S|λ ) =
N

∑
n=1

log(p(sn|λ)) (14)

5.2.2. Expectation Step

Evaluate values of r(si, m), named responsibility of i-th sample of S given the m-th Gaussian
component, using the current values of the GMM parameters:

r(si, m) =
wm

1
(2π)D/2

1
|Σm |1/2 exp

{
−1
2 (si − μm)

TΣm
−1(si − μm)

}
∑M

j=1 wj
1

(2π)D/2
1

|Σj|1/2 exp
{

−1
2

(
si − μj

)T
Σj

−1
(

si − μj

)} (15)

5.2.3. Maximization Step

Re-estimate the parameters of the GMM utilizing the estimated values of the responsibilities
as follows:

Nm =
N

∑
i=1

r(si, m) (16)

μm =
1

Nm

N

∑
i=1

r(si, m)si (17)

Σm =
1

Nm

N

∑
i=1

r(si, m)(si − μm)(si − μm)
T (18)

wm =
Nm

N
(19)

5.2.4. Likelihood Computation Step

Evaluate the logarithm of the likelihood score in Equation (14) and check for convergence criterion.
If the convergence criterion is not satisfied, return to Section 5.2.2.

5.3. Phase B

The second phase is finding the best parameters of the known model of the chaotic system
(with unknown parameters) using the learned GMM in the phase A. Here, the search space will be
formed from a set of acceptable values of the model parameters. Now we suppose that the values of
the parameters a&b of the system (1) are unknown. Then, for each pair of parameters (a, b), the chaotic
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system of (1) will be simulated, and a trajectory T(a, b) = (t1, t2, t3, . . . , tK|a, b ) with K samples will be
obtained where each tK is D-dimensional measured data in the state space. Finally, using an average
point-by-point log-likelihood score obtained from the learned GMM, λ, a similarity-based score is
computed as follows,

log
(

p(T(a,b)|λ)
)
=

1
K

K

∑
K=1

log(p(tk|λ)) (20)

where T(a,b) is a matrix whose rows are composed from the state space vectors of the system trajectory
with the model’s parameters (a, b), and K is the number of the state space point. The parameter
estimation method of the model is accomplished by computing Equation (20) and selecting the
parameters of the model that can obtain the best similarity-based score, which here means the
maximum score. If we use the negative of the similarity-based score, then the parameter estimation
becomes a cost function minimization. Therefore, the best parameter selection, (a, b)∗, would be
conducted by the following criteria, J(.), based on the negative of mean log-likelihood score,

(a, b)∗ = argmin{J((a, b))}& J((a, b)) = −p
(

T(a,b)
∣∣∣λ) (21)

Equation (21) shows the utilized cost function and (a, b) is the set of the system parameters (1).
Here, λ is the learned GMM of the real system attractor obtained from the phase A. The objective of
the parameter estimation method is to determine the parameters of the system, (a, b) when the cost
function is minimized to result in the minimum value of J((a, b)). The minimum value of the cost
function guarantees the best solution with the proper parameters.

5.4. The GMM of Chaotic Circuit

Based on the observation vector v of the chaotic circuit, in this work, D = 3 is selected for
the dimension of the state space according to system (1). Using the prepared real training data
for the attractor by the chaotic circuit as a real system, the GMM will be specialized in order to
model the geometry of that attractor. Figure 14 shows the attractor of the chaotic system in a
three-dimensional state space with its GMM modeling using 256 Gaussian components, M = 256,
where every three-dimensional ellipsoid corresponds to one of the Gaussian components.

Figure 14. Plot of the attractor and its GMM modeling with M = 256 components for the chaotic
system (1) with a = 4 & b = 1, in the 3-D state space.
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6. Optimization Algorithm

There are four major categories to which different kinds of optimization methods belong:
Enumerative methods, Calculus-Based methods, Heuristic methods, and Meta-heuristic methods [62].
Meta-heuristic optimization algorithms, which cover a wide range of problems, are becoming more and
more popular in engineering applications [92,93]. Nature can be named as one of the most important
sources of inspiration for new meta-heuristic algorithms. On this subject, black and white holes in
cosmology and Humpback whales in the sea aid in constructing the MVO (Multi-Verse Optimizer)
and WOA (Whale Optimization Algorithm) meta-heuristic algorithm [94,95]. We now introduce
these methods:

6.1. The Whale Optimization Algorithm

The WOA algorithm is based on the hunting behavior of Humpback whales which can encircle
the recognized location of prey. The WOA algorithm assumes that the current best candidate solution
is the target prey or is close to the optimum. The next step is about the attacking strategy which is the
bubble-net strategy. Putting it all together, the proposed WOA method includes three major steps in
the simulation: the search for prey, encircling prey, and the bubble-net foraging behavior of humpback
whales. For complete details see [94].

6.2. Multi-Verse Optimizer: A Nature-Inspired Algorithm for GlobalOptimization

Another novel nature-inspired algorithm is Multi-Verse Optimizer (MVO). Cosmology (white
hole, black hole, and wormhole) is the main inspiration of this algorithm. As mentioned before, every
search process in the optimization algorithm consists of two phase: exploration and exploitation.
The MVO supports this by white and black holes in order to respond to the exploration phase and
wormholes for the exploitation phase. Further details are described in [95].

6.3. Experimental Results

In this section, some simulations are done to investigate the acceptability of the parameter
estimation method of the chaotic circuit. We have used a fourth-order Runge-Kutta method with a step
size of 10 ms and a total of 30, 000 samples corresponding to a time of 300 s. Here, we assume that the
original chaotic system of (1) should be estimated by minimization of the GMM-based cost function.

First, using some 1D parameter estimation methods, different number of the GMM’s components,
M = (64, 96, 128, 192, 256), are used to show the sufficiency of the cost function. The experimental
results of the cost function versus the values of the parameters a&b are depicted in Figures 15
and 16, respectively.

Figure 15. Cost function versus parameter a, with different number GMM components (M) for the 1D
parameter estimation method.

34



Entropy 2018, 20, 86

Figure 16. Cost function versus parameter b, with different number of GMM components (M) for the
1D parameter estimation method.

As can be seen, all of the cost functions show convex functions around the desired point. Therefore,
they are acceptable for the parameter estimation methods. Specifically, they show the effect of changing
the parameter of the model as a monotonically trend along with a global minimum at the exact expected
value of the desired parameters (a = 4.00, b = 1.00). Therefore, the GMM—based cost function has
the desired ideal properties for the parameter estimation problem. Moreover, Figures 15 and 16 show
the effect of increasing the number of GMM components, M, used in the GMM modeling. In this case,
M = 256 represents better performance to identify the parameters a&b.

In Figures 17 and 18, a contour plot of the cost function and its “cost surface” are respectively
shown for the chaotic system (1) with M = 256 along with variation in the parameters, a&b. They show
dissimilarity between the real system attractor and each model attractor for a 2D parameter estimation
problem. The minimum value of the point on those plots gives the parameters for the best model.

Figure 17. The contour plot of the GMM-based cost function for the introduced chaotic system
(M = 256) along with variations in the parameters, a&b.
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Figure 18. The “cost surface” of the GMM-based cost function for the introduced chaotic system
(M = 256) along with variations in the parameters, a&b.

As can be seen in Figures 17 and 18, the global minimum of the cost function is in the right place
(a = 4.00 and b = 1.00). Furthermore, the surface of the cost function is almost convex near the best
parameters, which makes it an easy case for any optimization approach that moves downhill.

In order to examine the efficiency of the cost function in the parameter estimation, two mentioned
meta-heuristic optimization methods are applied. All the basic parameters, such as maximum number
of iterations (50) and number of search agent (25), are the same in both algorithms. For further details
about the algorithms and their particular parameters, see [96]. Comparison between the performances
of MVO and WOA optimization algorithm is shown in Figure 19.

Figure 19. Comparison between the performances of the MVO and WOA optimization algorithm.

Based on the results of Figure 19, the MVO optimization method showed a superior performance
in comparison with the WOA algorithms. In addition, Figure 20 represents the process of finding the
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best parameters using the WOA algorithm performed once for every 10 iterations. As can be seen,
the individuals converge to the optimum area (a = 4.00 and b = 1.00).

Figure 20. Process of finding the best parameters using the WOA algorithm. (a–d) represent the first,
10th, 20th, and 30th iteration, respectively.

7. Conclusions

In this paper, a new chaotic system has been investigated carefully through bifurcation, the largest
Lyapunov exponent, ApEn, and stability analysis. Then, an engineering application of that system
was proposed using a random number generator and its signal encryption application. After that,
a GMM-based cost function was utilized in the parameter estimation of the chaotic circuit designed
from the chaotic system. The cost function was based on the minimization of dissimilarity between the
phase portrait obtained from the real system and that obtained from the model of the chaotic system.
In order to minimize the cost function and to obtain the correct parameters, we used two new efficient
optimization methods, the Whale Optimization Algorithm (WOA), and Multi-Verse Optimizer (MVO)
algorithm. The MVO optimization method showed superior performance in comparison with the
WOA algorithm.
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Abstract: In this paper, a three-dimensional chaotic system with a hidden attractor is introduced.
The complex dynamic behaviors of the system are analyzed with a Poincaré cross section, and the
equilibria and initial value sensitivity are analyzed by the method of numerical simulation. Further,
we designed a new algorithm based on complementary ensemble empirical mode decomposition
(CEEMD) and permutation entropy (PE) that can effectively enhance digital chaotic sequence
complexity. In addition, an image encryption experiment was performed with post-processing of the
chaotic binary sequences by the new algorithm. The experimental results show good performance of
the chaotic binary sequence.

Keywords: chaotic system; empirical mode decomposition; permutation entropy; image encryption

1. Introduction

With the rapid development of computer technology and network communication technology,
information has become an important asset in today’s society. Therefore, the confidentiality of personal
information has become more and more essential. For example, internet data transmission and
confidential phone and bank cards require adequate security and confidentiality measures. Therefore,
the study of secret communication and cryptography has become an urgent issue. At present, the
chaotic signal has benefits such as intrinsic stochasticity, initial value sensitivity, and synchronizing
characteristics. Therefore, some traditional chaotic systems with a self-excited attractor are widely
used in secret communication and have significant advantages [1–5]. Further, in recent years a hidden
chaos attractor has been found, which makes the development of a high-dimensional nonlinear system
an attractive challenge [6–9]. At present, most scholars primarily study the dynamic characteristics of
hidden attractors. In this paper, we aimed to study chaos with a hidden attractor from the perspective
of secure communication and cryptography. Chaos with a hidden attractor is used as a digital
chaotic sequence generator with the purpose of encrypting private data. However, in the process of
quantization, calculation precision is a crucial factor that degenerates the dynamic characteristics of a
chaotic system so that the complexity of a digital chaotic sequence does not satisfy the requirements of
information security and cryptography [10,11]. Aiming to solve this problem, Du [12] put forward an
algorithm to improve the performance of chaotic binary sequences based on Karhunen–Loève (K–L)
transformation. Zhou [13] proposed to scramble the chaotic binary sequence by m sequence in order to
improve the complexity of the digital chaotic sequence. Cernak [14] came up with a method to improve
the randomness and periodic length of the chaotic binary sequence by perturbing parameters of the
chaotic system. Based on the above analysis, these algorithms improve the performance and complexity
of digital chaotic sequences by reconstructing the binary sequence method. In this paper, we attempted
to generate high complexity in the chaotic sequence based on digital signal processing technology.
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Empirical mode decomposition (EMD) in digital signal processing has been extensively applied in
nonlinear signal processing [15–18]. EMD was first proposed by Huang et al. [19–21]. It is an effective
tool for analyzing nonlinear and non-stationary signals. The EMD method is closely related to the
corresponding Hilbert transform method. Through the decomposition of nonlinear and non-stationary
signals, a series of intrinsic mode functions (IMFs) are obtained, which makes each IMF a stable signal
for narrowband [22]. The IMFs play a crucial role in the analysis of non-stationary or nonlinear signals.
However, there are some problems with the EMD method, of which the main one is mode mixing.
Complementary ensemble empirical mode decomposition (CEEMD) can effectively restrain the mode
mixing of EMD at a certain level [23–25]. Based on the above considerations, we proposed a new
algorithm which combines CEEMD with permutation entropy (PE) [26] to effectively improve the
complexity of the digital chaotic sequence.

The rest of this paper is organized as follows: Section 2 describes a hidden chaos attractor with no
equilibria. The dynamic characteristics of a complex chaotic system are studied by means of numerical
simulation and theoretical analysis. Section 3 proposes a new algorithm to improve the complexity
of the digital chaotic sequence. Section 4 considers image encryption with post-processing of the
chaotic binary sequences by the algorithm outlined in Section 3. The security of the encrypted image is
analyzed through key sensitivity, information entropy, and histogram analysis. Section 5 summarizes
the discussions of this paper.

2. The Characteristic Analysis of a Chaotic System

In this section, a system can be expressed as the following set of differential equations:⎧⎪⎨⎪⎩
x = −y

y = cx + z
z = ay2 + xz − b

(1)

where a, b, c are real parameters. When a = 2, b = 0.35, c = 1 and the initial value is (−1.6, 0.82, 1.9),
the system displays a single-scroll chaotic system [27]. Different projections of the chaotic attractor for
this system are shown in Figure 1.

 
(a) (b) 

Figure 1. Cont.
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(c) 

Figure 1. The different projections of chaotic attractor with: (a) x-y; (b) x-z; (c) y-z.

Equilibria of the chaotic system can be obtained by solving x = y = z = 0. The equation is shown
as follows: ⎧⎪⎨⎪⎩

x = 0
y = 0
z = 0

→

⎧⎪⎨⎪⎩
0 = −y

0 = cx + z
0 = ay2 + xz − b

, (2)

However, it is easy to see in the chaotic system that when a = 2, b = 0.35, c = 1, Equation (2)
has no solution. Therefore, the chaotic system has no equilibria in this case. For the classification
of chaotic attractors, if the basin of chaotic attraction intersects with any open neighborhood of an
equilibrium, this attractor is called a self-excited attractor. However, if the basin of chaotic attraction is
not connected with any equilibrium, this attractor is called a hidden attractor [28–30]. Therefore, the
above chaotic system displays a hidden attractor in this case because it is a system with no equilibria.
In addition, the Poincaré map of the system can be obtained in the P = {y = 0|(x, z) ∈ R2} plane.
For the above three-dimensional chaotic system (x, y, z) ∈ R3, all (x, 0, z) points were calculated by
a MATLAB (R2012a, MathWorks, Natick, MA, USA) numerical simulation to obtain the Poincaré
map. The Poincaré cross section projected in x-z is shown in Figure 2. The Poincaré cross section
indicates that the system is a chaotic system through some dense points. Further, for the above chaotic
system, the maximal Lyapunov exponent was calculated by a MATLAB numerical simulation. The
maximal Lyapunov exponent can indicate the degree of the average divergence of the chaotic trajectory.
If the exponent is more than zero, it denotes that the system has the sensitivity of the initial value.
According to the result of the MATLAB calculation, this exponent is 0.081. For instance, the time series
of x generated from two very close initial values (−1.6, 0.82, 1.9) and (−1.601, 0.82, 1.9) are shown in
Figure 3, with the purpose of verifying the initial value sensitivity for the chaotic system. Figure 3
is plotted by the MATLAB numerical simulation. According to the Differential Equation (1), the
“t” presents the number of iterations. As can be seen from Figure 3, the chaotic system is sensitive
dependence on initial value.
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Figure 2. Poincaré map in the x-z plane.

Figure 3. Initial value sensitivity for the time series x with the initial values (−1.6, 0.82, 1.9) and (−1.601,
0.82, 1.9).

3. A New Algorithm to Improve the Complexity of Digital Chaotic Sequences

In this section, we designed a novel algorithm based on CEEMD that can effectively enhance
the complexity of digital chaotic sequences. CEEMD can adaptively decompose a non-stationary
or non-linear signal into different IMFs. The oscillating frequency of each IMF decreases according
to the decomposition order of each IMF. We present a new algorithm to enhance the complexity of
chaotic discrete sequences by combining CEEMD with permutation entropy (PE). At the same time, the
digital chaotic sequences are converted into chaotic binary sequences through a quantitative method
with the purpose of encrypting images or private data. The essential novelty of this algorithm is to
eliminate all low complexity IMF components in a chaotic time series, with the purpose of improving
the randomness and complexity of the sequence.

3.1. The Basic Principles of EMD

Empirical mode decomposition (EMD) is an adaptive method to decompose non-stationary and
non-linear signals into a set of IMFs (intrinsic mode functions) and a residual component. Each
IMF should satisfy the following two conditions: (1) For the whole data set, the number of zero
crossing and extrema must either be equal or differ at most by one. (2) For any data point, the mean
value of the upper and lower envelope determined by the local maxima and minima is zero [31].
The implementation process of the EMD method is shown as follows:
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1. All the local maxima and minima of the signal s(t) are calculated to construct the upper envelopes
e+(t) and lower envelopes e−(t) by the cubic spline interpolation. Further, m11(t) represents the
mean of the upper and lower envelopes and is shown as follows:

m11(t) =
e+(t) + e−(t)

2
(3)

s(t)− m11(t) = h11(t) (4)

where h11(t) denotes a temporary signal. If h11(t) satisfies the above two crucial factors, it is
a first-order IMF component. Otherwise, h11(t) will serve as an initial signal and the above
procedures are repeated until the h1k(t) is an IMF and sets the h1k(t) as c1(t).

c1(t) = h1k(t) (5)

2. Next, the first-order IMF has a high frequency, which can be extracted from s(t) by

s(t)− c1(t) = R1(t) (6)

R1(t) is processed as the new signal and the above procedures are repeated so that the other IMFs
can be generated Ri(t), i = 2, · · · , n.

3. When the residual Rn(t) becomes a monotonic function or constant, EMD decomposition is
terminated. The s(t) can finally be shown as follows:

s(t) =
n

∑
i=1

ci(t) + Rn(t) (7)

Thus, a non-linear signal s(t) can be decomposed into n IMFs and a residual Rn(t). However,
there are some problems with the EMD method, and one of these is mode mixing. Generally
speaking, each IMF component represents a specific physical quantity. If an IMF component
contains a large number of different frequencies of signals then this phenomenon is called mode
mixing, which seriously affects the performance of EMD decomposition. Aiming to resolve
this issue, the complementary ensemble empirical mode decomposition (CEEMD) method can
effectively restrain mode mixing of EMD at a certain level. The CEEMD method was used by
adding two opposite white noise signals to an original signal s(t), and to the adopted EMD, with
the purpose of restraining mode mixing.

3.2. The Implementation of the New Algorithm

First, suppose x(t) is a time series of chaotic systems. The white noise signal wi(t) and −wi(t)
with a zero mean value are added to the signal x(t), and the following equation is defined:{

x+i (t) = x(t) + aiwi(t)

x−
i (t) = x(t)− aiwi(t)

1 ≤ i ≤ Np , (8)

where wi(t) shows the added white noise signal, and ai and Np denote the amplitude and number of
the noise signals, respectively. In addition, the variance of the white noise is 1. {I+1i (t)} and {I−1i (t)}
(1 ≤ i ≤ Np) represent the first order component sequence, which can be generated by decomposing
x+i (t) and x−

i (t) with the EMD method. The mean value of all components is defined as follows:

I1(t) =
1

2N

Np

∑
i=1

[I+1i (t) + I−1i (t)]. (9)
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I1(t) is sampled to generate a discrete time sequence I1(n). Then, it is checked whether I1(n) is a
low complexity discrete sequence based on the PE value. The PE is widely applied in the measurement
of discrete sequence complexity because of its high robustness and rapid and simple algorithm
characteristics. PE can be described as follows:

1. For a discrete time sequence XN = { X1, X2, · · · XN }, where m and τ represent the
embedding dimension and a delay factor, respectively, the sequence XN can be reconstructed as

X(n), X(n + τ), · · · , X(n + (m − 1)τ) 1 ≤ n ≤ N − m + 1 , (10)

2. Each sequence of Equation (10) is placed depending on an ascending order.

X(n + (k1 − 1)τ) ≤ X(n + (k2 − 1)τ) ≤ · · · ≤ X(n + (km − 1)τ), (11)

3. Further, πn = { k1, k2, · · · , km

}
displays the original position index of each element,

which is one of the possible order types of all m! permutations. Suppose Pg is a symbol permutation

and
w
∑

g=1
Pg = 1, where g = 1, 2, · · · , w, w ≤ m!. Then, PE Hp is defined as

Hp = −
w

∑
g=1

Pg ln Pg. (12)

When Hp = 1/m!, then Hp obtains the maximum value ln(m!). Further, the normalized PE hp is
defined as hp = Hp/ ln(m!).

Based on a large amount of MATLAB simulation data, when the PE value of the I1(n) is less than
θ ∈ [0.5, 0.6], the amplitude of I1(n) changes slowly and takes on a lower frequency. After this, the
above method is used to find all the low complexity signals in the IMFs. All low complexity IMF
signals are separated from the target signal x(t) to generate the signal r(t). Then, the r(t) can be
written as

r(t) = x(t)−
p

∑
j=1

Ij(t). (13)

where p is the sum total of low complexity signals in the IMFs.

3.3. Experimental Results

The time series (x(t), y(t), z(t)) are generated from the chaotic system as experimental data. The
generated x(t), y(t) and z(t) time series signals are shown in Figure 4.

Figure 4. Chaotic time series with x(t) (blue color), y(t) (green color), and z(t) (red color).
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Next, these chaotic time series are processed by the above method. All the low complexity signals
in the IMFs are shown in Figure 5a–c, where RS (Logogram of Residual Rn(t)) is a residual signal.
As can be seen from the figure, the amplitude of these IMF signals changes slowly with time and
the frequency of the signals reduces. These IMF components are sampled to generate discrete time
sequences with the purpose of calculating the PE value. For the x(t), y(t) and z(t) time series, the
calculation results of the PE value of each IMF component are shown in Table 1. This table shows that
the PE values of these IMFs are less than θ ∈ [0.5, 0.6]. Therefore, based on the essential novelty of the
above method, these IMFs will be removed from the original chaotic time series.

  
(a) (b) 

 
(c) 

Figure 5. All the low complexity signals in the intrinsic mode functions (IMFs) with: (a) x(t); (b) y(t);
(c) z(t).

Table 1. The permutation entropy (PE) value of each intrinsic mode function (IMF) with x(t), y(t),
and z(t).

IMF Component x(t) y(t) z(t)

IMF1 0.1181 0.1959 0.1658
IMF2 0.1116 0.1153 0.1198
IMF3 0.1096 0.1113 0.1102
IMF4 0.1069 0.1076 0.1072
RS5 0.0542 0.0997 0.1066

The time series rx(t), ry(t) and rz(t) will be generated by removing the low complexity IMF
components from the original signals in x(t), y(t) and z(t). The time series rx(t), ry(t) and rz(t) are
shown in Figure 6. Moreover, these time series are also sampled to generate discrete time sequences
with the purpose of calculating the PE values, and Figure 7 denotes the comparison of the PE values
to the original signals x(t), y(t), z(t) and the post-processing signals rx(t), ry(t), rz(t). It can be seen
from Figure 7 that the entropy value of the latter is significantly greater than that of the former and
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shows a good level of complexity. These high-complexity discrete time sequences can be quantized to
generate a good performance in the chaotic binary sequences. These binary sequences will serve as
useful key stream sequences of the stream cipher to encrypt private data.

 
(a) (b) 

 
(c) 

Figure 6. Time series after algorithm processing with: (a) x(t); (b) y(t); (c) z(t).

Figure 7. Permutation entropy (PE) value comparisons between the original signal and
post-processing signal.
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3.4. The Generation and Performance Test of the Chaotic Binary Sequence

The three outputs rx(t), ry(t), and rz(t) are quantized by the interval quantization method, and
its mathematical equation is shown below.

Q0−1(t) =

⎧⎪⎨⎪⎩
1, x(t) ∈ 2m−1∪

k=0
Dm

2k

0, x(t) ∈ 2m−1∪
k=0

Dm
2k+1

; k = 0, 1, 2, · · · , (14)

where Q0−1(t) and m are a quantized chaotic binary sequence and arbitrary integer, and
Dm

0 , Dm
1 , Dm

2 · · · are 2m consecutive equal intervals on the range of the real value of x(t). If the
real value falls on the odd range the result of quantization is 0, otherwise it is 1. rx(t), ry(t), and
rz(t) are quantized as Qx(t), Qy(t), and Qz(t) through the interval quantization method. Then, the
NIST-800-22 test suite is performed to evaluate the performance of the random binary sequences Qx(t),
Qy(t), and Qz(t). The NIST-800-22 is composed of 16 different tests, including approximate entropy,
linear complexity, and the discrete Fourier transform tests [32,33]. If the p-value of the test is greater
than 0.01, the test is successful. The NIST-800-22 test results are shown in Table 2. As can be seen from
the table, the chaotic random sequences Qx(t), Qy(t), and Qz(t) passed all the tests. These chaotic
sequences can be used in high security fields such as network security and multimedia encryption.

Table 2. NIST-800-22 tests.

Test Item Qx(t) p-Value Qy(t) p-Value Qz(t) p-Value Result

Approximate Entropy 0.28711 0.01063 0.41042 Success
Block Frequency 0.02501 0.43924 0.64085 Success

Cumulative Sums 0.14372 0.56658 0.64761 Success
FFT 0.52063 0.37221 0.11875 Success

Frequency 0.28014 0.48392 0.87461 Success
Linear Complexity 0.22374 0.46932 0.78321 Success

Longest Run 0.70665 0.51078 0.26541 Success
Non-Overlapping Template 0.32974 0.75331 0.11253 Success

Overlapping Template 0.24088 0.70399 0.32227 Success
Random Excursions 0.43747 0.51791 0.82733 Success

Random Excursions Variant 0.64578 0.11253 0.66691 Success
Binary Matrix Rank 0.15319 0.58700 0.44130 Success

Runs 0.88206 0.84530 0.71884 Success
Serial Test-1 0.10056 0.17826 0.81473 Success
Serial Test-2 0.15538 0.15538 0.69926 Success

Maurer’s Universal 0.75331 0.14268 0.56553 Success

4. Image Encryption with a Chaotic Binary Sequence

This subsection describes the experiments used to demonstrate the performance of the chaotic
binary sequence by encrypting images. The Lena and Baboon images, with a size of 256 × 256, are
encrypted by the above chaotic random sequences—Qx(t), Qy(t), and Qz(t). Then, Qx(t), Qy(t), and
Qz(t) serve as the key stream sequences of the stream cipher with the purpose of encrypting the R, G,
and B components of the color images.

4.1. Key Sensitivity

The sensitivity of chaos to the initial value can support the effective avoidance of tentative attacks.
Using the Lena and Baboon images with a size of 256 × 256 as examples, Figure 8a,d shows the
plain-images, while the cipher-images are given in Figure 9b,e. However, a 10−5 change of the initial
value will lead to incorrect decryption results, as shown in Figure 9c,f. The experimental results show
that the chaotic binary sequence shows high key sensitivity.
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 8. Key sensitivity test with: (a) plain-image for Lena; (b) cipher-image for Lena; (c) incorrect
decryption using a 10−5 change of the initial value for Lena; (d) plain-image for Baboon;
(e) cipher-image for Baboon; (f) incorrect decryption using a 10−5 change of the initial value for Baboon.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e)  

(f) 

Figure 9. Histogram test with: (a) R component of the plain-image; (b) R component of the cipher-image;
(c) B component of the plain-image; (d) B component of the cipher-image; (e) G component of the
plain-image; (f) G component of the cipher-image.
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4.2. Histogram Analysis

The image histogram can be approximated as the density function of the gray value, which is an
important indicator in the analysis of an image’s statistical properties [34]. The histogram test is shown
in Figure 9, and the horizontal and vertical coordinates of the histogram represent the pixel values and
number of pixel values, respectively. Figure 9 show that the gray histogram of the encrypted image
is relatively uniform, which indicates that the security performance of this key sequence is relatively
high, and the image is not easily able to be tampered with and decrypted during transmission.

4.3. Correlation Analysis of Adjacent Pixels

Generally speaking, the smaller the adjacent pixel correlation of the cipher-image, the more
obvious the effect of resisting statistical attack [35]. The mathematical equation can be shown as follows:

ρxy =
cov(x, y)√
D(x)D(y)

. (15)

where cov(x, y) = 1
N

N
∑

i=1
(xi − E(x))(yi − E(y)), D(x) = 1

N

N
∑

i=1
(xi − E(x))2, E(x) = 1

N

N
∑

i=1
xi, xi and yi

represent the different gray values of two adjacent pixels and N denotes the number of randomly
selected adjacent pixels.

The above equation was used and some pairs of adjacent pixels in different directions were
randomly chosen, and the test results are listed in Table 3. It can be seen from the experimental data
that the correlation of adjacent pixels of a cipher-image tends to be zero.

Table 3. Correlation analysis of adjacent pixels for the Lena and Baboon images.

Direction
Plain-Image for

Lena
Cipher-Image for

Lena
Plain-Image for

Baboon
Cipher-Image for

Baboon

Horizontal 0.9712 0.0392 0.9287 0.0133
Vertical 0.9655 0.0091 0.9004 0.0522

Diagonal 0.9401 0.0215 0.8711 0.0093

4.4. Information Entropy Analysis

Information entropy can reflect the randomness of the information in images, namely the
uncertainty of the distribution of pixel values in a cipher-image. Its mathematical equation is shown
below [36].

H(φ) =
2L−1

∑
i=0

p(φi) log2
1

p(φi)
. (16)

where L is the number of bits required to store each pixel value, and p(φi) presents the probability of
the symbol φi. When the probability of each symbol φi is equal, the information entropy (H(φ) = 8)
is at its largest. When the information entropy is closer to 8, the gray value tends to be distributed
randomly. Table 4 provides a comparison of this data with other experiments. This comparison shows
that the information entropy of our method is closer to 8. Therefore, it can effectively resist information
entropy attacks.
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Table 4. Information entropy analysis for the Lena and Baboon images.

Methods R Component G Component B Component

The paper for Lena 7.9972 7.9971 7.9972
The paper for Baboon 7.9970 7.9968 7.9971

Reference [37] 7.9914 7.9914 7.9915
Reference [38] 7.9851 7.9852 7.9832

5. Discussion

Some traditional chaotic systems with a self-excited attractor have been widely used in secret
communication. However, for chaotic systems with hidden attractors, most of the current research
has focused on studying the dynamic characteristics of the system rather than its application in
the field of information security. Therefore, in this paper, we aimed to study chaos with a hidden
attractor from the perspective of secure communication and data encryption. First, we introduced
the dynamic characteristics of a chaotic system with hidden attractors by means of a numerical
simulation and theoretical analysis, including equilibria, a Poincaré cross section, and initial value
sensitivity. After that, a new algorithm was designed to enhance the complexity of digital chaotic
sequences with the purpose of satisfying the requirements of data encryption. The essential novelty
of the algorithm is to eliminate all low complexity IMF components of a chaotic time series by
using digital signal processing technology. PE value comparisons between the original signal and
post-processing signal show the performance of the algorithm is good. In addition, the NIST-800-22
test was performed to demonstrate the randomness and complexity of the chaotic binary sequence.
The chaotic binary sequence can serve as a good key stream sequence of a stream cipher to encrypt
private data. Furthermore, an image encryption experiment was undertaken to show the security of
the above method. However, some weaknesses in this technique remain, and we believe that the new
algorithm should be optimized in operation efficiency.

Acknowledgments: This work was supported by the Natural Science Foundation of China (No. 61471158) and
the “modern sensing technology” innovation team project of Heilongjiang province (No. 2012TD007).

Author Contributions: Chunlei Fan conceived and wrote the paper. Zhigang Xie gave some theoretical guidance.
Chunlei Fan and Qun Ding contributed to the MATLAB numerical simulation. All authors have read and
approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xu, H.; Tong, X.J.; Meng, X.W. An efficient chaos pseudo-random number generator applied to video
encryption. Optik 2016, 127, 9305–9319. [CrossRef]

2. Wang, Q.X.; Yu, S.M.; Li, C.Q.; Lu, J.H.; Fang, X.L.; Guyeux, C.; Bahi, J.M. Theoretical Design and FPGA-Based
Implementation of Higher-Dimensional Digital Chaotic Systems. IEEE Trans. Circuits Syst. I 2016, 63, 401–412.
[CrossRef]

3. Valli, D.; Ganesan, K. Chaos based video encryption using maps and Ikeda time delay system. Eur. Phys.
J. Plus 2017, 132, 542. [CrossRef]

4. Vaidyanathan, S.; Akgul, A.; Kacar, S.; Cavusoglu, U. A new 4-D chaotic hyperjerk system, its
synchronization, circuit design and applications in RNG, image encryption and chaos-based steganography.
Eur. Phys. J. Plus 2018, 133, 46. [CrossRef]

5. Pan, J.; Ding, Q.; Du, B.X. A New Improved Scheme of Chaotic Masking Secure Communication Based on
Lorenz System. Int. J. Bifurc. Chaos 2012, 22, 1250125. [CrossRef]

6. Ren, S.L.; Panahi, S.; Rajagopal, K.; Akgul, A.; Pham, V.T.; Jafari, S. A New Chaotic Flow with Hidden
Attractor: The First Hyperjerk System with No Equilibrium. Z. Naturforsch. A 2018, 73, 239–249. [CrossRef]

7. Kamal, N.K.; Varshney, V.; Shrimali, M.D.; Prasad, A.; Kuznetsov, N.V.; Leonov, G.A. Shadowing in hidden
attractors. Nonlinear Dyn. 2018, 91, 2429–2434. [CrossRef]

54



Entropy 2018, 20, 295

8. Jafari, S.; Pham, V.T.; Golpayegani, S.M.R.H.; Moghtadaei, M.; Kingni, S.T. The Relationship Between Chaotic
Maps and Some Chaotic Systems with Hidden Attractors. Int. J. Bifurc. Chaos 2016, 26, 1650211. [CrossRef]

9. Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N.V.; Leonov, G.A.; Prasad, A. Hidden attractors in
dynamical systems. Phys. Rep. 2016, 637, 1–50. [CrossRef]

10. Zhang, H.; Xiang, S.Y.; Zhang, Y.H.; Guo, X.X. Complexity-enhanced polarization-resolved chaos in a ring
network of mutually coupled vertical-cavity surface-emitting lasers with multiple delays. Appl. Opt. 2017,
56, 6728–6734. [CrossRef] [PubMed]

11. Rontani, D.; Mercier, E.; Wolfersberger, D.; Sciamanna, M. Enhanced complexity of optical chaos in a laser
diode with phase-conjugate feedback. Opt. Lett. 2016, 41, 4637–4640. [CrossRef] [PubMed]

12. Du, B.X.; Geng, X.L.; Chen, F.Y.; Pan, J.; Ding, Q. Generation and Realization of Digital Chaotic Key Sequence
Based on Double K-L Transform. Chin. J. Electron. 2013, 22, 131–134.

13. Zhou, H.; Ling, X.T. Realizing Finite Precision Chaotic Systems via Perturbation of m-Sequences.
Acta Electron. Sin. 1997, 25, 95–97.

14. Cernak, J. Digital generators of chaos. Phys. Lett. A 1996, 214, 151–160. [CrossRef]
15. Liu, D.; Zeng, H.T.; Xiao, Z.H.; Peng, L.H.; Malik, O.P. Fault diagnosis of rotor using EMD thresholding-based

de-noising combined with probabilistic neural network. J. Vibroeng. 2017, 19, 5920–5931.
16. Li, J.L.; Lindemann, J.; Egelhaaf, M. Local motion adaptation enhances the representation of spatial structure

at EMD arrays. PLoS Comput. Biol. 2017, 13, e1005919. [CrossRef] [PubMed]
17. Su, J.S.; Wang, Y.Q.; Yang, X.Y.; Wang, X.F. Enhancement of Weak Lidar Signal Based on Variable Frequency

Resolution EMD. IEEE Photonic Technol. Lett. 2016, 28, 2882–2885. [CrossRef]
18. Singh, D.S.; Zhao, Q. Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines.

Mech. Syst. Signal Process. 2016, 81, 202–218. [CrossRef]
19. Huang, N.E.; Wu, Z.H. A review on Hilbert-Huang transform: Method and its applications to geophysical

studies. Rev. Geophys. 2008, 46, 1–23. [CrossRef]
20. Mandic, D.P.; Rehman, N.U.; Wu, Z.H.; Huang, N.E. Empirical Mode Decomposition-Based Time-Frequency

Analysis of Multivariate Signals. IEEE Signal Process. Mag. 2013, 30, 74–86. [CrossRef]
21. Tsai, P.H.; Lin, C.; Tsao, J.; Lin, P.F.; Wang, P.C.; Huang, N.E.; Lo, M.T. Empirical mode decomposition based

detrended sample entropy in electroencephalography for Alzheimer’s disease. J. Neurosci. Methods 2012, 210,
230–237. [CrossRef] [PubMed]

22. Zhang, X.; Liu, Z.W.; Miao, Q.; Wang, L. An optimized time varying filtering based empirical mode
decomposition method with grey wolf optimizer for machinery fault diagnosis. J. Sound Vib. 2018, 418,
55–78. [CrossRef]

23. Xu, Y.; Zhang, M.; Zhu, Q.; He, Y. An improved multi-kernel RVM integrated with CEEMD for high-quality
intervals prediction construction and its intelligent modeling application. Chemom. Intell. Lab. Syst. 2017,
171, 151–160. [CrossRef]

24. Vrochidou, E.; Alvanitopoulos, P.; Andreadis, I.; Elenas, A. Artificial accelerograms composition based on
the CEEMD. Trans. Inst. Meas. Control 2016, 40, 239–250. [CrossRef]

25. Jia, J.; Goparaju, B.; Song, J.L.; Zhang, R.; Westover, M.B. Automated identification of epileptic seizures in EEG
signals based on phase space representation and statistical features in the CEEMD domain. Biomed. Signal
Process. Control 2017, 38, 148–157. [CrossRef]

26. Bandt, C.; Pompe, B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett.
2002, 88, 174102. [CrossRef] [PubMed]

27. Yuan, F.; Wang, G.Y.; Wang, X.W. Extreme multistability in a memristor-based multi-scroll hyper-chaotic
system. Chaos 2016, 26, 507–519. [CrossRef] [PubMed]

28. Leonov, G.A.; Kuznetsov, N.V.; Mokaev, T.N. Homoclinic orbits, and self-excited and hidden attractors
in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 2015, 224, 1421–1458.
[CrossRef]

29. Kuznetsov, N.V.; Leonov, G.A.; Mokaev, T.N.; Prasad, A.; Shrimali, M.D. Finite-time Lyapunov dimension
and hidden attractor of the Rabinovich system. Nonlinear Dyn. 2017, 92, 267–285. [CrossRef]

30. Leonov, G.A.; Kuznetsov, N.V. Hidden Attractors in Dynamical Systems from Hidden Oscillations in
Hilbert–Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits. Int. J.
Bifurc. Chaos 2014, 23, 1330002. [CrossRef]

55



Entropy 2018, 20, 295

31. Li, Y.; Xu, M.; Wei, Y.; Huang, W. An improvement EMD method based on the optimized rational Hermite
interpolation approach and its application to gear fault diagnosis. Measurement 2015, 63, 330–345. [CrossRef]

32. Liu, L.F.; Miao, S.X. The complexity of binary sequences using logistic chaotic maps. Complexity 2016, 21,
121–129. [CrossRef]

33. Nian-Sheng, L. Pseudo-randomness and complexity of binary sequences generated by the chaotic system.
Commun. Nonlinear Sci. 2011, 16, 761–768. [CrossRef]

34. Murillo-Escobar, M.A.; Cruz-Hernandez, C.; Abundiz-Perez, F.; Lopez-Gutierrez, R.M.; Del Campo, O.R.A.
A RGB image encryption algorithm based on total plain image characteristics and chaos. Signal Process. 2015,
109, 119–131. [CrossRef]

35. Wang, Y.; Lei, P.; Yang, H.Q.; Cao, H.Y. Security analysis on a color image encryption based on DNA encoding
and chaos map. Comput. Electr. Eng. 2015, 46, 433–446. [CrossRef]

36. Ye, G.; Pan, C.; Huang, X.; Zhao, Z.; He, J. A Chaotic Image Encryption Algorithm Based on Information
Entropy. Int. J. Bifurc. Chaos 2018, 28, 1850010. [CrossRef]

37. Liu, H.J.; Kadir, A.; Sun, X.B. Chaos-based fast colour image encryption scheme with true random number
keys from environmental noise. IET Image Process. 2017, 11, 324–332. [CrossRef]

38. Liu, H.J.; Wang, X.Y. Color image encryption based on one-time keys and robust chaotic maps.
Comput. Math. Appl. 2010, 59, 3320–3327. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

56



entropy

Article

A New Two-Dimensional Map with
Hidden Attractors

Chuanfu Wang ID and Qun Ding *

Electronic Engineering College, Heilongjiang University, Harbin 150080, China; 1172054@s.hlju.edu.cn
* Correspondence: 1984008@hlju.edu.cn

Received: 31 January 2018; Accepted: 24 April 2018; Published: 27 April 2018

Abstract: The investigations of hidden attractors are mainly in continuous-time dynamic systems,
and there are a few investigations of hidden attractors in discrete-time dynamic systems. The classical
chaotic attractors of the Logistic map, Tent map, Henon map, Arnold’s cat map, and other
widely-known chaotic attractors are those excited from unstable fixed points. In this paper, the hidden
dynamics of a new two-dimensional map inspired by Arnold’s cat map is investigated, and the
existence of fixed points and their stabilities are studied in detail.

Keywords: hidden attractors; fixed point; stability

1. Introduction

The investigations of the chaotic system were greatly encouraged by the discovery of the Lorenz
system [1]. The Lorenz system is one of the most wildly-studied continuous-time dynamic systems,
and other classical continuous-time dynamic systems include the Rössler system, Chua system, Chen
system, Lü system, and Sprott system [2–6]. Most attractors of those classical continuous-time dynamic
systems are excited from unstable equilibria. However, hidden attractors imply the basin of attraction
does not contain neighborhoods of equilibria [7]. For finding hidden attractors, a lot of systems
improved when classical continuous-time dynamic systems were proposed [8–19]. These investigations
of hidden attractors can be classified by the number and stability of equilibria, such as no equilibrium,
finite stable equilibria, and infinite stable equilibria. In 2010, a special analytical-numerical algorithm
of finding hidden attractors in Chua system was proposed [20]. The special algorithm can find the
accuracy initial values that lead to hidden attractors and has promoted the development of finding
hidden attractors in continuous-time dynamic systems [21–24]. However, most investigations of
hidden attractors are mainly in continuous-time dynamic systems, such as the Chen system, Sprott
system, Chua system, and Lü system [15–24]. There are only a few of investigations of hidden attractors
in discrete-time systems.

The classical chaotic maps include the Logistic map, Tent map, Henon map, and Arnold’s
cat map [25–28]. In line with continuous-time dynamic systems, these hidden attractors in the
classical chaotic maps are also excited from unstable fixed points. In 2016, Jafari et al. studied a
new one-dimensional chaotic map with no fixed point inspired by Logistic map, and its bifurcation and
period doubling were introduced [29]. At the same year, Jiang et al. performed a search to find hidden
attractors in a new two-dimensional chaotic map inspired by the Henon map and analyzed several
different cases on fixed points, such as no fixed point, single fixed point, and two fixed points [30].

In this paper, a new two-dimensional chaotic map inspired by Arnold’s cat map is proposed.
For the limitation in the form of the Arnold’s cat map, the number of fixed points in the new
two-dimensional chaotic map is not larger than two, and the fixed points are closely related to
the Lyapunov exponents. Due to the restriction of the form of the Arnold’s cat map, the new
two-dimensional chaotic attractor can only appear in the case of no fixed point. Thus, our concern
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focuses on the case of no fixed point. The paper is arranged as follows: Section 2 describes the Arnold’s
cat map and shows its chaotic attractor. Section 3 analyzes the stability of the equilibria in the new
two-dimensional map. Section 4 demonstrates the digitalization and hardware implementation of the
new two-dimensional map. The complexity of output time series is tested by approximate entropy in
Section 5, and Section 6 summarizes the conclusions of this paper.

2. Arnold’s Cat Map

Arnold’s cat map, also known as cat chaotic map, is a chaotic map of repeated folding and
stretching in a limited area and is wildly used in multimedia chaotic encryption [28]. Arnold’s cat map
is a two-dimensional chaotic map and defined as[

x(n + 1)
y(n + 1)

]
=

[
1 1
1 2

][
x(n)
y(n)

]
(mod1) (1)

Equation (1) can be transformed into Equation (2) for calculating the fixed points.{
x(n) = x(n) + y(n)(mod1)
y(n) = x(n) + 2y(n)(mod1)

(2)

Equation (2) always has a fixed point, because it is composed of homogeneous linear equations.

The fixed point of the Arnold’s cat map is

{
x∗ = 0
y∗ = 0

. The Jacobian matrix of Arnold’s cat map is[
1 1
1 2

]
, and the two eigenvalues are calculated as Eig1 = 3 +

√
5

2 ≈ 2.618 and Eig2 = 3 − √
5

2 ≈
0.382. Therefore, the fixed point (0,0) is an unstable fixed point. It is a saddle point, because there is a
positive Lyapunov exponent and a negative Lyapunov exponent. For a positive Lyapunov exponent,
Arnold’s cat map is a two-dimensional chaotic map. In Arnold’s cat map, two eigenvalues of the
Jacobian matrix are associated, respectively, to an expanding and a contracting eigenspace, which
are also the stable and unstable manifolds [31]. The phase diagram of Arnold’s cat map is shown in
Figure 1.

Figure 1. When x(0) = 0.7 and y(0) = 0.6, this represents the phase diagram of Arnold’s cat map.
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The generalized Arnold’s cat map is defined as[
x(n + 1)
y(n + 1)

]
=

[
1 a
b ab + 1

][
x(n)
y(n)

]
(mod1). (3)

The fixed point of the generalized Arnold’s cat map also is

{
x∗ = 0
y∗ = 0

. The Jacobian matrix of

the generalized Arnold’s cat map is , and two eigenvalues are λ1 = 1 + ab +
√

(ab + 2)2 − 4
2 > 1 and

λ2 = 1 + ab −
√

(ab + 2)2 − 4
2 < 1. Therefore, the fixed point (0,0) also is an addle point. The generalized

Arnold’s cat map also is chaotic map, because it has one positive Lyapunov exponent. Despite Arnold’s
cat map or the generalized Arnold’s cat map, they always have unstable saddle pint (0,0).

3. A New Two-Dimensional Chaotic Map without Fixed Points

In this paper, a new two-dimensional chaotic map inspired by Arnold’s cat map is proposed. It is
defined as [

x(n + 1)
y(n + 1)

]
=

[
a b
c d

][
x(n)
y(n)

]
+

[
e
f

]
(mod1). (4)

in which a = kc + 1, b = k(d − 1), e �= k f �= 0, e ∈ (0, 1), f ∈ (0, 1), and k �= 0. For calculating
the fixed point, Equation (4) can be transformed into two-dimensional equations.{

x(n) = (kc + 1)x(n) + k(d − 1)y(n) + e(mod1)
y(n) = cx(n) + dy(n) + f (mod1)

(5)

Equation (5) can be transformed into nonhomogeneous linear equations by collecting the
like terms. {

kcx(n) + k(d − 1)y(n) = −e(mod1)
cx(n) + (d − 1)y(n) = − f (mod1)

(6)

There is no solution to the nonhomogeneous linear equations. Thus, the map (4) has no fixed
point. However, the coefficients should be further limited for obtaining hidden chaotic attractors. The
Jacobian matrix of the map (4) is

J1 =

[
kc + 1 kd − k

c d

]
. (7)

The characteristic equation of the matrix J1 is calculated as

det(λI − J1) = λ2 − tr(J1)λ + det(J1) = 0. (8)

in which det(J1) = d + ck is the determinant of matrix J1 and tr(J1) = kc + 1 + d is the trace
of matrix J1. The characteristic equation of the matrix J1 is a quadratic function. The roots of the
Equation (8) are

λ1,2 =
kc + 1 + d ± (kc + d − 1)

2
(9)

in which λ1 = 1 and λ2 = kc + d. The two corresponding Lyapunov exponents are LE1 = ln|λ1| = 0
and LE2 = ln|kc + d|. The non-chaos fixed point attractors have negative Lyapunov exponents.
The non-chaos periodic or limit cycle attractors have non-positive Lyapunov exponents. The chaotic
attractors have positive Lyapunov exponents. Therefore, the chaotic system exists at least a positive
Lyapunov exponent. For obtaining hidden chaotic attractors, the second eigenvalue λ2 = kc + d
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should be larger than 1. For example, the coefficients are set as c = 1, d = 2, and k = 2, and
|kc + d| = 4 > 1. Combining with the map (4), the new two-dimensional map with no fixed point is
defined as [

x(n + 1)
y(n + 1)

]
=

[
3 2
1 2

][
x(n)
y(n)

]
+

[
0.1
0.2

]
(mod1). (10)

in which e = 0.1 and f = 0.2. The phase diagram of attractors is shown in Figure 2, and the plot of

the output time series is shown in Figure 3.

Figure 2. When x(0) = 0.7 and y(0) = 0.6, the phase diagram of the new 2-D map with a = 3,
b = 2, c = 1, d = 2, e = 0.1, and f = 0.2.

Figure 3. The plot of the output time series (a) x(n), (b) y(n).

The new two-dimensional map (10) is a chaotic map, because it has a positive Lyapunov exponent.
From Equation (9), the chaotic behavior in the map (4) is dependent only on the coefficients c, d,

and k, and the second eigenvalue of the Jacobian matrix J1 is the simple combination of c, d, and k. The
Lyapunov exponent can be changed with different parameters c, d, and k. When c = 1.1, d = 2,
k = 2, and t = 4.2 > 1. Combining with the map (4), a new two-dimensional map without fixed
points is defined as
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[
x(n + 1)
y(n + 1)

]
=

[
3.2 2
1.1 2

][
x(n)
y(n)

]
+

[
0.1
0.2

]
(mod1). (11)

in which e = 0.1 and f = 0.2. The phase diagram of the chaotic attractors is shown in Figure 4, and
the plot of the output time series is shown in Figure 5.

Figure 4. When x(0) = 0.7 and y(0) = 0.6, the phase diagram of the new 2-D map with a = 3.2,
b = 2, c = 1.1, d = 2, e = 0.1, and f = 0.2.

Figure 5. The plot of the output time series (a) x(n), (b) y(n).

As can be observed from the plots of the time series, it is obvious that the map (11) has initial
value sensitivity, randomness, and so on. For no fixed point in the map (11), the map (11) is a chaotic
map and has a hidden chaotic attractor. As can be seen from Figure 1, the chaotic attractor of the
map (11) is not similar to that of Arnold’s cat map. When c = −0.25, d = 2, k = 2, and t = 1.5 > 1.
Combining with the map (4), a new two-dimensional map is defined as[

x(n + 1)
y(n + 1)

]
=

[
0.5 2

−0.25 2

][
x(n)
y(n)

]
+

[
0.1
0.2

]
(mod1). (12)

in which e = 0.1 and f = 0.2. The phase diagram of the chaotic attractors is shown in Figure 6, and
the plot of the output time series is shown in Figure 7.
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Figure 6. When x(0) = 0.7 and y(0) = 0.6, the phase diagram of the new 2-D map with a = 0.5,
b = 2, c = −0.25, d = 2, e = 0.1, and f = 0.2.

Figure 7. The plot of the output time series (a) x(n), (b) y(n).

Compared with Figure 1, the phase diagram of the map (12) is dissimilar to the Figures 2 and 4.
When initial value is changed, x(n) has the same output time series in the first 20 iterations, and y(n)
has the same output time series in the first 10 iterations.

4. Digitalization and Hardware Implementation

For the digitalization of information, chaotic systems need to be digitized before they are
used [32,33]. The new two-dimensional chaotic map can be digitalized in two ways: one is the
floating-point representation, the other is fixed-point representation. According to IEEE 754-2008 [34],
floating-point is divided into single precision and double precision. The form of floating-point is
shown in Table 1.

Table 1. Floating-point representation.

Floating-Point Sign Exponent Fraction

Single precision 1 bit 8 bits 23 bits
Double precision 1 bit 11 bits 52 bits
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The hardware consumptions of the fixed-point representation are not very high, because it includes
sign bit and fraction bits. However, there is no standard form in fixed-point representation. Compared
with floating-point computing, fixed-point computing is faster, and hardware implementation is
smaller [35]. For a better performance in hardware implementation, the new two-dimensional map
is represented by fixed-point in this paper. Since x(n) and y(n) are decimal numbers, they are more easily
represented by fixed-point. Therefore, x(n) and y(n) are changed from decimals to integers. The digitized
N bits of decimal β can be represented as

β̃ =
⌊

2N β
⌋

2−N . (13)

in which β̃ is an N bits approximation of β. The digitized N bits of map ϕ(β) = λβmod1 can be
written as ϕ̃(β̃) =

⌊
2N λβ̃mod2N

⌋
2−N , and the digitized N bits of map (4) can be written as

{
x̃(n + 1) =

⌊
2N ax̃(n) + 2N bỹ(n) + 2N emod2N⌋2−N

ỹ(n + 1) =
⌊
2N cx̃(n) + 2N dỹ(n) + 2N f mod2N⌋2−N . (14)

Multiplying both sides by 2N , map (14) can be represented as{
2N x̃(n + 1) =

⌊
2N ax̃(n) + 2N bỹ(n) + 2N emod2N⌋

2Nỹ(n + 1) =
⌊
2N cx̃(n) + 2N dỹ(n) + 2N f mod2N⌋ . (15)

Denote 2N x̃(n), 2Nỹ(n), 2Ne, and 2N f by x(n), y(n), e, and f , respectively. The digitized N bits of map
(15) can be written as[

x(n + 1)
y(n + 1)

]
=

⌊[
a b
c d

][
x(n)
y(n)

]
+

[
e
f

]⌋
(mod2N), (16)

in which x(n) and y(n) is in the interval [0, 2N − 1], N presents the length of finite precision, x(n) and
y(n) is represented by N bits. When N = 32, the hardware implementation by FPGA is shown in
Figure 8.

Figure 8. The block diagram of the hardware implementation by FPGA.

5. The Analysis of Complexity

The approximate entropy algorithm is proposed from the angle of measuring the complexity of
time series [36–39]. The main idea of the approximate entropy algorithm is using a non-negative value
to quantify the complexity and irregularity of the time series, and the value increases with the increase
of sequence complexity. The calculation process of the approximate entropy is shown as follows:
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1 Suppose the initial data is the sequence x(1), x(2), . . . x(N), and then divide them into
m-dimensional vectors

X(i) = [x(i), x(i + 1), ..., x(i + m − 1)], (17)

in which i = 1, 2, 3...N − m + 1.
2 The distance between x(i) and x(j) is defined as

d(i, j) = max
k=1−m−1

[|x(i + k) − x(j + k)|]. (18)

3 Setting a threshold value r(r > 0), for each i, we can obtain the statistics of d(i, j).

Ci
m(r) =

1
N − m + 1

Sum{d(i, j) < r} (19)

4 The mean of logarithm of Ci
m(r) is written as φm(r) and can be calculated by

φm(r) =
1

N − m + 1

N−m+1

∑
i=1

ln Ci
m(r) (20)

5 Changing dimension and repeating step 1 to step 4, we can obtain the approximate entropy

ApEn(m, r) = lim
N→∞

[φm(r) − φm+1(r)] (21)

However, in practical terms, the length of the data sequence is bounded. Therefore, the approximate
entropy algorithm is changed into

ApEn(m, r, N) = φm(r) − φm+1(r)] (22)

Pincus found that there exists a minimal dependency between ApEn and N when m = 2 and
r ∈ [0.1SD(x), 0.2SD(x)] [36]. SD(x) is the standard deviation of x. The complexity of the output
time series of Arnold’s cat map and new two-dimensional chaotic maps are tested by approximate
entropy algorithm, and the consequence show that the output time series of Equation (11) has a higher
complexity. The specific results are shown in Table 2.

Table 2. Approximate entropy test.

Chaotic Map Time Series m r = 0.15SD N ApEn

Equation (1) x(n) 2 0.0435 2000 0.9787
y(n) 2 0.0436 2000 0.9963

Equation (10) x(n) 2 0.0426 2000 0.7591
y(n) 2 0.0437 2000 0.8841

Equation (11) x(n) 2 0.0436 2000 1.4171
y(n) 2 0.0434 2000 1.2831

Equation (12) x(n) 2 0.0438 2000 0.5433
y(n) 2 0.0428 2000 0.8429

6. Conclusions

In this paper, the hidden attractors for the two-dimensional chaotic map are studied, and the
existence of fixed points and their stability are considered. Due to the restriction of the form of
the Arnold’s cat map, the new two-dimensional chaotic attractor can only appear in the case of
no fixed point. The selection of coefficients directly affects whether the two-dimensional map has
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chaotic behavior, because the eigenvalue of the Jacobian matrix of the new two-dimensional chaotic
map is a simple combination of the coefficients. Three concrete examples are given to illustrate the
relationship between the coefficients and the chaotic behavior. The different coefficients can not only
determine the chaotic behavior of the new two-dimensional chaotic map but also affect the shape of
the chaotic attractor.
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Abstract: This paper considers the existence and uniqueness of stochastic entropy solution for a
nonlinear transport equation with a stochastic perturbation. The uniqueness is based on the doubling
variable method. For the existence, we develop a new scheme of parabolic approximation motivated
by the method of vanishing viscosity given by Feng and Nualart (J. Funct. Anal. 2008, 255, 313–373).
Furthermore, we prove the continuous dependence of stochastic strong entropy solutions on the
coefficient b and the nonlinear function f .
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1. Introduction

In this paper, we consider the existence and uniqueness of the solutions to the nonlinear transport
equation with a stochastic forcing:{

dρ(t, x) + b(x) · ∇x f (ρ(t, x))dt = A(ρ(t, x))dWt, t > 0, x ∈ Rd,
ρ(t, x)|t=0 = ρ0(x), x ∈ Rd,

(1)

where Wt is a one-dimensional Wiener process on a stochastic basis (Ω, F ,P, {Ft}t�0) and A : R → R

is a real valued function. f : R → R and b : Rd → Rd are Borel functions, and the initial data ρ0

is non-random.
When divxb = 0, then b(x) · ∇x f (ρ(t, x)) = divx(b(x) f (ρ(t, x))), the equation in (1) models the

phenomenon of complex fluid mixing in porous media flows and other problems in mathematics and
physics [1–5]. A particular application of this model involves two-phase fluid flow, which has been
used to study the flow of water through oil in a porous medium [6,7]. For the porous media flows,
the spatial variations of porous formations occur on all length scales, but only the variations at the
largest length scales are reliably reconstructed from data available. The heterogeneities occurring on
the smaller length scales have to be incorporated stochastically. Consequently, the flows through such
formations are stochastic [8].

