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Editorial 
Sensors for Fluid Leak Detection 

Gonzalo Pajares Martinsanz  

Department of Software Engineering and Artificial Intelligence, Faculty of Informatics,  
University Complutense of Madrid, 28040 Madrid, Spain; E-Mail: pajares@ucm.es;  
Tel.: +34-1-394-7546; Fax: +34-1-394-7547 

Academic Editor: Vittorio M.N. Passaro 

Received: 1 February 2015 / Accepted: 5 February 2015 / Published: 5 February 2015 
 
Fluid leak detection represents a problem that has attracted the interest of researchers, but not 
exclusively because in industries and services leaks are frequently common. Indeed, in water or gas 
supplies, chemical or thermal plants, sea-lines or cooling/heating systems leakage rates can cause 
important economic losses and sometimes, what it is more relevant, environmental pollution with 
human, animal or plant lives at risk. This last issue has led to increased national and international 
regulations with different degrees of severity regarding environmental conservation. 
Early fluid detection represents an important challenge to avoid the problems mentioned above.  
This special issue was proposed with the aim of attracting new technological developments and 
methods in sensors based on physical, chemical or biological principles. The following is a summary 
of works published in this special issue representing the achievements obtained. They are organized 
according to the main topics and applications addressed in the special issue, which can serve to the 
reader as a first introduction guide to each work: 

1. CO2 and CH4 leakage in natural reservoir with micro-seismicity: In [1] an array of eight  
short-period borehole geophones, three pressure-temperature sensors and two fluid-sample 
sensors were deployed with the aim of detecting induced micro-seismicity associated with CO2 
activity, including injection, within a natural reservoir in the Pembina oil field in 
Alberta/Canada. The primary objective was to investigate potentially occurring CO2-induced 
seismic signatures on a two-week period framing a substantial CO2 and CH4 leakage. 

2. Thermal power plants: An autonomous robotic system is designed in [2] to perform pipeline 
inspection for early detection and prevention of leakages in solar thermal power plants. A 
thermographic camera provides the required information to detect leakages in collectors and 
pipelines and also for tracking purposes. Experiments were conducted in solar plants at the 
Torresol Energy Investments S.A. facilities in San José del Valle, Spain. The solar field is 
composed of nearly 7500 parabolic cylinder collectors that transport a Heat Transfer Fluid 
(HFT), which absorbs the solar energy. HFT circulates at high temperature (~390 °C) inside the 
absorber tubes. HTF leakages detection is the final goal of the proposed system.  
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3. Water distribution systems: Sensors, technologies, methods or procedures can be developed to 
reduce the amount of water leaked in distribution systems. An optimum sensor deployment, 
based on genetic algorithms, is proposed in [3] for leak detection, isolation and location in water 
distribution networks. The proposed approach was tested on the water network of Hanoi, 
Vietnam with 31 demand nodes, one reservoir node and 34 pipes. In [4] a Ground Penetrating 
Radar is the technology used for leaks detection in water distribution systems, the instrument is 
equipped with a monostatic antenna operating at a central frequency of 1.5 GHz. The data 
collected as images are conveniently processed and analyzed based on the identification of 
vertical and horizontal profiles in the images. Wireless Sensor Networks and Radio Frequency 
IDentification (RFID) is the technology used in [5] for the design and simulation of a water 
pipeline leakage monitoring system. The design is based on deploying a group of mobile 
wireless sensor nodes and allowing them to work cooperatively according to a prescheduled 
order. Only a node is active at a time while the remainders are sleeping, which are activated based 
on three kinds of events: location-based, time-based and interrupt-based. Each node, equipped 
with a pressure sensor, a microcontroller and a RFID reader, records pressures and its location 
based on its exposure to signals of active RFID tags placed outside of the pipeline surface. The 
mobile sensor nodes move with the water current from the pipeline source down to the sink 
where the node is collected and its memory content transferred to a computer for numerical 
analysis. In the context of water distribution systems at home, numerical models are tested in [6] 
to determine when an event occurs (tap open, high/low water consumption, seepage). This 
includes leak detection. The hierarchical hidden Markov model (HHMM) is the method used for 
the recognition of such events. RFIDs integrated with pressure sensors are embedded in the pipe 
infrastructure. They collect pressure information and send it along with their IDs to the 
reader/writer destination node to determine the pattern of the event. The network infrastructure, 
together with the communication system, configures a water smart home system that allows 
monitoring the water distribution system and indirectly the leak detection.  

4. Thinning of pipe walls: Leaks can be caused by degradation in the pipelines’ walls, sometimes 
expressed as a thinning. In this regard, in [7] the analysis of transient fluid pressure signals has been 
studied and analyzed for detecting thinning in pipelines. This is carried out by placing high speed 
pressure sensors in contact with the fluid. Analysis based on numerical models is applied to detect 
the transient flow variations inside the pipeline where the geometry changes because of the thinning. 

5. Buried plastic pipes: Experimental studies have been conducted in [8] in order to validate leak 
detection methods in buried plastic pipes using measurements of acoustic pressures (captured 
with hydrophones), velocities (using geophones), and accelerations (obtained with accelerometers). 
The leaks generate broadband noise, which propagates along the pipe, both in the fluid and 
along the pipe-wall either side of the leak, to sensors conveniently located at access points. 
Because in water plastic pipes the pipe-wall and water exhibit strong acoustic coupling 
measurements of leak noises can be made in the pipe for leak detection. The differences  
in the arrival times of the noise at the sensors’ locations (time delays) determine the position  
of the leak. 

 
 



XIII 
 

 

6. Sewer pipelines: Closed Circuit Television (CCTV) is the technology used in [9] for detecting 
leaks in vitrified clay sewer pipes, where the failure level and the position are to be determined. 
Computer vision techniques based on edge detection and morphology image segmentation 
operations are used for such purpose. The CCTV was mounted on a robot connected on the 
ground with a power cable and the Taichung City in Taiwan inspected with the robot traveling 
between manholes. 

7. Ultrasonic in binary gas: In [10] an ultrasonic instrument is used to measurement of leaks of a 
high molecular weight gas (octafluoropropane coolant, C3F8) into a system that is nominally 
composed of a single gas (nitrogen) during a long duration (18 month). The sensitivity of the 
instrument is due to the difference in molecular masses of the two gases in the mixture. The 
impact of variables such as temperature and pressure on the accuracy of the measurement is 
analyzed. Ultrasonic bursts are propagated in a sealed tube designed to provide a smooth 
flowing gas region between two transducers. Each transducer is comprised of a thin, Au plated 
foil stretched over a spirally grooved conductive disk. The foil is held at ground potential and 
the disk is biased between 100 Vdc and 360 Vdc. A 50 kHz pulse train modulates the transducer 
bias voltage, exciting the diaphragm to transmit an acoustic wave in response to the fluctuating 
electric field. A micro-controller creates gated pulses and measures the time of fight pulses 
between the transmitter and receiver transducers. 

8. Offshore Pipelines: Girth-welds in offshore submerged pipelines has been numerically analyzed 
in [11] because their potential to cause leaks. Eight piezoelectric transducers (sensors/actuators), 
enclosed by a special waterproof coating, were bonded to an aluminum pipe in either sides of 
the girth-welds. The electrical connections were sealed manually with silicon and secured by 
heat shrink sleeves. Two excitation methods were applied for conducting the damage detection 
trials during the experiments: (a) impact, with a waterproofed pneumatic hammer; (b) chirp 
waves ranging in 10–5000 Hz, produced by using one of the piezoelectric transducers as 
actuator and conveniently amplified. 

9. Pressure sensors: Pressure changes in fluid distribution networks may be evidences of 
malfunctioning and perhaps of leaks. A clamped-clamped beam-type piezoelectric vacuum pressure 
sensing device is designed in [12]. The piezoelectric element together with a self-actuating and a 
self-sensing microresonator detect the damping ratio of the gas, which allows enabling the 
calculation of the pressure of the vacuum system. The sensing element comprises a piezoelectric 
ceramic lead zirconate titanate (PZT) layer, a substrate and two pairs of electrodes. A pair is 
used to apply a sinusoidal voltage signal and the second pair receives the vibrations. The 
received vibrations are finally converted to electric energy using the positive piezoelectric 
effect. The output voltages, which varied under different gases viscosity and vacuum pressures, 
are measured by the device. 
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Microseismic Monitoring of CO2 Injection at the Penn  
West Enhanced Oil Recovery Pilot Project, Canada: 
Implications for Detection of Wellbore Leakage 

Patricia Martínez-Garzón, Marco Bohnhoff, Grzegorz Kwiatek,  
Gonzalo Zambrano-Narváez and Rick Chalaturnyk 

Abstract: A passive seismic monitoring campaign was carried out in the frame of a CO2-Enhanced Oil 
Recovery (EOR) pilot project in Alberta, Canada. Our analysis focuses on a two-week period during 
which prominent downhole pressure fluctuations in the reservoir were accompanied by a leakage of CO2 
and CH4 along the monitoring well equipped with an array of short-period borehole geophones.  
We applied state of the art seismological processing schemes to the continuous seismic waveform 
recordings. During the analyzed time period we did not find evidence of induced micro-seismicity 
associated with CO2 injection. Instead, we identified signals related to the leakage of CO2 and CH4,  
in that seven out of the eight geophones show a clearly elevated noise level framing the onset time of 
leakage along the monitoring well. Our results confirm that micro-seismic monitoring of reservoir 
treatment can contribute towards improved reservoir monitoring and leakage detection. 

Reprinted from Sensors. Cite as: Martínez-Garzón, P.; Bohnhoff, M.; Kwiatek, G.; Zambrano-Narváez, G.; 
Chalaturnyk, R. Microseismic Monitoring of CO2 Injection at the Penn West Enhanced Oil Recovery 
Pilot Project, Canada: Implications for Detection of Wellbore Leakage. Sensors 2013, 13, 11522-11538. 

1. Introduction 

One of the key-challenges in the frame of long-term sequestration of CO2 is to deliver appropriate 
monitoring techniques to document and quantify the safe storage of CO2 at selected sites [1,2]. Amongst 
the approaches to monitor CO2 storage, Passive Seismic Monitoring (PSM) can deliver critical information 
on the effects of pressure perturbation and fracture generation [3,4]. PSM also allows tracing fluid 
propagation within the reservoir, caprock or along wellbores using locations of small-scale induced 
earthquakes detected at surface and/or borehole geophones [5]. 

PSM is a well-established method in both hydrocarbon and geothermal industries, where it is used to 
monitor reservoir stimulation as well as in fundamental research covering various applications in 
earthquake seismology. Several studies have used this technique to characterize the treatment of different 
types of reservoirs [6–12]. Despite the great potential of the method, it is still not systematically applied 
to the field of CO2 storage. However, recent discussions on the feasibility of large-scale CO2 storage 
include the potential risk posed by induced seismicity [13]. 

There is extensive knowledge supporting the idea that regions with the highest potential for CO2 
storage are basins with thick sequences of sedimentary rocks [14]. This is the case at the Pembina oil 
field in Alberta/Canada, where the Cardium Formation (capping siltstones, shales, and sandstones) is 
confined between Marine Shales and the Blackstone Formation [15]. Recent studies support the view 
that injection in sedimentary rocks generally tends to be less seismogenic than in crystalline rocks [16]. 
This observation is consistent with sparse amounts of induced seismic events all being of low magnitude 
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during and after CO2 injection in sedimentary formations [17,18]. However, in a recent CO2 storage site 
(In-Salah) many seismic events were induced [19]. In this sense, [20] have shown that the deformation 
and the geomechanical response of great CO2 storage fields can be very different from one site to 
another. This supports the idea that the few existing case studies cannot be used to generalize the 
potential for CO2 storage sites to generate seismic events. More pilot field studies are needed to derive 
quantitative statements on the probability of inducing micro-seismicity. 

In 2005, the multidisciplinary research pilot project Penn West established by the Alberta Government 
started injecting supercritical CO2 to Enhance the Oil Recovery (EOR) at the Pembina Field [21,22].  
At this site, the CO2 was injected into the Cardium Formation (1650 m depth) and a percentage of it was 
systematically released again dissolved in the produced oil. To monitor the CO2 injection, a PSM 
campaign was carried out between 2005 and 2008 using an array of eight three-component borehole 
geophones. Since the geophones are placed below the uppermost weathering layer and closer to the 
target reservoir, some of the advantages of using borehole geophones are the substantial improvements 
of noise conditions with respect to the surface as well as the reduction in the attenuation of the signals. 

In this study, we analyse continuous seismic recordings framing a two-week period to investigate 
whether induced micro-seismicity occurred in the frame of the CO2 injection into the reservoir. The 
selected time period includes a substantial outflow of CO2 and CH4 (occurring on 1 September 2005 at 
09:41 AM) observed at the well-head of the monitoring well where the sensors were deployed. 
Therefore, we also aim to further investigate whether the outflow resulted in any sort of seismic 
signatures at the borehole geophones that might serve for an improved detection of along-well gas  
flow (leakage). Different state-of-the-art seismological analysis methods to detect potential induced 
seismicity and/or elevated noise levels were performed. 

2. Data Acquisition 

To achieve a comprehensive multi-parameter monitoring of the target reservoir, instrumentation was 
deployed in a pre-existing vertical production well refurbished as monitoring well. The monitoring well 
was located at approximately 300 m lateral distance to the nearest injector well I1 (Figure 1a). 
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Figure 1. (a) Map of the location of the Pembina oil field and location of the monitoring 
well (triangle) with respect to the injector and the producer wells. P.1–6: Producer wells. I.1, 
I.2: Injector wells (directional wells); (b) Lithological column and instrumentation deployed 
in the monitoring well. Geophone 1 (g.1) is the deepest sensor, placed at 1640 m. Geophone 
8 (g.8) is the shallowest, placed at 1,500 m. 

 
(a) 

 
(b) 

The deployed instrumentation at the monitoring well consisted of eight geophones, three  
pressure-temperature sensors and two fluid-sample sensors (Figure 1b). The instrumentation was 
attached to production tubing and placed inside the production casing. This procedure is common to 
reduce the installation damage. To improve the acoustic coupling of the sensors to the formation, cement 
was retained during the tubing string. However, cementing operations did not proceed as designed and 
a channel was created in the cement annulus [23]. This fact could affect the coupling of some of the sensors. 
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The geophones, fabricated from 316 ELC stainless steel are three-component short-period sensors 
with a natural frequency of 24 Hz and nominal resistance of 12.8 k  per axis [24]. They were placed 
between 1,500 m and 1,640 m depth. Sampling frequency for continuous seismic recordings was set to 
1 kHz. Theoretically, they allow to record signals up to 500 Hz. Assuming a conservative average stress 
drop of 1 MPa, the sensor array should be able to detect nearby micro-seismicity with reasonable high 
signal-to-noise ratio for Mw > 1.5 [25]. This magnitude corresponds to seismic events with source radii 
of a few meters. 

The data from the geophones was analogically acquired and transmitted to the surface. A maximum 
of four geophone housings could be linked together on a single, 24-conductor (12 pair) stranded copper 
electrical cable (one pair per each geophone component). Cables were jacketed for safety. This resulted 
in two electrical cables running to the surface. As the casing was lowered into the well, the geophones 
were still able to rotate around the vertical axis. For this reason, the horizontal orientation of each sensor 
is different [26]. 

3. Methods 

We have applied different seismological techniques to the continuous seismic recordings to investigate 
the quality of the data, potential micro-seismic activity and CO2 leakage signatures. The applied 
methodologies are the following: 

1. Spectrograms were generated to visually inspect the general frequency content of the 
waveform recordings. By using spectrograms, micro-seismic events can be identified by 
short-term amplitude increases in the higher frequency parts (usually >100 Hz, 
depending on magnitude and hypocentral distance). For this analysis, the waveforms 
were previously corrected for the baseline shift (detrended) and high-pass filtered  
(0.8 Hz) to remove potential long-period signals associated with seismic events not 
recordable by the used instrumentation. Additionally, the data displayed significant 
noise at 60 Hz and its multiples caused by electrical equipment located nearby. Signals 
at these frequencies were suppressed by applying two notch filters in the intervals  
55 65 Hz and 115 125 Hz, respectively. We generated spectrograms for the entire 
analysed dataset by taking 1 min time-windows of vertical-component waveform data 
and calculating the short-time Fourier transform of the input signal. 

2. We systematically analysed the average noise levels at each individual sensor to determine 
times of enhanced levels that might be associated with external processes such as e.g., 
nearby fluid flow. This analysis can also provide information as to the quality of the 
individual geophones (e.g., due to poor coupling or mechanical dysfunction). Here, we 
worked with only baseline-corrected data since we were interested in all the frequencies. 
The noise-level analysis for each individual geophone through the entire two-week data 
was based on one-minute long subsets. 

3. We applied a signal-detection Short Time Average-Long Time Average (STA/LTA) [27] 
algorithm to identify micro-seismic signatures in the continuous waveform recordings. 
A STA/LTA trigger detects onset times of characteristic signals (e.g., seismic P and S 
waves) based on a pre-defined minimum ratio of average absolute amplitudes of two 
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time windows with different length. The STA/LTA ratio will increase once an elastic 
wave reaches a geophone. When the threshold of the STA/LTA ratio is reached at a 
particular sensor, the time is saved. For this analysis, the data was processed as for the 
spectrogram calculation. First, the algorithm was appropriately tuned for this specific 
dataset. Then, we run the algorithm on the vertical components of the geophones over 
the entire analysed time period. Finally, a coincidence trigger was applied to the 
obtained geophone-specific detection lists to select only those seen at a minimum 
number of four geophones within a given time window (40 ms). To define the time 
window of the coincidence trigger, a homogeneous velocity model of VP = 3.5 km/s 
(slightly lower than the estimated VP for the formation in [26]) was used. 

4. Lastly, we also looked for potential slow-slip processes included in the data. At reservoir 
scale, Long-Period and Long-Duration (LPLD) events were found in a multi-stage 
hydraulic fracturing experiment [28]. The authors described events observed during 
fracturing periods that have a typical duration of 10–100 s and most of their frequency 
content is in the 10–80 Hz interval. Recent studies [29] indicated that such events are 
not necessarily occurring in the frame of reservoir treatment involving hydraulic 
fracturing. We note that our project was designed to inject large amounts of fluids 
without causing hydraulic fractures in the target formation, and thus it was not very 
likely for such signals to occur. Nevertheless, such studies are still quite sparse and it is 
worth analysing the corresponding frequency band. Note that the frequencies lower than 
24 Hz (the natural frequency of the sensors) will be diminished by the transfer function 
of the sensors. However, since LPLD are reported up to 80 Hz, the available bandwidth 
to investigate is still sufficient to detect them if they occurred. For this analysis we 
applied a band-pass filter in the 5 100 Hz interval. We first stacked the amplitudes for 
all sensors (vertical components), and then calculated spectrograms of 50 min  
time-windows by stacking the spectral density of the vertical components. 

4. Results 

Before the described seismological analysis, manual review of the data revealed that for the last  
1.5 days of the two-week period none of the channels of g.2, g.4 (partially) and g.6 were functioning. 
Additionally, it was also noticed that the horizontal components of these sensors display much lower 
amplitudes than the verticals during the entire analyzed period. Functionality of each geophone is 
summarized in Table 1. 
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Table 1. Summary of geophone status obtained from spectrograms, noise level analysis and 
manual review of the data. 

Geophone ID Depth (m) Geophone Functionality 
8 1,500 Correct 
7 1,520 Horizontal component ‘x’ not recording 
6 1,540 Horizontal components ‘x’ and ‘y’ not recording 
5 1,560 Correct 
4 1,580 Correct during certain periods 
3 1,600 Correct. High noise level (average amplitudes) 
2 1,620 Horizontal components ‘x’ and ‘y’ not recording 
1 1,640 Correct. High noise level (average amplitudes) 

4.1. Spectrograms 

The calculated spectrograms show that most of the energy in the recorded time series was transferred 
in the frequency interval up to 200 Hz (Figure 2). Interestingly, the spectrograms show several short 
time intervals of elevated energy up to 500 Hz (our Nyquist frequency). Such signals are part of the 
frequency characteristics of micro-seismic events and thus would need to be checked in detail. However, 
most of such signals generally do not show any temporal correlation between the individual geophones. 
This suggests that their origin cannot be external (e.g., related to the injected CO2 in the reservoir).  
For this reason, none of the clear high-amplitude signal seen at the sensors could be related to an induced 
micro-seismic event occurring off the array. 

Figure 2. Vertical component waveform recordings and corresponding spectrograms 
calculated for each geophone framing twenty-minute time-windows around the onset time 
of the outflow (09:41). The amplitude of each frequency appears color-encoded. g.2 and g.7 
have much lower energy recorded than the other geophones. g.1, g.3 and g.8 recorded many 
sharp spike-signals, although they do not occur at the same time. g.5 and g.6 show spikes 
with high amplitude, probably triggered internally. Additionally, they still display high 
electronic noise despite of the notch filter. 
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Figure 2. Cont. 

 

 

The spectrograms shown in Figure 2 cover a period of time framing the onset of the outflow (09:41). 
Many of the sensors show clear changes in the recorded frequency content before and after the onset of 
the outflow (Figure 2). After 09:41, much more energy is recorded. This energy is especially prominent 
up to approximately 120 Hz. 

Spectrograms were also used to investigate the quality of the coupling of the geophones to the tubing 
string. A general rule of thumb is, that the better the coupling, the larger is the bandwidth of the transfer 
function of a borehole geophone. In general, all eight geophones are capable to record also high 
frequencies indicating a reasonably good coupling to the well-casing (Figure 2). However, the deepest 
sensor (g.1) and also g.3 recorded overall higher energies. 
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4.2. Noise Analysis 

In general, noise amplitudes at the sensors g.1 and g.3 are higher than the noise levels at the other 
sensors. In addition, g.2 and g.6 recorded significantly lower amplitudes (on average three orders of 
magnitude less) than any other sensor. Comparing these observations and the manual data review with 
the field protocols, we found geophones with odd ID numbers shared one common cable and the geophones 
with even number shared a second one. This resulted in two cables running to the surface. Since common 
characteristics between the even geophones are found, a second explanation for the low amplitudes recorded 
would be a higher resistance of the cable resulting in higher attenuation of the signal. 

Figure 3. (a) Four hours average noise levels at the sensors including the time of the outflow 
(09:41). Each trace is normalized to its overall maximum; (b) Twenty minutes vertical 
component waveform recordings framing the onset of the outflow. Each trace is normalized 
to the overall maximum. g: Geophone. Time of the outflow is indicated by the arrow. 

 
(a) 

 
(b) 

During the reported time of the enhanced CO2/CH4 outflow along the monitoring well (9:41), we find 
an increase of the noise level for seven out of the eight geophones (Figure 3a). Figure 3b shows  
twenty-minute waveform recordings framing the onset of the outflow. Clear differences are visible in 
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the waveform signals before and after the onset of the outflow, which might indicate the arrival of the 
CO2/CH4 front at the geophone array. The increased noise levels are maintained for the remainder of the 
monitoring period studied. No clear preference for the outflow detection in terms of channel orientation 
is found. During the onset of the outflow, most of the sensors present extremely disturbed noise levels 
but no uniform waveform signatures can be identified. Interestingly, the arrival times of the elevated 
noise levels are not displaying a linear move out along the array, but in contrast they are time-delayed 
with no systematic order. To further analyse these signals, we investigated the pressure data measured 
by the sensors installed at the monitoring well (Figure 4). At the time of the onset of the outflow, the 
pressure at the sensor at 1,640 m depth decreased by 1 MPa, while the pressure in the sensor installed at 
1,300 m increased by 300 kPa. Therefore, there was a dramatic gradient of pressure with both depth and 
time which subsequently recovered to the respective pre-outflow level after approximately 2 h.  
The pressure gradient confirms the interpretation of the detected noise level perturbations as a signal 
related to the CO2/CH4 migration along the well. 

Figure 4. (Left): Pressure measured by the sensors inside the observation well during the 
two-week time period analysed in this study. (Right): Zoom on the pressure perturbations at 
the reported time of the CO2 leakage (1 September 2005, 09:41). 

 

4.3. STA/LTA Analysis 

Due to the lack of regional seismicity and since no calibration shots were available, we tuned the 
algorithm parameters based on the accurate detection of several different signals visually identified. 
Figure 5 shows a waveform data example and corresponding detections of the STA/LTA algorithm. 

The resulting detections of the STA/LTA analysis were visually checked and classified into six different 
categories (Figure 6a) and example waveform detections are shown in Appendix A.: A-Type detections 
display large amplitudes at only one geophone, which suggests that the signal was a spike e.g., caused 
during digitization. B-Type detections typically occur close to the start or end times of periods without 
recordings (i.e., no seismic origin). C-Type detections display larger amplitudes at more than one, but 
less than four sensors. D-Type detections have extremely low SNR and thus they can be excluded of 
further analysis. E-Type detections belong to periods when the time series exhibit periodic-electronic 
signals. These signals are not introduced by the data processing, since we can observe corresponding 
waveforms also in the raw data. Finally, F-Type detections are signals that have high similarity between 
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the different geophones. Therefore, they have a higher potential to be weak seismic events. However, 
these signals cannot be associated with typical induced seismicity, since it is not possible to observe P 
and S phases. For this reason, none of the categories actually represent clear elastic waveforms resulting 
from failure of rock but rather very local (in part sensor-specific) signals of different origin. Figure 6b 
shows the daily number of detections for each type. Nearly all A-type and most of the E-Type signals 
occurred after the onset of the outflow. Since both types of detections might be related with electrical 
disturbances, they can be seen as an indicator that the leakage of CO2/CH4 impacted the instrumentation 
and/or the cables used for the data transmission to the surface. Interestingly, the highest number of Type-F 
events is registered on 31 August 2005, which is one day after the shut-in of CO2 injection into the 
reservoir (Figure 6b). It is well known that one of the periods with highest likelihood for induced  
micro-seismicity due to fluid injection is in the shut-in phase. This could be a reason in favour of 
considering Type-F events as weak induced seismicity. However, the number of events induced is rather 
small to be able to establish any conclusion in this respect. Additionally, on 3 September 2005, when 
injection was resumed, electronic spikes and spurious signals increased substantially. Consequently, the 
last injection might again have damaged the cabling/instrumentation resulting in increasing spurious 
signals. Alternatively, the recording equipment at the surface might be responsible for generating these 
signals (through induction or direct impact of the power net). 

Figure 5. Example of waveform analyzed with STA/LTA. Upper part: filtered recordings 
for 20 s of data. The green vertical lines are the detections of the STA/LTA. Middle part: 
STA (black) and LTA (red) functions for the corresponding data period. Lower part: 
STA/LTA ratio. 

 

Since the geophone array was placed on average 1.6 km below the surface, in case of seismic events 
with their sources at similar depths of the instruments, they might be also recorded on the horizontal 
components. For this reason, we finally performed an analogous STA/LTA test also on the horizontal 
components. Once again, the obtained results did not reveal any waveform clearly representing induced 
micro-seismicity. 
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Figure 6. (a) Number of STA/LTA detections of each type detected during the entire 
analyzed period; (b) From top to bottom: daily distribution of detection types from A to F 
and well-head pressure in the Injector well I1 during the two-week period.  

 
(a) 

 
(b) 

4.4. Analysis of Low-Frequency Signals 

 We found potentially relevant signals that display a similar spectral content and duration as the 
LPLD events (Figure 7a). However, other possible sources for these signals cannot be excluded and, 
after manual review of the relevant signals in each individual sensor, no coherent signal in several 
geophones could be identified. Given the unknown orientation of the horizontal components of each 
geophone, we cannot perform an analogous horizontal stack to check the consistency of these signals in 
other channels. 

The low-frequency data processing pointed our attention towards several signals with similar 
waveforms of micro-earthquakes, especially following the CO2/CH4 outflow. Figure 7b shows the 
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waveform data stacking vertical components for a time-window of 100 min and then calculating 
spectrograms. As pointed out already, after the onset of the outflow (09:41), there is a clear change in the 
frequency content (see Section 4.1) and several signals with waveforms similar to microseismicity can be 
identified. However, these signals have lower frequencies than those of typical micro-seismic events, and 
most of them are only detected in one individual geophone. In consequence, we interpret these signals to 
be associated with the CO2/CH4 flow along the monitoring well and passing by the geophones. 

Figure 7. (a) Example of signals with high similarity to LPLD events (framed by red 
rectangles). Upper part: stacking of the amplitudes of the vertical components. The plot has 
been re-filtered with a band-pass between 5 40 Hz to reduce electrical noise and better 
visualize the frequency change. Lower part: Spectrograms for the same time period;  
(b) Similar signals to microseismic events (framed by red rectangles). Upper part: Stack of 
the amplitudes for the vertical components of every geophone (100 min time window). 
Lower part: Spectral density stacking for the vertical components of every geophone. 

 

(a) 

 

(b) 



13 
 

 

5. Discussion and Conclusions 

In the Pembina oil field there was a small potential for the occurrence of detectable induced seismicity 
due to its long production record, progressing depletion of the reservoir and the lack of (known) faults 
in the area. However, induced micro-seismicity might occur due to local pressure perturbations caused 
by CO2 injection into the reservoir and/or leakage of CO2 along the monitoring well. In the present study, 
our primary objective was to investigate potentially occurring CO2-induced seismic signatures focusing 
on a two-week period framing a substantial CO2 and CH4 leakage along the monitoring well. 

The seismological techniques applied to the continuous seismic data recordings did not result in 
detection of any signal clearly associated with micro-seismic events with source size greater than a few 
meters. The most promising Type-F events detected with the STA/LTA analysis do not reflect 
sufficiently strong signals, and therefore it was not possible to determine their source location or to 
perform any further analysis. The potential LPLD signals identified with the low-frequency analysis 
cannot be considered as micro-seismicity either since they were detected mainly on one sensor. 

As a consequence of the lack of induced seismicity reported, our study is in good agreement with the 
general view that fluid injection in sedimentary formations tends to trigger less seismicity than injection 
in crystalline rocks. This statement, of course, is subjected to the volume of injected CO2. 

The most striking observation from our analysis is that we clearly identified signals related to the 
outflow of CO2/CH4 in that seven out of the eight geophones show an elevated noise level and complex 
signals during the reported onset. The fact that these signals are not occurring simultaneously leaves 
open several questions related to the actual processes triggering these signals. Since no preference in 
terms of channel detection was found for the elevated noise, and given the observed complexity of the 
signals, the origin of the elevated noise could be partially electronic disturbances introduced by the front 
of CO2/CH4 arriving to the sensors and damaging certain components. 

In some studies, seismic signals associated with the drastic volume increase of CO2 during its phase 
change from supercritical to gaseous have been reported [17,30]. For the Penn West Pilot Project at  
the Pembina Field, the thermal gradient and reservoir pressure were 2.9 °C/100 m and 2.10 MPa, 
respectively [31], and therefore it is reasonable to believe that the phase change of the CO2 and the 
resulting elastic waves would occur at depth levels around 1,000 ± 100 m. Since in our case the geophone 
array was placed much deeper (1,500–1,640 m) and given the small energy of such signals, the current 
location of the monitoring equipment would not allow detecting them, although they might have 
occurred in the context of the outflow. This conclusion, however, is restricted to CO2, while any similar 
behaviour for the CH4 would need to be evaluated in detail separately. 

Due to the CO2/CH4 leakage reported along the observation well, the data from our borehole 
geophone array provide valuable hints about processes related to the migration of CO2. This case study 
is a good example to illustrate the importance of performing an appropriate deployment of the 
instrumentation and a good preparation of the data acquisition system in order to obtain reliable and 
correct data for the reservoir monitoring. 
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Appendix A 

Figure A1. Examples of signals identified by the STA/LTA observed during the two-week 
time period analysed in this study. Each subfigure shows the vertical components of 
geophones 1 to 8 from bottom to up. Date of the detection appears in the top of each  
plot (dd/mm/yyyy). Each trace is normalized by the maximum of and interval which covers 
0.1 s before and after the detection. (a–c): Examples of detections from Type-F events.  
(d): Type-A event with the largest amplitude registered in geophone g.3. (e) Type-B event 
at the edge of a period without recording (typical recording for the last days of the two-week 
period). (f) Type-E event in which periodic signals appear in g.8. 

(a) (b) 
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Figure A1. Cont. 
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Thermal Tracking in Mobile Robots for Leak
Inspection Activities
Aitor Ibarguren, Jorge Molina, Loreto Susperregi and Iñaki Maurtua

Abstract: Maintenance tasks are crucial for all kind of industries, especially in extensive industrial

plants, like solar thermal power plants. The incorporation of robots is a key issue for automating

inspection activities, as it will allow a constant and regular control over the whole plant. This paper

presents an autonomous robotic system to perform pipeline inspection for early detection and

prevention of leakages in thermal power plants, based on the work developed within the MAINBOT

(http://www.mainbot.eu) European project. Based on the information provided by a thermographic

camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage

detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target

in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols

the plant. The information provided by the particle filter is further used to command a robot arm,

which handles the camera and ensures that the target is always within the image. The obtained

results show the suitability of the proposed approach, adding a tracking algorithm to improve the

performance of the leakage detection system.

Reprinted from Sensors. Cite as: Ibarguren, A.; Molina, J.; Susperregi, L.; Maurtua, I.

Thermal Tracking in Mobile Robots for Leak Inspection Activities. Sensors 2013, 13, 13560–13574.

1. Introduction

Efficient and effective maintenance is crucial for all kinds of industries. In the case of capital

intensive investment industries, such as petrochemicals, the steel industry or power generation plants,

it is even more relevant and has an important impact on the operation costs during the long lifecycle

of their production means.

Automating inspection activities in industrial plants, especially in extensive plants, poses strong

requirements from different points of view: a huge number of elements to inspect (pipes, valves,

switches, pumps, vessels, motors, vibrating machinery, chillers, ovens, etc.), handling multiple

sensors or special non-destructive testing equipment to be used (visual, ultrasonic, vibration,

radiography, thermography, eddy current, noise analysis, gas sensors, etc.) and extensive production

facilities that spread out for thousands of square meters, either in the vertical or horizontal, and risky

working conditions for maintenance personnel, due to the presence of hazardous materials.

This paper presents part of the work performed in the MAINBOT European project. This project

aims at developing service robot applications to autonomously execute inspection tasks in extensive

industrial plants. The objective is to develop a surveillance robotic system able to detect the leakage

of fluids using a vision system in the thermal and visible ranges. To validate the proposed solution,

a solar plant of cylindrical-parabolic collectors is used, testing the approach in a very demanding

environment from a mobile manipulation point of view.
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The paper is organized as follows. Section 2 gives information about related works. Section 3

introduces the inspection task to be performed by the system. Section 4 presents the proposed

approach, the architecture for leak inspection in solar thermal plants and autonomous navigation.

Sections 5 and 6 are devoted to the leakage detection algorithm and the tracking system, respectively.

In Section 7, the experimental results of the system are shown. Finally, Section 8 poses the obtained

results, as well as the future work to be done.

2. Related Work

Robots have been used for maintenance tasks in a wide range of applications and environments.

From preventive maintenance of high-voltage transmission power lines [1] to inspection of

cables [2] and nuclear reactor pressure vessels [3] in the nuclear industry, autonomous systems

are used in many industries in an attempt to improve maintenance tasks. Focusing on pipeline

inspection, Suzuki et al. [4] propose an autonomous robot for industrial pipeline inspection by

means of ultrasonic diagnosis equipment. In the same way, Camerini et al. [5] present an underwater

inspection robot for offshore pipeline inspection, using the pipeline itself for guidance purposes.

Even so, a few works add some tracking tools as particle filters to improve the inspection task.

Several works have also been performed using thermal images for tracking and detection.

Jiping et al. [6] propose a target detection and tracking system based on different morphological

operations. Senthil Kumar et al. [7] pose the fusion of thermal images with 2D images for tracking

Unmanned Aerial Vehicles (UAVs), adding optical flow techniques, such as LucasâĂŞKanade and

HornâĂŞSchunck methods. Finally, Padole and Alexandre [8] propose the use of particle filters

for human tracking with thermal images, using motion information to feed the particle filter.

The presented work also proposes the use of particle filtering, although it uses the whole image

information and dynamics to feed the particle filter, not only the motion information.

3. Task Specification

Valle 1 and 2 are two solar thermal power plants, whose promoter and owner is Torresol

Energy Investments, S.A., and which are located in San José del Valle (Spain); see Figure 1.

Valle 1 and 2 are two adjacent solar thermal power plants that generate electricity by means of

cylindrical-parabolic collectors.
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Figure 1. Valle 1 and 2 solar thermal power plants.

The solar field is composed of nearly 7,500 parabolic cylinder collectors. These collectors

transport a Heat Transfer Fluid (HTF), which absorbs the solar energy. HTF circulates at a high

temperature (around 390 ◦C) inside the absorber tubes, which is used after to heat the molten salts to

generate steam in the Steam Generation System (SGS).

Swivel joints are critical points where leakages may happen (this is the point where the collector

tube connects with the infrastructure of pipes that are deployed all over the plant). HTF leakages

are not desirable, as oil losses may be unsafe, due to the high temperatures reached in the solar

power plant. Early detection and prevention of leakages is a key issue for the maintenance of

those kinds of facilities. Even so, the huge area of solar power plants makes it difficult to perform

proper maintenance, due to the large amount of kilometers of collectors and pipelines, as well as the

hazardous environment with the really high temperatures reached in its elements.

Nowadays, the inspection is performed by human operators using a thermographic camera while

they travel along different parts of the solar plant by car through poorly asphalted and dirt roads.

The inspection is carried out while the vehicle is moving, looking at the screen to analyze the thermal

image and detecting leakages. Even so, the operator must inspect the image for long time periods

(around 2 h) while correcting the the pose of the camera to keep the pipeline in the field of view when

irregularities in the terrain appear, which may lead to leakages being left undetected.

4. Proposed Approach

Based on the task specifications posed in the previous section, this paper proposes an

autonomous robotic system to perform the pipeline inspection for early detection and prevention of

leakages. The autonomous robot patrols along the power plant while inspecting the collectors using

thermographic images to identify the leakages. The inspection system continuously analyzes the

images in order to monitor the status of the elements, the tube in this case, and highlight anomalies.

Initially, a path is defined for the robotic platform based on a hybrid map approach mixing

topological graphs with local occupancy grids. Using the information provided by a GPS/IMU

sensor, the robot executes the planned path. During this execution, the system takes advantage of

a local metric planner to avoid obstacles and follows the initial path as close as possible.
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Even so, irregularities in the terrain (poorly asphalted road and dirt road) make it difficult to

perform the inspection using a fixed camera mounted on the robot, as the pipeline can be out of range

when slopes and bumps are found on the road. Taking this into account, the addition of a robotic arm

is proposed to allow the manipulation of the thermal camera and to track the pipeline through the

inspection task. The aim is to establish a coordination between the thermographic inspection and the

robot arm movements in order to keep the objective in the field of view of the camera.

The next sections will give information about the used hardware and system architecture,

including the different software units defined within the system and the navigation system.

4.1. Architecture

The architecture presented in this paper is based on the specifications and work performed in

the MAINBOT project. The main robotic platform used is a RobucarTT developed by Robosoft

(http://www.robosoft.com/), designed for outdoor environments and with the Ackermann steering

geometry. The robot includes a GPS/IMU sensor for localization purposes, which provides the robot

position with an accuracy of 0.20 m. The platform also has a robotic arm attached to it, which is

employed in this case to handle a thermographic camera, specifically, an FLIRThermoVision� A20.

This thermographic camera is used for leakage detection, as well as for tracking purposes. Figure 2

shows the physical elements of the architecture.

Figure 2. Robotic platform and thermographic camera.

There are two main tasks to be performed by the robotic platform while the predefined path

is being executed by the robotic platform: on the one hand, to inspect the pipelines to search for

leakages; on the other hand, to track the pipeline in order to send movements to the robotic arm and

to maintain the pipe in the field of view of the camera. To this end, as shown in Figure 3, two different

modules have been defined in the software architecture:

• Leak inspection unit: the unit in charge of receiving images from the thermographic

camera and analyzing them in order to detect leakages in the collectors. Based on different

morphological operations in the image, the unit is able to detect the leakages in the collectors

in an accurate way.

• Thermal tracking unit: the unit in charge of tracking the pipeline and commanding the robotic

arm to keep the pipe in the field of view of the camera. A particle filter-based tracking system
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is proposed, because to its capacity to accurately model the underlying dynamics and its rapid

adaptation to changing signal features.

Figure 3. Software architecture: leak inspection unit and thermal tracking unit.

Based on this architecture, the system is able to (a) inspect the pipelines and detect leakages and

(b) maintain stable the detection process by means of the tracking process, overcoming the problems

derived from the irregularities of the terrain, while the mobile robot executes the planned path

for inspection.

4.2. Autonomous Navigation

The autonomous navigation approach of the MAINBOT project is based on the use of a hybrid

map consisting of a topological graph overlaid with local occupancy grids. Since the workspace is a

large area, the overall plan is formed on a topological graph, as planning in a large metric map quickly

becomes unwieldy. However, local metric information is used for achieving precise localization

(needed for some operations) and obstacle avoidance. Hence, the path planning is performed in

two steps:

• The overall plan is created in the topological graph, using Dijkstra’s algorithm. This is the

basis for the low level planning.

• The robot navigates locally using local metric maps and a search-based planning algorithm.
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– The global metric planner integrated in MAINBOT generates a path from the current

position to a desired goal by combining a series of short, kinematically feasible “motion

primitives”. Planning is done in x, y and theta dimensions, resulting in smooth paths that

take robot orientation into account. This is especially important for a RobucarTT robot,

as it has nonholonomic constraints (i.e., due to the Ackermann configuration).

– The local metric planner can be seen as a controller that drives a mobile base in the plane.

– An execution component called “move base” links the global and local planners to

achieve the metric navigation.

This navigation approach allows for creating paths for pipeline inspection in two steps, using

the “move base” component to execute the defined path as accurately as possible. The autonomous

navigation module has been developed using ROS (http://www.ros.org) (Robot Operating System)

libraries and packages.

5. Leak Inspection Unit

The aim of this unit is the detection of leakages in the collectors based on information provided

by a thermographic camera. To this end, initially, (a) the image is analyzed, searching for a pipeline

section. Once the pipeline has been found; (b) the section is inspected to detect abrupt changes in the

temperature, which indicate that there are leakages in the collectors.

In this process, as the first step, the object parameters of the thermal camera must be fixed.

To extract the temperature information from an image, the output data of the thermal camera must

be interpreted based on the correct fixing of parameters, such as emissivity, object distance or

reflected temperature.

The emissivity is a surface property that states the ability to emit energy; it is expressed as the

ratio of the radiation emitted by a surface to the radiation emitted by a blackbody. Emissivity is a

unitless quantity and spans from zero to one.

Following the energy conservation law, all energy exchange is compensated mutually: the flux

incident, Φi, is equal to the flux reflected, Φ′
r, absorbed, Φa, and transmitted, Φt:

Φi = Φ′
r + Φa + Φt (1)

In general cases, terms on the right side of Equation (1) are specifically weighted following

particular radiative properties related to reflection (ρ), absorption (α) and transmission (τ ).

These properties are linked together considering the flux exchanges on a semitransparent object

in its environment for which:

ρ+ α + τ = 1 (2)

The general form of KirchhoffÂt’s law provides a link between the absorption and emission

processes and, thus, between emissivity and absorbance, since:

ε(λ, θ′, φ′) = α(λ, θ, φ) (3)

The object distance is defined as the distance from the camera to the surface. Finally, reflected

temperature indicates the temperature reflected by the surface of an object.
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In the case of the glass that covers the collector, it has a high transmissivity, around 94% (0.94),

so the emissivity is fixed to 0.04. The estimated reflected temperature is fixed empirically to 10 ◦C

and the object distance to 10 m, based on the features of the environment and the solar plant.

Once the settings are established, the camera processes the thermal information and provides

an image where pixels give information about the temperature. These values of temperature are

normalized to gray values performing a thermal adjustment between the minimum and maximum

values defined (in our case, between 100 ◦C and 300 ◦C), as shown in Figure 4A.

Figure 4. (A) Thermographic image; (B) Pipeline detection; and (C) Leak detection.

This image is then thresholded, highlighting the pixels with temperatures above 100 ◦C, as they

are related with the pipelines. Skeletonization/Medial Axis Transform [9] is applied to this image,

detecting the longest straight section in the image, as illustrated in Figure 4B. This straight section is

then analyzed to detect temperature changes along the pipeline.

As the first step to detect the temperature changes along the collector, the temperatures of the

previously obtained section are stored, as shown in Figure 5A, where the temperature along the

collector is plotted. Based on these data, the absolute value of the first derivative is calculated as:

ABS(T ′) = |Ti+1 − Ti|, i=[1..N−1] (4)

where Ti is the temperature of pixel i of the pipeline section.

