
Swarm Robotics
Giandomenico Spezzano

www.mdpi.com/journal/applsci

Edited by

Printed Edition of the Special Issue Published in Applied Sciences

applied sciences

Swarm Robotics

Swarm Robotics

Special Issue Editor

Giandomenico Spezzano

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade

Special Issue Editor

Giandomenico Spezzano

CNR-ICAR

Italy

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Applied Sciences (ISSN 2076-3417) from 2017 to 2019 (available at: https://www.mdpi.com/journal/

applsci/special issues/LAI Swarm Robotics).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03897-922-7 (Pbk)

ISBN 978-3-03897-923-4 (PDF)

c© 2019 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Special Issue Editor . vii

Giandomenico Spezzano

Editorial: Special Issue “Swarm Robotics”
Reprinted from: Applied Sciences 2019, 9, 1474, doi:10.3390/app9071474 1

Jian Yang, Xin Wang and Peter Bauer

V-Shaped Formation Control for Robotic Swarms Constrained by Field of View
Reprinted from: Applied Sciences 2018, 8, 2120, doi:10.3390/app8112120 4

Yi Liu, Junyao Gao, Xuanyang Shi and Chunyu Jiang

Decentralization of Virtual Linkage in Formation Control of Multi-Agents via Consensus
Strategies
Reprinted from: Applied Sciences 2018, 8, 2020, doi:10.3390/app8112020 21

Yi Liu, Junyao Gao, Cunqiu Liu, Fangzhou Zhao and Jingchao Zhao

Reconfigurable Formation Control of Multi-Agents Using Virtual Linkage Approach
Reprinted from: Applied Sciences 2018, 8, 1109, doi:10.3390/app8071109 38

Wenshuai Tan, Hongxing Wei and Bo Yang

SambotII: A New Self-Assembly Modular Robot Platform Based on Sambot
Reprinted from: Applied Sciences 2018, 8, 1719, doi:10.3390/app8101719 63

Dianwei Qian and Yafei Xi

Leader–Follower Formation Maneuvers for Multi-Robot Systems via Derivative and Integral
Terminal Sliding Mode
Reprinted from: Applied Sciences 2018, 8, 1045, doi:10.3390/app8071045 83

Naoki Nishikawa, Reiji Suzuki and Takaya Arita

Exploration of Swarm Dynamics Emerging from Asymmetry
Reprinted from: Applied Sciences 2018, 8, 729, doi:10.3390/app8050729 99

Pablo Garcia-Aunon and Antonio Barrientos Cruz

Comparison of Heuristic Algorithms in Discrete Search and Surveillance Tasks Using
Aerial Swarms
Reprinted from: Applied Sciences 2018, 8, 711, doi:10.3390/app8050711 130

Weijia Wang, Peng Bai, Hao Li and Xiaolong Liang

Optimal Configuration and Path Planning for UAV Swarms Using a Novel Localization
Approach
Reprinted from: Applied Sciences 2018, 8, 1001, doi:10.3390/app8061001 161

Ligang Pan, Qiang Lu, Ke Yin, and Botao Zhang

Signal Source Localization of Multiple Robots Using an Event-Triggered Communication
Scheme
Reprinted from: Applied Sciences 2018, 8, 977, doi:10.3390/app8060977 178

Ki-Baek Lee, Young-Joo Kim and Young-Dae Hong

Real-Time Swarm Search Method for Real-World Quadcopter Drones
Reprinted from: Applied Sciences 2018, 8, 1169, doi:10.3390/app8071169 201

v

Hengqing Ge, Guibin Chen and Guang Xu

Multi-AUV Cooperative Target Hunting Based on Improved Potential Field in a Surface-Water
Environment
Reprinted from: Applied Sciences 2018, 8, 973, doi:10.3390/app8060973 213

Xun Jin and Jongweon Kim

3D Model Identification Using Weighted Implicit Shape Representation and Panoramic View
Reprinted from: Applied Sciences 2017, 7, 764, doi:10.3390/app7080764 225

Long Cheng, Xue-han Wu and Yan Wang

Artificial Flora (AF) Optimization Algorithm
Reprinted from: Applied Sciences 2018, 8, 329, doi:10.3390/app8030329 236

Dawid Połap , Karolina K�esik, Marcin Woźniak and Robertas Damasevicius

Parallel Technique for the Metaheuristic Algorithms Using Devoted Local Search and
Manipulating the Solutions Space
Reprinted from: Applied Sciences 2018, 8, 293, doi:10.3390/app8020293 258

Hui Wang, Youming Li,Tingcheng Chang, Shengming Chang and Yexian Fan

Event-Driven Sensor Deployment in an Underwater Environment Using a Distributed Hybrid
Fish Swarm Optimization Algorithm
Reprinted from: Applied Sciences 2018, 8, 1638, doi:10.3390/app8091638 283

vi

About the Special Issue Editor

Giandomenico Spezzano is Director of Research at the Institute of Computing and

High-Performance Networks (ICAR) of the National Research Council (NRC) of Italy. He is

head of the ‘Distributed and Pervasive Intelligent Systems’ laboratory at CNR-ICAR. Dr. Spezzano

is also an Adjunct Professor at the Faculty of Engineering of the University of Calabria. He is a

member of the teaching faculty of the PhD in ‘Systems and Computer Engineering’ at the DIMES

Department of the University of Calabria. He worked as a senior researcher at the Consortium for

Research and Applications of Computer Science (CRAI), where he was in charge of the research

group ‘distributed and parallel systems’ of CRAI, carrying out numerous research projects at the

national and international level in the field of parallel and distributed computing.

His research activities to date concern: the study of the methods and techniques of

parallel processing for the definition of environments and programming tools to facilitate the

programmability of parallel machines, GPU computing, cloud computing and peer-to-peer systems,

autonomic and self-adaptive cloud workflows, models with cellular automata for scientific

computations concerning the simulation of complex phenomena of the real world (landslides,

soil restoration, infiltration, etc.), parallel data mining algorithms for the classification and

clustering of large amounts of data, tools for parallel evolutionary programming, high-performance

enabling platforms, multiagent systems with collective behavior (swarm intelligence), large-scale

cyber-physical systems, middleware for smart object management, and smart cities based on the

Internet of Things.

Dr. Spezzano is a member of the program committee of numerous international conferences

in the field of distributed and parallel systems and complex adaptive systems. He is the author of

four books and more than 200 scientific articles published in books, conference proceedings, and

international journals. He is a member of the ACM and IEEE–CS, and is also a member of the IEEE

Technical Committee on Self-Organized Distributed and Pervasive Systems and the IEEE Computer

Society Technical Committee on Parallel Processing.

vii

applied
sciences

Editorial

Editorial: Special Issue “Swarm Robotics”

Giandomenico Spezzano

Institute for High Performance Computing and Networking (ICAR), National Research Council of Italy (CNR),
Via Pietro Bucci, 8-9C, 87036 Rende (CS), Italy; giandomenico.spezzano@icar.cnr.it

Received: 1 April 2019; Accepted: 2 April 2019; Published: 9 April 2019

Swarm robotics is the study of how to coordinate large groups of relatively simple robots through
the use of local rules so that a desired collective behavior emerges from their interaction. The group
behavior emerging in the swarms takes its inspiration from societies of insects that can perform tasks
that are beyond the capabilities of the individuals. The swarm robotics inspired from nature is a
combination of swarm intelligence and robotics [1], which shows a great potential in several aspects.
The activities of social insects are often based on a self-organizing process that relies on the combination
of the following four basic rules: Positive feedback, negative feedback, randomness, and multiple
interactions [2,3].

Collectively working robot teams can solve a problem more efficiently than a single robot while
also providing robustness and flexibility to the group. The swarm robotics model is a key component
of a cooperative algorithm that controls the behaviors and interactions of all individuals. In the model,
the robots in the swarm should have some basic functions, such as sensing, communicating, motioning,
and satisfy the following properties:

1. Autonomy—individuals that create the swarm-robotic system are autonomous robots. They are
independent and can interact with each other and the environment.

2. Large number—they are in large number so they can cooperate with each other.
3. Scalability and robustness—a new unit can be easily added to the system so the system is easily

scalable. More number of units improve the performance of the system. The system is quite
robust to the losing of some units, as there still exists some units left to perform. However, in this
instance, the system will not perform up to its maximum capabilities.

4. Decentralized coordination—the robots communicate with each other and with environment to
take the final decision.

5. Flexibility—it requires the swarm robotic system to have the ability to generate modularized
solutions to different tasks.

Potential applications for swarm robotics are many. They include tasks that demand
miniaturization (nanorobotics, microbotics), like distributed sensing tasks in micromachinery or
the human body [4]. They are also useful for autonomous surveillance and environment monitoring
to investigate environmental parameters, search for survivors, and locate sources of hazards such as
chemical or gas spills, toxic pollution, pipe leaks, and radioactivity. Swarm robots can perform tasks
in which the main goal is to cover a wide region. The robots can disperse and perform monitoring
tasks, for example, in forests. They can be useful for detecting hazardous events, like a leakage of
a chemical substance. Robotics is expected to play a major role in the agricultural/farming domain.
Swarm robotics, in particular, is considered extremely relevant for precision farming and large-scale
agricultural applications [5]. Swarm robots are also useful in solving problems encountered in IoT
(Internet of Things) systems, such as co-adaptation, distributed control and self-organization, and
resource planning management [6].

This special issue on Swarm Robotics focuses on new developments that swarm intelligence
techniques provide for the coordination distributed and decentralized of a large numbers of robots in

Appl. Sci. 2019, 9, 1474; doi:10.3390/app9071474 www.mdpi.com/journal/applsci1

Appl. Sci. 2019, 9, 1474

multiple application fields. A collection of 15 papers has been selected to illustrate the research work
and the experimental results of the future swarm robotics in real world applications. The papers of
this special issue can be classified into the following three research areas:

Formation control and self-assembly methods: The papers belonging to this area present control
algorithms to allow a fleet of robots to follow a predefined trajectory while maintaining a desired
spatial pattern. Jian Yang and their colleagues introduce a limited visual field constrained formation
control strategy inspired by flying geese coordinated motion [7]. Additionally, the methods proposed
in [8,9] can reconfigure the group of robots into different formation patterns by coordinating, also in a
decentralized way, the joint angles in the corresponding mechanical linkage. A self-reconfigurable
robotic system that is capable of autonomous movement and self-assembly is introduced in [10].
The formation problem of multiple robots based on the leader–follower mechanism is investigated
in [11]. A model based on Swarm Chemistry is used in [12] to investigate as interesting patterns can be
detected. Finally, a three-dimensional (3D) model identification method based on weighted implicit
shape representation (WISR) is proposed in [13].

Localization and search methods for UAV and drone swarms: This special issue presents papers
to define the position information of the robot members in the system and real-time search to cover a
broad search space. In [14], an algorithm for UAV path planning based on time-difference-of-arrival
(TDOA) is proposed. In [15], the authors propose a decision-control approach with the event-triggered
communication scheme for the problem of signal source localization. The authors of [16] present
a novel search method for a swarm of drones—a PSO algorithm is used as mechanism to update
the position. Furthermore, in [17], an integrated algorithm combining the potential field and the
three degrees (the dispersion degree, the homodromous degree, and the district-difference degree) is
proposed to deal with cooperative target hunting by multi-AUV team in a surface-water environment.
Another search algorithm based on a multi-agent system with a behavioral network made up by six
different behaviors, whose parameters are optimized by a genetic algorithm and adapt to the scenario,
is present in [18].

Intelligence techniques for solving optimization problems. An algorithm inspired by the
process of migration and reproduction of flora is proposed in [19] to solve some complex, non-linear,
and discrete optimization problems. An additional parallel technique for meta-heuristic algorithms
designed for optimization purposes is presented in [20]. The idea was based primarily on the action of
multi-threading, which allowed placing individuals of a given population in specific places where an
extreme can be located. Finally, a distributed hybrid fish swarm optimization algorithm (DHFSOA)
designed in order to optimize the deployment of underwater acoustic sensor nodes has been proposed
in [21].

Acknowledgments: We would like to thank all authors, the many dedicated referees, the editor team of Applied
Sciences, and especially Daria Shi (Assistant Managing Editor) for their valuable contributions, making this special
issue a success.

Conflicts of Interest: The author declares no conflicts of interest.

References

1. Beni, G. From swarm intelligence to swarm robotics. In Swarm Robotics Workshop: State-of-the-Art Survey;
Şahin, E., Spears, W., Eds.; Springer: Berlin, Germany, 2005; pp. 1–9.

2. Camazine, S.; Deneubourg, J.-L.; Franks, N.; Sneyd, J.; Theraulaz, G.; Bonabeau, E. Self-Organization in
Biological Systems; Princeton University Press: Princeton, NJ, USA, 2001.

3. Bonabeau, E.; Dorigo, M.; Theraulaz, G. Swarm Intelligence: From Natural to Artificial Systems;
Oxford University Press: New York, NY, USA, 1999.

4. Ceraso, D.; Spezzano, G. Controlling swarms of medical nanorobots using CPPSO on a GPU. In Proceedings
of the 2016 International Conference on High Performance Computing & Simulation (HPCS), Innsbruck,
Austria, 18–22 July 2016; pp. 58–65.

2

Appl. Sci. 2019, 9, 1474

5. Albani, D.; IJsselmuiden, J.; Haken, R.; Trianni, V. Monitoring and mapping with robot swarms for
agricultural applications. In Proceedings of the 2017 14th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS), Lecce, Italy, 29 August–1 September 2017; pp. 1–6.

6. Zedadra, O.; Guerrieri, A.; Jouandeau, N.; Spezzano, G.; Seridi, H.; Fortino, G. Swarm intelligence-based
algorithms within IoT-based systems: A review. J. Parallel Distrib. Comput. 2018, 122, 173–187. [CrossRef]

7. Yang, J.; Wang, X.; Bauer, P. V-Shaped Formation Control for Robotic Swarms Constrained by Field of View.
Appl. Sci. 2018, 8, 2120. [CrossRef]

8. Liu, Y.; Gao, J.; Shi, X.; Jiang, C. Decentralization of Virtual Linkage in Formation Control of Multi-Agents
via Consensus Strategies. Appl. Sci. 2018, 8, 2020. [CrossRef]

9. Liu, Y.; Gao, J.; Liu, C.; Zhao, F.; Zhao, J. Reconfigurable Formation Control of Multi-Agents Using Virtual
Linkage Approach. Appl. Sci. 2018, 8, 1109. [CrossRef]

10. Tan, W.; Wei, H.; Yang, B. SambotII: A New Self-Assembly Modular Robot Platform Based on Sambot.
Appl. Sci. 2018, 8, 1719. [CrossRef]

11. Wang, H.; Li, Y.; Qian, D.; Xi, Y. Leader–Follower Formation Maneuvers for Multi-Robot Systems via
Derivative and Integral Terminal Sliding Mode. Appl. Sci. 2018, 8, 1045.

12. Nishikawa, N.; Suzuki, R.; Arita, T. Exploration of Swarm Dynamics Emerging from Asymmetry. Appl. Sci.
2018, 8, 729. [CrossRef]

13. Garcia-Aunon, P.; Barrientos Cruz, A. Comparison of Heuristic Algorithms in Discrete Search and
Surveillance Tasks Using Aerial Swarms. Appl. Sci. 2018, 8, 711. [CrossRef]

14. Wang, W.; Bai, P.; Li, H.; Liang, X. Optimal Configuration and Path Planning for UAV Swarms Using a Novel
Localization Approach. Appl. Sci. 2018, 8, 1001. [CrossRef]

15. Pan, L.; Lu, Q.; Yin, K.; Zhang, B. Signal Source Localization of Multiple Robots Using an Event-Triggered
Communication Scheme. Appl. Sci. 2018, 8, 977. [CrossRef]

16. Lee, K.-B.; Kim, Y.-J.; Hong, Y.-D. Real-Time Swarm Search Method for Real-World Quadcopter Drones.
Appl. Sci. 2018, 8, 1169. [CrossRef]

17. Ge, H.; Chen, G.; Xu, G. Multi-AUV Cooperative Target Hunting Based on Improved Potential Field in a
Surface-Water Environment. Appl. Sci. 2018, 8, 973. [CrossRef]

18. Jin, X.; Kim, J. 3D Model Identification Using Weighted Implicit Shape Representation and Panoramic View.
Appl. Sci. 2017, 7, 764. [CrossRef]

19. Cheng, L.; Wu, X.-H.; Wang, Y. Artificial Flora (AF) Optimization Algorithm. Appl. Sci. 2018, 8, 329.
[CrossRef]

20. Połap, D.; Kęsik, K.; Woźniak, M.; Damaševičius, R. Parallel Technique for the Metaheuristic Algorithms
Using Devoted Local Search and Manipulating the Solutions Space. Appl. Sci. 2018, 8, 293. [CrossRef]

21. Chang, T.; Chang, S.; Fan, Y. Event-Driven Sensor Deployment in an Underwater Environment Using a
Distributed Hybrid Fish Swarm Optimization Algorithm. Appl. Sci. 2018, 8, 1638.

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

3

applied
sciences

Article

V-Shaped Formation Control for Robotic Swarms
Constrained by Field of View

Jian Yang 1,†,‡ , Xin Wang 1,*,†,‡ and Peter Bauer 2,‡

1 Department of Mechanical and Automation Engineering, Harbin Institute of Technology Shenzhen,
Shenzhen 518055, China; jyang10.hit@gmail.com

2 Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46656, USA;
pbauer@nd.edu

* Correspondence: wangxinsz@hit.edu.cn; Tel.: +86-755-2603-3286
† Current address: D414, HIT Campus, University Town, Shenzhen 518055, China.
‡ These authors contributed equally to this work.

Received: 31 August 2018; Accepted: 2 October 2018; Published: 1 November 2018

Featured Application: The proposed formation control method has the potential to be applied in

swarm robotics relevant to collaborative searching tasks.

Abstract: By forming a specific formation during motion, the robotic swarm is a good candidate for
unknown region exploration applications. The members of this kind of system are generally low
complexity, which limits the communication and perception capacities of the agents. How to merge to
the desired formation under those constraints is essential for performing relevant tasks. In this paper,
a limited visual field constrained formation control strategy inspired by flying geese coordinated
motion is introduced. Usually, they flock together in a V-shape formations, which is a well-studied
phenomenon in biology and bionics. This paper illustrates the proposed methods by taking the
research results from the above subjects and mapping them from the swarm engineering point of view.
The formation control is achieved by applying a behavior-based formation forming method with the
finite state machine while considering anti-collision and obstacle avoidance. Furthermore, a cascade
leader–follower structure is adopted to achieve the large-scale formations. The simulation results
from several scenarios indicate the presented method is robust with high scalability and flexibility.

Keywords: swarm robotics; formation control; coordinate motion; obstacle avoidance

1. Introduction

Swarm robotics is a research field of the multi-robot system inspired by the self-organizing
behavior of social animals such as birds, bees, fish, and so forth [1]. Formation control is one of
the essential topics of the cooperative behavior of those systems [2]. The goal is to deploy robots
regularly and repeatedly within a specific distance from each other to obtain the desired pattern,
and then maintain it during movement. The members in the swarm are usually homogeneous with
low complexity, only equipped with local sensing and communication devices with decentralized
architecture. Swarms can be used for missions such as virgin territories exploration [3], contamination
detection or tracking, and disaster search and rescue [4]. We have shown a formation-based distributed
processing paradigm for collaborative searching of swarms in a scanner-like manner with a moving
line formation [5]. We also extended this paradigm to more general cases not only for line formation
but also for V-shaped formations [6]. In those works, the moving formations are treated as a sensor
network with dynamically changing positions, so that multi-dimensional based algorithms could
be applied in a distributed way. In this paper, we deal with how to get those formations under the
constraints of limited visual sensing and communication abilities of each swarm member.

Appl. Sci. 2018, 8, 2120; doi:10.3390/app8112120 www.mdpi.com/journal/applsci4

Appl. Sci. 2018, 8, 2120

Formation forming problem is a well-studied problem in swarm robotics field. There are many
state-of-the-art methods to deal with this problem. There are macroscopic collective behavior-inspired
methods such as structured approaches (leader–follower [7], virtual structure [8]), behavior-based
methods (finite state machine [9], potential fields [10], and consensus-based control [11]. In addition,
multicellular mechanism-inspired formation control has also been developed, such as morphogen
diffusion [12], reaction-diffusion model [13], chemotaxis [14], gene regulatory networks [15], etc.
A more detailed review was published by Oh et al. [16]. However, sensors equipped in swarms are
limited not only by the sensing range but also by the field of view (FOV) [17]. Under the condition
of limited FOV, the connectivity of the members cannot be maintained if the omnidirectional sensing
model is still applied, thus the above formation control strategies might be invalid under this constraint.

In biological research, the way geese or other big birds fly together in formations is a widely
studied phenomenon [18]. Many researchers believe that those species flying in such a way can
reduce the flight power demands and energy expenditure, as well as improve orientation abilities
by communication within groups [19,20]. Some other works hold the different opinion that this
phenomenon is constrained by the visual factors and the formations might be a by-product of
the limited field of view of the following birds during flying [21]. The members of the team are
communicating indirectly based on their sensed information, which means the communication is also
constrained by the FOV [22]. According to Heppener’s research on flying geese [23], the visual field
for each eye of a flying goose is 135◦ with a binocular overlap of 20◦, as shown in Figure 1. This means
the members in a swarm could only follow others in this visual field, which causes the line or V-shape
formations during moving.

Figure 1. Geese visual field in biological research.

This paper illustrates a formation forming control strategy inspired by flying geese. This work
studies the V-shape formation forming control problem with limited visual field constraints of sensing
and communication inspired by flying geese. The leader broadcasts the heading angle directly to the
members in a specific range, while each member in this range also broadcasts the heading with some
other simple statuses. Members in the so-called visual field limited Time-varying Characteristic Swarm
(v-TVCS, which represents sub-swarms with members in the communication range of an agent) receive
that information and combine it with the distances and bearing angles observed by itself to reach the
motion decisions. Anti-collision and obstacle avoidance are also considered in the proposed method.
The main contributions of this paper are the adoption of geese visual field constraint mechanism of
formation flying. A behavior-based control strategy for line and V-shape formation forming is also
presented combined with a cascade leader–follower structure.

5

Appl. Sci. 2018, 8, 2120

The rest of this paper is organized as follows. In Section 2, we first state the problem of line
and V-shape formation control along with the concept of v-TVCS. Section 3 introduces a modified
leader–follower structure with behavior-based finite state machine design of proposed formation
control strategy. Simulations under different situations are implemented to evaluate our method, and
the results are given in Section 4. Section 5 is the dicussion. The conclusion is reached in Section 6.

2. Problem Statement

We suppose each member in the swarm works in the same 2-D Cartesian coordinate system with
the following assumptions:

• Limited visual field: The members in the swarm only have a specific visual field in front of them;
the visual angle θ is set to 250◦, i.e., (−35◦ ≤ θ ≤ 235◦).

• Limited perception and communication range: An agent can only communicate with members or
sense others or obstacles in a certain local range (R) within the visual field.

• GPS-free: The swarm system is not equipped with GPS, i.e., no member has the global position
information to perform formations.

2.1. Kinematic Model of Members

The agent in the swarm uses the following non-holonomic motion model [24], which means the
agent is only able to move forward with heading changes.⎡⎢⎣xi(t + Δt)

yi(t + Δt)
αi(t + Δt)

⎤⎥⎦ =

⎡⎢⎣xi(t)
yi(t)
αi(t)

⎤⎥⎦+

⎡⎢⎣cos αi(t) 0
sin αi(t) 0

0 1

⎤⎥⎦ [
v
ω

]
(1)

where (xi, yi, αi) are the Cartesian position and heading of agent i, v is the linear velocity in each
agent’s coordinates xioyi, and ω is the angular velocity. Suppose each member in the swarm is able to
detect relative distances and angles of others in visual field respective to its own coordinates. lij and
ϕij are the measured distance and angle of agent j in agent i’s sensing range. We have:{

xij = lij cos ϕij

yij = lij sin ϕij
(2)

where −35◦ ≤ ϕij ≤ 235◦ is the visual angle constraint, lij ∈ [0, R]. Now, for every agent in the swarm,
the formation forming problem translates to finding a pose that make the agent keep the distance and
bearings of the nearest neighbor, as well as the same heading angle relative to the reference agent.
Furthermore, anti-collision with each other and obstacle avoidance must be considered.

2.2. Visual Field Limited Time-Varying Characteristic Swarm

Under the communication constraint, members in a swarm are not required to connect with other
agents outside of some proximity, which defines the notation of communication-based neighborhood
first presented by Pugh et al. [25]. The communication-based neighborhood of agent i is a set of
teammates within a fixed radius R to the position of agent i, which can be written as:

N (ri) = {rj∈N,j �=i, ‖ pi − pj ‖≤ R} (3)

where N is the communication-based neighborhood; N is the number of members in the swarm; ri
denotes agent i; pi and pj are spacial positions of i and j agents, respectively; and R is the maximum
communication radius. While the swarm is moving, the neighborhoods may change over time,
which causes the whole swarm to be divided into several dynamically changing sub-swarms. Xue

6

Appl. Sci. 2018, 8, 2120

et al. defined those sub-swarms with the concept of Time-varying Characteristic Swarm (TVCS) [26].
The TVCS of agent i at time t can be represented as follows:

S t(ri) = ri ∪ {rj∈N,j �=i, ‖ pt
i − pt

j ‖≤ R} (4)

where S t(ri) represents the TVCS of agent i. The number of members in one TVCS is obviously
dynamically changing. At time t, ri is only able to communicate with other agents in S t(ri). In our
case, the perception-based communication range is also limited by the visual field of each member,
thus the definition of above TVCS changes to:

S t
v(ri) = ri ∪ {rj∈N,j �=i, ‖ pt

i − pt
j ‖≤ R ∧ ϕij ∈ V} (5)

where S t
v(ri) is visual field limited TVCS (v-TVCS), ϕij is the bearing angle of rj in ri’s frame, and Vi is

the visual field of agent i. The illustration of v-TVCS is shown in Figure 2.

m5

R

m2

R

m3

Rm1

R

m4

R

Figure 2. Visual field limited Time-varying Characteristic Swarm (v-TVCS).

3. Methods

Based on some previous works [7,9,17,26], here, we employ a modified leader–follower structure
combined with a behavioral finite state machine to achieve the V-shaped formation control under the
constraints we assumed above.

3.1. Behavior Based Approach

Behavior-based method is one of the common choices for swarm robotics, since it is typically
decentralized and can be realized with less communication compared to the others [1]. It usually
defines some simple rules and actions for members in a swarm to guide them to take particular actions
when conditions change; finite state machines (FSM) can realize this. For every swarm member, a
finite state machine could be defined as a triple T = (S, I, F) where S = {S1, S2, · · · , Sn} is a finite
non-empty set of states, I = {I1, I2, · · · , In} is a finite non-empty set of inputs, and F : I × S → S is
the state-transition function set, which describes how inputs I affect states S. Since the member has
some blind zone in the back, one cannot see any other member in the case of no individual in its visual
field. Furthermore, the members need to fly together in V-shape formation without collision with
each other or hit the obstacles. The states in S can be defined as S = {S1, S2, S3} where S1 is searching
team members, S2 is anti-collision with other member or obstacle avoidance, and S3 is forming the

7

Appl. Sci. 2018, 8, 2120

formation. S t
v(ri) is the TVCS of agent i at time t; lt

c and lt
o are the measured distance of the nearest

member and the closest obstacle, respectively; and ds is the safe distance. The input set now can be
represented as I = {I1, I2, I3}, where: ⎧⎪⎪⎨⎪⎪⎩

I1 : S t
v(ri)− {ri} = φ

I2 : lc < ds ∨ lo < ds

I3 : Others

(6)

The state-transition functions could be listed as follows and are represented in Figure 3.

F(I1, S1) = S1, F(I2, S1) = S2, F(I3, S1) = S3,
F(I1, S2) = S1, F(I2, S2) = S2, F(I3, S2) = S3,
F(I1, S3) = S1, F(I2, S3) = S2, F(I3, S3) = S3.

Figure 3. Finite state machine of designed behavior based approach.

3.2. Cascade Leader–Follower Structure

The leader–follower structure is a frequently used method for formation control for groups of
robots. The l − ϕ method, which controls the followers to keep desired distances and bearing angles to
the leader, can be represented as: {

limt→∞[l(t)− ld] = 0

limt→∞[ϕ(t)− ϕd] = 0
(7)

where ld and l(t) are desired and current distances to the leader respectively; and ϕd and ϕ(t) are the
desired and current bearing angles to the leader, respectively. In our case, one cannot see the leader
all the time. Consequently, instead of following the leader, we make the members form the desired
formation by following a particular agent in the v-TVCS with the assistance of simple communications.

To cope with this task, the swarm leader, which defines the reference frame for the others, must
first broadcast its heading direction. Other members in leader’s v-TVCS will receive this message,
combine it with other state messages and then rebroadcast it in their v-TVCS again. Since we aim at
building a V-shape formation, this means the leader will divide the swarm into two parts: the left part
and the right part. As shown in Figure 4, the desired bearings for the two parts are different. The angle
of the formatted V-shape formation is γ, members of the left part will keep the relative bearing angle
to the leader or closest right top member with the same role of −γ/2, while the right part will keep the
desired bearing between the leader or closest left top member with the same role of γ/2. Because the
desired bearings are different for the two parts, the messages communicated between swarm members
should be the received leader’s heading, the agent’s own heading, and the role of which part it belongs.
At the initial stage, if one can see the leader, it is able to determine the part role by evaluating the initial

8

Appl. Sci. 2018, 8, 2120

leader bearing minus the heading error with the leader. Otherwise, if the leader is not in one’s field of
view, it will synchronize its role from the broadcasting of the closest member in its v-TVCS.

xi

yi

xi

yi

xi

yi
γ

− γ
2

γ
2

Figure 4. Desired bearing angle of two parts.

In the case a member cannot see anyone in its visual field, it will search others by rotating with a
certain forward speed with turning. Thus, the actions in S1 can be simply defined as:{

v = vr

ω = ωr
(8)

where vr ∈ (0, vmax) and ωr ∈ (0, ωmax) are random forward speed and turn speed, respectively.
Figure 5 shows the relationship with leader and follower. According to Equation (1), the kinematic

equations for follower i are established:⎧⎪⎪⎨⎪⎪⎩
Δl = vi cos(θ)− vl cos ϕ + dωi sin(θ)

Δϕ = 1
l (vl sin ϕ − vi sin(θ) + dωi cos(θ)− lωl)

Δαi = ωi

(9)

where αi is the heading error with the leader, θ = ϕ + αi. On the other hand, according to the feedback
control law, we have: {

Δl = kl(ld − l)

Δϕ = kϕ(ϕd − ϕ)
(10)

where kl and kϕ are feedback coefficients.
By combining Equations (9) and (10), we can get the control inputs for formation:{

ωi =
cos θ

d [kϕl(ϕd − ϕ)− vl sin ϕ + lωl + p sin θ]

vi = p − dωi tan θ
(11)

where p = vl cos ϕ + kl(ld − l)/cos θ.

9

Appl. Sci. 2018, 8, 2120

rl

cl

xl

yl

ri

ci

xi

yi d

ϕijαi

rj

cj

xj

yj

d

ϕjk
αj

l il

ljl

Figure 5. Configurations of swarm members.

3.3. Anti-Collision and Obstacle Avoidance

Anti-collision and obstacle avoidance is essential for task implementation. It ensures the agents
avoid hitting others in the swarm or obstacles in the environment. With the low-complexity swarm
in mind, here we use a simplified Vector Field Histogram (VFH) algorithm to achieve this goal. VFH
algorithm determines the movement direction by constructing vector field histogram to represent
polar obstacle density (POD). First, it divides sensing field of an agent into n sectors and each sector’s
cover angle is 360◦/n. Then, the following equation is used to calculate the corresponding POD in the
histogram for each sector [27]:

hk(qi) =
∫

Ωk

P(p)n ·
(

1 − d(qti , p)

dmax

)m

dp (12)

where hk(qi) is the polar obstacle density in sector k, P(p) is the probability a point is occupied by an
obstacle, d(qti , p) is the distance from the center of the agent to point p, dmax is the maximum detection
range of the sensor, and the dominion of integration Ωk is defined as

Ωk = {p ∈ k ∧ d(qti , p) < ds} (13)

By applying a threshold to the polar histogram, a set of candidate directions that are closest to
the target direction can be obtained. In the next step, the strategy to choose a direction of this set
depends on the relationships between the selected sectors and the target sector. It has been proven that
this method is effective for obstacle avoidance of mobile robots. In our case, since the simple swarm
members need to keep the formation during moving, we have to consider the low computational
complexity as well as the velocity constraints. By adopting the fundamental principle of VHF algorithm,
we can design our actions in state S2 for anti-collision and obstacle avoidance as follows.

As shown in Figure 6, it is assumed that the robot can detect the ranges in 2a + 1 sectors (a > 0)
in its visual field, i.e., −125◦ to 125◦, where 0◦ is the heading direction of an agent. By considering the
effects of neighbor sectors, the smoothed polar obstacle density on kth direction can be represented as:

ρk =
l

∑
i=−l

w(i) f (k + i) (14)

f (k + i) = (1 − min{ds, d(k + i)}
ds

)2 (15)

10

Appl. Sci. 2018, 8, 2120

where l is a positive number that represents the compute window of each direction k ∈ [−a, a], d(k + i)
is the distance from the center of the agent to the obstacle in direction k + i, ds is the predefined safe
distance, and w(i) is the weight of the corresponding neighbor directions, which can be determined by:

w(i) =

⎧⎨⎩
l−|i|+1

∑l
i=−l(l−|i|+1)

, −a ≤ k + i ≤ a

0, others
(16)

This choice of w(i) ensures that the farther the neighbor direction from k is, the smaller the weight
is as well as that the current heading direction k (i = 0) has the largest one.

xi

yi

xs

ys

dk′

ds

dmax

d k+
i

d k

dk−i

Figure 6. Sensing sectors with obstacles.

Consequently, denote k̂ = argmin{ρk} as the potential direction(s); we can choose the solution
direction by:

ks =

{
k̂, k̂ is unique

argmin(||kt − k̂||), others
(17)

where ks is the solution direction, and kt is a direction that contains a target determined by formation
control strategy. Furthermore, the safe distance ds is related to the turning radius at maximum speed
and the update cycle T of the agent, i.e.,

ds = Ks(
vmax

ωmax
+ vmaxT) (18)

where Ks > 1 is the safety coefficient. We can use the following equations to determine the final inputs
for anti-collision and obstacle avoidance.

v(n + 1) = ρmin cos(ksβ), others (19)

ω(n + 1) =

{
ωmax, |ksβ| > ωmax

−ksβ, others
(20)

where ρmin is the minimal ranges to the obstacles and β is the angular resolution of the ranger sensor,
i.e., the width of each sector.

11

Appl. Sci. 2018, 8, 2120

3.4. Proposed Formation Control Algorithm

In summary, the computation procedure of each member in the proposed method is as shown
in Algorithm 1. The programs are identical for each member, which ensures the high scalability of
the system. The agent detects the neighbor members and obstacles, and uses the transfer functions to
switch to corresponding actions described above. The complexity of the algorithm is O(n), which is
equivalent to most state-of-the-art strategies.

Algorithm 1: Cascade leader–follower formation control with limited field of view
Input: Input set refer to Equation (6)
Output: Forward and Turn Speeds of an Agent

1 switch I do

2 case I1 do

3 v = vr, ω = ωr ; // Action in S1, refer to Equation (8)
4 case I2 do

5 Compute safe direction ks ; // Actions in S2, refer to Equation (14)–(17)
6 Compute v and ω for anti-collision ; // Refer to Equations (19)–(20)
7 case I3 do

8 Synchronize role with leader or closest Member;
9 Determine desired bearing to target member;

10 Compute v and ω for formation forming ; // Actions in S3, refer to
Equation (11)

11 Set Speed v, ω ; // Set forward and turn speeds
12 end

4. Results

We evaluated the proposed method using simulations in the stage simulator [28]. We studied
the proposed method under the condition of obstacle avoidance, formation with turns, and large
populations. The safe distance ds is set to 5 m while the desired distance ld is set to 1.2ds = 6 m,
the desired formation angle is set to γ = 100◦, and the target forward speed of the swarm leader is set
to 1 m/s. Figure 7 shows the configuration of each member. The large sector with field of view 250◦ is
its communication range. The agent is able to exchange simple data to others in this area. This radius
is set to 30 m for simulations with swarms of fewer than 50 members, and 100 m for larger swarms
(N = 200). The small sector is the coverage of nine ranger sensors with 30◦ FOV spread on the 250◦

with some overlaps for anti-collision and obstacle avoidance. With those configurations, the simulation
process and other details are given in following subsections.

Figure 7. Member configurations in stage simulator.

12

Appl. Sci. 2018, 8, 2120

4.1. Formation Control with Obstacle Avoidance

As mentioned above, the anti-collision strategy of the proposed method includes keep away from
each other and obstacle avoidance. Anti-collision is considered for all simulations. The experiment in
this section aims to test the strategy in an environment with obstacles. Initially, we put seven swarm
members in the bottom part of a 100 m × 200 m environment, with random position and headings.
The target direction of the swarm leader is set to the north. Some obstacles are placed on the way
to the north, as shown in Figure 8a. The sector around the agent indicates the visual field of each
member. Figure 8b shows the swarm leader starts to move to the north, and the other members are
adjusting their positions and headings according to the proposed strategy. Each member chooses the
corresponding target leader to achieve the cascaded leader–follower structure, and calculates control
inputs according to predefined ld and ϕd, as shown in Figure 8c. Figure 8d shows that the formation is
formed at around 57.4 s.

(a) t = 0.1 s (b) t = 0.8 s()

(c) t = 15.6 s (d) t = 57.4 s

Figure 8. Formation before encounter obstacles.

When the moving formation encounters obstacles, as shown in Figure 9a,b, the members adjust
their forward and turning speeds to obey the defined anti-collision rules to avoid obstacles. Meanwhile,
they also keep away from each other during the adjustments. When they pass the barrier region, they
start to reform the shape, as shown in Figure 9c. The formation is reshaped at 2 min 6.6 s, as shown
in Figure 9d. The trajectories of this simulation are shown in Figure 10. In the figure, we can see the
adjustments of the anti-collision movements of each members.

13

Appl. Sci. 2018, 8, 2120

(a) t = 1 min 1.7 s (b) t = 1 min 15.9 s

(c) t = 1 min 53.4 s (d) t = 2 min 6.6 s

Figure 9. Formation after encounter obstacles.

Figure 10. The trajectories of member movements.

14

Appl. Sci. 2018, 8, 2120

4.2. Flexibility Evaluation

In many searching tasks, the entire swarm may need to do more maneuvers than just moving
in one direction. Members in a swarm are required to follow the leader’s trajectory change after
forming the formation. We test this problem in a swarm with 31 members (1 swarm leader and 30 other
members). The swarm leader is set to make a left turn at the position of (0, 600) with the turning speed
of 0.1 rad/s. The simulation results are as shown in Figures 11 and 12.

(a) t = 0.1 s (b) t = 1 min 30 s

(c) t = 3 min 24.8 s (d) t = 10 min 5.8 s

(e) t = 14 min 27.5 s (f) t = 19 min 27.7 s

Figure 11. Formation with turns.

15

Appl. Sci. 2018, 8, 2120

Initially, we put the leader at point (0, 0), and the other 30 members are distributed in a certain
range (x, y) ∈ [−50, 50] m around the leader with random positions and headings. Figure 11a shows
the initial status of this simulation. After the swarm leader starts to move, the whole group forms the
desired V-shape (Figure 11b), and the formation is formed at 3 min 24.8 s (Figure 11c). The formed
shape continues to move forward until the swarm leader begins to turn, as indicated in Figure 11d.
The swarm then reshapes after the disorder caused by the turn, as shown in Figure 11e. We can see in
Figure 11f that the formation reformed at 19 min 27.7 s. The trajectories of this process are shown in
Figure 12.

Figure 12. The trajectories of member movements.

4.3. Large Swarm

One of the distinguishing characteristics of swarm robotics compared to the traditional multi-robot
system is low-complexity with robust organization rules, which can be realized in large-scale
applications. To evaluate our proposed method in a large swarm, in stage, we use a population
of 201 (1 leader and 200 members) for the formation forming test. Similar to the flexibility evaluation,
we put the leader at position (0, 0), and the other 200 members are distributed in the range of
(x, y) ∈ [−100, 100] m around the leader with random positions and headings, as shown in Figure 13a.
The sensing radius is set to 100 m to avoid possible disconnections between different sub-swarms. The
target direction of the leader is set to the north with anti-collision, i.e., the swarm leader keeps away
from the others, as shown in Figure 13b. After the leader moves be the north most member of the
swarm, the remaining simulation processes are shown in Figure 13c–f. It can be seen that the proposed
method can form the formation under the condition of large populations of swarm members. The
trajectories for this simulation is given in Figure 14.

16

Appl. Sci. 2018, 8, 2120

(a) t = 0.1 s (b) t = 1 min 57.8 s

(c) t = 3 min 26.3 s (d) t = 4 min 24.4 s

(e) t = 10 min 39.5 s (f) t = 21 min 11.6 s

Figure 13. Large-scale formation control simulation.

17

Appl. Sci. 2018, 8, 2120

Figure 14. The trajectories of member movements.

4.4. Statistical Results

We tested the above simulations under each condition several times to get the statistical results.
In particular, for the large-scale formation problem, we set a different sensing radius to get the impact
of this parameter. As shown in Table 1, the success rates with seven agents in the environment
with obstacles and 31 agents in an open environment are both 100%. The sensing radius of those
situations is all set to 30 m. For the large-scale test, we set this value to 30 m, 50 m, 70 m and 100 m.
The corresponding success rates are 0%, 10%, 50% and 100%, respectively. The sensing radius obviously
affects the results of large-scale simulations.

Table 1. Statistical results of the proposed method.

No. of Agents Obstacles Sensing Radius Succ. Rates (%) Avg. Time (s) No. of Tests

7 Yes 30 100 130.4 20
31 No 30 100 232.7 20

201 No

30 0 / 10
50 10 1801.3 10
70 50 1405.8 10

100 100 1283.6 10

5. Discussion

It can be seen from the listed results above that the presented formation forming strategy for
robotic swarms is proven to be effective with different populations. The following subsections are
some more considerations worth discussing.

5.1. The Local Minimal

Formation control strategies with obstacle avoidance often suffer from local minima problems.
They are usually caused by the conflicts between the formation control inputs and the anti-collision
calculations. In Figure 10, the traces of the last two agents have vibration near the position of (10,−30),
which indicates those two agents have the risk of falling into the local optimum. Fortunately, According
to Equation (8), our strategy for formation control has random inputs in the state of S1. Furthermore,
we only calculate nine directions of range sensors for anti-collision. These two points ensure our
method can jump out from the risk. Figure 8c indicates the right two members have some delay in
reforming the formation due to the time consumed by getting out of the trouble; however, they can
still catch up to move with the formation.

18

Appl. Sci. 2018, 8, 2120

5.2. Unbalanced Formations

Since we do not assign the roles for each member before the task, each member gets its role
during the simulation. The final results might be unbalanced V-shaped formations, which will
affect the coverage of the swarm. As shown in Figure 13f, the number of agents on the left-hand
side is never equal to the number on the right-hand side. When this kind of swarm formation is
used in some spatially relevant tasks, the coverage area differences should be carefully considered.
We also mentioned this issue in one of our previous works, which utilized unbalanced formations for
collaborative target searching tasks [6].

5.3. Robustness and Scalability

Robustness and scalability are typical characteristics of swarm systems. Robustness means the
system could operate normally in the case of disturbance or individual failure. Since the designed
system is fully distributed with high redundancy, some members failing will be compensated by others.
The distributed scheme also resists disturbance from surroundings.

Scalability is another essential property of swarm robotics, which implies the system has the
ability to work under arbitrary populations. As shown in the simulations with different populations
and circumstances, the proposed method is identical for every member of the swarm, so it has high
robustness and scalability.

6. Conclusions

This paper introduces a flying geese-inspired V-shaped formation control strategy, which is
constrained by the limited field of view. A behavior-based method combined with a cascade
leader–follower structure is adapted to get the desired formation. The anti-collision issue including
keep away from other members and obstacle avoidance is also achieved with a simplified polar
vector field histogram method. Comparing with other methods, we have shown the introduced
method is able to form the formations under the condition of the field-of-view constrained sensing
and communication. Furthermore, the proposed strategy is fully distributed with robustness and
scalability, which has the potential to be utilized in large-scale swarms. Although we have verified
the effectiveness of the method through simulation, utilizing it in physical system still has challenges,
such as the sensor based communication protocols, the kinematics of different types of robots and so
forth. The future work of our research will be focused on implementing the method to physical swarm
systems such as mobile robots, UAVs and underwater vehicles.

Author Contributions: Conceptualization, J.Y. and P.B.; Methodology, J.Y.; Software, J.Y.; Validation, X.W., P.B. and
J.Y.; Investigation, J.Y., X.W. and P.B.; Resources, X.W.; Data Curation, J.Y.; Writing—Original Draft Preparation,
J.Y.; Writing—Review and Editing, P.B.; Visualization, J.Y.; Supervision, X.W.; Project Administration, X.W.; and
Funding Acquisition, X.W.

Funding: This research was funded by Shenzhen Science and Technology Innovation Commission grant number
JCYJ20170413110656460 and JCYJ20150403161923545.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Brambilla, M.; Ferrante, E.; Birattari, M.; Dorigo, M. Swarm robotics: A review from the swarm engineering
perspective. Swarm Intell. 2013, 7, 1–41. [CrossRef]

2. Trianni, V.; Campo, A. Fundamental collective behaviors in swarm robotics. In Springer Handbook of
Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1377–1394.

3. Taraglio, S.; Fratichini, F. Swarm underwater acoustic 3D localization: Kalman vs Monte Carlo. Int. J. Adv.
Robot. Syst. 2015, 12, 102. [CrossRef]

4. Scheutz, M.; Bauer, P. Ultra-low complexity control mechanisms for sensor networks and robotic swarms.
Int. J. New Comput. Archit. Appl. 2013, 3, 86–119.

19

Appl. Sci. 2018, 8, 2120

5. Yang, J.; Wang, X.; Bauer, P. Formation forming based low-complexity swarms with distributed processing
for decision making and resource allocation. In Proceedings of the 2016 14th International Conference on
Control, Automation, Robotics and Vision (ICARCV), Phuket, Thailand, 13–15 November 2016; pp. 1–6.

6. Yang, J.; Wang, X.; Bauer, P. Line and V-Shape Formation Based Distributed Processing for Robotic Swarms.
Sensors 2018, 18, 2543. [CrossRef] [PubMed]

7. Panagou, D.; Kumar, V. Cooperative visibility maintenance for leader–follower formations in obstacle
environments. IEEE Trans. Robot. 2014, 30, 831–844. [CrossRef]

8. Askari, A.; Mortazavi, M.; Talebi, H. UAV formation control via the virtual structure approach. J. Aerosp. Eng.
2013, 28, 04014047. [CrossRef]

9. Balch, T.; Arkin, R.C. Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom.
1998, 14, 926–939. [CrossRef]

10. Spears, W.M.; Spears, D.F. Physicomimetics: Physics-Based Swarm Intelligence; Springer Science & Business
Media: Cham, Switzerland, 2012.

11. Tanner, H.G.; Jadbabaie, A.; Pappas, G.J. Flocking in teams of nonholonomic agents. In Cooperative Control;
Springer: Cham, Switzerland, 2005; pp. 229–239.

12. Foty, R.A.; Steinberg, M.S. The differential adhesion hypothesis: A direct evaluation. Dev. Biol. 2005,
278, 255–263. [CrossRef] [PubMed]

13. Meinhardt, H.; Gierer, A. Pattern formation by local self-activation and lateral inhibition. Bioessays 2000,
22, 753–760. [CrossRef]

14. Bai, L.; Eyiyurekli, M.; Lelkes, P.I.; Breen, D.E. Self-organized sorting of heterotypic agents via a chemotaxis
paradigm. Sci. Comput. Program. 2013, 78, 594–611. [CrossRef]

15. Oh, H.; Jin, Y. Evolving hierarchical gene regulatory networks for morphogenetic pattern formation of
swarm robots. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing,
China, 6–11 July 2014; pp. 776–783.

16. Oh, H.; Shirazi, A.R.; Sun, C.; Jin, Y. Bio-inspired self-organising multi-robot pattern formation: A review.
Robot. Auton. Syst. 2017, 91, 83–100. [CrossRef]

17. Maeda, R.; Endo, T.; Matsuno, F. Decentralized navigation for heterogeneous swarm robots with limited
field of view. IEEE Robot. Autom. Lett. 2017, 2, 904–911. [CrossRef]

18. Pennycuick, C.J. The Flight of Birds and Other Animals. Aerospace 2015, 2, 505–523. [CrossRef]
19. Weimerskirch, H.; Martin, J.; Clerquin, Y.; Alexandre, P.; Jiraskova, S. Energy saving in flight formation.

Nature 2001, 413, 697–698. [CrossRef] [PubMed]
20. Galler, S.R.; Schmidt-Koenig, K.; Jacob, G.J.; Belleville, R.E. Animal Orientation and Navigation. NASA SP-262;

NASA Special Publication: Washington, DC, USA, 1972.
21. Bajec, I.L.; Heppner, F.H. Organized flight in birds. Anim. Behav. 2009, 78, 777–789. [CrossRef]
22. Strandburg-Peshkin, A.; Twomey, C.R.; Bode, N.W.; Kao, A.B.; Katz, Y.; Ioannou, C.C.; Rosenthal, S.B.;

Torney, C.J.; Wu, H.S.; Levin, S.A.; et al. Visual sensory networks and effective information transfer in animal
groups. Curr. Biol. 2013, 23, R709–R711. [CrossRef] [PubMed]

23. Heppner, F.H.; Convissar, J.L.; Moonan, D.E., Jr.; Anderson, J.G. Visual angle and formation flight in Canada
Geese (Branta canadensis). Auk 1985, 102, 195–198. [CrossRef]

24. Qu, Z. Cooperative Control of Dynamical Systems: Applications To Autonomous Vehicles; Springer Science &
Business Media: London, UK, 2009.

25. Pugh, J.; Martinoli, A. Multi-robot learning with particle swarm optimization. In Proceedings of the Fifth
International Joint Conference on Autonomous Agents and Multiagent Systems, Hakodate, Japan, 8–12 May
2006; pp. 441–448.

26. Xue, S.; Zhang, J.; Zeng, J. Parallel asynchronous control strategy for target search with swarm robots. Int. J.
Bio-Inspired Comput. 2009, 1, 151–163. [CrossRef]

27. Siciliano, B.; Khatib, O. Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2016.
28. Vaughan, R. Massively multi-robot simulation in stage. Swarm Intell. 2008, 2, 189–208. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

20

applied
sciences

Article

Decentralization of Virtual Linkage in Formation
Control of Multi-Agents via Consensus Strategies

Yi Liu 1,2 , Junyao Gao 1,*, Xuanyang Shi 1,3 and Chunyu Jiang 1

1 Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology,
Beijing 100081, China; YiLiu@bit.edu.cn (Y.L.); 3120170111@bit.edu.cn (X.S.); jiangchunyu@bit.edu.cn (C.J.)

2 Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081, China
3 Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing 100081, China
* Correspondence: gaojunyao@bit.edu.cn

Received: 28 September 2018; Accepted: 20 October 2018; Published: 23 October 2018

Featured Application: The method proposed in this paper can be used for formation control

autonomous robots, such as nonholonomic mobile robots, unmanned aerial vehicles and has

potential applications in search and rescue missions, area coverage and reconnaissance, etc.

Abstract: Featured Application: This paper addresses the formation control of a team of agents based
on the decentralized control and the recently introduced reconfigurable virtual linkage approach.
Following a decentralized control architecture, a decentralized virtual linkage approach is introduced.
As compared to the original virtual linkage approach, the proposed approach uses decentralized
architecture rather than hierarchical architecture, which does not require role assignments in each
virtual link. In addition, each agent can completely decide its movement with only exchanging states
with part of the team members, which makes this approach more suitable for situations when a large
number of agents and/or limited communication are involved. Furthermore, the reconfiguration
ability is enhanced in this approach by introducing the scale factor of each virtual link. Finally,
the effectiveness of the proposed method is demonstrated through simulation results.

Keywords: formation control; virtual linkage; virtual structure; formation reconfiguration; mobile
robots; robotics

1. Introduction

Formation control is one of the most leading research areas in robotics. It has been extensively
studied by researchers around the world on different platforms: mobile robots, aerial robots, spacecraft,
and autonomous surface and underwater vehicles [1–8].

In the literature, formation control approaches can be classified into three basic strategies:
leader-following, behavior-based, and virtual structure. In the leader–follower approach [9–11],
some agents are considered as leaders, while others act as followers which track the leaders with
predefined offset. However, the leader’s motion is independent of the followers. When a follower fails,
the leader will keep on moving as predefined and results in the break of the formation shape. In the
behavior approach [12–14], several reactive behaviors are prescribed (e.g., move-to-goal, avoid-robot,
avoid-static-obstacles, and maintain-formation). The action of each agent is derived by a weighted
sum of all the behaviors. The main problem with this approach is that it is difficult to formalize the
group mathematically and the team of agents is not guaranteed to converge to the desired formation
configuration. The virtual linkage approach considers the entire formation as a single rigid body and
is able to maintain the formation shape in high precision during manoeuvers [15–17]. Perhaps the
main criticism of the virtual structure approach is that it has poor reconfiguration ability and needs to
refresh the relative positions of all the team members when a different formation pattern changes.

Appl. Sci. 2018, 8, 2020; doi:10.3390/app8112020 www.mdpi.com/journal/applsci21

Appl. Sci. 2018, 8, 2020

Although these three approaches have been used in many applications, they focus more on
maintaining a specified formation pattern throughout a task and few studies address the effects of
formation reconfiguration. However, situations also exist where different formation patterns are
needed, for example, a group of agents might need to reconfigure into different patterns to go through
a gallery. A reconfigurable formation control method named virtual linkage is proposed by the
authors in Reference [18]. Instead of treating the whole formation as a single rigid body, as in the
virtual structure, the virtual linkage approach considers the formation as a mechanical linkage which
is a collection of rigid bodies connected by joints. A virtual linkage is defined as an assembly of
virtual structures (named “virtual link”) connected by virtual joints. By coordinating the value of
each virtual joint, the virtual linkage approach is able to reconfigure a group of agents into different
formation shapes.

Currently, the virtual linkage approach uses hierarchical architecture. In detail, the states of the
virtual linkage are implemented in a virtual linkage server and broadcast to all the virtual link servers.
Each virtual link’s state is in turn calculated in the corresponding virtual link server and transmits
to all its virtual link members. The principal limitation of this hierarchical architecture is that it does
not scale well with the number of agents in the team. In addition, due to the communication range
limitations, the virtual linkage server might lose communication with some virtual link servers when
the agent group covers a large area. A possible way to solve these drawbacks is to use decentralized
architecture in which each agent runs a consensus strategy and totally decides its moving action with
communication with parts of the members.

The concept of consensus is an important idea in control and information theory, and it has been
applied to the formation control of multiple agents [2,16,19–21]. The basic idea of a consensus algorithm
is that each agent updates its state’s information only based on its neighbors’ state’s information and
finally enable the convergence of all the agent’s state’s information.

The main contribution of this paper is the decentralization of the virtual linkage approach via
consensus strategies. Motivated by the pros and cons of the virtual linkage approach and consensus
algorithm, a decentralized virtual linkage approach is presented in this paper. Instead of using
hierarchical architecture, the proposed method instantiates a local copy of the virtual linkage’s state
implements the same consensus algorithm on each agent to facilitate the reconfigurable formation
control of a team of agents. The decentralized virtual linkage approach has several advantages as
compared to the original virtual linkage approach. First, the decentralized architecture overcomes the
limitations of the hierarchical architecture. In details, this approach scales well with the number of
agents in the group and only requires each agent to communicate with its local neighbors. Second,
with the introduction of expansion/contraction rates for each virtual link, this approach has a stronger
reconfiguration ability than the traditional virtual linkage approach.

The paper is organized as follows. In Section 2, the preliminary knowledge is presented. Section 3
illustrates the control strategy for the formation movement. Simulation results are in Section 4. Finally,
in Section 5, some concluding remarks of this paper are given.

2. Problem Statement

2.1. Virtual Linkage

The virtual linkage is a reconfigurable formation control method proposed by the authors in
Reference [18]. The main idea of virtual linkage is to consider the entire formation as a mechanical
linkage which is a collection of rigid bodies connected by joints. It can be defined as a collection
of virtual structures connected by virtual joints. Instead of specifying each agent’s desired position
relative to a single reference frame, as in the virtual structure, the virtual linkage approach tells each
agent the virtual link it belongs to and the relative position in the corresponding virtual link. In this
way, the designed virtual linkage can be reconfigured into different formation patterns by coordinating
the value of each virtual joint.

22

Appl. Sci. 2018, 8, 2020

Definition 1 (Virtual Joints [18]). A virtual joint is a connection between two virtual structures and imposes
constraints on their relative movement.

Definition 2 (Virtual Linkage (VL) [18]). A virtual linkage is an assembly of virtual structures (named
“virtual link”) connected by virtual joints.

Figure 1 shows the comparison of an intuitive example of a virtual linkage. Three agents are
designed into a virtual linkage composed of two virtual links. They are able to be configured into line
formation and arrow formation by only changing the virtual joint angle.

Rigid body

joint

Virtual LinkageVirtual Structure

robot

virtual link2

virtual link1

virtual joint

(a)

Linkage

60

arrow formation

(b)

180

line formation

Figure 1. (a) Principle of virtual structure and virtual linkage. (b) Different formation using a specified
virtual linkage.

2.2. Architecture of the Previous Virtual Linkage

Figure 2 shows the hierarchical architecture of the original virtual linkage approach proposed
in Reference [18]. The states of the virtual linkage are implemented in a virtual linkage server
and broadcast to all the virtual link servers. Each virtual link’s state is in turn calculated in the
corresponding virtual link server and transmits to all the virtual link members. As can be seen in
Figure 2, there is a demand for the virtual link server Fvli to exchange message with all the agents
which belong to the corresponding virtual link. Meanwhile, the virtual linkage server F also has to
communicate with all the virtual link servers. The disadvantages of this hierarchical architecture
lie in two aspects. First, it does not scale well with the number of agents in the team with limited
communication bandwidth. Second, the virtual linkage server might lose communication with some
virtual link servers when the agent group covers a large area.

G

F

Gy Fz

1Vl

1vlz vlkz

Supervisor

Formation control

(), ,d d dr qξ θ=
kVl

Supervisor

Formation control

vliG

vliF

1K

1S

FizGiy

jS

1z jz

1u 1y ju jy

Agent

Local control
vliξ

jK

Virtual Link i
(), ,d d dr qξ θ=

vliz

Figure 2. Hierarchical architecture of the previous virtual linkage.

23

Appl. Sci. 2018, 8, 2020

2.3. Preliminaries of Digraphs and Consensus

To implement the decentralized formation control, the communication topology among a group
of agents is represented as a diagraph G = (R, ε). In detail, R = {Ri|i = {1, 2, . . . n }} is a set of agents
and are called as nodes. ε ∈ R × R =

{
(Ri, Rj)

}
is a set of unordered pair of nodes and called as edge.

If (Ri, Rj) is an edge of the diagraph, then information flow from Ri to Rj is allowed and Ri, Rj are
neighbors. Especially, self-loop edges in the form (Ri, Ri) are not allowed. Another way to represent
G is called the adjacency matrix A =

[
ai,j

] ∈ Rn×n. The elements aij equals 1 if there exists an edge
(Ri, Rj) ∈ ε, otherwise aij = 0.

Theorem 1 (Consensus algorithm [22]). Let A =
[
ai,j

] ∈ Rn+1×n+1 be the adjacency matrix, where
aij = 1, ∀i, j ∈ {1, . . . , n} once the agent j’s formation state estimate is available to agent i and 0 otherwise.
ai(n+1) = 1 if agent i has knowledge of reference value ξcontr and 0 otherwise, and a(n+1)k = 0, ∀k ∈
{1 . . . n + 1} 0. Then the consensus algorithm

.
ξ i =

1
ηi

n

∑
j=1

aij

[
ξ j − κ

(
ξi − ξ j

)]
+

1
ηi

ai(n+1)

[.
ξ

r
contr − κ(ξi − ξcontr)

]
(1)

guarantees that ξi → ξd, ∀i , asymptotically if and only if the graph of A has a directed spanning tree.

2.4. Agent Model

In this paper, a group of n fully actuated agents is considered. The agents are assumed to know
their position in a global coordinate frame and can move in any direction with any specified velocity.
The model of the agent is considered as follows:

.
xk = uxk.
yk = uyk

(2)

where pk = [xk, yk] and uk =
(

uxk, uyk

)
are the position coordinate and control input of the kth

agent respectively.

3. Decentralization of Virtual Linkage Approach

This section illustrates the decentralization of virtual linkage approach. First, the decentralized
architecture is introduced to illustrate the advantages as compared to the hierarchical architecture.
Then the consensus formation control is presented to enable each agent to decide its movement
independently with only exchanging state information with its local neighbors.

3.1. Decentralized Coordination Architecture

In this paper, instead of using hierarchical architecture in which the desired destination of each
agent is informed by the corresponding virtual link server, a decentralized architecture is adopted
in the proposed approach. As compared to the hierarchical architecture, there does not exist virtual
linkage and virtual link servers, each agent only needs to exchange information with its local neighbors.

Figure 3 shows the architecture diagram of the proposed decentralized virtual linkage approach.
Each agent instantiates a local copy of consensus module, denoted as Fi. The consensus module Fi
is responsible for calculating the instantiation of virtual linkage states ξi = (ri, qi, Θi, λi) for the ith
agent, with the inputs of instantiations of virtual linkage states ξ j = (rj, qj, Θj, λj) produced by its local
neighbors. The main aim of consensus module is to drive each instantiation of virtual linkage state to
converge into the desired states ξd = (rd, qd, Θd, λd).

24

Appl. Sci. 2018, 8, 2020

| }{ ij j Nξ ∈

iu iy

iF

Communication Network

iξ

w w d
i ip p−iξ

| }{w w
i

d
j j j Jp p− ∈

iK

iS

Robot #i

rξ
If #i is virtual leader

Reference trajectory and
formation patterns

Figure 3. Decentralized virtual linkage architecture.

The states of the virtual linkage are defined as a coordination variable ξ = (r, q, Θ, λ), where r
and q are the desired position and attitude of the virtual linkage’s reference frame, respectively,
Θ =

(
θ1, θ2, . . . , θk−1, θk

)
is the desired virtual joint angles, where k is the number of virtual links

in the virtual linkage. In addition, λ =
(

λ1x, λ1y, λ1z, . . . , λkx, λky, λkz

)
is a vector which represents

the expansion rates of all virtual links. The benefit of introducing λ lies that a group of agents is
able to reconfigure into more formation shapes since the length and width of each virtual link can be
specified now.

3.2. Consensus Control

3.2.1. Implication of Consensus of Virtual Linkage’s State ξi

As mentioned above, each agent has an instantiation of virtual linkage states ξi = (ri, qi, θi, λi)

and the consensus module implement consensus strategies to ensure each instantiation converge into
the desired value. In this part, the implication of ξi is illustrated.

In the virtual linkage approach, each agent is specified with a vector χ =
(
li, vj pIni

i
)

before task.
The li is the ID number of virtual link which the ith agent belongs to, and vj pIni

i is the ith agent’s
relative position in the jth unit virtual link. Meanwhile, each agent is randomly initialized with
a ξi = (ri, qi, Θi, λi). With knowing the χ and ξi, each agent now is able to calculate its global position
in the world.

Note that each ξi corresponds to a state of the virtual linkage (See Figure 4). The consensus
module will ensure all the ξi converge into a common value

ξ1 = ξ2 = . . . = ξn = rξcontr. (3)

The team of agents forms virtual linkages and moves in desired formation shapes along a specified
path. Note that the formation pattern can be easily reconfigured by reconfiguring the coordinate
variable rξcontr = (rrcontr, rqcontr, rΘcontr, rλcontr).

25

Appl. Sci. 2018, 8, 2020

 F

(,)r x y=

θ

different expansion rate 2 xλ

q 2ξ

3ξ

F

1 2 3 dξ ξ ξ ξ= = =

1ξ

Figure 4. Implication of virtual linkage states ξi.

3.2.2. Consensus Module

With the previous section, each agent now is initialized with a ξi = (ri, qi, θi, λi). This part aims to
design a consensus law and drive ξi to the desired value rξcontr. Here, the consensus tracking algorithm
in Reference [22]

.
ξ i =

1
ηi

n

∑
j=1

aij

[
ξ j − κ

(
ξi − ξ j

)]
+

1
ηi

ai(n+1)

[.
ξ

r
contr − κ(ξi − ξcontr)

]
(4)

is directly used, where aij are the elements of the adjacency matrix Ac =
[

ac
ij

]
∈ Rn+1×n+1 and

ηi =
n+1
∑

j=1
ac

ij. The consensus law consists of two parts. The first term uses the information of its

neighbors to make all the ξi converge into a common value which leads to the desired formation
shape. The existence of the second term is to make formation move along the desired path ξcontr.
For a connected graph, consensus to the reference value is guaranteed [22].

3.3. Local Control of Each Agent

After each agent has calculated the
.
ξ i, then each agent is able to update the value of ξi using

Equation (5). Note that λ = [λ1x, λ1y, . . . λkx, λky] represents the expansion/contraction rates of each
virtual link along their coordinate frame’s axis (See Equation (6)). Figure 5 shows the geometry
definition of the virtual linkage. The position of a specified agent can be calculated using manipulation
kinematics in Equation (7). Here, vj pi is the relative position of Agent i in the corresponding virtual
link j which it belongs to

ξi(ri, qi, Θi, λi) = ξi +
.
ξ i · dt (5)

vj pi =

⎡⎢⎣ λiy · vj pIni
ix

λiy · vj pIni
iy

1

⎤⎥⎦ (6)

w pd
i = wTR(ri, qi) · RTd

vj(Θi, λi) · vj pi (7)

26

Appl. Sci. 2018, 8, 2020

Figure 5. Geometry definition of the virtual linkage.

Finally, the desired absolute position is passed onto the local controller to position the vehicle.
Each agent is supposed to know its own position w pi, and the consensus control algorithm in
Reference [22]

ui =
w .

pd
i − kp ·

(
w pi − w pd

i

)
−

n

∑
j=1

av
ij[(

w pi − w pd
i)− (w pj − w pd

j)] (8)

is used, where av
ij are the elements of the adjacency matrix Av =

[
av

ij

]
∈ Rn×n. For a connected graph,

consensus to the reference value is guaranteed.

4. Simulation and Results

In this section, the proposed decentralized virtual linkage approach is applied to a multi-agents’
formation control scenario using MATLAB. In the scenarios, nine agents are required to move around
a circle while maintaining line formation shapes with a uniform distance of 0.1 m or performing
formation reconfigurations by coordinating the desired virtual joint angles Θd and the virtual linkage
extract/expansion rates λd.

4.1. Simulation Setup

In the scenarios, nine agents are designed as a virtual linkage which consists of two virtual links
(See Figure 6) and move around a circle with a radius of 1 m in 10 s. The states of χ =

(
li, vj pIni

i
)

for
each agent is predefined with Equations (9) and (10).

Virtual linkage =

{
virtuallink1 = {agent1, agent2, agent3, agent4, agent5}
virtuallink2 = {agent5, agent6, agent7, agent8, agent9} (9)

Recall that vj pi is the representation of the ith point in the jth virtual link coordinate frame.
The nine agents are initialized with:

v1 pIni
1 = [0, 0], v1 pIni

2 = [0.2, 0], v1 pIni
3 = [0.4, 0], v1 pIni

4 = [0.6, 0], v1 pIni
5 = [1, 0]

v2 pIni
5 = [0, 0], v2 pIni

6 = [0.2, 0], v2 pIni
7 = [0.4, 0], v2 pIni

8 = [0.6, 0], v2 pIni
9 = [1, 0]

(10)

Meanwhile, each agent has an instantiation of virtual linkage states ξi = (ri, qi, Θi, λi) and is
initialized as:

ξi = randn(6, 1) (11)

27

Appl. Sci. 2018, 8, 2020

Moreover, there does not exist leader selection for each virtual link. Figure 7 shows the communication
topologies used for these two simulations. Notice that apart from agent 2, each agent only needs to
exchange ξi and its own position w pi with its two neighbors.

1vF

1x

2y

1y

2x

1θ

Figure 6. Predefined virtual linkage used in these two simulations.

rξ

Figure 7. Information-exchange topologies.

Initially, the nine agents are required to align in a line formation with a uniform distance of 0.1 m.
Then different formation shapes are reconfigured by coordinating the virtual joint angles Θd and the
virtual linkage extract expansion rates λd. It is worth mentioning that instead of refreshing the relative
positions of all the agents, the virtual linkage approach can be reconfigured into different shapes by
only changing Θd and λd.

In the following simulations, the required trajectory and formation shapes are specified by:

ξcontr = (rd, qd, Θd, λd) (12)

4.2. Formation Moving Using Decentralized Virtual Linkage

In this section, the nine agents are required to align in a line formation with a uniform distance of
0.1 m and move around a circle with a radius of 1 m in 100 s. To perform such tasks, the trajectory of
the virtual linkage is specified:

rd =

(
− 9π

500
cos(

π

50
t),

9π

500
sin(

π

50
t)
)

(13)

28

Appl. Sci. 2018, 8, 2020

Meanwhile, the attitude of the virtual linkage can be expressed as the angle from the x direction of
the virtual link1 to the world coordination frame x direction and is also specified as a function of time

qd =
π

50
t +

π

2
(14)

Using the virtual linkage approach, the nine agents are able to maintain a line formation with
a uniform distance of 0.1 m by specifying:

Θd = θ1 = 0◦ (15)

λd = [λ1x, λ1y, λ2x, λ2y] = [0.4, 1, 0.4, 1] (16)

Figure 8 shows the snapshots during the simulation for 100 s.

Figure 8. Snapshot of the formation moving using virtual linkage.

Figure 9a,b show the reference state and desired trajectory of the virtual linkage defined in
Equations (13)–(16). The individual elements of each ξi are plotted in Figure 9c–h respectively.
As can be seen from the figures, the nine random initialized ξi(i = 1, 2, . . . , 9) finally converge
into reference state defined in Equations (13)–(16). Recall the implication of virtual linkage states
ξi illustrated in Section 3.2.1 in which the convergence of ξi indicates that the nine agents finally
forms a specified virtual linkage and moves in desired formation shapes along the specified path.
Therefore, the simulation results indicate the effectiveness of moving in formation using the virtual
linkage approach.

29

Appl. Sci. 2018, 8, 2020

Figure 9. Simulation results of nine agents move around a circle in line formation.

4.3. Formation Reconfiguration Using Decentralized Virtual Linkage Approach

In this part, formation reconfiguration simulation is performed to show the virtual linkage
approach’s reconfiguration ability by coordinating the desired virtual joint angle Θd and
expansion/contraction vector λd.

In the original virtual linkage approach [18], the designed virtual linkage is able to present different
formation shapes by coordinating the desired virtual joint angle Θd. Moreover, an expansion/contraction
vector λd is introduced in this decentralized virtual linkage approach to enable the designed virtual
linkage to be reconfigured into more formation patterns, as compared to the hierarchical virtual
linkage approach. In this simulation, the group of agents is designed as the virtual linkage defined in
Equations (9) and (10) and move along the trajectory in Equations (13) and (14). The Θd and λd are
specified as Equations (17) and (18) to illustrate the formation reconfiguration ability.

Θd = θ1 =

{
π

100 t
− π

100 t + π
2

t ≤ 50
50 < t < 100

(17)

λd = [λ1x, λ1y, λ2x, λ2y] = [0.4 − 0.002t, 1, 0.4 − 0.002t, 1] (18)

Figure 10 shows the snapshots during the simulation for 100 s. As can be seen, the team of agents
move around a circle with varying formation patterns. It is worth noting that the two virtual links

30

Appl. Sci. 2018, 8, 2020

have different lengths at each moment during the simulation, which indicates that the introduction of
λd has provided a stronger reconfiguration ability to the virtual linkage approach.

Figure 10. Snapshot of the formation reconfiguration using virtual linkage.

Figure 11a,b report the reference state and desired trajectory of the virtual linkage defined in
Equations (13), (14), (17) and (18). The individual elements of each ξi are plotted in Figure 11c–h,
respectively. As can be seen from the figures, the nine random initialized ξi finally converge into the
same value, which indicates that the nine agents finally form a specified virtual linkage and move
in desired formation shapes along the specified path. Notice that λ1x, λ2x and Θ of each ξi track
well with the varying function. Recall that a virtual linkage can reconfigure into different formation
patterns by changing the joint anglesand extracting/expanding each link with the scale factor λd.
Thus, the simulation results indicate the effectiveness of formation reconfiguration using the proposed
decentralized virtual linkage approach. What is important for us to recognize here, is the coordinate
variable ξr = (rd, qd, Θd, λd) in the proposed approach can be arbitrarily set, which provides great
potential to perform complicated tasks. For example, when a group of agents is required to go through
a gallery, the desired trajectory and varying formation shapes (ξr = (rd, qd, Θd, λd)) can be solved by
plan method.

31

Appl. Sci. 2018, 8, 2020

Figure 11. Simulation results formation reconfiguration using virtual linkage.

5. Comparison with Hierarchical Virtual Linkage Approach

In this section, the advantages of the proposed decentralized virtual linkage approach are
illustrated through the comparison with the hierarchical virtual linkage approach and the performance
is discussed.

5.1. Role Assignments

The detailed architecture of the hierarchical virtual linkage approach when performing the same
simulation in Section 4.2 are presented in Figure 12. In the hierarchical virtual linkage approach,
there exist virtual link/linkage servers which handle part of the formation control and communicate
with part of agents. In reality, the virtual link/linkage server can be implemented in a specified
agent, which implies there exist some agents (virtual link/linkage server) which need to perform
the formation control computations. However, other agents only need to communicate with their
corresponding virtual link server and move according to the states of the corresponding virtual link.
In conclusion, there exist different kinds of agents which play different roles and need extra role
assignments in the previous approach.

In the decentralized virtual linkage approach, there does not need to be extra role assignment in
Figure 3 since all the agents run the same formation control algorithm in Equations (4) and (8).

32

Appl. Sci. 2018, 8, 2020

*
1vX *

2vX

1
d
vX 2

d
vX

(), ,d d dr qξ θ=

Figure 12. Detailed architecture of the hierarchical virtual linkage approach for simulation.

5.2. Scalability

As described in Section 3.1, each agent can completely decide its movement and only exchange
states with its local neighbors. To verify the scalability of the proposed approach, five agents are
required to align in a line formation with a uniform distance of 0.1 m and perform the same simulation
task in Section 4.2 using the proposed decentralized virtual linkage approach.

To perform such a task, a virtual linkage which also consists of two virtual links is designed
as follows:

Virtuallinkage_B =

{
virtuallink1 = {agent1, agent2, agent3}
virtuallink2 = {agent3, agent4, agent5} (19)

v1 pIni
1 = [0, 0], v1 pIni

2 = [0.1, 0], v1 pIni
3 = [0.2, 0],

v2 pIni
3 = [0, 0], v2 pIni

4 = [0.1, 0], v2 pIni
5 = [0.2, 0]

(20)

The extract/expansion rate is set as λd = [λ1x, λ1y, λ2x, λ2y] = [1, 1, 1, 1]. Figure 13 shows the
designed virtual linkage and communication topologies used for this simulation. Figure 14 shows the
snapshot during the simulation.

θ

1
x

2
y

1
y

2
x1vF

(a) Schematic of the designed
virtual linkage (b) Communication topologies

contrξ

Figure 13. Schematic of designed virtual linkage and communication topologies.

33

Appl. Sci. 2018, 8, 2020

Figure 14. Snapshot of the formation moving of five agents.

Recall that in Figure 3, each agent exchanges its own understanding of virtual linkage states
ξi = (ri, qi, Θi, λi) and the individual tracking error w pi − w pd

i with its neighbors. Supposing 6K bits
are required to encode each instantiation of virtual linkage ξi, 2K bits for individual tracking error
w pi − w pd

i , then each agent only needs exchange these 8K bits message with its neighbors. If an agent
has M neighbors and communicates with them for every period of time T and then the required
bandwidth in units of bits per second is:

BW = 8K · M/T (21)

The maximum communication bandwidth BW1 in this five agents involved simulation occurs in
agent 2, since it has three neighbors (See Figure 13b):

BW1 = 8K · 3/T = 24K/T (22)

Meanwhile, nine agents are involved in the simulation in Section 4.2, the maximum
communication bandwidth also occurs in agent 2:

BW2 = 8K · 3/T = 24K/T = BW1 (23)

It is worth noting that, the maximum communication bandwidth in the team is determined by the
maximum number of agents’ neighbors and does not increase with the number of agents in the group.

In contrast to the decentralized virtual linkage approach, the hierarchical virtual linkage approach
does not scale well with the number of agents. As illustrated in Reference [18], the maximum
communication bandwidth increases with the number of agents in the team. The results indicate
that the proposed decentralized virtual linkage approach is more suitable for situations when a large
number of agents and/or limited communication are involved.

34

Appl. Sci. 2018, 8, 2020

5.3. Reconfiguration Ability

As compared to the virtual structure approach, an important property of the hierarchical virtual
linkage approach is that it can reconfigure the group of agents into different formation patterns by
coordinating the value of virtual joint angles. To evaluate the reconfiguration ability of the virtual
linkage approach, the definition of reconfiguration space is proposed:

Definition 3 (Reconfiguration Space). In virtual linkage approach, the reconfiguration space is defined as
the set of formation configuration that can be realized by the designed virtual linkage model. In other words,
it corresponds to the formation patterns to which the designed virtual linkage can be reconfigured.

To compare the reconfiguration ability between the original and proposed approach,
the reconfiguration spaces of these two approaches are evaluated. In the proposed approach, instead of
using ξd = (rd, qd, Θd) to control the designed behavior of the team like the hierarchical virtual linkage
approach (See Figure 12), ξd = (rd, qd, Θd, λd) is used as the coordinate variable. Meanwhile, each agent
i record its relative percentage position vj pIni

i in the corresponding virtual link j rather than the relative
position vj pi. The benefit of this is that the virtual linkage is now able to extract/expansion the virtual
link using Equation (6), which facilitates the reconfiguration ability of the proposed virtual linkage.