There has been an interest in studying the effect of stochastic force on the corresponding
deterministic equations, especially on the existence and uniqueness. Most of papers focus on the
following Cauchy problem:{

dρ(t, x) + divxF(ρ(t, x))dt = A(t, x, ρ(t, x))dWt, t > 0, x ∈ Rd,
ρ(t, x)|t=0 = ρ0(x), x ∈ Rd,

(2)

Entropy 2018, 20, 395; doi:10.3390/e20060395 www.mdpi.com/journal/entropy67
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where Wt is a one-dimensional standard Brownian motion or a cylindrical Brownian motion, or a
space-time Gaussian white noise.

The various well-posedness results have been established for the Cauchy problem (2).
When d = 1, the L∞ solution has been established in [9,10] for A = A(ρ) and A = A(t, x),
respectively, under hypotheses that ρ0 ∈ L∞ and A has compact support. For general A, even for
initial data ρ0 ∈ L∞, the solution is not in L∞ since the maximum principle is not available.
Therefore, Lp (1 � p < ∞) is a natural space on which the solutions are posed.

When A = A(x, ρ), the framework of Lp-solutions (2 � p < ∞) was first established
by Feng and Nualart [11], but the existence was true only for d = 1. These solutions were
generalized to weak-in-time by Bauzet, Vallet and Wittbold [12], Biswas and Majee [13], and
Karlsen and Storrøsten [14]. For any dimension d � 1, the well-posedness of kinetic solutions
was obtained by Debussche and Vovelle [15], and then the result was extended by Hofmanová [16].
Recently, due to the fact that uniform spatial BV-bound is preserved for problem (2) if A satisfies
a Lipschitz condition, Chen, Ding and Karlsen [17] supplied a result on well-posedness of ∩p�1Lp

solutions in Rd for d � 1. Furthermore, there are many papers devoted to the study of the Cauchy
problem (2), such as the study on bounded domains [18–20], invariant measures [21,22], Lévy
noises [23–26] and long time behaviors [27]. For more details in this direction for random fluxes,
we refer the readers to [28–31].

When F depends explicitly on x, so far as we know, there are few research works on the Cauchy
problem (2). Even though for the problem (1), there are still few works since that the presence of b will
bring us some new difficulties on the proof of existence and uniqueness of solutions. Moreover, from the
viewpoint of conservations laws and numerical simulations, L∞ is a natural space on which solutions
are posed, how to get the boundedness of solutions is another difficulty. We would like to point out that
there are two big difficulties arisen here. One is how to get the compactness of solutions for the viscosity
equation, another is how to prove the boundedness of solutions. To overcome the first difficulty, we
develop a new scheme of parabolic approximation, which sheds some new light on the method of
vanishing viscosity. For the second difficulty, we use the Ito’s formula and the cut-off technique.
We know that there are probably three classical methods to deal with the compactness of solutions
for the viscosity equation so far when F is independent of x. The first is based upon Young’s relaxed
measure [11,14], which is suitable to space-time Gaussian white noise. The second is to estimate the
spatial BV-bound and temporal L1-continuity [17], which is suitable to get the convergence of solutions
for almost everywhere (t, x) and almost surely ω. The third is to use the kinetic formulation [15,16],
which is suitable to cylindrical Brownian motion.

In this paper, we adapt the method given by [11,14], but there is a significant difference. The more
important thing is that we obtain the continuity of solutions in the temporal variable. The arguments
for problem (1) can be generalized to an equation in which the stochastic term is represented by∫

z∈Z
A(x, ρ(t, x), z)W(t, dz),

where Z is a metric space, and W is a space-time Gaussian white noise martingale random measure
with respect to the filtration {Ft}t�0, if one assumes in addition that A is Lipschitz continuous in x.
Up to longer and more tedious calculations, the arguments for space-time Gaussian white noise is
similar to problem (1). There is no new component except some minor changes, which is also similar
to the proof given in [11]. To make the present proof more refined, we discuss the simple case and
prove the existence and uniqueness of solutions to (1) in this paper. Encouraged and inspired by the
definition given in [11], we first give a notion of stochastic entropy solution.

Definition 1. Let |b|, divb ∈ L1
loc(R

d), f ∈ C2(R), A ∈ C(R), ρ0 ∈ L1 ∩ L∞(Rd). An {Ft}t�0-adapted
and L2(Rd)-valued stochastic process ρ = ρ(t, x, ω) is said to be a stochastic entropy solution of (1), if
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(i) for every T > 0 and every p ∈ [1, ∞),

ρ ∈ C([0, T]; Lp(Ω; Lp
loc(R

d))) (3)

and

sup
0�t�T

‖ρ(t)‖L1(Ω×Rd) + sup
0�t�T

‖ρ(t)‖L∞(Ω×Rd) < ∞; (4)

(ii) for every entropy pair (η, q), (η ∈ C∞(R), η′′ � 0, q(v) =
∫ v

η′(s) f ′(s)ds, f ′(s) = d f (s)/ds),
every nonnegative function ϕ ∈ C2

0 (R
d) and every 0 � s < t < ∞,∫

Rd
ϕ(x)η(ρ(t, x))dx −

∫
Rd

ϕ(x)η(ρ(s, x))dx

�
∫ t

s

∫
Rd

divx(b(x)ϕ(x))q(ρ(r, x))dxdr +
1
2

∫ t

s

∫
Rd

η′′(ρ(r, x))A2(ρ(r, x))ϕ(x)dxdr

+
∫ t

s
dWr

∫
Rd

η′(ρ(r, x))A(ρ(r, x))ϕ(x)dx, P− a.s., (5)

where the stochastic integral in the last term in (5) is interpreted in Itô’s sense.

Furthermore, stochastic entropy solution ρ is called a stochastic strong entropy solution if the below
conditions hold:

(iii) for each {Ft}t�0-adapted L2(Rd)-valued stochastic process ρ̃(t, x, ω), satisfying (3) and (4), we define η̃

through each entropy function η by

η̃(r, v, y) :=
∫
Rd

η′(ρ̃(r, x)− v)A(ρ̃(r, x))ψ(x, y)dx, (6)

where r � 0, v ∈ R, y ∈ Rd and ψ ∈ C2
0 (R

2d), there is a deterministic function D(s, t), such that

E

∫
Rd

[ ∫ t

s
η̃(r, v, y)dWr

]
v=ρ(t,y)

dy � E

∫ t

s

∫
Rd

∂vη̃(r, v = ρ(r, y), y)A(ρ(r, y))dydr + D(s, t); (7)

(iv) for each T > 0, there exist partitions 0 = t0 < t1 < · · · < tn = T such that

lim
max(ti−ti−1)→0

n

∑
i=1

D(ti−1, ti) = 0. (8)

We now state our main results. The first one is focused on the uniqueness.

Theorem 1. Let f ∈ C2(R), ρ0 ∈ L1 ∩ L∞(Rd) and

b ∈ BVloc(R
d;Rd), divb,

|b(·)|
1 + | · | ∈ L∞(Rd), A ∈ C 1

2 (R). (9)

Suppose that ρ1 and ρ2 are stochastic entropy solutions of (1), and one of them is a stochastic strong entropy
solution. Then, for every t > 0,

E‖ρ1(t)− ρ2(t)‖L1(Rd) = 0. (10)

Remark 1. Compared with the uniqueness results given in [11,17], Theorem 1 is new since the 1/2-Hölder
continuity of A is enough to ensure the uniqueness. Moreover, compared with the uniqueness result for stochastic
differential equations in [32], the hypotheses of 1/2-Hölder continuity on A is optimal.

If b, f and A are more regular, we also have the following existence results.
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Theorem 2. Let f ∈ C2(R) such that f ′ is bounded and f (0) = 0. Assume that b ∈ W1,∞(Rd;Rd) and

ρ0 ∈ L1 ∩ L∞(Rd), A ∈ Lip(R), A(0) = 0, and ∃ N > 0, A(u) = 0, ∀ |u| � N. (11)

Then,

(i) (1) has a stochastic strong entropy solution.
(ii) Moreover, in addition ρ0 ∈ BV(Rd), for every T > 0, we have ρ ∈ L∞([0, T]; L1(Ω; BV(Rd))) and

there is a constant C depending only on ‖b‖W1,∞(Rd) and ‖ f ′‖L∞(R) such that

sup
0�t�T

E‖ρ(t)‖BV(Rd) � C(‖b‖W1,∞(Rd), ‖ f ′‖L∞(R))‖ρ0‖BV(Rd). (12)

Remark 2. (i) If divb = 0, then f (0) = 0 is not needed.
(ii) For a general function A, even for initial data ρ0 ∈ L∞, the solution is not in L∞. To maintain the

boundedness of solutions, additional assumptions on A should be added. Inspired by [9,10], we can
suppose that A has compact support.

We now discuss the continuous dependence of the solutions on b, f and A. Some results for the
continuity on A have established for the case of constant vector field b [17]. Here, we only give the
continuous dependence of the solutions on b and f .

Theorem 3. Let ρ̃0 ∈ L1 ∩ L∞(Rd), ρ0 ∈ L1 ∩ L∞ ∩ BV(Rd), b, b̃ ∈ W1,∞(Rd;Rd). f , f̃ ∈ C2(R) such
that f ′, f̃ ′ are bounded and f (0) = f̃ (0) = 0. A meets the assumption (11). Let ρ be the unique stochastic
strong entropy solution of (1) and ρ̃ be the unique stochastic strong entropy solution of{

dρ̃(t, x) + b̃(x) · ∇x f̃ (ρ̃(t, x))dt = A(ρ̃(t, x))dWt, t > 0, x ∈ Rd,
ρ̃(t, x)|t=0 = ρ̃0(x), x ∈ Rd.

For every T > 0, there exists a constant C > 0, which depends only on ‖b‖W1,∞(Rd) , ‖ f ′‖L∞(R),
‖ f̃ ′‖L∞(R), ‖divb̃‖L∞(Rd), ‖b̃‖L∞(Rd) and T, such that

sup
0�t�T

E

∫
Rd

|ρ(t, x)− ρ̃(t, x)|dx �
∫
Rd

|ρ0(x)− ρ̃0(x)|dx

+C[‖b − b̃‖L∞(Rd) + ‖ f ′ − f̃ ′‖L∞(R)]‖ρ0‖BV(Rd). (13)

Remark 3. Without the noise, (1) has been discussed by Chen and Karlsen. Some results on the existence and
uniqueness of solutions as well as continuous dependence on b and f have been obtained in [33]. Here, we get an
analogue of [33] (Theorem 3.2) but simplify some assumptions on the velocity fields b and b̃.

The present paper is organized as follows. In Section 2, we give the proof of Theorem 1. Section 3
is devoted to the proof for Theorem 2. In Section 4, we prove the continuous dependence of solutions
on b and f .

We end up this section by introducing some notations. N is natural numbers set. m ∈ N and
Cm

0 (Rd) stands for the vector space consisting of all functions φ, which, together with all their partial
derivatives ∂αφ of order |α| � m, are continuous and have compact supports in Rd. Given a measurable
function ς, ς+ = max{ς, 0} = ς ∨ 0 and ς− = − min{ς, 0} = −[ς ∧ 0]. The symbols ∇, div, Δ, if not
differently specified, are referred to derivatives in x. For every R > 0, BR := {x ∈ Rd : |x| < R}. It
almost surely can be abbreviated to a.s.. The letter C will mean a positive constant, whose values may
change in different places.
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2. Proof of Theorem 1

Let ρ1 be a stochastic entropy solution of (1) with the initial data ρ1
0 and ρ2 be a stochastic strong

entropy solution of (1) with the initial data ρ2
0, respectively. We set ρ12(t, x) := ρ1(t, x)− ρ2(t, x) for

every t > 0 and x ∈ Rd.
Let � be a 1-dimensional standard mollifier,

�(r) = C0 exp(
1

r2 − 1
)1|r|<1(r),

∫
R

�(r)dr = 1. (14)

For θ > 0, we set �θ(r) = �(r/θ)/θ and define

ηθ(r) =
∫ r

−∞

∫ s−θ

−∞
�θ(τ)dτds. (15)

For any δ > 0 and any 0 � ϕ ∈ C2
0 (R

d), we set

ψδ(x, y) = (δ−d
d

∏
k=1

�(
xk − yk

δ
))ϕ(

x + y
2

) ∈ C2
0 (R

2d). (16)

If one chooses the entropy function by ηθ , the test function by ψδ(x, y), and δ = θ2/3, in view of
the assumption b ∈ BVloc(R

d;Rd), then all calculations from [11] (Lemma 3.1) to [11] (Lemma 3.3) are
adapted to the present case. Furthermore, noting the fact that if g ∈ L1(Rd), for every ε > 0, we define
gε(x) = 1|g|�ε(x)|g(x)|/ε, then for almost everywhere x ∈ Rd,

gε(x) → 0 as ε ↓ 0. (17)

Hence, Ref. [11] (Lemma 3.4) holds true as well if A ∈ C 1
2 (R).

Therefore, for every t > 0, we conclude that

E

∫
Rd

ϕ(x)[ρ12]+(t, x)dx −
∫
Rd

ϕ(x)[ρ12]+(0, x)dx

� E

∫ t

0

∫
Rd
[divb(x)ϕ(x) + b(x) · ∇ϕ(x)]1[0,∞)(ρ12(r, x))[ f (ρ1(r, x))− f (ρ2(r, x))]dxdr

� ‖ f ′‖L∞([−a,a])E

∫ t

0

∫
Rd

|divb(x)ϕ(x) + b(x) · ∇ϕ(x)|[ρ12]+(r, x)dxdr, (18)

where a = [sup0�t�T ‖ρ1(t)‖L∞(Ω×Rd)] ∨ [sup0�t�T ‖ρ2(t)‖L∞(Ω×Rd)].
Let the test function ϕ in (16) satisfy that supp(ϕ) ⊂ B2, ϕ = 1 on |x| � 1. Let R > 0 be a real

number, and set ϕR = ϕ(·/R). With the help of (9): divb, |b(·)|/(1 + | · |) ∈ L∞(Rd), if one takes
ϕ(·/R) instead of ϕ in (18) and lets R tend to infinity, then

E

∫
Rd
[ρ12]+(t, x)dx −

∫
Rd
[ρ12]+(0, x)dx

� ‖ f ′‖L∞([−a,a])‖divb‖L∞(Rd)E

∫ t

0

∫
Rd
[ρ12]+(r, x)dxdr. (19)

Thus, by the Grönwall inequality, one easily finds that

sup
0�t�T

E

∫
Rd
[ρ12]+(t, x)dx � exp{‖ f ′‖L∞([−a,a])‖divb‖L∞(Rd)T}

∫
Rd
[ρ12]+(0, x)dx. (20)

Similar arguments imply that

sup
0�t�T

E

∫
Rd
[ρ21]+(t, x)dx � exp{‖ f ′‖L∞([−a,a])‖divb‖L∞(Rd)T}

∫
Rd
[ρ21]+(0, x)dx. (21)
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Combining (20) and (21), we complete the proof. �

3. Proof of Theorem 2

(i) We prove the existence of stochastic strong entropy solutions for (1) by the method of vanishing
viscosity, that is, we regard (1) as the ε ↓ 0 limit of the viscosity equation{

dρε(t, x) + b(x) · ∇ f (ρε(t, x))dt = εΔρε(t, x)dt + A(ρε(t, x))dWt, t > 0, x ∈ Rd,
ρε(t, x)|t=0 = ρε

0(x), x ∈ Rd,
(22)

where ρε
0 is an approximation to ρ0.

We now divide the proof into three steps.

Step 1. Existence and uniqueness of mild solutions to the Cauchy problem (22).

Here, ρε is said to be a mild solution of (22), if ρε(t) is an Ft-adapted L2(Rd)-valued stochastic
process and satisfies

ρε(t, x) =
∫
Rd

Gε(t, x − z)ρε
0(z)dz +

∫ t

0

∫
Rd

divz(Gε(t − r, x − z)b(z)) f (ρε(r, z))dzdr

+
∫ t

0
dWr

∫
Rd

Gε(t − r, x − z)A(ρε(r, z))dz, P− a.s., (23)

for every t � 0, almost everywhere x ∈ Rd, where the heat kernel Gε(t, x) = e−
|x|2
4εt /(4πεt)d/2.

We choose ρε
0 ∈ L1 ∩ L∞ ∩ H1(Rd) such that ρε

0 → ρ0 in L1 ∩ L2(Rd) as ε ↓ 0. For every fixed ε,
every p ∈ [1, ∞], ‖ρε

0‖Lp(Rd) � ‖ρ0‖Lp(Rd). With the help of Banach contraction mapping principle,
there is a unique mild solution ρε to (22). Moreover, for every T > 0,

ρε ∈ C([0, T]; L2(Ω; H1(Rd))) ∩ L2([0, T]× Ω; H2(Rd)) ∩ L∞([0, T]; Lp(Ω ×R
d)), ∀p ∈ [1, ∞).

Furthermore, for every 1 � p < ∞, every T > 0, we have

sup
0�t�T

E

[
‖ρε(t)‖p

Lp(Rd)

]
+E

[
ε
∫ T

0
‖∇ρε(t)‖2

L2(Rd)
dt
]

� C(‖b‖L∞(Rd), ‖divb‖L∞(Rd), ‖ f ′‖L∞(R), T)
[
‖ρε

0‖p
Lp(Rd)

+ ‖ρε
0‖2

L2(Rd)

]
� C(‖b‖L∞(Rd), ‖divb‖L∞(Rd), ‖ f ′‖L∞(R), T)

[
‖ρ0‖p

Lp(Rd)
+ ‖ρ0‖2

L2(Rd)

]
(24)

and

E‖∇2ρε‖L2([0,T]×Rd) � C(‖b‖W1,∞(Rd), ‖ f ′‖L∞(R), ε)‖∇ρε
0‖L2(Rd). (25)

We show that (4) holds for ρε. Let ηθ be given by (15). ∀M > 0, define ηM
θ (r) = ηθ(r − M), then

ηM
θ (r) → (r − M)+ as θ ↓ 0. (26)

Let �̃ be a d-dimensional standard mollifier, i.e.,

�̃(x) = C1 exp(
1

|x|2 − 1
)1|x|<1(x),

∫
Rd

�̃(x)dx = 1. (27)

For δ > 0, we define �̃δ(x) = �̃(x/δ)/δd. Let ϕ(x) = C1e−|x|, with C1 = [
∫
Rd e−|x|dx]−1 and for

every given natural number n ∈ N, we set ϕn
δ (x) = (ϕ1|x|<n(·)) ∗ �̃δ(x).
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By using Itô’s formula and the integration by parts, then

E

∫
Rd

ϕn
δ (x)ηM

θ (ρε(t, x))dx −
∫
Rd

ϕn
δ (x)ηM

θ (ρε
0(x))dx

� E

∫ t

0

∫
Rd

div(b(x)ϕn
δ (x))qδ

M(ρε(r, x))dxdr + εE
∫ t

0

∫
Rd

ηM
θ (ρε(r, x))Δϕn

δ (x)dxdr

+
1
2
E

∫ t

0

∫
Rd
(ηM

θ )′′(ρε(r, x))A2(ρε(r, x))ϕn
δ (x)dxdr, (28)

where in (28) we have used the fact

ΔηM
θ (ρε1(t, x)) � (ηM

θ )′(ρε1(t, x))Δρε1(t, x). (29)

For θ, δ, M and ε be fixed, if one lets n approach to infinity, (28) turns to

E

∫
Rd

ϕδ(x)ηM
θ (ρε(t, x))dx −

∫
Rd

ϕδ(x)ηM
θ (ρε

0(x))dx

� E

∫ t

0

∫
Rd

div(b(x)ϕδ(x))qM
θ (ρε(r, x))dxdr + εE

∫ t

0

∫
Rd

ηM
θ (ρε(r, x))Δϕδ(x)dxdr

+
1
2
E

∫ t

0

∫
Rd
(ηM

θ )′′(ρε(r, x))A2(ρε(r, x))ϕδ(x)dxdr

� E

∫ t

0

∫
Rd

div(b(x)ϕδ(x))qM
θ (ρε(r, x))dxdr + εE

∫ t

0

∫
Rd

ηM
θ (ρε(r, x))ϕδ(x)dxdr

+CE
∫ t

0

∫
Rd

1
θ

1|ρε(r,x)−M|�θ A2(ρε(r, x))ϕδ(x)dxdr,

where ϕδ(x) = (ϕ ∗ �̃δ)(x) and in the last inequality we use the fact Δϕδ(x) � ϕδ(x). Then, taking
δ → 0, we arrive at

E

∫
Rd

ϕ(x)ηM
θ (ρε(t, x))dx −

∫
Rd

ϕ(x)ηM
θ (ρε

0(x))dx

� E

∫ t

0

∫
Rd

div(b(x)ϕ(x))qM
θ (ρε(r, x))dxdr + εE

∫ t

0

∫
Rd

ηM
θ (ρε(r, x))ϕ(x)dxdr

+CE
∫ t

0

∫
Rd

1
θ

1|ρε(r,x)−M|�θ A2(ρε(r, x))ϕ(x)dxdr. (30)

Observing that f ′ is bounded, (ηM
θ )(M) = (ηM

θ )′(M) = 0 and (ηM
θ )′′ � 0, then

|qM
θ (ρε)| =

∣∣∣ ∫ ρε

M
f ′(v)(ηM

θ )′(v)dv
∣∣∣ � ‖ f ′‖L∞(R)

∣∣∣ ∫ ρε

M
(ηM

θ )′(v)dv
∣∣∣ = ‖ f ′‖L∞(R)η

M
θ (ρε). (31)

By virtue of (11), taking M > N, from (30) and (31), we have

E

∫
Rd

ϕ(x)ηM
θ (ρε(t, x))dx −

∫
Rd

ϕ(x)ηM
θ (ρε

0(x))dx

� [C(‖b‖W1,∞(Rd), ‖ f ′‖L∞(R), T) + ε]E
∫ t

0

∫
Rd

ϕ(x)ηM
θ (ρε(r, x))dxdr + Cθ,

for all 0 � t � T (T > 0 is a given real number). Therefore,

E

∫
Rd

ϕ(x)ηM
θ (ρε(t, x))dx � C

∫
Rd

ϕ(x)ηM
θ (ρε

0(x))dx + Cθ,

uniformly for ε � 1.
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Due to (26), letting θ ↓ 0, for M > ‖ρε
0‖L∞(Rd), we get

E

∫
Rd

ϕ(x)(ρε(t, x)− M)+dx � C
∫
Rd

ϕ(x)(ρε
0(x)− M)+dx = 0. (32)

Since ρε is in C([0, T]; L2(Ω × Rd)), using the dominated convergence theorem,
for M > ‖ρε

0‖L∞(Rd), from (32), one has

E

∫
Rd

ϕ(x)(ρε(t, x)− M)2
+dx = 0, ∀ t ∈ [0, T]. (33)

By the convexity of ηM
θ , with the help of (28), (32) and (33), if M > max{N, ‖ρε

0‖L∞(Rd)}, we have

E sup
0�t�T

∫
Rd

ϕ(x)(ρε(t, x)− M)+dx

� C
∫
Rd

ϕ(x)(ρε
0(x)− M)+dx + CE

∫ T

0

∫
Rd
(ρε(t, x)− M)+ϕ(x)dxdt

+C
[
E

∫ T

0

∣∣∣ ∫
Rd
(ρε(t, x)− M)+ϕ(x)dx

∣∣∣2dt
] 1

2

� C
∫
Rd

ϕ(x)(ρε
0(x)− M)+dx + CE

∫ T

0

∫
Rd
(ρε(t, x)− M)+ϕ(x)dxdt

+C
[
E

∫ T

0

∫
Rd
(ρε(t, x)− M)2

+ϕ(x)dxdt
] 1

2
= 0.

For the above calculations for ηM
θ adapted to ξM

θ = ξθ(r + M), if M > max{N, ‖ρε
0‖L∞(Rd)},

we have

E sup
0�t�T

∫
Rd

ϕ(x)(ρε(t, x) + M)−dx � C
∫
Rd

ϕ(x)(ρε
0(x) + M)−dx = 0,

where ξθ(r) = ξ(r/θ)/θ, ξ : R → R is a C∞ convex function satisfying

ξ(0) = 0, ξ ′(r)

⎧⎪⎨⎪⎩
= 0, when r > 0,
∈ [−1, 0], when − 2 � r � 0,
= −1, when r < −2.

Therefore, (4) is true for ρε, and

sup
0�t�T

‖ρε(t)‖L∞(Ω×Rd) � max{N, ‖ρ0‖L∞(Rd)}. (34)

Step 2. Existence of the stochastic entropy solution to the Cauchy problem (1).

We choose ρε
0 as in Step 1, and when ε = εi (i = 1, 2) in (22), we use the notation ρεi (i = 1, 2) to

denote the unique stochastic entropy solution now. Suppose that ηθ is given by (15), then

Δyηθ(ρ
ε1(t, x)− ρε2(t, y)) � −η′

θ(ρ
ε1(t, x)− ρε2(t, y))Δyρε2(t, y). (35)

Let 0 � J, ϕ ∈ C2
0 (R

d), such that⎧⎪⎨⎪⎩
J(x) = 0, when |x| � 1,
|∇x J(x)| � CJ(x), when x ∈ Rd,∫
Rd J(x)dx = 1.

{
ϕ(x) = 1, when |x| � 1,
|∇x ϕ(x)| � Cϕ(x), when x ∈ Rd.

(36)
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For any δ > 0, we set

ψδ(x, y) = Jδ(x − y)ϕ(
x + y

2
) = δ−d J(

x − y
δ

)ϕ(
x + y

2
) ∈ C2

0 (R
2d).

In view of (29) and (35), by using Itô’s formula and the integration by parts,∫
R2d

ψδ(x, y)ηθ(ρ
ε1(t, x)− ρε2(t, y))dxdy −

∫
R2d

ψδ(x, y)ηθ(ρ
ε1
0 (x)− ρε2

0 (y))dxdy

�
∫ t

0

∫
R2d

[divx(b(x)ψδ)q
ε1
θ (ρε1(r, x), ρε2(r, y)) + divy(b(y)ψδ)q̂

ε2
θ (ρε1(r, x), ρε2(r, y))]dxdydr

+
1
2

∫ t

0

∫
R2d

ψδ(x, y)η′′
θ (ρ

ε1(r, x)− ρε2(r, y))|A(ρε1(r, x))− A(ρε2(r, y))|2dxdydr

+
∫ t

0

∫
R2d

ηθ(ρ
ε1(r, x)− ρε2(r, y))[ε1Δx + ε2Δy]ψδ(x, y)dxdydr

+
∫ t

0
dWr

∫
R2d

ψδ(x, y)η′(ρε1(r, x)− ρε2(r, y))[A(ρε1(r, x))− A(ρε2(r, y))]dxdy

= : H1(t) + H2(t) + H3(t) + H4(t), (37)

where

qε1
θ (ρε1(r, x), ρε2(r, y)) =

∫ ρε1 (r,x)

ρε2 (r,y)
η′

θ(v − ρε2(r, y)) f ′(v)dv,

q̂ε2
θ (ρε1(r, x), ρε2(r, y)) =

∫ ρε1 (r,x)

ρε2 (r,y)
η′

θ(ρ
ε1(r, x)− v) f ′(v)dv.

Clearly, EH4(t) = 0. For ε1, ε2 and δ are fixed, then

lim
θ↓0

EH1(t) =
∫ t

0

∫
R2d

[divx(b(x)ψδ) + divy(b(y)ψδ)]1[0,∞)(ρ
ε1(r, x)− ρε2(r, y))

×[ f (ρε1(r, x))− f (ρε2(r, y))]dxdydr

� C
∫ t

0

∫
R2d

|divx(b(x)ψδ) + divy(b(y)ψδ)|[ρε1(r, x)− ρε2(r, y)]+dxdydr

� C‖divb‖L∞(Rd)

∫ t

0

∫
R2d

ψδ(x, y)[ρε1(r, x)− ρε2(r, y)]+dxdydr

+C‖∇b‖L∞(Rd)

∫ t

0

∫
R2d

ϕ(
x + y

2
)|∇x Jδ(x − y)|[ρε1(r, x)− ρε2(r, y)]+dxdydr

+C‖b‖L∞(Rd)

∫ t

0

∫
R2d

|∇x ϕ(
x + y

2
)|Jδ(x − y)[ρε1(r, x)− ρε2(r, y)]+dxdydr.

� C
∫ t

0

∫
R2d

ψδ(x, y)[ρε1(r, x)− ρε2(r, y)]+dxdydr, (38)

where in the last inequality we have used (36).
Moreover, limθ↓0 EH2(t) = 0 and

lim
θ↓0

EH3(t) =
∫ t

0

∫
R2d

[ρε1(r, x)− ρε2(r, y)]+[ε1Δx + ε2Δy]ψδ(x, y)dxdydr. (39)

For every T > 0, by (37)–(39), we obtain
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sup
0�t�T

[
E

∫
R2d

ψδ(x, y)[ρε1(t, x)− ρε2(t, y)]+dxdy
]
−

∫
R2d

ψδ(x, y)[ρε1
0 (x)− ρε2

0 (y)]+dxdy

� sup
0�t�T

C
[
E

∫ t

0

∫
R2d

ψδ(x, y)[ρε1(r, x)− ρε2(r, y)]+dxdydr
]

+ sup
0�t�T

[
E

∫ t

0

∫
R2d

[ρε1(r, x)− ρε2(r, y)]+[ε1Δx + ε2Δy]ψδ(x, y)dxdydr
]
. (40)

Observing that

|[ε1Δx + ε2Δy]ψδ(x, y)| � C
ε1 + ε2

δ2 ψ̃δ(x, y),

where

ψ̃δ(x, y) =
1
δd J̃(

x − y
δ

)ϕ̃(
x + y

2
) ∈ C0(R

2d), J̃, ϕ̃ ∈ C0(R
d).

With the help of dominated convergence theorem, then

lim
ε1↓0,ε2↓0,δ↓0, ε1+ε2

δ2 →0
sup

0�t�T
lim
θ↓0

EH3(t) = 0. (41)

Combining (40), (41), and with the aid of Grönwall’s inequality, then

lim
ε1↓0,ε2↓0,δ↓0, ε1+ε2

δ2 →0
sup

0�t�T
E

∫
R2d

ψδ(x, y)[ρε1(t, x)− ρε2(t, y)]+dxdy = 0.

Similar arguments also hint that

lim
ε1↓0,ε2↓0,δ↓0, ε1+ε2

δ2 →0
sup

0�t�T
E

∫
R2d

ψδ(x, y)[ρε1(t, x)− ρε2(t, y)]−dxdy = 0.

Therefore,

lim
ε1↓0,ε2↓0,δ↓0, ε1+ε2

δ2 →0
sup

0�t�T
E

∫
R2d

ψδ(x, y)|ρε1(t, x)− ρε2(t, y)|dxdy = 0. (42)

On the other hand, we have∫
R2d

ψδ(x, y)|ρε1(t, x)− ρε2(t, y)|dxdy

=
∫
R2d

J(u)ϕ(v)|ρε1(t, v +
δu
2
)− ρε2(t, v − δu

2
)|dudv

=
∫
R2d

J(u)ϕ(v)|ρε1(t, v)− ρε2(t, v − δu)|dudv

+
∫
R2d

J(u)[ϕ(v − δu)− ϕ(v)]|ρε1(t, v)− ρε2(t, v − δu)|dudv. (43)

In view of (34),

lim sup
δ↓0

sup
ε1,ε2

sup
0�t�T

E

∫
R2d

J(u)|ϕ(v − δu)− ϕ(v)||ρε1(t, v)− ρε2(t, v − δu)|dudv = 0. (44)

By (42)–(44), then

lim
ε1↓0,ε2↓0,δ↓0, ε1+ε2

δ2 →0
sup

0�t�T
E

∫
R2d

J(u)ϕ(v)|ρε1(t, v)− ρε2(t, v − δu)|dudv = 0. (45)
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Let J and ϕ be given in (36), then, for δ = (ε1 ∧ ε2)
1/3, we have∫

Rd
ϕ(v)|ρε1(t, v)− ρε2(t, v)|dv =

∫
R2d

J(u)ϕ(v)|ρε1(t, v)− ρε2(t, v)|dvdu

�
∫
R2d

J(u)ϕ(v)|ρε1(t, v)− ρε2(t, v − δu)|dvdu +
∫
R2d

J(u)ϕ(v)|ρε2(t, v)− ρε2(t, v − δu)|dvdu.

We conclude that

lim
ε1↓0,ε2↓0

sup
0�t�T

E

∫
Rd

ϕ(v)|ρε1(t, v)− ρε2(t, v)|dv = 0. (46)

Let R > 0 be a real number. If one takes ϕR(x) = ϕ(x/R) instead of ϕ in the above calculations,
then we get an analogue of (46),

lim
ε1↓0,ε2↓0

sup
0�t�T

E

∫
Rd

ϕR(v)|ρε1(t, v)− ρε2(t, v)|dv = 0. (47)

Thus, there is an Ft-adapted L1
loc valued random process ρ(t), such that: ρ ∈

C([0, T]; L1(Ω; L1
loc(R

d))) and ρε → ρ in C([0, T]; L1(Ω; L1
loc(R

d))). Moreover, by applying the estimates
(24) and (34), (4) holds true.

On the other hand, for every entropy flux pair (η, q) (η ∈ C∞(R), η′′ � 0 and
q(v) =

∫ v f ′(s)η′(s)ds) for every 0 � s < t < ∞ and every 0 � ϕ ∈ C2
0 (R

d),∫
Rd

ϕ(x)η(ρε(t, x))dx −
∫
Rd

ϕ(x)η(ρε(s, x))dx

�
∫ t

s

∫
Rd

div(b(x)ϕ(x))q(ρε(r, x))dxdr +
1
2

∫ t

s

∫
Rd

η′′(ρε(r, x))A2(ρε)ϕ(x)dxdr

+
∫ t

s
dWr

∫
Rd

η′(ρε(r, x))A(ρε)ϕ(x)dx + ε
∫ t

s

∫
Rd

η(ρε(r, x))Δϕ(x)dxdr, P− a.s. (48)

Furthermore, if one approaches ε ↓ 0 in (48), then (5) holds for ρ(t, x). Thus, ρ is a stochastic
entropy solution to (1).

Step 3. Existence of the stochastic strong entropy solution to the Cauchy problem (1).

For every {Ft}t�0-adapted L2(Rd)-valued stochastic process ρ̃(t, x, ω) (meeting (3) and (4)),
every given ψ ∈ C2

0 (R
2d) and every given smooth convex function η, we set η̃ by (6) and

S(η, ψ)(s, t, v, y) =
∫ t

s

∫
Rd

η(ρ̃(r, x)− v)A(ρ̃(r, x))ψ(x, y)dxdWr,

then ∫
Rd

[ ∫ t

s
η̃(r, v, y)dWr

]
v=ρε(t,y)

dy =
∫
Rd

S(η′, ψ)(s, t, ρε(t, y), y)dy,

where ρε is the unique solution of (22).
Let � be given in (14), and set �δ(·) = �(·/δ)/δ, then for almost all ω ∈ Ω, we have∫

Rd
S(η′, ψ)(s, t, ρε(t, y), y)dy = lim

δ↓0

∫
Rd

∫
R

S(η′, v, ψ)(s, t, v, y)�δ(v − ρε(t, y))dvdy. (49)

In view of the Itô formula for semi-martingales (d(XY) = XdY + YdX + d[X, Y]), (49) and the
integration by parts, one derives that
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E

∫
Rd

S(η′, ψ)(s, t, ρε(t, y), y)dy

= E

∫
Rd

∫ t

s
S(η′, ψ)(s, r, ρε(r, y), y)drdy

+E

∫
Rd

∫ t

s
S(η′′, ψ)(s, r, ρε(r, y), y)(−b(y) · ∇y f (ρε(r, y)))drdy

+E

∫
Rd

∫ t

s
S(η′′, ψ)(s, r, ρε(r, y), y)εΔyyρε(r, y)dr)dy

+
1
2
E

∫
Rd

∫ t

s
S(η′′′, ψ)(s, r, ρε(r, y), y)A2(ρε(r, y))drdy

−E

∫
Rd

∫
Rd

∫ t

s
η′′(ρ̃(r, x)− ρε(r, y))A(ρ̃(r, x))A(ρε(r, y))ψ(x, y)drdxdy

=: I1
ε (s, t) + I2

ε (s, t) + I3
ε (s, t) + I4

ε (s, t) + I5
ε (s, t). (50)

The calculations for Ii
ε(s, t) (i = 1, 2, 3, 4) are similar, and we take I2

ε (s, t) for a typical example.
Firstly, through integration by parts, it follows that

|I2
ε (s, t)|

=
∣∣∣E ∫

Rd

∫ t

s

[ ∫ r

s

∫
Rd

η′′(ρ̃(τ, x)− v)A(ρ̃(τ, x))divy(ψ(x, y)b(y))dxdWτ

]
v=ρε(r,y)

f (ρε(r, y))drdy
∣∣∣ (51)

� CE
∫
Rd

∫ t

s
sup

|v|�N1

∣∣∣ ∫ r

s

∫
Rd

η′′(ρ̃(τ, x)− v)A(ρ̃(τ, x))divy(ψ(x, y)b(y))dxdWτ

∣∣∣drdy,

where N1 = N ∨ ‖ρ0‖L∞ .
For p > d ∨ 2, using the Sobolev embedding theorem W1,p(−N1, N1) ⊂ L∞(−N1, N1) and

Hölder inequality, from (51), we have

lim inf
ε→0

I2
ε (s, t)

� C
∫
Rd

∫ t

s

( ∫ N1

−N1

E

∣∣∣ ∫ r

s

∫
Rd

η′′(ρ̃(τ, x)− v)A(ρ̃(τ, x))divy(ψ(x, y)b(y))dxdWτ

∣∣∣p
dv
) 1

p drdy

+C
∫
Rd

∫ t

s

( ∫ N1

−N1

E

∣∣∣ ∫ r

s

∫
Rd

η′′′(ρ̃(τ, x)− v)A(ρ̃(τ, x))divy(ψ(x, y)b(y))dxdWτ

∣∣∣p
dv
) 1

p drdy (52)

� C
∫
Rd

∫ t

s

[ ∫ N1

−N1

E

( ∫ r

s

∣∣∣ ∫
Rd

η′′(ρ̃(τ, x)− v)A(ρ̃(τ, x))divy(ψ(x, y)b(y))dx
∣∣∣2dτ

) p
2 dv

] 1
p drdy

+C
∫
Rd

∫ t

s

[ ∫ N1

−N1

E

( ∫ r

s

∣∣∣ ∫
Rd

η′′′(ρ̃(τ, x)− v)A(ρ̃(τ, x))divy(ψ(x, y)b(y))dx
∣∣∣2dτ

) p
2 dv

] 1
p drdy

� C(N1, T, ‖b‖W1,∞ , η, ψ)
∫ t

s
(r − s)

1
2 dr = C(N1, T, ‖b‖W1,∞ , η, ψ)|t − s| 3

2 =: D(s, t),

where D is a deterministic function which meets the property (8).
By using dominated convergence theorem, we also have

lim
ε→0

I5
ε (s, t) = −

∫
Rd

∫
Rd

∫ t

s
η′′(ρ̃(r, x)− ρ(r, y))A(ρ̃(r, x))A(ρ(r, y))ψ(x, y)drdxdy (53)

and

lim
ε→0

E

∫
Rd

S(η′, ψ)(s, t, ρε(t, y), y)dy = E

∫
Rd

S(η′, ψ)(s, t, ρ(t, y), y)dy. (54)

Combining (50) and (52)–(54), we know that (7) is true for ρ.
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(ii) In this case, we choose ρε
0 ∈ BV ∩ L∞ ∩ H1(Rd) such that ρε

0 → ρ0 in L2 ∩ BV(Rd) as ε ↓ 0.
Let η : R → R be a C∞ even function satisfying

η(0) = 0, η′′ � 0, η′(r) =

⎧⎪⎨⎪⎩
−1, when r < −1,
∈ [−1, 1], when |r| � 1,
1, when r > 1.

For any δ > 0, we define ηδ by ηδ(r) = δη(r/δ). Then,

ηδ(r) → |r| as δ ↓ 0. (55)

Let ϕ(x) = C1e−|x|, with C1 = [
∫
Rd e−|x|dx]−1. Since ρε ∈ C([0, T]; L2(Ω; H2(Rd))) for every

T > 0, we can take the derivative of (22) with respect to xi first, then by using the Itô formula to
ηδ(ρ

ε
xi
(t, x)),

dηδ(ρ
ε
xi
(t, x)) + η′

δ(ρ
ε
xi
(t, x))∂xi (b(x) · ∇x f (ρε(t, x)))dt

= dηδ(ρ
ε
xi
(t, x)) + η′

δ(ρ
ε
xi
(t, x))∂xi b(x) · ∇x f (ρε(t, x))dt

+b(x) · ∇x(η
′
δ(ρ

ε
xi
(t, x)) f ′(ρε(t, x))∂xi ρ

ε(t, x))dt

−η′′
δ (ρ

ε
xi
(t, x)) f ′(ρε(t, x))∂xi ρ

ε(t, x)b(x) · ∇xρε
xi
(t, x)dt

= εη′
δ(ρ

ε
xi
(t, x))Δρε

xi
(t, x)dt + η′

δ(ρ
ε
xi
(t, x))A′(ρε(t, x))ρε

xi
(t, x)dWt

+
1
2

η′′
δ (ρ

ε
xi
(t, x))|A′(ρε(t, x))ρε

xi
(t, x)|2dt

= εΔηδ(ρ
ε
xi
(t, x))dt + η′

δ(ρ
ε
xi
(t, x))A′(ρε(t, x))ρε

xi
(t, x)dWt

+
1
2

η′′
δ (ρ

ε
xi
(t, x))|A′(ρε(t, x))ρε

xi
(t, x)|2dt − εη′′

δ (ρ
ε
xi
(t, x))|∇xρε

xi
(t, x)|2dt

� εΔηδ(ρ
ε
xi
(t, x))dt + η′

δ(ρ
ε
xi
(t, x))A′(ρε(t, x))ρε

xi
(t, x)dWt

+
1
2

η′′
δ (ρ

ε
xi
(t, x))|A′(ρε(t, x))ρε

xi
(t, x)|2dt. (56)

Assume R > 0, we set ϕR(·) = ϕ(·/R), then

E

∫
Rd

ηδ(ρ
ε
xi
(t, x))ϕR(x)dx −

∫
Rd

ηδ(ρ
ε
0,xi

(x))ϕR(x)dx

� 1
2
E

∫ t

0

∫
Rd

η′′
δ (ρ

ε
xi
(r, x))|A′(ρε(r, x))ρε

xi
(r, x)|2 ϕR(x)dxdr

+
εC
R2E

∫ t

0

∫
Rd

ηδ(ρ
ε
xi
(r, x))ϕR(x)dxdr

+C(‖b‖W1,∞(Rd), ‖ f ′‖L∞(R))E
∫ t

0

∫
Rd

|η′′
δ (ρ

ε
xi
(r, x))||ρε

xi
(r, x)||∇xρε

xi
(r, x)|ϕR(x)dxdr

+C(‖b‖W1,∞(Rd), ‖ f ′‖L∞(R))E
∫ t

0

∫
Rd

|∇xρε(r, x)|ϕR(x)dxdr

� CE
∫ t

0

∫
Rd

|ρε
xi
(r, x)|1|ρε

xi (r,x)|�δ ϕR(x)dxdr +
εC
R2E

∫ t

0

∫
Rd

ηδ(ρ
ε
xi
(r, x))ϕR(x)dxdr

+C
[
E

∫ t

0

∫
Rd

1
δ
|ρε

xi
(r, x)|1|ρε

xi (r,x)|�δ|∇xρε
xi
(r, x)|ϕR(x)dxdr

]
+CE

∫ t

0

∫
Rd

|∇xρε(r, x)|ϕR(x)dxdr, (57)

where, in the last inequality, we apply the fact η′′
δ (ρ

ε
xi
(r, x)) � C1|ρε

xi (r,x)|�δ/δ.
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Observing that, for almost everywhere, (t, x) ∈ [0, T] × Rd, |ρε
xi
|1|ρε

xi |�δ/δ → 0 almost surely,
as δ ↓ 0, from (57) by using dominated convergence theorem, if one lets δ ↓ 0 first and sums over i
from 1 to d next,

E

∫
Rd

|∇ρε(t, x)|ϕR(x)dx −
∫
Rd

|∇ρε
0(x)|ϕR(x)dx

� εC
R2E

∫ t

0

∫
Rd

|∇ρε(r, x)|ϕR(x)dxdr + CE
∫ t

0

∫
Rd

|∇xρε(r, x)|ϕR(x)dxdr.

Therefore,

sup
0�t�T

E

∫
Rd

|∇ρε(t, x)|dx � C(‖b‖W1,∞(Rd), ‖ f ′‖L∞(R), ε)
∫
Rd

|∇ρε
0(x)|dx. (58)

Let ηδ be defined as before (meeting property (55)), and ϕ(x) = 1 when |x| � 1. We multiply ϕR
on both sides of (56), in view of integration by parts, we derive that

E

∫
Rd

ηδ(ρ
ε
xi
(t, x))dx −

∫
Rd

ηδ(ρ
ε
0,xi

(x))dx

� 1
2
E

∫ t

0

∫
Rd

η′′
δ (ρ

ε
xi
(r, x))|A′(ρε(r, x))ρε

xi
(r, x)|2 ϕR(x)dxdr

+
ε

R2E

∫ t

0

∫
Rd

Δϕ(
x
R
)ηδ(ρ

ε
xi
(r, x))dxdr

−E

∫ t

0

∫
Rd

η′
δ(ρ

ε
xi
(r, x))∂xi b(x) · ∇x f (ρε(r, x))ϕ(

x
R
)dxdr

+E

∫ t

0

∫
Rd

η′
δ(ρ

ε
xi
(r, x)) f ′(ρε(r, x))∂xi ρ

ε(r, x)divx(b(x)ϕ(
x
R
))dxdr (59)

−E

∫ t

0

∫
Rd

η′′
δ (ρ

ε
xi
(r, x)) f ′(ρε(r, x))∂xi ρ

ε(r, x)b(x) · ∇xρε
xi
(r, x)ϕ(

x
R
)dxdr

� CE
∫ t

0

∫
Rd

|ρε
xi
(r, x)|1|ρε

xi (r,x)|�δ ϕR(x)dxdr +
ε

R2E

∫ t

0

∫
Rd

Δϕ(
x
R
)ηδ(ρ

ε
xi
(r, x))dxdr

+C(‖b‖W1,∞(Rd), ‖ f ′‖L∞(R))E
∫ t

0

∫
Rd

|∇xρε(r, x)|
[

ϕ(
x
R
) +

1
R

|∇ϕ(
x
R
)|
]
dxdr

+C(‖b‖L∞(Rd), ‖ f ′‖L∞(R)E
∫ t

0

∫
Rd

1
δ
|ρε

xi
(r, x)|1|ρε

xi (r,x)|�δ|∇xρε
xi
(r, x)|ϕ( x

R
)dxdr.

With the help of (25) and (58), from (59), by taking δ ↓ 0 first, R ↑ ∞ next, then

sup
0�t�T

E

∫
Rd

|∇ρε(t, x)|dx � C(‖b‖W1,∞(Rd), ‖ f ′‖L∞(R))
∫
Rd

|∇ρε
0(x)|dx. (60)

From (24) and (60), and noting that ρε
0 → ρ0 in L2 ∩ BV(Rd), by letting ε ↓ 0, (12) is true and we

finish the proof. �

4. Proof of Theorem 3

For ε > 0, we denote ρε the unique solution of (22) with ρε
0 ∈ L∞ ∩ BV ∩ H1(Rd) and

ρε
0 → ρ0 ∈ L2 ∩ BV(Rd), as ε ↓ 0. Let ρ̃ε

0 ∈ L1 ∩ L∞ ∩ H1(Rd) and ρ̃ε
0 → ρ̃0 in L1 ∩ L2(Rd), as ε ↓ 0.

We assume ρ̃ε is the unique stochastic strong entropy solution of the following Cauchy problem:{
dρ̃ε(t, x) + b̃(x) · ∇x f̃ (ρ̃ε(t, x))dt = εΔρ̃ε(t, x)dt + A(ρ̃ε(t, x))dWt, t > 0, x ∈ Rd,
ρ̃ε(t, x)|t=0 = ρ̃ε

0(x), x ∈ Rd.
(61)

Let ηδ be given by (56). We set the difference ρε(t, x)− ρ̃ε(t, x) by ξε(t, x). Since ρε
0, ρ̃ε

0 ∈ H1(Rd),
ξε ∈ L2([0, T]× Ω; H2(Rd)). From (22) and (61) and by applying Itô’s formula, then
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dηδ(ξ
ε(t, x)) = −η′

δ(ξ
ε(t, x))[b(x) · ∇x f (ρε(t, x))− b̃(x) · ∇ f̃ (ρ̃ε(t, x))dt

+εη′
δ(ξ

ε(t, x))Δξε(t, x)dt +
1
2

η′′
δ (ξ

ε(t, x))|A(ρε(t, x))− A(ρ̃ε(t, x))|2dt

+η′
δ(ξ

ε(t, x))[A(ρε(t, x))− A(ρ̃ε(t, x))]dWt

� −η′
δ(ξ

ε(t, x))[b(x)− b̃(x)] · ∇x f (ρε(t, x))dt

−η′
δ(ξ

ε(t, x))b̃(x) · ∇[ f (ρε(t, x))− f̃ (ρε(t, x))]dt

−η′
δ(ξ

ε(t, x))b̃(x) · ∇[ f̃ (ρε(t, x))− f̃ (ρ̃ε(t, x))]dt

+εΔηδ(ξ
ε(t, x))dt + η′

δ(ξ
ε(t, x))[A(ρε(t, x))− A(ρ̃ε(t, x))]dWt

+
1
2

η′′
δ (ξ

ε(t, x))|A(ρε(t, x))− A(ρ̃ε(t, x))|2dt. (62)

Let ϕR be given in (57) and we integrate (62) against ϕR. By analogue calculations from (56) to (59),
and then letting δ ↓ 0 first, R ↑ ∞ next, it yields that

E

∫
Rd

|ξε(t, x)|dx �
∫
Rd

|ξε(0, x)|dx + C‖divb̃‖L∞(Rd)‖ f̃ ′‖L∞(R)E

∫ t

0

∫
Rd

|ξε(r, x)|dxdr

+C
[
‖b − b̃‖L∞(Rd)‖ f ′‖L∞(R) + ‖b̃‖L∞(Rd)‖ f ′ − f̃ ′‖L∞(R)

]
E

∫ t

0

∫
Rd

|∇ρε(r, x)|dxdr.

With the help of (60), then

E

∫
Rd

|ξε(t, x)|dx �
∫
Rd

|ξε(0, x)|dx + C‖divb̃‖L∞(Rd)‖ f̃ ′‖L∞(R)E

∫ t

0

∫
Rd

|ξε(r, x)|dxdr

+C
(
‖b‖W1,∞(Rd), ‖ f ′‖L∞(R), ‖b̃‖L∞(Rd)

)[
‖b − b̃‖L∞(Rd) + ‖ f ′ − f̃ ′‖L∞(R)

] ∫
Rd

|∇ρε
0|dx. (63)

From (63), there is a constant C > 0, which is dependent on ‖b‖W1,∞(Rd), ‖ f ′‖L∞(R), ‖ f̃ ′‖L∞(R),
‖divb̃‖L∞(Rd), ‖b̃‖L∞(Rd) and T, such that

E

∫
Rd

|ξε(t, x)|dx �
∫
Rd

|ξε(0, x)|dx + C
[
‖b − b̃‖L∞(Rd) + ‖ f ′ − f̃ ′‖L∞(R)

] ∫
Rd

|∇ρε
0(x)|dx. (64)

From (64), by taking ε ↓ 0, one ends up with the inequality (13). �

5. Conclusions

In this paper, we have established three results on the existence and uniqueness of stochastic
entropy solutions for a nonlinear transport equation by a stochastic perturbation, and the continuous
dependence of stochastic strong entropy solutions on the coefficient b and the nonlinear function f .
Compared with the results on uniqueness given in [11,17], Theorem 1 is new since the 1/2-Hölder
continuity of A is enough to ensure the uniqueness, and compared with the results on uniqueness
for stochastic differential equations in [32], the hypotheses of 1/2-Hölder continuity on A is optimal.
Moreover, we develop a new method of parabolic approximation to obtain the existence of solutions,
which sheds some new light on the method of vanishing viscosity put forth by Feng and Nualart [11].
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Abstract: Designing a chaotic system with infinitely many attractors is a hot topic. In this paper,
multiscale multivariate permutation entropy (MMPE) and multiscale multivariate Lempel–Ziv
complexity (MMLZC) are employed to analyze the complexity of those self-reproducing chaotic
systems with one-directional and two-directional infinitely many chaotic attractors. The analysis
results show that complexity of this class of chaotic systems is determined by the initial conditions.
Meanwhile, the values of MMPE are independent of the scale factor, which is different from the
algorithm of MMLZC. The analysis proposed here is helpful as a reference for the application of the
self-reproducing systems.

Keywords: multiscale multivariate entropy; multistability; self-reproducing system; chaos

1. Introduction

Since the behaviors of dynamic systems with coexisting attractors depend on the initial conditions,
multistable systems have been extensively studied [1–5]. Multistability in circuit implementation [6],
synchronization [7], image encryption [8] and neural networks [9] have also aroused much interest.
Multistable systems can have a limited number of coexisting attractors [10] or even infinitely many
attractors [11,12]. Specifically, Li et al. proposed a class of self-reproducing systems (one case of
conditional symmetry) giving one-dimensional infinitely many attractors [11] and a unique case with
a two-dimensional lattice of infinitely many strange attractors by introducing periodic trigonometric
functions into a two-dimensional offset-boostablesystem [12].

However, the dynamics of these systems are mainly analyzed by means of a bifurcation
diagram, Lyapunov exponents (LEs) and the phase trajectory analysis. Generally, higher complexity
means that the time series is closer to noise and consequently leads to better security for real
applications. Complexity measuring methods can be used to reflect the dynamics and complexity
of time series in chaotic systems and provide an effective means for parameter selection of chaotic
systems in real applications. From this point of view, much research on the complexity of chaotic
systems has been carried out [13–18]. For example, Balasubramanian et al. [15] classified periodic,
chaotic and random sequences based on approximate entropy and Lempel–Ziv complexity measures.
He et al. [17,18] analyzed the complexity of multi-scroll chaotic systems and fractional-order chaotic
systems. Complexity measuring of chaotic systems is an important issue in the nonlinear research

Entropy 2018, 20, 556; doi:10.3390/e20080556 www.mdpi.com/journal/entropy84



Entropy 2018, 20, 556

community, among which designing multivariate complexity measures for a chaotic attractor is a
hot topic.

In fact, phase space analysis is one of the most useful methods for the explanation of the long term
dynamics of multivariate systems [19]. Phase-space reconstruction can reflect the asymptotic nature of
the interconnected time series, which are responsible for the original dynamics. Most of the current
multivariate complexity algorithms are designed based on this, such as multivariate sample entropy
(MvSampEn) [20] and multivariate neighborhood sample entropy (MN-SampEn) [21]. However, it is
difficult to choose the embedding dimension and the delay parameter. An alternative way to measure
the complexity of the system is to resort to its phase space directly. Recently, He et al. [22] proposed
multivariate permutation entropy and applied it to the complexity analysis of chaotic attractors.
Meanwhile, since multiscale coarse-graining [23] on time series could lead to better complexity
measuring results, multiscale complexity algorithms are applied to analyze the complexity of nonlinear
time series [18,23–25]. In this paper, combining the process of multiscale coarse-graining, multivariate
multiscale complexity measure algorithms are designed to analyze the complexity for self-reproducing
chaotic systems. It is necessary to analyze the complexity of attractors of this class of chaotic systems
under different initial conditions for its multistability. Multiscale multivariate complexity measuring
algorithms are designed to achieve this goal. The rest of this article is organized as follows: In Section 2,
MMPE and MMLZC are designed. In Section 3, the complexity of different kinds of self-reproducing
chaotic systems is analyzed. Finally, concluding remarks is presented in Section 4.

2. Designing the Complexity Measuring Algorithms

Compared with other nonlinear time series analysis methods, complexity measuring methods just
need a segment of time series or multiple time series from the system and are robust to the algorithm
parameters. Meanwhile, it is more convenient to analyze the characteristics of time series by employing
complexity measuring algorithms. In this section, the complexity of three-dimensional (3D) chaotic
systems is analyzed with the main purpose to measure the complexity of the attractors. Thus, it is
necessary to design multivariate complexity measuring algorithms.

2.1. Data Processing and Quantification

Step 1: Normalization of time series. For given time series {xj(n), n = 1, 2, 3, · · · , N, j = 1, 2, · · · , d},
where d is the number of time series or the dimension of the chaotic system. Since amplitudes
of different time series are different, normalization processing is necessary. The normalization
function is given by:

x̃j (n) =
xj (n)− min(xj)

max(xj)− min(xj)
. (1)

Step 2: Coarse graining. To design multiscale complexity measuring algorithms, the multiscale
coarse-grained processing should be carried out firstly. For the j-th time series, its consecutive
coarse-grained time series is constructed by [23]:

yτ
j (k) =

1
s

ks

∑
i=(k−1)s+1

x̃j(i), (2)

where 1 ≤ k ≤ �N/τ� and τ is the scale factor that represents the length of the
non-overlapping windows.