The information about the absolute value of the derivative is used to divide the section into

different parts, which have similar temperature, defining a ΔT threshold (minimum change) to

perform this division. An important consideration is the fact that the joints of different sections of the

collector are metallic and have a high reflectivity, so the obtained temperature is unstable at this point

and must be filtered. In order to filter them, an approximate resolution of the image is estimated

and short parts with abrupt change of temperature are removed, defining a minimum width of the

pipeline part. This allows us to filter short pipeline parts with abrupt temperature changes (joints),

detecting real leakages, which fill a wider space on the image. Once the pipeline is divided, the mean

temperature of each subsection is computed. The pipeline parts above the maximum temperature are

labeled as leakages, as highlighted in green in Figures 4C and 5C.
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Figure 5. (A) Temperature along the pipeline; (B) Absolute value of the first derivative;

and (C) Detection on the plot.

Based on this algorithm, the Leak Detection Unit is able to raise alerts when leakages are detected

while the robot is patrolling along the collectors.

6. Thermal Tracking Unit

Irregularities in the terrain can make it difficult to perform a correct leak inspection, as pipelines

can be out of the field of view of the camera when slopes and bumps are found along the road.

To overcome this problem, a tracking system is proposed based on particle filtering. This tracking

system follows the target pipeline through thermographic image sequences, and it is able to generate

movement commands when the target is reaching the edge of the image. The next lines will give

information about all the elements of the particle filter for thermal tracking.

6.1. Particle Filter

Particle filters [10,11], also known as Sequential Monte Carlo methods (SMC), are sequential

estimation techniques that allow estimating unknown states, xt, from a collection of observations

z1:t = {z1, ..., zt}. The state-space model is usually described by state transition and

measurement equations:

xt = ft(xt−1, vt−1) (5)

zt = gt(xt, ut) (6)

where f and g are the state evolution and observation model functions, respectively, and vt and ut

denote the process and observation noise, respectively.

Based on the previous equations, particle filters allow for approximating the posterior density

(PDF) by means of a set of particles, {x(i)
t }i=1,...,n, using equation:

p(xt|z1:t) =
N∑
i=1

ω
(i)
t δ(xt − x

(i)
t ) (7)
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where each particle, x
(i)
t , has an importance weight, ω

(i)
t , associated with it and δ is the Kronecker

delta. These weights are computed following equation:

ω
(i)
t = ω

(i)
t−1

p(zt|x(i)
t )p(x

(i)
t |x(i)

t−1)

q(x
(i)
t |x(i)

0:t−1, z0:t)
(8)

where p(zt|x(i)
t ) is the likelihood function of the measurements, zt, and, finally, q(x

(i)
t |x(i)

0:t−1, z0:t) is

the proposal density function.

Based on the previously presented equations, the particle set evolves along time, changing the

weights of the particles and resampling them in terms of the observations.

Particle filtering provides a robust tracking framework when dealing with

non-linear and non-Gaussian state and observation functions, as it considers multiple state

hypotheses simultaneously.

6.2. Particle Filtering for Thermal Tracking

In the first step, a tracking process has been defined in an attempt to maintain the object to be

analyzed in the field of view of the thermal camera. A particle filter-based tracking is proposed,

allowing us to correct the position of the robotic arm to maintain the pipe in the center of the

image for a further analysis. In an attempt to develop a thermal tracking system for multiple

detection tasks, the particle filter has been generalized to allow the tracking of objects with different

shapes and configurable for each tracking process (easy reconfiguration for similar scenarios),

although the system modeling explained in the next lines is tuned for the presented environment

and posed problem.

6.2.1. System Modeling

In the presented scenario, the tracking process is able to follow a pipeline in successive frames.

The state of the process is defined as:

Xt = [xt, yt, lt, αt]
T (9)

where xt and yt are the x and y pixel coordinates of the center of the pipeline in the image, lt is the

length of the pipeline and αt is the orientation of the pipeline in time t.

Additionally, the state transition is defined as:

Xt+1 = Xt +ΔtẊt + Vt (10)

Ẋt = [ẋt, ẏt, l̇t, α̇t]
T (11)

where Δt is the time step, Ẋt is the dynamic part describing the variation of the state elements and

Vt is an additive, zero mean Gaussian noise.
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6.2.2. Likelihood Evaluation

For the likelihood evaluation, initially, the thermal image is analyzed to highlight the parts with

a predefined temperature range, in this case, the temperature of the pipe to be tracked. To this

end, thresholding and Skeletonization/Medial Axis Transform algorithms have been used, as in the

leak inspection unit. From this step, a set of N connected regions are extracted; N possible pipe

sections. Those regions form the observation, Zt, where each region, zti , is defined by their center in

pixel coordinates, length and angle:

Zt = zti=1..N (12)

zti = [xt
i, y

t
i , l

t
i, α

t
i]
T (13)

For the likelihood evaluation, initially, the distance between the particle and each of the observed

regions is calculated using the pixel coordinates of the center, length and angle as:

disti = λ
√
(xt − xt

i)
2 + (yt − yti)

2 + β |lt − lti|2 + γ |αt − αt
i|2 (14)

where λ, β and γ are coefficients to weigh the importance of the pixel coordinates, length and angle,

respectively. The distance between the particle and the observation is then calculated as the minimum

distance between the particle and the N regions found:

dist(Xt, Zt) = min(disti), i=[1..N ] (15)

Finally, the likelihood is calculated as the exponential of the distance, as shown in the

next equation:

P (Zt|Xt) = e−dist(Xt,Zt) (16)

Based on the presented likelihood evaluation, the particle filter estimates iteratively the process

state as presented in the next paragraphs.

6.2.3. Particle Filtering Procedure

To initialize the process, when the first pipe is detected, a set of N random particles is drawn

around its position and with its scale and orientation. Afterwards, the procedure of the particle filter

is given as:

• Find the object in the initial thermal image and initialize N particles, X
(i)
0 , with random samples

around it, where w
(i)
0 = 1/N ;

• If ESS < threshold (effective sample size), draw N samples with selection with replacement;
• Predict x

(i)
t = x

(i)
t−1 + vt−1;

• Update importance weights w
(i)
t = w

(i)
t−1P (Zt|Xt); 5: Normalize weights w

(i′)
t =

w
(i)
t /

∑N
j=1 w

(j)
t ;

• Set t = t+ 1, go to Step 2.

In this procedure, ESS [12] (effective sample size) is calculated as:

cv2t =
var(w

(i)
t )

E2(w
(i)
t )

=
1

N

N∑
i=1

(Nw
(i)
t − 1)2 (17)
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ESSt =
N

1 + cv2t
(18)

where N is the number of particles and w
(i)
t is the weight of particle i in time t.

Based on this discrete approximation of the posterior probability, the object is tracked along the

inspection process.

7. Experimental Results

To test the suitability of the proposed approach, a set of experiments have been designed trying

to asses both the leakage detection algorithm and the tracking system. To this end, a database of

image sequences was created in Valle facilities (see Figure 6 ) using actual production means and

replicating the behavior of the maintenance robot:

• Recording of collectors and pipelines using a thermal camera 10 km at night, as performed

now by human operators, divided in sequences of 150 m (half loop of collectors).

• Camera placed on a vehicle circulating at a speed of 20 km/h through a terrain

with irregularities.

• Real leakages appearing in the images.

Based on this real data, two different experiments have been performed. The next lines give

information about each experiment and the obtained results.

Figure 6. Sequence of thermographic images on Valle facilities.

7.1. Results of the Leak Detection

An efficiency of the leak detection has been tested using 60 different thermal sequences. In those

60 sequences, human operators found a total of seven leakages during the recording session, which

were labeled in the database. Those 60 sequences were analyzed by the previously presented

algorithm, searching for leakages. A threshold, ΔT , of 70 ◦C was established for the detection

algorithm empirically based on the gathered data. In order to have numeric data, a mean value for

each stretch of the tube with temperature change (filtering joints) was also saved.

Figure 7 shows an example of the output of the algorithm while performing the validation test,

where each column is related with a sequence. The first row indicates the image sequence ID, while

the next rows show the mean temperature of the pipe section along the collectors where abrupt

changes of temperature can be observed. Pipe parts with a high temperature (leakages) are marked

in red.



29

Figure 7. Example of changes in temperature in recorded image sequences.

The algorithm found all the leakages labeled by human operators, obtaining 100% sensitivity.

Besides, six more leakages were found along the sequences, leakages that match exactly with the

previous leakage patterns. Based on the similarity and after an analysis of the new leakages, they

could be considered as real leaks that were missed by the human operators during visual inspection.

7.2. Results of the Tracking Process

To test the efficiency of the particle filter for tracking, 10 different image sequences have been

used, each of them with 200 images approximately (a total of 2,000 images). For each sequence, the

particle filter has been initialized using the first pipeline appearance, and the pipeline has been tracked

through the rest of the images. In this experiment, the manipulation of the robotic arm has been left

out of the scope of this manuscript, as the sequences have been recorded by a human operator from a

car and it is not possible to simulate the arm movements. For each frame, the error between the output

of the particle filter and the labeled images has been computed, as shown in Figure 8. Images show

peaks in the error plots, derived from the image noise and irregularities in the terrain.

Figure 8. Tracking error during a recorded sequence in position in X and Y orientation

and length.
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Specifically, the experiment measures the tracking error in position, angle and length of

the pipeline, using different parameters for the particle filter. Those are the specifications of

the experiment:

• Six different particle filter configurations have been set up, mixing different state estimation

methods and numbers of particles. Specifically, the state estimation methods are:

– Best particle (the one with maximum weight);

– Robust mean with the 10 particles with the maximum weight;

– Weighted mean using the whole particle set;

• For each configuration, the previously cited image sequences have been used, tracking the

pipeline through around 2,000 images; the mean error and standard deviation of the position,

angle and pipe length has been measured for all the configurations;

• In the likelihood evaluation step, the same values for coefficients λ, β and γ have been used,

applying values that give a similar weight to position, angle and length.

Table 1 shows the obtained results. The first column describes the number of particles and the

estimation method, the second and third columns, the mean (μ) and the standard deviation (σ) of the

error in the position and the fourth and fifth columns, the mean (μ) and the standard deviation (σ) of

the error in the angle, and finally, the last columns show the mean (μ) and the standard deviation (σ)

of the error in the length.

Table 1. Results of the Tracking Process.

Pos. Error (pix) Angle Error (◦) Length Error (pix)
μ σ μ σ μ σ

500 - Best particle 1.80 1.27 0.96 0.86 3.16 2.58

1,000 - Best particle 1.42 0.95 0.72 0.63 2.94 2.51
500 - Robust mean 10 1.82 2.11 0.51 0.41 2.86 5.35

1,000 - Robust mean 10 1.57 1.83 0.41 0.34 2.65 5.66

500 - Weighted mean 6.34 5.39 0.43 0.36 3.67 7.68

1,000 - Weighted mean 6.11 4.67 0.35 0.38 3.45 6.64

Results show a better performance of the particle filter with a set of 1,000 particles, improving

the mean error and standard deviation in almost all the configurations. The addition of a bigger set of

particles could decrease the error rates, although it would be necessary to optimize the computational

time as much as possible to ensure a suitable frame rate. In the case of the state estimation methods,

the best particle and robust mean methods show very similar results, overcoming in any case the

errors of the weighted mean.
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8. Conclusions and Future Work

This paper presents an autonomous leakage detection system for maintenance tasks in extensive

industrial plants, including a leakage detection system. Based on the information provided by a

thermographic camera, the system is able to detect leakages in pipelines and collectors of thermal

power plants. This system is enhanced by a particle filter-based tracking system, used to maintain

the target in the field of view of the camera and stabilize the detection process when irregularities are

found along the road.

The results show a high success rate of the leakage detection unit, reaching 100% sensitivity (on

data labeled by operators) and detecting even more leakages on the recorded sequences. The use

of thermographic information allows for detecting the fluids leaked from the collectors, taking

advantage of morphological operations to highlight the leaks in the thermal images.

Besides, a tracking system has been added to manage the thermographic camera and to avoid the

loss of the target. The particle filtering for tracking has shown a position error of less than 1.5 pixels

and less than a 0.5◦ error in the angle. It also allows for modeling the system in a simple and effective

way, adapting rapidly to the changing image features and data noise.

As further work, there are two main paths to follow: on the one hand, to add the robot arm

movements and to mix the information extracted by the leak inspection unit and thermal tracking

unit with the navigation module to create a complete system that takes into account the navigation

information in the inspection task and vice versa. In the same way, it would also be interesting to

test the tracking system in similar inspection tasks where different elements of the solar plant are

analyzed (valves, vessels, etc.) and observe its suitability.
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Optimal Sensor Placement for Leak Location in Water
Distribution Networks Using Genetic Algorithms
Myrna V. Casillas, Vicenç Puig, Luis E. Garza-Castañón and Albert Rosich

Abstract: This paper proposes a new sensor placement approach for leak location in water

distribution networks (WDNs). The sensor placement problem is formulated as an integer

optimization problem. The optimization criterion consists in minimizing the number of

non-isolable leaks according to the isolability criteria introduced. Because of the large size and

non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used

as the solution approach. The obtained results are compared with a semi-exhaustive search method

with higher computational effort, proving that GA allows one to find near-optimal solutions with

less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor

placement method have been proposed using a time horizon analysis, a distance-based scoring and

considering different leaks sizes. A great advantage of the proposed methodology is that it does not

depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis.

Experiments in two networks allow us to evaluate the performance of the proposed approach.

Reprinted from Sensors. Cite as: Casillas, M.V.; Puig, V.; Garza-Castañón, L.E.; Rosich, A.

Optimal Sensor Placement for Leak Location in Water Distribution Networks Using Genetic

Algorithms. Sensors 2013, 13, 14984–15005.

1. Introduction

Leaks in water distribution networks are an issue of great concern for water utilities, strongly

linked with operational costs and water resources savings. Continuous improvements in water loss

management are being applied, and new technologies are developed to achieve higher levels of

efficiency [1].

The traditional approach to leakage control is a passive one, whereby the leak is repaired

only when it becomes visible. Recently, developed acoustic instruments [2] allow one to also

locate invisible leaks, but unfortunately, their application over a large-scale water network is very

expensive and time-consuming. A viable solution is to divide the network into a district metered area

(DMA), where the flow and the pressure are measured, and to maintain a permanent leakage control

system [3]. Then, leak detection in the DMA consists of monitoring flows at night, when customers

demand is low and the leakage component is at its largest percentage over the flow. Therefore,

practitioners monitor the DMA or groups of DMAs for detecting (and then repairing) leakages by

analyzing the minimum night flow and, also, employ techniques to estimate the leakage level [1].

Regarding leak location methods for DMAs, several works have been proposed in the literature.

For example, a review of transient-based leak detection methods is offered in [4] as a summary of

current and past work. Model-based leak detection and isolation techniques have also been studied,

starting with the seminal paper of Pudar and Liggett [5], which formulates the leak detection and

isolation problem as a least-squares estimation problem. However, in such non-linear models, the
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parameter estimation of the water networks is not an easy task. Alternatively, in [6], a method based

on pressure measurements and leak sensitivity analysis is proposed. This methodology consists in

analyzing the residuals on-line, i.e., the difference between the measurements and their estimation

using the network hydraulic models, regarding a given threshold that takes into account the model

uncertainty and the noise. When some of the residuals violate their threshold, they are correlated

against the leak sensitivity matrix in order to discover which possible leak is present. Although this

approach presents satisfactory results under ideal conditions, its performance decreases in the

presence of nodal demand uncertainty and noise in the measurements. An improved technique has

recently been developed [7,8], where an extended time horizon analysis of pressure measurements is

considered and a comparison between the performances depending on the metric used is performed.

Thus, the development of a sensor placement strategy has become an important research issue in

recent years. Ideally, a sensor network should be configured to facilitate fault detection and maximize

leak location performance. However, it is obvious that only a limited number of sensors can be

installed inside a DMA, due to budget constraints. The main objectives of sensor placement are leak

detectability, isolability and localization. Leak detectability is the ability of monitoring a variation

in pressure due to a loss of water occurring in the network. Leak isolability concerns the capacity

of distinguishing between two possible leak occurrences, whereas leak localization refers to finding

the node where the leak is occurring. There are some works devoted to sensor placement for fault

detection and isolation (FDI). Some approaches propose to locate sensors based on isolability criteria

according to the study of structural matrices [9]. In [10], an optimization method based on binary

integer linear programming searches for an optimal set of sensors for model-based FDI.

Each of the previously mentioned works is used in the general framework of FDI of dynamic

systems. However, there are several contributions dedicated to sensor placement in water distribution

networks. Most of the works have addressed the sensor placement problem regarding contamination

monitoring. See, for example [11,12]; the problem of deploying sensors in a large water distribution

network is considered in order to detect the malicious introduction of contaminants. On the other

hand, less work has been done regarding sensor placement for leak location. In [13], a strategy

based on isolability maximization allows one to optimally locate sensors for leak location based

on the structural model of water network. Closer to our research, in [6], an optimal sensor

placement for leak location is formulated as an integer programming problem. Recently, in [14],

an entropy-based approach for the purposes of efficient and economically viable water loss incident

detection was presented.

This paper proposes a new approach for sensor placement for leak location in DMAs that can be

used with the projection-based location scheme proposed in [7,8]. The proposed approach is different

from the algorithm presented in [6], since no binarization of the leak sensitivity matrix is used,

being able to work directly using the numerical expression of this matrix. As shown in [7,8], leak

isolation methods that use the leak sensitivity matrix without binarization lead to better performance.

In particular, the method that computes the projection (angle) between the observed residuals and

the columns of the leak sensitivity matrix is the one that performs the best. For this reason, the

sensor placement approach developed in this paper uses the non-binarized leak sensitivity matrix and

the projection-based leak isolation approach. The use of the non-binarized leak sensitivity matrix
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leads to completely reformulating the optimization problem solved by the algorithm presented in

[6], since the isolability conditions will be completely different. In a binary context, two leaks are

isolable if the corresponding columns of the binarized leak sensitivity matrix are different. However,

in a non-binarized context, such criteria should be reformulated, as will be shown in this paper.

As in [6], the sensor placement problem is finally formulated as an integer optimization problem.

However, now, the optimization criterion consists in minimizing the number of non-isolable leaks

according to the isolability criteria introduced. Because of the large size and non-linear integer nature

of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach.

The obtained results are compared with a semi-exhaustive search method with a higher computational

cost, proving that GA allows one to find near-optimal solutions with less computational load.

Another advantage is that the proposed sensor placement methodology does not depend on the

isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Moreover,

since the numerical expression of the leak sensitivity matrix is used and this sensitivity depends on

the leak size, among other factors, a robust sensor placement approach is also proposed. Experiments

in two networks allow for evaluating the performance of the proposed approach.

The rest of the document is organized as follows: Section 2 presents the leak localization

methodology in which our work is based. Section 3 describes the problem formulation. Sections 4

and 5 present the sensor placement algorithms proposed in this work, while in Section 6, we show the

improvements performed to increase the robustness of the approach. Section 7 shows the application

and the results obtained in a real water distribution network. Finally, Section 8 concludes this work.

2. Leak Location Methodology

The leak location methodology used in this paper has been introduced in [7,8], as an extension of

the methodology proposed in [6]. This approach is summarized here, since it is the basis on top of

which the sensor placement algorithm proposed in this paper will be formulated.

The leak location methodology aims to detect and isolate leaks in a DMA using pressure

measurements and their estimation using the hydraulic network model. Let us consider a DMA

with m demand nodes and n pressure sensors. The leak detection methodology is based on the

computation of the residual vector r = [r1 . . . rn]
T , where the residual, ri ∈ r, is the difference

between the pressure measurements, pi, and its corresponding estimation, p̂i, obtained from the

simulation of the hydraulic model with no leak, i.e.,:

ri = pi − p̂i (1)

for i = 1, . . . , n. Note that there is one residual for each pressure measurement available in DMA.

The leak isolation method relies on analyzing the residual vector (1) using sensitivity analysis,

which is determined from the different effects on every pressure measurement caused by each
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possible leak at a time. To perform such sensitivity analysis, the following sensitivity vectors are

derived from simulated leak scenarios [6]:

sj =

⎡
⎢⎢⎢⎣

p̂
fj
1 −p̂1
fj
...

p̂
fj
n −p̂n
fj

⎤
⎥⎥⎥⎦ (2)

for j = 1, · · · ,m, where p̂
fj
i and p̂i are the pressure estimation obtained from the hydraulic DMA

model simulation under the leak fj scenario and the leak-free scenario, respectively. More precisely,

each simulated fault scenario is performed by injecting a leak of a magnitude of fj in the jth DMA

network node in order to compute the sensitivity vector (2). For the sake of simplicity and without

loss of generality, m possible leaks (one for each node) have been assumed. Then, the leak isolation is

based on the analysis of the residual vector, together with the sensitivity vectors, in order to determine

which node has the highest risk of presenting a leakage. A variety of metrics can be used to perform

this isolability analysis [15]. In this work, one of the methods presented in [7] based on projections

between residual and sensitivity vectors is used. According to the mentioned study, this method

presents the best performance for the location task. However, it is important to note that the sensor

placement approach proposed in this paper could also be applied using any other leak location method

based on sensitivity analysis (e.g., methods based on the other metrics in [7]).

Let r be the residual vector (1) obtained from the pressure sensors installed in the network.

Its normalized projections, ψj , onto each sensitivity vector are computed as:

ψj =
rT sj
|r||sj| (3)

for j = 1, . . . ,m. Then, the largest projection will determine the candidate node that presents a leak,

i.e., a leak in node k is located if:

ψk = max(ψ1, · · · , ψm) (4)

3. Problem Formulation

The objective of this work is to develop an approach to place a given number of sensors, n, in

a DMA of a water distribution networks (WDN) in order to obtain a sensor configuration with a

maximized leak isolability performance for a given leak detection and isolated scheme. In this work,

we use the method based on projections that has been presented in the previous section.

It should be noted that the length of the sensitivity and residual vectors that appear in

Equations (1) and (2) corresponds to the number of sensors, n, installed in the network. In order to

find a sensor configuration that presents maximum isolability performance regarding all the possible

leak scenarios, the following residual vectors derived from simulated leak scenarios are computed:

rk =

⎡
⎢⎣ p̂fk1 − p̂1

...

p̂fkn − p̂n

⎤
⎥⎦ (5)
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for k = 1, · · · ,m, where p̂fki and p̂i are the pressure estimation obtained from the hydraulic model

simulation under the leak fk scenario and the leak-free scenario, respectively. Note that the magnitude

of the leaks used to compute the sensitivity vectors in Equation (2) and the one used to compute

the residual vectors in Equation (5) are chosen differently (i.e., fj �= fk) in order to increase the

robustness of the method. Taking into account the mentioned residual and sensitivity vectors, the

sensitivity matrix, S, and the residual matrix, R, are constructed by concatenating all sensitivities

and residuals as follows:

S =
[
s1 · · · sm

]
(6)

R =
[
r1 · · · rm

]
(7)

Note that the matrices, S and R, are computed assuming that all the nodes are measured.

To select a configuration with n sensors, the following binary vector is defined:

q =
[
q1 · · · qm

]
(8)

where qi = 1 if the pressure in the node, i, is measured, and qi = 0, otherwise (i.e., the vector q

denotes which sensors are installed). In turn, a diagonal matrix, Q(q), is constructed from the vector,

q, as:

Q(q) = diag(q1, · · · , qm) (9)

Then, the corresponding sensitivity and residual vectors can be determined as:

sj(q) = Q(q)sj, rk(q) = Q(q)rk (10)

for j = 1, · · · ,m, where sj and rk are the sensitivity and residual vectors obtained with all nodes

measured (i.e., m = n, and both vectors, sj , and the vectors, rk, contain m elements each). Finally,

the projections in Equation (3) can be computed depending on the sensors with respect to q as:

ψkj(q) =
rTkQ(q)sj

|Q(q)rk||Q(q)sj| (11)

for j = 1, . . . ,m. Note that the property Q(qT )Q(q) = Q(q) has been used in Equation (11).

Now, we are able to compute the projection matrix, Ψ, as:

Ψ(q) =

⎡
⎢⎣ ψ11(q) · · · ψ1m(q)

...
. . .

...

ψm1(q) · · · ψmm(q)

⎤
⎥⎦ (12)

In order to evaluate the quality of a sensor configuration regarding its capacity to locate a leak at

node i ∈ {1, · · · ,m}, and assuming the case of a single leak, the next error index is introduced:

εi(q) =

{
0 if ψii(q) = max(ψi1(q), . . . , ψim(q))

1 otherwise.
(13)

This means that the error index εi = 0, as long as the leak in node i is perfectly located, and

εi = 1, otherwise.
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As the objective is to maximize the isolability regarding leaks in all network nodes, the error

index that takes into account all the nodes leaks is computed as:

ε̄(q) =
m∑
i=1

εi(q)

m
(14)

We remark that ε̄(q) = 0, as long as a sensor configuration is chosen, such that all possible leaks

can be perfectly located, and 100 · ε̄(q) is the percentage of incorrectly located leaks.

Based on the vector, q, and the extended error index, ε̄(q), the sensor placement problem is cast

as an optimization problem formulated as:

min
q

ε̄(q)

s.t.
m∑
i=1

qi = n

(15)

where q is defined in Equation (8) and n ∈ {1, . . . ,m} is the number of sensors we want to place.

Remark. It is important to note that the solution of the previous optimization algorithm provides

the best sensor location when the size of the leak that we want to locate is close to the value used

for evaluating residuals Equation (5). If the leak size is smaller or larger than this value, the optimal

sensor location could vary. Moreover, the obtained leak isolation error could be larger than the

minimum value obtained as the solution of the optimization problem Equation (15). In a later section,

we will see how we propose to introduce some robustness (i.e., against leak magnitude changes),

improving the overall sensor placement method.

4. Semi-Exhaustive Search Approach

4.1. Semi-Exhaustive Search

As stated in Section 3, the problem of sensor placement involves finding an n-sensor configuration

among a set of m candidate nodes. One trivial approach to solve the problem would be to check all

the
(
m
n

)
sensor configurations. However, this would result in a very high computational cost. Here,

we propose the first algorithm as an alternative to this trivial methodology in order to ensure

the optimal location in a benchmark network. This method involves the search for the best

configuration based on every possible combination, but using lazy evaluation mechanisms to reduce

the computation cost by discarding configurations as soon as we see that they cannot be candidates

for the optimum.
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Algorithm 1 Sensor placement based on semi-exhaustive search.

Require: A sensitivity matrix, S, and a residual matrix, R. The number of sensors, n, the number

of nodes, m, and a (d× n) matrix, L, where d =
(
m
n

)
, i.e., each row is a possible combination of

sensors position.

Ensure: The optimal sensors configuration of index kmin with error ε̄min.

1: minNL ← m

2: for k = 1, · · · , d do
3: qk ← eval_Q(Lk) // cf. Equation (8)

4: Ŝk ← eval_S(qk, S); R̂k ← eval_R(qk, R) // cf. Equation (10)

5: nbkNL ← 0

6: for α = 1, · · · ,m do
7: Ψk

αα ← eval_Ψ(Ŝk, R̂k, α) // cf. Equations (11) and (12)

8: for β = 1, · · · ,m; β �= α do
9: Ψk

α,β ← eval_Ψ(Ŝk, R̂k, α, β)

10: if Ψk
αβ > Ψk

αα then
11: nbkNL ← nbkNL + 1

12: break

13: end if
14: end for
15: if nbkNL ≥ minNL then
16: break

17: end if
18: end for
19: if nbkNL < minNL then
20: minNL ← nbkNL

21: kmin = k

22: end if
23: end for
24: ε̄min = minNL

m

The method is described in Algorithm 1. The goal of this algorithm is to find the optimal

sensor configuration, taking into account all the possible combinations of sensors and considering

the method that will be used to perform the leak location. First, the algorithm initiates the minimum

number of non-localizable (NL) leaks, minNL, found so far to m (line 1). Then, a loop is performed

over each possible combination, k, of sensor configuration (line 2). The binary vector, qk, is

evaluated, which allows one to compute the updated sensitivity and residual matrices, i.e., Ŝk and

R̂k, respectively (lines 3 and 4), and the current number of NL leaks is initiated to be zero (line 5).

Then, the algorithm checks for each potential leak, α, if it can be located with the current sensor

configuration. It evaluates the element (α, α) of the matrix, Ψ, and for each other column, β, of

row, α, it tests if the projection gives a higher score (line 10). If that is the case, then the number

of NL leaks is augmented (line 11), and the other columns of the Ψ matrix do not need to be tested
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(line 12). When the number of NL leaks is higher than the minimum number of NL leaks found

so far, i.e., nbkNL ≥ minNL, then the current configuration cannot be optimal, and the algorithm

aborts the evaluation and continues with the next configuration (line 16), improving, in this way, the

computational efficiency of the algorithm. Otherwise, the minimum number of NL leaks is updated

by the current number of NL leaks (line 20) and the index of the configuration is taken as the best

index found so far (line 21). This algorithm performs a semi-exhaustive search in the sense that all

the configurations are considered, but useless computations are avoided as much as possible.

4.2. Hanoi Network Application Example

The semi-exhaustive approach was tested in the water network of Hanoi, Vietnam [16].

This benchmark has been used in several works [17,18], where the goal was to design or optimize the

operation of a water network. The network consists of 31 demand nodes, one reservoir node and 34

pipes. The first test uses Algorithm 1 to compute the optimal location in the case of two sensors with

ε̄min = minNL/m. The network model is simulated using EPANET [19]. To study the effect of the

leak magnitude on the sensor placement algorithm, the leak magnitude is varied by changing the node

emitter coefficient (EC) in EPANET from two to eight (i.e., corresponding to leaks between 20 and

80 liters per second (lps)) and computing the resulting sensitivity and residual matrices, S and R

(the EC of each node to be specified for individual leaks is given by EC = w/ppexp where w is

the water flow, p is the fluid pressure and pexp is a fixed pressure exponent). Note that for this test

network, these values are chosen in proportion to the demands of the network, in order to cause a

perceptible effect in the pressure. Table 1 presents the leak isolation error index (see Equation (14))

obtained when S and R are computed using different EC values. It can be noticed that even in

the worst case, the error index is lower than 0.2, meaning that less than 20% of the leaks (i.e., six

leaks) are not located in the right node. We can conclude that for a small network, the leak isolation

errors, due to the unknown leak size, are small, even when installing just a few sensors. The diagonal

elements of Table 1 are not computed, since they correspond to the ideal case where no uncertainties

are considered and the minimum error is obviously zero.

Table 1. Minimum error indices in the Hanoi network after placing two sensors. EC,

emitter coefficient.

EC Used in Residuals
2 3 4 5 6 7 8

EC Used in Sensitivities

2 0.032 0.032 0.129 0.129 0.129 0.193

3 0.032 0.032 0.096 0.129 0.129 0.161

4 0.064 0.032 0 0.064 0.096 0.129

5 0.161 0.064 0.032 0.032 0.064 0.096

6 0.161 0.129 0.064 0 0.032 0.096

7 0.193 0.161 0.129 0.064 0.032 0

8 0.193 0.193 0.161 0.129 0.064 0
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As the second test, we perform the same experiment, but with three sensors. The results are

shown in Table 2. First, we note that the error index, due to the unknown leak magnitude, is reduced

when more sensors are installed. In both cases (with two and three sensors), the best configuration

of sensors used to compute the error index is dependent on the combination of ECs used to compute

the matrices, S and R. Thus, it is not possible to take a direct decision about the optimal sensor

placement with these results. To mitigate this problem, we propose a post-treatment analysis to

choose such placement. Since the network is small, when we change the sensitivities and the leak

magnitudes, there are some configurations that are repeated many times. We will take advantage of

such behavior and select the node configurations with the highest occurrence in the results of the

semi-exhaustive search.

Table 2. Minimum error indices in Hanoi network with three sensors.

EC Used in Residuals
2 3 4 5 6 7 8

EC Used in Sensitivities

2 0 0 0.032 0 0.032 0.032

3 0 0 0 0.032 0 0.032

4 0 0 0 0 0.032 0.032

5 0.032 0 0 0 0.032 0.032

6 0 0 0 0 0 0.032

7 0.032 0.032 0.032 0 0 0

8 0.032 0.032 0.032 0 0 0

In order to choose an adequate combination of sensors, we count the occurrences of the

configurations leading to the error indices in Tables 1 and 2 and look for those that are found the

most. The idea is to find those configurations with the minimal error index that cover as many

different leak magnitudes as possible. In the example of the Hanoi network, the three configurations

with the highest occurrence in the case of the placement of two sensors are:

• Nodes {12, 21} with 16 occurrences

• Nodes {12, 13} with 13 occurrences

• Nodes {7, 12} with seven occurrences

and in the case of three sensors, the three configurations with highest occurrence are:

• Nodes {12, 14, 21} with 22 occurrences

• Nodes {12, 21, 27} with 22 occurrences

• Nodes {12, 21, 29} with 18 occurrences

Table 3 gives the error indices averaged over each combination of residuals and sensitivities for

the three best configurations, in the case of two and three sensors. Among these candidates, we

consider the one that leads to the lowest error. It appears that in the case of two sensors, the optimal

sensor configuration for the Hanoi network corresponds to the pair of nodes {12, 21}, whereas



42

in the case of three sensors, the best configuration is obtained installing the sensors at the nodes

{12, 14, 21}.

Table 3. Best configurations and corresponding error indices for different leak

magnitudes in the Hanoi network.

Two Placed Sensors (n = 2) Case Three Placed Sensors (n = 3) Case

Configuration ε̄(q) Configuration ε̄(q)

{12, 21} 0.131 {12, 14, 21} 0.025

{12, 13} 0.133 {12, 21, 27} 0.028

{7, 12} 0.157 {12, 21, 29} 0.035

5. Genetic Algorithms Approach

5.1. Introduction

Genetic algorithms (GAs) are well-known search and optimization tools based on the principles

of natural genetics and natural selection [20,21]. Because of their broad applicability, ease of use

and global perspective, GAs have been increasingly applied to various search and optimization

problems in the recent past. Some fundamental ideas of genetics are borrowed and used artificially to

construct search algorithms that are robust and require minimal problem information. GAs transform

a population of individual objects, each with an associated fitness value, into a new generation of

the population using the Darwinian principle of reproduction and survival of the fittest and analogs

of naturally occurring genetic operations, such as crossover (sexual recombination) and mutation.

Each individual in the population represents a possible solution to a given problem. The genetic

algorithm attempts to find a very good (or the best) solution to the problem by genetically breeding

the population of individuals over a series of generations.

The GAs can be used in the context of sensor placement in WDN in order to find near-optimal

placement for leak location. In that case, a chromosome corresponds to the possible presence or

absence of a sensor at a given node.

5.2. Algorithm Description

Here, the sensor placement problem formulated as an optimization problem in Section 3 is

solved using genetic algorithms and implemented using the GA Toolbox of MATLAB. The GA

needs to establish a function whose output involves an index to be minimized. In our case, this

function corresponds to the evaluation of the error index computed in Equation (14) according

to the computation of the projection matrix, as in Equation (12). This error depends on the

number of maximum values in each row of the matrix that are not elements of the diagonal in the

projection matrix.
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Algorithm 2 Sensor placement based on genetic algorithms

Require: A sensitivity matrix, S, and a residual matrix, R. The number of sensors, n, the number

of nodes, m, and the maximum number of iterations, d.

Ensure: A near-optimal sensors configuration, qmin, with error index ε̄min.

1: init ← InitV arGA()

2: restrict ← SetRestrictions(
∑m

i=1 qi = n)

3: z ← ChooseSeed()

4: for k = 1, · · · , d do
5: Create Ik matrix of size ((z + 1)×m), where each row is a random initialization, such that:

Ikij|i �=(z+1) ←
{

1 if row i is with a sensor in node j

0 otherwise

Ik(z+1)j ←
{

{} if k = 1

qk−1 otherwise

6: GA-based search:

7: Inputs: init, restrict, R, S, Ik.

8: while An optimization criterion is not reached do
9: q ← getConfig()

10: Ŝ(q) ← eval_S(q, S(q))

R̂(q) ← eval_R(q, R(q))

11: Ψ(q) ← eval_Ψ(R̂(q), Ŝ(q))

12: ε(q) ← eval_ε(Ψ(q)) // cf. Equation (13)

13: ε̄(q) ← mean
i

(εi(q)) //cf. Equation (14)

14: end while
15: Find {qk, ε̄k} such that ε̄k = min

q
(ε̄(q))

16: end for
17: Find {qmin, ε̄min} such that ε̄ = min

k
(ε̄k)

The pseudo-code of the algorithm is shown in Algorithm 2. First, we initialize the variables of

the GA (line 1), including the number of generations, the bit string type population, the tolerance

as 10−10 and the elite count as one, in order to save one of the previous results analyzed. Then, we

declare the search restriction (line 2), being that the number of “ones” in the solution corresponds to

the number of sensors to install, and a seed size, z, is chosen (line 3). This seed creates an initial

matrix with random sensor positions, and every location delivered by the GA is tested according

to the function declared in the algorithm. The sensor placement is based on the construction of

binary vectors, where the presence of a “one” represents a sensor located in the correspondent node.

This vector allows one to select the adequate rows of the matrices, S and R, in order to compute

the projection matrix according to the selected nodes to be measured. Once we have this projection

matrix, we look for the maximum value of each row of the matrix, expecting the highest to be in the

diagonal position. If it occurs, it means that the leak index equal to the row in question can be located

with the selected sensor configuration. Otherwise, the leak cannot be located using this configuration.
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5.2.1. Hanoi Network Application Example

The experiments performed in the Hanoi network presented in Section 4.2 and based on

a semi-exhaustive search were computationally very demanding, despite the lazy evaluation

mechanisms involved. For such a simple example, 465 configurations had to be tested for the case

of two sensors with an average computation time of 3 s and 4, 495 configurations for the case of

three sensors, which takes 15 s on average. This means that performing a semi-exhaustive search

in a large network is not feasible, because of the computational complexity that would quickly lead

to testing millions of possible combinations. This is the motivation for using GA. All the tests

performed using semi-exhaustive search are reproduced using Algorithm 2 applied to the Hanoi

network. The solutions found are the same as the ones obtained with the semi-exhaustive search,

but with a computational time lower than 9 s per iteration and including three generations in each

of them. All the experiments were performed in MATLAB, using a Windows 7 computer with a

Pentium Dual Core processor of 2 GHz, memory (RAM) of 4 GB and a 64-bit operating system.

6. Robust Sensor Placement

6.1. Improving the Sensor Placement Robustness

In our experiments, despite Algorithm 2 providing efficiently optimal solutions (since they are

consistent with the semi-exhaustive search), we have seen that the algorithm requires a post-treatment

analysis in order to make an adequate sensor placement decision when uncertainty (e.g., about

the unknown leak magnitude) is considered. Moreover, we know that this placement represents a

near-optimal solution that works only for the time instant evaluated. In the following, we present

three improvements that avoid any post-treatment and increase the robustness of the GA-based

sensor placement.

6.1.1. Time Horizon Analysis

In the semi-exhaustive search and GA-based algorithm that we have presented, we took into

account a single instant of time for the analysis. However, the configuration that gives the minimum

error index in the leak isolation can vary when the demand changes along a given period of time.

To address this problem, it is possible to improve the tasks of leak detection and isolation by

considering a time horizon, as suggested in [7]. Thus, in the following, we incorporate a time

horizon in the evaluation function of the GA, with the objective of increasing the quality of the

sensor placement for a better leak isolation within the network. Note that there is no restriction on

the time horizon magnitude.

The GA evaluation function is modified in order to work with the mean projection along the time

horizon instead of using a single instant of time. With such modification, the candidate leak node is

obtained by looking at the maximum of the mean projection, Ψ(q), defined by:
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Ψ(q) =
1

T

t=T∑
t=1

Ψt(q) (16)

where Ψt(q) is computed using Equation (12) and T represents the number of time samples

associated with the time horizon.

6.1.2. Distance-Based Scoring

In the optimization problem Equation (15), the error index function Equation (13) was set to zero

each time a leak was located in the correct node and to one, otherwise. This binary scoring process

treats all the leak nodes that are incorrectly located in the same way. However, it may be interesting to

provide a more informative scoring that would consider if the location returned is close to the real leak

position or not.

We propose to rely on topological distances (i.e., the number of nodes in the shortest path

from one node to another in the network) with respect to the real leak position for evaluate the

scores. When the topological distance increases, we linearly increase the error scoring until a cut-off

distance, dmax, for which the node score is then set to one. Thus, Equation (13) is replaced by the

scoring function:

εi(q) =

{
di(q)
dmax

if di(q) < dmax

1 otherwise
(17)

where di represents the topological distance between the leak node, i, and the node, j, that

corresponds to the biggest projection value, i.e., ψij(q) = max(ψi1(q), . . . , ψim(q)).

The cut-off distance, dmax, can be chosen by the user. In our case, we propose a distance that

depends on the network size. Let us consider a network with the shape of a 2D squared-grid made of

m = (2i + 1)2 nodes. Then, the distance from the center node to the network border would be

given by 1
2

√
m. Following such a relationship between topological distance and number of nodes,

we propose to set the cut-off distance, such that:

dmax =
1

2

√
m (18)

6.1.3. Robustness Regarding Leak Magnitude Variations

The choice of sensor placement is affected by the leak magnitude taken to build the sensitivities.

However, in real scenarios, this magnitude cannot be determined in advance. To improve the

robustness of the results according to such parameter changes, we propose to incorporate sets

of sensitivities and residuals in the evaluation function that are computed from different leak

magnitudes. Assume that there are L leak magnitudes l ∈ {1, · · · , L}, each one associated with

a residual matrix, Rl, and a sensitivity matrix, Sl. Then, the number of possible couples, {Rl1 , Sl2},

with l1, l2 ∈ {1, · · · , L} would be L2. Among them, we discard couples {Rl, Sl} built from the

same leak magnitude, since in realistic scenarios, the leak magnitude used to build the sensitivity

matrix will not match the real leak magnitude from which is built the residual matrix. Furthermore,

we discard couples {Rl1 , Sl2} with l1 > l2, since Ψ(Rl1 , Sl2) = Ψ(Rl2 , Sl1)T , and thus, they would
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lead to the same error index. Therefore, we obtain a total of
(
L
2

)
couples of residual and sensitivity

matrices {R, S}. Finally, the error index that we computed in Equation (14) will be now evaluated,

taking into account the average of the error indices computed for each of these couples:

ε̄(q) =
1

m
(
L
2

) m∑
i=1

(L2)∑
c=1

εci(q) (19)

6.2. Robust Sensor Placement Algorithm

The three steps presented above increase the robustness of the sensor placement method with

respect to the experimental variations. These new procedures shown in Algorithm 3 modify the

iteration steps performed by GA that were previously presented in Algorithm 2.

The method basically consists of d iterations of the GA. At each step, it starts with an initialization

phase of the GA similar to the one performed in Algorithm 2 (line 1). Then, iterations within the GA

search are performed until one of the GA stop criteria is reached (line 5). To build the evaluation

function, a loop is executed over each possible combination of input residual and sensitivity matrices,

according to the different leak magnitudes (line 7). For each combination, c, and for each time

instant, t (line 8), the updated residual and sensitivity matrices, as well as the projection matrices are

evaluated (line 9 to 11). Then, we compute Ψc(q), i.e., the mean of the projection matrix over each

time instant (line 13) and the resulting error vector, εc(q) (line 14). Next, the averaged error index

is evaluated (line 16), and the GA searches for the configuration, qk, with minimum error index ε̄k

(line 18). Finally, we look among the d configurations returned by the GA for the one with the best

score (line 20).

6.3. Application to the Hanoi Network

Algorithm 3 was applied to the Hanoi network. In our tests, we take L = 7 leak magnitudes (20,

30, 40, 50, 60, 70 and 80 liters per second), which results in 21 couples of residual and sensitivity

matrices. Furthermore, we use a 24-h time horizon with pressure measurements every hour, which

gives a total of T = 25 time steps. The algorithm performs five main iterations with two generations

in each of them, while the seed size is made of 30 vectors in the initial population.

Since the network has 31 nodes, Equation (18) returns a cut-off distance of three nodes to compute

the scoring error in Equation (17). Thus, leak nodes with topological distances of zero, one and two

nodes have an error of zero, 1
3

and 2
3
, respectively. Nodes with a higher distance have an error of one.

Algorithm 3 is executed varying the number of sensors from two to ten. Figure 1 shows

the scoring error according to the number of sensors. We can see that after three sensors, the

reduction of the error strongly decreases, and the use of additional sensors is not necessarily justified.