In detail, the reconfiguration spaces of the hierarchical and decentralized approaches are denoted
as RShier and RSdec respectively. Recall that dr, dq are the predefined trajectory and attitude of the
virtual linkage, the formation pattern is only determined by the vectors dΘ = (θ1, . . . , θn) and
λd = [λ1x, λ1y, . . . , λnx, λny]. Then the RShier and RSdec can be expressed as vector spaces:

RShier =
(

dΘ, dλconst

)
= (θ1, . . . θn, 1, 1, . . . 1, 1) (24)

RSdec =
(

dΘ, dλ
)
=

(
θ1, . . . θn, λ1x, λ1y, . . . , λnx, λny

)
(25)

It is worth noting that RShier can be seen a special case of RSdec when

λd = [λ1x, λ1y, . . . , λnx, λny] = [1, 1, . . . , 1, 1] (26)

and the decentralized approach has stronger reconfiguration ability than the hierarchical
approach since

RShier ⊂ RSdec (27)

Figure 15 shows an intuitive way of illustrating the stronger reconfiguration ability by introducing
the scale factor λd. In the original approach, the designed virtual linkage corresponds to a mechanical
linkage which has fixed length and width and is only able to reconfigure into different shapes
by coordinating the joint angles. However, proposed approach enables each virtual link to
extract/expansion its length and width by introducing the scale factor λd, which allows the mechanical
linkage to reconfigure into more shapes by extracting/expanding each link and changing the joint
angles simultaneously.

35

Appl. Sci. 2018, 8, 2020

(a). Hierarchical approach coordinates
joint angle only

(b).Decentralized approach extracts/expands each link
and coordinates the joint angles simultaneously

[1,1, 2,1]dλ =

Figure 15. Reconfiguration ability of hierarchical and decentralized virtual linkage approach.

6. Conclusions

In this paper, the decentralized virtual linkage approach is presented. Instead of using a hierarchical
architecture, as with the original virtual linkage approach, the proposed approach uses decentralized
architecture in which each agent can independently determine its movement with only the exchange
of state information with its local neighbors. The simulation results show the effectiveness of the
decentralized virtual linkage approach. There are several advantages as compared with the original
virtual linkage approach. First, the proposed approach uses decentralized architecture rather than
hierarchical architecture, which does not require role assignments in each virtual link. In detail,
there does not exist an agent which needs to exchange with all the agent members in the same virtual
link. Meanwhile, each agent can completely decide its movement with only the exchange of states
with its local neighbors, which makes this approach more suitable for situations when a large number
of agents and/or limited communication are involved. Last but not least, the reconfiguration ability is
enhanced in this approach by introducing the scale factor λd.

In future work, more attention will be paid to the formation feedback of the virtual linkage
approach. Furthermore, the dynamical formation pattern generation and route planning for unknown
environments is also an attractive direction and is worth researching.

Author Contributions: Y.L. conceived of the presented idea. Y.L. and J.G. developed the theoretical formalism.
Y.L. and J.G. designed the simulation experiments and analyzed the data. Y.L., J.G., X.S. and C.J. discussed the
results and wrote the paper.

Acknowledgments: This work is based on work supported in part by the National Key Technology R&D Program
of China under Grant 2013BAK03B03 and National Defense Basic Research Project under Grant B2220132014.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Van den Broek, T.H.A. Formation Control of Unicycle Mobile Robots: A Virtual Structure Approach.
In Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference
(International Conference), Shanghai, China, 15–18 December 2009; pp. 8328–8333.

2. Wang, W.; Huang, J.; Wen, C.; Fan, H. Distributed adaptive control for consensus tracking with application
to formation control of nonholonomic mobile robots. Automatica 2014, 50, 1254–1263. [CrossRef]

3. Rezaee, H.; Abdollahi, F. A decentralized cooperative control scheme with obstacle avoidance for a team of
mobile robots. IEEE Trans. Ind. Electron. 2014, 61, 347–354. [CrossRef]

4. Dong, X.; Yu, B.; Shi, Z.; Zhong, Y. Time-varying formation control for unmanned aerial vehicles: Theories
and applications. IEEE Trans. Control Syst. Technol. 2015, 23, 340–348. [CrossRef]

5. Abbasi, Y.; Moosavian, S.A.A.; Novinzadeh, A.B. Formation control of aerial robots using virtual structure
and new fuzzy-based self-tuning synchronization. Trans. Inst. Meas. Control 2017, 39, 1906–1919. [CrossRef]

6. Ren, W.; Beard, R. Decentralized Scheme for Spacecraft Formation Flying via the Virtual Structure Approach.
J. Guid. Control Dyn. 2004, 27, 73–82. [CrossRef]

36

Appl. Sci. 2018, 8, 2020

7. Qian, D.; Xi, Y. Leader–Follower Formation Maneuvers for Multi-Robot Systems via Derivative and Integral
Terminal Sliding Mode. Appl. Sci. 2018, 8, 1045. [CrossRef]

8. Cui, R.; Ge, S.S.; How, B.V.E.; Choo, Y.S. Leader–follower formation control of underactuated autonomous
underwater vehicles. Ocean Eng. 2010, 37, 1491–1502. [CrossRef]

9. Consolini, L.; Morbidi, F.; Prattichizzo, D.; Tosques, M. Leader-follower formation control of nonholonomic
mobile robots with input constraints. Automatica 2008, 44, 1343–1349. [CrossRef]

10. Chen, J.; Sun, D.; Yang, J.; Chen, H. Leader-follower formation control of multiple non-holonomic mobile
robots incorporating a receding-horizon scheme. Int. J. Rob. Res. 2010, 29, 727–747. [CrossRef]

11. Das, A.K.; Fierro, R.; Kumar, V.; Ostrowski, J.P.; Spletzer, J.; Taylor, C.J. A Vision-Based Formation Control
Framework. IEEE Trans. Robot. Autom. 2002, 18, 813–825.

12. Balch, T.; Arkin, R.C. Behavior Based Formation Control for Multirobot Teams. IEEE Trans. Robot. Autom.
1998, 14, 926–939. [CrossRef]

13. Antonelli, G.; Arrichiello, F.; Chiaverini, S. Flocking for multi-robot systems via the Null-space-based
behavioral control. Swarm Intell. 2010, 4, 37–56. [CrossRef]

14. Xu, D.; Zhang, X.; Zhu, Z.; Chen, C.; Yang, P. Behavior-based formation control of swarm robots. Math. Probl. Eng.
2014, 2014. [CrossRef]

15. Lewis, M.A.; Tan, K.H. High Precision Formation Control of Mobile Robots Using Virtual Structures.
Auton. Robots 1997, 4, 387–403. [CrossRef]

16. Dong, L.; Chen, Y.; Qu, X. Formation Control Strategy for Nonholonomic Intelligent Vehicles Based on
Virtual Structure and Consensus Approach. Procedia Eng. 2016, 137, 415–424. [CrossRef]

17. Chen, L.; Baoli, M. A nonlinear formation control of wheeled mobile robots with virtual structure approach.
In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015;
pp. 1080–1085.

18. Liu, Y.; Gao, J.; Liu, C.; Zhao, F.; Zhao, J. Reconfigurable Formation Control of Multi-Agents Using Virtual
Linkage Approach. Appl. Sci. 2018, 8, 1109. [CrossRef]

19. Ren, W.; Randal, B. Distributed Consensus in Multi-Vehicle Cooperative Control; Springer: London, UK, 2008.
20. Ren, W. Decentralization of Virtual Structures in Formation Control of Multiple Vehicle Systems via

Consensus Strategies. Eur. J. Control 2008, 14, 93–103. [CrossRef]
21. Ren, W. Consensus Seeking, Formation Keeping, and Trajectory Tracking in Multiple Vehicle Cooperative

Controlconsensus Seeking, Formation Keeping, and Trajectory Tracking in Multiple Vehicle Cooperative Control;
Brigham Young University: Provo, UT, USA, 2004.

22. Ren, W.; Sorensen, N. Distributed coordination architecture for multi-robot formation control. Rob. Auton. Syst.
2008, 56, 324–333. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

37

applied
sciences

Article

Reconfigurable Formation Control of Multi-Agents
Using Virtual Linkage Approach

Yi Liu 1 ID , Junyao Gao 1,2,*, Cunqiu Liu 1, Fangzhou Zhao 1,3 and Jingchao Zhao 1 ID

1 Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology,
Beijing 100081, China; YiLiu@bit.edu.cn (Y.L.); 2120160164@bit.edu.cn (C.L.); fzzhao@bit.edu.cn (F.Z.);
jch_zhao@bit.edu.cn (J.Z.)

2 Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081, China
3 Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing 100081, China
* Correspondence: gaojunyao@bit.edu.cn; Tel.: +86-010-68917611

Received: 10 April 2018; Accepted: 4 July 2018; Published: 9 July 2018

Abstract: Formation control is an important problem in cooperative robotics due to its broad applications.
To address this problem, the concept of a virtual linkage is introduced. Using this idea, a group of robots is
designed and controlled to behave as particles embedded in a mechanical linkage instead of as a single rigid
body as with the virtual structure approach. As compared to the virtual structure approach, the method
proposed here can reconfigure the group of robots into different formation patterns by coordinating the
joint angles in the corresponding mechanical linkage. Meanwhile, there is no need to transmit all the
robots’ state information to a single location and implement all of the computation on it, due to virtual
linkage’s hierarchical architecture. Finally, the effectiveness of the proposed method is demonstrated using
two simulations with nine robots: moving around a circle in line formation, and moving through a gallery
with varying formation patterns.

Keywords: formation control; virtual structure; formation reconfiguration; multi-agents; robotics

1. Introduction

Formation control is an important and fundamental problem in the coordinated control of multi-agent
systems. In many applications, a group of agents is expected to move around while maintaining a specified
spatial pattern. For example, aircraft flying in V-shaped formation could reduce the fuel consumption
required for propulsion [1]. As for the box pushing problem, formation control of a team of identical robots
provides the ability to move heavy boxes, which is difficult for a single robot [2]. In military and security
patrol missions, formations allow each member of the team to monitor only a small part of the environment
for full area coverage and surveillance [3–6].

In the literature, there are roughly three formation control approaches, namely leader-following,
behavioral, and virtual structure approaches. In the leader-following approaches [7–10], some agents
are considered as leaders, while others act as followers. The formation control problem is converted
into two tracking problems: the leaders track the predefined trajectories, and the followers track the
transformed coordinates of the leader with some prescribed offsets. The primary advantage of this
approach is that the formation stability can be analyzed as tracking stabilities through standard control
theories. In addition, the analysis is easy to understand and implement using a vision system equipped
on the robot [11,12]. The disadvantage is that the leader has no information about the followers’ states.
If a follower fails, the leader will still move as predefined, and the formation cannot be maintained.

In the behavioral approaches [13–16], a set of reactive behaviors are designed for the individual
agent, such as move-to-goal, avoid-static-obstacle, avoid-robot and maintain-formation. The control
action of each agent is generated as a weighted sum of all the behaviors accordingly. One advantage of
this approach is that it provides a natural solution for each agent when it has to maintain formation and

Appl. Sci. 2018, 8, 1109; doi:10.3390/app8071109 www.mdpi.com/journal/applsci38

Appl. Sci. 2018, 8, 1109

avoid obstacles. Learning-based methods can also be used to determine agents’ behavior to improve
the formation performance [17,18]. Furthermore, the formation feedback is implicitly induced through
control action, which partly depends on the states of neighboring agents. However, the mathematical
analysis of this approach is difficult, and the group stability is not guaranteed.

In the virtual structures approach [19–21], the entire formation is treated as a single rigid body.
The desired position of each agent in the team is derived from the virtual particles embedded in the virtual
structure. One advantage of the virtual structure approach is that it is straightforward to prescribe the
desired behavior for the whole group. Another advantage of this approach is that the group is able to
keep a geometric pattern in high precision during movement. Nevertheless, most approaches based on the
virtual structure are designed to hold the same shape during the whole task [22–25], and tend to have poor
performance when the formation shape needs to be reconfigured frequently.

When talking about formation control, it is desirable to have a group of agents moving in formation
with high precision when a specified shape needs to be preserved. Nevertheless, the formation stability
is not guaranteed using behavioral approaches. In leader-following approaches, the formation shape also
cannot be maintained when a follower fails. Therefore, it is a suitable choice to have all the agents move as
a single rigid body by using a virtual structure, out of the three approaches mentioned above. However,
the virtual structure approach has limited formation reconfiguration ability for the group of agents.

The main aim of this paper is to provide high precision formation control with some reconfiguration
ability for a group of agents. Motivated by the advantages and disadvantages of the virtual structure
approach, a novel idea named virtual linkage (VL) is proposed in this paper. Instead of considering the
entire formation as a single rigid body, as in the virtual structure approach, the formation is treated as
a mechanical linkage which is an assembly of rigid bodies connected by joints. As compared to a single
rigid body, a mechanical linkage is able to change its geometric shape by coordinating the angles between
each link. Figure 1 illustrates that, instead of remaining the same shape, different geometric shapes can
be presented using a mechanical linkage. In other words, the formation shape can be reconfigured if the
individual agents are controlled as particles in a mechanical linkage.

Figure 1. Example of a single rigid body and a mechanical linkage.

The main advantage of the virtual linkage approach is that it can maintain the formation shape in
high precision and is able to reconfigure the geometric shape when needed. On the one hand, if the
angles between each link are kept at a constant value, the multi-link mechanism is expected to behave
like a single rigid body and has high precision formation control. On the other hand, the formation
shape can be reconfigured by varying the angle value between links. Another advantage is that there
is no need to transmit all the agents’ state information into a central location as in [19] due to the
hierarchical architecture of the virtual linkage approach.

The remainder of this paper is organized as follows. In Section 2, the definition of virtual linkage
is presented. Section 3 illustrates the control strategy for the formation movement. Simulation results
are in Section 4. Finally, in Section 5, some concluding remarks of this paper are given.

39

Appl. Sci. 2018, 8, 1109

2. Problem Statement

2.1. Virtual Linkage

A mechanical linkage is an assembly of rigid bodies connected by joints. Meanwhile, a rigid body
is defined as a group of point masses fixed by the constraint that the distances between every pair
of points must be constant [26]. A joint is a connection between two bodies and imposes constraints
on their relative movement. In other words, a linkage is also a collection of points which belong to
different rigid bodies.

Prior to analyzing a linkage directly, each rigid body component is discussed first. In a single
rigid body, particles can be thought of as stationary with respect to a certain frame of reference. If the
particles in a rigid body are replaced with movable elements, we obtain the definition of virtual
structure proposed in [19], which can be seen below.

Definition 1: Virtual Structure
A virtual structure is a collection of elements, e.g., robots, which maintain a (semi-) rigid geometric

relationship to each other and to a frame of reference [19].

The definition of virtual linkage also can be given by replacing particles of a linkage with movable
elements and controlling them to act as the original linkage. An intuitive solution to this problem is to
model each link as a virtual structure and define a virtual linkage as a collection of virtual structures
connected by virtual joints.

Definition 2: Virtual Joints
A virtual joint is a connection between two virtual structures and imposes constraints on their relative

movement.

Definition 3: Virtual Linkage (VL)
A virtual linkage is an assembly of virtual structures (named “virtual link”) connected by virtual joints.

The principle of the virtual structure and virtual linkage is illustrated in Figure 2. In the generation
of a virtual linkage, the existence of the virtual joints has enabled relative movement between cascaded
virtual structures. Therefore, different geometric shapes are possible to be presented using the same
virtual linkage by controlling each virtual joint at different values.

Figure 2. Principle of virtual structure and virtual linkage.

40

Appl. Sci. 2018, 8, 1109

2.2. Moving in Formation

When talking about formation control, it is a fundamental problem to enable a group of agents
to move along a predefined trajectory while maintaining a rigid geometric relationship. The virtual
structure approach is an intuitive idea to solve this problem by considering the formation as a single
rigid body, enabling the movement of the virtual structure. In contrast to a virtual structure,
the geometric relationship is maintained by controlling virtual joints at predefined constant values in
the virtual linkage approach (see Figure 2).

Another way to illustrate the formation ability of the virtual linkage exists in the relationship
between the virtual linkage and virtual structure. In mechanical engineering, a linkage designed to be
stationary is called a structure and can be regarded as a single rigid body. Similarly, a virtual linkage
also degenerates to a virtual structure when it is designed to be stationary by controlling the virtual
joint at a fixed value. In this way, the formation problem of using a virtual linkage can be solved by
controlling the virtual joints at fixed angles and enabling the movement of the virtual linkage.

The geometry of the problem statement is illustrated in Figure 3. Formalizing these ideas,
the problem is stated as follows:

1. Given n agents labeled 1, . . . , n, and the position of the ith agent in the world, the coordinate
frame is represented as wri.

2. Imagining there is a virtual linkage consisting of k virtual links and n points, the position of the
ith point in the jth virtual link coordinate frame is represented as vj pi.

3. Let wTvj be the transformation that maps vj pi to w pi and the position of the ith point of the
virtual linkage in the world coordinate frame.

4. Say the agents are moving in the desired formation if the agents satisfy the constraints wri =
w pi

in time by controlling the virtual joints at specified angles and fitting each agent into the corresponding
virtual link.

Figure 3. Geometry of the virtual linkage definition: Fvj, FR, Fw are the reference coordinate frames of
the jth virtual link, virtual linkage and world, respectively. The point pi belongs to the jth virtual link
and is mapped from vj pi to w pi through the transformation wTvj. The agents act as a whole mechanical
linkage when all wri =

w pi.

2.3. Formation Reconfiguration

In some situations, such as aircraft flying in a V-shaped formation, agents are only required to
maintain a specified spatial pattern throughout the whole task. However, there also exist situations

41

Appl. Sci. 2018, 8, 1109

where the formation pattern should be reconfigured in order to perform a complex task. Figure 4 shows
an example of formation reconfiguration. The three agents initially move in a line formation in order
to have a broad view, and the formation pattern needs to be reconfigured as an arrow shape in order to
go through obstacles.

Figure 4. Formation reconfiguration example.

In the virtual structure approach, each virtual structure corresponds to a unique rigid body.
Therefore, it should be redesigned if different formation patterns are required. A solution to this
problem is to model the group of agents as a virtual linkage and set the desired virtual joint angle θd to
different values. For example, in Figure 4, the three agents are in line formation when θd = 0, and can
be reconfigured into a regular triangle shape when θid is set to 120◦.

2.4. Agent Model Definition

This paper considers a group of n fully actuated agents without motion constraints. The agents
are assumed to know their position in a global coordinate frame. The model of the agent is considered
as follows: .

xk = uxk.
yk = uyk

where pk = [xk, yk] is the coordinate of the kth agent, and uk =
(

uxk, uyk

)
is the control input to control

the movement of the agent. In other words, the agent is able to track a specified trajectory by designing
uk property.

3. Formation Control: Virtual Linkage Approach

The idea of using a virtual linkage to solve the problem of moving in formation is much the same
as virtual structures: the agents are controlled to fit the virtual linkage and then the virtual linkage
tracks the predefined trajectory. The real position and orientation of the virtual linkage are determined
by the individual virtual links, which in turns are determined by the agents’ position. In this paper,
each agent is assumed to know its position in a global coordinate frame. In real robotic systems,
this assumption can be realized by “localization” technics such as using global position systems,
motion capture system or other perception methods. With knowing the position of virtual linkage,
the desired position for each agent is given. In other words, there exists a hierarchical architecture and
bi-directional control as shown in Figure 5.

42

Appl. Sci. 2018, 8, 1109

Figure 5. Bi-direction flow control of the virtual linkage.

In this section, the virtual linkage approach will be carefully illustrated to solve the formation
control problem. Firstly, the overall control architecture of the virtual linkage approach and its
advantages are derived. Then, the state representation of the virtual link and virtual linkage is
illustrated. Finally, the detailed method is introduced to enable a group of agents to move in formation
and facilitate formation reconfiguration ability.

3.1. Architecture of the Virtual Linkage

As defined in Section 2.1, a virtual linkage consists of a set of virtual links, and each virtual link in
turns consists of a set of agents. Hence, it is natural to apply the hierarchical architecture to the control
of a virtual linkage. In this architecture, each virtual link oversees the performance of the other virtual
links. Each agent of a virtual link in turn oversees the other agents in the same links.

The architecture block diagram of the virtual linkage is shown in Figure 6. The module Vli is the
ith virtual link in the virtual linkage, with the coordination input ξ, and output vector vi representing
the state information of the ith virtual link. The system F represents the formation control in the virtual
linkage. The inputs to F are the performance of each virtual link zvli, and the outputs yG of the supervisor.
Also, a formation feedback from F to G can be induced by the performance measure zF. In reality, the module
G and F can be implemented in a specified agent or a server computer outside of the agent.

Figure 6. Architecture of the virtual linkage.

43

Appl. Sci. 2018, 8, 1109

The second layer of the architecture is the coordination of each virtual link module Vli.
Here, the coordination architecture proposed in [27] is directly used because each Vli is a small virtual
structure, as stated in the Definition 3. The systems Si and Ki are the agent and corresponding local
controller. Meanwhile, ui and yi represent the control variable to the agent and measurable outputs,
respectively. The rest of the modules and variables are much the same as the first layer. In practical
applications, a specified agent is responsible for running the Gvli and Fvli module, including receiving
the state of the agents that participate in the same link, handling the control algorithm and sending
desired information ξvli to the agents.

Figure 7 shows the scheme of the centralized architecture based on the virtual structure
approach [28]. In contrast to the centralized formation control [19,24,29], the virtual linkage architecture
has several advantages. Firstly, the hierarchical architecture does not need to exchange all agents’ state
information to a central location, which reduces the burden of communication bandwidth, and scales
much better than the centralized approaches. Secondly, the heavy computation of fitting agents into
the virtual linkage also has been distributed to several low-level controllers Fvli and can be calculated
simultaneously. This makes the proposed algorithm faster and more suitable for real-time control.
Finally, by varying virtual joint angle θd in the coordination input ξ =

(
rd, qd, θd

)
different formation

patterns can be achieved without the need to re-plan the whole formation procedure. In other words,
the virtual linkage approach provides the formation reconfiguration ability that is not provided by the
virtual structure approach.

Figure 7. Centralized architecture based on the virtual structure approach.

3.2. State Representations of Virtual Linkage and Virtual Link

In mechanical engineering, the state of a rigid body can be represented as a vector (r, q), where r
and q are the position and attitude of the rigid body. In order to describe the state of each link,
a frame attached to each link is defined. That is, Fvj is attached rigidly to link j. Following the
Denavit–Hartenberg convention [30], which is used for selecting the reference frame and analyzing
the state of a linkage, the reference frames of links are laid out as follows:

1. The z-axis lies in the direction of the joint axis.
2. The x-axis is parallel to common normal: xi = zi × zi−1 points from joint i − 1 to i.
3. The y-axis is formed by the right-hand rule to complete the jth frame.

Meanwhile, the virtual joint angle θi is defined as the angle from axis xi−1 to xi measured about zi−1.

44

Appl. Sci. 2018, 8, 1109

The coordinate frame Fvj corresponding to the jth virtual link is shown in Figure 8. The state
of the jth virtual link is represented as a vector

(
rvj, qvj

)
, where rvj and qvj are the real position and

attitude of the jth virtual link. In reality, only a parameter θ1d besides the length of the two links is
required to describe the shape of the virtual linkage. Thus, the FR is chosen to be the same with Fv1

and the state of the virtual linkage can also be denoted as (rR, qR), where rR and qR are the position
and orientation of the reference coordinate frame FR (See Figure 8).

Figure 8. Definition of a virtual link’s coordinate frame and virtual joint angle.

3.3. Moving in Formation Using Virtual Linkage

In order to illustrate the bi-directional flow and hierarchical architecture presented in Figures 5
and 6, the detailed virtual linkage approach is illustrated to enable a group of agents to move
in formation.

Table 1 shows the moving-in-formation algorithm using a virtual linkage. In step 1, the virtual
linkage is aligned with the agents. The virtual linkage then moves to track the predefined trajectory in
step 2. In step 3, the agents update their destinations which enable them to move like a mechanical
linkage. In step 4, individual agent is controlled to move to the desired position using a local controller.
The individual steps will be explained in more details in the following section.

Table 1. Moving-in-formation algorithm using virtual linkage.

(1). Align the virtual linkage with the current agents’ position.
a. Calculate each virtual links’ state with each group of agents’ position.
b. Align the virtual linkage with the virtual links’ state calculated from the above step.
(2). Move the virtual linkage to the desired position along the predefined trajectory
(3). Calculate individual agent’s positions to track the moving virtual linkage.
a. Calculate the desired state for each virtual link to track the moving linkage.
b. Calculate individual agent’s positions track the corresponding virtual link.
(4). Move the agents to the desired position using agents’ local controller.
(5). Go to step (1).

3.3.1. Fitting the Virtual Linkage

A virtual linkage is made up of several cascaded virtual links, where a virtual link is an assembly
of agents. In order to align the virtual linkage to a group of agents, we break the fitting process into
two steps. Firstly, each virtual links’ state is calculated using the corresponding group of agents.
Secondly, the virtual linkage is aligned with all virtual links’ states. The advantages of doing so lie
in two aspects: on the one hand, there is no need to transmit all the agents’ state information into
a central location. On the other hand, each virtual link can calculate its individual state simultaneously
which accelerates the whole fitting process.

45

Appl. Sci. 2018, 8, 1109

A. Fitting the Virtual Link

In the first step, an objective function is created to measure the fitness of the virtual link to
corresponding agents. Here, the objective function proposed in [19] to fit virtual structure with
a group of agents is adopted since a virtual link is a virtual structure. It is defined as the sum error
between all the agents’ position and its assigned point in the virtual link:

f
(
Xvj

)
= ∑

i∈vj
d
(

wri, wTvj(Xvj) · vj pi

)
(1)

where i ∈ vj refers to the agents belonging to the jth virtual link, and d is the distance between the
agent and its assigned point in virtual link (See Figure 3). Recall that, as defined in Section 2.2, the
wri is the position of the ith agent in the world coordinate frame and vj pi is the assigned position of
agent i in the frame of the jth virtual link. The function wTvj is a transformation that maps vj pi to w pi,
the position of the ith point of the virtual linkage in the world coordinate frame.

In detail, the wTvj is a homogeneous transform and takes the form

wTvj(Xvj) =

[
R P
0 1

]
(2)

R ∈ SO(3) and P ∈ R3 are parameterized by the element of Xvj =
[
rvj, qvj

]
which is the attitude

and position of Fvj in the world coordinate frame. The objective of this step is to find X∗
vj which enables

f
(

X∗
vj

)
≤ f

(
Xvj

)
for all Xvj and treat it as the position and attitude of the jth virtual link.

B. Fitting the Virtual Linkage

In the second step, the “best” position and attitude of the whole virtual linkage is required to
be determined using the X∗

vj obtained from the above step. The alignment of the virtual linkage is
performed by minimizing the error between calculated position and altitude of virtual links X∗

vj and
their corresponding state derived from the virtual linkage. The objective function is of the form:

F(XR) =
k

∑
vj=1

D
(

wTvj(X∗
vj),

wT R(XR) · RTd
vj(θd)

)
(3)

where k is the number of the virtual links, D(·) is the norm which measures the cost between the
calculated state of the jth virtual links X∗

vj and its assigned state in virtual linkage. RTd
vj is a fixed

homogeneous transform from the coordinate frame of jth virtual link {vj} to the virtual linkage’s
reference coordinate frame {R}. It is determined when the formation shape is configured with θd.

In order to implement D(·), the error between wTvj(X∗
vj) and wT R(XR) · RTd

vj(θd) are
transformed into the distance between four pair of points. In details, a homogeneous
transform is a moving coordinate frame {vj}, and the position and orientation error
between two coordinate frames can be calculated by moving and rotating a tetrahedron.
Here the shape of the tetrahedron is determined by four vertices in the {vj} coordinate
frame:

{
vjr p1 = (1, 0, 0, 1)T , vjr p2 = (0, 1, 0, 1)T , vjr p3 = (0, 0, 1, 1)T , vjr p4 = (0, 0, 0, 1)T

}
(See Figure 9).

Hence, the objective function D(·) is converted into the distance between four pairs of points:

F(XR) =
k

∑
vj=1

4

∑
i=1

d
(

wTvj(X∗
vj) · vjr pi, wT R(XR) · RTvj(θd) · vjr pi

)
(4)

The objective of this step is to find X∗
R which enables f (X∗

R) ≤ f (XR) for all XR and treat it as the
position and attitude of virtual linkage.

46

Appl. Sci. 2018, 8, 1109

Figure 9. Calculating differences between two homogeneous transforms.

3.3.2. Moving the Virtual Linkage

This involves simply moving the virtual linkage’s coordinate frame {R} along the predefined
reference trajectory rd

R = ζR(t) with attitude qd
R = q(t). Then, the coordinate frame of the jth virtual

link {vj} will follow its desired trajectory, Xd
vj, given by:

wTvj

(
Xd

vj

)
= wT R

(
Xd

R

)
· RTvj(θd) (5)

where RTvj(θd) is determined by the predefined formation shape and can be expressed using the
Denavit–Hartenberg convention [30]. The desired trajectory and attitude of the jth link is illustrated
using wTvj

(
Xd

vj

)
when the virtual linkage {R} follows the trajectory and attitude Xd

R =
(

rd
R, qd

R

)
.

Hence, the desired position of the agent i which belongs to the jth virtual link can be represented
as follows:

wrd
i = wTvj(Xd

vj) · vj pi (6)

3.3.3. Moving the Agents to the Desired Position

The next step in the formation algorithm is to move the agent i to the desired point wrd
i at each

iteration step. Each agent is supposed to known its own position wri, and the control input to the agent
model is given by:

u = w .
rd

i + kp ·
(

wrd
i − wri

)
(7)

3.4. Formation Reconfiguration Using Virtual Linkage

As described in Section 2.3, virtual structure approaches should be redesigned if different
formation patterns are required, as each virtual structure corresponds to a unique rigid body. In detail,
the agents have to be recalled back and refresh their relative position in the virtual structure Rri
which is saved in each local agent. Another way to update the Rri for all agents can be implemented
by informing all the agents through communication. If a group of agents needs to be reconfigured
for every period of time T, and 3*K bits are needed to record the relative position Rri in the virtual
structure, then the required bandwidth in units of bits per second is

BW1 = 3 · N · K/T (8)

This turns out to be a heavy burden to the communication network and is not suitable for real-time
control, especially when the number of agents N increases.

47

Appl. Sci. 2018, 8, 1109

Differently to the virtual structure, each virtual linkage corresponds to a linkage (or manipulator) rather
than a unique rigid body. In mechanical engineering, a linkage (or manipulator) is a kinematic configuration
which is able to change its state configuration by changing the value of joints. Therefore, a virtual linkage is
able to be reconfigured as different formation shapes by changing the virtual joint angle θd without need to
recall back and refresh all the agents’ relative position in the jth virtual link vjri.

In detail, by changing the θd in Figure 8, a different formation shape is able to be presented. It is
worth mentioning that the θd is only necessary to broadcast to k locations which handle the individual
formation control of the k virtual links. Supposing K bits are required to encode each virtual joint
angle, then the communication bandwidth reduces to

BW2 = K · k/T (9)

Here, the number of virtual links is not bigger than the number of agents (k ≤ N) since each
virtual link is a collection of agents. Hence, the bandwidth ratio is

BW2

BW1
=

k
3 · N

≤ 1
3

(10)

Figure 10 shows the bandwidth ratio increases linearly with the number of virtual links k when
the number of agents is fixed. The maximum value, 1/3, is reached when k = N. This indicates that the
virtual linkage requires less than 33.3% bandwidth to reconfigure a formation shape as compared to
the virtual structure approach.

Figure 10. Bandwidth ratio BW2
BW1

increases linearly with the number of virtual links.

4. Simulation and Results

In this section, numerical simulations including formation moving and formation reconfiguration
are presented using Matlab to validate the effectiveness of the proposed virtual linkage approach.
To illustrate the formation moving ability, the commonly used scenario of moving around a circle is
selected in Section 4.1 [7,31]. In the first simulation, nine agents are required to move around a circle
in line formation with uniform spacing of 0.1 m. As for the second parts, moving through a gallery
is a practical scenario where formation reconfiguration ability is needed and has been adopted by
related researchers [32,33]. Therefore, nine agents are reconfigured into predefined formation shape to

48

Appl. Sci. 2018, 8, 1109

go through a knowing obstacle gallery in the second simulation. In Section 4.3, parameter analysis
is conducted to illustrate function of the number of agents and number of virtual links and shape
transformations. Finally, the comparison between the virtual structure approach and the proposed
virtual linkage approach is presented in Section 4.4.

4.1. Formation Moving Using Virtual Linkage

To illustrate the formation moving ability of the proposed virtual linkage approach, a simulation is
carried out. In this simulation task, nine agents are required to align in a line formation with a uniform
distance of 0.1 m and move around a circle with a radius of 1 m in 10 s. Therefore, the velocity and
angle velocity v = π/5 m/s,ω = π/5 rad/s are specified to enable this task. The uniform distance of
0.1 m is specified to make the simulation results more easily comprehensible to readers.

4.1.1. Simulation Setup

In order to complete this task and illustrate the effectiveness of the proposed approach, a virtual
linkage which consists of two virtual links is designed (See Figure 11). It is worth mentioning that
a virtual linkage with only one virtual link degenerates into a virtual structure with no reconfiguration
ability. Therefore, a virtual linkage consisting of two virtual links can be considered as the smallest
unit to illustrate the standard validity of the proposed approach. In this simulation, the configuration
of the virtual linkage is predefined:

virtual linkage =

{
virtual link1 = {agent1, agent2, agent3, agent4, agent5}
virtual link2 = {agent5, agent6, agent7, agent8, agent9} (11)

By controlling the virtual joint at 180◦, the nine agents are able to maintain a line formation.
Since the nine agents are required to align in a line formation with uniform distance 0.1 m, each virtual
link then holds a length of 0.4 m in Figure 11.

Figure 11. Predefined virtual linkage used in these two simulations.

Recall that the position of the ith point in the jth virtual link coordinate frame is represented as
vj pi, and the designed virtual linkage has the following points.

v1 p1 = [0, 0], v1 p2 = [0.1, 0], v1 p3 = [0.2, 0], v1 p4 = [0.3, 0], v1 p5 = [0.4, 0]
v2 p5 = [0, 0], v2 p6 = [0.1, 0], v2 p7 = [0.2, 0], v2 p8 = [0.3, 0], v2 p9 = [0.4, 0]

(12)

The nine agents are randomly initialized at the region {(xi, yi)|xi ∈ [0, 1], yi ∈ [0, 1]}.

4.1.2. Simulation Results

The trajectories of the individual agents and snapshots during the simulation for 10 s are plotted
in Figures 12 and 13, respectively.

49

Appl. Sci. 2018, 8, 1109

Figure 12. Snapshots of the formation moving.

Figure 13. Trajectory of individual agents.

Notice how the agents fit themselves into the defined virtual linkage at the beginning when
the agents are randomly initialized. This can be explained as follows. During the first few seconds,

50

Appl. Sci. 2018, 8, 1109

the agents 1, 2, 3, 4, 5 fit themselves into virtual link1, shown by the blue line, and the agents 5, 6, 7, 8,
9 fit themselves into virtual link2, shown by the red line (See Figure 12). Then, the two virtual links fit
themselves into the whole virtual linkage shown by the green line and determine the ‘best’ position
and orientation of it. Once the states of the virtual linkage are determined, the agents quickly move
to their corresponding placeholder in the virtual linkage to reach formation. Meanwhile, the whole
virtual linkage moves along the circle; each agent then adjusts its velocity according to its position and
the placeholder in the fitting virtual linkage.

Figure 13 shows that the trajectory of each individual agent and indicates the effectiveness of
moving in formation using the virtual linkage approach.

4.2. Formation Reconfiguration Using Virtual Linkage

An important property of the proposed virtual linkage approach is that it is easy to be reconfigured
into some different formation patterns by coordinating the virtual joint angles. To show the formation
reconfiguration ability of the proposed virtual linkage approach a simulation is conducted for the
following scenario. Knowing the map of the environment, the agents are given the predefined trajectory
and varying formation shapes (shown in Figure 14) to pass through the gallery, which is surrounded
by obstacles.

Figure 14. Reconfiguring nine agents into varying formation shapes to go through the gallery.

4.2.1. Simulation Setup

In order to pass through the gallery, a team of nine agents is initially moving in a vertical line
formation with a uniform distance 0.1 m, and then reconfigured into arrow formations with varying
angles to pass through the gallery. In this scenario, nine agents are designed as the same virtual linkage
in Figure 11 using Equations (11) and (12).

The required trajectory and varying formation shapes to pass through the gallery are predefined as
Equations (13)–(15), which can also be provided using planning algorithms [34]. In details, the agents
are initialized as a line formation at position rR = (0, 0) with orientation qR = 0. The virtual linkage
is specified to move with a velocity vx = 0.3 m/s, vy = 0 m/s to pass through the gallery in 20 s
according to the task. That is the position of the virtual linkage holds:

rR = (0.3t, 0) (13)

Meanwhile, the attitude of the virtual linkage can be expressed as the angle from the x direction of
the virtual link1 to the world coordination frame x direction and is also specified as a function of time

51

Appl. Sci. 2018, 8, 1109

qR =

{
− π

30 t + π
2

π
30 + π

6

t ≤ 10
10 < t < 20

(14)

The virtual joint angle θd = θ1 also obeys the function

θ1 =

{
π
15 t

− π
15 t + 2π

3

t ≤ 10
10 < t < 20

(15)

4.2.2. Simulation Result

Figure 14 shows the simulation solution to this problem. The path tracking errors between the real
position and the desired place holder in virtual linkage wrd

ix − wrix, wrd
iy − wriy are shown in Figure 15.

These errors are at the magnitude of 10−3, which also indicates that the group of agents are able to
move in varying formation patterns determined by Equation (15). Figure 16 reports the real attitude
of the virtual linkage and the reference attitude defined in Equation (14). The attitude error qr

R − qd
R

is also presented in Figure 16. The real, reference virtual joint angle θr, θd and their error θr − θd are
plotted in Figures 16 and 17, respectively. These show that the virtual linkage is able to track the planed
varying qd

R and θd to pass through the gallery.

Figure 15. Errors between the real position and the desired position of the agents.

52

Appl. Sci. 2018, 8, 1109

Figure 16. (a) Real and desired attitude of the virtual linkage; (b) error between real and desired attitude.

Figure 17. (a) Real and desired virtual joint angle; (b) error between real and desired virtual joint angle.

53

Appl. Sci. 2018, 8, 1109

4.3. Parameters Analysis

In this section, two simulations are presented to illustrate the effects of the number of agents
and number of virtual links. In the first part, five agents are required to perform the same formation
moving task as in Section 4.1. In the second parts, nine agents are designed as a virtual linkage which
consists of three virtual links to perform the same simulation task as in Section 4.2.

4.3.1. Number of Agents

In order to analyze the performance of a different number of agents, five agents are required to
perform the same task as in Section 4.1: aligning in a line formation with a uniform distance of 0.1 m
and moving around a circle with a radius of 1 m in 10 s. With the consideration of only changing the
number of agents, a virtual linkage which also consists of two virtual links is designed:

virtual linkage_B =

{
virtual link1 = {agent1, agent2, agent3}
virtual link2 = {agent3, agent4, agent5} (16)

Similar to Section 4.1.1, each virtual link then holds a length of 0.2 m (See Figure 18) and has the
following points:

v1 p1 = [0, 0], v1 p2 = [0.1, 0], v1 p3 = [0.2, 0],
v2 p3 = [0, 0], v2 p4 = [0.1, 0], v2 p5 = [0.2, 0]

(17)

The trajectories of the individual agents and snapshots during the simulation for 10 s are plotted
in Figures 19 and 20. These results indicate that the proposed virtual linkage approach is able to be
applied to groups with different numbers of agents.

The influence of the agents’ number is analyzed by comparing the two simulations conducted in
Sections 4.1 and 4.3.1. As can be seen from Figure 21, each virtual link server needs to communicate
with five agents when nine agents are involved in the formation moving simulation (See Section 4.1).
In the simulation presented in this section, the communication burden has been reduced, as each
virtual link server needs to communicate with three agents.

Therefore, the influence of the agents’ number can be concluded. With the growing number of
agents, the largest bandwidth of the communication equipment in the system increases.

Figure 18. Predefined virtual linkage used in these two simulations.

54

Appl. Sci. 2018, 8, 1109

Figure 19. Snapshots of the formation moving.

Figure 20. Trajectory of individual agents.

55

Appl. Sci. 2018, 8, 1109

Figure 21. Comparison between virtual linkages with different number of agents: (a) the virtual linkage
defined in Equation (11); (b) the virtual linkage defined in Equation (16).

4.3.2. Number of Virtual Links and Shape Transformations

In order to analyze the performance using a different number of virtual links, nine agents are
designed as a virtual linkage with three virtual links to perform the same task in Section 4.2. In detail,
the configuration of the virtual linkage is predefined:

Virtuallinkage_C =

⎧⎪⎨⎪⎩
virtuallink1 = {agent1, agent2, agent3, agent4, agent5}
virtuallink2 = {agent5, agent6, agent7}
virtuallink3 = {agent7, agent8, agent9}

(18)

Recall that the position of the ith point in the jth virtual link coordinate frame is represented as
vj pi, and the designed virtual linkage has the following points.

v1 p1 = [0, 0], v1 p2 = [0.1, 0], v1 p3 = [0.2, 0], v1 p4 = [0.3, 0], v1 p5 = [0.4, 0];
v2 p5 = [0, 0], v2 p6 = [0.1, 0], v2 p7 = [0.2, 0];
v3 p7 = [0, 0], v3 p8 = [0.1, 0], v3 p9 = [0.2, 0];

(19)

The schematic of the designed virtual linkage is presented as Figure 22. It is worth mentioning
that two virtual joint angles,

θd = [θ1, θ2], (20)

are needed to specify the formation pattern. The significance of this property is that we are able to
have more reconfiguration ability. In detail, the virtual linkage here is able to behave as the virtual
linkage defined as Equations (11) and (12) by letting θ2 = 0. Meanwhile, the nine agents are able to
form some additional formation shapes and transformations by setting θ2 into different values.

Figure 22. Schematic of the designed virtual linkage.

The nine agents are designed to pass through the gallery with a predefined trajectory and
formation transformation using Equations (13)–(15) and (21).

θ2 =

{
0

π
20 t

t ≤ 10
10 < t < 20

(21)

56

Appl. Sci. 2018, 8, 1109

Figure 23 shows the simulation solution to this problem. The path tracking errors between the
real position and the desired place holder in the virtual linkage wrd

ix − wrix, wrd
iy − wriy are shown in

Figure 24. These errors are at the magnitude of 10−3, which also indicates that the group of agents
are able to move in varying formation patterns determined by Equation (15). Figure 25 reports the
real attitude of the virtual linkage and the reference attitude defined in Equation (14). The attitude
error qr

R − qd
R is also presented in Figure 25. The real, reference virtual joint angle θr1, θr2, θd1, θd2 and

their error θr1 – θd1, θr2 – θd2 are plotted in Figures 25 and 26 respectively. These show that the virtual
linkage approach is able to be applied to virtual linkage with different numbers of virtual links.

Figure 23. Formation reconfiguration using a virtual linkage with three virtual links.

Figure 24. Errors between the real position and the desired position of the agents.

57

Appl. Sci. 2018, 8, 1109

Figure 25. (a) Real and desired attitude of the virtual linkage; (b) error between real and desired attitude.

Figure 26. (a) Real and desired virtual joint angle; (b) error between real and desired virtual joint angle.

As it can be seen from the results, the virtual linkage here behaves as the virtual linkage defined
in Figure 11 when θ2 = 0. Meanwhile, the virtual linkage can transform into more formation shapes
when θ2 �= 0. In fact, this phenomenon can be illustrated with the principle of DOF (degrees of
freedom). In mechanical engineering, DOF is the number of independent parameters that define its
configuration. This implies that the more DOF there are, the more formation shapes the virtual linkage

58

Appl. Sci. 2018, 8, 1109

can be configured to. When the virtual linkage is designed as a series of virtual links connected by
virtual joints that extend from a base to an end, the DOF has the form:

DOF = numberofvirtualjoints = numberofvirtuallinks−1 (22)

In such situations, the reconfiguration ability of the virtual linkage increases with the growing
number of virtual links.

4.4. Comparison with Virtual Structure Approach (k = 1)

According to the Definition 3, a virtual linkage degenerates into a virtual structure because
a virtual linkage is a collection of virtual structures (virtual links). Therefore, the centralized virtual
structure approach can be seen as a special case of the virtual linkage approach, where the number of
the virtual links k = 1. In this section, the same simulation task in Section 4.2 is conducted using the
virtual structure approach [19]. Then, the comparison between the centralized virtual structure and
the proposed virtual linkage approach is discussed.

Since virtual structure approaches treat each formation as a single rigid body, the whole virtual
structure should be redesigned once the formation shape changes. Therefore, a different virtual
structure should be redesigned each time to achieve the formation shape defined in Equation (15).
Figure 27 shows some virtual structures when different formation shape involves. Each time the nine
desired place holders should be refreshed by communication. Figure 28 shows simulation solution to
this problem using virtual structure approach [19]. Although the formation reconfiguration simulation
can be successfully performed, the virtual structure has been redesigned during the whole simulation.

Figure 29 shows that, in the centralized virtual structure, the position information of all the nine
agents is sent into the single virtual structure server to implement the formation control algorithm.

In contrast, in the virtual linkage defined in Equations (11) and (12), there is no need to transmit
all the agents’ position information into a single localization. The virtual link1 server only needs to
receive the position information of agents 1, 2, 3, 4, 5. The virtual link2 server also only needs to
communicate with part of the agents, namely agents 5, 6, 7, 8, 9. The significance of this property is
that the largest bandwidth of communication equipment in the system is reduced.

Figure 27. (a) Real and desired attitude of the virtual linkage; (b) error between real and desired attitude.

59

Appl. Sci. 2018, 8, 1109

Figure 28. Formation reconfiguration using virtual structure approach.

Figure 29. Comparison between (a) centralized virtual structure and (b) virtual linkage approach.

Another advantage of virtual linkage lies in the time complexity as compared to the centralized virtual
structure approach. Using the virtual structure approach [19], the optimal position and attitude of the
virtual structure X∗

v is calculated using Equation (1) with nine agents’ positions. Nevertheless, the whole
fitting process presented in Section 3.3.1 is broken into individual parts. The X∗

v1, X∗
v2 can be simultaneously

calculated using only five corresponding agents’ position on the two virtual link severs. This allows the
virtual linkage approach can be implemented faster and to be more suitable for real-time control. Roughly
speaking, if a virtual linkage consists of k virtual links and each virtual link has the same number of agents,
the virtual linkage approach runs k times faster than centralized virtual structure.

It is worth mentioning that this particular task shows the novelty of the virtual linkage approach.
A virtual linkage is able to be reconfigured as different formation shapes by changing the virtual joint
angle θd. Using Equations (8) and (9), it can be seen that the proposed virtual linkage only needs
a communication bandwidth of

BW2 = K · k/T =
2K
T

(23)

bits per second to realize formation reconfiguration. In contrast, for the virtual structure approach,
a bandwidth of

BW1 = 3 · N · K/T = 3 · 9 · K/T =
27K

T
(24)

bits per second is needed. The bandwidth ratio is as follows:

BW2

BW1
=

k
3 · N

=
2
27

≈ 7.4% (25)

60

Appl. Sci. 2018, 8, 1109

This implies that only 7.4% communication bandwidth is required to reconfigure the formation
shape using the virtual linkage approach. This makes it suitable for situations when formation patterns
need to be reconfigured frequently.

5. Conclusions

In this paper, the virtual linkage approach is presented to solve the formation control problem.
Instead of treating the group of agents as a single rigid body, as with the virtual structure, the whole
formation is designed to be a mechanical linkage in the proposed approach. The simulation results
show the effectiveness of the virtual linkage approach. There are several advantages as compared to
the virtual structure approach. Firstly, the hierarchical architecture does not require the transmission
of all the agents’ state information into a single location, as compared to centralized virtual structure
approaches. In detail, the information of each agent is reported to the corresponding virtual link’s
controller, respectively, and the calculated state information of the virtual link is then transmitted to
the virtual linkage formation controller. Meanwhile, the time complexity of the proposed algorithm is
reduced since the fitting process is broken into individual parts which can be calculated simultaneously,
which makes it faster and more suitable for real-time control. Last but not least, the virtual linkage
is able to be configured into different formation patterns by only changing the virtual joint angle,
which makes it suitable for situations when formation patterns need to be reconfigured frequently.

In future work, more attention will be paid to the decentralization and formation feedback of
the virtual linkage approach. Furthermore, the dynamical formation pattern generation and route
planning for unknown environments is also an attractive direction and is worth researching.

Author Contributions: Y.L. conceived of the presented idea. Y.L. and J.G. developed the theoretical formalism.
Y.L. and J.G. designed the simulation experiments and analyzed the data. Y.L., J.G., C.L., F.Z. and J.Z. discussed
the results and wrote the paper.

Acknowledgments: This work is based on work supported in part by the National Key Technology R&D Program
of China under Grant 2013BAK03B03 and National Defense Basic Research Project under Grant B2220132014.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cutts, C.J.; Speakman, J.R. Energy savings in formation flight of pink-footed geese. J. Exp. Biol. 1994, 189,
251–261. [PubMed]

2. Kube, C.R.; Zhang, H. The Use of Perceptual Cues in Multi-Robot Box-Pushing. In Proceedings of the
IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, 22–28 April 1996;
pp. 2085–2090.

3. Stilwell, D.J.; Bishop, B.E. Platoons of underwater vehicles. IEEE Control Syst. 2000, 20, 45–52. [CrossRef]
4. Xiang, X.; Jouvencel, B.; Parodi, O. Coordinated formation control of multiple autonomous underwater

vehicles for pipeline inspection. Int. J. Adv. Robot. Syst. 2010, 7, 3. [CrossRef]
5. Robertson, A.; Robertson, A.; Inalhan, G.; How, J.P. Formation control strategies for a separated spacecraft

interferometer. In Proceedings of the 1999 American Control Conference, San Diego, CA, USA, 2–4 June 1999;
Volume 6, pp. 4142–4147.

6. Scharf, D.P.; Hadaegh, F.Y.; Ploen, S.R. A survey of spacecraft formation flying guidance and control.
Part II: Control. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004;
Volume 4, pp. 2976–2985.

7. Consolini, L.; Morbidi, F.; Prattichizzo, D.; Tosques, M. Leader-follower formation control of nonholonomic
mobile robots with input constraints. Automatica 2008, 44, 1343–1349. [CrossRef]

8. Chen, J.; Sun, D.; Yang, J.; Chen, H. Leader-follower formation control of multiple non-holonomic mobile
robots incorporating a receding-horizon scheme. Int. J. Robot. Res. 2010, 29, 727–747. [CrossRef]

9. Das, A.K.; Fierro, R.; Kumar, V.; Ostrowski, J.P.; Spletzer, J.; Taylor, C.J. A Vision-Based Formation Control
Framework. IEEE Trans. Robot. Autom. 2002, 18, 813–825. [CrossRef]

61

Appl. Sci. 2018, 8, 1109

10. Wang, P.K.C. Navigation strategies for multiple autonomous mobile robots moving in formation.
J. Robot. Syst. 1991, 8, 177–195. [CrossRef]

11. Wang, H.; Guo, D.; Liang, X.; Chen, W.; Hu, G.; Leang, K.K. Adaptive Vision-Based Leader-Follower
Formation Control of Mobile Robots. IEEE Trans. Ind. Electron. 2017, 64, 2893–2902. [CrossRef]

12. Liu, X.; Ge, S.S.; Goh, C.H. Vision-Based Leader-Follower Formation Control of Multiagents with Visibility
Constraints. IEEE Trans. Control Syst. Technol. 2018, 99, 1–8. [CrossRef]

13. Balch, T.; Arkin, R.C. Behavior Based Formation Control for Multirobot Teams. IEEE Trans. Robot. Autom.
1998, 14, 926–939. [CrossRef]

14. Sugihara, K.; Suzuki, I. Distributed algorithms for formation of geometric patterns with many mobile robots.
J. Robot. Syst. 1996, 13, 127–139. [CrossRef]

15. Rezaee, H.; Abdollahi, F. A decentralized cooperative control scheme with obstacle avoidance for a team of
mobile robots. IEEE Trans. Ind. Electron. 2014, 61, 347–354. [CrossRef]

16. Antonelli, G.; Arrichiello, F.; Chiaverini, S. Flocking for multi-robot systems via the Null-space-based
behavioral control. Swarm Intell. 2010, 4, 37–56. [CrossRef]

17. Wen, G.; Chen, C.L.P.; Liu, Y.-J. Formation Control with Obstacle Avoidance for a Class of Stochastic
Multiagent Systems. IEEE Trans. Ind. Electron. 2018, 65, 5847–5855. [CrossRef]

18. Ugur, E.; Nagai, Y.; Sahin, E.; Oztop, E. Staged development of robot skills: Behavior formation, affordance
learning and imitation with motionese. IEEE Trans. Auton. Ment. Dev. 2015, 7, 119–139. [CrossRef]

19. Lewis, M.A.; Tan, K.H. High Precision Formation Control of Mobile Robots Using Virtual Structures.
Auton. Robots 1997, 4, 387–403. [CrossRef]

20. Dong, L.; Chen, Y.; Qu, X. Formation Control Strategy for Nonholonomic Intelligent Vehicles Based on
Virtual Structure and Consensus Approach. Procedia Eng. 2016, 137, 415–424. [CrossRef]

21. Chen, L.; Baoli, M. A nonlinear formation control of wheeled mobile robots with virtual structure approach.
In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015;
pp. 1080–1085.

22. Ghommam, J.; Mehrjerdi, H.; Saad, M.; Mnif, F. Formation path following control of unicycle-type mobile
robots. Robot. Auton. Syst. 2010, 58, 727–736. [CrossRef]

23. Van den Broek, T.H.A. Formation Control of Unicycle Mobile Robots: A Virtual Structure Approach.
In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese
Control Conference, Shanghai, China, 15–18 December 2009; pp. 8328–8333.

24. Ren, W.; Beard, R.W. Formation feedback control for multiple spacecraft via virtual structures. IEE Proc.
Control Theory Appl. 2004, 151, 357–368. [CrossRef]

25. Do, K.D.; Pan, J. Nonlinear formation control of unicycle-type mobile robots. Robot. Auton. Syst. 2007, 55,
191–204. [CrossRef]

26. Arnold, V. Mathematical Methods of Classical Mechanics; Springer: Berlin, Germany, 1989; pp. 1–536.
27. Beard, R.W.; Lawton, J.; Hadaegh, F.Y. A coordination architecture for spacecraft formation control.

IEEE Trans. Control Syst. Technol. 2001, 9, 777–790. [CrossRef]
28. Ren, W.; Beard, R. Decentralized Scheme for Spacecraft Formation Flying via the Virtual Structure Approach.

J. Guid. Control Dyn. 2004, 27, 73–82. [CrossRef]
29. Belta, C.; Kumar, V. Abstraction and control for groups of robots. IEEE Trans. Robot. 2004, 20, 865–875. [CrossRef]
30. Hartenberg, R.S.; Denavit, J. Kinematic Synthesis of Linkages; McGraw-Hill: New York, NY, USA, 1964.
31. Ren, W. Decentralization of Virtual Structures in Formation Control of Multiple Vehicle Systems

via Consensus Strategies. Eur. J. Control 2008, 14, 93–103. [CrossRef]
32. Desai, J.P.; Ostrowski, J.P.; Kumar, V. Modeling and control of formations of nonholonomic mobile robots.

IEEE Trans. Robot. Autom. 2001, 17, 905–908. [CrossRef]
33. Desai, J.P.; Kumar, V.; Ostrowski, J.P. Control of changes in formation for a team of mobile robots. In Proceedings

of the 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), 10–15 May 1999;
Volume 2, pp. 1556–1561.

34. LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006; ISBN 1139455176.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

62

applied
sciences

Article

SambotII: A New Self-Assembly Modular Robot
Platform Based on Sambot

Wenshuai Tan, Hongxing Wei and Bo Yang *

School of Mechanical Engineering & Automation, BeiHang University, Beijing 100083, China;
sebastian_tan@163.com (W.T.); whx1630@163.com (H.W.)
* Correspondence: yangkkb@aliyun.com; Tel.: +86-186-1199-6961

Received: 31 July 2018; Accepted: 17 September 2018; Published: 21 September 2018

Featured Application: This manuscript developed a new self-assembly modular robot (SMR)

system SambotII and provided a new vision-based method for efficient and accurate autonomous

docking of SMRs. The present work lays a foundation for the future research of modular and

swarm robots. Based on the present hardware and software platforms, complex behaviors and

various tasks can be achieved on SambotII in the future, such as environment exploration, path

planning, robotic swarm control, morphology control and, etc.

Abstract: A new self-assembly modular robot (SMR) SambotII is developed based on SambotI, which
is a previously-built hybird type SMR that is capable of autonomous movement and self-assembly.
As is known, SambotI only has limited abilities of environmental perception and target recognition,
because its STM-32 processor cannot handle heavy work, like image processing and path planning.
To improve the computing ability, an x86 dual-core CPU is applied and a hierarchical software
architecture with five layers is designed. In addition, to enhance its perception abilities, a laser-camera
unit and a LED-camera unit are employed to obtain the distance and angle information, respectively,
and the color-changeable LED lights are used to identify different passive docking surfaces during
the docking process. Finally, the performances of SambotII are verified by docking experiments.

Keywords: modular robots; self-assembly robots; environmental perception; target recognition;
autonomous docking

1. Introduction

1.1. Background

A self-assembly or self-reconfiguration modular robot (SMR) system is composed of a collection
of connected modules with certain degrees of locomotion, sensing, and intercommunication [1–3].
When compared with robots that have fixed topologies, SMR systems have some advantages, such as
versatility, robustness, and low cost [4].

The concept of dynamically self-reconfigurable robotic system was firstly proposed by Toshio
Fukuda in 1988 [5]. Since then, many interesting robot systems have been proposed. In spite of the
significant advances of SMRs, researchers in this field believe that there is a gap between the state-of-art
research on modular robots and their real-world applications [3]. As Stoy and Kurokawa [6] stated,
the applications of self-reconfigurable robots are still elusive.

One main challenge in this field is how to achieve autonomous docking among modules, especially
with higher efficiency and accuracy. Autonomous docking is an essential capability for the system
to realize self-reconfiguration and self-repairing in completing operational tasks under complex
environments. Various methods, such as the infrared-red (IR) ranging, vision-based ranging, ultrasonic
ranging, etc., have been employed to guide the autonomous docking process.

Appl. Sci. 2018, 8, 1719; doi:10.3390/app8101719 www.mdpi.com/journal/applsci63

Appl. Sci. 2018, 8, 1719

The IR-based methods generally have high accuracy, simple structure and small size. Thus,
they are suitable for self-reconfigurable robotic systems with the shapes of chain, tree or lattices.
They were applied in many SMR systems, like PolyBot [7], ATRON [8], ModeRED [9], SYMBRION [10],
etc. However, the IR-based methods are unsuitable for mobile robotic systems due to the limited
detection ranges.

The vision-based methods can provide more information than IR-based method do. Some SMR
systems like CKBot [11], M-TRAN [12], and UBot [13] utilize the vision-based methods in their
autonomous docking process. However, these methods generally involve large-scale and complex
image processing and information extraction. This restricts their applications in SMR systems, to
some extent.

Except the IR and vision-based methods, ultrasonic sensors are also used in the docking
process. For example, the JL-2 [14] conducts autonomous docking under the guidance of several
ultrasonic sensors. In addition, the eddy-current sensors, hall-effect sensors and capacitance meters
are occasionally applied in the docking navigation. However, they are easy to be interfered by motors
and metallic objects.

1.2. Related Works

For SMRs that utilize the vision-based methods in autonomous docking, it is important to
set proper target features, such as LEDs, special shapes, etc. Not only should the target features
make the target robot module easily recognizable, but also it should provide enough information for
distance/orientation measurement. Additionally, each docking module should have target features
that can provide unique identification.

As showed in Table 1 and Figure 1a, M-TRAN have five LEDs (two on its front face and three on
its side face) as its target features. Depending on those LEDs, M-TRAN can determine the distance
and orientation of the target-robot group, which consists of three M-TRAN modules and a camera
module. However, this method cannot be used to simultaneously identify different robot groups,
which means only one docking robot group can be recognized during the docking process. In each
M-TRAN system, the captured images are processed by a host PC (personal computer). Because of the
limitation in accuracy, the robot group has to form a special configuration to tolerate the docking error
(see Figure 1b).

Table 1. Existing self-assembly modular robot (SMR) systems that utilize the vision-based method.

Name Target Features
Capable of
Identifying

Different Module

Image Processor
(Type)

Location of the
Image Processor

M-TRAN 5 white-colored
LEDs No X86 CPU (PC) Outside robot

CKBot LED blink
sequences Yes PIC18F2680 (MCU) Camera module

of robot

UBot Cross label
on robot No X86 CPU (PC) Outside robot

SambotII
Combination of

color-changeable
LEDs

Yes X86 CPU (Edison
module) Inside robot

The CKBot can achieve an autonomous docking process after the robot system exploded into
three parts, each of which consists of four CKBot modules and one camera module. Some specific
LED blink sequences are used as target features for the distance and orientation measurements. In this
way, different disassembled parts of the robot system can be identified (see Figure 1c). However, this

64

Appl. Sci. 2018, 8, 1719

method costs too much time, because of the large number of images to be processed and the limited
computing power of its PIC18F2680 MCU.

For UBot, a yellow cross label is chosen as the target feature (see Figure 1d), by which the distance
and orientation between the active and passive docking robot can be determined. Nevertheless, when
the distance between the two docking surface is small enough, the UBot will use Hall sensors instead to
guide the final docking process. In addition, the UBots are similar to the M-TRANs in two aspects: The
images are processed by a host PC; and, different modules cannot be simultaneously distinguished.

(a) (b)

(c) (d)

Figure 1. The docking processes of existing SMR systems. (a) The docking process of M-TRAN and
three white LEDs in its side face [12], reproduced with permission from Murata et al. [12]; (b) Special
configuration of M-TRAN used for error tolerance [12], reproduced with permission from Murata et
al. [12]; (c) The docking process of CKBot [11], reproduced with permission from Yim et al. [11]; and,
(d) The docking process of UBot [13], reproduced with permission from Liu et al. [13].

1.3. The Present Work

In the present work, a new SMR SambotII is developed based on SambotI [15], a previously-built
SMR (Figure 2a), In SambotII (Figure 2b), the original IR-based docking guidance method is replaced
by a vision-based method. A laser-camera unit and a LED-camera unit are applied to determine the
distance and angle between the two docking surfaces, respectively. Besides, a group of color-changeable
LEDs are taken as a novel target feature. With the help of these units and the new target feature, the
autonomous docking can be achieved with higher efficiency and accuracy.

65

Appl. Sci. 2018, 8, 1719

(a) (b)

Figure 2. SambotI and SambotII. (a) SambotI, the last generation; and, (b) SambotII: the left is active
docking surface with camera and laser tube, the right is a passive docking surface with four LED lights.

An Intel x86 dual-core CPU is applied to improve the computing ability for image processing,
information extraction, and other tasks with large computing consumption in the future. Besides, a
five-layer hierarchical software architecture is proposed for better programming performances and it
is a universal platform for our future research.

Compared with existing SMRs utilizing the vision-based method, the SambotII has three main
advantages: (1) The autonomous docking process is more independent, because the whole procedure,
including image process and information extraction, is controlled by the SambotII system itself.
(2) Apart from distance and orientation measurement, the target feature can be used to identify
different modules simultaneously. (3) The docking process is more accurate and efficient, because it
costs less than a minute and no extra sensors or procedures are needed to eliminate the docking error.

In the remaining parts, a brief description is given at first for the mechanical structure, electronic
system, and software architecture. Then, a detailed introduction is made on the principle of the
laser-camera unit, LED-camera unit and docking strategy. Finally, docking experiments are preformed
to verify the new docking process.

2. Mechanical Structure of SambotII

As displayed in Table 2, each SambotII is an independent mobile robot containing a control
system, a vision module, a driving module, a power module, and a communication system.

Table 2. Main parameters of SambotII.

Content Parameters

Overall sizes 120 mm × 80 mm × 80 mm
Weight Approx. 355 g
DOFs 4 (1 neck rotation + 2 wheels + 1 hook)

Connector A pair of mechanical hooks
Torque of neck 1.3 Nm (max)
Motion method A pair of wheels
Power source Inner 7.4V Lithium battery

Battery capacity Approx. 1200 mAh (8.88 Wh)
Assistant peripherals Laser tube, LEDs, switches and, etc.

Vision module HD CMOS camera

Camera resolution 640 × 480 mode (currently used) or
1920 × 1080 mode (maximum resolution)

Wireless system Wi-Fi 2.4 G/5.8 G + Bluetooth 4.0
Coprocessor ARM Cortex-M3 STM32

Central Processing Unit Intel Atom dual-core x86 CPU

66

Appl. Sci. 2018, 8, 1719

The mechanical structure of SambotII includes an autonomous mobile body and an active docking
surface. They are connected by a neck (the green part in Figure 3). Each active docking surface has a
pair of hooks.

(a) (b)

Figure 3. Main parts of SambotII. (a) The overall view; and, (b) The cutaway view.

2.1. Autonomous Mobile Body

The autonomous mobile body of SambotII is a cube with four passive docking surfaces (except
for the top and the bottom surfaces). Each passive docking surface contains four RGB LED lights and a
pair of grooves. The hooks on the active docking surface of a SambotII robot can stick into the grooves
of a passive docking surface of another SambotII robot to form stable mechanical connection between
them. The LED lights are used to guide the active docking robot during the self-assembly process.
Also, they are used to identify different passive docking surfaces by multiple combinations of colors.
In addition, two wheels on the bottom surface of the main body provide mobility for SambotII.

2.2. Active Docking Surface

Actuated by a DC motor, the active docking surface could rotate about the autonomous mobile
body by ±90◦. It contains a pair of hooks, a touch switch, a camera, and a laser tube. As mentioned
above, the hooks are used to form a mechanical connection with a passive docking surfaces of another
SambotII. The touch switch is used to confirm whether the two docking surfaces are touched or not.
The camera and laser tube are used for distance measurement and docking guidance, and they will be
described in detail in the following parts.

2.3. Permissible Errors of the Docking Mechanism

It is necessary to mention that there are multiple acceptable error ranges during the docking
process of two robots (see Figure 4 and Table 3), which can enhance the success rate of docking.
The analysis of permissible errors is given in [16].

67

Appl. Sci. 2018, 8, 1719

Figure 4. The schematic of docking deviation of two SambotII.

Table 3. The acceptable docking deviation between two SambotIIs.

Direction
Permission

Deviation/mm
Direction

Permission
Deviation/(◦)

Movement along X 13 Rotation around X ±5
Movement along Y ±4.5 Rotation around Y 10
Movement along Z ±19.5 Rotation around Z ±5

3. Information System of SambotII

One noticeable improvement of SambotII, as compared with SambotI, is the information system
(see Figure 5). The perception, computing, and communication abilities are enhanced by integrating
a camera, a MCU (i.e., a microprocessor unit that serves as a coprocessor), a powerful x86 dual-core
CPU, and some other sensors into a cell robot. Figure 6 shows the major PCBs (Printed Circuit Board)
of SambotII.

Figure 5. Structure of the information system.

68

Appl. Sci. 2018, 8, 1719

(a) (b)

(c) (d)

(e) (f)

Figure 6. The major PCBs (Printed Circuit Board) of SambotII. (a) Top view of main board 1, which
contains motor drivers, MCU, plugs, etc.; (b) Top view of main board 2 with some level translation
and I/O chips on its back; (c) Assembly of main board 1, main board 2 and Intel Edison module; (d)
Mechanisms of the hooks and its PCB in the active docking surface; (e) Camera and laser tube in the
active docking surface; and,(f) PCB of LEDs in both left and right sides of SambotII with the I/O chip
on the back of PCB.

The information system consists of three subsystems: The actuator controlling system, the sensor
system, and the central processing system.

The actuator controlling system controls motors, which determine the movement and operations
of SambotII. The PWM signals are generated by a MCU at first, and then they are transmitted into the
driver chip to be amplified. Those amplified analog signals are eventually used to drive the customized

69

Appl. Sci. 2018, 8, 1719

motors. Each motor is integrated with a Hall effect rotary encoder, which converts angular velocity into
pulse frequency and then feed back into MCU, forming a closed-loop control system. When combining
with limit switches, the MCU can open or close the hooks and rotate the neck. By controlling the
I/O chip, the MCU can change the colors of LED lights, read the states of switches and turn on or off
the laser.

The sensor system includes the encoders, switches, an IMU (Inertial Measurement Unit used to
measure orientation and rotation) and a customized HD CMOS camera. Combined with laser tube
and LED lights, the sensor system can measure the distance and angle between two docking robots.
By identifying the combination of color-changeable LED lights, the robot can locate the specific surface
it should connect with during the self-assembly procedure.

The central processing system is a high-density integrated module [17] (see Figure 5) that contains
an Intel Atom CPU, a storage, a wireless, etc. (see Table 4). It supports Linux Operation System (OS)
and can run multiple softwares concurrently, capture pictures from the camera through USB, and
communicate with other robots through Wi-Fi. Moreover, it is binary compatible with PC.

Table 4. Features of the Intel Edison CPU module.

Components Description

Processor Dual-core, dual-threaded Intel Atom CPU at 500 MHz with 1MB cache.
Supporting SIMD SSE2, SSE3, SSE4.1/4.2

RAM memory 1 GB
Storage 4 GB eMMC
Wireless 2.4 and 5 GHz IEEE 802.11a/b/g/n

Bluetooth BT4.0
USB USB2.0 OTG
Sizes 35.5 × 25.0 × 3.9 mm

4. Software Architecture and Task Functions of SambotII

A hierarchical architecture is proposed for the software system. As shown in Figure 7, the
hardware and software are decoupled from each other in the architecture. It improves the software
reusability and simplifies programming by using the uniform abstract interfaces between different
layers and programs.

Figure 7. Software architecture.

70

Appl. Sci. 2018, 8, 1719

There are five main layers in the software system: (1) hardware abstract layer; (2) module abstract
layer; (3) operation layer; (4) behavior layer; and, (5) task layer. Different layer consists of different
blocks, which are designed for particular functions and offer implementation-irrelevant interfaces to
upper layers.

The hardware abstract layer acts as an abstract interconnection between the hardware and the
software. All the control details of the hardware are hidden in this layer. For instance, the “motor
controller abstraction class” controls four motors and offers an interface for upper layer to adjust motor
speed. The “encoder accessor abstraction class” processes pulse signals generated by the encoder and
converts them into velocity and positional data. The I/O class reads and sets GPIO through I/O chip.
The “IMU class” reads the rotation and acceleration data from IMU. These four classes are built in
MCU to meet real-time requirements. Besides, the “image class” captures images from the camera by
utilizing the OpenCV library in Intel Edison module.

The module abstract layer offers higher level module abstractions by integrating the blocks of
the hardware abstract layer into modules. For instance, the “motor closed-loop control class” reads
velocity and positional data from the “encoder accessor abstraction class” and sends speed commands
to the “motor controller abstraction class”. With the inner control algorithms, it can control speed and
position, making it easier for the operation layer to control robot’s motion, and so does the “motor
limit control class”. The “attitude algorithm class” reads data from the “IMU class” and calculates the
orientation after data filtering and fusion. Finally, the Wi-Fi module is used to establish the wireless
network environment for data communication.

The operation layer contains operation blocks, which control the specific operations of the robot.
For example, the “wheels motion control block” in the operation layer combines the “motor closed-loop
control block” and the “attitude algorithm block”, and so it can control the movement operations of
the robot. In this way, we can just focus on designing the behavior and task algorithms, rather than the
details of motor driving, control, or wheels movement. Similarly, the blocks, “neck rotation”, “hooks
open close”, “laser control”, and “LED control”, are used to control the corresponding operations of
the robot, respectively. The “image info extraction block” is designed to extract the useful information
we care about from images. Through the “data stream communication block”, robots can coordinate
with each other by exchanging information and commands.

The behavior layer is a kind of command-level abstraction designed for executing practical
behaviors. A behavior can utilize operation blocks and other behavior blocks when executing. For
instance, if the robot needs to move to a certain place, the “locomotion control behavior block” first
performs path planning behavior after it receives the goal command, and then it continuously interacts
with the “wheels motion control block” until the robot reaches the target position. In the docking
behavior, the “Self-assembly block” will invoke the “hooks open close block”, “locomotion block”,
“image info extraction block”, and so on. Also, the “exploration block” can achieve information
collection and map generation by combing the “locomotion block”, “data stream communication
block”, and “image processing block”.

The task layer consists of tasks, the ultimate targets that user wants robots to achieve. Each task can
be decomposed into behaviors. For example, if the robots are assigned with a task to find something,
they will perform the “exploration behavior” for environmental perception, the “locomotion-control
behavior” for movement, as well as the “self-assembly and ensemble locomotion behaviors” for
obstacle crossing.

5. Self-Assembly of SambotII

During the self-assembly process of SambotII, it is necessary to obtain the information of distance
and angle between the two docking robots. For this purpose, a laser-camera unit and a LED-camera
unit are employed to gain the distance and angle, respectively. The position of the camera, laser tube,
and LED lights are shown in Figure 8.

71

Appl. Sci. 2018, 8, 1719

(a) (b)

Figure 8. The positions of camera, laser tube and LED lights. (a) The relative position of camera and
laser tube; and, (b) The relative distances of four LED lights on a passive docking surface. X = 60 mm
and Y1 = Y2 = 35 mm.

5.1. Laser-Camera Unit

As is known, the idea of laser triangulation means the formation of a triangle by using a laser
beam, a camera and a targeted point. The laser-camera unit consists of a laser tube and a camera, both
of which are installed parallel on the vertical middle line of the active docking surface (see Figures 3a
and 8a). Due to the actual machining and installation errors, the optical axes of the camera and laser
may be inclined to some extent (see α and β showed in Figure 9). Here, α indicates the angle between
the central axis of the laser beam and the horizontal line, while β represents the angle between the
camera and the horizontal line. Theoretically speaking, the position of the laser spot that is projected
in the camera image (x) changes with the distance between the object and the active docking surface.

Figure 9. Principle of distance measurement.

In Figure 9, the ‘Surface’ denotes the active docking surface and the right panel refers to a target
object. The parameter x stands for the distance between the laser projection spot and the central point
of the captured image. The x is calculated by the number of pixels, y denotes the actual distance
between the active docking surface and the measured object, and z is the distance between the camera
lens and the active docking surface. The parameter d is the vertical distance between the center of
camera lens and the emitting point of the laser beam. f represents the focal distance of camera and l is
the distance between the laser tube and surface.

According to the principle of similar triangles and the perspective projection theory, one can get:

b = tan α(l + y) (1)

72

Appl. Sci. 2018, 8, 1719

a + c = d − b (2)

tan(γ + β) =
a + c
z + y

=
(x + f tan β) sin(90◦ − β)

f 1
cos β − (x + f tan β) cos(90◦ − β)

(3)

From Formulas (1)–(3), one can obtain:

Axy + Bx + Cy + D = 0 (4)

where
A = cos β − tan α sin β (5)

B = z cos β + d sin β − tan α sin β · l (6)

C = f
[

sin β + tan α

(
1

cos β
− tan β sin β

)]
(7)

D = f
[

sin β(z + d tan α)− d
1

cos β
+ l tan α

(
1

cos β
− tan β sin β

)]
(8)

Based on Formulas (4)–(8), one can determine the relationship between x and y. The values of
coefficients A, B, C, and D can be obtained by using the methods of experimental calibration and the
least square estimation algorithm.

Figure 10 shows the calibration process of the laser-camera unite. The distance between the
camera and target is marked as yi (e.g., In Figure 10 yi = 0.2 m), and the vertical distance between the
laser point and the center of image shown in camera was marked as xi. In the calibration process, n
pairs of xi and yi(1 ≤ i ≤ n) can be obtained by putting the camera at different distances from 50 mm
to 300 mm for several turns.

Figure 10. The calibration process of the laser-camera unit.

The sum of the squared-residual is defined as:

S =
n

∑
i=1

(Axiyi + Bxi + Cyi + D)2 (9)

In order to estimate the optimal values of A, B, C and D, S must be minimized. So, the following
equations should be simultaneously satisfied:

∂S
∂A

= 2

[
A

n

∑
i=1

(xiyi)
2 + B

n

∑
i=1

(
x2

i yi

)
+ C

n

∑
i=1

(
xiy2

i

)
+ D

n

∑
i=1

(xiyi)

]
= 0 (10)

73

Appl. Sci. 2018, 8, 1719

∂S
∂B

= 0 (11)

∂S
∂C

= 0 (12)

Then, a system of linear equations can be derived, as below:⎡⎢⎢⎢⎢⎢⎢⎣

n
∑

i=1
(xiyi)

2 n
∑

i=1
(x2

i yi)
n
∑

i=1
(xiy2

i)
n
∑

i=1
(xiyi)

n
∑

i=1
(x2

i yi)
n
∑

i=1
x2

i

n
∑

i=1
(xiyi)

n
∑

i=1
xi

n
∑

i=1
(xiy2

i)
n
∑

i=1
(xiyi)

n
∑

i=1
y2

i

n
∑

i=1
yi

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

A
B
C
D

⎤⎥⎥⎥⎦= 0 (13)

Formula (13) is a singular matrix equation, so let D = 1. Here, are:

ξ =
(

XTX
)−1(

XTY
)

(14)

Where Y is a n × 3 matrix with all elements being 1 and ξ and X are defined as:

ξ =
[

A B C
]T

(15)

X =

⎡⎢⎣ x1y1 x1 y1
...

...
...

xnyn xn yn

⎤⎥⎦ (16)

From Formulas (14)–(16), the value of coefficients A, B, and C can be determined. Finally, the
relationship between x and y can be expressed as:

y =
−D − Bx
Ax + C

(17)

According to the measurement principle, the accuracy will reduce dramatically with the increasing
distance, because the resolution of camera is limited. In actual experiments, it is found that the error is
±5 mm, when the distance between the target and the active docking surface is within 50 cm. If the
distance is more than 50 cm and less than 150 cm, the maximum error may reach 15 mm. Under this
condition, the value of measured distance is useless. Therefore, the actual docking process should be
performed within 50 cm.

5.2. LED-Camera Unit

In order to determine the angle between two docking surfaces, a LED-camera unit is designed
and a three-step measurement method is proposed.

The first step is to determine the relationship between the horizontal distance x of the adjacent
LED lights showed in captured image and the actual distance L between the two docking surfaces.
The LED identification algorithms can be used to find out the LEDs in complex backgrounds and
determine their positions in the image, as shown in Figure 11, where each LED is marked by a red
rectangle. Then, one can work out the value of x.

74

Appl. Sci. 2018, 8, 1719

Figure 11. Results of the LED-identification algorithms.

In this step, it is assumed that the two docking surfaces are parallel to each other. The measurement
principle is shown in Figure 12a.

(a) (b)

Figure 12. Principles of the LED measurement method. (a) Top view that shows the measurement
principle in the horizontal direction; and, (b) A side view that shows the measurement principle in the
vertical direction.