Step 3: Data quantification. For the given k and scale factor τ, [yτ
1 (k), yτ

2 (k), · · · , yτ
d (k)] can be

modeled as a pattern by introducing the idea of the Bandt–Pompe pattern [26]. Obviously,
there are d! possible patterns. Let the pattern space be given by Λ = {π1, π2, · · · , πd!},
and thus, a pattern series {Ψτ (k) : Ψτ (k) ∈ Λ, k = 1, 2, · · · , �N/τ�} can be obtained.
Moreover, let πl = l (l = 1, 2, · · · , d!); we can get a quantification pattern series, which is
given by {Φτ (k) : Φτ (k) ∈ N, k = 1, 2, · · · , �N/τ�}.
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To understand the above process better, here we illustrate how πs(s = 1, 2, · · · , d!) are obtained
firstly. Take a 3D chaotic system as an example, the parameter d = 3. Thus, there are six possible order
patterns under the k-th point, and they are shown as below:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{
π1 : yτ

1 (k) ≤ yτ
2 (k) ≤ yτ

3 (k)
}{

π2 : yτ
1 (k) ≤ yτ

3 (k) ≤ yτ
2 (k)

}{
π3 : yτ

2 (k) ≤ yτ
1 (k) ≤ yτ

3 (k)
}{

π4 : yτ
2 (k) ≤ yτ

3 (k) ≤ yτ
1 (k)

}{
π5 : yτ

3 (k) ≤ yτ
1 (k) ≤ yτ

2 (k)
}{

π6 : yτ
3 (k) ≤ yτ

2 (k) ≤ yτ
1 (k)

}
, (3)

For example, let
[
yτ

1 , yτ
2 , yτ

3
]

= [1, 3, 4]; it can be defined as order pattern π1; while if[
yτ

1 , yτ
2 , yτ

3
]

= [1, 4, 3], it belongs to another kind of pattern, which can be classified as π2. Secondly,
suppose that we have three short time series, namely

{
yτ

1 = 1, 2, 3, 4, 5
}

,
{

yτ
2 = 3, 3, 1, 5, 4

}
and{

yτ
3 = 5, 1, 4, 3, 2

}
; the conducted pattern series {Ψτ (k) = π1, π5, π3, π5, π6}, and the quantification

pattern series is {Φτ (k) = 1, 5, 3, 5, 6}.

2.2. Complexity Measuring Algorithms

Permutation entropy [26] can be calculated based on the comparison of neighboring values
(quantification pattern series) by combing with the concept of Shannon entropy. It is particularly useful
in the presence of dynamical or observational noise. However, Lempel–Ziv complexity (LZC) [27,28]
is not based on the probabilistic of the symbols, but on the way that these symbols are repeated along
the sequences. Based on the quantification pattern series, multiscale multivariate permutation entropy
and multiscale multivariate Lempel–Ziv complexity can be designed.

2.2.1. Multiscale Multivariate Permutation Entropy

The probability distribution Pτ = pτ(πl)|l = 1, 2, · · · , d! associated with the quantification pattern
series {Φτ (k) : Φτ (k) ∈ N, k = 1, 2, · · · , f loor (N/τ)} is defined by:

pτ(πl) =
#{k|k ≤ f loor (N/τ) , Φτ (k) = l}

f loor (N/τ)
, (4)

where the symbol # stands for “number” and l = 1, 2, 3, · · · , d!. According to the definition of Shannon
entropy, MMPE is defined as:

MMPE(x, τ) = − 1
ln(d!)

d!

∑
s=1

pτ(πs) ln (pτ(πs)), (5)

Obviously, larger MMPE values mean the time series is more complex.

2.2.2. Multiscale Multivariate Lempel–Ziv Complexity

First of all, Lempel–Ziv complexity [28] is described, and the steps are shown as follows.

Step 1: Suppose that the quantification pattern series is {Φτ (k) = s1, s2, s3, · · ·, sN}. Let S and Q be
two character strings.

Step 2: For the step n (n = 1, 2, 3, · · · , N), let S = (s1, s2, s3, · · · , sn), and Q = sn+1 or
Q = (sn+1, sn+2, · · · , sn+k), then we get:

SQ = (s1, s2, s3, · · · , sn, sn+1) , (6)

or:
SQ = (s1, s2, s3, · · · , sn, sn+1, sn+2, · · · , sn+k) . (7)
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Define:
SQv = (s1, s2, s3, · · · , sn) . (8)

or:
SQv = (s1, s2, s3, · · · , sn, sn+1, sn+2, · · · , sn+k−1) . (9)

If there exist an i (1 ≤ i ≤ n) and the following relationship is satisfied:

(sn+1, sn+2, · · · , sn+k) = (si, si+1, · · · , si+k−1) . (10)

it means that Q is a duplicate of SQv. Then, the size of Q should increase by one, and the
above operation is carried out again until Q /∈ SQv. When Q does not belong to SQv, we call
Q an “insertion”. When an “insertion” is found, we place a “·” behind S. Repeat the above
operations until n = N.

Step 3: In Step 2, we obtained a series of dots; thus, we can calculate the number of dots and denote
the complexity as c(n).

Step 4: According to [27], Lempel–Ziv complexity will reach a stable value, which is given by:

LZStable = lim
n→∞

c (n) =
n

log2 (n)
. (11)

where LZStable is the stable complexity measure value of a finite long time series. Thus,
the normalized multiscale multivariate Lempel–Ziv complexity is defined as:

MMLZC =
c (n)

LZstable
, (0 ≤ MMLZC ≤ 1) . (12)

The scale factor is given by the quantized time series {Φτ (k) = s1, s2, s3, · · ·}.
Here, an example is given to show the steps of the LZC algorithm. Suppose that the quantized

time series with length n = 7 is {Φτ = 1, 2, 3, 2, 3, 2, 3}. Firstly, Φτ is converted to a string time series.

n = 1, S = 1, Q = 2, SQv = 1. Because Q /∈ SQv, then Q is an insertion S = 1 · 2.
n = 2, S = 12, Q = 3, SQv = 12. Because Q /∈ SQv, then Q is an insertion S = 1 · 2 · 3.
n = 3, S = 123, Q = 2, SQv = 123. Because Q ∈ SQv, then Q is a copy of S = 1 · 2 · 32.
n = 4, S = 1232, Q = 23, SQv = 123. Because Q ∈ SQv, then Q is a copy of S = 1 · 2 · 323.

Continue the above steps until n = 7; we can get S = 1 · 2· 32323. This means that the time series
can be divided into three parts; thus, c (n) = 3. According to Equation (12), LZC = 0.8159. However,
this measuring result is not satisfying since the length of this example is not suitable. To make the
measuring results stable, the length of the sequence should be larger than 3600 [29].

2.2.3. Process for Complexity Measuring

Here, take a 3D chaotic system as an example, the process of the complexity measure is illustrated
as follows. The steps to analyze the complexity of attractors and the representation of the result in the
complexity vs. entropy map are described.

Step 1: Figure 1a. Solve the chaotic system and observe the state of the system based on the phase
diagrams, preliminarily.

Step 2: Figure 1b. Cut three segments of chaotic time series, which are the three state variables of the
3D chaotic system. Data processing and coarse graining are carried out by employing the
method given in the Section 2.1.

Step 3: Figure 1c. Quantize the scaled time series using the Bandt–Pompe approach; thus, a symbol
time series is obtained.

Step 4: Figure 1d. Estimate the MMLZC and MMPE according to the obtained sequence, where the
steps of MMPE and MMLZC are shown in Sections 2.2.1 and 2.2.2, respectively.
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Step 5: Figure 1e. Illustrate the complexity measuring results with different figures. Here, the two
measures are shown in the MMPLC-MMPE plane.

Figure 1. Steps to analyze the complexity of a chaotic system through the multiscale multivariate
Lempel–Ziv complexity (MMLZC) and multiscale multivariate permutation entropy (MMPE) and
algorithms. (a) Chaotic systems; (b) Chaotic time series; (c) Permutation Vector Discretization;
(d) Measuring complexity based on Φ; (e) Show the results.

Note that we also illustrate the complexity with MMLZC and MMPE as shown by the curve and
surfaces for comparison.

3. Complexity Analysis of Self-Reproducing Chaotic Systems

Multistable systems have multiple solutions under different initial conditions, and the
self-reproducing system is a new kind of multistable system with infinitely many coexisting attractors
by reproducing themselves along particular dimensions or directions. It should be pointed out that
all of those coexisting attractors in a system share the same Lyapunov exponents, and the infinitely
many attractors in self-reproducing chaotic systems are triggered by the initial condition [11,12].
Therefore, it is interesting to check whether those coexisting attractors have the same complexity. Here,
the complexity of a one-directional self-reproducing system and two-directional self-reproducing
system is analyzed by means of MMPE and MMLZC.
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3.1. Case A: One-Directional Self-Reproducing System

For the self-reproducing system [10],⎧⎪⎨⎪⎩
ẋ = |y| − 1
ẏ = z
ż = F (x)− by − az

, (13)

where x, y and z are the state variables, a and b are the bifurcation parameters and F (x) = A cos (x),
A = 1.55. Fix a = 0.6, b = 1. Set the initial conditions (x0, y0, z0) = (2 − 2π, 0, −1),
(2 − π, 0, −1), (2, 0, −1), (2 + π, 0, −1) and (2 + 2π, 0, −1); five attractors under different initial
conditions are shown in Figure 2a. The red attractor is plotted with (x0, y0, z0) = (2 − 2π, 0, −1);
the cyan attractor is plotted with (x0, y0, z0) = (2 − π, 0, −1); the blue attractor is plotted with
(x0, y0, z0) = (2, 0, −1); the mauve attractor is plotted with (x0, y0, z0) = (2 + π, 0, −1); and the green
attractor is plotted with (x0, y0, z0) = (2 + 2π, 0, −1). The MMLZC and MMPE analysis results are
shown in Figure 2b,c, respectively. It is shown in Figure 2b that multivariate LZC increases with
the scale factor τ. However, different complexities overlap with each other. This indicates that
the Lempel–Ziv complexity of different attractors is of the same level. However, Figure 2c shows
that the complexity of multivariate PE does not increase with the scale factor. This means that the
complexity of an attractor does not increase with the scale factor in the sense of multivariate PE.
Moreover, as shown in Figure 2c, the complexity of the attractors with (x0, y0, z0) = (2 − π, 0, −1) and
(2 + π, 0, −1) is lower than that of other cases. Here, let the scale factor τ for MMLZC be 100 and for
MMPE be one. The MMLZC-MMPE plot in Figure 2d shows that the complexity of attractors with
(x0, y0, z0) = (2 − π, 0, −1) and (2 + π, 0, −1) is relatively lower than the other cases.

Figure 2. Coexisting attractors and complexity analysis results of System (13). (a) Coexisting attractors;
(b) MMLZC; (c) MMPE; (d) MMLZC-MMPE plot.

Fix y0 = 0 and z0 = −1, and vary x0 from 2− 2π to 2+ 2π with a step size of 0.001. The complexity
results are shown in Figure 3; MMPE of the chaotic system under different initial conditions varies
with the values of x0. Lines of MMPE and x smoothly evolve according to x0. MMPE has the same
variation tendency with the mean value of state variable x. Different from MMPE, MMLZC shows
some robustness with the initial condition. As a matter of fact, it is indicated in [10] that different
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attractors have the same LEs (0.00285, 0, −0.6285). However, it should be noted that the complexity of
the system still depends on the initial condition.

Figure 3. Complexity analysis result and mean value of x of System (13).

Figure 4. Coexisting attractors and complexity analysis results of System (14). (a) Coexisting attractors;
(b) MMLZC; (c) MMPE; (d) MMLZC-MMPE plot.

Another one-directional self-reproducing chaotic system was defined by [10]:⎧⎪⎨⎪⎩
ẋ = az + y2 − 1
ẏ = byz
ż = −A sin (Bx)− z

, (14)

where a = 2.8, b = 4, A = 2.2 and B = 0.5. When the initial conditions are given by
(x0, y0, z0) = (−13, 1, 0), (−13, −1, 0), (1, 1, 0), (−1, 1, 0), (13, −1, 0) and (−13, 1, 0), coexisting
attractors are shown in Figure 4a. The position of chaotic attractors is decided by the values of
x0 and y0. When (x0, y0, z0) = (−13, 1, 0) and (−13, −1, 0), the yellow and the cyan attractors are
plotted in the left part of Figure 4a. When (x0, y0, z0) = (1, 1, 0) and (−1, 1, 0), the green and the mauve
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attractors are shown in the middle of Figure 4a, while when (x0, y0, z0) = (13, −1, 0) and (−13, 1, 0),
the red and the blue attractors are illustrated in the right part. The MMPE and MMLZC complexities
of these attractors are calculated as shown in Figure 4b–d. According to Figure 4, we see that the
multivariate LZC increases with the scale factor, but MMPE does not increase with the variation of
the scale factor. According to the above analysis, the complexity of different attractors is at about the
same level.

Let x0 vary from 0 to 15 with a step size of 0.15 and y0 vary from −1 to 1 with a step size of 0.02.
MMLZC and MMPE of System (13) are computed, and the complexity of System (13) with simultaneous
variations of x0 and y0 is analyzed. It is shown in Figure 5 that the complexity of System (14) does not
change when y0 takes different values and x0 varies in the interval x0 ∈ [6.8183, 11.2122]. As a matter
of fact, when x0 ∈ [6.8183, 11.2122], the solution of the system goes to infinity , which means that the
system is divergent.

Figure 5. Complexity analysis results of System (14) with simultaneous variations of x0 and y0.
(a) MMPE analysis result; (b) MMLZC analysis result.

3.2. Case B: Two-Directional Self-Reproducing System

Li et al. [12] designed a two-directional self-reproducing chaotic system,⎧⎪⎨⎪⎩
ẋ = sin (y)
ẏ = a sin (z)
ż = − sin (y)− b sin (z)− x + x2

, (15)

where x, y and z are the state variables and a and bare the system parameters. When a = 1.05
and b = 0.5, the system gives chaos with LEs (0.0890, 0, −0.5808). Figure 6 illustrates the coexisting
attractors of System (15) with initial conditions given by (x0, y0, z0) = (0, 0.1 − 2kπ, 2lπ (k, l = −1, 0, 1)).
It shows that attractors are distributed in a grid distribution according to the given initial conditions.

The complexity of System (15) is analyzed by varying system parameter b from 0.525 to 0.725
with a step size 0.002 and setting y0 = 0.1 + 2kπ, z0 = 0 or y0 = 0.1, z0 = 2kπ, k ∈ [−25, 25], k ∈ Z.
It is shown in Figure 7 that the system has lower complexity when parameter b takes values larger
than 0.55. Additionally, in these cases, there are no significant changes of complexity with the variation
of y0 and z0. However, when parameter b takes values between 0.525 and 0.55, some lower complexity
analysis results are observed. This illustrates that the complexity of the system is determined by the
initial conditions. Moreover, compared with MMPE, MMLZC obtains better analysis results when the
system is in the route from period to chaos.
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Figure 6. Coexisting attractors of System (15) with different initial conditions.

Figure 7. Complexity analysis results of System (15). (a) MMPE with y0 and b; (b) MMPE with y0 and
b; (c) MMPE with y0 and b; (d) MMLZC with z0 and b.

Moreover, let y0 = 0.1 + 2kπ and z0 = 2kπ, where k ∈ [−50, 50] and k ∈ Z. The complexity
analysis result of System (15) with different initial conditions is shown in Figure 8. It is shown that
the system has high complexity in most cases. According to [12], when y0 = 0.1 + 2kπ and z0 = 2kπ,
chaotic attractors can be observed although in different positions. It is supposed to be a result that only
high complexity could be found in this system. However, analysis results also indicate that the system
could have a low complexity when y0 and z0 are varying. To explain this, phase portraits and time
series of the system with (x0, y0, z0) = (0, 0.1 − 82π, −82π) are observed, and the results are shown
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in Figure 9. It is shown in Figure 9 that the system has chaotic attractors, but the fluctuation range
of state variable z changes after a nonchaotic period t ∈ (3000s, 4000s). In real practical applications,
the nonchaotic period should be avoided, and complexity measure methods provide a method to
fulfill this.

Figure 8. Complexity of System (15) with both y0 and z0 varying. (a) MMPE; (b) MMLZC.

Figure 9. Dynamics of System (15) with (x0, y0, z0) = (0, 0.1 − 82π, −82π). (a) Phase diagram;
(b) time series x; (c) time series y; (d) time series z.

4. Discussion

4.1. Comparison with the Corresponding Original Systems

Actually, self-reproducing chaotic systems can be constructed based on the existing systems.
System (13) is designed based on the following system [30]:⎧⎪⎨⎪⎩

ẋ = |y| − 1
ẏ = z
ż = x − by − az

, (16)

where a = 0.6 and b = 1. When solving this system, the initial condition is given by (x0, y0, z0) = (2, 0, −1).
The LE calculation results are (0.0363, 0, −0.6363). System (14) is designed based on the following
equation [31]: ⎧⎪⎨⎪⎩

ẋ = az + y2 − 1
ẏ = byz
ż = −x − z

, (17)
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where a = 2.8 and b = 4. System (17) has chaotic attractors with Lyapunov exponents
(0.1149, 0, −1.1149) under the initial condition when (x0, y0, z0) = (1, 1, 0).

The two-directional self-reproducing chaotic system is designed based on the following [32]:⎧⎪⎨⎪⎩
ẋ = y
ẏ = z
ż = x2 − x − 0.5ẏ − ẋ

, (18)

which gives offset boosting with an identical strange attractor with LEs (0.0938, 0, −0.5938) under the
initial condition (x0, y0, z0) = (13, −1, 0).

The complexities of the original systems and the corresponding self-reproducing versions are given
in Table 1. These systems are solved in the time interval [0, 200] with a step size of 0.01. The complexity
of System (13) is calculated with initial condition (x0, y0, z0) = (2 + kπ, 0, −1 (k = −5, −4, · · · , 5)),
and its mean value of MMPE is 1.5579, while the mean value of MMLZC is 0.5376. Compared with
the original System (16), System (13) with infinitely many attractors has a higher MMPE complexity,
while a smaller maximum Lyapunov exponent (MLE). That is to say, the complexity of the modified
self-reproducing system is almost the same as System (16). The initial conditions of System (14) are
given in Figure 4. Table 1 shows that the modified system has higher complexity than its original
system, which is given by Equation (17). Moreover, we compared the complexity of a two-directional
self-reproducing chaotic system with its original system. It has higher MMLZC, but lower MLEs.
In conclusion, our complexity analysis results illustrate that the new systems have relatively higher
complexity. The effectiveness of the proposed methods and the potential application values in the
fields including information encryption and secure communication of the proposed systems are shown.

Table 1. Complexity comparison in different systems.

(Original, New) LEmax MMPE MMLZC

(Sys(16), Sys(13)) (0.0363, 0.0285) (1.3805, 1.5579) (0.5402, 0.5376)
(Sys(17), Sys(14)) (0.1149, 0.1101) (1.1610, 1.2657) (0.5402, 0.5907)
(Sys(18), Sys(15)) (0.0938, 0.0890) (1.7435, 1.7414) (0.6483, 0.6976)

LEmax : maximum Lyapunov exponent; MMPE: multiscale multivariate permutation
entropy; MMLZC: multiscale multivariate Lempel–Ziv complexity; Sys: System.

4.2. Comparison of MMPE and MMLZC

It is shown in Figures 2 and 4 that measuring values of MMPE does not change with the scale
factor, while MMLZC increases with the scale factor. Generally, the multiscale complexity of a
continues chaotic system increases with the scale factor [18,23–25]. However, when multivariate states
are considered, the situation is different. Firstly, we take System (15) as an example to show the
effectiveness of the scale factor on multivariate measuring algorithms. The parameters of System (15)
are a = 1.05 and b = 0.525. The chaotic attractor of System (15) is shown in Figure 10. Since it is plotted
from the system directly, it shows the scale factor τ = 1. Moreover, we also plot the phase diagrams,
quantification pattern series and probability distribution when the scale factor is revised to be τ = 50
and 100. It is shown in Figure 10 that although phase diagrams under a larger, different scale factor
become rough, their shapes are similar. This means that the relationship between different variables is
not changed.

Let function ϕ(·) represent the comparison of the processing of Equation (3), then the pattern
series for one time series and multiple time series can be obtained by:

Sτ
One (i) = ϕ

(
xτ

i , xτ
i+1, xτ

i+2
)

, (19)
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and:
Sτ

Mul (i) = ϕ (xτ
i , yτ

i , zτ
i ) , (20)

respectively, where xτ , yτ and zτ are the coarse-grained series under scale factor τ and i = 1, 2, · · · .
Obviously, these two processes are different. As for MMPE, it is calculated based on the probability
distribution of different patterns. Because the relationship is not changed, the probability distribution
(statistical result) will keep the same, which is verified in Figure 10. Therefore, the values of MMPE
do not change with the scale factor. However, MMLZC calculates complexity based on the new
reproduction in the pattern series. When the scale factor is larger, it is easier to find the insertion,
and the complexity measuring result is larger. This gives an explanation, at least to a significant degree,
why values of MMPE do not change with the increase of the scale factor.

Figure 10. States of System (15) under different scale factors. (a) Phase diagram under τ = 1;
(b) quantification pattern series under τ = 1; (c) probability distribution under τ = 1; (d) phase diagram
under τ = 50; (e) quantification pattern series under τ = 50; (f) probability distribution under τ = 50;
(g) phase diagram under τ = 100; (h) quantification pattern series under τ = 100; (i) probability
distribution under τ = 100.

Currently, multiscale processing is a hot topic, and it is widely used in many research works.
Scientists found that it indeed makes the complexity measuring results better. However, when it
comes to multiple time series, the situation is different according to our analysis. One should carefully
introduce this multiscale process for complexity analysis of a multivariate system, since it sees that it is
not necessary for entropy-based algorithms.

However, it should be pointed out that the two proposed complexity measures are reliable and
effective for the complexity analysis of chaotic attractors in the following aspects. In the first place,
the pattern series is obtained based on the time series from different dimensions of the system. It can
reflect the nature of the complexity of attractors directly. Secondly, MMPE is designed by employing
the concept of permutation entropy and Shannon entropy, while MMLZC is proposed based on the
Lempel–Ziv complexity. As we all know, the PE algorithm and Lempel–Ziv algorithm are mature
algorithms and have been widely used by many researchers in a vast quantity of literature. Moreover,
it is shown in the literature and in the above analysis results that the multi-scale process could make
the complexity measuring results better. Thus, the two proposed complexity measuring algorithms
have potential application value in real applications.
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5. Conclusions

In this paper, MMPE and MMLZC are employed to analyze the complexity of multivariate
systems, and the MMPE vs. MMLZC map is introduced to demonstrate the complexity. How the
complexity of the self-reproducing systems is determined by the initial condition is investigated.
Moreover, we found that the multiscale coarse graining process does not affect the final result of
MMPE, but a good MMLZC measuring result can be obtained by choosing a proper large-scale factor.

Since the self-reproducing chaotic systems can generate strange attractors in different positions
under various initial conditions, multivariate complexities including MMPE and MMLZC of
these systems with different initial conditions are analyzed. It is shown that the complexity of
self-reproducing systems depends on the initial conditions. Especially, transition stages can be
found in the two-directional self-reproducing chaotic systems since in this case the system has
relatively lower complexity analysis results. Moreover, compared with their corresponding original
systems, the newly-developed multistable systems have the same level or a higher level of complexity.
The theoretical and practical significance of the multistable systems and complexity measuring
algorithms is shown.
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Abstract: In this work, a new fractional-order chaotic system with a single parameter and four
nonlinearities is introduced. One striking feature is that by varying the system parameter, the fractional-
order system generates several complex dynamics: self-excited attractors, hidden attractors, and the
coexistence of hidden attractors. In the family of self-excited chaotic attractors, the system has four
spiral-saddle-type equilibrium points, or two nonhyperbolic equilibria. Besides, for a certain value
of the parameter, a fractional-order no-equilibrium system is obtained. This no-equilibrium system
presents a hidden chaotic attractor with a ‘hurricane’-like shape in the phase space. Multistability is also
observed, since a hidden chaotic attractor coexists with a periodic one. The chaos generation in the new
fractional-order system is demonstrated by the Lyapunov exponents method and equilibrium stability.
Moreover, the complexity of the self-excited and hidden chaotic attractors is analyzed by computing their
spectral entropy and Brownian-like motions. Finally, a pseudo-random number generator is designed
using the hidden dynamics.

Keywords: hidden attractor; self-excited attractor; fractional order; spectral entropy; coexistence;
multistability

1. Introduction

Since Leonov et al. published their seminal paper [1], the attractors in dynamical systems
have been categorized as self-excited attractors and hidden attractors. A self-excited attractor has
a basin of attraction that is associated with an unstable equilibrium, the most of common examples of
integer-order chaotic flows showing self-excited attractors are Lorenz, Chen, Rössler, and Lü systems,
among many others [2–5]. Conversely, an attractor is called hidden if its basin of attraction does
not intersect with small neighborhoods of the unstable equilibrium [6]. Additionally, the attractors
in dynamical systems with no-equilibrium, with curves and surfaces of equilibria, and with stable
equilibria also belong to the category of hidden attractors [1,6]. Hidden attractors are very important
in engineering applications because they allow the study and understanding of the unexpected and
potentially disastrous responses of the dynamical systems to perturbations, for instance, in mechanical
structures, like a bridge or airplane wings [7–9], aircraft control systems [10], PLL circuits [1],
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drilling systems with induction motors [11], and secure communication schemes [1,12]. Hence,
numerous integer-order chaotic flows with hidden attractors have been proposed [7,13–24].

However, it should be noted that most of the studies about hidden attractors have mainly
concentrated on continuous-time dynamical systems of integer-order. In recent years, fractional
calculus has received much attention due to fractional derivatives providing more accurate models
than their integer-order counterparts. Many examples have been found in different interdisciplinary
fields [25], ranging from the description of viscoelastic anomalous diffusion in complex liquids,
D-decomposition technique for control problems, chaotic systems; to macroeconomic models with
dynamic memory, forecast of the trend of complex systems, and so on [26–34]. Those works have
demonstrated that fractional derivatives provide an excellent approach to describing the memory and
hereditary properties of real physical phenomena.

Therefore, the research effort oriented to hidden attractors in fractional-order dynamical systems is
vital to understand this exciting and still less-explored subject of importance. In the literature, few works
have reported hidden attractors in fractional-order dynamical systems with one stable equilibrium [35,36],
with no-equilibria [37–40], with a line or surfaces of equilibria [41,42], or even in fractional-order
hyperchaotic systems [43,44]. However, those fractional order systems generate only one family of
hidden attractors, i.e., line, surface, stable, and without equilibrium. A remaining research question
is whether fractional-order dynamical systems whose dynamics can generate both self-excited and
hidden attractors could exist. The first response was recently proposed by Rajagopal et al. [45] through
a dynamical system and its fractional-order form, which changes from hidden to self-excited attractors
and vice versa by modifying two system parameters.

Motivated by the aforementioned discussion, in this paper, we propose a new fractional-order
dynamical system with four nonlinearities and a single system parameter. One salient feature of
this fractional-order system is that it generates different families of self-excited and hidden attractors
as a function of only one parameter. This parameter performs as a constant controller to select the
required dynamics. More specifically, the proposed system exhibits a typical self-excited chaotic
attractor with four equilibrium points of the type spiral saddle index 1 and index 2. Moreover,
the proposed system has a self-excited chaotic attractor coexisting with two nonhyperbolic equilibrium
points. A nonhyperbolic type of chaos is unusual because it does not satisfy the Shilnikov theorems.

Surprisingly, the proposed fractional-order system also has a hidden chaotic attractor without
equilibria. Unlike other approaches, the resulting hidden attractor can be observed in a fractional
order as low as 0.95. Finally, the multistability phenomenon was also found in the fractional-order
no-equilibrium system. Multistability leads to different qualitative behavior in a given nonlinear
dynamical system for the same parameter values. In the proposed system, a hidden chaotic attractor
coexist with a periodic attractor. Since the system equations contain no unnecessary terms and the
system parameter has a minimum of digits, the proposed fractional-order system can be considered
elegant in the sense of Sprott [46]. Moreover, the criterion (iii) in [47] for reporting a new chaotic system
is also satisfied. The multiple complex dynamics of the proposed system were studied by applying
a numerical simulation approach to compute the Lyapunov exponents, basins of attraction, bifurcation
diagrams, and phase portraits. Additionally, the 0–1 test was employed to detect a Brownian-like
motion in the fractional-order system.

The complexity measure is an important property to characterize the dynamics of a chaotic
system; it can also be used as the core in many applications of information security. The complexity
is obtained using the spectral entropy for both self-excited and hidden attractors. From the spectral
entropy analysis, the time series of the hidden attractor is used to design a pseudo-random number
generator (PRNG).

The rest of this paper is organized as follows. Section 2 provides the mathematical background
related to fractional calculus. Section 3 presents the new fractional-order system, along with the
mechanism employed to get the hidden and self-excited attractors. Section 4 shows the results of
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the 0–1 test algorithm and spectral entropy. Section 5 reports the design of PRNG. Finally, Section 6
summarizes the conclusions.

2. Mathematical Background

In this section, we provide the background to support our main results. The integro-differential
operator, denoted as aDq

t , is a combined differentiation and integration operator commonly used
in fractional calculus. This operator is a notation for taking both the fractional derivative and the
fractional integral of a function, combining them into a single expression that can be formally defined as

aDq
t f =

⎧⎪⎪⎨⎪⎪⎩
dq f
dtq , q > 0,

f , q = 0,∫ t
a f (dτ)q, q < 0,

(1)

where f is a function of time, a and t are the limits of the operation, and q ∈ R is the fractional
order. As we know now, there are several different definitions for the fractional differential operator
that can be adopted for (1). Hereafter, we consider the fractional derivative operator dq/dtq,
with m − 1 < q ≤ m ∈ N, to be Caputo’s derivative [48], with starting point a = 0, defined by

Dq
t f (t) =

1
Γ(m − q)

∫ t

0

f (m)(τ)

(t − τ)q+1−m dτ, (2)

where m is an integer number and Γ(·) is the gamma function. Caputo’s derivative of order q is
a formal generalization of the integer derivative under the Laplace transformation, and it is widely
used in engineering [49].

2.1. Predictor–Corrector Scheme

The numerical method used in this work to compute the solution of the fractional-order
system is the Adams–Bashforth–Moulton (ABM) predictor–corrector scheme, reported in [50–52].
The predictor–corrector scheme is based on the Caputo fractional differential operator (2), which allows
us to specify both homogeneous and inhomogeneous initial conditions.

Consider the following fractional differential equation:

Dqy(t) = f (t, y(t)), 0 ≤ t ≤ T;

y(k)(0) = y(k)0 , k = 0, 1, . . . , n − 1.
(3)

The solution of (3) is given by an integral equation of Volterra type as

y(t) =
�q�−1

∑
k=0

yk
0

tk

k!
+

1
Γ(q)

∫ t

0
(t − z)q−1 f (z, y(z))dz. (4)

As it is shown in [50], there is a unique solution of (3), within an interval [0, T], thence we are
interested in a numerical solution on the uniform grid {tn = nh|n = 0, 1, . . . , N} with an integer N
and stepsize h = T/N. Then, (4) can be replaced by a discrete form to get the corrector, as follows

yh(tn+1) = ∑
�q�−1
k=0 yk

0
tk

k! +
hq

Γ(q+2) f
(

tn+1, yp
h(tn+1)

)
+ hq

Γ(q+2) ∑n
j=0 aj,n+1 f

(
tj, yh(tj)

)
,

(5)
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where

aj,n+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nq+1 − (n − q)(n + 1)q, j = 0,
(n − j + 2)q+1 + (n − j)q+1

−2(n − j + 1)q+1, 1 ≤ j ≤ n,
1, j = n + 1,

(6)

Moreover, the predictor has the following structure

yp
h(tn+1) =

�q�−1

∑
k=0

yk
0

tk

k!
+

1
Γ(q)

n

∑
j=0

bj,n+1 f (tj, yh(tj)), (7)

with bj,n+1 defined by

bj,n+1 =
hq

q
((n + 1 − j)q − (n − jq)). (8)

The error of this approximation is given by

max
j=0,1,...N

|y(tj)− yh(tj))| = O(hP), (9)

where P = min(2, 1 + q).

2.2. Stability of Fractional-Order Systems

This subsection presents several definitions for the stability of fractional-order autonomous systems.
Starting from Equations (1) and (2), it is possible to study the stability of fractional-order systems.
A fractional-order differential equation with 0 < q < 1 typically presents a stability region that is larger
than that of the same equation with integer order q = 1.

Definition 1. The roots of the equation f(x) = 0 are called the equilibria of the fractional-order differential
system Dqx = f(x), where x = (x1, x2, . . . , xn)T ∈ R, f(x) ∈ R and Dqx = (Dq1 x1, Dq2 x2, . . . , Dqn xn)T ,
qi ∈ R+, i = 1, 2, . . . , n.

Theorem 1. Consider a commensurate-order system described by

Dqx = Ax, x(0) = x0 (10)

with 0 < q < 1, x ∈ Rn and A ∈ Rn×n. It has been shown [53–58] that this fractional order system is
asymptotically stable if and only if the following condition is satisfied

| arg(λ)| > qπ/2, (11)

where | arg(λ)| represents all eigenvalues of A. Besides, the critical eigenvalues of A satisfying | arg(λ)| = qπ/2
must have a geometric multiplicity of one, which stands for the dimension of subspace of v for Av = λv.

Theorem 2. Consider an incommensurate-order system described by

Dqx = Ax, x(0) = x0 (12)

where x = (x1, x2, . . . , xn)T ∈ R, Dqx = (Dq1 x1, Dq2 x2, . . . , Dqn xn)T, qi ∈ R+, i = 1, 2, . . . , n, 0 < qi < 1,
and A = (aij) ∈ Rn×n, i = 1, 2, . . . , n, j = 1, 2, . . . , n. By assuming w as the lowest common multiple of the
denominators ui of qi, where qi = vi/ui, (ui, vi) = 1, ui, vi ∈ Z+ for i = 1, 2, . . . , n, the characteristic matrix
of (12) is defined by
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Δ(λ) =

⎡⎢⎢⎢⎢⎣
λwq1 − a11 −a12 . . . −a1n

−a21 λwq2 − a22 . . . −a2n
...

...
. . .

...
−an1 −an2 . . . λwqn − ann

⎤⎥⎥⎥⎥⎦ . (13)

Then, the system (12) is globally asymptotically stable in the Lyapunov sense if all roots λ of its characteristic
polynomial, given by equation det(Δ(λ)) = 0, satisfy | arg(λ)| > π/2w [53–58].

Theorem 3. The equilibrium point E∗ is asymptotically stable if and only if the instability measure

ρ = (π/2w)− min
i

{arg(λi)} (14)

is strictly negative, where the λi parameters are roots of equations: det(diag([λwq1 λwq2 . . . λwqn ]) −
∂ f /∂x|x=E∗) = 0, ∀E∗ ∈ Ω [57,58]. If ρ ≥ 0 and the critical eigenvalues satisfying ρ = 0 have the
geometric multiplicity one, then E∗ is stable.

Remark 1. If ρ is positive, then E∗ is unstable and the system may exhibit chaotic behavior [57,58].

3. A New Three-Dimensional Fractional-Order Chaotic System

Recently, Munoz-Pacheco et al. [59] proposed a fractional-order dynamical system with a line,
lattice, and 3D grid of boostable variables. The chaotic attractors of that system are self-excited.
Inspired from that work, we propose a new fractional-order chaotic system given by

Dq1 x = yz + x(y − a),

Dq2 y = 1 − |x|, (15)

Dq3 z = −xy − z,

where a is a real parameter, (q1, q2, q3) ∈ [0, 1] are the fractional-order derivatives, and x, y, z are
the states’ variables. In the fractional-order system (15), the Caputo definition of fractional-order
derivative (2) is used. The fractional-order system (15) presents a unique characteristic. The parameter
a behaves as a controller of the diverse complex dynamics generated by the system, such as hidden
and self-excited attractors. Therefore, the fractional-order system (15) belongs to different classes of
dynamical systems, i.e., a new class of systems without equilibrium, a new class of systems with
multistability, a subclass of systems with nonhyperbolic equilibria, and the well-known class of
systems of the hyperbolic type. To the best knowledge of the authors, this is the first time reporting
a fractional-order chaotic system that presents the unique characteristic of switching from self-excited
chaotic attractors to hidden chaotic attractors, and the coexistence of hidden attractors which arise by
varying just one single parameter. Also, the hidden chaotic attractor can be observed with a fractional
order as low as q = 0.95.

In this manner, the study conducted herein could be straightforwardly expanded to find other
fractional-order systems, with one single parameter generating different families of hidden and
self-excited attractors, by applying a systematic computer search similar to [7,16].

3.1. Self-Excited Chaotic Attractor: Spiral Saddle Type of Equilibrium Points

In order to obtain the equilibrium points of the system (15), the left-hand side of the system is
kept at zero, so the system’s equations can be written as

0 = yz + x(y − a),
0 = 1 − |x|,
0 = −xy − z.

(16)
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The equilibria E∗ = (x∗, y∗, z∗) of the system (16) are

E1 = (1, (1 +
√

1 − 4a)/2, −(1 +
√

1 − 4a)/2),
E2 = (−1, (1 − √

1 − 4a)/2, (1 − √
1 − 4a)/2),

E3 = (1, (1 − √
1 − 4a)/2, −(1 − √

1 − 4a)/2),
E4 = (−1, (1 +

√
1 − 4a)/2, (1 +

√
1 − 4a)/2).

(17)

As can be seen from (17), the system parameter a is a controller for the kind of equilibria, i.e.,
the parameter a is also known as a bifurcation parameter. In this case, a self-excited attractor can
be observed when a < 1/4. Let a = −1, then the equilibrium points E∗ are as given in Table 1.
For investigating the stability and type of these equilibrium points, the Jacobian matrix of system (16)
is defined by

J =

⎡⎢⎣ y + 1 x + z y
−sign(x) 0 0

−y −x −1

⎤⎥⎦ , (18)

where the resulting eigenvalues evaluated at E∗ are as shown in Table 1. Therefore, the fractional-order
system (16) has four hyperbolic equilibrium points of the type spiral saddle index 1 and index 2,
where the index is the number of eigenvalues with a positive real part, respectively. According to
Theorem 1, the fractional-order system is asymptotically stable if q < 0.9010.

Lemma 1. When q = 0.93 and a = −1, the system (15) exhibits a self-excited chaotic attractor.

Proof. In order to generate a chaotic behavior in the system (15), the instability measure ρ defined in
Theorem 3 must be positive. By selecting q = 0.93, a = −1, and w = 100, the characteristic equation of
the equilibrium points E1 and E4 is

λ279 − 1.6180λ186 − 0.6180λ93 − 2.2360, (19)

with unstable root λ = 1.0090, while the characteristic equation at the equilibria E2 and E3 is

λ279 + 0.6180λ186 + 1.6180λ93 + 2.2360, (20)

with unstable roots λ1,2 = 1.0039 ± 0.0153i. Then, the instability measure of the system is
ρ = (π/2m)− 0.0152 > 0. Therefore, the fractional-order system (15) satisfies the necessary condition
for exhibiting a self-excited chaotic attractor when q = 0.93 and a = −1.

Numerical simulation results in Figure 1 illustrate the existence of a chaotic attractor for
the given fractional order. All numerical analyses presented herein were obtained by the
Adams–Bashforth–Moulton predictor–corrector scheme of Section 2.1, with h = 0.01.

(a) (b) (c)

Figure 1. Self-excited attractor of the system (15) considering a = −1 and q = 0.93. (a) x–y plane;
(b) x–z plane; (c) y–z plane.
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To verify whether the system (15) is chaotic in the classical sense, its Lyapunov exponents are
calculated. The Lyapunov exponents (LEs) are indicated by LE1, LE2, and LE3 in Table 1. As is
well known, a system is considered chaotic if LE1 > 0, LE2 = 0, LE3 < 0 with |LE1| < |LE3|.
Time series-based LEs calculation methods, like Wolf algorithm [60], Jacobian method [61], and neural
network algorithm [62], are popular known ways of calculating Lyapunov exponents for integer and
fractional-order systems. The Wolf algorithm [60] is used herein to calculate the LEs.

Table 1. Equilibria, eigenvalues, and Lyapunov exponents of the fractional-order chaotic system (15).

New System Parameters FO Equilibria Eigenvalues x0, y0, z0 LEs

Self-excited

a = −1; q = 0.93 (1, 1.6180, −1.6180) 2.3064, −0.3442 ± 0.9225i (1, 1, 1) LE1 = 2.957
(−1, −0.6180, −0.6180) −1.0666, 0.2243 ± 1.4304i LE2 = 0.01
(1, −0.6180, 0.6180) −1.0666, 0.2243 ± 1.4304i LE3 = −5.765
(−1, 1.6180, 1.6180) 2.3064, −0.3442 ± 0.9225i

Non-hyperbolic
a = 0.25; q = 0.99 (1, 1

2 , − 1
2 ) 0, −0.3750 + 0.5994i (1, 1, 1) LE1 = 1.27

(−1, 1
2 , 1

2 ) 0, −0.3750 + 0.5994i LE2 = 0.010
LE3 = −1.72

Hidden
a = 0.35; q = 0.97 no-equilibria (1, 1, 1) LE1 = 14.735

LE2 = 0.010
LE3 = −18.350

Coexistence a = 0.35; q = 0.996 no-equilibria (1, 1, 1) LE1 = 11.066

Chaotic LE2 = 0.080
LE3 = −13.161

Coexistence a = 0.35; q = 0.996 no-equilibria (0, 75, −50) LE1 = 0

Periodic LE2 = −3.695
LE3 = −3.705

3.2. Degenerate Case: Self-Excited Chaotic Attractor with Nonhyperbolic Equilibria

A nonhyperbolic equilibrium point has one or more eigenvalues with a zero real part. In three-
dimensional systems, 11 combinations can be determined [63]. Among them, six have only real
eigenvalues, five present eigenvalues with a complex conjugate pair and one real part, and only
two do not have nonzero real eigenvalues. Therefore, the stability of systems with nonhyperbolic
equilibria cannot be obtained from their eigenvalues, because there is not an eigenvalue with a positive
real part. Such systems can have neither homoclinic nor heteroclinic orbits, and thus the Shilnikov
method cannot be used to verify the chaos [64]. Very few examples of fractional-order systems with
nonhyperbolic equilibria have been previously reported.

As given in Table 1, the proposed fractional-order system (15) has two nonhyperbolic equilibrium
points when parameter a = 1/4. The equilibria have a zero real eigenvalue and two complex conjugate
eigenvalues with a negative real part. Therefore, the resulting self-excited attractor is of a nonhyperbolic
type of chaos. Figure 2 shows the phase portraits.
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Figure 2. Chaotic attractor of the system (15) with nonhyperbolic equilibrium points, a = 0.25 and
q = 0.99. (a) x–y plane; (b) x–z plane; (c) y–z plane.
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Figure 3a shows the Lyapunov exponents spectrum when the fractional-order system (15) is
nonhyperbolic. The positive Lyapunov exponent indicates a chaotic behavior. Additionally, the dynamical
behavior of the system (15) can also be illustrated by the bifurcation diagram in Figure 3b. Due to
system (15) having only one parameter, which must be a = 1/4 to present nonhyperbolic equilibrium
points, it is interesting to analyze its dynamical behavior when a is fixed and the fractional-order q is
varied. The bifurcation diagram in Figure 3b demonstrates a period-doubling route to chaos.
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Figure 3. (a) Lyapunov exponents spectrum, and (b) bifurcation diagram of the fractional-order
nonhyperbolic system (15) when a = 1/4.

3.3. Hidden Chaotic Attractor Localization in the Fractional-Order System without Equilibria

Most familiar examples of low-dimensional chaotic flows occur in systems having one or more
saddle points. However, further studies showed that the self-excited periodic and chaotic oscillations did
not give exhaustive information about the possible types of oscillations, i.e., “hidden oscillations” and
“hidden attractors”. So, this class of attractors should be introduced according to the following definition:

Definition 2. An attractor is called a self-excited attractor if its basin of attraction intersects with any open
neighborhood of an equilibrium, otherwise it is called a hidden attractor [1,6].

With equilibrium, we are stating the equilibrium points of the state variables. Definition 2 also
includes fractional-order dynamical systems with no-equilibria, line and surfaces of equilibria, and
stable equilibria [35–42].

Similar to aforementioned scenarios, the parameter a is a controller of the dynamical behavior
of the proposed system (15). In this case, if a > 1/4, a fractional-order system without equilibrium
points is obtained. Hence, the resulting attractor is hidden using Definition 2. By selecting a = 0.35,
and the fractional-order q = 0.97, the proposed system (15) generates the hidden chaotic attractor
shown in Figure 4. It is important to note that the shape of the chaotic attractor in the x–z plane is
similar to a hurricane. Moreover, the chaos generation is demonstrated by the Lyapunov exponents
spectrum given in Figure 5a. As stated in Table 1, the largest Lyapunov exponent LE1 is positive, and
|LE1| < |LE3|, indicating a chaotic behavior.

By using the fractional-order q as bifurcation parameter, the bifurcation diagram of system (15) when
it generates a hidden attractor (a > 1/4) is illustrated in Figure 5b. As can be seen from the bifurcation
diagram, there are three regions where the chaotic behavior emerged, i.e., for 0.9285 < q < 0.931,
0.962 < q < 0.973, and q > 0.9955, a hidden attractor can be observed. This result indicates that the
hidden chaotic attractor depends on the selected fractional order.
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Figure 4. Hidden attractor of the system (15) considering a = 0.35, q = 0.97, and initial conditions
(x(0), y(0), z(0)) = (1, 1, 1). (a) x–y plane; (b) x–z plane; (c) y–z plane.

0 50 100 150 200 250 300
t(s)

-150

-100

-50

0

50

100

Ly
ap

un
ov

 E
xp

on
en

ts

1
= 14.7355

2
= 0.01327

3
= -18.3504

(a)

0.9 0.92 0.94 0.96 0.98 1
q

0

2

4

6

8

10

r

(b)

Figure 5. (a) Lyapunov exponents spectrum, and (b) bifurcation diagram of the fractional-order
no-equilibrium system (15), when a > 1/4.

3.4. Coexistence of Hidden Attractors Regimes in the Fractional-Order System without Equilibria

The coexistence of attractors means that two or more different attractors are generated in
a dynamical system from different initial conditions, which is an important and interesting nonlinear
phenomenon [18,65]. In this subsection, we focus on studying the coexisting hidden attractors of the
fractional-order no-equilibrium system (15). A necessary tool for analyzing the coexistence of attractors
is the basin of attraction. All attractors, whether they be stable equilibria, limit cycles, attracting tori,
or hidden strange attractors, are surrounded by a basin of attraction representing the set of initial
conditions in the state space whose orbits approach and map out the attractor as time approaches
infinity [66].

Figure 6 shows the basins of attraction of the system (15) for the cross-section in the y–z plane at
x = 0 with a = 0.35 and q = 0.996. We found that the initial conditions inside of the yellow region
converge to a hidden chaotic attractor, as shown in Figure 7, whereas the initial conditions belonging
to the blue region lead to a hidden periodic attractor, as shown in Figure 8. This result confirms that
there are two different hidden attractors coexisting in the proposed fractional-order chaotic system (15).
Both coexisting attractors are also shown in Figure 7. Besides, this behavior also indicates multistability,
because different initial conditions converge to different hidden attractors.

Table 1 gives the Lyapunov exponents spectrum for both hidden chaotic and periodic attractors,
respectively. The positive, zero, and negative Lyapunov exponents of the hidden chaotic attractor
indicate chaotic behavior, while a zero and two negative Lyapunov exponents point out a hidden
periodic attractor.
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Figure 6. Cross-section of the basins of attraction of the two coexisting attractors in the y–z plane at
x = 0 for the fractional-order chaotic system without equilibrium (15) when a = 0.35 and q = 0.996.
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Figure 7. Coexistence of hidden chaotic and periodic attractors of the system (15) considering a = 0.35
and q = 0.996. (a) x–y plane; (b) x–z plane; (c) y–z plane.
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Figure 8. Hidden periodic attractor of the fractional-order system (15) with a = 0.35, q = 0.996, and
initial conditions (x(0), y(0), z(0)) = (0, 75, −50). (a) x–y plane; (b) x–z plane; (c) y–z plane.

3.5. Mechanism of the Different Dynamics

The mechanism of generating several types of equilibria in the proposed fractional-order
system (15) is simple and intuitive. The basic idea consists of varying the single system parameter a in
a range from negative to positive values, similar to the bifurcation analysis for integer-order systems.
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By analyzing the symbolic equation of the equilibrium points (17), we realized that the number and
stability of equilibria can be changed with the parameter a. One can easily see that system (15) has
four unstable equilibrium points (spiral saddle index 1 and index 2) when a < 1/4. As a result,
the fractional-order system (15) can be defined into a class of fractional-order chaotic systems with
hyperbolic equilibrium points, which is the most typical form obtained for a chaotic attractor.

Next, with a = 1/4, the fractional-order system (15) degenerates, in the sense that their Jacobian
eigenvalues at the equilibria consist of one zero eigenvalue and a complex conjugate pair with
a negative real part. Clearly, the corresponding two equilibria are nonhyperbolic. Hence, the system
(15) belongs to a subclass of fractional-order chaotic systems with nonhyperbolic equilibrium points.

Finally, the fractional-order system (15) has no-equilibrium points when a > 1/4. In this scenario,
the resulting system can be categorized into a class of fractional-order no-equilibrium chaotic systems.
It is interesting that if there are no-equilibrium points, the system (15) also presents multistability,
since two distinct attractors are observed for different initial conditions. It is straightforward to observe
that we added the simple constant control parameter a to the fractional-order chaotic system (15),
trying to change the stability of its equilibria while preserving its chaotic dynamics. With the aim
to analyze the relationship between the parameter a and the fractional-order q, we introduce the
bi-dimensional map, that it is essentially a bifurcation diagram of two parameters, shown in Figure 9.

Figure 9. Bi-dimensional map for the different dynamical behaviors of the fractional-order system (15)
as a function of the parameter a and order q. The white region leads to a chaotic attractor, the black
region evolves to periodic attractors, and the orange region converges to unbounded orbits. Self-excited,
nonhyperbolic, and hidden chaotic attractors for a < 1/4, a = 1/4, and a > 1/4, respectively.

This map indicates the type of equilibrium and the resulting dynamical behavior for a given a
and q. The white, black, and orange regions evolve in chaotic, periodic, and unbounded behavior,
respectively. From Figure 9, the minimal fractional order can be also determined. For instance,
when a = −1, we observe that the chaotic attractor can appear for q > 0.9010, as was demonstrated
in Section 3.1. However, unbounded trajectories are obtained if q ≤ 0.9010, but a chaotic behavior
can be detected for fractional orders as low as q = 0.8 when a = −2.5. Similarly, the chaotic attractor
from nonhyperbolic equilibria is found for q > 0.997. For the case of a no-equilibria system (a > 1/4),
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we observed that the minimal fractional order wherein hidden chaotic attractors can emerge is about
q = 0.955. For lower orders, the system only generates hidden periodic attractors.

To the best knowledge of the authors, this is the first time reporting a fractional-order chaotic
system without equilibrium points and with the coexistence of hidden attractors.

4. Test 0–1 for Chaos

Gottwald and Melbourne [67] proposed a reliable and effective binary test method for testing
whether a nonlinear system has chaotic behavior, which is called the “0–1 test”. The test consists of
creating a random dynamic process for the data and then studying how the scale of the stochastic
process changes with time [67–69]. This test has been widely adopted as a suitable tool to confirm
the chaotic behavior in fractional-order dynamical systems [26,33,40] because it is binary (minimizing
issues of distinguishing small positive numbers from zero); the nature of the vector field, as well
as its dimensionality, does not pose practical limitations; and it does not suffer from the difficulties
associated with phase space reconstruction.

In this manner, the “0–1 test” is applied directly to the time series data of the fractional-order
system (15). Since the test does not require phase space reconstruction, the dimension and origin
of the system (15) are irrelevant. Let us consider a set of discrete data φ(n) with n = 1, 2, . . . , N,
representing a one-dimensional observable dataset obtained from the underlying dynamics of the
system (15). For c ∈ (0, π), we compute the translation variables p1(n) = ∑n

j=1 φ(j) cos(jc), and
p2(n) = ∑n

j=1 φ(j) sin(jc). Next, the diffusive or non-diffusive behavior of p1 and p2 is obtained by the mean

square displacement M(n) = limN→∞
1
N ∑N

j=1
(
[p1(j + n)− p1(j)]2 + [p2(j + n)− p2(j)]2

)
, for n � N.

Finally, the asymptotic growth rate K of M(n) is given by

K = lim
n→∞

log M(n)
log n

. (21)

When M(n) is bounded, the dynamics of the system (15) evolves in a periodic or quasi-periodic
behavior. On the other hand, a chaotic behavior is detected if M(n) grows linearly, similar to
a Brownian motion. Moreover, a quantitative measure of the dynamics of the system (15) is given by K.
For K close to 1, a chaotic behavior is observed, whereas for K close to 0, a regular behavior is obtained.

Detecting Chaos in the Proposed Fractional-Order System

In order to determine the chaotic and regular behaviors in the fractional-order system (15),
we apply the “0–1 test” to the time series data obtained from the different scenarios in Section 3.
The time series data were obtained by the ABM scheme with a time-step size h = 0.01.

Case 1: Self-excited attractor: When q = 0.93 and a = −1, the translation components (p1, q1)

are as shown in Figure 10a. The unbounded behavior points out that the dynamics of the system (15)
with unstable equilibria is chaotic. Also, the asymptotic growth rate K approaches one, with a value
K = 0.9988, indicating the presence of chaotic dynamics. This result agrees with the self-excited chaotic
attractor shown in Figure 1.

Case 2: Hidden chaotic attractor: When q = 0.97 and a = 0.35, a hidden chaotic attractor is
localized, as shown by the phase portraits in Figure 4. In this case, the asymptotic growth rate of
the time series of the system (15) with no-equilibrium is K = 0.9985. Additionally, the translation
components (p1, p2) are shown in Figure 10b. The Brownian-like motion indicates chaotic behavior.

Case 3: Coexistence of hidden attractors: When q = 0.996, a = 0.35, and initial conditions [1, 1, 1]T ,
we localize a hidden chaotic attractor, as shown in Figure 7. By applying the “0–1 test”, K = 0.9975.
Besides, the translation components (p1, p2), shown in Figure 11a, behave as Brownian-like motion.
When the initial conditions are chosen as [0, 75, −50]T , and the parameters a, q maintain the same value,
the translation components (p1, p2) are now bounded, as shown in Figure 11b. Besides, the asymptotic
growth rate is K = 0.0364. Therefore, the hidden attractor is periodic.
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From Case 1 to Case 3, the “0–1 test” proved that three different dynamics can arise in the
fractional-order system (15), i.e., a self-excited chaotic attractor, a hidden chaotic attractor, and the
coexistence of hidden attractors.
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Figure 10. Dynamics of the translation components (p1, p2) of the fractional-order system (15):
(a) Self-excited chaotic attractor (q = 0.93, a = −1) with an asymptotic growth rate K = 0.9988;
(b) hidden chaotic attractor (q = 0.97, a = 0.35), with K = 0.9985.
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Figure 11. Dynamics of the translation components (p1, p2) of the fractional-order system (15):
(a) Coexisting hidden chaotic attractor (q = 0.996, a = 0.35, (x, y, z) = (1, 1, 1)) with an asymptotic
growth rate K = 0.9975; (b) coexisting hidden periodic attractor (q = 0.996, a = 0.35,
(x, y, z) = (0, 75, −50) with K = 0.0364.

5. Spectral Entropy Analysis

Complexity measures are an important way to characterize the complex behavior of a chaotic
system. In information security, the complexity can reflect the security of a system [32]. Currently,
there are several methods to measure the complexity of a time series [70]. In this sense, the complexity
of chaotic sequences can be divided into behavior complexity and structural complexity. The former
measures the size of the probability of a new pattern for a short-time window, while the latter is
used to measure the complexity of a sequence by its frequency characteristic and energy spectrum
in the transformation domain. Compared with the behavior complexity, the structural complexity
has a global statistical significance, because it focuses on analyzing the energy characteristic based on
all but the local sequence [70]. At present, the algorithms to evaluate structural complexity include
spectral entropy (SE) and C0 entropy.

Herein, we choose the spectral entropy algorithm to calculate the corresponding Shannon entropy
value based on the Fourier transformation of the time series of the fractional-order system (15). By removing
the direct-current, the steps are as follows. Given the time series {xN(n), n = 0, 1, 2, . . . , N − 1} of
the system (15) with length N, let x(n) = x(n) − x̄, where x̄ is the mean value of the time series,
x̄ = 1

N ∑N−1
n=0 x(n). After that, the discrete Fourier transform (DFT) for the sequence x(n) is computed

with X(k) = ∑N−1
n=0 x(n)e−j2πnk/N = ∑N−1

n=0 x(n)Wnk
N , where k = 0, 1, 2, . . . , N − 1. Next, the relative power
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spectrum is derived with Pk =
|X(k)|2

∑N/2−1
k=0 |X(k)|2 . By using x(n), X(k), and Pk, the spectral entropy of the time

series of the system (15) for the scenarios in Section 3 can be determined by

SE =
∑N/2−1

k=0 |Pk ln Pk|
ln(N/2)

, (22)

where ln(N/2) is the entropy of a completely random signal.

5.1. Structural Complexity of the New Fractional-Order Chaotic System

The structural complexity of the self-excited and hidden attractors generated by the fractional-
order system (15) is analyzed by Equation (22). The SE is computed from the time series x(n) of
the system (15) with length N = 4.5 × 104. Figure 12a shows the SE for the case of the self-excited
attractor, whereas Figure 12b displays the SE of the hidden attractor. The complexity of the self-excited
attractor is almost constant in the interval q ∈ [0.9, 1]. On the other hand, the SE of the hidden attractor,
as a function of fractional order, presents regions where the complexity is close to SE = 0.6, but other
regions have a low SE. Therefore, we must be aware of the selected fractional order in the hidden
attractor in order to have a relatively high structural complexity.
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Figure 12. Spectral entropy versus fractional-order q for the system (15): (a) Structural complexity of
the self-excited attractor in Figure 1 (a = −1); (b) structural complexity of the hidden chaotic attractor
in Figure 4 (a = 0.35).