This suggests that three sensors would be a good choice to have reliable leak detection and location.

Furthermore, the best placement corresponds to nodes {12, 21} with an error index of 0.061 in the

case of two sensors, and it corresponds to nodes {12, 14, 21} with an error of 0.011 in the case of

three sensors. Note that since this is a small example, these results give the same configurations as

the ones found with both the semi-exhaustive search and Algorithm 2.
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Algorithm 3 Robust sensor placement based on genetic algorithms.

Require: A set of {Rct, Sct} couples of sensitivity and residual matrices with c ∈ {1, . . . , (L
2

)},

representing the leak magnitudes, and t ∈ {1, . . . , T}, representing the samples of the time

horizon. The number of sensors, n, the number of nodes, m, and the maximum number of

iterations, d.

Ensure: A robust near-optimal sensors configuration, qmin, with error index ε̄min.

1: Compute init, restrict, and z // Steps 1 to 3 of Algorithm 2.

2: for k = 1, · · · , d do
3: Create Ik matrix // Step 5 of Algorithm 2.

4: GA-based search:

5: while An optimization criterion is not reached do
6: q ← getConfig()

7: for c = 1, . . . ,
(
L
2

)
do

8: for t = 1, . . . , T do
9: Ŝct(q) ← eval_S(q, Sct)

10: R̂ct(q) ← eval_R(q, Rct)

11: Ψct(q) ← eval_Ψ(R̂ct(q), Ŝct(q))

12: end for
13: Ψ

c
(q) ← mean

t
(Ψct(q)) //cf. Equation (16)

14: εc(q) ← eval_ε(Ψ
c
(q)) //cf. Equation (17)

15: end for
16: ε̄(q) ← mean

i,c
(εci(q)) //cf. Equation (19).

17: end while
18: Find {qk, ε̄k} such that ε̄k = min

q
(ε̄(q))

19: end for
20: Find {qmin, ε̄min} such that ε = min

k
(ε̄k)

7. Case Study: Limassol Network

The methodologies presented in Algorithms 2 and 3 are applied to a real network. We used the

Limassol network in Cyprus that has a total of 197 demand nodes and is represented in Figure 2.

The network model is available in EPANET, as was the case for the Hanoi network. First, the

semi-exhaustive algorithm is used to obtain three sensor placements that will serve as a reference to

evaluate the performance of the GA approach. This algorithm is time-demanding in this case, since

there are more than 1.2×106 possible combinations of nodes to be considered. The computation time

consumed by the semi-exhaustive search was approximately 60 h for the combination of sensitivity

and residual chosen. This means that testing all the possible combinations of sensitivities and

residuals is not feasible. The sensor placement problem is set up with EC = 0.25 (a leak of

approximately 1.67 lps) for the sensitivities and EC = 0.20 (leak of approximately 1.3 lps) for

the residuals. The best configuration obtained leads to placing sensors in nodes {82, 133, 157},

which gives an error index ε̄min = 0.258.
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Figure 1. Minimum error index according to the number of sensors in the Hanoi network.
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Figure 2. Water network in Limassol, Cyprus.

7.1. Application of the Sensor Placement Based on Genetic Algorithms

We apply Algorithm 2 for different types of residual and sensitivity matrices that are computed

by varying the leak magnitudes within a given range. Here, the robustness improvements presented

in Section 6.1 are not applied (they will be applied in the next subsection). The parameters for

the genetic algorithm were selected after several trial and error tests. The initialization matrix



49

was set with a size of 50 rows, and five iterations were allowed in order to increase the efficiency

of the method with a maximum of five generations in each of them. The computation time

was about 60 min. Compared to the time spent in the semi-exhaustive search, we can conclude

that GA significantly reduces the time required to find a solution. Table 4 shows the nodes for

each combination of EC value, whereas Table 5 shows the corresponding minimum error indices.

From these tables, we can see that the algorithm finds different configurations depending on the leak

magnitude (through EC) selected for the sensitivities and for the residuals. Such behavior was also

occurring with the Hanoi network (cf. 4.2).

Table 4. Sensor configurations in Limassol network with three sensors.

Residuals EC
0.15 0.2 0.25 0.3 0.35

Sensitivities EC

0.15 {40, 77 172} {25, 77, 133} {76, 133, 185} {76, 133, 152}

0.2 {76, 133, 152} {76, 86, 152} {77, 124, 152} {76, 110, 173}

0.25 {85, 156, 196} {8, 76, 150} {75, 116, 157} {72, 115, 150}

0.3 {72, 118, 163} {76, 133, 141} {77, 111, 150} {75, 23, 152}

0.35 {76, 128, 140} {75, 120, 150} {77, 115, 137} {29, 112, 152}

Table 5. Minimum error indices in the Limassol network for the configurations of

Table 4.

Residuals EC
0.15 0.2 0.25 0.3 0.35

Sensitivities EC

0.15 0.324 0.294 0.299 0.314

0.2 0.299 0.284 0.279 0.294

0.25 0.279 0.274 0.243 0.243

0.3 0.309 0.279 0.263 0.258

0.35 0.324 0.279 0.263 0.258

Thus, we perform a post-treatment analysis to decide what is the best sensor configuration for the

network. This is based on the following tests:

• Variation in the tested leak magnitude: We compute the projection matrices for all the

configurations found, taking into account the various combination of sensitivity and residual

matrices corresponding to leak magnitudes changes.

• Consideration of the sensors precision: To take into account the limitation of the sensor

precision, we truncate the two last decimals of the pressure measurements to compute the

residual matrices.

• Application of random noise in the measurements: We include Gaussian white noise in the

measurements with a mean amplitude corresponding to approximately 0.5% of the expected

measurement, considering the technology of the pressure sensors used by the water company

managing the network.
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In order to select the adequate configuration of sensors, we propose performing the experiments

described above and look for the combination with the smallest average error index along all the

possible leak magnitudes and sensitivities to test. This criterion is analytically established by taking

the minimum of the average error indices:

min(
1

L2

L∑
j=1

L∑
i=1

εij) (20)

where L is the number of leak magnitudes used and εij is the error index (cf. Equations (13) and

(14)) obtained with the residual and sensitivity of the respective indices, i and j. In this way, the

search for the best sensor placement is built as a min-max optimization problem.

Table 6. Averaged error indices for configurations of Table 4.

Test
Configuration Magnitude Change Sensor Precision Noise Addition Total Average

1 {75, 116, 157} 0.336 0.412 0.576 0.442

2 {85, 156, 196} 0.362 0.455 0.597 0.471

3 {72, 115, 150} 0.345 0.429 0.583 0.452

4 {76, 110, 173} 0.340 0.409 0.556 0.435

5 {77, 124, 152} 0.348 0.444 0.581 0.457

6 {76, 133, 152} 0.318 0.403 0.558 0.426

7 {76, 86, 152} 0.335 0.421 0.572 0.443

8 {25, 77, 133} 0.336 0.420 0.569 0.441

9 {76, 133, 185} 0.334 0.420 0.564 0.439

10 {40, 77, 172} 0.368 0.448 0.613 0.477

11 {76, 133, 152} 0.318 0.403 0.546 0.422
12 {8, 76, 150} 0.356 0.462 0.613 0.477

13 {72, 118, 163} 0.373 0.443 0.576 0.464

14 {76, 133, 141} 0.341 0.416 0.570 0.442

15 {76, 128, 140} 0.355 0.425 0.573 0.451

16 {75, 120, 150} 0.328 0.431 0.582 0.447

17 {77, 111, 150} 0.342 0.422 0.566 0.443

18 {77, 115, 137} 0.330 0.417 0.561 0.436

19 {75, 123, 152} 0.339 0.421 0.575 0.445

20 {29, 112, 152} 0.394 0.455 0.590 0.480

Table 6 shows the errors induced by the three tests previously mentioned, as well as the total

average error. From this table, we choose as the best sensor placement configuration the one with the

lowest total average error.

Such a method gives the sensor placement at nodes {76, 133, 152}, which provides the lowest

average error among the sets of sensor placements computed from the different combinations of

residual and sensitivities. However, there is no guarantee that other sets would not lead to better

results. Furthermore, this configuration was found based on a single time instant; thus, it is not robust
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to changes in the demand that would occur when considering a period of time. For these reasons and

to get a more reliable solution, we prefer the method that includes the robustness improvements that

we proposed in Section 6.1.

7.2. Application of the Robust Sensor Placement Method

We applied Algorithm 3 to the same Limassol, Cyprus network. We took L = 5 different leak

magnitudes (one, 1.33, 1.66, two and 2.33 lps) that lead to 10 couples of sensitivity and residual

matrices. The network data were analyzed taking into account a T = 24 h time horizon with pressure

measurements every hour. Furthermore, the sensor noise (approximately 0.5% of the expected

measurement as indicated above) was added to the computation of the residuals in order to increase

the robustness of the method.

Since the network has 197 nodes, Equation (18) returns a cut-off distance of seven nodes to

compute the scoring error in Equation (17). The algorithm performs five main iterations with two

generations in each of them, while the seed size is made of 50 vectors in the initial population.

After the iterations, the best result obtained corresponds to a sensor configuration of

nodes {2, 75, 158}, with an error index of 0.302, which means an average distance of two nodes

between the located node and that with the real leak. This placement is shown in Figure 3a.

Figure 3. Near-optimal placement of three sensors in the Limassol network. (a) Sensor

placement with noise of 0.5%; (b) sensor placement with noise of 2%.

(a) (b)

A second test increasing the noise level up to 2% gives the best configuration at nodes {2, 75, 100}
(Figure 3b) with an error index of 0.712. This means that leaks are located with an average of five

nodes of topological distance to the real leak. Note that two of the nodes are repeated regarding the
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previous location. Consequently, despite the increased level of noise, the placement of the sensors

has not been severally affected. Thus, it reassures the fact that the near-optimal solution will have a

satisfactory behavior, even in different conditions.

It is important to note that these results comes from the integration within the GA of all the

improvements of sensor placement robustness that we described in Section 6.1. Thus, contrary to

what was done in the previous section when using Algorithm 2, there is no need to perform any

post-treatment analysis to extract a robust solution. Integrating a time horizon, a more informative

distance-based scoring and the possible variations of leak magnitude, our method provides a solution

configuration for sensor placement with a higher level of confidence.

7.3. Practical Considerations

When moving the proposed sensor placement approach to the real network, the following

practical considerations should be taken into account considering the previous experience in [6]:

- the DMA EPANET model should be recalibrated with real data obtained from the available

sensors already installed in the network (typically at the flow entrance points) in order to

minimize the errors due to model mismatch between the real and simulated network.

- the configuration of the internal valves should also be verified in order to assure that their

positions in the real and simulated network are the same.

- the nodal demand should be estimated as well as possible using information from water

consumption and tele-measurement devices, if available.

- leak size range that is considered, as well as sensor noise and precision should be characterized

so that the robust sensor placement approach presented in Section 6 could be used in such a

way that the installed sensors guarantee the minimal isolation error that is possible.

8. Conclusions

In this paper, we proposed a new approach to sensor placement for water distribution networks

that maximizes leak isolability. The sensor placement problem has been formulated as a non-linear

integer optimization problem. The optimization criterion is based on minimizing the number of

non-isolable leaks according to the isolability criteria introduced. This approach is combined with a

projection-based leak location scheme, but it could be easily adapted to any other sensitivity-based

isolation scheme.

The first semi-exhaustive search method has been proposed that searches for the best

configuration and relies on lazy evaluation mechanisms to reduce the computation cost. However,

the computational effort remains too demanding for most realistic scenarios. Thus, we proposed to

solve the optimization problem with GAs, which are known to work well in large-sized problems of

a non-linear integer nature. We have seen that such approach allows us to find near-optimal solutions

in an efficient way. We also highlighted that leak magnitude changes were impacting the resulting

best sensor placement found by the GA algorithm, requiring a post-treatment analysis to tackle such

a problem. Finally, we proposed three improvements that avoid any post-treatment and increase the
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robustness of the GA-based sensor placement. Experiments on two types of networks were performed

to compare the different methods proposed in this paper. They demonstrate the relevance of the robust

GA-based approach.

For future work, we would like to combine our robust GA-based approach with other methods

to perform the leak isolation task. Furthermore, other types of optimization methods that provide

some guarantee regarding the solution optimality could be investigated in the future. Enhancing

the robustness of the sensor placement algorithm against additional sources of uncertainty, as in the

model parameters or in nodal demand, will also be considered in future research.
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Abstract: This paper addresses the problem of leakage in water distribution systems through the use

of ground penetrating radar (GPR) as a nondestructive method. Laboratory tests are performed to

extract features of water leakage from the obtained GPR images. Moreover, a test in a real-world

urban system under real conditions is performed. Feature extraction is performed by interpreting

GPR images with the support of a pre-processing methodology based on an appropriate combination

of statistical methods and multi-agent systems. The results of these tests are presented, interpreted,

analyzed and discussed in this paper.

Reprinted from Sensors. Cite as: Ayala–Cabrera, D.; Herrera, M.; Izquierdo, J.; Ocaña–Levario, S.J.;

Pérez–García, R. GPR-Based Water Leak Models in Water Distribution Systems. Sensors 2013, 13,

15912–15936.

1. Introduction

Water is valuable, but challenging to manage. It has been calculated that many water distribution

systems (WDSs) around the world lose more than 40 percent of the clean water pumped into the

distribution system because of leaks before that water reaches end consumers [1]. By reducing

the amount of water leaked, WDS managers can reduce the amount of money and energy wasted

on producing and pumping water, increase system reliability and more easily satisfy present and

future consumer needs. Having access to sufficient information regarding leaks is a complex task.

Many water utilities struggle to measure and locate leaks in their distribution networks.

Improved leakage management in WDSs is one of the intelligent solutions that can make a

difference. The use of different types of smart sensors to gather data and the application of advanced

analytics could provide valuable information on the location of leaks in the network. Specifically,

non-destructive methods, such as ground penetrating radar (GPR), can help locate primordial leaks

and, so, help resolve the problem, while avoiding social and economic costs.

In [2], a review of the various pipeline inspection techniques most commonly used in WDSs

systems and wastewater collection is performed. These techniques are divided into four groups:

(a) visual techniques; (b) electromagnetic and radio frequency techniques; (c) acoustic and

vibration techniques; and (d) other techniques. Closed-circuit television (CCTV) and sewer

scanner and evaluation technology (SSET) are highlighted in the first group (visual techniques).

The second group (electromagnetic and radio frequency techniques) consists of magnetic flux

leakage (MFL), eddy current technique, hydroscope technology (HT), rapid magnetic permeability

scan (RMPS), low frequency electromagnetic field (LFEM), passive magnetic fields (PMFs), time

domain ultra wideband (UWB) and ground penetrating radar (GPR). The third group (acoustic

and vibration techniques) includes sonar, vibro-acoustics, impact echo/spectral analysis of surface

waves and correlator and listening sticks for leaks. The last group (other techniques) includes

infrared thermography, continuous wave Doppler sensing technique, laser surveys, combined
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techniques (broadband electromagnetics/wave impedance probe (WI), pipe inspection real-time

assessment technique (PIRAT) and the Sahara Project.

Among these techniques, the most popular for locating leaks in water supply systems are those

included in the acoustic and vibration technique group, infrared thermography and GPR [3,4].

Acoustic methods detect the acoustic wave generated by the leak based on correlation analyses of

the wave velocity of the sound emitted by the pipe being inspected. Such methods are widely used

to identify leaks in fluid-filled metal pipes [5]. The main drawback of the aforementioned methods is

their inefficiency in detecting leaks in non-metallic pipes (e.g., Polyvinyl chloride (PVC) pipes) [6].

Infrared methods detect thermal contrasts caused by the difference of temperature between ground

and water. However, even though easy to implement, these methods produce errors when there are

considerable differences in temperature. Furthermore, it is not possible to use these techniques in

summer and winter, due to the absence of significant differences between ground and water [4]. GPR

is shown as an effective nondestructive tool that favors inspection of WDS by demarcating on GPR

image (radargrams) contrasts between the leaked water and the surrounding soil that are caused by

differences in dielectric characteristics [7,8].

The use of GPR as a method for locating leaks in WDS has become more widespread in recent

years. In this sense, there is fieldwork, such as [9], performed on urban pipe sections. Pre-processing

of the obtained images is performed by using low-pass filters to identify leaking PVC pipes. Another

representative fieldwork is reported in [10]. In this case, a plastic pipe (PVC) was drilled and buried

in the ground; and, an analysis was made using raw images. Likewise, there is fieldwork using

a combination of methods. Such is the case of [11], which combines GPR assays with electrical

potential and geochemical assays to detect leaks in non-pressurized non-metallic pipes. In this case,

leaks are identified from raw GPR images. Laboratory tests are also employed in finding leaks using

GPR. Works, such as [12,13], concentrate on plastic pipes. In these cases, pre-processing includes

background removal and image filtering, respectively. A combination of survey work conducted both

in the field and in the laboratory is presented in [14]. In this paper, various tests on leaks in plastic

and metallic pipes were performed. In this work, Kirchhoff migration and the Hilbert transform were

used as pre-processing methods. These assays are promising with respect to the use of GPR in finding

leaks in WDS. However, most of these assays are based only on the location and interpretation of

hyperbolas generated either in raw or pre-processed images.

Identifying leaks by GPR images is not an easy task and requires a high level of expertise by the

operator. Added complications include the complex spatial arrangement of many networks, along

with the steady growth in the supply infrastructure of cities. These aspects greatly increase the

difficulty in using and interpreting data obtained with GPR in detecting leaks and analyzing the

results, thus reducing the potential for solving problems and increasing the need for highly qualified

personnel. This paper attempts to address this issue with the extraction of features visually and

numerically. To this purpose, laboratory tests are performed in which we seek to extract features of

water leakage from GPR images. Feature extraction is performed by interpreting the GPR images

with the support of a pre-processing methodology based on an appropriate combination of statistical

methods and multi-agent systems. Subsequently, these features are observed in a field test on a real

water leak-case in a WDS. The ultimate goal of these processes is to extract features to feed intelligent
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automatic processes for the (automatic) detection of leaks in WDS using GPR images. This research

thus seeks to encourage the use of these tools in finding leaks by non-highly qualified personnel and,

thus, promoting improved management of WDS.

The paper is organized as follows. In the first section, we have presented a brief introduction

and cited relevant papers. The second section presents the characteristics of the tests performed.

The third section presents an analysis of typical GPR images by locating and interpreting hyperbolas.

The fourth section discusses the numerical contrast images of a non-leaking laboratory empty

pipe and then a series of tests with water and leakage. The use of a race-agent algorithm as a

pre-processing tool for GPR images and its application to the images of the laboratory tests are

proposed in Section 5. The following section presents a contrast analysis, similar to that performed

in Section 4, but using pre-processed images. 3D models of the interpretations obtained in Sections 4

and 5 are then presented in Section 7. The eighth section presents the identification of a leak in

fieldwork. Finally, a section of conclusions closes the document.

2. Data Capturing: Design and Layout of the Laboratory Tests

This section presents the layout of the laboratory tests. In this set of tests, a pipe commonly used

in WDSs is buried in dry soil in a tank (see Figure 1a). The characteristics of the buried pipe are:

(a) PVC; (b) diameter of 100 mm; (c) length of 0.95 m; (d) hole drilled for simulating the leak in

the central part of the pipe; (e) two points for water input (herein termed WI) and output (herein

termed WO) with connections at the ends. A wooden tank measuring 1.0 m × 1.0 m × 0.70 m was

used. After the pipe was positioned, its supports were removed, and it was then covered with dry soil.

The surface of the tank was covered with a polypropylene plate. Eleven paths parallel to the x-axis

and another eleven paths parallel to the y-axis were marked on this plate. These 22 paths were spaced

0.10 m apart (see Figure 1b) and, so, formed the sampling grid (see Figure 1c). Onto each line of this

mesh, the GPR antenna was slipped. The image produced by sliding the antenna is termed a profile

in this document (see, for example, s5 in Figure 1c). Additionally, we distinguish between horizontal

and vertical profiles when referring to the profiles parallel to the x- and the y-axes, respectively.

The GPR equipment used in each survey corresponds to a commercial monostatic antenna with

a central frequency of 1.5 GHz. The parameters of the equipment correspond to 120 traces/s,

512 samples/trace and 20 ns/512 samples. Two tests with the aforementioned features of 22 profiles

were performed. These two tests are differentiated one from the other in that the first was without

water inside the pipe (nor leaked water), while the second test had water inside the pipe and leaked

water. These two situations are called initial and final state, respectively, in this paper.
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Figure 1. Laboratory layout. WI, water input; WO, water output.

3. Analysis of the Location and Identification of Hyperbolas from the Raw Images

This section presents a typical analysis to identify anomalies (leaks in this case) in the raw

images. This analysis consists in locating and identifying hyperbolae in the GPR images, according

to the scheme presented in the previous section. These tests are performed on the horizontal and

vertical profiles for both the initial and end states. To facilitate the interpretation of raw images

in Sections 3.1 and 3.2, various examples of target forms are sketched in Figure 2. Incidentally,

Figure 2a corresponds to Figure 5a, Figure 2b to Figure 5c and Figure 2c to Figure 5g.

Figure 2. Identifiable forms in raw images in Sections 3.1 and 3.2: (a) distorting vertical

strip; (b) hyperbola; (c) triangles.

3.1. Initial State: Raw Images

The resulting images from the horizontal and vertical profiles of the tests performed in the

laboratory for the initial state are presented in Figures 3 and 4, respectively.
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Figure 3. Horizontal profiles: raw images for the initial state. (a–k) are profiles s1 to

s11, respectively.

All the images presented in Figure 3 exhibit a hyperbola, whose center is located at approximately

0.6 m in all cases. This location coincides with the location of the PVC buried pipe. In this same

figure, in parts (f), (g) and (h), a new anomaly, a new hyperbola located to the right of the hyperbola

associated with the buried pipe, can be identified. The new hyperbola increases in intensity in

Figure 3g. In this case, it is known that this anomaly cannot represent the leak, since we are still

analyzing the initial state. However, in an uncontrolled case, this feature could lead to confusion.

All the images depicted in Figure 4 show how the hyperbola representing the pipe in Figure 3

no longer appears. This is consistent with the schematic configuration proposed for the test, given

that vertical profiles are being considered. However, formations (triangles) inclined from the tank

walls, which were also seen in the horizontal profiles (Figure 3), can be observed. In all the images

in Figure 4, a gradually spanning structure can be observed: for parts from (a) to (d) between samples

275–325; for part (e) between samples 250–325; for (f) to (h) between samples 225–275; for part

(i) between samples 275–325; and for (j) between samples 300–325. This pattern corresponds to the

signal response for the now longitudinally placed pipe.
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Figure 4. Vertical profiles: raw images for the initial state. (a–k) are profiles s12 to

s22, respectively.

3.2. Final State: Raw Images

The resulting images of horizontal and vertical profiles of the tests performed in the laboratory

for the final stage are presented in Figures 5 and 6, respectively.

In Figure 5, in images (a) and (k), a vertical strip that distorts both images can be seen between

0.5 and 0.6 m. This effect is attributed to the presence of water in WI and WO. This effect, which is

more accentuated in (a), is more clearly seen when contrasting these images with their corresponding

images in Figure 3: the area containing the deformed strip in Figure 5 contained (in Figure 3) the

shape of the hyperbola previously identifying the buried pipe. In images (b) and (j) of Figure 5,

a new hyperbola surrounded by another upper hyperbola (pipe initial hyperbola) can be identified.

By observing profiles from (b) to (j), we can say that the hyperbola we had considered to represent

the pipe decreases in intensity as the position of the profile nears the point of the leak. In effect,

the hyperbola is almost invisible in images (e) and (f). We can also observe how in image (f), two

hyperbolas are identified (very faintly), where, initially, only one hyperbola appeared. In (g), this

second hyperbola as obtained in the initial state (close to the hyperbola of the pipe) is observed.

If we had not previously had the image without water, this second hyperbola would surely have been

interpreted as a leak. This shows the need to extract patterns for interpretation and leak detection

in water supply systems and, so, avoid common mistakes in field interpretation. This additional

hyperbola may result from any object (such as stones) near the pipeline.
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Figure 5. Horizontal profiles: raw images for final state: (a–k) are profiles s1 to

s11, respectively.

Figure 6. Vertical profiles: raw images for final state: (a–k) are profiles s12 to

s22, respectively.
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Images in Figure 6, in contrast, show similar characteristics to the respective images of the initial

state. However, in (f) and (g), a contraction of the area we had identified as the pipe in Figure 4

can be observed between 0.5 and 0.4 m (distance axis) and samples 225 and 275 (depth axis).

This contraction is better observed in image g), which corresponds to the vertical section closer

to the pipe. Furthermore, the position of the contraction is consistent with the location of the leakage

point in the test.

After these various analyses of the different horizontal and vertical profiles corresponding to

the leakage, we observe that identifying leaks directly from raw images is difficult. In fact, even

considering the a priori information about the location of the leak, it is a challenge to distinguish all

the above-mentioned features.

4. Analysis: Contrast between Raw Images for the Initial and Final States

In this section, since a suitable metric is available, we present a comparison between the initial

and the final state of the tests performed for each raw image. Figures 7 and 8 show the differences in

horizontal and vertical raw images, respectively.

Figure 7. Horizontal profiles: contrasting raw images for initial and final states. (a–k) are

profiles s1 to s11, respectively.

The images in Figure 7 show the presence of water, which is the differentiating factor between

the images of the initial and the final state. In parts (a) and (k) of the figure, the water in WI and
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WO can be easily seen. The water contained in the pipe can be observed in pictures from (b) to (j).

The brightest part now corresponds to the water that has replaced the air contained in the pipe in

the initial state. This shows that the difference in intensity identifies the specific fluid (air or water,

in our case) contained in the pipe. Similarly, it is observed that the color intensity decreases as the

location of the images nears profile (f) (the profile closest to the leak). Moreover, in images (e)

to (g), between 0.4 and 0.6 m and between samples 150 and 200, a hyperbola that was not readily

detectable in the respective raw images (and was missed in the interpretations) is now easily observed.

This hyperbola is defined, according to the observation made in situ, by the rise in water leaked by

capillarity. For images (e) and (f), the water contained in the pipe, on the right side (of the image), is

demarcated with correspondingly lower intensity. This would indicate that the leak is running from

left to right. This is because in that area, there is a mixture of soil and water, and this causes lower

color intensity. A decrease in color intensity in the demarcated area of the pipe when approaching the

leakage point (profile f) can also be observed. Additionally, some deformation is also observed below

all the areas demarcated by the contrast, which is the result of the expected convolution (bearing in

mind that the measurements are performed at depth).

Figure 8. Vertical profiles: contrasting raw images for initial and final states. (a–k) are

profiles s12 to s22, respectively.

In Figure 8, image (g) (which is the closest to the pipe and to the leakage point), an increase in

the color intensity in the strip running almost through the entire profile can be observed. This strip,

between samples 200 and 250, shows the addition of water in the pipe. In this same image and for
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the same strip, the effect described regarding the same image for the final state can also be seen.

This is the effect of the contraction of the pipe at the point where the leak is located. In addition,

there is a hyperbola at the top (a feature not seen in its respective final state image). Similarly, in (h)

(the profile closest to the pipe and on the path where the pipe is located), the strip has lower color

intensity than in (g), while being higher than in the closer profiles. Observe that this strip fades and

diminishes in height, in the direction from (i) to (j) and from (f) to (e).

Likewise, a hyperbola in (e), (f) and (g), which gains color intensity as the point of leakage is

approached (image g)) can be seen. From (f) to (e), the hyperbola loses strength and increases in size

as a result of the increasing distance from the point of the leak.

5. Analysis of Location and Identification of Anomalies in Pre-Processed Images

In this section, we present the principles of the pre-processing algorithm used in this work.

Subsequently, this algorithm is applied to the images obtained in the laboratory for the initial and

final state. The results will be compared and analyzed later.

5.1. Multi-Agent System for the Pre-Processing Algorithm

The analysis carried out in Section 3 is based on intensity differences demarcated by the wave

amplitude generated in the images after the passage of the signal through various subsurface strata.

The analysis we present in this section is based on time characteristics. In this analysis, the peaks

(both maxima and minima) of the waves generated are extracted. The trend of the path of each trace

and the average value of peak-to-peak time are studied. The basic principle assumes that the field is

homogeneous, and thus, there should be a clear correspondence between the various peaks obtained.

However, it should be noted that although the material is homogeneous, in practice, the measured

values are different, even though very close together. Consequently, very different values demarcate

anomalies in the image. These peaks were first extracted and numbered according to their occurrence

in the trace. They were then placed in their respective positions in distance, and finally, the last value

is used to fill an array of a certain size (512 in this work) (see Figure 9).

To quickly obtain this matrix, the algorithm proposed by [15] was used. In this algorithm, we

obtain the above-mentioned values by means of a system based on multiple entities (agents) that

search peaks by simulating a race. A multi-agent system consists of a population of autonomous

entities (agents) situated in a shared structured framework (environment). The system is based

on such tools as game theory (e.g., setting the agent preferences by means of a utility function),

economics, biology, as well as artificial intelligence algorithms [16]. Agents operate independently,

but are also able to interact with the environment and coordinate with other agents. This coordination

may imply cooperation if the agent society works towards common objectives. Thus, in a cooperative

community, agents usually have individual capabilities, which, when combined, will lead to solving

the entire problem. However, cooperation is not always possible, and there are instances where

agents are competitive and have divergent goals. In this later case, the agent should also take into

account the actions of others [17]. However, even if agents are able to act and achieve their goals by
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themselves, it may be beneficial to partially cooperate and form coalitions for a better performance.

When coordinating activities, either in a cooperative or a competitive environment, negotiation may

prove a suitable method for solving conflicts among agents. Negotiation may be seen as the process of

identifying interactions based on communication and reasoning with regard to the state and intentions

of other agents [18].

Figure 9. Principles of the ground penetrating radar (GPR) image pre-processing.

The pre-processing of GPR images used in this document was proposed in [15] and was termed

an agent race. The algorithm has been developed in MatLab, is based on game theory and uses the

multi-agent paradigm [16]. Agent racing provides an interpretation and a grouping method for data

from GPR radargrams. In this pre-process, we reduce the amount of data in the initial radargram,

while preserving its initial properties and the most relevant data, so that its ability to identify buried

objects through suitable visualizations is preserved. The multi-agent approach makes analysis much

quicker. The input to this algorithm is the resulting radargram of the GPR prospection, which consists

of an m×n-sized matrix. The n-traces, of length m, that are generated are used in this work as parallel

tracks for the n-agents to run. The race is an endurance test for the agents with a prize consisting in

advancing one position depending on the effort made. Efforts are based on wave amplitude values

in each column of the matrix (radargram). The agent race is comprised of two phases: (a) warm-up;

and (b) competition. The race lasts a total time of t = tw + tr = m, where tw is the warm-up time

and tr the competition time. The movements of an agent in tr are conditioned by the changing trend

of the wave amplitude of the trace the agent runs. The race ends when time t has elapsed. The winner

is the agent who manages to obtain more movements (reward) during this time. The output (output
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1) of this process is a matrix of the size m1 × n, where m1 = the maximum number of movements.

The columns of this matrix describe the movement of the agents in relation to the competition. In this

paper, we restrict the output (output 2) to the matrix of the size tr × n that collects the movements

performed by each agent during the competition (see Figure 10). In this work, the various movements

developed by the agents are termed time lines.

Figure 10. Scheme for the agent-race algorithm.

On each time line, times obtained in the competition for each agent are ordered decreasingly.

These time lines are then normalized. This produces output 2 (Figure 11), which is the matrix we

use herein. This eliminates the delays caused by the gap between rows and enables more intense

highlighting of anomalies that are very small and difficult to observe in raw images. However, care

must be taken with this regularization, because although the anomalies are highlighted, their intensity

is determined in relation to the ground prospected in each profile. This can cause visual errors in

interpretation. Yet, even if this occurs, the interpretation based on the identification of various forms

will enable zones of interest to be delimited, thus facilitating more complex analyses.

Again, to facilitate the interpretation of preprocessed images in Sections 5.2 and 5.3, examples of

the more relevant forms are sketched in Figure 2. In this case, Figure 12a corresponds to Figure 15a,

Figure 12b to Figure 15c, Figure 12c to Figure 15g and Figure 12d to Figure 16f.
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Figure 11. Output 2 building: (a) output 1; (b) time line; (c) ordered time line;

(d) ordered and normalized time line; and (e) output 2.

Figure 12. Identifiable target forms in pre-processed images in Section 5.2 and 5.3:

(a) conical shape for water input (WI) and output (WO); (b) ellipse; (c) tank and

measuring plate contours; and (d) water leak shape.

5.2. Initial State: Pre-Processed Images

The pre-processed images derived from the tests performed in the laboratory for the initial state

show the horizontal and vertical profiles presented in Figures 13 and 14, respectively.
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Figure 13. Horizontal profiles: pre-processed images for the initial state. (a–k) are

profiles s1 to s11, respectively.

Figure 14. Vertical profiles: pre-processed images for the initial state. (a–k) are profiles

s12 to s22, respectively.
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In Figure 13, an ellipse-shaped object is observed exactly in the place where the pipe was placed.

In each image, it can be observed how the color intensity decreases from the center of the ellipse

to its border. In images (a) and (k), an additional conical shape may be observed above this ellipse,

which is not noticeable in the corresponding raw images. This image corresponds to WI and WO.

Additionally, at about time line 10 in all the images (with variable intensity), the development of a

horizontal figure can be observed that crosses all the images, which, at each of its two ends, joins an

intense zone that demarcates a vertical figure. This horizontal formation is the polypropylene plate

used for sliding the antenna during measurement, and the vertical forms correspond to the walls of

the tank.

In the images in Figure 14, a certain relationship between the different color intensities of each

profile can be observed. The same characteristic areas of the tank and the measuring plate, already

observed in the pre-processed horizontal profiles, are demarcated with greater intensity. However,

the inclination of this area, which was previously horizontal, can be observed from images (f) to

(h). Moreover, in the central part, we note the non-appearance of the ellipse that appeared in the

pictures above.

5.3. Final State: Pre-Processed Images

The pre-processed images derived from the tests performed in the laboratory for the final state,

showing the horizontal and vertical profiles, are presented in Figures 15 and 16, respectively.

Figure 15. Horizontal profiles: pre-processed images for the final state. (a–k) are profiles

s1 to s11, respectively.
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Figure 16. Vertical profiles: pre-processed images for the final state. (a–k) are profiles

s12 to s22, respectively.

In Figure 15, it can be seen how the ellipse observed in the corresponding initial state image

gains color intensity with the addition of water in the pipe for all the images. Likewise, in images

(e) and (f), such intensity decreases. This feature was observed in the profile of the raw images and

can be seen more clearly in the pre-processed images. Likewise, it can be observed in (a) and (k)

that the intensity of the structure representing WI and WO increases with the addition of water to

the system. It should be noted that this feature is clearly observed only after contrasting the initial

and final states and not directly in the raw images. However, in the pre-processed image, this feature

is easily identifiable. In images (g) to (k), the central ellipse loses intensity toward 0 m and fades

in its central part. The contours generated by the tank and measuring plate are better delineated in

these images.

In Figure 16, a discontinuity of color intensity in the form of an ellipse between images (e) to

(g) can be observed. This discontinuity grows as it approaches profile (g) (location of the leak).

It should be mentioned that this was not at all observable in the corresponding raw image. Now, in

the pre-processed images, it becomes apparent.

6. Analysis: Contrast between Pre-Processed Images

In this section, we present a number of contrasts between the pre-processed profiles for the initial

and final states. In Figure 17 and 18, contrasts for the horizontal and vertical profiles, respectively,

are presented.
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Figure 17. Horizontal profiles: contrast between pre-processed images. (a–k) are

profiles s1 to s11, respectively.

Figure 18. Vertical profiles: contrast between pre-processed images. (a–k) are profiles

s12 to s22, respectively.
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In Figure 17, images (a) and (k), the mark that was observed in the interpretations already made

can be easily seen. This mark corresponds to the introduction of water at WI and WO. Additionally,

in the same pictures, an anomaly in the form of an ellipse at the bottom can be appreciated. This shape

corresponds to the water in the pipe. Moreover, various profiles reveal the formation of the ellipse

whose center is highly intense and which fades toward the ends. In these profiles, we see how the

color intensity decreases as we near the central profile (leak location profile). Similarly, in images

(e) and (g), one can observe the formation of a new ellipse that is located just above the ellipse

corresponding to the water in the pipe. We also note that in image (f), this form is a hyperbola

enveloping the ellipse corresponding to the area of water in the pipe. This form corresponds to

leaked water, part of which has risen by capillarity to the surface of the ground.

In Figure 18, images (e), (f) and (g), one can observe the generation of an ellipsoidal shape that

increases in size and consistency, as it travels from (e) to (g). Note that profile (g) is closest to the

location of the leak.

7. 3D Comparison of the Analysis of Contrasts between Raw and Pre-Processed Images

In this section, we perform the extraction of the contours of the images resulting from the

previously conducted contrasts. With these contours, two 3D models of contrasting performances in

raw images and pre-processed images of the water in the pipe and leaked water are obtained. Contour

extraction and the corresponding 3D representation have been developed in MatLab. In Figure 19,

we present a simple scheme of one of the processes, whose two main steps are described as follows:

Figure 19. Example of 3D model construction: (a) GPR interpretation of raw data;

(b) contour extraction; and (c) 3D model rendering.

GPR interpretations. Contours that can represent features of interest in the prospected

underground are extracted either from the raw or the pre-processed images. When interpreting images

of radargrams, the features most commonly analyzed are hyperbolas. They are demarcated by the

color intensity within the image. A non-automatic process is proposed in this document with the

aim of determining the feasibility of the interpretation of GPR data. In addition, we are interested
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in observing if these interpretations are reliable and can gain relevance for understanding features of

leaks in WDSs . However, if this process is effective, it could be implemented automatically.

Fusion process and 3D model. The fusion of the GPR image interpretations is achieved by their

projection onto a common space. Firstly, a classification of common zones in the GPR interpretations

that may correspond to specific sections of the area or volume is performed. Then, a mesh in the

3D space is constructed. Each of these volumes or surfaces is then added to a common space,

shrinking, thus, into the 3D model. There are a number of applications to achieve this kind of

fusion employed in photography or painting [19], which can be adapted to generate 3D models of

the GPR interpretations.

In Figure 20, we present the 3D models.

Figure 20. Comparison between 3D models generated from the interpretation of the

horizontal and the vertical profiles contrasting the initial and the final states: (a) 3D

model obtained from raw images; (b) 3D model obtained from pre-processed images.

The 3D models presented in Figure 20 show clear agreement with the schematic approach

performed. It is also clear that the models are related, although their depth axis differs. Obviously,

this is because they come from different images. In both cases, the water in WI and WO and the

water in the pipe can be clearly observed. The leakage is also identified, but more consistently in (b)

than in (a). It can be seen that 3D models produce more measurable results (numerically) and more

comprehensible interpretation than flat images.

8. Analysis of Field Images: A Case Study

This section discusses the use of the multi-agent methodology, proposed in the previous section,

in a real case. The fieldwork was conducted in an urban water supply system on a section of pipe,

whose location was known. Using a geophone, turbulence points (where it was supposed that there

was a water leak) were detected, and tests on the area near the pipe were performed using GPR.
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The roadway is hydraulic concrete and the pipe is 400-mm cast iron. A structure of paths similar to

those in the laboratory tests was demarcated on the roadway (Figure 21a). The grid-mesh was 0.50 m.

The area was 4.0 m by 2.0 m long in x and y, respectively. The profiles obtained with the survey were

named sf1 to sf8 and sf9 to sf13 for horizontal and vertical lines, respectively (Figure 21b). It should

be mentioned that the pipe is located in the sf11 profile. The GPR equipment used and the capture

parameters correspond to the same features of the equipment used in the laboratory tests. However,

in this case, the antenna used had a central frequency of 400 MHz.

Figure 21. Layout for the fieldwork.

In Figures 22 and 23, the raw images for the horizontal and vertical profiles, respectively,

are presented.

Figure 22. Horizontal profiles: raw images. (a–h) are profiles sf1 to sf8, respectively.
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Figure 23. Vertical profiles: raw images. (a–e) are profiles sf9 to sf13, respectively.

In Figures 22 and 23, the observation of anomalies is deemed very complex. Only a small

perturbation from (a) to (d) in Figure 23 can be observed.

In Figures 24 and 25, we present the fieldwork preprocessed images corresponding to the

horizontal and vertical profiles, respectively.

Figure 24. Horizontal profiles: pre-processed images. (a–h) are profiles sf1 a

sf8, respectively.
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Figure 25. Vertical profiles: pre-processed images. (a–h) are profiles sf9 to

sf13, respectively.

In Figures 24 and 25, the visualization improvement generated with the pre-processing can be

clearly seen, making it possible to identify the elliptical shape of the pipe in the horizontal profiles

(Figure 24), centered approximately on the position (1 m, five samples). Moreover, in this same

figure, in pictures (d) to (h), a structure can be seen that starts at the bottom right of the ellipse

corresponding to the pipe. This structure gains strength and is clearly demarcated as an ellipse in the

direction (d) to (h). In Figure 25, two vertical structures at 1.5 m and 3.0 m, in sample 10, are also

seen. These structures start from image (a), intensify towards image (c) and reduce their intensity in

d), until finally disappearing in (e). This effect corresponds to the convolution observed in Figure 7.

Figure 26 shows the conjugation of these interpretations as 3D models, both for the pipe and

likely leaks.

Figure 26. Interpretation from pre-processed images: 3D model. (a) azimuthal view;

(b) lateral view #1; (c) lateral view #2.
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In Figure 26, water spots generated by the water leak in the pipe can be observed. These spots

coincide with the turbulence points detected with the geophone.

9. Conclusions

By reducing the amount of water leaked, WDS managers can reduce the amount of money and

energy wasted on producing or purchasing water. The use of various types of smart sensors to gather

data and the application of advanced analytics, such as pattern detection, could provide valuable

information on the location of leaks in the network. GPR, among other various sensors, can help

detect potential leaks and abnormalities within WDSs.

In this work, two GPR tests have been conducted in laboratory conditions. One test employed

a PVC pipe with no water inside and, obviously, without leaks, and the other test used the same

pipe with water inside and some leakage. Additionally, we have conducted a field test in a leaking

WDS. The different analyses show the difficulty of making interpretations from raw images. Indeed,

it follows from these tests that introducing water into the system causes significant (numeric)

differences that are not easily discernible from typical interpretations of the raw data obtained.

Moreover, this work shows that the application of appropriate preprocessing methodologies

facilitates the visualization of features that are not reflected in the raw images. This is true both

in the case of laboratory testing and in field cases. Consequently, we argue that the pre-processing

used in this work facilitates the work of interpretation for non-highly qualified personnel in the use

of GPR.

Additionally, it should be mentioned that in this type of pre-process, characteristics are obtained

that are quantifiable (numerically). These characteristics can be the basis for further processing for

the automatic classification of leaks in WDS.

Moreover, from these tests, we can conclude that the interpretations made using GPR are not

merely subjective results. This is supported by the fact that there is consistency for all the results in

3D models between what is captured by GPR and what is expected. Thus, the reconstruction of 3D

models from GPR analyses facilitates the interpretation of results.
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A Proposed Scalable Design and Simulation of Wireless 
Sensor Network-Based Long-Distance Water Pipeline 
Leakage Monitoring System 

Abdulaziz S. Almazyad, Yasser M. Seddiq, Ahmed M. Alotaibi, Ahmed Y. Al-Nasheri, 
Mohammed S. BenSaleh, Abdulfattah M. Obeid and Syed Manzoor Qasim 

Abstract: Anomalies such as leakage and bursts in water pipelines have severe consequences for the 
environment and the economy. To ensure the reliability of water pipelines, they must be monitored 
effectively. Wireless Sensor Networks (WSNs) have emerged as an effective technology for 
monitoring critical infrastructure such as water, oil and gas pipelines. In this paper, we present a 
scalable design and simulation of a water pipeline leakage monitoring system using Radio Frequency 
IDentification (RFID) and WSN technology. The proposed design targets long-distance aboveground 
water pipelines that have special considerations for maintenance, energy consumption and cost. 
The design is based on deploying a group of mobile wireless sensor nodes inside the pipeline and 
allowing them to work cooperatively according to a prescheduled order. Under this mechanism, only 
one node is active at a time, while the other nodes are sleeping. The node whose turn is next wakes 
up according to one of three wakeup techniques: location-based, time-based and interrupt-driven. 
In this paper, mathematical models are derived for each technique to estimate the corresponding 
energy consumption and memory size requirements. The proposed equations are analyzed and the 
results are validated using simulation. 