In Figure 12, L represents the distance between the passive and active docking surfaces, f denotes
the focal distance of the camera, and z is the distance between the camera lens and the active docking
surface. In Figure 12a, X is the horizontal distance between the two upper adjacent LED lights on the
passive docking surface (also see Figure 8b), and x is the distance calculated from the pixel length that
X showed in camera image

According to the principles of similar triangles and perspective projection, one can get:

x
f
=

X
L + z

(18)

It can be rewritten as:
(L + B1)x + D1 = 0 (19)

Where:
B1 = z, D1 = − f X (20)

Similar to the case of laser-camera unit, the two unknown coefficients B and D can be determined
by experimental calibration. From Formula (19), x can be expressed as:

x =
−D1

L + B1
(21)

75

Appl. Sci. 2018, 8, 1719

The second step is to determine the average vertical distance of the two adjacent LED lights shown
in the image at distance L. Here, L is obtained by the LED-camera unit rather than the laser-camera
unit. The laser-camera unit can obtain the distance between the camera and the laser spot, however,
the distance between the camera and the horizontal center of LEDs (middle of Y1 and Y2) is required.
It is hard to assure that the laser spot just locates at the center of LEDs. Thus, if the distance that is
obtained by laser is used, it may cause unpredictable error in the result of angle measurement.

As shown in Figure 12b, Y1 and Y2 are the vertical distances of the adjacent LED lights and Y is
their average value, i.e., Y = (Y1 + Y2)/2. While, y1 and y2 are the images of Y1 and Y2 projected in
the camera. The average value of y1 and y2 is y, i.e., y = (y1 + y2)/2.

Similarly, one can get:
y
f
=

Y
L + z

(22)

It can be rewritten as:
(L + B2)y + D2 = 0 (23)

where
B2 = z, D2 = − f Y (24)

Using the same calibration method, one can obtain the relationship between y and L as:

L =
−D2 − B2y

y
(25)

The last step is to determine the angle θ between the two docking surfaces. As shown in Figure 13,
the two docking surfaces are not parallel to each other in a practical situation. Therefore, the horizontal
distance X shown in the image is actually its projection (X̃) in the direction of the active docking surface.

Figure 13. Top view of the actual position of the two docking robots.

From Figure 13, it can be obtained that:

X̃ = X cos θ (26)

When considering the distance showed in the captured image, one has:

x̃ = x cos θ (27)

Contrarily, the average vertical distance y only depends on the distance L between the two
docking surfaces and it is not affected by θ.

76

Appl. Sci. 2018, 8, 1719

By combining Formulas (21), (25), and (27), angle θ could be expressed as:

θ = cos−1
{

x̃[(B1 − B2)y − D2]

−D1y

}
(28)

5.3. Experimental Verification of the Angle Measurement Method

When the angle between two docking surfaces is too large, the adjacent LED lights in the same
horizontal surface will become too close to be identified in the image. Thus, four group of data are
measured at the angles of 15◦, 30◦, 45◦, and 60◦. When the distance between two docking surfaces
are too small, the camera cannot capture all of the LED lights. When the distance is too far, the
measurement accuracy will reduce dramatically because of the limited resolution of the camera.
Therefore, the distance is restricted between 15–50 cm in the angle measurement experiments and its
variation step is prescribed as 5 cm. Based on our previous work [18] and the additional supplementary
experiment, the measurement results of the angle θ are shown in Figure 14.

Figure 14. Experimental results of angle measurement. L is the distance, the θ axis is the angle in
degree. Four types of lines with different color represent the measurement results under different
test conditions.

From Figure 14, it is seen that the maximum angle error approaches 6◦. Except for few data,
the overall measurement results are smaller than the actual angle. The error mainly comes from two
aspects:

1. The error of Formula (21) and (25).
2. The error caused by the LED identification algorithm, because the point that is found by the

algorithm may not be the center of the LEDs.

Because the mechanical structure of SambotII allows a range of measurement error in the docking
process and the maximum error of angle measurement is in that range, the angle information that was
obtained by the present LED algorithm can be used in the docking process.

77

Appl. Sci. 2018, 8, 1719

5.4. Outlines of the Docking Strategy

The docking procedure (see Figure 15) is divided into three phases:

1. wandering and searching phase;
2. position and angle adjustment phase; and,
3. docking phase

Figure 15. The docking procedure.

5.4.1. Wandering and Searching Phase

In this step, the active robot wanders under a certain strategy to explore and search for the correct
passive docking surface whose LED lights formed a specific pattern. After finding the target passive
docking surface, the robot will enter the next phase.

5.4.2. Position and Angle Adjustment Phase

Because the active robot just move forward directly to complete the docking without extra
measurement in the third phase, it should make position and angle adjustment in this step so as to
assure that the distance and angle are within specific ranges.

During this phase, a series of adjusting movements need to be performed. In each adjusting
movement, the active robot rotates at first to adjust its orientation and then moves forward to adjust its
position, because SambotII is a differential wheeled robot. After each adjusting movement, it has to
rotate again to face the passive docking surface to check if the specific tolerance condition has been met.
Each move-and-check operation generally costs much time. In order to enhance the efficiency, this
procedure is further divided into two steps: the rough aiming step and the accurate alignment step.

In the rough aiming step (Locomotion & Aim), the active robot moves a relatively larger distance
in each adjusting movement under a loose tolerance condition: L (distance) < 40 cm and θ (deviation
degree) < 45◦. When this condition is met, the active robot will stop in front of the passive docking
surface and face it.

The laser-camera unit has its best performance when L < 40 cm and LED-camera unit has better
accuracy when θ < 45◦. That is why L < 40 cm and θ < 45◦ is chosen as the finish condition of this phase.

In the accurate alignment step (Adjust & Align), robot moves a smaller distance in each adjusting
movement under a strict tolerance condition: L < 20 and θ < 5◦. This condition ensures that the robot

78

Appl. Sci. 2018, 8, 1719

can just move forward for docking without check L and θ for a second time, due to the permissible
errors of docking mechanism.

The laser-camera is used to get distance during the whole phase, because it is more accurate than
the LED-camera. Moreover, when the four LEDs are too far or the angle θ is too large, LEDs may not
be clearly recognized for measuring.

5.4.3. Docking Phase

In this phase, the robot opens its hooks and moves forward until it contacts the passive docking
surface (when the touch switch is triggered). Then, it closes its hooks to form mechanical connection
with the passive docking surface. If failed, it will move backward and restart the position and angle
adjustment phase.

6. Docking Experiments

In this section, docking experiments are performed between two robots to verify the entire
hardware and software system.

Before the final structure was fixed, two prototypes (see Figure 16) of SambotII are built by adding
the camera, laser tube, LED lights, and other components into SambotI. Due to the limitation of size,
the hooks in the active docking surface are removed from these prototypes. The coincidence degree of
the two docking surfaces is chosen as the evaluation index. In the final structure of SambotII, after the
customized camera has been delivered, the hooks are equipped (as shown in Figure 2b).

Figure 16. A docking process experiment. It takes 29 s in total.

79

Appl. Sci. 2018, 8, 1719

In Figure 17, L = 80 mm is the width of each surface, C is the coincident width of the two surfaces
and E is the docking error. The coincidence degree η is defined as η = (C/L)× 100%. As shown in
Table 2, the permission deviation along the Z axis is ±19.5 mm. Thus, when E is less than 19.5 mm or
η ≥ [(L − 19.5mm)/L]× 100% ≈ 75%, the docking process can be regarded as successful.

Figure 17. Diagram of the coincidence degree from the top view of the two docking surfaces.

The experiment was carried out on a 60 × 60 cm platform with an enclosure being 40 cm high.
Because the enclosure surface is rough, the reflection of light is so weak that the recognition of the laser
and LED lights cannot be affected. Because only two robots are applied in the experiments, only the
LEDs on one passive docking surfaces are turned on.

The passive robot is placed on one side of the platform and stay still, while the active docking
robot is placed on the other side. The docking process is repeated 10 times to evaluate the success rate
of the first docking. In each time, if the active robots misses the passive docking surface, the docking
process will end, and this experiment is then counted as a failure.

Experiment indicate that the success rate of the first docking is approximately 80%. Thus, the
feasibility and validity of the docking algorithm is verified. The experimental results are shown in
Table 5 [18].

Table 5. Result of autonomous docking experiment.

Coincidence Degree Times

0~64% 1
65~74% 1
75~84% 1
85~94% 4
95~100% 3

There are two failed dockings in the experiments. One failure occurs due to compound errors.
When the accurate alignment step ends, the angle that was calculated by the active robot is less than
5◦, but the actual angle might be 6◦ or 7◦. Besides, the speed difference between the two wheels may
also lead to angle error. Influenced by these two errors, the final coincidence degree is between 65%
and 75%. Another failure may be caused by incorrect LED recognition. When the accurate alignment
step ends, the angle between the two robots exceeds the expected value. So, the active robot misses the
passive docking surface finally.

The failure caused by errors are inevitable. They can be reduced by improving the measurement
accuracy and decreasing the speed difference between the two wheels. The failure cause by LED
misrecognition may occur of the light reflected by LED is incorrectly identified as a LED’s light. So, the
algorithm should be further optimized to deal with the problem of reflection.

When compared with SambotI, SambotII has higher efficiency and a larger range (it is 50 cm, but
for SambotI it is just 20 cm).

80

Appl. Sci. 2018, 8, 1719

7. Conclusions and Future Works

A new self-assembly modular robot (SambotII) is developed in this manuscript. It is an upgraded
version of SambotI. The original electronic system is redesigned. An Intel x86 CPU, a memory, a
storage, a Wi-Fi module, a camera, a laser tube, and LEDs are integrated into robot for the purpose
of improving the computing performance, the communication ability, and the perception capability.
Meanwhile, a five-layer hierarchical software architecture is proposed and thus the reliability and
reusability of programs are enhanced. By using this architecture, a large application program can be
well organized and built efficiently.

Moreover, a laser-camera unit and a LED-camera unit are employed to perform distance and
angle measurements, respectively. Besides, by identifying different color combinations of LED-lights,
the active robot can find the specific passive docking surface clearly and precisely so that the traditional
random try is effectively avoided. Finally, two prototype SambotII robots are used to perform docking
experiments, by which the effectiveness of the entire system and docking strategy have been verified.

In general, SambotII can serve as a fundamental platform for the further research of swarm and
modular robots. In the future, three major aspects of work can be done for further improvement:

1. Hardware optimization, including the increase of battery capacity, the enhancement of the
motor’s torque, the improvement of the LEDs’ brightness, the addition of a rotational DOF, the
addition of a FPGA chip in robot, and etc.

2. Optimization of the LED-identification algorithms so as to improve the angle
measurement accuracy.

3. Enhancement of the software functions in behavior layer, such as the exploring and path planning.

Author Contributions: Conceptualization, B.Y. and H.W.; Funding Acquisition, H.W.; Project Administration,
B.Y.; Software, B.Y.; Supervision, H.W.; Validation, W.T.; Writing-Original Draft, W.T. and B.Y.

Funding: This research was funded by the National Natural Science Foundation of China grant number [No.
61673031] and the APC was funded by the National Natural Science Foundation of China grant number [No.
61673031].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rus, D.; Butler, Z.; Kotay, K.; Vona, M. Self-reconfiguring robots. Commun. ACM 2002, 45, 39–45. [CrossRef]
2. Christensen, D.J.; Schultz, U.P.; Stoy, K. A distributed and morphology-independent strategy for adaptive

locomotion in self-reconfigurable modular robots. Robot. Autom. Syst. 2013, 61, 1021–1035. [CrossRef]
3. Ahmadzadeh, H.; Masehian, E.; Asadpour, M. Modular robotic systems: Characteristics and applications.

J. Intell. Robot. Syst. 2016, 81, 317–357. [CrossRef]
4. Yim, M.; Shen, W.M.; Salemi, B.; Rus, D.; Moll, M.; Lipson, H.; Klavins, E.; Chirikjian, G.S. Modular

self-reconfigurable robot systems. IEEE Robot. Autom. Mag. 2007, 14, 43–52. [CrossRef]
5. Fukuda, T.; Nakagawa, S. Dynamically reconfigurable robotic system. In Proceedings of the IEEE

International Conference on Robotics and Automation, Philadelphia, PA, USA, 24–29 April 1988;
pp. 1581–1586.

6. Stoy, K.; Kurokawa, H. Current topics in classic self-reconfigurable robot research. In Proceedings of the IROS
Workshop on Reconfigurable Modular Robotics: Challenges of Mechatronic and Bio-Chemo-Hybrid Systems,
San Francisco, CA, USA; 2011. Available online: https://www.researchgate.net/publication/265179113_
Current_Topics_in_Classic_Self-reconfigurable_Robot_Research (accessed on 20 September 2018).

7. Yim, M.; Zhang, Y.; Roufas, K.; Duff, D.; Eldershaw, D. Connecting and disconnecting for chain
self-reconfiguration with PolyBot. IEEE/ASME Trans. Mechatron. 2002, 7, 442–451. [CrossRef]

8. Stoy, K.; Christensen, D.J.; Brandt, D.; Bordignon, M.; Schultz, U.P. Exploit morphology to simplify docking
of self-reconfigurable robots. In Distributed Autonomous Robotic Systems 8; Asama, H., Kurokawa, H., Ota, J.,
Sekiyama, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 441–452.

81

Appl. Sci. 2018, 8, 1719

9. Baca, J.; Hossain, S.G.M.; Dasgupta, P.; Nelson, C.A.; Dutta, A. ModRED: Hardware design and
reconfiguration planning for a high dexterity modular self-reconfigurable robot for extra-terrestrial
exploration. Robot. Autom. Syst. 2014, 6, 1002–1015. [CrossRef]

10. Liu, W.; Winfield, A.F.T. Implementation of an IR approach for autonomous docking in a self-configurable
robotics system. In Proceedings of the Towards Autonomous Robotic Systems; Kyriacou, T., Nehmzow, U.,
Melhuish, C., Witkowski, M., Eds.; 2009; pp. 251–258. Available online: http://eprints.uwe.ac.uk/13252/
(accessed on 20 September 2018).

11. Yim, M.; Shirmohammadi, B.; Sastra, J.; Park, M.; Dugan, M.; Taylor, C.J. Towards robotic self-reassembly
after explosion. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
San Diego, CA, USA, 29 October–2 Novermber 2007; pp. 2767–2772.

12. Murata, S.; Kakomura, K.; Kurokawa, H. Docking experiments of a modular robot by visual feedback.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China,
9–15 October 2006; pp. 625–630.

13. Liu, P.; Zhu, Y.; Cui, X.; Wang, X.; Yan, J.; Zhao, J. Multisensor-based autonomous docking for UBot modular
reconfigurable robot. In Proceedings of the IEEE International Conference on Mechatronics and Automation,
Chengdu, China, 5–8 August 2012; pp. 772–776.

14. Wang, W.; Li, Z.L.; Yu, W.P.; Zhang, J.W. An autonomous docking method based on ultrasonic sensors for
self-reconfigurable mobile robot. In Proceedings of the IEEE International Conference on Robotics and
Biomimetics (ROBIO), Guilin, China, 19–23 December 2009; pp. 1744–1749.

15. Wei, H.X.; Chen, Y.D.; Tan, J.D.; Wang, T.M. Sambot: A Self-Assembly Modular Robot System. IEEE/ASME
Trans. Mechatron. 2011, 16, 745–757. [CrossRef]

16. Wei, H.X.; Liu, M.; Li, D.; Wang, T.M. A novel self-assembly modular swarm robot: Docking mechanism
design and self-assembly control. Robot 2010, 32, 614–621.

17. Intel Edison Compute Module. Available online: https://software.intel.com/node/696745?wapkw=edison
(accessed on 22 May 2018).

18. Zhang, Y.C.; Wei, H.X.; Yang, B.; Jiang, C.C. Sambot II: A self-assembly modular swarm robot. AIP Conf. Proc.
2018, 1955, 040156. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

82

applied
sciences

Article

Leader–Follower Formation Maneuvers for
Multi-Robot Systems via Derivative and Integral
Terminal Sliding Mode

Dianwei Qian and Yafei Xi *

School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China;
dianwei.qian@gmail.com
* Correspondence: xi_yafei@163.com; Tel.: +86-10-6177-2755

Received: 10 May 2018; Accepted: 11 June 2018; Published: 27 June 2018

Featured Application: The presented control design can enrich the multi-robot technologies and

can benefit the coordination of multi-robot systems.

Abstract: This paper investigates the formation problem of multiple robots based on the
leader–follower mechanism. At first, the dynamics of such a leader–follower framework are modeled.
The input–output equations are depicted by calculating the relative degree of a leader–follower
formation system. Furthermore, the derivative and integral terminal sliding mode controller is
designed based on the relative degree. Since the formation system suffers from uncertainties,
the nonlinear disturbance observer is adopted to deal with the uncertainties. The stability of the
closed-loop control system is proven in the sense of Lyapunov. Finally, some numerical simulations
are displayed to verify the feasibility and effectiveness by the designed controller and observer.

Keywords: multiple robots; formation; sliding mode controller; nonlinear disturbance observer;
system stability

1. Introduction

In recent years, the coordination control scheme of multiple robots has drawn considerable
attention in various fields [1]. Multiple robots can be applied in many dangerous places to free the
human being, including the earthquake rescue, the warehouse translations, and some tasks at nuclear
power plants. A multi-robot system can be treated as a coupling network of some robots, where the
robots communicate with each other to achieve some complex duties [2,3]. Various investigations
have been explored to achieve the coordination control of multiple robots. These investigations
can be roughly classified into leader–follower formations [4–8], virtual structure mechanisms [9–12],
graph-based approaches [13,14], and behavior-based methods [15,16].

The leader–follower formations are attractive in the coordination control of multi-robot systems.
Partly, such formations benefit multiple robots because the formations can have guaranteed formation
stability via control design [17]. The basic control idea of the leader–follower mechanism is that
multiple robots are divided into several leader–follower pairs. In the leader–follower mechanism,
all follower robots share the same leader. In each pair, the leader robot moves along the predefined
trajectory, while the follower robots track the leader with desired relative distance and angle. In the
leader–follower system of multiple robots, only partial followers can obtain the state of the leader,
and the interaction between follower robots and leader robot is local [18]. Many control methods have
been applied in the leader–follower multi-robot systems, such as sliding mode control (SMC) based
on nonlinear disturbance observer [18], SMC [19], second-order SMC [20], adaptive control [21,22],
predictive control [23], integral terminal SMC [24], and terminal SMC [25].

Appl. Sci. 2018, 8, 1045; doi:10.3390/app8071045 www.mdpi.com/journal/applsci83

Appl. Sci. 2018, 8, 1045

In actuality, it is unavoidable for any robots to be affected by uncertainties such as external
disturbances, unmodeled dynamics, and parameter perturbations [26]. The dynamics of multi-robot
systems becomes uncertain, due to these uncertainties [27]. These uncertainties can be categorized
into unmatched uncertainties and matched uncertainties [28]. However, the SMC method, as a strong
robust tool, has invariant nature to the matched uncertainties when an SMC system enters into the
sliding mode. Unfortunately, the effects of unmatched uncertainties cannot be suppressed by the SMC
methods [29]. The unmatched uncertainties can challenge the performance of the SMC system seriously.
The characteristic of terminal SMC (T-SMC) has its nonlinear sliding surface. Compared with those
traditional SMC approaches, the T-SMC method has faster convergence speed and higher accuracy.
However, the T-SMC method has the singular problem due to its fractional function. Therefore,
the derivative and integral T-SMC (DIT-SMC) method is proposed [30]. The DIT-SMC method is of
merit. Due to the existence of the integral term, the sliding mode of the DIT-SMC method starts on the
derivative and integral terminal sliding mode surface. Moreover, the DIT-SMC method can guarantee
the exact estimation of finite error convergence time, and resolve the singular problem of the T-SMC.
On the other hand, the derivative term of the DIT-SMC method can reduce the nonlinear effects to the
stability of a DIT-SMC system.

In the previous works [21–30], the assumption that the uncertainties have a known boundary is
assumed. Concerning the formation maneuvers of multi-robot systems, the assumption is not mild. In
fact, the boundary of uncertainties in multiple robots is hard to be known exactly in advance. In case
of the lack of the important information, several serious problems may be raised in reality, for example,
the decrease of the formation robustness, the deterioration of the formation performance, as far as the
deficiency of the formation stability. In order to resolve the problem of the uncertainties, the nonlinear
disturbance observer is adopted. The unknown unmatched uncertainties are estimated by the nonlinear
disturbance observer. The technique of nonlinear disturbance observer (NDOB) can handle the
unmatched uncertainties problem and improve the robustness of the formation control system.

This paper deals with the formation problem of multiple robots with uncertainties. The control
scheme combining derivative and integral terminal sliding mode and nonlinear disturbance observer
is investigated. The derivative and integral terminal sliding mode method allows the system start
on the sliding surface. The reaching time of sliding surface is eliminated. The matched uncertainties
in formation system are suppressed by the DIT-SMC method. Under the mild assumption that
the uncertainties have an unknown boundary, the NDOB is designed to estimate the unmatched
uncertainties in the formation system. The estimate errors will converge to zero in the limited time
by setting the parameter of NDOB. In the sense of Lyapunov, the system stability is guaranteed in
spite of uncertainties. Finally, some numerical simulations are displayed to illustrate the feasibility
and effectiveness.

2. Problem Formulation

2.1. Modeling of Single Robot

Shown by Figure 1, a unicycle-like robot is taken into account. The robot is round, with r in radius,
and has two parallel wheels controlled independently by two DC motors. Because the robot is capable
of simultaneous arbitrary rotation and translation in the horizontal plane, a three dimensional vector
q = [x, y, θ]T is used to describe the robot. In Figure 1, (x, y) represents the translational coordinates of
the robot, and is the center of the robot. The rotational coordinate is depicted by the variable θ.

84

Appl. Sci. 2018, 8, 1045

Figure 1. Sketches of the mobile robot.

There are n robots in the formation system of multi-robot. Provided the pure rolling and
no-slipping condition, the ideal dynamic models of the nth robot are described by

.
qn =

⎡⎢⎣
.
xn
.
yn.
θn

⎤⎥⎦ =

⎡⎢⎣ cos θn 0
sin θn 0

0 1

⎤⎥⎦ ·
[

vn

ωn

]
, (1)

where vn, ωn are the linear velocities and angular velocities, respectively.
Differentiate (1) with respect to time t. Considering the parameter fluctuations, model

uncertainties, and external disturbances, such as slipping and skidding effects in the formation
system, the dynamic model of the nth robot is obtained by⎡⎢⎣

..
xn
..
yn..
θn

⎤⎥⎦ =

⎡⎢⎣ − .
yn

.
θn

.
xn

.
θn

0

⎤⎥⎦+

⎡⎢⎣ cos θn 0
sin θn 0

0 1

⎤⎥⎦× un +

⎡⎢⎣ cos θn 0
sin θn 0

0 1

⎤⎥⎦× Δun + πn
(
qn,

.
qn
)
, (2)

where un = [αn βn]T is the control input of nth robot. αn, βn are the acceleration and angular acceleration
respectively, which are described by αn = Fn/mn, βn = τn/Jn. Here, Fn, mn, τn, and Jn donate the force,
the nominal mass, the torque of the robot, and the nominal moment of inertia, respectively. Δn

represents the parameter fluctuations, written by

Δn =

[
εn 0
0 ε′n

]
,

where εn, ε′n represent the variant on the mass and the inertia. πn
(
qn,

.
qn
)

is described by [πnx πny

πnθ]T, meaning the uncertainties and external disturbances in the lumped model.

2.2. Leader–Follower Formation Framework

In this section, the kinematics model of the leader–follower formation system is given. The
leader–follower formation mechanism is displayed in Figure 2. In the leader–follower formation
system, there is a leader robot, and others are selected as follower robots. The ith robot is set as the
leader robot, and the kth robot is picked up as the representative of all follower robots. The relative
distance lik and relative bearing angle ϕik between the leader robot and follower robot are defined in
Figure 2. The relative distance lik means the distance between the center of the leader robot ith and the
front castor of the follower robot kth, described by

lik =
√
(xi − xk)

2 + (yi − yk)
2. (3)

85

Appl. Sci. 2018, 8, 1045

Here, (xi, yi) denotes the center of the leader robot i, and (xk, yk) represents the caster position of the
follower robot k. The calculation of xk, yk has the following form

xk = xk + r cos θ

yk = yk + r sin θ
. (4)

Here, r is the radius of the round robot, and (xk, yk) denotes the center of the follower robot k.
Simultaneously, ψik is formulated by

ψik = π + ζik − θi. (5)

Here, θi denotes the orientation angle of the leader robot i, ζik = arctan yi−yk−r sin θk
xi−xk−r cos θk

.

Figure 2. Sketches of the leader–follower coordinated framework.

In this paper, the derivative and integral terminal sliding mode controller is designed so that
the follower robots can follow the leader robot with desired relative distance and angler. Therefore,
the following conditions are satisfied: The collisions between the robots are avoided. There is no
communication delay between the leader robot and the follower robot. Each follower robot knows its
position, velocity, and corresponding information of the leader robot.

According to leader–follower formation mechanism, the robots move along a specified trajectory
with desired relative distance and bearing angle. It is necessary to shape the dynamics of the
leader–follower formation system. Differentiate (3) and (5) twice with the respect to time t,
and substitute (2) into the second derivative of (3) and (5). Define the state variable xik = [x1 x2

x3 x4]T, where x1 = lik, x2 = ψik, x3 =
.
lik, x4 =

.
ψik. The dynamic model of the formation system has

the form of .
xik = f (xik, dik(t)) + Bik,1uk
yik = h(xik)

. (6)

Here, Bik,1 is a 2 × 2 matrix whose columns are smooth vector fields Bik,1K. h(xik) is the output equation
of formation system. Here,

f (xik, dik(t)) = Aikxik + Bik,2d̃ik(t) + Bik,1Δkuk

Aik, Bik,1, Bik,2, h(xik) are described by

Aik =

⎡⎢⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎦, Bik,2 =

⎡⎢⎢⎢⎣
0 0
1 0
0 0
0 1

⎤⎥⎥⎥⎦, Bik,1 =

⎡⎢⎢⎢⎣
0 0

cos ϕik r sin ϕik
0 0

− sin ϕik
lik

d cos ϕik
lik

⎤⎥⎥⎥⎦, h(xik) =

[
x1

x3

]
.

86

Appl. Sci. 2018, 8, 1045

Here, ϕik = ψik + θik, d̃ik(t) denotes the uncertainties of the leader–follower formation system (6),
written by

d̃ik(t) = Lik(I2 + Δi)ui + Fik + Pik (7)

Lik =

⎡⎢⎢⎢⎣
0 0

− cos ψik 0
0 0

sin ψik
lik

−1

⎤⎥⎥⎥⎦, Fik =

⎡⎢⎢⎢⎣
0
F1

0
F2

⎤⎥⎥⎥⎦, Pik =

⎡⎢⎢⎢⎣
0
P1

0
P2

⎤⎥⎥⎥⎦.

F1, F2, P1, P2 are depicted respectively by

F1 = (
.
ψik)

2
lik + 2

.
ψik

.
θi lik + (

.
θi)

2
lik − r cos ϕik(

.
θk)

2

−(
.
yk

.
θk − .

yi

.
θi) cos(ψik +

.
θi)− (

.
xi

.
θi − .

xk
.
θk) sin(ψik + θi)

F2 =
−(

.
yk

.
ϕik−

.
ψik

.
yi) sin(ψik+θi)−r

.
θk

.
ϕik sin ϕik

lik
−(

.
xk

.
ϕik−

.
ψik

.
xi) cos(ψik+θi)+iik((

.
yi−

.
yk) cos(ψik+θi)

lik

− (
.
xi− .

xk) sin(ψik+θi)−r
.
θk

.
ϕik cos ϕik)

lik
P1 = −(πix − πkx) cos(ψik + θi)− (πiy − πky)sin(ψik + θi)

+rπkθ sin ϕik

P2 =
(πix−πkx)sin(ψik+θi)−(πiy−πky) cos(ψik+θi)

lik
+rπkθ sin ϕik−likπiθ

lik

.

2.3. Control Problem Formulation

Considering the dynamic mode (6) of the leader–follower formation system, a relative-degree is
calculated by

L f h1(xik) =
∂h1(xik)

∂x
f (xik, dik) (8)

L f h2(xik) =
∂h2(xik)

∂x
f (xik, dik) (9)

LBik,1K L f h1(xik, dik) = LBik,1K

(
L f h1(xik, dik)

)
=

∂
(

L f h1(xik, dik)
)

∂xik
· Bik,1K (10)

LBik,1K L f h2(xik, dik) = LBik,1K

(
L f h2(xik, dik)

)
=

∂
(

L f h2(xik, dik)
)

∂xik
· Bik,1K. (11)

Here, rK (K = 1, 2) is the smallest integer so that the least one of the control inputs appears in yrK
K (K = 1,

2), then [
yr1

1
yr2

2

]
=

⎡⎢⎢⎣ Lr1
f h1(xik) +

m
∑

K=1
LBik,1K L f h1(xik, dik)uk

Lr2
f h2(xik) +

m
∑

K=1
LBik,1K L f h2(xik, dik)uk

⎤⎥⎥⎦. (12)

Here, r1 = r2 = 2, m = 2. LBik,1K , L f are lie derivatives. Further, the input–output dynamic equation is
depicted by

..
yik = dik + H(xik, dik)uk. (13)

Here, dik = L̃ik(I3 + Δi)ui + P̃ik + F̃ik, H(xik, dik) = Gik(I4 + Δk). Here, I3, I4 are 2 × 2 matrices, ui is
the control input of ith robot, and other matrices are described by

Gik =

[
cos ϕik r sin ϕik

− sin ϕik
lik

r cos ϕik
lik

]
, L̃ik =

[
− cos ψik 0

sin ψik
lik

−1

]
, F̃ik =

[
F1

F2

]
, P̃ik =

[
P1

P2

]
.

87

Appl. Sci. 2018, 8, 1045

Hypothesis 1. H(xik, dik) has the normal part Gik and nonlinear part GikΔk, and meets the following
in equation

δik I ≤ H(xik)H−1
dik ≤ δ−1

ik I. (14)

Here, δik > 1, Hdik = H
(

xd
ik

)
, I is the 2 × 2 square matrix,xd

ik denotes the desired state vector in (6).

Remark 1. GikΔkuk is the matched uncertainties in (13), meaning the parameter fluctuations of the follower
robot k. The term dik depicts the unmatched uncertainties in the leader–follower formation system, and consists
of three parts. Due to the formation, framework (13) is applied to the follower robot, and the information of leader
robot ui can't be matched.

The terms F̃ik, P̃ik denote the model uncertainties and external disturbances caused by slipping,
friction, and obstacles etc., which are also hard to be matched.

3. Control Design

Due to the inherent characteristics of centralization, the scheme mainly depends on the leader
robots and exists as the “single point of failure” problem. In order to develop derivative and integral
terminal sliding mode approach to coordinate the leader robot i and follower robot k, a recursive
structure of the terminal sliding function for high relative-degree MIMO systems (with r1, r2 > 1) is
designed as

eik,DO1 = yik,1 − yd
ik,1, eik,DO2 = yik,2 − yd

ik,2, (15)

eik,D11 =
.
eP11/q11

ik,D01
+ γik,1eik,DO1, eik,D12 =

.
eP12/q12

ik,D02
+ γik,2eik,DO2, (16)

sik =

[
sik,1
sik,2

]
=

[
eik,D11 + λik,1eik,I1
eik,D12 + λik,2eik,I2

]
, (17)

where
.
eik,I1 = eq21/p21

ik,D11
, eik,I2 = eq22/p22

ik,D12
. γik,1, γik,2, λik,1, λik,2 are all positive constants. pKj > qKj, here K,

j = 1, 2. pKj and qKj are all odd positive constants.

Theorem 1. Considering the derivative and integral terminal sliding mode surface Sik(t) with the fractional
function, the state error of formation system can reach the equilibrium point e = 0 at the limited time

T = max
K=1,2

(
|eD1K(0)|1−q2K/q2K

αK(1 − q2K/q2K)
+

|eD0K(t1K)|1−q1K/q1K

βK(1 − q1K/q1K)

)
. (18)

Here, t1K (K = 1, 2) is the reaching time of terminal slide mode eD1K.

Proof. From (17), the sliding mode sik starts on t = 0. Then, the equations eik,D11 = −λik,1eik,I1 and
eik,D12 = −λik,2eik,I2 can always hold true by control design. Subsequently, substituting eik,D11 =

−λik,1eik,I1, eik,D12 = −λik,2eik,I2 into
.
eik,I1 = eq21/p21

ik,D11
and eik,I2 = eq22/p22

ik,D12
, respectively, yields

.
eik,I1(t) = −λ

q21/p21
ik,1 eq21/p21

ik,I1 ,
.
eik,I2(t) = −λ

q22/p22
ik,2 eq22/p22

ik,I2 . (19)

�

The converge time of sliding mode eik,I1 and eik,I2 can obtained by solving (19).

t11 =

∣∣eik,D11(0)
∣∣1−q21/p21

λik,1(1 − q21/p21)
, t12 =

∣∣eik,D12(0)
∣∣1−q22/p22

λik,2(1 − q22/p22)
(20)

88

Appl. Sci. 2018, 8, 1045

In sliding mode sik = 0, eik,D11 = −λik,1eik,I1, and eik,D12 = −λik,2eik,I2 can always hold true.
Therefore, the reaching time of eik,D11 and eik,D12 are the same as the convergence time of eik,I1 and eik,I2,
respectively. When eik,D11 = eik,D12 = 0, eik,I1 and eik,I2 will converge to zero successfully. At t = t1K (K
= 1, 2), the eik,I1 and eik,I2 are formulated by

.
eik,D01(t11) = −γ

q11/p11
ik,1 eq11/p11

ik,D01 (t11),
.
eik,D02(t12) = −γ

q12/p12
ik,2 eq12/p12

ik,D02 (t12). (21)

Solving (21), the
.
eik,D01,

.
eik,D02 from

.
eik,D01(t11),

.
eik,D02(t12) to

.
eik,D01 =

.
eik,D01 = 0 will spend

the time

t01 =

∣∣eik,D01(0)
∣∣1−q11/p11

γik,1(1 − q11/p11)
, t02 =

∣∣eik,D02(0)
∣∣1−q12/p12

γik,2(1 − q12/p12)
. (22)

Since the sliding mode sik = 0 consists of the derivative term and integral term, the time TK
spending from sik.K = 0 (K = 1, 2) to eik,K = 0 (K = 1, 2) is the summation of the two terms. Since the
fact that each sliding mode sik,1, sik,2 is independent, the time spent for equilibrium point is the max of
the TK.

Hypothesis 2. ‖ dik ‖∞ ≤ dik. It means that the unmatched uncertainties of formation system (13) have
a boundary.

Differentiating the sliding function sik with the respect to time t, and substituting (13) into the
derivative of sik can get

.
sik = diag

[
p11

q11

.
e(P11/q11−1)

D01 ,
p12

q12

.
e(P12/q12−1)

D02

][
dik + H(xik, dik)uk − ..

yd
ik

]
+ φik, (23)

where yd
ik =

[
yd

ik,1 yd
ik,2

]T
denotes the desired distance and angle between the leader robot and

follower robots. φik =
[

φik,1 φik,2

]T
. φik,1 and φik,2 are depicted respectively by

φik,1 = γik,1
.
eD01 + λik,1eq21/p21

D11 , φik,2 = γik,2
.
eD02 + λik,2eq22/p22

D12 . (24)

The derivative and integral terminal sliding mode control law is set as

u = Ĥ−1
dik

[..
yd

ik − keik‖ φik ‖diag
[

q11
p11

, q12
p12

]
A−1

πik
sik

‖sik‖1

]
−H−1

ik

(
dik(t)− kiksign(sik)− ηiksik

) , (25)

where sign(sik) = sign
[

sik,1 sik,2

]T
, keik, ηik are all the positive constant set by designer. dik(t) is the

upper bound of the unmatched uncertainties.

Aπik =
[

Aπik,1 Aπik,2

]T
, Aπik,K (K = 1, 2) are written as

Aπik,K =

{ .
e(p1K/q1K−1)

ik,0K , f or
∣∣∣ .
e(p1K/q1K−1)

ik,0K

∣∣∣ ≥ εik

εik, otherwise
. (26)

Here, εik > 0, χik and keik meet the following conditions

‖
(

Aπik − diag
[.
e(P11/q11−1)

ik,D01 ,
.
e(P12/q12−1)

ik,D02

])
A−1

πik ‖ ≤ χik < 1, (27)

keik > 1/(1 − χik). (28)

89

Appl. Sci. 2018, 8, 1045

Substitute the control law (25) into (23), considering the conditions (26). Then,
.

Vik < 0 can be
guaranteed when kiek > dik holds true. However, apart from Hypothesis 2, the unmatched uncertainties
dik in (13) are unknown, which means that the upper bound is also unknown. Therefore, it cannot
select an appropriate parameter kiek to guarantee

.
Vik < 0. Therefore, the stability of control system

cannot be guaranteed.

DIT-SMC Design Based NDOB

In order to resolve the above problem, the nonlinear disturbance is proposed to estimate the
uncertainties dik in the leader–follower formation system (13). At first, the following assumption is
taken into account.

Hypothesis 3. The unmatched uncertainties possess a slow change rate, meaning that
.
dik ≈ 02×1, where

02×1 =
[

0 0
]T

.

Considering the formation dynamic model (6), the nonlinear disturbance observer is
formulated by { .

zik = −LikBik,2 pik − Lik(Bik,2Likxik + Aikxik + Bik,1(1 + Δk)uk)

d̂ik = zik + Likxik
. (29)

Here zik ∈ R2×1, Lik ∈ R2×1, d̂ik ∈ R2×1 are the state vector of nonlinear disturbance observer, the
observer gain matrix set by designer, and the estimated value of unmatched uncertainties respectively.

Define the estimate error vector as

edik = dik − d̂ik.

Differentiate edik with respect to time t and take the Hypothesis 3 into account. Furthermore, the
dynamics of edik is presented as

.
edik =

.
dik −

.
d̂ik

= − .
pik − Lik

.
xik

= LikBik,2 pik + Lik(Bik,2Likxik + Aikxik + Bik,1(I + Δk)uk)

−Lik(Aikxik + Bik,1(I + Δk)uk + Bik,2dik)

= LikBik,2

(
d̂ik − Likxik

)
+ Lik(Bik,2Likxik + Aikxik + Bik,1(I + Δk)uk)

−Lik(Bik,2dik + Aikxik + Bik,1(I + Δk)uk)

= LikBik,2

(
d̂ik − dik

)
= −LikBik,2edik

. (30)

The solution of (30) is edik = exp(−LikBik,2t)edik(0), which indicates the estimate error will
exponentially converge to zero as t → ∞ if LikBik,2 is set as a positive constant. Here, edik(0) is the
initial state of edik.

Considering input–output dynamics (13) and observer (29), the control law based on NDOB is
determined by

u = Ĥ−1
dik

[..
yd

ik − keik‖ φik ‖diag
[

q11
p11

, q12
p12

]
A−1

πik
sik

‖sik‖1

]
−H−1

ik

(
d̂ik(t)− kiksign(sik)− ηiksik

) . (31)

Theorem 2. Consider the dynamic model of leader–follower formation system (6), take the assumption 1, 2, 3,
4 into account, adopt the input–output model (13), design the derivative and integral terminal sliding mode
surface (17) and nonlinear disturbance observer (29). If the derivative and integral terminal control law is

90

Appl. Sci. 2018, 8, 1045

set as (31), the leader–follower formation system with unmatched uncertainties is asymptotically stable when
kiek > e∗d.

Proof. Selecting the Lyapunov function as Vik =
1
2 s

.
s, differentiating Vik with the respect to time t and

substituting the
.
sik into the derivative of Vik yields

.
Vik =

sT
ik

‖sik‖2
diag

[
p11
q11

, p12
q12

]
Jik

{
dik − d̂ik − ηiksik
−kiksgn(sik)

}
+

sT
ik

‖sik‖2
φik − δikkeik‖ φik ‖sT

ik HĤ−1
dik Jik A−1

πik
sik

‖sik‖1‖sik‖2

. (32)

Here, Jik = diag
[.
e(P11/q11−1)

D01 ,
.
e(P12/q12−1)

D02

]
. Since p1K > 0, q1K > 0, p2K > 0, q2K > 0, p1K > q1K, p2k > q2K

exist in the controller,
.
e(P11/q11−1)

D01 and
.
e(P12/q12−1)

D02 hold true for all
.
e(P11/q11−1)

D01 �= 0,
.
e(P12/q12−1)

D02 �= 0.
According to the Hypothesis 1, (27), the second term and the third term can be deduced by

sT
ikφik − δikkeik‖ φik ‖sT

ik Jik HĤ−1
dik A−1

πik
sik

‖sik‖
≤ ‖ φik ‖‖ sT

ik ‖ − keik‖ φik ‖‖ sT
ik ‖

+ke‖ φik ‖‖ (Aπik − Jik)A−1
πik ‖‖ sik ‖

≤ ‖ φik ‖‖ sik ‖ − keik(1 − χik)‖ φik ‖‖ sik ‖
≤ 0

. (33)

�

In (33), the condition keik > 1/(1 − χik) can be picked up so that the ‖ φik ‖‖ sik ‖ −
keik(1 − χik)‖ φik ‖‖ sik ‖ ≤ 0 holds true.

The first term of
.

Vik has the following form of

sT
ik

‖sik‖2
diag

[
p11
q11

, p12
q12

]
Jik

{
Z(xik, dik)− d̂ik − kiksgn(sik)− ηiksik

}
≤ min

{
diag

[
p11
q11

, p12
q12

]
Jik

}(
−kik

‖sik‖1
‖sik‖2

− ηik
‖sik‖2

2
‖sik‖2

+ sT

‖sik‖2

[
‖ edik ‖∞
‖ edik ‖∞

])
≤ min

{
diag

[
p11
q11

, p12
q12

]
Jik

}(
−kik

‖sik‖1
‖sik‖2

− ηik
‖sik‖2

2
‖sik‖2

+
‖sik‖1
‖sik‖2

‖ edik ‖∞

)
= min

{
diag

[
p11
q11

, p12
q12

]
Jik

}(
−(kik − ‖ edik ‖∞)

‖sik‖1
‖sik‖2

− ηik
‖sik‖2

2
‖sik‖2

)
. (34)

ηik > 0, kik > ‖ edik ‖∞ can be selected in the control design in order to ensure

sT
ik

‖sik‖2
diag

[
p11
q11

, p12
q12

]
Jik

⎧⎪⎨⎪⎩
Z(xik, dik)− d̂ik
−kiksgn(sik)

−ηiksik

⎫⎪⎬⎪⎭ ≤ 0 is held true.

.
Vik < 0 can be picked up by deducing from (32)–(34). That illustrates the control law can

asymptotically stabilize the leader–follower formation system by the derivative and integral terminal
sliding mode. Therefore, the follower robots can trace the leader robot with the desired distance and
angle steadily. The characteristics of DIT-SMC method are as follows: (1) the convergence time Tk can
be adjusted by the parameters of the control law; (2) the formation system starts on the derivative and
integral terminal sliding surface; (3) the singular problem of T-SMC is avoided; (4) the derivative term
can weaken the nonlinear effect.

In (31), the parameter must be assigned as a conservative value to guarantee the formation system
stability. From (30), edik can be exponentially convergent to 02×1 by selecting Lik, meaning that κik can
be very small. Even if κik is assigned from a conservative perspective, its value may not be very large.
That illustrates the DIT-SMC based NDOB control law protects the formation from the high switching
frequency problem, and can substantially alleviate the chattering problem.

91

Appl. Sci. 2018, 8, 1045

4. Numerical Simulations

Considering the dynamic model of the leader–follower formation system (6), the derivative and
integral terminal sliding mode controller is proposed. There are three robots in the leader–follower
framework, where the two follower robots track along with the leader robot. The radius of each robot
is 0.05 m. The parameter fluctuations in formation system are determined by

Δi = Δk =

[
0.3rand()− 0.15 0

0 0.3rand()− 0.15

]
, (35)

where i = 1 denotes the leader robot, and k = 2, 3 represent the two follower robots. The uncertainties
and external disturbances in lumped model (6) are depicted by

πix = πiy = πiθ = 0.5 sin(2πt)
πkx = πky = πkθ = 0.2 sin(πt)

(36)

The parameters in control design are set as γ12,1 = γ12,2 = γ13,1 = γ13,2 = 4, λ12,1 = λ12,2 = λ13,1 =
λ13,2 = 1, p11 = p12 = 9, q11 = q12 = 7, q21 = 3, p21 = 5, q22 = 7, p22 = 9, ke12 = ke13 = 20, ε12 = ε13 = 4, k12 =
k13 = 2, δ12 = δ13 = 4, η12 = η13 = 0.2.

Considering the circle trajectory for the formation system in Figure 3, the initial state vector is
respectively set as x0

12 = [0.5 m 0 m/s−1 3.2π/4 rad 0 rad/s], x0
13 = [0.707 m 0 m/s−1 3π/4 rad 0 rad/s].

The desired state vectors are respectively designated as xd
12 = [0.13 m 0 m/s−1 π/2 rad 0 rad/s], xd

13
= [0.26 m 0 m/s−1 π/2 rad 0 rad/s]. The desired linear and angular velocities of leader robot are
designated as vd

1 = 0.5 m, ωd
1 = 1 rad/s. The simulation results are shown in Figures 4–6.

Figure 3. Moving trajectory of leader–follower formation system.

Figure 3 displays the moving curve of the formation system, which shows the robots are in a line
while moving along the circular trajectory. In Figure 3, the solid point denotes the initial position of the
formation robots. The arrows are the moving directions of the three robots. It is seen form the Figure 3
that the follower can track the leader robot with the desired distance and angle, while the leader robot
tracks the circular trajectory.

92

Appl. Sci. 2018, 8, 1045

In order to provide more insight into the system performance, some comparisons among the
SMC method, the second-order SMC, the SMC based NDOB [18], and the DIT-SMC based NDOB are
shown in Figures 4–6. The parameters of the sole SMC and SMC based NDOB method are presented
in [18], and the parameters of second-order SMC are same as paper [20]. The relative distance and
relative angular between the leader robot 1 and the two follower robots 2, 3 are displayed in Figure 4.
Comparing with the SMC method, the second-order SMC and the SMC based NDOB, the DIT-SMC
based NDOB method has shorter convergence time and smoother than the other methods.

0 5 10 15 20
Time(s)

(a)

0.1

0.2

0.3

0.4

0.5
SMC [18]
second-order SMC [18]
SMC with NDOB [18]
DIT-SMC with NDOB

0 5 10 15 20
Time(s)

(b)

1.5

2

2.5

3
SMC [18]
second-order SMC [18]
SMC with NDOB [18]
DIT-SMC with NDOB

0 5 10 15 20
Time(s)

(c)

0.2

0.4

0.6

0.8
SMC [18]
second-order SMC [18]
SMC with NDOB [18]
DIT-SMC with NDOB

0 5 10 15 20
Time(s)

(d)

1.5

2

2.5
SMC [18]
second-order SMC [18]
SMC with NDOB [18]
DIT-SMC with NDOB

Figure 4. Relative distance and anger of leader–follower framework; (a) l12; (b) ψ12; (c) l13; (d) ψ13.

(a)

Figure 5. Cont.

93

Appl. Sci. 2018, 8, 1045

(b)

0 5 10 15 20
Time(s)

-20

-10

0

10

20 SMC [18]

0 5 10 15 20
Time(s)

-20

-10

0

10

20 second-order SMC [18]

0 5 10 15 20
Time(s)

-20

-10

0

10

20 SMC with NDOB [18]

0 5 10 15 20
Time(s)

-20

-10

0

10

20 DIT-SMC with NDOB

Figure 5. The acceleration and angular acceleration of follower robot 2; (a) α2; (b) β2.

Figure 5 denotes the control input of follower robot 2 using different control method. In Figure 5a,
the acceleration of follower robot 2 are shown, while the angular accelerations of follower robot 2 are
displayed in Figure 5b. From Figure 5a,b, the control input of DIT-SMC based NDOB is smoother than
other control methods, which denotes the acceleration and angular acceleration are more stable.

(a)

3(m
/s

2)

3(m
/s

2)

3(m
/s

2)

3(m
/s

2)

Figure 6. Cont.

94

Appl. Sci. 2018, 8, 1045

(b)

3(r
ad

/s
2)

3(r
ad

/s
2)

3(m
/s

2)

3(m
/s

2)

Figure 6. The acceleration and angular acceleration of follower robot 3; (a) α3; (b) β3.

The control inputs of follower robot 3 are shown in the Figure 6, which denotes the acceleration
and angular acceleration of follower robot 3. The accelerations of follower robot of follower robot
using the three control methods are displayed in Figure 6a, while the angular acceleration using
three methods are shown in Figure 6b. From Figures 5 and 6, the combination of the DIT-SMC and
NDOB can benefit the decrease of the chattering phenomenon that is an inherent drawback of the
SMC methodology.

Figure 7 denotes the sliding mode vectors of two follower robots. As proven in the Theorem 1,
the reaching time of sliding surface will be eliminated, and the error of formation system will reach
to the equilibrium point in the finite time. From Figure 7, the formation system can enter the sliding
mode in the beginning, which can guarantee the system stability.

0 5 10 15 20

Time(s)

-0.5

0

0.5

1

1.5

0 5 10 15 20
Time(s)

-2

0

2

4

0 5 10 15 20
-0.5

0

0.5

1

1.5

0 5 10 15 20
Time(s)

-1

0

1

2

3

4

Figure 7. The sliding surface.

95

Appl. Sci. 2018, 8, 1045

Figure 8 illustrates the elements of the estimate-error vectors, where the vectors ed12 are shown in
the Figure 8a, and the vectors ed13 are shown in the Figure 8b. From the Figure 8, the estimate-error can
converge to zero in the finite time. The value of estimate-error is max when t = 0, that is, the maximum
is less than 0.5. However, the value of kik is selected 2. Therefore, the system stability can be guaranteed.

(a)

(b)

Figure 8. Estimate-error (a) ed12; (b) ed13.

5. Conclusions

This paper investigates the formation control problem of multi-robot systems based on the
leader–follower mechanism. The leader–follower formation system becomes uncertain because of
some adverse effects, such as the parameter fluctuations, external disturbances, and so on. In order
to estimate the uncertainties, a control scheme, combining the DIT-SMC and the NDOB, is proposed
under the assumption that the uncertainties have an unknown boundary. The stability of the control
scheme is proven in the light of Lyapunov theorem. Some simulation results are demonstrated to show
the feasibility of the control scheme.

Author Contributions: Methodology, D.Q.; Software, Y.X.; D.Q. contributed theoretical analysis and Y.X.
performed the numerical experiments.

Funding: The work is supported by the National Natural Science Foundation of China (61473176) and the
Fundamental Research Funds for the Central Universities (2018MS025).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dai, Y.; Kim, Y.; Wee, S.; Lee, D.; Lee, S. Symmetric caging formation for convex polygonal object
transportation by multiple mobile robots based on fuzzy sliding mode control. ISA Trans. 2016, 60, 321–332.
[CrossRef] [PubMed]

2. Li, C.D.; Gao, J.L.; Yi, J.Q.; Zhang, G.Q. Analysis and design of functionally weighted
single-input-rule-modules connected fuzzy inference systems. IEEE Trans. Fuzzy Syst. 2018, 26, 56–71.
[CrossRef]

96

Appl. Sci. 2018, 8, 1045

3. Qian, D.W.; Li, C.D. Formation control for uncertain multiple robots by adaptive integral sliding mode.
J. Intell. Fuzzy Syst. 2016, 31, 3021–3028. [CrossRef]

4. Loria, A.; Dasdemir, J.; Jarquin, N.A. Leader-follower formation and tracking control of mobile robots along
straight paths. IEEE Trans. Control Syst. Technol. 2016, 24, 727–732. [CrossRef]

5. Li, C.D.; Ding, Z.X.; Zhao, D.B.; Yi, J.Q.; Zhang, G.Q. Building energy consumption prediction: An extreme
deep learning approach. Energies 2017, 10, 1525. [CrossRef]

6. Li, C.D.; Ding, Z.X.; Yi, J.Q.; Lv, Y.S.; Zhang, G.Q. Deep belief network based hybrid model for building
energy consumption prediction. Energies 2018, 11, 242. [CrossRef]

7. Biglarbegian, M. A novel robust leader-following control design for mobile robots. J. Intell. Robot. Syst. 2013,
71, 391–402. [CrossRef]

8. Dai, Y.; Lee, S.G. The leader-follower formation control of nonholonomic mobile robots. Int. J. Control
Autom. Syst. 2012, 10, 350–361. [CrossRef]

9. Mehrjerdi, H.; Ghommam, J.; Saad, M. Nonlinear coordination control for a group of mobile robots using a
virtual structure. Mechatronics 2011, 21, 1147–1155. [CrossRef]

10. Li, J.; Wang, J.; Pan, Q.; Duan, P.; Sang, H.; Gao, K.; Xue, Y. A hybrid artificial bee colony for optimizing a
reverse logistics network system. Soft Comput. 2017, 21, 6001–6018. [CrossRef]

11. Qian, D.W.; Tong, S.W.; Li, C.D. Observer-based leader-following formation control of uncertain multiple
agents by integral sliding mode. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 35–44. [CrossRef]

12. Qian, D.W.; Tong, S.W.; Lee, S.G. Fuzzy-Logic-based control of payloads subjected to double-pendulum
motion in overhead cranes. Autom. Constr. 2016, 65, 133–143. [CrossRef]

13. Fax, J.A.; Murray, R.M. Information flow and cooperative control of vehicle formations. IEEE Trans.
Autom. Control 2004, 49, 1465–1476. [CrossRef]

14. Lin, Z.Y.; Francis, B.; Maggiore, M. Necessary and sufficient graphical conditions for formation control of
unicycles. IEEE Trans. Autom. Control 2005, 50, 121–127.

15. Lawton, J.T.; Beard, R.W.; Young, B.J. A decentralized approach to formation maneuvers. IEEE Trans.
Robot. Autom. 2003, 19, 933–941. [CrossRef]

16. Liang, H.Z.; Sun, Z.W.; Wang, J.Y. Finite-time attitude synchronization controllers design for spacecraft
formations via behaviour based approach. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2013, 227, 1737–1753.
[CrossRef]

17. Li, J.; Sang, H.; Han, Y.; Wang, C.; Gao, K. Efficient multi-objective optimization algorithm for hybrid flow
shop scheduling problems with setup energy consumptions. J. Clean. Prod. 2018, 181, 584–598. [CrossRef]

18. Qian, D.W.; Tong, S.W.; Li, C.D. Leader-following formation control of multiple robots with uncertainties
through sliding mode and nonlinear disturbance observer. ETRI J. 2016, 38, 1008–1018. [CrossRef]

19. Park, B.S.; Park, J.B.; Choi, Y.H. Robust formation control of electrically driven nonholonomic mobile robots
via sliding mode technique. Int. J. Control Autom. Syst. 2011, 9, 888–894. [CrossRef]

20. Defoort, M.; Floquet, T.; Kokosy, A.; Perruquetti, W. Sliding-mode formation control for cooperative
autonomous mobile robots. IEEE Trans. Ind. Electron. 2008, 55, 3944–3953. [CrossRef]

21. Chen, X.; Jia, Y. Adaptive Leader-follower formation control of non-holonomic mobile robots using active
vision. IET Control Theory Appl. 2014, 9, 1302–1311. [CrossRef]

22. Park, B.S.; Park, J.B.; Choi, Y.H. Adaptive formation control of electrically driven non-holonomic mobile
robots with Limited Information. IEEE Trans. Syst. Man Cybern. B Cybern. 2011, 41, 1061–1075. [CrossRef]
[PubMed]

23. Howard, T. Model-predictive motion planning several key developments for autonomous mobile robots.
IEEE Robot Autom. Mag. 2014, 21, 64–73. [CrossRef]

24. Muhammad, A.; Muhammad, J.K.; Attaullah, Y.M. Integral terminal sliding mode formation control of
non-holonomic robots using leader follower approach. Robotica 2017, 35, 1473–1487.

25. Nair, R.R.; Karki, H.; Shukla, A.; Behera, L.; Jamshidi, M. Fault-tolerant formation control of nonholonomic
robots using fast adaptive gain nonsingular terminal sliding mode control. IEEE Syst. J. 2018. [CrossRef]

26. Qian, D.W.; Tong, S.W.; Liu, H.; Liu, X.J. Load frequency control by neural-network-based integral sliding
mode for nonlinear power systems with wind turbines. Neurocomputing 2016, 173, 875–885. [CrossRef]

27. Zhao, L.; Jia, Y.M. Neural network-based distributed adaptive attitude synchronization control of spacecraft
formation under modified fast terminal sliding mode. Neurocomputing 2016, 171, 230–241. [CrossRef]

97

Appl. Sci. 2018, 8, 1045

28. Qian, D.W.; Tong, S.W.; Guo, J.R.; Lee, S.G. Leader-follower-based formation control of non-holonomic
mobile robots with mismatched uncertainties via integral sliding mode. Proc. Inst. Mech. Eng. Part I J. Syst.
Control Eng. 2015, 229, 559–569. [CrossRef]

29. Nair, R.R. Multi-satellite formation control for remote sensing applications using artificial potential field and
adaptive fuzzy sliding mode control. IEEE Syst. J. 2015, 9, 508–518. [CrossRef]

30. Chiu, C.S. Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems.
Automatica 2012, 48, 316–326. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

98

applied
sciences

Article

Exploration of Swarm Dynamics Emerging
from Asymmetry

Naoki Nishikawa * ID , Reiji Suzuki and Takaya Arita

Department of Complex Systems Science, Graduate School of Information Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-0814, Japan; reiji@nagoya-u.jp (R.S.); arita@nagoya-u.jp (T.A.)
* Correspondence: nishikawa@alife.cs.is.nagoya-u.ac.jp; Tel.: +81-52-789-3503

Received: 5 March 2018; Accepted: 27 April 2018; Published: 5 May 2018

Abstract: A swarm might exhibit interesting motions or structures when it includes different types
of agents. On a swarm model named Swarm Chemistry, some interesting patterns can appear
if the parameters are well-tuned. However, there is a hurdle for us to get capable of tuning the
parameters by automatic searching methods like a genetic algorithm, particularly because defining
interestingness itself is a challenging issue. This paper aims to investigate how interesting patterns can
be detected, comparing seven measures from an aspect of system asymmetries. Based on numerical
experiments, the effects of changing kinetic parameters are discussed, finding that: (1) segregating
patterns, which are frequently observed but uninteresting, tend to appear when the perception
range is small and normal (ideal) speed is large or when cohesive force is weak and separating
force is strong; (2) asymmetry of information transfer represented by topological connectivity is
an effective way to characterize the interestingness; (3) pulsation-like patterns can be captured
well by using time-derivative of state variables like network-degrees; (4) it helps capture a gradual
structural deformation when fitness function adopts the mean over min-max differences of state
variables. The findings will help the efficient search of already-discovered or undiscovered interesting
swarm dynamics.

Keywords: swarm behavior; Swarm Chemistry; self-organization; asymmetrical interaction;
genetic algorithm

1. Introduction

Collective behaviors of swarms can be seen in nature, e.g., ant swarms, birds flocks and fish
schools, as well as in human society around us. It is an interesting fact that, without having either
a very sophisticated intelligence in each component, nor a centralized mechanism to control them,
unexpected patterns or dynamics sometimes appear if once they gather in numbers. Each component
member in such swarms usually acts based on some simple recognition, decision and action rules.
In this paper, we call such a component an agent.

1.1. Swarm Robotics

There have been a lot of work to simulate and analyze swarming behaviors or structures using
computational models (e.g., [1–3]). One of the best-known swarm models is Reynolds’ Boids [4].
The motions of agents are governed only by three simple interaction rules among agents: cohesion,
separation and alignment. In spite of its simplicity of interaction, agents can self-organize into some
interesting formation patterns like bird swarms.

From an engineering perspective, there have been many studies in the field of swarm robotics to
promote practical applications of swarm behaviors. For example, swarm models can be applied to

Appl. Sci. 2018, 8, 729; doi:10.3390/app8050729 www.mdpi.com/journal/applsci99

Appl. Sci. 2018, 8, 729

control design of autonomous robots like unmanned ground vehicles (UGVs), aerial vehicles (UAVs)
and marine vehicles (UMVs) exploited in disaster situations [5].

1.2. Heterogeneity of Swarm

What happens if a swarm includes different types of agents within it? It is expected that a swarm
might exhibit or form much more interesting behaviors than when it is composed of agents all with
the same character. Based on the Boids rules, Sayama introduced some extensions and established
a swarm model called Swarm Chemistry (SC) [6–13]. Its most notable feature is that it allows the
coexistence of different types of agents in the same swarm. The self-organized patterns or behaviors
emerging in this model are pretty attractive. An example of heterogeneous swarm appearing in SC
simulator, is shown in Figure 1, which is composed of three different types. In addition, a useful
interactive graphical user interface (GUI) tool of SC is open to everyone on Sayama’s website [14],
where one can try to “design” swarms of his/her own preference. This tool helps users create swarms
and adjust parameters. Charming swarm patterns appear when the parameters could be well-adjusted.
Some of them are listed in Figure 2. To support the readers’ visual understanding, animations of these
swarms are prepared as a Supplementary Material, Video S1. The details of Swarm Chemistry will be
described in the next section.

Figure 1. Example recipe of a swarm composed of three different types of agent.

100

Appl. Sci. 2018, 8, 729

Figure 2. Already found interesting patterns (recipe names and values were taken from [14]
and snapshots were reproduced by the authors). Classification of motions, which will appear
again in Table 3, has been added originally in this paper. For animations of these swarms, see
Supplementary Material, Video S1.

101

Appl. Sci. 2018, 8, 729

1.3. Issues to be Addressed

As stated above, SC is an excellent model. Yet, the potential of the emergence of interesting
patterns in SC has not been totally revealed and leveraged. For a more comprehensive exploration
of this model, an automated way of searching is necessary because the parameter space is so large
that finding patterns manually almost impossible. However, another problem arises. Automatic
searching such as genetic algorithm (GA) requires a quantitative measure (a fitness function). As of
now, such parameters need to be searched through manual try-and-error depending on user’s sense
without any objective measures. It is not easy to identify the parameters to create interesting patterns
systematically. The main reason is that defining “interestingness” itself is a quite difficult problem.

1.4. Past Approaches

Sayama also tried an evolutionary and automated way of letting interesting patterns
appear [13,15,16], by introducing additional rules to the original version of SC, which is called the
evolutionary SC (ESC). The major points of ESC model include that [13]:

• an agent has either active or inactive (passive) state, meaning it is moving and has a recipe in it,
or it is staying still and has no recipe, respectively.

• a recipe is transmitted from an active agent to another passive agent when these two agents
collide, making the latter active.

• the active agent differentiates at random into either type defined in the recipe.
• the direction of recipe transmission is determined by some competition mechanisms.

As a result, in ESC model, the recipe of a swarm can change dynamically and continuously,
enabling interesting swarms can appear here and there within the simulation space. This means,
a swarm can “evolve” in a single simulation run. However, this method aims to reproduce the
evolution process in the natural world, principally for scientific purposes. A comprehensive search
using explicit fitness functions is not carried out.

To enable systematic search, Nishikawa et al. proposed a GA-based framework to optimize
parameters based on SC [17]. It is for the real-world tasks to be realized by the swarm robots and the
fitness functions are comparatively objective. For the case of the present paper, however, we need to
quantify how interesting the self-organized swarm is, as a fitness function, which is quite challenging
because the recognition, creation and designing of these patterns depend on subjective senses of
a human.

Regarding how to measure the interestingness, Sayama has tried to measure the interestingness of
swarm using 24 different metrics based on the average or the variation of kinetic outcomes (including
agent positions and velocities). and topological outcomes (including number of connected components,
average size of connected components, clustering coefficient, and link density) [18,19]. From the Monte
Carlo simulation results he demonstrated that the interaction between different types of agents
(heterogeneity) helped produce dynamic behaviors. Also, statistically significant differences were
detected for most of the outcome variables, especially for topological variables. However, it is still
challenging to make a complete answer what is the effective metric.

1.5. Structure of This Paper

This paper aims to investigate how an interesting pattern can be detected, introducing seven
explicit metrics from an aspect of system asymmetries. Parameter search is done using GA. Based on
numerical experiments, the effects of kinetic parameters and major points to capture characteristic
dynamics are discussed.

This paper is composed as follows. In Section 2, the basic description of Swarm Chemistry will
be provided. Then Section 3 will present an optimization scheme to search such recipes to generate
interesting structures or motion. Next, in Section 4, several possible measures to quantify the swarm

102

Appl. Sci. 2018, 8, 729

structure or dynamics will be presented. Subsequently, Section 5 will show the optimization results
obtained from the experiments. After that, Section 6 will give a brief overview on the results and
analysis of the especially interesting patterns obtained. Finally, Section 7 will conclude the whole paper.

2. Basic Algorithm of Swarm Chemistry

SC is an extended version of one of the best-known swarm models, Boids [4], in which the motions
of agents are controlled only by three simple interaction rules among agents: cohesion, separation and
alignment. The entire set of kinetic rules in Boids are:

• Straying If there are no other agents within its local perception range, steer randomly.
• Cohesion (c1) Steer to move toward the average position of nearby agents.
• Alignment (c2) Steer toward the average velocity of nearby agents.
• Separation (c3) Steer to avoid collision with nearby agents.
• Randomness (c4) Steer randomly with a given probability.
• Self-propulsion (c5) Approximate its speed to its own normal speed.

Algorithm 1 describes the kinetic rules to govern the movement of agents in SC in more detail [9].
�xi, �vi, �v′i and�ai are the location, the current velocity, the next velocity, and the acceleration of the i-th
agent, respectively. r and r±p are random numbers in [0, 1) and [−p, +p), respectively. The interaction
properties of an agent are described by 8 kinetic parameters (KPs) denoted as follows.

(R, Vn, Vm, c1, c2, c3, c4, c5) (1)

The definitions, units and their possible values are summarized in Table 1. Especially, KP4, KP5
and KP6 are the coefficients for the three effects: cohesion, alignment and separation, respectively.
They are used to calculate the acceleration of the agent. So their units should be consistent with that of
acceleration, i.e., (Pixel · Step−2). For example, KP4 has a unit of (Step−2), because the first term on the
right on Line 8 of Algorithm 1,

(〈�x〉 −�xi) , (2)

has a unit of position, i.e., (Pixel).

Table 1. Kinetic parameters (KP) in a recipe to control agent behaviors [9]. Each agent is assigned
unique values in its recipe.

KP Name Min Max Definition Unit

KP1 (β1) Ri 0 300 Radius of local perception range Pixel
KP2 (β2) Vi

n 0 20 Normal speed Pixel Step−1

KP3 (β3) Vi
m 0 40 Maximum speed Pixel Step−1

KP4 (β4) ci
1 0 1 Coefficient for cohesive effect Step−2

KP5 (β5) ci
2 0 1 Coefficient for aligning effect Step−1

KP6 (β6) ci
3 0 100 Coefficient for separating effect Pixel2 Step−2

KP7 (β7) ci
4 0 0.5 Probability of random steering −

KP8 (β8) ci
5 0 1 Tendency of self-propulsion −

In Boids, all the parameters are shared over all the agents. In SC, unlike Boids, each agent is
assigned a unique set of kinetic parameters, which represents its “character”. Therefore, a swarm is
allowed to have two or more different types of agents. A design parameter of a swarm is described by a
recipe (i.e., some sets of KPs). If there are multiple types in a swarm, then it is said to be heterogeneous
(otherwise homogeneous). When a swarm has M types agents, the recipe R for it is written as follows.

103

Appl. Sci. 2018, 8, 729

R =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N1 ∗ (R, Vn, Vm, c1, c2, c3, c4, c5)1

N2 ∗ (R, Vn, Vm, c1, c2, c3, c4, c5)2
...

NM ∗ (R, Vn, Vm, c1, c2, c3, c4, c5)M,

(3)

where Nj (j = 1, . . . , M) at the beginning of each row denotes the number of agents that share the same
set of KPs. The parameters newly introduced in SC are:

• R: the perception range to define the size of the neighborhood
• Vn: the ideal speed
• Vm: the maximum speed

It should be noted that the perception range R is a particularly important parameter deciding
whether an interaction occurs between an agent and another. Figure 3 illustrates the perception ranges
of the agents. Each one of them has its perception range Ri. An agent i (i = 1, · · · , N) perceives
and communicates locally with its neighbors when they come within the perception range of agent i.
Figure 3b represents the “cohesion” effect, i.e., every agent makes its orientation towards the center
position among its neighboring agents. Figure 3c represents the “aligning” effect, i.e., every agent
adjusts its velocity (orientation) to the velocity averaged over those of its neighboring agents. Figure 3d
represents the “separation” effect to avoid collisions between the agents. The smaller the distance
between the agents i and j becomes, the greater the separating (repulsion) force becomes. These effects
are involved together and used to determine the acceleration of the agent i as indicated in Line 8 of
Algorithm 1.

Figure 3. Kinetic interaction between agents (drawn based on [9]). (a) Agent i perceives the positions
and the velocities of neighboring agents within its perception range, Ri; (b) Cohesion; (c) Alignment
and (d) Separation.

104

Appl. Sci. 2018, 8, 729

Algorithm 1 Kinetic Rules in Swarm Chemistry [9]. Line 2: The set of neighboring agents (i.e.,
other agents within the local perception range), N of agent i is found. Lines 3–4: The number
of neighboring agents, |N |, is then calculated. If the set N is empty, i.e., if there is no agent
within its perception range, a random acceleration is set, which means a random straying by
the agent. Lines 6–7: Otherwise, the average positions and velocities of nearby particles are
calculated, respectively. Line 8: A tentative acceleration is calculated according to the three Boids
rules (cohesion, alignment and separation). Lines 9–11: At a given probability c4, a random
perturbation is applied to the tentative acceleration. Line 13: A tentative velocity is calculated by
time-integrating the acceleration. Line 14: The tentative velocity is limited to prevent overspeed.
Line 15: The speed is approximated to its own normal speed (self-propulsion). Lines 17–20: After
the above calculation is complete for all the agents, the velocities and then the locations are updated
by time-integration.

1: for all i ∈ agents do

2: N ← {j �= i} that satisfies
∣∣�xj −�xi

∣∣ < Ri

3: if |N | = 0 then

4: �a ← (r±0.5, r±0.5) // Random steering
5: else

6: 〈�x〉 ← ∑j∈N �xj/|N |
7: 〈�v〉 ← ∑j∈N �vj/|N |
8: �a ← ci

1 (〈�x〉 −�xi) + ci
2 (〈�v〉 −�vi) + ci

3 ∑j∈N
(
�xi −�xj

)
/|�xi −�xj|2 // Cohesion, alignment and

separation
9: if r < ci

4 then

10: �a ←�a + (r±5, r±5) // Random perturbation
11: end if

12: end if

13: �v′i ← �vi +�a
14: �v′i ← min(Vi

m/|�vi|, 1) ·�v′i // Limiting overspeed
15: �v′i ← ci

5(V
i
n/|�vi| ·�vi) + (1 − ci

5)�v
′
i // Self-propulsion

16: end for

17: for all i ∈ agents do

18: �vi ← �v′i // Update velocity
19: �xi ← �xi +�vi // Update position
20: end for

3. Methods

3.1. Parameter Optimization

We used a genetic algorithm, known as one of the most widely used parameter optimization
techniques, in order to find recipes from which interesting and life-like patterns or behaviors
evolutionarily. Specifically, a real-coded genetic algorithm (RCGA) [20] was used because the
parameters under optimization take continuous values. The flow of optimization is depicted in
Figure 4a. For crossover operation, the blend crossover (BLX-α) method, which is commonly used
in RCGA was applied. Figure 4b depicts the concept of BLX-α method. The figure is for the case of
having only two parameters to be optimized, for simplicity. Actually, however, the dimension is the
same as the number of parameters of the problem, which is 24 in this paper. The parameters of child
individual are randomly generated within the domain, indicated with a rectangle surrounded by chain
lines, determined from the domain the parameter values of the parent individuals A and B. α is the
coefficient for the extent of domain expansion. No mutation was applied since BLX-α itself can control

105

Appl. Sci. 2018, 8, 729

randomness. The magnification rate α is an important parameter to control the optimization. So we
have conducted parameter search after tuning this parameter carefully for each fitness function.

Figure 4. (a) The optimization flow with genetic algorithm (GA); (b) The conceptual drawing of blend
crossover (BLX-α) method.

3.2. Optimization Flow

In each GA iteration (g), each individual (k) has a recipe R(g, k) input to its Swarm Chemistry
simulation. The initial recipes of the individuals are randomly given.

At the beginning of a simulation, agents are placed at random positions within [0 : 300]× [0 : 300]
[pixel] on an infinite continuous plane and then move according to the rules shown in Algorithm 1.
Thus the system is time-evolved. The simulation is conducted in discrete time steps and finally outputs
the history of agent positions, �xi (t) = [xi (t) , yi (t)]. Simulation is done for 1000 time steps then the
fitness is calculated using the history for the final 500 time steps.

Based on fitness calculated for each individual, blending crossover is applied. In selecting parents,
rE [%] of the highest scoring individuals are chosen and preserved. For the rest of seats, random
individuals are chosen by roulette selection, i.e., in proportion to the fitness values.

For simplicity, we set the total number of individuals (nI) was 100, with the fraction of elite
individuals rE = 0.2; nE = rEnI . Also, we fixed the number of agent types M to 3 and the number
of agents of each type Nj to 300/M = 300/3 = 100, ∀j, respectively. Overall, we had therefore
24 (8 × 3) parameters to be optimized. The methods of designing effective functions are not limited
to the heterogeneous swarms; they can also be applied to the swarms of single type as well. In this
case, the model is equivalent to Boids model, whose basic behaviors have already been studied.
In Swarm Chemistry, though there are some exceptional cases like “Blobs” shown in No. 2 of Figure 2,
the possibility of emergence of “interesting” patterns basically seems to be limited with a single type,
compared to the swarms of heterogeneous agents. The interestingness of the emerging behavior

106

Appl. Sci. 2018, 8, 729

depends on the number of types in general. If the number of types is 1, the diversity of the emerging
behavior will be limited. On the other hand, for example, it is thought that if the type number is too
large, the minimum structure or order does not emerge, as is apparent from the case that the type
is different for each particle. In this study, as it is at the primary stage, we have decided to set it to
3. In addition, if the types with different size interact, there is a possibility that some different roles
emerge according to the size, which are different from the case where all the types have the same
number of agents. We believe it is a promising direction for the future.

4. Measures to Quantify the Swarm Dynamics

4.1. What is an Interesting Pattern?

Before defining the measures, let us discuss what a visually interesting pattern is. It is a premise
that providing a strict definition of interestingness is principally impossible since interestingness can
be diverse: it can vary from person to person. On the other hand, we believe that there should be
certain universal patterns which look interesting to everyone. Some possible conditions, which we
have empirically found, in which a swarm looks at least somewhat interesting include:

• A certain regular shape or motion pattern is self-organized
• An organism-like pattern is self-organized
• The swarm pattern is deformed as time evolves
• The role of a type alters as time evolves
• Fission and fusion continuously occur

Of course, there might be some other features to let a swarm look interesting.
On the other hand, it is relatively easy to say what patterns are NOT interesting. Here we show

two typical patterns that are uninteresting. One possibility is that it is a necessary condition that the
swarm pattern continues to change in time, not falling into a fixed pattern. We consider two typical
extreme swarm patterns, which may be uninteresting, illustrated by Figure 5. The first pattern (a) is a
simple aggregation, where the agents only gather into a sphere-like structure without changing its
shape. Such a motion can be obtained from a recipe, for example:

100 × (244.19, 4.19, 8.74, 0.63, 0.35, 54.69, 0.08, 0.66) (4)

Figure 5. Two extreme swarm patterns we consider as example swarms which seem uninteresting.
(a) The first pattern “S0a” is a simple aggregating pattern, where the agents only gather into a sphere-like
structure without changing its shape. (b) Another pattern “S0b” is a simply segregating pattern, where
the agents just wander randomly and go far from each other without interacting with any others.

107

Appl. Sci. 2018, 8, 729

In this paper we call it “S0a”. Another pattern is a simply segregating pattern (We use the words
“segregation” or “dissipation” to avoid confusion with “separation” in context of original rule of
Boids.), where the agents just wander randomly and go far from each other without interacting with
any others. Such a motion can be obtained from a recipe, for example:

100 × (9.05, 10.09, 37.8, 0.98, 0.24, 79.97, 0.22, 0.3) (5)

In this paper we call it “S0b”. These patterns are also included shown later in Table 3.

4.2. Importance of Asymmetry

In biology, for decades (left-right) morphological asymmetries have evoked curiosity and wonder,
which is one of those exceedingly rare characteristics of animals that has evolved independently many
times [21,22].

In physics, the symmetry principle proposed by Pierre Curie has become the object of renewed
philosophical discussion in connection with the growing interest in the role of symmetry and symmetry
breaking in recent decades [23], stating that “When certain causes produce certain effects, the elements
of asymmetry of the causes must be found in the effects produced” [24].

Although the meanings of asymmetry in both fields are significantly different, inspired by these
recent discussions, we assume that asymmetry, which might be in the causes or effects, plays an
important role in creating interesting swarm patterns, as a working hypothesis.

4.3. Fitness Function Candidates

Upon the above discussion, we define seven fitness function (FF) candidates from the aspect of
asymmetry of some kinds. Table 2 summarizes the features of the fitness functions. FF-A and FF-B treat
asymmetries in macroscopic positions. FF-C to FF-F are based on asymmetries related to microscopic
interactions. While these six FFs measure explicit asymmetry, the final one, FF-G, measures the system
asymmetry implicitly by using chaoticity index. In this context, “implicit” means measuring directly
the appeared (resultant) asymmetry. On the other hand, “explicit” means measuring asymmetry by
computing the consequent complexity arising from inherent asymmetry of system.

Another classification can also be made according to dynamicity. The functions are classified into
either static or dynamic. Here, “static” means that the FF measures the instance arrangement or state
whereas “dynamic” means that the FF focuses on the change of arrangement or state in time. From this
point of view, FF-A to FF-C are regarded static and the remainders dynamic, respectively.

The detailed description for each function will be provided in more detail in the
following subsections.

Table 2. Fitness functions (FF) proposed in this paper.

FF Meaning Explicity of Aymmetry Asymmetry Type Dynamicity

A Typewise centroid deviation
Positional

B Variation of pairwise distance Static
C In-/out-degree difference

ExplicitD Derivative of in-/out-degree difference
TopologicalE Sum of derivatives of in-/out-degrees

DynamicF Fluctuation of in-/out-degree difference
G Max. Lyapunov exponent λmax Implicit

4.3.1. Fitness Function A

One straightforward way to characterize the swarm structure can be the geometrical asymmetry
of a swarm. We have defined a fitness function which represents the positional deviation of the centroid
of each type from the global centroid. This measure is computed from the snapshots of the swarm.