5.2. Design of a PRNG Using Hidden Attractors

By considering the results of the structural complexity, we select the hidden attractor of the
system (15) to design a pseudo-random number generator (PRNG). More specifically, the chaotic
signals obtained from the system (15) with a = 0.35 and q = 0.97 are used to generate a bitstream
using the approach in [33,71]. In this manner, the chaotic signal x(t) of the system (15) is sampled
randomly to get samples γi with a suitable sample space. A ceil function is required to convert the
real value into an integer value. Next, from each sampled value, we obtain ge(o) of 4-bit resolution
composed of the four least-significant bits. As a post-processing operation, the output bits g(o) are
obtained XORing two consecutive ge(o).

The performance of the PRNG designed with the hidden dynamics is characterized by using the
NIST SP 800-22 battery of statistical tests [72]. By selecting a confidence level α = 0.01, the p-values are
determined for sequences of 1 Mbit. As is well known, a p-value ≥ 0.01 means that the sequence is
considered to be random with a confidence of 99%. Table 2 summarizes the results. As can be seen,
the resulting PRNG using the hidden attractor of the system (15) satisfies all statistical tests.
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Table 2. Results of NIST statistical tests for the bit sequences based on the system (15) when it presents
a hidden chaotic attractor.

Statistical Test p-Value Results

Frequency 0.654721 success
Block Frequency 0.420199 success
Cusum-Forward 0.600222 success
Cusum-Reverse 0.446686 success
Runs 0.220773 success
Long Runs of Ones 0.012522 success
Rank 0.254592 success
Spectral DFT 0.538167 success
Non-Overlapping Templates 0.615839 success
Overlapping Templates 0.102065 success
Universal 0.830304 success
Approximate Entropy 0.635119 success
Random Excursions 0.407574 success
Random Excursions Variant 0.444982 success
Linear Complexity 0.634990 success
Serial 0.301388 success

6. Conclusions

In this paper, a fractional-order dynamical system with different families of hidden and
self-excited attractors is introduced. As a function of only one parameter, the fractional-order system
can be defined without equilibrium points, with nonhyperbolic equilibria, and with hyperbolic
equilibria. A hidden chaotic attractor was identified in the proposed fractional-order system when
it has no-equilibrium points. Additionally, it was found that two different attractors coexist for
a determined fractional order, indicating multistability. Not only hidden dynamics were generated
by the new system, but also two distinct self-excited chaotic attractors were obtained. Lyapunov
exponents and the Brownian-like motion approach demonstrated the chaotic behavior of the system
for each scenario. Finally, the structural complexity of the hidden and self-excited dynamics were
evaluated using the spectral entropy. As an application, a PRNG with a suitable performance was
designed with the time series of the hidden chaotic attractor.

As consequence, a contribution to this new phenomenon and little-explored area is the description
of a fractional-order chaotic no-equilibrium system, along with the coexistence of hidden attractors.
Such nonlinear systems without equilibrium and with multistability are appropriate for practical
applications. Moreover, the fractional order is an extra parameter that permits the study of dynamical
behaviors with more accuracy.
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Abstract: In this paper, we introduce a new, three-dimensional chaotic system with one stable
equilibrium. This system is a multistable dynamic system in which the strange attractor is hidden.
We investigate its dynamic properties through equilibrium analysis, a bifurcation diagram and
Lyapunov exponents. Such multistable systems are important in engineering. We perform an entropy
analysis, parameter estimation and circuit design using this new system to show its feasibility and
ability to be used in engineering applications.

Keywords: chaotic flow; hidden attractor; multistable; entropy

1. Introduction

Chaotic systems are very important in nonlinear dynamics. Many researchers are investigating the
reason for the existence of chaotic attractors. For many years, researchers thought that the existence of a
saddle equilibrium [1,2] is a necessary condition for strange attractors. However, in recent years many
chaotic systems with no saddle point have been proposed. For example, we note systems with chaotic
attractors and without any equilibria [3,4], with stable equilibria [5,6], with a line of equilibria [7,8],
with a curve of equilibria [9,10], with circle and square equilibria [11], with a circular equilibria [12],
with ellipsoid equilibria [13] and with a plane or surface of equilibria [14–17].

Leonov and Kusnetsov have introduced a new topic in nonlinear dynamics that has been called
hidden attractors [18–20]. Hidden attractors are attractors in which the basin of attraction does
not intersect with any equilibrium point [21–23]. The opposite side of this definition is self-excited
attractors. A self-excited attractor has a basin of attraction that is associated with at least one unstable
equilibrium [24–26]. Many unusual chaotic systems that have been proposed recently are systems with
hidden attractors [27]. Hidden attractors in fractional order systems are also studied in [28–30].
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Multistability is another important phenomenon that can be observed in dynamic systems [31–33].
In multistable systems, the final state of the system is dependent on the initial conditions [34,35].
Chaotic systems with stable equilibria are examples of multistable systems [36,37].

The quantification of chaotic attractors is a challenging topic in nonlinear dynamics. There are
many measures that are used in this area. The main such measure is the Lyapunov exponent [38].
Entropy is another measure that determines the unpredictability of complex dynamics [39]. Entropy can
be helpful in short time series [40], while the Lyapunov exponent is not suitable for them.

In this paper, a new three-dimensional chaotic flow with one stable equilibrium is proposed.
The chaotic attractor of this system is hidden since it cannot be found using the stable equilibrium
point. The rest of the paper is organized as follows:

The new chaotic system is proposed in Section 2. Some of its dynamic properties are investigated
in Section 3. Section 4 discuses the complexity of the system’s attractors. Section 5 is devoted to the
parameter estimation of the proposed system. The circuit implementation of the system is carried out
in Section 6. Finally, the paper is concluded in Section 7.

2. System Description

In this paper, we are going investigate the dynamic properties of the following system:

.
x = z

.
y = −x − z

.
z = 0.1x + 5y − z + xy − 0.3xz + a

(1)

where parameter a = 1. System (1) is a three-dimensional chaotic flow that can have a chaotic attractor.
This system has been designed based on the method proposed in [41]. In the first step of investigating
its dynamic properties, the equilibrium points of the system were calculated. By setting zero at the
right hand side of this equation we obtain:

z = 0

x = 0

y = − 1
5

(2)

Thus, the system has one equilibrium point in (0, −0.2, 0). A stability analysis of this equilibrium
point can be carried out using the following Jacobian matrix at the equilibrium:

J =

⎡⎢⎣ 0 0 1
−1 0 −1
−0.1 5 −1

⎤⎥⎦ (3)

By solving the equality det(λI − J) = 0, the characteristic equation of System (1) is determined
as follows:

λ3 + λ2 + 5.1λ + 5 = 0 (4)

Solving Equation (4), we find that System (1) has three eigenvalues (λ1 = −0.9835, λ2,3 = −0.0082 ±
2.2547i) for the equilibrium (0, −0.2, 0). Thus, it is a stable equilibrium point. Every other possible
attractor of this system coexists with this stable equilibrium point. The system shows a chaotic attractor
if we choose initial conditions (x0, y0, z0) = (5.4, −1.8, 3.3). The chaotic attractor cannot be found
using any equilibrium points of the system since the system has only one stable equilibrium point.
Thus the strange attractor is hidden [27]. The time series of three states of System (1) for a = 1 are
shown in Figure 1. Three projections of the chaotic attractor and its three-dimensional attractor are
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presented in Figure 2 and its Poincaré map is shown in Figure 3. In this plot, we use the peak values of
x variable as the Poincaré map.

Figure 1. Time series of System (1) with parameter a = 1 and initial conditions (x0, y0, z0) =

(5.4, −1.8, 3.3).
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Figure 2. Three projections of the chaotic attractor of System (1) with parameter a = 1 and initial
conditions (x0, y0, z0) = (5.4, −1.8, 3.3) in (a) X-Y plane. (b) X-Z plane. (c) Y-Z plane and (d) 3-D
chaotic attractor.
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Figure 3. Poincaré map (peaks of x variable) of System (1) with parameter a = 1 and initial conditions
(x0, y0, z0) = (5.4, −1.8, 3.3).

3. Bifurcation Analysis

In order to show the different dynamic behaviors of System (1), its bifurcation diagram was
investigated. Figure 4a shows a bifurcation diagram of the system with respect to the changing parameter
a. The system has an inverse route of period doubling after its chaotic behavior. The dynamic of the
system also suddenly changes in a = 1.46 from a stable limit cycle to a stable equilibrium. In other words,
System (1) has a chaotic attractor in parameter a = 1 and initial conditions (x0, y0, z0) = (5.4, −1.8, 3.3).
The system also has a stable equilibrium point in

(
0,− a

5 , 0
)
=

(
0,− 1

5 , 0
)

. Thus, there are some initial
conditions in the vicinity of this stable equilibrium that are attracted to it. In the bifurcation diagram of
Figure 4, we used the initial conditions (x0, y0, z0) = (5.4, −1.8, 3.3) for parameter a = 1 and applied the
forward continuation method for the higher values of parameter a. In other words, in the higher values of
parameter a, we used initial conditions from the end of trajectory in the previous parameter with forward
changing. Thus, the trajectory of the system traps into one attractor that is chaotic in parameter a = 1
and bifurcates with an inverse route of period doubling to chaos. In parameter a = 1.46 the previous
attractor becomes unstable and the system jumps from a stable limit cycle to the stable equilibrium point
(0,− a

5 , 0). To be sure about the chaotic and other types of attractors of the system, it was necessary to
calculate the Lyapunov exponents (Figure 4b). In the smaller values of the parameter a the system has
a chaotic attractor (one positive, one zero, and one negative LE). It then shows the limit cycle, since its
largest Lyapunov exponent is zero and the other two LEs are negative. After that, in the higher values of
parameter a, the attractor changed to a stable equilibrium that has three negative Lyapunov exponents.

Figure 4. (a) Bifurcation diagram of System (1) with respect to the changing parameter a in the interval
[1, 1.5] and forward continuation. (b) Lyapunov exponents of System (1) with respect to the changing
parameter a in the interval [1, 1.5] and forward continuation.
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4. Entropy Analysis

Entropy is a measure of unpredictability. Shannon has proposed a formulation for calculating
entropy [42]. Since chaotic attractors have an infinite number of states, another type of entropy is
needed to calculate their unpredictability. This entropy is called Kolmogorov–Sinai (Hks) [40,43] and
its formulation is shown in Equation (5).

Hks(β[ε]) =
1

τmin(β[ε]) ∑
τ

ρ(τ, β[ε])log
(

1
ρ(τ, β[ε])

)
(5)

It is defined using the first Poincaré recurrence times (FPRs) denoted by τi. β is a D-dimensional
box in the state space with side ε1 where the FPRs are observed. ρ(τ, β) is the probability distribution
of τi. For a smooth chaotic system Hks is equal to the sum of all positive Lyapunov exponents [44,45].
The Kolmogorov–Sinai entropy of System (1) with respect to the changing parameter a is shown in
Figure 5. Near a bifurcation point, the system’s state becomes slower. In other words, the transient
time increases near a bifurcation point [46,47]. In order to use Kolmogorov–Sinai entropy to anticipate
a bifurcation point, we calculated it without removing the transient time of the trajectory. If we remove
the transient time, then the estimated Kolmogorov–Sinai entropy became zero in regular dynamics and
it changed through variations in the final state of the system. By applying Kolmogorov–Sinai entropy
to the system’s state without removing transient time, we were able to see complexity of transient parts
as well as final state of the system. As Figure 5 shows, in small values of parameter a the system has a
chaotic attractor and its unpredictability is high. By increasing parameter a, the system changes its
dynamic to a regular dynamic and thus its entropy decreases. However, in the bifurcation points the
system becomes slower and its transient time increases. That is the reason for the increasing entropy in
the bifurcation points.

Figure 5. Kolmogorov–Sinai entropy of System (1) with respect to changing parameter a.

5. Parameter Estimation

There are various methods for parameter estimation in dynamic systems that are based on
optimization methods [48–50]. The basis of these methods is a cost function associated with the
differences between the time series obtained from a real system and the time series obtained from a
known model with unknown parameters. However, these approaches are not appropriate for chaotic
systems due to the butterfly effect [51–53]. Therefore an alternative method is proposed in [54,55].
This new method changes the analyzing domain of the chaotic system from time space to the state
space. In the other words, this new model compares the topology and structure of the points in the
state space. To this end, the algorithm searches the space of the parameter to find the most similar
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point from the model to the point of the data. Whenever the structure of the points in the state
space gets close enough to the structure of the real data, the optimum parameter is found. For more
complete details, see [55,56]. In this paper, we used this useful cost function along with WOA (whale
optimization algorithm [57,58]) for the parameter estimation method. Figure 6 shows the result of the
cost function with respect to changing the parameter a. As is shown in the figure, the global minimum
is located exactly in the main parameter a = 1. Figure 7 shows the result of the cost function with
respect to changing the parameters a and b (consider b as the coefficient of x in the third equation
of Equation (1)). As is shown in the figure, the global minimum is located in the main parameters
a = 1 & b = 0.1.

Figure 6. The value of the cost function with respect to changing the parameter a.

Figure 7. The value of the cost function with respect to changing the parameter a & b.

One of the most efficient categories of the optimization methods is meta-heuristic methods, which
cover a wide range of problems, especially in engineering applications [50,59–61]. Most of them are
inspired by nature. Humpback whales’ hunting behavior in sea form the basis of the WOA (whale
optimization algorithm) meta-heuristic algorithm [57,58]. The hunting behavior of Humpback whales,
who encircle the recognized location of prey, has become the basis of the WOA algorithm. In this
algorithm the target prey is the current best candidate or close to the optimum solution and the
attacking strategy is a bubble-net strategy. By considering all these together, the WOA optimization
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method can be explained through three steps: Finding the prey, encircling the prey, and the bubble-net
attacking behavior of humpback whales.

At first, the algorithm determines the best candidate solution. Then it updates the position of the
other points in order to get closer to the best agent. The second step is about the attack strategy, which
can be divided into two approaches. The first is a shrinking encircling mechanism and the other is a
spiral updating position. For complete details see [57]. Figure 8 represents the result of the WOA for
the 30 searching agents and 40 iterations.

Figure 8. The result of WOA for the 30 searching agents and 40 iterations.

6. Circuit Design

This section presents a circuit implementation for the three-dimensional flow (1) (see Figure 9).
The circuit implementation in Figure 9 was constructed using six operational amplifiers (U1 − U6)

and electronic elements [62–66]. We used TL084 operational amplifiers and AD633 analog multipliers.
Taking the voltages of three operational amplifiers (U1, U2, U3) as X, Y, Z, it confirms that the circuit
in Equation (6) corresponds to the flow (1):

.
X = 1

R1C1
Z

.
Y = − 1

R2C2
X − 1

R3C2
Z

.
Z = 1

R4C3
X + 1

R5C3
Y − 1

R6C3
Z + 1

R7C310V XY − 1
R8C310V XZ − 1

R9C3
Va

(6)

where Va is a DC voltage source.
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Figure 9. The circuit constructed by six operational amplifiers (U1 − U6) and electronic elements.

The circuit generates chaos as illustrated in Figure 10 for the following set of components:
C1 = C2 = C3 = 20 nF, R1 = R2 = R3 = R6 = R = 40 kΩ, R4 = 400 kΩ, R5 = 8 kΩ, R7 = 1 kΩ,
R8 = 3.333 kΩ, R9 = 160 kΩ, and Va = −1VDC.

Figure 10. Generated attractors in PSpice of the circuit: (a) X-Y plane, (b) X-Z plane, (c) Y-Z plane.
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7. Conclusions

A new three-dimensional chaotic system with one stable equilibrium was proposed in this paper.
A bifurcation analysis of the system showed an inverse period doubling route to chaos with respect to
increasing parameter a. The unpredictability of its dynamic was discussed using Kolmogorov–Sinai
entropy. Parameter estimation of the system was carried out and circuit implementation of the system
confirmed its feasibility. It is noted that the real practical realization and real laboratory measurements
of the circuit should be carried out. Therefore, practical results will be reported in our next works.
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polynomials of degree d in their Hubbard tree. An optimization of Thurston’s core entropy algorithm
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1. Introduction

The topological entropy of a polynomial P, denoted by P allows us to measure the complexity of
the orbits of the dynamical system generated by P. This concept has been used to classify the dynamics
in different polynomial families, for example, in the case of real one-parameter families of polynomials
of degree 2, it has been shown that the entropy behaves monotonically [1,2]. For real cubic maps, it was
shown that each locus of constant topological entropy is a connected set [3]. Later, this result was
shown for a quartic polynomial family and for real multimodal maps [4,5]. In the complex polynomials
family, the entropy is concentrated in the Julia set; it is constant and only depends on the degree of
the polynomial family [1,6]. In order to study the dynamics of a polynomial with a finite postcritical
set, Douady and Hubbard introduced the Hubbard tree; the theory of admissible Hubbard trees and
critical portraits was later studied by Poirier [7]. Afterwards Thurston proposed to study the entropy,
restricted to its Hubbard tree, of a polynomial with finite postcritical set, which, in this setting, is called
the core entropy. He showed that the core entropy generalizes the concept defined for an invariant
interval in the real case [8]. Furthermore, Thurston proposed an algorithm in order to calculate the
core entropy. It is based on a linear transformation A (defined in terms of the external arguments of
the postcritical set) whose spectral radius coincides with the core entropy [9].

In the case of the quadratic family, Li proved that the core entropy grows through the veins of
the Mandelbrot set. Later Tiozzo proved, for the same family, that the core entropy can be extended
as a continuous function of the external argument on the boundary of the Mandelbrot set [10,11].
He generalizes this result for polynomials of higher degrees [12].

In this article, we show a simplification of Thurston’s algorithm for a family of polynomials
of degree d ≥ 3 with one free critical point and one fixed critical point of maximum multiplicity.
We always assume that the free critical point is either periodic or eventually periodic. According to
[13], this family is conjugated to

Pa(z) = zd−1
(

z +
da

d − 1

)
. (1)

The polynomial function Pa(z) has two critical points: zero which is the fixed critical point of
maximal multiplicity and −a which is the free critical point. The parameter space of this polynomial
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family has been studied by Milnor [14,15] in the cubic case, and by Roesch [13], who studied the
topological properties of the hyperbolic components in the case of degree d ≥ 3.

To simplify Thurston’s algorithm, we construct a linear transformation A′ with a definition
based on the external arguments of the orbit of the critical point (−a). As we will show, this linear
transformation is defined in a space with smaller dimension than the one proposed by Thurston.
Consequently, the spectral radius is easier to calculate. Here is the main result of this paper.

Main Theorem. Let Pa be a postcritically finite polynomial of the family (1). If A denotes the matrix obtained
via Thurston’s algorithm, then A and A′ have equal spectral radii ρ.

In order to prove the Main Theorem, we use of the concept of external rays, the Thurston algorithm,
and some properties of the entropy and non-negative matrices [16–20].

2. Thurston’s Algorithm

The algorithm proposed by Thurston allows us to compute the core entropy of a polynom of
degree d. With the purpose of defining this algorithm, we present some needed concepts which can be
found in the work of Gao, [9].

2.1. The Algorithm of Thurston for Polynomials of Degree d

Let P(z) be a postcritically finite polynomial of degree d. Thus, P(z) has exactly d − 1 critical
points, say, c1, ..., cn (counting multiplicities). Each ci is either in the Julia set, Jp, or is the center of a
Fatou component. Furthermore, Jp is locally connected [18,21]. The algorithm is based on the analysis
of the external rays that land either on the critical points or on the boundaries of Fatou components
that contain the critical points.

Definition 1. We say that an external ray R(θ) supports a bounded Fatou component U if:
(1) The ray lands on a point q at the boundary of U.
(2) There exists a sector based at q, delimited by R(θ) and the internal ray of U that lands at q, such that

the sector does not contain any other external ray that lands on q.

Given a postcritically finite polynomial of degree d and a critical Fatou component U, that is,
a Fatou component containing a critical point, let δ = deg(P|U). We define the set Θ(U) as follows:

(1) If U is periodic with orbit

U → P(U) → · · · → Pn(U) = U,

we build Θ(U′, z′, θ) for all U′ in this orbit simultaneously.
Using the Böttcher coordinates in U, we can find z ∈ ∂U with internal argument 0. This z is a root of U,

which depends on the choice of the coordinates. This means that z is a periodic point of minimal period on
the boundary of U. This choice determines a root for each Fatou component (Pk(U), for k = 1, 2 . . . , n − 1).
We call this root a preferred root of Pk(U). If U′ is any component in the cycle and z′ is its preferred root,
consider a ray (R(θ)) which supports U′ at z′. Define Θ(U′, z′, θ) to be the set consisting of δU′ arguments
of the support rays for the component U′ that are the inverse image of P(R(θ)).

(2) If the Fatou component U is strictly preperiodic, take n as the smallest number for which Pn(U)

is a critical Fatou component. Let z ∈ ∂U be such that Pn(z) = γ(α), where γ(α) is the point where
R(α) lands on ∂Pn(U) and α ∈ Θ(Pn(U), γ(α), α). Consider a ray (R(θ)) that supports component U
which contains z. Define Θ(U, z, θ) as the set of the δU arguments of the supporting rays of U that,
under Pn, go to R(α).
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Remark 1. For each critical Fatou component U, there exists, at most, a finite number of sets (Θ(U′, z′, θ)),
each one dependent on the choice of the root (z) in U and the argument (θ). We can choose any of them and
denote it by Θ(U).

Definition 2. Let P be a polynomial with finite postcritical set. Let U1, ..., Un be the pairwise disjoint critical
Fatou components, and let c1, . . . , cm be the critical points in the Julia set (m + n is the number of different
critical points of P). The finite collection of subsets of the circle

ΘP = {Θ(c1), . . . , Θ(cm), Θ(U1), . . . , Θ(Un)}

is called the critical marking of P, if each of the Θ(Ui) is chosen as in Remark 1 and each Θ(cj) consists purely
of the angles of the external rays that lands on cj.

Let Θ = {Θ1, Θ2 . . . , Θl} be the critical marking of a polynomial P of degree d. We define the
critical and postcritical sets of Θ as

crit(Θ) =
l⋃

k=1

Θk and post(Θ) =
⋃

n≥1

τncrit(Θ),

respectively, where τ : T → T is the function given by τ(θ) = dθ mod 1. From the definition of
critical marking, it is easy to see that the following holds:

1. Each τΘi, i ∈ {1, 2, . . . , l}, consists of a unique angle.
2. The convex hulls of Θi and Θj in the unit disk intersect each other in, at most, one point of T,

for any i �= j in the set {1, 2, . . . , l}.
3. For each i, #Θi ≥ 2 and ∑l

i=1(#Θi − 1) = d − 1.

Let D be the unit disk endowed with the hyperbolic metric. We identify any point in ∂D with
the argument in T. By doing this, each angle in the circle is considered to be mod 1. A leaf is either a
point in T or the closure in D of a hyperbolic chord (non-trivial). Indeed, from now on, each time we
mention chord or hull in the disk, it will be in the hyperbolic sense. For each set (S ⊂ T), we denote
the convex hull of S as a subset of D by hull(S).

A critical portrait of degree d is a finite collection of finite subsets of the circumference,
Θ = {Θ1, Θ2 . . . , Θk} satisfying properties 1, 2, 3.

Notice that any critical marking of a postcritically finite polynomial seen in the unit disk is a
critical portrait.

Definition 3. Let Θ = {Θ1, Θ2 . . . , Θl} be a critical portrait. Given any two angles x, y ∈ T that are not
necessarily different, and an element Θ of Θ, we say that the chord xy crosses the convex hull, hull(Θ) if
x, y /∈ Θ, and xy

⋂
hull(Θ) �= ∅. In this setting, we also say that x, y are separated by Θ.

Definition 4. Given any pair of angles x, y ∈ T, the separation set relative to Θ is the set {k1, ..., kp} where
the chord xy successively crosses hull(Θk1), ..., hull(Θkp), Θkj

∈ Θ, and no other element of Θ separates the
angles x, y. We say that the angles x, y are not separated by Θ if its separation set relative to Θ is empty.

If Pd is a polynomial with finite postcritical set, then each element of its critical portrait Θ is
rational and post(Θ) is a finite set. Hence, it is possible to define the finite set S consisting of pairs (not
ordered) of {x, y} with x �= y ∈ post(Θ) as long as card(post(Θ)) ≥ 2. In the case of post(Θ) = {x},
S has only one element and in this case, x is a fixed point of τ.

Once we have defined the set S, the entropy of Pd restricted to the Hubbard tree (H(Pd)) is given
by the Algorithm 1.
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Algorithm 1 Thurston’s Algorithm

• Let V be the vector space over R which has the elements of S as a basis.
• Let A : V → V be the linear transformation defined by the values on the basis S of V as follows.

For any vector ({x, y} ∈ S), the image is defined by
A({x, y}) = {τ(x), τ(y)} if x, y are not separated by Θ;
A({x, y}) = ∑

p
i=0 A({θi, θi+1}), where θ0 = x, θp+1 = y, and θi ∈ Θki

∈ Θ, if {x, y} has the
separating set {k1, . . . kp} �= ∅.

• Let A be the matrix associated with the linear transformation A with respect to the basis S. As
this matrix is non-negative, according to Perron–Frobenius Theorem, the spectral radius ρ of A is
non-negative [16].

Theorem 1 (Gao). Let Pd be a polynomial of degree d with a finite postcritical set, and let Θ be a critical
marking for Pd. If ρ is the spectral radius of the matrix in Thurston’s algorithm, then h(H(Pd), Pd) = log ρ.

A full proof of the above Theorem can be found in [9].
One of the advantages of studying the entropy in the critical portrait is the fact that each point

of the postcritical set corresponds to an angle in the set post(Θ) in such a way that any arc of H(Pd)

between two vertices can be represented by some pair of angles, although possibly not in a unique
way. Intuitively, one can think that the actions of Pd in those arcs induce a transformation in the space
generated by the pair of angles in the set post(Θ) given by the matrix A of Thurston’s algorithm.

2.2. Thurston’s Algorithm in the Polynomial Family (1)

Let Pa be a polynomial in the family (1). The critical points of Pa are 0 and −a. The point 0 is the
center of the fixed Fatou component Ba, and −a is a free critical point. If −a is the center of a Fatou
component, then this component will be denoted by U1.

We also define the following set of angles

Θ0 = Θ(Ba),

Θ−a =

{
Θ(U1) i f −a is the center of a Fatou component
Θ(c1) i f −a ∈ Ja,

where Θ(Ba), Θ(U1) and Θ(c1) are defined as in Section 2.1.
Assume that Pa has a finite postcritical set. The collection of angles ΘPa = Θ−a is called a restricted

critical marking.
Let ΘPa be the restricted critical marking of Pa. We define the restricted critical set and the

restricted postcritical set as

crit(ΘPa) = Θ−a and post(ΘPa) =
⋃

n≥1

τncrit(ΘPa).

In the same way as we did before, we identify any point in ∂D with its argument in T.
The restricted critical marking of Pa viewed in D is denoted by Θa.

Lemma 1. If Θa is the restricted critical portrait of the polynomial Pa, then D \ hull(Θa) has 2 connected
components with arcs in T of lengths 1

d and d−1
d , respectively.

Proof. Since deg(P|−a) = 2, Θa consists of two elements, the convex hull (hull(Θa)) divides D in two
regions. On the other hand, as the elements of Θa are obtained as inverse images of the same angle,
the arc length between the elements of Θa is equal to 1

d (c.f. Proposition 2.31 in [13]). This completes
the proof.
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Definition 5. Let Θa be a restricted critical portrait. Given any two angles x, y ∈ T (not necessarily different),
we say that the chord (xy) crosses the convex hull (hull(Θa) of Θa) if x, y /∈ Θa and xy

⋂
hull(Θa) �= ∅.

Under these conditions, we say that x, y are separated by Θa.

If Pa has a finite postcritical set, then the elements of the restricted critical portrait are rationals,
and post(Θa) is a finite set. We define set S′ as all pairs (not ordered) of {x, y} with x �= y ∈ post(Θa)

as long as card(post(Θa)) ≥ 2. If post(Θa) = {x}, then S′ is the element {x, x}, and x is a fixed point
of τ. Once we have defined set S′, the adapted Thurston’s algorithm that is used to approximate the
entropy of Pa over its Hubbard tree is given by Algorithm 2.

Algorithm 2 The Adapted Thurston’s Algorithm

• Define V′ as the vector space over R which has the elements of S′ as a basis.
• Define the linear transformation A′ : V′ → V′ by setting the values of A′ on the basis S′ of V ’ in the

following way: For any vector {x, y} ∈ S′, the image is defined by
A′({x, y}) = {τ(x), τ(y)}, if x, y are not separated by Θ; and
A′({x, y}) = {τ(x), τ(θ)}+ {τ(θ), τ(y)}, θ ∈ Θa if x, y are separated by Θ.

• Let A′ be the matrix associated with the linear transformation A′ with respect to the basis S′. This
matrix is non-negative, and, according to the Perron–Frobenius Theorem [16], the spectral radius ρ′
of A′ is non-negative.

Theorem 2. Let Pa be a finite postcritical polynomial. If A denotes the matrix obtained by Algorithm 1, and A′

is the matrix generated by Algorithm 2, then A and A′ have the same spectral radius (ρ).

Proof. In order to prove the Theorem, we have to consider two cases:
(1) If −a ∈ Ba, in this case, the core entropy is zero, and we show that in the restricted algorithm.

The spectral radius of matrix A′ is 1.
(2) If −a /∈ Ba, we show that transformation A can be built without considering the line of

separation of the critical point (0).
Let Pa be a polynomial of degree d with a finite postcritical set. In accordance with Böttcher’s

Theorem, a biholomorphism φa exists that conjugates Pa with the function zd in a neighborhood of
infinity. Since Pa is postcritically finite, its Julia set is locally connected; hence, φa can be extended
continuously to Ja [21].

Moreover, the dynamics in Ba are conjugated to zd−1, and the conjugation can be extended
continuously to the boundary; hence, a fixed point p of Pa exists, with an internal angle of 0, that is, in
∂Ba. The Böttcher coordinate is chosen at infinity in such a way that the external angle of p is also 0.

According to the above and the construction of the critical portraits, the set of angles is
Θ0 =

{
0, k1

d , . . . kd−2
d

}
, with ki ∈ {1, 2, . . . , d − 1}. Hence, the critical portrait of Pa is given by

Θ =

{{
0,

k1

d
, . . .

kd−2
d

}
, Θ−a

}
and post(Θ) =

⋃
n≥1

τn(Θ−a)
⋃{0},

where Θ−a consists of two elements according to Lemma 1.
This shows that for a fixed d, the postcritical set varies only in the function of the critical point

(−a). On the other hand, the edges of the Hubbard tree are related to the pairs of angles in the critical
portrait as follows: the interval of angles with extremes {θ1, θ2} in the circumference represents a
union of edges in the Hubbard tree, and the interval of angles in the circle given by the image of
A({θ1, θ2}) is equivalent to the interval of angles that contains the image under Pa of the union of
corresponding edges.

Remark 2. If S denotes the basis of the vector space in Algorithm 1 and the pair {θ1, θ2} ∈ S is separated with
respect to the critical line Θci , then the corresponding edge or edges contain the critical point ci.
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Case 1: Let Pa be a postcritically finite polynomial such that −a ∈ Ba. As Pa is conjugated to
zd−1 in Ba, then the tree of a is star shaped with n edges. We can label the edges in the Hubbard tree
such that the incidence matrix Ã = (ai,j) is defined by ai,i+1 = 1 for i = 1, . . . , n − 1, an,j = 1 for some
j ∈ {i, . . . , n} and zero otherwise.

The characteristical polynomial of the incidence matrix Ã is

(−1)nλk−1(λn−(k−1) − 1),

and its spectral radius is 1. Hence h(Pa) = 0. On the other hand, Theorem 1 says that the spectral
radius of A obtained by Thurston’s method is 1.

Due to the fact that the orbit of −a is in Ba, the restricted critical portrait Θa consists of the external
angles corresponding to the component Ba. Hence, pairs ({θi, θj}) separated with respect to the critical
point (−a) do not exist. Moreover, we can disregard the separation with respect to 0, as in the restricted
algorithm. Thus, there is no pair that is separated. Consequently, all pairs {θi, θj} ∈ S have only one
image. Furthermore, all rows of matrix A′ add up to 1; thus, the spectral radius is 1.

Case 2: If −a /∈ Ba, we have the next claim.

Claim 1. If [v1, 0] and [0, v2] are the two edges of H(a), and γ = [v1, 0]
⋃
[0, v2], then Pa(γ) =

[Pa(v1), Pa(v2)].

Proof. If −a is a periodic point, then there are no edges of the forms [v1, 0] and [0, v2] that have the
same image. Hence, as 0 is a fixed point, Pa(γ) = [Pa(v1), Pa(v2)].

On the other hand, if −a is preperiodic with −a /∈ Ba, then −a eventually goes to a bifurcation
point of ∂Ba; thus, in this case, there are no edges of the forms [v1, 0] and [0, v2] that go to the
same image.

In set S, in order to obtain the image of a separated pair ({θ1, θ2}) we can discard the characteristic
of being separated with respect to the critical line of Θ0. Thus, for this family of polynomials, if the
pair {θ1, θ2} is separated with respect to Θ, its separation set consists only of one element—the one
associated with Θ−a.

Since the postcritical set of Pa only depends on the critical point (−a), we can study them if we
separate them into the following cases:

(1) If −a is the center of a capture component, then the orbit of Θ−a eventually contains the zero
angle, which is a fixed angle. In this case, the postcritical set of Θ is

⋃
n≥1

τn(Θ−a). Hence, A = A′.

(2) If −a eventually goes to p ∈ ∂Ba, with a fixed p, then the orbit of Θ−a contains the zero angle;
thus, as above, A = A′.

(3) In any other case, the orbits of Θ−a and Θ0 are disjoint. Hence, the postcritical set is

Post(Θ) = {0, θ1, . . . θk},

where θi = Pi
a(θ) with θ ∈ Θ−a.

If we write set S in such a way that the first k elements are of the form {0, θi}, then S can be
written as

S = {{0, θ1}, . . . {0, θk}}
⋃{{θi, θj} ; i ≤ j

}
.

Hence, the matrix associated with the transformation A is

A =

(
B X
N C

)
,
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where B is the submatrix corresponding to the relations of the images of the pairs of the form {0, θi}
with themselves, and C is the submatrix corresponding to the relations of the images of the pairs
{θi, θj} with themselves. The lower submatrix N represents the relations between the images of pairs
{θi, θj} with {0, θi}.

Since we do not consider the separation with respect to the critical line Θ0, and the orbit of Θ−a

does not contain 0, the image of a pair {θi, θj} does not have a component of the form {0, θl}. Hence,
the matrix N is identically 0.

Since C is exactly the matrix A′, to finish the proof of the theorem, it is enough to prove the
following claim.

Claim 2. The spectral radius of matrix B is 1.

Proof. Notice that a pair ({0, θi}) is fixed under A only when the angle θi is fixed. Due to the fact that
the only fixed angle of τ is zero and θi �= 0, all the elements of the diagonal of B are zeros. On the
other hand, if {0, θi} is not separated, then its image is {0, θi+1}, and if it is separated, then its image
is {0, θ1}+ {θ1, θi}. In the first case, this generates a 1 over the diagonal of B, and in the second case,
it generates a 1 on the first column. Thus, B has the form

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . , 0 0
0 0 1 . . . , 0 0
...

... · · · 1
...

...
1 0 0 . . . 0 0
... 0 0 . . . 0 0
1 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and its spectral radius is then 1.

Example 1. Taking d = 3 and a = 1.07183814 + 0.1928507i in the polynomial family (1), we have a
polynomial with the critical point −a which is periodic with a period of 4. The Julia set is shown in Figure 1.

Figure 1. Julia set and critical portrait for d = 3 and a = 1.07183814 + 0.1928507i.

The critical portrait associated with Pa is Θ = {{0, 1
3}, { 7

20 , 41
60}} and post(Θ) = {0, 1

20 , 3
20 , 9

20 , 7
20}.

It can be seen in Figure 1.
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The basis S for the space V is

S =

{{
0,

1
20

}
,
{

0,
3
20

}
,
{

0,
9
20

}
,
{

0,
7
20

}
,
{

1
20

,
3
20

}
,
{

1
20

,
9
20

}
,
{

1
20

,
7
20

}
,
{

3
20

,
9

20

}
,
{

3
20

,
7

20

}
,
{

9
20

,
7

20

}}
.

By applying the linear transformation A to the elements of the basis, we obtain{
0, 1

20

}
�→ {

0, 3
20
}{

0, 3
20
} �→ {

0, 9
20
}{

0, 9
20
} �→

{
0, 1

20

}
+
{

1
20 , 7

20

}
{

0, 7
20
} �→

{
0, 1

20

}
{

1
20 , 3

20

}
�→ { 3

20 , 9
20
}

{
1

20 , 9
20

}
�→ {

0, 3
20
}
+
{

0, 1
20

}
+
{

1
20 , 7

20

}
{

1
20 , 7

20

}
�→ {

0, 3
20
}
+
{

0, 1
20

}
{ 3

20 , 9
20
} �→ {

0, 9
20
}
+
{

0, 1
20

}
+
{

1
20 , 7

20

}
{ 3

20 , 7
20
} �→ {

0, 9
20
}
+
{

0, 1
20

}
{ 9

20 , 7
20
} �→

{
1
20 , 7

20

}
.

Hence, the matrix associated with the linear transformation A is

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and its spectral radius is 1.3953. In accordnce with Theorem 1, we conclude that the entropy of Pa, restricted to
its Hubbard tree, is log 1.3953.

On the other hand, the restricted critical portrait associated with Pa is Θ = {{ 7
20 , 41

60}}, and

post(Θ) =
{

1
20 , 3

20 , 9
20 , 7

20

}
. It can be seen in Figure 2.

Figure 2. Restricted critical portrait for d = 3 and a = 1.07183814 + 0.1928507i.

The basis S of the space V is given by

S =

{{
1
20

,
3

20

}
,
{

1
20

,
9

20

}
,
{

1
20

,
7
20

}
,
{

3
20

,
9
20

}
,
{

3
20

,
7
20

}
,
{

9
20

,
7
20

}}
.
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The transformation A′ on the basis S is{
1

20 , 3
20

}
�→ { 3

20 , 9
20
}{

1
20 , 9

20

}
�→

{
1
20 , 3

20

}
+
{

1
20 , 7

20

}
{
{ 1

20 , 7
20

}
�→

{
1
20 , 3

20

}
{ 3

20 , 9
20
} �→

{
1
20 , 9

20

}
+
{

1
20 , 7

20

}
{ 3

20 , 7
20
} �→

{
1
20 , 9

20

}
{ 9

20 , 7
20
} �→

{
1
20 , 7

20

}
The associated matrix is

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
1 0 1 0 0 0
1 0 0 0 0 0
0 1 1 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

with a spectral radius of 1.3953.

As the above example shows, the Thurston restricted algorithm allows us to reduce the dimensions
of the matrix as well as the cardinality of the orbit of −a. Furthermore, the sum of the elements of any
row of A′ is, at most, 2, while the sum of the elements of a row in A can be greater than 2. Figure 3
shows the core entropy as a function of the external argument for d = 3.
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Figure 3. Core entropy for d = 3.
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Abstract: This paper brings analysis of the multiple-valued memory system (MVMS) composed
by a pair of the resonant tunneling diodes (RTD). Ampere-voltage characteristic (AVC) of both
diodes is approximated in operational voltage range as common in practice: by polynomial scalar
function. Mathematical model of MVMS represents autonomous deterministic dynamical system
with three degrees of freedom and smooth vector field. Based on the very recent results achieved
for piecewise-linear MVMS numerical values of the parameters are calculated such that funnel and
double spiral chaotic attractor is observed. Existence of such types of strange attractors is proved
both numerically by using concept of the largest Lyapunov exponents (LLE) and experimentally
by computer-aided simulation of designed lumped circuit using only commercially available
active elements.

Keywords: chaos; Lyapunov exponents; multiple-valued; static memory; strange attractors

1. Introduction

A general property of chaos is long-time unpredictability; i.e., random-like evolution of dynamical
system even if the describing mathematical model does not contain stochastic functions or parameters.
Because of its nature, chaotic behavior was often misinterpreted as noise. The first mention of this
kind of the complex solution was in [1] where Lorenz noticed the extreme sensitivity of autonomous
deterministic dynamics to tiny changes of the initial conditions. After this very milestone, chaos started
to be reported in many distinct scientific fields as well as daily life situations. Chaotic motion has
been observed in chemical reactions [2], classical mechanics [3], hydrodynamics [4], brain activity [5],
models of biological populations [6], economy [7] and, of course, in many lumped circuits.

Two basic vector field mechanisms are required for evolution of chaos: stretching and folding.
The first mechanism is responsible for exponential divergence of two neighboring state trajectories
and second one bounds strange attractor within a finite state space volume. Pioneering work
showing the presence of robust chaotic oscillation within dynamics of simple electronic circuit is [8].
So far, the so-called Chua´s oscillator was subject of laboratory demonstrations, deep numerical
investigations and many research studies [9–11]. Several interesting strange attractors associated
with different vector field local geometries have been localized within the dynamics of three-segment
piecewise-linear Chua systems [12–14]. However, the inventors of Chua´s oscillator built it intentionally
to construct a vector field capable of generating chaotic waveforms. Progress in computational power
together with development of the parallel processing allows chaos localization in standard functional
blocks of radiofrequency subsystems such as in harmonic oscillators [15,16], frequency filters [17,18],
phase-locked loops [19], power [20] and dc-dc [21] converters, etc. From a practical point of view, chaos
represents an unwanted operational regime that needs to be avoided. It can be recognized among
regular behavior because of the specific features in the frequency domain: continuous and broadband
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frequency spectrum. However, an approach that is more sophisticated is to derive a set of describing
differential equations and utilize the concept of LLE to find regions of chaotic solutions [22].

Searching for chaos in a mathematical model that describes simplified real electronic memory
block is also topic of this paper. Three programs were utilized for the numerical analysis of MVMS:
Matlab 2015 for the search-through-optimization algorithm including CUDA-based parallelization,
Mathcad 15 for graphical visualization of results and Orcad Pspice 16 for circuit verification. The
content of this paper is divided into four sections with the logical sequence: model description,
numerical analysis, circuit realization and verification; both through simulation and measurement.

2. Dynamical Model of Fundamental MVMS

Basic mathematical model of MVMS [23,24] is given in Figure 1 and can be described by three
first-order ordinary differential equations in the following form:

C1
dv1

dt
= i − f1(v1) C2

dv2

dt
= i − f2(v2) L

di
dt

= vbias − v1 − v2 − R·i (1)

where the state vector is x = (v1, v2, i)T, C1 and C2 is parasitic capacitance of first and second RTD,
L and R is summarized (RTDs are connected in series) lead inductance and resistance, respectively.
Details about modeling of high frequency RTD including typical values of parasitic elements can be
found in [25]. We can express both nonlinear functions (for k = 1, 2) as:

fk(x) = ak(x − dk)
3 + bk(x − dk) + ck (2)

 

Figure 1. Basic network configurations of MVMS: original (left schematic), dual (right schematic).

Thus, AVC of each RTD is a cubic polynomial that should form an N-type curve with a negative
segment. Fixed points xe are all solutions of the problem dx/dt = 0. For further simplicity, let’s assume
that R = 0 Ω. We can determine global conditions and position for its existence within state space as
each solution of system of the nonlinear algebraic equations, namely:

a1(xe − d1)
3 + b1(xe − d1) + c1 = a2(Vbias − xe − d2)

3 + b2(Vbias − xe − d2) + c2

ye = Vbias − xe

ze = a1(xe − d1)
3 + b1(xe − d1) + c1

(3)

Vector field geometry depends on the eigenvalues; i.e., roots of a characteristic polynomial. It can
be calculated as det(s·E–J) = 0 where E is the unity matrix and J is the Jacobi matrix:

J =

⎛⎜⎝ −b1 − 3a1(xe − d1)
2 0 1

0 −b2 − 3a2(ye − d2)
2 1

−1 −1 0

⎞⎟⎠. (4)
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Characteristic polynomial in symbolical form becomes:

, 

(5)

Obviously, symbolical expressions for the individual eigenvalues are very complicated and cannot
further contribute to the better understanding of a vector field configuration and chaos evolution;
check well-known Cardan rules. In situation, where xe and ye coordinate of equilibrium point is close
to offset voltages represented by d1 and d2, characteristic polynomial simplifies into the relation:

s3 + (b1 + b2)s2 + (b1b2 + 2)s + b1 + b2 = 0, (6)

and the eigenvalues depend only on linear part of polynomial approximation of AVCs of RTDs.
Until very recently, analysis of MVMS was focused only on a high-frequency modeling of RTDs,

influence of a pulse driving force on overall stability [26] and global dynamics [27] and specification of
the boundary planes [28]. However, existence of chaos has not been uncovered and examined.

3. Numerical Results and Discussion

Numerical values of MVMS parameters can be obtained by the optimization technique described
in [29]. In this case, the mathematical model of MVMS was considered piecewise-linear. Such kind
of a vector field allows better understanding of chaos evolution, allows partial analytic solution
and makes linear analysis generally more powerful. However, situation when AVCs of both RTDs
are approximated by the polynomial functions is closer to reality. Thus, our problem stands as
follows: couple of three-segment piecewise-linear functions needs to be transformed into the cubic
(or higher-order if necessary) polynomial functions without losing robust chaotic solution having
numerically close metric fractal dimension (Kaplan-Yorke is preferred over capacity because of rapid
and precise calculation). For more details, readers should consult [30] where the inverse problem has
been successfully solved. Finally, chaotic attractor like the so-called Rossler attractor [31] was localized.

Searching within smooth vector field (1) and by considering default normalized values C1 = 11 F,
C2 = 37 F, L = 100 mH and R = 0 Ω leads to the following optimal values of the cubic polynomials (2):

a1 = 648.5, b1 = −23.1, c1 = −0.13, d1 = 0.3, a2 = 58.1, b2 = −21.9, c2 = −0.65, d2 = 0.5. (7)

Adopting these values and fourth-order Runge-Kutta numerical integration process we get the
reference chaotic orbits provided in Figure 2. Accordingly to Equation (3) we have three fixed points:
first located in position xe = (0.046, 0.704, −4.768)T and characterized by eigenvalues λ1 = −101.241,
λ2 = 0.062, λ3 = 13.915, second equilibria in position xe = (0.292, 0.458, 0.043)T having set of the
eigenvalues λ1 = 0.09, λ2 = 22.97, λ3 = 21.72 and xe = (0.55, 0.2, 4.299)T with local behavior given by
eigenvalues λ1 = −99, λ2 = 0.13, λ3 = 7.146. This is an interesting geometric configuration of the vector
field: a funnel-type strange attractor generated by saddle-node equilibria with the stability index 1, 0
and 0; saddle-focuses are completely missing. Developed optimization algorithm can be utilized to
maximize unpredictability of a dynamical flow and increase system entropy. Starting with values (7)
the following set of numerical values was obtained:

a1 = 680, b1 = −23, c1 = −0.13, d1 = 0.3, a2 = 55, b2 = −25, c2 = −0.65, d2 = 0.5, (8)
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leading to a double-hook [12] like chaotic attractor visualized by means of Figure 3. The position
of the first fixed point changes slightly to xe = (0.045, 0.705, −5.48)T as well as the corresponding
eigenvalues λ1 = −109.037, λ2 = 0.049, λ3 = 13.915. The second equilibrium moves into position xe =
(0.29, 0.46, 0.089)T and possesses the set of eigenvalues λ1 = 0.084, λ2 = 22.764, λ3 = 24.817. Finally, the
last fixed point moves towards position xe = (0.554, 0.196, 5.31)T where the local behavior will be given
by the eigenvalues λ1 = −109.953, λ2 = 0.085, λ3 = 10.596. The mentioned equilibria together with
important state space sections are provided in Figure 4. Note that local geometries of a vector field
are not affected since, in a closed neighborhood of the fixed points, dynamical movement is given by
three eigenvectors as in the case of a funnel chaotic attractor. Also note that one direction of the flow
(along the eigenvector associated with λ1) is strongly attracting; this nature is evident from Figure 5.
Interesting fragments of the bifurcation diagrams are depicted in Figure 6.

 

Figure 2. Three-dimensional perspective views on a typical chaotic attractor generated by polynomial
MVMS for the initial conditions x0 = (0.1, 0.3, 0)T; Poincaré sections in planes shifted by the offsets
of polynomial functions: x = c1 (red), y = c2 (yellow); fixed point of the flow (blue dots), state space
rotation (no deformations of axis system). Numerical integration with final time 104 and time step 0.01.

 

Figure 3. Three-dimensional perspective views on chaotic attractor with increased entropy generated
by polynomial MVMS for the initial conditions x0 = (0.1, 0.3, 0)T; Poincaré sections in planes shifted by
offsets of polynomial functions: x = c1 (red), y = c2 (yellow); fixed point of the flow (blue dots), state
space rotation (no deformations of axis system). Calculation with final time 104 and time step 0.01.

141



Entropy 2018, 20, 697

 

Figure 4. Important geometric structures located within state space: v1–v2 plane projection of function
f 1(v1) (orange), function f 2(v2) (green) and v1 = Vbias − v2 (blue line), intersections of these planes are
fixed points of dynamical flow. Discovered chaotic attractor put into the context of vector field.

 

Figure 5. Graphical visualization of a dynamical behavior near the fixed points (red dots): equilibrium
xe = 0.046 (left two images), for fixed point located at xe = 0.292 (middle two plots) and fixed point with
xe = 0.55 (right two state portraits).

 

Figure 6. Gallery of one-dimensional bifurcation diagrams calculated with respect to the polynomial
approximation of AVCs of RTDs; individual plots from left to right: horizontal axis represented by
parameter range a1 ∈ (600, 700) calculated with step Δ = 0.1; parameter range b1 ∈ (−30, 0) established
with step Δ = 0.01; parameter range c1 ∈ (−1.5, 0) together with step Δ = 0.001; parameter a2 ∈ (30, 100)
with step Δ = 0.1; parameter b2 ∈ (−25, −20) together with step Δ = 0.01 and parameter c2 ∈ (−4, 0)
with step Δ = 0.01.
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Here, transient motion has been removed and plane x = d1 has been used for individual slices.
These are plotted against parameters ak, bk and ck of polynomial approximations of AVC of k-th RTD.
Parameters a1 and a2 can burn or bury chaotic attractor since these affect eigenvalues in “outer” parts
of the active vector field (given by size of the state attractor) while geometry around “middle” fixed
point remains almost unchanged.

Figure 7 shows numerical calculation of a gained energy with small time step with respect to the
state space location; red regions mark large increment while dark blue stands for a small evolution.

 
Figure 7. Rainbow-scaled contour plots of short-time evolution of MVMS energy for the state space
slices forming unity cube (left to right): z0 = −5, z0 = −4, z0 = −3, z0 = −2, z0 = −1, z0 = 0, z0 = 1, z0 = 2,
z0 = 3, z0 = 4, z0 = 5.

As stated before, chaotic solution is sensitive to the changes of parameters ak, bk, ck and dk, where k =
1, 2. If we consider these values variable we create eight-dimensional hyperspace in which chaos alternates
with periodic orbits or fixed-point solution. Two-dimensional subspaces hewed-out from such hyperspace
are provided in Figure 8. Each graph is composed of 101 × 101 = 10,201 points, calculation routine deals
with time interval t ∈ (100, 104), random initial conditions inside basin of attraction and Gram-Smith
orthogonalization [32]. Here, dark blue represents a trivial solution, light blue a limit cycle, green color
stands for weak chaos and yellow marks strong chaotic behavior. Note that LLE for set of values (7) can be
found in each visualized plot.

Maximal merit of LLE is 0.089 for a value set (7) and 0.103 for (8) and associated Kaplan–Yorke
dimension [33] is 2.016 and 2.021 respectively. Specification of sufficiently large “chaotic” area is
important also from practical viewpoint; as will be clarified later.
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Figure 8. Gallery of the rainbow-scaled surface-contour plots of LLE as functions of two parameters;
vertical range dedicated for LLE is −0.004 to 0.103, counting of plots from left to right and up to down:
a1–b1, a1–c1, a1–a2, a1–b2, a1–c2, b1–c1, b1–a2, b1–b2, b1–c2, c1–a2, c1–b2, c1–c2, a2–b2, a2–c2, b2–c2.
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4. Circuitry Realization of MVMS-Based Chaotic Oscillators

Design of analog equivalent circuit is common way how to prove existence of structurally stable
strange attractors within the dynamics of a prescribed set of ordinary differential equations. Realization
of such the so-called chaotic oscillators is a simple and straightforward task that we can solve by
using several approaches [34–38], both using discrete components and in integrated form. A favorite
method that allows us to utilize commercially available active elements follows the concept of analog
computers. Thus, only three building blocks are required for circuit construction: inverting summing
integrator, summing amplifier and, in the case of a polynomial nonlinearity, four-segment analog
multiplier. Fully analog circuit implementation is shown in Figure 9.

 

Figure 9. Chaotic oscillator designed to audio band based on integrator block schematic associated
with mathematical model of MVMS, numerical values of passive network components are included.

Note that this circuit synthesis requires many active devices: two TL084, two AD844 and a single
four channel four quadrant analog multiplier MLT04. Supply voltage is symmetrical ±15 V but, for
MLT04, this voltage is lowered to ±5 V. Majority of the analog realizations of the chaotic systems
with a polynomial nonlinearity utilize AD633, i.e., single channel multiplier. It is possible also in
our case but with the cost of eight active devices. Dynamical range for correct operation of MLT04 is
only ±2 V. However, prescribed strange attractor is smaller in v1–v2 dimension. Advantage of this
circuit is that individual MVMS parameters can be adjusted independently using potentiometers.
Theoretically, using different decomposition of the polynomial functions, total number of the active
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elements can be lowered to four. Proposed chaotic oscillator is uniquely described by the following set
of the differential equations:

dv1
dt = − 1

C2

[
− v3

R1
− Rb

Ra

(
v1 − Rd

Rd+Rc
Vcc

){
1

R8
− Rz3

Rz4

(
Rb
Ra

)3
K2

(
v1 − Rd

Rd+Rc
Vcc

)
1

R7

}
− Vc1

Rx

]
dv2
dt = − 1

C3

[
− v3

R2
− R f

Re

(
v2 − Rh

Rh+Rg
Vcc

){
1

R10
− Rz1

Rz2

( R f
Re

)3
K2

(
v2 − Rh

Rh+Rg
Vcc

)
1

R9

}
− Vc2

Ry

]
dv3
dt = 1

C1

[
− R5

R6

(
v1
R4

+ v2
R5

)
+ Vbias

Rbias

] (9)

where VC1, VC2 and Vbias are independent dc voltage sources and K = 0.4 is internally-trimmed scaling
constant of the analog multiplier cells MLT04. Fundamental time constant of this chaotic oscillator is
chosen to be τ = R·Cv = 103·10−7 = 100 μs.

Of course, it is also possible to build both analog networks provided in Figure 1 directly. Instead
of nonlinear two-ports we must construct a couple of resistors with polynomial AVC; systematic design
towards these network elements can be found in [39,40]. Circuitry realization of original MVMS with
state vector x = (v1, v2, i)T is demonstrated by means of Figure 10; i.e., the state variables are voltages
across grounded capacitors and current flowing through the inductor. Note that both polynomial
function (2) need to be rewritten into the form i = f (v) = a·v3 + b·v2 + c·v + d. Thus, a new set of the
dimensionless ordinary differential equations to be implemented as lumped analog electronic circuit
as follows:

dx
dt = −z − 648·x3 − 583·x2 − 152·x − 10.7 dy

dt = z − 58·y3 + 87·y2 − 20·y − 3.3
dz
dt = x − y + 0.75

(10)

 

Figure 10. Chaotic system obtained directly from fundamental MVMS with ideal multipliers and ideal
second-generation current-conveyors, numerical values of the circuit components are included.
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Now assume that impedance and frequency norm are 105 and 104, respectively. Such values lead
to the nominal inductance 1H. This simplified concept of chaotic oscillators is given in Figure 10 and
described by following set of the ordinary differential equations:

C1
dv1
dt + iL +

v3
1

Ra1
+

v2
1

Ra2
+ v1

Ra3
+ VX

Ra4
= 0

C2
dv2
dt +

v3
2

Rb1
+ v2

Rb3
+ VY

Rb4
= iL +

v2
2

Rb2

L diL
dt + RSiL + v2 = v1 + Vbias

(11)

where a small value RS can still model lead to resistances of both RTDs that are parts of MVMS in
Figure 1.

Note that this kind of realization utilizes second generation current conveyors implemented by
using ideal voltage-controlled voltage-source E and current-controlled current-source F. A positive
variant of this active three-port element is commercially available as the AD844 while a negative variant
is EL2082 (only one negative device is required). In practice, the inductor should be substituted by the
synthetic equivalent; i.e., active floating gyrator (Antoniou’s sub-circuit) with a capacitive load, check
Figure 11. In this case, the number of the active elements raises to eight: a single TL084, six AD844s and
a single MLT04. Dynamical behavior is uniquely determined by the following mathematical model:

dv1
dt = 1

C1

[
−i − K2v3

1
Ra1+Rin

− Kv2
1

Ra2+Rin
− v1

Ra3
− Vx

Ra4+Rin

]
dv2
dt = 1

C2

[
−i − K2v3

2
Rb1+Rin

− Kv2
2

Rb2+Rin
− v2

Rb3
− Vy

Rb4+Rin

]
di
dt =

Rg2
Rg1Rg3Rg4Cg1

[v1 − v2 + Vbias]

(12)

where Rin represents input resistance of current input terminal of AD844. Its typical value is 50 Ω and,
due to the high values of the polynomial coefficients and in the case of small impedance norm chosen,
it cannot be generally neglected. On the other hand, we must avoid output current saturation of each
AD844 and consider frequency limitations of each active device. Thus, choice of both normalization
factors is always a compromise. Thanks to the symmetry inside floating Antoniou’s structure Rg5

= Rg3, Rg7 = Rg1, Rg6 = Rg2 and Cg2 = Cg1. Behavior of this chaotic oscillator is extremely sensitive
to the working resistors connected in the nonlinear two-terminal devices. Thus, calculated values
were specified by Orcad Pspice optimizer where fitness functions (several should be defined to create
tolerance channel) are absolute difference between polynomials in (11) and actual input resistance of
designed circuit. Corresponding dc sweep analysis were estimated for input voltages from 0 V to 2 V
with step 10 mV.
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Figure 11. Chaotic system obtained directly from fundamental MVMS network with floating synthetic
inductor, numerical values of the passive circuit components are included, ready for verification.