Reprinted from Sensors. Cite as: Almazyad, A.S.; Seddiq, Y.M.; Alotaibi, A.M.; Al-Nasheri, A.Y.; 
BenSaleh, M.S.; Obeid, A.M.; Qasim, S.M. A Proposed Scalable Design and Simulation of 
Wireless Sensor Network-Based Long-Distance Water Pipeline Leakage Monitoring System. 
Sensors 2014, 14, 3557-3577. 

1. Introduction 

The worldwide losses of water due to the distribution network leakage is estimated at 48.6 
billion m3, thus causing a monetary loss of approximately 14.6 billion US dollars per year, 
according to a World Bank study [1]. Water is an important and limited resource, hence it is 
necessary to protect and use the water utilities efficiently. Water leakage is considered to be one of 
the largest and most serious challenges. It is expected to intensify over time, given the scarcity of 
available traditional water resources and the enormous costs of providing fresh potable water from 
non-traditional sources such as desalination plants. Long-distance water pipelines have become an 
indispensable part of such infrastructure. Active monitoring and inspection is required to maintain 
the health of the pipelines [2,3]. A pipeline monitoring system has a long list of tasks to 
accomplish. In addition to detecting and localizing leakage and bursts, these tasks include measuring 
pipe cross-section and wall thickness and monitoring fluid purity and flow speed [4,5]. 

Pipeline monitoring tasks become more challenging when applied to long-distance water 
pipelines covering thousands of kilometers. Several issues should be considered, such as the 
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difficulty of the maintenance of the static components and efficiency of memory usage and energy 
consumption. Wireless sensor networks (WSNs) provide an efficient way to address these issues. 
To the best of our knowledge, the problem of monitoring long distance water pipelines using 
WSNs has not been properly addressed in the published literature, despite its requirement in the 
practical field. 

Different type of sensors, such as temperature sensor, pressure sensor, acoustic sensor, flow sensor, 
and pH sensor are typically used for water pipeline monitoring. These sensors generate appropriate 
electrical signals based on the sensed phenomena. Generally, monitored parameters include 
temperature, humidity, flow and pressure. Selecting an appropriate sensor or sensing technique 
depends on many aspects such as the pipeline material and environment (aboveground or underground). 

A typical WSN node consists of a sensing subsystem, a processing subsystem, a communication 
subsystem and a power supply subsystem. The processing subsystem which mainly comprises of 
microcontroller and memory processes and stores the sensor data respectively. The RF transceiver, 
which is an important part of communication subsystem receives commands from a central computer 
and transmits the processed data to that computer. The power for each WSN node is derived from a 
battery or an energy harvesting (scavenging) device. 

In this paper, a scalable design and simulation of a long-distance above ground water pipeline 
leakage monitoring system using WSN is proposed. The challenges of difficult maintenance, 
efficient memory usage and low energy consumption are considered. The design is based on deploying 
mobile sensor nodes that are driven by the water current. A multi-node model is adopted in order to 
make the design scalable for various distances, memory sizes and battery lifetimes. Among the 
deployed nodes, one should be in-duty while the others are sleeping. At a certain stage, the active 
node turns itself off after it hands over the task to another node. Task handover takes place using the 
following three methods: location-based, time-based and interrupt-driven. Localization is done using 
Radio Frequency IDentification (RFID) tags that are placed at fixed positions outside the pipeline. 
Mathematical models are also derived to estimate the energy consumption and the memory usage 
of the proposed design. 

The rest of the paper is organized as follows: Section 2 presents the related work. The proposed 
design is described in Section 3. The mathematical models are discussed and analyzed in Section 4. 
Section 5 presents the simulation results of the proposed system. The results are validated through 
Matlab simulation in Section 6. Finally, conclusions and recommendations for future work are 
discussed in Section 7. 

2. Related Work 

A number of WSN-based solutions for pipeline monitoring have been proposed in the  
literature [2,3]. Jawhar et al. presented an initial framework for using linear WSNs for oil, gas, and 
water pipeline monitoring applications [6]. PipeNet is one such system which is used for automated 
detection, localization and quantification of leaks, bursts and other anomalies in large diameter 
bulk water transmission pipelines [7]. Accelerometer sensors are used to measure the vibrations 
that can result from the presence of cracks in the pipeline. PipeNet provides near real-time 
operation with few false alarms. A scalable, non-intrusive, autonomous and adaptive water 
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monitoring system (NAWMS) is presented in [8]. It detects and locates leakages using low cost 
wireless vibration sensors that are externally attached to the pipes. It can be used to estimate the 
water consumption with minimum error. 

An autonomous pipeline monitoring system called TriopusNet is presented in [9]. Sensor nodes 
are automatically released from a centralized repository located at the source of the water pipeline 
and carried forward by the water flow. The nodes are placed automatically based on a sensor 
deployment algorithm. Each sensor node includes a motor which allows the three arms to latch 
onto the pipe’s inner surface. This is explained in detail in [9]. Human effort is not required to 
install and repair sensor nodes in this system. 

A fault-tolerant and reliable architecture based on an integrated wired and wireless sensor 
network for monitoring aboveground pipeline infrastructures is presented in [10]. SPAMMS is a 
low-cost, scalable, customizable and autonomous sensor-based system which is presented in [11]. 
This system combines sensing technology with robot agent-based technology to provide active and 
corrective monitoring and maintenance of the pipelines. SPAMMS combines RFID systems with 
mobile sensors and autonomous robots to monitor pipelines. Different pipeline monitoring techniques 
are compared and discussed in this paper [11]. 

Underground pipelines are mostly preferred to transport water from remote locations.  
This provides the safest way to transport water, but at the cost of extreme environmental conditions 
under the ground which may cause leakage on the pipelines [12–14]. A low-cost magnetic 
induction waveguide-based WSN technique for underground pipeline monitoring (MISE-PIPE) is 
presented in [12]. In MISE-PIPE, two type of sensors are used, one placed inside and the other 
placed outside the pipeline. Both internal and external sensors provide sufficient data for detecting 
and localizing the leakage in the pipeline. The authors claim that this technique can provide 
accurate real-time leakage detection and improved lifetime for the underground pipelines. 

PipeTECT, an intelligent and scalable WSN system for real-time nondestructive monitoring of 
underground water pipelines is discussed in [15]. MEMS accelerometers on the pipe surface are 
employed to measure vibrations in order to determine the change in the water pressure caused by 
pipe rupture and thus localize the leakage. However, it faces some challenges such as reliable  
long-range communication, precise time synchronization, power management and effective 
bandwidth usage [15]. The PipeTECT system was further improved by adding new modules at the 
sensing and data aggregation unit which reduced the total energy consumption significantly [16]. 

3. Proposed Design 

This work proposes a non-real-time leakage monitoring system for long-distance water pipelines. 
A mobile sensor node is allowed to move with the water current from the pipeline source down to 
the sink where the node is collected and its memory content is copied to a computer. This data 
contains all the sensor and location readings that are taken by the node throughout its long trip 
inside the pipeline. The node observation is subjected to offline analysis to locate the leakage. 

A node records its location based on its exposure to signals of RFID tags that are placed in fixed 
position outside the pipeline surface. The number of tags used is inversely proportional to the 
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distance between tags ( d). If the total pipeline distance is D, then the number of RFID tags 
required for the whole system (M) can be calculated as follows: 

Δ
=

d
DM  (1)

The use of active RFID tags, which are battery-operated, enables their signal to penetrate  
through the pipeline walls. Some active RFID tags today are able to transmit up to 200 m in free 
space (e.g., the ZT-50) [17]. Thus, tag signal penetration through few tens of centimeters of the 
pipe wall would be possible provided that the pipeline material allows signal propagation. Nevertheless, 
this assumption is not valid for strongly isolating materials such as steel. 

Basically, active RFID tags are battery-operated, which implies the need for replacing their 
batteries from time to time. That would not be easy when considering long-distance pipelines that 
pass through rural and difficult to approach areas. For that reason, solar cells can be used as a 
renewable power source for the active RFID tags. A general illustration of the proposed design is 
shown in Figure 1. 

Figure 1. (a) Proposed design components; (b) Loose independent nodes; (c) Nodes 
connected in series using wires (For interrupt-driven method). 

(a) 

 
(b) (c) 

In order to add scalability and efficiency to the system and to simplify the node design, a multi-node 
model is adopted in this design. That is, during the trip period (T) in the pipeline, a group of N 
nodes, where N > 1, are deployed and allowed to move with the water current. These nodes work 
cooperatively to perform the monitoring tasks by allowing only one node to be in duty for a certain 
interval TA while the other nodes are inactive. The active node gets busy sensing and localizing 
leakages before it cuts off after a period of TA since it commenced its mission. That active period (TA) 
is determined as follows: 

N
T

AT =  (2)

The inactive nodes are either totally off, if they already finished duty, or sleeping, if they are 
awaiting their turn to start duty. Duty handover from one node to another takes place using one of 
the following three methods: location-based, time-based and interrupt-driven. 
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In the location-based method, the sleeping nodes keep locating themselves while sleeping.  
Each node knows where it should commence duty and hence wakes up. In contrast, in the second 
method, which is time-based, the sleeping nodes have to keep their timer on during the sleep 
period. When the appropriate time of commencing duty comes, the node wakes up. Since, nodes 
float independent of each other, racing between nodes may occur and it is possible that a node that 
is about to wake up is way ahead of the node that is currently in duty. In this situation, there will be 
a pipeline segment, which might have leakage and not monitored by either of the two nodes.  
A possible solution could be a time overlap between them to reduce the chance of having that 
problem. Certainly, this redundancy will increase the energy consumption. A more detailed analytical 
proof of pipeline coverage by the three techniques is provided in the Appendix section. 

The third method involves an interrupt-driven wakeup. When using this method, sleeping nodes 
neither locate nor do they count time. Rather, a sleeping node waits for an interrupt signal from the 
active node via a wire connecting them. Therefore, when using the interrupt-driven wakeup method, 
the nodes must be connected in series using wires in a chain as shown in Figure 1c. The series 
connection may cause a reliability problem. That is, if any node breaks down, all the subsequent 
nodes will be out of service. Perhaps the use of a wire can be avoided by reusing nodes and having 
them go into sleep mode while waiting for an interrupt signal. With proper packaging and 
mechanical design, the node can be made floatable [18]. 

Regardless of the duty handover method that is used, when an in-duty node finishes its task, it 
cuts off and it does not perform any activity until it reaches the pipeline sink. The transition from 
sleep to active modes and from active to cut-off mode is illustrated in Figure 2. Table 1 summarizes 
the activities during the sleep and active modes. 

Each node should be equipped with components that enable it to perform its job efficiently.  
For localization, a node uses an RFID tag reader that can acquire the IDs of the active tags every 
time the node passes under an active tag. Since, the main purpose of deploying the node is to sense, 
the presence of a sensor (e.g., pressure or velocity) is necessary. The RFID reader and the sensor 
are controlled by a low-energy microcontroller. A general block diagram of the sensor node is 
shown in Figure 3. 
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Figure 2. Sleep-active modes of the proposed design. 

  TA  TA  TA  TA … 

Node 1 … 

Node 2 … 

Node 3 … 

Node 4 … 

Node 5 … 

••• etc.      

     

=Sleep mode  

=Active mode (localize and sense) 

=Cut-off mode 

Table 1. Major activities during the sleep and active modes. 

 
Major activities during sleep mode Major activities during 

active mode Location-based Time-based Interrupt-driven 

Sensor Off Off Off 
Busy sensing the pipeline 
environment (e.g., pressure 
sensing) 

RFID reader Communicating 
with RFID tags Off Off Communicating with 

RFID tags 

Microcontroller 

Busy processing 
the RFID 
information for the 
purpose of 
localization and to 
make decision to 
wakeup 

Busy running the 
timer and 
processing time 
information for 
the purpose of 
making decision 
to wakeup 

Off 

Busy doing two things:  
1. Collection and storage 

of sensor data 

2. Processing of RFID 
information for 
localization 

Figure 3. General block diagram of sensor node. 
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4. Mathematical Modeling and Analysis 

There are many parameters that affect the energy consumption and the memory usage of each 
node of the aforementioned design. The key parameters are described in Table 2. For energy 
consumption, the following relationship is used: 

TPE ×=  (3)

where, E is the energy consumed during the time period T by a system that consumes power P. 

Table 2. Design parameters. 

Parameter Description Unit 
T  Total node trip period seconds 

AT  The active period of a node seconds 
)( ArdT  The period of communication between an RFID reader and a tag seconds 

N  Number of deployed nodes - 
nE  Energy consumed by the nth node Joules 

M  Total number of RFID tags - 
m  Number of RFID tags in a pipeline segment - 
D  Total pipeline distance km 

dΔ  Distance between RFID tags meter 
sf  Sensor sampling rate Samples per second 
RFIDW , sensorW  Data width of the RFID and the sensor sample respectively Bytes 

)(idlerdP , )( ArdP  
Power consumed by RFID reader in idle  
and active modes respectively 

Watts 

CP  Average power consumed by the microcontroller Watts 
sP  Power consumed by the sensor Watts 

When deploying N nodes in the pipeline, the energy consumption of the nth node, where 
Nn ≤≤1 , can be estimated as discussed in the following sections. 

4.1. Location-Based Wakeup Method 

To analyze the total energy consumption of the nth node, the energy consumed during the 
sleeping mode )(sleepnE and active mode )(activenE should be taken into consideration, i.e.,: 

)()( activensleepnn EEE +=  (4)

In the location-based wakeup method, a sleeping node consumes energy in localizing itself 
which implies that both the RFID reader and the microcontroller are doing some activities. The nth 
node spends a period of (n – 1)TA sleeping. Therefore: 

( )( ))()()()( )1( ArdArdCidlerdAsleepn PmTPPTnE ++−=  (5)

The parameters used in Equation (5) and the subsequent equations are described in Table 2.  
The term mTrd(A)Prd(A) in Equation (5) refers to the energy consumed by the RFID tag reader when 
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communicating with one of the m tags that the node will be exposed to during a period of TA.  
The relationship between m and the total number of the tags (M) is given by Equation (6): 

=
N
Mm  (6)

For the active mode of the location-based method, the energy is consumed by all of the node 
components, i.e., the sensor, the tag reader and the microcontroller. Knowing that the node spends 
a period of TA in active mode, the following equation can be deduced: 

( ) )()()()( ArdArdCsidlerdAactiven PmTPPPTE +++=  (7)

Substituting Equations (5) and (7) in Equation (4) will result in the following Equation (8): 

( ) )()()( ArdArdCsidlerdAn PnmTnPPnPTE +++=  (8)

4.2. Time-Based Wakeup Method 

For the time-based wakeup method, the total energy consumed by the nth node can be derived 
by, first, calculating the sleep mode energy as just the energy consumed by the microcontroller 
(assuming the timer is implemented as a piece of code). Recalling that the nth node spends a period 
of (n – 1)TA in sleeping mode, the sleep mode energy can be calculated as: 

CAsleepn PTnE )1()( −=  (9)

The active mode of the time-based wakeup method is the same as the location-based wakeup 
method, i.e., it can be calculated using Equation (7). Thus, Equation (10) can be formed by 
substituting Equations (7) and (9) in Equation (4): 

( ) )()()( ArdArdCidlerdsAn PmTnPPPTE +++=  (10)

4.3. Interrupt-Driven Wakeup Method 

Finally, in the interrupt-driven method, a sleeping node does not do any activity while it is in 
sleep mode. Therefore: 

0)( =sleepnE  (11)

The active mode energy under the interrupt-driven method is the same as the other two methods 
and can be determined using Equation (7). Substituting Equations (7) and (11) in Equation (4) will 
lead to Equation (12): 

( ) )()()( ArdArdCidlerdsAn PmTPPPTE +++=  (12)

To analyze Equations (8), (10) and (12), several values for the equations variables are assigned 
according to Table 3. In addition, Table 4 lists the values of the power consumption of the components 
that can be used to build the sensor node. 
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Table 3. Analysis data (D = 400 km, TRD(A) = 2 s). 

Parameter Min. Value Max. Value Increment Step 

T 10 h 70 h 20 h 

N 1 node 60 nodes 5 nodes 
d 10 m 500 m 40 m to increment the minimum value and 50 m elsewhere 

Table 4. Sensor node components and typical power consumed. 

Component Brand Power Specs. 
Pressure sensor Intersema MS5541C [19] 18 W  
Microcontroller LPC1102 Cortex-M0 [20] 16.5 mW 
RFID reader Tagsense ZR-232 Active Tag Reader [21] 9.9 W  (idle), 3.3 mW (communicating) 
RFID tag Tagsense ZT-50 Active RFID Tag [17] 9 W  (idle), 60 mW (communicating) 

To derive a mathematical model for calculating the nth node memory size, it should be realized 
that the only two components that write data to memory are the RFID tag reader and the sensor. 
Moreover, memory is only written to during the active mode, which lasts for a period of TA.  
During that period, the tag reader will communicate to m tags and store their IDs to the memory.  
If an ID consists of RFIDW  bytes, then the total number of bytes that are stored in the memory and 
belong to the tag reader is as follows: 

RFIDreadern mWS =)(  (13)

The sensor is the other component that stores data in memory. During the active period (TA), the 
sensor performs sensing sf  times per second. Each time, a sample of width sensorW  is stored into the 
memory. The total number of samples during an active period is AsTf  samples. And the total 
number of bytes that the sensor will store into memory is as follows: 

sensorAssensorn WTfS =)(  (14)

When adding Equations (13) and (14), the expression of Equation (15) will be formed. 

sensorAsRFIDn WTfmWS +=  (15)

To analyze Equation (15), different values of N are assigned as assumed in Table 3. It is also 
assumed that the sensor node performs sensing twice a second, i.e., fs = 2 samples per second. 
Every time it samples, the sensor sample size ( sensorW ) is assumed to be two bytes long. For the 
RFID tag, the tag ID is assumed to consist of 16 bytes. The value of the number of RFID tags per 
pipeline segment (m) can be calculated using Equations (1)–(3), (6), (8), (10), (12). 

5. Results Discussion 

The analysis results for energy consumption are plotted in Figure 4. The x-axis represents the 
different values of N, which is the number of member nodes in a group, e.g., when n = 15, that 
refers to a 15-node group deployed in the pipeline. The y-axis refers to the energy consumed by a 
single node that is a member of an N-node group. On each plot, there are two types of curves: solid 
line and dashed line curves that correspond to the minimum and the maximum distances of 
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separation between the RFID tags respectively. That is, the solid line is associated with d = 10 m 
while the dashed line is associated with d = 500 m. Moreover, each plot contains four curves that 
represent total trip times of 10, 30, 50 and 70 h. Figure 4 also consists of twelve plots, from (a) to 
(l), arranged in a matrix of four rows and three columns. The first, second and third columns of the 
matrix depicts the results of analyzing the location-based, the time-based and the interrupt-driven 
wakeup methods respectively. In other words, the first, the second and the third columns of the 
matrix depicts the results of analyzing Equations (8), (10) and (12) respectively. Each row of the 
matrix focuses on analyzing a specific node within the group using the three wakeup methods.  
That is, the first, second, third and fourth rows refer to the 1st, the 5th, the 25th and the 50th nodes 
of the group being analyzed respectively. 

It can be seen from Figures 4a–c, that the energy consumption of the first node is only affected by 
the number of nodes in the group and the distance between RFID tags, while the wakeup method has 
totally no effect on it. That is because the first node is not subjected to the sleep mode as it starts in active 
mode by default. The three wakeup methods differ only in what a node does before coming to duty and 
according to the way it wakes up. Obviously, none of these two differences are applicable to the first node. 

On the other hand, the plots in the second, the third and the fourth rows of Figure 4 show clearly 
that nodes energy consumption is dependent on the wakeup method that is used. Consider two sets 
of plots: the set of plots of Figure 4d, g and j and the set of plots of Figure 4e, h and k. The energy 
consumption that is depicted in those sets is almost identical. That is because these two sets represent 
the location-based and the time-based wakeup methods that are both involved in some activity 
during the sleeping mode. That is, if a node follows the location-based method, it consumes some 
energy while sleeping to localize itself. Likewise, with the time-based method, some energy is consumed 
in sleep mode by the node timer. On the other hand, since the interrupt-driven method involves no 
activity when a node is sleeping, the plots of Figure 4f, i and l are different than the other two 
methods. As expected, increasing the number of nodes per group will result in a significant drop in 
energy consumption. Obviously, that is because of the deep sleep mode that characterizes the 
interrupt-driven methods. Such significant energy saving can overshadow the reliability problem 
that is associated with the interrupt driven method that was discussed earlier in Section 3. 

It is also clear that the difference between a solid line curve and its dashed line counterpart is 
small. The reason why the energy consumption in the dashed line curves is always less is because 
the RFID tags are so far from each other ( d = 500 m). Consequently, the RFID reader does not 
need to communicate with the tags so often as in the case of solid line curves when d = 10 m. 
However, by increasing d, the energy consumption just slightly improves at the expense of 
significant degradation in localization resolution. Clearly, the insignificant energy saving is not 
worth that sacrifice in distance resolution. 

In general, the energy consumption drops in all the methods, but when a node is scheduled to 
wake up late (a high value of n), that drop becomes less sharp. However, that is not true with the 
interrupt-driven method, which maintains the significant reduction even with nodes that wake up 
too late. The justification for this is that when considering the time-based or the location-based 
methods, a sleeping node still consumes energy to count time and locate itself, which are marginal 
activities that are not within the core duties of the node. 
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The longer the sleep period is, the more those marginal activities are performed. In contrast, a node 
that works under the interrupt-driven method does not suffer from those marginal activities since it is 
in deep sleep mode and doing absolutely nothing when awaiting its turn to wakeup. The existence of 
the marginal activities in the location-based and the time-based methods introduces limitations to the 
design scalability when choosing these two methods. However, the interrupt-driven method is scalable 
to any number of nodes and any trip period. 

The second part of this analysis is concerned about the nodes memory size. The relationship 
between memory size and the other parameters is governed by Equation (15). The analysis results are 
depicted in Figure 5. The x-axis refers to total number of nodes per group while the y-axis refers to the 
percentage memory utilization for each node. Figure 5a shows that the memory size of a node drops 
sharply after adopting the multi-node model. The chart of Figure 5b shows the effect of increasing the 
separation between RFID tags on the node memory usage. When the value of d is increased from 10 m 
to 500 m, the memory size is dropped to almost 50%. This reduction is significant and in case of 
running short of memory, sacrificing the localization resolution is worth the gain in memory saving. 

Figure 5. (a) Node memory utilization (T = 30 h, d = 10 m); (b) Node memory utilization 
(When N > 1) for T = 50 h. 

 
(a) 

 
(b) 

6. Model Validation Using Simulation 

An event-driven simulation was carried out using Matlab to validate the analytical models 
formulated in Equations (8), (10) and (12) and the results presented in Figure 4. The design parameters 
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were tuned according to Table 3. For each combination of parameter values, the simulated energy 
results (Esim) were compared with the corresponding analytical results obtained from the proposed 
equations (Eeq). 

The simulation is triggered by some events based on whether the node is in active or sleep mode. 
While in active mode, the simulation is triggered by an event when the node is exposed to an RFID 
tag. After every event, the energy is calculated for each component contributing in reading the RFID 
communication, namely, the microcontroller and the RFID reader. Also, the energy of the pressure 
sensor is calculated considering operation time throughout the active mode. While in sleep mode, the 
simulation is triggered by RFID tag exposure as well. However, the energy calculation differs based on 
the three techniques listed in Table 1. For this scenario, both the simulated and the analytical energy 
results were compared and found to be identical with zero error. 

The simulation was repeated with less event resolution. That is, instead of triggering the simulation 
by every RFID tag exposure, the simulation is triggered every TA seconds, where TA is a node active 
period calculated using Equation (2). During the time period (TA), a node is exposed to m RFID tags as 
described in Table 2. Under this scenario, the results were found to be almost identical, with a very 
small error. The error was calculated by taking the absolute value of the difference of the simulated 
and analytical results, and as the percentage of the absolute error relative to the simulation results. That is: 

eqsim EErorAbsoluteEr −=  (16)

100×
−

=
sim

eqsim

E
EE

rorRelativeEr % (17)

Table 5 summarizes the comparison results of the whole experiment using the three wakeup 
techniques. The histogram results of the error analysis are also shown in Figure 6. 

7. Conclusions 

Water pipeline networks are considered to be an important asset which requires active monitoring 
and inspection systems for maintenance. Monitoring long distance water pipeline for leakages, bursts 
and other anomalies is a challenging task which requires energy-efficient, scalable and robust mechanisms. 
WSN is one such technology which provides robust solutions to these problems. In this paper, a 
scalable design and simulation of a non-real-time RFID-WSN-based long-distance aboveground water 
pipeline leakage monitoring system is presented. The system is based on deploying multiple mobile 
sensor nodes such that only one node is active for specific period of time. While a node is active, the 
other nodes are in sleep mode. Sleeping nodes wakeup using three different techniques: location-based, 
time-based and interrupt-driven. After finishing duty, a node cuts off until the end of its trip. 
Mathematical models for the energy consumption and the memory usage are proposed, analyzed and 
validated using Matlab simulation. The analysis results shows that energy consumption of the node 
improve significantly when the work is divided between groups of nodes. Although the energy 
consumption can be further improved by increasing the distance between RFID tags, that improvement 
is not significant and it is overweighed by the significant degradation in distance resolution. 
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The energy savings that are associated with the location-based and time-based wakeup methods are 
almost the same. On the other hand, the interrupt-driven method provides a much sharper reduction in 
energy consumption. This advantage may overshadow the reliability issue of this method due to the 
fact the nodes are connected in series. One more advantage of the interrupt-driven method is its 
scalability, even if the number of nodes is high and the trip period is long. In contrast, the other two 
wakeup methods have limited scalability due to the marginal activities that node need to perform in 
their sleep mode. 

Memory size is also improved when adopting the multi-node model. Unlike the energy saving case, 
memory saving is also significant when increasing the distance between RFID tags. This analytical 
work is the first step towards a long term project with objectives of developing an efficient and  
fault-tolerant monitoring system for a long-distance water pipeline. As a future work, more investigation 
and development will be carried out to prototype an energy efficient WSN node for water pipeline 
leakage monitoring system. An experimental testbed based on the resulting node will also be developed 
and tested using real-world scenarios. 
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Appendix 

Analytical Proof of Pipeline Coverage 

In the location-based technique, missing any part of the pipeline is not possible because the duty 
handover is always triggered by reaching certain fixed predefined points along the pipeline. Whenever 
an active node reaches the next handover point it will stop immediately. At the same location, the next 
node to be in duty will wake up at that point as well. Thus, no matter which of the two nodes are faster 
than the other, handover will occur with guaranteed coverage for entire pipeline length. 

In the interrupt-driven technique, duty handover is triggered by interrupting the sleeping node by 
the active node. Thus, the handover process implies dependency on the nodes and, hence, coverage is 
controlled and guaranteed. 

For the time-based technique, handover is triggered by internal timers in the active and sleeping 
nodes. Assuming the timers are synchronized, the two nodes will handover duty at the same time 
instance. However, knowing that the two nodes can be in undetermined locations, it would be possible 
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that the sleeping node (to be active) is ahead of the current active node. Obviously, the location gap 
between them is not monitored by either of them. A detailed analysis is presented here. 

The randomness in the nodes location is due to the randomness in their forward velocity. Nodes, 
while travelling, are not heading perfectly forward, but there would be some slight drifting towards left 
or right. Thus, their motions have two components: x-component (moving forward) and y-component 
(moving right or left). It is the forward movement that counts in duty handover. Therefore, the forward 
velocity of a node is not fixed and neither is it deterministic. Thus, it has a random value v ranging 
between minimum velocity (vmin) and maximum velocity (vmax). For the sake of argument, that value is 
assumed to follow a uniform distribution within vmin and vmax of the density function )(vfV  as shown  
in Figure A1. 

Figure A1. The density function of the random variable v. 

v

)(vfV

maxvminv

minmax vv −
1

 

The distance (d) that a node has travelled so far during time (t) can be considered as a random 
process while v is its random variable. The well-known velocity-time-distance equation can be used to 
describe that random process. That is: 

tvvd =)(  (A1)
Considering the two nodes involved in the duty handover, lets denote the active node distance as 

)(1 vd while the sleeping node (to be active) as )(2 vd . If the forward velocities of the first node and the 
second node are v1 and v2 respectively, then the following expressions can be used: 

111 )( tvvd =  (A2)

222 )( tvvd =  (A3)

The handover that occurs at instance t will not imply missing any part of the pipeline if and only if 
)()( 1122 vdvd ≤  at that instant of time. That is: 

0)()( 1122 ≤− vdvd  (A4)

0)( 12 ≤− vvt  (A5)

0≤tr  (A6)
where, )( 12 vvr −=  is the relative velocity between the two nodes. Note that r is yet a random variable 
of density function )(rfR . Since the random variable r is the result of the difference between two 
random variables, )(rfR  can be determined using the following relationship [22]: 
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111 )()()(
21

vdvfvrfrf VVR

∞

∞−
+=  (A7)

For )( maxmin vvr −≤ , the value of )(rfR  is 0 since there will be no overlap between )( 11
vfV and 

)( 22
vfV  (Figure A2a). Likewise, when )( minmax vvr −> , they do not overlap and, hence, the value of 
)(rfR  is 0 (Figure A2d). 

Figure A2. Derivation of the density function of the relative velocity r. 

 

On the other hand, when 0)( ≤<− rvv maxmin , the functions )( 11
vfV and )( 22

vfV  overlap from rvmin −  
to maxv  (Figure A2b). That is: 

( ) ( ) 0for1)( 212 ≤<−
−

+−=
−

=
−

rvv
vv

rvvvd
vv

rf maxmin
minmax

minmax
v

rv
minmax

R
max

min

 (A8)

Similarly, when )(0 minmax vvr −≤< , the functions )( 11
vfV  and )( 22

vfV  overlap from minv  to rvmax −  

(Figure A2c). That is: 

( ) ( ) minmax
minmax

minmaxrv

v
minmax

R vvr
vv

rvvvd
vv

rf max

min

−≤<
−

−−=
−

=
−

0for1)( 212  (A9)

In summary, )(rfR  can be expressed by the following equation which is also depicted in  
Figure A2e: 

( )

( ) −≤<
−

−−

≤<−
−

+−

=

otherwise0

0for

0for

)(
2

2

minmax
minmax

minmax

maxmin
minmax

minmax

R vvr
vv

rvv

rvv
vv

rvv

rf
 

(A10)

1v
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vfV )( 11
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)( maxmin vvr −≤

1v

maxvminv
rvmax−rvmin−

)( 12
vfV )( 11

vrfV +

0)( ≤<− rvv maxmin

)( 11
vfV

1v

maxvminv
rvmax−rvmin−

)( 12
vfV )( 11
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vfV

1v

maxvminv

)( 12
vfV)( 11
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vfV

r

)(rfR

)( maxmin vv − )( minmax vv −
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The grey region in Figure A2e indicates the interval when r is negative which means that the 
sleeping node is slower than the active node. Hence, the area under the grey half of the curve is the 
probability that the handover process does not end up with missing parts of the pipeline unmonitored. 
That area is equal to 0.5. On the other hand, the remaining part of the curve is associated with positive 
values of r meaning that the sleeping node is faster than the active node. Therefore, when handing over 
duty to the sleeping node, it wakes up in a location that is ahead of the active node, which implies a 
gap between the two nodes that is not covered by them. 

In conclusion, fifty percent of the handover processes are expected to end up with missing some 
parts of the pipeline. When deploying N nodes in a mission, there will be N–1 handovers throughout 
the pipeline length, fifty percent of which are expected to result in monitoring gaps. That is, (N–1)/2 
gaps are expected. Note that, a gap length (like any other distance) is not a function of N, but it is a 
function of velocity and time. Therefore, deploying more nodes in the time-based technique implies 
increasing the occurrence of handovers and, hence, increasing the total number of potential gaps. 
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Energy Efficient Cooperation in Underlay RFID Cognitive
Networks for a Water Smart Home
Adnan Nasir, Syed Imtiaz Hussain, Boon-Hee Soong and Khalid Qaraqe

Abstract: Shrinking water resources all over the world and increasing costs of water consumption

have prompted water users and distribution companies to come up with water conserving strategies.

We have proposed an energy-efficient smart water monitoring application in [1], using low power

RFIDs. In the home environment, there exist many primary interferences within a room, such as

cell-phones, Bluetooth devices, TV signals, cordless phones and WiFi devices. In order to reduce

the interference from our proposed RFID network for these primary devices, we have proposed a

cooperating underlay RFID cognitive network for our smart application on water. These underlay

RFIDs should strictly adhere to the interference thresholds to work in parallel with the primary

wireless devices [2]. This work is an extension of our previous ventures proposed in [2,3], and

we enhanced the previous efforts by introducing a new system model and RFIDs. Our proposed

scheme is mutually energy efficient and maximizes the signal-to-noise ratio (SNR) for the RFID link,

while keeping the interference levels for the primary network below a certain threshold. A closed

form expression for the probability density function (pdf) of the SNR at the destination reader/writer

and outage probability are derived. Analytical results are verified through simulations. It is also

shown that in comparison to non-cognitive selective cooperation, this scheme performs better in the

low SNR region for cognitive networks. Moreover, the hidden Markov model’s (HMM) multi-level

variant hierarchical hidden Markov model (HHMM) approach is used for pattern recognition and

event detection for the data received for this system [4]. Using this model, a feedback and decision

algorithm is also developed. This approach has been applied to simulated water pressure data from

RFID motes, which were embedded in metallic water pipes.

Reprinted from Sensors. Cite as: Nasir, A.; Hussain, S.I.; Soong, B.-H.; Qaraqe, K. Energy Efficient

Cooperation in Underlay RFID Cognitive Networks for a Water Smart Home. Sensors 2014, 14,

18353–18369.

1. Introduction

The pressure provided by pumps and roof tanks is needed to deliver water to consumers. From this

pressure information, we can determine the water flow, which is the direct measure of the water usage.

The pressure change gives unique signatures for different taping points, like the kitchen sink, the

washing machine, the wash basin and showers. Furthermore, the change in pressure information

in a single section of the pipe shows a possible leak or seepage. In our previous work, using

PipeSense [1], an RFID-based in-pipe monitoring system, we have determined the feasibility of

developing a monitoring system to measure the quality of water. The shrinking water resources all

around the world have made it absolutely necessary for us to conserve water; this fact has also made

water quite expensive. Usually for us, there is no way to know how much water has already been

consumed, nor the cost of this consumption, until the bill arrives at the end of the month. Moreover,

the bill is not easy to interpret, and it is difficult to extract information about consumption during
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a particular period of time. Secondly, there are unpredictable leaks or seepage occurs in the water

pipes, accumulating the costs of the utility, the details of which remain unobserved; leaks alone are

the reason for considerable loss in terms of money and resources per year. Repairing these leaks also

incurs a cost and leads to the wasting of time and effort. We lack a wireless automatic system that can

measure water usage in real time, monitor events, such as tap opening and closing, daily consumption

patterns and predict possible leaks and seepage developing in the pipe network. For this system, we

need to come up with methods and algorithms to localize the leaks and seepage in smart homes.

RFIDs integrated with pressure sensors are embedded in the pipe infrastructure. They collect

pressure information and send it along with their IDs to the reader/writer destination node. From the

available pressure data from the sensors, the determined usage patterns, tap events and their patterns

assist the real-time control of the home water system. The information from the sensors is then

run by the algorithms on the cyber system to render decisions in order to support the hardware

controllers responsible for managing the water distribution parameters. Several methods have

been used in the setting of multi-agent systems; however, we have chosen the hierarchical hidden

Markov model (HHMM), which is a famous tool for pattern recognition [4,5]. The framework

described in [4] is an integrated set of two separate four-tier frameworks; here, two HMMs were

discussed for determining the CO2 and CO levels from the vehicle’s exhaust. These two HMMs

were separate and are not dependent on each other, as the data is coming from two different sensors;

while the HHMMs proposed in our current proposal are hierarchical in nature, due to the fact that

the consumption patterns, tap and seepage event data are interdependent or, in some other way,

coming from the same sensors. Normally, HMMs are used as a speech recognition tool world

over. Due to the similarities of the sensor data that we received from the pipes to speech signals,

we adopted the HHMM to solve the problem presented in the proposed solution. We can also

make the smart home water system consumer friendly by making the data visualization easy to

interpret, along the same lines as [6]. The integrated RFID motes collect and send the data to the

reader/writer mote. We propose an event detection and prediction scheme based on HHMM, which

is a hierarchical variant of HMM [7]. Our approach would be to detect the differences by statistically

comparing the observed pattern with that predicted by a model to discover events of interest while

minimizing the delays and false alarms. A preliminary version of this research appeared in [3].

The framework described in [3] is utilized for a human-centric in-pipe water distribution monitoring

system (WDS) with the goal of determining the patterns and probabilities of future water demand,

water quality and contamination spread using HMM; while our proposed work uses HHMM instead

of HMM to determine the consumption pattern, tap events and seepage events in the context of a

water smart home.

The term “smart home” has been used to introduce the notion of networking devices and

equipment that distribute information and commands among the networked devices in the home via

wired and wireless communication [8]. A smart home can accommodate a number of information

gadgets, home appliances and other Internet-based applications, which can communicate with each

other, forming a ubiquitous home network system [9]. This presents the idea of having a server-based

home gateway system, which becomes the brain of the smart home, which will surely make life

easier for the common household. However, there exist several other wireless devices simultaneously
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operating under the same roof. These two systems are bound to interfere with each other, resulting in

higher energy consumption due to handshaking protocols. Hence, cognitive underlay networks come

to the rescue in this scenario.

The available wireless spectrum has become a scarce resource, due to the rising demand for high

data rate wireless services. Due to this scarcity, emergent communication systems are required to

exploit the unused licensed spectrum in an opportunistic fashion [10]. It is proposed in [11] that

in the case that the licensed or primary user of the spectrum is inactive, any cognitive or secondary

users can use this available spectrum. When the primary user becomes active, the secondary user

must switch off its communication and look for another spectrum hole. This technique is generally

referred to as the interweave approach and involves spectrum sensing and detection. Generally,

the overlay method simultaneously allows both the primary and secondary users to approach the

spectrum; however, the interference for the primary user is subjugated by the secondary user through

advanced signal processing. Another approach, called the underlay approach, allows the sharing of

the spectrum by both primary and secondary users simultaneously. In this approach, the secondary

user has to satisfy strict interference constraints, and its transmission power should be below a certain

threshold all of the time [11]. Underlay cognitive networks use very limited transmission powers and,

hence, make the system energy efficient. A subset of these RFID motes were allowed to send the data,

which increases the received SNR ratios and will be useful in decision making. In our monitoring

application, for better parameter monitoring, we will need to accumulate the maximum number of

nodes satisfying the threshold requirements to increase the overall received SNR.

The work by Akbar et al. [12] presents the use of hidden Markov models (HMMs) to model

and predict the spectrum occupancy of licensed radio bands. The proposed HMM by Akbar et al.,
dynamically selects licensed frequency bands for its own use and, thus, in the process, reduces the

interference from and to the users, where the channel state occupancy of the licensed primary users

was assumed to be Poisson distributed. Hence, here, HMMs were employed to predict the duration

of the spectrum holes for primary users. On the contrary, the HMMs and HHMMs proposed in our

smart home were not used by the cognitive radio to predict the spectrum holes; instead, these models

were engaged during the processing of the acquired sensor data at the base station to determine

a potentially hazardous event. The working and predicting process of the two HMMs discussed

are fairly similar, as by inheritance, the HMMs first train themselves by using a huge amount of

data in order to develop reliable prediction models. Our proposed HMM and HHMM processes are

not utilized in the cognitive spectrum sensing; in our case, the spectrum sensing is done by a very

simple energy detector algorithm, and HMMs were used during the processing of the sensor’s data

to determine an event.

In this paper, we analyzed an underlay RFID network with fixed transmission power near a

primary user, which is a special case and an extension of our previous work [2]. The system

model defined in [2] has a single source (non-RFID), ‘L’ number of relays (non-RFID) and a single

destination with a primary interferer, while our proposed system is comprised of several sources

(RFIDs) with a single destination and a primary interferer. Moreover, the system in our proposal

is energy efficient, as compared to the one described in [2], due to the use of RFIDs. We propose

a new commutative node selection criterion based on satisfying the interference constraint, while
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maintaining the maximum SNR of the node link at the destination. We derive closed form expressions

for the probability density function (pdf) of the total SNR at the destination. We also derive closed

form expressions for the outage probability of the system. Here, we have also discussed our approach

to identify the taping and other known events in order to recognize unknown events, such as a leak

or seepage, when they occur and track them, so as to have an efficient system with less false alarms.

This type of system implementation can be seen as a cyber physical system (CPS), where the user

can also give feedback and actuate certain mechanisms to achieve efficiency. We have opted for a

cyber-physical approach for an efficient feedback control system for wireless sensor networks.

The remainder of the paper is arranged as follows. In the next section, we will give an

overview of our system. Section 3 describes the system model and introduces various notations used

throughout. Section 4 presents the received SNR statistics and the derivations of some important

pdfs required for performance analysis at the destination. In Section 5, we give the details of

our proposed cyber system model. Section 6 details the event detection analysis. Section 7 gives

the system’s performance analysis in terms of outage probability and a discussion on the results

obtained. Section 8 describes some future directions, and finally, Section 9 concludes the paper with

summarizing comments.

2. System Overview

In our proposed system diagram shown in Figure 1, cost effectiveness is achieved by opting for

low power and low cost active RFID motes and allowing only those motes to send data that satisfy

the interference threshold of the primary user. These motes can be programmed to send data after

some set limit with their IDs to the reader/writer mote, and a few motes may be needed to complete

the monitoring task. A simple sleep and wake-up protocol is initially utilized in the RFID motes.

Once the data is received at the access mote, it first separates the data from the ID information,

makes a packet and sends this packet to the water smart server through WiFi or 3G networks. At the

server, the event detection and decision algorithms analyze the data and predict the future 50 or

100 states of the system. The RFID motes are renowned for their low power consumption; however,

the reader/writer mote with a WiFi or 3G option will consume some energy. It will be slightly costlier

to monitor the piping system than not monitoring it at all, but in the long run, it may possibly save

much more by reducing maintenance and manpower costs. An Internet-based web portal application

and an Android phone application running on hand held devices take the data from the server and

visualize the data for the consumers. The data on the server also get archived, so that the consumers

can always compare the consumption and find previous events. Due to the different nature of the

events related to the timing of the occurrences, for instance the daily consumption behavior and

seepage can be an hourly event, while tap opening and closing is an event that can only be detected in

a few seconds’ or minutes’ time, this caused us to use hierarchical HMM, which will first look at the

per second data, while checking for any unusual behavior leading to a tapping event; if no such event

is detected for an hour, then the model shifts to the per-hour hierarchical level to detect consumption

patterns and find the seepage. In the context of water consumption, it is expected that consumers’
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behavior can change when they are regularly made aware of the amount and, in particular, the cost

of what they consume.

Figure 1. System diagram showing the RFID cognitive nodes, the primary interference

and the smart home server as the destination.

3. System Model

We consider an underlay cognitive RFID network operating near a primary user P . The cognitive

network consists of L secondary nodes broadcasting their data signals to the destination D, as shown

in Figure 2. This broadcast is also received at the primary user P and causes some interference.

The channel coefficients from the i − th node (Ni → D) are hi, i = 1, 2, 3, ...L. The interference

channel from the i − th node (Ni → P ) to the primary user is hip, i = 1, 2, 3, ...L. In addition,

we assume that the channels are subjected to additive white Gaussian noise (AWGN) with zero

mean and variance N0. The available power at each node is P . In underlay cognitive networks, the

secondary users must maintain strict interference constraint, i.e., the interference at the primary user

must be below a certain threshold, say λ. Depending upon the channel gain hip from the i − th

node to the primary user, some nodes may not be able to satisfy the interference constraint and,

hence, would refrain from sending the data to the destination. We assume that the nodes estimate

their interference channel when the primary user is transmitting or acknowledging any received

information. This information may also be available on a dedicated feedback channel from the

primary user to the i − th node in the form of a yes or no decision. Let us say l nodes satisfy the
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interference constraint out of the available L nodes. We group the node indexes into different sets,

such as U , representing the set of all node indexes and A ⊆ U , the set of l node indexes satisfying

interference constrain. We assume that all of the channel coefficients are Rayleigh distributed, and

hence, their squared amplitudes are exponentially distributed.

Figure 2. System model: RFID cognitive nodes, the destination node and the

primary interferer.