108

Appl. Sci. 2018, 8, 729

In this sense, it is a metric of the static structure of swarm. In a mathematical form, this fitness function
could be written as:

φ =
1
M

T

∑
t=1

M

∑
j=1

∥∥�xjC −�xGC
∥∥ (6)

�xjC =
(
xjC, yjC

)
(7)

�xGC = (xGC, yGC) , (8)

where M is the number of types, �xjC is the centroid coordinate of j-th type, and �xGC is the centroid
coordinate of all agents. T denotes the whole duration of the simulation. The centroid coordinate
of j-th type equals to the (x, y) positions averaged over the set of agents belonging to that type j.
Similarly, the global centroid coordinate equals to the (x, y) positions averaged over all the agents.
When the emerged swarm has a unique shape like ones shown in Figure 2, there are cases where the
type-wise centroid does not overlap the global centroid while achieving balances between the different
types. There is a possibility that maximizing this function leads to an interesting pattern.

4.3.2. Fitness Function B

Another possibility of characterizing the swarm pattern from the asymmetry of static structure
can be based on the variation of the pair-wise distance between two agents. We define the fitness
function as:

φ =
1
T

T

∑
t=1

σ
[
Dij(t)

]
, (9)

where Dij(t) =
∥∥�xi(t)−�xj(t)

∥∥ is the distance between agent i and agent j at the time step t.
This function is the standard deviation σ of the pair-wise distances, measured by the snapshots
of the swarm, too. If the structure is a simple ball-like pattern or just dispersing, the pair-wise distances
will be uniform. As it is suggested that the distance between two agents at the equilibrium state
depends on the ratio of kinetic parameters c1/c3 (c1: cohesion coefficient, c3: separating coefficient) of
these agents [7,10].

4.3.3. Fitness Function C

As one of the most important features of SC, different types of agents are allowed to exist in a
swarm, implying the interactions among agents can be asymmetrical. Unlike other swarm system
models, the perception ranges R are not always consistent between any pair of agents (i, j), making
such a situation possible to occur that the motion of one of them (agent i) is affected by the other (agent
j), but not necessarily vice versa. The topological connectivity could be relevant to the emergence of a
life-like behavior of agents. From terminology of graph theory, the network topology of interactions
can be modeled as a directed graph, whose adjacency matrix is asymmetrical. In preparation, we need
to define the in-degree and out-degree functions.

• In-degree (K−): The number of agents that agent i perceives. In other words, how many agents
affect the motion of agent i.

• Out-degree (K+): The number of agents that perceive agent i. In other words, how many agents
are affected by agent i.

A numerical example is illustrated in Figure 6. Consider a swarm heterogeneous of 4 agents.
In the case shown in (a), agent 1 is perceived from only agent 3, which means the in-degree of
agent 1 is 1. By contrast, agent 1 perceives agent 2, 3 and 4. This means the out-degree of agent 1 is 3.
The relationship of perception is visualized in (b). The degrees for the other agents can be computed in
the same way. The result is shown in (c).

109

Appl. Sci. 2018, 8, 729

In addition, as the degrees K+ and K− are dependent on both time (t) and agent ID (i), they can
be formally written as:

K−(t, i) and K+(t, i), (10)

respectively. After every simulation, an adjacency matrix A = [aij] was computed for each timestep.
Let aij = 1 if agent i “perceives” agent j, otherwise aij = 1, and vice versa.

Based on the above preparation, a fitness function could be defined as follows.

ΔK(t, i) =
∣∣K+(t, i)− K−(t, i)

∣∣ (11)

φ =
1

TN2

T

∑
t=1

N

∑
i=1

ΔK(t, i) (12)

Figure 6. Definition of in- and out-degrees. (a) An example swarm consisting of 4 agents;
(b) Its perception relationship; (c) The in- and out- degrees.

4.3.4. Fitness Function D

φ =
1

TN2

T

∑
t=2

N

∑
i=1

|ΔK(t, i)− ΔK(t − 1, i)| (13)

This function means the time derivative of in/out difference. Using not only ΔK itself, we assumed
that it could make it possible to detect the dynamic structural change.

110

Appl. Sci. 2018, 8, 729

4.3.5. Fitness Function E

We introduce another function similar to FF-D.

ΔK(t, i) =
∣∣K+(t, i)− K−(t, i)

∣∣ (14)

φ =
1

2TN

T

∑
t=2

N

∑
i=1

[∣∣K+(t, i)− K+(t − 1, i)
∣∣+ ∣∣K−(t, i)− K−(t − 1, i)

∣∣] (15)

As will be shown later in the result section, the optimization result from FF-D looked interesting.
Therefore we came to a hypothesis that a derivative operation could help capture a pulsating or
alternating motion. We investigate whether it is still possible to get a similar kind of motion as well by
this fitness function.

What this function differs from FF-D is that the derivatives are taken for K+ and K−, respectively.

4.3.6. Fitness Function F

Another approach based on the topological connectivity could be defined as:

ΔK(t, i) =
∣∣K+(t, i)− K−(t, i)

∣∣ (16)

φ =
1
N

N

∑
i=1

[
max

t
(ΔK(t, i))− min

t
(ΔK(t, i))

]
. (17)

This function measures the average of the amplitude of in/out difference over all time range.
By this function we expected to get more gradual structural formation and deformation, while the
previous function in Equation (13) measures the temporal variation between two successive time steps,
leading to a snappy motion, as described in the result section.

4.3.7. Fitness Function G

The behaviors of swarms in SC can be seen as a kind of nonlinear dynamic system. We assume
inherent asymmetry might exist in the system dynamics. Therefore, this concept was woven into a
form of fitness function. The FF is related to the instability or the unpredictiveness.

Let the state of system be denoted using a vector �x, which represents the agent positions in
the two-dimension:

�xi = [x1i, x2i]
T . (18)

Hence, the system state vector is defined as:

�X =
[
�xT

1 �xT
2 . . .�xT

N

]T
. (19)

Namely, �X ∈ Rm, m = 2N, N is the number of agents. As �X time-evolves, it can be written
as �X(t).

A Lyapunov exponent λ is often used to determine if a dynamical system is chaotic. Lyapunov
exponent is defined as:

λ =
1
T

T

∑
t=1

log10

∣∣∣∣ ΔX(t)
ΔX(t − 1)

∣∣∣∣ (20)

111

Appl. Sci. 2018, 8, 729

A Lyapunov exponent indicates the slope λ when the expansion of system state locus is
approximated by an exponential function eλt. Thus the stability of the system can be determined by
the following expressions.

λ > 0 ⇒ unstable (chaotic) (21)

λ = 0 ⇒ critical (22)

λ < 0 ⇒ stable (23)

As Lyapunov exponent is computed for each dimension of the state vector �X, m Lyapunov
exponents {λ1, λ2, . . . , λm} (Lyapunov spectrum) are obtained for m dimensions. We used the
maximum λmax as a measuring index because it determines the convergence of solution locus along
time evolution of system.

From this, the fitness function is

φ = c
(

eλmax − b
)

(24)

Here, an exponential function is used so that the fitness function only takes positive values.
In addition, the constants c and b were introduced as a magnification coefficient and an offset constant,
respectively, and set c = 1000 and b = 1 empirically because the expression eλmax itself gives values
around 1 and the difference is small (the order of 10−3). We have introduced these correcting constants
because if these parameters were not involved (i.e., c = 1 and b = 0) in the beginning, the difference
in fitness values between the individuals was too small to be discriminated in optimization process.
If the magnification factor c is larger, it may be easier to discriminate the fitness difference between
individuals. On the other hand, when it is too large, the probability that the individuals with low
fitness cannot be selected. So we have chosen a moderate value whose order is similar to that of the
averaged fitness values from the case these parameters were not involved. The constant b has been
introduced to remove the offset before magnifying by c. This value should be positive but not exceed
the averaged offset value, from the case these parameters were not involved, in order to keep fitness
values greater than zero.

4.4. Numerical Examples

Using the proposed fitness functions, the fitness values have been computed for already found
interesting patterns shown in Table 2. The results are plotted in Figure 7. We can see from this
figure that the FFs can be classified roughly into two groups. For the first group (FFs-A, B and G),
the variation is small and every swarm takes similar fitness scores. For the other group (FFs-C, D, E
and F), only some swarms take a high fitness score. Next, looking at the swarm, some swarms take a
specifically high score for the latter group of FF. For example, the swarm No. 10 takes a preeminently
high score in FFs-D and E. It is thought that the reason is that the derivative function could capture
intensively alternating motion. Overall, we have found that each FF has a diverse individuality and
could produce quite different distributions of fitness scores.

112

Appl. Sci. 2018, 8, 729

0
2,000
4,000
6,000
8,000

10,000
12,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fit
ne

ss

Swarm No.

FF-A

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fit
ne

ss

Swarm No.

FF-B

0
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fit
ne

ss

Swarm No.

FF-C

0

0.005

0.01

0.015

0.02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fit
ne

ss

Swarm No.

FF-D

0

0.002

0.004

0.006

0.008

0.01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fit
ne

ss

Swarm No.

FF-E

0
0.0002
0.0004
0.0006
0.0008

0.001
0.0012

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fit
ne

ss

Swarm No.

FF-F

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fit
ne

ss

Swarm No.

FF-G

Figure 7. The fitness values computed for already found patterns shown in Table 2, according to the
proposed fitness functions.

5. Results

5.1. Summary of Optimization Results and Obtained Recipes

We have carried out parameter searches by means of the GA. The evolutionary change in fitness
for fitness functions FF-A to FF-G are shown in Figure A1a–g, respectively. The best recipes R gained
through optimization for each FF are summarized in Figure 8. Note that the KPs in recipes here are
normalized with the upper limit of each KP. The result will be discussed later in the next section.

113

Appl. Sci. 2018, 8, 729

Figure 8. Optimization results: the recipes gained using the proposed fitness functions. Each KP is
normalized with its upper limit value.

5.2. Evolved Swarm Behaviors

This subsection presents the evolved swarming behaviors obtained through optimization.
The snapshots for each fitness function are also shown in Figures A2–A8, respectively. The different
types of agents are shown in different colors. The semi-transparent dots behind the agents also show
their past positions at the recent 60 time steps, allowing us to understand the direction of movement
of each agent. Animated versions of swarm motions are also available as Supplementary Materials,
Videos S2–S8.

5.2.1. Fitness Function A

Type 1 agents (colored in green) quickly got apart of the other types and no interesting pattern
was formed. In this sense, it seemed this fitness function itself was not well defined.

Although, we could find an interesting motion appearing from this recipe. Beginning simulations
with several different initial conditions (i.e., agent positions), it was found that two distinctive patterns
appear from this recipe (see Figure 9): while the aggregation size of yellow agents is small, they are
captured within the “gel-structure” composed of the grey agents. But once the yellow aggregation of
agents gathers in number, the aggregation gets out of the gel and goes away. Such a behavior might
happen near a critical condition. Whether the yellow agents could escape from the gel or not depends
on the sensitive balance of forces applied to the agents. The number of aggregations was occasionally
two or three.

114

Appl. Sci. 2018, 8, 729

Figure 9. Different motions observed in the FF-A. (a) While the aggregation size of yellow agents
is small, they are captured within the “gel-structure” of the grey agents; (b) As soon as the yellow
aggregation of agents gathers in number, the aggregation gets out of the gel and goes away.

5.2.2. Fitness Function B

One type (Type 1) of agents quickly go far and segregate from others and the interaction connection
is soon broken off. Here, Type 1 has a small perception range R and a relatively high speed. This will
lead the Type 1 agents to quick segregation.

5.2.3. Fitness Function C

This FF resulted in a dispersing pattern, a little different from the results in FFs-A and B. In those
FFs, one type get out quickly in aggregation, while in this FF, one type (Type 2) dispersed outwards.
Type 2 has a small perception range R and a relatively high speed.

5.2.4. Fitness Function D

A shell-like structure and a snappy motion like convulsion, blinking or pulsation can be observed.
This kind of motion seems to be in the same category of “pulsating eye”, shown in Figure 2 (No. 10).
Figure 10 shows its representative dynamics extracted , with the snapshots over 4 successive timesteps:
(a) is the snapshot at a timestep t, (b) at t + 1, (c) at t + 2, and (d) at t + 3, respectively. We can see
that the radii of the outer and inner shells increase and decrease in odd and even steps alternately.
This is due to the attraction and repulsion forces (i.e., cohesion and separation, respectively). This can
be seen as that contraction and relaxation are repeated, as we can also see by looking at the shadows
of the Type 3 agents (colored in red) in e.g., Figure A5e–i. This swarm successfully sustained its
self-organized structure without segregation. Even though the perception range of Type 1 is relatively
small, the speed is also small. So the Type 1 can keep staying in the structure.

115

Appl. Sci. 2018, 8, 729

Figure 10. Representative dynamics of the swarm obtained from FF-D. (a) The snapshot at a timestep
t; (b) at t + 1; (c) at t + 2; and (d) at t + 3, respectively. We can observe a blinking motion: the radii
of outer and inner shells increase and decrease in odd and even steps alternately. This is due to the
attraction and repulsion forces (i.e., cohesion and separation, respectively) are acting.

5.2.5. Fitness Function E

Figure 11 shows its representative dynamics. This motion looks like a pulsation, blinking or
hiccup, like the one appearing in the previous FF-D. The same arrangements appear every 2 time
steps alternately, and the agents of yellow type go back and forth. Again, Type 2, which has a small
perception range and a low speed, is able to stay in a structure. And Types 1 and 3 are almost the
same type.

Figure 11. Representative dynamics of the swarm obtained from FF-E. (a) The snapshot at a timestep t;
(b) at t + 1; (c) at t + 2; and (d) at t + 3. Similar to the result from FF-D, the same arrangements appear
every 2 time steps alternately. The agents of yellow type go back and forth.

5.2.6. Fitness Function F

Figure A7 illustrates the agent trajectories and its characteristic dynamics is depicted in Figure 12.
This recipe led us to a dynamics exhibiting a kind of motion like oviposition. The shape continues to
deform during the transient from an egg-like structure to eventually fission into several aggregations.

116

Appl. Sci. 2018, 8, 729

It looks interesting also because the three types temporarily composed a three-layer structure and
experienced a two-stage segregation. In the first segregation was that Type 2 agents (blue) created an
elastic tube-like structure and the other types (Types 1 and 3) created an egg-like structure flowing
down the tube. The subsequent segregation was that of Type 1 (red) agents as an egg from Type 3
agents (green) as a tube. Finally, each type grew into isolated eggs. This FF led to a life-like or lively
change of shape: some types experienced both roles as a tube and as an egg in the transient history.
While observing the motion, we can also feel something viscous during the fission process above.
This viscosity is thought to be due to some complex forces around the interface between the types.

Figure 12. Representative dynamics of the swarm obtained from FF-F. (a) The snapshot at a timestep t;
(b) at t + 10; (c) at t + 15; (d) at t + 35; (e) at t + 40; (f) at t + 60; (g) at t + 75; and (h) at t + 105. The shape
continues to deform from an egg-like structure to eventually fission into several aggregations.

5.2.7. Fitness Function G

This recipe also results in a swarm like FF-C, undergoing segregation and not interesting pattern
can be formed. The main reason for the segregation is the perception range R of Type 3 which is too
small to keep the connection, because if this value 10.82 is replaced by 200, then a structure is retained.

6. Discussion

6.1. Overview of Results

According to their dynamical motions, we have roughly classified the patterns including already
found ones (S1 to S17) shown in Figure 2 and uninteresting ones (S0a and S0b), into several categories.
This classification is shown in Table 3. The results from the seven fitness functions proposed in this
paper are also in this table.

Defining a good measure was found to be not easy: there are not few cases where even
uninteresting patterns could get a high fitness score. A swarm tends to result in a segregating
pattern, which is frequently observed but uninteresting, when one or more types have a too small
perception range and a too large speed. Therefore, introducing some terms of limiting into the fitness
functions may be effective to prevent an easy breaking of the structure.

The recipes gained through the optimization are shown in Figure 8. We can see from this table that:

1. Some types have a small perception range R and a large normal speed Vn (e.g., Type 1 in FF-A,
Type 1 in FF-B, Type 2 in FF-C, Types 2 and 3 in FF-F and Type 3 in FF-G). On the contrary, some
other types have a large R and a small Vn (e.g., Type 1 in FF-C, Types 1 and 3 in FF-D, Type 1 in
FF-F, Types 1 and 2 in FF-G).

2. Similarly, some types have a small cohesion coefficient c1 and a large separation coefficient c3

(e.g., Types 1 and 2 in FF-C), and vice versa.
3. In FF-E, Types 1 and 3 share the almost identical KPs.

117

Appl. Sci. 2018, 8, 729

Especially, as can be seen in items 1 and 2 above, the relationships between the perception range
R and the normal speed Vn as well as between the cohesion coefficient c1 and the separation coefficient
c3 seem important to control the dispersion behaviors.

From the above results together with the dynamics obtained, we discuss the relationship between
the recipe (KPs) and the resultant swarm patterns. Dispersive motions like FFs-A, B, C and G are
observed when: the swarm has one or more types whose perception range R is small whereas normal
speed Vn is large; and/or separation coefficient c3 is large whereas cohesion coefficient c1 is small.
Therefore, it seems better to keep c1 large and c3 small, as well as to keep R large and Vn small, in order
to create a linked formation preventing from a dispersion.

Figure 8 also summarizes the statistical tendency, telling us that:

1. As the standard deviations are small and the mean values are relatively high (approximately 0.8)
in c2 (aligning coefficient), c4 (randomness) and c5 (tendency of self-propulsion), implying that
these parameters are almost common and less sensitive to the definition of fitness functions than
the other ones.

2. On the other hand, diversity is large for R (perception range), Vn (normal speed), Vm (maximum
speed), c1 (cohesive coefficient) and c3 (separating coefficient), implying that these parameters
are sensitive to the definition of fitness functions.

3. In addition, the mean values of c1 tends to be large and that of c3 is small.

Table 3. Classification of typical motions observed in Swarm Chemistry (SC).

Category Kind of Motion Swarm No.

G1 Aggregating S0a
G2 Segregating S0b, FF-A, FF-B, FF-C, FF-G
G3 Reciprocating S1, S8, S13
G4 Rotating S5, S11, S17
G5 Tracting S3, S4, S6, S7, S14
G6 Pulsating S10, FF-D, FF-E
G7 Clustered S2, S9, S12
G8 Cell-like S15, S16
G9 Viscous interfacing FF-F

6.2. Analysis of Especially Interesting Patterns

In this subsection we would like to get into a little more detailed discussion especially on the
most interesting swarm patterns shown in the previous subsection, analyzing how such a motion
could be obtained. From the classification above, let us pick up the result from FF-D, FF-E and FF-F.
Notable dynamical patterns have been yielded from FFs-D, E and F. FFs-D and E have delivered
some motion like a pulsation. Their corresponding swarm patterns keep alternating motion and its
formation without dissipating. FF-F has delivered a gradually changing structure. It is also interesting
that the type could experience different roles in the same transient history. The other FFs resulted
in simply segregating motions, where agents tend to go far and the interactions between them are
broken off.

We can see that the asymmetry of information transfer, which is represented by the asymmetrical
topological connectivity, is an effective way to characterize the interestingness of heterogeneous swarm
patterns. As indicated by FFs-D and E, the usage of derivative function can be seen as it helps detect a
pulsating motion. The differential operation seems to facilitate the sustainment of quick transitions
between high-degree and low-degree states over two successive time steps. The reason is if the degree
monotonically increased or decreased, the fitness value would have been low. This argument may not
be limited only to the case of using the degrees, but applicable also to some other measuring indices
representing the state of system. The difference in the definition of the fitness functions between FF-D

118

Appl. Sci. 2018, 8, 729

and FF-E is that FF-D uses the time-derivative for the in-/out-degree difference ΔK, whereas FF-E uses
the sum of time-derivatives for each of in and out degrees, calculated separately. The optimization
results from both FFs have converged into a very similar pattern: a pulsating pattern. However, as
shown in the new Figure 5 (fitness functions calculated for Sayama’s 17 swarms), a difference to be
addressed is that FF-D excludes the swarm of a single type because ΔK is always zero for such swarms,
whereas FF-E includes the swarm of a single type.

FF-F could lead to a gradual structural deformation, which looks lively. The contributing factor is
supposed to be the long evaluation period which starts at a sufficiently time-elapsed point. If a swarm
quickly segregates in the early time steps of the simulation, the min-max difference at the period of
evaluation will not be so large. Therefore, it is suggested that the combination of a measuring function
and an evaluation period might help detect a slowly deforming swarm pattern.

7. Conclusions

The present study has been motivated by the practical needs to the potential of the emergence of
interesting patterns in SC has not been totally revealed and leveraged. It is better to be able to detect
measure the interestingness of the static structures of the swarms or the dynamic changes in them,
in an objective manner, e.g., by GA.

This paper has studied an effective way of quantifying the interestingness of swarm patterns
that emerge in SC and then to detect such interesting patterns automatically. We have defined several
quantitative measures, focusing particularly on the asymmetry of some kinds. While swarms tend to
result in a segregating pattern, which is not interesting, several notable dynamical patterns have been
yielded from the proposed FFs. FFs-D and E have delivered some motion like a pulsation, and FF-F
has delivered a gradually changing structure. It is also interesting that the a type could experience
different roles in the same transient history.

The contributions of this paper are summarized as follows.

1. We have constructed a framework to search higher-scoring swarms using a genetic algorithm.
Experimental results showed the possibility of detecting several characteristic and attractive
patterns using the proposed quantitative measures and optimization framework.

2. Discussing the relationship between the fitness functions and the corresponding swarm behaviors
or structures gained by them, we have derived some key points of designing a good function to
detect interesting patterns.

The results provide some clue to what kind of fitness function should be used to obtain a specific
type of structure or motion. Numerical study using seven different fitness functions has given a brief
overview and general knowledge about the quantification of interestingness. As a general conclusion
on how we can define the interestingness, the geometrical (positional) asymmetry of structures and
topological asymmetry of information transfer have possibilities to let interesting swarm patterns
emerge. Major findings are summarized as below.

1. A swarm tends to result in a segregating pattern, which is frequently observed but uninteresting,
when one or more type has a too small perception range and a too high speed. Therefore,
it is better to choose values for a recipe with a large perception range, a speed which does not
overwhelm the perception range. Introducing some terms of limiting into the fitness functions
may be effective to prevent an easy breaking of structure.

2. Another possibility of avoiding a segregating patterns is making the cohesion force large and the
separation force small.

3. The asymmetry of information transfer, which is represented by the topological connectivity
(used in FFs-D, E and F), is an effective way to characterize the interestingness of heterogeneous
swarm patterns.

4. The usage of derivative function can help detect a pulsating motion (finding from FFs-D and E).
The differential operation is believed to be facilitating quick transitions between high-degree and

119

Appl. Sci. 2018, 8, 729

low-degree states over two successive time steps to be sustained, while preventing from tendency
of breaking off. The fitness value would have been low if the degree monotonically increased or
decreased. The same discussion might be applied only to the case of using the degrees, but also
to some other measuring indices representing the state of system.

5. A gradual deformation, which looks lively or like an organism, can be captured by a function form
like FF-F, in combination with a long evaluation period which starts at a sufficiently time-elapsed
point, because a swarm with quick segregation occurring in the early time steps will not have so
large min-max difference at the period of evaluation and eventually its fitness score will be low.

Recently, Kano and others have presented a minimal model of swarming behavior, inspired from
friendship formation in human society [25]. Simulation results showed that emerged patterns can be
classified into 6 categories by introducing two macroscopic variables. Comparative study of this and
our models would be fruitful.

The proposal may also have applications to the more practical situations. For instance,
the pulsating pattern could be applied to the formation control of excavating robots as its motion
pattern seems to be able to shatter the rock walls. Swarm robots, with controlling recipes like the ones
presented in this paper, could be introduced to such tasks, where every single robot is inexpensive and
easily replaceable because the robots have a self-repairing ability. Of course, in order to realize it in the
real-world robots, we require further considerations such as the mass (volume) effects, the strength of
materials of the body and the delays of operating commands.

Additionally, we have chosen 2D for the first step of the study, since 3D is more computationally
intensive task. However, the extension to 3D version should be one of the most important directions
because we can expect to observe much more complex swarm behavior including twisting movement.

Though it is still a challenging problem to fully define the interestingness, our results have
presented some part of possible answers. The achievement will help the design of swarms that one
desires. Of course, the fitness functions or measures appeared in this paper are just a few examples and
there might still be other possible ways to find further interesting patterns. They await to be revealed
in the future.

Supplementary Materials: To support the readers’ visual understanding of the swarm dynamics we have
uploaded the animation files online. Video S1: Animation of already reported swarm dynamics listed in Table 2
(https://youtu.be/eLJwa0jz5GQ), Video S2: Swarm dynamics obtained for FF-A (https://youtu.be/QSyZHCI-
ffo), Video S3: Swarm dynamics obtained for FF-B (https://youtu.be/3byzpQqtcpU), Video S4: Swarm dynamics
obtained for FF-C (https://youtu.be/cCreYJUASoQ), Video S5: Swarm dynamics obtained for FF-D (https:
//youtu.be/QuGpkG5mI4I), Video S6: Swarm dynamics obtained for FF-E (https://youtu.be/gz5Nk98sRLQ),
Video S7: Swarm dynamics obtained for FF-F (https://youtu.be/B888eKL400Q), Video S8: Swarm dynamics
obtained for FF-G (https://youtu.be/Dr1RDinc4AU), Video S9: Swarm dynamics of S0a (https://youtu.be/
hImZelcStVE), Video S10: Swarm dynamics of S0b (https://youtu.be/02qQYx4cxQ0).

Author Contributions: Naoki Nishikawa, Reiji Suzuki and Takaya Arita conceived and designed the experiments;
Naoki Nishikawa performed the experiments, analyzed the data and wrote the paper.

Acknowledgments: This work was supported by MEXT/JSPS Grant-in-Aid for Scientific Research on Innovative
Areas #4903 (Evolinguistics), Grant Number JP17H06383.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations appeared in this manuscript:

SC Swarm Chemistry
ESC Evolutionary Swarm Chemistry
KP kinetic parameter
GA genetic algorithm
FF fitness function

120

Appl. Sci. 2018, 8, 729

Appendix A Whole Dynamics for Each Fitness Function

The snapshots for each fitness function are also shown in Figures A2–A8, respectively.

×

(a) FF-A (b) FF-B

×

(c) FF-C (d) FF-D

(e) FF-E

×

(f) FF-F

(g) FF-G

Figure A1. Evolutionary change in fitness for each fitness function.

121

Appl. Sci. 2018, 8, 729

(a) t = 5 (b) t = 10 (c) t = 20

(d) t = 30 (e) t = 40 (f) t = 50

(g) t = 60 (h) t = 70 (i) t = 80

Figure A2. Trajectory of agents (FF-A). The semi-transparent dots behind the agents indicate their past
positions at the recent 60 time steps. The “×” mark traces the trajectory of swarm centroid.

122

Appl. Sci. 2018, 8, 729

(a) t = 5 (b) t = 10 (c) t = 20

(d) t = 30 (e) t = 40 (f) t = 50

(g) t = 60 (h) t = 70 (i) t = 80

Figure A3. Trajectory of agents (FF-B). The semi-transparent dots behind the agents indicate their past
positions at the recent 60 time steps. The “×” mark traces the trajectory of swarm centroid.

123

Appl. Sci. 2018, 8, 729

(a) t = 10 (b) t = 20 (c) t = 40

(d) t = 60 (e) t = 80 (f) t = 100

(g) t = 120 (h) t = 150 (i) t = 200

Figure A4. Trajectory of agents (FF-C). The semi-transparent dots behind the agents indicate their past
positions at the recent 60 time steps. The “×” mark traces the trajectory of swarm centroid.

124

Appl. Sci. 2018, 8, 729

(a) t = 5 (b) t = 10 (c) t = 20

(d) t = 30 (e) t = 40 (f) t = 50

(g) t = 60 (h) t = 70 (i) t = 80

Figure A5. Trajectory of agents (FF-D). The semi-transparent dots behind the agents indicate their past
positions at the recent 60 time steps. The “×” mark traces the trajectory of swarm centroid.

125

Appl. Sci. 2018, 8, 729

(a) t = 10 (b) t = 20 (c) t = 40

(d) t = 60 (e) t = 80 (f) t = 100

(g) t = 120 (h) t = 150 (i) t = 200

Figure A6. Trajectory of agents (FF-E). The semi-transparent dots behind the agents indicate their past
positions at the recent 60 time steps. The “×” mark traces the trajectory of swarm centroid.

126

Appl. Sci. 2018, 8, 729

(a) t = 5 (b) t = 10 (c) t = 20

(d) t = 40 (e) t = 60 (f) t = 80

(g) t = 100 (h) t = 120 (i) t = 150

Figure A7. Trajectory of agents (FF-F). The semi-transparent dots behind the agents indicate their past
positions at the recent 60 time steps. The “×” mark traces the trajectory of swarm centroid.

127

Appl. Sci. 2018, 8, 729

(a) t = 10 (b) t = 20 (c) t = 40

(d) t = 60 (e) t = 80 (f) t = 100

(g) t = 120 (h) t = 150 (i) t = 200

Figure A8. Trajectory of agents (FF-G). The semi-transparent dots behind the agents indicate their past
positions at the recent 60 time steps. The “×” mark traces the trajectory of swarm centroid.

References

1. Vicsek, T.; Czirok, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O. Novel Type of Phase Transition in a System of
Self-Driven agents. Phys. Rev. Lett. 1995, 75, 1226–1229. [CrossRef] [PubMed]

2. Vicsek, T. A question of scale. Nature 2001, 411, 421.
3. Schmickl, T.; Stefanec, M.; Crailsheim, K. How a life-like system emerges from a simple particle motion law.

Sci. Rep. 2016, 6, 37969. [CrossRef] [PubMed]
4. Reynolds, C. Flocks, Herds, and Schools: A Distributed Behavioral Model. Comput. Graph. 1987, 25, 25–34.

[CrossRef]
5. Murphy, R.R. Disaster Robotics; MIT Press: Cambridge, MA, USA, 2014.
6. Doursat, R.; Sayama, H.; Michel, O. Morphogenetic Engineering; Springer: Berlin/Heidelberg, Germany, 2013;

pp. 191–208.
7. Sayama, H. Analysis and design of self-organizing heterogeneous swarm systems. In Proceedings of the

2016 Conference on Complex Systems, Amsterdam, The Netherlands, 19–22 September 2016.

128

Appl. Sci. 2018, 8, 729

8. Doursat, R.; Sayama, H.; Michel, O. A review of morphogenetic engineering. Nat. Comput. 1987, 12, 517–535.
[CrossRef]

9. Sayama, H. Robust Morphogenesis of Robotic Swarms. IEEE Comput. Intell. Mag. 2010, 5, 43–49.
10. Sayama, H. Swarm chemistry. Artif. Life 2009, 15, 105–114. [CrossRef] [PubMed]
11. Sayama, H.; Wong, C. Quantifying evolutionary dynamics of Swarm Chemistry. In Proceedings of the

Eleventh European Conference on Artificial Life (ECAL 2011), Paris, France, 8–12 August 2011; pp. 729–730.
12. Sayama, H. Morphologies of self-organizing swarms in 3D swarm chemistry. In Proceedings of the

Fourteenth InternationAl Conference on Genetic and Evolutionary Computation Conference, Philadelphia,
PA, USA, 7–11 July 2012; pp. 577–584.

13. Sayama, H. Swarm Chemistry Evolving. In Proceedings of the Alife XII Conference, Odense, Denmark,
19–23 August 2010; pp. 32–33.

14. Sayama, H. Swarm Chemistry Homepage. Available online: http://bingweb.binghamton.edu/~sayama/
SwarmChemistry/ (accessed on Apr. 29, 2018).

15. Sayama, H. Seeking Open-Ended Evolution in Swarm Chemistry. In Proceedings of the IEEE ALIFE 2011,
Paris, France, 11–15 April 2011; pp. 186–193.

16. Sayama, H. Guiding Designs of Self-Organizing Swarms: Interactive and Automated Approaches. In Guided
Self-Organization: Inception; Springer: Berlin/Heidelberg, Germany, 2014; pp. 365–387.

17. Nishikawa, N.; Suzuki, R.; Arita, A. Coordination Control Design of Heterogeneous Swarm Robots by means
of Task-Oriented Optimization. Artif. Life Robot. 2016, 21, 57–68. [CrossRef]

18. Sayama, H. Four Classes of Morphogenetic Collective Systems. In Proceedings of the Fourteenth
International Conference on the Synthesis and Simulation of Living Systems (ALIFE 14), New York, NY,
USA, 31 July–2August 2014.

19. Sayama, H. Behavioral Diversities of Morphogenetic Collective Systems. In Proceedings of the European
Conference on Artificial Life 2015, New York, NY, USA, 20–24 July 2015.

20. Eshelman, L.J.; Schaffer, J.D. Real-coded Genetic Algorithms and Interval-Schemata. Found. Genet. Algorithms
1993, 2, 187–202.

21. Palmer, A.R. Animal Asymmetry. Curr. Biol. 2009, 19, 473–477. [CrossRef] [PubMed]
22. Palmer, A.R. Symmetry breaking and the evolution of development. Science, 2004, 306, 828–833. [CrossRef]

[PubMed]
23. Castellani, E.; Ismael, J. Which Curie’s Principle? Philos. Sci. 2016, 83, 1002–1013. [CrossRef]
24. Chalmers, A.F. Curie’s Principle. Br. J. Philos. Sci. 1970, 21, 133–148. [CrossRef]
25. Kano, T.; Osuka, K.; Kawakatsu, T.; Matsui, N.; Ishiguro, A. A Minimal Model of Collective Behaviour Based

on Non-reciprocal Interactions. In Proceedings of the fourteenth European Conference on Artificial Life
(ECAL 2017), Lyon, France, 4–8 September 2017; pp. 237–244.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

129

Article

Comparison of Heuristic Algorithms in Discrete
Search and Surveillance Tasks Using Aerial Swarms

Pablo Garcia-Aunon *,† ID and Antonio Barrientos Cruz ID

Centre for Automation and Robotics (CAR), Technical University of Madrid (UPM), 28006 Madrid , Spain;
antonio.barrientos@upm.es
* Correspondence: pablo.garcia.aunon@upm.es; Tel.: +34-620-402-032
† Current address: C/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain.

Received: 24 March 2018; Accepted: 2 May 2018; Published: 3 May 2018

Abstract: The search of a given area is one of the most studied tasks in swarm robotics. Different
heuristic methods have been studied in the past taking into account the peculiarities of these systems
(number of robots, limited communications and sensing and computational capacities). In this
work, we introduce a behavioral network made up of different well-known behaviors that act
together to achieve a good performance, while adapting to different scenarios. The algorithm is
compared with six strategies based on movement patterns in terms of three performance models.
For the comparison, four scenario types are considered: plain, with obstacles, with the target location
probability distribution and a combination of obstacles and the target location probability distribution.
For each scenario type, different variations are considered, such as the number of agents and area
size. Results show that although simplistic solutions may be convenient for the simplest scenario
type, for the more complex ones, the proposed algorithm achieves better results.

Keywords: swarm robotics; search; surveillance; behaviors; patterns; comparison

1. Introduction

1.1. Multi-Agent and Swarm Robotics

In nature, as well as in our societies, it is easy to find individuals that act together to achieve a
specific goal. In some cases, a good performance cannot be achieved without a coordinated action of
various agents. In some other cases, it may be even mandatory to use more than one agent. With the
development of robotics, it has been possible to cover increasingly complex tasks by using groups
of intelligent agents that coordinately act as a team. In many circumstances, subdividing those tasks
not only speeds up their fulfillment, but also allows specialization by allocating specific tasks to
agents designed for those purposes. On the other hand, multi-agent systems present important
complexities that must be correctly addressed, among which we can highlight the coordination of
the agents, the communications between them and how to make the team learn in order to improve
the performance.

There are several cases in which the use of multi-agent systems may be desirable. In [1],
three types of tasks are considered: tasks that require multiple agents (for example, a task that
needs the simultaneous presence of an agent in two places separated by a great distance); tasks that are
traditionally multi-agent (e.g., because they can be naturally divided); and tasks that might benefit from
the use of multiple agents. Search, surveillance and exploration belong to this last group. Some other
tasks might not benefit from the use of more than one robot, either because they are simple or because
the development of the coordination and the communication between the members is a barrier not
worth overcoming.

Appl. Sci. 2018, 8, 711; doi:10.3390/app8050711 www.mdpi.com/journal/applsci130

Appl. Sci. 2018, 8, 711

Some examples in nature show that individually, simple animals have been capable of surviving
during millions of years all over the Earth. Consider for example the most well known of these
animals, ants. Ants have a very simple nervous system made up by 250,000 neurons and very limited
sensing and communication capabilities. Communications are achieved mostly by pheromones [2],
chemicals spread in the environment used to mark trails, warn other members of the nest and confuse
enemies. It is obvious how difficult it would be for them if they had to survive individually. However,
acting as a coordinated group, they have survived for 130 million years and form around 15–25%
of the terrestrial animal biomass. The reason why such a simple creature has been so successful is
because of their collective behavior. Every ant acts in a very simple way that turns out to be very
inefficient individually. However, collectively, because of the high number of members, an efficient
behavior emerges. Similar social structures and interactions may be found in other species, such as
bees, termites, fishes (forming schools), ungulates and birds (flocks).

Swarm behaviors are a particular case of collective behavior, in which a large number of members
is involved, requiring very limited communications between them and being individually simple.
Some researches started bringing the ideas of swarms in nature to the robotics field. Goals are
achieved using a high number of homogeneous robots, which behave following simple and mostly
reactive rules. The pioneers of swarm robotics appeared in the late 1980s and the beginning of
the 1990s [3–5]. Swarm robotic systems present some well-known advantages such as robustness,
simplicity, scalability and flexibility, while it is difficult to achieve a good global performance [6].
More recently, many researchers have used the term swarm robotics to name or classify these works.
Hardware miniaturization and cost reduction have made possible new research lines in this direction,
and hundreds of papers developing all sorts of algorithms have been published.

1.2. Search with Swarms

From the very beginning of the development of swarm robotics, researches have focused on
implementing behaviors in robots to solve simple tasks [7]. Those behaviors are mainly inspired by
how natural swarms act, and the missions may be used as test beds for more complex and useful tasks.
Typical examples of them are aggregation (gathering in a common place), flocking, foraging (collecting
items scattered in the space), path formation (establishing a path of robots between two points) and
deployment (expanding and occupying the available space). Note that all of these behaviors are very
common in animal swarms such as fish schools, bird flocks, ants and bees.

Besides those basic tasks, more complex missions have been also studied in the past. Exploration
of unknown areas, search, surveillance, patrolling, collaborative manipulation and self-assembly
are only some examples of missions that have been carried out with robotic swarms. In this work,
the focus is on the search task, where multiple and different solutions have been proposed over the
years. Most of these methods may be assigned to one of the following categories:

• Virtual pheromones: Inspired by the chemicals dropped by some insects, the search is led using
them in their virtual version [8,9]. They are conveniently created and eliminated, and in many
cases, their transportation in the area of interest is calculated by means of the diffusion equation.

• Potential fields: The agents are subjected to virtual potential fields created by them or by other
objects (such as obstacles) and react to them [10].

• Flocking techniques: Mimicking flocks of birds and schools of fishes, the agents move coordinately,
keeping appropriate distances between them [11].

• Probabilistic maps: Making use of prior knowledge of the locations of the targets, the robots
search according to it [12]. Adapting the decisions depending on the data acquired during the
process is also possible [13].

• Patterns: These comprise a wide range of methods and techniques that try to organize the search
to achieve high efficiencies [14–16].

131

Appl. Sci. 2018, 8, 711

As can be seen, all the previous solutions are heuristic methods, since they do not guarantee
optimal solutions. There have been approaches trying to optimally solve the search, although they
require high computational loads, and the calculations only reach reduced time horizons. Note that the
number of solutions increase exponentially with the number of agents, making the finding of optimal
solutions almost intractable. Some of these methods will be briefly reviewed in Section 1.4.

In this paper, we propose an algorithm based on a behavioral network, made up by different
behaviors that act together to obtain a common decision in order to lead each agent. On the one hand,
this type of control responds quickly to changes in the environment (which is a typical property of
reactive systems). On the other hand, the behaviors are capable of constructing representations of
the world (they have memory, a typical property of the deliberative controls). Decisions are taken as
a result of the interactions between the behaviors and the environment and between the behaviors.
All this results in a good trade-off between reactive and mid-term decisions [17]. Behavior-based
architectures turn out to be adequate for changing and stochastic environments, and therefore, they are
also very suitable for multi-agent systems. Note that if each agent makes its own decisions (there is no
central planning), the state of the task changes rapidly, and planning at the individual level becomes
likely unfeasible.

The search task is an interesting challenge not only because of its direct application in real-world
situations, but also because it may be extended to similar, but more complex tasks such as surveillance,
exploration, patrolling, area coverage and the so-called traveling salesman problem:

• Exploration: This differs from search in that there does not exist a previous map of the area.

• Surveillance: This is basically persistently searching a given area. Each zone must be re-visited
frequently enough to ensure up-to-date information.

• Patrolling: Similar to surveillance, the area of interest is restricted to singular points or lines
(for instance, corridors inside a building).

• Probabilistic maps and obstacles: Another extension of the search task in its simplest form is the
inclusion of probabilistic maps, which consider prior knowledge about where it is more likely
that a target is located in the area. Moreover, obstacles may be included, it being impossible for
the agents to go through them.

Authors frequently define area coverage as deploying the agents until they reach certain fixed
positions so that the covered area (by either the sensor or the communication footprint) is maximized.
However, some other authors use the word coverage to define a task similar to search. For instance,
in [18], the search area is covered by subdividing it into k regions, which are individually assigned to
k robots. Each robot searches then in its assigned area following regular patterns. Another example
can be found in [19], where the coverage task is addressed using the spanning tree coverage method.
In any case, the strategies proposed in these works do not differ from the strategies listed above.

1.3. Search Patterns

In order to organize the search, most of the past works based on patterns have made use of
dividing the area into cells, taking into account if they have been visited or not. The sensed area
is frequently restricted to those cells, and therefore, the search implies visiting all the existing cells.
The agent’s movement is restricted, and they are only allowed to travel between the centers of adjacent
cells. With these assumptions, the search is simplified since it becomes a discrete problem. In the
following, the main works addressing this kind of mission by implementing movement patterns
are analyzed.

In [20], the task is addressed with an algorithm made up by four behaviors that act together:

• Contour following: This leads the agent along boundaries, i.e., cells that have at least one
non-visited cell surrounding them. This is the behavior with the highest priority.

132

Appl. Sci. 2018, 8, 711

• Avoidance: When two agents are within a given range, this behavior is triggered. The velocity
command is perpendicular to their mutual collision course, and it is added to the contour
following the behavior output.

• Gradient descend: Having defined a distance field, computed at each cell as the distance to the
closest non-visited cell, when this behavior is active, it leads the agent along the gradient. It is
activated when an agent is completely surrounded by visited cells.

• Random movement: The agent decides randomly which cell to visit next. It is activated when
none of the other behaviors are active.

The distance matrix is treated here as a pheromone field. The members of the swarm share
information with the agents within a communication range, updating the distance matrix (i.e., which
cells have been visited). Assuming a constant velocity and considering that traveling diagonally
requires the same time as traveling in the other directions, the minimum needed time is then O

(m·n
l
)
,

where m · n is the number of cells and l is the number of agents. The algorithm is tested for different
numbers of agents, as well as for different avoidance and communication ranges. The needed time
to accomplish the mission is used as the performance measurement. The influence of implementing
a central communication point, which distributes the state of the search grid among the agents,
is analyzed. Having distributed the agents randomly, the results show that the time needed to finish
the mission is higher than the theoretical lower bound, even with the centralization of the information.
However, even with short communication ranges, the overtime to complete the search is less than 50%,
with a standard deviation of 6% on average due to the variability in the initial conditions. With only
one agent, the time needed is close to the minimum bound. Furthermore, another performance
measurement criterion is proposed:

E =
1

1 + Nm
N

(1)

where Nm are the number of cells visited more than once and N is the total number of cells. Again,
for only one member, this ratio is close to one, whereas for the higher number of agents, this figure
decreases. If the communication range increases, the solution converges to the centralized map,
as expected.

In another work [21], three search strategies are compared in a mission in which the agents
are deployed in an area that contains targets to be localized and destroyed, forming coalitions.
The three studied strategies are:

• Random search: Each agent follows its current heading until one boundary is reached. At that
moment, it changes its direction to re-enter the search area.

• Search lanes: The area is organized into lanes, and each agent is assigned to a unique one. Once a
lane has been traveled, a new one is assigned.

• Grid-based search: The agents go to the closest non-visited cell.

Since in this work, targets to be destroyed are considered, the search task stops to pursue and
destroy them. Therefore, no absolute search performance metric is provided, and these behaviors are
compared by only considering the time needed to complete the mission. Monte Carlo simulations are
run varying the number of agents and targets.

There have been many works in which the task is solved by partitioning the area and assigning
individually those partitions to the agents. For instance, in [22], each partition is filled with zig-zag
lanes, computed to be energetically efficient. However, the algorithm requires that the area is a polygon
on whose boundaries the UAVs must be initially placed, restricting the initial positions.

Making use of the probability that a target is located in a specific cell in [23], scores are assigned to
each one, taking also into account forbidden flying zones and areas that should be avoided if possible.
The scores are updated either externally or because of the findings of the agents. The agents select
the cell to visit depending on that score. In this work, the area is partitioned using a Voronoi diagram,
and the results are compared with other algorithms:

133

Appl. Sci. 2018, 8, 711

• Lawn mower: Each agent moves in a straight line, and when it encounters an obstacle, it turns to
head in a clear direction.

• Raster scan: The agents move in parallel lanes north/south or east/west.

• Gradient climb: This is a greedy algorithm based on the surrounding cell scores.

• Randomized Voronoi: The area is partitioned with the Voronoi diagram using the agent’s position
as the generators.

• Full algorithm: This is the same algorithm, developed in previous works, but without the
Voronoi partitioning.

The algorithms are compared using as a performance measurement the mean cell scores, computed
along 20 runs, the most efficient algorithm being the one proposed in the work. This result seems
reasonable, since the performance is measured using the same score on which the algorithm is based.

1.4. Optimal Methods in Discrete Search Tasks

Although the discrete search task using teams of agents has been shown to be a hard problem to
solve optimally, there have been some works addressing the problem by looking for optimal solutions.
For instance, in [24], an exact mixed-integer linear programing formulation to solve in an optimal
way the search of a discretized area is proposed. Given a mission state defined by the position of
the agents and the cells already visited, the best sequence of movements is calculated for a specific
time horizon. While the found path is being followed, a new sequence is generated over a receding
horizon. Eight possible movements are considered at each decision instant, as well as a prior belief
about where the targets are possibly located. The authors remark that the number of possible solutions
for n agents and a time horizon of T movements is 8nT , which reaches prohibitive values quickly.
Using a six-core processor, for a grid of 10 × 10 cells and considering two and five agents, with time
horizons of 10 and 20 steps, optimal solutions are found within one minute (except for one of the cases
studied, which needed 142 s). Bigger scenarios and/or more agents are unfeasible to solve.

In [25], a receding time horizon is also used to optimize on-line the trajectories of a group of
UAVs in a discrete bi-dimensional search area. Based on the current state of the agents, the optimizer
tries to maximize the reward of finding a target and of exploring the area, while it keeps the energy
consumption low. The optimization problem is broken down into local ones assuming communications
between the agents, so that it can be solved in a decentralized way. For this procedure, Nash optimality
is considered and a particle swarm optimization used as the optimizer tool. Simulations are carried
out in a search area of 50 km × 50 km (a grid of 500 × 500 units), and the results show that although
the decentralized optimization does not reach the performance of the centralized one, it requires half
of the computational time.

1.5. Organization of This Paper

This paper is organized as follows: In Section 2, the problem is presented, defining the search
area and its grid, the agent’s dynamics and the measurement of the algorithms’ performance.
Furthermore, the four different types of scenarios used to compare the algorithms are shown;
in Section 3, the proposed algorithm based on a set of behaviors is explained in detail, as well
as how it is configured for any scenario. In Section 5, the algorithms are compared measuring their
performance for the four scenarios types; also, the communications needed by each algorithm and their
adaptation to surveillance missions are analyzed. Finally, in Section 6, the conclusions of this work are
depicted, as well as the proposed future developments.

The main contributions of this papers are: (i) the proposal of a behavioral network made up by
six behaviors; (ii) systematical comparison with six search patterns in four different scenario types,
considering the wide variations of the parameters that define each scenario; (iii) a performance model
for this type of mission.

134

Appl. Sci. 2018, 8, 711

2. Problem Formulation

2.1. Scenario

The task proposed consists of observing a given two-dimensional search space, which is a
rectangular area subdivided into cells of fixed size. The movement of the agents is restricted to those
cells, so that each agent is allowed to move from the center of each cell to the center of any of the
eight adjacent cells. As already mentioned, this assumption is convenient, since it converts the search
into a discrete problem, simplifying it.

We consider that the search is carried out by flying robots, more specifically, multicopters.
The agents are capable of flying at a constant altitude and at given commanded velocity vn and are
equipped with a camera capable of detecting targets within a circular area of radius R f . This area
is called the sensor footprint. The team of robots is made up by Na of equal multicopters, initially
deployed randomly in non-coincident positions in the search area. Each agent will be configured
equally, i.e., the control parameters will be the same for each one.

Having divided the search space into a grid, with a total area of As (m2), we allow the robots
to move to any adjacent cell. In order to ensure that the cells are completely observed by the sensor
footprint, they must be inscribed in it. Therefore, the number of cells in each direction is:

nx = � Lx√
2R f

� (2a)

ny = � Ly√
2R f

� (2b)

where � � indicates the ceil function, and the dimensions of each search cell are:

ΔLx =
Lx

nx
(3a)

ΔLy =
Ly

ny
(3b)

When flying in any direction, part of the adjacent cells is observed; see Figure 1. Those cells,
which we will denominate from now on search cells, should be then subdivided into thinner cells to
take into account whether those portions of space have been observed or not. We will refer to these
other cells as discretization cells. Therefore, the movement will be restricted to the search cells, but not
the search task itself, since a search cell can be completely observed without visiting it. We consider for
the rest of the work a size of the discretization cells of 2 × 2 m, i.e., Δlx = Δly = Δl = 2 m.

In Figure 1, both types of cells have been represented. We define observing a cell as placing an agent
so that at least half of that discretization cell is inside the sensor footprint. We also define visiting a cell as
placing an agent in the center of that search cell. Since the search cells are inscribed in the sensor footprint,
visiting a search cell implies observing the discretization cells inside it.

In Table 1, the parameters that define the scenarios with their considered range of values have
been presented. Note that instead of limiting the total search area As, it is more sensible to limit the
search area per agent, As/Na. On the other hand, we define the aspect ratio fA of the search space as:

fA =
Lx

Ly
(4)

135

Appl. Sci. 2018, 8, 711

Figure 1. Search area example. A search and a discretization cell have been highlighted. The agent,
represented as a triangle, has moved in the diagonal and in the horizontal directions. The three visited
search cells by the agent have been highlighted. The observed discretization cells have been marked in
dark green. Note that the footprint area circumscribes the search cells.

Table 1. List of parameters that define the scenario.

Parameter Description Range of Values

As/Na Search area per agent [2, 15] × 103 m2

Na Number of agents [2, 30]
vn Nominal velocity of the agents [2, 20] m/s
R f Radius of the sensor footprint [5, 20] m
fA Aspect ratio of the search area [0.25, 1]

2.2. Plain, Obstacles and Probability Scenarios

Given the scenario above described, four different types of scenarios are considered:

• Plain scenario: In the simplest scenario type, every cell is flyable, and all the discretization cells
must be observed at least once to finish the mission (see Figure 2a).

• Probability distribution scenario: We assume prior knowledge about the possible location of
targets to be found. According to this distribution, Nt =

5
2000 · As

Na
targets are generated. The search

is finished when all the targets have been observed. The probability distribution is generated
using the midpoint displacement method, normally used as a terrain generator method. The initial
distribution is generated randomly with a roughness r ∈ [0, 0.5] and its derivative rr ∈ [0, 0.1].
Seven iterations are applied. In Figure 2b, an example of this scenario type is shown.

• Obstacles scenario: Some of the search cells are occupied, and the agents cannot fly through
them. The search is completed when all the discrete cells that are not inside the obstacles have
been observed at least once. The map is generated using the Schelling segregation model, fixing
the tolerance limit to 0.3 and the percentage of the population that look for new houses to 0.7.
The percentage of non-flyable search cells is drawn from a normal distribution N (

0.75, 0.12),
while the percentage of empty cells (cells that may be occupied by obstacles) is drawn from
N (

0.25, 0.12). Once the equilibrium has been reached, the empty cells are transformed into
flyable cells. It is checked that every flyable cell can be reached (i.e., there are no cells completely
surrounded by obstacles). An example of the result of this procedure has been shown in Figure 2c.

• Probability distribution and obstacles scenario: Both the probability distribution of target locations
and obstacles are considered; see Figure 2d.

136

Appl. Sci. 2018, 8, 711

0 100 200 300
x [m]

0

50

100

150

200

250

300

350

y
[m

]

2.30852

2.30854

2.30856

2.30858

2.3086

2.30862

2.30864

2.30866

2.30868

2.3087

10 4

(a)

0 100 200 300
x [m]

0

50

100

150

200

250

300

350

y
[m

]

5

6

7

8

9

10

11

10 4

(b)

0 100 200 300
x [m]

0

50

100

150

200

250

300

350

y
[m

]

0

2

4

6

8

10

10 4

(c)

0 100 200 300
x [m]

0

50

100

150

200

250

300

350

y
[m

]

0

2

4

6

8

10

10 4

(d)

Figure 2. (a) Plain scenario; (b) probability distribution scenario; (c) obstacles scenario; (d) probability
distribution and obstacles scenario. Examples of scenarios with the four types considered. The color bar
represents the concentration of pheromones (see Section 3), proportional to the probability distribution
of the targets’ location. The colored circles represent the initial position of the agents. The black dots
are the targets to be detected. Obstacles have been colored in dark blue.

2.3. Model of the Agent

2.3.1. Dynamics

The agent considered here is a multicopter, i.e., a holonomic UAV capable of flying in any direction
and keeping a fixed position. The high level control generates a commanded velocity in the {x, y}
plane, defined by two variables, a reference velocity vn and its heading ψc. The actual velocity vector
is modeled as:

v(t) = v(t) (sin(ψc(t)), cos(ψc(t))) (5)

where v(t) is assumed to be dependent on the change of the flying direction:

v(t)
vn

=

{
1 − |Δψ|

2π

(
1 − cos

(
2π t−td

tv

))
if t − td ≤ tv

1 if t − td > tv
(6)

where td is the time instant at which the agent changes its direction and tv is the characteristic time for
the velocity reduction due to the change in the flying direction (Δψ).

137

Appl. Sci. 2018, 8, 711

2.3.2. Energy Consumption

The agents are considered to have an energy consumption proportionally to the flown distance:

Ed = αEd d (7)

where Ed is the dimensionless energy needed to fly a distance d (m) and αEd is a coefficient. Furthermore,
if a quadcopter changes its flying direction, an extra energy consumption is considered:

EΔψ = αΔψ
|Δψ|

π
(8)

where EΔψ is the dimensionless energy needed to change the flying direction in Δψ radians and αΔψ is
a coefficient. The remaining energy in each quadcopter will be then calculated as:

Ea = Emax − Ed − EΔψ (9)

being Emax the maximum energy in the quadcopter’s batteries. In Table 2, the chosen values for the
parameters that define the model have been presented.

Table 2. List of parameters that define the model of the agent.

Parameter Description Equation Value

tv Velocity reduction time due to Δψ (6) 5 s
αEd Energy-distance coefficient (7) 0.1 m−1

αΔψ Energy-change-of-heading coefficient (8) 2
Emax Max available energy (9) 180

2.4. Measuring the Performance

As already seen, in past works, several different ways of measuring the performance of a search
task have been proposed. Some of them are not absolute metrics, i.e., they have been created ad hoc
for specific missions or situations and cannot be translated in a general way to other search missions.
The best way to measure the efficiency would be comparing the performance with a solution whose
optimality is ensured. However, as we have seen, only partial optimal solutions (with limited time
horizons) have been achieved. Therefore, we will make use of three different models or methods to
measure the efficiency.

2.4.1. Model 1

The first model we consider is the one presented in [23]. The efficiency is measured with a
coefficient between the total number of search cells and the number of search cells that have been
visited more than once:

E1 =
1

1 + Nm
N

(10)

where Nm is the number of search cells visited more than once and N is the total number of search cells.
Note that if every cell is visited only once, the efficiency reaches the maximum value, equal to one.

2.4.2. Model 2

In the first model of the efficiency, the search cells have been considered to measure it, counting
whether they have been visited more than once or not. However, when traveling diagonally, parts of
the surrounding cells are observed, as well. In order to take this into account, in this second model,
Equation (10) is used, but considering the discretization cells:

138

Appl. Sci. 2018, 8, 711

E2 =
1

1 + nm
n

(11)

being nm the discretization cells that have been observed more than once and n the total number of
discretization cells. With this approach, a result closer to the reality is expected.

2.4.3. Model 3

A final third model of the efficiency is proposed, and it is based on the time the team of agents
need to complete the search. The ideal performance would be reached if the search area was completely
observed without observing any of the discretization cells more than once and if during the search
process, no part of the agent’s footprint is outside the search area. If this were the case, the time needed
to observe a specific area would be:

ti =
Ao − Ai

2R f vnNa
(12)

where Ai is the observed area at t = 0 and Ao is the actual observed area at the end of the mission.
Note that in some missions, depending on the search area per agent, the footprint sensor radius and
the configuration of the algorithm, it may be Ao < As if the available energy is limited. If this is the
case, we consider that the search is not completed. If a group of Na agents needs a time tn to completely
observe that area, we can define the efficiency as:

E3 =
ti
tn

(13)

where E3 ∈ (0, 1). Note that reaching an efficiency equal to one, i.e., tn = ti, is not possible since the
footprint invades part of the adjacent cells, and therefore, when flying over the cells at the boundaries,
part of the sensor footprint would be outside the search area, implying a loss of efficiency. It is also
very likely that some of the discretization cells are observed more than once. Probably if we chose
the search cells so that the footprint is inscribed inside them, the efficiency would increase. However,
the corners of the search area would never be observed.

2.4.4. Fitness Function

In Section 2.3.2, we have assumed that each agent accounts for a specific amount of available
energy; once it is consumed, it stops flying, and therefore, it stops observing the scenario. Depending
on how efficient the configuration of the algorithm is and on the scenario characteristics, it may happen
that the search area is not completely observed. In those cases, the efficiency will be penalized by only
considering 25% of the efficiency. Note that it may happen that for the same scenario, with the same
configuration of the algorithm, the task may be completed or not depending on the initial conditions.
In those cases, the efficiency penalization will be only applied for the trials in which the search has not
been completed.

We assume that the efficiency depends on the initial conditions, for a given configuration Ω and
scenario Υ. We consider that a configuration is robust if for different initial conditions, it achieves
efficiencies with a small standard deviation, since it is capable of carrying out the task within similar
periods of time, independently of the initial positions. Therefore, instead of evaluating the goodness of
the configuration with the efficiency, we define a fitness function that accounts for this:

f = E · β f · βe (14a)

β f =
1
3

(
2 +

tanh (50(σc − σ)) + 1
tanh (50σc) + 1

)
(14b)

βe =

{
1 if search completed
0.25 if search not completed

(14c)

139

Appl. Sci. 2018, 8, 711

where β f ∈ [2/3, 1] is a correction factor that penalizes high standard deviations, being β f (σ = 0) = 1;
βe is the penalization in the case that the search is not completed. Based on experience, it has
been chosen σc = E/10, considering this value as reachable if the algorithm is properly configured.
In Figure 3, the correction factor has been represented for σc = 0.03 as a function of the
standard deviation.

0 0.02 0.04 0.06 0.08 0.1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 3. Correction factor β f of the efficiency as a function of its standard deviation. For the dashed
line, the value of σc = 0.03.

For each of the models of the efficiency already presented, Equations (10), (11) and (13), the fitness
value will be calculated as well in order to estimate the variance of the algorithm, taking also into
account whether the search has been completed or not.

3. Proposed Search Algorithm, a Set of Behaviors: A1

3.1. Search Behavior

This first behavior is the main one and leads the multicopter to search unexplored areas. It is
based on the presence of virtual pheromones, whose dynamics and different classes are explained
in the next subsections. The virtual pheromones are created on the search space and are absorbed
by the robots as the area is observed. The robots are then attracted to unobserved zones, where the
concentration of the pheromones is higher.

3.1.1. Pheromone Dynamics

The dynamics of the virtual pheromones have been implemented following the bi-dimensional
heat flow (or gas diffusion) equation:

∂φ(r, t)
∂t

= −∇F + S (15a)

F = −D(r, t)∇φ(r, t) (15b)

where φ is the concentration of the virtual pheromones, ∇ is the divergence operator, F is the
pheromone flux and D is the diffusion coefficient and represents how well the pheromones are
transported. S is the source of pheromones, i.e., the creation of pheromones at each discretization cell.

Using the divergence theorem in Equation (15) and considering as volumes of control the
discretization cells, we can solve the obtained integral equation with an explicit scheme, forward in
time and centered in space (FTCS). We consider therefore mean values of φ and S inside those cells

140

Appl. Sci. 2018, 8, 711

and mean values of F and D along their boundaries. The problem is then properly posed by finally
defining the initial and the boundary conditions:

φ(x, y, t = 0) = φ0(x, y) (16a)

φx(0, y, t) = φx(Lx, y, t) = 0 (16b)

φy(x, 0, t) = φy(x, Ly, t) = 0 (16c)

The first equation represents the initial concentration of pheromones over the search space,
whereas the next four are von Neumann conditions, which state that the pheromone’s flux through the
boundaries must always be zero. Obstacles inside the scenario are impermeable to the pheromones
flux, similarly to the boundaries of the area.

3.1.2. Cell Types and Properties

The properties of each discretization cell, i.e., the concentration, creation and diffusion of
pheromones, variables φk

i,j, Dk
i,j and Sk

Pi,j
associated with the cell (i, j) at moment k, depend on three

types of cells:

• Non-observed cells: cells that have not been observed yet:

Sk
i,j = Sno (17a)

Dk
i,j = Dno (17b)

• Observed cells: cells already observed by any agent:

Sk
i,j = So (18a)

Dk
i,j = Do (18b)

• Recently-observed cells: if a cell has just been observed, there is n instantaneous drop of its
pheromone concentration of:

Δroφk+1
i,j = δro · φk

i,j (19)

where Δro indicates variation due to the fact that the cell has recently been observed and
δro ∈ [−1, 0]. This drop is accounted only once, so that at the next time step, a recently-visited
cell becomes a regularly-visited cell.

• Isolated cells: Each non-observed cell has associated a so-called isolation index, θk
i,j, which is the

number of observed cells surrounding it. If the cell has already been observed, its isolating index
is forced to be equal to zero. Every time step the isolation index changes, there is an increment in
the pheromone concentration of:

Δθφk+1
i,j = ρΔθ · Δθk+1

i,j · φk
i,j (20)

where Δθk+1
i,j ≥ 0 is the variation of the isolation index from time k to k + 1:

Δθk+1
i,j = θk+1

i,j − θk
i,j (21)

The parameter ρΔθ ≥ 0 makes the concentration increase when its isolation index changes.
Moreover, there is an extra pheromone creation proportional to the isolation index in these cells:

ΔθSk
i,j = ρθ · θk

i,j (22)

141

Appl. Sci. 2018, 8, 711

In Figure 4, the above-mentioned cells have been represented. The white discretization cells
have not been observed yet. At each time step, the cells that have just been observed become
recently-observed cells, in dark green. In the next step, those cells become regular observed cells,
in light green. Note that even though there may be a variation in the isolation index at position (w, h),
the variation of the isolation index is forced to be zero, since the cell becomes observed. In the example
shown in the figure, the pheromone concentration in those four cells will suffer a variation, exclusively
due to the type of the cell (Δtc), of:

Δtcφk+1
i,j = So · Δt

Δtcφk+1
i−1,j+1 = Sno · Δt + Δθφk+1

i−1,j+1 = (Sno + ΔθSk+1
i,j)Δt = (Sno + ρθ · θk+1

i,j)Δt

Δtcφk+1
w,h = So · Δt + δro · φk

w,h

Δtcφk+1
w+1,h+1 = Sno · Δt + ρΔθ · Δθk+1

w+1,h+1 · φk
w+1,h+1

(23)

Figure 4. Types of cells in the search behavior. The white cells have not been already observed. The light
green cells are the already observed cells, whereas the darker green are the cells just observed.

Besides these changes in the concentration of pheromones, the natural diffusion, Equation (15),
will also apply during each time step.

If there is a prior probability distribution of the possible location of the targets, it can be easily
implemented in the algorithm. Given a probability distribution qt(x, y), each discretization cell (i, j) is
assigned a probability value pti,j :

p′ti,j
= qt(xi, yj) (24a)

pti,j =
p′ti,j

∑nx
i=1 ∑

ny
j=1 p′ti,j

(24b)

being therefore:
nx

∑
i=1

ny

∑
j=1

pti,j = 1 (25)

and this probability distribution is finally normalized with the maximum value:

p̄ti,j =
pti,j

maxi,j pti,j

(26)

142

Appl. Sci. 2018, 8, 711

and therefore, 0 ≤ pti,j ≤ 1. The sources of pheromones, as well as the initial value of the pheromones
(see Equations (15a) and (16a)) are then multiplied by the associated normalized probability p̄ti,j . In this
way, the regions where it is more probable to find a target generate more pheromones, and the agents
are more attracted to them.

3.1.3. Layers of Pheromones

The actual usefulness of pheromones is to transmit information about observed and non-observed
cells along the search area, so that the agents are aimed at zones with more unobserved cells. This way,
it is expected that the observed cells generate and transmit less pheromone levels than the unobserved
ones. However, if there exist unobserved cells, surrounded by observed cells, it is possible that these
last ones act like a barrier, avoiding an effective transmission of the information by the pheromones.
On the other hand, it is our experience that it is useful to try to organize the search by prioritizing the
observation of isolated (i.e., with high θ values) cells surrounding each agent. In order to address these
issues, we propose a multi-layer pheromone system made up by three independent layers:

• Standard layer (L1): There is no impact of the isolation index on this layer, and it has different
diffusion coefficients for observed and unobserved cells.

• Long-range layer (L2): Intended to transmit information from unobserved cells along the entire
search area. The diffusion coefficients of observed and unobserved cells are equal, and the
observed cells do not produce pheromones.

• Isolation layer (L3): This mainly considers pheromone creation due to the isolation index. Once
the cells are observed, they lose their pheromone concentration at this layer.

In Table 3, the parameters for the three layers are summarized. Each parameter has been named
with a super-index to indicate the layer to which they belong, except for ρΔθ and ρθ , which only apply
to Layer 3.

Table 3. Parameters related to the search behavior for each of the three layers.

φ0 Sno So Dno Do δro ρΔθ ρθ

L1 φL1
0 SL1

no SL1
o DL1

no DL1
o δL1

ro 0 0

L2 φL2
0 SL2

no 0 DL2 DL2 δL2
ro 0 0

L3 φL3
0 SL3

no 0 0 0 −1 ρΔθ ρθ

3.1.4. Evaluating Modes

Each time an agent reaches the center of a search cell, it makes the decision of which search cell
to visit next, and the search behavior will be taken into account, depending on the concentration of
pheromones on the surrounding cells at each layer.

At each time step, each discretization cell GDc has associated a concentration of pheromones
φl

c = φl(GDc) at each layer l. The total quantity of the pheromones concentration is then:

φc = φ(GDc) =
3

∑
l=1

φl(GDc) (27)

Each search cell GSg has associated a set of discretization cells, so that their centers lie inside it.
Furthermore, if the final search cell g is in a diagonal position (with respect to the agent), half of the
contiguous cells will be observed (see Figure 1), and therefore, the discretization cells inside these
halves will be accounted for.

We propose two methods for accounting for the pheromone level at each search cell, for candidates
to be visited next:

143

Appl. Sci. 2018, 8, 711

• Mean values: The mean values of the pheromone concentration of the cells inside each search
cell are considered. The income for each surrounding cell is then calculated:

Iφmmg =

∑
∀c|GDc∈GSg

φ(GDc)

∑
∀c|GDc∈GSg

c
(28)

• Maximum values: The maximum value of the concentration inside each search cell is considered.

Iφmaxg = max
c|GDc∈GSg

φ (GDc) (29)

To consider both solutions, the total income of each surrounding cell g will be calculated as a
weighted sum of both:

Iφg = βφ Iφmmg + (1 − βφ)Iφmaxg (30)

where βφ ∈ [0, 1] is the weighting parameter, to be set.

3.2. Energy Saving Behavior

As already mentioned in Section 2.3.2, there is a need for extra energy to change the direction
of flight, besides the energy needed to continue flying. This increment in the consumption depends
on how much the direction of flight changes. Moreover, there is a reduction of velocity when the
agent changes its flight direction (see Equation (6)), which will have an impact on the performance.
In Figure 5a, the energy costs CEg for each cell g considered has been shown. As we will see, since
those values will be multiplied by a coefficient, their absolute values are not relevant, but only the
relationship between them.

3.3. Diagonal Movement Behavior

Moving in the diagonal might improve the performance of the search since there is potentially less
overlap between the sensor footprints. Therefore, a behavior is proposed to encourage the movement
in these directions, equal to the pheromone concentration in those cells:

IDMg = δ(g − gd)Iφg (31)

where δ(g − gd) is the Dirac delta centered in each diagonal cell gd = [2, 4, 6, 8] and Iφg is the input due
to the pheromone concentration; see Equation (30).

3.4. Collision Avoidance Behavior

To avoid collisions between the agents, this behavior is considered. Every time an agent makes
the decision about which cell to visit next, it advises the other agents.

It is important to remark that this behavior does not prevent the collision itself, since two agents
may head to two different cells and collide anyway. However, this is an assumed simplification,
considering that there will be also a collision avoidance system to take over the control in those
situations. The cost of CCg = −109 is considered; see Figure 5b.

144

Appl. Sci. 2018, 8, 711

(a) (b)

(c) (d)

Figure 5. In (a), energy costs considered in the energy saving behavior. The arrow indicates the
current flight direction. In the upper left corner of each search cell, the cell number has been indicated.
In (b) collision avoidance costs. Agent 2 is already heading to a cell, so that traveling to that one would
imply a cost of −109 for the agent. In Figure (c), an example of the keep distance behavior has been
represented; Agents 2 and 3 apply a total force F1

T = 1, being ψF = π/4, over the agent. The incomes
IDg have been calculated using Equation (42). In (d), an example of income due to the keep velocity
behavior is; see Equation (47). In this example, V1

T = 1 m/s.

3.5. Keep Distance Behavior

Imitating several animal species in nature, such as bird flocks, fish schools and ungulate herds,
this behavior is proposed. Each agent tries to keep a stable distance with the surrounding agents, by
means of the result of attractive and repulsive forces. These are normally implemented similarly to the
attractive-repulsive forces presented in the molecules’ interactions. The total force over an agent i due
to the presence of an agent j is made up of two forces:

Ft
i
j = Fa

i
j + Fr

i
j =

(
Aa

|di
j|ma

− Ar

|di
j|mr

)
di

j

|di
j|

(32)

where Fa
i
j is the attractive force, Fr

i
j is the repulsive force and di

j is the vector from the position of agent

i to the position of agent j, di
j = rj − ri. Aa > 0, Ar > 0 and mr > ma > 0 are parameters to be set.

Since the configuration is expected to be valid no matter how many agents are carrying out
the task or the size of the search area, it is convenient to adimensionalize the distance di

j. There are
two candidates for this purpose, the footprint radius:

dc1 = R f (33)

and a distance representing the size of the search area:

dc2 =
√

L2
x + L2

y (34)

145

Appl. Sci. 2018, 8, 711

If one takes the first option, the keep distance behavior will be related to the covered area at each
moment, and it will lead the agents to behave more as a flock. On the other hand, if the second option
is chosen, the agents will tend to cover bigger zones, spreading out themselves across the search area.
In order to let the optimization choose any combination of these characteristic distances, a weighted
distance is considered:

dc = βddc1 + (1 − βd)dc2 (35)

where βd is a coefficient to be chosen. The adimensionalized distance d̃i
j is then obtained by:

d̃i
j =

di
j

dc
(36)

Making Ft
i
j = 0 in Equation (32), we get the equilibrium distance, whereas differentiating that

equation and equaling it to zero, we get the distance at which the attractive force is maximum:

d̃0 =

(
Ar

Aa

) 1
mr−ma

(37a)

d̃max =

(
Armr

Aama

) 1
mr−ma

(37b)

where d̃max > d̃0. To reduce the number of parameters, we consider, as well:

mr = ma + 1 (38)

so that Equation (37a) becomes:

d̃0 =
Ar

Aa
(39)

With this assumption, we finally get the relationship:

mr =
d̃max/d̃0

d̃max/d̃0 − 1
(40a)

Aa =
Ftmax

(
d̃0
)ma(

mr
ma

)ma −
(

mr
ma

)mr (40b)

Again, since this behavior will be multiplied by a coefficient, the actual value of the total force is
irrelevant, and therefore, we can take Ftmax = 1. The behavior so posed depends only on three variables,
the adimensionalized distance at which the forces are at equilibrium, d̃0, the adimensionalized distance
at which the attractive force is maximum, d̃max, and the characteristic distance, dc. Once these distances
are set, mr and ma are calculated with Equations (40a) and (38), respectively. Aa is calculated with
Equation (40b), and finally, with Equation (39), we get Ar. In Figure 6a, the resultant forces have been
represented for d̃0 = 1/3 and d̃max = 0.5. Having Na the number of agents, the total force on agent
i will be:

Fi
T =

Na

∑
j=1
∀j �=i

Ft
i
j (41)

146

Appl. Sci. 2018, 8, 711

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-10

-5

0

5

Total
Repulsive
Attractive

(a)

0 1 2 3 4 5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 6. In (a) attractive, repulsive and total forces with d̃0 = 1/3 and d̃max = 0.5. In (b) function f
of the keep velocity behavior (see Equation (45)) depending on the dimensionless distance d̃ and for
different values of αv.

Once the total force vector FT over an agent has been calculated, an income value must be assigned
to each surrounding cell. Given the direction ψF of FT and its modulus FT , a normal distribution is
used along the different headings of the surrounding cells:

IDg =
FT√
2πσ2

e−
(Δψ

g
F)

2

2σ2 (42)

where IDg is the income corresponding to the surrounding cell g, σ is the variance of the normal
distribution, and it has been chosen as σ2 = 0.5; Δψ

g
F is the difference of the heading of FT and the

heading of each surrounding cell g. In Figure 5c, an example of the keep distance behavior has been
represented. Agents 2 and 3 apply two repulsive forces F1

t2
and F1

t3
on Agent 1. The total force in this

example is Fi
T = 1. The incomes IDg for each surrounding cell have been calculated with Equation (42).

In this case, since the heading of the total force is π/4, we have:

ΔψFT
1...8 = [−π

4
, 0,

π

4
,

π

2
,

3π

4
, π,−3π

4
,−π

2
] (43)

3.6. Keep Velocity Behavior

Similar to the keep distance behavior, and mimicking flocks and schools, a behavior aimed at
keeping the velocity of the other agents is also implemented. Most of these sorts of behaviors are
proportional to a certain function of the distance between the agents; see, for instance, [26]. Here,
a similar law is proposed. The total velocity effect over an agent i is calculated as:

Vi
T =

Na

∑
j=1
∀j �=i

vj f i
j (44)

where vj is the velocity vector of agent j, different from agent i, and f i
j is a function of the distance

between both agents:

f i
j = sign (αv) · min

{
e|αv |/d̃i

j − 1, 1
}

(45)

where d̃i
j is the adimensional distance between agents i and j and αv is the coefficient to be configured.

In this case, the characteristic distance is taken equal to the sensor footprint:

147

Appl. Sci. 2018, 8, 711

d̃i
j =

|di
j|

R f
(46)

In Figure 6b, the function f i
j , Equation (45), has been represented depending on the adimensional

distance d̃ for three values of αv. Once the total velocity VT over agent i has been calculated, the incomes
of each surrounding cell are calculated similarly to Equation (42):

IVg =
VT√
2πσ2

e−
(Δψ

g
V)

2

2σ2 (47)

where VT = |VT | and σ2 = 0.5. An example of incomes for each cell has been presented in Figure 6b,
where it has been assumed V1

T = 1 m/s.

3.7. Final Decision

Once every income for each behavior has been calculated, a final decision process takes place.
For each surrounding cell g, a final decision income is calculated as follows:

I fg = Iφg + αECEg + αDM IDMg + CCg + αD IDg + αV IVg (48)

where I fg is the total income of cell g, Iφg is the income due to the pheromone concentration, CEg is the
energy cost, IDMg is the income due to the diagonal movement behavior, CCg is the collision cost, IDg is
the income due to the keep distance behavior and IVg is finally the income due to the keep velocity
behavior. Note that the above Equation (48) is a weighted linear sum of all costs and incomes, where
αE, αDM, αD and αV are the weights to be set. The next cell to visit is then chosen so that the total
income is maximum.

3.8. Configuration of the Algorithm

As we have shown, the algorithm consists of six different behaviors with a total of 23 parameters
to be selected. Moreover, the optimum values of these parameters presumably depend on the scenario,
i.e., on the values of the variables shown in Table 1. To solve this optimization problem, the following
procedure was carried out.

Given any plain scenario i (the scenario shown in Figure 2a) defined by the tuple Υi =

{As/Na, Na, vn, R f , fA}i, the algorithm parameters must be configured accordantly to achieve an
appropriate performance. If we have a big-enough dataset of i = 1, ..., N scenarios with N suboptimal
configurations Ω∗

i , i.e., with N suboptimal values for each of the 23 parameters of the algorithm,
we can model them individually as a function of the scenario, using Υ as predictors. As a result, for any
scenario Υj, a suboptimal estimation Ω̂j is obtained, and the algorithm can then configured. The model
selected to predict the suboptimal values is a Gaussian process (see [27]). To generate the dataset of
suboptimal configurations, a genetic algorithm is used, whose main characteristics are:

• Chain of genes: a vector made up by the 23 parameters of the algorithm. Each of the genes is
normalized with a range of possible values.

• Population: 100 members.

• Initial population: Half of the initial population is taken from the two closest scenarios already
optimized, 25 from each one. To select those members, a trade-off between fitness and genetic
diversity is considered. The other half is taken as a prediction of the model. Since the model is
probabilistic, these 50 member are drawn from the normal distribution of the Gaussian process.

• Fitness function: To evaluate each member, Equation (14) is used. In order to measure the noise
due to the variability of the initial conditions, each member is tested 100 times.

148

Appl. Sci. 2018, 8, 711

• Crossover: The members will be combined using the roulette-wheel technique, with a probability
proportional to the fitness value. Two pairs made up by the same two members is forbidden.
Two members being selected for the crossover, a new member will be created by applying a
weighted sum of each gene individually. The weighting coefficient is a random number between
zero and one. The offspring is made up of 50 new individuals.