Last circuitry implementation is provided in Figure 12; namely dual network to the original
MVMS. Impedance norm is chosen to be 103 and frequency normalization factor is 105. To get the
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reasonable values of the resistors further impedance rescaling is possible. Set of describing differential
equations can be expressed as follows:

diL1
dt = 1

L1

[
−Rs1iL1 + rT2

{
(rT1iL1)

3

R1
+ rT1iL1

R3
− V1

R4

}
− rT3

(rT1iL1)
2

R2

]
diL2
dt = 1

L2

[
−Rs2iL2 + rT5

{
(rT4iL2)

3

R5
+ rT4iL2

R7
− V2

R8

}
− rT6

(rT4iL2)
2

R6

]
dvZ
dt = 1

CX

(
− vZ

Rp
− iL1 − iL2 + I1

) (13)

where rTk is trans-resistance of k-h ideal current-controlled voltage-source and I1 is independent dc
current source.

 

Figure 12. Hypothetic analog circuit realization dual to original MVMS network with ideal controlled
sources: trans-resistance of output current-to-voltage conversion is considered as global parameter.

Polynomial nonlinearity is implemented by ideal multiplication using block MULT. Current
flowing through both inductors can be sensed via small resistor RS1 and RS2 respectively. However,
these resistors represent error terms that are inserted into describing differential equations; similarly
as a parasitic shunt resistor Rp. Such parasitic properties change global dynamics, can boost system
dimensionality (not in this situation) and desired chaotic behavior can eventually disappear.

Unfortunately, active elements where output voltage is controlled by input current are not
off-the-shelf components. However, trans-resistance amplifier can be constructed using single standard
operational amplifier and feedback resistor. To do this, input is fed directly to − terminal, node + is
connected to ground, resistor between − and OUT. Node OUT also represents output of a designed
transimpedance amplifier. Equivalently, the AD844 can also do the trick. Input can be connected to −
terminal, ground to + terminal, resistor between C and ground and output to OUT. Considering the
latter case, number of the active devices becomes seven: one MLT04 and six AD844.
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Colored plots provided in Figure 8 demonstrate that region of chaos around discovered values (7)
is wide enough to provide a structurally stable strange attractor; both funnel and double-scroll type.
The same analysis was performed for set (8); this strange attractor should be also observable.

5. Circuit Simulation, Experimental Verification and Comparison

As mentioned before, AVC of both nonlinear resistors in Figure 11 should be as precise as possible
to reach desired state space attractor. To fulfil this requirement, build-in Orcad Pspice optimizer can be
adopted; see Figure 13 where optimal AVC of one nonlinear two-terminal device is reached.

 

Figure 13. Orcad Pspice optimization toolbox: definitions of the objective functions and requested
maximal errors (upper right field), error graph (upper left), new values of resistors (middle table).

Of course, the operational regime of this nonlinear resistor needs to be limited; in our case to input
voltages into range starting with −0.5 V and ending with 2 V. Note that up to thirteen fitness functions
were supposed to cover predefined operational range. Also note that optimization was stopped while
some objective functions still have nonzero error (expressed in terms of the differential percentages).
Important is the matter of similarity between simulated and numerically integrated strange attractor.

Implementation of the chaotic oscillator based on the integrator block schematic is more robust;
i.e., the desired strange attractor is less vulnerable to the passive component matching: fabrication
series (E12) and component tolerances (1%) were considered for design. We are also experiencing
superior parasitic properties of the voltage-mode active elements: both integrated circuits TL084 and
MLT04 have very high input and very low output resistances. Values of resistors that form external
network connected to AD844 were chosen such that parasitic input and output impedances can be
neglected. This is the main reason why this kind of MVMS realization was picked and forwarded into
practical experiments and undergoes laboratory measurement.

Generally, parasitic properties of the active elements play important role in a design process of
analog chaotic oscillators and, of course, should be minimized. Besides input and output impedances
also roll-off effects of transfer constants need to be analyzed. Several publications have been devoted
to reveal and study problems associated with the parasitic properties of the specific active devices and
how these affect global dynamics; for example [41].

In simulation profile of transient response, final time was set to 1 s and maximal time step 10 μs.
This setup is kept for each simulation mentioned in this section. Circuit simulation associated with
Figure 9 is provided in Figure 14. To transform the funnel into a double-scroll chaotic attractor
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we should change value of the resistors Rz3, Rz1 and R10. Simulation results associated with
direct realization of original MVMS provided in Figure 10 is demonstrated by means of Figure 15.
Computer-aided analysis of chaotic oscillator with idealized controlled sources is showed in Figure 16.

 

Figure 14. Orcad Pspice circuit simulation associated with chaotic circuit given in Figure 9: selected
plane projection v3–v2 (blue, upper graph), v2–v1 (red) and v3–v1 (blue) of the chaotic attractor,
generated chaotic signal v1 (red) and v2 (blue) in the time domain, chaotic waveform v1 (red) and
v2 (blue) in the frequency domain. Note that significant frequency components are concentrated in
audio range.
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Figure 15. Orcad Pspice circuit simulation associated with network given in Figure 10: selected plane
projection v1–v2 (blue, upper plot), v1–iL (red) and v2–iL (blue) of chaotic attractor, generated signal v1

(red) and v2 (blue) in time domain, chaotic waveform v1 (red) and v2 (blue) in frequency domain.
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Figure 16. Orcad Pspice circuit simulation associated with network given in Figure 10: plane projection
vZ–iL2 (blue, upper plot), iL2–iL1 (red) and vZ–iL1 (blue) of the observed strange attractor, generated
chaotic signal iL2 (red) and vZ (blue) in the time domain, chaotic waveform iL2 (red) and vZ (blue) in the
frequency domain. Note that generated chaos is not affected by saturation levels of the active devices.

Existence of observable strange attractors and numerically expected routing-to-chaos scenarios
within dynamics of the fundamental MVMS has been proved experimentally; by its construction on
the bread-board (see Figure 17) and consequent laboratory measurement using the analog oscilloscope.
Due to its simpler realization and increased robustness, only circuitry illustrated by means of Figure 9
was decided for a real measurement. Selected chaotic waveforms in a time domain are provided by
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means of Figure 18. Independent voltage source Vbias = 750 mV in series with Rbias = 1 kΩ can be
replaced by the positive supply voltage +5 V and the fixed series resistance Rbias = 6.7 kΩ. Analogically,
combinations Vc1 = −130 mV, Rx = 1 kΩ and Vc2 = −650 mV, Ry = 1 kΩ can be replaced by the negative
supply voltage −5 V, Rx = 38.5 kΩ and the same voltage −5 V, Ry = 7.7 kΩ respectively.

 

Figure 17. Practical realization of the integrator-based chaotic MVMS using bread-board.

 

Figure 18. Selected chaotic waveforms in time domain generated by integrator-based MVMS.
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Thus, there is no need to introduce three additional independent dc voltage sources into oscillator.
However, to trace route-to-chaos scenarios, MVMS parameters c1 and c2 represented by voltages
Vc1 and Vc2 have been considered as the variables. In practice, two voltage dividers based on
potentiometers followed by two voltage buffers (remaining part of fifth integrated circuit TL084)
did the trick. Since extreme values of Vc1, Vc2 voltages can be managed observed Monge projections
given in Figure 19 (plane v3 vs. v2) originate both inside and outside prescribed bifurcation scheme
pictured in Figure 6 (third and sixth plot). Of course, very small steps of the hand-swept parameters
cannot be captured by the oscilloscope. Different plane projections, namely v3 vs. v1, are shown in
Figure 20. The provided screenshots are centered on captured state attractors not the origin of the state
coordinates. Of course, the mentioned plane projections are not in full one-to-one correspondence with
the theoretical results given in Figure 14, simply because transfer functions of the nonlinear two-ports
cannot be defined precisely using imperfect discrete resistors; it does not get better shape even if
the working resistors are replaced by the standard hand potentiometers. Finally, the sequence of
periodic and chaotic windows with continuous change of the individual coefficients of the polynomials
has been confirmed; roughly proving the correctness of bifurcation diagrams in Figure 6. During
laboratory experiments, unexpected and a very interestingly-shaped strange attractors were identified
(see Figure 21). Unfortunately, numerical values of the mathematical model parameters were not
found, and reference state trajectories cannot be created. Initial conditions need not to be imposed on
the outputs of the inverting integrators (capacitors need not to be pre-charged) since neighborhood of
zero belongs into the basin of attraction for both strange attractors.
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Figure 19. Selected v3–v2 plane projections measured of integrator-based MVMS realization, see text.
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Figure 20. Few selected v3–v1 plane projections measured within dynamics of the integrator-based
implementation MVMS, voltage sources Vc1 and Vc2 are swept, i.e., system parameters c1 and c2 are
considered as variable parameters, change of the voltages starts within bifurcation diagrams provided
by means of Figure 6 but finally goes far beyond it.

 

Figure 21. Gallery of interesting (still robust and real-time observable) strange attractors generated by
the integrator-based realization of MVMS, different plane projections, see text for details.

6. Conclusions

Existence of robust chaotic attractors in the smooth vector field of MVMS have been demonstrated
in this paper. This work represents a significant extension of the discoveries discussed in [29]. Both
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referred chaotic attractors are self-excited attractors; hidden attractors were not sought after and, in
the case of analyzed MVMS dynamics, remain a mystery.

The proposed mathematical model: (1) together with the nonlinear functions (2) and parameters
(7) or (8) can be also considered as a new chaotic dynamical system. This is still an up-to-date problem
for many engineers and the topic of many recent scientific papers. However, algebraically much
simpler dynamical systems that exhibit chaotic attractors exist; reading [42–47] is recommended.

Three different circuit realizations are presented. Each was verified by circuit simulation and the
most robust implementation undergoes experimental measurement. Two designed oscillators utilize
off-the-shelf active elements and can serve for various demonstrations.

The fundamental motivation of this work is to show that structurally stable strange attractors
can be observed in smooth dynamical system naturally considered as nonlinear but with non-chaotic
limit sets. However, designed autonomous chaotic oscillators can serve as the core circuits in many
practical applications such as cryptography [48], spread-spectrum modulation techniques [49], useful
signal masking [50,51], random number generators [52,53], etc.

This work also leaves several places for future research. For example, following interesting
questions needs to be answered: Are there some hidden attractors? Are multi-scroll chaotic attractors
observable if many RTD will be connected appropriately? Can MVMS generate chaos if values of the
internal parameters are close to microelectronic memory cell fabricated in common technology?
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Abstract: This paper is concerned with the co-existence of different synchronization types for
fractional-order discrete-time chaotic systems with different dimensions. In particular, we show that
through appropriate nonlinear control, projective synchronization (PS), full state hybrid projective
synchronization (FSHPS), and generalized synchronization (GS) can be achieved simultaneously.
A second nonlinear control scheme is developed whereby inverse full state hybrid projective
synchronization (IFSHPS) and inverse generalized synchronization (IGS) are shown to co-exist.
Numerical examples are presented to confirm the findings.

Keywords: fractional discrete chaos; entropy; projective synchronization; full state hybrid projective
synchronization; generalized synchronization; inverse full state hybrid projective synchronization;
inverse generalized synchronization

1. Introduction

Discrete-time chaotic systems have been the center of attention in the fields of control [1,2] and
secure communications in the last few years [3–6]. This attention can be attributed to two main
characteristics. First, the chaotic nature of the dynamical systems, which seems random-like but is in
fact completely determined and can be predicted once the initial conditions are known. For instance,
this allows for the generation of pseudo–random sequences in secret or private-key encryption.
The second interesting property is their discrete nature, which allows for simple implementation and
reduced computational complexity. Among the well known discrete-time chaotic systems proposed
throughout the years are the Hénon map [7], the Lozi system [8], the generalized Hénon map [9] and
the Baier–Klein system [10].

In recent years, researchers have picked an interest in fractional discrete-time chaotic systems.
These involve fractional calculus, where the differences in the system’s dynamics are fractional.
Numerous studies have been dedicated to establishing a framework for fractional discrete calculus
such as [11–14]. A good summary of the subject is given in [15].
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In general, chaotic systems became of interest in science and engineering in the early
1990s after synchronization was demonstrated. The earliest studies include [16–19]. Since then,
various types of synchronization have been proposed in the literature including projective
synchronization (PS) [20], generalized synchronization (GS) [21], full state hybrid projective
synchronization (FSHPS) [22], and many more. Some modification have also been made to these
synchronization types leading, for instance, to inverse generalized synchronization (IGS) [23] and
inverse FSHPS (IFSHPS) [24]. With the emergence of fractional chaotic maps such as the fractional
Hénon map [25] and the fractional generalized Hénon map [26], the synchronization of such maps
became of interest. Very few studies can be found on the subject including [27–32].

Naturally, curiosity grew as to the possibility of multiple synchronization types being achieved
simultaneously for the states of the response system. This phenomenon is commonly referred to as
the co-existence of synchronization types. Many studies can be found in the literature proposing
linear and nonlinear control laws that give rise to the co-existence phenomenon for continuous-time
integer-order systems [33], continuous-time fractional systems [34–38], and discrete-time integer-order
systems [39–41]. However, to the best of the authors’ knowledge, no such studies have been made
for fractional-order discrete-time systems. This has motivated us to examine the phenomenon and
develop suitable control laws for various types co-existing.

The next section of this paper describes the model for the drive and response systems and defines
the necessary notation and synchronization types. Section 3 presents the control law that guarantees
the co-existence of PS, FSHPS, and GS as the control laws that establish the co-existence of IFSHPS and
IGS. Section 4 presents numerical examples that confirm the validity of the findings. Finally, Section 6
summarizes the work carried out in this paper.

2. System Model

In order to establish the co-existence of different synchronization types in fractional order
discrete-time chaotic systems, we consider the generic n-dimensional drive and response pair of
the form {

CΔυ
a xi (t) = Fi(X (t + α − 1)),

CΔυ
a yi (t) = Gi(Y (t + β − 1)) + ui,

t ∈ Na+1−υ (1)

where X (t) = (x1 (t) , ..., xn (t))
T , Y (t) = (y1 (t) , ..., yn (t))

T represent the states of the drive and
response systems, respectively, Fi, Gi are functions from Rn to R for 1 ≤ i ≤ n, and ui, 1 ≤ i ≤ n,
denote control parameters to be identified by means of the synchronization strategy.

The notation CΔυ
a X (t) denotes the υ–Caputo type delta difference of a function X (t) : Na → R

with Na = {a, a + 1, a + 2, ...} [12], which is of the form

CΔυ
a X (t) = Δ−(n−υ)

a ΔnX (t) =
1

Γ (n − υ)

t−(n−υ)

∑
s=a

(t − σ (s))(n−υ−1) ΔnX (s) , (2)

for υ �∈ N is the fractional order, t ∈ Na+n−υ, and n = [υ] + 1. In (2), the υ–th fractional sum of Δn
s X (t)

is defined similar to [11] as

Δ−υ
a X (t) =

1
Γ (υ)

t−υ

∑
s=a

(t − σ (s))(υ−1) X (s) , (3)

with υ > 0, σ(s) = s + 1. The term t(υ) denotes the falling function defined in terms of the Gamma
function Γ as

t(υ) =
Γ (t + 1)

Γ (t + 1 − υ)
. (4)
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Let us, now, define the types of synchronization with which we are interested in our study.
The idea is to show that multiple types of synchronization may exist simultaneously for a pair of
fractional-order discrete-time chaotic systems.

Definition 1. If there exists a controller U = (ui)1≤i≤n and either constants γ ∈ R∗, a matrix Φ, a map
φ : Rn −→ Rn, a matrix Θ, or a map ϕ : Rn −→ Rn such that

lim
t→+∞

‖Y (t)− γX (t)‖ = 0 =⇒ Pair (1) is projective synchronized (PS).

lim
t→+∞

‖Y (t)− ΦX (t)‖ = 0 =⇒ Pair (1) is full state hybrid projective synchronized (FSHPS).

lim
t→+∞

‖Y (t)− φ (Y (t))‖ = 0 =⇒ Pair (1) is generalized synchronized (GS).

lim
t→+∞

‖X (t)− ΘY (t)‖ = 0 =⇒ Pair (1) is inverse full state hybrid projective synchronized (IFSHPS).

lim
t→+∞

‖X (t)− ϕ (Y (t))‖ = 0 =⇒ Pair (1) is inverse generalized synchronized (IGS).

Note that in Definition 1 above, γ is a constant used to scale the master state vector. Matrices
Φ and Θ represent linear transformation of the master and slave state vectors, respectively, and are
usually referred to as scaling matrices. The terms φ and ϕ denote some arbitrary maps from Rn

towards Rn. In general, these are nonlinear maps that represent scaling functions. We are now ready
to present the main findings of our study.

3. Results

3.1. Co-existence of PS, FSHPS and GS

Let us consider the 2-dimensional drive system and a 3-dimensional response system given,
respectively, by

CΔυ
a xi (t) = fi (X (t + υ − 1)) , i = 1, 2, (5)

and
CΔυ

a yi (t) =
3

∑
j=1

bijyj (t + υ − 1) + gi (Y (t + υ − 1)) + ui, i = 1, 2, 3, (6)

where t ∈ Na+1−υ, 0 < υ ≤ 1, fi : R2 −→ R, 1 ≤ i ≤ 2,
(
bij
) ∈ R3×3 is the linear part of the drive

system, gi : R3 −→ R, 1 ≤ i ≤ 3, are nonlinear functions, and ui, i = 1, 2, 3, are controllers to be
designed. Based on Definition 1, we may define the co-existence of PS, FSHPS and GS for the coupled
systems (5) and (6) as follows.

Definition 2. It is said that PS, FSHPS and GS co-exist in the synchronization of the drive system (5) and
the response systems (6) if there exist a controller U = (ui)1≤i≤3, a constant γ ∈ R∗, a constant matrix
Φ =

(
Φij

)
1×2, and nonlinear map φ : R2 −→ R such that the synchronization errors⎧⎪⎨⎪⎩

e1 (t) = y1 (t)− γx1 (t) ,
e2 (t) = y2 (t)− Φ × (x1 (t) , x2 (t))

T ,
e3 (t) = y3 (t)− φ (x1 (t) , x2 (t)) ,

(7)

all satisfy the asymptotic rule
lim

t→+∞
‖ei (t)‖ = 0 for i = 1, 2, 3. (8)

Remark 1. From the error system (7), it is obvious that states y1 and x1 are projective synchronized, y2 is full
state hybrid projective synchronized with x1 and x2, and y3 is generalized synchronized with x1 and x2.

We also need to state the following theorems, which are necessary for the proofs to come.
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Theorem 1 ([42]). The zero equilibrium of the linear fractional-order discrete-time system

CΔυ
a e (t) = De (t + υ − 1) , (9)

where e(t) = (e1(t), ..., en(t))
T , 0 < υ ≤ 1, D ∈ Rn×n and ∀t ∈ Na+1−υ, is asymptotically stable if

λ ∈
{

z ∈ C : |z| <
(

2 cos
|arg z| − π

2 − υ

)υ

and |arg z| > υπ

2

}
, (10)

for all the eigenvalues λ of D.

Next, we propose control laws that achieve the co-existence rule (7). Let us define the matrix
B =

(
bij
)

3×3.

Theorem 2. PS, FSHPS and GS co-exist for the pair (5)–(6) subject to⎧⎪⎪⎪⎨⎪⎪⎪⎩
u1 = ∑3

j=1
(
c1j − b1j

)
ej (t)− ∑3

j=1 b1jyj (t)− g1 (Y (t + υ − 1)) + γ f1 (X (t + υ − 1)) ,
u2 = ∑3

j=1
(
c2j − b2j

)
ej (t)− ∑3

j=1 b2jyj (t)− g2 (Y (t + υ − 1)) + Φ1 f1 (X (t + υ − 1))
+Φ1 f2 (X (t + υ − 1)) ,

u3 = ∑3
j=1

(
c3j − b3j

)
ej (t)− ∑3

j=1 b3jyj(t)− g3 (Y (t + υ − 1)) + CΔβφ (x1 (t) , x2 (t)) ,

(11)

where C =
(
cij
)

3×3 is a constant matrix chosen such that all the eigenvalues λi of B − C satisfy

− 2υ < λi < 0, i = 1, 2, 3. (12)

Proof. The difference equations corresponding to the error system (7) are given by⎧⎪⎨⎪⎩
CΔυ

a e1 (t) = CΔυ
a y1 (t)− γ CΔυ

a x1 (t) ,
CΔυ

a e2 (t) = CΔυ
a y2 (t)− Φ CΔυ

a (x1 (t) , x2 (t))
T ,

CΔυ
a e3 (t) = CΔυ

a y3 (t)− CΔυ
a φ (x1 (t) , x2 (t)) .

(13)

Substituting the system nonlinearities yields⎧⎪⎪⎪⎨⎪⎪⎪⎩
CΔυ

a e1 (t) = ∑3
j=1 b1jyj (t + υ − 1) + g1 (Y (t + υ − 1)) + u1 − γ f1 (X (t + υ − 1)) ,

CΔυ
a e2 (t) = ∑3

j=1 b2jyj (t + υ − 1) + g2 (Y (t + υ − 1)) + u2 − Φ1 f1 (X (t + υ − 1))
−Φ1 f2 (X (t + υ − 1)) ,

CΔυ
a e3 (t) = ∑3

j=1 b3jyj (t + υ − 1) + g3 (Y (t + υ − 1)) + u3 − CΔυ
a φ (x1 (t) , x2 (t)) .

(14)

Substituting the proposed control law (11) in (14) yields⎧⎪⎨⎪⎩
CΔυ

a e1 (t) = ∑3
j=1

(
b1j − c1j

)
ej (t + υ − 1) ,

CΔυ
a e2 (t) = ∑3

j=1
(
b2j − c2j

)
ej (t + υ − 1) ,

CΔυ
a e3 (t) = ∑3

j=1
(
b3j − c3j

)
ej (t + υ − 1) .

(15)

In order to show that the zero solution of (16) is globally asymptotically stable, we use the
linearization method as described in Theorem 1. The error system (15) can be written in the
compact form

CΔυ
a e (t) = (B − C) e (t + υ − 1) . (16)

where e (t) = (e1 (t) , e2 (t) , e3 (t))
T . According to condition (12), it is easy to see that all the eigenvalues

of the matrix B − C satisfy |arg λi| = π > υπ
2 and |λi| <

(
2 cos |arg λi |−π

2−υ

)υ
, for i = 1, 2, 3. It, then,

follows immediately from Theorem 1 that the zero solution of (16) is globally asymptotically stable
and consequently, systems (5) and (6) are synchronized in 3–dimensions according to Definition 2.
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3.2. Co-existence of IFSHPS and IGS

We, now, would like to achieve similar results for the inverse synchronization types listed in
Definition 1. Consider the drive and response pair of the form{

CΔυ
a xi (t) = ∑2

j=1 aijxj (t + υ − 1) + fi (X (t + υ − 1)) , i = 1, 2,
CΔυ

a yi (t) = gi (Y (t + υ − 1)) + ui, i = 1, 2, 3,
(17)

where t ∈ Na+1−υ, A = (aij) ∈ R2×2 and fi : R2 → R, 1 ≤ i ≤ 2, are nonlinear functions, and
gi : R3 → R, 1 ≤ i ≤ 3. Based on Definition 1, we can state what is meant by the co-existence of
IFSHPS and IGS for (17) as summarized in the following definition.

Definition 3. IFSHPS and IGS are said to co-exist in the synchronization of the pair (17) if there exist controllers
ui, i = 1, 2, 3, a constant matrix Θ =

(
Θij

)
1×3, and a map ϕ : R3 −→ R such that the synchronization errors{

e1 (t) = x1 (t)− Θ × (y1 (t) , y2 (t) , y3 (t))
T ,

e2 (t) = x2 (t)− ϕ (y1 (t) , y2 (t) , y3 (t)) ,
(18)

all satisfy the asymptotic rule
lim

t→+∞
ei (t) = 0 for i = 1, 2. (19)

Remark 2. From the error system (18), it is apparent that x1 is inverse full state hybrid projective synchronized
with y1 (t), y2 (t) and y3 (t), and that x2(t) is inverse generalized synchronized with y1 (t), y2 (t) and y3 (t).

Suppose that the function ϕ can be factorized in the form

ϕ (y1 (t) , y2 (t) , y3 (t)) =
3

∑
j=1

θjyj (t) + ψ (y1 (t) , y2 (t) , y3 (t)) , (20)

where θj, j = 1, 2, 3, are real numbers and ψ : R3 → R is a nonlinear function. The error dynamics (18)
yield the difference equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

CΔυ
a e1 (t) = CΔυ

a x1 (t)− Θ1
CΔυ

a y1 (t)− Θ2
CΔυ

a y2 (t)
−Θ3

CΔυ
a y3 (t) ,

CΔυ
a e2 (t) = CΔυ

a x2 (t)− θ1
CΔυ

a y1 (t)− θ2
CΔυ

a y2 (t)
−θ3

CΔυ
a y3 (t)− CΔυ

a ψ (y1 (t) , y2 (t) , y3 (t)) .

(21)

To simplify the equations, we can define

R1 =
2

∑
j=1

a1jxj (t) + f1 (X (t))−
3

∑
j=1

Θjgi (Y (t)) , (22)

and

R2 =
2

∑
j=1

a2jxj (t + υ − 1) + f2 (X (t))−
3

∑
j=1

θjgi (Y (t))− CΔυ
a ψ (y1 (t) , y2 (t) , y3 (t)) . (23)

Using (22) and (23), (21) may be written in the reduced form{
CΔυ

a e1 (t) = R1 − ∑3
j=1 Θjuj,

CΔυ
a e2 (t) = R2 − ∑3

j=1 θjuj,
(24)
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or more compactly as
CΔυ

a e (t) = R − M × (u1, u2)
T − (Θ3u3, θ3u3)

T , (25)

where R = (R1, R2)
T and

M =

(
Θ1 Θ2

θ1 θ2

)
. (26)

To establish the co-existence of IFSHPS and IGS, we assume that M is invertible and denote its
inverse by M−1. The control law is, then, given by

(u1, u2)
T = M−1 × [(L − A) e (t) + R] and u3 = 0, (27)

where L ∈ R2×2 is a control matrix to be determined. Substituting (27) into Equation (25), we get

CΔυ
a e (t) = (A − L) e (t + υ − 1) . (28)

The following result follows in a similar manner to Theorem 2. The proof has been omitted as it
can be inferred directly from that of Theorem 2.

Theorem 3. If the control matrix L is chosen such that all the eigenvalues of A − L such that −2υ < λi < 0,
i = 1, 2, then IFSHPS and IGS co-exist for (17) as described in (18) subject to control law (27).

4. Numerical Examples

We will now put the theoretical results presented in Section 3 to the test. We consider the 2D
fractional Hénon map proposed in [25] as the drive system and the 2D fractional-order generalized
Hénon map [26] as the response system. The pair is described as{

CΔυ
a x1 (t) = x2 (t + υ − 1)− x1 (t + υ − 1) + 1 − a1x2

1 (t + υ − 1) ,
CΔυ

a x2 (t) = b1x1 (t + υ − 1)− x2 (t + υ − 1) ,
(29)

and

⎧⎪⎨⎪⎩
CΔυ

a y1 (t) = −y1 (t + υ − 1)− b2y3 (t + υ − 1) + u1 (t + υ − 1) ,
CΔυ

a y2 (t) = b2y3 (t + υ − 1) + y1 (t + υ − 1)− y2 (t + υ − 1) + u2 (t + υ − 1) ,
CΔυ

a y3 (t) = 1 + y2 (t + υ − 1)− a2y2
3 (t + υ − 1)− y3 (t + υ − 1) + u3 (t + υ − 1) .

(30)

The linear and nonlinear parts of the drive system (29) and the response system (30) are given by,
respectively,

A =

( −1 1
b1 −1

)
, f =

( −a1x2
1 (t) + 1
0

)
,

and

B =

⎛⎝ −1 0 −b2

1 −1 b2

0 1 −1

⎞⎠ , g =

⎛⎝ 0
0

1 − a2y2
3 (t)

⎞⎠ .

These two systems were proposed in the literature and shown to exhibit chaotic behaviors.
For instance, when (a1, b1) = (1.4, 0.3), (a2, b2) = (0.99, 0.2), a = 0 and υ = 0.984. Figures 1 and 2
show the chaotic trajectories of the drive system (29) and response system (29), respectively.

Previous research in information theory has established that entropy quantifies the rate of transfer
or generation of information in a particular system. In general, Kolmogorov–Sinai (KS) entropy
is applied to measure dynamical systems. A direct time–series approximation of the KS entropy
was proposed in [43] named ER entropy, which indicates the level of chaos in a particular system.
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Because calculating the exact ER entropy experimentally is difficult, an approximate entropy (ApEn)
measure was introduced in [44,45]. Approximate entropy has been used to investigate chaotic systems
recently [46,47].

In our work, the approximate entropy values of the drive and response systems have been
calculated by using the reported scheme in [44,45]. As a brief summary of the approximation scheme,
consider N data samples generated by our fractional map x (1) , x (2) , . . . , x (N). The data is arranged
in a sequence of vectors with an embedding dimension m of the form

X (i) = [x (i) , x (i + 1) , ..., x (i + m − 1)] with 1 ≤ i ≤ N − m + 1. (31)

The distance between two distinct vectors X (i) and X (j) is denoted by d (X (i) , X (j)). We also
define a threshold for our entropy calculation similar to [44,45] as

r = 0.2std (x) , (32)

with std(x) being the standard deviation of x. We, then, iterate over the regresser vectors and calculate
the number of vectors K that yield a distance d (X (i) , X (j)) ≤ r. The approximate entropy is, then,
given by

ApEn = φm (r)− φm+1 (r) , (33)

where

φm (r) =
1

N − m − 1

N−m+1

∑
i=1

log
(

Ki
N − m + 1

)
. (34)

The approximate entropy of the 2D fractional-order Hénon map is ApEn = 0.4159. The approximate
entropy of the 2D fractional-order generalized Hénon map is ApEn = 0.0114. The results agree with
trajectories illustrated in Figures 1 and 2.

Figure 1. Phase space plot for the fractional Hénon map with (a1, b1) = (1.4, 0.3), υ = 0.984, and
(x1(0), x2(0)) = (0, 0).
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Figure 2. Phase portraits for the fractional generalized Hénon map with (a2, b2) = (0.99, 0.2),
υ = 0.984, and (y1(0), y2(0), y3(0)) = (0.1, 0.2, 0.5).

Example 1. The error system for the PS-FSHPS-GS synchronization scheme was described in Definition 2.
We let

γ = 3, Φ = (1, 3) and φ (x1 (t) , x2 (t)) = (x1(t)x2 (t)) . (35)

Theorem 2 requires the selection of a control matrix C such that all the eigenvalues of B − C satisfy
condition (12). For instance, the control matrix C can be chosen as

C =

⎛⎝ 0 0 0
1 0 0
0 1 0

⎞⎠ . (36)

Simply, we can show that all eigenvalues of B − C are: λ1 = λ2 = λ3 = −1 and therefor condition of
Theorem 2 is satisfied. We can use the matrix C to construct the following controllers⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u1 (t) = −e1 (t)− b2e3 (t) + y1 (t) + b2y3 (t) + 3x2 (t)
−3x1 (t) + 3 − 3a1x2

1 (t) ,
u2 (t) = −e2 (t) + b2e3 (t)− b2y3 (t)− y1 (t) + y2 (t)− 2x2 (t)

+ (3b1 − 1) x1 (t) + 1 − a1x2
1 (t)

u3 (t) = −e3 (t)− 1 − y2 (t) + a2y2
3 (t) + y3 (t)

+ CΔυ
a x1(t)x2 (t) .

(37)
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These controllers leads to the simplified error system⎧⎪⎨⎪⎩
CΔυ

a e1 (t) = −e1 (t + υ − 1)− b2e3 (t + υ − 1) ,
CΔυ

a e2 (t) = −e2 (t + υ − 1) + b2e3 (t + υ − 1) ,
CΔυ

a e3 (t) = −e3 (t + υ − 1) .
(38)

Figure 3 shows the errors as functions of time for parameter sets (a1, b1) = (1.4, 0.3) and (a2, b2) =

(0.99, 0.2), starting point a = 0, fractional order υ = 0.984, and initial errors (e1 (0) , e2 (0) , e3 (0)) =

(0.1, 0.2, 0.5). Clearly, the errors converge towards the zero solution implying that the three slave states are
PS–FSHPS–GS synchronized.

Figure 3. The evolution of errors over time for Example 1.

Example 2. The second case is concerned with the co-existence of IFSHPS and IGS in 2D. The error system is
defined according to Definition 3 where

Θ = (1, 0, 3) and ϕ (y1 (t) , y2 (t) , y3 (t)) = y1 (t) + y2 (t) + y2
3 (t) . (39)

Following the approach of Theorem 3, we start with a factorization of ϕ as

ϕ (y1 (t) , y2 (t) , y3 (t)) =
3

∑
j=1

θjyj (t) + ψ (y1 (t) , y2 (t) , y3 (t)) . (40)

It can be easily shown that

(θ1, θ2, θ3) = (1, 2, 0) and ψ (y1 (t) , y2 (t) , y3 (t)) = y2
3 (t) , (41)

are sufficient. The proposed synchronization scheme rearranges Θ and (θ1, θ2, θ3) into the matrix

M =

(
1 0
1 2

)
, (42)

which is invertible with inverse

M−1 =

(
1 0

− 1
2

1
2

)
. (43)

169



Entropy 2018, 20, 710

Theorem 3 requires the choice of a matrix L. This may be achieved with

L =

(
1 13

4
b1 − 1 −2

)
. (44)

The controllers can, thus, be constructed according to (27) based on R1 and R2 defined in (22) and (23),
respectively. We end up with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 (t) = −2e1 − 9
4 e2 + x2 (t)− x1 (t)− a1x2

1 (t) + y1 (t)
+ (b2 + 3) y3 (t)− 2 − 3y2 (t) + 3a2y2

3 (t) ,

u2 (t) = 3
2 e1 +

13
8 e2 − y1 (t) + 5

2 y2 (t)−
( 3

2 + b2
)

y3 (t)

−x2 (t) +
(b1+1)

2 x1 (t) + 1
2 a1x2

1 (t)

− 3a2
2 y2

3 (t)− 1
2

C
Δβy2

3 (t) + 1,
u3 (t) = 0.

(45)

and {
CΔυ

a e1 (t) = −2e1 (t + υ − 1)− 9
4 e2 (t + υ − 1) ,

CΔυ
a e2 (t) = e1 (t + υ − 1) + e2 (t + υ − 1) .

(46)

Figure 4 depicts the stabilized states subject to parameter sets (a1, b1) = (1.4, 0.3) and (a2, b2) =

(0.99, 0.2), starting point a = 0, fractional order υ = 0.984, and initial errors (e1 (0) , e2 (0)) =

(−1.6, −0.325). It is easy to from Figure 4 that the errors converge towards zero in sufficient time proving that
the controllers (45) in fact achieve IFSHPS–IGS synchronization for the pair (29).

Figure 4. The evolution of errors over time for Example 2.

5. Discussion

In this paper, we have presented novel results concerning the co-existence of multiple
synchronization types in Caputo-type fractional chaotic maps. To the best of our knowledge, the topic
of co-existence has not been considered before for this type of system, which motivated this research.
The synchronization types considered are rather general, which allows for multiple applications,
especially in the fields of secure communications and data encryption. In fact, as we mentioned before,
very few studies can be found in the literature concerning the synchronization of fractional chaotic
maps, which makes this work all the more interesting.

170



Entropy 2018, 20, 710

Perhaps the most interesting studies related to the subject are [27–32]. In [27], the authors merely
consider a pair of identical fractional logistic maps and propose a simple direct synchronization
controller. In [28], an identical synchronization scheme is proposed based on the results of [48,49].
The authors of [29], again, consider the synchronization of identical fractional Hénon maps. The same
can be said regarding [32]. As for [31], the authors propose a simple linear feedback controller suitable
for a variety of maps. However, it is only shown to achieve complete synchronization, which is the
most basic form of synchronization. In [30], the fractional difference operator used is different from
the one used here and thus comparison is difficult.

Generally speaking, it is difficult to compare our results to those reported in the above mentioned
studies as the scope of our work is much wider. In addition, we are mainly concerned with co-existence,
which has not been considered before for this type of systems.

6. Concluding Remarks

In this work, we have shown that different types of synchronization can co-exist for
fractional-order discrete-time chaotic systems. We assumed a two dimensional drive system and
a three dimensional response system. The main results of the study were two fold. First, we presented
a nonlinear control scheme whereby PS, FSHPS, and GS are achieved simultaneously for the three
states of the response system. The stability of the zero solution, and consequently the convergence of
the synchronization error, was established by means of the stability theory of linear fractional-order
discrete-time systems. The second main result concerns the co-existence of IFSHPS and IGS for the
same drive-response pair. The three response states are simultaneously IFSHPS synchronized with the
first drive state and IGS synchronized with the second drive state. Numerical results have confirmed
the findings of the study. Simulations were carried out on Matlab to ensure that the errors converge to
zero subject to the proposed control laws.
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Abstract: The internet has provided a new means for manufacturers to reach consumers. On the
background of the widespread multichannel sales in China, based on a literature review of the
service game and multichannel supply chain, this paper builds a multichannel dynamic service
game model where the retailer operates an offline channel and the manufacturer operates an online
channel and offers customers the option to buy online and pick up from the retailer’s store (BOPS).
The manufacturer and the retailer take maximizing the channel profits as their business objectives
and make channel service game under optimal pricing. We carry on theoretical analysis of the
model and perform numerical simulations from the perspective of entropy theory, game theory,
and chaotic dynamics. The results show that the stability of the system will weaken with the increase
in service elasticity coefficient and that it is unaffected by the feedback parameter adjustment of the
retailer. The BOPS channel strengthens the cooperation between the manufacturer and the retailer
and moderates the conflict between the online and the offline channels. The system will go into
chaotic state and cause the system’s entropy to increase when the manufacturer adjusts his/her
service decision quickly. In a chaotic state, the system is sensitive to initial conditions and service
input is difficult to predict; the manufacturer and retailer need more additional information to make
the system clear or use the method of feedback control to delay or eliminate the occurrence of chaos.

Keywords: multichannel supply chain; service game; chaos; entropy; BOPS

1. Introduction

In recent years, some Chinese retailers have profited enormously from the development of online
marketing channels, however these profits have come at the expense of traditional retailers who
once dominated the market. These changes in power of the channels have also created channel
conflicts [1]. Scholars have studied pricing strategies in dual-channel supply chains from several
perspectives. Huang et al. [2] considered the effects of production disruption and demand disruption
on the pricing and production decisions in a dual-channel supply chain. Li et al. [3] studied the
effects of green costs on the retail prices and green degrees of a competitive dual-channel green supply
chain. Kouvelis et al. [4] discussed supply chain contracting in environments with volatile input
prices and frictions, and presented a game-theoretic study of a bilateral monopoly supply chain with
stochastic demand, stochastic input costs, production lead times, and working capital constraints.
Li et al. [5] studied the effects of risk attitude of retailer and uncertain demand on the pricing strategy
and coordination. Li et al. [6] studied the pricing strategy of a dual-channel supply chain considering
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a perishable product and risk preference. Radhi and Zhang [7] discussed the effects of customer
preference and customer return rate on the pricing in a dual-channel supply chain. Li et al. [8] analyzed
the effects of pricing strategy of the retailer on the manufacturer’s choice to open the direct selling
channel. Ji et al. [9] developed four case models to study the optimal pricing and return policies
considering false failure returns, and analyzed the influences of buy-back contract on optimal pricing
and return policies. Xie et al. [10] built the revenue-sharing contract and cost-sharing contract to
address the problem of forward channel conflicts and introduced the Stackelberg game to investigate
the contract coordination mechanism. In contrast to this stream of work, this paper focuses on the
service game of a multichannel supply chain where the manufacturer offers customers the option to
buy online and pick up from the retailer’s store (BOPS), which is a new retail environment today.

Channel service is an important factor affecting customers’ channel choices and is broadly
surveyed in the literature [11–15]. Considering service factors, Ma and Guo [16] studied the complex
dynamics of a bivariate game model, in which the recursive least-squares (RLS) estimation is introduced
to substitute naive estimation. Ali et al. [17] examined the effects of potential market demand
disruptions on the prices and service levels of competitive retailers, and showed that the price and
investment decision of service level are significant influenced by demand disruptions. Li and Li [18]
found the entire supply chain could not be coordinated with a constant wholesale price when the
retailer provided a value-added service and had concern for fairness. Zhou et al. [19] considered
a dual-channel supply chain—where the retailer provided customers with certain pre-sales services
and where the manufacturer free-rides the retailer’s pre-sales services by sharing the retailer’s sales
effort cost—and investigated the influence of free riding on the pricing and service strategies of the
two members. Zhou and Zhao [20] analyzed how the manufacturer used wholesale prices and slotting
allowances to practice his signaling strategy with asymmetric information considering retailer’s
value-added services, respectively. Chen et al. [21] studied a retail service supply chain with an
online-to-offline (O2O) mixed channel under different power structures. Kong et al. [22] studied the
pricing and service level of CLSC under centralized and decentralized decision-making, respectively,
and analyzed the effects of system’s parameters on the system’s performance. The above papers
studied the impacts of service on channel pricing strategy; no paper studies the channel service
decision under optimal pricing.

There are channel conflicts between online and offline channels, such as inconsistent goals,
business scopes, and consumer purchasing behavior. The new retail model enables for online
embracing offline to achieve channel integration; many enterprises practice this new retail model
according to their realities, such as Jing Dong, Tmall, and Uniqlo. Many scholars have also studied
channel conflicts and cooperation contracts of O2O channel from different perspectives. Cai et al. [23]
used the price discount contracts and pricing schemes to coordinate the dual-channel supply chain,
and found price discount contracts and consistent pricing scheme can reduce channel conflict. Tao and
Li [24] developed an O2O channel model and analyzed the influence of service level, the free-riding
coefficient, and a bonus strategy on pricing policies and channel performance. Zhao et al. [25]
investigated pricing problem of a dual-channel supply chain considering complementary products
and different market power structures, and discussed the effects of important parameters on the
pricing strategies.

Channel integration management has received a lot of attention in marketing; the topic was
broadly surveyed in literature [26–28]. Jin et al. [29] studied BOPS theoretical model in which a physical
retailer adopting BOPS used a recommended service area to fulfill orders from both online and offline
customers; the size of the BOPS service area is determined by the ratio of unit inventory cost to
BOPS customers. Liu and Zhou [30] found whether corporations adopt the BOPS model or not
depended on the size of BOPS-consumer and consumer’s service sensitivity degree. Assuming
a supply chain is comprised of a wholesaler and two retailers, Moon et al. [31] showed the process of
collapsing the supply chain through interaction between subsystems by developing a system dynamics
simulation model. Yan et al. [32] introduced the WeChat channel into multichannel supply chain
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system, and found that the WeChat channel could allow retailers to obtain increased profits and
uncertainty for manufacturers. Matsui [33] investigated a multichannel supply chain model, where
a manufacturer produces and sells products to retailers, and analyzed the optimal timing and level of
wholesale and retail prices considering observable delay game.

The above literatures studied the impacts of service on channel conflicts and channel integration
management. However, it is difficult for decision-makers to get all of the information in the market,
so decision-makers have limited rational behavior. Because of their different expectations, few
literatures have studied the service game of multichannel supply chain under the optimal price.

The supply chain system will be in an unstable state because of the manager’s behavior and
customer’s behavior. Some scholars analyzed the complexity of supply chain based on entropy theory
in literatures [34,35]. Kriheli and Levner [36] analyzed the complexity between the supply chain
components under uncertainty environment using the information entropy. Levner and Ptuskin [37]
presented the entropy-based optimization model for reducing the supply chain model size and
assessing the economic loss. Lou et al. [38] analyzed the bullwhip effect in a supply chain with a sales
game and consumer returns via the theory of entropy and complexity. Han et al. [39] built a duopoly
game model with double delays in the hydropower market and analyzed the effect of time delay
parameters on system entropy and stability.

The above researches are mainly focused on the pricing and service decisions of a dual-channel
supply chain from the perspective of static operation. This paper will build a multichannel dynamic
service game model and analyze its dynamic evolution characteristics using dynamics theory, game
theory, and entropy theory.

The main contributions of this paper are as follows:

(1) This paper broadens and enriches the research of the multichannel service supply chain and
proposes a new perspective for multichannel research and decision references for multichannel
enterprises, because decision-makers hope to draw up service strategies for the multichannel
supply chain to solve the practical troubles of firms;

(2) This paper studies the dynamic service strategy under optimal pricing which further widens the
research scope of the multichannel supply chain;

(3) This paper uses the entropy theory and dynamics theory to study the complexity and
characteristics of the multichannel service supply chain and reveals that decision variables
and parameters have great impact on the stability of the multichannel service supply chain.

The rest of this paper is organized as follows. The model description and model construction are
given in Section 2. Section 3 analyzes the stability of the system. Section 4 analyzes the complexity
entropy and dynamic characteristics of the system. The feedback control model is designed to make the
system return to the stable state in Section 5. Finally, Section 6 presents the conclusions of this paper.

2. Model Description and Model Construction

2.1. Model Description and Assumptions

In this paper, a service game model is developed in which a retailer operates an offline channel
and a manufacturer operates an online channel and offers customers the option to buy online and pick
up at the retailer’s store (BOPS), as shown in Figure 1. The manufacturer and retailer take maximizing
the channel profits as business objectives and make channel service game under optimal pricing,
where pi and si, i = 1, 2, 3 represent the sale prices of the product and channel service levels in three
channels and w is the wholesale price that the manufacturer offers to the retailer. The manufacturer
and retailer allocate the cost and profit of BOPS channel in a certain proportion. The retailer does not
participate in service decisions of BOPS channel. Therefore, it is reasonable for the manufacturer to
make the service decision of BOPS channel based on channel profit.
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Manufacturer Consumer

Retailer
Traditional 

channel

Online channel s2        p2

w s1        p1

s3        p3BOPRS  channel

Manufacturer 
inventory

Figure 1. Multichannel service supply chain.

The following assumptions are used to facilitate our model in this paper:

(1) The manufacturer and retailer aim at maximizing channel profits, the manufacturer takes s2

and s3 as decision variables and the retailer takes s1 as a decision variable under the optimal
price decision.

(2) Channel service does not affect the demands of other channels. The production costs and sales
costs of products are zero.

(3) The inventories of the manufacturer and retailer are large enough to meet customer needs.

2.2. Model Construction

According to the actual market competition and extending the demand functions in Yao et al. [40]
and Dan et al. [41], we assume that the primary demand functions in this paper are decided by pi and
si as follows ⎧⎪⎨⎪⎩

D1 = a1 − bp1 + kp2 + kp3 + γ1s1

D2 = a2 − bp2 + kp1 + kp3 + γ2s2

D3 = a3 − bp3 + kp2 + kp1 + γ3s3

(1)

where ai, i = 1, 2, 3 are the base demands of products for traditional channel, direct channel and BOPS
channel. b (b > 0) represents the price sensitive coefficient of the product; k (k > 0) is the cross-price
sensitivity coefficient which reflects the substitution degrees of the products; γi(γi > 0), i = 1, 2, 3
represent service sensitivity coefficients and satisfies b > k and b > γi.

According to past literature [17], the service costs in the three channels satisfy: c(si) =
ηi s2

i
2 ,

i = 1, 2, 3. ηi > 0 and i = 1, 2, 3 are unit service costs of each channel.
The decision-making process of the manufacturer and retailer is as follows (1) the manufacturer

and retailer first make price decision simultaneously based on channel profits maximization and (2)
then make service decision under the optimal price decision.

The channel profits of the manufacturer and retailer are represented as follows⎧⎪⎪⎨⎪⎪⎩
π1 = (p1 − w)D1 − η1s2

1
2

π2 = p2D2 − η2s2
2

2

π3 = p3D3 − η3s2
3

2

(2)

where π1 is the retailer’s profit from the traditional channel and π2 and π3 are the manufacturer’
profits from online channel and BOPS channel. w is a constant which represents the wholesale price
that the manufacturer provides for the retailer.
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Supposing s1, s2, and s3 are known, make a first-order partial derivative of πi for pi, the channel
marginal profits of the manufacturer and retailer are as follows⎧⎪⎪⎨⎪⎪⎩

∂π1
∂p1

= a1 − 2bp1 + kp2 + kp3 + r1s1 + bw
∂π2
∂p2

= a2 − 2bp2 + kp1 + kp3 + r2s2
∂π3
∂p3

= a3 − 2bp3 + kp1 + kp2 + r3s3

(3)

By solving ∂πi
∂pi

= 0, the optimal prices of the manufacturer and retailer are obtained:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p∗

1 = 2a1b−a1k+a2k+a3k+2b2w−bkw+2bγ1s1−kγ1s1+kγ2s2+kγ3s3
2(b−k)(2b+k)

p∗
2 = 2a2b+a1k−a2k+a3k+bkw+2bγ2s2+kγ1s1−kγ2s2+kγ3s3

2(b−k)(2b+k)

p∗
3 = 2a3b+a1k+a2k−a3k+bkw+2bγ3s3+kγ1s1+kγ2s2−kγ3s3

2(b−k)(2b+k)

(4)

Substituting p∗
1, p∗

2, and p∗
3 into the Equation (2), and making a first-order partial derivatives of πi

for si. By solving the equations ∂πi
∂si

= 0, the optimal channel service levels of the manufacturer and the
retailer are obtained as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

s∗1 =
A0+(2b2kγ1γ2−bk2γ1γ2)s2+(2b2kγ1γ3−bk2γ1γ3)s3

8η1b48kη1b3−4b3γ2
1−6η1b2k2+4kb2γ2

1+4η1bk3−bk2γ2
1+2η1k4

s∗2 =
B0+(2b2kγ1γ2−bk2γ1γ2)s1+(2b2kγ2γ3−bk2γ2γ3)s3

8η1b48kη1b3−4b3γ2
1−6η1b2k2+4kb2γ2

1+4η1bk3−bk2γ2
1+2η1k4

s∗3 =
C0+(2b2kγ1γ3−bk2γ1γ3)s1+(2b2kγ2γ3−bk2γ2γ3)s2

8η1b48kη1b3−4b3γ2
1−6η1b2k2+4kb2γ2

1+4η1bk3−bk2γ2
1+2η1k4

(5)

where

A0 = 4a1γ1b3 − 4γ1wb4 + a1bγ1k2 + 2kγ1b2(a3 + a2 − 2a1) + bγ1k2(a3 − a2)

+bkγ1w
(
4b2 + 3bk − 2k2)

B0 = 4a2γ2b3 − a1γ2bk2 + 2a1kγ2b2 + a2bγ2k2 − 4a2kγ2b2 − a3bγ2k2 + 2a3kγ2b2

+2kγ2wb3 − b2k2γ2w

C0 = 4a3b3γ3 − a1bk2γ3 + 2a1b2kγ3 − a2bk2γ3 + 2a2b2kγ3 + a3bk2γ3 − 4a3b2kγ3

+2b3kγ3w − b2k2γ3w

The expressions of the optimal service levels are very intricate; the relationship between variables
and parameters cannot see intuitively from the expression functions. Next, we will structure a dynamic
game model to research the dynamic characteristics of the multichannel supply chain system.

The service decisions of the manufacturer and the retailer are not completely rational because
they cannot get all the necessary information in the market, so the manufacturer and the retailer have
incomplete rational behavior when they make decisions. The retailer adopts an adaptive expectation
in the decision-making process as follows

s1(t + 1) = s1(t) + β[s1(t)− s∗1(t)], 0 < β < 1 (6)

where β is the service feedback parameter.
The manufacturer makes service decision based on bounded rationality expectation for direct

channel and static expectation for BOPS channel:

s2(t + 1) = s2(t) + ξs2(t)
∂π2(t)

∂s2
(7)

s3(t + 1) = s∗3(t) (8)
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where ξ is the service adjustment parameter which reflects the manufacturer’s learning behavior and
positive managerial behavior. When the marginal profit in period t exceeds zero, the manufacturer
will increase the service level in period t + 1; contrarily, the manufacturer will decrease the service
level in period t + 1. Namely, the service level of period t + 1 will be adjusted according to marginal
profit of period t.

The three-dimensional dynamic service game system considering BOPS channel is as follows⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

s1(t + 1) = s1(t) + β

[
A0+(2b2kγ1γ2−bk2γ1γ2)s2(t)+(2b2kγ1γ3−bk2γ1γ3)s3(t)

8η1b4−8η1b3k−4b3γ2
1−6η1b2k2+4b2kγ2

1+4η1bk3−bk2γ2
1+2η1k4 − s1(t)

]
s2(t + 1) = s2(t) + ξs2(t)[

B1+B2s1(t)+B3s2(t)+(4b2kγ2γ3−2bk2γ2γ3)s3(t)

(2b+k)2(2b−2k)2 − η2s2(t)]

s3(t + 1) =
C0+(2b2kγ1γ3−bk2γ1γ3)s1(t)+(2b2kγ2γ3−bk2γ2γ3)s2(t)

8η3b4−8η3b3k−4b3γ2
3−6η3b2k2+4b2kγ2

3+4η3bk3−bk2γ2
3+2η3k4

(9)

where

B1 = 8a2γ2b2(b − k) + 2bkγ2(a1k − wbk + 2wb2 + 4kγ2b2(a1 + a3)− 2bγ2k2(a1 + a3),
B2 = 2bkγ1γ2(2b − k),
B3 = 2bk2γ2

2 + 8b2γ2
2(b − k).

3. The Stability of System (9)

In this section, we will study the stable characteristics of system (9). Because of the particularity
of the model, the Nash equilibrium solutions of system (9) are very complicated, and we cannot judge
directly the interaction between variables and parameters. Here, we will study the stability of system
(9) through numerical simulation [42], according to the current state and reality of the multichannel
supply chain enterprises, the parameter values are as follows, a1 = 4, a2 = 3, a3 = 2, b = 1, η1 = 0.7,
η2 = 0.75, η3 = 0.7, γ1 = 0.55, γ2 = 0.4, γ3 = 0.5, k = 0.6, w = 2.

When s1(t + 1) = s1(t), s2(t + 1) = s2(t), s3(t + 1) = s3(t), the eight equilibrium solutions of
system (9) are,

E1 = (9.5227, 6.3236, 8.7891),
E2 = (0, 4.6685, 6.3699),
E3 = (7.9027, 0, 7.3865),
E4 = (7.0220, 4.8424, 0),
E5 = (6.0508, 0, 0),
E6 = (0, 3.859, 0),
E7 = (0, 3.8509, 0),
E8 = (0, 0, 5.6042).

Obviously, E2, E3, E4, E5, E6, E7, and E8 are boundary equilibrium points which do not meet
our expectations, because the decision variables obviously are not allowed to be zero in economics
for decision makers, E2–E8 are unstable and E1 is the only Nash equilibrium point. Because it is
not significant to study the unstable equilibrium points we only consider the stability of the Nash
equilibrium point in the following.

The Jacobian matrix of system (9) at E1 is as follows

J(E1) =

∣∣∣∣∣∣∣
1 − β 0.2621β 0.3277β

0.9611ξ 1 − 10.4062ξ 0.8737ξ

3.3863 1.8452 0

∣∣∣∣∣∣∣
The characteristic polynomial of J(E1) takes the following form:

f (λ) = λ3 + Aλ2 + Bλ + C (10)
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where

A = β + 3.820ξ − 2,
B = 3.6164βξ − 1.0560β − 3.9052ξ + 1,
C = −0.3410βξ + 0.0565β + 0.0805ξ.

In order to guarantee E1 is locally stable, A, B, and C must meet the following conditions.⎧⎪⎪⎪⎨⎪⎪⎪⎩
f (1) = A + B + C + 1 > 0
− f (−1) = −A + B − C + 1 > 0
|C| < 1
|BC − AB| < ∣∣C2 − A2

∣∣ (11)

By solving condition (11), the stability domain of system (9) can be obtained. Due to these
limitations being so complex, solving the inequality of Equation (11) is very difficult. If E1 satisfies the
inequality of Equation (11), we may judge that system (9) is locally stable. We will prove the stable
region of system (9) through numerical simulation.

According to the inequality Equation (11), Figure 2 gives the stable region and unstable region of
system (9) when γ1 = 0.25 and γ1 = 0.55.

We can see that the stable region of system (9) becomes smaller with increasing γ1, the change of
β has no effect on the stability of system (9) no matter what value the γ1 takes. Namely, the greater
the service elasticity coefficient is, the smaller the stable region is; the increase of the service elasticity
coefficient will weaken the market competition; thus, the choice of irrational decision-making mode
has a great influence on the stability of system (9). When ξ and β take values in the stable range,
the system (9) will stabilize at Nash equilibrium point after a finite period game. When ξ and β take
values in the unstable range, the system (9) will be unstable and enter into either a bifurcation state or
chaotic state, the uncertainty of system (9) increases at this time and more information is needed to
maintain the stability of the system (9).

 

 

Figure 2. The stable regions of system (9) with γ1 = 0.25 and γ1 = 0.55.

4. The Entropy Complexity Analysis of System (9)

In order to better understand the dynamic characteristics of system (9), in this section, numerical
simulation is used to explore the entropy complexity and dynamic behavior of system (9) using the
bifurcation diagram, system’s entropy, and the largest Lyapunov exponents (LLE), etc.

180



Entropy 2018, 20, 858

We know that entropy can measure the chaotic degree of the system; the system entropy is small
when the system is in stable state and the system entropy is large when the system is in chaotic state.
The equation of entropy used in this paper is as follows

S(p1, p2, · · · , pn) = −
n

∑
i=1

pilog2 pi

Inevitably there will be many uncertain factors in the complex and changeable market. In this
paper, through simulation analysis, we can clearly see the effect of parameter changing on the entropy
of the system of the dual-channel supply chain, and then quantify the stability of the supply chain
system using entropy, which lays the foundation for further effectively controlling the complexity of
the whole supply chain.