The received SNR from the i− th node transmission can be given as:

γi =
P |hi|2
N0

(1)

Similarly, the interference for the primary user due to the i− th node is given by:

Iip = P |hip|2 ≤ λ (2)

4. Received SNR Statistics

Based on the above discussion, the SNR received at the destination can be defined as the sum of

the SNRs of all of the nodes satisfying the interference constraint. Mathematically,

γT =
∑
iεA

γi such that Iip ≤ λ (3)

Since Iip is an exponentially distributed RV, the probability of satisfying the interference

threshold is:

Pλ = 1− e−
λ
σ (4)

where σ are the average strengths of the interfering channels. We have assumed that the nodes are

present in the form of a cluster and are roughly at the same distance from the primary user. In this
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case, the average strengths of the interfering channels can be assumed to be the same; however, their

instantaneous values may be different. Therefore, σ1P = σ2P = .... = σ.

Similarly, γi are also exponentially distributed with pdf pγi(γ) = 1
γi
e
− γ

γ̄i and cumulative

distribution function (cdf) Pγi(γ) = 1− e
− γ

γ̄i , where γi is the average SNR of the i− th node branch.

It is important to note that the number of nodes satisfying the interference constraint, i.e., l

may vary from zero to L. If l = 0, the destination would not receive any signal from the nodes.

For l = 1, only one node will be sending the data, hence no SNR aggregation is possible. In fact, the

node SNR aggregation begins with l = 2, but the events with l < 2 should be included when evaluating

the averages of various performance parameters. Hence, in summary, l nodes out of a total L can

satisfy the interference constraint λ with a probability Pλ. This dictates Bernoulli’s distribution;

however, in order to average over all possible values of l, a binomial distribution should be used,

which is given below:

pl(l;L;Pλ) =

(
L

l

)
Pλ(1− Pλ)

L−l (5)

where
(
L
l

)
= L!

l!(L−1)!
.

The conditional pdf of the sum of SNR among the l nodes can be obtained by the

following expressions.

pγT (γ|l) =
1

γ̄i
e
− γ

γ̄i ; l = 1 (6)

pγT (γ|l) =

[∏
iεA

1

γi

]∑
jεA

⎛
⎜⎝ e

− γ
γ̄j∏

kεA
k �=j

( 1
γ̄k

− 1
γ̄j
)

⎞
⎟⎠ ; l ≥ 2 (7)

The unconditional pdf of the SNR at the destination through the node aggregation can be obtained

by averaging the conditional pdf over the pdf of l, given as:

pγT (γ) =
L∑
l=1

(
L

l

)
P l
λ(1− Pλ)

L−lpγT (γ/l) (8)

Hence, substituting Equation (6) in Equation (8), we have,

pγT (γ) = P 1
λ (1− Pλ)

L−1

L∑
i=1

1

γ̄i
e
− γ

γ̄i

︸ ︷︷ ︸
l=1

+

L∑
l=2

(
L

l

)
P l
λ(1− Pλ)

L−l

[∏
iεA

1

γi

]∑
jεA

⎛
⎜⎝ e

− γ
γ̄j∏

kεA
k �=j

( 1
γ̄k

− 1
γ̄j
)

⎞
⎟⎠

︸ ︷︷ ︸
l≥2

(9)

The cdf of γT can be obtained by integrating Equation (9) from zero to ∞ given below:
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PγT (γ) = P 1
λ (1− Pλ)

L−1

L∑
i=1

(1− e
− γ

γ̄i )︸ ︷︷ ︸
l=1

+

L∑
l=2

(
L

l

)
P l
λ(1− Pλ)

L−l

[∏
iεA

1

γi

]∑
jεA

⎛
⎜⎝ γ̄i(1− e

− γ
γ̄j )∏

kεA
k �=j

( 1
γ̄k

− 1
γ̄j
)

⎞
⎟⎠

︸ ︷︷ ︸
l≥2

(10)

5. Performance Analysis

In this section, we derived closed form expressions for the outage probability of the system using

the results obtained in the previous section.

5.1. Outage Probability

A communication system is said to be in an outage when the received SNR is fallen below a

certain threshold η. The total SNR expression in Equation (9) is for the situation when at least one

node satisfies the interference constraint. However, as mentioned earlier, it is possible that none of

the relays satisfy the interference constraint. The probability of this event is (1 − Pλ)
L. Hence, the

outage probability of the system can be evaluated as:

Pout = PγT (η) + (1− Pλ)
L (11)

6. Numerical Results

In this section, we present simulation results to verify the derived analytical expressions. First,

we define the parametric setup for the simulations, and later, the results are discussed in detail.

6.1. Simulation Setup

All of the simulation results are generated by varying the average SNR γi, where γi = α_i P
N0

.

The value of α = 0.1 in the case of an interference channel. The noise is considered to be AWGN

with zero mean and unit variance. The transmission power at the nodes is also assumed to be PN = 1.

The maximum number of nodes in the system is L = 5, and all of the situations are compared with

equal power conditions.

6.2. Discussion

The outage performance of the system is plotted in Figure 3 with L = 1, 2, 3, 4, 5, and the values

of interference constraint and outage threshold are set to be 10. The outage graph initially follows

the regular water-fall curve, until it reaches a point where the nodes started to have better SNR than

the outage threshold. At this point, the outage graph shows an increase of probability. As the number
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of nodes increases, the outage graph’s probability values decrease steeply (shown as a solid line).

On the same graph, we have shown the case of the interference constraint having a very large value

(shown as a dashed line); all of the nodes satisfy the interference constraint all of the time, and hence,

the system acts like a non-cognitive network. The graph shown in Figure 4, is with L = 5 and outage

threshold = 10 with varying interference constraint λ = 1, 5, 10, 20. The figure shows that the elbow

point, indicating the event when the nodes started to meet the interference constraint, slopes down

with the increase in the interference constraint.

Figure 5, shows the outage probability when L = 5, and the interference constraint is set to λ = 10

and varying the values of the outage threshold η = 5, 10, 20, 30, 40. It shows that the probability

decreases with the increase in the outage threshold.

Figure 3. Outage probability of the system with L = 1, 2, 3, 4, 5 for interference

constraint λ = 10 and outage threshold η = 10.
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Figure 4. Outage probability of the system with L = 5 for interference constraint λ = 1,

5, 10, 20 and outage threshold η = 10.
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Figure 5. Outage probability of the system with L = 5 for interference constraint λ = 10

and outage threshold η = 5, 10, 20, 30, 40.
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7. Proposed Model for Cyber System

Our smart home system diagram is shown in Figure 1. Our proposed model will allow us to detect,

as well as to predict various events of interest. Every state is associated with a probability distribution

over the possible output symbols. In our context, an event can be a tap event, high/low usage of water

and/or seepage. The HHMM to solve and predict the tap, seepages and consumption pattern events is

shown in Figure 6. An off-the-shelf 125-KHz RFID module was utilized in the experiments. Pressure

sensors were deployed at the main tapping points to emulate the taping and seeping events. However,

due to the requirement of a large data set in order to predict the events correctly, pseudo pressure data

closely matching the actual received data was constructed to get the predictions.

Figure 6. Proposed HHMM for event detection and future event prediction.

(CP, consumption pattern event; T/SE, tap and seepage event.)

7.1. Hierarchical Hidden Markov Models

Hierarchical hidden Markov models [7] are simplifications of HMMs, which provide an answer to

two main problems that arise in complex sequence modeling. At first, HHMMs can correlate events

that happen comparatively distant from each other in an observation sequence and still maintain the

ease and flexibility of a simple Markov process. Hierarchical hidden Markov models (HHMMs) are

structured multi-level stochastic processes. HHMMs make each of the hidden states an autonomous

probabilistic model, hence making each state an HMM, as well. Therefore, the states of an HHMM

emit sequences rather than a single symbol. Figure 6 shows our HHMM to determine consumption

patterns, tap events and to predict seepage events hierarchically; the third state is also an HMM to

detect the usage patterns on top of seepage and tap events. An HHMM works by generating sequences
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repeatedly through activating one of the lower states of a selected state, since each HHMM is

generally made up of a standard single-level HMM. Therefore, the individual states of the HMM are,

in fact, the production states of the next HHMM, having a non-zero probability of going from any one

state to another state. This process of recursive activations ends when we reach a special state, called

the production state. In our context, the production state is the final state of the third-tier hierarchy of

consumption patterns. The output symbols are only emitted through the production states; this output

symbol is picked out from the set of output symbols according to a probability distribution, while the

internal states are hidden states that do not give off observable symbols directly. The control then

returns to the state that initiated the algorithmic activation chain. This constitutes a tree structure,

where the node at the top of the structure is called the root state, while the production states makes

the leaves.

8. Event Detection and Analysis

To determine patterns, a model has to be formulated that can be utilized to identify real instances

of abnormal events from the suspicious ones. Because of this, the model should detect possible

abnormal activities, expeditiously examine large sets of data and produce hypotheses with only

partial and fallible information. The transition-based model shown in Figure 6 identifies the event

by comparing the anticipated outputs with the data sets from different nodes in the network. It is

used to detect the water consumption patterns, seepage and tap events hierarchically. We have

used the expectation-maximization (EM) algorithm for HMM parameter training and performed the

hypothesis testing using the maximum likelihood (ML) principles from [1,4] to identify the data

samples as either normal, a possible event or a confirmed event during the recognition phase of the

algorithm; as the stability is directly proportional to the amount of data collected and the number

of events occurring. Our proposed system will periodically train itself, and as the data set grows,

the stability increases. the initial transition matrix when there were no real data sets available will

be stationary, while we next obtain the matrix of transition and emission probabilities. Here, we

estimate these probabilities based on our pseudo data. The emission matrix is initialized based on

the following assumptions; if usage increases, then there is a 30% chance of the need to repair and

expand the water supply network. If seepage and leak events increase, then there is a 50% chance

that we need to repair the system. If the water utility cost increases, then there is a 20% chance that

we need to conserve water. We have logically assumed the emission matrix with a 30% chance for

the water system expansion and a 50% chance for repair. This matrix can be determined through real

analysis of the home piping system during one year. In short, we can set the emission matrix values

on the analyzed real data, but here, for simplicity, we assumed the matrix. Furthermore, we can

map the location of the seepages and can alert households to take evasive actions. After collecting

a sufficiently large data set, large enough to train our model to give meaningful predictions and

decisions, we can tune the model parameters, such as the transition, emission and initial probabilities,

so as to maximize the system’s event detection performance. For instance, a data set of a mere few

hours is sufficient for the detection of a taping event, while a consumption event will require at

least the data of the whole day. Given this model, we use the forward HMM algorithm to generate
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predicted states for the three features of interest illustrated in Figure 7. The predictions were made

after adjusting the transition and emission probabilities over 500 iterations.

Figure 7. Pseudo pressure values in ‘bar’ on the y-axis for (a) consumption pattern (CP)

(per hour on the x-axis), (b) tap event (TE) (per second on the x-axis) and (c) seepage

event (SE) (per second on the x-axis).

Tap events occur within the consumption pattern measurements; this makes it easier and efficient

to model using a single HHMM rather than two HMMs. HHMMs train themselves after getting

hourly, daily and monthly data and determining the events from this data set, so it may take as short

as a couple of hours to capture the tapping events and a minimum of two days to determine the

daily consumption patterns. Figure 7 shows the pseudo daily consumption pattern and tap event

pressure data. These data are quantized to determine the systems’ observation sequence states in

Figure 8. The HHMM starts with the root state, which can, in turn, activate and pass the control

to any one of the internal states at the second hierarchy, according to an initial probability matrix.

The third sub-state of the second hierarchy of the consumption measurements can also pass the

control to the tap event states at the third hierarchy, according to its own initial non-zero probability

matrix. The third tier predicts the tapping event, generates the outcome and passes the control to the

hierarchy that activated it through the production state. After that, the second hierarchy completes its

generation of the predicted events and passes the control back to the root state. As the data set grows

and the system comes across a number of events, our proposed HHMM trains itself using daily and



114

monthly event data sets. This training and parameter determination can be done in a few minutes.

Figure 9 shows the generated state prediction for the two events. HHMM generated prediction states

indicate what may be the expected behavior of the system. Given the current obtained readings, the

higher the prediction span, the more complex will be the decision. Therefore, we need an algorithm

to detect these predictions to come up with any sort of decision. These HHMM-based predictions

for 300 points of data from each node are given to a decision algorithm, which searches for 50 or

more continuous State 3 predictions in the predicted sequence for each node and compares them

with the other nodes in the region. If three or more nodes show similar predicted behavior, then a

SMS alert is sent to the households and an alarm signal to the water smart server. The process then

waits for acknowledgment, and after receiving it, the system provides visualization of the event with

the location of the event. These 300 points indicate hours in the case of the consumption pattern

and seconds in the case of tap and seepage events. In other words, we can make HHMM predict

a sequence of any number of points (hours, seconds) regarding the consumption, tap and seepage

events. The output of Figure 9 shows that the predicted events hop around in three distinct states.

If the predicted pattern depicts more transactions in State 3, this means that we have more chances

of having an actual event in the future, and if the predicted sequence mostly remains in the second or

first states, the chances of having this event are very rare.

Figure 8. (a) Consumption patterns (CPs) (per hour on the x-axis); (b) tap event (TE) (per

second on the x-axis); and (c) seepage event (SE) (per second on the x-axis); quantized

state sequences are on the y-axis.
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Figure 9. (a) Consumption pattern (CP) predicted states; (b) tap event (TE) predicted

states and (c) seepage event (SE) predicted states against 300 future points (hours for (a)

and seconds for (b) and (c)) from HHMM.

9. Future Work

Human-centric sensing allows us to derive the most out of water monitoring research and

applications. We intend to enhance our system with a multi-interface data service for administrative

functions and a map service for normal users who are interested in the overall consumptions

and ways to conserve water. It can also utilize existing sensor modules and feed their data to

the users’ hand-held computing devices for processing and analysis. We are exploring the use

of communication methods, such as WiFi, Bluetooth, etc. These provide a wide choice of data

transfer speeds and flexibility in building a network. At the later stage of the research, an improved

energy-efficient event-driven MAC protocol for in-pipe RFID motes can be introduced. Some of the

applications where this system can also be applied are sewage monitoring, oil and gas installations,

industrial gas leak detections and quality management.
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10. Conclusions

We proposed a best node selection scheme for a cognitive network operating near a primary

user. We deduced through analysis and simulations that SNR is not the only criterion to pick up

the best node in the cognitive setting. The proposed scheme works by first eliminating those nodes

that do not satisfy the interference constraint. Then, among those nodes that successfully satisfy the

constraint, the one giving the maximum end-to-end SNR is chosen to forward the source message to

the destination. We derived the closed form pdf of the total SNR at the destination using the MGF

approach and then used it to derive BER and outage probability in closed forms. Analytical formulae

are verified through simulations. Some important features and tradeoffs of the proposed scheme are

also discussed. Our key interest is to conserve water and control the cost by sensing various aspects

of the water network in a water smart home and to share the information to users to control, preserve

and improve their life styles. The end-user, which can be a household or an authority, is informed

each day about the consumption and can decide how to be more efficient. This paper presents a

human-centric CPS cycle for an in-pipe water monitoring system. The CPS cycle and the proposed

models for consumption patterns and tap opening/closing events for the water network system have

been described. We also have described the application of HHMMs for modeling the system and their

use for detecting events, identifying patterns in the data, predicting events and in making decisions.

We also presented modeling results and analysis based on the pseudo pressure data. In addition,

directions for further research and development and its impact were presented.
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Inverse Transient Analysis for Classification of Wall 
Thickness Variations in Pipelines 

Jeffrey Tuck and Pedro Lee 

Abstract: Analysis of transient fluid pressure signals has been investigated as an alternative 
method of fault detection in pipeline systems and has shown promise in both laboratory and field 
trials. The advantage of the method is that it can potentially provide a fast and cost effective means 
of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the 
system remains fully operational. The only requirement is that high speed pressure sensors are 
placed in contact with the fluid. Further development of the method requires detailed numerical 
models and enhanced understanding of transient flow within a pipeline where variations in pipeline 
condition and geometry occur. One such variation commonly encountered is the degradation or 
thinning of pipe walls, which can increase the susceptible of a pipeline to leak development.  
This paper aims to improve transient-based fault detection methods by investigating how changes 
in pipe wall thickness will affect the transient behaviour of a system; this is done through the 
analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel 
pipeline of constant outside diameter, into which a pipe section of variable wall thickness is 
inserted. In order to detect the location and severity of these changes in wall conditions within the 
laboratory system an inverse transient analysis procedure is employed which considers independent 
variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic 
algorithm optimisation routine to match the response from a one-dimensional method of characteristics 
transient model to the experimental time domain pressure responses. The accuracy of the detection 
technique is evaluated and benefits associated with various simplifying assumptions and simulation 
run times are investigated. It is found that for the case investigated, changes in the wavespeed and 
nominal diameter of the pipeline are both important to the accuracy of the inverse analysis 
procedure and can be used to differentiate the observed transient behaviour caused by changes in 
wall thickness from that caused by other known faults such as leaks. Further application of the 
method to real pipelines is discussed. 

Reprinted from Sensors. Cite as: Tuck, J.; Lee, P. Inverse Transient Analysis for Classification of 
Wall Thickness Variations in Pipelines. Sensors 2013, 13, 17057-17066. 

1. Introduction 

Pipeline deterioration is a significant problem for engineers aiming to avoid costly failures or 
plan rehabilitation of pipeline assets. Typical forms of deterioration in pipeline systems include: 
internal or external corrosion of pipe walls, loss of lining and development of tubercles.  
These processes can lead to failure of the system through leak development, blockage formation or 
pipeline bursts which can lead to costly unexpected shutdowns, fluid contamination or increased 
running costs. Identification of pipeline deterioration has historically been carried out through 
external visual inspections, meaning that the identification of internal damage was more difficult. 
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The development of closed circuit television (CCTV) cameras has enabled visual inspection of pipe 
interiors, however its range is limited and assessments can only be made based on damage that can 
be visually identified. Other inspection techniques such as eddy current analysis, ground 
penetrating radar, magnetic flux leakage and pipeline inspection gauges (PIGs) have been 
developed for pipeline inspection. While these methods enable the gathering of good quality data, 
they can be very expensive to implement and are intrusive, requiring physical entry to a pipeline 
system, excavation or system shutdowns [1]. 

To overcome the limitations of these existing methods the concept of analysing unsteady 
pressure responses within pipeline systems has been of interest to many research groups and is 
commonly referred to as transient analysis. An unsteady pressure response in a pipeline system is 
affected by any structural or geometric variations within that system and, as pressure waves can 
travel many kilometres within a pipeline, analysis of unsteady pressure responses within a system 
can potentially provide continuous information about the condition of that pipeline. Many methods 
for fault detection through transient analysis have been proposed, for which summaries can be 
found in Colombo et al. [2]. One such method takes transient pressure measurements from 
strategically placed pressure sensors in a pipeline system. Then, the transient pressure response can 
be used to determine the condition and physical state of a pipeline through inversely calibrating a 
numerical model to match the response, hence theoretically replicating the pipeline. This method is 
known as inverse transient analysis (ITA) and was first proposed by Pudar and Liggett [3]. For ITA 
to be successfully carried out a good understanding of the unsteady fluid behaviour in complex 
systems is required. 

Transient analysis was first investigated by Stephens et al. [4] for the purposes of internal wall 
condition assessments of pipelines. The authors showed that changes in the condition of wall lining 
in a 750 mm mild steel cement lined (MSCL) pipeline would create reflections which can be used 
to characterise wall deterioration. Stephens et al. [5] followed on with this research and presented 
an ITA method of condition assessment which divided the pipeline into 15 m long sections, then 
inversely selected one of five predetermined levels of pipe damage for each section in an attempt to 
replicate the transient response of the system. The results showed reasonable correlation between 
the damage predicted by the ITA method and damage determined through the commercially 
available methods; ultrasonic pipe wall inspections and visual closed circuit television surveys. 
Hachem and Schleiss [6] carried out laboratory investigations that aimed to detect deterioration of 
pipe walls by considering simulated weak sections in a pipeline. The analysis methods used 
combined fast Fourier transforms and wavelet analysis techniques to locate the weak pipe sections. 
The weak sections were represented by using different pipe materials over short 0.5 m lengths.  
The method enabled the location of a single weak section of pipe to be determined along with a fair 
approximation of the wavespeed. Gong et al. [7] presented a Time Domain Reflectometry (TDR) 
method for the detection of a deteriorated section in a single pipeline. The method calculates the 
characteristic impedance of a deteriorated section by considering the magnitude of the initial reflection, 
from which the wavespeed and wall thickness of the section can be calculated by considering the 
equation for wavespeed in a fluid filled pipe (Equation (8)) which can be found in [8]. The method 
is shown to produce accurate results for laboratory experiments and is computationally cheap, 
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however it makes a number of assumptions that may limit its application to field based analysis. 
These assumptions include: that corrosion of the pipe wall only occurs internally and does not 
affect Young’s modulus of the material; that corrosion is uniform in both radial and longitudinal 
directions; that no corroded material remains attached to the pipe wall and that the time of the 
induced head perturbation is less than the time it takes for the wave front to travel two lengths of 
the deteriorated section. Accuracy of the method is also subject to the operator’s selection of 
reference data points. 

To improve upon the versatility of these detection methods it is necessary to reduce the number 
of simplifying assumptions. This paper describes an ITA method which can account for variations 
in the wavespeed, diameter and length of a deteriorated section independently, thus reducing the 
number of assumptions to be made. 

2. Modelling Theory 

This investigation uses the Method of Characteristics (MOC) to solving the governing mass and 
linear momentum conservation equations for one dimensional unsteady pipe flow [8]: 

gA
a2

H
t

 + 
Q
x

 = 0 (1)

1
gA

Q
t

 + 
H
x

+ hf = 0 (2)

where H is the head in the pipe, Q is the pipe discharge, A is the cross-sectional area of the pipe,  
a is the wavespeed, g is acceleration due to gravity, x is the distance along the pipeline, t is time 
and hf is the sum of steady and unsteady frictional head losses. The derivation of these two 
equations assumes that both the fluid and the pipe behave in a linear elastic fashion. The equations 
can be solved using the MOC through confining the solution to a grid in the time and space 
domains by applying the following relationship: 

dx
dt

 (3)

where dx is the grid spacing in the along the length of the pipe and dt is the time step for the  
numerical solution. 

Solving Equations (1) and (2) subject to the condition in Equation (3) gives two simultaneous 
equations which can be used to solve for the head (HP) and flow (QP) at a grid point where the head 
(HA, HB) and flow (QA, QB) are known values at adjacent nodes in the previous time step: 

HP = HA - B QP - QA  - RQP QA  (4)

(5)

where B is the characteristic impedance of the pipeline given by: 

B = 
a

gA
 (6)

and R is the pipeline resistance coefficient, which can be calculated by: 
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R = 
f dx

2gDA2 (7)

where D is the nominal diameter of the pipe section and f is the Darcy-Weisbach friction factor. 
The additional effects of unsteady friction can be accounted for using the efficient approximation 
of Vardy and Brown [9] for smooth turbulent pipe flow presented in Vitkovsky et al. [10]. 

The MOC model described is coded in Fortran using a constant time step discretisation such that 
numerical dissipation and dispersion errors that arise with the use of interpolation methods are 
avoided. The constant time step discretisation method requires the space step to be altered between 
sections of pipe to account for a change in the wavespeed as specified by Equation (3). Changes in 
pipeline properties in the longitudinal direction such as diameter and wavespeed can be accounted 
for by altering the variables in Equations (6) and (7). 

3. Numerical Analysis 

This section examines the effect that changes in pipeline wall condition have on transient 
behaviour within a pipeline. Changes in pipe wall conditions can alter three key parameters.  
The first is a change in the nominal diameter (D), which can increase due to internal corrosion of 
the pipe wall and delamination of internal protective linings, or decrease where corrosion leads to 
tuberculation. The second parameter is the wavespeed (a) which can be affected by the delamination 
of protective linings, internal and external corrosion and deterioration of the pipe wall material.  
The delamination and corrosion lead to a reduction in effective wall thickness, while pipe wall 
deterioration results in a decreased Young’s modulus. The third parameter is a change in the 
friction factor (f) caused by a change in relative roughness. For the purposes of this research the 
relative effect of changes in friction factor are considered to be small, therefore they are not 
accounted for. 

Research presented in Tuck et al. [11,12] shows that a change in nominal diameter (D) or 
wavespeed (a) over a section of pipe can generate positive or negative reflections in the pressure 
response while also changing the fundamental period of oscillation for the system. To further 
illustrate these effects with a focus on the subject of pipe wall condition a numerical case study is 
used. This example considers a reservoir, pipe and valve system as depicted in Figure 1, where a 
100 m long mild steel cement lined (MSCL) pipeline has lost the protective cement lining from a 
20 m section located in the middle of the pipeline. The MSCL pipe considered has a nominal 
diameter (D) of 300 mm, steel wall thickness (eS) of 5 mm and cement thickness (eC) of 10 mm. 
  



122 
 

 

Figure 1. Schematic of reservoir, pipe and valve system for (a) an intact, fault free 
pipeline and (b) a pipeline with a section of reduced wall thickness. 

 

The wavespeed for a pipeline can be calculated by the wavespeed formula [8]: 

a = 
1 + c1

 (8)

where the bulk modulus of the fluid (K) is taken as 2.14 GPa, the density of the fluid ( ) is 999 kg/m3, 
e is the effective wall t 
hickness, E is Young’s modulus of the pipe wall material and c1 is a dimensionless parameter 
which accounts for constraint conditions on the pipeline and is taken as 1. To account for the 
relative strength of the cement lining an equivalent steel thickness can be calculated by the method 
in Stephens et al. [5] if it is assumed to be fully bonded to the steel:  

e = eS + eC EC ES  (9)

where Young’s modulus of the pipe wall steel (ES) is 210 GPa and Young’s modulus of the cement 
lining (EC) is 25 GPa.  

Figure 2. Comparison between an intact MSCL pipeline and a pipeline which has lost 
lining over a length of LT* = 0.2. 

  
  



123 
 

 

Using Equations (8) and (9) the wavespeed of the intact pipeline is calculated to be 1,197 m/s 
and the wavespeed over the section where the cement lining has delaminated is calculated to be 
1,139 m/s. Figure 2 shows a comparison between the unsteady pressure responses from a pipeline 
with a section of delaminated cement lining and that of an intact pipeline as described above for 
this numerical case study. The unsteady pressure response is generated through instantaneous 
closure of the downstream online valve during fully turbulent flow conditions. The pressure head 
response H(t) has been shown at the downstream valve and is non-dimensionalised such that  
H* = H/HJ where HJ is the Joukowsky head rise. Following the initial Joukowsky head rise a 
reflection is observed from the downstream end of the degraded pipe section which gives a 
reduction in the pressure head. This reduction is caused by a decrease in characteristic impedance 
over the degraded section. 

Following the initial drop in pressure head a reflection is observed from the upstream end of the 
degraded section which restores the pressure head back towards the observed values for the intact 
pipeline. Further secondary reflections are then observed before the pressure restoring reflection is 
observed from the upstream reservoir. The pressure response also shows a phase change, where the 
period of oscillation is increased for the system with the degraded pipeline. 

4. Experimental Analysis 

Laboratory experiments were carried out using the transient pipeline facility at the University of 
Canterbury to further investigate the effect that variations in pipe wall thickness have on unsteady 
fluid behaviour in pipelines. The experimental system consists of a 41.517 m long stainless steel 
pipeline with an external diameter of 76.2 mm and wall thickness of 1.5 mm. The pipeline is 
bounded by a pressure tank at the upstream end to represent a constant head reservoir and a 
discharge valve at the downstream end which can be rapidly closed to induce unsteady behaviour. 
The resulting pressure response is measured at the point of generation at a sampling rate of 10 kHz 
by high resolution Thermo Fisher Scientific, flush face, dynamic pressure transducers. The pressure 
transducers are accurate to within ±1% of the magnitude of the measured signal. This error is largely 
linear, thus will have little effect on the comparisons between numerical and experimental responses as 
the magnitude of the numerical response is based upon the Joukowsky head rise. Variations in pipe wall 
thickness were investigated through adding a section of pipe with a wall thickness of 3.65 mm and 
outside diameter equivalent to the existing pipeline. Thicker walled pipe was used for this experiment 
as sections with thinner walls than the existing pipeline were not commercially available and it was not 
feasible to replace the whole pipeline. The length of the thick walled section (L2) is 10.407 m and it is 
located at a distance (L1) of 16.550 m from the downstream valve. The wavespeed of the standard 
pipeline (a1,3) is experimentally determined as 1,180 m/s and the wave speed of the thick walled section 
(a2) is 1,315 m/s. 

Figure 3 shows a comparison between the experimental pressure response and the MOC model 
over the first 3.5 periods of oscillation. The time step for the numerical model is taken as 0.0001 s 
to match the resolution of the experimental data which is sampled at a rate of 10 kHz.  
The comparison shows that the MOC model can provide a reasonable prediction of the transient 
behaviour and captures the complex reflection patterns induced by the thick walled pipe section. 
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For this case the initial reflection observed from the thick walled section is positive as the nominal 
diameter is decreased and the wavespeed is increased which increases the impedance of the section, 
giving the opposite effect to that observed in the numerical case study. The differences observed 
between the numerical and experimental results can be attributed to differences in physical 
behaviour and in the experimental system which are not accounted for by the one dimensional 
model. These differences include fluid structure interaction, non-uniformities in the pipe materials 
due to manufacturing tolerances and additional damping from non-pipe elements such as the air 
bleed valves located on the experimental pipeline. 

Figure 3. Comparison between numerical and experimental pressure responses for a 
pipeline with a thick walled section. 

 

5. Inverse Transient Analysis 

It has been shown in Figure 3 that a MOC model can produce an accurate representation of 
transient flow behaviour where variations in pipe wall thickness occur and the measured 
parameters are defined. This section considers the problem where the variables which define the 
“faulty” pipe section are unknown. To determine the unknown parameters the method of inverse 
transient analysis (ITA) can be used. This method aims to determine the values of the unknown 
parameters which achieve the best fit between predicted and measured pressure responses using the 
least squares analysis: 

Hi
m- Hi

p 2
N

i =1
 (10)

where s is the residual error, N is the number of data points, Him is the measured pressure response and 
Hip is the predicted pressure response. Equation (10) can be minimised using a genetic algorithm (GA) 
optimisation routine, where the GA used for this research is MATLAB’s inbuilt “ga” function. In this 
paper the inverse analysis is carried out considering only data from a single measurement location, 
however it has been shown that further measurement locations can improve the results of the inverse 
analysis [13]. 

For this inverse problem the variables that are said to define the faulty section are its wavespeed 
(a2), diameter (D2), distance from the downstream valve to the fault (L1) and length of the faulty 
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section (L2). The variables are assigned the following bounds; 800 m/s < a2 < 1,440 m/s,  
0 m < D2 < 0.0762 m, 0 m < L1 < L0 and 0 m < L2 < L0 which are determined by allowing a lenient 
range of feasible values. To ensure that all solutions fall within the known pipeline geometry the 
following condition must also be met: L1 + L2  L0. Through selection of these variables and 
bounds the following assumptions are made; at most there is a single section of faulty pipeline, and 
the relative roughness does not increase significantly over the faulty section. 

To improve the potential accuracy of the inverse analysis problem it is first necessary to 
determine an appropriate closure profile for the valve such that the head perturbation for the 
numerical response is similar to that of the experimental data. This step enables significantly more 
accurate results to be taken from the analysis and theoretically overcomes the problem discussed in 
Gong et al. [7], where discrepancies in the magnitude of a reflection can occur if the operation time 
of the transient generation device is greater than that required for a pressure wave to travel two 
lengths of a pipe section which causes an overlapping of the reflections. Where the profile of the 
generated head perturbation is appropriately matched the overlap of reflections from the front and 
rear of one or multiple sections can be accounted for in the simulations. 

Table 1. Inverse transient analysis results. 

a2 (m/s) % error D2 (m) % error L1 (m) % error L2 (m) % error 
Measured Values Case 1315 - 0.0688 - 16.550 - 10.407 - 

t < 2L/a 1 1054 19.8% 0.0623 9.4% 19.422 17.4% 7.945 23.7% 
t = 4L/a 2 1336 1.6% 0.0706 2.6% 15.814 4.4% 12.211 17.3% 
t = 8L/a 3 1360 3.4% 0.0717 4.2% 15.826 4.4% 12.568 20.8% 

t = 12L/a 4 1339 1.8% 0.0704 2.3% 16.777 1.4% 10.457 0.5% 
t = 16L/a 5 1326 0.8% 0.0683 0.7% 16.426 0.7% 10.442 0.3% 

t = 16L/a, fixed D2 = D0 6 1320 0.4% 0.0732 - 17.543 6.0% 10.215 1.8% 
t = 16L/a, fixed a2 = a0 7 1180 - 0.0590 14.2% 18.997 14.8% 12.325 18.4% 

Table 1 shows the results for seven ITAs, the first five of which investigate the effect that 
simulation time has on the accuracy of the results. In the first case the simulation time is taken as 
just less than the time for the pressure restoring wave to return to the downstream valve, here the 
accuracy of the predicted values are poor, where the error is calculated as ( Measured Value–
Predicted Value /Measured Value) × 100%. The accuracy is poor as no reflection from the end of 
the system is observed for the wavespeed to be scaled against, so the fundamental period of the 
system is not matched. From the second case, which is simulated over a whole transient cycle, to 
the fifth case, which is simulated over four transient cycles, there is an observable trend towards 
increasing accuracy. This trend has also been noted for leak detection application by Vitkovsky  
et al. [14]. Case 5 shows that a solution to the inverse problem can be determined to a high level of 
accuracy with relative errors between 0.3% and 0.8% for each parameter. Two factors contribute 
towards the improved accuracy where the inverse analysis is simulated over a longer period of 
time. The first is that a larger number of transient cycles will lead to a greater importance being 
placed upon matching the fundamental period of oscillation for the system which is affected by 
extended variations in pipelines [11]. The second is that the extended variations create the same 
change in each period of the signal and is progressively reinforced with each cycle. It should also 
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be noted that confining the numerical solution domain to a grid in space and time limits the 
theoretical accuracy of the ITA to dx/2, where dx is the space step used in the numerical model as 
determined by Equation (3). For the fixed time step discretisation method adopted in this analysis 
and a specified time step of 0.0001 s, the resolution of the MOC grid could account for an error of 
up to 0.36% for values of L1 and 0.63% for values of L2. 

In an attempt to reduce the size of solution domain, cases 6 and 7 involved runs where changes 
in either the diameter or the wavespeed were excluded from the inverse calibration. An approximation 
such as this could prove useful where multiple faulty pipe sections are considered and can reduce 
the number of variables in the solution domain. This approximation is valid where the relative 
effect of one variable is much less than the others. The relative effects of diameter and wavespeed 
can first be considered by looking at the magnitude of the initial reflection from a fault. Scale analysis 
of Equation (6), which represents the pipeline impedance, indicates that for a general case the effect of a 
change in diameter is more important than that of a relative change in the wavespeed because the pipe 
area changes proportionally to the square of the diameter. For this specific set of experiments the 
percentage change in wavespeed is 11.44% while the change in area is similar at 11.66%. However 
the results presented in cases 6 and 7 indicate that for an ITA carried out over four periods (16L/a) 
the wavespeed variable becomes significantly more important in achieving accurate detection.  
This can be explained by considering the phase change exhibited in the system response. The phase 
shift in the system response is shown to be most affected by the relative change in wavespeed by 
Tuck et al. [11] for the given range. Cases 6 and 7 show that the solution domain can be simplified 
by excluding variations in the diameter or wavespeed from the ITA, though considering both 
variables separately significantly improves results as shown by comparison with case 5. 

6. Conclusions 

This paper has demonstrated how transient behaviour in a pipeline is altered by the presence of a 
degraded section of pipe which can be a precursor to pipeline failures. It has been shown that the 
degraded section can produce a reduction in wavespeed and changes in nominal diameter.  
These variations will alter the transient response of a pipeline, enabling transient analysis to be 
used to detect and classify degraded sections of a pipe. An inverse transient analysis method of 
fault detection has been implemented and shown to successfully determine the properties and 
location of a damaged pipe section. It has been demonstrated that the method can independently 
resolve changes in wavespeed and diameter over a wide solution space. This enables the method to 
be applied where prior information about a pipeline condition is minimal which is advantageous for 
field application of transient based condition assessment methods. The presented method has been 
evaluated using laboratory data which exhibit strong periodic behaviour. It is found that this 
periodic behaviour enables improvements in fault detection and classification accuracy. Where this 
periodic nature is not so strongly present, such as in large water distribution networks, improvements 
in accuracy could be achieved through a greater number of measurement points instead of 
increasing the duration of signal as considered here. Improvements in accuracy are also potentially 
achieved through increasing the sampling frequency and decreasing the modelled time step of the 
system response. For the experimental arrangement investigated it is demonstrated that the solution 
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domain can be simplified through fixing the diameter variable in the ITA and varying only the 
wavespeed, length and location, however this reduces the accuracy of the fault detection method. 
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On the Acoustic Filtering of the Pipe and Sensor in a Buried 
Plastic Water Pipe and its Effect on Leak Detection:  
An Experimental Investigation 

Fabrício Almeida, Michael Brennan, Phillip Joseph, Stuart Whitfield, Simon Dray  
and Amarildo Paschoalini 

Abstract: Acoustic techniques have been used for many years to find and locate leaks in buried 
water distribution systems. Hydrophones and accelerometers are typically used as sensors. 
Although geophones could be used as well, they are not generally used for leak detection. A simple 
acoustic model of the pipe and the sensors has been proposed previously by some of the authors of 
this paper, and their model was used to explain some of the features observed in measurements. 
However, simultaneous measurements of a leak using all three sensor-types in controlled 
conditions for plastic pipes has not been reported to-date and hence they have not yet been 
compared directly. This paper fills that gap in knowledge. A set of measurements was made on a 
bespoke buried plastic water distribution pipe test rig to validate the previously reported analytical 
model. There is qualitative agreement between the experimental results and the model predictions 
in terms of the differing filtering properties of the pipe-sensor systems. A quality measure for the 
data is also presented, which is the ratio of the bandwidth over which the analysis is carried out 
divided by the centre frequency of this bandwidth. Based on this metric, the accelerometer was 
found to be the best sensor to use for the test rig described in this paper. However, for a system in 
which the distance between the sensors is large or the attenuation factor of the system is high, then 
it would be advantageous to use hydrophones, even though they are invasive sensors. 

Reprinted from Sensors. Cite as: Almeida, F.; Brennan, M.; Joseph, P.; Whitfield, S.; Dray, S.; 
Paschoalini, A. On the Acoustic Filtering of the Pipe and Sensor in a Buried Plastic Water Pipe and 
its Effect on Leak Detection: An Experimental Investigation. Sensors 2014, 14, 5595-5610. 

1. Introduction 

Water distributions systems are susceptible to leakage, which results in a substantial wastage of 
water. The social and environmental effects due to leakage are also a matter of concern. For example, 
up to 4 million holes are dug in the UK each year in order to install or repair buried service pipes 
and cables. Recently, a survey on the costs of this installation/repair work estimated that street 
works cost about £7 bn in losses for the UK government income annually; £5.5 bn are due to social 
costs and £1.5 bn is due to damage [1]. 

Acoustic techniques have been used for many years in the water industry to detect leaks [2], and 
more recently they have been applied to locate underground pipes [3] and blockages (sediment 
depositions) in pipe networks [4]. Correlation techniques have been in common use for water leak 
detection over the last 30 years [5]. In general, these techniques work well in metal pipes, but their 
effectiveness in plastic pipes is limited [6]. Thus, the specific problem of detecting leaks in plastic 
pipes using acoustics has recently been receiving increasing attention by the research community. 
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There are two fundamental issues that affect leak detection in plastic pipes: the first is that there is 
considerably more uncertainty in the noise propagation speed for plastic pipes (which needs to be 
known a priori for acoustic methods to be effective); and the second, which is more important, is 
that leak noise does not propagate as far in plastic pipes as it does in metal pipes [7]. Hunaidi and 
Chu [8] have described the frequency content present in leak signals measured on a bespoke buried 
plastic pipe rig located in Canada. Gao et al. [9] have also used the data collected from this rig to 
gain physical insight into the problems by comparing experimental results with predictions from 
simple models of the correlation function in plastic pipes due to leaks. 

Although there is a body of work in the literature on leak detection using acoustic methods in 
plastic water distribution pipes, for example [5–14], apart from [11], there is no work in which 
there is a direct comparison between the effectiveness of correlation for leak detection using 
measurements of acoustic pressure, velocity or acceleration. Reference [11] describes a theoretical 
study on the different types of sensors and how they combine with the pipe to act as a filter of the 
leak noise. The aim of this paper is to validate these findings by carrying out an experimental study 
in a bespoke test rig in which simultaneous measurements using hydrophones (acoustic pressure), 
geophones (velocity) and accelerometers (acceleration) were made. Moreover, a quality measure 
for the data is proposed and tested experimentally as a metric of the prominence of the peak in the 
cross-correlation function related to the leak noise. Two sets of data are presented, one for a strong 
leak where there was good signal to noise ratio, and one for a weak leak where this was not the case. 

The paper is organised as follows: in Section 2 an overview of the way in which a leak is located 
using acoustic techniques is given. In Section 3, the dynamic effects of the pipe and the sensors on 
the measured leak noise are described. Section 4 is devoted to the experimental work and the 
processing of the data, while Section 5 discusses the results. Conclusions from this work are 
summarised in Section 6. 

2. Overview of Leak Detection using Acoustic/Vibration Signals 

Figure 1 depicts a situation typically encountered in leak detection, in which a leak occurs at an 
unknown position in a buried water pipe. 
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Figure 1. Schematic of buried water pipe in which sensors are positioned at access 
points either side of a leak. 

 

The leak generates broadband noise, which propagates along the pipe, both in the fluid and 
along the pipe-wall either side of the leak, to sensors that are located at convenient access points. 
These are often fire hydrants. In plastic water pipes the pipe-wall and water are strongly coupled in 
an acoustical sense [6,7]. This means that measurements of leak noise can, in principle, be made on 
the pipe or associated fittings (velocity and acceleration using geophones or accelerometers), or in 
the water directly (acoustic pressure using hydrophones). The difference in the arrival times of the 
noise at the sensors (time delay) is used to determine the position of the leak and the distance of the 
leak from the right-hand sensor can then be determined from [9]: 

2
0

2
cTd

d
−

=  (1)

where c is the speed of propagation of the leak noise, d is the total distance between the sensors, 
and ( )0 1 2T d d c= −  is the time delay estimate. In many cases the wavespeed is estimated from 
tables, but it can be directly measured in-situ [12]. Note that it is often extremely difficult to obtain 
an accurate estimate of the propagation of leak noise from measurements, as the estimate is highly 
dependent upon the signal to noise ratio. This has a profound influence on the bandwidth over 
which there is useful data and this has a consequent effect on the estimate of c [12]. 

Setting the means of the two measured signals 1( )x t  and 2 ( )x t  to zero, the cross-correlation 
function is given by [15]: 

( ) ( ) ( )
1 2 1 2Ex xR x t x tτ τ= +  (2)

where τ  is time delay and [ ]E  is the expectation operator. The value of τ  that corresponds to 
the peak in in the cross-correlation function provides an estimate of the time delay 0T . It is 
preferable to express the cross-correlation function in a normalized form, which has a scale of 

1 to +1. This is called the cross-correlation coefficient and is given by: 
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where )0(
11xxR  and )0(

22xxR  are the autocorrelation functions at Positions 1 and 2 respectively 
when 0=τ . The cross-correlation function )(

21
τxxR , is related to the Fourier Transform of the 

cross-spectral density (CSD) function ( )
1 2

ωx xS  by [16]: 
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where 1-i = . Note that ( )
1 2x xS ω  can be written as ( ) ( )

1 2

i
x xS e φ ωω  in which ( )ω

21xxS  is the modulus 
and )(ωφ  is the phase between the two signals at frequency ω . It was shown in [13] that the time 
delay can be determined approximately from the phase spectrum within a bandwidth of m  discrete 
frequencies. It is given by: 
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Note that Equation (5) is exact only if the phase is linear (pure delay) without any significant 
distortion, e.g., distortions due to the dynamics of the system, and if the phase passes through the 
origin (i.e., 0=φ  at 0=ω ). Otherwise it provides a least-square best-fit of the time delay 
estimate. Moreover, the correct choice of the frequency bandwidth over which the calculation is 
performed is essential for the accuracy of this estimate [12,13]. Given these conditions it is possible 
to determine the time delay from the gradient of a straight line fit to the phase spectrum weighted 
by the modulus of the cross-spectrum at each frequency. This demonstrates the importance of the 
modulus of the cross-spectrum, as well as the phase in the calculation of the time delay. 