• Next generation selection: After evaluating the new individuals, elitism is used to select the 100
best members for the next generation from the 150 available members.

• Stopping criteria: The optimization is stopped when one of these criteria is met:

– Maximum number of generations (30) has been reached.
– Maximum time for each optimization (24 h) has been reached.
– Maximum number of generations (10) without an improvement higher than 10% of the best

member has been reached.
– Maximum number of generations (3) without an improvement higher than 10% of the mean

fitness of the population has been reached.

Having obtained k < N suboptimal configurations for k scenarios, the next scenario k + 1 is
obtained so that the mean uncertainty of the GPs of the 23 parameters is most reduced, i.e., the scenario
with the highest uncertainty is selected. A total of N = 100 scenarios is optimized and used as the
dataset. In Figure 7, the complete modeling process has been schematically depicted.

Figure 7. Schematic representation of the modeling process. Υ represents the scenario parameter
space, while Ω is the configuration space of the algorithm (the value of the 23 parameters). The black
points represent the dataset, i.e., the suboptimal configurations Ω∗ found with the genetic algorithm
for each of the scenarios Υi, with i = 1, ..., 100. The blue line represents the model of the suboptimal
configurations based on GPs. Each parameter has been modeled independently (one GP for each
parameter). For any new scenario j, the suboptimal configuration Υ̂∗

j is predicted (red circle).

4. Search Patterns

In this section, six search patterns are proposed, which will be compared with the above explained
set of behaviors.

4.1. Random Walk: A2

The simplest solution to explore the area is to walk randomly. Every time an agent reaches the
center of a search cell, it randomly decides which surrounding cell to visit next. Given a present
heading ψi, the next course will be then ψi+1 = ψi + Δψi, being:

Δψi ∼ N
(

0, σ2
rw

)
(49)

where N indicates normal distribution and σrw is its standard deviation, which has been chosen as
σrw = π/2. Since the movement is restricted to the surrounding eight cells, ψi+1 is rounded to the
closest possible heading pointing to any of those cells. In addition to this behavior, the collision

149

Appl. Sci. 2018, 8, 711

avoidance is also implemented as explained in Section 3.4. In Figure 8, an example of a random walk
has been represented for two agents.

Figure 8. Example of random walk with two agents. The agents deviate from their current heading as
per Equation (49). Surrounding the blue agent, the probability distribution of selecting each cell has
been written.

4.2. Go to the Closest Non-Visited Cell: A3

The next pattern to be compared is heading to the closest cell that has not been already visited.
The distance is computed as the Euclidean norm, and once the target cell is selected, the needed heading
is obtained. Depending on that course, utility values are assigned to the surrounding cells as per:

ICCg =
1√

2πσ2
e−

(Δψ
g
F)

2

2σ2 (50)

where it has been chosen σ = π/10. Note that this utility assignment is similar to the one used in the
keep distance and keep velocity behaviors; see Equations (42) and (48). If there is more than one cell at
the same distance, the utilities for each surrounding cell are calculated and summed up. In addition to
this behavior, the energy saving and the collision behaviors are implemented; see Sections 3.2 and 3.4.
This implies that if more than one cell is situated at a similar Euclidean distance, the agent will head
to the one that implies lower energy consumption. The utility of each surrounding cell g is therefore
calculated as:

Ig = 10 · ICCg + CCg (51)

where CCg is the energy cost. In Figure 9, an example of this algorithm has been represented.

Figure 9. Example of going to the closest non-visited cell behavior. For the cell candidates, the utility
values have been written. The yellow agent has two choices at the same distance, but due to the energy
saving behavior, one of them is preferred (see energy cost in Figure 5a).

150

Appl. Sci. 2018, 8, 711

4.3. Boundary Following: A4

As proposed in [20], an effective way of traveling along the search area is selecting the next cell
to visit depending on if they are surrounded by already-visited cells or not. This way, the task is
organized in a compact way.

In order to implement such a behavior, we make use of the isolation index θk
i,j as defined in

Section 3.1.2, but instead of applying it on the discretization cells, it will be referred to as the search
cells. Each surrounding cell will have a utility equal to its isolation index. Moreover, the energy
saving behavior is also implemented, so that for equally-isolated cells, the one that needs less energy is
preferred. The utility of each surrounding cell g is therefore calculated as:

Ig = 10 · θg + CCg (52)

Finally, if there is not any surrounding unvisited cell, the behavior go to closest non-visited cell
takes over the control. In Figure 10, an example of this behavior has been shown.

(a) (b)

Figure 10. Example of the boundary following behavior with the associated utilities for each cell.
In (a), instant a; for cells with equal isolation index, the one that requires less energy is selected.
In (b), instant b; the yellow agent activates the go to closest non-visited cell behavior.

4.4. Energy Saving: A5

The energy saving behavior, depicted in Section 3.2, can be implemented separately so that each
agent keeps its current course unless a collision may take place, or in case the agent is going to fly
outside the search area. In those cases, the safe heading that requires less energy is chosen. In Figure 11,
an example of this behavior is represented.

Figure 11. Example of energy saving behavior. The agents keep their headings unless they run into the
borders or if a collision may occur.

151

Appl. Sci. 2018, 8, 711

4.5. Billiard Random Movement: A6

Similarly to the lawn mower behavior proposed in [23], the billiard random movement behavior
directs the agents to go straight until they encounter any border. Then, they select randomly any other
free direction. This behavior differs from the energy saving in the way the next course is selected
(randomly here, the most energy convenient in the other). The collision avoidance behavior is also active
in this algorithm. In Figure 12, an example of this behavior is shown.

Figure 12. Example of billiard random movement behavior. When an agent encounters a boundary,
it redirects its heading randomly. Otherwise, the course is kept constant (unless a collision may occur).

4.6. Lanes Following: A7

Finally, the lanes following algorithm is considered. Similar to the raster scan behavior depicted
in [23], a lane is assigned for each agent. The direction of the lanes (north-south or east-west) is selected
so that the minimum number of lanes is created; if that number is lower than the number of agents,
the other direction is selected. When a lane is assigned to an agent, it goes first to the closest extreme
cell of the lane, and after, it starts traveling along it. When the lane is completely observed, the closest
non-observed lane is assigned. If there are no available lanes, the go to closest unvisited cell behavior
is activated. In Figure 13, an example of this behavior is shown.

Figure 13. Example of the lanes following behavior. In the first lane assigned to the yellow agent, it
travels first to the closest extreme cell. When each lane is completely observed, a new one is assigned.

5. Comparison of the Algorithms

In order to compare all the search algorithms considered in this work, random scenarios are
generated considering the parameters (and their valid ranges) shown in Table 1 for each of the four

152

Appl. Sci. 2018, 8, 711

scenario types. Recall that each scenario is defined by the area per agent, As/Na, the number of
agents, Na, the nominal velocity of the robots, vn, the sensor footprint radius, R f , and the aspect ratio
of the area, fa. For each scenario, 100 different initial conditions are generated, and each algorithm
is tested having considered them. The mean values of the efficiencies as per Models 1, 2 and 3
(see Equations (10), (11) and (13)) are calculated and considering the standard deviations among the
100 trials, the fitness value is obtained according to Equation (14). For this last figure, whether the
search has been completed or not is also taken into account.

First, we carry out a quantitative comparison based on the measurement of the efficiency and
fitness values for each scenario type. Secondly, we present a qualitative analysis discussing the
complexity of the communications needed and how appropriate each algorithm could be for a
surveillance mission.

5.1. Quantitative Comparison

5.1.1. Plain Scenarios

In Table 4, the results of the simulations have been presented for the plain scenario. For each
of the three models, the mean efficiency among 200 scenarios and the mean fitness value are shown.
Notice that in turn for each of the scenarios, the efficiency and the fitness is the result of the mean of
100 trials.

For Model 1, the best algorithms turn out to be A4, A3, A7 and A1, with an efficiency between
70 and 78%. In any case, the efficiencies of all algorithms lie above 78% of the maximum efficiency
(0.61/0.78 = 0.78), which may indicate a bad representation of the real performance of the algorithm.
Note that even a random movement, which a priori is considered as very inefficient, achieves mean
absolute efficiency values of 61%. The fitness values based on this model indicate that the algorithms
A3, A7, A4 and A1 combine good efficiencies with low noises due to the initial conditions. We should
underline the important drop in the fitness values compared with the efficiency for algorithms A2, A5
and A6, which indicates a high variance in the efficiency depending on the initial conditions.

The case of Model 2 is similar, although the values are in general lower. The best algorithms based
on it are A3 and A7. However, in this case, the differences between the algorithms are lower, all the
efficiencies lying between 0.57 and 0.61. Again, there are remarkable drops in the fitness for algorithms
A2, A5 and A6.

Table 4. Efficiencies and fitness values for each algorithm, based on the three models depicted in
Section 2.4.

Model 1 Model 2 Model 3

Eff Fit Eff Fit Eff Fit

A1: Behaviors set 0.70 0.58 0.57 0.49 0.39 0.29

A2: Random 0.61 0.21 0.57 0.20 0.09 0.03

A3: Closest 0.75 0.68 0.62 0.57 0.36 0.27

A4: Boundary 0.78 0.67 0.59 0.53 0.31 0.22

A5: Energy 0.66 0.21 0.59 0.19 0.16 0.04

A6: Billiard 0.61 0.23 0.55 0.22 0.16 0.05

A7: Lanes 0.73 0.68 0.61 0.57 0.35 0.28

In Figure 14, the efficiencies distributions as per Models 1 and 2 for the 200 scenarios have been
represented, in descending order of mean efficiency. Note the high variance in the efficiency of A5 for
both models, which indicates that the algorithm is very sensitive to the scenario.

153

Appl. Sci. 2018, 8, 711

A4 A3 A7 A1 A5 A2 A6

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(a)
A3 A7 A4 A5 A2 A1 A6

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(b)

Figure 14. (a) Efficiency Model 1; (b) Efficiency Model 2; efficiency based on Models 1 and 2 for
each proposed algorithm. The distribution corresponds to 200 scenarios, tested with 100 random
initial conditions.

In the case of Model 3, the results are different. First, the efficiencies are in general lower, with
their average between 9 and 39%. We can distinguish two groups of algorithms: the first group,
composed by A1, A3, A7 and A4, achieves high efficiencies, higher than 0.31. The second group, made
up of A6, A5 and A2, reaches efficiencies between 0.09 and 0.16. Note that with this model, the worst
algorithm (A2, random movement) is four-times less efficient than any of the first group, which may
be a sensible result. Regarding the fitness, the same drop from the efficiency values shows up again in
A2, A5 and A6. A1 reaches the highest fitness value, indicating robustness against the initial conditions.
In Figure 15, the efficiencies based on Model 3 and the associated fitness values have been represented
for each algorithm, for all the scenarios. Note that A3 and A7, although reaching high efficiencies,
present a high variance depending on the scenario. In 75% of the scenarios, both algorithms reach
an efficiency that lies between 0.17 and 0.55, which is a wide interval compared with A1, with the
interval from 0.35 to 0.40 comparatively narrow. A similar situation takes place regarding the fitness,
in Figure 15b. Although A7 may reach up to 0.50 of fitness in some scenarios, it is also possible that it
drops to 0.10 in some other. A similar behavior is present in A3. On the other hand, A1 only reaches
maximum fitness values of 0.4; however, the values among the scenarios are more stable.

A1 A3 A7 A4 A6 A5 A2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a)
A1 A7 A3 A4 A6 A5 A2

0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Figure 15. Efficiency (a) and fitness (b) based on Model 3.

154

Appl. Sci. 2018, 8, 711

5.1.2. Scenarios with the Probability Distribution

In the second scenario type, a probability distribution of the possible locations of the targets is
considered; see Figure 2b. Note that as the search mission in this case ends when all the targets having
been seen, it is likely that not every discretization cell is finally observed. Therefore, since the task may
end prematurely, the efficiency and the fitness measured as per Equations (13) and (14) are not absolute
metrics anymore. For the comparison, 50 scenarios are generated; for each scenario, five different
probability distributions are analyzed, considering 100 different initial conditions for each one.

In Figure 16a, the distributions of the efficiency have been represented, considering Model 3.
Again, A1 turns out to be the best, followed by A3, A7 and A4. However, in this scenario type, A1 is
clearly above the others, reaching a mean efficiency of 0.54. The second best algorithm, A3, reaches
a mean efficiency of 0.44. A similar situation occurs when the fitness is compared; see Figure 16b.
Note that also for this scenario type, A7 presents a high variability in both efficiency and fitness among
the scenarios.

A1 A3 A7 A4 A6 A5 A2

0.1

0.2

0.3

0.4

0.5

0.6

(a)
A1 A7 A3 A4 A6 A5 A2

0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Figure 16. Efficiency (a) and fitness (b) for the scenario with the probability distribution of the location
of the targets.

5.1.3. Scenarios with Obstacles

The next type of scenario to be analyzed is the scenario with non-flyable obstacles. In this
comparison, 50 scenarios have been generated, and for each one, five different obstacle arrangements
are created. Each algorithm is tested 100 times, varying randomly the initial positions of the agents.

The efficiency and fitness distributions are represented in Figure 17a,b, respectively. The A1
performs better than the others, considering both efficiency and fitness, although the difference in this
case is lower. For algorithm A7, which in other cases is a competitive solution, in this scenario type, its
performance lies between the two groups of algorithms.

155

Appl. Sci. 2018, 8, 711

A1 A3 A4 A7 A6 A5 A2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a)
A1 A4 A3 A7 A6 A5 A2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b)

Figure 17. Efficiency (a) and fitness (b) for the scenario with obstacles inside the area.

5.1.4. Scenarios with Probability Distribution and Obstacles

Finally, the last scenario type is analyzed. Similarly to the previous ones, 50 scenarios are
generated, and for each one, five different combinations of probability distribution and obstacle
arrangements are created. Again, each algorithm is tested for 100 initial conditions. In Figure 18a,b,
the efficiency and fitness distribution have been represented. For both performance measurements,
A1 clearly outperforms the other algorithms.

A1 A3 A4 A7 A6 A5 A2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(a)
A1 A3 A4 A7 A6 A5 A2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b)

Figure 18. Efficiency (a) and fitness (b) for the scenario with the probability distribution of the location
of the targets and obstacles inside the area.

5.2. Communication Needs and Adaptation to Surveillance

As we have seen in the previous section, the proposed algorithms can be classified attending to
objective measurements depending on the type of scenario. However, some of the algorithms make
use of intensive communications between the agents, whereas others only need sharing information
in specific moments. This may be a drawback when using them in real systems. On the other hand,
these algorithms can be used in similar missions, such as surveillance and patrolling, although some
modifications might need to be done. The algorithms are qualitatively analyzed hereafter regarding
these two issues.

156

Appl. Sci. 2018, 8, 711

• A1, behaviors set: This algorithm requires a demanding communication system because the
behaviors implemented need up-to-date information in order to update the individual map of
pheromones, calculate the resulting forces, etc. Surveillance and patrolling are easy to implement:
L3 may be eliminated, and visited and non-visited cells may be equally treated; this way, once
a zone is visited and its level of pheromones is reduced, it will gradually create pheromones.
After some time, it will become a tractor for the agents, which will then return periodically to it.

• A2, random: The random movement only needs communication between agents when they
are close and a collision may take place, not needing to share information with other agents.
Surveillance and patrolling missions are already covered, since a random walk will statistically
revisit the areas with some frequency.

• A3, closest: The requires updated information to know which cells have not been visited yet,
besides short-range communication in case a collision may occur. Although the transmitted
information is less than for A1, it is also considered as heavy. For surveillance and patrolling,
the ”age” of the cell (measured as time passed since it was last observed) may be used similarly
as the probability map.

• A4, boundary: This algorithm needs the same information as A3, which is considered as
high. The surveillance task can only be carried out if the essence of the behavior is lost; if for
instance, the decision is made as a weighted sum of the isolation index and the age of the cell,
the compaction of the search, which is the main value of the algorithm, will be probably lost.
Note that the algorithm makes heavy use of the distinction between visited and non-visited cells,
which cannot be easily overridden in persistent missions.

• A5, energy: this algorithm is basically similar to the random movement regarding the
communication complexity and its use in surveillance and patrolling.

• A6, billiard: similarly to A2 and A5, the billiard movement only needs the agents to share
information if a collision may take place. The surveillance task is already included in the algorithm,
since it recursively visits the cells.

• A7, lanes: This requires only medium communications because the agents must only share the
lanes they are visiting, which happens with low frequency. The surveillance mission is fulfilled
if the visited lanes are marked with incremental numbers (instead of visited and non-visited).
The proximity of the lanes and their visit index (i.e., the number of times the lane has been
observed) may be then considered together. To do this, a weighted decision may be made.

6. Conclusions and Future Works

In this work, we have first presented an algorithm that is a behavioral network made up by six
different behaviors, whose parameters are optimized by a genetic algorithm and adapt to the scenario.
Furthermore, based on the literature, six additional algorithms have been proposed, some of which
have been combined to improve their efficiency. Additionally, three models to measure the efficiency
are suggested, and a fitness function, which takes into account the robustness of the algorithm against
the variability of the initial conditions. The algorithms have been compared making use of the models
of the efficiency and the fitness for four scenario types. Finally, the communication complexity and the
possibility of adapting the algorithms to surveillance and patrolling tasks have been analyzed, as well.
All the algorithms compared fulfill robustness and scalability.

Taking a look at the results, our opinion is that Models 1 and 2 to measure the efficiency do not
represent correctly the performance of each algorithm. Note that if a cell is visited twice, the efficiency
suffers a drop. However, subsequent visits to the same cell do not have an impact on the efficiency,
although those visits could have been used potentially to visit new unvisited cells. This situation
would affect the efficiency if Model 3 is considered, since the time to finish the search would increase.
As has been already pointed out, the random movement achieves efficiencies of 61% with Model 1 for
the plain scenario (whose performance is expected to be low a priori), whereas the best algorithm
reaches 78%, which also indicates that the model may not be a good indicator of the performance.
Therefore, we consider Model 3 as the one that more faithfully represents the efficiency.

157

Appl. Sci. 2018, 8, 711

Comparing the efficiency and fitness values, we have seen that there are four algorithms that
are competitive: behaviors set (A1), go to the closest unvisited cell (A3), travel along lanes (A7) and
boundary following (A4). The other three achieve much lower values. In Table 5, a final comparison
has been shown; for each scenario type, the efficiency and fitness have been divided by the maximum
value achieved. As can be seen, A1’s performance is the highest for all scenario types, although for the
plain scenario and the scenario with the probability distribution, the difference is not high. In those
cases, A3 and A7 could reach a good performance in terms of fitness. However, for scenarios with
obstacles, the difference is higher. The second best algorithms, which are A3 and A4, achieve 87% and
84% of the maximum efficiency and fitness. Finally, if the scenario considered has obstacles and a
probability distribution, A1 outperforms the other algorithm more significantly; again, the second best
algorithm is A3, only reaching 76% and 77% of the maximum efficiency and fitness.

Table 5. Relative efficiencies and fitness values for each algorithm and each scenario type.

Plain Probability Obstacles Prob. + Obs.

Eff Fit Eff Fit Eff Fit Eff Fit

A1: Behaviors set 1 1 1 1 1 1 1 1

A2: Random 0.23 0.09 0.22 0.14 0.24 0.13 0.21 0.18

A3: Closest 0.91 0.93 0.81 0.86 0.87 0.84 0.76 0.77

A4: Boundary 0.78 0.78 0.63 0.72 0.86 0.84 0.66 0.71

A5: Energy 0.41 0.15 0.42 0.28 0.44 0.20 0.43 0.34

A6: Billiard 0.42 0.17 0.43 0.31 0.45 0.22 0.44 0.37

A7: Lanes 0.90 0.99 0.76 0.90 0.59 0.60 0.52 0.53

If the task at hand is just searching in an area, probably the preferred algorithm would be
separating the search space into lanes (A7) or that each agent heads to the closest non-visited cell
(A3), because they are easy to implement, do not need any optimization process and perform well.
However, if we want to make use of a map of probabilities or there are non-flyable obstacles in the
area, algorithm A1 should be considered. Similarly, if the task is surveillance or patrolling, A1 may be
also convenient, although this is only an intuition, and simulations need to be carried out to ground
this assertion.

In future works, the search patterns should be modified to adapt to all the scenario types, trying to
achieve better results; this way, the comparison with A1 would be more fair. If in these modifications,
parameters have to be included, an optimization process may need to be performed. In a similar
way, the surveillance task may be analyzed with these algorithms (modifications will also need to
be included, with the corresponding tuning). For this mission, objective functions to evaluate the
efficiency are easier to implement (see for instance [28], where the maximum age of the cells is used).

Author Contributions: P.G.-A. has developed the proposed algorithm, implemented the algorithms for the
simulations and analyzed the results. A.B.C. has supervised the complete process of the work and reviewed
the document.

Acknowledgments: We would like to thank the SAVIER (Situational Awareness Virtual EnviRonment) Project,
which is both supported and funded by Airbus Defence & Space. The research leading to these results has
received funding from the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los
ciudadanos. Fase III; S2013/MIT-2748), funded by Programas de Actividades I+Den la Comunidad de Madrid
and co-funded by Structural Funds of the EU, and from the DPI2014-56985-R project (Protección Robotizada de
Infraestructuras Críticas (PRIC)) funded by the Ministerio de Economía y Competitividad of Gobierno de España.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; nor in the
decision to publish the results.

158

Appl. Sci. 2018, 8, 711

References

1. Dudek, G.; Jenkin, M.R.M.; Milios, E.; Wilkes, D. A taxonomy for multi-agent robotics. Auton. Robot. 1996,
3, 375–397. [CrossRef]

2. Jackson, D.E.; Ratnieks, F.L.W. Communication in ants. Curr. Biol. 2006, 16, R570–R574. [CrossRef] [PubMed]
3. Deneubourg, J. Self-organizing Collection and Transport of Objects in Unpredictable Environments. Japan–USA

Symposium on Flexible Automation; American Society of Mechanical Engineers: New York, NY, USA, 1990;
pp. 1093–1098.

4. Kube, C.R.; Zhang, H. Collective robotics: From social insects to robots. Adapt. Behav. 1993, 2, 189–218.
[CrossRef]

5. Mataric, M.J. Designing emergent behaviors: From local interactions to collective intelligence. In Proceedings
of the Second International Conference on Simulation of Adaptive Behavior, Honolulu, HI, USA,
13 April 1993; pp. 432–441.

6. Şahin, E. Swarm Robotics: From Sources of Inspiration to Domains of Application. In Swarm Robotics; Şahin,
E., Spears, W.M., Eds.; Number 3342 in Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
2004; pp. 10–20.

7. Bayındır, L. A review of swarm robotics tasks. Neurocomputing 2016, 172, 292–321. [CrossRef]
8. Sauter, J.A.; Matthews, R.; Van Dyke Parunak, H.; Brueckner, S.A. Performance of digital pheromones for

swarming vehicle control. In Proceedings of the Fourth International Joint Conference on Autonomous Agents and
Multiagent Systems, Utrecht, Netherlands, 25–29 July 2005; ACM: New York, NY, USA, 2005; pp. 903–910.

9. McCune, R.R.; Madey, G.R. Control of artificial swarms with DDDAS. Proc. Comput. Sci. 2014, 29, 1171–1181.
[CrossRef]

10. Sutantyo, D.K.; Kernbach, S.; Levi, P.; Nepomnyashchikh, V.A. Multi-robot searching algorithm using lévy
flight and artificial potential field. In Proceedings of the 2010 IEEE International Workshop on Safety Security
and Rescue Robotics (SSRR), Bremen, Germany, 26–30 July 2010; pp. 1–6.

11. Liu, W.; Taima, Y.E.; Short, M.B.; Bertozzi, A.L. Multi-scale Collaborative Searching through Swarming.
In Proceedings of the International Conference on Informatics in Control, Automation and Robotics
(ICINCO), Funchal, Portugal, 15–18 June 2010; pp. 222–231.

12. Waharte, S.; Symington, A.C.; Trigoni, N. Probabilistic search with agile UAVs. In Proceedings of the
International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–7 May 2010;
pp. 2840–2845.

13. Pastor, I.; Valente, J. Adaptive sampling in robotics: A survey. Revista Iberoamericana de Automática e
Informática Industrial (RIAI) 2017, 14, 123–132. [CrossRef]

14. Altshuler, Y.; Yanovsky, V.; Wagner, I.A.; Bruckstein, A.M. Efficient cooperative search of smart targets using
uav swarms. Robotica 2008, 26, 551–557. [CrossRef]

15. Stirling, T.; Wischmann, S.; Floreano, D. Energy-efficient indoor search by swarms of simulated flying robots
without global information. Swarm Intell. 2010, 4, 117–143. [CrossRef]

16. Jevtić, A.; Gutiérrez, A. Distributed bees algorithm parameters optimization for a cost efficient target
allocation in swarms of robots. Sensors 2011, 11, 10880–10893. [CrossRef] [PubMed]

17. Siciliano, B.; Khatib, O. Springer Handbook of Robotics; Springer Science & Business Media: Berlin, Germany, 2008.
18. Karapetyan, N.; Benson, K.; McKinney, C.; Taslakian, P.; Rekleitis, I. Efficient multi-robot coverage of a known

environment. In Proceedings of the IEEE Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 1846–1852.

19. Senthilkumar, K.; Bharadwaj, K. Multi-robot exploration and terrain coverage in an unknown environment.
Robot. Auton. Syst. 2012, 60, 123–132. [CrossRef]

20. Erignac, C. An exhaustive swarming search strategy based on distributed pheromone maps. In Proceedings of
the AIAA Infotech@Aerospace 2007 Conference and Exhibit, Rohnert Park, CA, USA, 7–10 May 2007; p. 2822.

21. George, J.; Sujit, P.; Sousa, J.B. Search strategies for multiple UAV search and destroy missions. J. Intell.
Robot. Syst. 2011, 61, 355–367. [CrossRef]

22. Maza, I.; Ollero, A. Multiple UAV Cooperative Searching Operation Using Polygon Area Decomposition
and Efficient Coverage Algorithms. In Distributed Autonomous Robotic Systems 6; Springer: Berlin, Germany,
2007; pp. 221–230.

159

Appl. Sci. 2018, 8, 711

23. Lum, C.; Vagners, J.; Jang, J.S.; Vian, J. Partitioned searching and deconfliction: Analysis and flight tests.
In Proceedings of the IEEE American Control Conference (ACC), Baltimore, MD, USA, 30 June–2 July 2010;
pp. 6409–6416.

24. Berger, J.; Lo, N. An innovative multi-agent search-and-rescue path planning approach. Comp. Op. Res.
2015, 53, 24–31. [CrossRef]

25. Peng, H.; Su, F.; Bu, Y.; Zhang, G.; Shen, L. Cooperative area search for multiple UAVs based on RRT and
decentralized receding horizon optimization. In Proceedings of the IEEE Asian Control Conference (ASCC),
Hong Kong, China, 27–29 August 2009; pp. 298–303.

26. Saska, M.; Vakula, J.; Přeućil, L. Swarms of micro aerial vehicles stabilized under a visual relative localization.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China,
31 May–5 June 2014; pp. 3570–3575.

27. Rasmussen, C.E.; Williams, C.K. Gaussian Processes for Machine Learning; MIT Press Cambridge:
Cambridge, MA, USA, 2006; Volume 1.

28. Nigam, N.; Bieniawski, S.; Kroo, I.; Vian, J. Control of multiple UAVs for persistent surveillance: Algorithm
and flight test results. IEEE Trans. Control Syst. Technol. 2012, 20, 1236–1251. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

160

applied
sciences

Article

Optimal Configuration and Path Planning for UAV
Swarms Using a Novel Localization Approach

Weijia Wang 1 ID , Peng Bai 1, Hao Li 1,2,* and Xiaolong Liang 1

1 Air Traffic Control and Navigation College, Air Force Engineering University, Xi’an 710051, China;
visionwng@foxmail.com (W.W.); baipeng@126.com (P.B.); afeu_wwj@126.com (X.L.)

2 Air Force Early Warning Academy, Wuhan 430065, China
* Correspondence: snk.poison@163.com; Tel.: +1-512-924-8091

Received: 18 April 2018; Accepted: 11 June 2018; Published: 19 June 2018

Abstract: In localization estimation systems, it is well known that the sensor-emitter geometry can
seriously impact the accuracy of the location estimate. In this paper, time-difference-of-arrival (TDOA)
localization is applied to locate the emitter using unmanned aerial vehicle (UAV) swarms equipped
with TDOA-based sensors. Different from existing studies where the variance of measurement noises
is assumed to be independent and changeless, we consider a more realistic model where the variance
is sensor-emitter distance-dependent. First, the measurements model and variance model based on
signal-to-noise ratio (SNR) are considered. Then the Cramer–Rao low bound (CRLB) is calculated and
the optimal configuration is analyzed via the distance rule and angle rule. The sensor management
problem of optimizing UAVs trajectories is studied by generating a sequence of waypoints based on
CRLB. Simulation results show that path optimization enhances the localization accuracy and stability.

Keywords: time-difference-of-arrival (TDOA); Cramer–Rao low bound (CRLB); optimal configuration;
UAV swarms; path optimization

1. Introduction

Passive localization of an emitter from its radio frequency (RF) transmissions has many
applications such as search and rescue, electronic surveillance, cognitive radio networks, and wireless
sensor networks. The receiving platform can employ sensors measuring angle of arrival (AOA) [1],
time difference of arrival (TDOA) [2], and received signal strength (RSS) [3]. TDOA measurements
construct a time difference observation equation by measuring the time difference of the emitter
signal arriving at different sensors. Therefore, each time difference, corresponding to one hyperboloid,
and the emitter can be obtained from two or more hyperbolas. With its high accuracy and simplicity,
the TDOA localization technique is widely applied [4].

The equations of the TDOA technique are quadratic and the goal is to find the position of an
emitter by solving a set of nonlinear equations obtained from TDOA measurements. The TDOA
measurements can be calculated by a simple closed form, e.g., spherical intersection (SX) and spherical
interpolation (SI) [5], which usually uses nonlinear least-square solutions. Furthermore, the maximum
likelihood method, like the Chan algorithm, was also proposed in [6] and semidefinite programming
(SDP) methods in [7]. It is well known that location accuracy depends not only on the localization
algorithm but also on the sensor-emitter geometry. Therefore, the selection of an optimal configuration
can further improve the location accuracy. Yang et al. [8] initially performed a theoretical analysis
of the sensor-emitter geometry based on CRLB with uncorrelated TDOA measurements. Lui [9]
discussed optimal sensor deployment considering the correlated TDOA measurement, which makes
the configuration rule more applicable. Meng et al. [10,11] formulated an optimal configuration
in centralized and decentralized types of TDOA localization and further research focused on the

Appl. Sci. 2018, 8, 1001; doi:10.3390/app8061001 www.mdpi.com/journal/applsci161

Appl. Sci. 2018, 8, 1001

heterogeneous sensor network. Francisco et al. [4] applied a multi-objective optimization in sensor
placement. Kim et al. [12] studied the optimal configuration of sensors with the assumption that
the emitter was located far from the sensors, while the sensors were relatively close to each other.
In recent years, more realistic distance-dependent noise for TOA and AOA measurements was also
considered [4,13,14]. In this paper, the CRLB in TDOA localization with distance-dependent noise
is calculated in both static and movable scenarios; the distance rule and angle rule of the optimal
configuration are extracted, which can provide guidance in optimal sensor-emitter geometries.

The application of unmanned aerial vehicle (UAV) swarms can provide unique platforms for
TDOA localization. Their characteristics of flexible movement and cooperation enable them to
rapidly change current geometries to achieve higher location accuracy [15,16]. Therefore, the sensor
management of real-time UAV path optimization has been a heated research issue in recent
years [17]. Frew [18] presented the signal strength measurement to control the UAVs movement.
Soltanizadeh et al. applied the determinant of Fisher information matrix (FIM) as the control objective
function in RSS localization. Wang [19] investigated UAV path planning for tracking a target using
bearing-only sensors. Alomari et al. [20] provided a path planning algorithm based on the dynamic
fuzzy-logic method for a movable anchor node. Kaune [21,22] preliminarily considered the path
optimization method when there was only one sensor moving platform during TDOA localization.
In this paper, UAVs’ trajectories are optimized by generating a sequence of waypoints based on CRLB.
The CRLB of TDOA location is not only taken as a performance estimator but also as the rule of UAV
path optimization. The emitter position is solved by combining the SDP methods and an extended
Kalman filter (EKF) estimator. Meanwhile, the constraints of UAV swarms are considered, such as
motion and communication constraints. Therefore, the real-time path planning of UAVs is converted
to nonlinear optimization with constraints. The interior penalty function method is adopted to convert
the nonlinear optimization to simple unconstrained optimization so as to get the flight path of each
UAV for the next time.

The rest of the paper is structured as follows. Section 2 introduces the TDOA measurement model
and distance-dependent noise model. In Section 3, the optimal configuration is analyzed in both
static and movable emitter scenarios based on the CRLB. Section 4 presents the optimal UAV path
optimization method. Simulations and conclusions are given in Sections 5 and 6, respectively.

2. Problem Formulation

2.1. Measurement Model

Consider that M time-synchronized UAVs are applied to receive the emitted signals and
measure the TOAs with the state vector of each UAV χi(k) = (xi(k), yi(k))

T , i = 1, 2, · · · M.
Let xt = (xt, yt) ∈ R2 be the location of an unknown emitter. The TDOA measurement can be obtained
by the difference between any two TOA measurements, eliminating the unknown time of emission.
By multiplication of the TDOA measurements by the electromagnetic wave transmission speed,
the measurement function in the range domain is obtained:

zij = ri − rj, i, j ∈ {1, . . . , M} ∧ j �= i, (1)

with ri =
√
(xt − xi)

2 + (yt − yi)
2 being the distance between the emitter and receiver. Let vi denote

the TOA estimation error, which is assumed to be Gaussian. Then the TDOA measurement equation
can be expressed as

ẑij = zij(xt) + vij, i, j ∈ {1, . . . , M} ∧ i �= j, vij ∼ N (0, σ2
i + σ2

j), (2)

where σ2
i is the measurement variance of the i-th receiver of the UAV platform, the measurement noise

vij = vi + vj is composed of the noise at the two associated receivers and has the covariance σ2
i + σ2

j .

162

Appl. Sci. 2018, 8, 1001

Without loss of generality, let the 1st receiver be the reference receiver and the others be auxiliary
receivers. The variance matrix of measurement matrix ẑ1j consisting of M − 1 measurements can be
represented as:

Σr1 =

⎡⎢⎢⎢⎢⎣
σ2

1 + σ2
2 σ2

1 · · · σ2
1

σ2
1 σ2

1 + σ2
3 · · · σ2

1
...

...
. . .

...
σ2

1 σ2
1 · · · σ2

1 + σ2
M

⎤⎥⎥⎥⎥⎦. (3)

Therefore, the measurement vector is given by

ẑ = z(xt) + w, w ∼ N (0, Σr1). (4)

2.2. Measurement Variance Model with Distance-Dependent Noise

Considering the influence of signal frequency, bandwidth, response time, and SNR, the CRLB of
the TOA measurement error variance σ2

i can be represented as [23]:

σ2
i =

c
τ · SNRi · F(f0, B)

, (5)

where, τ is the observation time, f0 is the center frequency, B is the bandwidth of the received
signal, and c is some constant. High accuracy can be achieved by utilizing high-precision time of
arrival measurement techniques at reasonable SNR levels. With constant emitter power and constant
frequency, the variance of time-delay measurement is inversely proportional to the SNR, and the SNR
is inversely proportional to r2. Therefore, the relationship of the i-th receiver error and distance can be
expressed as [24]:

σ2
i (r) =

⎧⎨⎩ a
SNR0

· r2
i

r2
0

ri > r0
a

SNR0
ri ≤ r0

, (6)

where r0 is the lower bound of the distance corresponding to the minimum of TOA error variance and
SNR0 is the corresponding optimal SNR at the shortest distance.

The parameter-dependent standard deviation is more complex compared with the constant
deviation, so the CRLB and field of view is changing in TDOA localization. Hence,
the parameter-dependent standard deviation must be taken into account for accuracy analysis.

The problem of emitter localization is to estimate the location more precisely. In this paper, we
mainly study the optimal sensor configuration, which can provide two basic rules to understand the
rules to improve the localization performance. Then the online sensor management problem of optimal
UAVs trajectories is explored.

3. Optimal Configuration Analysis

In this section, a theoretical analysis of optimal sensor-emitter geometry in TDOA localization
is given without considering any constraints. Analytic solutions are derived in both the static and
movable emitter scenarios.

3.1. Static Emitter Scenario

The relative sensor-emitter geometry is closely related to the location accuracy, which
can be reflected by CRLB, and the configuration corresponding to the minimum CRLB is the
optimal configuration.

For unbiased estimator x̂ of x, its Cramer–Rao bound can be expressed as:

E
[
(x − x̂)(x − x̂)T

]
≥ J−1 � CRLB(x), (7)

163

Appl. Sci. 2018, 8, 1001

where J is the Fisher information matrix (FIM).
Then the FIM for TDOA localization with distance-dependent noise is given by [25]

Ji,j =

[
∂

∂xi
ln(fẑ(ẑ; x))

∂

∂xj
ln(fẑ(ẑ; x))

]
, (8)

where i, j ∈ {1, 2}. This FIM can be divided into two parts; as for the first part,

J1,(i,j) =
∂z(x)

∂xi
Σr1

−1(x)

(
∂z(x)

∂xj

)T

. (9)

The Jacobian matrix of the measurement set with receiver 1 as the reference receiver is

∂z(x)
∂x1

=
[

∂z12(x)
∂x1

, ∂z13(x)
∂x1

, · · · , ∂z1M(x)
∂x1

]T

= [cos(θ2)− cos(θ1), cos(θ3)− cos(θ1), · · · , cos(θM)− cos(θ1)]
T

(10)

∂z(x)
∂x2

= [sin(θ2)− sin(θ1), sin(θ3)− sin(θ1), · · · , sin(θM)− sin(θ1)]
T , (11)

with θi is the angle of arrival measurement of the i-th sensor and the emitter.
For the second part, when ri > r0,

J2,(i,j) =
1
2

Tr

(
Σr1

−1(x)
∂Σr1(x)

∂xi
Σr1

−1(x)
∂Σr1(x)

∂xj

)
, (12)

where the Jacobian matrix for computing the distance dependent FIM is expressed by

∂Σr1(x)

∂x1
= 2β

⎡⎢⎢⎢⎢⎣
r1 cos θ1 + r2 cos θ2 r1 cos θ1 · · · r1 cos θ1

r1 cos θ1 r1 cos θ1 + r3 cos θ3 · · · r1 cos θ1
...

...
. . .

...
r1 cos θ1 r1 cos θ1 · · · r1 cos θ1 + r(M−1) cos θ(M−1)

⎤⎥⎥⎥⎥⎦ (13)

∂Σr1(x)

∂x2
= 2β

⎡⎢⎢⎢⎢⎣
r1 sin θ1 + r2 sin θ2 r1 sin θ1 · · · r1 sin θ1

r1 sin θ1 r1 sin θ1 + r3 sin θ3 · · · r1 sin θ1
...

...
. . .

...
r1 sin θ1 r1 sin θ1 · · · r1 sin θ1 + r(M−1) sin θ(M−1)

⎤⎥⎥⎥⎥⎦, (14)

where β = a
SNR0r2

0
.

Based on the characteristics of the FIM, the optimal configuration is analyzed via distance rule
and angle rule.

(1) Distance rule

As pointed out in [26], arbitrarily selecting a reference sensor does not change the CRLB
for TDOA-based source localization with distance-independent noises. Here, we extend it to the
distance-dependent noise model.

Theorem 1. Given the positions of the receivers and emitter, i.e., given distance ri and angle θi the election of
reference receiver has no impact on the CRLB with distance-dependent noise.

164

Appl. Sci. 2018, 8, 1001

Proof. Without loss of generality, receivers 1 and 2 are taken as the reference receivers. Then the TDOA
measurement with different reference receivers can be represented by

ẑr1 =
[

ẑ21 ẑ31 · · · ẑM1

]T
= T1

[
ẑ1 ẑ2 · · · ẑM

]T
(15)

ẑr2 =
[

ẑ12 ẑ32 · · · ẑM2

]T
= T2

[
ẑ1 ẑ2 · · · ẑM

]T
, (16)

where T1 and T2 are transformation matrices and are all of dimension (M − 1)× M. T1 and T2 can be
represented by

T1 =

⎡⎢⎢⎢⎢⎢⎣
−1 1 0 · · · 0

−1 0
.

...
...

...
. 0

−1 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎦T2 =

⎡⎢⎢⎢⎢⎢⎣
1 −1 0 · · · 0

0 −1 1 0
...

...
... 0

. . . 0
0 −1 0 0 1

⎤⎥⎥⎥⎥⎥⎦.

It can be seen that through an element transformation matrix, T2 can be transformed to T1, i.e.,

T2 = U21T1, (17)

where U21 is a (M − 1)× (M − 1) elementary transformation matrix. It is easy to obtain

∂zr2(x)
∂xi

=
∂zr1(x)

∂xi
UT

21 (18)

Σr2 = U21Σr1UT
21. (19)

Then Jr2
1,(i,j)

can be written as

Jr2
1,(i,j)

= ∂zr2(x)
∂xi

Σr2
−1(x)

(
∂zr2(x)

∂xj

)T

= ∂zr1(x)
∂xi

UT
21
(
U21Σr1(x)UT

21
)−1

(
∂zr1(x)

∂xi
UT

21

)T

= ∂zr1(x)
∂xi

(
UT

21
(
UT

21
)−1

)
Σr1

−1(x)
((

UT
21
)−1

UT
21

)
∂zr1(x)

∂xi

= ∂zr1(x)
∂xi

Σr1
−1(x) ∂zr1(x)

∂xi

= Jr1
1,(i,j)

. (20)

Similarly, we can get Jr2
2,(i,j)

= Jr1
2,(i,j)

. This completes the proof. �

Therefore, the selection of a reference receiver does not influence the CRLB with
distance-dependent noise.

Theorem 2. Given the angle θi, i = 1, 2, · · · M, the smaller the distance between receiver and the source,
the less the localization error is.

Proof. Due to the meaning of J and the fact that the receiver measurement noise becomes larger as the
range increases, J−1 increases. A similar proof can be found in [27], but is omitted here. This distance
rule can guide UAVs to fly as close to the emitter as possible. �

(2) Angle rule

Assuming the distance between the emitter and each receiver is identical, i.e., r1 = r2 = · · · = r,
which means the receivers have equal noise variances, we get [6,9]

J1 = GΣ−1(x)GT , (21)

165

Appl. Sci. 2018, 8, 1001

with
G = [gij, · · ·]{i,j}∈I0

(22)

gij = gi − gj (23)

gi =

⎡⎢⎣
xt−xi√

(xt−xi)
2+(yt−yi)

2

yt−yi√
(xt−xi)

2+(yt−yi)
2

⎤⎥⎦ =

[
cos(θi)

sin(θi)

]
. (24)

Take 1st receiver as the reference receiver and I0 = [{21}, {31}, · · · , {M1}] is as corresponding
subset of sensor pairs, then we get

G = [g21, g31, · · · , gM1] (25)

Σr1(x) = 2
a

SNR0
· r2

r2
0

⎡⎢⎢⎢⎢⎢⎣
1 1/2 · · · 1/2

1/2
.

...
...

. 1/2
1/2 · · · 1/2 1

⎤⎥⎥⎥⎥⎥⎦. (26)

Substitute it into Equation (23), with J1 given by

J1 = r2

β

⎡⎢⎢⎢⎣
M
∑

i=1
cos2(θi)− 1

M

(
M
∑

i=1
cos(θi)

)2

M
∑

i=1
cos(θi) sin(θi)− 1

M

M
∑

i=1
cos(θi)

M
∑

i=1
sin(θi)

M
∑

i=1
cos(θi) sin(θi)− 1

M

M
∑

i=1
cos(θi)

M
∑

i=1
sin(θi)

M
∑

i=1
sin2(θi)− 1

M

(
M
∑

i=1
sin(θi)

)2

⎤⎥⎥⎥⎦. (27)

For the second part, after the algebraic simplification in Equation (12), J2 can be simplified as

J2 =

⎡⎢⎢⎢⎣
2(M−1)2−4

M2

M
∑

i=1
cos2(θi) +

4
M2

M
∑

i=1

M
∑

j=1
cos(θi) cos(θj)

(M−1)2

M2

M
∑

i=1
sin(2θi) +

2
M2

M
∑

i=1

M
∑
j>i

sin(θi + θj)

(M−1)2

M2

M
∑

i=1
sin(2θi) +

2
M2

M
∑

i=1

M
∑
j>i

sin(θi + θj)

2(M−1)2−4
M2

M
∑

i=1
sin2(θi) +

4
M2

M
∑

i=1

M
∑

j=1
sin(θi) sin(θj)

⎤⎥⎥⎥⎦. (28)

Combine J1 and J2, the FIM can be expressed as

J =

⎡⎢⎢⎢⎣
η1

M
∑

i=1
cos2(θi)− η2

(
M
∑

i=1
cos(θi)

)2

η1
M
∑

i=1
cos(θi) sin(θi)− η2

M
∑

i=1
cos(θi)

M
∑

i=1
sin(θi)

η1
M
∑

i=1
cos(θi) sin(θi)− η2

M
∑

i=1
cos(θi)

M
∑

i=1
sin(θi)

η1
M
∑

i=1
sin2(θi)− η2

(
M
∑

i=1
sin(θi)

)2

⎤⎥⎥⎥⎦, (29)

where η1 =

(
2(M−1)2−2

M2 + r2

β

)
, η2 =

(
r2

Mβ − 2
M2

)
.

Theorem 3. Given the ranges ri = rj, ∀i, j ∈ {1, 2, · · · N} from each receiver to the emitter, we have

Tr(J−1) ≥ η1

4
; (30)

the equality holds if and only if

M
∑

i=1
cos(θi) = 0 ,

M
∑

i=1
sin(θi) = 0

M
∑

i=1
cos(2θi) = 0 ,

M
∑

i=1
sin(2θi) = 0

. (31)

166

Appl. Sci. 2018, 8, 1001

Proof. Let λi, i = 1, 2 be the eigenvalues of J, which is a positive definite. Then the eigenvalues of J−1

are 1/λi, It is obvious that

2 ≤
√
(1/λ1 + 1/λ2)(λ1 + λ2) =

(
Tr(J)Tr(J−1)

)1/2
, (32)

implying that
Tr(J−1) ≥ 4/Tr(J). (33)

The equality holds if and only if λ1 = λ2 = λ. Since J is a two-dimensional symmetric positive
definite matrix, according to the Courant–Fischer–Weyl principle, the equation holds when J is diagonal
and has equal eigenvalues. Hence it implies that

J = λI. (34)

As for the Tr(J), we can obtain

Tr(J) = η1 − η2

⎡⎣(M

∑
i=1

cos(θi)

)2

+

(
M

∑
i=1

sin(θi)

)2
⎤⎦ ≤ η1. (35)

Combining Equations (34) and (35), we get

M
∑

i=1
cos(θi) = 0 ,

M
∑

i=1
sin(θi) = 0

M
∑

i=1
cos(2θi) = 0 ,

M
∑

i=1
sin(2θi) = 0

. (36)

As is known from the formulas above, when the distance between each receiver is identical,
the measurement accuracy depends on the included angle θi between each receiver and the emitter.
Therefore, it can be called the angle rule for the optimal configuration. �

Figure 1 shows Tr(J) when M = 3 and η1 = 7, where A = θ2 − θ1, B = θ3 − θ1 and A + B ≤ 2π.
At this time, when A = 2π/3 and B = 2π/3, Tr(J) has the only maximum value.

(a) (b)

0
2

4
6 0

2
4

6
0

1

2

3

4

5

6

7

B [rad])A [rad]

tr(
J 2)

A [rad]

B
 [r

ad
])

0 1 2 3 4 5 6
0

1

2

3

4

5

6

2 /3,2 /3

Figure 1. 3D plot of the information function Tr(J) for three sensors. (a) The value of Tr(J); (b) The
contour plot of Tr(J).

167

Appl. Sci. 2018, 8, 1001

When M ≥ 3, it is proven that the receiver distribution with uniform angular arrays (UAAs) can
meet the above conditions [9]:

θi = θ0 +
2π

M
(i − 1), i = 1, 2, . . . , M, (37)

where θi is any constant given on [0, 2πM/(M − 1)). Figure 2 shows the optimal receiver geometries
for M = 3, M = 4, and M = 5. When M = 4, 5, UAAs distribution method is the unique solution
of Equation (38). For M ≥ 6, even though the optimal deployment is still given by partitions of
appropriate angle each with UAA distribution, the UAAs distribution method is an optimal solution.

(a) (b) (c)

p

3
r

2
r

1
r

1Rx 2Rx

3Rx

0r
0r

0r

p

4
r

3
r

2
r

1
r

1Rx 2Rx

3Rx
4Rx

0r 0r

0r0r

p

4
r

2
r

1
r

1Rx

2Rx

4Rx

5Rx

0r

3
r

3Rx

0r

0r 0r

0r

5
r

Figure 2. Optimal receiver geometries for (a) M = 3 , (b) M = 3, (c) M = 5.

Remark 1. The Cramer–Rao bound J−1 under different distribution methods is a function of the receiver–emitter
distance and angle. The optimal distribution method is to approach the distance lower bound r0, according to the
distance rule and select a good angular separation according to the angle rule.

For the case of arbitrary distances and angles, getting an analytic solution for the receiver–emitter
geometry problem may be impossible. Some optimization algorithms can be applied to acquire a
local solution.

3.2. Movable Emitter Scenario

Semidefinite programming methods [6] are applied in this paper to estimate the emitter location.
Then the estimator value, calculated by SDP methods each time, can further improve the result
estimated by the EKF estimator [28]. In actual applications, the SDP methods can provide initialization
information for EKF. The process of the EKF filter is given by:

(1) Predict:

x̂k+1|k = fk(x̂k|k) (38)

Pk+1|k = f x
k Pk|k(f x

k)
T + f w

k Qk|k(f w
k)T . (39)

(2) Update:

Kk+1|k = Pk+1|k[Pk+1|k + J−1
k+1]

−1
(40)

Pk+1|k+1 = (I − Kk+1|k)Pk+1|k (41)

x̂k+1|k+1 = x̂k+1|k + Kk+1|k
[
zk+1 − hk+1(x̂k+1|k)

]
, (42)

168

Appl. Sci. 2018, 8, 1001

where the Jacobian matrix of the emitter movement model and the measurement model is:

f x
k =

∂ fk(xk, wk)

∂xk

∣∣∣∣ xk = x̂k|k
wk = 0

, f w
k =

∂ fk(xk, wk)

∂wk

∣∣∣∣ xk = x̂k|k
wk = 0

.

Here, we mainly focus on analyzing the optimal receiver–emitter geometry, which will enable
optimal localization in terms of the posterior error covariance matrix pk+1|k. In order to establish a
relationship between J−1 and the predicted value, Equation (43) can be expressed as follows [29]:

pk+1|k+1 =
(
(pk+1|k)

−1 + Jk+1

)−1
. (43)

Define pk+1|k =

[
p11 p12

p12 p22

]
, S = (pk+1|k)

−1 + Jk+1 which is positive definite. Then S is

given by

S =

⎡⎣ J(1,1) +
p22

p11 p22−p2
12

J(1,2) − p12
p11 p22−p2

12

J(1,2) − p12
p11 p22−p2

12
J(2,2) +

p11
p11 p22−p2

12

⎤⎦. (44)

For the moveable emitter scenario, the objective is to minimize the mean square error (MSE), i.e.,
Tr(pk+1|k+1), then the following results can be obtained.

Theorem 4. ForM ≥ 3, we have

Tr(pk+1|k+1) ≥
4

J(1,1) + J(2,2) +
p11+p22

p11 p22−p2
12

. (45)

The equality holds if and only if⎧⎨⎩ J(1,1) − J(2,2) =
(p11−p22)

p11 p22−p2
12

J(1,1) =
2p12

p11 p22−p2
12

.
(46)

Proof. The proof is similar to that of Corollary 3 and is omitted here. �
The explicit solutions of the optimal configuration can be acquired when the ranges are identical.

Given ri = rj, ∀i, j ∈ {1, · · · , M}, S can be written as follows [10,11]:

S =

⎡⎢⎢⎢⎣
η1

M
∑

i=1
cos2(θi)− η2

(
M
∑

i=1
cos(θi)

)2

+ p22
p11 p22−p2

12

η1
M
∑

i=1
cos(θi) sin(θi)− η2

M
∑

i=1
cos(θi)

M
∑

i=1
sin(θi)− p12

p11 p22−p2
12

η1
M
∑

i=1
cos(θi) sin(θi)− η2

M
∑

i=1
cos(θi)

M
∑

i=1
sin(θi)− p12

p11 p22−p2
12

η1
M
∑

i=1
sin2(θi)− η2

(
M
∑

i=1
sin(θi)

)2

+ p11
p11 p22−p2

12

⎤⎥⎥⎥⎦. (47)

Then the optimal configuration can be acquired if and only if

M
∑

i=1
cos(θi) = 0 ,

M
∑

i=1
sin(θi) = 0

M
∑

i=1
cos(2θi) =

p11−p22
η1(p11 p22−p2

12)
,

M
∑

i=1
sin(2θi) =

p12
η1(p11 p22−p2

12)
.

(48)

If
∣∣∣∣ p11−p22

η1(p11 p22−p2
12)

∣∣∣∣ > M,
∣∣∣∣ p12

η1(p11 p22−p2
12)

∣∣∣∣ > M, or ri is an arbitrary value, it is hard to find the explicit

solution for optimal configuration. What can be done is to apply the results in Theorem 4 for the
expression of the determinant of the CRLB, and then solve an optimization problem.

169

Appl. Sci. 2018, 8, 1001

4. UAV Path Optimization

Section 3 provides the optimal configuration, without considering receiver constraints. However,
in general, the UAV receiving platform is affected by its movement constraints and cannot achieve
the conditions for optimal configuration within a short time [30]. Usually, the UAVs are far from the
emitter; also, they are affected by the communication constraint and collision avoidance constraint.
Therefore, it takes some time before reaching the optimal localization configuration.

The UAV path planning problem is a constrained optimization problem [31] that involves the
calculation of UAVs waypoints at discrete time instants. The optimal trajectory is generated by
minimizing the trace of the CRLB, which is analyzed in Section 3. The receiver measurements are
assumed to be synchronized with waypoint updates. In addition, UAVs are assumed to be equipped
with a Global Positioning System (GPS) and robust line-of-sight (LOS) datalinks [32].

Assuming the systematic UAV discrete dynamic model is [15,33]:

Xk+1 = f (Xk, uk), k = 1, 2, · · · , M, (49)

where Xk is the system status value Xk = [χ1(k), · · · , χM(k)]T at the time k, and uk is the control vector
uk = [u1(k), u2(k), · · · uM(k)] of UAV at each moment. Without loss of generality, UAV1 is assigned as
the reference node, and the proposed waypoint update equation of the UAV is:

xi(k + 1) =

[
xi(k)
yi(k)

]
+ v0T

[
cos ui(k)
sin ui(k)

]
, (50)

where v0 is the UAV flight speed and T is the time interval between waypoint updates. The UAVs
path can be optimized by taking the CRLB as the optimization rule. Within each time interval, SDP
methods and EKF are used to update emitter localization and tracking estimations.

Therefore, the objective function can be expressed as:{
argmin f (uk+1) = Tr(J−1

k+1(ri, θi)), k ≤ 3
argmin f (uk+1) = Tr(Pk+1|k+1(ri, θi)), k > 3

(51)

s.t.‖ui(k + 1)− ui(k)‖ ≤ umax (52)

g1ij(uk) = Rh − ‖xi(k + 1)− x̂t(k)‖ ≥ 0 (53)

g2ij(uk) = ‖xi(k + 1)− x̂t(k)‖ − Rl ≥ 0 (54)

g3ij(uk) = ch − ‖xi(k + 1)− xj(k + 1)‖ ≥ 0 (55)

g4ij(uk) = ‖xi(k + 1)− xj(k + 1)‖ − cl ≥ 0, (56)

where Equation (52) is the turn rate constraint of the UAV. Equations (53) and (54) represent the
distance constraint from the UAV to the emitter. Equations (55) and (56) are the UAV communication
constraint and collision avoidance constraint, respectively.

Therefore, the path optimization can be converted to non-linear optimization [34]. This problem is
solved by directly configuring the non-linear programming method (DCNLP) or sequential quadratic
programming (SQP) [35]. Considering that only the inequality constraint is included in this constraint,
the interior penalty function is adopted in this paper to convert this non-linear constraint to an
unconstrained problem of minimization auxiliary function. A small calculation amount guarantees the
real-time performance of the calculation. The calculation steps are as follows:

Step 1: Give the system status Xk = [χ1(k), · · · , χM(k)]T of each UAV at the time k, TDOA
measurement ẑ and Equations (52)–(56).

Step 2: Use the SDP methods to calculate the emitter location value x̂t(k) and the estimated value
xt(k|k) by using EKF estimator.

170

Appl. Sci. 2018, 8, 1001

Step 3: The feasible region of non-linear Equations (53)–(56) in the constraints can be defined as:

S =
{

uk
∣∣g1ij(uk) ≥ 0, g2ij(uk) ≥ 0, g3ij(uk) ≥ 0, g4ij(uk) ≥ 0

}
. (57)

The logarithmic barrier function can be obtained as:

G(uk, γ) = f (uk) + γB(uk), γ > 0, (58)

where γ is a logarithmic barrier function, γ → 0 ,

B(uk) = −
M

∑
i=1

ln(g1ij(uk))−
M

∑
i=1

ln(g2ij(uk))−
M−1

∑
i=1

M

∑
j=i+1

ln(g3ij(uk))−
M−1

∑
i=1

M

∑
j=i+1

ln(g4ij(uk)). (59)

Therefore, the non-linear constraint is converted to an unconstrained problem. The minimum
value of G(uk, γ) can be solved by setting the initial internal point.

Step 4: As for linear Equation (52), for the convenience of calculation, the uk solved in Step 3 can
be substituted into the constrained inequality. When the constraint conditions are satisfied, it is the
final output result; otherwise, the boundary value umax is selected.

Step 5: The control amount uk of the UAV for the next waypoint.
Figure 3 demonstrates the steps of the algorithm for UAV path planning based on CRLB. In this

figure, uk is the output of the algorithm at time step k. When UAVs arrive at new waypoints, new
measurements are collected and new estimations are acquired.

3k 1
1kJ

ku

(1)i kχ
1k k

1 1k kP

Figure 3. UAV path planning for localization based on CRLB (TDOA: time-difference-of-arrival; SDP:
semidefinite programming; EKF: extended Kalman filter).

5. Simulation Results

In this section, four UAVs are considered to locate the static and movable emitter to verify the
sensor-emitter geometries, respectively. MATLAB simulations are implemented with a 2.7 GHz Intel
core processor with 8 GB of memory. The initial UAVs state vectors are χ1(1) = [−9600,−5000]T ,
χ2(1) = [−10000, −5000]T , χ3(1) = [−10000, −5400]T and χ4(1) = [−9600, −5400]T . The headings
for UAVs are all equal to π/2(north) at the initial moment and other key parameters are listed in
Table 1.

171

Appl. Sci. 2018, 8, 1001

Table 1. Parameters used in simulations.

Parameters Symbols Values

Initial emitter position xt [0, 0]T

Fixed flight velocity v0 150 m/s
Sampling time interval T 1 s

Signal to noise ratio SNR0 30 dB
Control vector umax 15◦

Maximum distance from the UAV platform to the emitter Rh 30 km
Minimum distance from the UAV platform to the emitter Rl 1000 m

Safe distance between the UAV platform cl 200 m
Communication maximum distance ch 15 km

Barrier parameter for interior point optimization γ 10−8

5.1. Angle Rule

Firstly, the UAVs path optimization with only a turn rate constraint is investigated to verify the
angle rule. The true emitter location is xt = [0, 0]T . Here we assume that σ2

i is irrelevant to distance ri.
Figure 4a,c show the optimal UAV path, taking CRLB as the rule and the straight-line UAV trajectories,
respectively. The red triangle in the figure denotes the true emitter location; the small blue circles
denote the estimated value of the emitter position with SDP methods and EKF estimator within each
time step.

(a) (b)

(c) (d)

-1.5 -1 -0.5 0 0.5 1 1.5 2

x 10
4

-1

-0.5

0

0.5

1

1.5

x 10
4

x/[m]

y/
[m

]

Location estimations
True location
UAV1
UAV2
UAV3
UAV4

0 10 20 30 40 50 60 70 80 90 100
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time Step/[s]

In
cl

in
e

an
gl

e/
[ra

d]

1

2

3

4

-10000 -8000 -6000 -4000 -2000 0 2000 4000

-8000

-6000

-4000

-2000

0

2000

x/[m]

y/
[m

]

Location estimations
True location
UAV1
UAV2
UAV3
UAV4

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3
x 104

Time Step/[s]

R
M

S
E

 o
f P

os
iti

on
 E

st
im

at
io

n

Error with fixed deployment
Error with optimal deployment

Figure 4. (a) Optimal paths without constraints. (b) Evolution of angle changes. (c) Straight-line paths.
(d) Comparison of localization performance: optimal deployment and fixed deployment.

172

Appl. Sci. 2018, 8, 1001

From Figure 4a,b, it can be seen that the UAVs try to fly away from each other and obtain
the evolution of angle θi. Meanwhile, it is noted that each UAV does not obtain effective emitter
information due to the initial deployment, and the localization errors is high. After the 10th time step,
the localization error drops sharply with changes in the θi, emitter, as is shown in Figure 4d. Figure 4c
shows the straight-line UAV trajectories, whereby each UAV is steered directly towards the estimated
emitter position.

To demonstrate the effectiveness of the proposed path planning algorithm, Figure 4d shows the
RMSE of optimal trajectories compared with straight-line trajectories after 50 Monte Carlo simulations.
This shows that the application of the angle rule is capable of reducing the location error, while the
location error with straight-line trajectories is large and apparently uncertain. However, even after
all constraints are considered, it can be seen that minimizing the localization could result in baseline
expansion. UAVs fly away from each other only within the constrained scope, which is not desirable in
actual situations. Hence, it is impractical to reach the optimal location by relying only on the angle rule.

5.2. Combination of Angle Rule and Distance Rule

The optimal paths considering the noise variance change with distance and all constraints are
included in the optimization problem. The simulation results are shown in Figure 5.

(a) (b)

(c)

-12000-10000 -8000 -6000 -4000 -2000 0 2000 4000 6000

-8000

-6000

-4000

-2000

0

2000

4000

6000

x/[m]

y/
[m

]

Location estimations
True location
UAV1
UAV2
UAV3
UAV4

0 10 20 30 40 50 60 70 80 90 100
-3

-2

-1

0

1

2

3

Time Step/[s]

In
cl

in
e

an
gl

e/
[ra

d]

1

2

3

4

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Time Step/[s]

R
M

S
E

of
 P

os
iti

on
 E

st
im

at
io

n

Error with fixed deployment
Error with optimal deployment

Figure 5. (a) Optimal paths with constraints. (b) Evolution of angle changes. (c) Comparison of
localization performance: optimal deployment and fixed deployment.

According to Figure 5a,b, the distance between each UAV and the emitter in the initial stage
is nearly the same in the initial time step, so it is similar to the angle rule case: Each UAV tends to
expand the detection angles to have a better view of the emitter. The initial flight direction of UAV3
is basically the same as the path in Section 5.1. After about the 10th time step, UAV3 begins to make

173

Appl. Sci. 2018, 8, 1001

a turn and fly toward the emitter, which is mainly caused by the distance rule. The flight path of
UAV2 and UAV4 is mainly affected by the angle rule during the first several steps and they fly away
from the UAV1. When large angles are obtained, they start to be affected by the distance rule and fly
towards the emitter so that a balance between the angle rule and distance rule is eventually reached.
UAV1 flies towards the emitter and starts to rotate around the emitter since it is affected by a lower
limit Rl of distance at about t = 63 s. Figure 5c shows a comparison of the optimal UAV paths and
straight-line paths. The RMSE of UAVs flying with straight-line trajectories generally tends to decrease,
mainly because of the distance rule. However, its location accuracy is still unstable as the relative
deployment of UAVs and the emitter at certain moments are rather inappropriate for the emitter
localization. Similar to the angle rule case, the localization performance using path optimization is
much better than the straight-line paths. If there is a requirement to the lower RMSE, UAVs will rotate
around the estimated emitter location in a fixed distance according to the angle rule.

5.3. Effect of the Number of UAVs on TDOA Localization Performance

The purpose of this simulation is to compare the localization performance with different numbers
of UAVs (i.e., M = 3, 4, 5).

Figure 6 shows the evolution of RMSE corresponding to varying values of M. As can be expected,
as M becomes larger, a lower and more stable RMSE is obtained.

We also notice that the objective function has a growing number of local parameters causing
sensitivities to initialization with M increases. This may lead to suboptimal solutions if not initialized
properly. Hence, the initialization of the target plays an important role in SDP methods. The results in
Section 3 can be helpful for a proper choice of the initial measurements.

Figure 6. Evolution of RMSE with different numbers of UAVs.

5.4. Dynamic Emitter

As for dynamic emitter, it is assumed that the emitter is uniform linear motion and the dynamic
behavior of the state is described by:

xt(k) = Fxt(k − 1) + v(k). (60)

174

Appl. Sci. 2018, 8, 1001

The initial state is xt(1) =
[
0, 50/

√
2, 0, 50/

√
2
]T

, with the state transition matrix given by:

F =

⎡⎢⎢⎢⎣
1 ΔT 0 0
0 1 0 0
0 0 1 ΔT
0 0 0 1

⎤⎥⎥⎥⎦, (61)

where ΔT = 1s. In order to simplify the calculation, it is assumed that the emitter flies at a speed of
50 m/s along the straight line and other constraints are the same as in the static emitter situation.

Figure 7a shows the results of location and tracking for a dynamic emitter. Different from static
emitters, each UAV starts to fly towards the estimated emitter position after obtaining a certain
angle. Since the distance between the emitter and the UAV changes significantly at each moment,
the distance rule exerts more influence on the UAV path at this time as compared with the static emitter
localization. According to Figure 7b, the location accuracy after path optimization is still high and
stable as compared with a location with straight-line paths.

(a) (b)

-1 -0.5 0 0.5 1 1.5

x 104

-5000

0

5000

10000

x/[m]

y/
[m

]

Location estimations
True location
UAV1
UAV2
UAV3
UAV4

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
x 104

Time Step/[s]

R
M

SE
 o

f P
os

iti
on

 E
st

im
at

io
n

Error with fixed deployment
Error with optimal deployment

Figure 7. (a) Optimal paths for dynamic emitter location and tracking. (b) Comparison of localization
performance: optimal deployment and fixed deployment.

6. Conclusions

In this paper, we have provided an algorithm for UAV path planning based on TDOA localization.
The receiver measurement model and distance-dependent noise were presented, and optimal geometry
based on CRLB was investigated in both static and movable scenarios. A hybrid SDP method and EKF
estimator were applied to locate the emitter and the online sensor management presented here was
particularly useful for TDOA measurements. The knowledge of optimal sensor-emitter geometries
provided useful tactical information and revealed important insights into the impact of sensor-emitter
geometries on the performance of emitter localization and tracking. Simulation results showed that
the UAV complied with distance and angle rules when looking for an optimal path. The optimized
path was able to provide accurate and stable localization.

For future work, we will consider the long-term optimization, i.e., multi-step optimization, which
may bring burdens for the reference receiver. Future work will also include obstacle avoidance in real
applications, which may affect the localization accuracy.

Author Contributions: Both authors contributed to the research work. W.W. and P.B. designed the new method.
H.L. and X.L. mainly planned the experiments. W.W. performed experiments and wrote the paper.

175

Appl. Sci. 2018, 8, 1001

Acknowledgments: This research was funded by the National Natural Science Foundation of China
(Nos. 61472443, 61502522) and Shaanxi Province Lab of Meta-synthesis for Electronic & Information systems.
The authors sincerely thank the anonymous reviewers for their valuable and constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jin, Y.; Liu, X.; Hu, Z.; Li, S. DOA estimation of moving sound sources in the context of nonuniform spatial
noise using acoustic vector sensor. Multidimens. Syst. Signal Process. 2015, 26, 321–336. [CrossRef]

2. Compagnoni, M.; Canclini, A.; Bestagini, P. Source localization and denoising: A perspective from the TDOA
space. Multidimens. Syst. Signal Process. 2016, 1–26. [CrossRef]

3. Chang, S.; Li, Y.; He, Y.; Wang, H. Target Localization in Underwater Acoustic Sensor Networks Using RSS
Measurements. Appl. Sci. 2018, 8, 225. [CrossRef]

4. Domingo-Perez, F.; Lazaro-Galilea, J.L.; Wieser, A. Sensor placement determination for range-difference
positioning using evolutionary multi-objective optimization. Exp. Syst. Appl. 2016, 47, 95–105. [CrossRef]

5. Malanowski, M. Two Methods for Target Localization in Multistatic Passive Radar. IEEE Trans. Aerosp.
Electr. Syst. 2012, 48, 572–580. [CrossRef]

6. Chan, Y.T.; Ho, K.C. A Simple and Efficient Estimator for Hyperbolic Location. IEEE Trans. Signal Process.
1994, 42, 1905–1915. [CrossRef]

7. Zou, Y.; Liu, H.; Xie, W.; Wan, Q. Semidefinite Programming Methods for Alleviating Sensor Position Error
in TDOA Localization. IEEE Access 2017, 5, 23111–23120. [CrossRef]

8. Yang, B. Different Sensor Placement Strategies for TDOA Based Localization. In Proceedings of the ICASSP,
Honolulu, HI, USA, 15–20 April 2007; pp. 1093–1096.

9. Lui, K.W.K.; So, H.C. A Study of Two-Dimensional Sensor Placement Using Time-Difference-of-Arrival
Measurements. Dig. Signal Process. 2009, 19, 650–659. [CrossRef]

10. Meng, W.; Xie, L.; Xiao, W. Optimality Analysis of Sensor-Source Geometries in Heterogeneous Sensor
Networks. IEEE Trans. Wirel. Commun. 2013, 12, 1958–1967. [CrossRef]

11. Meng, W.; Xie, L.; Xiao, W. Optimal TDOA Sensor-Pair Placement With Uncertainty in Source Location.
IEEE Trans. Veh. Technol. 2016, 65, 9260–9271. [CrossRef]

12. Kim, S.-H.; Park, J.H.; Yoon, W.; Ra, W.-S. A note on sensor arrangement for long-distance target localization.
Signal Process. 2017, 133, 18–31. [CrossRef]

13. Fang, X.; Yan, W.; Zhang, F. Optimal Sensor Placement for Range-Based Dynamic Random Localization.
IEEE Geosci. Remote Sens. Lett. 2015, 12, 2393–2397. [CrossRef]

14. Herath, S.C.K.; Pathirana, P.N. Optimal Sensor Arrangements in Angle of Arrival (AoA) and Range Based
Localization with Linear Sensor Arrays. Sensors 2013, 13, 12277–12294. [CrossRef] [PubMed]

15. Sarunic, P.; Evans, R. Hierarchical Model Predictive Control of UAVs Performing Multitarget-Multisensor
Tracking. IEEE Trans. Aeros. Electr. Syst. 2014, 50, 2253–2268. [CrossRef]

16. Tripathi, A.; Saxena, N.; Mishra, K.K. A nature inspired hybrid optimisation algorithm for dynamic
environment with real parameter encoding. Int. J. Bio-Inspir. Comput. 2017, 10, 24–32. [CrossRef]

17. Dogancay, K. UAV Path Planning for Passive Emitter Localization. IEEE Trans. Aerosp. Electr. Syst. 2012,
48, 1150–1166. [CrossRef]

18. Frew, E.; Dixon, C.; Argrow, B. Radio source localization by a cooperating UAV team. In Proceedings of the
AIAA Infotech@Aerospace, Arlington, TX, USA, 26–29 September 2005.

19. Wang, X.; Ristic, B.; Himed, B.; Moran, B. Joint Passive Sensor Scheduling for Target Tracking. In Proceedings
of the 20th International Conference on Information Fusion, Xi’an, China, 10–13 July 2017; pp. 1671–1677.

20. Alomari, A.; Phillips, W.; Aslam, N.; comeau, F. Dynamic Fuzzy-Logic Based Path Planning for
Mobility-Assisted Localization in Wireless Sensor Networks. Sensors 2017, 17, 1904. [CrossRef] [PubMed]

21. Kaune, R. Finding Sensor Trajectories for TDOA Based Localization—Preliminary Considerations.
In Proceedings of the Workshop Sensor Data Fusion: Trends, Solutions, Applications, Bonn, Germany,
4–6 September 2012.

22. Kaune, R.; Charlish, A. Online Optimization of Sensor Trajectories for Localization using TDOA
Measurements. In Proceedings of the International Conference on Information Fusion, Istanbul, Turkey,
9–12 July 2013; pp. 484–491.

176

Appl. Sci. 2018, 8, 1001

23. Li, X.; Deng, Z.D.; Rauchenstein, L.T.; Carlson, T.J. Contributed Review: Source-localization algorithms and
applications using time of arrival and time difference of arrival measurements. Rev. Sci. Instrum. 2016,
87, 041502. [CrossRef] [PubMed]

24. Kaune, R.; Horst, J.; Koch, W. Accuracy Analysis for TDOA Localization in Sensor Networks. In Proceedings
of the 14th International Conference on Information Fusion, Chicago, IL, USA, 5–8 July 2011; pp. 1647–1654.

25. Huang, B.; Xie, L.; Yang, Z. TDOA-based Source Localization with Distance-dependent Noises. IEEE Trans.
Wirel. Commun. 2015, 14, 468–480. [CrossRef]

26. So, H.C.; Chan, Y.T.; Chan, F.K.W. Closed-form formulae for time-difference-of-arrival estimation. IEEE Trans.
Signal Process. 2008, 56, 2614–2620. [CrossRef]

27. Yan, W.; Fang, X.; Li, J. Formation Optimization for AUV Localization with Range-Dependent Measurements
Noise. IEEE Commun. Lett. 2014, 18, 1579–1582. [CrossRef]

28. Fanaei, M.; Valenti, M.C.; Schmid, N.A.; Alkhweldi, M.M. Distributed parameter estimation in wireless
sensor networks using fused local observations. In Proceedings of the SPIE Defense, Security, and Sensing,
Baltimore, MD, USA, 9 May 2012; p. 17.

29. Bar-Shalom, Y.; Li, X.; Kirubarajan, T. Estimation with Applications to Track and Navigation; Wiley: New York,
NY, USA, 2001.

30. Duan, K.; Wang, Z.; Xie, W. Sparsity-based STAP algorithm with multiple measurement vectors via sparse
Bayesian learning strategy for airborne radar. IET Signal Process. 2017, 11, 544–553. [CrossRef]

31. Yahya, N.M.; Tokhi, M.O. A modified bats echolocation-based algorithm for solving constrained optimisation
problems. Int. J. Bio-Inspir. Comput. 2017, 10, 12–23. [CrossRef]

32. Nikolakopoulos, K.G.; Koukouvelas, I.; Argyropoulos, N.; Megalooikonomou, V. Quarry monitoring using
GPS measurements and UAV photogrammetry. In Proceedings of the SPIE Remote Sensing, Toulouse,
France, 10 October 2015; p. 8.

33. Lai, Y.-C.; Ting, W.O. Design and Implementation of an Optimal Energy Control System for Fixed-Wing
Unmanned Aerial Vehicles. Appl. Sci. 2016, 6, 369. [CrossRef]

34. Rajput, U.; Kumari, M. Mobile robot path planning with modified ant colony optimisation. Int. J.
Bio-Inspir. Comput. 2017, 9, 106–113. [CrossRef]

35. Xu, D.; Xiao, R. An improved genetic clustering algorithm for the multi-depot vehicle routing problem. Int. J.
Wirel. Mob. Comput. 2015, 9, 1–7. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

177

Article

Signal Source Localization of Multiple Robots Using
an Event-Triggered Communication Scheme

Ligang Pan 1, Qiang Lu 1,* ID , Ke Yin 1,2 and Botao Zhang 1

1 School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
161060037@hdu.edu.cn (L.P.); yinke@hdu.edu.cn (K.Y.); billow@hdu.edu.cn (B.Z.)

2 College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
* Correspondence: lvqiang@hdu.edu.cn; Tel.: +86-138-1913-9153

Received: 16 May 2018; Accepted: 8 June 2018; Published: 14 June 2018
��������	
�������

Abstract: This paper deals with the problem of signal source localization using a group of
autonomous robots by designing and analyzing a decision-control approach with an event-triggered
communication scheme. The proposed decision-control approach includes two levels: a decision level
and a control level. In the decision level, a particle filter is used to estimate the possible positions of
the signal source. The estimated position of the signal source gradually approaches the real position
of signal source with the movement of robots. In the control level, a consensus controller is proposed
to control multiple robots to seek a signal source based on the estimated signal source position.
At the same time, an event-triggered communication scheme is designed such that the burden of
communication can be lightened. Finally, simulation and experimental results show the effectiveness
of the proposed decision-control approach with the event-triggered communication scheme for the
problem of signal source localization.

Keywords: signal source localization; multi-robot system; event-triggered communication;
consensus control

1. Introduction

Signal source localization can be widely found in nature and society [1–7]. For example, some
bacteria are able to find chemical or light sources through the perception of the external environment [1].
Moreover, reproducing this kind of behavior in mobile robots can be used to perform some complex
missions such as monitoring environments [2,3,8,9], searching and rescuing victims [10], and so on.
How to deal with the problem of signal source localization has attracted increasing interest from
scientists and engineers and involves two aspects of study. One aspect is to estimate the possible
positions of signal sources, while the other aspect is to control robots to locate signal sources based on
the estimated positions [2,3]. For a single robot, some approaches have been proposed for the problem
of signal source localization. For example, in [11], the SPSA (Simultaneous Perturbation Stochastic
Approximation) method was designed to control the mobile robot to locate a signal source. In [12,13],
the extremum seeking technique, originally developed for adaptive control, was also applied in signal
source localization. In [14], a source probability estimation approach was proposed to control the robot
to locate the signal source by using the information on signal strength and direction angle. However,
the aforementioned approaches need the robot to take more time to collect measurements at different
locations. Moreover, some search trajectories generated by these approaches are usually unnecessary.