4.1. The Entropy Complexity Analysis of System (9) with the Change of ξ

In this part, we also suppose the parameters values as above, the entropy and dynamic behavior
of system (9) are described with the change of ξ when β = 0.3. Figure 3 shows the service level and the
entropy of system (9) as ξ changes with γ1 = 0.55. We can see that, for the multichannel supply chain
system in this paper, the service level in traditional selling channel is the highest and the one of direct
channel is the lowest, which accords with the operation of the real market. System (9) is stable when
ξ < 0.49, and the bifurcation and chaos in system (9) occur through period-doubling bifurcation when
ξ increases. System (9) has low entropy when it is in a stable state, and has high entropy when it is in
a chaotic state. High entropy implies the system is more unstable; there exist many uncertainties in the
complex and changeable market, and we require more information to keep system (9) in a stable state.

  
(a) (b) 

 

 

 

Figure 3. The evolution process of system (9) with change of ξ when γ1 = 0.55. (a) The bifurcation
diagram and (b) the entropy diagram.

Figure 4 shows the service levels and the entropy of system (5) as ξ changes with γ1 = 0.7. We find
that when consumers are more sensitive to service levels, system (9) will stabilize at a higher Nash
equilibrium point, and the uncertainty of system (9) will appear earlier with high entropy, which is
agreement with Figure 2. In the chaotic state, market competition is complex and unpredictable.
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(a) (b) 

 

 

 

Figure 4. The evolution process of system (9) with change of ξ with γ1 = 0.7. (a) The bifurcation
diagram and (b) the entropy diagram.

In short, when consumers are more sensitive to channel services, the manufacturer and retailer
will provide higher levels of channel services, and the uncertainty of system (9) will appear earlier
with high entropy. In other words, the greater the service elasticity coefficient is, the easier system (9)
goes into a chaotic state and the smaller the system’s stable region becomes.

4.2. The Entropy Complexity Analysis of System (9) with Feedback Parameter (β)

In this section, we analyze the effects of feedback parameter (β) on the stability of system (9).
Figure 5 is the bifurcation diagrams of system (9) with β changing. From Figure 5a, when ξ = 0.3,
the system (9) gradually returns to the Nash equilibrium from the initial value no matter how β

changes, system’s entropy is zero and the market is in a stable state at this time. From Figure 5b,
the system (9) is in the stable state with 0 < β ≤ 0.08 and makes 2-period bifurcation with 0.08 < β ≤ 1.
So it can be seen that the feedback parameter (β) has little effect on system stability and system entropy.

(a) (b) 

 
 

 

Figure 5. The bifurcation diagrams of the system (9) with change of β. (a) ξ = 0.3 and (b) ξ = 0.5.

When the system is in a stable state, the system’s attractor is stable at fixed point; when the system
goes into a chaotic state, the system’s attractor will occupy a larger space and the structure of the
chaotic attractor will be more complicated. When β = 0.3 and ξ = 0.48, system (9) is in stable state
according to the bifurcation diagram shown in Figure 3, the chaotic attractor in this condition is shown
in Figure 6a; when β = 0.3 and ξ = 0.58, the system (9) is in 2-period bifurcation state, the chaotic
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attractor is shown in Figure 6b. When β = 0.3 and ξ = 0.74, the system (9) is in the chaotic state and
the chaotic attractor is shown in Figure 6c.

From Figures 2–6, it can be seen that for the multichannel supply chain, the change of ξ can
affect the period of the market entering chaos state even if the initial value of service variable is fixed.
The more quickly the manufacturer adjusts channel service, the more easily the market falls into chaos.
Therefore, in this competitive multichannel supply chain, the manufacturer and retailer should make
their decisions with an overall consideration about the market situation and competitor’s response
rather than adjust their service level quickly and blindly.

According to information theory, when the market is in an orderly competitive state,
the probability of optimal service level under optimal pricing will be large and system entropy
will be low; when the market is in a disorderly competitive state, the service decisions under optimal
pricing are out of order and the system entropy will be high.

Another obvious feature of the chaotic system is sensitive to the initial values. In other words,
if there is a slight change in the initial values of the system’s parameters, the results of system evolution
will change greatly with time. When β = 0.3 and ξ = 0.48, system (9) stays stable according to
the above analysis. The initial values of the service level (s2) are taken 5 and 5.001, after multiple
iterations the differences between the two sets of numerical solutions are shown in Figure 7. We can
find that, at the beginning of iterations, there is a little difference, but after approximately 40 iterations,
the difference gradually reduces to zero.

  
(a) (b) 

 
(c) 

Figure 6. Chaotic attractor of system (9), (a) β = 0.3, ξ = 0.48; (b) β = 0.3, ξ = 0.58; and (c) β = 0.3,
ξ = 0.74.
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Figure 7. Initial value sensitivity of service level in stable system.

When β = 0.3 and ξ = 0.72, system (9) stays in a chaotic state according to the above analysis.
The initial values of the service level (s2) are taken 5 and 5.001, after multiple iterations, the differences
between the two sets of numerical solutions are shown in Figure 8. We can see that, during the
initial iterations, the values of channel services are no difference, but after approximately 20 iterations,
the differences in channel services increase greatly.

 
Figure 8. Initial value sensitivity of service level in a chaotic system.

Thus, it can see that the system is very sensitive to the initial value when the system is in
chaos; small differences in initial values can cause a huge deviation after multiple iterations, which
give us reassurance that decision-makers should choose the initial values of their decision variables
more prudently.

4.3. The Influence of Parameter Changes on System’s Profit

From the analysis above, we can find that when ξ is oversized, the uncertainty of system (9)
will increase obviously, which can cause the market be complex and increase the system’s entropy to
a very large value making it difficult for decision-makers to make service decisions. So, we suspect
that the profits of the system’s participators will also be influenced. Figures 9 and 10 show the profit
bifurcation diagrams of system (9) with respect to the change of ξ, respectively. As we have predicted,
the profits of the system (9) stay stable when ξ < 0.48, and enter into a chaotic state when ξ > 0.68;
in the chaotic state, the average profits of the system (9) show a downward trend (see in Figure 10).
Therefore, the oversize of ξ will make the decision making complicated and affect the profits of the
manufacturer and retailer.
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Moreover, the retailer in traditional channel makes the largest service level, but gets the smallest
profit in channel competition, which causes a conflict between online and offline channels. However,
the manufacturer and retailer build a profit distribution contract of BOPS channel, which moderates
the conflict between the online and the offline channels.

Figure 9. Profit diagram of system (9).

 
Figure 10. Average profit diagram of system (9).

5. Chaos Control

In a multichannel supply chain, all administrators want to achieve their own business goals easily
and adjust their service strategies frequently to reduce uncertainty in market competition. Once the
adjustment speeds of service levels carry out in an irrational state, the market will be out of order and
fall into chaos, which is harmful to the manufacturer and retailer. The manufacturer and retailer need
more information to eliminate the uncertainty of the system. Consequently, some methods should
adopt to defer or remove the occurrence of bifurcation and chaos.

The above analysis shows that the change of ξ makes the multichannel supply chain system enter
chaotic state gradually. In this section, the feedback control method is be used to delay or eliminate the
chaotic behavior of the multichannel service game model, thus reduce the negative impact of chaos on
the system (9). Wu and Ma [43] have used the feedback control method to control chaos in the product
horizontal diversification supply chain.
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The original dynamic system (9) is as follows⎧⎪⎨⎪⎩
s1(t + 1) = f1[s1(t), s2(t), s3(t)]
s2(t + 1) = f2[s1(t), s2(t), s3(t)]
s3(t + 1) = f3[s1(t), s2(t), s3(t)]

(12)

The controlled dynamic system can be expressed as follows⎧⎪⎨⎪⎩
s1(t + 1) = f1[s1(t), s2(t), s3(t)]
s2(t + 1) = f2[s1(t), s2(t), s3(t)]− Ps2(t)
s3(t + 1) = f3[s1(t), s2(t), s3(t)]

(13)

where P represents the chaos control parameter. Selecting an appropriate value for P is essential to
delay bifurcation, which can make the multichannel supply chain system return to the stable state
from the chaotic state.

Figure 11 shows the bifurcation diagram and entropy diagram of the controlled system (13) with
the change of P when β = 0.3 and ξ = 0.72. The controlled system (13) gradually enters the stable
state from the chaotic state with the increase of P; when 0.73 ≤ P ≤ 1, the controlled system (13) is in
the stable state and has low entropy in which the market is in an orderly competitive state.

In the real market, the control parameter P can act as an external interference for decision-makers
for the multichannel supply chain system. When the multichannel supply chain goes into a chaotic
state with the increase in market uncertainty, the decision maker should actively intervene in market
competition. In other words, the control parameter P can also regard as a decision-maker’s learning
and self-adaptive ability. The decision-makers can select appropriate values for P to achieve the
multichannel supply chain back to the stable state.

 
(a) (b) 

Figure 11. The evolution process of controlled system with P changing. (a) The bifurcation diagram
and (b) the entropy diagram.

6. Conclusions

In this paper, we build a multichannel dynamic service game model where a retailer operates
an offline channel and a manufacturer operates an online channel and offers customers the option
to buy online and pick up in retailer’s store (BOPS). The manufacturer and retailer maximize the
channel profits as a business objective and make the channel service game under optimal pricing.
The equilibrium solutions, the stable region, complexity entropy, and efficiency of the multichannel
supply chain system are studied. The results show that the stability of the multichannel supply chain
system will weaken with the service elasticity coefficient increasing and almost be unaffected by the
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feedback parameter adjustment of the retailer. If the manufacturer adjusts his service decision quickly,
the system will go into a chaotic state, the average profits of the system will show a downward trend,
and the system’s entropy will increase. The BOPS channel strengthens the cooperation between the
manufacturer and retailer and moderates the conflict between the online and the offline channels.
In chaos, the service input is difficult to predict and the system entropy is large, the manufacturer and
retailer need more information to familiarize themselves with the market environment. The chaotic
system can be delayed or eliminated effectively using the method of feedback control, so that the
manufacturer and retailer should cooperate with each other to make some measures to prevent and
control chaos.

The conclusions of this paper involve the elucidation of a realistic guide for the manufacturer and
retailer to make optimal service decisions to avoid chaos and profit loss. For example, the manufacturer
should have sufficient information to analyze consumers’ sensitivity to channel services. If the
manufacturer blindly adjusts the channel service levels, it is easy to increase the uncertainty of the
system and make the market go into chaos. In chaos, the manufacturer and retailer suffer unnecessary
losses, and may even exit the market.

Nonetheless, some assumptions made in this paper limit the research results of the model. Loosing
these assumptions can make the model close to market operation scenarios more. For instance, a model
considered the interaction effect of service on channel demand will close to the actual situation. Second,
other power structures between the manufacturer and retailer in the multichannel supply chain should
take into account, as it may shed light on whether the current results will hold. Finally, the other
decision objectives of the manufacturer and retailer should consider the future. We hope that the
ideas and the model presented in this paper will lay the motivational ground for future research in
these directions.

Author Contributions: Y.H. built the probabilistic selling game model and provided economic interpretation of
the conclusions; X.C. carried out numerical simulation; Q.L. performed mathematical calculation; X.M. carried out
writing-review & editing. All authors have read and approved the final manuscript.

Funding: The research was supported by the Henan Province Soft Science Research Plan Project
(No: 182400410054); the Henan provincial government decision research tendering project (No: 2018B019);
the Henan provincial social science planning decision consultation project (2018JC05); the Humanities and Social
Science Foundation in Hubei Provincial Education Department (17Q088); and The Research Center of Enterprise
Decision Support, Key Research Institute of Humanities and Social Sciences in Universities of Hubei Province
(DSS20150205).

Acknowledgments: The authors thank the reviewers for their careful reading and providing some
pertinent suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Dan, B.; Qu, Z.; Zhang, H.; Liu, C.; Zhang, X. Mixed Channel Strategy for Manufacturers to Cope with Strong
Retailers in Supply Chain. Manag. Rev. 2016, 12, 19.

2. Huang, S.; Yang, C.; Yang, J. Pricing and production decisions in dual-channel supply chains with demand
and production cost disruptions. Syst. Eng. Theory Pract. 2014, 34, 1219–1229.

3. Li, B.; Zhu, M.; Jiang, Y.; Li, Z. Pricing policies of a competitive dual-channel green supply chain.
J. Clean. Prod. 2016, 112, 2029–2042. [CrossRef]

4. Kouvelis, P.; Turcic, D.; Zhao, W.H. Supply chain contracting in environments with volatile input prices and
frictions. Manuf. Serv. Oper. Manag. 2018, 20, 130–146. [CrossRef]

5. Li, B.; Hou, P.W.; Chen, P.; Li, Q.H. Pricing strategy and coordination in a dual channel supply chain with
a risk-averse retailer. Int. J. Prod. Econ. 2016, 178, 154–168. [CrossRef]

6. Li, B.; Chen, P.; Li, Q.; Wang, W. Dual-channel supply chain pricing decisions with a risk-averse retailer.
Int. J. Prod. Res. 2014, 52, 7132–7147. [CrossRef]

7. Radhi, M.; Zhang, G. Pricing policies for a dual-channel retailer with cross-channel returns. Comput. Ind. Eng.
2018, 119, 63–75. [CrossRef]

187



Entropy 2018, 20, 858

8. Li, W.; Chen, J.; Liang, G.; Chen, B. Money-back guarantee and personalized pricing in a Stackelberg
manufacturer’s dual-channel supply chain. Int. J. Prod. Econ. 2018, 197, 84–98. [CrossRef]

9. Ji, G.; Han, S.; Huatan, K. False failure returns: Optimal pricing and return policies in a dual-channel supply
chain. J. Syst. Sci. Syst. Eng. 2018, 27, 292–321. [CrossRef]

10. Xie, J.; Zhang, W.; Liang, L.; Xia, Y.; Yin, J.; Yang, G. The revenue and cost sharing contract of pricing and
servicing policies in a dual-channel closed-loop supply chain. J. Clean. Prod. 2018, 191, 361–383. [CrossRef]

11. Dumrongsiri, A. A supply chain model with direct and retail channels. Eur. J. Oper. Res. 2008, 187, 691–718.
[CrossRef]

12. Yan, R.; Pei, Z. Retail services and firm profit in a dual-channel market. J. Retail. Consum. Serv. 2009, 16,
306–314. [CrossRef]

13. Mukhopadhyay, S.K.; Zhu, X.; Yue, X. Optimal Contract Design for Mixed Channels under Information
Asymmetry. Prod. Oper. Manag. 2008, 17, 641–650. [CrossRef]

14. Ding, F.; Huo, J.-Z. A feasibility of service level coordination of dual channel supply chain effect of
dual-channel supply chain. Chin. Manag. Sci. 2014, S1, 485–490.

15. Giri, B.C.; Maiti, T. Service competition in a supply chain with two retailers under service level sensitive
retail price and demand. Int. J. Manag. Sci. Eng. Manag. 2014, 9, 133–146. [CrossRef]

16. Ma, J.; Guo, Z. Research on the complex dynamic characteristics and RLS estimation’s influence based on
price and service game. Math. Probl. Eng. 2015, 2015. [CrossRef]

17. Ali, S.M.; Rahman, M.H.; Tumpa, T.J.; Rifat, A.A.M.; Paul, S.K. Examining price and service competition
among retailers in a supply chain under potential demand disruption. J. Retail. Consum. Serv. 2018, 40, 40–47.
[CrossRef]

18. Li, Q.H.; Li, B. Dual-channel supply chain equilibrium problems regarding retail services and fairness
concerns. Appl. Math. Model. 2016, 40, 7349–7367. [CrossRef]

19. Zhou, Y.W.; Guo, J.; Zhou, W. Pricing/service strategies for a dual-channel supply chain with free riding and
service-cost sharing. Int. J. Prod. Econ. 2018, 196, 198–210. [CrossRef]

20. Zhou, J.; Zhao, R. Dual-channel signaling strategy with channel competition. Syst. Eng. Theory Pract. 2018,
38, 414–428.

21. Chen, X.; Wang, X.; Jiang, X. The impact of power structure on the retail service supply chain with an O2O
mixed channel. J. Oper. Res. Soc. 2016, 67, 294–301. [CrossRef]

22. Kong, L.; Liu, Z.; Pan, Y.; Xie, J.; Yang, G. Pricing and service decision of dual-channel operations in an O2O
closed-loop supply chain. Ind. Manag. Data Syst. 2017, 117, 1567–1588. [CrossRef]

23. Cai, G.; Zhang, Z.G.; Zhang, M. Game theoretical perspectives on dual-channel supply chain competition
with price discounts and pricing schemes. Int. J. Prod. Econ. 2009, 117, 80–96. [CrossRef]

24. Tao, J.T.; Li, B. Research on pricing policies in an O2O channel supply chain under the free-riding effect of
online platform. Ind. Eng. Manag. 2018, 1, 38–44.

25. Zhao, J.; Hou, X.; Guo, Y.; Wei, J. Pricing policies for complementary products in a dual-channel supply
chain. Appl. Math. Model. 2017, 49, 437–451. [CrossRef]

26. Chen, X.; Liu, Y.; Zhong, W. Optimal decision making for online and offline retailers under BOPS mode.
ANZIAM J. 2016, 58, 187–208. [CrossRef]

27. Gao, F.; Su, X. Omnichannel retail operations with buy online and pickup in store. Soc. Sci. Electron. Publ.
2016, 63, 2478–2492.

28. Gallino, S.; Moreno, A. Integration of online and offline channels in retail: the impact of sharing reliable
inventory availability information. Soc. Sci. Electron. Publ. 2014, 60, 1434–1451. [CrossRef]

29. Jin, M.; Li, G.; Cheng, T.C.E. Buy online and pick up in-store: Design of the service area. Eur. J. Oper. Res.
2018, 268, 613–623. [CrossRef]

30. Liu, Y.M.; Zhou, D. Is it always beneficial to implement BOPS? A comparative research with traditional dual
channel. Oper. Res. Manag. Sci. 2018, 2, 23.

31. Moon, S.; Ji, W.; Moon, H.; Kim, D. A simulation of order resonance phenomenon in a supply chain triggered
by reinforcing loop. Int. J. Simul. Model. 2018, 17, 231–244. [CrossRef]

32. Yan, B.; Jin, Z.; Wang, X.; Liu, S. Analyzing a mixed supply chain with a WeChat channel. Electron. Commer.
Res. Appl. 2018, 29, 90–101. [CrossRef]

33. Matsui, K. When and what wholesale and retail prices should be set in multi-channel supply chains? Eur. J.
Oper. Res. 2018, 267, 540–554. [CrossRef]

188



Entropy 2018, 20, 858

34. Zuo, Y.; Kajikawa, Y. Toward a theory of industrial supply networks: A multi-level perspective via network
analysis. Entropy 2017, 19, 382. [CrossRef]

35. Wang, Z.; Soleimani, H.; Kannan, D.; Xu, L. Advanced cross-entropy in closed-loop supply chain planning.
J. Clean. Prod. 2016, 135, 201–213. [CrossRef]

36. Kriheli, B.; Levner, E. Entropy-based algorithm for supply-chain complexity assessment. Algorithms 2018,
11, 35. [CrossRef]

37. Levner, E.; Ptuskin, A. Entropy-based model for the ripple effect: Managing environmental risks in supply
chains. Int. J. Prod. Res. 2018, 56, 2539–2551. [CrossRef]

38. Lou, W.; Ma, J.; Zhan, X. Bullwhip entropy analysis and chaos control in the supply chain with sales game
and consumer returns. Entropy 2017, 19, 64. [CrossRef]

39. Han, Z.; Ma, J.; Si, F.; Ren, W. Entropy complexity and stability of a nonlinear dynamic game model with
two delays. Entropy 2016, 18, 317. [CrossRef]

40. Yao, D.Q.; Yue, X.; Liu, J. Vertical cost information sharing in a supply chain with value-adding retailers.
Omega 2008, 36, 838–851. [CrossRef]

41. Dan, B.; Xu, G.; Liu, C. Pricing policies in a dual-channel supply chain with retail services. Int. J. Prod. Econ.
2012, 139, 312–320. [CrossRef]

42. Yang, J.Q.; Zhang, X.M.; Zhang, H.Y.; Liu, C. Cooperative inventory strategy in a dual-channel supply chain
with transshipment consideration. Int. J. Simul. Model. 2016, 15, 365–376. [CrossRef]

43. Wu, F.; Ma, J. The equilibrium, complexity analysis and control in epiphytic supply chain with product
horizontal diversification. Nonlinear Dyn. 2018, 93, 2145–2458. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

189



entropy

Article

Dynamics and Complexity of a New 4D Chaotic
Laser System

Hayder Natiq 1,2, Mohamad Rushdan Md Said 1,3,4,* , Nadia M. G. Al-Saidi 2 and

Adem Kilicman 1,4

1 Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang 43000, Malaysia;
haydernatiq86@gmail.com (H.N.); akilic@upm.edu.my (A.K.)

2 The Branch of Applied Mathematics, Applied Science Department, University of Technology,
Baghdad 10075, Iraq; nadiamg08@gmail.com

3 Malaysia-Italy Centre of Excellence for Mathematical Science, Universiti Putra Malaysia,
UPM Serdang 43000, Malaysia

4 Department of Mathematics, Universiti Putra Malaysia, UPM Serdang 43000, Malaysia
* Correspondence: mrushdan@upm.edu.my

Received: 11 December 2018; Accepted: 2 January 2019; Published: 7 January 2019

Abstract: Derived from Lorenz-Haken equations, this paper presents a new 4D chaotic laser system
with three equilibria and only two quadratic nonlinearities. Dynamics analysis, including stability of
symmetric equilibria and the existence of coexisting multiple Hopf bifurcations on these equilibria,
are investigated, and the complex coexisting behaviors of two and three attractors of stable point and
chaotic are numerically revealed. Moreover, a conducted research on the complexity of the laser system
reveals that the complexity of the system time series can locate and determine the parameters and initial
values that show coexisting attractors. To investigate how much a chaotic system with multistability
behavior is suitable for cryptographic applications, we generate a pseudo-random number generator
(PRNG) based on the complexity results of the laser system. The randomness test results show that the
generated PRNG from the multistability regions fail to pass most of the statistical tests.

Keywords: Hopf bifurcation; self-excited attractors; multistability; sample entropy; PRNG

1. Inroduction

The chaotic behavior as a rich nonlinear phenomenon has been detected in many non-natural and
natural systems, and usually plays an important role in their performance [1,2]. Chaotic systems are
complicated and have many interesting features, such as unpredictability, topological mixing, and high
sensitivity to their initial conditions and parameters [3,4]. Therefore, chaotic systems have received
significant attention from various fields including cryptography [5,6], secure communications [7,8],
laser applications [9,10], biomedical engineering [11,12], and many others.

Existing chaotic systems can be classified into two categories: systems with self-excited attractors
and systems with hidden attractors [13]. The chaotic system with self-excited attractors has a basin
of attraction that is intersected with an unstable equilibrium, whereas the chaotic system with
hidden attractors has a basin of attraction which does not intersect with any open neighborhoods
of equilibria [14,15]. According to the above definition, most of the classical chaotic attractors are
self-excited [16,17]. Meanwhile, it has been demonstrated that the attractors in dynamical systems
with no equilibria [18,19], stable equilibria [20], lines of equilibria [21], and curves of equilibria [22] are
hidden attractors.

However, with further investigation of chaos, it was unexpected to find that many systems with
self-excited and hidden attractors have more than one attractor for a given set of parameters and
different initial values. This phenomenon is known as multistability or coexisting attractors. The clear
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evidence of multistability was first experimentally manifested in a Q-switched gas laser [23], since then
chaotic systems with multistability behaviors have been extensively reported. Munoz et al. presented
a fractional-order chaotic system with multiple coexisting attractors [24]. Wang et al. established a
2D chaotic map with no-equilibria generating a pair of chaotic attractors [25]. Li et al. introduced a
new method for constructing self-reproducing chaotic systems with extreme multistability [26]. In fact,
multistability as a new research direction in chaos theory requires further research, especially, how to
determine and locate this complicated nonlinear phenomenon in the chaotic systems.

Since the in-depth analysis of the local bifurcation is required to clarify the evolution of the chaotic
state from the steady state, the scope of studying the bifurcation of the equilibria in the chaotic systems
is of considerable interest [27]. Hopf bifurcation is one of an important local dynamic bifurcation,
and is considered as the emergence of a limit cycle from an equilibrium point. Furthermore, the Hopf
bifurcation plays a crucial role in analyzing the stability of the equilibria of the high-dimensional
system [28,29]. Therefore, Hopf bifurcation is beneficial to analyzing the dynamic behavior of
high-dimensional chaotic systems, as well as to the applications of controlling chaos [30].

Complexity of nonlinear dynamical systems has attracted attention in recent years due to its
importance for measuring the predictability and randomness of the system time series [31,32]. The time
series with high complexity led to a chaotic attractor, hence, the complexity is able to determine and
locate the chaotic and periodic attractors in nonlinear systems [33,34]. Motivated by this observation,
this paper applies Sample Entropy contour plot to determine multistability regions of a new 4D
chaotic laser system, which is derived from Lorenz-Haken equations. The new chaotic system has
one unstable equilibrium and symmetric stable equilibria, hence the chaotic attractor of the presented
system is generally self-excited, meanwhile, the possible existence of a hidden chaotic attractor is an
open problem.

The main contributions of this research work are as follows:

(i) We derive a new 4D chaotic laser system with three equilibria from Lorenz-Haken equations;
(ii) We investigate the stability of the symmetric equilibria, and the existence of coexisting multiple

Hopf bifurcations on these equilibria;
(iii) We analyze the presence of complex coexisting behaviors in the laser system;
(iv) We use the complexity of the laser system time series to locate the regions of coexisting attractors

when the parameters and initial values vary;
(v) Based on the complexity of the system time series, we study the randomness of

multistability regions.

The rest of this paper is organized as follows: Section 2 introduces the new 4D chaotic laser system
and studies its dynamical properties. Section 3 investigates the existence of Hopf bifurcation in the laser
system. Section 4 provides the details about the multistability of the laser system. In Section 5, we use
SamEn to locate the regions of the coexisting attractors, as well as to demonstrate the randomness of
these regions. The conclusions are presented in Section 6.

2. A New 4D Chaotic Laser System From Lorenz-Haken Model

In this section, we discuss the dynamics of a new 4D chaotic laser system which is derived from the
well-known Lorenz-Haken equations [35]. In the standard notation of Reference [36], the Lorenz-Haken
equations is given by ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx
dt

= −σ(x − y) + iqx|x|2,

dy
dt

= −(1 − iδ)y + (r − z)x,

dz
dt

= −bz + Re(x ∗ y).

(1)

In the optical language, x is proportional to the electric field, y is proportional to the induced
macroscopic polarization, (r − z) denotes the inversion, σ = τP

τE
, and b = τP

τN
. Here, τE represents
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the optical field, τP is the induced polarization, and τN denotes the inversion parameter. Meanwhile,
the parameter δ governs the coupling between amplitude and phase variations, and q is known as the
linewidth enhancement factor.

Since both x and z can be chosen to be real [37], the dynamics of Equation (1) can be investigated
by considering the following linear transformation

x = x1, y = x2 + ix3, z = x4.

Consequently, the new 4D chaotic laser system is defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= σ(x2 − x1),

dx2

dt
= −x2 − δx3 + (r − x4)x1,

dx3

dt
= δx2 − x3,

dx4

dt
= −bx4 + x1x2,

(2)

where xi are state variables and σ, δ, r and b are parameters.

2.1. Chaotic Behavior Regions

To examine the dynamic characteristics of the system (2), Figure 1a,b depicts its bifurcation
diagram and Lyapunov exponents, respectively, in which the parameters are set as σ = 4, δ = 0.5,
r = 27, and 0 ≤ b ≤ 2. This figure clearly shows chaotic attractors for b ∈ [0.15, 0.187] ∪ [0.205, 2],
quasi-periodic (when b = 0.132) and periodic attractors for b ∈ [0, 0.15)∪ (0.187, 0.205). To demonstrate
the chaotic behavior of the system (2), Figure 2 plots its phase portraits with σ = 4, δ = 0.5, r = 27,
b = 2 and for the initial values (2, 1, 1, 2). As can be observed in Figure 2, the system (2) has a two-scroll
chaotic attractor.
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Figure 1. Dynamics of the system (2) versus the parameter b for the initial values (2, 1, 1, 2) and with
σ = 4, δ = 0.5, r = 27: (a) bifurcation diagram; (b) Lyapunov exponents.
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Figure 2. Different orientations on a two-scroll chaotic attractor of the system (2) for the initial values
(2, 1, 1, 2) and with the parameters σ = 4, δ = 0.5, r = 27, b = 2. (a) (x2, x3, x1) space; (b) (x4, x1, x2)

space; (c) (x4, x3, x2) space; (d) (x4, x3, x1) space.

2.2. Dissipation and Symmetry

The divergence of system (2) is defined as

∇V =
∂ẋ1

∂x1
+

∂ẋ2

∂x2
+

∂ẋ3

∂x3
+

∂ẋ4

∂x4
= −(σ + b + 2).

Thus, the system (2) becomes dissipative when (σ + b + 2) > 0. This means each volume element
V0e−(σ+b+2)t of system (2) shrinks to zero as t −→ ∞ at an exponential rate (σ + b + 2).

Additionally, the system (2) has invariance under the coordinate transformation

(x1, x2, x3, x4) −→ (−x1, −x2, −x3, x4).

Consequently, the system (2) has rotational symmetry around the x4-axis.

2.3. Equilibria and Stability

Suppose that the parameters σ > 0, δ > 0, r > 0 and b > 0, then the equilibria of the system (2)
can be calculated by solving the following equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ(x2 − x1) = 0,
− x2 − δx3 + (r − x4)x1 = 0,
δx2 − x3 = 0,
− bx4 + x1x2 = 0.

From the above equations, it can be obtained that the equilibria of the system (2) have the
following form:

Ei(k, k, δk,
k2

b
),
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where k is either 0 or ±√
b(r − (1 + δ2)). The system (2) has one real equilibrium E1(0, 0, 0, 0) when

r = 1 + δ2, whereas it has three real equilibria if r > 1 + δ2

⎧⎪⎪⎨⎪⎪⎩
E1(0, 0, 0, 0),

E2
(√

b(r − (1 + δ2)),
√

b(r − (1 + δ2)), δ
√

b(r − (1 + δ2)), r − (1 + δ2)
)
,

E3
(−

√
b(r − (1 + δ2)), −

√
b(r − (1 + δ2)), −δ

√
b(r − (1 + δ2)), r − (1 + δ2)

)
.

Using the Jacobian matrix, the system (2) is linearized at the equilibrium Ei as follows

JEi =

⎛⎜⎜⎜⎝
−σ σ 0 0

r − k2

b −1 −δ −k
0 δ −1 0
k k 0 −b

⎞⎟⎟⎟⎠ .

Since the equilibria E2,3 are symmetric about the x4−axis, then they will have the same
characteristics. Therefore, the characteristic equation of Jacobian matrix at the equilibrium E2 with
b = 1 can be written as

f (λ) = (λ + 1) f1(λ) = 0, (3)

where

f1(λ) = λ3 + (2 + σ)λ2 + (1 + 2σ + δ2 + k2 + σk2 − σr)λ + (σ + σδ2 + 3σk2 − σr). (4)

It is obvious that Equation (3) always has one eigenvalue with negative real part which is λ1 = −1,
whereas the real parts of the other eigenvalues are not always negative. It is well-known that a system
is asymptotically stable when all eigenvalues have negative real parts; otherwise, the system is unstable.
By Routh–Hurwitz criterion, the real parts of all the eigenvalues of the system (2) are negative if and
only if ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δ1 =(2 + σ) > 0,

Δ2 =

∣∣∣∣∣ (2 + σ) 1

(σ + σδ2 + 3σk2 − σr) (1 + 2σ + δ2 + k2 + σk2 − σr)

∣∣∣∣∣ > 0,

Δ3 =(σ + σδ2 + 3σk2 − σr)Δ2 > 0.

By choosing the parameters σ > 0 and δ > 0, these inequalities lead to the following condition:

r <
4σ + σ2 − σ2δ2

σ − 2
. (5)

Thus, if the above conditions are satisfied, then the equilibrium E2 is an asymptotically stable.

3. Local Bifurcation Analysis and Numerical Simulations

This section reviews the Hopf bifurcation using the bifurcation theories. In addition, the existence
of coexisting symmetric Hopf bifurcations in the system (2) will be investigated with the variation of
parameter r ∈ R+.
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3.1. Hopf Bifurcation

Hopf bifurcation is the source of a limit cycle, which usually appears when the stability of the
equilibrium point changes at some critical parameter value. To illustrate the Hopf bifurcation of a
dynamical system on the equilibrium point, consider a vector field as follows

ẋ = f (x, ζ), (6)

where x ∈ R4 and ζ ∈ R+ represent the phase variables and the parameters, respectively. The vector
field undergoes a Hopf bifurcation when the following conditions are satisfied simultaneously [38]:

(A) nondegeneracy condition: the Jacobian matrix J(x0,ζ0)
has one pair of purely imaginary roots,

and other roots have nonzero real parts;
(B) transversality condition: the real part of differentiation characteristic equation with respect to the

parameter ζ satisfy

Re(
dλ

dζ
)
∣∣∣
ζ=ζ0

�= 0; (7)

(C) the first Lyapunov coefficient l1 is nonzero.

In order to derive the first Lyapunov coefficient l1, suppose that Equation (2) has an equilibrium
point at x = x0. By denoting X = x − x0, we can write

F(X) = f (X, ζ0), (8)

as

F(X) = AX +
1
2

B(X, X) +
1
6

C(X, X, X) + O(‖ X ‖4), (9)

where A is the Jacobian matrix, and B and C are symmetric multilinear vector functions which are
defined as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Bi(X, Y) =
n

∑
j,k=1

∂2Fi(η)

∂ηj∂ηk

∣∣∣
η=0

XjYk, i = 1, 2, . . . , n,

Ci(X, Y, Z) =
n

∑
j,k,l=1

∂3Fi(η)

∂ηj∂ηk∂ηl

∣∣∣
η=0

XjYkZl , i = 1, 2, . . . , n.
(10)

Suppose that A possesses a pair of purely imaginary eigenvalues λ1,2 = ±iω, meanwhile,
the other eigenvalues have nonzero real part. Let p, q be an eigenvectors of A satisfying the following
three conditions ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Aq = iω0q,
AT p = −iω0 p,

〈p, q〉 =
n

∑
i=1

pi qi = 1.
(11)

By means of an immersion of the form X = V(μ, μ), the 2D center manifold associated to the
eigenvalues λ1,2 = ±iω is parameterized, where V : C2 −→ R4 has a Taylor expansion of the
following form

V(μ, μ) = μ q + μ q + ∑
2≤j+k≤3

1
j!k!

vjk μj μk + O(|μ|4). (12)
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with vjk ∈ C4 and vjk = vjk. By substituting Equation (12) into (8), one has

∂V
∂μ

μ̇ +
∂V
∂μ

μ̇ = F(V(μ, μ)) (13)

Defined by the coefficients μj μk, the complex vectors vjk can be obtained by solving Equation (13).
On the chart μ for a center manifold, the system (13) can be written as

μ̇ = iω0μ +
1
2

G21μ|μ|2 + O(|μ|4). (14)

Thus, the first Lyapunov coefficient can be defined as

l1 =
1

2ω0
Re[〈p, C(q, q, q)〉 − 2〈p, B(q, −v11)〉+ 〈p, B(q, v20)〉] (15)

where v11 = −A−1B(q, q) and v20 = (2iω0 I − A)−1B(q, q).

3.2. Numerical Simulations

To investigate the existence of Hopf bifurcation in the system (2) at the equilibrium E2, we will
examine the conditions (A), (B) and (C) one by one.

Firstly, we assume that the characteristic Equation (3) has a pair of purely imaginary eigenvalues
λ1,2 = ±iω0. By substituting λ = iω0 into (4), one has

−iω3
0 − (2 + σ)ω2

0 + (1 + 2σ + δ2 + k2 + σk2 − σr)iω0 + (σ + σδ2 + 3σk2 − σr) = 0, (16)

which leads to: {
− iω3

0 + (1 + 2σ + δ2 + k2 + σk2 − σr)iω0 = 0,
− (2 + σ)ω2

0 + (σ + σδ2 + 3σk2 − σr) = 0.

Thus, one can obtain that⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω0 =

√
σ + σδ2 + 3σk2 − σr

2 + σ
,

r =
2 + 4σ + 2δ2 + 2k2 + 2σ2 + σ2k2

σ + σ2 ,

which are equivalent to ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω0 =

√
2σk2

2 + σ
,

r =
4σ + σ2 − σ2δ2

σ − 2
,

where k =
√

r − (1 + δ2). It is worth noting that when r = r0 = 2+4σ+2δ2+2k2+2σ2+σ2k2

σ+σ2 ,
the characteristic Equation (3) can be written as

f (λ) = (λ + 1)(λ + 2 + σ)

(
λ2 +

σ + σδ2 + 3σk2 − σr0

2 + σ

)
. (17)
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Therefore, the four eigenvalues of the system (2) are as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 = −1,
λ2 = −(2 + σ),

λ3 = i

√
σ + σδ2 + 3σk2 − σr0

2 + σ
= iω0,

λ4 = −i

√
σ + σδ2 + 3σk2 − σr0

2 + σ
= −iω0.

(18)

Consequently, the nondegeneracy condition (A) is satisfied when r = r0.
Secondly, let λ(r) = ±iω0(r), by substituting λ(r) into Equation (10) and differentiate the both

sides with respect to r, one obtains

dλ(r)
dr

=
σλ + σ

3λ2 + 2(2 + σ)λ + (1 + 2σ + δ2 + k2 + σk2 − σr)
, (19)

which leads to:

dλ(r)
dr

∣∣∣
r=r0,λ=iω0

=
σ(iω0) + σ

3(iω0)2 + 2(2 + σ)iω0 + (1 + 2σ + δ2 + k2 + σk2 − σr0)
, (20)

Thus, one has

Re(λ′(r = r0)) =
σ(1 + 2σ + δ2 + k2 + σk2 + ω2

0 + 2σω2
0 − σr0)

(1 + 2σ + δ2 + k2 + σk2 − σr − 3ω2
0)

2 + 4(2 + σ)2ω2
0
> 0, (21)

where σ = 4, δ = 1.1, r0 = 4σ+σ2−σ2δ2

σ−2 ≈ 6.32 and ω0 =
√

2σk2

2+σ ≈ 2.34. Consequently, the transversality
condition (B) is also verified.

At last, we will calculate the first Lyapunov coefficient l1 under the above fixed parameters.
The Jacobian matrix J on the equilibrium point E2 is given by

JE2 =

⎛⎜⎜⎜⎝
−4 4 0 0
2.21 −1 −1.1 −2.0273

0 1.1 −1 0
2.0273 2.0273 0 −1

⎞⎟⎟⎟⎠ . (22)

The proper eigenvectors q and p are obtained by straightforward calculations

q =

⎛⎜⎜⎜⎝
0.274 + 0.333i
0.079 + 0.494i
0.21 + 0.052i

0.717

⎞⎟⎟⎟⎠ , p =
1

(0.078 − 0.891i)

⎛⎜⎜⎜⎝
−0.318 + 0.073i

−0.7
0.118 + 0.278i
0.219 + 0.512i

⎞⎟⎟⎟⎠ (23)

where the above eigenvectors q and p satisfy the three conditions (11), namely

Aq = iω0q, AT p = −iω0 p, 〈p, q〉 =
n

∑
i=1

pi qi = 1.
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From Equation (10), the multilinear vector functions of the system (2) are calculated as follows

B(x, y) =

⎛⎜⎜⎜⎝
0

−x1y4 − x4y1

0
x1y2 + x2y1

⎞⎟⎟⎟⎠ , C(x, y, z) =

⎛⎜⎜⎜⎝
0
0
0
0

⎞⎟⎟⎟⎠ , (24)

From (22)–(24), it follows that

B(q, q) =

⎛⎜⎜⎜⎝
0

−0.393 − 0.477i
0

−0.285 + 0.323i

⎞⎟⎟⎟⎠ , B(q, q) =

⎛⎜⎜⎜⎝
0

−0.393
0

0.372

⎞⎟⎟⎟⎠ ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J−1
E2

=

⎛⎜⎜⎜⎜⎜⎝
−0.192 −0.121 0.133 0.246

0.057 −0.121 0.133 0.246

0.063 −0.133 −0.852 0.271

−0.272 −0.493 0.542 0

⎞⎟⎟⎟⎟⎟⎠ ,

(2iω0 I − JE2)
−1 =

⎛⎜⎜⎜⎜⎜⎝
0.052 − 0.135i −0.117 − 0.098i 0.027 − 0.021i 0.051 − 0.039i

−0.038 − 0.074i −0.002 − 0.235i 0.053 + 0.01i 0.097 + 0.019i

−0.018 + 0.005i −0.053 − 0.01i 0.048 − 0.215i 0.009 − 0.021i

−0.085 − 0.024i −0.148 + 0.019i 0.002 − 0.034i 0.048 − 0.267i

⎞⎟⎟⎟⎟⎟⎠ .

Thus, one obtains{
v11 = [−0.139, −0.139, −0.153, −0.193]T ,
v20 = [−0.002 + 0.122i, −0.145 + 0.119i, 0.019 + 0.038i, 0.14 + 0.155i]T .

(25)

By using (23)–(25), one gets⎧⎪⎪⎨⎪⎪⎩
〈p, B(q, −v11)〉 = 0.066 − 0.191i,

〈p, B(q, v20)〉 = 0.064 − 0.130i,

〈p, C(q, q, q)〉 = 0.

(26)

Consequently, the first Lyapunov is obtained by substituting (26) into (15)

l1 =
1

2ω0
Re[〈p, C(q, q, q)〉 − 2〈p, B(q, −v11)〉+ 〈p, B(q, v20)〉] = −0.0145 < 0.

Therefore, the Hopf bifurcation of the system (2) at equilibrium point E2 is nondegenerate
and supercritical. Furthermore, the equilibria E2 and E3 are symmetric about the x4−axis, hence,
the system (2) should also undergo a Hopf bifurcation at E3. Two numerical simulations are given in
Figure 3. For r = 5.5 < r0, the orbit of the system (2) with the initial values (1.8, 1.8, 2, 4) is attracted
to the stable equilibrium point E2, whereas the orbit with the initial values (−1.8, −1.8, −2, 4) is
attracted to the other stable equilibrium point E3, as illustrated in Figure 3a. In Figure 3b, by choosing
r = 6.5 > r0 with the initial values (1.8, 1.8, 2, 4) and (−1.8, −1.8, −2, 4), the orbits of the system are
attracted to stable limit cycles emerging from E2 and E3, respectively.

According to Reference [39], m = 2, τ = 1 and r = 0.1 ∼ 0.2 times standard deviation (SD) of the
time series. In our experiment, we fix m = 2, τ = 1 and r = 0.2 × SD.
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Figure 3. Hopf bifurcation of the system (2): (a) r = 5.5 < r0, the orbit of the system is attracted to the
stable symmetric equilibria E2 and E3; (b) r = 6.5 > r0, the orbit of the system is attracted to a stable
limit cycle emerging from the symmetric equilibria E2 and E3.

4. Multistability Behavior

A nonlinear dynamical system with multistability behavior can generate two or more attractors
simultaneously depending on the initial values of the system. This section investigates the existence of
multistability behavior in the system (2).

When we fix the parameters σ = 2, δ = 1.5, b = 0.7 and select r as bifurcation parameter for
over the range r ∈ [7.5, 10], the coexisting bifurcation models of the state variable x1 are depicted in
Figure 4a. In this figure, the attractor colored in blue is initiated from (−2, 1, 1, 1), meanwhile the
attractor colored in red begins with the initial conditions (1, 1, 1, 1). As can be observed in Figure 4a,
the system (2) shows coexisting multiple chaotic attractors as well as the coexistence of multiple
quasi-periodic attractors. To show the coexistence of multiple chaotic attractors visually, Figure 5 plots
different orientations of the phase portraits of the system (2) when its parameters are set as σ = 2,
δ = 1.5, b = 0.7, and r = 9.41.

Figure 4. Bifurcation diagrams versus parameter r for illustrating the two and three coexisting attractors
of the system (2): (a) σ = 2, δ = 1.5, b = 0.7 for the initial values (1, 1, 1, 1) (red) and (−2, 1, 1, 1)
(blue); (b) σ = 4, δ = 0.5, b = 2 for the initial values (2, 1, 1, 2) (blue), (−2, 1, 1, −2) (red) and
(2, 1, 1, −2) (green).
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Figure 5. Multiple coexisting chaotic attractors of the system (2) when σ = 2, δ = 1.5, b = 0.7, r = 9.41
for the initial values (1, 1, 1, 1) (red) and (−2, 1, 1, 1) (blue). (a) x1–x2 plane; (b) x2–x3 plane; (c) x1–x4

plane; (d) x2–x4 plane.

In addition, when we set σ = 4, δ = 0.5, b = 2 with 26 ≤ r ≤ 30, Figure 4b shows that the
chaotic attractor with two stable fixed-point attractors coexist for the initial values (±2, 1, 1, ±2). For the
orbit colored in blue, the evolution begins from attracting to the stable equilibrium E3 within the
range 26 ≤ r ≤ 26.7, and then the system shows chaotic behavior when r ≥ 26.8. For (−2, 1, 1, −2)
(red), the system converges to the stable equilibrium E2 when 26 ≤ r ≤ 28, and then exhibits chaotic
behavior when r ≥ 28.1. For the initial values (2, 1, 1, −2) (green), the system attracts to the stable
equilibrium E3 when 26 ≤ r ≤ 27.8, meanwhile the chaotic behavior is shown when r ≥ 27.9. Selecting
r = 27, an interesting dynamic is observed in the system (2) by plotting different orientations of the
phase portraits with the corresponding time series, as shown in Figure 6. These portraits confirm the
coexistence of three different attractors: (a) blue butterfly attractors surrounds the symmetric equilibria
E2 and E3; (b) the red stable fixed-point attractor for E2, and the green stable fixed-point attractor for E3.

Through the above analysis, we can observe that the multistability behavior occurs in the
system (2) with various kinds of coexisting attractors. Therefore, it can be concluded that the system (2)
has high sensitivity to both initial values and parameters.
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Figure 6. Three coexisting attractors with σ = 4, δ = 0.5, b = 2, r = 27: (a,c,e) different perspectives on
the coexistence of the chaotic and two stable fixed-point attractors for the initial values (2, 1, 1, 2) (blue),
(−2, 1, 1, −2) (red) and (2, 1, 1, −2) (green); (b,d,f) the corresponding time series of the state variables
x1, x2 and x4, respectively.

5. Complexity and Randomness of Multistability Regions

This section discusses determining and locating the parameters and initial values that show
multistability behaviors, as well as investigates the randomness of the multistability regions.

5.1. Sample Entropy

Sample Entropy (SamEn) is a mathematical algorithm proposed by Richman [40]. It is used to
provide a quantitative explanation about the complexity of nonlinear dynamical systems. Obviously,
a system with bigger SamEn values indicates that it requires additional information to predict
its attractor, hence, it is a chaotic system. Suppose that the time series (yi, i = 0, 1, 2, . . . , M − 1)
of a dynamical system with a length of M, then the SamEn algorithm can be calculated by the
following steps:

(A) Reconstructing phase-space: for a given embedding dimension m and time delay τ,
the reconstruction sequences are given by
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Yi = {yi, yi+τ , ..., yi+(m−1)τ}, yi ∈ Rm (27)

where i = 1, 2, . . . , M − m + τ.
(B) Counting the vector pairs: let Bi be the number of vector Yj such that

d[Yi, Yj] ≤ r, i �= j (28)

where r is the tolerance parameter, and d[Yi, Yj] is the distance between Yi and Yj, which is
defined by

d[Yi, Yj] = max{|y(i + k)− y(j + k)| : 0 ≤ k ≤ m − 1}. (29)

(C) Calculating probability: according to the obtained number of vector pairs, we can obtain

Cm
i (r) =

Bi
M − (m − 1)τ

, (30)

then calculate the probability by

φm(r) =
∑

M−(m−1)τ
i=1 lnCm

i (r)
[M − (m − 1)τ]

(31)

(D) Calculating SamEn: repeating the above steps we can obtain φm+1(r), then SamEn is given by

SamEn(m, r, M) = φm(r)− φm+1(r). (32)

According to Reference [39], m = 2, τ = 1 and r = 0.1 ∼ 0.2 times standard deviation (SD) of the
time series. In our experiment, we fix m = 2, τ = 1 and r = 0.2 × SD.

It is well-known that the cross-section of the basins of attraction can determine the dynamical
system behaviors when its initial values vary. However, it is interesting to ask if there is any technique
that can determine the behaviors of a dynamical system when its initial values and parameters
vary. Therefore, SamEn based contour plots are applied to locate the regions of chaotic and periodic
state, and hence, to determine the parameters and initial values that show multistability behaviors.
To locate those parameters and initial values in the system (2), we designed the following experiments:
(1) consider r as bifurcation parameter and set σ = 4, b = 2 and δ = 0.5; (2) let (x10, x20, x30, x40)

be the initial values; (3) calculate SamEn versus varying the parameter r and one of an initial value;
(4) calculate SamEn versus varying two of the initial values.

Figure 7 plots SamEn of the system (2) in a two-dimensional plane when r ∈ (24, 30) and different
initial values. It can be observed from Figure 7a–d that four cases are analyzed when the initial values
are set as (x10, 1, 1, 2), (2, x20, 1, 2), (2, 1, x30, 2) and (2, 1, 1, x40), respectively. From Figure 7, it can
be seen that the parameter r and the initial values in the blue regions have smaller SamEn values,
which means that the system (2) shows periodic state, whereas, those in the yellow and green regions
lead to a chaotic state. Furthermore, Figure 8 shows the chaotic and periodic regions of system (2)
when two of the initial values vary simultaneously.
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Figure 7. SamEn in the parameter r-initial value plane for σ = 4, δ = 0.5, b = 2: (a) r − x10 plane;
(b) r − x20 plane; (c) r − x30 plane; (d) r − x40 plane.

Figure 8. SamEn versus varying two of the initial values for σ = 4, δ = 0.5, b = 2, r = 27:
(a) (x10, x20, 1, 2); (b) (2, x20, x30, 2); (c) (x10, 1, 1, x40).

5.2. Chaos-Based PRNG

Many chaotic systems have been applied to generate pseudorandom number generator (PRNG).
The need of PRNG arises in many cryptographic applications, e.g., common cryptosystems employ
keys, data hiding, and auxiliary quantities used in generating digital signatures [41,42]. However,
secret keys of most chaos-based cryptographic schemes are generated by parameters and initial values
of the employed chaotic systems [43]. Those parameters and initial values might be from multistability
regions; it is therefore important to investigate the randomness of the trajectories generating from
multistability regions.

To investigate the randomness of blue-green regions (multistability behaviors) and green regions
(chaotic), which is shown in Figure 7d, we use here a simple chaos-based PRNG as an example.
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The generation procedures of the chaos-based PRNG are shown in Algorithm 1, for which x1, x2,
x3 and x4 generates 1,000,000 bits binary string.

Several statistical tests can be employed to test the randomness of PRNG. Our experiment uses
the highest standards of statistical packages which is NIST-800-22 [42]. The NIST-800-22 consists of
16 empirical statistical tests that provide true evaluation for the randomness of PRNG. Each test is
developed to detect the non-random areas of a binary sequence from different sides, and then to derive
a p-value. According to the recommendations in [24,44], we set the confidence level α = 0.01, and we
use a binary sequence with length of 1,000,000 bit as the testing input. Since the confidence level of
each test in NIST is set to be 1%, then the sequence is considered to be random with a confidence of
99% when the obtained p-value is bigger than 0.01.

According to Algorithm 1, we can obtain four PRNG from the trajectory of x1, x2, x3 and x4

when the initial values are considered as input. For σ = 4, δ = 0.5, b = 2 and r ∈ [27, 29] with the
initial values (2, 1, 1, −2), the SamEn values of the selected parameters and initial values are within
the blue-green regions (multistability), as shown in Figure 7d. The randomness of the corresponding
PRNG that generated from the trajectory of x1, x2, x3 and x4 can be visually shown by depicting
the NIST-800-22 test results, as seen in Figure 9. As can be observed from Figure 9, the four PRNG
generating from multistability regions fail to pass most of the statistical tests. On the other hand,
when σ = 4, δ = 0.5, b = 2 and r ∈ [27, 29] with the initial values (2, 1, 1, 2), the SamEn values are
within the green region (chaotic), as shown in Figure 7d. Table 1 lists the corresponding NIST-800-22
results for each of the four PRNG. It is obvious that the four PRNG can pass all the statistical tests.
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Figure 9. The statistical tests NIST SP800-22 of the pseudorandom number generator (PRNG) that
generated by x1, x2, x3, x4 of the system (2) with σ = 4, δ = 0.5, b = 2, r ∈ [27, 29] and for the initial
values (2, 1, 1, −2). (a) Block-Frequency, Discrete Fourier Transform, Frequency (Monobit), Random
Excursions, Random Excursions Variant, Serial-1, Serial-2, Linear Complexity, and Longest Run of Ones,
respectively; (b) Approximate Entropy, Cumulative Sums (Forward), Cumulative Sums (Reverse),
Lempel-ziv Compression, Non-overlapping Template, Overlapping Template, Binary Matrix Rank,
Runs, and Universal Statistical.
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Algorithm 1 The generation of chaos-based PRNG

Input: The initial values of system (2).

1: for i = 1 to 4 do

2: for r = 27 to 29 do

3: Truncate a chaotic sequence Ci from the trajectory of xi;

4: Convert the floating number Ci of xi into a 32-bit binary using the IEEE-754-Standard;

5: Fetch the last 16th digital number of the obtained binary string;

6: end for

7: end for

Output: Four PRNG are generated from of x1, x2, x3 and x4.

Table 1. NIST-800-22 tests results of binary sequences generated by PRNG of x1, x2, x3 and x4 outputs.

Each Sequence to be Tested Consists of 1,000,000 Bits

NIST-800-22 Tests p-Value (x1) p-Value (x2) p-Value (x3) p-Value (x4) Result

1. Block-Frequency (m = 128) 0.2116 0.8460 0.8313 0.0210 Random
2. Frequency (Monobit) 0.7611 0.0380 0.6570 0.3503 Random
3. Discrete Fourier Transform 0.3602 0.1792 0.1478 0.1225 Random
4. Approximate Entropy (m = 10) 0.9592 0.6512 0.6343 0.3659 Random
5. Cumulative Sums (Forward) 0.7617 0.0721 0.7280 0.5832 Random

Cumulative Sums (Reverse) 0.5578 0.0320 0.5106 0.1816 Random
6. Serial-1 (m = 16) 0.7937 0.2948 0.1635 0.9706 Random

Serial-2 (m = 16) 0.8885 0.7628 0.5357 0.9530 Random
7. Runs 0.9649 0.6196 0.4751 0.1530 Random
8. Longest Run of Ones 0.2568 0.0965 0.8242 0.2420 Random
9. Overlapping Template (m = 9) 0.7032 0.6461 0.5603 0.7085 Random
10. Non-overlapping Template (m = 9) 0.4960 0.5403 0.5150 0.5117 Random
11. Linear Complexity (m = 500) 0.4091 0.7263 0.1607 0.8582 Random
12. Binary Matrix Rank 0.2618 0.1029 0.2843 0.2376 Random
13. Lempel-ziv Compression 0.0769 0.2343 0.1411 0.9581 Random
14. Random Excursions 0.4628 0.2379 0.4787 0.3931 Random
15. Random Excursions Variant 0.6141 0.1814 0.3977 0.2865 Random
16. Universal Statistical 0.4931 0.7326 0.6056 0.1038 Random

6. Conclusions

This paper has introduced a new 4D chaotic laser system, which is derived from Lorenz-Haken
equations. The new chaotic laser system has three equilibria and only two quadratic nonlinearities.
The dynamics of the new system have been studied deeply, in which the system shows coexisting
multiple Hopf bifurcations, and complex coexisting behaviors of two and three attractors. In addition,
we applied SamEn contour plots for measuring the complexity of the system when its initial values and
parameters vary. Simulation results have shown that multistability regions can be easily determined
and located using SamEn contour plots. To examine the randomness of PRNG that generate from
the multistability regions, we used the NIST-800-22 tests. Statistical test results demonstrate that
the generated PRNG from multistability regions are non-random. This means that although the
multistability behaviors indicate high sensitivity of chaotic systems, they might be unsuitable for
cryptographic applications.
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Abstract: Today, four-dimensional chaotic systems are attracting considerable attention because
of their special characteristics. This paper presents a non-equilibrium four-dimensional chaotic
system with hidden attractors and investigates its dynamical behavior using a bifurcation diagram,
as well as three well-known entropy measures, such as approximate entropy, sample entropy,
and Fuzzy entropy. In order to stabilize the proposed chaotic system, an adaptive radial-basis
function neural network (RBF-NN)–based control method is proposed to represent the model of the
uncertain nonlinear dynamics of the system. The Lyapunov direct method-based stability analysis
of the proposed approach guarantees that all of the closed-loop signals are semi-globally uniformly
ultimately bounded. Also, adaptive learning laws are proposed to tune the weight coefficients of
the RBF-NN. The proposed adaptive control approach requires neither the prior information about
the uncertain dynamics nor the parameters value of the considered system. Results of simulation
validate the performance of the proposed control method.