3. Filtering Effect of the Pipe and Sensors 

In this section, the simple model of the pipe-sensor system proposed in [11], is briefly reviewed 
with specific focus on the plastic pipe system used in the experimental work reported in Section 4. 
This model is extremely simple, but it is believed that it captures the main dynamic effects of the 
pipe and the sensor, which determine the bandwidth over which leak noise can be measured in 
practice, and the shape of the cross-correlation function. An infinite pipe is assumed, so that there 
are no wave reflections at pipe discontinuities. Furthermore, basic models of the transducer 
response are assumed (i.e., dynamics due to internal resonances in the transducers are neglected). 

As the noise propagates through the pipe, the high frequencies are attenuated because of 
damping in the pipe-wall and radiation of noise into the surrounding medium. Moreover the signals 
are further filtered by the sensors. The combined effect of the pipe and the sensors can be described 
by the frequency response function (FRF) between the acoustic pressure at the leak location and the 
sensor output (pressure, velocity or acceleration). For the sensor at Position 1 this is given by [11]: 

1 1i /
1( , ) (i ) d d cn

nH d A e eωβ ωω ω − −=  (6)

where β  is the attenuation factor, n  is related to the type of sensor being used and nA  is a gain 
related to the pipe and sensor. For a hydrophone, 0n =  so that 0 hydA A=  (no units) where hydA , is 

the gain of the hydrophone measurement system. For a geophone placed on the pipe-wall, 1n =  so 
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that 2
1 geo ( )A A a Eh=  (m3/N) where geoA  is the gain of the geophone measurement system. For an 

accelerometer placed on the pipe-wall, 2n =  so that 2
2 acc ( )A A a Eh=  where accA  is the gain of the 

accelerometer measurement system. At low frequencies, which is the case for leak detection in 
plastic pipes, the noise radiation into the surrounding medium can be neglected so that the 
attenuation factor is simply related to the loss in the pipe-wall and is given by [6]: 

21)]2(1[
1

EhBa
EhBa

c f +
= ηβ  (7)

where η is the damping in within the pipe wall, fc  and B are the free-field fluid wavespeed and the 
fluid bulk modulus of elasticity, respectively, and E, a and h are the Young’s modulus of the pipe 
wall, the mean pipe radius, and the pipe wall thickness, respectively. The speed of leak noise 
propagation in the pipe (coupled motion of the fluid and in the pipe wall) is given by [6]: 

( )
1
21 2

=
+
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c

Ba Eh
 (8)

Now, the cross-spectrum between the two sensor outputs, each fitted either side of a leak, is  
given by [9]: 

( ) ( ) ( ) ( ) 0

1 2

i*
1 2, , T

x x llS S H d H d e ωω ω ω ω=  (9)

where ( )llS ω  is the power spectral density of the acoustic pressure due to the leak at the leak 
location. It is clear from Examining Equations (5) and (9) it can be seen that ( ) ( )*

1 2, ,H d H dω ω  is 
an important factor in the estimation of the time delay. Using the properties in Table 1 for the high 
performance polyethylene (HPPE) pipe used in the experiments described in the next section, and 
assuming that ( )llS ω  is constant within the frequency range of interest [9], ( ) ( )

1 2 1 2
maxx x x xS Sω ω  is 

plotted for a pipe with hydrophones, geophones and accelerometers in Figure 2. 
Note that ( )

1 2
max x xS ω  is the maximum value of ( )

1 2x xS ω  within the frequency range greater than 
or equal to 10 Hz. This particular frequency was chosen because in practice a high-pass filter has to 
be used to remove low frequency background noise, and it has been found in practice that below 
about 10 Hz the measured signals are dominated by background noise. 

Table 1. Properties of the experimental test-rig. 

Mean radius of the pipe 75 mm 
Pipe-wall thickness 9.85 mm 
Young’s modulus 2 × 109 N/m2 

Loss factor of the pipe 0.1 
Bulk modulus of water 2.2 × 109 N/m2 

Free-field wavespeed in water 1,500 m/s 
Attenuation factor, β  1.99 × 10 4 N/m2 

Wave speed of leak noise, c 356 m/s 
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Figure 2. ( ) ( )
1 2 1 2

maxx x x xS Sω ω for different type of sensors. Solid blue line, 

hydrophone; dashed green line, geophone; dotted-dashed red line, accelerometer. 
( )

1 2
max x xS ω  is the maximum value of ( )

1 2x xS ω  within the frequency range greater than 

or equal to 10 Hz. 

 

It can be seen from Figure 2 that the pipe together with the hydrophones simply acts as a  
low-pass filter. The peak occurs at 10 Hz (as it is set to zero below this frequency because of 
background noise, as mentioned above) and is one tenth of this value at a frequency of about 47 Hz. 
For both the geophones and the accelerometers, the combined pipe-sensor system acts as  
a band-pass filter with peaks occurring at about 16 Hz and 32 Hz, respectively. The normalized 
CSDs are one tenth of the peak values at frequencies of about 78 Hz and 108 Hz, respectively. 

Filtering the signals creates additional peaks in the cross-correlation function, which can mask 
the main peak due to the time delay. A measure of the height of these peaks compared to the main 
peak is the ratio cf fΔ  [12], where upper lowerf f fΔ = −  in which upperf  is the upper cut-off frequency 
and lowerf  is the lower cut-off frequency of the band-pass filter, and upper lower( ) 2= +cf f f  is the 
central frequency of the band-pass filter. A value close to 2 (which is the maximum value that 

cf fΔ  can have) indicates that the additional peaks are small compared to the main peak [12]. 

Using 10 Hz as the lower frequency, and (arbitrarily) choosing the upper frequency to coincide 
with the values of ( ) ( )

1 2 1 2
max 0.1x x x xS Sω ω =  results in the values given in Table 3 below, along 

with the assumed values of lowerf  and upperf . It can be seen that for the particular configuration of 

interest here, the best sensor to use based on this criterion should be an accelerometer. There are, of 
course, other criteria, and these will be discussed later in the paper. 
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4. Experiment 

4.1. Experimental Procedure 

The experiments were conducted on a 110 m long bespoke pipe rig located at Blithfield 
reservoir in Staffordshire, UK. Some details of the pipe rig are shown in Figure 3, the properties of 
which are given in Table 1. Figure 3a shows a schematic of the pipe rig, in which the position of 
the leak and the two sensors can be seen. The end of the pipe close to Position 1 is connected to the 
mains water distribution pipe, which supplies water at a pressure of about 6 bar. The access points 
are set in concrete to provide a rigid support for the pipe connections, while the pipe sections are 
buried in the ground at a depth of about 0.8 m. Three sensors (hydrophone, geophone and 
accelerometer) were positioned at the access points at Positions 1 and 2 which were 30 m and 20 m 
from the leak respectively. A photograph of one these positions is shown in Figure 3b. Figure 3c 
shows a schematic of the main valve, which is at each at access point, and the standpipe which was 
fitted to the access point where the leak was induced. 

Figure 3. Details of the Blithfield pipe test-rig. (a) schematic showing the distances and 
the excitation/measurement positions and the leak position; (b) One of the access points 
and part of the instrumentation used. {1} Hydrophone; {2} Accelerometer; {3} Charge 
amplifier; {4} Geophone; (c) Sketch of the device used for generating the leak condition. 
{5} Water distribution plastic pipe; {6} Main valve; {7} Standpipe; {8} Secondary valve; 
{9} Hydrant; (d) Photograph showing the leak from the standpipe. 

 

The leak was induced by opening the secondary valve and can be seen in Figure 3d. Although 
this is not a sub-surface leak it does generate a noise which is very similar to a leak below the 
surface, as the mechanism for leak noise is the turbulent nature of the fluid as it passes through an 
orifice or a leak [17,18]. In this work two different leak strengths were induced; a strong leak by 
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opening the secondary valve fully, and a weak leak by partially closing this valve. These conditions 
can be seen in the photographs in Figures 4. 

Figure 4. Leak induced in the pipe. (a) Strong leak; (b) Weak leak. 

 
(a) (b) 

The leak noise sensed by the three transducers at Positions 1 and 2 was measured 
simultaneously for one minute using DATS [19]. The sampling frequency was set to 5 kHz, and a 
frequency resolution of 1 Hz was used in the subsequent spectral analysis. The details of the 
transducers and part of the instrumentation used in the experiment are given in Table 2. Analysis of 
the data collected is described in the next Section. 

Table 2. Instrumentation used in the experiment. 

Device Manufacturer Type 
Hydrophones Bruel and Kjaer 8103 
Geophones Ion SM-24 

Accelerometers Bruel and Kjaer 4383 and 4384 
Charge Amplifiers Bruel and Kjaer 2635 
Acquisition System Prosig DATS 

4.2. Data Processing 

Prior to analysis, the data from all the sensors were passed through band-pass filters with lower 
and upper limits set to 10 Hz and 150 Hz, respectively.  As mentioned previously, a frequency of 
10 Hz was chosen for the lower limit to remove background noise due to the environment.  
The upper frequency of 150 Hz was chosen based on an estimate of the attenuation of the leak 
noise signal at the frequency. The attenuation in dB/m at frequency ω  is given by 8.67βω  [9]. 
Combining this with Equation (7) results in an attenuation of about 1.6 dB/m at 150 Hz. Thus, at 20 m 
and 30 m from the leak, the attenuation in the leak noise will be about 32 dB and 48 dB at 150 Hz, 
respectively. It was expected, therefore, that the signal to noise ratio at frequencies greater than 150 Hz 
would be very small. 
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Figure 5. Analysis of the strong leak data from the test-rig. (a) Hydrophone;  
(b) Geophone; (c) Accelerometer. (i), Normalized CSD with respect to the maximum 
amplitude between 10 Hz and 150 Hz. (ii) Coherence. (iii) Phase. (iv) Cross  
correlation coefficient. 

 

Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

Time (s)

N
or

m
al

is
ed

 C
SD

C
oh

er
en

ce
Ph

as
e

(r
ad

)
C

ro
ss

-c
or

re
la

tio
n

co
ef

fic
ie

nt

Frequency (Hz) Frequency (Hz)

Frequency (Hz)Frequency (Hz)

Frequency (Hz) Frequency (Hz)

Time (s) Time (s)

Hydrophone Geophone Accelerometer
a(i)

a(ii)

a(iii)

b(i)

b(ii)

b(iii)

b(iv) c(iv)a(iv)

c(i)

c(ii)

c(iii)

0 50 100 1500
0.1

1

0 50 100 1500
0.1

1

0 50 100 1500
0.1

1

(28 Hz)
(91 Hz) (104 Hz)

(10 Hz)

(10 Hz)

(10 Hz)

0 50 100 1500

0.5

1

0 50 100 1500

0.5

1

0 50 100 1500

0.5

1

0 50 100 150-30

-20

-10

0

0 50 100 150-30

-20

-10

0

0 50 100 150-30

-20

-10

0

-0.3 0 0.3-1

0

1

0.65

-0.60

-0.3 0 0.3-1

0

1

0.62

-0.43

-0.3 0 0.3-1

0

1
0.76

-0.64



138 
 

 

It was found that one of the signals from a geophone had a large 50 Hz component from the 
mains electrical supply that could not be removed in the field, so each geophone signal was also 
subsequently passed through a set of notch filters set at 50 Hz, 100 Hz and 150 Hz. 

Figure 5 shows the processed data from the strong leak measured using the hydrophones, 
geophones and accelerometers respectively. The subplots (i), (ii) and (iii) correspond to frequency 
domain representations, namely the normalized modulus of the CSD with respect to the maximum 
value between 10 Hz and 150 Hz, the coherence and the phase, respectively. The subplot (iv) 
corresponds to the cross-correlation coefficient, from which the time delay is estimated. The key 
parameters extracted from the data are given in Table 3, so they can be compared directly with 
those predicted using the simple model. 

Examining the normalized CSD in Figures 5a(i), 5b(i) and 5c(i), it can be seen that the 
frequency range with a lower frequency of 10 Hz and an upper frequency given by when the 
normalized CSD is equal to 0.1, is small (10 Hz–28 Hz) for the hydrophone measured data 
compared to the geophone (10 Hz–91 Hz) and accelerometer (10 Hz–104 Hz) measured data. 
These frequency ranges are marked on the figures for clarity. As discussed in Section 3 this  
band-pass filtering feature is partly due to the combined effects of the pipe and the sensors. 

By examining Figures 5a(ii), 5b(ii) and 5c(ii), it can be seen that there is reasonably good 
coherence in all three cases over a wide frequency range. The unwrapped phase spectra are shown 
in Figures 5a(iii), 5b(iii) and 5c(iii). It can be seen that although there is approximately straight line 
behavior over a relatively wide frequency range, there are some deviations from this behavior. 
These could be due to reflections at low frequencies due to discontinuities in the pipe [14], and the 
dynamic behavior of the system at higher frequencies [12]. As discussed in Section 2, the time 
delay is given by the slope of the phase gradient given by a weighted least squares fit to the phase 
(also shown in the figures), where the weighting factor is the modulus of the cross-spectrum 
between the measured signals. This is clearly affected by the type of sensor used as seen in  
Figures 5a(i), 5b(i) and 5c(i), which determines the effective bandwidth of the data used in the time 
delay calculation of each case. The cross-correlation coefficients calculated from the time series 
from the three types of sensors are shown in Figures 5a(iv), 5b(iv) and 5c(iv). The time delays 
corresponding to the peaks in these graphs are 25.8 ms for hydrophone measured data, 24.4 ms for 
geophone measured data and 24 ms for accelerometer measured data. Using these data together 
with Equation (1) and assuming a wavespeed of 356 m/s given in Table 1 results in an estimated 
distance d2 of 20.41 m, 20.66 m and 20.72 m for hydrophone, geophone and accelerometer 
measured data respectively. These data are also given in Table 3 for ease of reference. 

Table 3. Key parameters determined from the leak data (theory and experiment (strong leak)). 

Sensor Type 

Theory Experiment 

lowerf
(Hz) 

upperf  

(Hz) cf
fΔ  2d

(m) 
lowerf

(Hz) 
upperf  

(Hz) cf
fΔ  2d  

(m) 
Hydrophone 10 47 1.30 20 10 28 0.95 20.41 
Geophone 10 78 1.55 20 10 91 1.6 20.66 
Accelerometer 10 108 1.66 20 10 104 1.65 20.72 
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Figure 6. Analysis of the weak leak data from the test-rig. (a) Hydrophone;  
(b) Geophone; (c) Accelerometer. (i), Normalized CSD with respect to the maximum 
amplitude between 10 Hz and 150 Hz. (ii) Coherence. (iii) Phase. (iv) Cross  
correlation coefficient. 
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Figure 6 shows the processed data corresponding to the weak leak. Examining the normalized 
CSD in Figures 6a(i), 6b(i) and 6c(i), it can be seen that much energy is contained in a narrow band 
of frequencies between 18 Hz and 22 Hz, especially in the hydrophone and geophone data.  
This was not due to the leak, but was thought to be related to water flow in the mains pipe which 
fed the test rig (so-called out-of-bracket noise). The reason why the accelerometer data in Figure 
6c(i) was not affected as much by this noise is because of the additional high-pass filter effect due 
to the sensors which is predicted by the model of the pipe-sensor system (see Figure 2). 

By comparing the coherence in the weak and the strong leak cases it can be seen that the 
coherence was much reduced in the weak leak case resulting in a much lower signal to noise ratio, 
which is to be expected. In the unwrapped phase spectra for the hydrophone and the geophone a 
phase with positive gradient can be seen at low frequencies. This is related to the out-of-bracket 
noise rather than the leak noise. The cross-correlation coefficients are shown in Figures 6a(iv), 
6b(iv) and 6c(iv). It is evident that only the geophone and the accelerometer are effective at 
detecting the leak in this case, with peaks occurring at 24.8 ms and 24 ms respectively. The quality 
of the correlation is much diminished, however, compared to the strong leak case. 

5. Discussion 

The key parameters extracted from the simple model and the experimental test for the strong 
leak are summarized in Table 3. The time delays are extracted directly from the experimental data 
and these need to be processed to give the leak position. To do this the speed at which the noise 
propagates needs to be known or estimated. This could be estimated from measurements using the 
three different sensors, but different results would be obtained in each case [12], as mentioned 
previously in Section 2. Thus, to make a meaningful comparison between the three sensors, the 
time delay estimates should be considered. They cannot, however, be compared against a reference 
value as this is unknown (and would be unknown for any practical case). To simplify the comparison, 
a nominal wave speed is calculated using Equation (8) (given in Table 1), so that the distance from 
Position 2 can be calculated using Equation (1). Of course this cannot be taken as a true estimate of 
the position of the leak but it does facilitate a comparison between the sensors (and the wave speed 
is mainly estimated this way in practice). 

It can be seen in Table 3 that the distance estimated using the three different sensor types varies 
by less than 2%. This is to be expected, because for a plastic pipe with dimensions of those in the 
test rig, the acoustic behavior of the fluid is well-coupled to the vibration of the pipe [6].  
Although it appears that the hydrophone data gives the most accurate estimate, this will change if 
the speed of noise propagation changes. It can be seen from Equation (8) that the speed of noise 
propagation is dependent on the Young’s modulus of the pipe which varies with temperature and 
this was not known precisely. To illustrate how sensitive the predictions are on the speed of noise 
propagation, Equation (1) is combined with Equation (8), and the estimated leak position is plotted 
as a function of the Young’s modulus of the pipe. This is shown in Figure 7, using the three time 
delays estimated from the measured data. It can be seen that if the Young’s modulus of the pipe 
was about 2.8 × 109 N/m2 corresponding to a wave speed of about 416 m/s then the geophone and 
accelerometer data would give a better prediction of the location of the leak. Almeida [12], 
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measured the wavespeed in the Blithfield pipe-rig at different periods over 3 years using 
accelerometers. He found that the wavespeed changes drastically from season to season, varying 
from 350 m/s to 420 m/s. Thus, it is not possible to say which sensor gives the most accurate 
prediction of leak location (this might be possible only in the most controlled laboratory conditions, 
which would not reflect the real situation in the field). It is possible to state, however, that all 
sensors were able to detect the leak and provide estimates for the leak location in situations in 
which the signal to noise ratio is not too low that are consistent with the uncertainty of the wave 
speed estimate. Moreover, the filtering effects of the pipe-sensor system are in qualitative 
agreement with the predictions from the simple model. 

Figure 7. Estimate of the leak position as a function of the Young’s modulus of the 
pipe calculated using different types of sensors. solid blue line, hydrophone; dotted 
green line, geophone; dashed red line, accelerometer. 
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are significantly reduced when compared with the strong leak case. This can be seen by comparing 
the values for the weak leak given in Table 4, with those for the strong leak given in Table 3.  
As mentioned in Section 3, the value of cf fΔ   is measure of the shape of the cross-correlation 

function and hence the prominence of the peak in this function which is related to the leak. It is 
clear that the peak is not discernible in the hydrophone-measured data, and it is much diminished in 
the geophone-measured for the weak leak compared to the strong leak. 

Table 4. Key parameters determined from the weak leak data (experiment only). 

Sensor Type 

Experiment 

lowerf
(Hz) 

upperf
(Hz) cf

fΔ  2d  
(m) 

Hydrophone 10 19 0.62 - 
Geophone 10 19 0.62 20.58 
Accelerometer 10 87 1.59 20.73 

In some situations, the structural sensors, accelerometers and geophones can pick up a significant 
of low frequency background noise and thus it is not possible for them to sense low frequency leak 
noise. This becomes particularly troublesome when the attenuation factor is large or the distance 
between the sensors and the leak is large as the high frequencies are heavily attenuated resulting in 
a very small frequency range where there is leak noise in the measured data. As can be seen in 
Equation (7) the attenuation factor is dependent upon the damping in the pipe wall which is 
governed by the pipe material, and the size and thickness of the pipe. Thus, a larger diameter pipe 
has a higher attenuation factor than a smaller diameter pipe if the pipe material remains the same. 
In some situations, therefore, it is desirable to use hydrophones as they are more sensitive to low 
frequencies compared to the structural sensors considered. It should be noted, however, that 
hydrophones have the disadvantage of being invasive. 

6. Conclusions 

This paper has described an experimental study to investigate the combined filtering effects of 
the sensors and pipe on a bespoke plastic water pipe test-rig for the purposes of leak detection.  
The sensors considered were hydrophones, geophones and accelerometers. Two different leaks 
were considered; a strong leak where the signal to ratio was high, and a much weaker leak strength 
where this was not the case. It was found that the experimental results for a strong leak were 
broadly in agreement with those predicted from a simple analytical model proposed in [10,11].  
The main features are that the hydrophone-pipe system is more sensitive at low frequencies with 
the pipe acting as a low-pass filter, and the geophone and the accelerometer combined with the pipe 
effect results in band-pass filter behavior for these systems. 

For the strong leak all three sensors were capable of detecting and locating the leak.  
However the weak leak could not be detected by the hydrophone sensors, as there was noise in a 
narrow range of low frequencies that were not related to the leak and dominated the signals from 
these sensors. This also affected the geophone data to some extent and the accelerometer data much 
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less so, which meant that only the accelerometer could clearly detect and locate the leak in this 
case. The band-pass filter effect of the pipe and these sensors is the reason why this occurred. 

A quality measure for the data was also presented, which is the ratio of the bandwidth over 
which the analysis is carried out divided by the centre frequency of this bandwidth. Based on this 
metric, the accelerometer was found to be the best sensor to use for the test rig described in this 
paper. However, if the attenuation factor in the pipe is large, either because of damping or because 
of pipe geometry, then it may be desirable to use hydrophones even though they are invasive 
sensors. It was also demonstrated that accurate location of the leak position is heavily dependent 
upon the precision with which the leak noise propagation speed is known, and for a plastic pipe, 
this is independent of the type of sensor being used. 
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Application of Morphological Segmentation to Leaking Defect 
Detection in Sewer Pipelines 

Tung-Ching Su and Ming-Der Yang 

Abstract: As one of major underground pipelines, sewerage is an important infrastructure in any 
modern city. The most common problem occurring in sewerage is leaking, whose position and 
failure level is typically identified through closed circuit television (CCTV) inspection in order to 
facilitate rehabilitation process. This paper proposes a novel method of computer vision, 
morphological segmentation based on edge detection (MSED), to assist inspectors in detecting 
pipeline defects in CCTV inspection images. In addition to MSED, other mathematical 
morphology-based image segmentation methods, including opening top-hat operation (OTHO) and 
closing bottom-hat operation (CBHO), were also applied to the defect detection in vitrified clay 
sewer pipelines. The CCTV inspection images of the sewer system in the 9th district, Taichung 
City, Taiwan were selected as the experimental materials. The segmentation results demonstrate 
that MSED and OTHO are useful for the detection of cracks and open joints, respectively, which 
are the typical leakage defects found in sewer pipelines. 

Reprinted from Sensors. Cite as: Su, T.-C.; Yang, M.-D. Application of Morphological Segmentation 
to Leaking Defect Detection in Sewer Pipelines. Sensors 2014, 14, 8686-8704. 

1. Introduction 

Sewerage is an important infrastructure in modern cities so the pipeline authorities in Taiwan 
have been making considerable efforts to construct sewer systems. Nowadays, the percentage of 
sewer system coverage in Taiwan is reported to be 32.9% [1]. The most common problem 
occurring in sewer pipelines is leakage, whose position and failure level can be identified through 
image inspection in order to facilitate the rehabilitation process. Distributing fiber optics is an 
efficient way to detect and localize leakages along pipelines by monitoring pressure or temperature 
differences. Fiber optic systems have been demonstrated useful in monitoring leakage of buried 
pipelines, such as oil and gas pipelines [2–5], but sewerage consists of gravity pipelines rather than 
pressure pipelines so fiber optics are inapplicable for leakage detection of sewerage. 

Sewer rehabilitation involving sewer inspection, assessment of structural conditions, computation 
of structural condition grades, and determination of rehabilitation methods and substitution materials 
is necessary for the buried sewer pipes to maintain the designed drainage capability [6–10].  
At present, closed circuit television (CCTV) is the most popular equipment for sewer inspection 
because of its low cost compared with sewer scanner evaluation technology (SSET) cameras, 
ground piercing radar (GPR), sonar, and infrared thermograph [11–14]. However, human fatigue 
and subjectivity, and time-consumption for engineers may be barriers for detecting and diagnosing 
defects in sewer pipelines via CCTV images due to the great number of images that must be 
inspected. Recently, image processing and artificial intelligence techniques were applied as 
diagnostic systems to assist engineers in interpreting sewer pipe defects in inspection images [15–20]. 
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Among the image processing techniques, mathematical morphology-based image segmentation 
has been extensively applied in pattern recognition research [18–25]. Erosion and dilation are two 
basic operators of morphological segmentation, and are usually operated in tandem for the image 
enhancement of objects of interest [26]. During the erosion and dilation operations, the computation 
of mathematical logic, including intersection and union, is simultaneously introduced into the 
morphology analysis. A determination of structural element (SE) is necessary before the operation 
of erosion and dilation. The size and shape of SE depend on the objects of interest. For example, 
linear SE was adopted in the operation of erosion and dilation for segmenting cracks from CCTV 
images [15]. 

Erosion and dilation with linear structural elements were performed to segment vessel-like 
patterns, which are very common in medical images [21]. Then, a cross-curvature evaluation was 
implemented to differentiate vessels from analogous background patterns. Mathematical morphology 
and curvature evaluation were also employed in detecting crack patterns in pipeline images [18].  
Sinha and Fieguth used opening top-hat operation (OTHO), in which firstly erosion followed by 
dilation (called image opening) was applied to an SSET inspection image, secondly the opening 
operated image was subtracted from its SSET inspection image (called top-hat operation), and 
finally the top-hat operated image was transferred into a binary one by Otsu technique to segment 
pipeline defects, including cracks, holes/joints, laterals, and pipe collapse, in sewer pipelines [19]. 
However, environmental noise or poor image quality would deteriorate the performance of OTHO 
so as to hamper the pipeline defect detection. To effectively and correctly detect sewer pipeline 
defects, this paper presents a novel algorithm, morphological segmentation based on edge detection 
(MSED), to segment sewer pipeline defects from CCTV inspection images. Edge detection is 
considered as an important pre-processing step in image segmentation [27–29]. Based on edge 
detection, MSED attempts to search complete and correct image regions of sewer pipeline defects 
in CCTV images. 

2. Methodology 

In addition to OTHO, closing bottom-hat operation (CBHO), which is a dual operation of 
OTHO, was also employed to detect pipeline defects in this research. Figure 1 shows the schematic 
outline of this research. Edge detection and MSED algorithm are involved in the MSED method, 
whereas image opening, image closing, image subtraction, and Otsu’s thresholding are involved in 
the OTHO or CBHO methods. During sewer inspection, both pipeline defects and environmental 
noise are imaged by the CCTV recorder so complete and correct segmentation of pipeline defects 
from the CCTV inspection images becomes difficult [10]. Environmental noises, such as shadows 
and stains resulting from inappropriate imaging condition of the CCTV robot and aged pipes, 
respectively, are different from image noises, such as impulsive noise, Gaussian noise, speckle noise, 
and periodic noise. However, sometimes stains inside pipeline shows an analogy of impulsive noise 
in CCTV images. Median filter, one of the smoothing filters, is well suited to remove impulsive 
noise [30]. Before the operation of OTHO, CBHO or MSED, a median filtering of a 5 × 5 window 
is adopted to reduce rather than remove the impact of the environmental noises on the image 
segmentation. The performance of the environmental noise reduction by OTHO and MSED had 
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been demonstrated in the literature of Su et al. [10], who indicated that MSED outperforms OTHO. 
Nevertheless, the correctness and completeness of the pipeline defect segmentation by OTHO and 
MSED have not been estimated. After the image segmentation by OTHO, CBHO or MSED, the 
accuracy of the pipeline defect detection was estimated by comparing the segmentation result with 
the manual interpretation data. 

Figure 1. Research scheme. 

 

2.1. Median Filtering 

Digital numbers of pixels possess the characteristic of signal variance in a two-dimensional 
space. If significant differences appear between the digital numbers, the image details, including 
objects and noise, can be detected by proper image processing techniques. Low-pass filters, 
including mean filter, Gaussian filter, and median filter, can be applied for noise removal [30–32]. 
Regarded as an image smoother, low-pass filtering replaces each digital number in an input image 
by the mean of its neighbors and itself. Mean filtering has the capability of effectively removing 
signals with great variance, but sometimes a median filter outperforms a mean filter in the sense of 
preserving useful image details [30]. In this paper, a median filter was applied to the inspected 
images before image segmentation. The size and shape of a kernel must be determined prior to 
median filtering. A square kernel consisting of M × M elements is usually applied to median 
filtering. Generally, M must be an odd number above or equal to 3 (M = 5 was adopted in this 
paper) so that kernel has the only central element to be filtered [33]. 



148 
 

 

2.2. Opening Top-Hat Operation (OTHO) 

Image segmentation can be performed by the OTHO method to produce a binary image, in 
which the image regions consists of white pixels expressing the objects of interest, i.e., pipeline 
defects in this research, and black pixels denoting the background environment. Considering a 
structuring element as a parameter to morphological operation, the light and dark portions in an 
image can be reshaped or morphed in various ways [19], such dilation and erosion as two basic 
morphological operations [34]. Sets M and S represent a median filtered image consisting of pixels 
p(x,y) and a structuring element, respectively: 

M = {(x,y) | p(x,y)} (1)

S = {(x,y) | (x,y) in structuring element} (2)

The dilation of M by S, denoted M S, is the union of all pixels in M surrounded by the shape 
of S and defined as: 

M S = {m + s | for all m∈M and s∈S} (3)

Similarly, the erosion of M by S, denoted M S, removes all pixels within a “distance” S from 
the edge of M and is defined as: 

M S = {m|s + m∈M for every s∈S} (4)

Based on Equations (3) and (4), the opening operation is defined as: 

M S = (M S) S (5)

Image regions rarely relative to the structuring element are removed by the opening operation 
while preserving image regions greater than structuring elements [19]. Based on Equation (5), 
OTHO is defined as: 

OTHOM S = M – (M S) S (6)

Equation (6) can be regarded as an opening operated image extracted from the median filtered 
one, and is also called image subtraction or top-hat operation [32]. Based on Equation (1) through 
Equation (6), the structural element S, which is a matrix consisting of only 0s and 1s, has a great 
impact on the performance of OTHO. In the matrix, the eight-neighbor pixels of 1s can be assigned 
as of arbitrary shape and size. Diamond, disk, line, rectangular, and square are the common 
structuring elements; nevertheless, line structuring elements are not frequently adapted due to its 
ability of detecting a single border [35]. In inspection images, open joints looks like illuminated 
ring-like objects, but cracks usually present an irregular or linear pattern. Due to the great 
difference between the patterns of open joints and cracks, a disk SE with a radius of 3 pixels was 
adopted to assist OTHO in morphologically probing the pipeline defects. 
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2.3. Closing Bottom-Hat Operation (CBHO) 

CBHO is the dual operation of OTHO. Image dilation and erosion are two basic operations of 
image opening and closing, whereas image closing is an inverted operation of image opening and 
defined as: 

M S = (M S) S (7)

Based on Equation (7), CBHO is defined as: 

CBHOM S = (M S) S – M (8)

2.4. Morphological Segmentation Based on Edge Detection (MSED) 

Another image segmentation method, MSED, was employed to segment the pipeline defects 
from inspection images. Based on edge detection results, the MSED algorithm attempts to 
transform black pixels between two detected edges into white pixels. Edge detection technique and 
the MSED algorithm are introduced as follows. 

2.4.1. Edge Detection 

Edge detection is the most common approach for detecting meaningful discontinuities in gray 
level [36]. Edge detector, i.e., a high-pass filter, allows high-frequency components but excludes 
low-frequency ones to pass [30]. In this research, the Sobel first derivative edge detector was taken 
into consideration for the edge detection of the pipeline defects in the median filtered image M. 

2.4.2. The MSED Algorithm 

A hybrid approach, integrating mathematical morphological edge detection, contour-based 
image segmentation, and trajectory estimation, was presented to track multiple objects in video 
frames [26]. Region growing and merging were introduced into the contour-based image 
segmentation algorithm, so several initial growing seeds are needed for searching the morphologies 
of the contoured objects. In the MSED algorithm, firstly edge detection generates a binary image 
(or logical image), in which 1 s and 0 s represent the border of pipeline defects and background 
environment, respectively. Secondly, the MSED algorithm applies region growing to the 
morphological segmentation of pipeline defect based on the binary image so that initial growing 
seeds are unneeded. A brief illustration of the MSED algorithm can be referred to the literature of 
Su et al. [10], and is encoded in Matlab as follows. In the following operation, dlim is used to survey 
the minimum distance between two border pixels in either row or column direction. Once the 
minimum distance is determined, the interval pixels (background pixels) are defined as the pipeline 
defect pixels: 

For d = 2:dlim           % dlim is an integer, and d = 2, 3, 4, …, dlim are tested. 
  For i = 1:m            % m and n denote the pixel number of the image region in the row and col. 
     For j = 1:n – d 



150 
 

 

        If (image (i,j) = = 1 & image (i,j + d) = = 1)   % image (i,j) is edge detection binary image. 
           image (i,j + 1:j + d – 1) = 1; 
        End      
     End 
  End 
   
  For j = 1:n 
      For i = 1:m – d 
          If (image (i,j) = =1 & image (i + d,j) = =1) 
             image (i + 1:i + d – 1,j) = 1; 
          End 
      End     
  End 
End  

2.5. Accuracy Estimation of Pipeline Defect Detection 

To verify the three segmentation methods in pipeline defect detection, the accuracy indices, 
including completeness (Compl), correctness (Corr), and quality, are introduced as [18]: 

Compl = (Se  Ms) / Ms, (9)

Corr = (Se  Ms) / Se, (10)

Quality = (Compl*Corr) / (Compl – Compl*Corr + Corr), (11)

where Se is the segmentation by OTHO, CBHO, or MSED methods; Ms expresses the image 
regions of true pipeline defects interpreted by experts a priori. 

3. Results and Discussion 

The vitrified clay sewer pipelines in Taichung City, which is the biggest city in central Taiwan, 
were inspected by a CCTV camera mounted on a robot. The video streams are in MPEG at  
30 frames per second. A manhole to manhole distance was scheduled as an inspection unit and 
required about 10 min for CCTV shooting. Thousands frames of inspection images were recorded 
in each video stream. Figure 2 shows the CCTV robot and its corresponding monitoring system 
inside the vehicle. The CCTV robot is connected with the vehicle on the ground by a power cable. 
The power cable provides two utilities for the inspection task, including delivering image signal 
back to the vehicle and pulling the CCTV robot back while the inspection task of a pipeline length 
(a distance between two manholes) is finished. Moreover, the CCTV camera can be rotated along x 
and z axes if necessary (see Figure 2b). This paper used the software_VirtualDub, which can rank 
images in a row according to imaged time, to capture 100 frames of inspection images from the 
video streams as experimental materials, and assessed the applicability of the three segmentation 
methods for pipeline defect detection. 
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Figure 2. (a) CCTV robot. (b) Illustration of the CCTV camera rotating along the x and 
z axes. (c) The monitoring system of the CCTV robot. 

 
(a) (b) (c) 

The inspection results show that cracks and open joints are two typical pipeline defects causing 
leakage problems in the sewer system. Due to the dark environment inside sewerage, a light beam 
from the CCTV robot is needed during CCTV inspection. The optical axis of CCTV robot would 
be usually parallel to the central axis of pipeline during sewer inspection. Consequently, open joints 
are apt to be illuminated by the CCTV robot because the surface of an open joint is usually 
perpendicular to the central axis of the pipeline. Cracks in CCTV images usually can be regarded 
as clearly dark patterns [14], but sometimes appear as bright patterns under several specific 
imaging conditions. 

To demonstrate the performance of OTHO, CBHO, and MSED in the pipeline defect detection, 
20 inspection images, in which each of cracks and open joints were individually recorded in  
10 inspection images, were offered for training the three segmentation methods. The applicability 
of the proposed segmentation methods in the detection of cracks and open joints was also 
discussed. Then, other 40 inspection images recording either cracks or open joints were used for 
testing the proposed segmentation methods. 

3.1. Applicability Assessment of OTHO, CBHO and MSED in Pipeline Defect Detection 

Figures 3 and 4 show 10 inspection images of cracks and open joints, respectively, used for 
assessing the applicability of OTHO, CBHO, and MSED in pipeline defect detection. To reduce the 
computation, this research detected pipeline defects by probing the discontinuities in gray level 
instead of color imagery. The human interpretation of the pipeline defects in Figures 3 and 4 is 
shown in Figures 5 and 6, respectively. The white image regions express the interpreted pipeline 
defect, whereas the black ones represent the background environment. 
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Figure 3. CCTV images of cracks. 

  
(a) (b) (c) (d) (e) 

  
(f) (g) (h) (i) (j) 

Figure 4. CCTV images of open joints. 

  
(a) (b) (c) (d) (e) 

  
(f) (g) (h) (i) (j) 

Figure 5. Manual interpretation of cracks corresponding to images in Figure 3. 

  
(a) (b) (c) (d) (e) 

  
(f) (g) (h) (i) (j) 

Figure 6. Manual interpretation of open joints corresponding to images in Figure 4. 

  
(a) (b) (c) (d) (e) 
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Figure 6. Cont. 

  
(f) (g) (h) (i) (j) 

3.1.1. Pipeline Defect Detection Using OTHO 

Figures 7 and 8 are the segmentation applying OTHO to the images in Figures 3 and 4, 
respectively. Based on Equation (9) through Equation (11), Table 1 lists the segmentation accuracy in 
Figures 7 and 8, respectively, and shows that OTHO is better in open joint detection than crack 
detection. In Figure 4, open joints look like ring patterns with a strong illumination, whereas most 
cracks present slender gap patterns without illumination in Figure 3. Figures 7 and 8 show that 
pipeline defects or noisy environments with stronger illumination than their neighbors were 
detected by OTHO as white image regions. 

Figure 7. Segmentation of crack CCTV images by OTHO. 

   
(a) (b) (c) (d) (e) 

   
(f) (g) (h) (i) (j) 

Figure 8. Segmentation of open joint CCTV images by OTHO. 

  
(a) (b) (c) (d) (e) 

  
(f) (g) (h) (i) (j) 
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Table 1. Segmentation accuracy of crack (C) and open joint (OJ) segmentations by OTHO. 

Image ID 
Accuracy Index (%) 

Compl Corr Quality 
C OJ C OJ C OJ 

(a) 8.28 98.26 2.80 49.25 2.14 48.82 

(b) 6.91 88.14 3.39 41.12 2.33 38.97 

(c) 2.44 83.92 1.60 31.32 0.97 29.55 

(d) 1.56 91.73 0.28 47.33 0.23 45.40 

(e) 1.41 88.16 0.19 74.39 0.17 67.64 

(f) 19.93 86.21 4.77 55.92 4.00 51.33 

(g) 5.40 87.43 0.91 56.24 0.79 52.03 

(h) 0.56 92.66 0.07 19.21 0.07 18.93 

(i) 9.57 92.56 0.78 39.66 0.73 38.44 

(j) 71.60 91.30 8.64 47.97 8.35 45.88 

Average 6.23 89.90 1.64 46.05 1.27 43.46 

Standard Deviation 6.08 4.32 1.65 15.89 1.31 14.11

p.s. The extreme values of Image (j) of crack are excluded in calculation of average and standard deviation. 

In Table 1, OTHO offering an averaged Compl of 89.90% coupled with a standard deviation of 
4.32% for open joint detection, indicating that most image regions belonging to open joints can be 
well detected. However, not only the open joints but also the inspection texts or the environmental 
noise were detected so much the Corr is far inferior to the Compl. The inspection texts, including 
date, manholes of departure and arrival, pipe material, diameters, and category of pipe defect, were 
recoded and placed on the inspection image. If the tone of the inspection texts against their 
neighbor background is clear, the inspection texts have a high probability of being segmented and 
decrease the Corr. Thus, in the future a separate attribute database to record the inspection texts is 
necessary to avoid incorrect detections of pipeline defects. In addition to the inspection texts, we 
found that the heterogeneous illumination due to the reflection by the noisy environments would 
also result in the incorrect detection of pipeline defects and worsened Quality. 

Table 1 also shows that applying OTHO to the open joint detection in Figure 4e obtained the 
best Quality of 67.64%, where Compl and Corr are 88.16% and 74.39%, respectively. Figure 8e 
shows that OTHO has the capability of detecting the near open joint (larger white ring) and the far 
open joint (smaller white ring) from the CCTV position. However, the near open joint referred to in 
Figure 6e should be the only target of concern under the assumption of only one defect existing in 
one image in this research. The Corr of 74.39% can be improved by ignoring the far open joint. 

As for the crack detection by OTHO, the best Compl of 71.60% was obtained for the crack in 
Figure 3j due to its strong illumination. However, the transverse stripe of non-crack and the 
inspection texts in Figure 3j were also detected so that the Corr of merely 8.64% indicates that 
OTHO is unsuitable for crack detection. 
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3.1.2. Pipeline Defect Detection Using CBHO 

The segmentation applying CBHO to the corresponding to images in Figures 3 and 4 are shown 
in Figures 9 and 10, respectively. The accuracy of the detected pipeline defects in Figures 9 and 10 
is estimated in Table 2. Obviously, CBHO derives better performance in detecting cracks than open 
joints, contrary to OTHO. Comparing Tables 1 and 2, Quality of crack detection is significantly 
improved and demonstrates that CBHO is suitable for detecting objects which absorb light beams. 
Excluding Figure 9a and 9j, most segmented cracks in Figure 9 have Compl above 50% by CBHO. 
In particular, the crack in Figure 9e obtained a Compl of 82.79%. Also, the inspection text or 
environmental noise was detected by CBHO so that the crack in Figure 9e has Corr of 8.94% 
which is far inferior to Compl of 82.79%. Consequently, the low Corr results in low Quality of 8.78%. 

Figure 9. Segmentation of crack CCTV images by CBHO. 

  
(a) (b) (c) (d) (e) 

  
(f) (g) (h) (i) (j) 

Figure 10. Segmentation of open joint CCTV images by CBHO. 

  
(a) (b) (c) (d) (e) 

  
(f) (g) (h) (i) (j) 

Table 2 also shows that CBHO is unsuitable for open joint detection due to low Quality. Even, 
image (e) was given the Quality of 0% with Compl and Corr both being 0%. Figure 10e is seen that 
the farther open joint in Figure 4e was segmented as the ring-like image region, but the farther open 
joint is not the detected defect shown as Figure 6e. In addition to the ring-like segmentation, the 
other segmented image region is located at the bottom of Figure 10e. Unfortunately, the segmented 
image regions in Figure 10e do not match the manual interpretation in Figure 6e at all. The above 
result illustrates that CBHO would lead to pseudosegmentation for open joints. 
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Table 2. Segmentation accuracy of crack (C) and open joint (OJ) segmentations by CBHO. 

Image ID 

Accuracy Index (%) 

Compl Corr Quality 

C OJ C OJ C OJ 

(a) 27.48 6.89 9.56 3.14 7.63 2.21 

(b) 56.89 0.51 21.89 0.43 18.77 0.23 

(c) 71.39 0.12 39.35 0.18 33.99 0.07 

(d) 70.18 0.11 11.51 0.03 10.97 0.03 

(e) 82.79 0.00 8.94 0.00 8.78 0.00 

(f) 53.43 2.65 22.21 4.58 18.61 1.71 

(g) 52.16 2.35 6.21 4.46 5.87 1.57 

(h) 65.86 2.25 9.75 2.30 9.28 1.15 

(i) 79.65 10.66 11.72 2.45 11.37 2.03 

(j) 4.94 1.16 0.73 0.36 0.64 0.28 

Average 62.20 2.67 15.68 1.79 13.92 0.93

Standard Deviation 16.96 3.48 10.50 1.83 8.77 0.90

p.s. The extreme values of Image (j) of crack are excluded in calculation of average and standard deviation. 