Appl. Sci. 2018, 8, 977; doi:10.3390/app8060977 www.mdpi.com/journal/applsci178

Appl. Sci. 2018, 8, 977

Compared with the single robot, due to the wide detection range and simultaneous sampling,
multi-robot systems have received much attention for the problem of signal source localization
(see Figure 1) [15–21]. Usually, the integrated gradient estimation of the signal strength distribution
is a common method to estimate the possible position of the signal source, which means that
multiple robots simultaneously obtain the measurements at different locations and give the movement
direction such that some unnecessary trajectories are neglected [18,22,23]. For example, in [18],
Nikolay approximated the signal strength gradient at the formation centroid via a Finite-Difference
(FD) scheme and proposed distributed control strategies for localizing a noisy signal source. In [2],
Lu used a radial basis function network to model the search environment and guided the robots to
move toward the signal source based on gradient information provided by the environment model.
Correspondingly, some cooperative control approaches [2,3] have been developed in terms of consensus
control theory [23–26]. Moreover, the idea of cooperative control is further extended to deal with the
management of crisis situations [27]. For example, in [28], Garca-Magariño proposed a coordination
approach among citizens for locating the sources of problems by using peer-to-peer communication
and a global map.

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

43.8

47.6

51.5

55.3

55.3
59.1

62.9

66.7
70.574.478.2

43.8

47.6

51.5

55.3

55.3
59.1

62.9

66.7
70.574.478.2

signal source

robot

signal strength

Figure 1. Search environment where the red point denotes the robot, and the red star is the signal
source. The colors of the background represent the signal strength and are also labeled by the numbers.

It should be pointed out that two issues may arise in the aforementioned approaches for
the problem of signal source localization. One issue is that the gradient estimation method is
easily influenced by noises so as to fall into local optima [29]. For this issue, a particle filter
approach can be employed to deal with the uncertainty problem raised by noises. The other issue
is that the communication resources in multi-robot systems are constrained, i.e., each robot has a
limited communication bandwidth. For this issue, an event-triggered scheme can be used to reduce
communication times for each robot. It is worth mentioning that there are some event-triggered rules
that have been proposed [2,30–32] for multi-robot systems. However, these kinds of event-triggered
rules only save computational resources. For multi-robot systems, continuous communication schemes
still need to be used to hold system stability. In order to reduce both computational resources and
communication burden, several event-triggered communication schemes have been designed [33–36]
such that communication resources can be saved. However, there is no result available for the problem
of signal source localization, which can combine the particle filter approach with the cooperative
control approach with an event-triggered communication scheme. One challenge is how to design
event-triggered communication rules based on the given cooperative control approach. The other
challenge is how to derive stability conditions for the multi-robot systems with the proposed
cooperative control approach using an event-triggered communication rule. Therefore, how to

179

Appl. Sci. 2018, 8, 977

develop the decision-control approach for the problem of signal source localization in the face of
the aforementioned challenges motivates the present study.

The proposed decision-control approach has two advantages. One advantage is that the use
of the event-triggered communication scheme can effectively decrease the communication times
and lower the updating frequency of control input such that the communication and chip resources
are saved. The other advantage is that the detection information from the multi-robot system can
be well used to estimate the position of the signal source by the particle filter and cooperative
controller. The remainder of this paper is arranged as follows. In Section 2, we will briefly give the
preliminaries on the dynamics of mobile robots and communication topologies. In Section 3, we will
use a particle filter to estimate the position of the signal source and propose a cooperative control
approach with an event-triggered communication scheme to coordinate the mobile robots to locate
the signal source. In Sections 4 and 5, we will show the effectiveness of the proposed decision-control
approach with the event-triggered communication scheme by simulation and experimental results,
respectively. Finally, we will conclude this paper in Section 6.

2. Preliminaries

2.1. Dynamics of Mobile Robots

For mobile robots, such as Qbot in Figure 2, the dynamics can be described by:⎛⎜⎜⎜⎜⎜⎝
ṙxi
ṙyi
θ̇i
ν̇i
ω̇i

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
νicosθi
νisinθi

ωi
0
0

⎞⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎝
0 0
0 0
0 0
1

mi
0

0 1
Ji

⎞⎟⎟⎟⎟⎟⎠
(

Fi
τi

)
(1)

where ri = (rxi, ryi)
T is the position of the i−th robot; θi denotes the orientation; νi is the linear velocity;

ωi is the angular velocity; τi is the torque; Fi is the force; mi is the mass; and Ji is the moment of inertia.
Let yi = (ri, θi, νi, ωi)

T be the state of the i−th robot and Ii = (Fi, τi)
T be the control input.

Figure 2. The Qbot robot.

180

Appl. Sci. 2018, 8, 977

Because the nonholonomic systems cannot be stabilized with continuous static state feedback,
we use the “hand position” instead of “center position” of the robot [37]. It should be pointed out that
“hand position” is a position and lies a fixed offset Li from the “center position”. The line between
between “hand position” and “center position” is perpendicular to the wheel axis (see [37]). Let (2) be
the dynamics of the “hand position” of the robot.{

ẋi = vi
v̇i = ui i ∈ {1, 2, . . . , n} (2)

where xi and vi, respectively, denote the position and the velocity for the robot i at the “hand position”
and n is the number of robots. The relationship between the “hand position” and the “center position”
can be described by:

xi = ri + Li

(
cosθi
sinθi

)
(3)

vi =

(
cosθi −Lisinθ

sinθi Licosθi

)(
νi
ωi

)
(4)

According to (3) and (4), we can obtain the position and the velocity of the “hand position” of the
robot and then calculate the control law ui for the double-integrator system (2). Finally, we can obtain
the control input (5) for the system (1) [37]:

Ii =

(
1

mi
cosθi − Li

Ji
sinθi

1
mi

sinθi
Li
Ji

cosθi

)−1 [
ui −

(
−νiωisinθi − Liω

2
i cosθi

νiωicosθi − Liω
2
i sinθi

)]
(5)

Usually, the applied torques for the left wheel and the right wheel can be calculated by:

τl =
Jwheel

b

(
Fi
mi

− τi l
2Ji

)
(6)

τr =
Jwheel

b

(
Fi
mi

+
τi l
2Ji

)
(7)

where b is the radius of the wheel; l denotes the axis length between two wheels; Jwheel is the moment of
inertia of the wheel; τl and τr refer to the applied torques for the left wheel and the right wheel, respectively.

Furthermore, the virtual leader is designed, and its dynamics is given as:

ẋ0(t) = v0(t) (8)

where v0(t) = v0 is a constant.

Remark 1. It should be pointed out that the virtual leader is introduced to help the robot reach velocity
consensus, and one can also control the final convergence velocity by setting v0.

2.2. Communication Topologies

Communication is very important for the coordination of multiple robots. The robots can receive
and send information by communication links. In order to describe the communication links at the
mathematical level, one can usually employ graph theory to model communication topologies where
the vertices denote the robot and the edges refer to communication links. The undirected and connected
graph Gn(X, E, A) is used to present the communication topology for mobile robots in this paper.
An undirected graph is a set of vertices and a collection of edges that each connect a pair of vertices.

181

Appl. Sci. 2018, 8, 977

We suppose that Gn(X, E, A) is an undirected graph, which includes a set of nodes X = x1, x2, ..., xn,
a set of edges E ⊆ X × X and an adjacency matrix A = [aij]. It should be pointed out that, if there
exists an edge between the i−th node and the j−th node, then aij = 1; otherwise, aij = 0. In addition,
Gn+1=Gn ∪ x0 is an extension of graph Gn(X, E, A), where x0 is a fictitious node, which can represent a
virtual leader. When the virtual leader’s information can be provided to the robot, there exists an edge
between the virtual leader and the robot, i.e., ai0 = 1(i = 1, · · · , n); otherwise, ai0 = 0. The Laplacian
matrix of the graph Gn(X, E, A) is LGn = [lij] ∈ Rn×n, where lij is:

lij =

{
∑n

j=1,j �=i aij, i = j
−aij, i �= j

(9)

3. Decision-Control Approach with an Event-Triggered Communication Scheme

In this section, a particle filter is used to estimate the position of a signal source. Then, a cooperative
control approach with an event-triggered communication scheme is proposed to control robots to locate
the signal source. Finally, convergence analysis and velocity design of the virtual leader are given.

3.1. Decision-Making for the Position of the Signal Source

With the movement of robots, the real signal strength can be obtained by

or(i, t) = f (xi(t), r(t)) (10)

where or(i, t) denotes the real measured value for the i-th robot at t time; f (xi(t), r(t)) is the signal
transmission model depending on the position xi(t) of the i-th robot and the real position r(t) of the
signal source. It should be noted that or(i, t) can be directly detected by the robot based on the signal
measurement sensor.

In order to estimate the position of the signal source, a particle filter is used in terms of the real
signal strength or(i, t) and has the following steps.

(i) We first generate N particles, which are uniformly distributed in the search range.
(ii) According to Equation (10), the prediction signal strength om(i, t) (m = 1, . . . , N) of the m-th

particle for the i-th robot at time t can be described by:

om(i, t) = f (xi(t), pm(i, t)) +
√

R × rand (11)

where pm(i, t) is the position of the m-th particle for the i-th robot at time t; R represents the
variance of noise; rand is a random number in [0,1]; f (xi(t), pm(t)) can be obtained according to
the real signal transmission model.

(iii) In terms of (10) and (11), the weight of each particle can be calculated in (12).

wm(i, t) =
1√

2πR
exp(− (or(i, t)− om(i, t))2

2R
) (12)

Further, the normalizing weight is computed by:

w′
m(i, t) =

wm(i, t)
N
∑

m=1
wm(i, t)

(13)

182

Appl. Sci. 2018, 8, 977

(iv) Based on the normalizing weight w′
m(i, t), we conduct a resampling process for particles, that is

we remove the low weight particles and copy the high weight particles. These resampled particles
p′m(i, t) represent the probability distribution of the real state. Hence, the possible position of the
signal source can be estimated by:

ps(i, t) =
N

∑
m=1

p′m(i, t)
N

(14)

where ps(i, t) is the position of the estimated signal source for the i-th robot at time t. Further,
considering the estimated positions from other robots, we have:

p′s(i, t) =

n
∑

j=1
aij ps(j, t)

n
∑

j=1
aij

(15)

where aij is the element of the adjacency matrix A and p′s(i, t) as the estimated position of signal
source is used in the following simulations and experiments.

3.2. Cooperative Control with an Event-Triggered Communication Scheme

An event-triggered communication scheme is proposed to lower the communication burden.
The event-triggered time sequence is generated iteratively by the following formula.

ti
s+1 = inf{t|t > ti

s, gi(t) > 0} (16)

where gi(t) is described by:

gi(t) = ‖M‖‖α(exi(t)) + β(evi(t))‖+ ai0‖α(exi0(t)) + β(evi0(t))‖ − γ(‖αyi(ti
s)‖+ ‖βzi(ti

s)‖) (17)

with:

exi(t) = xi(ti
s)− xi(t)

evi(t) = vi(ti
s)− vi(t)

exi0(t) = x0(ti
s)− x0(t)

exi0(t) = v0(ti
s)− v0(t)

yi(ti
s) =

n

∑
j=0

aij(xj(t
j
s)− xi(ti

s))

zi(ti
s) =

n

∑
j=0

aij(vj(t
j
s)− vj(ti

s))

where M = LGn + diag{a10, · · · , an0}; α > 0, β > 0, γ > 0 are the positive constants; Since yi(ti
s) and

zi(ti
s) only are calculated at the event-triggered time, the proposed event-triggered scheme can reduce

communication burdens. The event-triggered communication condition (16) has one main feature,
that is whether or not the states of robots should be transmitted is determined by the errors yi(ti

s), zi(ti
s)

between the states of its neighbors at the latest event time and the latest transmitted states and the
errors exi(t), evi(t), exi0(t), exi0(t) between the current states and the latest transmitted states.

183

Appl. Sci. 2018, 8, 977

Remark 2. It is worth mentioning that the control input is updated when gi(t) > 0, that is the condition
of the event triggering. At the same time, the new state of the i-th robot will be sent to the other robots that
have communication links with the i-th robot. Besides, if the above inequality does not hold, the i-th robot
does not need to send information to others while the values of yi(ti

s) and zi(ti
s) will not be changed. Hence,

the communication resources are saved.

According to the proposed event-triggered communication scheme, the controller of the i-th robot
is designed by:

ui(t) =
n

∑
j=0

aij(α(xj(t
j
s)− xi(ti

s)) + β(vj(t
j
s)− vi(ti

s))) (18)

where aij is the element of the adjacency matrix A; xi(ti
s) and xj(t

j
s) are the positions of the i-th and

the j-th robots at the event-triggering time, respectively; vi(ti
s) and vj(t

j
s) are the velocities of the i-th

and the j-th robots at the event-triggering time, respectively. It should be pointed out that the control
input in (18) is determined by the position errors and velocity errors between the j-th robot and the
i-th robot at the event-triggering time.

3.3. Convergence Analysis

In order to illustrate the position and velocity consensus for the multi-robot system (2) under
the controller (18) with the event-triggered communication scheme (16), we first transform the model
(2) in the following. Let x̄i(t) = xi(t)− x0(t) and v̄i(t) = vi(t)− v0(t). Then, the system (2) with the
controller (18) can be rewritten as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̄xi(t) = v̄i(t)

˙̄vi(t) =
n
∑

j=0
aijα(x̄j(t)− x̄i(t))

+
n
∑

j=0
aijα(exj(t)− exi(t))

+
n
∑

j=0
aijβ(v̄j(t)− v̄i(t))

+
n
∑

j=0
aijβ(evj(t)− evi(t))

Furthermore, set:

yi(t) =
n
∑

j=0
aij((x̄j(t)− x̄i(t))

zi(t) =
n
∑

j=0
aij((v̄j(t)− v̄i(t))

ex
i (t) =

n
∑

j=0
aij(exj(t)− exi(t))

ev
i (t) =

n
∑

j=0
aij(evj(t)− evi(t))

Hence, the dynamics of a multi-robot system can be deduced as:⎧⎪⎨⎪⎩
ẏ(t) = z(t)
ż(t) = −Mφ(t)
φ(t) = αy(t) + βz(t) + αex(t) + βev(t)

(19)

184

Appl. Sci. 2018, 8, 977

where y(t) = [y1(t), y2(t), · · ·yn(t)]T and z(t), ex(t), ev(t) are similar. The following lemmas are given
in order to illustrate the convergence proof.

Lemma 1. For a multi-robot system (19) with an event-triggered communication scheme (16), the following
inequality is established.

‖M‖2‖α(ex(t)) + β(ev(t))‖2 + ‖B(αex0(t) + βev0(t))‖2 ≤ 2γ2

k1
‖φ(t)‖2 (20)

where B = diag{a10, ·san0} and k1 is a positive constant.

Proof. The event-triggered communication scheme (16) is listed as:

‖M‖‖αexi(t) + βevi(t)‖+ ai0‖αex0(t) + βev0(t)‖ ≤ γ(‖αyi(ti
s)‖+ ‖βzi(ti

s)‖) f or t ∈ [ti
s, ti

s+1) (21)

According to the inequalities a2
1 + b2

1 ≤ (a1 + b1)
2, a1 > 0, b1 > 0 and 2a2

1 + 2b2
1 ≥ (a1 + b1)

2,
the inequality (21) can be further changed as:

‖M‖2‖α(exi(t)) + β(evi(t))‖2 + ai0‖αex0(t) + βev0(t))‖2 ≤ 2γ2(‖αyi(ti
s)‖2 + ‖βzi(ti

s)‖2) (22)

Notice the definition of φi(t). The variable φi(t)2 is rewritten using a matrix-vector form.

φi(t)2 = [αyi(ti
s) βzi(ti

s)]Q[αyi(ti
s) βzi(ti

s)]
T

where Q =

[
1 1
1 1

]
which is a semi-positive definite matrix. We consider the sum of φi(t)2, i = 1, . . . , n.

n

∑
i=0

φi(t)2 =
n

∑
i=0

[αyi(ti
s) βzi(ti

s)]Q[αyi(ti
s) βzi(ti

s)]
T

= ε(t)T In ⊗ Qε(t)

(23)

where ε(t) = [[αy1(t1
s) βz1(t1

s)], · · · , [αyn(tn
s) βzn(tn

s)]]. For the set U = {σ ∈ R2n : σTσ = 1},
which is bounded and closed, one can know ε(t)

‖ε(t)‖2
∈ U, and there exists a positive constant k1 > 0 for

(ε(t)
‖ε(t)‖2

)T In ⊗ Q ε(t)
‖ε(t)‖2

.

k1 = min
ε(t)

‖ε(t)‖2
∈U

(
ε(t)

‖ε(t)‖2

)T

In ⊗ Q
ε(t)

‖ε(t)‖2

Then, in terms of Equation (23) and the minimum value k1, the following inequality is established.

n

∑
i=0

φi(t)2 ≥ k1‖ε(t)‖2
2 = k1

n

∑
i=1

(‖αyi(ti
s)‖2 + ‖βzi(ti

s)‖2)) (24)

Finally, by combining (22) with (24), the inequality (25) holds.

‖M‖2‖α(ex(t)) + β(ev(t))‖2 + ‖D(αex0(t) + βev0(t))‖2 ≤ 2γ2

k1
‖φ(t)‖2 (25)

185

Appl. Sci. 2018, 8, 977

Lemma 2. For a multi-robot system (19) with an event-triggered communication scheme (16), the following
inequality is established.

‖αex(t) + βev(t)‖ ≤
√

8γ2

k1 − 8γ2 ‖αy(t) + βz(t)‖

where k1 > 8γ2 and is constant.

Proof. From the definitions of ex, ev and M, the following inequalities are derived.

‖αex(t) + βev(t)‖ ≤ ‖M(αex(t) + βev(t))‖+ ‖B((αex0(t) + βev0(t))‖
≤ ‖M‖‖(αex(t) + βev(t))‖+ ‖B((αex0(t) + βev0(t))‖

(26)

Further, according to the definition of ‖φ(t)‖ in (19), we can establish a new inequality.

‖φ(t)‖2 =
n

∑
i=1

(αyi(t) + βzi(t) + αex
i (t) + βev

i (t))
2

≤
n

∑
i=1

(2(αyi(t) + βzi(t))2 + 2(αex
i (t) + βev

i (t))
2)

≤ 2‖αy(t) + βz(t)‖2 + 2‖αex(t) + βev(t))‖2

≤ 2‖αy(t) + βz(t)‖2 + 4(‖M‖2‖αex(t) + βev(t))‖2

+ ‖B(αex0(t) + βev0(t))‖2)

(27)

By Lemma 1 and the inequality (27), we obtain the inequality (28).

‖M‖2‖α(ex(t)) + β(ev(t))‖2 + ‖B(αex0(t) + βev0(t))‖2 ≤ 2γ2

k1
‖φ(t)‖2

≤ 4γ2

k1
‖αy(t) + βz(t)‖2 +

8γ2

k1
(‖M‖2‖αex(t) + βev(t))‖2

+ ‖B(αex0(t) + βev0(t))‖2)

(28)

Simplify the inequality (28) as:

‖M‖‖αex(t) + βev(t))‖+ ‖B(αex0(t) + βev0(t))‖

≤
√

8γ2

k1 − 8γ2 ‖αy(t) + βz(t)‖
(29)

Since k1 > 8γ2, in terms of (26) and (29), the following inequality holds.

‖αex(t) + βev(t)‖ ≤
√

8γ2

k1 − 8γ2 ‖αy(t) + βz(t)‖

Finally, we can give the following theorem for the multi-robot system (2) with the proposed
communication scheme and controller. In addition, Zeno-behaviors denote that there is an infinite
number of discrete transitions in a finite period of time in the multi-robot system. The following
theorem can guarantee that the multi-robot system (2) with the proposed communication scheme and
controller does not show Zeno-behaviors before consensus is achieved.

186

Appl. Sci. 2018, 8, 977

Theorem 1. Consider the event-triggered communication scheme (16) and the cooperative controller (18) for
a multi-robot system (2). Suppose that the undirected communication topology Gn(W, E, A) is connected
with at least one ai0 not being zero. Let k = 1

2 (∑
n
j=1 aij − ∑n

j=1 aji) + ai0. The variable umin denotes the
minimum eigenvalue of M + MT. The positive constant k1 can be found in Lemma 1. If the inequalities

β >
√

α/umin, γ <
√

k1/8, δ < β2umin−α

2β2 where δ = ‖M‖
√

8γ2

k1−8γ2 hold, the cooperative controller (18) with

the event-triggered communication scheme (16) can guarantee that xi(t) → x0(t) and vi(t) → v0(t), ∀i ∈
1, · · · , n. In addition, the multi-robot system does not show Zeno-behaviors before consensus is achieved.

Proof. We have three steps to prove the theorem. First, it is proven that the following function V(t)
in (30) is a Lyapunov function. Second, it is proven that the system (2) with the event-triggered
communication scheme (16) and the cooperative controller (18) is asymptotically stable. Finally, it is
proven that the multi-robot system does not show Zeno-behaviors before consensus is reached.

We construct a Lyapunov functional as:

V(t) = 0.5ξ(t)T

(
αβ(M + MT) αI

αI βI

)
ξ(t) (30)

where ξ(t) = [y(t)T , z(t)T] and I is a unit matrix of n order. Let:

Ω =

(
αβ(M + MT) αI

αI βI

)

where M + MT is a real symmetric matrix, and we can diagonalize it as β−1Λβ, where Λ = diag
{u1, u2, · · · , un} is a diagonal matrix and ui is the eigenvalue of M + MT . Thus, Ω can be written as:

Ω =

(
β 0
0 β

)−1

Ω̄

(
β 0
0 β

)

where:

Ω̄ =

(
αβΛ αI
αI βI

)

Then, we solve its eigenvalue by:

det(λI2n − Ω̄) = det

(
λI − αβΛ −αI

−αI λI − βI

)

The eigenvalues of Ω̄ are:

λi± =
β+αβui±

√
(β+αβui)2−4(αβ2ui−α2)

2

where λi+ and λi− are the eigenvalues of Ω̄, which are associated with ui. Thus, if the condition
β >

√
α/umin is satisfied, the matrix Ω is a positive definite matrix, that is the Lyapunov function

V(t) � 0. The derivative of V̇(t) is as:

187

Appl. Sci. 2018, 8, 977

V̇(t) = y(t)Tαβ(M + MT)z(t) + z(t)TαIz(t)

+ y(t)TαIż(t) + z(t)T βIż(t)

= −z(t)T(β2M − αI)z(t)− y(t)Tα2My(t)

− (αy(t)T + βz(t)T)M(αez(t) + βev(t))

We can get the following inequality as:

V̇(t) ≤ −z(t)T(β2M − αI)z(t)− y(t)Tα2My(t)

+‖αy(t)T + βz(t)T‖‖M‖‖αez(t) + βev(t)‖ (31)

From Lemma 1 and (30), we can give the following result.

V̇(t) ≤ −z(t)T(β2M − αI)z(t)− y(t)Tα2My(t) + δ‖αy(t) + βz(t)‖2

≤ −z(t)T(β2M − αI − 2δβ2 I)z(t)− y(t)T(α2M − 2δα2 I)y(t)

where δ = ‖M‖
√

8γ2

k1−8γ2 . Since β >
√

α/umin, γ <
√

k1/8 and δ < β2umin−α

2β2 , the inequality V̇(t) ≤ 0

holds. It shows that the system (y(t), z(t)) will asymptotically converge to (0n, 0n).
It is assumed that the velocity and acceleration of the robot are bounded by sv and sa. The variable

exi(ti
s) is zero, and xi(ti

s) is constant for t ∈ [ti
s, ti

s+1). Then, the following inequality is established.

|exi(t)| ≤ |
∫ t

ti
s

ėxi(t)dτ| ≤
∫ t

ti
s

|ėxi(t)|dτ =
∫ t

ti
s

|ẋi(t)|dτ ≤ sv(t − ti
s), t ∈ [ti

s, ti
(s+1))

In the same way, the following inequality is established.

|evi(t)| ≤ sa(t − ti
s)

Moreover, we have ‖M‖ ∗ |α(exi(t)) + β(evi(t))| + ai0|α(x0(ti
s) − x0(t)) + β(v0(ti

s) − v0(t))| ≤
((‖M‖ + 1)αsv + (‖M‖ + 1)βsa)(t − ti

s). According to the event-triggered communication scheme,
we obtain ‖M‖ ∗ |α(exi(t)) + β(evi(t))| + ai0|α(x0(ti

s) − x0(t)) + β(v0(ti
s) − v0(t))| − γ(|αyi(ti

s)| +
|βzi(ti

s)|) > 0 at t = ti
s+1. Hence, we derive (ti

s+1 − ti
s) > γ(|αyi(ti

s)|+|βzi(ti
s)|)

(‖M‖+1)αsv+(‖M‖+1)βsa
> 0. We can draw

the conclusion that Zeno-behaviors are excluded for the multi-robot system before consensus
is reached.

3.4. Velocity Design of the Virtual Leader

According to Theorem 1, one can see that how to design the velocity v0(t) of the virtual leader
is important, since the velocity of the virtual leader has an impact on the movement direction of the
multi-robot system. Hence, the velocity of the virtual leader is as:

v0(t) = λ(p′s(0, t)− x0(t)) (32)

where λ is a positive constant as a step factor. If the virtual leader is installed in the i-th robot, we have
p′s(0, t) = p′s(i, t). Therefore, we design Algorithm 1 for signal source localization.

188

Appl. Sci. 2018, 8, 977

Algorithm 1 Decision-control approach with an event-triggered communication scheme.

/*Initialization*/
Initialize the parameters of the particle filter N, R and wm(i, t), (m = 1, 2, . . . , N);
Initialize the parameters α, β and γ of the consensus control (18) and the event-triggered rule (16),
the position xi(0) and the velocity vi(0) of the i-th robot;
/*Main Body*/
repeat

Receive its neighbors’ information;
Detect the new signal strength or(i, t) at the position xi(t);
Calculate the prediction signal strength om(i, t) (m = 1, . . . , N) based on (11);
Give the normalizing weight in (13), and obtain the estimated position of signal source in terms

of (15);
Compute the event-triggered condition in (16) and (17);
if gi(t) > 0 then

Send the estimated position of signal source p′s(i, t), the position of the robot xi(t) and the
velocity of the robot vi(t) to its neighbors;

end if

if gi(t) ≤ 0 then

Calculate the control input in (18);
According to (5), obtain the force and torque Ii, and give the applied torques for the left wheel

τl and the right wheel τr in (6) and (7), respectively.
end if

until The termination condition is satisfied.

4. Simulation Results

In this section, we use two cases to show the effectiveness of the proposed decision-control
approach for signal source localization.

4.1. Simulation Environment

This subsection briefly describes the simulation environment where a static electromagnetic signal
field is used. Correspondingly, due to different noise errors, two cases are considered.

For Case 1, the electromagnetic signal field can be established by using the following function.

f1(x, r) = 10 × log(0.001)− 1.96 × log(‖x − r‖) +
√

5 × rand (33)

where x is any position in the search environment; r is the position of the signal source; rand is
a random number in [0, 1].

For Case 2, a big noise is considered where the electromagnetic signal field can be established by
applying the following function.

f2(x, r) = 10 × log(0.001)− 1.96 × log(‖x − r‖) +
√

8 × rand (34)

The simulation environment is built in MATLAB, where the search space is a square area with
30 m × 30 m, and other parameters can be found in Table 1.

189

Appl. Sci. 2018, 8, 977

Table 1. Parameters of the simulation environment.

Parameters Values

Sampling time 0.001 s
Noise variance R 5, 8
Total run time 20 s for two cases
Communication distance 5 m
The number of robots n 3
The velocity range of robots [−3 m/s, 3 m/s]

4.2. Cooperative Control and Performance Metrics

In order to avoid collisions, we further extend the cooperative controller (18) as:

ui(t) =
n

∑
j=0

aij(α((xj(t
j
s)− dj)− (xi(ti

s)− di)) + β(vj(t
j
s)− vi(ti

s))) (35)

where di and dj are the given safety distances for the i-th and j-th robots, respectively. The controller
can effectively coordinate multiple robots and hold formation. The parameters of the proposed
decision-control approach can be found in Table 2. The position of signal source is [15 m, 15 m].
Moreover, the safety distances are:

d =

[
0 1 0
0 0 1

]T

and d0 = [1/3, 1/3]. The initial velocities of robots are:

v =

[
0.1 0.1 0.1
0.1 0.1 0.1

]T

Table 2. The parameters of the proposed decision-control approach.

Parameters Value

α 17
β 22
γ 0.1
λ 0.001
N 10,000

In order to evaluate the proposed decision-control approach, we use two performance metrics:
one is the communication frequency, while the other is the localization error.

The communication frequency is calculated by:

f rei = Event-Triggered Number
Total Sampling Number × 100% (36)

where f rei denotes the communication frequency of the i-th robot. “Event-Triggered Number”
refers to the communication times of the i-th robot. Note that if the event-triggered rule (16) is
violated, a new control input needs to be calculated; otherwise, the previous control input is
unchanged. “Total Sampling Number” stands for the total sampling times in a run. Hence, f rei is
a quantitative evaluation metric that is used to evaluate communication burden.

The localization error (LE) is computed by:

LEi = ‖p′s(i, t)− r(t)‖ (37)

190

Appl. Sci. 2018, 8, 977

where p′s(i, t) is the estimated position of the signal source for the i-th robot value at time t; r(t) is the
real position of the signal source. LEi can be utilized to evaluate the localization accuracy.

4.3. Case 1: The Variance of Noise R = 5

For Case 1, we consider the situation, i.e., the noise variance error R = 5. Figure 3a–f shows the
movement trajectories of robots in one run, from which one can see that the robots can locate the signal
source. Moreover, one can see that the red points denote the initial positions; the black lines are the
trajectories of three robots; the yellow small stars are the current positions; and the red big star refers
to the signal source. Correspondingly, the localization errors LE are illustrated in Figure 4, where one
can see that the localization errors LE gradually become small with the movement of robots. Finally,
the statistical results for communication frequencies f re and localization errors LE can be found in
Table 3, where 30 runs are conducted, and the corresponding results are small to reflect the effectiveness
of the proposed decision-control approach.

Table 3. Mean (standard deviation) results in communication frequency (%) and localization error (m)
based on 30 runs for Case 1.

Robots f rei LEi

Robot 1 1.81 (0.44) 0.22 (0.16)
Robot 2 8.50 (0.48) 0.25 (0.20)
Robot 3 7.52 (0.53) 0.64 (0.71)

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

(a) (b)

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

(c) (d)

Figure 3. Cont.

191

Appl. Sci. 2018, 8, 977

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

(e) (f)

Figure 3. Movement trajectories of three robots for Case 1 where the red points denote the initial
positions, the black lines are the trajectories of three robots, the yellow small stars are the current
positions and the red big star refers to the signal source. The colors of the background represent the
signal strength and are also labeled by the numbers. The signal strength increases with the decrease of
the distance from the source. (a) t = 0 s; (b) t = 5 s; (c) t = 10 s; (d) t = 15 s; (e) t = 20 s; (f) t = 30 s.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

Time(s)

E
rr

or
s(

m
)

Virtual Leade
Robot 1
Robot 2
Robot 3

Figure 4. The curves for the localization errors for Case 1.

4.4. Case 2: The Variance of Noise R = 8

For Case 2, the noise variance error R = 8 is set in order to evaluate the noise influence on
the proposed decision-control approach. The movement trajectories of three robots in one run are
illustrated in Figure 5. From this figure, one can see that the three robots can coordinate their behaviors
and locate the signal source. Correspondingly, Figure 6 shows the localization errors LE, where one
can see that the localization errors LE quickly become small such that the signal source is found when
the search time approaches 30 s. Finally, we conduct 30 runs and obtain the statistical results for
communication frequencies f rei and localization errors LEi, shown in Table 4. From this table, one
can see that the communication frequencies and the localization errors are small, which means that
the communication burden is lightened and the proposed decision-control approach can predict the
position of signal source under big noise well.

192

Appl. Sci. 2018, 8, 977

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

(a) (b)

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

(c) (d)

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

43.8

47.6

51

55.3
5

59.1

62.9
66.770.574.478.2

(e) (f)

Figure 5. Movement trajectories of three robots for Case 2 where the red points denote the initial
positions, the black lines are the trajectories of three robots, the yellow small stars are the current
positions and the red big star refers to the signal source. The colors of the background represent the
signal strength and are also labeled by the numbers. The signal strength increases with the decrease of
the distance from the source. (a) t = 0 s; (b) t = 5 s; (c) t = 10 s; (d) t = 15 s; (e) t = 20 s; (f) t = 30 s.

193

Appl. Sci. 2018, 8, 977

0 5 10 15 20 25 30
0

5

10

15

20

25

Time(s)

E
rr

or
s(

m
)

Virtual Leader
Robot 1
Robot 2
Robot 3

Figure 6. The curves for the localization errors for Case 2.

Table 4. Mean (standard deviation) results in communication frequency (%) and localization error (m)
based on 30 runs for Case 2.

Robots f rei LEi

Robot 1 1.37 (0.54) 1.07 (0.44)
Robot 2 8.55 (0.50) 1.69 (1.08)
Robot 3 8.07 (0.59) 0.70 (0.71)

5. Experimental Results

In this section, the proposed decision-control approach is validated by the real experiments where
the three Qbot robots are used to locate the signal source.

5.1. Experimental Setup

The real experimental environment is shown in Figure 7. Qbot is a differential drive wheeled
mobile robot, equipped with two motors, a wireless communication module, an infrared and sonar
sensor array and a Logitech Quickcam Pro 9000 USB camera. Moreover, the wireless modules use
the ZigBee communication protocol. An electromagnetic module is used as a signal source, shown in
Figure 8. At the same time, we employ the OptiTrack system to accurately locate the position of the
Qbot. For the robot communication, the Qbots can build a local area network to communicate with
each other and establish links with the computer host.

Figure 7. Experimental environment.

194

Appl. Sci. 2018, 8, 977

Figure 8. An electromagnetic signal source.

The following function is used to predict the position of the electromagnetic signal source.

f (x, r) = 10 × log(0.001)− 1.96 × log(‖(x − r)‖) (38)

where r is the particle position for the particle filter. The parameters of Qbot robots are shown in
Table 5. The parameters of the proposed decision-control approach can be found in Table 2.

Table 5. The parameters of Qbot mobile robots.

mi (kg) Li (m) Ji (kg m2) b (m) l (m) Jwheel (kg m2)

2.92 0.126 0.05 0.03 0.252 0.002

5.2. Experimental Results

In this subsection, we control three robots to locate an electromagnetic signal source by employing
the proposed decision-control approach. The experiments are conducted 30 times. Figures 9 and 10
show movement trajectories and localization errors in one run, respectively. In Figure 9, one can
see that three robots can locate the electromagnetic signal source and hold a safe distance from each
other, where the different colors denote the different trajectories of robots. Moreover, in Figure 10,
the localization errors for three robots are shown, from which one can see that the localization errors are
small. Finally, the statistical results for performance metrics are given in Table 6, where communication
frequencies for three robots are low such that communication burden is well lightened. In addition,
the location errors in Table 6 are also small, which implies that the proposed particle filter can predict
the position of the electromagnetic signal source well and the proposed decision-control approach can
control three robots to keep formation to detect signals well.

Table 6. Mean (standard deviation) results in communication frequency (%) and localization error (m)
based on 30 runs.

Robots f rei LEi

Robot 1 6.21 (0.34) 0.30 (0.08)
Robot 2 12.56 (1.05) 0.46 (0.17)
Robot 3 11.64 (1.23) 0.27 (0.07)

195

Appl. Sci. 2018, 8, 977

−1000 −500 0 500 1000

−1000

−500

0

500

1000

X (mm)

Y
 (

m
m

)

signal source

Qbot1
Qbot2
Qbot3

(a)

−1000 −500 0 500 1000

−1000

−500

0

500

1000

X (mm)

Y
 (

m
m

)

signal source

Qbot1
Qbot2
Qbot3

(b)

−1000 −500 0 500 1000

−1000

−500

0

500

1000

X (mm)

Y
 (

m
m

)

signal source

Qbot1
Qbot2
Qbot3

(c)

−1000 −500 0 500 1000

−1000

−500

0

500

1000

X (mm)

Y
 (

m
m

)

signal source

Qbot1
Qbot2
Qbot3

(d)

−1000 −500 0 500 1000

−1000

−500

0

500

1000

X (mm)

Y
 (

m
m

)

signal source

Qbot1
Qbot2
Qbot3

(e)

−1000 −500 0 500 1000

−1000

−500

0

500

1000

X (mm)

Y
 (

m
m

)

signal source

Qbot1
Qbot2
Qbot3

(f)

Figure 9. Movement trajectories of three robots where the red, blue and green lines denote the
trajectories of three robots. (a) t = 0 s; (b) t = 4 s; (c) t = 8 s; (d) t = 12 s; (e) t = 16 s; (f) t = 20 s.

196

Appl. Sci. 2018, 8, 977

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time(s)

E
rr

or
s(

m
)

Virtual Leader
Robot 1
Robot 2
Robot 3

Figure 10. The curves for the localization errors.

6. Conclusions

We have proposed a decision-control approach with the event-triggered communication scheme
for the problem of signal source localization. This proposed decision-control approach includes two
levels. In the decision level, we have designed a particle filter approach, which is used to estimate
the position of signal source. The designed particle filter can guide the movement of robots well
under a search environment with big noises. At the control level, we have proposed a cooperative
control approach with an event-triggered communication scheme. The proposed event-triggered
communication scheme can save communication resources and lighten the communication burden.
The simulation and experimental results have illustrated the effectiveness of the proposed
decision-control approach.

Author Contributions: K.Y. performed the simulations and experiments. L.P. proposed the methods, analyzed
the data and wrote the paper. Q.L. reviewed the paper and took on the task of project management. B.Z. revised
the paper and took on the task of project supervision.

Acknowledgments: This work was supported in part by the Zhejiang Provincial Natural Science Foundation of
China under Grant LY18F030008 and the National Natural Science Foundation of China under Grants 61503108
and 61375104.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

νi Linear velocity
ωi Angular velocity
τi Torque
τl Applied torques for the left wheel
τr Applied torques for the right wheel
θi Orientation angle
A Adjacency matrix
aij Element of an adjacency matrix
b Radius of the wheel
e State error
ev Velocity error
ex Position error
F Force

197

Appl. Sci. 2018, 8, 977

f Signal transmission model
f re Communication frequency
gi Condition of event triggered
Gn Undirected graph
Gn+1 Extension of graph Gn(X, E, A)

i Serial number of robot
Ii Control input of the i-th robot
J Moment of inertia
Jwheel Moment of inertia of the wheel
l Axis length between two wheels
Li Distance between the hand position and the center position
LGn Laplacian matrix of the graph
LE Localization error
m Mass
N Number of particles
n Number of robots
om The m-th particle
or Real measured value
p′s Final estimated position of signal source
pm Position of the m-th particle
ps Estimated position of signal source
R Variance of noise
r Real position of signal source
rT

i Position of the ith robot
rand Random number in [0,1]
ti
s+1 Event-triggered time sequence

ui Control law for the i-th robot
v0 “Hand velocity” of virtual leader
w′

m Normalizing weight of the m-th particle
wm Weight of the m-th particle
vi “Hand velocity” of the i-th robot
x0 “Hand position” of virtual leader
xi “Hand position” of the i-th robot

References

1. Lux, R.; Shi, W. Chemotaxis-guided movements in bacteria. Crit. Rev. Oral Biol. Med. 2004, 15, 207–220.
[CrossRef] [PubMed]

2. Lu, Q.; Han, Q.-L.; Zhang, B. Cooperative control of mobile sensor networks for environmental monitoring:
An event-triggered finite-time control scheme. IEEE Trans. Cybern. 2017, 47, 4134–4147. [CrossRef] [PubMed]

3. Lu, Q.; Liu, S.; Xie, X.; Wang, J. Decision-making and finite-time motion control for a group of robots.
IEEE Trans. Cybern. 2013, 43, 738–750. [PubMed]

4. Zhang, X.; Fang, Y.; Sun, N. Visual servoing of mobile robots for posture stabilization: From theory to
experiments. Int. J. Robust Nonlinear Control 2015, 25, 1–15. [CrossRef]

5. Zhang, X.; Fang, Y.; Liu, X. Motion-estimation-based visual servoing of nonholonomic mobile robots.
IEEE Trans. Robot. 2011, 27, 1167–1175. [CrossRef]

6. Wang, Y.-L.; Han, Q.-L. Network-based modeling and dynamic output feedback control for unmanned
marine vehicles. Automatica 2018, 91, 43–53. [CrossRef]

7. Wang, Y.-L.; Han, Q.-L.; Fei, M.; Peng, C. Network-based T-S fuzzy dynamic positioning controller design
for unmanned marine vehicles. IEEE Trans. Cybern. 2018. [CrossRef]

8. Sukhatme, G.S.; Dhariwal, A.; Zhang, B. Design and development of a wireless robotic networked aquatic
microbial observing system. Environ. Eng. Sci. 2007, 24, 205–215. [CrossRef]

9. Kumar, V.; Rus, D.; Singh, S. Robot and sensor networks for first responders. IEEE Pervasive Comput. 2004,
3, 24–33. [CrossRef]

198

Appl. Sci. 2018, 8, 977

10. Ferreira, N.L.; Couceiro, M.S.; Araujo, A. Multi-sensor fusion and classification with mobile robots for
situation awareness in urban search and rescue using ROS. In Proceedings of the 2013 IEEE International
Symposium on Safety, Security, and Rescue Robotics, Linkoping, Sweden, 21–26 October 2013; pp. 1–6.

11. Azuma, S.I.; Sakar, M.S.; Pappas, G.J. Stochastic source seeking by mobile robots. IEEE Trans. Autom. Control
2012, 57, 2308–2321. [CrossRef]

12. Zhang, C.; Arnold, D.; Ghods, N. Source seeking with non-holonomic unicycle without position measurement
and with tuning of forward velocity. Syst. Control Lett. 2007, 56, 245–252. [CrossRef]

13. Liu, S.J.; Krstic, M. Stochastic source seeking for nonholonomic unicycle. Automatica 2012, 46, 1443–1453.
[CrossRef]

14. Song, D.; Kim, C.Y.; Yi, J. Simultaneous localization of multiple unknown and transient radio sources using
a mobile robot. IEEE Trans. Robot. 2012, 28, 668–680. [CrossRef]

15. Bachmayer, R.; Leonard, N.E. Vehicle networks for gradient descent in a sampled environment. In Proceedings
of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, 10–13 December 2002; pp. 112–117.

16. Moore, B.J.; Canudas-De-Wit, C. Source seeking via collaborative measurements by a circular formation of
agents. In Proceedings of the 2010 American Control Conference, Baltimore, MD, USA, 30 June–2 July 2010;
pp. 1292–1302.

17. Ogren, P.; Fiorelli, E.; Leonard, N.E. Cooperative control of mobile sensor networks: Adaptive gradient
climbing in a distributed environment. IEEE Trans. Autom. Control 2004, 49, 1292–1302. [CrossRef]

18. Atanasov, N.A.; Ny, J.L.; Pappas, G.J. Distributed algorithms for stochastic source seeking with mobile robot
networks. J. Dyn. Syst. Meas. Control 2014, 137, 031004/1–031004/9. [CrossRef]

19. Li, S.; Kong, R.; Guo, Y. Cooperative distributed source seeking by multiple robots: Algorithms and
experiments. IEEE/ASME Trans. Mechatron. 2014, 19, 1810–1820. [CrossRef]

20. Zhang, X.; Fang, Y.; Li, B.; Wang, J. Visual servoing of nonholonomic mobile robots with uncalibrated
camera-to-robot parameters. IEEE Trans. Ind. Electron. 2017, 64, 390–400. [CrossRef]

21. Zhang, X.; Wang, R.; Fang, Y.; Li, B.; Ma, B. Acceleration-level pseudo-dynamic visual servoing of mobile
robots with backstepping and dynamic surface control. IEEE Trans. Syst. Man Cybern. Syst. 2017. [CrossRef]

22. Oyekan, J.; Gu, D.; Hu, H. Hazardous substance source seeking in a diffusion based noisy environment.
In Proceedings of the 2012 International Conference on Mechatronics and Automation (ICMA), Chengdu,
China, 5–8 August 2012; pp. 708–713.

23. Ge, X.; Han, Q.-L.; Yang, F. Event-based set-membership leader-following consensus of networked multi-
agent systems subject to limited communication resources and unknown-but-bounded noise. IEEE Trans.
Ind. Electron. 2017, 64, 5045–5054. [CrossRef]

24. Cao, Y.; Yu, W.; Ren, W.; Chen, G. An overview of recent progress in the study of distributed multi-agent
coordination. IEEE Trans. Ind. Inform. 2013, 9, 427–438. [CrossRef]

25. Jiang, Y.; Zhang, H.; Chen, J. Sign-consensus of linear multi-agent systems over signed directed graphs.
IEEE Trans. Ind. Electron. 2017, 64, 5075–5083. [CrossRef]

26. Valcher, M.E.; Zorzan, I. On the consensus of homogeneous multi-agent systems with positivity constraints.
IEEE Trans. Autom. Control 2017, 62, 5096–5110. [CrossRef]

27. Garca-Magario, I.; Gutirrez, C.; Fuentes-Fernndez, R. The INGENIAS development kit: A practical
application for crisis-management. In Proceedings of the 10th International Work-Conference on Artificial
Neural Networks (IWANN 2009), Salamanca, Spain, 10–12 June 2009; Volume 5517, pp. 537–544.

28. Garca-Magario, I.; Gutirrez, C. Agent-oriented modeling and development of a system for crisis management.
Expert Syst. Appl. 2013, 40, 6580–6592. [CrossRef]

29. Zou, R.; Kalivarapu, V.; Winer, E.; Oliver, J. Particle swarm optimization-based source seeking. IEEE Trans.
Autom. Sci. Eng. 2015, 12, 865–875. [CrossRef]

30. Li, H.; Liao, X.; Huang, T. Event-triggering sampling based leader-following consensus in second-order
multi-agent systems. IEEE Trans. Autom. Control 2015, 60, 1998–2003. [CrossRef]

31. Xie, D.; Xu, S.; Zhang, B. Consensus for multi-agent systems with distributed adaptive control and an event-
triggered communication strategy. IET Control Theory Appl. 2016, 10, 1547–1555. [CrossRef]

32. Zhu, W.; Jiang, Z.P. Event-based leader-following consensus of multi-agent systems with input time delay.
IEEE Trans. Autom. Control 2015, 60, 1362–1367. [CrossRef]

199

Appl. Sci. 2018, 8, 977

33. Dimarogonas, D.V.; Johansson, K.H. Event-triggered control for multi-agent systems. In Proceedings of the
48th Decision and Control, 2009 Held Jointly with the 2009 28th Chinese Control Conference, Shanghai,
China, 15–18 December 2009; pp. 7131–7136.

34. Dimarogonas, D.V.; Frazzoli, E.; Johansson, K.H. Distributed event-triggered control for multi-agent systems.
IEEE Trans. Autom. Control 2012, 57, 1291–1297. [CrossRef]

35. Fan, Y.; Feng, G.; Wang, Y. Distributed event-triggered control of multi-agent systems with combinational
measurements. Automatica 2013, 49, 671–675. [CrossRef]

36. Zhang, H.; Feng, G.; Yan, H. Observer-Based Output Feedback Event-Triggered Control for Consensus of
Multi-Agent Systems. IEEE Trans. Ind. Electron. 2014, 61, 4885–4894. [CrossRef]

37. Lawton, J.R.T.; Beard, R.W.; Young, B.J. A decentralized approach to formation maneuvers. IEEE Trans.
Robot. Autom. 2003, 19, 933–941. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

200

applied
sciences

Article

Real-Time Swarm Search Method for Real-World
Quadcopter Drones

Ki-Baek Lee 1 , Young-Joo Kim 2 and Young-Dae Hong 3,*

1 Department Electrical Engineering, Kwangwoon University, Seoul 01897, Korea; kblee@kw.ac.kr
2 Korea Railroad Research Institute, Uiwang 437-757, Korea; osot@krri.re.kr
3 Department Electrical Engineering, Ajou University, Suwon 443-749, Korea
* Correspondence: ydhong@ajou.ac.kr; Tel.: +82-10-9555-2654

Received: 9 June 2018; Accepted: 17 July 2018; Published: 18 July 2018
��������	
�������

Featured Application: This work can be applied to the problem of autonomous search and rescue

with a swarm of the drones.

Abstract: This paper proposes a novel search method for a swarm of quadcopter drones. In the
proposed method, inspired by the phenomena of swarms in nature, drones effectively look for
the search target by investigating the evidence from the surroundings and communicating with
each other. The position update mechanism is implemented using the particle swarm optimization
algorithm as the swarm intelligence (a well-known swarm-based optimization algorithm), as well
as a dynamic model for the drones to take the real-world environment into account. In addition,
the mechanism is processed in real-time along with the movements of the drones. The effectiveness
of the proposed method was verified through repeated test simulations, including a benchmark
function optimization and air pollutant search problems. The results show that the proposed method
is highly practical, accurate, and robust.

Keywords: unmanned aerial vehicle; swarm intelligence; particle swarm optimization; search algorithm

1. Introduction

The demand for autonomous aerial vehicles, commonly called drones, has largely increased in
recent years due to their compactness and mobility, which enable them to carry out various tasks
that are economically inefficient or potentially dangerous to humans. For example, it is not easy for
humans to explore rugged mountain terrains, flooded areas, or air pollution regions without drones.
Consequently, they have been extensively employed in various search applications, such as industrial
building inspections [1,2], search and rescue operations [3–5], and post-disaster area exploration [6–8].

The search applications have one important factor in common: search efficiency. Previous research
has focused on improving the stand-alone performance of each drone, such as localization accuracy,
communication robustness, and various sensors [9]. However, it is relatively expensive to employ a
group of such high-end drones. Additionally, it takes a long time for a drone or a few drones to cover
a broad search space. Thus, previous studies have tried to decompose the search space [10] or control
a number of low-cost drones into several formation patterns [11,12].

Despite the previous research successfully demonstrating the feasibility of search-by-drones,
there is still room for improvement. Most of all, considering time and cost, it is not the best strategy to
thoroughly scan every available location in the search space. In other words, it is more effective for
drones to conduct a brief survey first and successively progress to better locations by investigating the
evidence of the surroundings and communicating with each other. We can easily find examples of
this kind of strategy from nature, such as ants, bees, fish, birds, and so on. They show cooperative

Appl. Sci. 2018, 8, 1169; doi:10.3390/app8071169 www.mdpi.com/journal/applsci201

Appl. Sci. 2018, 8, 1169

and intelligent behaviors to achieve complex goals, which is called swarm intelligence [13–16]. In fact,
in the area of multi-robot path planning in 2-D space, there have been several studies of approaches
based on swarm intelligence [17,18]. However, there is a crucial difference between mobile robots
in 2-D space and drones in 3-D space. Whereas mobile robots can stand stably without any posture
control and only need to be controlled by position feedback, the postures and positions of drones
should be carefully controlled based on a certain dynamic model in order to hover stably.

Therefore, in this paper, a novel swarm search method for quadcopter drones is proposed by
integrating the position update rule of the swarm intelligence algorithm and the motion controller
using a dynamic model of the drones. In the proposed method, a swarm of more than 10 drones was
employed for a search mission. The swarm was controlled by a position update mechanism which
included the swarm intelligence inspired from a well-known swarm-based optimization algorithm.
In addition, a dynamic model for the drones was applied to the mechanism since real-world drones,
in contrast to the individuals in the optimization algorithm, have physical limitations such as maximum
speed and maximum acceleration. Moreover, the overall mechanism was processed in real-time along
with the movements of the drones.

To verify the effectiveness of the proposed method, the overall procedure was implemented as
a simulation and repeatedly tested. As the test problems, Rosenbrock function optimization and air
pollutant search problems were employed. The Rosenbrock function is a well-known benchmark
function for numerical optimization. The air pollutant search problem was designed by modeling
atmospheric dispersion though a Gaussian air pollutant dispersion equation. Additionally, the results
of the proposed method were compared to those of a conventional grid search method.

This paper is organized as follows. Section 2 explains the proposed methodology in detail.
In Section 3, the experimental results are demonstrated. Finally, Section 4 presents conclusions.

2. The Proposed Swarm Search Method

The main contribution of this paper is that a novel drone position update mechanism for the
swarm search was designed to be specific enough to consider real-time control and the real-world
environment. There are two important issues in the mechanism: the swarm intelligence and the
dynamic model of the drones. The swarm intelligence calculates the next destinations of the drones at
each iteration based on the particle swarm optimization algorithm, and the dynamic model determines
how the drones approach the next destination based on the real-world environment. Note that,
for simplicity, it is assumed that the drones are fully sharing their information, are able to predict
the collisions between them, and can stop before the collision on their own. In other words, in the
mechanism, the position commands of two or more drones can be the same at the same control period.

In this section, the drone position update mechanism is explained in detail, and then the entire
search process is described step-by-step.

2.1. The Drone Position Update Mechanism

2.1.1. The Swarm Intelligence for the Mechanism

At each iteration of the proposed method, the update mechanism should calculate the next
positions of the drones by obtaining the information of the current positions and sharing them
with each other (i.e., swarm intelligence). To implement the swarm intelligence, as a backbone,
a particle swarm optimization (PSO) scheme is employed [19,20]. In the PSO scheme, each drone
decides where to go by combining the information of its previous displacement, the personal best
position it has ever experienced, and the global best position the entire swarm has ever found. If we
denote the displacement, the personal best position, and the global best position at iteration t as vt, pxt,
and gxt, respectively, then the next displacement of a drone is determined as:

vt+1 = w · vt + c · [φ1(
pxt − xt) + φ2(

gxt − xt)], (1)

202

Appl. Sci. 2018, 8, 1169

where w = 0.7 and c = 0.6 are constants and φ1 and φ2 are random real values uniformly distributed in
[0, 1]. Note that the random values are newly generated at each iteration for each particle. Obviously,
the next destination x∗t+1 is calculated as:

x∗t+1 = xt + vt+1. (2)

However, drones in the real world cannot teleport to their destinations. Instead, they gradually
approach their destinations following control commands based on their dynamic model. Therefore,
the next position xn+1 at the (n + 1)-th control period is determined as:

xt,n+1 = xt,n + ṽ(x∗t+1), (3)

where ṽ represents the control output according to the input. This control loop is repeated until
xt,n = x∗t+1, and then t increases by 1.

2.1.2. The Dynamic Model of the Drones for the Mechanism

The update mechanism should reflect the way in which the drones approach the next destination
based on the real-world environment (i.e., the dynamic model). To establish the dynamic model, first,
the kinematic model of a drone is necessary, as shown in Figure 1.

radius r
mass M

length lmass m
F1

F2

F3

F4

roll ϕ

pitch θ

yaw ψ

Figure 1. The physical model of a quadcopter drone.

From this kinematic model, the rotation matrix R for mapping the vector from the body frame to
the inertial frame can be derived as

R =

⎡⎢⎣ cφcψ − cθsφsψ −cψsφ − cφcθsψ sθsψ

cθcψsφ + cφsψ cφcθcψ − sφsψ −cψsθ

sφsθ cφsθ cθ

⎤⎥⎦ , (4)

where cφ and sφ represent cos(φ) and sin(φ), respectively. Then, from Newton’s equation, the linear
motion can be derived as

mẍ =

⎡⎢⎣ 0
0

−mg

⎤⎥⎦+ RTB + FD, (5)

where x is the position of the drone, g is the acceleration due to gravity, FD is the drag force, and TB is
the thrust vector in the body frame. For simplicity, in this paper, the drag force is regarded as 0, and TB
is calculated based on [21]. Additionally, from Euler’s equation, the angular motion can be derived as

Iẇ = τ − w × (Iw), (6)

203

Appl. Sci. 2018, 8, 1169

where w is the angular velocity vector, I is the inertia matrix, and τ is a vector of external torques.
In this paper, I and τ are calculated based on [22,23]. Finally, based on these motion equations, the final
state space equations for the dynamic model can be derived as

ẋ1 = x2,

ẋ2 =

⎡⎢⎣ 0
0
−g

⎤⎥⎦+
RTB
m

+
FD
m

,

ẋ3 =

⎡⎢⎣ 1 0 −sθ

0 cφ cθsφ

0 −sφ cθcφ

⎤⎥⎦
−1

· x4,

ẋ4 = I−1 · [τ − x3 × (Ix3)],

(7)

where x1 is the velocity vector, x2 is the acceleration vector, x3 is the angular velocity vector, and x4 is
the angular acceleration vector. The model parameters used in this paper are listed in Table 1.

Table 1. Model parameters.

Parameters Values

Environment Gravity acceleration g 9.81
Draft coefficient b 0.02

Kinematic model

M 1.2
m 0.1
l 0.3
r 0.1

Controller

Linear proportional (P) gain [300, 300, 7000]
Linear integral (I) gain [0.04, 0.04, 4.50]

Linear derivative (D) gain [450, 450, 5000]
Angular P gain [22,000, 22,000, 1500]
Angular I gain [0.00, 0.00, 1.20]
Angular D gain [12,000, 12,000, 0.00]

As shown in Figure 2, the control system of the drone can be designed based on a well-known
proportional-integral-derivative (PID) control scheme [24]. Note that the control system is not for
the low-level motor actuation control, but for the high-level control of the commands transmitted to
each drone. In addition, in simulation, the sensor system and the environment can be replaced by the
dynamic model derived above.

Linear
PID+

xt+1 + vn+1 Scaling
Matrix

θn+1 ++ Angular
PID

Actuator

θn+1

Environ-
mentSensors

xn θn

- -

* ~ *

~

θn+1

Figure 2. The control system of a quadcopter drone.

First, the position error at the n-th control period is calculated. Then, the linear PID system
yields the desired displacement ṽn+1, and the next destination posture θ∗n+1 can be calculated by
multiplying a scaling matrix, since it is assumed that the drone is in a piecewise hovering state.
Lastly, the angular PID system yields the posture displacement vector θ̃n+1, and the actuation system
executes the corresponding throttle commands for the motors. As a result, the drone can gradually
approach the next destination x∗t+1.

204

Appl. Sci. 2018, 8, 1169

Algorithm 1 Swarm search.

S: The search space of the problem
S: The swarm of the drones
ND: The number of drones in S

dk: The k-th drone
xk

t : The position of dk at iteration t
vk

t : The displacement of dk at iteration t
f (xk

t): The objective function value of xk
t

gxt: The global best position of S at iteration t
pxk

t : The personal best position of dk at iteration t
xk

t,n: The position of dk in the n-th control period at iteration t
c: The command output of the controller

(1) Initialize S.
for k = 1, 2, . . . , ND do

xk
0 = random vector ∈ S

vk
0 = 0

Evaluate f (xk
0)

pxk
0 = xk

0
Deploy dk at xk

0
if f (pxk

0) is better than f (gx0) then
gx0 = pxk

0
end if

end for

t = 0

(2) Update S.
for k = 1, 2, . . . , ND do

vk
t+1 = w · vk

t + c · [φ1(
pxk

t − xk
t) + φ2(

gxt − xk
t)]

x∗k
t+1 = xk

t + vk
t+1

xk
t,0 = xk

t
n = 0
while xk

t,n �= x∗k
t+1 or a collision is not predicted do

c = Controller(xk
t,n, x∗k

t+1)
Actuate dk with c

(n = n + 1)
Evaluate f(xk

t,n)

if f (xk
t,n) is better than f (pxk

t) then
pxk

t = xk
t,n

end if

end while

if f (pxk
t) is better than f (gxt) then

gxt = pxk
t

end if

end for

(t = t + 1)

(3) Repeat (2) until a termination condition is met.

205

Appl. Sci. 2018, 8, 1169

2.2. The Overall Procedure of the Swarm Search

The overall procedure of the proposed swarm search is summarized in Algorithm 1, and each
step of the algorithm is explained in the following.

First, the swarm of the drones is initialized. For each drone in the swarm, the position is randomly
initialized in the search space S, and the displacement is initially set to a zero vector. The objective
functions are initially calculated for each drone, and the initial personal best position of each drone pxk

0
is set as the position of itself. Additionally, the initial global best position of the swarm gx0 is set as px1

0.
Following this, the swarm of the drones is updated. For each drone in the swarm, the position

is updated through the drone position update mechanism, as explained above. During the update
process, the personal best positions and the global best position are also updated, and this update
process is repeated until a termination condition is met. For example, a termination condition can be
defined as a maximum number of iterations.

3. Experiment

In the experiment, first, the proposed swarm search method and, as a comparison,
the conventional grid search method were implemented. Then, for each test problem, the objective
function was designed and applied to both methods. Lastly, 100 simulations were run for each problem
and method. Note that in the conventional method, it was assumed that the drones maintained a
parallel formation and scanned every location of the search space unidirectionally along the axis in
the order of x-, y-, and then z-axes. In addition, in the conventional method, since its position update
process is independent of the objective function of the problem, the drones began the search mission at
one corner of the search space and the goal was randomly set at each trial. To balance the different
conditions of the two methods, in the comparison, one iteration for a drone was defined as one change
of the searching direction instead of one visit to a point. Thus, for example, visiting all the grid points
from (−50, 0, 0) to (50, 0, 0) along the x-axis direction was regarded as one iteration in the conventional
method.

In this section, the detailed information about the environment settings is demonstrated, and then
the experimental results and their analysis are provided.

3.1. Environment Settings

The proposed method was implemented as a software written in Python (Python software
foundation, version 3.5.2) language with Numpy and Matplotlib libraries. The software was run on
Linux OS (version 16.04) with Intel i7-6900K CPU, 128 GB DDR4 RAM, and NVIDIA Titan X Pascal
GPU. The source code of the simulation engine was based on [25]. The update period of the drone
dynamics was set to 0.01 s and the control period was set to 0.015 s.

The search mission based on the Rosenbrock function was adopted as Test Problem 1. In this
problem, the drones obtained the sensor data at their positions virtually according to the mathematical
model which was based on the Rosenbrock function, and the final goal was the position at which the
function value was globally minimum. The Rosenbrock function is a well-known benchmark function
for numerical optimization because it is hard to find the global minimum in its search space [26,27].
The following is the equation of the sensor data model:

f (x) =
N−1

∑
i=1

[100(
xi+1

25
− xi

2

252)
2 + (1 − xi

25
)2], (8)

where x = [x1, ..., xN] ∈ [−50.00, 50.00). In this problem, N was set to 3 since the real world is
three-dimensional, and the number of drones was set to 25. The corresponding global minimum could
be found at the position of (25.00, 25.00, 25.00).

For Test Problem 2, an air pollutant search problem was employed. The mission of this problem
was to find the origin of the air pollutant at which the pollution concentration was globally maximum.

206

Appl. Sci. 2018, 8, 1169

The air pollutant search problem was designed by modeling atmospheric dispersion through a
Gaussian air pollutant dispersion equation [28,29]. Figure 3 shows the visualization of the Gaussian
air pollutant dispersion on x- and z-axes, which was originally from [30].

Wind speed

X

Z

h
H

Virtual
point

source

Time-averaged
plume boundary

Time-averaged
plume centerline

Stack

h

z
C

Figure 3. The visualization of the Gaussian air pollutant dispersion on x- and z-axes.

The Gaussian air pollutant dispersion equation can be written as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(x, y, z) =
Q
u
· f

σy(x)
√

2π
· g1 + g2

σz(x)
√

2π

=
Q

2π · σy(x) · σz(x) · u
· e

− y2

2σy(x)2 · [e−
(z−H)2

2σz(x)2 + e
− (z+H)2

2σz(x)2], if x ≥ 0,

C(x, y, z) = 0, otherwise,

(9)

where:

x, y ∈ [−50.00, 50.00), z ∈ [0.00, 50.00)

f = crosswind dispersion = e
− y2

2σ2
y

g1 = vertical dispersion with no reflections = e
− (z−H)2

2σ2
z

g2 = vertical dispersion for reflection from the ground = e
− (z+H)2

2σ2
z

C = concentration of emissions, in g/m3

Q = source pollutant emission rate, in g/s

u = horizontal wind velocity along the plume centerline, in m/s

H = height of emission plume centerline above ground level, in m

σz = vertical standard deviation of the emission distribution, in m

σy = horizontal standard deviation of the emission distribution, in m.

From [29], σy(x) and σz(x) can be determined as:

σy(x) = e[Iy+Jy ·log(x+ε)+Ky ·log(x+ε)2],

σz(x) = e[Iz+Jz ·log(x+ε)+Kz ·log(x+ε)2],
(10)

where ε was set to 10−10 in this problem.
In this problem, the number of drones was set to 15. In addition, Q, u, and H were set to 10, 3,

and 10, respectively. It was assumed that the atmosphere was in a neutral state, and, according to the

207

Appl. Sci. 2018, 8, 1169

classification of stability class proposed in [31,32], Iy, Jy, Ky, Iz, Jz, and Kz were set to −2.55, 1.04, −0.01,
−3.19, 1.11, and −0.03, respectively. Based on these settings, the corresponding global maximum could
be found at the position of (0.00, 0.00, 10.00).

3.2. Experimental Results

The results demonstrate the effectiveness of the proposed method through the following figures
describing the trajectories of the drones with the proposed method, as well as the tables representing
the statistical comparisons between the proposed and conventional methods.

Figure 4 shows the simulation of Test Problem 1 through the proposed method at iterations 1,
10, 50, and 1500. As shown in the figure, the drones successfully found the target position at which
the Rosenbrock function had the minimum value within 150 iterations. Note that the drones were
unaware of the function as well as its derivatives.

(a) At iteration 1 (b) At iteration 10

(c) At iteration 50 (d) At iteration 150

Figure 4. Screenshots of the simulation of Test Problem 1 by the proposed method.

Figure 5 shows the simulation of Test Problem 2 through the proposed method at iterations 1,
10, 20, and 30. As shown in the figure, the drones successfully found the target position at which
the pollutant was being emitting within 30 iterations. Note that the drones had no knowledge of the
dispersion model, and could simply measure the air pollution concentrations at their positions.

208

Appl. Sci. 2018, 8, 1169

(a) At iteration 1 (b) At iteration 10

(c) At iteration 20 (d) At iteration 30

Figure 5. Screenshots of the simulation of Test Problem 2 by the proposed method.

The full simulation videos for Test Problems 1 and 2 are provided through the YouTube links
“https://youtu.be/fIUmsO5B4CA” and “https://youtu.be/cdlCZQeN-Bo”, respectively. The videos
show that the drones could find the global minimum or maximum under non-convex or near
non-convex environments. The videos also show that the drones could be controlled stably in real-time,
and the dynamic model was well-applied considering the real-world environment.

Moreover, Table 2 shows the averages (AVGs) and standard deviations (STDs) of the number
of iterations n for the proposed and conventional methods to satisfy the corresponding termination
condition (TC) about error distance derr. Since the search space was based on a real-world environment,
the unit of distance was meters. If we consider the size of commonly-used drones (approximately
1.0 m), the minimum grid size for the conventional grid search should be greater than 1.0 m. Based on
this condition, we can approve that the drone is close enough to the goal if derr is less than 2.0, which is
double the minimum grid size. Additionally, the AVGs and STDs of the final derr for the proposed and
conventional methods with the limited number of iterations nlimit are shown in Table 3. Smaller values
of both n and derr are desirable, where n and derr imply the speed and the accuracy of the methods,
respectively. As displayed in the tables, the proposed method could find the target more quickly and
more accurately and robustly than the conventional method. Note that the proposed method showed
a more powerful result in the real-world problem (e.g., Test Problem 2) than the virtual problem
(e.g., Test Problem 1).

209

Appl. Sci. 2018, 8, 1169

Table 2. The averages (AVGs) and standard deviations (STDs) of the number of iterations n for the
methods to satisfy the termination condition (TC).

Problem
Proposed Conventional TC

AVG(n) STD(n) AVG(n) STD(n)

1 141.72 37.73 409.68 244.95 derr < 2.0
2 27.41 7.62 366.66 211.01 derr < 2.0

Table 3. The AVGs and STDs of the error distance (derr) for the methods with the limited number of
iterations (nlimit).

Problem
Proposed Conventional nlimit

AVG(derr) STD(derr) AVG(derr) STD(derr)

1 0.88 0.56 58.79 51.82 200
2 0.04 0.05 64.14 39.10 50

4. Conclusions

In this paper, a novel search method for a swarm of quadcopter drones was proposed. In the
proposed method, inspired by the phenomena of swarms in nature, drones could effectively look for
better locations by investigating the evidence from the surroundings and communicating with each
other. The position update mechanism was implemented based on the particle swarm optimization
algorithm (a well-known swarm-based optimization algorithm), as well as the dynamic model of the
drones, which was used to take the real-world environment into account. In addition, the mechanism
could be processed in real-time along with the movements of the drones. The experimental results
showed that through the proposed method, the drones could find the target more quickly and
accurately than by the conventional algorithm. Most importantly, the proposed method has high
practical potential, considering that the drones were simulated in real-time and the dynamic model
sufficiently reflected the real-world environment.

Author Contributions: K.-B.L. conceived and designed the methodology and experiments; K.-B.L. performed
the experiments; Y.-D.H. analyzed the data; K.-B.L. wrote the paper; Y.-J.K. and Y.-D.H. reviewed and edited
the paper.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the “Research Grant of Kwangwoon University” in 2017 and
“Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and
Planning (KETEP), granted financial resource from the Ministry of Trade, Industry&Energy, Republic of Korea
(No. 20174010201620).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cacace, J.; Finzi, A.; Lippiello, V.; Loianno, G.; Sanzone, D. Aerial service vehicles for industrial inspection:
task decomposition and plan execution. Appl. Intell. 2015, 42, 49–62. [CrossRef]

2. Lippiello, V.; Siciliano, B. Wall inspection control of a VTOL unmanned aerial vehicle based on a stereo
optical flow. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Vilamoura, Portugal, 7–12 October 2012; pp. 4296–4302.

3. Bevacqua, G.; Cacace, J.; Finzi, A.; Lippiello, V. Mixed-Initiative Planning and Execution for Multiple Drones
in Search and Rescue Missions. In Proceedings of the Twenty-Fifth International Conference on Automated
Planning and Scheduling, ICAPS, Jerusalem, Israel, 7–11 June 2015; pp. 315–323.

210

Appl. Sci. 2018, 8, 1169

4. Cacace, J.; Finzi, A.; Lippiello, V.; Furci, M.; Mimmo, N.; Marconi, L. A control architecture for multiple drones
operated via multimodal interaction in search & rescue mission. In Proceedings of the IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), Lausanne, Switzerland, 23–27 October 2016;
pp. 233–239.

5. Cacace, J.; Finzi, A.; Lippiello, V. Multimodal interaction with multiple co-located drones in search and
rescue missions. arXiv 2016, arXiv:1605.07316.

6. Cui, J.Q.; Phang, S.K.; Ang, K.Z.; Wang, F.; Dong, X.; Ke, Y.; Lai, S.; Li, K.; Li, X.; Lin, F.; et al. Drones for
cooperative search and rescue in post-disaster situation. In Proceedings of the IEEE 7th International
Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and
Mechatronics (RAM), Angkor Wat, Cambodia, 15–17 July 2015; pp. 167–174.

7. Rivera, A.; Villalobos, A.; Monje, J.; Mariñas, J.; Oppus, C. Post-disaster rescue facility: Human detection and
geolocation using aerial drones. In Proceedings of the IEEE Region 10 Conference (TENCON), Singapore,
22–25 November 2016; pp. 384–386.

8. Cui, J.Q.; Phang, S.K.; Ang, K.Z.; Wang, F.; Dong, X.; Ke, Y.; Lai, S.; Li, K.; Li, X.; Lin, J.; et al. Search and
rescue using multiple drones in post-disaster situation. Unmanned Syst. 2016, 4, 83–96. [CrossRef]

9. Bekhti, M.; Achir, N.; Boussetta, K. Swarm of Networked Drones for Video Detection of Intrusions.
In Proceedings of the International Wireless Internet Conference, Tianjin, China, 16–17 December 2017;
pp. 221–231.

10. Šulák, V.; Kotuliak, I.; Čičák, P. Search using a swarm of unmanned aerial vehicles. In Proceedings of the 15th
International Conference on Emerging eLearning Technologies and Applications (ICETA), Stary Smokovec,
Slovakia, 26–27 October 2017; pp. 1–6.

11. Gaynor, P.; Coore, D. Towards distributed wilderness search using a reliable distributed storage device
built from a swarm of miniature UAVs. In Proceedings of the IEEE International Conference on Unmanned
Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014; pp. 596–601.

12. Altshuler, Y.; Pentland, A.; Bruckstein, A.M. Swarms and Network Intelligence in Search; Springer: Berlin,
Germany, 2018.

13. Leavitt, H.J. Some effects of certain communication patterns on group performance. J. Abnorm. Soc. Psychol.
1951, 46, 38. [CrossRef]

14. Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory; Prentice-Hall, Inc.:
Englewood Cliffs, NJ, USA, 1986.

15. Kennedy, J. The particle swarm: social adaptation of knowledge. In Proceedings of the IEEE International
Congress on Evolutionary Computation, Indianapolis, IN, USA, 13–16 April 1997; pp. 303–308.

16. Eberhart, R.C.; Shi, Y.; Kennedy, J. Swarm Intelligence; Elsevier: New York, NY, USA, 2001.
17. Pugh, J.; Martinoli, A. Inspiring and modeling multi-robot search with particle swarm optimization.

In Proceedings of the IEEE Swarm Intelligence Symposium, Honolulu, HI, USA, 1–5 April 2007; pp. 332–339.
18. Couceiro, M.S.; Rocha, R.P.; Ferreira, N.M. A novel multi-robot exploration approach based on particle

swarm optimization algorithms. In Proceedings of the IEEE International Symposium on Safety, Security,
and Rescue Robotics (SSRR), Kyoto, Japan, 1–5 November 2011; pp. 327–332.

19. Kennedy, J. Particle swarm optimization. In Encyclopedia of Machine Learning; Springer: Berlin, Germany,
2011; pp. 760–766.

20. Du, K.L.; Swamy, M. Particle swarm optimization. In Search and Optimization by Metaheuristics; Springer:
Berlin, Germany, 2016; pp. 153–173.

21. Staples, G. Propeller Static & Dynamic Thrust Calculation. 2013. Available online: https://www.
electricrcaircraftguy.com/2013/09/propeller-static-dynamic-thrust-equation.html (accessed on 13 April 2014).

22. Beard, R. Quadrotor Dynamics and Control Rev 0.1; All Faculty Publications; Brigham Young University:
Provo, UT, USA, 2008.

23. Khan, M. Quadcopter flight dynamics. Int. J. Sci. Technol. Res. 2014, 3, 130–135.
24. Praveen, V.; Pillai, S. A Modeling and simulation of quadcopter using PID controller. Int. J. Control

Theory Appl. 2016, 9, 7151–7158.
25. Majumdar, A. Quadcopter Simulator. 2017. Available online: https://github.com/abhijitmajumdar/

Quadcopter_simulatorl (accessed on 19 February 2018).
26. Rosenbrock, H. An automatic method for finding the greatest or least value of a function. Comput. J. 1960,

3, 175–184. [CrossRef]

211

Appl. Sci. 2018, 8, 1169

27. Shi, Y.; Eberhart, R.C. Empirical study of particle swarm optimization. In Proceedings of the IEEE
International Congress on Evolutionary Computation, Washington, DC, USA, 6–9 July 1999; Volume 3,
pp. 1945–1950.

28. Juan, S.; Jiong, S.; Bao, Q.; Yusen, D.; Qiang, W. An Industrid air pollution dispersion system based on Gauss
dispersion model. Environ. Pollut. Control 2005, 7, 11.

29. Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley
& Sons: Hoboken, NJ, USA, 2016.

30. Abdel-Rahman, A.A. On the atmospheric dispersion and Gaussian plume model. In Proceedings of the
2nd International Conference on Waste Management, Water Pollution, Air Pollution, Indoor Climate, Corfu,
Greece, 26–28 October 2008; pp. 31–39.

31. Pasquill, F. Atmospheric dispersion of pollution. Q. J. R. Meteorol. Soc. 1971, 97, 369–395. [CrossRef]
32. Hanna, S.R.; Briggs, G.A.; Hosker, R.P., Jr. Handbook on Atmospheric Diffusion; Technical Report;

National Oceanic and Atmospheric Administration: Oak Ridge, TN, USA; Atmospheric Turbulence and
Diffusion Lab.: Oak Ridge, TN, USA, 1982.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

212

applied
sciences

Article

Multi-AUV Cooperative Target Hunting
Based on Improved Potential Field in
a Surface-Water Environment

Hengqing Ge 1, Guibin Chen 1 and Guang Xu 2,*

1 School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian 223001, China;
ghq@hytc.edu.cn (H.G.); gbchen@hytc.edu.cn (G.C.)

2 Western Australian School of Mines, Curtin University, Kalgoorlie 6430, Australia
* Correspondence: guang.xu@curtin.edu.au; Tel.: +61-890-886-113

Received: 7 May 2018; Accepted: 31 May 2018; Published: 14 June 2018

Abstract: In this paper, target hunting aims to detect target and surround the detected target in
a surface-water using Multiple Autonomous Underwater Vehicles (multi-AUV) in a given area.
The main challenge in multi-AUV target hunting is the design of AUV’s motion path and coordination
mechanism. To conduct the cooperative target hunting by multi-AUV in a surface-water environment,
an integrated algorithm based on improved potential field (IPF) is proposed. First, a potential
field function is established according to the information of the surface-water environment.
Then, the dispersion degree, the homodromous degree, and district-difference degree are introduced to
increase the cooperation of the multi-AUV system. Finally, the target hunting is solved by embedding
the three kinds of degree into the potential field function. The simulation results show that the proposed
approach is applicable and feasible for multi-AUV cooperative target hunting.

Keywords: cooperative target hunting; multi-AUV; improved potential field; surface-water environment

1. Introduction

To conduct the cooperative target hunting by multi-AUV in an underwater environment, the AUVs
not only need to take into account basic problems (such as searching, path planning) but also need to
cooperate in order to catch the targets efficiently [1]. The target hunting by multi-AUV has attracted
much attention due to its complexity and significance [2,3]. Today, much research has been done
on the multi-AUV hunting issue, and there are some approaches proposed that apply to this issue.
Zhang et al. [4] presented a hunting approach derived from the virtual structure. The advantage of
the virtual structure approach is that the formation can be maintained very well while maneuvering.
Rezaee et al. [5] considered formation control of a team of mobile robots based on the virtual structure.
The main advantage of this approach is that it is fairly easy to prescribe the coordinated behavior for
the whole formation group and add a type of robustness to formation by using formation feedback.

However, the disadvantage of the virtual structure is that requiring the formation to act as a rigid
virtual structure limits the class of potential applications.

Recently, some research has dealt the hunting process with simple obstacles. Yamaguchi [6]
proposed a method based on making troop formations for enclosing the target and presented a smooth
time-varying feedback control law for coordinating motions for multi-robots. Pan [7] has applied
the improved reinforcement algorithm in the multi-robot hunting problem. However, in these studies,
the hunting target is usually static.

For the shortcomings mentioned above, Ma [8] proposed a cooperative hunting strategy with
dynamic alliance to chase moving target. This method can shorten the completion time to some extent.
Wang [9] proposed a new hunting method with new definition concepts of occupy, overlapping angle

Appl. Sci. 2018, 8, 973; doi:10.3390/app8060973 www.mdpi.com/journal/applsci213

Appl. Sci. 2018, 8, 973

and finally calculated an optimized path for hunting multi-robots, but the environment is too open,
and the initial location of hunting robots is too close to a moving target.