Keywords: Non-equilibrium four-dimensional chaotic system; entropy measure; adaptive
approximator-based control; neural network; uncertain dynamics

1. Introduction

A variety of chaotic systems with various features, such as multistability [1–3], extreme
multistability [4,5], and multi-scroll attractors [6,7], have been introduced in recent years for investigating
nonlinear dynamical systems. Dynamical systems can be categorized based on self-excited and hidden
attractors [8]. From 1994, when the first non-equilibrium chaotic flow was reported in literature [9], almost
20 years have passed before another chaotic systems with non-equilibrium was introduced [10–15]. It can
be easily concluded that the chaotic attractor in such systems is hidden. Given the fact that systems
without equilibrium have unexpected responses to perturbations, these systems have become attractive
systems for researchers.
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However, all the aforementioned systems with no-equilibria are described by 3D differential
equations. So, the question is if there is any 4D system with no-equilibria. The first 4D chaotic
system was found by Rössler in 1979 [16], which was the first step in designing a 4D chaotic system.
In the last few years, only a few works related with 4D chaotic dynamical systems with no-equilibria
have been reported. In 2014, Wei et al. presented a new four-dimensional hyperchaotic system with
no-equilibria developed by extension of the generalized diffusionless Lorenz equations [17]. In 2015, a
no-equilibrium chaotic system with multiwing butterfly attractors constructed using a state feedback
controller was proposed by Tahir et al. [18]. Motivated by complex dynamical behaviors of chaotic
systems and unusual features of hidden attractors, a novel no-equilibrium chaotic system with an
exponential nonlinearity was also proposed by Pham et al. in 2015 [19]. In 2016, Pham et al. introduced
a novel four-dimensional continuous-time autonomous system with a cubic nonlinear term, which
does not have equilibria [20]. In 2017, Bao et al. presented a memristive system, which does not display
any equilibrium but can exhibit hyperchaotic, chaotic, and periodic dynamics as well as transient
hyperchaos [21]. Furthermore, in 2018, Zhang et al. introduced a 4D chaotic composed of nine terms
including only one constant term having also a line of equilibrium points or no equilibrium points [22].

In order to suppress the chaotic behavior of the nonlinear systems, several control methods
have been implemented. Mobayen and Ma introduced a combination of finite-time robust-tracking
theory and composite nonlinear feedback approach [23]. Shukla and Sharma designed a backstepping
controller and analyzed the stability of the designed controller for a class of three-dimensional chaotic
systems [24]. To name just a few, fuzzy controller [25–29], sliding mode controller [30–34], and hybrid
controllers [35–39] are some other controllers that are implemented to control and synchronize the
chaotic systems.

Artificial intelligence methods have been used widely to successfully solve a wide range of
problems [40–44]. Designing the controllers based on the Neural network, as one of the most used
artificial intelligence-based controllers (especially when dealing with complex nonlinear systems), is
used extensively. Neural network-based control procedure can provide an efficient solution to the
control of the complex, uncertain, and ill-defined systems. Some interesting results on using neural
network to control and synchronize of complex systems have been studied in [45–48]. Yadmellat and
Nikravesh have proposed a neural network-based output-feedback control method for nonlinear
chaotic systems [49]. In another paper, Sarcheshmeh et al. designed two neural controllers to
synchronize two master and slave chaotic satellites [50]. In order to suppress the disturbances in the
chaotic systems, it is necessary to design an adaptive controller. In this regard, Fang et al. proposed a
hybrid of an adaptive neural synchronization algorithm and a backstepping technique to synchronize
a class of uncertain chaotic systems [51]. Shao et al. developed an adaptive neural network-based
synchronization control strategy to stabilize a general form of unknown chaotic systems in the presence
of unknown disturbances [52].

This paper focuses on the control of an uncertain four-dimensional chaotic system, which presents
completely uncertain and chaotic nonlinear dynamics, such as an entropy analysis corroborates. Three
well-known entropy-based metrics are computed from the time series generated by the system, thus
highlighting different levels of complexity for different conditions. Since neural network is a universal
approximator and it has a powerful tool for learning and approximating arbitrarily functions. Therefore,
in this work, RBF-NN as a linear-in-parameter approximator has been chosen to approximate the
uncertain nonlinear dynamics of the four-dimensional chaotic system. Moreover, no prior knowledge
about system parameters is available. Then, the proposed indirect adaptive technique is proposed
by using the developed RBF-NN-based model. Stability analysis shows that all of the closed-loop
signals are semi-globally uniformly ultimately bounded and by proper choice of the design parameters
the tracking error converges to the small vicinity of the origin. Also, weights of the RBF-NN are
calibrated using the adaptive laws derived using the Lyapunov direct method. Simulation results
verify the effectiveness of the proposed approach in control of the uncertain chaotic system with
hidden attractors.
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The paper is organized as follows. In Section 2, the four-dimensional chaotic system is described.
In Section 3, the entropy analysis of the proposed system is presented. The RBF-NN and the design
of the suggested control strategy are introduced in Section 4. In this section, the stability analysis of
presented control algorithm is also discussed. The final section concludes the paper.

2. Four-dimensional Chaotic System

The general form of the proposed four-dimensional chaotic system is described as follows:
Let x, y, z, and w be the state variables of the system. Then,

.
x = y
.
y = z
.
z = w

.
w = −aw + bx2 − cy2 + exy + f xz + g

(1)

where a, b, c, e, f , and g are system parameters. The behavior of the system depends on the numerical
value of its parameters. The equilibrium states are found by setting the left-hand side of (1) to zero.
Equation (1) gives y = z = w = 0, while bx2 = g. If b and g are both nonzero with the same
signs, then there are no equilibria. If g = 0, then Equation (1) gives x = 0, so there is the trivial
equilibrium (0, 0, 0, 0). If bg < 0, there exist two equilibrium points

(±√−g/b, 0, 0, 0
)
. The chaos

of the dynamical system can be characterized by the Lyapunov exponent, which can be used to
characterize the sensitivity of the system to the initial values. Considering Lyapunov exponents as
L1, L2, L3, and L4 such that L1 > L2 > L3 > L4 and assuming L1 > 0, L2 = 0, L3 < 0, and L4 < 0, the
dynamical behavior of the system (1) is chaotic. Taking a = 1.05, b = 0.7, c = 0.19, e = 1.37, f = 1.79,
Figure 1 shows a bifurcation diagram which exhibits a periodic-doubling route to chaos of the peak of
x (x max) of the system (1) versus parameter g, which is varied from −4 to 1.2. There are also some
periodic windows in the chaotic region.

Figure 1. A bifurcation diagram exhibiting a periodic-doubling route to chaos of the peak of x (x max)
of system (1) versus parameter g.

The system (1) exhibits periodic and chaotic behavior for different value of g. When g = 1.15,
the Lyapunov dimension can be calculated by the Kaplan-Yorke dimension. In this case, by taking
a = 1.05, b = 0.7, c = 0.19, e = 1.37, and f = 1.79, the Lyapunov exponent are as L1 = 0.185, L2 = 0,
L3 = −0.195, and L4 = −1.034. So, the system shows a chaotic behavior. The phase portrait of the
chaotic behavior of the system (1) is shown by Figure 2.
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(a) (b) 

  
(c) (d) 

Figure 2. The three-dimensional (3D) chaotic portrait for system (1) in (a) x-y-z space, (b) x-y-w space,
(c) x-z-w space, and (d) y-z-w space.

The largest Lyapunov exponent of the system (1) for −4 < g < 1.2, a = 1.05, b = 0.7, c = 0.19,
e = 1.37, and f = 1.79 is shown by Figure 3.

Figure 3. The largest Lyapunov exponent of the system (1).

Now, for a better understanding of the dynamic characteristics of system (1), its entropy has been
analyzed by numerical simulation.

3. Entropy Analysis

As well as the positive largest Lyapunov exponent, entropy has been widely used to characterize
chaotic systems [53]. This measure focuses on estimating seemingly unpredictable time evolution of
chaotic systems and consequently tries to flesh out chaos in terms of randomness [54]. Thus, higher
entropy indicates less predictability and a closer approach to stochastic behavior [55]. Although this
information can be obtained through theoretical measures, such as Kolmogorov-Sinai entropy, they
are often difficult to estimate from a finite data set [56]. Hence, some practical measures to estimate
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entropy of an underlying system from observed data have been developed in the last years, such as the
well-established approximate entropy (ApEn) [57]. This metric has been widely used to characterize
dynamical systems [58,59] because it is able to deal with short and noise data with outliers [60]. Briefly,
ApEn quantifies times series regularity by computing repetitiveness of similar patterns and provides
larger positive values for more irregular data. Hence, considering a N sample-length time series
x(n) = {x(1), x(1), . . . , x(N)}, this metric computation requires the following steps:

1. Form N − m + 1 m-sample length vectors, Xm(1), . . . , Xm(N − m + 1), defined by Xm(i) =

{x(i), x(i + 1), . . . , x(i + m − 1)}, for 1 ≤ i ≤ N − m + 1. Each vector contains m consecutive
points from the ith sample.

2. Compute the Chebyshev distance for any pair of vectors Xm(i) and Xm(j). This distance is defined
as the maximum absolute magnitude of the differences between coordinates, i.e.,

dm
ij = max

k=0,...,m−1
(|x(i + k)− x(j + k)|) (2)

3. Estimate the number of pairs of vectors, Xm(j), whose distance with Xm(i) is less than or equal to
r, i.e.,

Cm
i (r) =

1
N − m + 1

N−m+1

∑
j=1

Θ
(

r − dm
ij

)
(3)

Θ(z) being the Heaviside function, i.e., Θ(z) = 1 for z ≥ 0 and Θ(z) = 1 for z < 0.
4. Calculate the global probability that any two sequences of size m present a distance lower than r, i.e.,

∅
m(r) =

1
N − m + 1

N−m+1

∑
i=1

ln Cm
i (r) (4)

5. Recompute the steps 1–4 for vectors with m+1 samples in length. In this case, Equations (3) and
(4) should be replaced by

Cm+1
i (r) =

1
N − m

N−m

∑
j=1

Θ
(

r − dm+1
ij

)
and ∅

m+1(r) =
1

N − m

N−m

∑
i=1

ln Cm+1
i (r), (5)

respectively.
6. Finally, ApEn can be computed by the difference

ApEn(m, r, n) = ∅
m(r)−∅

m+1(r) (6)

It is well known that this metric presents two limitations, such as it lacks relative consistency and
is strongly dependent on the data length [61]. Indeed, when short times series are analyzed ApEn
often provides lower values than expected [62]. These limitations have been overcome in its modified
version proposed by Richman & Moorman and named sample entropy (SampEn) [61]. This new index
presents two main differences from ApEn, i.e.,: (i) self-matches are excluded and (ii) a template-wise
strategy is not used. Consequently, N − m vectors of size m and m+1, for 1 ≤ i ≤ N − m, are analyzed
to compute SampEn, such that new Equations (3)–(5) can be expressed as

Cm
i (r) =

1
N − m − 1

N−m

∑
j=1,j �=i

Θ
(

r − dm
ij

)
, ∅m(r) =

1
N − m

N−m

∑
i=1

Cm
i (r), (7)

Cm+1
i (r) =

1
N − m − 1

N−m

∑
j=1,j �=i

Θ
(

r − dm+1
ij

)
, and ∅

m+1(r) =
1

N − m

N−m

∑
i=1

Cm+1
i (r), (8)
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respectively. As a final step, SampEn can be estimated as

SampEn(m, r, N) = − ln
[
∅m+1(r)
∅m(r)

]
. (9)

Chen et al. [63] have proposed a modification of SampEn to avoid a poor statistical stability in
some cases due to the binary classification of vectors achieved by the Heaviside function. This new
index, named Fuzzy entropy (FuzzEn), considers a smoother definition of a vector match by using a

family of exponential functions Dm
ij (r, k) = exp

(
−
(

dm
ij /r

)k
)

. To quantify the similarity degree among

patterns. Thus, Equations (7) and (8) are redefined as

Cm
i (r, k) =

1
N − m − 1

N−m

∑
j=1,j �=i

Dm
ij (r, k), and Cm+1

i (r, k) =
1

N − m − 1

N−m

∑
j=1,j �=i

Dm+1
ij (r, k), (10)

respectively. Additionally, the mean from each vector Xm(i) is removed to highlight the local features
of the data [63], thus resulting in

X∗
m(i) = {x(i), x(i + 1), . . . , x(i + m − 1)} − 1

m

m−1

∑
l=0

x(i + 1) (11)

Clearly, the selection of parameters m and r has a strong impact on the entropy estimates obtained
by these three indices. Although no widespread rules exist for their optimal choice, some previous
works have recommended the use of m = 1 or 2 and r between 0.05 and 0.25 times the standard
deviation of the data [57,61]. Thus, making use of m = 2, r = 0.15, and k = 2, the values of ApEn,
SampEn, and FuzzEn computed from the times series x(n) of the system (1) with length N = 3000 are
displayed in Figure 4. As can be seen, the three entropy measures provided similar results. In fact,
no perceptible differences can be noticed between ApEn and SampEn. Moreover, although FuzzEn
revealed lower values than ApEn and SampEn, the same trend can be observed as a function of g.
To this last respect, entropy shows low values when the system is in a stable state (i.e., for g ≤ −1.2)
and, contrarily, high values when the system is in a chaotic state (i.e., for g > −1.2). The higher the
entropy, the higher the degree of uncertainty in the time series, thus requiring more level of information
to keep system (1) in a stable state. Note that the large differences between values of ApEn/SampEn
and FuzzEn are provoked by their different ways of estimating vector match. Thus, whereas all
pairs of vectors presenting a distance larger than r do not contribute to entropy computation in
ApEn/SampEn [61], FuzzEn always considers the degree of similarity between these patterns, thus
obtaining more continuous and smooth entropy estimates [63].

Figure 4. Values of ApEn, SampEn, and FuzzEn computed from x(n) of the system (1) with respect to
parameter g.
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4. Brief Review of the RBF-NNs

The objective of control method is to derive the control input for stabilizing the four-dimensional
chaotic system (1). Due to their inherent functional approximation and learning capabilities, RBF-NNs
have recently received significant attention for approximation and modeling nonlinear functions [46,47].
According to the universal approximation property of the RBF-NN, it can approximate any continuous
function f (x) : Ri → R with an arbitrary accuracy δ in the following form:

f (x) = θTϕ(x) + δ(x) |δ(x)| ≤ δ (12)

where θ ∈ Rl represents the ideal weight vector, δ(x) denotes the approximation error, and l is the
number of neurons. In (12), the ideal parameter vector θ ∈ Rl satisfies

θ = arg min
θ̂∈Rl

{
sup
x∈Ω

∣∣∣ f (x)− θ̂
T
ϕ(x)

∣∣∣ } (13)

where θ̂ =
[
θ̂1 θ̂2 · · · θ̂l

]T ∈ Rl is the estimate of the ideal weight vector θ, and ϕ(x) =[
ϕ1(x) ϕ2(x) · · · ϕl(x)

]
∈ Rl represents the vector of the basis functions.

It is worthwhile to note that the approximation error δ(x) is not known, but it is bounded, i.e.,
|δ(x)| ≤ δ.

In the RBF-NNs, the following well-known Gaussian functions are chosen as the basis functions
ϕj(x) for j = 1, 2, . . . , N

ϕj(x) = e
−(

(x−cj)
T (x−cj)

σ2
j

)

(14)

where cj =
[

cj,1 cj,2 · · · cj,N

]T
and σj denote the center and width of the Gaussian functions,

respectively. Figure 5 shows the architecture of the NN.

θ =

xϕ

xϕ

xϕ

θ

θ

θ

Figure 5. Architecture of the neural network.

Assumption 1. This work assumes that the ideal weight vector has bounded norm, i.e., ‖θ‖ ≤ θ. However, its
bound is unknown.

Remark 1. Assumption 1 is only required for the stability analysis and design procedures of the control law
does not need θ.

4.1. Proposed Adaptive RBF-NN Controller

This section presents the proposed adaptive RBF-NN controller to suppress chaos in the
considered system in (1). In the proposed method, all parameters of the system are as unknown as
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nonlinear dynamics and no prior knowledge about them is available. In order to handle the uncertain
nonlinearity, the RBF-NN is invoked to model it. Then, the controller is designed by assuming that the
RBF-NN-based model represents the true model of the system. Finally, adaptive learning laws based
on the Lyapunov direct method are proposed to tune the adaptive parameters (weights coefficients) of
the network.

Before designing the controller, let us rewrite the description of the four-dimensional chaotic
system in (1) as follows:

.
ζ = Aζ+ b( f (ζ) + u) (15)

where ζ =
[

ζ1 ζ2 ζ3 ζ4

]T ∈ R4×1 is the state vector, and ζ1 = x, ζ2 = y, ζ3 = z, and ζ3 = w;

also, f ( ζ) = −aζ4 + bζ2
1 − cζ2

2 + eζ1ζ2 + f ζ1ζ3 + g denotes the uncertain nonlinear dynamics, and
A ∈ R4×4 and b ∈ R4×1 are constant matrices as

A =

⎡⎢⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎣
0
0
0
1

⎤⎥⎥⎥⎦ (16)

Now, the control input is proposed as

u = − f̂ (ζ) + y(4)d − kTe (17)

where e = ζ1 − yd is the tracking error, e =
[

e
.
e

..
e

...
e
]T ∈ R4×1 represent the error vector

and k = [k4, k3, k2, k1]
T ∈ R4×1 denotes the design parameters that are selected such that all roots

of the characteristic polynomial Δ(s) = s4 + k1s3 + k2s2 + k3s3 + k4 are in the open left-half of the
complex plane.

Now substituting (6) and (7) in (5), we will have

ζ(4) = f (ζ)− f̂ (ζ) + y(4)d − kTe

= θ̃
T
ϕ(ζ) + y(4)d − kTe + δ

(18)

where θ̃ = θ− θ̂ denotes the parameter approximation error, and adaptive parameters θ are tuned by
using the proposed adaptive laws as follows:

.
θ̂ = γeT Pbϕ(ζ) (19)

where γ > 0 is the learning rate, and P ∈ R4×4 represents a positive definite/semi definite matrix
which satisfies the following Riccati-like equation:

AT
c P + PAc + σPT P + Q = 0 (20)

where Q ∈ R4×4 is a positive definite matrix, and σ > 0 is a design parameter.
Before presenting stability analysis, the error dynamics is obtained by considering (15) and (18) as

.
e = Ace + bθ̃

T
ϕ(ζ+ δ) (21)

where

Ac =

⎡⎢⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
k4 k3 k2 k1

⎤⎥⎥⎥⎦ (22)
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Now, stability analysis of the proposed controller is presented by considering the following
Lyapunov function:

V =
1
2

eT Pe +
1

2γ
θ̃

T
θ̃ (23)

Differentiating (21) with respect to time, results in

.
V =

1
2

.
e

T Pe +
1
2

eT P
.
e − 1

γ
θ̃

T .
θ̂ (24)

Substitution of (19) in (23), results in

.
V = 1

2

(
eT AT

c +ϕ(ζ)T
θ̃bT + δ

)
Pe + 1

2 eT P
(

Ace + bθ̃
T
ϕ(ζ) + δ

)
− 1

γ θ̃
T .
θ̂

= 1
2 eT(AT

c P + PAc
)
e − 1

γ θ̃
T
( .
θ̂− γeT Pbϕ(ζ)

)
+ δPe

(25)

Again, substituting the proposed adaptive learning law (19) in (25), yields

.
V = 1

2 eT(AT
c P + PAc

)
e + δPe

≤ 1
2 eT(AT

c P + PAc + σPT P
)
e + 1

2σ δ
2

≤ − 1
2 eTQe + 1

2σ δ
2 ≤ − 1

2 λ(Q)eTe + 1
2σ δ

2
(26)

where λ(Q) denotes to the minimum eigenvalue of matrix Q. As it is obtained from (26), the condition
‖e‖ ≤ δ

2
/σλ results in

.
V ≤ 0. This inequality shows that all of the closed-loop signals (i.e., e and θ̃)

are semi-globally uniformly ultimately bounded [48].

Remark 2. The design parameter σ in the Riccati-like Equation (20) has been proposed to attenuate the inevitable
effects of the approximation error on

.
V.

Remark 3. It should be noted that the proposed controller does not require any off-line learning phase.

4.2. Simulation Results

This section presents some simulation results to investigate the effectiveness of the proposed
adaptive RBF-NN-based controller. A typical chaotic behavior of the uncontrolled system was
discussed in Section 2. Now, the control objective is to stabilize the considered unknown chaotic
system in (1) and to derive it to the equilibrium point.

To design the proposed controller, one RBF-NN composed of 50 neurons was constructed.
The center of the membership functions and initial weights of the network were set at 1. For simulation,
σi and γ were set to 0.01, and 0.5, respectively, and the initial conditions were chosen as ζ(0) =[

0 −1 0 −1.5
]T

. As mentioned before, the proposed approach does not require any training
data and any off-line learning phase. After the construction of the RBF-NN, it is used to model the
uncertain function f (ζ) and then the control input (17) is applied. The design parameters k1, k2, k3

and k4 in the control input (17) are chosen such that the all roots of the characteristic polynomial Δ(s)
remain in the open left-half of the complex plane. For simulation, these parameters were chosen as
k1 = 20, k2 = 24, k3 = 25, and k4 = 22. Also, by solving the Riccati-like Equation (20), the following
matrix P was obtained:

P =

⎡⎢⎢⎢⎣
5 0 0 0
0 5 0 0
0 0 5 0

15 25 20 10

⎤⎥⎥⎥⎦ (27)
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Also, adjustable parameters θ̂ ∈ R50 was adjusted based on the proposed adaptive learning law in (19).
Figures 6–10 depicts the simulation results. To highlight the performance of the proposed

approach, at first the control input was set as zero, then after t = 50 s the proposed control method
was activated. As obtained from the depicted results in Figure 6, before the activation of the proposed
controller, the system has chaotic behavior but after the activation of it, the chaos was suppressed, and
the desired behavior is obtained.

 

ζ
ζ

ζ
ζ

ζ
ζ

ζ
ζ

Figure 6. The state variables when the proposed control input is activated at t = 50 s.

 

ζ
ζ

ζ
ζ

ζ
ζ

ζ
ζ

Figure 7. The state variables in the presence of the proposed control method.
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Figure 8. Norm of the weights of the RBF-NN.
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Figure 9. Phase portraits of the controlled system.
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Figure 10. The 3-D behavior of the controlled system.
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The state variables of the system by using the proposed controller are shown in Figure 7. Also,
norm of the estimated weight coefficients is shown in Figure 8. The obtained result in Figure 8 shows
that the norm of the adjustable parameters is bounded. Figures 9 and 10 depict the phase portraits and
the three-dimensional behavior of the controlled system, respectively. The reported results demonstrate
the ability of the proposed approach to stabilize the considered non-equilibrium four-dimensional
chaotic system with hidden attractors.

5. Conclusions

In this study, a new adaptive radial basis function-neural network-based control scheme was
proposed to stabilize a specific four-dimensional chaotic system, which shows a periodic-double
and low-entropy route preceding high-entropy chaotic states. The proposed controller design
requires neither any initial information about the dynamics of the chaotic system nor its parameters.
The uncertain dynamics of the considered four-dimensional system is approximated by using the
RBF-NN, and then the proposed indirect adaptive control law is proposed based on the developed
model. Stability analysis is presented, and adaptive learning law is derived for calibrating weights
of the RBF-NN. Simulation results verify the acceptable performance of the proposed method for
stabilizing the considered chaotic system.
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Abstract: This paper investigates the problem of synchronization of fractional-order complex-variable
chaotic systems (FOCCS) with unknown complex parameters. Based on the complex-variable
inequality and stability theory for fractional-order complex-valued system, a new scheme is presented
for adaptive synchronization of FOCCS with unknown complex parameters. The proposed scheme
not only provides a new method to analyze fractional-order complex-valued system but also
significantly reduces the complexity of computation and analysis. Theoretical proof and simulation
results substantiate the effectiveness of the presented synchronization scheme.

Keywords: synchronization; fractional-order; complex-variable chaotic system; unknown complex
parameters

1. Introduction

In the past 20 years, fractional-order chaotic systems have been extensively studied due to their
wide applications in the fields of secure communication, control engineering, finance, physical and
mathematical science, entropy, encryption and signal processing [1–4]. Meanwhile, synchronization of
such systems has aroused tremendous attention of many researchers. Lots of excellent results were
obtained and some methods of synchronization have been presented [5–17]. In various synchronization
methods, the adaptive control approach is an effective method to realize the synchronization of
uncertain systems.

The aforementioned works mainly investigated the fractional-order systems with real variables,
not involving complex variables. Because complex variables that double the number of variables can
generate complicated dynamical behaviors, enhance anti-attack ability and achieve higher transmission
efficiency [18–20], many researchers have taken complex variables into the fractional-order systems
and investigated dynamics behavior, stability, stabilization and synchronization of FOCCS in recent
years. In [21–23], fractional-order complex-variable Chen system, T system and Lorenz system
have been investigated, respectively. Recently, Zhang et al. [24] have investigated synchronization
of fractional-order complex-valued delayed neural networks. Li et al. [25] presented adaptive
synchronization scheme for fractional-order complex-valued neural networks with discrete and
distributed delays. Sun et al. [26] proposed real combination synchronization of three fractional-order
complex-variable chaotic systems, Yadav et al. [27] studied Dual function projective synchronization of
fractional order complex chaotic systems, Nian et al. [28] realized synchronization of fractional-order
complex chaotic system with parametric and external disturbances via sliding mode control method
and Jiang et al. have studied complex modified projective synchronization (CMPS) for FOCCS in [29].
However, in these papers [24–29], the parameters of the FOCCS are exactly known in priori. In fact,

Entropy 2019, 21, 207; doi:10.3390/e21020207 www.mdpi.com/journal/entropy223
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in many practical engineering situations, most of system parameters cannot be accurately determined
in advance and chaos synchronization will be destroyed with these uncertain factors. Hence, it is an
important problem to realize synchronization of FOCCS with unknown complex parameters.

Inspired by the above discussions, the synchronization problem of FOCCS with unknown complex
parameters was investigated in this paper. Using the inequality of the fractional derivative containing
complex variable and the stability theory for fractional-order complex-valued system, we realized
synchronization of such systems by constructing a suitable response system. It should be noted that
we deal with the synchronization problem of fractional-order uncertain complex-variable system in
complex-valued domain. That is to say, it is not necessary to separate the complex-variable system
into its real and imaginary parts. This greatly reduces the complexity of computation and the difficulty
of theoretical analysis.

Notation: Cn denotes complex n-dimensional space. For z ∈ Cn, zr, zi, z, zT , zH and ||z|| are the
real part, imaginary part, conjugate, transpose, conjugate transpose and l2-norm of z, respectively.
For a matrix A ∈ Cn ×n, AH denotes its conjugate transpose.

2. Preliminaries

Definition 1 [30]. The fractional integral of order α for a function f is defined as:

Iα f (t) = t0
D−α

t f (t) =
1

Γ(α)

∫ t

t0

(t − τ)α−1 f (τ)dτ (1)

where t ≥ t0 and α > 0.

Definition 2 [30]. Caputo’s fractional derivative of order α for a function f ∈ Rn is defined by:

C
t0

Dα
t f (t) =

1
Γ(n − α)

∫ t

t0

f (n)(τ)

(t − τ)α−n+1 dτ (2)

where t ≥ t0 and n is a positive integer such that n − < α < 1.

Lemma 1 [31]. Let x(t) ∈ Rn be a continuous and derivable vector function. Then, for any time instant t ≥ t0
and α ∈ (0, 1):

1
2

C
t0

Dα
t [x

T(t)x(t)] ≤ xT(t)C
t0

Dα
t x(t) (3)

Corollary 1. For a scalar derivable function ϕ(t) and a constants C, we have:

1
2

C
t0

Dα
t (ϕ(t)− C)2 ≤ (ϕ(t)− C)C

t0
Dα

t ϕ(t) (4)

Lemma 2 [32] . Let z ∈ Cn be a differentiable complex-valued vector. Then, ∀t ≥ t0 and α ∈ (0, 1], the
following inequality holds:

C
t0

Dα
t zH(t)Pz(t) ≤ zH(t)PC

t0
Dα

t z(t) + (C
t0

Dα
t z(t))

H
Pz(t) (5)

where P ∈ Cn×n is a constant positive definite Hermitian matrix.

Lemma 3. For the fractional-order complex-variable systems:

C
0 Dα

t z(t) = h(z(t)) (6)
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where 0 < α < 1, z(t) = (z1, z2, · · · , zn)
T ∈ Cn is the system complex state vector, h ∈ Cn is a continuous

nonlinear function complex vector, which satisfies the globally Lipschitz continuity condition in the complex
domain. Let z(t) = 0 be an equilibrium point of system (1) and let V1(t) = zH(t)z(t) and V2(z(t)) ≥ 0 are
continuously differentiable functions. If:

V(t) = V1(t) + V2(z(t)) (7)

and:
t
0Dα

t V(t) ≤ −θV1(t) (8)

where θ is a positive constant. Then z(t) = 0 is asymptotically stable.

Proof. See the Appendix A. It was pointed out [33–35] that a similar theorem is obtained for the
real systems. �

Remark 1. Using Lemmas 2.2–2.3, one can directly analyze fractional order complex-variable system in the
complex space.

3. Main Results

We considered a kind of FOCCS described by:

C
0 Dα

t z(t) = Az(t) + f (z(t)) (9)

where 0 < α < 1, z(t) = (z1, z2, · · · , zn)
T ∈ Cn is the system complex state vector, f ∈ Cn is

a continuous nonlinear function vector, which satisfies the globally Lipschitz continuity condition in
the complex domain and A ∈ Cn×n is unknown (complex or real) parameter matrix. Furthermore,
Equation (10) can be rewritten as:

C
0 Dα

t z(t) = g(z(t))θ + f (z(t)) (10)

where g : Cn → Cn×m is a complex function matrix, and θ = (θ1, θ2, · · · , θm)
T is the system unknown

complex parameter vector. For system (9) or (10), there are two propositions as follows.

Proposition 1. There exists a positive constant l1 such that the following inequality holds:

(z − w)H [g(z)− g(w)]θ + {[g(z)− g(w)]θ}H(z − w) ≤ l1(z − w)H(z − w) (11)

Proof. Given that g(z(t))θ = Az(t) results in:

(z − w)H [g(z)− g(w)]θ + {[g(z)− g(w)]θ}H(z − w)

= (z − w)H A (z − w) + (z − w)H AH(z − w)

= (z − w)H(A + AH)(z − w)

Since A + AH is Hermitian Matrix:

λm(z − w)H(z − w) ≤ (z − w)H(A + AH)(z − w) ≤ λM(z − w)H(z − w)

where λm and λM are the minimum and maximum eigenvalue of A + AH , respectively [36,37].
Let l1 = max(|λm|, |λM|) , then, one has:

(z − w)H [g(z)− g(w)]θ + {[g(z)− g(w)]θ}H(z − w) = (z − w)H(A + AH)(z − w) ≤ l1(z − w)H(z − w)

�
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Proposition 2 [38] . For the Lipschitz continuous function f ∈ Cn, there exists a positive constant l2
such that the following inequality holds:

(z − w)H [ f (z)− f (w)] + [ f (z)− f (w)]H(z − w) ≤ l2(z − w)H(z − w) (12)

Proof. For f ∈ Cn, Lipschitz is continuous, then || f (z)− f (w)|| ≤ L||z − w||, where L ≥ 0 is a constant.
It follows:

(z − w)H [ f (z)− f (w)] + [ f (z)− f (w)]H(z − w) = 2Re{(z − w)H [ f (z)− f (w)]}
≤ 2|z − w|T | f (z)− f (w)| ≤ |z − w|T |z − w|+| f (z)− f (w)|T | f (z)− f (w)|
= (z − w)H(z − w)+

∣∣∣∣∣∣ f (z)− f (w)
∣∣∣∣∣∣2 ≤ (z − w)H(z − w) + L2

∣∣∣∣∣∣z − w
∣∣∣∣∣∣2

= (1 + L2)(z − w)H(z − w) = l2(z − w)H(z − w)

where l2 = L2 + 1,
∣∣∣ f (z)− f (w)

∣∣∣= (| f1(z)− f1(w)|, | f2(z)− f2(w)|, · · · , | fn(z)− fn(w)|) T and∣∣∣z − w
∣∣∣= (|z1 − w1|, |z2 − w2|, · · · , |zn − wn|) T . �

Remark 2. It is easy to check that many typical FOCCSs, such as the fractional-order complex-variable Chen
system [21], T system [22] and Lorenz system [23] all satisfy Propositions 1 and 2.

Choose system (11) as the master system, then the controlled response system is given by:

C
0 Dα

t w(t) = g(w(t))θ̂ + f (w(t)) + u(t) (13)

where w(t) = (w1, w2, · · · , wn)
T is the complex state vector, θ̂ ∈ Cm represents the estimate vector of

unknown vector θ, and u(t) = (u1(t), u2(t), · · · , un(t))
T is controller to be determined.

Theorem 1. Asymptotically synchronization and parameter identification of systems (13) and (11) can be
achieved under adaptive controller:

u(t) = −ke(t) (14)

and the complex update laws:
C
0 Dα

t k = σeH(t)e(t) (15)

C
0 Dα

t eθ = C
0 Dα

t θ̂ = −ηgH(w(t))e(t) (16)

where e(t) = w(t) − z(t) is the error vector, eθ = θ̂ − θ is the parameter error, σ, η are two arbitrary
positive constants.

Proof. From the error vector and systems (11) and (13), it yields:

C
0 Dα

t e(t)= g(w(t))θ̂ + f (w(t))− g(z(t))θ + f (z(t)) + u(t)

= g(w(t))eθ + [g(w(t))− g(z(t))]θ + f (w(t))− f (z(t)) + u(t)

Let us present the Lyapunov function:

V(t, e(t)) = eH(t)e(t) +
1
σ
(k − k∗)2 +

1
η

eH
θ (t)eθ(t) (17)

where k∗ is to be determined. �
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Using Lemma 2.1, Corollary 2.1 and Lemma 2.2, we have:

C
0 Dα

t V(t, e(t)) = C
0 Dα

t [e
H(t)e(t) + 1

σ (k − k∗)2 + 1
η eH

θ (t)eθ(t)]

≤ eH(t)C
0 Dα

t e(t) + [C0 Dα
t e(t)]He(t) + 2

σ (k − k∗)C
0 Dα

t k + 1
η eH

θ (t)C
0 Dα

t eθ(t) + 1
η [

C
0 Dα

t eθ(t)]
Heθ(t)

≤ eH(t){g(w(t))eθ + [g(w(t))− g(z(t))]θ + f (w(t))− f (z(t))− ke(t)}+ {g(w(t))eθ

+[g(w(t))− g(z(t))]θ + f (w(t))− f (z(t))− ke(t)}He + 2
σ (k − k∗)C

0 Dα
t k

+ 1
η eH

θ (t)C
0 Dα

t eθ(t) + 1
η [

C
0 Dα

t eθ(t)]
Heθ(t)

≤ eH(t){g(w(t))eθ + [g(w(t))− g(z(t))]θ + f (w(t))− f (z(t))− ke(t)}+ {g(w(t))eθ

+[g(w(t))− g(z(t))]θ + f (w(t))− f (z(t))− ke(t)}He + 2
σ (k − k∗)C

0 Dα
t k

+ 1
η eH

θ (t)C
0 Dα

t eθ(t) + 1
η [

C
0 Dα

t eθ(t)]
Heθ(t)

≤ eH(t){g(w(t))eθ + [g(w(t))− g(z(t))]θ + f (w(t))− f (z(t))− ke(t)}+ {g(w(t))eθ

+ [g(w(t))− g(z(t))]θ + f (w(t))− f (z(t))− ke(t)}He + 2
σ (k − k∗)C

0 Dα
t k

+ 1
η eH

θ (t)C
0 Dα

t eθ(t) + 1
η [

C
0 Dα

t eθ(t)]
Heθ(t)

Substitute Equations (15) and (16) into the inequality above, we further have:

C
0 Dα

t V(t, e(t)) ≤ eH(t){g(w(t))eθ + [g(w(t))− g(z(t))]θ + f (w(t))− f (z(t))− ke(t)}
+ {g(w(t))eθ + [g(w(t))− g(z(t))]θ + f (w(t))− f (z(t))− ke(t)}He
+ 2(k − k∗)eH(t)e(t)− eH

θ (t)gH(w(t))e(t)− [gH(w(t))e(t)]Heθ(t)
≤ eH(t)[g(w(t)− g(z(t))]θ +

{
[g(w(t)− g(z(t))]θ}He(t)

+ eH(t)[ f (w(t)− f (z(t))] + [ f (w(t)− f (z(t))]He(t)− 2k∗eH(t)e(t)

From Propositions 1 and 2, we can obtain:

eH(t)[g(w(t))− g(z(t)]θ + {[g(w(t)) −g(z(t)]θ}He(t) ≤ l1eH(t)e(t)

and:
eH(t)[ f (w(t))− f (z(t)] + [ f (w(t))− f (z(t)]He(t) ≤ l2eH(t)e(t)

then, one has:
C
0 Dα

t V(t, e(t)) ≤ eH(t)[l1 + (l2 − 2k∗)I]e(t)

Let 2k∗ = l1 + l2 + 1, then:
C
0 Dα

t V(t, e(t)) ≤ −eH(t)e(t) (18)

According to Lemma 2.3, one has lim
t→∞

eH(t)e(t) = 0, which implies lim
t→∞

e(t) = 0, which shows

that the systems (11) and (13) can obtain asymptotically synchronization. Meanwhile, according to
Remark 1 of Theorem 1 in [39], parameter identification is achieved.

Remark 3. In previous work [24–29], the common method to analyze fractional complex-valued systems is
to separate into two real-valued systems according to their real and imaginary parts, and then the criteria on
synchronization were obtained by investigating these real-valued systems. However, there are two problems with
this approach. One is that the dimension of the real-valued system is twice that of the original complex-valued
system, which adds the complexity of computation and analysis. The other is that this method requires that
complex-valued functions be explicitly separated into real and imaginary parts. However, this separation is
not always expressible in an analytical form. Unlike from previous works, in our proposed method, the entire
analysis process is performed in the complex-valued domain, and the complex function theory is used to derive
synchronization conditions without separating the original complex-valued chaotic system into two real-valued
systems, which reduces the complexity of analysis and computation. Moreover, the proposed method can be
applied to other complex-valued systems, such as complex networks with fractional-order complex-variable
dynamics and fractional-order complex-valued neural network systems.
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Remark 4. If the system parameters are known, the update law will be reduced to (15) only.

4. Numerical Simulations

In this section, in order to show the effectiveness of the proposed scheme in preceding section,
numerical example on fractional-order complex chaotic system will be provided. When numerically
solving such systems, we first adopt the predictor–corrector method [40] by MATLAB. Lyapunov
exponents of the systems are calculated by adopting the Wolf et al. algorithm [41] with some changes.

Consider the Lorenz-like fractional-order complex chaotic system with commensurate order:⎛⎜⎝ C
0 Dα

t z1
C
0 Dα

t z2
C
0 Dα

t z3

⎞⎟⎠ =

⎛⎜⎝ a(z2 + z1)

−cz2 − z1z3

z1z1 − bz3

⎞⎟⎠ =

⎛⎜⎝ z2 + z1 0 0
0 −z2 0
0 0 −z3

⎞⎟⎠
⎛⎜⎝ a

c
b

⎞⎟⎠+

⎛⎜⎝ 0
−z1z3

z1z1

⎞⎟⎠ (19)

where z1, z2, z3 are the complex state variables and a, b, c are system parameters; let a = 10 + i,
b = 3, c = 16+ 0.3i. The maximum Lyapunov exponent (MLE) spectrum is depicted in Figure 1a, and
the bifurcation diagram is presented in Figure 1b. Figure 1a,b shows that system (19) is chaotic with
fractional order α ∈ [0.91, 0.98] ∪ [0.985, 1] and parameters a = 10 + i, b = 3, c = 16 + 0.3i. When the
fractional-order α = 0.95, the attractor trajectories are illustrated in Figure 2.

(a) (b)

Figure 1. Dynamic behaviors of the fractional-order complex Lorenz-like System with commensurate
order α (a = 10 + i, b = 3, c = 16 + 0.3i ). (a) maximal Lyapunov exponent; (b) bifurcation diagram.

Recently, ref. [42] described how to perform a successful simulation and optimization, and how
to synthesize the mathematical models using CMOS technology. The application of metaheuristics to
optimize MLE by varying the parameters of the oscillators was discussed.

Field-programmable gate array (FPGA)-based implementation of chaotic oscillators has
demonstrated its usefulness in the development of engineering applications in a wide variety of
fields, such as: random number generators, robotics and chaotic secure communication systems,
signal processing. Very recently, Pano-Azucena et al. [43] implemented the chaotic system using
a field-programmable gate array (FPGA) based on trigonometric polynomials. Reference [44]
detailed the FPGA-based implementation of all the fractional order chaotic oscillators applying
Grünwald-Letnikov(G-L) method. Their work proved experimentally that applying G-L method with
256 elements of memory; it can observe different families of Fractional-order chaotic attractors having
working frequencies between 77.59 MHz and 84.9 MHz. This is very beneficial to the development of
fractional-order chaos in engineering applications. For the FPGA-based implementation of FOCCS,
the FOCCS was first separated into two real-variable systems according to their real and imaginary
parts, and then these real-variable systems can be implemented using FPGA by the method proposed
by. In order to find much better behavior and characteristics of the FOCCS in the complex domain, we
used the G-L method to numerically solve the system (19) again. The MLE spectrum with varying
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parameter ai (the imaginary of a) is depicted in Figure 3a, the bifurcation diagram is presented in
Figure 3b, the state trajectories are illustrated in Figure 4.

Figure 2. Chaotic attractors of fractional-order complex Lorenz-like system with a = 10 + i, b = 3,
c = 16 + 0.3i and commensurate order α = 0.95.

(a) (b)

Figure 3. Dynamic behaviors of the fractional-order complex Lorenz-like System with commensurate
order 0.95 (ar = 10, b = 3, c = 16 + 0.3i). (a) maximal Lyapunov exponent; (b) bifurcation diagram.

Figure 4. The state trajectories of fractional-order complex Lorenz-like system with a = 10 + i, b = 3,
c = 16 + 0.3i and commensurate order α = 0.95.
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Taking the system (19) as master system, and assuming the parameters a, b and c are unknown,
the response system is given as follows:⎛⎜⎝ C

0 Dα
t w1

C
0 Dα

t w2
C
0 Dα

t w3

⎞⎟⎠ =

⎛⎜⎝ w2 + w1 0 0
0 −w2 0
0 0 −w3

⎞⎟⎠
⎛⎜⎝ â

ĉ
b̂

⎞⎟⎠+

⎛⎜⎝ 0
−w1w3

w1w1

⎞⎟⎠+

⎛⎜⎝ u1

u2

u3

⎞⎟⎠ (20)

where â, b̂, ĉ are parameter estimations. u1, u2, u3 are the controller.
According to Theorem 1, the controllers and the update rules are selected as:

u1 = −ke1, u2 = −ke2, u3 = −ke3
C
0 Dα

t k = σeHe = σ(e1e1 + e2e2 + e3e3), (σ > 0)
(21)

⎛⎜⎝ C
0 Dα

t â
C
0 Dα

t ĉ
C
0 Dα

t b̂

⎞⎟⎠ =

⎛⎜⎝ w1 + w2 0 0
0 −w2 0
0 0 −w3

⎞⎟⎠
H⎛⎜⎝ e1

e2

e3

⎞⎟⎠ =

⎛⎜⎝ −(w1 + w2)e1

w2e2

w3e3

⎞⎟⎠ (22)

In the simulation, let α = 0.95, (a, b, c) = (30 + i, 3, 26 + 0.6i), the initial conditions z(0) =

(1 + i, −2 − i, 6)T , w(0) = (−1 + i, −3 + i, 10)T , (â(0), b̂(0), ĉ(0)) = (20, 2, 20), k(0) = 0 and σ = 6.
Two systems can achieve synchronization and the parameters are identified, as shown in Figures 5
and 6.

Figure 5. Synchronization errors e1, e2, e3 of fractional-order complex Lorenz-like chaotic system.

Figure 6. Estimated complex parameters of fractional-order complex Lorenz-like chaotic system.

5. Conclusions

We studied the adaptive synchronization of FOCCS with unknown complex parameters, and
proposed a method for analyzing FOCCS without separating system into real and imaginary parts.
By this method, the constructed response system can be asymptotically synchronized to an uncertain
drive system with a desired complex scaling diagonal matrix. The proposed synchronization scheme
retains the complex nature of fractional-order complex chaotic system. It not only provides a new
method of analyzing FOCCS, but also significantly decreases the complexity of computation and
analysis. We hope that the work performed will be helpful to further research of nonlinear fractional
order complex-variable systems.
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Appendix A

Proof of Lemma 3. By α-integrating (8), we have:

V(t)− V(0) ≤ −θ IαV1(t) = −θ IαzH(t)z(t) ≤ 0 (A1)

Thus, V(t) ≤ V(0), t ≥ 0. From (6), we can obtain that V1(t) = zH(t)z(t) is bounded. Furthermore,
since h(z(t)) satisfies the globally Lipschitz continuity condition, from (6), one has,

∣∣∣∣C
0 Dα

t z(t)
∣∣∣∣

=||h(z(t))|| ≤ l
∣∣∣∣zH(t)z(t))

∣∣∣∣, i.e., [
n
∑

i=1
(C

0 Dα
t zi(t) C

0 Dα
t zi(t) )]1/2 ≤ l [

n
∑

i=1
(zi(t) zi(t))]

1/2
, where l is

positive constant. Given that V1(t) = zH(t)z(t) is bounded, we have |zi| is bounded, and then∣∣C
0 Dα

t zi(t)
∣∣ is bounded. Thus, there exists a constant M > 0, such that

∣∣C
0 Dα

t zi(t)
∣∣≤ M . For 0 ≤ t1 < t2

and any ε > 0, if |t2 − t1|< δ(ε) = [ εΓ(α+1)
2M ]

1
α , one can get:∣∣zi(t1)− zi(t2)

∣∣=∣∣
0D−α

t
C
0 Dα

t zi(t1) + zi(0)− [0D−α
t

C
0 Dα

t zi(t2) + zi(0)]
∣∣

=
∣∣
0D−α

t
C
0 Dα

t zi(t1)− 0D−α
t

C
0 Dα

t zi(t2)
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= 1
Γ(α) |

∫ t1
0 [(t1 − τ)α−1 − (t2 − τ)α−1]C0 Dα

τzi(τ)dτ − ∫ t2
t1

(t2 − τ)α−1C
0 Dα

τzi(τ)dτ|
≤ M

Γ(α){
∫ t1

0 [(t1 − τ)α−1 − (t2 − τ)α−1]dτ +
∫ t2

t1
(t2 − τ)α−1dτ}

= M
Γ(α+1) [(t

α
1 − tα

2) + 2(t2 − t1)
α]

≤ 2M
Γ(α+1) (t2 − t1)

α ≤ ε

Hence, zi(t) is uniformly continuous. Therefore, V1(t) = zH(t)z(t) is uniformly continuous. �

Next, we adopt contradiction to prove lim
t→∞

V1(t) = lim
t→∞

zH(t)z(t) = 0 using the idea of Theorem 1

in Reference [45].
Suppose that V1(t) �= 0 as t → ∞ . Then there exists a monotone increasing sequence (tk)k∈N +

( tk → ∞ as k → ∞ ) and a positive constant ε > 0 such that V1(tk) > ε. Since the uniform continuity
of V1(t), for the given ε, ∃δ > 0 (δ ≤ infj∈N+

{
tj+1 − tj

}
, which implies that the intervals [tk, tk + δ]

are nonoverlapping) such that |V1(tk)− V1(t)|≤ ε/2. Then, for any t ∈ [tk, tk + δ] it follows that
V1(t) = V1(tk)− V1(tk) + V1(t) ≥ |V1(tk)|−|V1(tk)− V1(t)|> ε/2. Thus, for any k = 1, 2, 3, . . . , from
(A1), we have:

V(tk + δ)− V(0) ≤ −θ
Γ(α)

∫ tk+δ
0

V1(τ)

(tk+δ−τ)1−α dτ

= −θ
Γ(α) [

∫ t1
0 +

∫ t1+δ
t1

+
∫ t2

t1+δ +
∫ t2+δ

t2
+
∫ t3

t2+δ +
∫ t3+δ

t3
+ · · · + ∫ tk+δ

tk
] V1(τ)

(tk+δ−τ)1−α dτ

≤ −θ
Γ(α) [

∫ t1+δ
t1

+
∫ t2+δ

t2
+

∫ t3+δ
t3

+ · · ·+ ∫ tk+δ
tk

] V1(τ)

(tk+δ−τ)1−α dτ

≤ −θε
2Γ(α) [

∫ t1+δ
t1

+
∫ t2+δ

t2
+

∫ t3+δ
t3

+ · · ·+ ∫ tk+δ
tk

] (tk + δ − τ)α−1dτ

= −θε
2Γ(α)

k
∑

j=1

∫ tj+δ

tj
(tk + δ − τ)α−1 dτ
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Given that (tk + δ − τ)α−1 ≥ (tk + δ − tj)
α−1 for all τ ∈ [tj, tj + δ] results in:

V(tk + δ)− V(0)≤ −θε

2Γ(α)

k

∑
j=1

∫ tj+δ

tj

(tk + δ − τ)α−1 dτ

≤ −θε

2Γ(α)

k

∑
j=1

∫ tj+δ

tj

(tk + δ − tj)
α−1 dτ

=
−θεδ

2Γ(α)

k

∑
j=1

(tk + δ − tj)
α−1

≤ −θεδ

2Γ(α)

k

∑
j=1

(tk + δ − t1)
α−1

=
−θεδ

2Γ(α)
k

(tk + δ − t1)
1−α

≤ −θεδ

2Γ(α)
k

(kd)1−α
=

−θεδ

2Γ(α)
kα

(d)1−α

where d = supj∈N, 2 ≤j ≤k
{

tj − tj−1
}

(since V1(t) is a uniformly continuous function and assumed

V1(t) �= 0, as t → ∞ , d is bounded). Obviously, V(tk + δ)− V(0) ≤ −θεδ
2Γ(α)

kα

(d)1−α → −∞ as k → ∞ ,

which contradict with V(t) ≥ 0. Therefore, lim
t→∞

V1(t) = lim
t→∞

zH(t)z(t) = 0. i.e., z(t) = 0 is asymptotically

stable. This completes the proof for Lemma 3.
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Abstract: A map without equilibrium has been proposed and studied in this paper. The proposed
map has no fixed point and exhibits chaos. We have investigated its dynamics and shown its chaotic
behavior using tools such as return map, bifurcation diagram and Lyapunov exponents’ diagram.
Entropy of this new map has been calculated. Using an open micro-controller platform, the map is
implemented, and experimental observation is presented. In addition, two control schemes have
been proposed to stabilize and synchronize the chaotic map.

Keywords: chaotic map; fixed point; chaos; approximate entropy; implementation

1. Introduction

Discrete maps have attracted significant attention in the study of dynamical systems [1–4]. Discrete
maps appear in various disciplines including physiology, chemistry, physics, ecology, social sciences
and engineering [3,5–7]. It has previously been observed that simple first-order nonlinear maps can
generate complex dynamical behavior including chaos [8]. Chaotic maps such as Hénon map [9],
Logistic map [8], Lozi map [10], and zigzag map [11] are found. When investigating chaotic maps,
the stability of fixed point plays a vital role. The authors tried to find fixed points and studied the
behavior of orbits near fixed points. Relation of fixed points and critical transitions is illustrated in [12].
Previous studies have established that conventional chaotic maps often have unstable fixed points.

More recent studies have focused on chaotic maps related to the hidden attractor
category [13–15]. Hidden attractors in chaotic maps are reported in [16], where a 1D map with
no fixed point is extended from Logistic map. Jiang et al. introduced a list of two-dimensional
maps with no fixed point [17]. These maps are inspired by Hénon map. By applying a Jerk-like
structure, a gallery of 3D maps having hidden dynamics is investigated [17]. Ouannas proposed a
fractional map having no fixed point [18]. Xu et al. found hidden dynamics of a two-dimensional
map based on Arnold’s cat map [19]. The authors built a hardware implementation of the map using
Field-programmable gate array (FPGA). However, detailed investigation of chaotic maps without
fixed point should be examined further.

Our work discovers a new no equilibrium map with chaos. In Section 2, the map’s model is
introduced, and its dynamics is reported. Realization of the map in an Arduino Uno board is presented
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in Section 3. In Section 4, control approaches for such a map are designed. Section 5 summarizes our
work.

2. Chaotic Map

By using nonlinear functions, we construct a map described by:{
x (n + 1) = x (n) + y (n) ,
y (n + 1) = y (n)− a |y (n)| − x (n) y (n) + b(x (n))2 − c(y (n))2 + d,

(1)

where a, b, c, and d are positive parameters.
The fixed points E(x, y) of the map can be found by solving{

x = x + y,
y = y − a |y| − xy + bx2 − cy2 + d.

(2)

By rewriting Equation (2), we have

bx2 + d = 0. (3)

Therefore, there is no any fixed point in the map in Equation (1) for such positive parameters b
and d.

We observe chaos in the map for a = 0.01, b = 0.1, c = 2, d = 0.1 and the initial conditions
(x(0), y(0)) = (1.5, 0.5) (see Figure 1). Similar to the reported map in [18], the map in Equation (1)
belongs to a class of maps without fixed point. Compared with the map reported in [18], the map in
Equation (1) is not a fractional one.

Figure 1. Strange attractor of the map for a = 0.01, b = 0.1, c = 2, d = 0.1 and (x(0), y(0)) = (1.5, 0.5).

2.1. Dynamics of the Map

Dynamics of the proposed map were studied. It was found that the map displays interesting
dynamics when varying the parameter c and keeping a = 0.01, b = 0.1, d = 0.1 and
(x(0), y(0)) = (1.5, 0.5). Note that, since we wanted to keep the system NE (no equilibrium), we
have frizzed the parameters b and d. Changing parameter a as bifurcation parameter did not show
a proper route to chaos and in some values resulted in unbounded solutions. Thus, we chose c as
the bifurcation parameter. In addition, note that the initial condition used in our simulations was not
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dominant and affected only the initial transient regime. As seen in the bifurcation diagram (Figure 2a)
and the finite-time local Lyapunov exponents (Figure 2b), the map in Equation (1) displays a period
doubling route to chaos. The time interval for calculating finite-time local Lyapunov exponents [20]
is 10,000. Since it has no equilibrium, it has no period-1 cycle. The bifurcation starts from a period-2
cycle. Then, it continues with period-doubling until chaos is born a little before c = 2.

Figure 2. Bifurcation diagram (a); and Lyapunov exponents (b) when varying c for a = 0.01, b = 0.1,
d = 0.1 and (x(0), y(0)) = (1.5, 0.5).

2.2. Entropy of the New Map

Previous research has established that entropy is an effective index for estimating information in a
particular system [21–23]. The authors applied entropy measurement to consider the complexity/chaos
of dynamical systems [24–27]. In particular, approximate entropy (ApEn) [28,29] is useful to study
chaotic systems [19,30]. It is noted that there is no reported threshold to be achieve in the ApEn in
order to exhibit chaos [28,29]. Xu et al. reported the ApEn of a new system with chaos [19]. Their
values of ApEn ranged from 0 to 0.12. Wang and Ding presented a table of AnEn test for four chaotic
maps [30]. Here, calculated approximate entropy (ApEn) for the proposed the map in Equation (1) is
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reported in Table 1. Obtained entropy in Table 1 illustrates the complexity of the map when it exhibits
chaos.

Table 1. Calculated approximate entropy of the map in Equation (1) for a = 0.01, b = 0.1, d = 0.1 and
(x(0), y(0)) = (1.5, 0.5).

Case c ApEn

1 1.985 0.0306
2 1.99 0.2142
3 1.995 0.2184
4 2 0.2525

3. Implementation of the Map Using Microcontroller

Chaotic maps are useful for designing pseudorandom number generators [31–34], building
S-Box [35], proposing color image encryption [36] or constructing secure communication [37].
Therefore, implementation of chaotic maps is a practical topic in the literature. Some approaches
have been used to realize theoretical models of chaotic maps. Valtierra et al employed a skew-tent
map in switched-capacitor circuits [6]. Bernoulli shift map, Borujeni maps, zigzag, and tent are done
with a field-programmable gate array architecture [7]. Wang and Ding introduced FPGA hardware
implementation of a map with hidden attractors [30]. It is worth noting that using microcontroller is
an effective approach to implement chaotic maps [37,38]. The open-source platform named Arduino
provides a reasonable development tool because of its free development software [39–41]. In our work,
we used an Arduino Uno board based on microcontroller to realize the proposed map in Equation (1),
as shown in Figure 3. Pins 9 and 10 of the Arduino Uno board are configured as two digital outputs.
However, we could choose different pins for digital outputs because Arduino Uno board has 14 digital
pins. We wrote a program for the map in the Arduino development environment. It is noted that
the algorithm steps and program structure used in our implementation are similar to those reported
in [38]. The output pin 9 was activated when x > 1.8 while the output pin 10 was activated when
y > 0. Figure 4 displays the experimental waveforms at pins 9 and 10.

Figure 3. Arduino Uno board for implementing chaotic the map in Equation (1).
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Figure 4. Captured waveforms at pins 9 and 10 of the Arduino Uno board.

4. Control Schemes for the Proposed Map

When investigating chaotic maps, stabilization and synchronization are vital aspects. Two control
laws for stabilizing and synchronizing the proposed non-fixed-point map are introduced in this section.

4.1. Stabilization

The aim of stabilizing the proposed map is to devise an adaptive control law such that all system
states are stabilized to 0. The controlled map is{

x (n + 1) = x (n) + y (n) + ux,
y (n + 1) = y (n)− a |y (n)| − x (n) y (n) + bx2 (n)− cy2 (n) + d + uy,

(4)

where ux and uy are controllers to be determined.
The map in Equation (4) can be stabilized with the control law in Equation (5){

ux = − 1
2 x (n) ,

uy = − 1
2 y (n) + a |y (n)|+ x (n) y (n)− bx2 (n) + cy2 (n)− d

(5)

Substituting the control law in Equation (5) into Equation (4), we get{
x (n + 1) = 1

2 x (n) + y (n) ,
y (n + 1) = 1

2 y (n) .
(6)

The written form of the error system in Equation (6) is

(x (n + 1) , y (n + 1))T = M× (x (n) , y (n))T , (7)

where

M =

(
1
2 1
0 1

2

)
. (8)
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Therefore, the map in Equation (1) is stabilized.
We illustrated the result by selecting parameters (a, b, c, d) = (0.01, 0.1, 2, 0.1) and

(x(0), y(0)) = (1.5, 0.5). In Figure 5, the evolution of states verifies the control law.

Figure 5. Stabilization when applying the proposed control law: (a) x(n), (b) y(n), and (c) x − y plane.