3.1.3. Pipeline Defect Detection Using MSED 

Figures 11 and 12 show the segmentation applying MSED to Figures 3 and 4, respectively. 
Table 3 presents the segmentation accuracy for Figures 11 and 12, and shows that MSED offers 
better performance for open joint detection than crack detection. Moreover, a comparison between 
Tables 2 and 3 shows MSED is superior to CBHO in crack detection due to the less segmentation 
of environmental noise. However, the inspection texts were also detected by MSED as white 
rectangles (see Figures 11 and 12), and this greatly deteriorated the segmentation. In Table 3, the 
best Quality of 26.51% with Compl of 80.29% and Corr of 28.36% was obtained for the crack 
detection in Figure 3c. Especially, the Corr of 28.36% can be greatly improved if the inspection 
texts were removed from the image. Similarly, in Table 3 lower Corr values, such as 7.60%, 5.11% 
or 5.12%, resulted from the detection of the inspection texts so as to deteriorate the Quality of 
6.91%, 5.01% or 5.03% (see Figure 11a, g or j). Although a crack usually appears as a slender gap 
pattern without any illumination, comparison of Table 3 to Table 2 demonstrates that MSED has 
better capability of crack detection than CBHO, unless a crack is located in shadows or is smoothed 
by the surroundings. Noticeably, the pattern of a crack in Figure 3b is extremely visible. However, 
a Compl of merely 49.51% was obtained by MSED for the crack detection that is caused by the 
parameter, dlim, given by a length of 7 pixels, which is short for the MSED algorithm in complete 
crack detection (see Figure 11b). 
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Figure 11. Segmentation of crack CCTV images by MSED. 

  
(a) (b) (c) (d) (e) 

  
(f) (g) (h) (i) (j) 

Figure 12. Segmentation of open joint CCTV images by MSED. 

  
(a) (b) (c) (d) (e) 

  
(f) (g) (h) (i) (j) 

Table 3. Segmentation accuracy of crack (C) and open joint (OJ) segmentations by MSED. 

Image ID 

Accuracy Index (%) 

Compl Corr Quality 

C OJ C OJ C OJ 

(a) 43.21 50.17 7.60 24.70 6.91 19.84 

(b) 49.51 64.02 25.47 30.96 20.22 26.37 

(c) 80.29 58.22 28.36 22.44 26.51 19.33 

(d) 67.45 97.70 12.57 37.31 11.85 36.98 

(e) 76.53 90.89 12.23 57.62 11.79 54.47 

(f) 62.14 87.38 22.59 38.87 19.86 36.80 

(g) 72.30 88.87 5.11 37.47 5.01 35.79 

(h) 83.30 71.50 17.87 15.58 17.25 14.67 

(i) 58.20 20.03 18.17 10.63 16.07 7.46 

(j) 73.66 62.77 5.12 33.74 5.03 28.11 

Average 66.66 69.16 15.51 30.93 14.05 27.98

Standard Deviation 13.24 23.51 8.33 13.44 7.19 13.60
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In Table 3, the four segmented images of open joints, including images (d), (e), (f), and (g), gave 
better Quality. Especially for image (e), Quality of 54.47% with Compl of 90.89% and Corr of 
57.62% was the optimum derived by MSED. As in Figures 8e and 10e, in Figure 12e the farther 
open joint was also detected by MSED as a smaller white ring that decreased segmentation 
correctness. In other words, the Corr of 57.62% is an underestimation for MSED in the performance 
of correctly detecting pipeline defects. In Table 3, the best and worst Compls were obtained for the 
segmentation of Figure 12d and 12i, respectively. The open joints in Figure 4d and 4i have similar 
patterns. The greatest difference between two patterns is the illuminated areas of the open joints 
due to the large displacement of the open joint in Figure 4i compared with Figure 4d. 
Unfortunately, the upper edge of the open joint in Figure 4i failed to be detected by edge detection 
causing the MSED algorithm to be ineffective in the open joint detection (see Figure 12i).  
The failed edge detection was caused the image gradients below the threshold which was 
automatically determined by Otsu’s technique. 

3.1.4. Summary of Pipeline Defect Detection Using OTHO, CBHO and MSED 

On a 2.5 GHz PC with four CPUs, less than 0.1, 0.5, and 1 second was taken to process the 
MATLAB code of CBHO, OTHO, and MSED, respectively. With superior computation efficiency,  
in-time pipeline defect detection can be expected. Based on the illustration of applying OTHO, 
CBHO, and MSED to the detection of crack and open joint, a summary of the pipeline defect 
detection using OTHO, CBHO, and MSED is obtained and discussed as follows: 

(1) Tables 1 and 3 show that Quality of open joint detection is higher than that of crack 
detection. Cracks were found to be more difficult to detect due to their varied appearance. 
The Quality obtained by MSED (see Table 3) is significantly better than that by OTHO for 
the crack detection (see Table 1), whereas OTHO is superior to MSED in open joint 
detection. The comparison in Tables 2 through 3 indicates that MSED seems better than 
CBHO in both crack and open joint detection. Hence, this paper suggests that OTHO and 
MSED can be considered suitable for open joint and crack detections, respectively. 

(2) The difficulty to derive a high Corr results from the serious interference from the noisy 
environment which is unavoidable during sewer inspection. OTHO, offering Compl 
between 83.92% and 98.26% for the open joint detection (see Table 1), is proven useful for 
open joint detection. Compl values up to 83.30% and above 60% for seven of the 10 
inspection images derived by MSED for the crack detection (see Table 3) demonstrate the 
effectiveness of MSED in crack detection. 

(3) Figures 11 and 12 show that most inspection texts were detected by MSED as image 
regions consisting of white rectangles. However, the sizes of the white rectangles are 
mostly larger than those of the detected inspection texts by OTHO. The larger the detected 
inspection texts are, the more inferior the Corr is. In addition, the number of the image 
regions detected by MSED is significantly less than that by OTHO. In Figures 7 and 8, 
many small image regions due to the noisy environment, such as heterogeneous 
illumination, were detected by OTHO and this severely deteriorated Corr. 
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(4) Figures 7 through 12 show that in crack detection the three segmentation methods suffer 
from the deterioration caused by environmental noise. The segmentation of environmental 
noise results from the corroded pipe wall which reflects heterogeneous beams back to the 
CCTV camera. In an image with heterogeneous beam reflection, OTHO and CBHO would 
segment brighter and darker portions, respectively. MSED would detect the edges between 
the bright and dark portions in image segmentation. The segmented environmental noise 
frequently has the morphological feature of fractals which is extremely different from the 
line-like features of cracks or the ring-like features of open joints. In future work, criteria 
based on morphological features should be established to remove the environmental noise, 
and the effect of the noise removal will be discussed. 

3.2. Verification of OTHO and MSED in Pipeline Defect Detection 

To verify the applicability of OTHO and MSED in open joint and crack detection, this research 
employed additional 40 inspection images for each of crack and open joint. Based on the total  
80 inspection images, Figure 13 shows Compl, Corr, and Quality for the applicability verification. 
Figure 13 displays the accuracies of MSED and OTHO tests in the crack and open joint detections, 
respectively. The long bar represents a great difference between the maximum and minimum of 
Compl. Averaged Compl values of 61.50% and 86.72% were obtained for the crack and open joint 
detections, respectively. The standard deviations of Compl in the crack and open joint detections 
are 19.98% and 13.59%, respectively. In conclusion, OTHO has a robust capability of detecting 
open joints and MSED can effectively detect cracks. 

Figure 13. Verification of pipeline defect detection. (a) Crack detection using MSED.  
(b) Open joint detection using OTHO. 
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Figure 13 also shows Corr of the open joint detection ranging significantly wider than that of 
the crack detection. The standard deviations of Corr for the open joint and crack detections are 
18.49% and 5.89%, respectively, which is similar to that of Quality. Compared with Figure 13a and 
13b, Corr is greatly inferior to Compl due to the influence of the noisy environment. Moreover, it is 
more difficult to correctly detect cracks than open joints so that Quality of the crack detection is 
relatively lower than that of the open joint detection. Table 4 is a statistical analysis of the different 
levels of the accuracy indices for the pipeline defect detection. For the crack detection by MSED, 



160 
 

 

almost all 40 inspected images obtaining both Corr and Quality less than 20% indicates that the 
noisy environment has a great impact on MSED performance of pipeline defect detection. For the 
open joint detection using OTHO, most of 40 inspected images obtained Compl values above 80% 
and Corr ones between 40% and 80%. Moreover, Corr has greater impact on Quality than Compl. 

Table 4. Inspected image number in different levels of accuracy indices for pipeline 
defect detection. 

Percentage (%) 
Index 

< 20 40 >~  20 60 >~  40 80 >~  60  80 

Crack detection using MSED
Compl 0 5 12 16 7 
Corr 38 2 0 0 0 

Quality 39 1 0 0 0 

Open joint detection using 
OTHO 

Compl 0 1  1 5 33 
Corr 6 8 17 8 1 

Quality 6 15 11 8 0 

4. Conclusions 

This paper proposes a novel image segmentation method, morphological segmentation based on 
edge detection (MSED), to detect the pipeline defects, including cracks and open joints, which are 
the typical pipeline defects causing leaking problems in vitrified clay sewage pipelines.  
The developed image segmentation methods, opening top-hat operation (OTHO) and closing 
bottom-hat operation (CBHO), were also applied to the pipeline defect detection for comparison. 
Various indices, including completeness, correctness, and quality, were introduced into the 
accuracy assessment of the pipeline defect detection. Cracks were found to be more difficult to 
detect due to their varied appearance. The test results demonstrate that MSED outperforms both 
CBHO and OTHO in crack detection, and OTHO outperforms both CBHO and MSED in open 
joint detection. In conclusion, this paper suggests employing MSED for cracks and OTHO for open 
joints in detection processing. 

The sewer pipes in the 9th district sewer system of Taichung City were made of vitrified clay, 
which is a typical rigid pipe material. The pipeline defect detection methods proposed in this 
research can also be applied to other rigid pipes, such as concrete pipes. However, the inspection 
texts recorded onto the acquired CCTV images deteriorate the correctness and quality. The barrier 
of the noisy environment segmentation for MSED or OTHO remains. We strongly suggest that a 
separate attribute database for inspection texts is necessary in future CCTV shooting processes. 
Removal of the inspection texts from CCTV images should significantly improve the detection 
correctness. Moreover, some morphology-based decision criteria or fitness function [37] could be 
established in the future for removal of the noisy environment to improve the correctness and 
quality of detection. According to the comment by Kirstein et al. [29], the irregular environment 
inside sewer pipelines results in a long time still being needed for developing an automated sewer 
inspection system. In further study, ground light detection and ranging (LiDAR) can be introduced 
and coupled with a synchronous camera for pipeline defect measurement based on point clouds 
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with precise coordinates. Nevertheless, this paper demonstrates that the different types of pipeline 
defects need different image segmentation methods for detection. Thus, identifying an appropriate 
image segmentation method for the detection of objective pipeline defects also needs  
advanced study. 
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Abstract: We describe an ultrasonic instrument for continuous real-time analysis of the fractional 
mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks 
of a high molecular weight gas into a system that is nominally composed of a single gas.  
Sensitivity < 5 × 10 5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during 
a long duration (18 month) continuous study. The sensitivity of the described measurement system 
is shown to depend on the difference in molecular masses of the two gases in the mixture.  
The impact of temperature and pressure variances on the accuracy of the measurement is analysed. 
Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak 
detection systems are also described. Although development of the described systems was motivated 
by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to 
the detection of leaks of many other gases and to processes requiring continuous knowledge of 
particular binary gas mixture fractions. 

Reprinted from Sensors. Cite as: Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; 
Bousson, N.; Boyd, G.; Bozza, G.; Crespo-Lopez, O.; Da Riva, E.; Degeorge, C.; Deterre, C.; 
DiGirolamo, B.; Doubek, M.; Favre, G.; Godlewski, J.; Hallewell, G.; Hasib, A.; Katunin, S.; 
Langevin, N.; Lombard, D.; Mathieu, M.; McMahon, S.; Nagai, K.; Pearson, B.; Robinson, D.; 
Rossi, C.; Rozanov, A.; Strauss, M.; Vitek, M.; Vacek, V.; Zwalinski, L. Implementation of 
Ultrasonic Sensing for High Resolution Measurement of Binary Gas Mixture Fractions. Sensors 
2014, 14, 11260-11276. 

1. Introduction 

Fractional measurement of binary gas mixtures with ultrasonic pulses has been in use for some 
decades in High Energy Physics (HEP) experiments; see for example [1]. These experiments use 
binary gas mixtures that must be accurately monitored and controlled in order to optimize the 
experimental data. Monitoring in these experiments is achieved by gas mixture analyzers operating 
on the principle that the speed of sound in binary gas mixtures of differing molecular masses is 
sensitive to the ratio of the molar fraction of the mixture (Figure 1). 
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Recently, we have expanded the application of ultrasonic gas analysis to the silicon tracker of 
the ATLAS experiment (A Toroidal LHC ApparatuS) at the CERN Large Hadron Collider (LHC) for 
in situ leak detection [2]. 

The silicon detectors of the ATLAS Inner Detector are subdivided into the ATLAS Pixel Detector, 
using pixelated silicon sensors [3] and the SCT Detector (Semi-Conductor Tracker), constructed of 
silicon micro-strip sensors. They share a common evaporative cooling system using that uses the 
coolant octafluoropropane (C3F8), a saturated (CnF(2n+2)) fluorocarbon with convenient 
thermodynamics. C3F8 also features radiation resistance, non-toxicity, non-flammability and  
non-conductivity [4]. The coolant is delivered via capillaries (which cannot be allowed to clog) in 
204 independently controlled cooling loops and provides local cooling to an average of 
approximately 7 °C for the silicon sensors and their associated electronics, with a total design 
capacity of 60 kW of heat removal [5]. In its present form, the cooling uses a conventional 
compression  condensation  detent cycle but the oil-free compressor plant is currently being 
replaced with a passively pumped thermosiphon [6]. The thermosiphon system uses the 92 m 
height difference between the surface and the ATLAS underground experimental caverns, in 
combination with the thermodynamic cycle, to drive the coolant circulation. In this design, the 
necessary liquid delivery pressure will be provided by the hydrostatic column of 92 m of C3F8 
liquid, while the C3F8 vapor will climb to the surface condenser, the lowest pressure element in the 
system. The headspace above the coolant in the liquid reserve vessel is also at sub-atmospheric 
pressure and will need to be monitored for the ingress of air. A passive ultrasonic leak detection 
system is ideal in this application to respect the purity of the gas circulating in the system. 

Figure 1. The speed of sound in a gas mixture can be very sensitive to the ratio of the 
two components, depending on the difference in their molecular masses. 

 

The aforementioned silicon detector systems had been suspected of leaking small amounts of 
coolant into each of their segregated, nitrogen-flushed environments from the time of their 
installation in 2006–2007. The possible leaks are of concern because the high ionizing radiation 
fluence of the ATLAS inner detector environment could dissociate C3F8 coolant molecules, 
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possibly leading to the creation of hydrofluoric acid (HF) if it should happen that a detector gas 
volume were to be accidentally exposed to humidity during detector operation. This could lead to 
corrosion damage to the (millions of) exposed Al wire bonds (wire bonds are very thin, typ. 1 mil, 
for short connections between circuit components, most usually between an integrated circuit and 
an interconnect, such as a printed circuit board or standardized package.) used in the detectors, 
rendering the associated detector modules with limited or no functionality, creating (a) blind spot(s) 
in the Inner Detector of the ATLAS experiment. Because the detector volumes of the Pixel and 
SCT sub-detectors are separately flushed with N2 to prevent condensation, the possibility exists to 
extract and analyze each volume exhaust for coolant leaks. 

In this paper we describe how the application of existing detector technology for ultrasonic 
fractional binary gas analysis in new hardware and control systems can provide sensitive, in situ, 
passive leak detection. We also describe design options that give the ultrasonic sensing system 
additional functionality. 

2. Theory, Design and Implementation of Ultrasonic Leak Detection in Binary Gas Systems 

The principle of operation and implementation of the ultrasonic leak detection system is 
described in the following three subsections. 

2.1. Principle of Operation 

The principle for leak detection using ultrasonic acoustic waves is based on the general equation 
for sound velocity in a gas: 

c =  (1)

where  is the adiabatic index of the gas, R is the molar gas constant (8.3145 J·mol 1·K 1), T is the 
absolute temperature in degrees Kelvin and M is the molar mass in kg·mol 1. The value of  is 
given by the ratio of the molar specific heat at constant pressure (Cp) to that at constant volume (Cv): 

 (2)

When dealing with a gas mixture, one calculates the sum of the specific heat components in 
proportion to the molar fraction, wi, of each: 

 (3)

By definition, the molar mass of the mix is given by: 

 (4)

So Equation (1) becomes: 
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 (5)

For each mixture component, the molar specific heat at constant pressure and that at constant 
volume are related by: 

 (6)

The precision of mixture determination, (mix), at any concentration of the two components is 
given by: 

 (7)

where m is the local slope of the sound velocity-concentration curve and c is the uncertainty in the 
sound velocity measurement. 

In a system composed of N2 and C3F8, for example, the mixture ratio can be expressed as  
wN2 = (1  wC3F8), reducing Equation (5) to a function of wC3F8, CpC3F8 and CpN2. The two molar 
specific heats can be computed using NIST REFPROP [7] or with PC-SAFT [8] over a range of 
temperature and pressure exceeding the conditions in the analyzer tube(s) and then stored in  
a database (look-up table). Therefore, we only need measure the speed of sound in the mixture 
along with the temperature profile along the path of the gas (for improved accuracy) and the gas 
pressure, in order to calculate . 

2.2. Implementation 

In our system designs, ultrasonic bursts are propagated in a sealed tube designed to provide a 
smooth flowing gas region between two transducers (Figure 2). The transducers were designed by 
Polaroid® and are now sold by Senscomp (Figure 3) as series 600 [9]. The transducer is comprised 
of a thin, Au plated Mylar® foil stretched over a spirally grooved conductive disk. The foil is held 
at ground potential and the disk is biased between 100 Vdc and 360 Vdc. A 50 kHz pulse train 
modulates the transducer bias voltage, exciting the diaphragm to transmit an acoustic wave in 
response to the fluctuating electric field. As a sensor, the transducer collects an alternating charge 
across the foil—disk capacitor that is proportional to the power of the signal impinging on the foil 
diaphragm. A 50 Vdc bias is adequate in receive mode to maximize the signal to noise ratio of the 
transducer in the gases we have studied. An appealing feature of this sensor is that its construction 
maintains pressure equilibrium across the diaphragm, making the pressure in the gas system 
irrelevant to transducer operation. Its suitability for use with corrosive gases has not been examined 
but these sensors have displayed long lifetimes in the applications reported here (none are known to 
have failed). 

Most of the electronics needed to drive the transducers, create gated pulses and measure the time 
of flight of pulses between the transmit and receive transducers can be implemented in a  
micro-controller. The Microchip® dsPIC 16 bit microcontroller has been chosen for the present 
ATLAS design. It provides a 40 MHz timer for measurement of the sound transit time through the 
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gas or gas mixture that is started when the first ultrasonic pulse is sent. The microcontroller also 
controls the gain of the analog amplifier and generates an analog comparison voltage for the 
discriminator, whose output signal triggers the 40 MHz timer to halt. The discriminator follows the 
analog amplifier to boost the received transducer signal and shape it. It is also possible to design 
the system to take alternating measurements in opposite directions, relative to the gas stream, so 
that the analog amplifier, cabling and discriminator delays are eliminated from the time of flight 
measurements. This technique also allows passive gas velocity measurement in the same 
instrument that is used for leak detection [10]. 

Figure 2. An illustration of the ultrasonic signal transit time measurement and the 
electronic readout block diagram is shown for a design that allows the transducer roles 
to be swapped for more precise calibration and for simultaneous gas velocity measurement. 

 

Figure 3. Senscomp model 600 capacitive ultrasonic transducer originally designed by 
Polaroid® for autofocus cameras. 
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It is possible to use the same microcontroller to store the sound velocity-composition lookup 
tables and locally calculate the mixture ratio. However, ATLAS is structured around a control and 
monitoring system that makes it more practical to perform lookup and other functions in a 
supervisory computer that can serve several analyzer tubes. Communications protocols are 
determined by the specific application. In ATLAS, we will convert to MODBUS over TCP/IP but 
have also used and will continue to use RS-232C and USB for local digital communication and  
4–20 mA current loops for hard-wired control functions. 

The gas mixture and flow rate are continuously calculated using Supervisory Control and Data 
Acquisition (SCADA) software implemented in Siemens WinCC® (formerly known as PVSS II [11]), 
running on the supervisory computer. Sound velocity-concentration lookup tables are used to 
accelerate execution speed and are stored on the same computer. These tables may be created from 
prior measurements in calibration mixtures, theoretical thermodynamic calculations, published tables 
or a combination of these sources. 

After completion of the full ultrasonic analysis network in 2014, a central computer will be used 
to supervise the four leak check systems described in this paper, as well as another ultrasound 
system for passively measuring the gas flow velocity in the thermosiphon vapor returning to the 
surface condenser, which operates at sub-atmospheric pressure [12]. 

The acoustic wave has a very low angle of dispersion at 50 kHz because it is driven from  
a diaphragm that is much larger (typically by a factor of 10) than the acoustic wavelength of the 
probe signal. The important features of a tube for ultrasonic gas analysis include mounts for the 
transducers that keep the transducer diaphragms aligned parallel to each other in the gas stream. 
Misalignment can lead to increased errors due to reflections from the tube walls and/or attenuation 
of the signal. Since the wavelength of the ultrasonic signals is very short, the choice of length for 
the measurement tube is driven by other considerations, including mounting space and the 
precision of the timer(s) used to measure the time of flight of the probe signal. Provision should 
also be made to seal the transducer wiring ports, including the wiring for any temperature and 
pressure sensors that might be included inside the tube for improved accuracy. Care should be 
taken to avoid creating acoustic resonators or vortices in the analyzer tube design that could 
interfere with the measurement. The tube should be installed in a system line that is free of liquid, 
aerosols, risk of condensation and other contaminants. 

A tube design allowing simultaneous binary gas analysis and velocity measurement (flowmetry), 
has been modeled using computational fluid dynamics [13]. One such tube design for axial flowmetry 
is shown in Figure 4. Note the cones that reduce chaotic fluid flow and vortices as gas flows around 
the transducers. Although stainless steel is chosen for the analyzer tube construction in our 
applications, other materials may be more suitable in others. The design should anticipate pipe 
stems, valves and manifolds to ease calibration, servicing and replacement of the sensing tube 
and/or elements within it. 

As mentioned in the introduction, it is possible to monitor the N2 environmental volumes of the 
ATLAS inner detector for C3F8 leaks by remotely sampling their atmospheres. Dry N2 is constantly 
flowing to purge the detector volumes of any humidity, and gas can be aspirated from different 
locations through seven 8 mm diameter exhaust tubes. These tubes traverse a path of 150 m length 
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from the ATLAS Inner Detector to three ultrasonic analyzers installed in an underground service 
cavern, a safe distance from the high radiation environment of the experimental cavern. One of 
these tubes is dedicated to sampling the environmental volume of the ATLAS Pixel Detector and 
two others sample the ATLAS SCT Detector. Another tube is routed to a soon-to-be-installed new 
silicon pixel detector, known as the “Insertable B Layer” (IBL), equipped with its own separately 
purged N2 environmental volume. Since the IBL will be evaporatively cooled using a new CO2 
based system, we are extending the analysis capability of the ultrasonic instrument to include CO2 
leaks into N2 [14]. 

Figure 4. The schematics show the implementation of a stainless steel analyzer tube, 
with the transducer highlighted in gold in bottom detail. The central tube inner diameter 
is pinched to be the same as the ultrasonic transducers. This version allows volume 
flow measurement to ~230 L min 1, in addition to the measuring the gas mixture ratio. 

 
  

transducer 
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Figure 5. Schematic of the ATLAS inner detector leak detection system. Two ultrasonic 
analyzer tubes target detection of C3F8 leaks into the N2 environments surrounding the 
Pixel and SCT detectors. A third tube targets CO2 leaks into the IBL gas volume.  
A portable gas chromatograph (GC) can be connected as a calibration check or if more 
than one contaminating gas is suspected [15]. 

 

Figure 5 illustrates the gas sampling system in which gas is pumped through three ultrasonic gas 
analysis tubes using low volume flow (~100 cm3·min 1) diaphragm pumps. A pneumatic valve 
selection panel located in the service cavern allows the operator to remotely choose (or program) 
which detector volumes to analyze. 

In the thermosiphon condenser application, a vertical tube system is required that can be isolated 
from the condenser for maintenance and calibration. Fortunately this is simplified by being a part 
of the head-space purging system of the coolant reserve tank, which can be isolated from the rest of 
the tank (Figure 6). The condenser is located outdoors, far from rack space for computers and other 
equipment, so for this system, the electronics have been implemented within a DIN rail compliant 
weatherproof equipment box. Communication will be by MODBUS over TCP/IP to the 
supervisory computer, which is the same one used for leak detection, located in an equipment rack 
with the three analyzer tubes mentioned previously. 
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Figure 6. The schematic and logic flow of the leak detection system of the condenser 
headspace of the ATLAS inner detector thermosiphon cooling system is shown on the 
left. A valve system is included which allows for filling the analyzer tube with a 
calibration gas and purging the tube with a vacuum pump. The completed analyzer and 
valve tree is shown on the right, prior to installation. 

 

2.3. Calibration 

Precision measurement of the mixture is achieved by accurately determining the distance 
between the transducers, i.e., calibrating the analyzer tube length. The sound transit time can be 
calibrated by filling the analyzer tube with a pure gas. The best candidate gases are those with  
well-known sound velocity dependence on temperature and pressure, including xenon, whose 
sound velocity (175.5 ms 1 at 20 °C) is the closest to that of the fluorocarbon gases analyzed in 
ATLAS and for which the thermo-physical behavior is that of an ideal gas. Sufficient precision is 
often possible using nitrogen or argon, which are considerably cheaper and more widely available. 
The average uncertainty in transducer inter-distance measured in this way is ±0.1 mm. Of obvious 
importance to calibration is control of the temperature and pressure or at least, their accurate 
measurement (Equations (1)–(6)). For even tighter calibration, the design can include a thermal 
jacket around the analyzer tube. In the instruments we have deployed, the combined effects of 
uncertainties in the transducer spacing and the measured temperature (<±0.2 °C) and pressure (<±4 
mbar) in the tube result in an uncertainty in sound velocity measurement of <±0.05 ms–1.  
In combination with the stored sound velocity-concentration look up tables, this results in an 
uncertainty of the gas mixture determination, calculated with Equation (7), depending on the 
molecular weight difference of the two components, as discussed in the following sections. 

3. Results and Discussion 

3.1. Examples of Velocity-Concentration Look-UP Tables 

Figures 7 and 8 illustrate look up tables applicable to leak detection of C3F8 into N2. Figure 7 
compares measured sound velocities in molar concentrations of up to 10% C3F8 in N2 with direct 
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sound velocity predictions made using the PC-SAFT equations of state [8]. The data of Figure 7 are 
abstracted from measurements and predictions made over the full concentration range from pure 
C3F8 to pure N2. The PC-SAFT approach was used, as NIST-REFPROP is not presently configured 
for direct sound velocity calculations for mixtures of saturated fluorocarbons with N2. In an 
alternative approach illustrated in Figure 8, sound velocity may be determined using the formalism 
of Equations (1)–(6) using Cp and Cv data for the two component gases separately calculated using 
NIST-REFPROP over a range of temperature and pressure encompassing the process gas conditions. 

Figure 7. Comparison of sound velocity measurements and PC-SAFT predictions in 
C3F8/N2 mixtures at 1bar abs and 25 °C up to 10% molar concentration. 

 

The large difference in molecular weight between C3F8 and N2 (respectively 188 and 28 units) 
affords very high sensitivity to variations in the C3F8 leak concentration. For example in the (0%-
1%) molar concentration (MC) range of most interest in leak detection of a heavy vapor into a light 
carrier, the slope of the sound velocity-concentration curve is 12.2 ms 1.(%MC) 1. This slope, 
taken in combination with the sound velocity measurement error of ±0.05 ms 1 using Equation (7), 
results in a mixture resolution of ±4 × 10 5. 
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Figure 8. Sound velocity calculated according to the formalism of Equations (1)–(6) 
for C3F8/N2 molar concentrations in the range (0%–1% C3F8) at 1barabs and  
several temperatures. 

 

Figure 9 illustrates the variation of sound velocity with the concentration of CO2 leaking into  
a N2 atmosphere, as in the case of the environmental volume of the new ATLAS IBL. Here the 
smaller difference in molecular weight between CO2 and N2 (respectively 44 and 28 units) results in 
a shallower slope to the sound velocity-concentration curve. For example in the (0%–0.1%) molar 
range of most interest in leak detection the slope of the sound velocity-concentration curve is  

1.12 ms 1(%MC) 1. This slope, taken in combination with the sound velocity measurement error 
of ±0.05 m/s using Equation (7), results in a mixture resolution of ±4.4 × 10 4. 

Figure 9. Sound velocity calculated according to the formalism of Equations (1)–(6) 
for CO2/N2 mixtures in the molar concentration range (0%–0.1% CO2) at 1barabs and a 
tube operating temperature of 21.8 °C. 

 

2 2
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Figure 10 illustrates the variation of sound velocity with the concentration of air leaking into the 
C3F8 atmosphere in the headspace of the thermosiphon condenser. Although the difference in 
molecular weight between C3F8 and air (respectively 188 and 29 units) is still very large, this 
instrument operates at the opposite end of the spectrum to the example shown in Figures 7 and 8. 

Figure 10. The sound velocity is calculated according to the formalism of  
Equations (1)–(6) for C3F8/air mixtures in the molar concentration range (0%–30% air) 
at 1 barabs at three tube operating temperatures [16]. 

 

In this case, a light contaminant leaks into a heavy carrier. The slope for the corresponding end of 
the velocity-concentration curve is shallower, e.g., in the (0%–10%) molar range of most interest in 
this application the slope of the sound velocity-concentration curve is 0.53 ms 1 (%MC) 1.  
This slope, taken in combination with the sound velocity measurement error of ±0.05 ms 1 and 
using Equation (7), results in a mixture resolution of ±9.4 × 10 4. 

3.2. Results from Operation of the Devices 

The N2 atmosphere surrounding the ATLAS pixel detector was continuously monitored from 
March 2011 until the programmed 18-month shutdown of the CERN LHC in February 2013.  
Gas was aspirated from the pixel detector volume at around 100 mL/min with the analyzer tube 
operating at a pressure of (985 ± 2) mbarabs and a typical operating temperature of 15.2 °C.  
The C3F8 concentration as a function of time is shown in Figure 11. The electronics had several 
downtimes of a few weeks, which caused the discontinuity in the distribution. The short periods of 
drops to zero C3F8 concentration correspond to periodic baseline checks with pure N2. Longer period 
fluctuations are due to variations in the nitrogen purge rate through the detector environmental 
volume. The peak in apparent C3F8 concentration seen in November 2012 was due to the simultaneous 
aspiration of air into the tube through an improperly tightened gas fitting, the apparent C3F8 
concentration being based on the increased sound transit time and correspondingly reduced sound 
velocity in the tube. A reduction in sound velocity of 0.86 ms 1 from that of pure nitrogen is 
typically observed when the full Pixel Detector cooling system of 88 independent circuits is fully 
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operating. From the ~12.27 ms 1·(%MC) 1 average gradient of the sound velocity-concentration 
curve for C3F8 concentrations in the range 0%–0.5% (Figures 7 and 8) this sound velocity difference 
indicates, via Equation (7), a C3F8 ingress of 0.07% (Figure 11). 

Both the pressure and the temperature of the gas in the tube are continually measured electronically, 
and a full interpolation is made between points of the created (c; P; T; C3F8 concentration) database. 

Gas was aspirated from two different zones of the SCT detector N2 envelope into an analysis 
tube that was operated for three weeks in February 2013 with the latest version of the electronics, 
until the LHC shutdown. Figure 12 illustrates the concentrations of C3F8 during that period. 
Through the use of the automated sampling system of Figure 5, gas was alternately sampled for a 
period of one hour from each zone. The variance between the two zones (upstream and downstream 
into the SCT environmental volume with respect to the direction of dry nitrogen gas injection) was 
seen to diminish after 15 February when the purge rate was increased. 

ATLAS commenced a long (2013–2014) maintenance and upgrade shutdown, ceasing operations 
in mid-February 2013. On the 20th of that month the cooling circuits of the ATLAS silicon 
detectors were progressively turned off, starting with those of the SCT and followed by those of the 
Pixel detectors. The cooling shutdown and elimination of C3F8 from the cooling circuits was 
complete by 00:00 on February 21. Before the start of this process, an N2 baseline was taken for the 
instrument analyzing the pixel detector environmental gas. 

Figure 11. This plot of the long duration (>18 month) log of C3F8 leak contamination 
in the N2 environmental gas surrounding the ATLAS Pixel Detector confirms suspected 
leaks and establishes the leak rate into the detector volume [12]. 
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Figure 12. The variance in concentration of C3F8 in the SCT gas enclosure as a 
function of time (between 1st and 21st February) is shown for the two zones analyzed, 
designated SCTA and SCTC [12]. 

 

Figure 13. The variance in concentration of C3F8 is shown for the Pixel (right) and 
SCT (left) gas enclosures during the shutdown of the cooling systems on 20th February 
2013, the latter of which was regularly alternated between the SCTA and SCTC zones 
during the shutdown [12]. 

 

The residual C3F8 contamination in both zones of the SCT N2 envelope was seen to drop to zero 
within around 15 h of the commencement of the SCT cooling shutdown. The Pixel Detector 
cooling shutdown protocol was longer due to known leaks in some of the cooling circuits. Residual 
C3F8 thus continued to be aspirated from the pixel detector nitrogen envelope over a longer period. 
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The largest drops in the C3F8 concentration were seen following the shutdown of the 3rd pixel 
barrel layer, which began at 17:00 on 20 February 2013 (Figure 13). 

4. Conclusions and Outlook 

We have described an ultrasonic instrument for continuous real-time binary gas composition 
measurement, through the combination of sound velocity, temperature and pressure measurements. 
The instrument is particularly well suited to measure leaks of a high molecular weight gas into a 
light carrier. A sensitivity of <5 × 10 5 has been demonstrated to leaks of octoflouropropane (C3F8) 
coolant into nitrogen during a long duration (18 month) continuous study. Sensitivity studies 
suggest that mixture resolutions of <9.5 × 10 4 and <4.5 × 10 4 respectively will be possible in 
C3F8/air and CO2/N2 mixtures of interest to the ATLAS inner detector cooling project. Although 
this development was motivated by the requirements of an evaporative cooling system, the 
instrument is applicable to the detection of leaks of many other refrigerants, and to processes 
requiring continuous knowledge of binary gas composition. 

The Pixel and SCT volumes continue to be monitored for leaks as part of a large system that 
monitors the health of the ATLAS detectors. The accuracy of passive, ultrasonic leak detection has 
already proven its usefulness in understanding the coolant leaks in the ATLAS silicon detectors. 

Operation of the condenser headspace monitoring system we have described will begin during 
commissioning of the new thermosiphon cooling system for the ATLAS silicon detectors during 
2014. Installation has begun for the plumbing necessary to instrument the new IBL Detector volume 
for monitoring. Since CO2 is known to be highly absorbent of ultrasonic and even high audio 
frequencies, a new R&D program has begun to explore the severity of attenuation at high CO2 
concentrations. Preliminary studies suggest that 50 kHz signals can be detected in our present 
instrument after passage through 50 cm of gas at molar CO2 concentrations up to 15%. We therefore 
also plan to investigate the use of audio frequency transducers in a new system being built at the 
University of Oklahoma. The results obtained will allow optimization of the tube geometry and 
choice of transducers in the ATLAS IBL application. 

Additional uses for speed of sound measurements in parallel with the work described here 
include gas flowmetry and analysis of C2F6/C3F8 coolant blends for optimized thermodynamics [2]. 

The technology described in this work could also find application in other sectors where passive, 
long term, in situ leak detection (or fractional gas mixture analysis) is required. These include 
Metal Organic Chemical Vapor Deposition (MOCVD) semiconductor manufacturing, anesthesiology 
and hydrocarbon fuel combustion management. 
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A Vibration-Based Strategy for Health Monitoring of 
Offshore Pipelines’ Girth-Welds 

Pejman Razi and Farid Taheri 

Abstract: This study presents numerical simulations and experimental verification of a vibration-based 
damage detection technique. Health monitoring of a submerged pipe’s girth-weld against an advancing 
notch is attempted. Piezoelectric transducers are bonded on the pipe for sensing or actuation 
purposes. Vibration of the pipe is excited by two means: (i) an impulsive force; (ii) using one of the 
piezoelectric transducers as an actuator to propagate chirp waves into the pipe. The methodology 
adopts the empirical mode decomposition (EMD), which processes vibration data to establish 
energy-based damage indices. The results obtained from both the numerical and experimental 
studies confirm the integrity of the approach in identifying the existence, and progression of the 
advancing notch. The study also discusses and compares the performance of the two vibration 
excitation means in damage detection. 

Reprinted from Sensors. Cite as: Razi, P.; Taheri, F. A Vibration-Based Strategy for Health 
Monitoring of Offshore Pipelines’ Girth-Welds. Sensors 2014, 14, 17174-17191. 

1. Introduction 

Offshore pipelines are susceptible to initiation of various types of defects, including corrosion, 
dents, and cracking/leakage, especially in their mating interfaces (e.g., girth-welds, and bolted joints). 
Therefore, periodic visual inspections have to be carried out by skilled divers or remote operating 
vehicles (ROVs) [1]. Such inspections are usually followed by more advanced examinations (e.g., 
automated ultrasonic technique (AUT) or eddy current method), once any suspected areas are detected. 

Health monitoring of a large network of offshore pipelines, even at a preliminary stage (i.e., 
visual inspection), is usually a cumbersome and costly practice. Vibration-based approaches have 
therefore been developed and been proven to be relatively successful in detecting damage [1–4]. 
Therefore, they could potentially reduce the requirement of summoning skilled divers for performing 
the initial examinations, thus facilitating quicker and more cost-efficient inspections. 

To the best knowledge of the authors, there have been very few studies conducted on damage detection 
of submerged structures; some of the noteworthy ones are briefly mentioned here. Na and Kundu [1] 
applied the guided wave technique for detection of mechanical defects (e.g., a dent, and removed 
material) in a scaled submerged pipe. The health monitoring of the pipe was achieved by a transmitter 
and a receiver, each located on either ends of the pipe. The relatively long range of inspection was 
noted as the advantage of the method. However, adjustment of the transmitter angle (in a trial and error 
fashion) was necessitated to achieve a reliable identification of damage in the submerged pipe. 

Rizzo et al. [5] developed a method for health monitoring of a submerged plate hosting a notch 
and corrosion. A non-contact pulsed laser unit introduced stress waves into the plate. Two immersion  
non-contact sensors, made of piezoelectric materials, captured the reflected waves. The plate was 
scanned along its length by a pulse/sensing unit at discrete locations. The continuous wavelet 
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transform (CWT) was used to extract a damage sensitive parameter from the time modulated frequency 
domain of the sensors’ signals. The method could identify the location of damage by producing 
relatively large damage indices as the sensing probes passed across the defect regions. They marked 
the inclination angle along with the relative location of their adopted transducers-damage, and the 
proximity of the sensors as the influential parameters in the damage detection of the submerged plate. 

A research team also conducted a series of extensive numerical and experimental studies to 
identify free-spanning (a segment of a pipe that is suspended and does not have the seabed or soil 
support) and corrosion along onshore and offshore pipelines [6–11]. In their study, damage 
detection was facilitated mainly via two approaches: (i) observation of pipeline’s eigenvalues, and 
(ii) processing of the acceleration time-history data gathered along the pipe as the pipe underwent 
random or forced vibrations. The team could successfully identify the location of damage. 
However, there were some inconsistencies in quantifying damage size. Moreover, the free-spanning 
of pipelines was more reliably detected rather than the corrosion. Furthermore, in some cases, they 
failed to detect small corrosion; however, free-spanning of pipelines greater than 5% of the pipe’s 
length was confidently identified. 

Chen et al. [12] developed a strategy for health monitoring of a submerged plate against corrosion. 
They used piezoelectric transducers to generate and receive lamb waves. The received signals were 
processed within a probability-based diagnostic imaging approach to identify the damage. The numerical 
and experimental verification of the method yielded successful results in identifying the damage location. 

In the present work, numerical simulations and experimental verification of a vibration-based 
damage detection methodology (developed in our research group [13]) for health monitoring of a 
submerged pipe’s girth-weld against a propagating notch are presented. The performances of two 
vibration excitation approaches (i.e., impact and chirp excitation methods) in damage detection are 
compared. Additionally, the study examines the sensitivity of the method’s diagnostic capability to 
the presence of fluid by which the pipe is pressurized. The paper begins with providing a brief 
introduction on the vibration-based damage detection strategy adopted in this work. This is followed 
by the details of the developed numerical model and the experimental setup used in the study. 
Finally, a discussion on the outcome of the damage detection is presented. 

2. EMD Energy Damage Index (EMD_EDI) 

Huang et al. [14] introduced a robust signal processing technique in 1998, which was referred to 
as the empirical mode decomposition (EMD). In brief, the EMD decomposes a time-domain signal 
into its oscillatory components referred to as the intrinsic mode functions (IMFs). The decomposition 
is accomplished through the so-called “sifting process”, which is an empirical and data-driven 
algorithm [14]. The reader is referred to [15] for a detailed explanation on how the IMFs of a typical 
signal, that are recorded during a vibration event is extracted. Hilbert transform (HT) is then applied 
to the IMFs to unveil their time-modulated frequency components. The joint application of the 
EMD and the HT is called the Hilbert-Huang transform (HHT). The HHT outperforms the wavelet 
transform (WT), in the sense that it can accommodate both linear and non-linear systems.  
In addition, it is a data-driven signal processing algorithm, thus its performance would not be 
affected by pre-defined functions typically used in the fast Fourier transform (FFT) or WT. 
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Thereafter, the EMD has been used in data interpretation in various disciplines [14].  
For instance, it has been shown that the first two IMFs extracted from vibration data of a system 
would be sensitive to presence of damage [13,16]. On the same basis, Cherghai and Taheri [13] 
introduced the energy of the IMFs as an efficient and robust damage indicator, defined as follows: 
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where t0 is the signal duration. Subsequently, damage indices can be established as follows: 

_ 100healthy Damaged

healthy

E E
EMD EDI

E

−
= ×

 
(2)

In the above equation, EHealthy, and EDamaged are the energy terms calculated from vibration 
signals of individual sensors gathered at the initial state (considered as the healthy state) and the 
subsequent (or potentially, the damaged) state of a given structure, respectively. Sensors producing 
relatively higher damage indices infer presence and the location of damage. Progression of damage 
can also be quantified by noting the increasing value of damage indices monitored as a function of 
time. Several experimental case studies accompanied by numerical simulations have been conducted 
to verify the integrity and effectiveness of the proposed methodology [2–4,15,17]. This method, 
which was developed in our research group, has been therefore adopted in the current study. 

3. Finite Element Modeling 

3.1. Modeling of a Submerged Pipe Equipped with Piezoelectric Transducers 

An aluminum pipe was considered in this case study. The material properties and dimensions of 
the pipe are listed in Table 1. The pipe was modeled with a total of 33,440 solid elements using 
ABAQUS’s element C3D8R (the continuum three-dimensional eight-node reduced integration 
element with three translational degrees of freedom per node). Using the same element, a mid-span 
girth-weld was modeled for the pipe (see Figure 1). A bulge with 10 mm width and 2 mm height 
was used to model the girth-weld over the pipe circumference, taking into account the local 
stiffening introduced by the weld material. To account for a clamped-clamped boundary condition, 
the translational degrees of freedom of the elements at both ends of the pipe were restrained. 

Table 1. Dimensions and mechanical properties of the aluminum pipe. 

Mechanical Properties 
Elastic modulus (GPa) 68.9 

Density (kg/m3) 2700 
Poisson’s ratio 0.33 

Dimensions (m) 
Length 1 

Outer diameter 0.06 
Wall thickness 0.0052 
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Figure 1. Finite element model of the submerged pipe incorporating piezoelectric sensors. 

 

To monitor pipe’s vibration, eight piezoelectric sensors were bonded to the pipe, 5 mm away 
from either sides of the girth-weld in the configuration depicted in Figure 1. The sensors’ 
dimensions were measured to be (45 × 20 × 0.15) mm. A total of 64 three-dimensional eight-node 
piezoelectric elements (C3D8E) were used to model each piezoelectric sensor. The “TIE” 
constraints were used to connect the sensors and pipe’s nodes at their interfaces. The sensors were 
made of piezoceramics (model: PZT-5H) with the following electro-mechanical properties: 

 

 

 

where SE is the compliance matrix, d is the piezoelectric coupling matrix, and  is the permittivity 
of the piezoceramic. The density of the piezoceramic was taken as 7500 kg/m3. Individual piezoelectric 
transducers could serve as a sensor and an actuator. They could turn into an actuator once a surface 
charge is defined for one of their surfaces. 