Some work has been reported to adapt the leader-following algorithm to achieve target hunting.
For example, Ni et al. [10] presented a bio-inspired neural network model with formation strategy
to complete the hunting task. Liang et al. [11] proposed a leader-following formation control
method for mobile robots with a directed tree topology. Qin et al. [12] have used leader-following
formation algorithm to guide multi-agent cooperation for hunting task. These algorithms are easy to
understand and implement, since the coordinated team members only need to maneuver according
to the leader. However, the leader-following algorithm is no explicit feedback from the followers to
leader, and the failure of the leader leads to the failure of the whole formation team.

There are many neural network approaches proposed for target hunting. For examples,
Garcia et al. [13] proposed a simple ant colony optimization meta-heuristic (SACOdm) algorithm to solve
the path planning problem of autonomous mobile robots. The SACOdm methods determine the robots’
path based on the distance from the source to the target nodes, where the ants remember the visited
nodes. Zhu et al. [14] proposed a hunting algorithm based on a bioinspired neural network. The hunting
AUVs’ paths are guided through the bio-inspired neural network and the results show that it can achieve
the desired hunting result efficiency. Sheng [15] has proposed a method based on diffusion adaptation
with network to research intelligent predators hunting for fish schools. Although neural networks can
complete the hunting task, they often need to perform large amount of calculation, incurring prohibitive
computational cost. Therefore, the neural network algorithm is not suitable for real-time system.

Potential field algorithms were proposed for real-time target hunting and became the most widely
studied distributed control methods [16]. In the potential field methods, it is assumed that the robots
combine attraction with the goal, and repulsion from obstacles [17,18]. Artificial potential field (APF)
algorithms were proposed for real-time path planning for robots to solve obstacle avoidance problem
and became the most widely studied distributed control methods [16–18]. In the APF methods, it is
assumed that the robots combine attraction with the goal and repulsion from obstacles. Much work has
been reported to adapt the APF algorithm to controlling swarm robots. Rasekhipour et al. [19] introduces
a model predictive path-planning controller to potential functions along with the vehicle dynamics terms.
Ge et al. [20] proposed formation tracking control based on potential field. However, the potential field
algorithm is known for getting trapped easily in a local minimum.

This paper focuses on situation which the targets are intelligent and their motions are unpredicted
and irregular. The multi-AUV hunting algorithm based on the improved potential field (IPF) is
presented. The hunting AUVs’ paths are guided through potential field function, and the three degrees
(the dispersion degree, the homodromous degree, and district-difference degree) are used to solve
the target search and capture of AUVs in the whole hunting process. The proposed algorithm can
overcome local minimum problem. The simulation results show that the hunting efficiency can be
as desired.

The rest paper is organized as follows. The proposed improved potential field based integrated
hunting algorithm is presented in Section 2. The simulations for various situations are given in
Section 3. Finally, the conclusion is given in Section 4.

2. The Improved Potential Field Approach

The potential field approach is a commonly used method for AUV path planning in a surface-water
environment. However, the potential field approach is not cooperative when it is applied to target
hunting. In this section, applying the cooperation method into potential field is a novel idea for
multi-AUV cooperation target hunting. The flow of the target hunting task is shown in Figure 1. In this
approach, when one AUV detects the targets, the multi-AUV system will calculate the distance between
the each AUV and the target and request the proper AUVs to accomplish the hunting tasks. At the same
time, the three degrees (the dispersion degree, the homodromous degree, and district-difference degree)
are introduced to increase the collaboration of multi-robot system.

214

Appl. Sci. 2018, 8, 973

Figure 1. The flowchart for target hunting by Multiple Autonomous Underwater Vehicles (multi-AUV).

In the scheme, the whole potential value U of AUV Ri can be defined as

U = ωαUα + ωγUγ (1)

where Uα denotes the attractive potential value, Uγ represents the repellent potential value, and ωα

and ωγ are weights in the distance potential. In static environments, ωα can be set within a limited
range, while in dynamic environments, a linear increasing value of ωα is applied.

The attractive potential Uα at position XRi of AUV Ri is defined as [21]

Uα =

⎧⎨⎩ 1
2 kα1

Nu/(Nu+Nα)
(A−Aα)/A d0, i f Ri continues exploring,

1
2 kα2|XRi − XTl |2, i f Ri moves to targets.

(2)

where kα1 and kα2 are the position gain coefficients, XTl is the position of target Tl, l = 1, . . . , N, d0

denotes the shortest distance from the AUV to the explored area, and the item |XRi − XTl | is the relative
distance between the AUV Ri and target Tl . The number of the detected targets is Nα while Nu is
undetected targets number. The variable A denotes the area of the environment, while Aα represents
the already explored area.

215

Appl. Sci. 2018, 8, 973

Because there are obstacles in the environment, the AUVs need to plan the collision-free paths to
complete the task. In this case, the repulsive potential Uγ is given by [22]

Uγ =

⎧⎪⎨⎪⎩
ωγD

1
HD

+ ωγH
1

HH
+ ωγDD

1
HDD

, i f Ri continues exploring,
0, i f Ri moves to targets,

1
2 η
(

1
d − 1

d1

)
|XRi − XTl |2, i f Ri detects obstacles.

(3)

where ωγD, ωγH and ωγDD are the density weights; and HD, HH and HDD are the dispersion degree,
homodromous degree and district-difference degree respectively. d is the nearest distance between
the AUV and the detected obstacles. d1 is the influence scope of obstacles. η is a position gain coefficient.
The relative distance |XRi − XTl | between the AUV and target is added to the function, which ensures
that the global minimum is only at the target in the entire potential field.

Dispersion degree HD evaluates how close the robots are to each other by distance. If there are
m AUVs in a M × N area, the parameter HD is calculated by a Gaussian function as [23]

HD = e−
(δ−μ)2

2σ2 (4)

where δ, μ and σ are calculated by [24]

δ =
D√

M2 + N2
(5)

μ =
1
t ∑t

k=1 δk (6)

σ =
1
2
[max(δk)− min(δk)] (7)

D =
∑m

j=1 ∑m
f=j+1 D(j, f)

C2
m

=
2

m(m − 1) ∑m
j=1 ∑m

f=j+1 D(j, f) (8)

where D is the real-time average distance between the AUVs; and D(i, f) is the distance between AUV
Rj and R f .

Homodromous degree HH evaluates how close the AUVs are to others by direction. If there are
m AUVs and the AUV directions are {θ1, θ1, . . . , θm0}, where 0◦ ≤ θ ≤ 360◦. The parameter HH is
calculated by [25]

HH =

2
m(m−1) ∑m

j=1 ∑m
f=j+1 abs

(
θj, θ f

)
m0

(9)

where m0 is the number of possible moving directions of the AUV. In this study, each possible direction
area is regarded as a bound area of 45◦ angle. Therefore, there are eight possible direction areas in
the simulations. The function abs() is absolute value function.

The district-difference degree is used to judge whether all the AUVs stay in the same area.
Especially when both Nu and Au are large, the district-difference degree is applied to provide a proper
repulsive potential value to keep the AUVs from gathering. In the actual search task, the environment
is usually divided into different parts based on the number of targets and search resources. If both
the percentages of undetected targets (denoted as Nu/N) and unexplored area (denoted as Au/A)
are high, the district-difference degree can help the AUVs to explore separately rather than gather
too close to each other. In other words, the density of the robots in a small part of the environment is
supposed to be low under this situation. For the calculation, the environment is divided into Nd parts

216

Appl. Sci. 2018, 8, 973

A1, A2, . . . , ANd, where Nd is a square number and Nd < N. The value of district-difference degree
can be obtained by [26,27]

HDD =
ωD1

Au
A + ωD2

Nu
N + ωD3 ∑m

i=1 P(Ri, k)
m

(10)

where ωD1, ωD2 and ωD3 are weights; P(Ri, k) is the function to judge whether the AUV Ri is in
the k-th part of the environment, which can be obtained by [26,27]

P(Ri, k) =

{
1, i f in the part

0, otherwise
(11)

3. Simulation Studies

To demonstrate the effectiveness of the proposed approach for cooperative hunting by multi-AUV
in surface-water environment, a simulation is conducted in MATLAB R2016a (The MathWorks, Inc.,
MA 01760-2098 UNITED STATES). In order to easy realization, the assumptions are as follows.
(1) The turning radius of the AUV is ignorable in surface-water environment, thus the AUV is assumed
to be able to move omni-directionally. (2) AUV is assumed to be able to recognize each other and
identify their targets by the sonar. (3) The AUV velocity is set at a value more than the target velocity.
(4) AUVs are capable of communicating with each other.

In this simulation, there are six AUVs, two targets, and several static obstacles of different size
and shape. The area of the environment is 120 × 120 (m2). AUVs and targets are allowed to move
within the given space. Among them, targets move at random, and AUVs move at the proposed algorithm.
When one target moves into any AUV’s sensing range, this target is regarded as being found. Figure 2 shows
the conditions where the target is successfully surrounded by hunting AUVs. When all targets have been
surrounded by at least four AUVs, the targets are regarded as being caught, and the hunting task ends.

Figure 2. Target is hunted by AUVs.

3.1. One Target

The first simulation is conducted to test the cooperative hunting process without obstacles. It is
assumed that there are four hunting AUVs with only one target. Figure 3a shows the initial locations
and stage of hunting condition. At the beginning of the hunting task, AUVs search for targets in
different directions based on the proposed algorithm. Targets move at random before being discovered.
After a while, the target T1 is found by the AUV R2. Figure 3b shows AUVs’ search trajectory for
the target. Because the target has the same intelligence of AUV except the cooperation, target T1
will escape. The AUV R2 will track the target T1 and send the location information of the target to
other AUVs. According to the location of the target T1, the proposed algorithm automatically plans
a collision-free pursuing path for each hunter. Figure 3c shows R1, R2, R3, and R4 hunting trajectory for
the target T1. Obviously, the simulation result shows that the proposed algorithm realizes cooperative
hunting in surface-water experiments with obstacles.

217

Appl. Sci. 2018, 8, 973

(a) (b)

(c)

Figure 3. Simulation of hunting process with one target. (a) The initial state; (b) AUVs’ search trajectory
for the target; (c) Final trajectories of the AUVs.

In order to further validate the performance of the proposed algorithm, the Simulation of hunting
process with dynamic obstacle is provided. Figure 4 shows this process of four AUVs hunting target
and avoid dynamic obstacles clearly. The results show in the Figure 4, it validates that it is available to
apply the proposed algorithm to the multi-AUV hunting task, and it can effectively avoid dynamic
obstacle in path planning.

(a) (b)

Figure 4. Cont.

218

Appl. Sci. 2018, 8, 973

(c)

Figure 4. Simulation of hunting process with dynamic obstacle. (a) The initial state; (b) AUVs’ search
trajectory for the target; (c) Final trajectories of the AUVs.

3.2. Multiple Targets

The second simulation is conducted to test the dynamic cooperation when two targets need to
be caught. It is assumed that there are two targets and six AUVs. Figure 5 shows this process of six
AUVs hunting two targets clearly. Figure 5a shows the distribution of AUVs, targets, and obstacles.
As well as hunting one target, six AUVs began searching the work area in different directions. Figure 5b
shows AUVs’ search trajectory for the first target. Because the target has the same intelligence of AUV
except the cooperation, target T1 will escape. The AUV R1 will track the target T1 and send the location
information of the target to other AUVs. According to the location of the target T1. The multi-AUV system
selects the four AUVs closest to the T1. R1, R2, R3, and R4 are assigned to the target T1. Since R5 and R6
fail in the competition, they will not join in the pursuing task but keep search target. After the completion
of the task assignment, the proposed algorithm automatically plans a collision-free pursuing path for
each hunter. Figure 5c shows R1, R2, R3, and R4 hunting trajectory for the first target T1. Same principle,
the second target T2 is found by the AUV R5, R6. The target T2 is hunted by the AUV R2, R4, R5, and R6.
Figure 5d shows final trajectories of the AUVs hunting targets. Obviously, the simulation result shows
that the proposed algorithm realizes multi-AUV cooperative hunting for two dynamic targets. The results
show in the Figure 5, it validates that it is available to apply the proposed algorithm to the multi-AUV
hunting task, and it can effectively avoid AUV coordination conflict problem in path planning.

(a) (b)

Figure 5. Cont.

219

Appl. Sci. 2018, 8, 973

(c) (d)

Figure 5. Simulation of hunting process with two targets. (a) The initial state; (b) AUVs’ hunting trajectory
for the first target; (c) AUVs’ search trajectory for the first target; (d) Final trajectories of the AUVs.

3.3. Some AUVs Break Down

To prove the robustness of proposed approach, some AUV failures are added in this part of
simulation. When search in real surface-water workspaces, it is likely that two AUVs suddenly break
down due to mechanical problems. and then it is an important index for measuring the proposed
algorithm’s cooperation to see whether the multi-AUV work system could complete its search task
through internal adjustment. In this case, the simulation deals with AUV failures in the same simulation
environment as that in the Section 3.2. There are six AUVs involved in search task for one target.
At the beginning, six AUVs are normal search target in the surface-water workspaces. After a period of
time, the target T1 is found by the AUV R3. The AUV R3 will track the target T1 and send the location
information of the target to other AUVs. According to the location of the target T1, the multi-AUV
system selects the four AUVs closest to the T1. R1, R2, R3, and R6 are assigned to the target T1.
Since R4 and R5 fail in the competition, they will not join in the pursuing task but keep search target.
One of the AUVs, R3, breaks down in time, but the remaining AUV members still function properly
(shown as in Figure 6a). Despite the breakdown of R3, AUV R4 replaces AUV R3 by reassigning
tasks, the whole team is not paralyzed but keeps working on for their hunting task. When coming
to the 40th second, the AUV R6 also fails (shown as in Figure 6b). Since a distributed architecture is
adopted, the rest one AUV R5 will not be affected but go on with their hunt. And at last, the AUVs
R1, R2, R4, and R5 got the target T1. The final trajectories of the AUV team (see Figure 6c) show that
the proposed algorithm can work satisfactorily in the case of unexpected events, and it does not need
any added changes for different situations. From this simulation, it shows that the improved potential
field algorithm has the ability to complete search task in the case of AUV mechanical failures through
dynamical allocation. This also demonstrates an excellent cooperation of the proposed algorithm.

220

Appl. Sci. 2018, 8, 973

(a) (b)

(c)

Figure 6. Search process when two AUVs break down. (a) The first AUV break down; (b) The second
AUV breaks down; (c) Final trajectories of the whole hunting process.

3.4. Comparison of Different Algorithms

In order to further validate the performance of the proposed algorithm, it is compared with potential
field (PF) algorithm. The comparison studies involve six AUVs, two targets, and some obstacles with
environments scale of 120× 120 (m2). The target locations, AUVs and obstacles are randomly deployed.
The both algorithms are applied to the multi-AUVs that are directed to hunt all the targets. In these
conditions, the both algorithms simulation experiments of cooperative hunting were completed 50 times
respectively. To make a clear distinction between the two algorithms, Table 1 lists the mean and standard
deviation statistics of total path length and hunting time by both algorithms. It is reasonable to conclude
that the integrated algorithm of IPF performs better than the PF in each item of simulation results.
Hence, it distinguishes itself with the shorter path length and time. By analysis, the PF algorithm doesn’t
have the function of cooperation for AUVs. However, IPF can not only perform the target hunting,
but also it can better complete the task in the environment filled with obstacles.

Table 1. Performance comparison between improved potential field (IPF) and potential field (PF).

Algorithm Total Path Length (m) Hunting Time (s)

IPF 845.3 ± 52.1 681.9 ± 30.5
PF 992.7 ± 75.6 807.6 ± 57.3

221

Appl. Sci. 2018, 8, 973

In order to further validate the performance of the proposed algorithm, comparison studies with
the particle swarm optimization (PSO) algorithm will be carried out. The PSO algorithm plans a path
by iteratively improving a candidate solution with regard to the fitness function. The comparison
studies involve one target locations, four AUVs, and some obstacles with environments scale of
120 × 120 (m2). The target locations, AUVs and obstacles are randomly deployed. Different algorithms
are used to arrange the multi-AUVs to hunt target. Figure 7 shows the search process with four
different algorithms. According to the result of Figure 7, the proposed algorithm completes the target
hunting task. However, the PSO algorithm failed to hunt the target because R1 hits an obstacle.

(a) (b)

Figure 7. Hunting path with two different algorithms. (a) PSO algorithm; (b) IPF algorithm.

In order to ensure the accuracy of the experiments, we conducted the experiments many times.
In each experiment, the positions of the obstacles, targets, and AUVs are reset. The success rate of
performing 50 times of target hunting using two different algorithms is depicted in Figure 7.

It is very clear to see that the proposed IPF algorithm reaches 100% success rate under a large number
of experiments in Figure 8. It means that the most tasks are successfully executed. However, the PSO
algorithm only reaches 100% success rate for a few experiments. In some special cases, the success rate of
PSO algorithm is only 80%. By comparison, it is found that under certain circumstances, the success rate
of the proposed IPF algorithm is below 100%, but it is still superior to the PSO algorithm. By analysis,
the PSO algorithm only provides optimum solution under no obstacle conditions. However, IPF works
properly for obstacle avoidance, therefore it deserves a high success rate in the environments filled
with obstacles.

Su
cc

es
s r

at
e

(%

Figure 8. Success rate comparison between IPF and PSO algorithms.

222

Appl. Sci. 2018, 8, 973

4. Conclusions

In this paper, an integrated algorithm combining the potential field and the three degrees
(the dispersion degree, the homodromous degree, and district-difference degree) is proposed to deal
with cooperative target hunting by multi-AUV team in surface-water environment. On the one hand,
it makes full use of the advantages of potential field, i.e., no pre-learning procedure and good real-time.
On the other hand, the three degrees could improve the multi-AUV’s cooperation and overcome local
minimum problem. Despite these advantages, there are still practical problems to be researched further.
For example, how should AUVs overcome the effects of ocean currents in a surface-water environment
during their hunting process. The real surface-water environment is three-dimensional, while, in this
paper, many factors are simplified into a two-dimensional simulation. There is still a necessity to carry on
further studies on how to solve these problems.

Author Contributions: Conceptualization, H.G. and G.X.; Methodology, G.C.; Software, H.G.; Validation, H.G.,
G.C. and G.X.; Formal Analysis, H.G.; Investigation, G.C.; Resources, G.C.; Data Curation, H.G.; Writing-Original
Draft Preparation, H.G.; Writing-Review & Editing, G.X.; Supervision, G.X.; Project Administration, H.G.;
Funding Acquisition, H.G.

Funding: This work was supported by the University-industry cooperation prospective project of Jiangsu Province:
Development of intelligent universal color-selecting and drying grain machine (BY2016062-01).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cui, R.; Ge, S.S.; How, B.V.E.; Choo, Y. Leader-follower formation control of under actuated autonomous
underwater vehicles. Ocean Eng. 2010, 37, 1491–1502. [CrossRef]

2. Huang, Z.R.; Zhu, D.Q.; Sun, B. A multi-AUV cooperative hunting method in 3-D underwater environment
with obstacle. Eng. Appl. Artif. Intell. 2016, 50, 192–200. [CrossRef]

3. Cao, X.; Sun, C.Y. A potential field-based PSO approach to multi-robot cooperation for target search and hunting.
At-Automatisierungstechnik 2017, 65, 878–887. [CrossRef]

4. Zhang, Q.; Lapoerre, L.; Xiang, X.B. Distributed control of coordinated path tracking for networked
nonholonomic mobile vehicles. IEEE Trans. Ind. Inform. 2013, 9, 472–484. [CrossRef]

5. Rezaee, H.; Abdollahi, F. A decentralized cooperative control scheme with obstacle avoidance for a team of
mobile robots. IEEE Trans. Ind. Electron. 2014, 61, 347–354. [CrossRef]

6. Yamaguchi, H. A distributed motion coordination strategy for multiple nonholonomic mobile robots in
cooperative hunting operations. Robot. Autom. Syst. 2003, 43, 257–282. [CrossRef]

7. Pan, Y.; Li, D. Improvement with joint rewards on multi-agent cooperative reinforcement learning.
In Proceedings of the International Conference on Computer Science and Software Engineering, Wuhan, China,
12–14 December 2008; pp. 536–539.

8. Ma, Y.; Cao, Z.; Dong, X.; Zhou, C.; Tan, M. A multi-robot coordinated hunting strategy with dynamic alliance.
In Proceedings of the Control and Decision Conference, Guilin, China, 17–19 June 2009; pp. 2338–2342.

9. Wang, C.; Zhang, T.; Wang, K.; Lv, S.; Ma, H. A new approach of multi-robot cooperative pursuit. In Proceedings
of the China Control Conference, Xi’an, China, 26–28 July 2013; pp. 7252–7256.

10. Ni, J.; Yang, S.X. Bioinspired neural network for real-time cooperative hunting by multirobots in
unknown environments. IEEE Trans. Neural Netw. 2011, 22, 2062–2077. [PubMed]

11. Liang, X.W.; Liu, Y.H.; Wang, H.; Chen, W.D.; Xing, K.X.; Liu, T. Leader-following formation tracking control
of mobile robots without direct position measurements. IEEE Trans. Autom. Control 2016, 61, 4131–4137.
[CrossRef]

12. Qin, J.H.; Yu, C.B.; Gao, H.J. Coordination for linear multiagent systems with dynamic interaction topology
in the leader-following framework. IEEE Trans. Ind. Electron. 2014, 61, 2412–2422. [CrossRef]

13. Garcia, M.A.P.; Montiel, O.; Castillo, O.; Sepulveda, R.; Melin, P. Path planning for autonomous mobile robot
navigation with ant colony optimization and fuzzy cost function evaluation. Appl. Soft Comput. 2009, 9, 1102–1110.
[CrossRef]

14. Zhu, D.Q.; Lv, R.F.; Cao, X.; Yang, S.X. Multi-AUV hunting algorithm based on bio-inspired neural network
in unknown environments. Int. J. Adv. Robot. Syst. 2015, 12, 1–12. [CrossRef]

223

Appl. Sci. 2018, 8, 973

15. Sheng, Y.; Sayed, A.H. Cooperative prey herding based on diffusion adaptation. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 22–27 May 2011;
pp. 3752–3755.

16. Cetin, O.; Zagli, I.; Yilmaz, G. Establishing obstacle and collision free communication relay for UAVs with
artificial potential fields. J. Intell. Robot. Syst. 2013, 69, 361–372. [CrossRef]

17. Shi, W.R.; Huang, X.H.; Zhou, W. Path planning of mobile robot based on improved artificial potential field.
Int. J. Comput. Appl. 2010, 30, 2021–2023. [CrossRef]

18. Couceiro, M.S.; Vargas, P.A.; Rocha, R.P.; Ferreira, N.M.F. Benchmark of swarm robotics distributed
techniques in a search task. Robot. Autom. Syst. 2014, 62, 200–213. [CrossRef]

19. Rasekhipour, Y.; Khajepour, A.; Chen, S.K.; Litkouhi, B. A potential field-based model predictive
path-planning controller for autonomous road vehicles. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1255–1267.
[CrossRef]

20. Ge, S.Z.S.; Liu, X.M.; Goh, C.H.; Xu, L.G. Formation tracking control of multiagents in constrained space.
IEEE Trans. Control Syst. Technol. 2016, 24, 992–1003. [CrossRef]

21. Chen, H.; Xie, L. A novel artificial potential field-based reinforcement learning for mobile robotics in
ambient intelligence. Int. J. Robot. Autom. 2009, 24, 245–254. [CrossRef]

22. Zhang, J.R.; Sun, C.; Mizutani, E. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and
Machine Intelligence; Prentice Hall: New York, NY, USA, 1997.

23. Wang, Z.X.; Chen, Z.T.; Zhao, Y.; Niu, Q. A novel local maximum potential point search algorithm for
topology potential field. Int. J. Hybrid Inf. Technol. 2014, 7, 1–8. [CrossRef]

24. Kao, C.C.; Lin, C.M.; Juang, J.G. Application of potential field method and optimal path planning to mobile
robot control. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation
Automation Science and Engineering (CASE), Gothenburg, Sweden, 24–28 August 2015; pp. 1552–1554.

25. Liu, X.; Ge, S.S.; Goh, C.H. Formation potential field for trajectory tracking control of multi-agents in
constrained space. Int. J. Control 2017, 90, 2137–2151. [CrossRef]

26. Haumann, A.D.; Listmann, K.D.; Willert, V. DisCoverage: A new paradigm for multi-robot exploration.
In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA,
3–7 May 2010; pp. 924–934.

27. Li, B.; Du, H.; Li, W. A Potential field approach-based trajectory control for autonomous electric vehicles
with in-wheel motors. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2044–2055. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

224

applied
sciences

Article

3D Model Identification Using Weighted Implicit
Shape Representation and Panoramic View

Xun Jin 1 and Jongweon Kim 2,* ID

1 Department of Copyright Protection, Sangmyung University, Seoul 03016, Korea; jinxun@cclabs.kr
2 Department of Electronics Engineering, Sangmyung University, Seoul 03016, Korea
* Correspondence: jwkim@smu.ac.kr; Tel.: +82-222-875-410

Received: 7 July 2017; Accepted: 25 July 2017; Published: 27 July 2017

Abstract: In this paper, we propose a 3 dimensional (3D) model identification method based on
weighted implicit shape representation (WISR) and panoramic view. The WISR is used for 3D
shape normalization. The 3D shape normalization method normalizes a 3D model by scaling,
translation, and rotation with respect to the scale factor, center, and principal axes. The major
advantage of the WISR is reduction of the influences caused by shape deformation and partial
removal. The well-known scale-invariant feature transform descriptors are extracted from the
panoramic view of the 3D model for feature matching. The panoramic view is a range image obtained
by projecting a 3D model to the surface of a cylinder which is parallel to a principal axis determined
by the 3D shape normalization. Because of using only one range image, the proposed method can
provide small size of features and fast matching speed. The precision of the identification is 92% with
1200 models that consist of 24 deformed versions of 50 classes. The average feature size and matching
time are 4.1 KB and 1.9 s.

Keywords: 3D model identification; shape normalization; weighted implicit shape representation;
panoramic view; scale-invariant feature transform

1. Introduction

Development of 3 dimensional (3D) printing technology has led to the explosive growth
of 3D models recently. Hence the 3D printing services are increasing rapidly [1,2]. However,
copyright infringement of 3D models has become an issue for 3D printing ecosystem of product
distribution websites, 3D scanning and design-sharing [3,4]. To prevent the copyrighted 3D models
from distributing and using illegally, the identification of 3D models remains.

2 dimensional (2D) view-based 3D model identification has a high discriminative property for 3D
model representation [5–11]. Generally, a 2D view image is a range image obtained from a viewpoint
located on a 3D model’s bounding sphere. The identification is implemented by matching the features
extracted from the range images. However, the existent approaches suffer from big size of features and
slow matching speed. To overcome these problems, we propose an approach using only one range
image, which means a panoramic view is used for identification. The panoramic view bridges the gaps
between the range images rendered from multiple views. It is obtained by projecting a 3D model onto
the surface of a cylinder, which is parallel to a principal axis determined by 3D shape normalization.
The purpose of the 3D shape normalization is to normalize 3D models into a canonical coordinate
frame to guarantee a unique representation [12–14]. Nevertheless, how to determine the principal axes
is the keypoint. The most common method is principal component analysis (PCA). However, it is not
preferable when 3D models have unobvious orientations or undergo large deformations. If the shape
normalization cannot determine the principal axes of a query model as similar as those of original
model in database, the identification needs many more range images to match them. Implicit shape

Appl. Sci. 2017, 7, 764; doi:10.3390/app7080764 www.mdpi.com/journal/applsci225

Appl. Sci. 2017, 7, 764

representation (ISR) was described in [13] for normalizing 3D articulated models. However, it has
some limitations when some parts of a 3D model are removed or when a 3D model undergoes a large
deformation. In this paper, the 3D shape normalization uses a weighted ISR (WISR) to reduce the
influence caused by shape deformation and partial removal. It estimates the number of clusters based
on rate distortion theory [15]. It also shows the most representative part for one viewpoint of the six
degree of freedom.

After the shape normalization, the model is wrapped by the cylinder to generate a range image.
The range image is used for providing features of the model. The feature used in our approach is the
scale invariant feature transform (SIFT) descriptor [16]. The SIFT is generally used to extract geometric
transformation invariant local features from images [17,18]. It detects interest points called keypoints
and assigns orientation information to each keypoint based on local gradient directions. With the SIFT
descriptor, object recognition approaches can achieve high performance in feature matching. In this
paper, the 3D models are identified by matching the SIFT descriptors of the query model with those in
database. In the section of experimental results, we show the comparisons between the precision of
identification of the proposed method and those of other methods.

2. Related Work

Several researches have been conducted to group 3D models into corresponding categories by
matching the features and comparing the similarities of the models [5–11,14,19–22]. The matching
and comparison are implemented on a huge dataset containing various models of different poses and
shapes. The models are mainly classified into two types: rigid models and non-rigid (deformable)
models. Early works are rigid model-based approaches. In this paper, we focus on the identification of
non-rigid models.

3D model identification methods are classified into two categories: view-based and model-based
methods [6,7]. Model based methods include geometric moment [19], volumetric descriptor [20],
surface distribution [21], surface geometry [22]. However, the geometry and topology based methods
are generally computationally cost and are fragile to 3D model removal. View-based methods have
a high discriminative property for 3D model representation [5–11]. A 2D view image is a range
image obtained from a viewpoint located on a 3D model’s bounding sphere. After the range image is
obtained, image processing technologies are applied to the range image for extracting features. To be
invariant against geometrical transformation, researchers proposed shape normalization methods to
preprocess the 3D models before extracting the features.

Several view-based methods have been proposed. In Ref. [9], authors proposed a view based
3D model retrieval method using the SIFT and a bag-of-features approach. The bag-of-features was
inspired by the bag-of-words in the text retrieval approach, which classifies documents by histograms
of words in the text. The method extracted SIFT features from the range images of the model viewed
from dozens of viewpoints located uniformly around the model. The bag-of-features was composed of
the SIFT features. The well-known k-means clustering algorithm was applied to the bag-of-features to
classify the features and generate visual words. The visual words are integrated in to a histogram and
become a feature vector of the model. However, the large number of the range images leads to large
capacity of features and slow matching speed.

In [10,11], authors proposed 3D model descriptors using the panoramic views which can describe
the orientation and position of the model’s surface. In [10], the panoramic views were obtained
by projecting the model to surfaces of cylinders parallel to three principal axes. The principal axes
were obtained by using continuous PCA and normal PCA. For each cylinder, the coefficients of 2D
discrete Fourier transform and 2D discrete wavelet transform were extracted to generate the 3D
shape descriptors. However, these descriptors are not suitable for distinguishing the 3D models well.
In [11], the exes were perpendicular to the surfaces of a dodecahedron generated around the model.
Three panoramic views were obtained from each axis. The other two panoramic views were obtained
from additional two axes which are orthogonal to each other and to the principal axis. Then, the SIFT

226

Appl. Sci. 2017, 7, 764

features were extracted to generate the 3D model descriptors. However, because of using dozens of
panoramic views, the method leads to large capacity of features and slow matching speed.

In [8], authors normalized the model with the PCA and extracted 18 views from the vertices of
a bounding 32-hedron of the model. The 3D model descriptors were composed of 2D Zernike moments,
2D Krawtchouk moments and coefficients of Fourier transform. However, the PCA is fragile to partial
removed and deformed models, which means the PCA can’t extract the same axes from the deformed
and removed models as those of original models. Hence, the different axes lead to different views and
descriptors. Eventually, the method can’t identify the deformed and partial removed versions of the
original models.

In [13], authors proposed a shape normalization method for 3D volumetric models using ISR.
The ISR is a set of minimum Euclidean distance values between the surface of the model and the voxels
inside the surface. It is invariant to translation and rotation. The method computed an initial center of
the model with the ISR and voxels inside the model. It also computed an initial principal axis with the
PCA. Then the center and three principal axes were iteratively upgraded based on implicit intensity
value and principal axis dependent weight function. Finally, the method translated, rotated and scaled
the model with the final center, principal axes and a scale factor which was computed with the ISR.

In [23], the competition results of SHREC 2015 range scans based 3D shape retrieval were
presented. The best performance was achieved by a SIFT based cross-domain manifold ranking method.
However the precision was about 70%. In [24], the results of the SHREC 2015 Track: Non-rigid 3D
shape retrieval were presented. The best performance was achieved by a method of super vector-local
statistical features. However, the local statistical feature extraction and matching is time consuming.
The matching time is over 50 s for 907 models [25].

In [26], authors proposed a view-based 3D model retrieval method using bipartite graph matching
and multi-feature collaboration. The complement descriptors were extracted from the interior region
and contour of 3D models. The employed three types of features: Zernike moments, bag of visual
words descriptor and Fourier descriptor to construct bipartite graphs. However, because of using
various types of features, it is time consuming.

In [27], the discriminative information of 2D projective views were learned for 3D model
retrieval. The dissimilarity between discriminative ability and view’s semantic is investigated by
classification performance. An effective and simple measurement is used to study the discriminative
ability. The discriminative information is used for view set matching with a reverse distance metric.
Various features were employed to boost the retrieval method. However, each model was represented
by 216 views. The feature size is too large. The querying time is 1.7 s for 330 models. It is also
time consuming.

In 2015, five leading feature extraction algorithms: SIFT, speeded-up robust features, binary
robust independent elementary features, binary robust invariant scalable keypoints and Fast retina
keypoint, were used to generate keypoint descriptors of radiographs for classification of bone age
assessment [28]. After comparing the five algorithms, the SIFT was found to perform best based on
precision. In 2016, a survey was presented to evaluate various object recognition methods based on
local invariant features from a robotics perspective [29]. The evaluation results reported that the best
performing keypoint descriptor is the SIFT and it is very robust to real-world conditions. Based on the
previous research results on pattern recognition and computer vision, we decide to extract the SIFT
descriptors as the features of 3D models.

3. 3D Shape Normalization Using WISR

3D shape normalization is a process of adjusting the orientation, location, and size of a given
3D model into a canonical coordinate frame. A 3D model is usually composed of a main body part
and branch parts (e.g., arms and legs). To reduce the effect caused by the deformation or abscission
of branch parts when determining the principal axes, we increase the weight of the main body part.
The procedure of weight calculation requires three steps. The first step is automatically estimating the

227

Appl. Sci. 2017, 7, 764

number of clusters based on rate distortion theory [15]. With the clustering method, we can distinguish
the main body part and the branch parts. However, different 3D models have different shapes and
topologies that lead to different main body and branch parts. Therefore, a method of automatically
estimating the number of clusters is required. The second step is performing the k-means algorithm
with the estimated number and calculating the distance among cluster centers. The third step is
calculating the number of points inside each cluster sphere. Generally, the number of points inside
a main body part is greater than that of a branch part. Thus the weight is obtained based on the
number of points.

First of all, N random points P = {pi|i = 1, . . . , N} are generated inside the surface of a model.
A measure of cluster dispersion called distortion d is defined as Equation (1). It is derived from
Mahalanobis distance.

d =
N

∑
i=1

(
pi − cpi

)TΓ−1(pi − cpi

)
(1)

where Γ is the covariance and cpi is the closest center to a given point pi. The cluster centers are
obtained by using the k-means algorithm. We iteratively fit k ∈ {1, K} clusters to the points P.
Therefore, there are K distortions dk corresponding to K clusters. Each dk denotes cluster dispersion of
k clusters. After evaluating the distortions with 1 to K partitions, the dk is transformed as follows

Jk = d−
m
2

k − d−
m
2

k−1 (2)

where m is the dimension of the points, thus m is equal to 3. The −m
2 is a transform power motivated by

asymptotic reasoning. The number of clusters is set to be k′ = argmaxk{Jk}. The k′ is the ideal number
of clusters. Then the k-means algorithm is performed to partition the P into k′ clusters. The points
near the boundaries of clusters interfere with the relation between the points and the main body and
branch parts. Therefore, we only consider the points inside a sphere with a specific radius. First we
compute a distance cd between two cluster centers as follows:

cda,b =

√
(ca − cb)

2, a, b = 1, . . . , k′ (3)

Then we can obtain C = k′ − 1 + k′ − 2+, . . . ,+k′ − (k′ − 1) distances. The radius is defined as
r = min

{
cda,b

}
/2. The weight of each cluster is the number of nearest points within the radius from

each center. The nearest points set of the jth cluster center cj is defined as Sj =

{
i
∣∣∣∣√(

cj − pi
)2 ≤ r

}
.

The weight wj of cluster j is the the number of the elements in the Sj. The ISR is defined as
f (p) = min{||p − q||}, which is the minimum Euclidean distance from p to vertices q on the surface of
the model. The wj is applied to the ISR of nearest points of cluster center j to produce WISR as follows

f ′(pi) =

{
f (pi)·wj, i f i ∈ Sj.

f (pi), otherwise.
(4)

The points nearest to the cluster center inside a main body are much more than those inside
a branch. Therefore, the weight of the main body will be increased, whereas that of the branch will
be decreased. To reduce the influence of surface deformation of main body, we quantize the WISR
and delete some values which are less than a specified threshold. We use search-based optimization
of Otsu’s criterion to find 5 thresholds T = {ti|i = 1, . . . , 5}. We delete the values of f ′(pi) by setting
them to be 0, if they are less than t2. The ISR and WISR of a mouse model are shown in Figure 1.
To illustrate their salient characteristic more clearly, the figures are shown in xy-plane.

228

Appl. Sci. 2017, 7, 764

(a)

(b)

Figure 1. ISR (implicit shape representation) and WISR (weighted implicit shape representation) of
mouse model; (a) ISR; (b) WISR.

The principal axes are calculated by singular value decomposition. The points p corresponding
to the existing f ′(pi) are selected for analyzing the principal axes. The center of gravity of a model is
defined as

o =
∑N

i=1(f ′(pi)·pi)

∑N
i=1 f ′(pi)

(5)

229

Appl. Sci. 2017, 7, 764

It is moved to the origin of coordinate to solve the normalization of translation. It represents
the weighted average of all points in a model. It is much closer to the center of main body than
conventional barycenter. To normalize a model size, a scale factor is defined as follows

s = 3

√√√√ N

∑
i=1

f ′(pi) (6)

It is based on the volume of the model and is effective in normalizing the 3D model size. Finally,
the 3D model is normalized by achieving scaling, translation, and rotation with respect to the scale
factor, center, and principal axes.

4. Panoramic View Generation

Once the shape normalization has been done, one panoramic view will be generated.
First, a cylinder is generated around a 3D model as shown in Figure 2a. Its center and axis are the
center and the first principal axis of the model. Its radius is defined as R = 2·max{||o − q||}. Its height
is the height of the model. We sample the axis of the cylinder with a sample rate F. Each sample point
of the axis is a center of a cross section of the cylinder. For each cross section, M rays are emanated
from each center to the surface of the cylinder. Thus, the degree between each ray is 2π/M. Each ray
may have more than 1 intersection with the surface of the model. The distance rd ∈ [0, R] from a center
to the furthest intersection of the ray is mapped to a value in the range of [0, 1] for representing one
pixel in the F × M range image. After generating the panoramic view, SIFT descriptors are extracted
from the panoramic view and stored as the feature of the model. Figure 2b shows the SIFT descriptors
of panoramic view-based range image.

(a)

Figure 2. Cont.

230

Appl. Sci. 2017, 7, 764

(b)

Figure 2. The cylinder around a model and its panoramic view-based range image; (a) Cylinder;
(b) Panoramic view-based range image.

The matching procedure of the SIFT descriptors uses the Euclidean distance as in [16]. Suppose
the SIFT descriptor of a query model is VQ = (vq1, vq2, . . . , vqn) and that of a model in database is
VD = (vd1, vd2, . . . , vdn). The distance D between the two descriptor is given by

D =

√
n

∑
i=1

(vqi − vdi)
2, (7)

A keypoint with the least distance value is defined as a matched keypoint. We match the keypoints
of the query model to those of the models in the database and obtain the number of matched keypoints.
Finally, we identify the model with the maximum number of matched keypoints as the original model
of the query model.

5. Experimental Results

In this section, some experimental results about the shape normalizations are shown first.
To achieve high precision of 3D model identification, how to accurately normalize the shapes of
the models is of great significance in practice. Figure 3a,c are original sumotori and tortoise models.
Figure 3b is deformed version of sumotori model by articulating around its joints in different ways.
Figure 3d is partially removed version of tortoise model. There is a certain extent of difference between
the original models and deformed and removed models. If we extract 6 range images from each view
point of six degree of freedom, we can obtain 24 possible poses of a 3D model [8]. We only selected the
most representative range image from all possible poses of a model. Figure 4a–l show the range images
which have the most representative surface of the models using PCA, ISR, and WISR, respectively.
The main body and face in Figure 4b are oblique. Figure 4d shows left side of the model. Figure 4f,h
show the range images were viewed obliquely from above. Both Figure 4j,l show their fronts to a view
point, which means the deformed and removed models were well normalized using WISR.

231

Appl. Sci. 2017, 7, 764

(a) (b) (c) (d)

Figure 3. Original, deformed and partially removed 3D models; (a): original sumotori model;
(b): deformed sumotori model; (c): original tortoise model; (d): partially removed tortoise model.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4. The most representative range images of shape normalized models using PCA (a–d): original
and deformed sumotori model, original and partially removed tortoise model; ISR (e–h): original and
deformed sumotori model, original and partially removed tortoise model; and WISR (i–l): original and
deformed sumotori model, original and partially removed tortoise model.

We evaluated the proposed identification method with 1200 non-rigid 3D models in SHREC 2015
benchmark. The models consist of 24 deformed versions of 50 classes. We selected one model for
each class to compose 50 query models. We also experimented with the other 3D model identification
methods: combination of PCA and SIFT (PCAS) [9], that of continuous PCA, normal PCA, 2D discrete

232

Appl. Sci. 2017, 7, 764

Fourier transform, and 2D discrete wavelet transform (CPCA) [10], and that of dodecahedron and
SIFT (DODE) [11]. Two types of experiments were performed to evaluate the performances of the
methods. First one is to identify the 50 original query models. Then we removed some parts of the
models such as arms and legs. Second experiment is to identify the 50 partially removed query models.
The percentage of removal ranges from 6.1% to 33.6%. The average percentage is 13.8%. We set the
range of the number of clusters from 1 to 10, which means the K is set to 10. Both the sample rate F
and the number of rays M are set to be 180. We performed the experiments on an IBM compatible
computer with a 3.4 GHz CPU and a 4 GB random-access memory. The average feature size and
matching time of the corresponding method for 1200 models are shown in Table 1. Because of using
only one range image, the proposed method provides small size of feature and fast matching speed.
Figure 5 shows the precision of identification for each method. Although the feature size is greatly
reduced, the precision is still greater than those of the other 3 methods even with the removed versions.

Table 1. Average feature size and matching time; PCAS: combination of PCA and SIFT; CPCA:
combination of continuous PCA, normal PCA, 2D discrete Fourier transform, and 2D discrete wavelet
transform; DODE: combination of dodecahedron and SIFT.

Method PCAS CPCA DODE Proposed

Size (KB) 19.4 36 110.1 4.1
Time (s) 26.4 80.3 223.5 1.9

Figure 5. Precision of 3D model identification.

6. Conclusions

In this paper, we have proposed a 3D model identification method, which consists of WISR-based
3D shape normalization and panoramic view for feature extraction. To achieve high precision of 3D
model identification with 2D view-based approach, how to accurately normalize the shapes of the
models has great significance in practice. The proposed 3D shape normalization clusters random
points inside a model and defines the number of nearest neighbors within a specified radius from each
cluster center as the weight. The weight is applied to ISR to produce WISR for reducing the influence
caused by shape deformation and partial removal. A panoramic view is generated by projecting a 3D
model onto the surface of a cylinder for extracting SIFT descriptors. The average feature size and
matching time are 4.1 KB and 1.9 s. The precision of identification of original models is 92% and
that of removed versions is 64%. The experimental results show the performance of the 3D model
identification is significantly improved. In the future work, we will optimize the identification method
and increase the precision of the identification.

233

Appl. Sci. 2017, 7, 764

Acknowledgments: This research project was supported by Ministry of Science, ICT and Future Planning in 2016.

Author Contributions: Both authors contributed to the research work. Both authors designed the new method
and planned the experiments. Jongweon Kim led and reviewed the research work. Xun Jin performed the
experiments and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ishengoma, F.R.; Mtaho, A.B. 3D Printing Developing Countries Perspectives. Int. J. Comput. Appl. 2014, 104,
30–34.

2. Harris, A. The Effects of In-home 3D Printing on Product Liability Law. Available online: http://www.
sciencepolicyjournal.org/uploads/5/4/3/4/5434385/harris_new_ta1_1.2.2015_lb_mg.pdf (accessed on
15 May 2017).

3. Gupta, D.; Tarlock, M. 3D Printing, Copyright Challenges, and the DMCA. New Matter 2013, 38.
4. Lee, S.H.; Kwon, S.G.; Lee, E.J.; Moon, K.S.; Hwang, W.J.; Kwon, K.R. Watermarking scheme for copyright

protection of 3D animated model. In Proceedings of the IEEE Consumer Communications and Networking
Conference (CCNC), Las Vegas, NV, USA, 14–17 January 2012; pp. 1–4.

5. Jain, S.; Mishra, S. Survey Paper on Various 3D View Based Retrieval Methods. Int. J. Eng. Res. Technol. 2014,
3, 470–473.

6. Liu, Q. A Survey of Recent View-Based 3D Model Retrieval Methods. Available online: https://arxiv.org/
abs/1208.3670 (accessed on 15 May 2017).

7. Ali, S.; Tran, T.; Laurendeau, D. A Comparative Survey on 3D Models Retrieval Methods. REV J.
Electron. Commun. 2013, 3. [CrossRef]

8. Daras, P.; Axenopoulos, A. A Compact Multi-View Descript or for 3D Object Retrieval. In Proceedings of the
International Workshop on CBMI, Chania, Greece, 3–5 June 2009; pp. 115–119.

9. Ohbuchi, R.; Osada, K.; Furuya, T.; Banno, T. Salient Local Visual Features for Shape-Based 3D Model
Retrieval. In Proceedings of the IEEE International Conference on Shape Modeling and Applications
(SMI’08), Stony Brook, New York, NY, USA, 4–6 June 2008; pp. 93–102.

10. Papadakis, P.; Pratikakis, I.; Theoharis, T.; Perantonis, S. PANORAMA: A 3D Shape Descriptor Based on
Panoramic Views for Unsupervised 3D Object Retrieval. Int. J. Comput. Vis. 2010, 89, 177–192. [CrossRef]

11. Sfikas, K.; Pratikakis, I.; Theoharis, T. 3D object retrieval via range image queries based on sift descriptors on
panoramic views. In Proceedings of the Eurographics Workshop on 3D Object Retrieval (EG3DOR), Cagliari,
Italy, 13 May 2012; pp. 9–15.

12. Cortadellas, J.; Amat, J.; Torre, F. Robust normalization of silhouettes for recognition applications.
Pattern Recognit. Lett. 2004, 25, 591–601. [CrossRef]

13. Wang, C.; Liu, Y.S.; Liu, M.; Yong, J.H.; Paul, J.C. Robust shape normalization of 3D articulated volumetric
models. Comput. Aided Des. 2012, 44, 1253–1268. [CrossRef]

14. Vranic, D.; Saupe, D. 3D shape descriptor based on 3D fourier transform. In Proceedings of the EURASIP
Conference on Digital Signal Processing for Multimedia Communications and Services, Budapest, Hungary,
11–13 September 2001; pp. 271–274.

15. Sugar, C.A.; James, G.M. Finding the number of clusters in a data set: An information theoretic approach.
J. Am. Stat. Assoc. 2003, 98, 750–763. [CrossRef]

16. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

17. Berretti, S.; Amor, B.B.; Daoudi, M.; Bimbo, A.D. 3D facial expression recognition using SIFT descriptors of
automatically detected keypoints. Vis. Comput. 2011, 27, 1432–2315. [CrossRef]

18. Krizaj, J.; Struc, V.; Pavesic, N. Adaptation of SIFT Features for Robust Face Recognition. Image Anal. Recognit.
2010, 6111, 394–404.

19. Paquet, E.; Murching, A.; Naveen, T.; Tabatabai, A.; Rioux, M. Description of shape information for 2-D and
3-d objects. Signal Process. Image Commun. 2000, 16, 103–122. [CrossRef]

20. Tangelder, J.W.H.; Veltkamp, R.C. Polyhedral Model Retrieval using Weighted Point Sets. Int. J. Image Graph.
2003, 3, 209–229. [CrossRef]

234

Appl. Sci. 2017, 7, 764

21. Osada, R.; Funkhouser, T.; Chazelle, B.; Dobkin, D. Shape distributions. ACM Trans. Graph. 2002, 21, 807–832.
[CrossRef]

22. Ip, C.Y.; Lapadat, D.; Sieger, L.; Regli, W.C. Using Shape Distributions to Compare Solid Models.
In Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications, Saarbrücken, Germany,
17–21 June 2002; pp. 273–280.

23. Godil, A.; Dutagaci, H.; Bustos, B.; Choi, S.; Dong, S.; Furuya, T.; Li, H.; Link, N.; Moriyama, A.;
Meruane, R.; et al. SHREC’15: Range Scans based 3D Shape Retrieval. In Proceedings of the Eurographics
Workshop on 3D Object Retrieval, Zurich, Switzerland, 2–3 May 2015.

24. Lian, Z.; Zhang, J.; Choi, S.; ElNaghy, H.; El-Sana, J.; Furuya, T.; Giachetti, A.; Guler, R.A.; Lai, L.; Li, C.; et al.
SHREC’15 Track: Non-rigid 3D Shape Retrieval. In Proceedings of the Eurographics Workshop on 3D Object
Retrieval, Zurich, Switzerland, 2–3 May 2015.

25. Ohkita, Y.; Ohishi, Y.; Furuya, T.; Ohbuchi, R. Non-rigid 3D Model Retrieval Using Set of Local Statistical
Features. In Proceedings of the IEEE International Conference on Multimedia and Expo Workshops,
Melbourne, Australia, 9–13 July 2012; pp. 593–598.

26. Zhang, Y.; Jiang, F.; Rho, S.; Liu, S.; Zhao, D.; Ji, R. 3D object retrieval with multi-feature collaboration and
bipartite graph matching. Neurocomputing 2016, 195, 40–49. [CrossRef]

27. Wang, D.; Wang, B.; Zhao, S.; Yao, H.; Liu, H. View-based 3D object retrieval with discriminative views.
Neurocomputing 2017, 252, 58–66. [CrossRef]

28. Kashif, M.; Deserno, T.M.; Haak, D.; Jonas, S. Feature description with SIFT, SURF, BRIEF, BRISK, or FREAK?
A general question answered for bone age assessment. Comput. Biol. Med. 2016, 68, 67–75. [CrossRef]
[PubMed]

29. Loncomilla, P.; Ruiz-del-Solar, J.; Martinez, L. Object recognition using local invariant features for robotic
applications: A survey. Pattern Recognit. 2016, 60, 499–514. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

235

applied
sciences

Article

Artificial Flora (AF) Optimization Algorithm

Long Cheng 1,2,* ID , Xue-han Wu 1 and Yan Wang 1

1 Department of Computer and Communication Engineering, Northeastern University,
Qinhuangdao 066004, Hebei Province, China; xhwu820@outlook.com (X.W.); ywang8510@gmail.com (Y.W.)

2 School of Information Science and Engineering, Northeastern University,
Shenyang 110819, Liaoning Province, China

* Corresponding author: chenglong8501@gmail.com; Tel.: +86-189-313-4611

Received: 9 January 2018; Accepted: 17 February 2018; Published: 26 February 2018

Featured Application: The proposed algorithm can be used in unconstrained multivariate

function optimization problems, multi-objective optimization problems and combinatorial

optimization problems.

Abstract: Inspired by the process of migration and reproduction of flora, this paper proposes a novel
artificial flora (AF) algorithm. This algorithm can be used to solve some complex, non-linear, discrete
optimization problems. Although a plant cannot move, it can spread seeds within a certain range to
let offspring to find the most suitable environment. The stochastic process is easy to copy, and the
spreading space is vast; therefore, it is suitable for applying in intelligent optimization algorithm.
First, the algorithm randomly generates the original plant, including its position and the propagation
distance. Then, the position and the propagation distance of the original plant as parameters are
substituted in the propagation function to generate offspring plants. Finally, the optimal offspring is
selected as a new original plant through the selection function. The previous original plant becomes
the former plant. The iteration continues until we find out optimal solution. In this paper, six classical
evaluation functions are used as the benchmark functions. The simulation results show that proposed
algorithm has high accuracy and stability compared with the classical particle swarm optimization
and artificial bee colony algorithm.

Keywords: Swarm intelligence algorithm; artificial flora (AF) algorithm; bionic intelligent algorithm;
particle swarm optimization; artificial bee colony algorithm

1. Introduction

In science and engineering, there are cases in which a search for the optimal solution in a large
and complex space is required [1]. Traditional optimization algorithms, such as Newton’s method
and the gradient descent method [2], can solve the simple and continuous differentiable function [3].
For complex, nonlinear, non-convex or discrete optimization problems, traditional optimization
algorithms have a hard time finding a solution [4,5]. Using a swarm intelligence algorithm, such as the
particle swarm optimization (PSO) algorithm [6] and artificial bee colony (ABC) algorithm [7], can find
a more satisfactory solution.

A swarm intelligence optimization algorithm is based on the interaction and cooperation between
individuals in a group of organisms [8,9]. The behavior and intelligence of each individual is simple and
limited, but the swarm will produce inestimable overall capacity by interaction and cooperation [10].
Every individual in the swarm intelligent algorithm must be processed artificially. The individuals
do not have the volume and mass of the actual creatures, and the behavioral pattern is processed by
humans in order to solve problems when necessary. The algorithm takes all the possible solution sets
of the problem as the solution space. Then, it starts with a subset of possible solutions for the problem.

Appl. Sci. 2018, 8, 329; doi:10.3390/app8030329 www.mdpi.com/journal/applsci236

Appl. Sci. 2018, 8, 329

After that, some operations are applied to this subset to create a new solution set. Gradually, the
population will approach to the optimal solution or approximate optimal solution. In this evolutionary
process, the algorithm does not need any information about the question to be solved, such as
gradient, except for the objective function [11]. The optimal solution can be found whether the
search space is continuously derivable or not. The swarm intelligence algorithm has characteristics of
self-organization, robustness, coordination, simplicity, distribution and extensibility. Therefore, the
swarm intelligence optimization algorithms are widely used in parameter estimation [12], automatic
control [13], machine manufacturing [14], pattern recognition [15], transportation engineering [16],
and so on. The most widely used intelligence algorithms include the genetic algorithm (GA) [17,18],
particle swarm optimization (PSO) algorithm [19], artificial bee colony (ABC) algorithm [20], ant colony
optimization (ACO) [21], artificial fish swarm algorithm (AFSA) [22], firefly algorithm (FA) [23], Krill
Herd algorithm (KHA) [24], and the flower pollination algorithm (FPA) [25]. In the 1960s, Holland
proposed the genetic algorithm (GA) [26]. GA is based on Darwin's theory of evolution and Mendel’s
genetic theory. GA initialize a set of solution, known as group, and every member of the group is a
solution to the problem, called chromosomes. The main operation of GA is selection, crossover, and
mutation operations. Crossover and mutation operations generate the next generation of chromosomes.
It selects a certain number of individuals from the previous generation and current generations
according to their fitness. They then continue to evolve until they converge to the best chromosome [27].
In [28], the Spatially Structured Genetic Algorithm (SSGA) is proposed. The populationin SSGA is
spatially distributed with respect to some discrete topology. This gives a computationally cheap method
of picking a level of tradeoff between having heterogeneous crossover and preservation of population
diversity [29]. In order to realize the twin goals of maintaining diversity in the population and
sustaining the convergence capacity of the GA, Srinivas recommend the use of adaptive probabilities
of crossover and mutation [30].

In 1995, Kennedy and Eberhart proposed the particle swarm optimization (PSO) algorithm [31].
The algorithm was inspired by the flight behavior of birds. Birds are lined up regularly during
migration, and every bird changes position and direction continually and keeps a certain distance
from the others. Each bird has its own best position, and the birds can adjust their speed and position
according to individual and overall information to keep the individual flight optimal. The whole
population remains optimal based on individual performance. The algorithm has the characteristics
of being simple, highly efficient, and producing fast convergence, but for a complex multimodal
problem, it is easy to get into a local optimal solution, and the search precision is low [32]. In order to
prevent premature convergence of the PSO algorithm, Suganthanintroduced a neighborhood operator
to ensure the diversity of population [33]. Parsopulos introduced a sequential modification to the
object function in the neighborhood of each local minimum found [34]. The particles are additionally
repelled from these local minimums so that the global minimum will be found by the swarm. In [35],
a dual-PSO system was proposed. This system can improve search efficiency.

In 2005, Karaboga proposed the artificial bee colony (ABC) algorithm based on the feeding
behavior of bees [36]. This algorithm becomes a hot research topic because of its easy implementation,
simple calculation, fewer control parameters, and robustness. The bee is a typical social insect, and
the behavior of a single bee is extremely simple in the swarm. However, the whole bee colony shows
complex intelligent behavior through the division and cooperation of the bees with different roles.
However, the ABC algorithm has some disadvantages [37]: for example, its search speed is slow, and its
population diversity will decrease when approaching the global optimal solution. It results in the local
optimal. Dongli proposed a modified ABC algorithm for numerical optimization problems [38]. A set
of benchmark problems are used to test its performance, and the result shows that the performance is
improved. Zhong proposed an improved ABC algorithm to improve the global search ability of the
ABC [39]. Rajasekhar investigated an improved version of the ABC algorithm with mutation based on
Levy probability distributions [40].

237

Appl. Sci. 2018, 8, 329

This paper proposed a new intelligent algorithm called the artificial flora (AF) algorithm. It was
inspired by the reproduction and the migration of flora. A plant cannot move but can spread seeds to
let the flora move to the most suitable environment. Original plants spread seeds in a certain way, and
the propagation distance is actually learning from the previous original plants. Whether the seeds can
survive or not is related to environmental fitness. If a seed, also called offspring plant, cannot adapt
to the environment, it will die. If a seed survives, it will become original plants and spread seeds.
By using the special behavior of plants, the artificial flora algorithm updates the solution with the
migration of flora.

The main contributions of this paper are given as follows:

1. AF is multi-parent techniques, the movement in AF is related to the past two generation plants.
So, it can balance more updating information. This can help algorithm avoid running into the
local extremum.

2. AF algorithm selects the alive offspring plants as new original plants each iteration. It can take
the local optimal position as the center to explore around space. It can converge to optimal
point rapidly.

3. Original plants can spread seeds to any place within their propagation range. This guarantees
the local search capability of the algorithm. The classical optimization problem is an important
application of the AF algorithm. Function optimization is a direct way to verify intelligent
algorithm performance. In this paper, we successfully apply it to unconstrained multivariate
function optimization problems. We try to apply it to multi-objective, combinatorial, and more
complex problems. In addition, a lot of practical problems, such as wireless sensor network
optimization and parameter estimation, can be converted to optimization problems, and we can
use AF to find a satisfactory solution.

The rest of this paper is organized as follows. Section 2 describes the principle of the artificial flora
(AF) algorithm. Section 3 use six benchmark functions to test the efficiency and stability of artificial
flora algorithm and compare it with the PSO and ABC algorithms. The conclusions are presented in
Section 4.

2. Artificial Flora Algorithm

2.1. Biological Fundamentals

Plants have a variety of modes to spread seeds. Seed dispersal can be divided into autochory
and allochory. Autochory refers to plants that spread by themselves, and allochory means the plants
spread through external forces. For example, the mechanical propagation is autochory, and biological
propagation, anemochory, and hydrochory are all allochory. Autochory provides the conditions for
plants to migrate to a more suitable environment autonomously. For example, sorrels, impatiens, and
melons can spread seeds by this way. When a sorrel is ripe, its fruits will be loculicidal, and the shells
will curl up to pop the seeds. The fruits of the impatiens will burst open and spread its seeds around.
When a melon reaches a certain maturity, the seeds will be squirted out along with mucus from the top
of the melon. The distance can be 5 m. On the other hand, allochory provides the conditions for plants
to migrate to farther and uncharted regions. For instance, the spread direction and distance of seeds
are determined by the wind in anemochory as the wind speed and direction changes. These modes of
propagation extend the scope of exploration of flora and reduce the possibility of extinction of flora.

Because of climate change, severe natural environment, or competition, the distribution area of
flora can be expanded, reduced, or migrated. As flora migrates to new environment, the individual in
the flora will evolve as well. Therefore, the migration of flora can change distribution area and induce
the evolution, extinction, and rebirth of flora. A plant cannot move and has no intelligence, but flora
can find the best place to live by spreading seeds and reproducing.

In the migration and reproduction of flora, the original plant scatters seeds around randomly
within a certain distance. The survival probability of a seed is different due to the external environment.

238

Appl. Sci. 2018, 8, 329

In a suitable environment, a plant survives and spreads seeds around after being ripe. In harsh
environments, there is a probability that flora will evolve to adapt to the environment or that become
extinct in the region. Before the flora in a region is completely extinct, allochory sows potential
probability that the flora may multiply in other areas. The seeds may be taken to any new area where
the flora resumes reproduction. Through multi-generational propagation, the flora will migrate to a
most suitable area. Under the mechanism of migration and reproduction, the flora completes the task
of finding the optimal growth environment through the evolution, extinction, and rebirth of flora.

2.2. Artificial Flora Algorithm Theory

The artificial floras algorithm consists of four basic elements: original plant, offspring plant, plant
location, and propagation distance. Original plants refer to the plants that are ready to spread
seeds. Offspring plants are the seeds of original plants, and they cannot spread seeds in that
moment. Plant location is the location of a plant. Propagation distance refers to how far a seed
can spread. There are three major behavioral patterns: evolution behavior, spreading behavior, and
select behavior [41–43]. Evolution behavior means there is a probability that the plant will evolve
to adapt to the environment behavior [44–46]. Spreading behavior refers to the movement of seeds,
and seeds can move through autochory or allochory. Select behavior means that flora may survive or
become extinct due to the environment.

The aforementioned social behaviors can be simplified by some idealized rules as follows:

Rule 1: Because of a sudden change in the environment or some kind of artificial action, a species
may be randomly distributed in a region where there is no such species and then become the
most primitive original plant.

Rule 2: Plants will evolve to adapt to the new environment as the environment changes. Therefore,
the propagation distance of offspring plants is not a complete inheritance to the parent plant
but rather evolves on the basis of the distance of the previous generation of plants. In addition,
in the ideal case, the offspring can only learn from the nearest two generations.

Rule 3: In the ideal case, when the original plant spreads seeds around autonomously, the range is a
circle whose radius is the maximum propagation distance. Offspring plants can be distributed
anywhere in the circle (include the circumference).

Rule 4: Environmental factors such as climate and temperature vary from one position to another,
so plants have different probability of survival. The probability of survival is related to the
fitness of plant in the position, fitness refers to how well plants can adapt to the environment.
That is, fitness is the survival probability of a plant in the position. The higher the fitness, the
greater the probability of survival is. However, inter-specific competition may cause plant
with high fitness to die.

Rule 5: The further the distance from the original plants, the lower the probability of survival because
the difference between the current environment and the previous environment will be greater
as the offspring plan farther from the original plant in the same generation.

Rule 6: When seeds spread by an external way, the spread distance cannot exceed the maximum limit
area because of constraints such as the range of animal activity.

239

Appl. Sci. 2018, 8, 329

Figure 1. The process of migration and reproduction.

Figure 1 illustrates the process of migration and reproduction. The details are as follows:

1. According to Rule 1, there was no such species in the region, due to sudden environmental
changes or some kind of artificial action, original plants were spread over a random location in
the region, as the �(x1) shows in Figure 1.

2. According to Rule 3, original plants spread seeds in the propagation range. In Figure 1, Distance1

is the propagation distance of �(x1), offspring can be located in anywhere within the blue circle,
and the offspring is shown as (a1,a2,a3) in Figure 1.

3. The number of stand for the fitness. The higher the number, the higher the offspring’s fitness.
It can be seen from the Figure 1 that if the offspring is closer to the original plant, the fitness is
higher: fitness(a1) > fitness(a2) > fitness(a3). This matches Rule 5.

4. According to Rule 4, only some of the offspring plant survive because the fitness is different.
As shown in Figure 1, the solid line indicates a living plant and the dotted line indicates that the
plant is not living. Due to competition and other reasons, the offspring a1 with highest fitness did
not survive, but a2 with the fitness less than a1 is alive and becomes a new original plant.

5. The new original plant spread seeds around, as �(b1,b2,b3) shown in Figure 1. It can be seen that
b1 and b3 are alive, but b2 does not survive. Then select one plant between b1 and b2 randomly to
become latest original plant, and b1 is selected as shown in Figure 1.

6. Distance2and Distance3 are the propagation distance of (a2) and �(b1), respectively. According
to Rule2, Distance2 evolves based on Distance1, and Distance3 is learning from Distance2 and
Distance1. If b1 spreads seeds, the distance of b1’s offspring is based on Distance2 and Distance3.

7. Plants are constantly spreading seeds around and causing flora to migrate so that flora can find
the best area to live.

8. If all the offspring plants do not survive, as (c1,c2,c3) shown in Figure 1, a new original plant
can be randomly generated in the region by allochory.

2.2.1. Evolution Behavior

The original plant spread seeds around in a circle with radius which is propagation distance.
The propagation distance is evolved from the propagation distances of the parent plant and
grandparent plant.

dj = d1j × rand(0, 1)× c1 + d2j × rand(0, 1)× c2 (1)

240

Appl. Sci. 2018, 8, 329

where d1j is the propagation distance of grandparent plant, d2j is the propagation distance of parent
plant, c1 and c2 are the learning coefficient, and rand(0,1) denotes the independent uniformly distributed
number in (0,1).

The new grandparent propagation distance is

d′1j = d2j (2)

The new parent propagation distance is the standard deviation between the positions of the
original plant and offspring plant.

d′2j =

√√√√√ N
∑

i=1
(Pi,j − P′

i,j)
2

N
(3)

2.2.2. Spreading Behavior

First, the artificial flora algorithm randomly generated the original flora with N solutions, which
is that there are N plants in the flora. The position of the original plants are expressed by the matrix Pi,j
where i is the dimension and j is the number of plant in the flora.

Pi.j = rand(0, 1)× d × 2 − d (4)

where, d is the maximum limit area and rand(0,1) is an array of random numbers that are uniformly
distributed between (0,1).

The position of the offspring plant is generated according to the propagation function as follows:

P′
i,j×m = Di,j×m + Pi,j (5)

where, m is the number of seeds that one plant can propagate, P′
i,j×m stand for the position of offspring

plant, Pi,j is the position of the original plant, and Di,j×m is a random number with the Gaussian
distribution with mean 0 and variancedj. If no offspring plant survives, then a new original plant is
generated according to Equation (4).

2.2.3. Select Behavior

Whether the offspring plants are alive is determined by survival probability as follows:

p =

∣∣∣∣∣∣
√

F(P′
i,j×m)

Fmax

∣∣∣∣∣∣× Q(j×m−1)
x (6)

where Q(j×m−1)
x is Qx to the power of (j × m − 1) and Qx is the selective probability. This value has to

be between 0 and 1. It can be seen that the fitness of an offspring plant that is farther from the original
plant is lower. Qx determines the exploration capability of the algorithm. Qx should be larger for
the problem that is easy to get into local optimal solution. Fmax is maximum fitness in the flora this
generation and F(P′

i,j×m) is the fitness of j-th solution.
The fitness equation is an objective function. Then, a roulette wheel selection method is used

to decide if the offspring plant is alive or not. The roulette wheel selection method is also called
proportion select method [47]. Its basic purpose is to “accept according probability”; that is to say there
are several alternatives and each has its own potential score. However, selection does not completely
rely on the value of the score. Selection is according to the accepting probability. The higher the score,
the greater the accepting probability is. Generate a random number r with a [0,1] uniform distribution
every time, and offspring plant will be alive if the survival probability P is bigger than r, or it will

241

Appl. Sci. 2018, 8, 329

die. Select N offspring plants among the alive offspring as new original plants and repeat the above
behaviors until the accuracy requirement is reached or the maximum number of iterations is achieved.

2.3. The Proposed Algorithm Flow and Complexity Analysis

The basic flowchart of the proposed AF algorithm is shown in Figure 2. The main steps of artificial
flora algorithm are as follows:

(1) Initialization according Equation (4), generate N original plants;
(2) Calculate propagation distance according Equation (1), Equation (2) and Equation (3);
(3) Generate offspring plants according Equation (5) and calculate their fitness;
(4) Calculate the survival probability of offspring plants according to Equation (6)—whether the

offspring survives or not is decided by the roulette wheel selection method;
(5) If there are plants that survive, randomly select N plants as new original plants. If there are no

surviving plant, generate new original plants according to Equation (4);
(6) Record the best solution;
(7) Estimate whether this meets the termination conditions. If so, output the optimal solution,

otherwise goto step 2.

Figure 2. Algorithm flow of artificial flora algorithm.

242

Appl. Sci. 2018, 8, 329

Based on the aforementioned descriptions, the AF algorithm can be summarized as the pseudo
code shown in Table 1.

Table 1. Pseudo code of artificial flora algorithm.

Input: times: Maximum run time
M: Maximum branching number

N: Number of original plants
p: survival probability of offspring plants

t = 0; Initialize the population and define the related parameters
Evaluate the N individuals’ fitness value, and find the best solution

While (t < times)
For i = 1:N*M

New original plants evolve propagation distance (According to Equation (1), Equation (2) and
Equation (3))

Original plants spread their offspring (According to Equation (5))
If rand(0,1) >p

Offspring plant is alive
Else
Offspring is died
End if

End for
Evaluate new solutions, and select N plants as new original plants randomly.
If the new solutionis better than their previous one, new plant will replace the old one.
Find the current best solution
t = t + 1;

End while
Output: Optimal solution

The time complexity of the algorithm can be measured by running time t(s) in order to facilitate
the comparison of various algorithms.

t(s) = tA × A(s) + tB × B(s) + ... + TP × P(s) (7)

where tA, tB, tP are the time required to perform every operation once and A(s), B(s), P(s) are the
number of each operation.

In the artificial flora algorithm, the number of original plants is N, and the maximum branching
number M is the number of seeds that one original plant can generate. t1 is the time to initialize
population. t2is the time of calculating propagation distance. t3 is the time to update the plant position.
t4 is the time to calculate the fitness. t5 is the time to calculate the survival probability. t6 is the time to
decide which plant is alive this generation using roulette wheel selection method. The time complexity
analysis of this algorithm is shown in Table 2. Therefore, we can see that the time complexity of
artificial flora algorithm is O(NM) in Table 2.

Table 2. The time complexity of artificial flora algorithm.

Operation Time Time Complexity

Initialize N × t1 O(N)
Calculate propagation distance 2N × t2 O(N)

Update the position N × t3 O(N)
Calculate fitness N × M × t4 O(N·M)

Calculate survival probability N × M × t5 O(N·M)
Decide alive plant using roulette N × M × t6 O(N·M)

243

Appl. Sci. 2018, 8, 329

3. Validation and Comparison

In this section, we use six benchmark functions [48,49] to test the efficiency and stability of
artificial flora algorithm. The definition, bounds, and the optimum values of functions are shown
in Table 3. For a two-dimensional condition, the value distributions of these functions are shown in
Figures 3–8. It can be seen from the Figures 3 and 4 that Sphere (f 1) and Rosenbrock (f 2) functions
are unimodal functions that can be used to test the optimization precision and performance of the
algorithm. f 3 to f 6 functions are complex nonlinear multimodal functions. The general algorithm has
difficulty finding the global optimal value. Because they have many local extreme points, they can be
used to test the global search performance and the ability to avoid prematurity of algorithm.

Table 3. Benchmark functions.

Functions Expression formula Bounds Optimum Value

Sphere f1(x) = ∑n
i=1 x2

i [−100,100] 0

Rosenbrock f2(x) = ∑n−1
i=1 [100(xi+1 − x2

i)
2
+ (xi − 1)2] [−30,30] 0

Rastrigin f3(x) = ∑n
i=1 [x

2
i − 10 cos(2πxi) + 10] [−5.12,5.12] 0

Schwefel f4(x) = ∑n
i=1 [−xi sin(

√|xi|)] [−500,500] −418.9829 × D

Griewank f5(x) = 1
4000 ∑n

i=1 x2
i − ∏n

i=1 cos (xi√
i
) + 1 [−600,600] 0

Ackley f6(x) = −20 exp (−0.2
√

1
n ∑n

i=1 x2
i)− exp (1

n ∑n
i=1 cos(2πxi)) + 20+ e [−32,32] 0

Figure 3. Three-dimensional image of Sphere function (f 1).

244

Appl. Sci. 2018, 8, 329

Figure 4. Three-dimensional image of Rosenbrock function (f 2).

Figure 5. Three-dimensional image of Rastrigin function (f 3).

Figure 6. Three-dimensional image of Schwefel function (f 4).

245

Appl. Sci. 2018, 8, 329

Figure 7. Three-dimensional image of Griewank function (f 5).

Figure 8. Three-dimensional image of Ackley function (f 6).

The AF, PSO, and ABC are all bio-inspired swarm intelligence optimization algorithms. The PSO
and ABC methods are widely used intelligent optimization algorithms. So, we compare the AF
algorithm with the PSO [50] and ABC [36] algorithms to prove the advantages of this algorithm.
The maximum number of iterations, cycle index, and the running environment are the same. The three
algorithms will be iterated 1000 times respectively and run 50 times independently. All the experiments
using MATLAB (2012a, MathWorks Company, Natick, MA, USA, 2012) are performed on a computer
with Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz and 8.00GB RAM running the Windows 10 operating
system. The default parameters are shown in Table 4.

Table 4. The default parameters in particle swarm optimization (PSO), artificial bee colony (ABC), and
artificial flora (AF) algorithms.

Algorithm Parameter Values

PSO N = 100, c1 = c2 = 1.4962, w = 0.7298
ABC N = 200, limit = 1000
AF N = 1, M = 100, c1 = 0.75, c2= 1.25

Tables 5–7 show the statistical results in 20-dimensional space, 50-dimensional space, and
100-dimensional space, respectively. According to the statistical results shown in Tables 5–7 , AF can

246

Appl. Sci. 2018, 8, 329

find a more satisfactory solution with higher accuracy compare with PSO and ABC. For the unimodal
function Sphere, AF can find the globally optimal solution. The accuracy of the solution obtained by
AF is improved compare to those obtained by PSO and ABC. For Rosenbrock function, the accuracy
of the solution is almost the same between AF and ABC in high dimensions (100-dimensional), and
they are all better than PSO. However, the algorithm stability of AF is higher than that of ABC.
For multimodal function (Rastrigin and Griewank), AF can steadily converge to the global optimal
solution in 20-dimensional and 50-dimensional space, and in 100-dimensional space, AF can find the
global optimal solution at best. For Schwefel function, the AF algorithm has better search precision in
higher dimensions. In low dimensions, the search precision of the AF algorithm is superior to PSO but
slightly worse than ABC. For Ackley function, AF is better than PSO and ABC for finding the global
optimal solution.

On the whole, the solution accuracy obtained by the AF algorithm is improved obviously for
the unimodal functions and the multimodal functions. It shows that the AF algorithm has strong
exploration ability. Also, the stability of AF in these benchmark functions is better than that of PSO
and ABC besides the Schwefel function.

Table 5. Comparison of statistical results obtained by AF, PSO, and ABC in 20-dimensional space.

Functions Algorithm Best Mean Worst SD Runtime

Sphere PSO 0.022229639 10.36862151 110.8350423 21.05011998 0.407360
ABC 2.22518 × 10−16 3.03501 × 10−16 4.3713 × 10−16 5.35969 × 10−17 2.988014
AF 0 0 0 2.536061

Rosenbrock PSO 86.00167369 19,283.23676 222,601.751 43,960.73321 0.578351
ABC 0.004636871 0.071185731 0.245132443 0.065746751 3.825228
AF 17.93243086 18.44894891 18.77237391 0.238206854 4.876399

Rastrigin PSO 60.69461471 124.3756019 261.6735015 43.5954195 0.588299
ABC 0 1.7053 × 10−14 5.68434 × 10−14 1.90442 × 10−14 3.388325
AF 0 0 0 0 2.730699

Schwefel PSO −1.082 × 10105 −2.0346 × 10149 −1.0156 × 10151 1.4362 × 10150 1.480785
ABC −8379.657745 −8379.656033 −8379.618707 0.007303823 3.462507
AF −7510.128926 −11,279.67966 −177,281.186 25,371.33579 3.144982

Griewank PSO 0.127645871 0.639982775 1.252113282 0.31200235 1.097885
ABC 0 7.37654 × 10−14 2.61158 × 10−12 3.70604 × 10−13 6.051243
AF 0 0 0 0 2.927380

Ackley PSO 19.99906463 20.04706409 20.46501638 0.103726728 0.949812
ABC 2.0338 × 10−10 4.5334 × 10−10 1.02975 × 10−9 1.6605 × 10−10 3.652016
AF 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0 3.023296

Table 6. Comparison of statistical results obtained by AF, PSO, and ABC in 50-dimensional space.

Functions Algorithm Best Mean Worst SD Runtime

Sphere PSO 13,513.53237 29,913.32912 55,187.50413 9279.053897 0.515428
ABC 6.73535 × 10−8 3.56859 × 10−7 1.17148 × 10−6 2.37263 × 10−7 3.548339
AF 0 4.22551 × 10−32 2.11276 × 10−30 2.95786 × 10−31 3.476036

Rosenbrock PSO 9,137,632.795 53,765,803.92 313,258,238.9 49,387,420.59 0.707141
ABC 0.409359085 13.87909385 49.83380808 9.973291581 4.094523
AF 47.95457 48.50293 48.87977 0.246019 6.674920

Rastrigin PSO 500.5355119 671.5528998 892.8727757 98.8516628 1.036802
ABC 0.995796171 3.850881679 7.36921061 1.539235109 3.661335
AF 0 0 0 0 3.753900

Schwefel PSO −1.6819 × 10127 −5.9384 × 10125 −2.5216 × 105 2.7148 × 10126 2.672258
ABC −20,111.1655 −19,720.51324 −19,318.44458 183.7240198 3.433517
AF −20,680.01223 −23,796.53666 −93,734.38905 16,356.3483 4.053411

Griewank PSO 118.8833865 283.810608 524.5110849 101.3692096 1.609482
ABC 1.63 × 10−6 1.29 × 10−3 3.30 × 10−2 0.005265446 6.573567
AF 0 0 0 0 3.564724

Ackley PSO 20.169350 20.452818 21.151007 0.2030427 1.499010
ABC 0.003030661 0.009076649 0.033812712 0.005609339 4.315255
AF 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0 5.463588

247

Appl. Sci. 2018, 8, 329

Table 7. Comparison of statistical results obtained by AF, PSO, and ABC in 100-dimensional space.