4.2. Synchronization

Researchers have discovered synchronization of discrete systems [42–44]. We consider the drive
system in Equation (9){

xm (n + 1) = ym (n) ,
ym (n + 1) = xm (n) + a1x2

m (n) + a2y2
m (n)− a3xm (n) ym (n)− a4,

(9)

It has been shown in [17] that the map in Equation (9) exhibits chaotic behaviors with no fixed
points. The map in Equation (9) is one of the first example of discrete-time systems without fixed
points, i.e, the map in Equation (9) has hidden attractors. The map in Equation (9) is inspired by the
well-known Hénon map.

The subscript s denotes the response system’s states. The response is given by{
xs (n + 1) = xs (n) + ys (n) ,
ys (n + 1) = ys (n)− a |ys (n)| − xs (n) ys (n) + bx2

s (n)− cy2
s (n) + d,

(10)

where ui (t) (i = 1, 2) are synchronization controllers.
The error system is

e1 (n) = xs (n)− xm (n) , (11)

e2 (n) = ys (n)− ym (n) ,

We find the controllers u1 and u2 based on Theorem 1.

Theorem 1. By selecting⎧⎪⎪⎪⎨⎪⎪⎪⎩
u1 = − 1

2 xs (n)− 1
2 xm (n)− 2

3 ys (n) + 2
3 ym (n) ,

u2 = 1
3 xs (n)− 2

3 xm (n)− 3
2 ys (n) + 1

2 ym (n)
a |ys (n)|+ xs (n) ys (n)− bx2

s (n) + cy2
s (n)− d

+ a1x2
m (n) + a2y2

m (n)− a3xm (n) ym (n)− a4,

(12)

the drive system in Equation (9) and the response system in Equation (10) are synchronized.
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Proof. The error system in Equation (11) is rewritten as⎧⎪⎨⎪⎩
e1 (n + 1) = xs (n) + ys (n)− ym (n) + u1,
e2 (n + 1) = ys (n)− a |ys (n)| − xs (n) ys (n) + bx2

s (n)− cy2
s (n) + d

− xm (n)− a1x2
m (n)− a2y2

m (n) + a3xm (n) ym (n) + a4 + u2,
(13)

Substituting the control law in Equation (12) into Equation (13) yields the reduced dynamics{
e1 (n + 1) = 1

2 e1 (n) + 1
3 e2 (n) ,

e2 (n + 1) = 1
3 e1 (n)− 1

2 e2 (n) .
(14)

The Lyapunov function is V (e1(n), e2(n)) = e2
1(n) + e2

2(n),

ΔV = V (e1(n + 1), e2(n + 1))− V (e1(n), e2(n))

=
1
4

e2
1 (n) +

1
3

e1 (n) e2 (n) +
1
9

e2
2 (n)

1
4

e2
1 (n)−

1
3

e1 (n) e2 (n) +
1
9

e2
2 (n)− e2

1 (n)− e2
2 (n)

= −1
2

e2
1 (n)−

7
9

e2
2 (n) < 0.

By means of Lyapunov stability theory, the maps in Equations (9) and (10) are synchronized.

Figure 6 depicts the time evolution of states of systems in Equations (9) and (10) after control.
As reported in Figure 7, synchronization is obtained.

Figure 6. Evolution of states when applying the control: (a) xm(n), xs(n) and (b) ym(n), ys(n).
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Figure 7. Synchronization errors.

5. Conclusions

This work has introduced a new chaotic map, which can be considered as a system with hidden
attractor. Having no fixed point is a notable feature of the proposed map. Chaos in the map is
observed and confirmed by positive Lyapunov exponent. Realization of the map using an open-source
electronic platform is given to illustrate its feasibility. Experimental results are recorded and displayed
by oscilloscope. Approximate entropy is calculated to determine the complexity of the map. We have
also presented stabilization and synchronization for the map. In future research, this map will be
embedded into practical applications such as data encryption, signal transmission or motion planning.
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Abstract: This paper presents a new no-equilibrium 4-D hyperchaotic multistable system with
coexisting hidden attractors. One prominent feature is that by varying the system parameter or initial
value, the system can generate several nonlinear complex attractors: periodic, quasiperiodic, multiple
topology chaotic, and hyperchaotic. The dynamics and complexity of the proposed system were
investigated through Lyapunov exponents (LEs), a bifurcation diagram, a Poincaré map, and spectral
entropy (SE). The simulation and calculation results show that the proposed multistable system has
very rich and complex hidden dynamic characteristics. Additionally, the circuit of the chaotic system
is designed to verify the physical realizability of the system. This study provides new insights into
uncovering the dynamic characteristics of the coexisting hidden attractors system and provides a new
choice for nonlinear control or chaotic secure communication technology.

Keywords: hidden attractor; hyperchaotic system; multistability; entropy analysis

1. Introduction

The chaotic system has great application prospects in the field of image encryption [1–3] and secure
communication [4]. For a long time, many chaotic systems composed of certain ordinary differential
equations have been explored. This produced a series of classic three-dimensional continuous chaotic
systems, including the Lorenz [5–7], Rossler [8], Chua, Chen [9,10], and Liu systems [11]. By adding
linear or nonlinear state feedback controllers on 3-D chaotic systems, various 4-D chaotic systems can
be constructed [12–14]. Four-dimensional chaotic systems have more complex nonlinear complexity
and better randomness than 3-D chaotic systems. These continuous autonomous chaotic systems
have common attractors called self-excited attractors because the oscillation is excited from unstable
equilibria. At certain initial conditions, traditional self-excited attractors could be tracked from
a computational point of view [15].

Recently, the issue of hidden attractors has drawn much attention from the field of nonlinear
chaos. The hidden attractors, without equilibrium or with stable equilibrium points, have been
found in some continuous chaotic or hyperchaotic systems [16,17]. The basin of attraction for hidden
attractors does not intersect with small neighborhoods of any equilibrium point [18–20]. Because
the system with hidden attractors has neither homoclinic nor heteroclinic orbits, it has completely
different dynamic characteristics from the self-excited attractors [21–23]. In addition, the coexistence
of multiple hidden attractors is a strange physical phenomenon called a multistable system [24–26],
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often encountered in nonlinear dynamic systems. Such a multistable state can greatly improve the
complexity of chaotic systems, making these chaotic systems with hidden attractors more suitable
for use in chaotic encryption technology. In most cases, however, multistable systems with hidden
attractors tend to experience unexpected and potentially disastrous outcomes. Due to the fact that
these systems are vulnerable and prone to unpredictably switch to another attractor, multistable
systems can cause aircraft crashes [15], drill string failures and breakdowns [27], serious problems
during financial crises [28], and catastrophic shifts in ecosystem services [28,29]. Up to now, although
predicting a catastrophic bifurcation for multistable systems has been extremely difficult [30], it is still
important to uncover and analyze all coexisting attractors in different scientific fields [15].

Motivated by the above research, a new no-equilibrium hyperchaotic system with coexisting
hidden attractors is proposed in this work. Up to now, compared with the 3-D hidden attractor
system, very little has been published on 4-D hidden attractors, especially for a hyperchaotic system.
Therefore, in this paper, a 4-D chaotic system without any equilibrium has been constructed by
adding a state variable to a 3-D chaotic system developed by Vaidyanathan and Volos in 2015 [31].
When selecting certain parameters and initial conditions, the Lyapunov exponents (LEs) of the
proposed 4-D hyperchaotic system were LE1 = 0.0030, LE2 = −0.0079, LE3 = 0.0044, and LE4 = 0.
There were two positive LEs, and the proposed system had hyperchaotic behavior. At this point,
the Kaplan–Yorke fractional dimension DKY = 3.93.

The existence of chaotic attractors was demonstrated by Lyapunov exponents, a bifurcation
diagram, a phase diagram, a time domain diagram, and a power spectral density map. The complexity
of the coexisting hidden attractors was also carried out by means of entropy analysis. It was found
from the results that the proposed system exhibited extremely complex dynamic characteristics under
different initial conditions of the system, such as hidden attractors, quasi-limit cycles, and coexisting
attractors with different topological structures. Further, the shape of the hidden attractor was
different from the existing attractor. The hidden attractor system was realized by a circuit, for which
the experimental results were consistent with the simulation results, further verifying the chaotic
characteristics of the system. These qualitative and quantitative studies show that the new system has
complex chaotic characteristics.

The rest of this paper is organized as follows. Section 2 describes the mathematical model and
chaotic characteristics of the new 4-D system with coexisting hidden attractors. The phenomena
exhibited by the system, such as periodicity, multiple coexisting hidden attractors, and quasi-periodic
limit cycles, are discussed in Section 3. The information spectral entropy (SE) analysis is given in detail
in Section 4. Section 5 presents the circuit of the hyperchaotic system. The inadequacies of the work
are discussed in Section 6, and Section 7 summarizes the conclusions.

2. System Description

2.1. Model of the New Chaotic System

A 3-D conservative no-equilibrium chaotic system was developed by Vaidyanathan and Volos [31].
Vaidyanathan’s system, having LEs of LE1 = −0.0395, LE2 = 0, and LE3 = −0.0395 and
a Kaplan–Yorke dimension of DKY = 3, is described as⎧⎪⎨⎪⎩

.
x = ay + xz
.
y = −bx + yz
.
z = 1 − x2 − y2

(1)
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where x, y, and z are state variables and a and b are parameters of the system. By adding the fourth
state variable w, and feeding the third state variable z to the fourth variable w, a new 4-D hyperchaotic
system is obtained as ⎧⎪⎪⎪⎨⎪⎪⎪⎩

.
x = ay + xz
.
y = −bx + yz
.
z = 1 − x2 − y2
.

ω = z(ω − 1)

(2)

where x, y, z, and w are state variables and a and b are positive real constant parameters of the
system. We know that the equilibrium points of system (2) can be achieved by solving the roots of
Equation (3). Simplifying and reorganizing Equation (3), we could get ay2 + bx2 = 0. Considering that
1 − x2 − y2 = 0 and a and b are positive real numbers, Equation (3) has no solution; that is, there is no
equilibrium point. According to the definition of hidden attractors, the system’s attractors belong to
hidden attractors. Its basin of attraction does not contain neighborhoods of equilibria [32,33].⎧⎪⎪⎪⎨⎪⎪⎪⎩

ay + xz = 0
−bx + yz = 0
1 − x2 − y2 = 0
z(ω − 1) = 0

(3)

2.2. Nonlinear Description of the System

In this subsection, we mainly discuss the nonlinear dynamics of the system with hidden attractors
by means of numerical simulation. If there is no special explanation, the simulation step size is 0.01,
the ode45 numerical solver is used, and the simulation time is 2000 s in this paper. Figure 1 shows the
3-D attractor projection of system (2), and Figure 2 depicts the 2-D attractor projection of system (2).
From the projection phase diagram it can be found that the attractors are different from the scroll or
wing shape and belong to a new attractor. Compared with the attractors of system (1), the new system
has more abundant attractors, so the dynamic characteristics of the new system are more complicated.
Figure 3 is a time series diagram of four state variables of system (2) that indicates that the system is
aperiodic, which corresponds with the chaotic feature. The curves in Figure 4, obtained by Fourier
transform of the autocorrelation function, show that the variables are continuous and there are no
obvious peaks, which accords with the characteristics of chaos.

Figure 1. Cont.
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Figure 1. Three-dimensional chaotic attractor of system (2) with parameters a = 0.05, b = 1 and initial
conditions (x0, y0, z0, w0) = (−1, −1, 4, 4) on the (a) (x, y, z) space, (b) (x, y, w) space, (c) (x, z, w) space,
and (d) (y, z, w) space.

Figure 2. Two-dimensional chaotic attractor of system (2) with parameters a = 0.05, b = 1 and initial
conditions (x0, y0, z0, w0) = (−1, −1, 4, 4): (a) x − y plane; (b) y − z plane; (c) x − z plane; (d) x − w
plane; (e) y − w plane; and (f) z − w plane.
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Figure 3. Time series of system (2) with parameters a = 0.05, b = 1 and initial conditions
(x0, y0, z0, w0) = (−1, −1, 4, 4): (a) x variable; (b) y variable; (c) z variable; and (d) w variable.

Figure 4. Frequency spectrum of system (2) with parameters a = 0.05, b = 1 and initial conditions
(x0, y0, z0, w0) = (−1, −1, 4, 4): (a) the x variable; (b) y variable; (c) z variable; and (d) w variable.

Using the parameters a = 0.05, b = 1 and initial conditions (x0, y0, z0, w0) = (−1, −1, 4, 4),
Figure 5 illustrates the LEs of the system computed with the Wolf algorithm [34,35]. They are
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LE1 = 0.012865, LE2 = −0.0050839, LE3 = −0.0098453, and LE4 = −0.033262, respectively.
One of them is positive and two of them are negative, and the sum of the LEs is negative, so the
system is a stable chaotic system with hidden attractors. A further discussion of LEs is given in
Section 3.2, which demonstrates that the system is hyperchaotic under certain parameters and proper
initial conditions.

Figure 5. LEs of system (2) in dependence on parameters a = 0.05, b = 1 and initial value
(x0, y0, z0, w0) = (−1, −1, 4, 4).

To further illustrate that system (2) is chaotic, Figure 6 illustrates a Poincaré map [36–38] with
a = 0.05, b = 1 and initial value (x0, y0, z0, w0) = (−1, −1, 4, 4). Figure 6(a) and (b) are Poincaré
maps in the x − y and x − w planes on a z = 0 cross section. As is shown in the cross section of the
map, there is a set of points distributed along the line or curve arc with a self-similar fractal structure.
Therefore, the Poincaré map of the system also shows the properties of chaos.

Figure 6. Poincaré map of system (2) in dependence on parameters a = 0.05, b = 1 and initial value
(x0, y0, z0, w0) = (−1, −1, 4, 4) in the (a) x − y plane and (b) x − ω plane.

3. Nonlinear Dynamics of the System

To date, knowledge of hidden attractors is still insufficient and research results are in their
early stages. There is a great need to address the characteristics of nonlinear system with hidden
attractors. What we present in this section is an analysis of the chaotic, hyperchaotic, and multistable
characteristics of the proposed system in terms of system parameters and initial values of state
variables. More specifically, the phenomena of periodicity, coexistence of multiple hidden attractors,
and quasi-periodic limit cycles are analyzed and explained in great detail.

3.1. Influence of Parameters on System Dynamic Characteristics

A bifurcation diagram can show the relationship between a system and the variation of parameters
and changes in dynamic behaviors, as well as graphically reflect nonlinear behaviors such as chaotic,
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periodic, and quasi-periodic limit cycles in the system. Therefore, in this section, a bifurcation diagram is
used to analyze the influence of different system parameters on the dynamic characteristics of system (2).

The change of dynamic behaviors is shown in the bifurcation diagram in Figure 7(a), from which
it can be seen that when fixing b = 0.05 and a ∈ (0, 5) with the initial value (x0, y0, z0, w0) = (2, 0, 0, 0),
the transition to chaos was apparent and the system was in a wide-domain chaotic state when the value
of a increased. When a ∈ (1.2, 2.7), it was obvious that the system was in a chaotic state. Figure 7(b) is
the corresponding LE diagram of the system under this simulation parameter. Figure 7(b) shows that
two positive Lyapunov exponents also appeared in some ranges, indicating hyperchaos in system (2).
When a ∈ (2.7, 3.6), the maximum Lyapunov exponent of the system was very close to 0, while the
remaining LEs were negative or zero, indicating that the system was in the limit circle state or had
a hidden periodic attractor. In order to facilitate the analysis of the dynamic behavior, the bifurcation
graph and corresponding LE graph when a ∈ (0.7, 1) and a ∈ (4, 5) were enlarged locally, as shown
in Figures 8 and 9, respectively. Duringa ∈ (0.7, 1) and a ∈ (4, 5), Figures 8 and 9 show that there
were complex nonlinear behaviors in these two regions. In addition, the bifurcation boundary line had
a certain width of point set, as opposed to being a single point line, which made the system have more
abundant dynamic behaviors. Further, because the LE graphs show that the system had two positive
LEs, hyperchaotic behavior existed in a large range.

Figure 7. Bifurcation diagram and LEs of system (2) about a, with b = 0.05, initial value
(x0, y0, z0, w0) = (2, 0, 0, 0), and a ∈ (0, 5): (a) bifurcation diagram; (b) LE graphs.

Figure 8. Bifurcation diagram and LEs of system (2) about a, with b = 0.05, initial value
(x0, y0, z0, w0) = (2, 0, 0, 0), and a ∈ (0.7, 1): (a) bifurcation diagram; (b) LE graphs.
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Figure 9. Bifurcation diagram and LEs of system (2) about a, with b = 0.05, initial value
(x0, y0, z0, w0) = (2, 0, 0, 0), and a ∈ (4, 5): (a) bifurcation diagram; (b) LE graphs.

In order to further analyze the influence of parameters on the hidden attractors system, the system
was analyzed using a phase diagram. When a = 0.88922, Figure 8(b) shows that the system had
a positive LE close to 0 and three negative LEs. The system was in a state of quasi-periodic limit
cycle. The 3-D and 2-D projections of the hidden attractor diagram of the system are shown in
Figure 10. By increasing the value of parametera, when a = 1.0621, a hidden attractor could be
observed (Figure 11). When a = 1.2, the LEs were LE1 = 0.0030, LE2 = −0.0079, LE3 = 0.0044,
and LE4 = 0, so the system was hyperchaotic. From Figure 12, we can see that there were many
strange attractors with different topologies. When a = 2.982, the phase diagram of the system was
a quasi-periodic limit cycle, as shown in Figure 13, which is consistent with the illustration in Figure 7.
It can be seen from Figure 9 that when a ∈ (4, 5), the bifurcation phenomenon was complicated;
hence, the system dynamics behavior was also rich. Figure 9(b) shows that when a = 4.9, the system
was in a hyperchaotic state, having hidden attractors, as shown in Figure 14. In this scenario, the hidden
attractors in the system were different from the attractors when the other parameters were taken.
They were novel and unique hidden attractors.

According to the above analysis, there are many kinds of hidden attractors and different topologies
in system (2). Therefore, this system has novel attractors in a variety of shapes and has rich
dynamic behavior.

Figure 10. Projections of hidden attractors with parameters a = 0.88922, b = 0.05 and initial value
(x0, y0, z0, w0) = (2, 0, 0, 0): (a) attractor in the y − z − w space; (b) attractor in the x − z plane.
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Figure 11. Projections of hidden attractors with parameters a = 1.0621, b = 0.05 and initial value
(x0, y0, z0, w0) = (2, 0, 0, 0): (a) attractor in the y − z − w space; (b) attractor in the x − z plane.

Figure 12. Projections of hidden attractors with parameters a = 1.2, b = 0.05 and initial value
(x0, y0, z0, w0) = (2, 0, 0, 0): (a) attractor in the y − z − w space; (b) attractor in the x − z plane.

Figure 13. Projections of hidden attractors with parameters a = 2.982, b = 0.05 and initial value
(x0, y0, z0, w0) = (2, 0, 0, 0): (a) attractor in the y − z − w space; (b) attractor in the x − z plane.
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Figure 14. Projections of hidden attractors with parameters a = 4.9, b = 0.05 and initial value
(x0, y0, z0, w0) = (2, 0, 0, 0): (a) attractor in the y − z − w space; (b) attractor in the x − z plane.

3.2. Influence of Initials on System Dynamic Characteristics

More recently, the impact of initial values on the dynamic behavior of a system with hidden
attractors has been subject to considerable discussion [17,39–41]. Here, we focus on the influence of
different initial values on the dynamic characteristics of the hidden attractors in terms of a phase
diagram (i.e., projections of attractor) and a bifurcation diagram.

With the parameters of system (2) chosen as a = 1, b = 0.05, Figure 15 shows the phase diagram
of the hidden attractors. In Figure 15, the blue attractors’ initial is (2, 0, 0, 2), and the red attractors’
initial is(x0, y0, z0, w0) = (2, 0, 0, −2). It can be seen from the phase diagram that the system space
corresponding to these two initial values had a certain symmetrical similarity. Specifically, the size
was different and the phase was opposite.

Figure 15. Projections of hidden attractors with different initial conditions. Blue attractors‘ initial is
(2, 0, 0, 2), red attractors‘ initial is(2, 0, 0, −2), and the parameters are a = 1, b = 0.05: (a) attractor in the
x − w plane; (b) attractor in the y − w plane.

In order to facilitate the analysis of the influence of different system initial conditions on system
dynamics under the same system parameters, the bifurcation diagram and LEs were used again.

There were two initial values of the system Y0 = (u, u, 0, 0) and Y1 = (u, 0, 0, 0), respectively
andu ∈ [0, 5]. The parameters chosen were a = 1, b = 0.05. Figures 16 and 17 present bifurcation
diagrams and LEs of system (2) when increasing the value of u. The bifurcation diagrams and LEs
shown in Figures 16 and 17 exhibit the process of periodic limit cycles, quasi-periodic limit cycles,
and hyperchaos under different initial values. The corresponding LE graphs are also consistent with
the bifurcation diagram change. With the Y0 point, let u = 0.01 and u = 2.093, respectively, and for the
Y1 point, let u = 1.5. Thus, we have chosen the initial values (0.01, 0.01, 0, 0),(2.093, 2.093, 0, 0),
and(1.5, 0, 0, 0). The colors corresponding to these three initial values are green, blue, and red,
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respectively. The 2-D numerical simulation phase diagram is shown in Figure 18. Combining
Figures 16 and 17, it can be found from the phase diagram of Figure 18 that when the initial
value was (0.01, 0.01, 0, 0), the system was in a weak chaotic state; when the initial value was
(2.093, 2.093, 0, 0), LE1 = 0, LE2 = −0.0076601, LE3 = −0.0067299, and LE4 = −0.0075862, the system
was in a quasi-periodic limit cycle; and when the initial value was (1.5, 0, 0, 0), LE1 = 0.0029082,
LE2 = −0.0034458, LE3 = 0, and LE4 = −0.0017509, the system was in a hyperchaotic state. It was
also found that the chaotic systems corresponding to different initial values contained hidden attractors
with different topological structures.

Figure 16. Bifurcation diagram and LEs of system (2) with a = 1, b = 0.05, initial value Y0 = (u, u, 0, 0),
and u ∈ [0, 5]: (a) bifurcation diagram; (b) LE graphs.

Figure 17. Bifurcation diagram and LEs of system (2) with a = 1, b = 0.05, initial value Y1 = (u, 0, 0, 0),
and u ∈ [0, 5]: (a) bifurcation diagram; (b) LE graphs.

Figure 18. Cont.
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Figure 18. Projections of hidden attractors with different initial conditions. Green attractors‘ initial
is (0.01, 0.01, 0, 0), blue attractors‘ initial is (2.093, 2.093, 0, 0), red attractors‘ initial is(1.5, 0, 0, 0),
and parameters a = 1, b = 0.05: (a) attractor in the x − y plane; (b) attractor in the x − z plane;
(c) attractor y − z plane; (d) in the x − y − z space; (e) attractor in the x − y − w space; and (f) attractor
in the x − z − w space.

Based on the above analysis, it can be concluded that the system is multistable and can produce
complex multiple coexisting hidden attractors.

4. Information of Spectral Entropy Analysis

In order to measure the dynamic complexity of chaotic systems (2) with strange hidden attractors,
in this section, we discuss system complexity by means of information spectral entropy (SE) analysis [42,43].

We know that another statistical property of dynamical systems is SE, which has a certain relationship
with LEs and the Hausdorff dimension. SE is a measure of the chaotic properties of the system. The greater
the system complexity value, the stronger the randomness of the system. When such a system is used as
a communication key, the security of the information is higher. The complexity of chaotic systems is generally
divided into behavioral complexity and structural complexity. At present, there are several algorithms for
calculating the complexity of chaotic system behavior, and they are based on the Kolmogorov method and
Shannon’s entropy. These algorithms are fast and have accurate results. However, the calculation results of
high-dimensional chaotic systems will overflow, which may result in the expected results. The structural
complexity is the analysis of the energy characteristics in the transform domain. The scope of its action is
the entire sequence of the system, not locally, so the results are more global than the behavioral complexity
algorithm [18]. In this paper, the SE algorithm of structural complexity was used to analyze the dynamic
characteristics of the system.

4.1. Spectral Entropy Complexity Algorithm

By using Fourier transform, the energy distribution was obtained. After that, the corresponding
SE value was obtained by combining Shannon entropy. The algorithm requires the following steps.
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For the chaotic pseudorandom sequence {x(n), n = 0, 1, 2, 3, · · · , N − 1} of length N, the DC part is
removed by Equation (4) so that the spectrum more effectively reflects the energy information of the signal:

x(n) = x(n)− x (4)

where x = 1
N

N−1
∑

n=0
x(n). A discrete Fourier transform (DFT) was then performed on the x(n) to

obtain Equation (5):

X(k) =
N−1

∑
n=0

x(n)e−j 2π
N nk =

N−1

∑
n=0

x(n)WN
nk (5)

where k = 0, 1, 2, 3, · · · , N − 1. The relative power spectrum was calculated for the transformed
sequence X(k) by taking the first half of the sequence for calculation. According to the Parseval
theorem, the power spectrum value of a certain frequency point is determined by Equation (6):

S(k) =
|X(k)|2

N
(6)

where k = 0, 1, 2, 3, · · · , N
2 − 1. Then, the total power of the sequence can be defined as Equation (7):

Stotal =

N/2−1
∑

k=0
|X(k)|2

N
(7)

The probability of the relative power spectrum for the sequence is shown in Equation (8):

pk =
S(k)
Stotal

=
1
N |X(k)|2

1
N

N/2−1
∑

k=0
|X(k)|2

=
|X(k)|2

N/2−1
∑

k=0
|X(k)|2

(8)

From statistical knowledge, we know that
N/2−1

∑
k=0

pk = 1. Combined with the Shannon entropy

solving method, the SE of the signal could be obtained using Equation (9):

SE =
N/2−1

∑
k=0

pk ln
1
pk

(9)

In Equation (9), if pk = 0, then pk ln pk = 0. The equation converges to ln(N
2 ), and for the

convenience of comparative analysis, the SE is normalized. Then, the normalized SE calculation
formula could be obtained with Equation (10) [42]:

SE(N) =
SE

ln(N/2)
(10)

It can be seen from the above algorithm process that the higher the degree of imbalance for the
sequence power spectrum distribution, the simpler the structure of the sequence spectrum, resulting in
a stronger law of oscillation for the signal. Correspondingly, a smaller SE stands for smaller complexity;
otherwise, the complexity is greater.

4.2. Influence of Parameters on Entropy

It can be seen from the discussion in Section 3.1 that the change of system parameters has a great
influence on the nonlinear dynamic behavior of the system, which affects the complexity of the system.
Therefore, studying the influence of system parameters on SE is necessary. Figure 19 shows how
parameters a and b impact the SE, where parameter a = 1 or parameter b = 0.05, and the initial
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(x, y, z, ω) = (2, 0, 0, 0). With the great fluctuations around a = 1, the SE attenuated to 0.1. This is
because the system at this time was in the quasi-periodic limit-cycle state with minimal complexity,
as shown in Figure 10. Figure 19 indicates that when SE ∈ (0, 0.5), the regions of parameter a were
greater than parameter b. So, in this region, parameter b was more sensitive than parameter a in terms
of change. In the range of b ∈ (2, 5), the SE value was high, and the fluctuation was not large. It is
worth noting that when a, b ∈ (2, 2.8), there was a similar complexity value.

Figure 19. SE vs. parameters of the system, initial is (x, y, z, ω) = (2, 0, 0, 0): (a) b = 1, a ∈ (0, 5);
(b) a = 0.05, b ∈ (0, 5).

4.3. Influence of Initials on Entropy

The initial value condition is a major factor affecting the dynamic behavior of the system,
which was introduced in Section 3.2. In order to study the influence of the initial value of the system
on the nonlinear behavior of the system, the degree of influence of the initial value on the nonlinear
behavior of the system was further measured from the perspective of entropy. In the SE graphs of
Figure 20, we used the parameters a = 1, b = 0.05. Suppose there are three types of initial conditions:
IN0 = (u, u, 0, 0), IN1 = (u, 0, 0, 0), and IN2 = (0.01u, 0, 0, −2u), respectively; u is a variable,
and u ∈ (0, 5). The relationship between the variables u and SE is shown in Figure 20. As can be seen
from the figure, for the system complexity, the SE of IN0, IN1, and IN2 were alternate variations when
u ∈ (0, 0.3022); when u ∈ (0.3022, 0.6179), the SE was IN1 > IN2 > IN0; when u ∈ (0.6179, 0.83),
IN1 was always greater than the IN2 and IN0; when u ∈ (0.83, 1.0076), IN1 > IN2 > IN0; when
u ∈ (1.0076, 1.5503), IN1 was in the transition from chaotic to nonchaotic; when u ∈ (1.5503, 2.3397),
the SE was IN0 > IN2 > IN1; the values of IN1 and IN0 alternated but were always greater than
the IN2 when u ∈ (2.3397, 3.985); when u ∈ (3.985, 4.2637), it was approximately IN0 > IN2 > IN1;
when u ∈ (4.2637, 5), the value of SE was IN0 > IN1 > IN2. As is shown in Figure 20, the change of
IN2 was relatively flat, the corresponding system had less complexity, and the dynamic behavior of the
system was much less than that of the other two initial value systems. The IN0 curve fluctuations were
varied and intense, so the corresponding system was rich in dynamic behavior. The IN1 curve changes
were more orderly, and the corresponding system also contained rich nonlinear characteristics.
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Figure 20. SE vs. initials of the system, whereIN0 = (u, u, 0, 0) (Blue), IN1 = (u, 0, 0, 0) (Red),
and IN2 = (0.01u, 0, 0, −2u) (Green); u ∈ (0, 5).

The above analysis only deals with three simple forms of initial value problems. Since there are
numerous initial values for the system, the complexity of the system varies with the initial value and
corresponds to infinite variety, which further illustrates that the system has a very rich dynamic behavior.

4.4. Characteristic Analysis of Chaotic Diagram of System Entropy

The previous sections described the relationship between system parameters, initial system values,
and system nonlinear dynamics complexity. In the following section, the chaotic characteristic distribution
of the system complexity is discussed from the perspective of the interaction of system parameters a and
b. In order to observe the distribution of chaotic SE more clearly and graphically, a contour map with
different color schemes is used to show the chaotic property of SE, using flipud (hot) mode. A contour
map was obtained of the complexity of the chaotic system vs. system parameters, as shown in Figure 21,
where a ∈ (0, 5), b ∈ (0, 5), and the initial (x0, y0, z0, w0) = (2, 0, 0, 0). The figure shows that under the same
initial value, the adjacent different color boundary lines are the contour lines; that is, the adjacent contour
lines are filled with the same color, and the color used for filling was done by flipud (hot) mode. Due to
the variety of colors in the figure, there are many values for the corresponding system entropy, which is
consistent with the results discussed in Section 4.2. The main color distribution in the graph is red and black,
or similar, and the corresponding system has a larger entropy value, whereas the other colored areas are
smaller. This shows that the system was in a hyperchaotic or chaotic state in a wide range when varying
parameters a or b, which is consistent with the conclusion from the system bifurcation diagram. Therefore,
a more detailed color distribution contour map can be obtained by way of subdividing system parameters
and changing the system initial value.

Figure 21. Chaotic characteristics of SE vs. the parameters of the system, with a ∈ (0, 5), b ∈ (0, 5),
and the initial (x0, y0, z0, w0) = (2, 0, 0, 0).
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5. Circuit Design

The nonlinear dynamic behavior of system (2) is discussed here in detail based on numerical
simulation, which verified that the system had abundant dynamic behavior. This section presents
a novel circuit implementation for a hidden attractor system.

5.1. Improved Modular Circuit Design

Electronic circuit realization is of great physical significance for the application of chaos theory [14,44].
Chaotic circuit design mainly includes three methods: individualized design, modular design,
and improved modular design. Although an individualized design needs fewer circuit components,
it does require more prior knowledge. The modular design approach is based on a dimensionless state
equation that is universal and versatile but requires more components. The improved modular design
method can combine the advantages of the former two methods very well. By comparing the state
differential equation with the actual circuit’s state differential equation, the total coefficients of the system
can be determined, which can minimize the number of components. Therefore, we adopted the improved
modular design method to design the system circuit.

We used TL082 operational amplifiers, AD633 analog multipliers, some linear resistors,
and capacitors to form this 4-D signal generator circuit system. Since the power supply voltage
was ±15V, in order to make the signal of the system not exceed the linear dynamic range of the
operational amplifier with ±13.5V, the state variable was rescaled using Equation (11). Introduce new
state variables ux, uy, uz, and uw. Let ⎧⎪⎪⎪⎨⎪⎪⎪⎩

x = ux

y = uy

z = uz

w = 2uw

(11)

Substituting Equation (11) in Equation (2), we obtain Equation (12):⎧⎪⎪⎪⎨⎪⎪⎪⎩
dux
dt = auy + uxuz

duy
dt = −bux + uyuz

duz
dt = 1 − ux

2 − uy
2

duw
dt = 0.5uz(2uw − 1)

(12)

In order to make the circuit parameters better match the system, set the time scale to τ0, and τ0 =

104; then, perform time transformation. The new time variable is τ, and t = τ0τ; then, dt = τ0dτ.
Hence, Equation (12) can be written as⎧⎪⎪⎪⎨⎪⎪⎪⎩

dux
dτ = τ0(auy + uxuz)

duy
dτ = τ0(−bux + uyuz)
duz
dτ = τ0(1 − ux

2 − uy
2)

duw
dτ = 0.5τ0uz(2uw − 1)

(13)

From the constraint relationship of Equation (13), the corresponding circuit equation can be
designed as (14): ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dux
dτ = 1

C1
(

uy
R1

+ g1uxuz
R2

)
duy
dτ = 1

C2
(− ux

R3
+

g2uyuz
R4

)

duz
dτ = 1

C3
( 1

R7
− g3ux

2

R5
− g4uy

2

R6
)

duw
dτ = 1

C4
( g5uw

R9
− 1

R8
)uz

(14)

where C1, C2, C3, and C4 are the integral capacitance; g1, g2, g3, and g4 are the gain of five multipliers;
ux, uy, uz, and uw are the output variables of the integrator, which correspond to the system-state
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variable of Equation (13); and Ri(i = 1, 2, 3, · · · 9) is the corresponding resistance. In order to get the
parameters of the circuit, we compared Equations (13) and (14), and then obtained Equation (15). Thus,
the specific resistance value is shown in Equation (16):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
C1R1

= aτ0
g1

C1R2
= τ0

1
C2R3

= bτ0
g2

C2R4
= τ0

g3
C3R5

= τ0
g4

C3R6
= τ0

1
C3R7

= τ0
1

C4R8
= 0.5τ0

g5
C4R9

= τ0

(15)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 = 1
aτ0C1

R2 = g1
τ0C1

R3 = 1
bτ0C2

R4 = g2
τ0C2

R5 = g3
τ0C3

R6 = g4
τ0C3

R7 = 1
τ0C3

R8 = 1
0.5τ0C4

R9 = g5
τ0C4

(16)

In order to calculate and guarantee the unity of the circuit parameters, let the five multipliers and
the four capacitors have equal gains, namely, gi = 0.1V(i = 1, 2, 3, · · · 5) and Ci = 10nF(i = 1, 2, 3, 4).
When b = 0.05 is substituted into Equation (16), we can obtain R1 = 10

a kΩ, R3 = 10
b kΩ = 200kΩ,

R2 = R4 = R5 = R6 = R9 = 1kΩ, R7 = 10kΩ, and R8 = 20kΩ. The circuit schematic, designed using
Kirchhoff’s laws, is shown in Figure 22, where ux, uy, uz, and uw marked in the figure correspond to
the output variables ux, uy, uz, and uw, respectively, and the resistance parameter of the inverter is
R10 = R11 = R12 = R13 = R14 = R15 = 10kΩ. To observe the phase diagrams of circuits with hidden
attractors, a sliding rheostat R1 = 20kΩ was used (Figure 22).

Figure 22. Circuit exhibiting hidden attractors without equilibrium.
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5.2. Multisim Results

We used Multisim14.0 software to build the circuit shown in Figure 22. It is well known that the
components used in Multisim software are highly compatible with the actual components. Therefore,
the specific circuit scheme can well reflect actual circuit performance. Here, by adjusting the tap of
the sliding rheostat to change the value of R1, the projections of hidden attractors observed from the
oscilloscope are displayed in Figure 23, which agree well with the phase diagrams of Equation (2)
shown in Section 3.1. This also confirmed that the proposed system is physically achievable.

Figure 23. Hidden chaotic attractors of circuit (14) : (a) a = 1, R1 = 10kΩ, ux − uy plane; (b) a = 1,
R1 = 10kΩ, uy − uw plane; (c) a = 1, R1 = 10kΩ, uz − uw plane; (d) a = 4.9, R1 = 2.041kΩ, ux − uz

plane; (e) a = 1.0621, R1 = 9.415kΩ, ux − uz plane; (f) a = 0.88922, R1 = 11.246kΩ, ux − uz plane;
(g) a = 2.982, R1 = 3.353kΩ, ux − uz plane; (h) a = 1.2, R1 = 8.333kΩ, ux − uz plane.

6. Discussion

The multisim results confirmed that the proposed hyperchaotic system with hidden attractors
does not have transitional chaos or transient behavior. The slightly changing values of electronic
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components can greatly affect the state of a system with hidden attractors. Although the nonlinear
characteristics of this system have been carefully studied, the impact of accuracy and simulation time
on the system remains to be further studied. This aspect also requires scholars to do deep theoretical
research work.

7. Conclusions

In this study, a chaotic mathematical model with hidden attractors was constructed. Firstly,
system parameters and initial values were found to affect system dynamics and system complexity.
From the analysis of the bifurcation characteristics of the system parameters, it was found
that there were complex hidden dynamic behaviors, such as periodicity, quasi-periodic, chaotic,
and hyperchaotic. In particular, under different initial conditions, different topologies of chaotic
attractors or quasi-periodic limit cycles coexisted with chaotic attractors, and quasi-periodic limit
cycles coexisted with chaotic attractors of various topologies. This shows that the proposed system has
multistable characteristics. Moreover, the entropy of the system was analyzed from several aspects,
such as the entropy of changing parameters, the entropy of different initial values, and the entropy of
the chaotic characteristics of the system parameters, proving that the proposed system has very rich
dynamic characteristics. Finally, the behaviors of hidden attractors were observed in electronic circuits
by the method of improved modular design.

The numerical simulations and circuit implementation presented in this paper prove that the
proposed system is a multistable system. Because it is very sensitive to the initial value and has a rich
topological structure, the system is suitable for encryption applications.
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Abstract: In this paper, we propose using paraxial matrix optics to describe a ring-phase conjugated
resonator that includes an intracavity chaos-generating element; this allows the system to behave in
phase space as a Bogdanov Map. Explicit expressions for the intracavity chaos-generating matrix
elements were obtained. Furthermore, computer calculations for several parameter configurations
were made; rich dynamic behavior among periodic orbits high periodicity and chaos were observed
through bifurcation diagrams. These results confirm the direct dependence between the parameters
present in the intracavity chaos-generating element.

Keywords: spatial dynamics; Bogdanov Map; chaos; laser; resonator

1. Introduction

Matrix description of optical systems through ABCD matrices (Equation (8)) naturally produces
iterative maps with rather complex dynamics. Several publications have dealt with the ABCD law
and the iterative maps it produces. Belanger [1] has generalized the ABCD propagation law for
optical systems Onciul [2], using the Kirchhoff integral, derives a generalized ABCD propagation
law for general astigmatic Gaussian beams through misaligned optical systems, Bastiaans [3] shows
under what condition the well-known ABCD law that can be applied to describe the propagation
of one-dimensional Gaussian light through first-order optical systems (or ABCD systems) can be
extended to more than one dimension; in the two-dimensional (or higher-dimensional) case, an
ABCD law only holds for partially coherent Gaussian light for which the matrix of second-order
moments of the Wigner distribution function is proportional to a symplectic matrix. Tian [4] presents
an iterative method for simulating beam propagation in nonlinear media using Hamiltonian ray
tracing in which the Wigner distribution function of the input beam is computed at the entrance
plane, used as the initial condition for solving the Hamiltonian equation; he gives examples for the
study of periodic self-focusing, spatial solitons and the Gaussian–Schell model in Kerr-effect media.
Finally, Siegman [5] and Tarasov [6] shown how to describe a laser resonator with iterative matrix
optics by ray propagation through cascaded optical elements. This kind of map has been successfully
applied before to the description of laser beams within optical resonators. This treatment has been
explored for several other maps, obtaining several chaos-generating intracavity elements that are
based on the dynamical behavior from widely diverse maps, such as the Ikeda map [7], Standard
map [8], Tinkerbell map [9–11], Duffing map [11,12], logistic map [13] and the Henón map [11,14].
Throughout this article the Bogdanov Map will be used to describe a ring-phase conjugated resonator,
while the resultant iterative matrix system is analyzed. In the following Section 2, a quick derivation
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of the Bogdanov map is sketched following reference [15], then will convert our two-dimensional
mapping into a theoretical optical element that will produce the same complex dynamical behavior as
the Bogdanov map within a phase-conjugated ring resonator. To accomplish this, we introduce the
ABCD matrix formalism that is commonly used in paraxial optics [16], allowing us to represent each
optical component as a 2 × 2 matrix. Moving forward with the previously obtained results, finding
what we call Bogdanov beams; these are beams that propagate within the resonator following dynamics
of the Bogdanov map. In Section 3, we discuss the results obtained from numerical calculations
displaying the rich dynamics of the system, as it is shown in the bifurcation diagrams as a function of
the intracavity chaos-generating element parameters. Finally, Section 4 presents the conclusions.

2. Material and Methods

2.1. Bogdanov Map

This map was originally conceived by Bogdanov while studying the universal unfolding of the
double-zero-eigenvalue singularity [17] (also called Bogdanov–Takens or cusp), which is the equivalent
of a vector field invariant under a rotation of the plane by 2π. The Bogdanov map can be obtained by
means of discretization using the Euler method on the Bogdanov vector field. Next, to be thorough
and closely follow reference [15], we proceed to sketch a quick derivation of the Bogdanov Map.

ẏ = θ,

θ̇ = 0
(1)

This vector field has a codimension-two fixed point at the origin, known as a
double-zero-eigenvalue singularity; the normal form of this can be written as follows:

ẏ = θ + λy2,

θ̇ = ηy2 (2)

where λ �= 0, η �= 0. A two-parameter versal unfolding for this normal form, which contains all possible
qualitative dynamical behavior near Equation (2), can be given:

ẏ = θ + v2y + λy2,

θ̇ = v1 + ηy2 (3)

The unfolding given above is not unique and a versal unfolding or deformation such as
Equation (3) contains all possible qualitative dynamical behavior that can occur near the singularity.
By restricting our attention to the region away from the saddle-node bifurcations, the Hamiltonian
system of ordinary equations first considered by Bogdanov can be obtained,

ẏ = θ

θ̇ = y(y − 1)
(4)

once again, a two-parameter versal unfolding is obtained for Equation (4),

ẏ = θ

θ̇ = u1θ + y(y − 1) + u2yθΞ(y, u1, u2) + u2
2θ2Φ(y, θ, u1, u2)

(5)
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By taking the vector field from Equation (5), and applying the backward Euler discretization
method to the first equation (ẏ) and the forward Euler method to the second equation (θ̇), both with
step length h, we obtain

yn+1 =yn + hθn+1

θn+1 =θn + hu1θn + hyn(yn − 1) + hu2ynθnΞ(yn, u1, u2) + hu2
2θ2

nΦ(yn, θn, u1, u2)
(6)

now making Ξ(yn, u1, u2) = 1, Φ(yn, θ, u1, u2) = 0 and multiplying the second equation by h.
Finally, making the change of variables u1 = ε/h, u2 = μ/h, hθ = θ̃, h2 = k and dropping the
tilde from θ, we get the Bogdanov Map.

yn+1 =yn + θn+1

θn+1 =θn + εθn + kyn(yn − 1) + μynθn
(7)

The Bogdanov map is a planar quadratic map, conjugate to the Hénon-area-preserving map in its
conservative limit (ε = μ = 0). Here, ε and μ are related to the Bogdanov vector field, while k plays
the role of step length in the discretization, such that for a small k, the map behavior will resemble
the original vector field. The dissipative Hopf parameter ε determines the birth and growth from the
origin for the primary Hopf invariant circle; the stability of this circle is determined by μ, while the
Hamiltonian discretization parameter k determines the birth and growth of the island chains.

2.2. Paraxial Matrix Analysis

The description of ray or Gaussian optics with matrices turns both the analysis and composition
of optical systems into a simple and straightforward task, since this technique allows us to represent
the behavior of any optical element as a 2 × 2 matrix. Cylindrical symmetry is used around the optical
axis, so that for any given position z both the perpendicular distance of any ray to the optical axis (y)
and its angle with the same axis (θ) can be defined; thus, any optical system can be represented by an
[ABCD] matrix, (

yn+1

θn+1

)
=

(
A B
C D

)(
yn

θn

)
(8)

In passive optical elements (mirrors, lenses, interfaces between two media, etc.), elements
A, B, C, D are constant; nevertheless, for nonlinear optical elements, they are not necessarily constant,
but may be functions of different parameters; The description of an optical system described by a
Bogdanov Map requires (from Equation (7)) that the coefficients A, B, C, D be:

(
A B
C D

)
=

⎛⎝ 1
θn+1

θn
k(yn − 1) 1 + ε + μyn

⎞⎠ (9)

where the value
θn+1

θn
can be written as

θn+1

θn
≡ 1 + ε + yn[

k
θn

(yn − 1) + μ] .

In Figure 1, we sketch the diagram of our optical system, where the [a, b, c, e] matrix is the
unknown map generating device, located between the plain mirrors M1 and M2 at a distance d/2,
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while M3 is a phase-conjugated mirror. For this system, the total transformation [ABCD] matrix for a
complete round trip is written as follows:(

A B
C D

)
=

(
1 0
0 −1

)(
1 d
0 1

)(
1 0
0 1

)(
1 d/2
0 1

)

×
(

a b
c e

)(
1 d/2
0 1

)(
1 0
0 1

)(
1 d
0 1

) (10)

which gives

=

(
a + 3cd

2 b + 3d
4 (2a + 3cd + 2e)

−c − 3cd
2 − e

)
(11)

A = a +
3cd
2

B = b +
3d
4
(2a + 3cd + 2e)

C = −c

D = −3cd
2

− e

Figure 1. Phase-conjugated ring resonator with an intracavity chaos-generating element.

To reproduce the behavior of the Bogdanov map by means of a ray within the optical ring resonator,
each round trip described by (yn, θn) must be considered as an iteration of the Bogdanov map. Next,
we take the previously obtained [ABCD] matrix elements of the Bogdanov map, Equation (9), and
equate them to the total [ABCD] matrix of the resonator, Equation (11); this in order to generate the
round-trip map dynamics for (yn+1, θn+1). Note here that the results obtained are only valid for a small
b value, (b ≈ 0): this is because before and after the matrix element [a, b, c, e], there is a propagation of
(d − b)/2. Meanwhile, for a general case, Equation (11) ought to be replaced by the following:
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(
A B
C D

)
=

(
1 0
0 −1

)(
1 d
0 1

)(
1 0
0 1

)(
1 d−b

2
0 1

)

×
(

a b
c e

)(
1 d−b

2
0 1

)(
1 0
0 1

)(
1 d
0 1

) (12)

which gives (
a − c

2 (b − 3d) 1
4
[
b2c − 2b(−2 + a + 3cd + e) + 3d(2a + 3cd + 2e)

]
−c 1

2 (bc − 3cd − 2e)

)
(13)

A = a − c
2
(b − 3d)

B =
1
4

[
b2c − 2b(−2 + a + 3cd + e) + 3d(2a + 3cd + 2e)

]
C = −c

D =
1
2
(bc − 3cd − 2e)

This is the total round-trip transformation matrix for the general case.

2.3. Bogdanov Beams

We define ‘Bogdanov beams’ as beams that behave on the yn and θn optical ray parameters
according to the Bogdanov Map given by Equation (7), i.e., Beams produced in the above optical
resonator that undergo the Bogdanov map dynamics will be called ‘Bogdanov beams’. To obtain the
Bogdanov beams, the matrix elements of Equation (9) must be equaled to the elements of Equation (11),
thus giving the system.

a +
3cd
2

= 1

b +
3d
4
(2a + 3cd + 2e) = 1 + ε + yn[

k
θn

(yn − 1) + μ]

−c = k(yn − 1)

−3cd
2

− e = 1 + ε + μyn

(14)

This system is solved to obtain the [a, b, c, e] matrix elements. Therefore, the intracavity matrix
that produces Bogdanov Beams is

(
a b
c e

)
=

⎛⎜⎝[1 +
3
2

kd(yn − 1)]
θn+1

θn
− 3

2
d
{

3
2

kd(yn − 1)− ε − μyn

}
−k(yn − 1) −[1 + ε + μyn +

3
2

kd(yn − 1)]

⎞⎟⎠ (15)
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2.4. General Case for Bogdanov Beams

Taking the elements of matrix Equation (9) and equating them to the ones of matrix Equation (13),
we get the following system, which is analogous to Equation (14):

a − c
2
(b − 3d) = 1

1
4

[
b2c − 2bα + 3dβ

]
= 1 + ε + yn[

k
θn

(yn − 1) + μ]

−c = k(yn − 1)
1
2
(bc − 3cd − 2e) = 1 + ε + μyn

(16)

Here α = (−2 + a + 3cd + e) and β = (2a + 3cd + 2e).
Solving the system found in Equation (16), we find two new [a, b, c, e] matrices,

Equations (17) and (18). These matrices contain all the dynamic information of the Bogdanov map
taking into account the thickness b of the intracavity element,

(
a b
c e

)
=

⎛⎜⎝
1

6θn
(ϑn − γn)

1
3kθn(yn − 1)

(ϕn + γn)

k(1 − yn)
1

6θn
(�n − γn)

⎞⎟⎠ (17)

(
a b
c e

)
=

⎛⎜⎝
1

6θn
(ϑn + γn)

1
3kθn(yn − 1)

(ϕn − γn)

k(1 − yn)
1

6θn
(�n + γn)

⎞⎟⎠ (18)

were γ, ϑ, ϕ, � are defined as:

γn ≡ {θn[−12k2(yn − 1)2yn + θn[36k2d2(yn − 1)2 + (2 + ε + μyn)
2

−12k(yn − 1)(1 + ε + μyn + d(−1 + ε + μyn))]]}1/2

ϑn ≡ θn(8 + ε + 12kd(yn − 1) + μyn)

ϕn ≡ −θn(2 + ε + 3kd(yn − 1) + μyn)

�n ≡ θn(−4 − 5ε + 12kd(yn − 1)− 5μyn)

the intracavity chaos-generating matrix, whose bn element is given as follows;

bn ≡ 1
3kθn(yn − 1)

(ϕn − γn) (19)

3. Results

3.1. Computer Calculations

The dynamic behavior of the phase-conjugated resonator in phase space was studied through
numerical iteration of the obtained matrices, Equations (17) and (18). To find valid trajectories on
the phase plane values for yn, θn must be real numbers at every iteration, diverging trajectories are
only mathematical possibilities since they cannot be related to any physical reality given that they
do not meet the stability requirements to stay within the resonator. Also, the bn intracavity element
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from the matrices must be greater than zero at every iteration, while being smaller than the mirror
resonator separation distance. These conditions ensure that the trajectories are on the real phase plane
and within a stable trajectory, greater than zero at every iteration, given that the bn element is related to
the total round-trip distance traveled by the Bogdanov beam within the resonator. The last condition
ensures that no ‘negative distances’ are traveled.

Iterations were carried out using Equation (18) for values of the control parameter d, where the
iterations (yn, θn) have physical meaning. The system displays high periodicity for 0.91 < d < 1,
Figure 2a. Also, a short region of low periodicity appears within a high periodicity range where
d = 0.99 Figure 2b. For d > 0.9925, the Bogdanov beam resonator exhibits a period-doubling route to
chaos, Figure 2c.

Figure 2. Phase space (yn, θn), equivalent to a round trip inside the resonator for (a) d = 0.95,
(b) d = 0.99 and (c) d = 0.998; in all cases k = 0.295, ε = 0.01 and μ = −0.1.

The bifurcation diagram of bn with was obtained to understand the dependence of the intra cavity
nonlinear element bn with respect to parameters; d, k and ε of the Bogdanov map. Advantages of
this bifurcation diagram is that it gives a global view of the dynamic element bn as one or several
parameters are changed.

Figure 3a shows the bifurcation diagram of local max of bn as a function of parameter d. In this
figure, high periodicity is interrupted by regions of low periodicity windows and a route to chaos
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by period-doubling is shown. The same result is also shown while plotting the temporal Inter Peak
Intervals (IPI) of bn as the parameter d is varied, Figure 3b. Comparing Figure 3a and Figure 3b, it is
shown that Figure 3b clearly illustrates a rich dynamics that shows high periodicity for 0.91 < d < 1,
Figure 2a, interrupted by low periodicity windows of for d = 0.99, Figure 2b. The bifurcation diagrams
show a route to chaos due to period-doubling, Figure 2c.

Figure 3. (a) Bifurcation diagram of local max of bn as a function of parameter d. (b) Temporal inter
peak interval (IPI) of bn as a function of parameter d; in both plots, the following fixed values were
used: k = 0.295, ε = 0.01 and μ = −0.1.

As can be seen, the dependence of the intra cavity nonlinear element bn to parameter d of the
phase-conjugated ring resonator has been shown. In the following figures, dependence of bn on the k
and ε parameters of the Bogdanov map will be displayed. Figure 4 shows the bifurcation diagram of the
local max of bn as a function of parameter k. Although Figure 4 is qualitatively similar to Figure 3a clear
difference is noted when the low periodicity windows are considered. It can be observed that when
the parameter k is increased, the region of high periodicity is interrupted by windows with low values
of periodicity, i.e., for k = 0.2964, and for k = 0.30735 exhibits a route to chaos by period-doubling.
The phase space (yn, θn) for particularly cases of high and low periodicity and chaos is shown in
Figure 5a–c respectively.
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Figure 4. Bifurcation diagram of local max of bn as a function of parameter k, for d = 0.9837, ε = 0.01
and μ = −0.1.

Figure 5. Phase space (yn, θn). High periodicity for (a) k = 0.2925, low periodicity for (b) k = 0.30434
and chaos for (c) k = 30735, in all cases d = 9837, ε = 0.01 and μ = −0.1.
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In addition, the phase space (yn, θn) for different values of k with d fixed in chaotic region are
plotted in Figure 5, while the bifurcation diagram of local max bn as a function of ε for same values of k
and d, are plotted in Figure 6. In this figure, we can see that for k = 0.2894, Figure 5a, the bifurcation
diagram of local max bn presents a high periodicity for all the range of control parameter ε; see Figure 6a.
With further increase of parameter k to values of k = 0.30434, Figure 5b, the bifurcation diagram
Figure 6b show a short interval of ε where the local max of bn exhibits low periodicity windows that
interrupts a region of high periodicity. Finally, for k = 0.30735 (chaotic region of Figure 5c), Figure 6c
shows regions of high periodicity interrupted by low periodicity windows and a large region of route
to chaos by period-doubling as control parameter ε is increased.

Figure 6. The bifurcation diagram of local max bn as a function of ε for three different values of k with
d fixed in the chaotic region, and μ = −0.1. (a) k = 0.2925, (b) k = 0.30434 and (c) k = 0.30735.

4. Conclusions

In this paper, a matrix transformation over the Bogdanov map is proposed to obtain an intra
cavity element that can yield the same rich, dynamical behavior within a phase-conjugated ring
resonator. We began our study by obtaining the Bogdanov Map through the use of Euler method
for discretization over the Bogdanov Vector Field; then, we introduced the paraxial matrix analysis
(or ABCD propagation law): this was done in order to simplify the analysis for the complete resonator
system, enabling us to express this system as a simple dynamical matrix Equation (8). Once these
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central concepts had been introduced, we proceed to obtain what we call “Bogdanov Beams”, which are
beams produced in an optical resonator undergoing the Bogdanov map dynamics. Then, we studied a
simple case of ‘Bogdanov Beams’ where the thickness of the intra cavity element is considered to be
negligible. Next, we moved on to the general case, where the thickness of the intracavity element is
greater than zero. While it may seem a trivial difference, this general case introduces a new parameter
d in our final matrix transformation, which adds up to the three initial parameters from the Bogdanov
Map (k, ε, μ), therefore increasing the dimension of the problem and contributing to the non-linearity
of the map. Once the explicit expressions for the general case were obtained, Equations (17) and (18),
computer programs were made that allowed us to search the 4-dimensional parameter space for
combinations that yield stable trajectories; this is no easy task, since the stability of the trajectories is
also dependent on the initial values (y0, θ0), due to this, often the trajectories will not have physical
meaning; it is important to remark that we analyzed valid intervals of the parameters (k, ε, μ and d).
We have found that the intracavity element, bn, Equation (19), is responsible for the different dynamic
behavior of the optical resonator. The response of bn to the parameters (k, ε, μ and d) by bifurcation
diagrams of local max and IPI of time series of bn has been accomplished.

The dependence of bn with respect to d, which is the distance between plain mirrors of
the phase-conjugated ring resonator showed low, high periodicity and route to the chaos by
period-doubling behavior, see Figure 3. Similar behavior was observed when the dependence of
bn was analyzed with respect to the parameters k, ε while μ and d were fixed, see Figure 4. Interesting
results were found for the dependence of bn on the parameter ε for different fixed values of k. For
a small value of k = 0.2925, the bifurcation diagram shows high periodicity of low amplitude, see
Figure 6a. With an increment of k = 0.30434, we have low periodicity windows within high periodicity
regimens, see Figure 3b. Finally, at k = 0.30735, the bifurcation diagram of local max of bn, shows
rich dynamics, with low and high periodicity regions and a route to chaos by period-doubling, see
Figure 6c.

Based on the behavior observed, we conclude that the matrix transformation used was successful
in generating a dynamical system that preserves the main structures found in the Bogdanov map. The
practical implementation of an intracavity element is a complex technical challenge far beyond the aim
of this work. Interested readers on this matter may consult reference [9].
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