ABAQUS’s acoustic element, AC3D8 (an eight-node three-dimensional acoustic element) was 
used to model the surrounding water and the internal fluid in the computational domain; 1280 and 
640 elements constructed the medium and the internal fluid, respectively. Density and bulk modulus 
values of water were taken as 997 kg/m3, and 2.13 GPa, respectively, and 1.2 kg/m3 and 101,000 
Pa for air. The “TIE” constraints were also used to form the interfaces of the pipe and external and 
internal fluids. The constraints correlated the pipe’s surface displacement degrees of freedom to the 
neighboring fluid elements’ pressure degrees of freedom [18]. 
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The question was raised whether one could model the pipe within an effective water depth 
(EWD), as opposed modeling a large volume of water, hence reducing the computational cost 
without sacrificing the accuracy. To establish the appropriate EWD, one can establish a boundary 
such that the reflected waves from that boundary would not affect the pipe’s vibration. In other 
words, the reflection from the boundary would become negligible once the boundary is located 
adequately far from a vibrating structure [18]. 

Figure 2. A submerged pipe with: (a) radiation and (b) rigid wall boundaries. 

 
(a) (b) 

Two different boundary conditions were considered as the exterior boundaries of water in order 
to establish the EWD; they were (i) radiation and (ii) rigid-wall (see Figure 2). The radiation 
boundary would facilitate transmission of the acoustic waves across the boundaries with little reflection 
of energy back into the acoustic domain. On the other hand, the acoustic waves would reflect back 
into the acoustic domain after they hit the rigid-wall boundary [18]. Subsequently, the variation of 
the first-three natural frequencies of the submerged pipe against the step-wise levels of submergence, 
h/OD, was observed. h is the height of water above the pipe, and OD is the pipe’s outer diameter. 

The results shown in Figure 3 indicate that one could assume an EWD equal to four times the 
outer diameter of the pipe, beyond which, the boundary-type would not affect the natural frequencies 
of the pipe; therefore, EWD = h/OD = 4 is considered in the analysis, hereafter. 

Figure 3. Evolution of the pipe’s eigenvalues: (a) first eigenvalue, (b) second 
eigenvalue, (c) third eigenvalue. 
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Figure 3. Cont. 

(c) 

In addition, a mesh convergence study was conducted to ensure the accurate representation of 
the submerged pipe model. The mesh density was increased to a level such that the variation in the  
first-three eigenvalues remained below 1%. 

3.2. Transient Analysis 

Health monitoring of the submerged pipe was accomplished by conducting a series of transient 
dynamic analysis solved by the implicit solution algorithm of the ABAQUS. Two excitation 
approaches were adopted in the damage detection trials. First, an impulse force, similar to the force 
that was produced by a pneumatic hammer that was used in the experiment, was prescribed to the 
pipe by defining a force with magnitude of 1000 N; this force was assumed to be acting over a very 
short period of time (0.0003 s). The other alternative excitation method was achieved by using one 
of the piezoelectric transducers as an actuator. In this way, a chirp signal was propagated into the 
pipe by the actuator. The adopted chirp, defined as a surface charge in the piezoelectric actuator, 
contained a frequency range of 10–5000 Hz, varied linearly over 0.05 s. The schematic representations 
of the actuation units are elucidated in Figure 4. 

Figure 4. Schematic representations of (a) the impact and (b) the chirp excitations. 
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The transient analysis was performed with an increment of 0.00002 s. In the other words, the 
pipe’s vibration was sampled at 50 kHz (1/0.00002 s), so that it could accommodate the highest 
excitation frequency (i.e., 5 kHz) through the chirp. The pipe’s vibration was registered via the 
piezoelectric sensors’ output voltage. 

The analysis run-time was set to 0.02 s and 0.05 s for the tests conducted by the impact and the 
chirp excitation methods, respectively. It should be mentioned that a chirp signal with the same 
frequency content, but varying over 0.5 s (similar to the experimental study), was initially 
considered. However, a time-sensitivity analysis was performed and revealed the insensitivity of 
the damage detection’s outcome to the selected time modulation of the chirp signal. Therefore, the 
aforementioned chirp was applied over 0.05 s in order to reduce the computational cost without 
sacrificing the accuracy. 

4. Experimental Framework 

An aluminum pipe with the same material properties and dimensions listed in Table 1 was 
considered for the experimental segment of the work. The tests were conducted in a 2.45 × 1.12 × 0.78 
m3 laboratory tank. The pipe was clamped at both ends as shown in Figure 5. A pressure gauge, 
mounted on the pipe’s cap, was used to monitor the internal fluid pressure. 

Eight flexible piezoelectric actuator/sensors (model: pa16n, Mide Technology Corporation, 
Medford, MA, USA) were bonded to the pipe in either sides of the girth-weld as shown in Figure 5b. 
The transducers were enclosed by a special waterproof coating; however, the electrical connections 
were sealed manually by applying a generous amount of silicon, and then each individual 
connection was further secured by heat shrink sleeves. 

Figure 5. Schematic of the experimental setup for conducting the damage detection trials. 
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Figure 6. Schematic design of the pneumatic hammer. 

 

As stated earlier, two excitation methods were considered for conducting the damage  
detection trials:  

(1) Impact  

A waterproofed pneumatic hammer was designed and fabricated in-house to generate the 
required impulsive forces. Figure 6 shows the symbolic design of the hammer. An air regulator 
assured the flow of air with a constant pressure, thus ensuring the consistency of the impulse load. 
A flow control tuned the intensity of the impulse load. Back and forth strikes of the piston was 
controlled by a solenoid valve through an electrical switch. The cylinder and piston assembly was 
waterproofed by incorporating a Plexiglas box. An O-ring sealed the box/piston gap. A close-up of 
the fabricated hammer is shown in Figure 5b. 

(2) Chirp waves 

The second actuation means was accomplished by using one of the piezoelectric transducers as 
an actuator, thus propagating chirp waves in the pipe. A signal generator (model 33210A, available 
from Agilent Technologies, Santa Clara, CA, USA) was used to generate the chirp signals. The 
signals were then amplified via a power amplifier (model: 790 series available from PCB 
Piezotronics, Inc., Depew, New York, NY, USA), before being injected to the piezoelectric 
actuator. The chirp signals contained frequency range of 10–5000 Hz, varied linearly over 0.5 s. 
The piezoelectric-based excitation method provides the following main advantages over the 
impulsive excitation, as typically generated by an impact hammer: 

i. It effectively manages the consistency of excitation, thus minimizing the discrepancy in 
repeated trials’ measurements; the force generated by an impulse hammer is vulnerable to 
severe inconsistencies due to several factors, including small deviations in the impact 
location and the magnitude of generated force. 

ii. It allows exploitation of a wide range of frequencies, and selection of various types of 
excitation signals (i.e., chirp, burst, and random). 

The vibration signals gathered through the sensors were digitized by a data acquisition system  
(NI-9215 in a compact chassis manufactured by National Instrument Inc., Austin, TX, USA).  
The sampling rate was set to 50 kHz. 
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5. Model Verification 

An experimental study was conducted in our laboratory tank to verify the integrity of the 
developed numerical model before beginning the damage detection process. For that, the experimentally 
measured eigenvalues of a submerged pipe were compared against those obtained from the simulation. 
The aluminum pipe was hanged in the tank by soft elastic ropes emulating a free-free boundary 
condition. One of the piezoelectric transducers was used to propagate the chirp signal along the 
pipe. The pipe’s vibration was recorded by one of the piezoelectric sensors, whose output was a 
voltage-signal. The experiment was simulated by the numerical model described earlier. The eigenvalues 
of the submerged pipe were determined by applying the FFT to the pipe’s forced vibration signals 
obtained from the experimental study and the model. The first-three eigenvalues of the submerged pipe, 
obtained via the two approaches, were compared as tabulated in Table 2. The reasonable agreement 
between the experimental and numerical results confirms the integrity of the developed model. 

Table 2. Eigenvalues of the submerged pipe. 

Eigenvalues (Hz) Experiment Numerical Model Difference (%) 
f1 200.0 198.5 0.7 
f2 542.8 533.0 1.8 
f3 1030.6 1002.5 2.7 

6. Damage Scenarios 

Health monitoring of the pipe’s girth-weld was attempted by utilizing the outlined damage 
detection algorithm. A notch of 1 mm depth (i.e., 19% of the wall thickness) was introduced 
adjacent to the girth-weld and was then propagated to a depth of 4 mm (i.e., 77% of the wall 
thickness) in 1 mm increments. In the experiments, the notches were created by a jeweler saw. Two 
different conditions were considered for the pipe’s internal loading conditions: (i) the pipe 
pressurized with air (P = 1 MPa) and (ii) with water (P = 5 MPa). Figure 7 depicts the notch 
locations and the arrangements of sensors/actuators in the four damage scenarios considered in this 
study. The experimental framework also incorporated the above-mentioned excitation methods for 
comparative purposes. 

Figure 7. Schematic view of damage scenarios. The pipe was pressurized by air ((a) 
and (c)) and water ((b) and (d)). 
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The numerical simulations included execution of a transient analysis to capture the dynamic 
response of the pipe at its initial state (i.e., the healthy state), as well as for each incremental 
damaged state. The vibration signals at each run were recorded through the sensors. An in-house 
MATLAB-code was developed to include the adopted damage detection algorithm (EMD_EDI). 
The code performed the following tasks on the vibration data: 

(i) Filtered the signals (the code applied low-pass filters of [0–1000] Hz and [0–5000] Hz  
to the signals obtained due to the application of the impulse load and chirp excitation, 
respectively.) 

(ii) Extracted the IMFs of vibration signals through EMD (see Figure 8) 
(iii) Calculated the first IMF’s energy (using Equation (1)) 
(iv) Established the damage indices (using Equation (2)) 

Figure 8. A typical sensor’s vibration response to the chirp (original signal) and its first 
five IMFs obtained through EMD. 

 

7. Results and Discussions 

In this section, the results of the damage detection trials conducted by the two excitation 
technique are presented and the outcomes are discusses. 

7.1. Damage Detection Results-Impact Test 

The charts shown in Figure 9 illustrate the results of the damage detection conducted by the 
impact test. The results obtained from both the numerical and experimental studies indicate that at 
least half of the sensors could effectively detect the existence of the damage (i.e., notch), and trace 
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its advancement. Half of the sensors yielded higher damage indices as the notch depth increased. 
The only exception was in the case shown in Figure 9d. In that case, while the existence of the 
notch was identified with notably large indices, its advancement, however, was underestimated at 
its final increment. The rest of the sensors could also discern the existence of the notch; however, 
they occasionally failed to predict its advancement. 

It can be inferred from the results that the relative location of the sensor and actuators with 
respect to the notch is responsible for the variability seen in the results. Those sensors receiving 
their vibration waves passing through the notch outperformed the rest of the sensors in terms of 
damage detection accuracy. This statement can be further explained by referring to Figure 9b, 
which presents the results of the damage detection for the scenario considered in Figure 7b.  
The figure shows that signals of sensors 5 to 8 were able to trace the notch advancement, while 
those of sensors 1 and 3 failed to do so. In Figure 9a, EMD_EDIs of sensors 1–4 signals, which 
conform to the stated condition, produced noticeably higher damage indices, as well as providing a 
clearer indication of damage advancement. 

Based on the analysis of the results, one can postulate that the diagnostic capabilities of half of 
the sensors were affected by the reflection of the waves from the notch. Conducting a systematic 
parametric study on pipes with larger diameters could shed more light on the observed behavior 
and validity of the noted postulation. 

Figure 9. Damage indices obtained from the impact test: numerical ((a) and (b)) and 
experimental study ((c) and (d)). Note that a/t is the ratio of notch’s depth to pipe’s  
wall thickness. 
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Figure 9. Cont. 

(c) (d) 

7.2. Damage Detection Results-Chirp Test 

The results of the damage detection tried by the chirp method qualitatively confirm the findings 
of our previous trial, as noted above (i.e., when the pipe was excited by an impact). Comparatively, 
the advancement of the notch could be traced more accurately when the chirp method is used to 
excite the pipes. 

Figure 10. Damage indices obtained from the chirp test: numerical ((a) and (b)) and 
experimental study ((c) and (d)). Note that a/t is the ratio of notch’s depth to pipe’s  
wall thickness. 
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Figure 10. Cont. 

 

(c) (d) 

7.3. Comparison of the Application of Impact and Chirp 

The diagnostic capability of the method in damage localization was also investigated under the 
both excitations approaches. The numerical results illustrated in Figure 9a,b, and Figure 10a and b 
suggest that the closest sensor to damage produced the highest damage index; hence, it can be 
concluded that an accurate damage localization could also be produced by the presented methodology. 
In consideration of the results, the only exception applies to the first damage scenario (see Figure 9a). 
In that situation, the closest sensor to the damage (i.e., sensor 5) did not produce the largest 
EMD_EDI. This is because, it was located in-between the source of excitation and the notch, thus a 
low diagnostic capability was already anticipated based on the observations explained in Section 7.1.  

In comparison to the numerical results, the EDIs obtained by processing of the experimental 
data produced somewhat controversial results in terms of damage localization. The results presented 
in Figure 10c show that signals collected through sensor 2 (the closest sensor to the damage) 
yielded the largest EMD_EDI, hence identifying the exact location of the notch on pipe’s 
circumference. For the remaining damage scenarios, the location of damage could not be discerned 
successfully. It is believed that the inevitable uncertainties involved in the experiments (e.g., the 
variable pipe/sensor’s bond-strength, and the minute inequalities in sensors/girth-weld distances, 
which occurred unintentionally during the process of bonding the sensors to the pipe) could have 
affected the accuracy of damage localization. 

Taking the above observations into account, it could be suggested that one requires a minimum 
of two piezoelectric sensors for accurate health monitoring of such damage conditions (such that 
one sensor is bonded on each side of the girth-weld, opposite to one another with respect to the 
axial direction). A more effective health monitoring, however, could be achieved by conducting 
two separate trials, using either of the excitation techniques. In the case of vibration excitation by 
an impulse force, the two tests would consist of impacting the pipe at both sides of the girth-weld, 
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and recording the associated vibration of each impact. In the case of chirping, the sensors can 
alternate their tasks in the form of a sensor and actuator, respectively. In this way, upon completion 
of the two tests, the existence and severity of damage could be more effectively discerned by 
noting the largest EMD_EDI obtained from the two trials. The conclusion holds also true for the 
numerical model, so long as the chirp excitation method is used as the means of excitation; 
otherwise, at least four sensors (two placed on each side of the girth-weld) are required for a 
successful damage detection, since it was observed that some of the sensors could not sense the 
existence of the damage (see Figure 9a,b). 

In all, both the numerical and experimental studies provided satisfactory results with respect to 
identification of an advancing notch, regardless of the fluid-type the pipe carried (i.e., compressible 
(air) or incompressible (water)). It can therefore be concluded that the variable damping introduced 
by the presence of fluid inside the pipe would not weaken the method’s diagnostic capability. 

Moreover, the chirp excitation method generally outperformed the commonly-used impulsive 
force excitation technique, in terms of both damage localization and prediction of its advancement. 
In addition, the results obtained through the sensors in the experimental studies managed to detect 
the onset and advancement of damage with larger EMD_EDIs compared to the EMD_EDIs 
obtained through the numerical simulations. As for the noted discrepancies between the results of 
the experimental and numerical investigations utilizing the impact hammer, the reason could be due 
to the difference in the actual time-domain history of the applied impulse forces. It should be noted 
that since there was no direct means to measure the magnitude of the force during the tests, 
therefore, an approximate loading amplitude (based on our previously conducted trials and experience 
with a modal hammer) was selected for replicating the impulse force in the numerical study. 
Furthermore, due to unavoidable circumstance, the pneumatic hammer produced double-impact at 
each loading application. As a result, the time resolution of the repeated force could not be 
retrieved accurately within each test. Therefore, it was idealized as a single impulse force in the 
numerical simulations. 

8. Remarks on the Environmental/Operational Conditions 

In the experimental investigation, the repeatability of the measurements was established by 
comparing the energy terms resulting from the applied excitation from one trial to the next for total 
of ten trials. The consistency of the impact force was determined to be 92% and 98% for the 
pneumatic hammer and piezoelectric actuator, respectively. The deviations in the measurements are 
believed to be due the inevitable noise associated with the instruments and laboratory noise, as well 
as due to minor inconsistencies produced during the hammer impacts. 

It was also of interest to examine the simultaneous effects of the noise and disturbance 
associated to the pipe’s constraints (which could occur in real applications) on the repeatability of 
the measurements. For that purpose, the clamping torque of the bolts securing the collar on one of 
the pipe’s ends tested in air (see Figure 5) was reduced from (40 to 20) N·m in increments of  
5 N·m. The precise measurement of the clamping forces on the bolted assembly was facilitated 
using a digital torque meter. A chirp-type wave was propagated via piezoelectric sensor 5 at each 
individual torque level, and the vibration response was recorded by the first four sensors (sensor 1–4). 
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The energy of each sensor’s vibration signal at the specified clamping forces was calculated 
according to Equation (1), and was subsequently normalized with respect to the energy corresponding 
to the maximum torque level (i.e., 40 N·m). Figure 11 reports the average of ten measurements at 
the specified torque levels. As can be seen, the maximum variation in the calculated energies is 
only 6%. One can therefore make an implicit conclusion that EMD_EDIs with values above 6% 
would indicate the existence of a damage within a given trial. EMD_EDIs below this threshold 
could not be attributed to the presence of damage with confidence, since they might be produced as 
a result of a disturbance in the boundary conditions. 

Figure 11. The normalized energy as a function of the clamp torque level. 

 

Moreover, owing to the damping of the propagated waves, it is anticipated that the observed 
variations would be smaller for cases where the supports are located farther from the inspection zone. 

Operational variability such as abrupt changes in the internal pressure of the pipe could also 
affect the integrity of a vibration-based damage detection trial. The additional stiffening generated 
by the internal pressure can variably modify the overall stiffness of the pipe, thereby its vibration 
response. As a result, erroneous energies, causing false alarms, could be developed. To investigate 
the criticality of this issue, the sensitivity of the proposed energy index to such operational 
variability was examined. For that, different levels of pressures (i.e., 0–5 MPa) were assigned to the 
internal surface of the healthy pipe. At each pressure level then, the pipe was excited by an impulse 
load and a chirp wave according to the configuration elucidated in Figure 7b and d, respectfully, 
and pipe’s vibration was recorded by the sensors. The energy of the vibration signal obtained 
through sensor 5 was calculated according to Equation (1). The energy terms were then normalized 
with respect to the energy of the sensor 5’s vibration signal when the pipe experienced the highest 
pressure (i.e., 5 MPa). 
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Figure 12. The normalized energy of the vibration signal as a function of internal pressure. 

 

Figure 12 shows the fluctuations of the energy as a function of the applied internal pressure.  
It can be seen that the rate of variations in the energy was limited to below 0.1%. Therefore, the 
study indicated that the pipe vibration remained almost unaffected under the imposed operational 
variability. As such, the proposed vibration-based damage detection algorithm can be reliably 
applied to the pipe in the presence of such variations. 

9. Conclusions 

Numerical simulations and experimental verifications of a vibration-based damage detection 
strategy for health monitoring of submerged pipelines’ girth-welds were presented. Piezoelectric 
transducers were used in the capacity of actuators and sensors to excite and record pipe’s vibration, 
respectively. The damage detection methodology incorporated the empirical mode decomposition 
(EMD) to process the recorded vibration signals and establish the energy-based damage indices 
(EMD_EDIs). The integrity and efficiency of the technique were evaluated by detection of an 
advancing notch that was formed in the girth-weld of two mating aluminum pipes. The results of 
the numerical study were compared against those obtained from the experimental investigations. 
Reasonable agreement was obtained between the damage detection indices produced by the numerical 
and experimental case studies. Examination of the EMD_EDIs produced through sensors’ data 
revealed encouraging evidence with respect to detection of the presence and advancement of 
damage, regardless of the type of fluid used to pressurize the pipe. 

The investigation also examined the performance of two vibration excitation approaches, namely: 
the impact method and chirp excitation method. The results demonstrated the effectiveness of the 
chirp excitation method over the impact method for damage detection of the submerged pipes.  
It was also revealed that method could sustain its integrity and reliability in the presence of some 
common environmental and operational variability (e.g., noise, disturbance in boundary conditions, 
and abrupt changes in the internal pressure). Finally, it was concluded that health monitoring of the 
submerged pipe’s girth-weld could be efficiently accomplished with a minimum of two transducers, 
one acting as a sensor and the other as an actuator, bonded on each side of the girth-weld. 
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Development of a Piezoelectric Vacuum Sensing Component 
for a Wide Pressure Range 

Bing-Yu Wang, Fan-Chun Hsieh, Che-Yu Lin, Shao-En Chen, Fong-Zhi Chen and  
Chia-Che Wu 

Abstract: In this study, we develop a clamped–clamped beam-type piezoelectric vacuum pressure 
sensing element. The clamped–clamped piezoelectric beam is composed of a PZT layer and a 
copper substrate. A pair of electrodes is set near each end. An input voltage is applied to a pair of 
electrodes to vibrate the piezoelectric beam, and the output voltage is measured at the other pair. 
Because the viscous forces on the piezoelectric beam vary at different air pressures, the vibration of 
the beam depends on the vacuum pressure. The developed pressure sensor can sense a wide range 
of pressure, from 6.5 × 10 6 to 760 Torr. The experimental results showed that the output voltage is 
inversely proportional to the gas damping ratio, and thus, the vacuum pressure was estimated from 
the output voltage. 

Reprinted from Sensors. Cite as: Wang, B.-Y.; Hsieh, F.-C.; Lin, C.-Y.; Chen, S.-E.; Chen, F.-Z.;  
Wu, C.-C. Development of a Piezoelectric Vacuum Sensing Component for a Wide Pressure Range. 
Sensors 2014, 14, 22099-22112. 

1. Introduction 

Recently, vacuum technology has occupied a key position in diverse fields of advanced science 
and technology such as surface science, thin film technology, space science, high-energy particle 
accelerators, microelectronics, and materials science. In addition, vacuum technology has an 
increasingly wide range of industrial production applications such as product packaging, vacuum 
casting, vacuum drying, chemical vapor deposition, evaporation, sputtering and dry etching.  
The vacuum pressure ranges from atmospheric pressure (760 Torr) to ultra-high vacuum pressure 
(10 13 Torr). For example, evaporation [1] must be conducted in vacuum pressures from 10 7 to 
10 5 Torr to increase the evaporation rate and to maintain the purity and density of the film. 
Sputtering [2] must be conducted in vacuum pressure less than 10 2 Torr to have deposited thin 
films which are uniformly distributed on the substrate. The low pressure environment leads to 
reduction in the frequency of collision of ions with gas molecules, thus increasing the mean free 
path of the particles. In reactive ion etching [3], the etching operation is carried out at vacuum 
pressures below 10 2 Torr to increase directional etching. The low pressure environment leads to 
reduce the probability of collision of ions and neutral particles. In the electron cyclotron resonance 
plasma process [4], the operating pressure is controlled at below 10 4 Torr to achieve high density 
and uniformity. High density plasma [5] is operated in vacuum pressures from 10 6 to 10 2 Torr, 
which improves the etching rate and enhances the etching direction. 

Vacuum covers a wide range of pressures. The mean free path of residual gas molecules is an 
important parameter that defines the vacuum state, which indicates the average distance travelled 
by molecules between collisions with each other. In initial stages of evacuation, i.e., at low 
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vacuum, the motion of gas is similar to gas flow. In high vacuum, i.e., as the vacuum pressure is 
lowered below 10 3 Torr, the mean free path of residual gas molecules increases, and the motion of 
gas gradually becomes a molecular motion. For convenience, when discussing vacuum technology, 
we use different gas motions to distinguish between different vacuum states. 

To achieve the vacuum condition, a mechanical pump is initially used to exhaust the gas at 
atmospheric pressure. This initial state of gas flow is called viscous flow [6] or continuous flow.  
In this state, the features of gas flow are the mutual collisions between each gas molecule, 
movement of each gas molecule limited by surrounding molecules, friction between the gas molecules, 
direction of gas flow, and gas molecules moving in the same direction. As the vacuum system 
continues the pumping action, the gas pressure continues to decline and the gas flow state becomes 
transition flow [7]. This gas flow state is very complicated which part of the gas flow maintains the 
viscous flow state but part of them converts into the molecular flow state. When the gas pressure of 
the vacuum system is reduced to a certain level, the gas flow state reaches the molecular flow range [8]. 
In this state, gas molecules have free random motion. The collisions are elastic and consistent with 
the conservation of kinetic energy and momentum conservation law. The probability of a gas molecule 
colliding with the chamber wall is greater than the probability of it colliding with another gas 
molecule. Regardless of how low the pressure is, the flow state maintains molecular flow once the 
flow conditions in the vacuum system reach the molecular flow range. 

According to the operating principle, the vacuum gauges can be distinguished as absolute vacuum 
gauges and relative vacuum gauges. The operating principle of an absolute vacuum gauge involves 
the direct measurement of the forces on the unit area. The measurement principle of a relative 
vacuum gauge involves the use of the relationship between gas pressure and certain physical 
quantities. For example, the pressure can be obtained by thermal conduction [9 14]. Moreover, the 
pressure also can be measured by gas-molecule ionization technology indirectly [15–17]. 

Usually, we use different types of vacuum gauges to measure the vacuum pressure within the 
respective pressure ranges from 10 7 to 760 Torr. The vacuum gauges used in low vacuum  
(1–760 Torr) are based on an elastic element [18–22]. The vacuum gauges used in medium vacuum 
(10 3–1 Torr) are based on a thermal conduction element [10–14]. The vacuum gauges used in high 
vacuum (10 7–10 3 Torr) are based on a gas ionization element [15–17]. 

The abovementioned gauges include the diaphragm gauge [18–22], thermal conductivity 
vacuum gauge, ion vacuum gauge, and viscosity vacuum gauge [23]. The operating principle of the 
diaphragm gauge involves the measurement of the capacitance change caused by deformation of a 
film surface by pressure. The pressure value can be estimated based on the capacitance change.  
The operating principle of the thermal conductivity vacuum gauge involves the use of heat transfer 
from the objects heated by gas collision. Heat conduction is proportional to the frequency of gas 
molecule collisions with the objects. Therefore, the vacuum pressure is proportional to the heat 
conduction, enabling the estimation of pressure. The operating principle of the ion vacuum gauge 
involves the measurement of the number of molecules in the vacuum system to determine the 
pressure. The operating principle of the viscosity vacuum gauge involves the use of the viscosity 
characteristics of residual gas in the vacuum system to determine the pressure. The spinning rotor 
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viscosity vacuum gauge [24,25] can be used to measure vacuum pressure ranges between 10 1 and 
10 7 Torr. Gas viscosity caused by gas resistance is proportional to the degree of vacuum. 

Based on existing literature, there are just few vacuum gauges that can measure the entire 
pressure range from 10 7 to 10 2 Torr. Current spinning rotor viscosity vacuum gauges can measure 
vacuum pressure ranges of 10 7–10 1 Torr. Due to the presence of several components such as the 
ball and control coil, spinning rotor viscosity vacuum gauges increases the volume, weight, and 
complexity of the system, thus limiting their applications. Mortet et al. [26] used a commercially 
available piezoelectric bimorph cantilever as pressure sensor which detected the change in the 
resonance frequencies due to the drag force of the surrounding gas. Sumali et al. [25] used a bulk 
piezoelectric transducer shook the whole chip on which an atomic force microscope probe 
mounted. A laser Doppler vibrometer (LDV) with a microscope measured the velocities at a point 
on the chip, and 42 points along the edges and tip of the cantilever. They stressed that the air 
damping is proportional to pressure in the rarefied regime. Wang et al. [27] developed a 
micro-cantilever beam deflected using electrostatic force. They measured the capacitance between 
two electrodes which were mounted around the proof mass of the trapezoidal micro-cantilever 
beam and a sensing electrode was placed on top of the proof mass with the deflection electrode 
mounted beneath to determine the free decay rate of the sensing beam with respect to deflection 
force and vacuum pressure. However, those devices still need additional actuators to drive the element 
and outside sensing devices to convert deflection of beams to electrical signals. Outside sensing 
devices make the measurement system complex. 

In this study, we designed a self-actuated and self-sensing piezoelectric pressure sensor.  
The piezoelectric sensors are in the form of clamped–clamped beams. The sensor was designed 
using two piezoelectric elements: for self-actuating and self-sensing. Applying voltage to the PZT 
self-actuating element causes deformation of the clamped–clamped beams. At the other end of the 
beam, the PZT self-sensing element produces a voltage caused by the bending of the beam.  
Under different vacuum pressure values, the gas viscosity and the damping ratio of devices are 
different. This causes different swing amplitudes and resonant frequencies of the device and results 
to different output voltages and resonant frequencies from the sensing element. Thus, the vacuum 
pressure can be calibrated. The advantages of developed vacuum sensor are self-actuating and 
self-sensing without additional actuators and outside sensing elements. The wide range vacuum 
pressure from 6.5 × 10 6 to 760 Torr can be directly derived from piezoelectric output.  
Fabrication of developed vacuum sensors was easy because of simple structure. 

This study has three specific goals. First, a piezoelectric pressure sensing element was developed 
that can be used to measure a wide range of vacuum pressure from 6.5 × 10 6 to 760 Torr. Second, 
the size of sensing element was 20 mm length, 5 mm width and 200 m thick. Compared to 
commercial pressure sensors, the piezoelectric pressure sensors have the following advantages such 
as small size, low weight and simple instrumentation. Finally, the sensing elements were used to 
measure the pressure in nitrogen and argon to study the relationship between vacuum pressures and 
damping ratios of different gases. 
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2. Principle of Operation and Component Size 

2.1. Principle of Operation 

This study proposes the clamped–clamped beam-type piezoelectric vacuum pressure sensing 
element, a self-actuating and self-sensing microresonator, to detect the damping ratio of the gas, 
thus enabling the calculation of the pressure of vacuum system. The schematic diagram of the 
vacuum pressure sensing element is shown in Figure 1. The sensing element comprises a PZT 
layer, a substrate, and two pairs of electrodes. The electrodes are placed near both ends for 
piezoelectric actuation and sensing. When the sinusoidal voltage signal is applied to a pair of 
electrodes, due to the inverse piezoelectric effect, the clamped–clamped beam vibrates and 
resonates. Simultaneously, the other pair of electrodes captures the vibration energy and converts it 
to electric energy using the positive piezoelectric effect. Finally, we measured the output voltages 
which varied under different gases viscosity and vacuum pressures. 

Figure 1. Schematic diagram of the piezoelectric vacuum pressure sensing component. 

 

2.2. Choice of Component Materials 

The piezoelectric sensor consists of a piezoelectric layer and a substrate. We choose PZT-5A  
as the piezoelectric layer and copper as the substrate. PZT-5A has a high piezoelectric constant  
and electromechanical coupling constant, and the energy consumption is small for conversion  
between mechanical energy and electrical energy. Copper has a low Young’s modulus and high 
electrical conductivity and can reduce the operating frequency. On the other hand, it can facilitate 
current conduction. 

2.3. Component Size Design 

The Euler–Bernoulli beam theory is the basis of assumptions to establish the mathematical 
model and is used to determine the size of the vacuum pressure sensing element. The force 
conservative equation is given as follows: 
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(1)

where YI is the bending stiffness of the composite beam, indicating the resistance of the bending 
moment; w(x,t) is the cantilever deflection function, which is the neutral axis of the lateral 
displacement of each section (y-direction is positive); csI is the equivalent damping term due to the 
viscosity of the combination cross section, where cs is the strain damping coefficient and I is the 
second moment of inertia for the combination of the cross section between the piezoelectric layer 
and substrate; ca is the air damping coefficient; m is the mass per unit length; and α is the 
piezoelectric coupling term. vin (t) and vout (t) are the input and output voltages, respectively.  
This cantilever piezoelectric sensing element contains two pairs of electrodes. The position of the 
input electrode ranges from x = 0 to x = x1, and that of the output electrode ranges from x = x2 to  
x = L. Only the electric field is generated in the electrode coverage. 

We assume that the operation of the piezoelectric sensor considers only the influence of 
resonance frequency (first mode). Therefore, the ratio of the output voltage to the input voltage 
from the mathematical model can be written as follows [28]:  
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where  is the first resonance frequency of the cantilever, c is the time constant of the output 
circuit, 1 is the integrating factor, and  is the damping term in the modal coordinate functions. 
This damping term can be shown as Equation (3), and it combines the effect of air damping and 
structural damping:  
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To reduce the sensor size in practical applications, the cantilever length and breadth are set as  
20 and 5 mm, respectively, and the piezoelectric sheet thickness is set as 200 m. 

2.4. Electrode Design of Sensor 

The two pairs of electrodes are distributed on the upper and lower surfaces of the piezoelectric 
material layer, which are placed on both ends of the cantilever. One pair of electrodes is placed 
beside the fixed boundary in the cantilever as an actuator to drive the cantilever and generate 
resonance. The other pair of electrodes is placed on the other side of the fixed boundary as a sensor 
to acquire the vibration energy and convert voltage signals, as shown in Figure 2. The electrode 
size is determined by the force conservative equation, thus leading to two designs. First, when the 
input electrode is close to the fixed end and has a length of 4.4 mm, the actuator can generate 
maximum power. Second, when the output electrode is close to the fixed end and has a shorter 
length, a larger open circuit output voltage is obtained. In our previous study, output voltages as 
high as twice the input voltages have been reported [29]. To obtain maximum power, we determine 
the length of the input and output electrodes to be 4.4 mm. The width and thickness of the 
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electrodes were 5 mm and 10 m, respectively. The upper electrode is fabricated using 
screen-printed silver. 

Figure 2. Top electrodes, PZT and bottom electrodes for piezoelectric vacuum sensors. 

 

2.5. Design and Production of Fixtures 

To allow the sensor to maintain the same boundary conditions during each measurement, we 
designed a fixture that can keep the cantilever beam fixed at both ends. The fixture contains two 
parts: upper cover and base. The upper cover has two holes for electrical wires. The clamped–clamped 
piezoelectric beam is placed in a trench in the base. Four M2 screws were used to fix the upper 
cover and the base which is shown in Figure 3. The fixture is made by transparent acrylic material 
which has advantages such as low density, high mechanical strength, good tensile and impact 
resistance, high transparency, low cost, and ease of machining. 

Figure 3. Schematic diagram of fixtures. 

 

3. Experimental Setup and Procedure 

Laboratory Equipment and Experimental Setup 

The vacuum system consists of a stainless steel vacuum chamber, a mechanical pump, a turbo 
molecular pump, a gas flow controller and reference vacuum gauges. A mechanical pump (DOU 
16B Balzers, Albuquerque, NM, USA) was first used to exhaust the gas at atmospheric pressure to 
achieve vacuum condition. When pressure was down to 10 2 Torr, a turbomolecular pump (Turbo 
VAC 450, Leybold, Cologne, Germany) was then used to obtain high vacuum (10 2 to 6.5 × 10 6 
Torr). However, it might take more than 24 h to achieve 1 × 10 6 Torr using our pumping system. 
To reach certain pressure accurately, a gas flow controller was used to flow certain amount of 
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nitrogen or argon into chamber. Two reference vacuum gauges, Pirani gauge and cold cathode 
gauge, were used. Pirani gauge is able to measure the pressure between 760 to 10 3 Torr and cold 
cathode gauge is capable to measure the pressure between 10 2 to 10 9 Torr. 

The experimental setup is shown in Figure 4. The clamped-clamped piezoelectric pressure sensor 
was fixed by the fixture and was placed in the vacuum chamber. Electrical feedthroughs were used to 
transfer electrical signals through the vacuum system wall. A sine wave was generated by a function 
generator (33220A, Agilent, Santa Rosa, CA 95403-1738, USA) and amplified by a power amplifier 
(PZD700, TREK, Lockport, NY, USA) to excite the piezoelectric beam at first resonance frequency. 
At the mean time, a spectrum analyzer (Agilent 35670A) was used to measure the frequency 
response of input and output voltages. 

Figure 4. Experimental setup. 

 

4. Results and Discussion 

4.1. Frequency Response under Different Pressures 

Frequency response functions were obtained by the following steps. The spectrum analyzer 
generated a swept-sine signal to drive a pair of electrodes through an amplifier. In the meantime, 
the other pair of electrodes generated electric output. Both the swept-sine signal and the output 
voltage were fed back to the spectrum analyzer to calculate the frequency response function.  
To maximum sensor output, the piezoelectric beams were excited at the first resonance frequencies 
under different pressures condition in the following experiments. The data from measured frequency 
response functions were processed to extract damping ratios using half power method. Figure 5 
shows the frequency response functions of a clamped–clamped piezoelectric beam under different 
pressures when the residue gas in the vacuum chamber is nitrogen. The clamped-clamped piezoelectric 
beams have maximum output and input ratio when the beams were excited at resonance 
frequencies. The resonance frequencies of the piezoelectric beam under the vacuum pressures at  
5 × 10 6, 7.5 × 10 4, 1 and 75 Torr were 3100, 3067, 3038 and 3030 Hz, respectively. When the 
pressures in the vacuum chamber decreased, the resonance frequencies and the resonance amplitudes 
of beam decreased because the damping coefficient of gas increased. The difference of first 
resonance frequencies of the vacuum sensor between 75 torr and 5 × 10 6 torr was just 2.25%  



206 
 

 

(70 Hz) because of tiny damping variation. The resonance amplitude, output and input voltage 
ratio, were 0.0063, 0.0059, 0.0052 and 0.0032, respectively, when the pressures were 5 × 10 6,  
7.5 × 10 4, 1 and 75 Torr. 

Figure 5. Frequency response of sensing components. 

 

4.2. Relationship between Pressure and Output Voltage 

Figure 6 showed the resonance amplitudes (Vout/Vin) versus the vacuum pressures in the 
chambers when the residue gas is nitrogen. Each operating frequency corresponding to the maximum 
amplitude values is applied in different vacuum pressure. In the experimental results, each pressure 
value corresponds to a piezoelectric output ratio. The vacuum pressure from 6.5 × 10 6 to 760 Torr 
can be directly derived from piezoelectric output ratio. Note that each experiments corresponding 
to different pressures were repeated 10 times. Finally, the average values of output voltage were 
reported. The data have been plotted on a log-log plot to show the extreme range of both the 
measured maximum amplitude and imposed air pressure. All the experimental results appear to 
have the same general trend, showing decreasing damping values with decreasing pressure.  
Clearly these experimental results support both the rarefied and the viscous theories. The pressure 
in the vacuum region is divided into three ranges for further analysis. Vacuum pressure below  
10 3 Torr belonging to molecular flow is known as high vacuum; vacuum pressure in the range 
10 3–1 Torr belonging to transition flow is known as medium vacuum; vacuum pressure greater 
than 1 Torr belonging to viscous flow is known as low vacuum. We use the linear regression 
method to deal with the results of each segment to obtain the best linear data. After processing, 
each line segment will be discussed. Pandey et al. [29] reported a paper to discuss effect of 
pressure on fluid damping in MEMS torsional resonators with flow ranging from continuum to 
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molecular regime. Their results also indicated that the quality factors of devices varied in different 
flow regions. 

Figure 6. The resonance amplitudes (Vout/Vin) versus the vacuum pressures in the 
chambers when the residue gas is nitrogen. 

 

The slopes of the voltage vs. pressure in the viscous flow region is y = 0.0002x + 0.0053 and  
R² = 0.993. The slopes of the voltage vs. pressure in the transition flow region is y = 0.0003x + 
0.0052 and R² = 0.8913. The slopes of the voltage vs. pressure in the molecular flow region is  
y = 0.0007x + 0.0054 and R² = 0.971. The slope of the voltage vs. pressure curve in the viscous 
flow region is greater than that in the transition flow region, while the slope in the transition flow 
region is greater than that in the molecular flow region. From this result, we infer that the gas 
viscosity force of viscous flow is greater than the other two flows. Also, the force due to change in 
gas viscosity for viscous flow is more obvious than that for transition flow and molecular flow. 
Therefore, the change in the piezoelectric output ratio is the most obvious in viscous flow. 
However, fitting in three regions may not be the best solution. It also looked that the data in the 
molecular flow and transition flow region could be fitted with one straight line instead of two.  
The slopes of the voltage vs. pressure from 5 × 10 6 to 1 torr is y = 0.00022x + 0.0053 and  
R² = 0.924. The slopes of the voltage vs. pressure from 1 to 750 torr is y = 0.0007x + 0.0054 and 
R² = 0.971. 

4.3. Relationship between Pressure and Damping Ratio 

The data from measured frequency response functions in the previous experiments were 
processed to extract damping ratios using half power method. After processing, we obtain the 
damping ratio corresponding to the respective pressure. Figure 7 showed that the damping ratios 
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versus the vacuum pressures in the chamber when the residue gas is nitrogen. The slopes of the 
damping ratios vs. pressure in the viscous flow region is y = 0.0009x + 0.0206 and R² = 0.957.  
The slopes of the damping ratios vs. pressure in the transition flow region is y = 0.0018x + 0.0226 
and R² = 0.8574. The slopes of the damping ratios vs. pressure in the molecular flow region is  
y = 0.0042x + 0.0225 and R² = 0.9592. However, fitting in three regions may not be the best 
solution. It also looked that the data in the molecular flow and transition flow region could be fitted 
with one straight line instead of two. The slopes of the voltage vs. pressure from 5 × 10 6 to 1 torr 
is y = 0.0013x + 0.0216 and R² = 0.916. 

Figure 7. The damping ratios versus the vacuum pressures in the chamber when the 
residue gas is nitrogen. 

 

The measured damping ratio is the sum of structural damping and gas damping. Experimental 
results showed that the greater the quantity of residual gas in the vacuum chamber, the larger is the 
damping effect for the sensing element caused by the residual gas. Greater pressure indicates a 
larger number of gas molecules in the vacuum chamber. Therefore, there is a greater probability of 
collisions between gas molecules and piezoelectric beam; this situation increases the gas damping 
effect for the sensing element when the pressure increases. When the residual gas in the vacuum 
chamber was rarer, small damping effects for the sensing element were obtained experimentally. 

4.4. Different Residue Gases—Nitrogen and Argon 

Figure 8 shows the resonance amplitudes (Vout/Vin) versus the vacuum pressures in the 
chambers when the residue gases are nitrogen and argon. However, the resonance amplitudes of the 
sensing element in the argon were just performed in the vacuum pressure from 6.5 × 10 6 to 1 Torr 
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due to the limitation of the gas flow controller. We find that the output result has similar trends for 
both nitrogen and argon in the vacuum pressure from 6.5 × 10 6 to 1 Torr. The output value 
changes marginally. Under the same pressure, the output value of nitrogen is larger than that of 
argon. We can conclude that the vibration of the cantilever beam affected by the viscous force 
caused by argon is larger than that caused by nitrogen. The mass of argon (39.948 amu) is larger 
than that of nitrogen (28 amu). The resistance force of the molecular collision of argon is larger 
than that of nitrogen. 

Figure 8. The resonance amplitudes (Vout/Vin) versus the vacuum pressures in the 
chambers when the residue gases are nitrogen and argon. 

 

Each experimental corresponding to different pressures under Nitrogen and Argon was repeated  
10 times and the average values of output voltage were reported. Experimental results were 
consistent if that boundary condition remained the same. Pressure measurement was taken after 
observing the steady state condition to prevent measurement errors. However, the duration of 
steady state condition varies for the flow in the continuous region to the flow in the molecular 
region. One of the samples was leaved in the vacuum chamber for 3 months and there were no 
significant difference even the sample was driven for a long time. However, there still need further 
research to study the consistency and stability of the system. There also still need further research 
to study the different gases to verify the consistency and stability of the system. 
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5. Conclusions 

In this study, we developed a clamped–clamped beam-type piezoelectric vacuum pressure 
sensor. The sensor was designed using two piezoelectric elements: for actuating and sensing. 
Applying voltage to the PZT actuating element causes deformation of the cantilever. At the other 
end of the beam, the PZT sensing element produces a voltage caused by the bending of the beam. 
The piezoelectric pressure sensing element was developed that can be used to measure a wide 
range of vacuum pressure from 5 × 10 6 to 760 Torr. From low to high vacuum, the output and 
input voltage ratio (Vout/Vin) gradually increased with decrease in pressure. The relationship 
between vacuum pressure and damping ratio was obtained for pressure from 5 × 10 6 to 760 Torr. 
In high vacuum, the damping ratio is less than that in low vacuum. Finally, the sensing elements 
were used to measure the pressure in nitrogen and argon to study the relationship between vacuum 
pressures and damping ratios of different gases. Comparison of the output voltage ratios in argon 
and nitrogen showed that the damping ratios follow the same trend as the vacuum pressure.  
The damping ratio of argon is greater than that of nitrogen because the mass of argon is larger. 
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