Functions Algorithm Best Mean Worst SD Runtime

Sphere PSO 115,645.5342 195,135.2461 278,094.825 38,558.16575 0.711345
ABC 0.000594137 0.001826666 0.004501827 0.000839266 3.461872
AF 0 3.13781 × 10−16 1.34675 × 10−14 1.88902 × 10−15 5.147278

Rosenbrock PSO 335,003,051.6 886,456,293.7 2,124,907,403 386,634,404.3 1.053024
ABC 87.31216327 482.9875993 3159.533172 660.8862246 4.249927
AF 98.16326 98.75210 98.91893 0.143608 9.205695

Rastrigin PSO 1400.13738 1788.428575 2237.676158 190.5442307 1.711449
ABC 38.31898075 57.90108742 71.66147576 7.625052886 4.177761
AF 0 3.55271 × 10−17 1.77636 × 10−15 2.4869 × 10−16 5.526152

Schwefel PSO −1.8278 × 10130 −3.6943 × 10128 −9.38464 × 1085 2.5844 × 10129 4.541757
ABC −36,633.02634 −35,865.45846 −35,018.41908 428.4258428 3.776740
AF −42,305.38762 −43,259.38057 −212,423.8294 42,713.19955 5.638101

Griewank PSO 921.4736939 1750.684535 2954.013327 393.6416257 2.117832
ABC 0.006642796 0.104038042 0.349646578 0.098645373 6.995976
AF 0 1.71 × 10−11 4.96314 × 10−10 7.66992 × 10−11 5.440354

Ackley PSO 20.58328517 20.83783825 21.17117933 0.152682198 2.011021
ABC 2.062017063 2.669238251 3.277291002 0.28375453 4.611272
AF 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0 6.812734

Figures 9–14 show the convergence time of the three algorithms in 50-dimensional space, and
Figures 15–20 show the convergence time of the three algorithms in 100-dimensional space.

Figure 9. The convergence curve of the three algorithms for Sphere function in 50-dimensional
space. PSO: particle swarm optimization algorithm; ABC: artificial bee colony algorithm; AF: artificial
flora algorithm.

It can be seen from Figure 9 that the AF algorithm converges very quickly. The rate of convergence
of ABC algorithm, PSO algorithm and AF algorithm is slowing down at 120th iteration, 50th iteration,
and 15th iteration, respectively. The convergence curves of ABC and PSO intersect at the 50th iteration.

248

Appl. Sci. 2018, 8, 329

Figure 10. The convergence curve of the three algorithms for Rosenbrock function in 50-dimensional space.

As shown in Figure 10, for Rosenbrock function, the PSO algorithm and ABC algorithm both
converge at about 100 iterations, and the AF algorithm converges at about the 55th iteration.

Figure 11. The convergence curve of the three algorithms for Rastrigin function in 50-dimensional space.

Figure 11 illustrates that the convergence rate of the AF algorithm is still better than the other two
algorithms for Rastrig in function. The AF algorithm is convergent to a good numerical solution at the
15th iteration. The PSO algorithm converges fast, but it is easily trapped into the local optimal solution.
The convergence rate of ABC is slow.

249

Appl. Sci. 2018, 8, 329

Figure 12. The convergence curve of the three algorithms for Schwefel function in 50-dimensional space.

Schwefel is a typical deceptive function, as shown in Figure 12. The convergence rate of the AF
algorithm is similar to that of ABC for Schwefel function.

B
es

t S
ol

ut
io

n

Figure 13. The convergence curve of the three algorithms for Griewank function in 50-dimensional space.

Figure 13 shows that the AF algorithm converges at about the 23rd iteration, and the PSO and
ABC algorithms converge at about the 50th iteration and 200th iteration, respectively.

250

Appl. Sci. 2018, 8, 329

Figure 14. The convergence curve of the three algorithms for Ackley function in 50-dimensional space.

As Figure 14 shows, for Ackley function, the PSO algorithm is easily trapped into a local
optimization. The convergence speed of the ABC algorithm is slow. The ABC algorithm converges
at about the 900th iteration. However, the AF algorithm can get a convergence solution at only the
40th iteration.

Figure 15. The convergence curve of the three algorithms for Sphere function in 100-dimensional space.

251

Appl. Sci. 2018, 8, 329

Figure 16. The convergence curve of the three algorithms for Rosenbrock function in 100-dimensional space.

B
es

t S
ol

ut
io

n

Figure 17. The convergence curve of the three algorithms for Rastrigin function in 100-dimensional space.

252

Appl. Sci. 2018, 8, 329

Figure 18. The convergence curve of the three algorithms for Schwefel function in 100-dimensional space.

Figure 19. The convergence curve of the three algorithms for Griewank function in 100-dimensional space.

253

Appl. Sci. 2018, 8, 329

Figure 20. The convergence curve of the three algorithms for Ackley function in 100-dimensional space.

It can be seen from Figures 15–20 that the trend of convergence curves in 100-dimensional space
is similar to that in 50-dimensional space.

It can be concluded that the AF algorithm can get a solution with higher accuracy and stability
than PSO and ABC according to Tables 5–7 and Figures 9–20. First, since the AF algorithm selects the
alive offspring plants as new original plants at each iteration, it can take the local optimal position as the
center to explore the surrounding space. It can converge to the optimal point rapidly. Second, original
plants can spread seeds to any direction and distance within the propagation range. It guarantees
the local search capability of the algorithm. Third, when there is no better offspring plant, in order to
explore the possibility that a better solution exists, new original plants will be generated randomly
in the function domain. This can help the AF algorithm to skip the local optimum and improve
the performance of global searching. Therefore, the AF algorithm has excellent accuracy, stability,
and effectiveness.

4. Conclusions

The beautiful posture of birds and the perfect cooperation of a bee colony left an impression on
people’s minds, so the PSO algorithm and ABC algorithm were proposed. In this paper, the proposed
artificial flora algorithm is inspired by the migration and reproduction behavior of flora. There are three
main behaviors, including evolution behavior, spreading behavior, and select behavior. In evolution
behavior, the propagation distance of offspring plants is evolution based on the propagation distance
of parent plant and grandparent plant. The propagation distance is optimized in each generation.
Since the propagation distance of offspring plants is not a complete inheritance to the parent plant,
there is an opportunity for the algorithm to get out of the local optimal solution. Spreading behavior
includes autochory and allochory. Autochory provides the opportunity for the original plant to explore
the optimal location around itself. This behavior provides local search capability to the algorithm.
Allochory provides opportunity for original plant to explore greater space, and global search capability
of the algorithm is obtained from this behavior. According to the natural law of survival of the fittest,

254

Appl. Sci. 2018, 8, 329

the greater the survival probability of a plant with higher fitness, and thus the natural law is called
select behavior.

Several simulations have shown the effective performance of the proposed algorithm when
compared with PSO and ABC algorithms. The AF algorithm improves the algorithm's ability to find
the global optimal solution and accuracy and also speeds up the convergence speed.

In the future, we focus on solving discrete, multi-objective, combinatorial, and more complex
problems using the AF algorithm and its variants. For example, we are now trying to apply AF to
multi-objective optimization problems. Using the method of generating a mesh, AF can converge to
the optimal Pareto front. In addition, a lot of practical problems can be converted to optimization
problems, and then we can use AF to find a satisfactory solution. For instance, AF can be used to find
a satisfactory solution and can applied to parameter optimization and cluster analysis.

Acknowledgments: This work was supported by the National Natural Science Foundation of China under Grant
No. 61403068; Natural Science Foundation of Hebei Province under Grant No. F2015501097 and No. F2016501080;
Fundamental Research Funds for the Central Universities of China under Grant No. N130323002, No. N130323004
and N152302001.

Author Contributions: Long Cheng and Xue-han Wu conceived and designed the experiments; Yan Wang
performed the experiments; Xue-han Wu and Yan Wang analyzed the data; Long Cheng contributed analysis
tools; Long Cheng and Xue-han Wu wrote the paper.

Conflicts of Interest: The authors declare that there is no conflict of interests regarding the publication of
this paper.

References

1. Cao, Z.; Wang, L. An effective cooperative coevolution framework integrating global and local search for
large scale optimization problems. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation,
Sendai, Japan, 25–28 May 2015; pp. 1986–1993.

2. Battiti, R. First- and Second-Order Methods for Learning: Between Steepest Descent and Newton’s Method; MIT
Press: Cambridge, MA, USA, 1992.

3. Liang, X.B.; Wang, J. A recurrent neural network for nonlinear optimization with a continuously differentiable
objective function and bound constraints. IEEE Trans. Neural Netw. 2000, 11, 1251–1262. [PubMed]

4. Li, J.; Fong, S.; Wong, R. Adaptive multi-objective swarm fusion for imbalanced data classification. Inf. Fusion
2018, 39, 1–24. [CrossRef]

5. Han, G.; Liu, L.; Chan, S.; Yu, R.; Yang, Y. HySense: A Hybrid Mobile CrowdSensing Framework for Sensing
Opportunities Compensation under Dynamic Coverage Constraint. IEEE Commun. Mag. 2017, 55, 93–99.
[CrossRef]

6. Navalertporn, T.; Afzulpurkar, N.V. Optimization of tile manufacturing process using particle swarm
optimization. Swarm Evol. Comput. 2011, 1, 97–109. [CrossRef]

7. Pan, Q.; Tasgetiren, M.; Suganthan, P. A discrete artificial bee colony algorithm for the lot-streaming flow
shop scheduling problem. Inf. Sci. 2011, 181, 2455–2468. [CrossRef]

8. Duan, H.; Luo, Q. New progresses in swarm intelligence-based computation. Int. J. Bio-Inspired Comput.
2015, 7, 26–35. [CrossRef]

9. Tang, Q.; Shen, Y.; Hu, C. Swarm Intelligence: Based Cooperation Optimization of Multi-Modal Functions.
Cogn. Comput. 2013, 5, 48–55. [CrossRef]

10. Demertzis, K.; Iliadis, L. Adaptive elitist differential evolution extreme learning machines on big data:
Intelligent recognition of invasive species. In Advances in Big Data; Springer International Publishing:
Berlin/Heidelberg, Germany, 2016.

11. Du, X.P.; Cheng, L.; Liu, L. A Swarm Intelligence Algorithm for Joint Sparse Recovery. IEEE Signal Process. Lett.
2013, 20, 611–614.

12. Zaman, F.; Qureshi, I.M.; Munir, F. Four-dimensional parameter estimation of plane waves using swarming
intelligence. Chin. Phys. B 2014, 23, 078402. [CrossRef]

13. Jain, C.; Verma, H.K.; Arya, L.D. A novel statistically tracked particle swarm optimization method for
automatic generation control. J. Mod. Power Syst. Clean Energy 2014, 2, 396–410. [CrossRef]

255

Appl. Sci. 2018, 8, 329

14. Torabi, A.J.; Er, M.J.; Li, X. A Survey on Artificial Intelligence-Based Modeling Techniques for High Speed
Milling Processes. IEEE Syst. J. 2015, 9, 1069–1080. [CrossRef]

15. Nebti, S.; Boukerram, A. Swarm intelligence inspired classifiers for facial recognition. Swarm Evol. Comput.
2017, 32, 150–166. [CrossRef]

16. Teodorovic, D. Swarm intelligence systems for transportation engineering: Principles and applications.
Transp. Res. Part C-Emerg. Technol. 2008, 16, 651–667. [CrossRef]

17. Drechsler, R.; Gockel, N. Genetic algorithm for data sequencing. Electron. Lett. 1997, 33, 843–845. [CrossRef]
18. Jong, E.D.; Watson, R.A.; Pollack, J.B. Reducing Bloat and Promoting Diversity using Multi-Objective

Methods. In Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA, USA,
7–11 July 2001; pp. 1–8.

19. Pornsing, C.; Sodhi, M.S.; Lamond, B.F. Novel self-adaptive particle swarm optimization methods.
Soft Comput. 2016, 20, 3579–3593. [CrossRef]

20. Karaboga, D.; Gorkemli, B. A quick artificial bee colony (qABC) algorithm and its performance on
optimization problems. Appl. Soft Comput. 2014, 23, 227–238. [CrossRef]

21. Luh, G.C.; Lin, C.Y. Structural topology optimization using ant colony optimization algorithm. Appl. Soft
Comput. 2009, 9, 1343–1353. [CrossRef]

22. Wang, H.B.; Fan, C.C.; Tu, X.Y. AFSAOCP: A novel artificial fish swarm optimization algorithm aided by
ocean current power. Appl. Intell. 2016, 45, 992–1007. [CrossRef]

23. Wang, H.; Wang, W.; Zhou, X. Firefly algorithm with neighborhood attraction. Inf. Sci. 2017, 382, 374–387.
[CrossRef]

24. Gandomi, A.H.; Talatahari, S.; Tadbiri, F. Krill herd algorithm for optimum design of truss structures. Int. J.
Bio-Inspired Comput. 2013, 5, 281–288. [CrossRef]

25. Yang, X.S. Flower Pollination Algorithm for Global Optimization. In Proceedings of the 11th
International Conference on Unconventional Computation and Natural Computation, Orléans, France,
3–7 September 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 240–249.

26. Holland, J.H. Adaptation in Natural and Artificial Systems; MIT Press: Cambridge, MA, USA, 1992.
27. Dick, G.; Whigham, P. The behaviour of genetic drift in a spatially-structured evolutionary algorithm.

In Proceedings of the IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005;
Volume 2, pp. 1855–1860.

28. Ashlock, D.; Smucker, M.; Walker, J. Graph based genetic algorithms. In Proceedings of the Congress on
Evolutionary Computation, Washington, DC, USA, 6–9 July 1999; Volume 2, p. 1368.

29. Gasparri, A. A Spatially Structured Genetic Algorithm over Complex Networks for Mobile Robot
Localisation. In Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy,
10–14 April 2007; pp. 4277–4282.

30. Srinivas, M.; Patnaik, L.M. Adaptive probabilities of crossover and mutation in genetic algorithms.
IEEE Trans. Syst. Man Cybern. 2002, 24, 656–667. [CrossRef]

31. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on
Neural Networks, Perth, Australia, 27 November–1 December 1995; IEEE: Middlesex County, NJ, USA, 1995;
Volume 4, pp. 1942–1948.

32. Clerc, M.; Kennedy, J. The particle swarm—Explosion, stability, and convergence in a multidimensional
complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [CrossRef]

33. Suganthan, P. Particle swarm optimizer with neighborhood operator. In Proceedings of the IEEE Congress
on Evolutionary Computation, Washington, DC, USA, 6–9 July 1999; pp. 1958–1961.

34. Parsopoulos, K.E.; Vrahatis, M.N. On the computation of all global minimizers through particle swarm
optimization. IEEE Trans. Evol. Comput. 2004, 8, 211–224. [CrossRef]

35. Voss, M.S. Principal Component Particle Swarm Optimization (PCPSO). In Proceedings of the IEEE Swarm
Intelligence Symposium, Pasadena, CA, USA, 8–10 June 2005; pp. 401–404.

36. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Erciyes University: Kayseri,
Turkey, 2005.

37. Alam, M.S.; Kabir, M.W.U.; Islam, M.M. Self-adaptation of mutation step size in Artificial Bee Colony
algorithm for continuous function optimization. In Proceedings of the 2013 IEEE International Conference
on Computer and Information Technology, Dhaka, Bangladesh, 23–25 December 2011; IEEE: Middlesex
County, NJ, USA, 2011; pp. 69–74.

256

Appl. Sci. 2018, 8, 329

38. Zhang, D.; Guan, X.; Tang, Y. Modified Artificial Bee Colony Algorithms for Numerical Optimization.
In Proceedings of the 2011 3rd International Workshop on Intelligent Systems and Applications, Wuhan,
China, 28–29 May 2011; pp. 1–4.

39. Zhong, F.; Li, H.; Zhong, S. A modified ABC algorithm based on improved-global-best-guided approach and
adaptive-limit strategy for global optimization. Appl. Soft Comput. 2016, 46, 469–486. [CrossRef]

40. Rajasekhar, A.; Abraham, A.; Pant, M. Levy mutated Artificial Bee Colony algorithm for global optimization.
In Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics, Anchorage,
AK, USA, 9–12 October 2011; pp. 655–662.

41. Pagie, L.; Mitchell, M. A comparison of evolutionary and coevolutionary search. Int. J. Comput. Intell. Appl.
2002, 2, 53–69. [CrossRef]

42. Wiegand, R.P.; Sarma, J. Spatial Embedding and Loss of Gradient in Cooperative Coevolutionary Algorithms.
In Proceedings of the International Conference on Parallel Problem Solving from Nature, Berlin, Germany,
22–26 September 1996; Springer: Berlin/Heidelberg, Germany, 2004; pp. 912–921.

43. Rosin, C.D.; Belew, R.K. Methods for Competitive Co-Evolution: Finding Opponents Worth Beating.
In Proceedings of the International Conference on Genetic Algorithms, Pittsburgh, PA, USA, 15–19 June 1995;
pp. 373–381.

44. Cartlidge, J.P.; Bulloc, S.G. Combating coevolutionary disengagement by reducing parasite virulence.
Evol. Comput. 2004, 12, 193–222. [CrossRef] [PubMed]

45. Williams, N.; Mitchell, M. Investigating the success of spatial coevolution. In Proceedings of the 7th Annual
Conference on Genetic And Evolutionary Computation, Washington, DC, USA, 25–29 June 2005; pp. 523–530.

46. Hillis, W.D. Co-evolving Parasites Improve Simulated Evolution as an Optimization Procedure. Phys. D
Nonlinear Phenom. 1990, 42, 228–234. [CrossRef]

47. Ling, S.H.; Leung, F.H.F. An Improved Genetic Algorithm with Average-bound Crossover and Wavelet
Mutation Operations. Soft Comput. 2007, 11, 7–31. [CrossRef]

48. Akay, B.; Karaboga, D. A modified Artificial Bee Colony algorithm for real-parameter optimization. Inf. Sci.
2012, 192, 120–142. [CrossRef]

49. Meng, X.B.; Gao, X.Z.; Lu, L. A new bio-inspired optimisation algorithm: Bird Swarm Algorithm. J. Exp.
Theor. Artif. Intell. 2016, 38, 673–687. [CrossRef]

50. Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International
Conference on Evolutionary Computation Proceedings, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

257

applied
sciences

Article

Parallel Technique for the Metaheuristic Algorithms
Using Devoted Local Search and Manipulating the
Solutions Space

Dawid Połap 1,* ID , Karolina Kęsik 1, Marcin Woźniak 1 ID and Robertas Damaševičius 2 ID

1 Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland;
Karola.Ksk@gmail.com (K.K.); Marcin.Wozniak@polsl.pl (M.W.)

2 Department of Software Engineering, Kaunas University of Technology, Studentu 50, LT-51368,
Kaunas, Lithuania; Robertas.damasevicius@ktu.lt

* Correspondence: Dawid.Polap@polsl.pl

Received: 16 December 2017; Accepted: 13 February 2018 ; Published: 16 February 2018

Abstract: The increasing exploration of alternative methods for solving optimization problems causes
that parallelization and modification of the existing algorithms are necessary. Obtaining the right
solution using the meta-heuristic algorithm may require long operating time or a large number
of iterations or individuals in a population. The higher the number, the longer the operation time.
In order to minimize not only the time, but also the value of the parameters we suggest three
proposition to increase the efficiency of classical methods. The first one is to use the method of
searching through the neighborhood in order to minimize the solution space exploration. Moreover,
task distribution between threads and CPU cores can affect the speed of the algorithm and therefore
make it work more efficiently. The second proposition involves manipulating the solutions space
to minimize the number of calculations. In addition, the third proposition is the combination of the
previous two. All propositions has been described, tested and analyzed due to the use of various test
functions. Experimental research results show that the proposed methodology for parallelization
and manipulation of solution space is efficient (increasing the accuracy of solutions and reducing
performance time) and it is possible to apply it also to other optimization methods.

Keywords: optimization; meta-heuristic; parallel technique

1. Introduction

Computing and operation research demand efficient methods that can increase the precision
of calculations. Developments in technology provide new possibilities for faster and more efficient
computing. Multi core architectures can support multi threading, where similar tasks can be forwarded
to various cores for processing at the same time. This approach speeds up calculations, however it
is necessary to implement a devoted methodology. Such a solution can be very useful in practical
applications where many operation are made. The main target of these techniques will be, in particular,
artificial intelligence (AI). AI provides many possibilities to use the power of modern computing into
various applications. [1] presents a survey of modern approaches to multimedia processing. Security
and communication aspects for devoted computing systems were presented in [2]. In [3], the authors
presented the efficient encryption algorithm based on logistic maps and parallel technique. Moreover,
parallel approach found place in medicine, especially in image processing what can be seen in [4] where
lung segmentation was presented. The proposed algorithm can be used in medical support system
for fast diseases detection. To create the most accurate systems that can prevent people from invisible
to the eye, the initial phase of the disease. In [5], the idea of parallel solution to measurements the

Appl. Sci. 2018, 8, 293; doi:10.3390/app8020293 www.mdpi.com/journal/applsci258

Appl. Sci. 2018, 8, 293

structural similarity between images based on quality assessment. Similar approach is present in [6],
where the authors used artificial intelligence technique for image retrieval from huge medical archives.

All solutions mentioned above presented different approach to parallelization. There are various
ideas to parallelize calculations, e.g. by simply performing the same task parallel on all the cores
and compare the results after each iteration. Similarly we can repeat only some procedures to
increase precision. However most efficient are architecture solutions designed for specific purposes.
Methodology that is developed precisely for the computing task can benefit from using multi
core architecture.

In recent years, various approaches to optimization problems were solved using parallel
processing to increase efficiency. Photosensitive seizures were detected by application of devoted parallel
methodology in [7]. The authors of [8] discussed a local search framework developed for
multi-commodity flow optimization. A parallel approach to implement algorithms with and without
overlapping was presented in [9]. Similarly swarm algorithms are becoming more important for
optimization processes and various practical applications. In [10], the author discussed a fusion
of swarm methodology with neural networks for dynamic systems simulation and positioning.
Parallel implementation of swarm methodology developed for two-sided line balancing problem
was discussed in [11]. Massive-passing parallel approach to implement data tests were proposed in
[12]. Similarly in [13] research on efficient parallelization of dynamic programming algorithms was
discussed. An extensive survey of various approaches to parallelization of algorithms with devoted
platforms for classification of biological sequences was presented in [14]. While in [15] the authors
discussed constraint solving algorithms in parallel versions.

Again in [16], the authors presented a combination of approximation algorithms and linear
relaxation with the classical heuristic algorithm. As a result, a hybrid was obtained, which allowed
to reach better results in a much shorter time. Another hybrid was shown in [17], where local search
techniques were used. A similar solution has already been used in combination with the genetic
algorithm, which is called the Baldwin effect [18,19]. The problem of hybridization is much widely
described in [20], where there are two types of combination called collaborative (two techniques work
separately and only exchange information) and integrative (one technique is built into the other).
Both solutions have their own advantages and the authors pointed out them by showing ten different
methodologies. The result of which is obtaining better accuracy of the solution. A particular aspect is
to draw attention during modeling this type of combinations to obtain the best features of all combined
components. Again in another chapter, two other types of hybridization are presented using the
example of a memetic algorithm in the application of character problems. The first one considers
branch and bound features within construction-based metaheuristics, and the second one branch and
bound derivatives.

In this article, we present an idea for the parallelize optimization technique based on different
algorithms. The proposed implementation makes use of multi core architecture by dividing calculations
between all the cores, however to make the algorithm more efficient we propose also devoted way
of search in the optimization space. From the basic population individuals, we select a group of best
adopted ones to forward their positions for a local search in their surrounding. The local search is
performed using each core and therefore the methodology benefit from faster processing but also from
increased precision of calculations since during parallel mode calculations are based on the best results
from each iteration. Moreover, we propose a way to divide the space due to decrease the number of
possible moves for individuals in the population. Additionally, we combined both these ideas to one
for greater efficiency. Our approach is different from existing one in literature not only by creating
hybrids, but by dividing calculations into cores and enabling finding the best areas across the entire
space. In practice, the division of space into cores is a new idea that allows not only increasing the
accuracy of results but also reducing the performance time.

259

Appl. Sci. 2018, 8, 293

2. Optimization Problem and the Method of Finding the Optimal Solution

The optimization problem is understood as finding the largest or smallest value of a parameter
due to certain conditions. Mathematically, the problem can be defined as follows: Let f be an objective
function of n variables xi where x = 0, . . . , n − 1 and x = (x1, x2, . . . , xn) is a point. If the value of the
function f at x is a global minimum of the function, then x is the solution. The problem of finding x is
called minimization problem [21]. If the value of the function at that point reaches a global minimum,
then it is called a minimization problem and it can be described as

Minimize f (x)

subject to g(x) ≥ 0

Li ≤ xi ≤ Ri i = 0, 1, . . . , n − 1,

(1)

where g(x) is inequality constraint, 〈Li, Ri〉 are the boundaries of i-th variable.
For such defined problem, there is a large number of functions for which an optimal solution

is hard to locate. The problem is the size of the solution space, or even the number of local extremes
where the algorithm can get stacked. Some of these functions are presented in Table 1. One of the most
used methods are genetic and heuristic algorithms. As heuristic, we namely algorithms that do not
guarantee to find the correct solution (only the approximate) in a finite time.

Table 1. Test functions used in a minimization problem.

Function Name Function f Range fmin Solution x

Dixon-Price f1(x) = (x1 − 1)2 +
n

∑
i=1

i
(

2x2
i − xi−1

)2 〈−10, 10〉 0
(

2−
21−2

21 , . . . , 2−
2n−2

2n

)
Griewank f2(x) =

n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos

(
xi√
(i)

)
+ 1 〈−10, 10〉 0 (0,. . . ,0)

Rotated Hyper–Ellipsoid
f3(x) =

n

∑
i=1

i

∑
j=1

x2
j

〈−100, 100〉 0 (0,. . . ,0)

Schwefel f4(x) = 418.9829n −
n

∑
i=1

xi sin
(√

|xi |
)

〈−500, 500〉 0 (420.97,. . . ,420.97)

Shubert f5(x) =
n

∏
i=1

(
5

∑
i=1

i cos((i + 1)xi)

)
〈−10, 10〉 −186.7 (0,. . . ,0)

Sphere f6(x) =
n

∑
i=1

x2
i 〈−10, 10〉 0 (0,. . . ,0)

Sum squares f7(x) =
n

∑
i=1

ix2
i 〈−10, 10〉 0 (0,. . . ,0)

Styblinski-Tang f8(x) =
1
2

n

∑
i=1

(
x4

i − 16x2
i + 5xi

)
〈−10, 10〉 −39.2n (−2.9,. . . ,−2.9)

Rastrigin f9(x) = 10n +
n

∑
i=1

[
x2

i − 10 cos (2πxi)
]

〈−10, 10〉 0 (0,. . . ,0)

Zakharov f10(x) =
n

∑
i=1

x2
i + (0.5ixi)

2 +

(
n

∑
i=1

0.5ixi

)4

〈−10, 10〉 0 (0,. . . ,0)

2.1. Genetic Algorithm

Genetic Algorithms are examples of optimization algorithms inspired by natural selection [22].
It is a model of activities and operations on chromosomes. Algorithm assumes the creation of the
beginning set of chromosomes, very often called the population. Each chromosome is presented by a binary
code or a real number (more common is the second case, so we assume that). All individuals are
created in a random way. Having the population, some operation are made. The first of them is the
reproduction which is a process to transfer some individuals to the next operation. The most common way
of reproduction is based on the probability of belonging to a particular group. In optimization problem,

260

Appl. Sci. 2018, 8, 293

the group will be created by the best adapted individuals according to fitness function. The probability
pr can be described by the following equation

pr

(
xt

i

)
=

f
(

xt
i

)
xt

i

, (2)

where xt
i is the i-th individual in t-th iteration. For more randomness, the individual is chosen to

reproduction process if it meets the following assumptions

Pr

(
xt

i−1

)
< α ≤ Pr

(
xt

i

)
, (3)

where α ∈ 〈0, 1〉 is the random value and Pr(·) is the value calculated as

Pr

(
xt

i

)
=

i

∑
j=1

pr

(
xt

j

)
. (4)

So in this way, the best individuals are selected to be reproduced and it is made by two classic
operators known as mutation and crossover. The first of them is understood as the modification of the
chromosome by adding random value τ ∈ 〈0, 1〉 as

xt+1
i = xt

i + τ. (5)

Of course, not every of them will be mutated – only these that will meet the inequality given as

λi < pm, (6)

where pm is mutation probability and λ ∈ 〈0, 1〉. The second operation, which is crossover is the
exchange of the information between two chromosomes xi and xi+1. They are called parents, and the
resulting individuals as childes. The whole process can be presented as

xt+1
i = xt

i + τ
(

xt
i+1 − xt

i

)
xt

i , (7)

where τ ∈ 〈0, 1〉.
After using the described operators, all individuals in the population are evaluated by the fitness

function f (·) and new population replaces the old one and it is known as succession.
The algorithm is an iterative process, so all operations are repeated until a certain number of

iterations are obtained—it is presented in Algorithm 1.

261

Appl. Sci. 2018, 8, 293

Algorithm 1: Genetic Algorithm
1: Start,

2: Define fitness function f (·),
3: Create an initial population,

4: Evaluate all individuals in the population,

5: Define τ, pm, α and the number of iteration T,

6: t := 0,

7: while t < T do

8: Sort individuals according to f (·),
9: Select best individuals according to Equation (2),

10: Make a mutation by Equation (5),

11: Make a crossover using Equation (7),

12: Evaluate all new individuals in the population,

13: Replace the worst with new ones,

14: t ++,

15: end while

16: Return the best chromosome,

17: Stop.

2.2. Artificial Ant Colony Algorithm

Artificial Ant Colony (ACO) is an algorithm inspired by the behavior of ants. At the beginning,
the algorithm was designed for discrete problems such as graph [23]. Then, different versions were
designed for problems dealing with continuous functions [24]. It is a model of searching for food
by ants. If the source of food is found, the ant returns to the nest leaving a pheromone trace that
helps to return to the source. Unfortunately, the amount of pheromone is reduced over time due to its
evaporation. The ant xm moves towards the selected individual from the population. The probability
of selecting the j-th individual in the population is determined as

pj =
(1 + exp

(
f
(
xj
))
)

n

∑
r=1

(1 + exp (f (xr)))

. (8)

Calculating probability, a direction of movement is selected by choosing a colony c as

c =

⎧⎨⎩ max
i=1,2,...,n

(pi), q ≤ q0

C q > q0

, (9)

262

Appl. Sci. 2018, 8, 293

where q0 ∈ 〈0, 1〉 is a parameter and q is random value in range 〈0, 1〉 and C is a random
ant in population. After choosing the parent colony c, a Gaussian sampling is done. Using the
density function, the scattering of pheromones in the entire space is modeled by the following equation

g(xm
i , μ, σ) =

1
σ
√

2π
exp

(
− (xj − μ)

2σ2

)
, (10)

where xm
i is the specific coordinate for the m ant xm = (xm

1 , . . . , xm
n) and μ = xj

i so it is the coordinate
for the selected j-th ant, and σ is the mean distance between the coordinate data of a points xm and xj

calculated as

σ = ξ
n

∑
r=1

|xm
r − xj

r|
k − 1

, (11)

where ξ is the evaporation rate.
Then, the m ant population is generated in N(μi, σi), and the worst m individuals are deleted.
The more detailed description of ACO algorithm is presented in Algorithm 2.

Algorithm 2: Ant Colony Optimization Algorithm
1: Start,

2: Define fitness function f (·),
3: Create an initial population of ants,

4: Evaluate all individuals in the population,

5: Define ξ, n, m and the number of iteration T,

6: t := 0,

7: while t < T do

8: for each ant do

9: Calculate the probability using Equation (8),

10: Find the best nest by Equation (9),

11: Determine Gaussian sampling according to Equation (10),

12: Create m new solutions and destroy m the worst ones,

13: end for

14: t ++,

15: end while

16: Sort individuals according to f (·),
17: Return the best ant,

18: Stop.

2.3. Particle Swarm Optimization Algorithm

Particle Swarm Optimization Algorithm (PSOA) [25] is an algorithm inspired by two phenomena—swarm
motion particles as well fish nebula. It describes the movement of swarm in the direction of the
best individual. Despite targeted movement, the algorithm assumes randomness to increase the

263

Appl. Sci. 2018, 8, 293

ability to change the best individual across the population. In order to model these phenomena,
certain assumptions are introduced

• In each iteration, the number of individuals is constant,
• Only the best ones are transferred to the next iteration and the rest are randomly selected.

Each particle moves according to

xt+1
i = �xt

i + vt
i�, (12)

where vt
i is the velocity of the i-th molecule in the t-iteration. The velocity is calculated on the basis of

various factors such as the position of the best individuals in current iteration t and labeled as xt
best,

which allows them to move in that direction. It is described as

vt+1
i = vt

i · φp · α ·
(

xt
best − xt

i

)
+ φs · β ·

(
xt

best − xt
i

)
, (13)

where α, β ∈ 〈0, 1〉 are the values chosen in random way and φp, φs are swarm controlling factors.
If φs > φp, all particles move in the direction of the best one. In the case when φs ≤ φp, all individuals
move in random way. At the end of the iteration, only the best particles are transferred to the
next iteration. The missing particles are added to population at random. The complete algorithm is
presented in Algorithm 3.

Algorithm 3: Particle Swarm Optimization Algorithm
1: Start,

2: Define φp, φs, best_ratio, number of iteration T and n,

3: Define fitness function f (·),
4: Create an initial population,

5: t := 0,

6: while t < T do

7: Calculate velocity using Equation (13),

8: Move each individual according to Equation (12),

9: Sort population according to f (·),
10: Take best_ratio of population to next iteration,

11: Complete the remainder of the population randomly,

12: t ++,

13: end while

14: Return the best particle,

15: Stop.

2.4. Firefly Algorithm

Firefly Algorithm is another mathematical model that describes the natural phenomena which is
the behavior of fireflies during the searching of a parter [26]. The search is dependent on many factors

264

Appl. Sci. 2018, 8, 293

such as blinking, distance or even perception by other individuals, and this introduces several factors
that describes the behavior of that insects and the environment

• ζ – light absorption coefficient,
• κ – coefficient of motion randomness,
• βpop – attractiveness ratio,
• Ipop – light intensity.

A firefly moves into the most attractive individuals in the current environment based on the
distance and the light intensity of a potential partner. In order to model this behavior, suppose that the
distance between two individuals i and j will be be labeled as rij and it is calculated as

rt
ij = ‖xt

i − xt
j‖ =

√√√√ N

∑
k=1

(
xt

i,k − xt
j,k

)2
, (14)

where t is the current iteration and xt
i,k, xt

k,j – k-th components of the spatial coordinates. Attractiveness
between individuals is dependent on this distance – the greater the distance is, they are less attractive
to each another. Moreover, the light is absorbed by the air, because of that and simplifying the model,
the following assumptions are applied to the model

• Each firefly is unisex,
• The attractiveness is proportional to the brightness, which means that the less attractive firefly

will move to more attractive,
• The distance is greater, the attractiveness is lower,
• If there is no attractive partner in the neighborhood, then firefly moves randomly.

Reception of light intensity It
ij from i by j decreases as the distance rt

ij between them increases.
Moreover, the light in nature is absorbed by different media, so attractiveness depends not only on the
distance but also on absorption, so light intensity It

ij is modeled as

It
ij

(
rt

ij

)
= Ipop · e−ζ·

(
rt

ij

)2

, (15)

where ζ is the parameter that describes light absorption mapping natural conditions of nature.
One of the assumption says that the attractiveness βij is proportional to the brightness (or firefly’s

lightness) what is defined as

βij

(
rt

ij

)
= βpop · e−ζ·

(
rt

ij

)2

, (16)

where βpop is firefly attractiveness coefficient.
The movement of fireflies is primarily dependent on the quality of the neighborhood. The primary

equation that describes that movement depends on all dependencies described above what is shown
in the following formula

xt+1
i = xt

i +
(

xt
j − xt

i

)
· βt

ij

(
rt

ij

)
· It

ij

(
rt

ij

)
+ κ · ei, (17)

where ζ is light absorption coefficient, κ is coefficient mapping natural randomness of fireflies, ei is
vector defined random change of position. In each iteration, all fireflies move to find the best position
according to fitness condition f (·). Described model is presented in Algorithm 4.

265

Appl. Sci. 2018, 8, 293

Algorithm 4: Firefly Algorithm
Start,

Define all coefficients and the number of iteration T and size of population,

Define fitness function f (·),
Create at initial population,

t := 0,

while t ≤ T do

Calculate all distances between individuals in whole population according to Equation (14),

Calculate all light intensity between individuals in whole population according to Equation (15),

Calculate attractiveness between individuals in whole population according to Equation (16),

Evaluate and sort population,

Move each firefly using Equation (17),

t ++,

end while

Return the best firefly,

Stop.

2.5. Cuckoo Search Algorithm

Cuckoo Search Algorithm is another metaheuristic algorithm which stands out by gradient free
optimization method [27]. It is a model that describes the behavior of cuckoos during the specific
nature of breeding. These birds do not take care of theirs own eggs and throw them to other nest.
So the algorithm simulates the flight while looking for nests of other birds and laying eggs in there.
Of course, there is also need to pay attention to the owner’s response. In these model, some assumption
must be done

• Cuckoo is identified with the egg,
• Each cuckoo has one egg,
• The nest owner decides to keep or throw the egg out with the probability 1 − λ ∈ 〈0, 1〉. If the

egg is thrown out, the new cuckoo is replace these one and the position is chosen at random.

At the beginning of the algorithm, an initial population is created in random way. Each cuckoo
moves by making a flight which uses the random walk concept. It is modeled as

xt+1
i = xt

i + μ · L(ϕ, ρ, δ), (18)

where μ is the length of random walk step with normal distribution N
(ρ

cuckoos ; 0.1
)

and L(·) is Lévy
flight defined as

L(ϕ, ρ, δ) =

⎧⎪⎨⎪⎩
√

ρ
2π

exp
[
− ρ

2(ϕ−δ)

]
(ϕ−δ)

3
2

, 0 < ϕ < δ < ∞

0, other
, (19)

where ϕ is the length of the step, δ is the minimum step for random walk and ρ is a scaling parameter.

266

Appl. Sci. 2018, 8, 293

Once the individuals in the population have completed their movement, decide if the egg stays at
the current position should be made. It is a decision-making mechanism by the owner of the nest to
which the eggs were thrown. It is modeled as

H
(

xt+1
i

)
=

{
1 − λ drop the egg

λ leave the egg
, (20)

where λ ∈ 〈0, 1〉 is a random value understood as the chance for egg to stay. Whole algorithm is
described in Algorithm 5.

Algorithm 5: Cuckoo Search Algorithm
Start,

Define all parameters λ ∈ 〈0, 1〉, ϕ, ρ, δ, bestratio, number of cuckoos and iterations T,

Define fitness function f (·),
Create an initial population,

t:=0,

while t < T do

Move individuals to another position using Equations (18) and (19),

According to Equation (20), the nest host decides whether the cuckoo eggs remain,

Evaluate the whole population,

Sort the population according to fitness condition,

t ++,

end while

Return the best cuckoo,

Stop.

2.6. Wolf Search Algorithm

One of the new heuristic algorithms is Wolf Search Algorithm described for the first time in [28].
In the algorithm, the behavior of wolves during the search for food and avoid other predators
is modeled. The model assumes that the wolf can only see in a certain area around himself and he can
only move in it. This area is understood as a circle, where the center is the point (wolf) with r radius.
The wolf’s position is assessed in terms of its adaptability to the function f (·) which values are
interpreted as a number of food locations in the circle. There is a situation that the wolf quickly escapes
outside this area when another predator is in the vicinity or the amount of food in the area is quite low.

Such a behavior of the wolf while searching for food is modeled for optimization purposes. Let x
be a particular wolf among the whole population. The actual position of x will be designated as xactual .
Wolf moves according to

xnew = xactual + β0 exp
(
−r2

) (
xneighbor − xactual

)
+ γ, (21)

where β0 is the ultimate incentive, xneighbor is the closest neighbor with higher value of fitness function,
γ is random number in 〈0, 1〉 and r means the distance between two wolves xactual and xneighbor

267

Appl. Sci. 2018, 8, 293

calculated as the Euclidean metric already described in Equation (14). Wolf moves by Equation (21),
when he spotted a better feeding. Otherwise, the wolf tries to hunt. Hunting of wolves lies in a process
of stalking that can be represented into three steps

• initiative stage – wolf moves in the area of his vision and looks for food. This behavior is modeled
by changing the position of the wolf in the following way

xnew = xactual + αvγ, (22)

where v is the velocity of a wolf.
• passive stage – wolf waits for the opportunity to attack on a given position and tries to attack by

Equation (21).
• escape – in case of lack of food or the appearance of another predator, the wolf escapes by

xnew = xactual + αkγ, (23)

where k is the step size.

It is simply model showing the behavior of wolves. In each iteration, wolves search for better
food source and in the end, the wolves that is identified with best food source is the result. The full
algorithm is presented in Algorithm 6.

268

Appl. Sci. 2018, 8, 293

Algorithm 6: Wolf Search Algorithm
Start,

Define basic parameters of the algorithm – the number of iterations T, the number of wolves n,
radius of view r, step size k, velocity coefficient α and rate of appearance of the enemy pα,

Generate a population of wolves at random,

t := 0,

while t < T do

for each wolf xactual in population do

Check the viewing area by Equation (22),

Calculate the new position xnew using Equation (21),

if d(xactual , xnew) < r ∧ f (xnew) < f (xactual) then

Move the wolf from xactual to xnew,

end if

Select the value of the parameter β ∈ 〈0, 1〉 at random,

if β > pα then

The wolf performs escape by Equation (23),

end if

end for

t ++,

end while

Return the fittest wolf xglobal in the population,

Stop.

3. Manipulation of Swarms Positions and Space Solution Using Multi-Threaded Techniques

The problem of finding the optimal solution is more difficult if the test function is complicated. As
complicated we understand the function of which extremes are hard to locate by classical methods. In
this case, the application of meta–heuristic methodology seems to be a good solution. However, in some
cases the values of the parameters should be significantly increased like the number of individuals in
a population as well as the number of iterations. Increasing the value of these parameters increases
the number of performed operations and thus action time. In addition, these algorithms do not
guarantee the correct solution. With these problems, the application of these techniques may prove to
be very detrimental.

3.1. Proposition I

In order to minimize the amount of computation time, we suggest using automatic parallelization
of the algorithms by dividing the population into several groups, which threads are burdened.

From the perspective of nature, individuals analyze the environment and choose the best of
them all. In the neighborhood of the best solution, smaller populations called groups may be formed.
Suppose that at the beginning of the algorithm, the number of cores pc is detected. In analogy to

269

Appl. Sci. 2018, 8, 293

the original version of the algorithms, an initial population consisting of n individuals is created
at random. From this population, pc fittest individuals are chosen. Each individual will be the best
adapted solution in the smaller group that will be created under his leadership. The size of the group
will be determined as follows

ngroup =

⌊
n
pc

⌋
. (24)

The above equation uses the floor to obtain groups with the same population size for each core.
The use of the floor guarantees that, regardless of n, each group will have the same number of
individuals, and the sum of all ngroup will not exceed n.

With the size of the group and their leadership, we can begin to create groups. For every alpha male,
we create one thread on which the population consisting of ngroup individuals is created.
Each individual in the group is placed in a random way at a distance of no more than dmax

from the leader. This distance can be calculated by{ |a−b|
n if a �= b

a
n if a = b

, (25)

where a, b are the values of the variable’s range for the test function.
For each group on a separate thread, all steps from an original algorithms are performed.

After completing these steps, pc the best adapted individuals are found as a solution for the
optimization problem and selected the best of them. Complete operation of the proposed method is
shown in Algorithm 7.

Algorithm 7: Metaheuristic with devoted local search
1: Start,

2: Detect the number of cores pc,

3: Create an initial population at random,

4: Select pc best individuals,

5: Calculate the number of individuals ngroup in groups using Equation (24),

6: Create pc groups consisting ngroup individuals based on Equation (25),

7: Put each group on a separate thread,

8: Run chosen metaheuristic with a customized group as a population on each thread,

9: Choose the best individuals from all threads,

10: Stop.

3.2. Proposition II

In the previously proposition, we proposed a technique for putting individuals in a given
population on the solution space and assigning them a thread for calculation. Another way to
increase the efficiency is to manipulating the solution space in such a way as to limit the possibility
of movements in the least favorable areas. Imagine that in the early iterations of the algorithm,
the population begins to move in the best areas, i.e., an area where the extreme may potentially occur.
Suppose that we have pc processor cores, so pc threads can be created. Our solution space for fitness
function f can be presented as

a × b = 〈a1, a2〉 × 〈b1, b2〉, (26)

270

Appl. Sci. 2018, 8, 293

where a1, a2, b1, b2 are values that divide the set 〈a, b〉 into such two subsets 〈a1, a2〉, 〈b1, b2〉 that
Equation (26) is satisfied and × means Cartesian product (note that the limit values a2 and b2

correspond to a and b). Using that information, we can divide this space into pc smallest intervals as

a = 〈a1, a2〉 =
〈

a1,
a2

pc

〉
∪

pc−1⋃
k=1

〈
ka2

pc
,

a2

pc
(k + 1)

〉
. (27)

Taking these small intervals and use them to describe the solution space for function f would be

a × b = 〈a1, a2〉 × 〈b1, b2〉 =
〈〈

a1,
a2

pc

〉
∪

pc−1⋃
k=1

〈
ka2

pc
,

a2

pc
(k + 1)

〉
×
〈

kb2

pc
,

b2

pc
(k + 1)

〉〉
(28)

Unfortunately, these formulations give us pc2 parts of solution space. The reason for that is
dividing each side of the interval on pc parts. Having only pc cores, it is necessary to merge some
areas to obtain exactly number of pc. To do that, we can describe formula for vertical merge of areas
for specific cores—for first one as〈

a1,
a2

pc

〉
×
{〈

b1,
b2

pc

〉
,
〈

kb2

pc
,

b2

pc
(k + 1)

〉}
for k ∈ {1, pc − 1}, (29)

and for each subsequent m core as〈
ma2

pc
,

a2

pc
(m + 1)

〉
×
{〈

b1,
b2

pc

〉
,
〈

kb2

pc
,

b2

pc
(k + 1)

〉}
for k ∈ {1, pc − 1}. (30)

Let us prove, that sum of all these parts are equal to the initial solution space.

Proof. Taking all areas dedicated for first core described in Equation (29), we have

〈
a1,

a2

pc

〉
×

pc−1⋃
k=1

〈〈
b1,

b2

pc

〉
,
〈

kb2

pc
,

b2

pc
(k + 1)

〉〉
, (31)

the same is done with the rest areas in Equation (30) as

pc−1⋃
k=1

〈
ka2

pc
,

a2

pc
(k + 1)

〉
×

pc−1⋃
k=1

{〈
b1,

b2

pc

〉
,
〈

kb2

pc
,

b2

pc
(k + 1)

〉}
. (32)

By adding sets obtained above, we have

〈
a1,

a2

pc

〉
∪

pc−1⋃
k=1

〈
ka2

pc
,

a2

pc
(k + 1)

〉
×

pc−1⋃
k=1

〈〈
b1,

b2

pc

〉
,
〈

kb2

pc
,

b2

pc
(k + 1)

〉〉
,

= 〈a1, a2〉 × 〈b1, b2〉 = a × b.

(33)

This gives the pc areas (making the whole solutions space). Now, for each core, χ%n of the entire
size of the population n is created (χ ∈ 〈0, 100〉)—but the individuals are made in the selected area,
not in the whole space. After r = χ%t of all iteration t, each core k is evaluated as

Φk = α

r

∑
i=1

f (xi)

n
+ β f (xbest), (34)

271

Appl. Sci. 2018, 8, 293

where α + β = 1 and they are coefficients describing the importance of a given part – the average of all
individuals and the best individual on the current thread. We choose the p best areas and repeated the
movement of population on each core in the sum of these areas by (100 − χ)% of the iteration and
(100 − χ)% of the individuals. If the case, when individuals leaves the area, he is killed and a new
individual is created in his place. After all iteration, the best solution is funded in all populations.

In this proposition, the multi-threading technique has a big role because dividing the space
and choosing the best areas does not cost extra time and above all, it allows the placement of most
individuals in a smaller area in parallel several times. These actions are described in Algorithm 8

Algorithm 8: Analysis of the solution space for the initial population
1: Start,

2: Define the solution space a × b, the size of population n, the number t of iterations and a fitness
function f ,

3: Detect the number pc of processor cores,

4: Divide and assign the given areas to threads through Equations (29) and (30),

5: for each thread do

6: Create a population of χ%n individuals at random,

7: T := 0,

8: for T < χ%t do

9: Move the individuals in population,

10: T ++,

11: end for

12: end for

13: Rate populations on each thread and select the best,

14: Define new solution space using the best areas,

15: for each thread do

16: Create a population of (100 − χ)%n individuals at random,

17: T := 0,

18: for T < (100 − χ)%t do

19: Move the individuals in population,

20: T ++,

21: end for

22: end for

23: Choose and return the best individuals in all populations,

24: Stop.

272

Appl. Sci. 2018, 8, 293

3.3. Proposition III

Our last proposition is the combination of the above two propositions with some modifications. At
first, we dividing solution space according to (29) and (30). Having the number of areas, threads
can be created. χ% of all individuals are created in each area for χ%t iterations. The occurring χ for
iterations and populations may have different values. To simplify the introduction of a large number
of parameters, we assume that they have the same value. At the end, in each population, the best
individuals stays, the rest of them is destroyed.

For each survived individual (which are identify with the best solutions), a group is formed exactly
like in Section 3.1 but the size of group should not be greater than 50% of all n. Next, all individuals
moves for the rest of iterations. In addition, then, the population size is replenished (if the size is
smaller than n) in a random way throughout the area.

4. Test Results

All presented propositions have been implemented along with extended versions with the
proposed multi–threading technique. All tests were carried out on the six-processor Intel Core i7 6850K
clocked at 3.6 GHz.

4.1. The Benchmark Functions

Proposed solutions were tested on different 10 functions described in Table 1. All these functions
were given in dimension D = 100. The selected functions are the representatives of different types like
bowl, plate, valley shaped and with many local minima.

4.2. Experimental Settings

In experiments, we used described version of classical meta–heuristic algorithms. For all tests,
we used the same numbers of iterations t = 100 and population size of 100 individual and χ = 10.
For each test, 100 measurements were taken and averaged. The tests were performed in terms of
performance depending on the number of cores and as regards the accuracy of averaged solutions.

The coefficients used by all the algorithm have been selected before the start of operation.
The influence of the increase in coefficients values causes the multitude of a given step or displacement
of individuals. Therefore, in our considerations we do not analyze the impact of these coefficients on
the method and accuracy of the obtained solutions, and each parameter was chosen in a random way
in the range 〈0.1, 0.4〉. The obtained values of coefficients were respectively

• Genetic algorithm – pm = 0.39,
• Ant Colony Optimization Algorithm – ξ = 0.23, m = 30, q0 = 0.4,
• Particle Swarm Optimization Algorithm – φp = 0.15, φs = 0.32, best_ratio = 20,
• Firefly Algorithm – ζ = 0.31, βpop = 0.28, Ipop=0.18
• Cuckoo Search Algorithm – λ = 0.37, δ = 0.12, ϕ = 0.33, ρ = 0.21, bestratio = 20,
• Wolf Search Algorithm – k = 0.15, β0 = 0.21, α = 0.23.

4.3. Performance Metrics

For the purpose of evaluating algorithms, several basic metrics have been used. The accuracy of
the optimization algorithms is evaluated by the average value of the solution obtained from the tests
carried out what can be presented as

1
100

100

∑
i=1

f (xi), (35)

and error calculated as an absolute value between the ideal and obtained solution which is∣∣∣∣∣ f (xideal)− 1
100

100

∑
i=1

f (xi)

∣∣∣∣∣ . (36)

273

Appl. Sci. 2018, 8, 293

The second aspect is parallelization evaluated by two metrics – acceleration Υ and efficiency Ψ.
Acceleration is the ratio of sequential execution time of the algorithm defined as

Υ =
ς

ϕ
, (37)

where ς is execution time measured for one processor, and ϕ is execution time measured for
pc processors. The second assessment is made by the following formula

Ψ =
Υ
pc

. (38)

In addition, scalability with the number of cores is measured in accordance with Amdahl’s law

G =
1

1 − Θ + Θ
pc

, (39)

where Θ is the proportion of execution time of the proposal to the original versions. For our measurements,
Θ was determined as the quotient of the average time for all algorithms for pc cores and the sum of
time needed for pc and one processor.

4.4. Results

Firstly, we analyzed the impact of different coefficient values on the algorithms. We noticed that
the coefficient values depend on the function itself—the more local extremes, the higher the values
should be. This is due to the fact that individuals have to get out in such a minimum location, hence the
large values of coefficients can prolong movement in one iteration and allow escape. Such reasoning
forced us to depend on the value of coefficients from the pseudorandom generator. This action,
combined with averaging the obtained results, enabled to obtain averaged solutions. It was performed
for all versions of the algorithms—the original and three proposed modifications in this paper.
The obtained solution are presented in Tables 2–5 and errors values are in Tables 6–9. In all cases,
the first proposition—the use of devoted local search—reduced the error values in almost every case.
Of course, there were cases when the selected algorithms had a minimal difference between the results
(see CSA results), although it may be due to bad initial position of individuals. In contrast, the second
proposal related to the division of the solution space brought quite a big drop in the value of errors for
each case. This points to the fact that the size of the space is very important for metaheuristics—a
search of the same area in less time and without necessarily increasing computing needs is a very
important issue. The proposed division of space is one of the many cases that can be corrected, but it is
one that significantly improves solution for each test function indicates the direction of future research.
Moreover, the combination of these two proposition improved the obtained results for many cases,
but not for all. GA and PSOA improved solutions for more than 5 cases, when FA improved the
score for 9 from 10 benchmark functions. For better visualization the error values, The average error
obtained for each version of the algorithm is shown in Figure 1. The graph shows that the error value
is the smallest when applying proposition 2 or 3, and 1 has an approximately constant error.

274

Appl. Sci. 2018, 8, 293

Table 2. Averaged solution values achieved by all original algorithms for each test functions.

Function GA PSOA FA CSA WSA ACO

f1 0.07593 0.08617 0.26872 0.16432 0.00257 0.00319
f2 0.12283 0.16489 0.18691 0.1729 0.1275 0.13129
f3 0.00172 0.27991 0.05206 0.00948 0.00029 0.00192
f4 0.00506 0.00963 0.00174 0.01354 0.00981 0.00166
f5 −186.014 −185.831 −185.843 −185.824 −185.805 −185.815
f6 0.00001 0 0.00001 0.0002 0.00001 0.00001
f7 0.00105 0.00062 0.66179 0.00035 0.00025 0.00037
f8 −391.329 −391.58 −391.344 −391.746 −391.598 −391.594
f9 0.19899 0.07731 0.13266 0.07822 0.1328 0.09898
f10 0.00103 0.00172 0.04368 0.33444 0.00103 0.00098

Table 3. Averaged solution values achieved by all algorithms for each test functions for proposition I.

Function GA PSOA FA CSA WSA ACO

f1 0.05754 0.02098 0.06574 0.03123 0.16919 0.00317
f2 0.09337 0.10636 0.08035 0.09318 0.10691 0.08546
f3 0.00046 0.00019 0.01644 0.15137 0.04208 0.00043
f4 0.00083 0.00165 0.00203 0.00913 0.0002 0.00035
f5 −186.918 −187.072 −186.914 −187.967 −187.053 −186.99
f6 0 0 0 0.00004 0 0.00053
f7 0.00272 0.00101 0.00023 0.00001 0.00634 0.00053
f8 −391.783 −391.824 −391.829 −391.919 −391.94 9411-391
f9 0.1072 0.23339 0.1063 0.98148 0.19899 0.00977
f10 0.00172 0.00006 0.00094 0.01052 0.00109 0.0015

Table 4. Averaged solution values achieved by all algorithms for each test functions for proposition II.

Function GA PSOA FA CSA WSA ACO

f1 0.03072 0.00027 0.08178 0.00217 0.0039 0.00032
f2 0.09337 0.07208 0.05691 0.07437 0.10287 0.06821
f3 0.00001 0 0 0.00006 0.00005 0.00002
f4 0.00079 0.00083 0.00166 0.00015 0.00011 0.00029
f5 −186.438 −186.29 −186.597 −186.563 −186.633 −186.694
f6 0.00001 0 0.00001 0.00003 0 0
f7 0.00124 0.00023 0.00005 0.00002 0.00013 0.00012
f8 −391.968 −391.893 −391.9878 −391.983 −391.926 −391.978
f9 0.01592 0.03343 0.0199 0.00995 0.01 0.00899
f10 0.00314 0 0.00971 0.00117 0.00073 0

Table 5. Averaged solution values achieved by all algorithms for each test functions for proposition III.

Function GA PSOA FA CSA WSA ACO

f1 0.00892 0.00913 0.00088 0.01001 0.00785 0.00339
f2 0.06694 0.02898 0.00948 0.01298 0.0238 0.00539
f3 0 0 0.0001 0.00044 0.00005 0.00001
f4 0.00218 0.001 0.00012 0.00179 0.00019 0.00049
f5 −186.692 −186.699 −186.694 −186.698 −186.698 −187.1
f6 0 0 0 0.00002 0 0
f7 0.00001 0.00007 0 0 0.00003 0.00008
f8 −391.893 −391.919 −391.99 −391.999 −391.993 −391.999
f9 0.00996 0.02995 0.12367 0 0.03033 0.00139
f10 0.00658 0.00023 0.00014 0.01467 0.00022 0

275

Appl. Sci. 2018, 8, 293

Table 6. Function error values achieved by all original algorithms for each test functions.

Function GA PSOA FA CSA WSA ACO

f1 −0.07593 −0.08617 −0.26872 −0.16432 −0.00257 −0.00319
f2 −0.12283 −0.16489 −0.18691 −0.17290 −0.12750 −0.13129
f3 −0.00172 −0.27991 −0.05206 −0.00948 −0.00029 −0.00192
f4 −0.00506 −0.00963 −0.00174 −0.01354 −0.00981 −0.00166
f5 −0.68573 −0.86850 −0.85691 −0.87632 −0.89550 −0.88475
f6 0 0 −0.00001 −0.00020 0 0
f7 −0.00106 −0.00062 −0.66179 −0.00035 −0.00025 −0.00037
f8 −0.67100 −0.41761 −0.65646 −0.25370 −0.40180 −0.40560
f9 −0.33445 −0.00103 −0.00172 −0.00006 −0.00094 −0.01052
f10 −0.00103 −0.00172 −0.04368 −0.33445 −0.00103 −0.00098

Table 7. Averaged errors values achieved by all algorithms for each test functions for proposition I.

Function GA PSOA FA CSA WSA ACO

f1 −0.05754 −0.02098 −0.06574 −0.03123 −0.16919 −0.00317
f2 −0.09337 −0.10636 −0.08035 −0.09318 −0.10690 −0.08546
f3 −0.00046 −0.00019 −0.01644 −0.15137 −0.04208 −0.00043
f4 −0.00083 −0.00165 −0.00203 −0.00913 −0.00020 −0.00035
f5 0.21804 0.37145 0.21421 0.26740 0.35291 0.28987
f6 0 0 0 −0.00004 0 0
f7 −0.00272 −0.00101 −0.00023 −0.00001 −0.00634 −0.00053
f8 −0.21651 −0.17610 −0.17057 −0.08075 −0.06011 −0.05886
f9 −0.01052 −0.00109 −0.00314 0 −0.00971 −0.00117
f10 −0.00172 −0.00006 −0.00094 −0.01052 −0.00109 −0.00150

Table 8. Averaged errors values achieved by all algorithms for each test functions for proposition II.

Function GA PSOA FA CSA WSA ACO

f1 −0.03072 −0.00027 −0.08178 −0.00217 −0.00390 −0.00032
f2 −0.09337 −0.07208 −0.05691 −0.07437 −0.10287 −0.06782
f3 −0.00001 0 0 −0.00006 −0.00005 −0.00002
f4 −0.00079 −0.00083 −0.00166 −0.00015 −0.00011 −0.00029
f5 −0.26173 −0.41035 −0.10293 −0.13672 −0.06741 −0.00622
f6 0 0 0 −0.00003 0 0
f7 −0.00124 −0.00023 −0.00005 −0.00002 −0.00013 −0.00012
f8 −0.03217 −0.10752 −0.01222 −0.01671 −0.07361 −0.02173
f9 −0.00117 −0.00073 −0.00658 −0.00023 −0.00014 −0.01467
f10 −0.00314 0 −0.00971 −0.00117 −0.00073 0

Table 9. Averaged errors values achieved by all algorithms for each test functions for proposition III.

Function GA PSOA FA CSA WSA ACO

f1 −0.00892 −0.00913 −0.00088 −0.01001 −0.00785 −0.00339
f2 −0.06694 −0.02898 −0.00948 −0.01298 −0.02380 −0.00539
f3 0 0 −0.00010 −0.00044 −0.00005 −0.00001
f4 −0.00218 −0.00100 −0.00012 −0.00179 −0.00019 −0.00049
f5 −0.00843 −0.00147 −0.00634 −0.00199 −0.00136 0.400033
f6 0 0 0 −0.00002 0 0
f7 −0.00001 −0.00007 0 0 −0.00003 −0.00008
f8 −0.10710 −0.08110 −0.00981 −0.00009 −0.00710 −0.00009
f9 −0.01467 −0.00022 0 −0.10287 −0.06782 −0.06694
f10 −0.00658 −0.00023 −0.00014 −0.01467 −0.00022 0

276

Appl. Sci. 2018, 8, 293

Table 10. Running time values achieved by all algorithms for each test functions for original algorithms.

Function GA PSOA FA CSA WSA ACO

f1 2006 1821 1648.8 1841 1626.3 1798
f2 2617 2775 2757 2647 2687 2674
f3 1151 905 896 898 903 891
f4 1432 1422 1421 1392 1401 1387
f5 5421 5500 5458 5240 5521 5341
f6 651 645 879 664 673 632
f7 730 720 783 715 706 711
f8 2818 2756 2929 2749 2755 2765
f9 801 804 935 798 803 803
f10 2252 2114 2769 2648 2273 2178

Table 11. Running time values achieved by all algorithms for each test functions for proposition I.

Function GA PSOA FA CSA WSA ACO

f1 1609.2 1784 1820 1802 1589 1673
f2 2377.7 2409.44 2432.7 2400.3 2382.3 2401
f3 812.7 822.6 808.2 815.4 806.4 812
f4 1417 1282.5 1275.3 1286.1 1276.2 1267
f5 4868.1 4860 4932 4914 4908.6 4912
f6 591.3 653 601.2 589.5 583.2 592.5
f7 635.4 633.6 682.6 636.3 586.08 581.4
f8 2301 2318 2529 2249 2492 2498
f9 720 702.24 763.6 714.6 732.6 712
f10 2048 2047 2234 2021 2089 2091

Table 12. Running time values achieved by all algorithms for each test functions for proposition II.

Function GA PSOA FA CSA WSA ACO

f1 1643.4 1584 1622.72 1583.12 1573.44 1602
f2 2399.4 2280 2583 2349 2482 2403
f3 789.36 801.68 786.72 762 782.32 773
f4 1247.84 1291.5 1260.16 1245.2 1249.84 1267
f5 4785.44 4772.24 4843.52 4762.56 4670.16 4694.95
f6 571.12 589.6 581.4 583.44 586.08 582.2
f7 648 583.44 603 586.08 602.8 589.2
f8 2491 2429 2539 2349 2483 2424
f9 601.5 728.64 704.88 620.25 724.24 636
f10 2124 2148 2348 2189 2290 2201

Table 13. Running time values achieved by all algorithms for each test functions for proposition III.

Function GA PSOA FA CSA WSA ACO

f1 1623.6 1349.25 1345.5 1367.25 1335.75 1401
f2 2418.24 2286.75 2449.8 2399.76 2690.25 2650
f3 788.48 756 673.5 678 672 673
f4 1258.4 1060.5 1062.75 1061.25 1060.5 1064
f5 4094.25 4091.25 4122.75 4001 4104 4005
f6 483 567.6 488.25 491.25 486 473
f7 584.32 495.75 545.75 497.25 496.5 491
f8 2202 2121 2292 2160.75 2176.5 2189
f9 718.96 601.5 703 597 635 606
f10 2103 2014 2261 2127 2221 2134

We also evaluated individual algorithms by assigning them ranks for each proposal—if the
algorithm obtained the most accurate solution for a given function using a particular technique,
it received one point. Results are presented in Figure 2, and it is easy to notice that depending on the

277

Appl. Sci. 2018, 8, 293

chosen proposal, another algorithm proved to be the best. It is easy to notice that depending on the
chosen proposal, another algorithm proved to be the best. Without any modification the best algorithm
was classic version of PSOA and ACO. Adding first proposition the best one were PSOA and FA, CSA,
ACO are in the second place equally, and with second proposals, there are the same scores. The third
modification allowed CSA and ACO to be the best algorithms. Of course, obtained results depend on
the equations of motion, their length and other factors affecting such a large palette of metaheuristic
methods. Not only, the accuracy was measured, but the duration of action with using multithreading
techniques. Measured time values are presented in Table 4, 10, 11, 12, 13 and on Figure 3. The use of
any modification shortens the operating time for almost every case compared to the original versions.
What is interesting, first and second proposition shortened time of approximately the same value,
when the third obtained the best result in this aspect. To accurately assess the operation time, we used
the formulas described in Equations (37) and (38), the obtained results are presented in Table 14. The
worst results were achieved for the first modification, than the third one and the second one as the
best one in terms of acceleration. Scalability for each proposition (having 6 cores) were approximately
successively 1.79, 1.79 and 1.86. To analyze these values, we also calculated the scalability for the 2
and 4 cores which results are presented in Figure 4. Ideal solution would be linear curve, but the more
cores are used, the worst scalability is. In the case of the first two proposals, it decreases quite rapidly.
However, the scalability of proposition III only minimally decreases after using more than 4 cores.
Another aspect is the number of iteration needed for the sequential version to get similar results
(approximately) to the presented proposals. The obtained data are presented in Table 15. In the case
of 6 cores (for proposition I and II), the number of iteration must be increased by almost 22–26%. Such a
large discrepancy is caused by the randomness of the algorithms (for example, the initial distribution of
the population). In the case of proposals III, the sequential algorithm needs about 29% more iterations.

Figure 1. The average error obtained for each version of the algorithm.

278

Appl. Sci. 2018, 8, 293

Figure 2. The performance ranking of tested algorithms—the number of times the algorithm ranked first.

Figure 3. Comparison of the average time needed to find the optimum for 100 individuals during
100 iterations for 100 tests for each algorithm and all tested versions.

Table 14. Obtained results from the use of parallelization for metaheuristic algorithms.

Metric Proposition I Proposition II Proposition III

Υ 1.11911 1.13374 1.24793
Φ 0.18652 0.18896 0.20799
G 1.78599 1.79463 1.86089

279

Appl. Sci. 2018, 8, 293

Table 15. The average amount of additional iterations needed to obtain similar results by a sequential algorithm.

Proposition GA PSOA FA CSA WSA ACO

Proposition I 28 27 29 30 31 28
Proposition II 37 35 35 41 33 32
Proposition III 40 39 43 44 41 39

Figure 4. Scalability for each proposition.

A factorial ANOVA test was conducted to compare the main effects of absolute error and running
time values among classic meta-heuristic and three proposed techniques. The results was significant
both for absolute error (F(3, 183) = 22.66, p < 0.001) and running time (F(3, 183) = 56.60, p < 0.001).
The results of Friedman-Nemenyi tests of ranking further reveal that the performance of Proposition
III is the best among all techniques in terms absolute error (p < 0.001, critical distance = 0.66; tied with
Proposition II) and running time (p < 0.001, critical distance = 0.66). The ranks of the methods within
the critical distance are not significantly different (see Figure 5). The results are confirmed by the
random permutation test (10000 permutations). Proposition III has lower absolute error than Classic
method (p = 0.88), Proposition I (p = 0.78), and Proposition II (p = 0.56). Proposition III has lower
running time than Classic method (p = 0.98), Proposition I (p = 0.84), and Proposition II (p = 0.88).

Figure 5. The results of Friedman-Nemenyi tests of ranking.

280

Appl. Sci. 2018, 8, 293

5. Conclusions

In this paper, we described six, classic meta–heuristic algorithms designed for optimization
purposes and proposed three techniques for increasing not only the accuracy, but also the efficiency of
the operation. Our ideas were based primarily on the action of multi–threading, which allowed placing
individuals of a given population in specific places where an extreme can be located. An additional
idea was to divide and manipulate the solutions space, which is interpreted as the natural environment
of the individuals in given population. These types of activities have been tested and analyzed in
terms of average error for selected functions and the time needed to perform the calculations to find a
solution. The obtained results indicated that each proposed modification shortens the time of operation,
but not all improve (significantly) the accuracy of the obtained measurements. The high scalability
of the proposal indicates that the increasing number of cores speeds up the work of modifications.
Moreover, each proposition showed the acceleration of the performance time as well as increasing the
accuracy of the obtained solutions regardless of the chosen heuristic algorithm.

While the proposed techniques of parallelization and manipulation of solution space have
improved the operation of classical algorithms, they are so flexible that can be streamlined and
improved by various ideas. In addition, this can allow to obtain even better results. This paper gives
only an example of the parallelization approach. It seems reasonable to divide the search space in
such a way that the area given to one particular core will be contained in the next and subsequent
one. In addition, a model of communication between populations would be needed to exchange
information about unfavorable areas. This would allow them to be removed from space and extended
to another area on each core. In practice, this will eliminate unnecessary searches of uninteresting
places, and at the same time increase precision (allowing individuals to move around in better places)
and reduce computation time due to the reduction of the area on all cores.

Acknowledgments: Authors acknowledge contribution to this project to the Diamond Grant
No. 0080/DIA/2016/45 funded by the Polish Ministry of Science and Higher Education and support
from Software Engineering Department at Kaunas University of Technology, Lithuania.

Author Contributions: Dawid Połap, Karolina Kęsik, Marcin Woźniak and Robertas Damaševičius designed
the methods, performed experiments and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shaoping, L.; Taijiang, M.; Zhang, S. A survey on multiview video synthesis and editing.
Tsinghua Sci. Technol. 2016, 21, 678–695.

2. Hong, Z.; Jingyu, W.; Jie, C.; Shun, Z. Efficient conditional privacy-preserving and authentication scheme
for secure service provision in vanet. Tsinghua Sci. Technol. 2016, 21, 620–629.

3. Rostami, M.; Shahba, A.; Saryazdi, S.; Nezamabadi-pour, H. A novel parallel image encryption with chaotic
windows based on logistic map. Comput. Electr. Eng. 2017, 62, 384–400

4. MY, S.T.; Babu, S. An intelligent system for segmenting lung image using parallel programming.
In Proceedings of the International Conference on Data Mining and Advanced Computing (SAPIENCE),
Ernakulam, India, 16–18 March 2016; Volume 21, pp. 194–197.

5. Lan, G.; Shen, Y.; Chen, T.; Zhu, H. Parallel implementations of structural similarity based no-reference
image quality assessment. Adv. Eng. Softw. 2017, 114, 372–379.

6. Khatami, A.; Babaie, M.; Khosravi, A.; Tizhoosh, H.R.; Nahavandi, S. Parallel Deep Solutions for Image
Retrieval from Imbalanced Medical Imaging Archives. Appl. Soft Comput. 2017, 63, 197–205.

7. Alzubaidi, M.; Otoom, M.; Al-Tamimi, A.K. Parallel scheme for real-time detection of photosensitive
seizures. Comput. Biol. Med. 2016, 70, 139–147.

8. Munguía, L.; Ahmed, S.; Bader, D.A.; Nemhauser, G.L.; Goel, V.; Shao, Y. A parallel local search framework
for the fixed-charge multicommodity network flow problem. Comput. OR, 2017, 77, 44–57.

9. Gomis, H.M.; Migallón, V.; Penadés, J. Parallel alternating iterative algorithms with and without
overlapping on multicore architectures. Adv. Eng. Softw. 2016, 10, 27–36.

281

Appl. Sci. 2018, 8, 293

10. Woźniak, M.;Połap, D. Hybrid neuro-heuristic methodology for simulation and control of dynamic systems
over time interval. Neural Netw. 2017, 93, 45–56.

11. Tapkan, P.; Özbakir, L.; Baykasoglu, A. Bee algorithms for parallel two-sided assembly line balancing
problem with walking times. Appl. Soft Comput. 2016, 39, 275–291.

12. Tian, T.; Gong, D. Test data generation for path coverage of message-passing parallel programs based on
co-evolutionary genetic algorithms. Autom. Softw. Eng. 2016, 23, 469–500.

13. Maleki, S.; Musuvathi, M.; Mytkowicz, T. Efficient parallelization using rank convergence in dynamic
programming algorithms. Commun. ACM 2016, 59, 85–92.

14. De Oliveira Sandes, E.F.; Maleki, S.; Musuvathi, M.; Mytkowicz, T. Parallel optimal pairwise biological
sequence comparison: Algorithms, platforms, and classification. ACM Comput. Surv. 2016, 48, 63.

15. Truchet, C.; Arbelaez, A.; Richoux, F.; Codognet, P. Estimating parallel runtimes for randomized algorithms
in constraint solving. J. Heuristics 2016, 22, 613–648.

16. D’Andreagiovanni, F.; Krolikowski, J.; Pulaj, J. A fast hybrid primal heuristic for multiband robust
capacitated network design with multiple time periods. Appl. Soft Comput. 2015, 26, 497–507.

17. Gambardella, L.; Luca, M.; Montemanni, R.; Weyland, D. Coupling ant colony systems with strong
local searches. Eur. J. Oper. Res. 2012, 220, 831–843.

18. Whitlay, D.; Gordon, V.; Mathias, K. Lamarckian evolution, the Baldwin effect and function optimization.
In Proceedings of the International Conference on Parallel Problem Solving from Nature, Jerusalem, Israel,
9–14 October 1994; pp. 5–15.

19. Woźniak, M.; Połap, D. On some aspects of genetic and evolutionary methods for optimization purposes.
Int. J. Electr. Telecommun. 2015, 61, 7–16.

20. Blum, C.; Roli, A.; Sampels, M. Hybrid Metaheuristics: An Emerging Approach to Optimization;
Springer: Berlin/Heidelberg, Germany, 2008.

21. Luenberger, D.G.; Ye, Y. Linear and Nonlinear Programming; Springer: Berlin/Heidelberg, Germany, 1984.
22. Lawrence, D. Handbook of Genetic Algorithms; Van Nostrand Reinhold: New York, NY, USA, 1991.
23. Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling

salesman problem. IEEE Trans. Evolut. Comput. 1997, 1, 53–66.
24. Ojha, V.K.; Ajith, A.; Snášel, V. ACO for continuous function optimization: A performance analysis.

In Proceedings of the 14th International Conference on Intelligent Systems Design and Applications (ISDA),
Okinawa, Japan, 28–30 November 2014; pp. 145–150.

25. Clerc, M. Particle Swarm Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2010.
26. Yang, X.-S. Firefly algorithm, stochastic test functions and design optimization. Int. J. Bio-Inspir. Comput.

2010, 2, 78–84.
27. Yang, X.-S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the NaBIC 2009 World Congress on

Nature & Biologically Inspired Computing, Coimbatore, India, 9–11 December 2009; pp. 210–214.
28. Rui, T.; Fong, S.; Yang, X.; Deb, S. Wolf search algorithm with ephemeral memory. In Proceedings of

the Seventh IEEE International Conference on Digital Information Management (ICDIM), Macau, Macao,
22–24 August 2012; pp. 165–172.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

282

applied
sciences

Article

Event-Driven Sensor Deployment in an Underwater
Environment Using a Distributed Hybrid Fish Swarm
Optimization Algorithm

Hui Wang 1,2 , Youming Li 1,*, Tingcheng Chang 2, Shengming Chang 1 and Yexian Fan 2

1 Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China;
wangh0802@163.com (H.W.); csm20130504@163.com (S.C.)

2 Department of Computer Science Engineering, Ningde Normal University, Ningde 352000, China;
18250922163@163.com (T.C.); yfan@ndnu.edu.cn (Y.F.)

* Correspondence: liyouming@nbu.edu.cn; Tel.: +86-152-8030-0017

Received: 4 August 2018; Accepted: 10 September 2018; Published: 13 September 2018

Abstract: In open and complex underwater environments, targets to be monitored are highly dynamic
and exhibit great uncertainty. To optimize monitoring target coverage, the development of a method
for adjusting sensor positions based on environments and targets is of crucial importance. In this
paper, we propose a distributed hybrid fish swarm optimization algorithm (DHFSOA) based on the
influence of water flow and the operation of an artificial fish swarm system to improve the coverage
efficacy of the event set and to avoid blind movements of sensor nodes. First, by simulating the
behavior of foraging fish, sensor nodes autonomously tend to cover events, with congestion control
being used to match node distribution density to event distribution density. Second, the construction
of an information pool is used to achieve information-sharing between nodes within the network
connection range, to increase the nodes’ field of vision, and to enhance their global search abilities.
Finally, we conduct extensive simulation experiments to evaluate network performance in different
deployment environments. The results show that the proposed DHFSOA performs well in terms of
coverage efficacy, energy efficiency, and convergence rate of the event set.

Keywords: underwater environment; sensor deployment; event-driven coverage; fish swarm
optimization; congestion control

1. Introduction

Underwater acoustic sensor networks (UASNs) are new network systems developed for
underwater monitoring. UASNs are composed of numerous sensor nodes with capabilities that
include information perception, data storage, data processing, underwater acoustic communication,
and more. UASNs have been drawing increasing attention from both governments and research
centers due to their extensive use in marine resources surveys, pollution monitoring, aided-navigation,
and tactical surveillance. They are a hot topic in the study of sensor networks [1,2].

Recent studies of UASNs have mainly focused on node deployment, location tracking,
routing algorithms, energy efficiency strategies, water safety, and other practical aspects. However,
the research on node deployment of UASNs (also called coverage control) actually has its
shortcomings [3–5]. Node deployment in UASNs has unique challenges which are not found in
the deployment of land sensor networks. These include the influence of ocean currents and other
factors, the fact that the underwater environments and monitoring targets are more dynamic than their
land counterparts, and the challenge that underwater sensor nodes cannot be static and fixed in the
monitoring space; instead, network topology must evolve gradually with network operation [6–8].
Therefore, developing a method for adjusting the position of sensor nodes autonomously in response

Appl. Sci. 2018, 8, 1638; doi:10.3390/app8091638 www.mdpi.com/journal/applsci283

Appl. Sci. 2018, 8, 1638

to a changing environment, as well as achieving an effective monitoring system for target waters,
are two of the problems researchers face when employing underwater wireless sensor networks.

In recent years, UASN deployment algorithms have mainly included graph-based classes [9],
body-centered cubes [10], virtual force classes [11], and group-based intelligent optimization
classes [12]. The first three types of redeployment algorithms are relatively complex and thus are
not suitable for solving large-scale underwater environment problems. The group-based intelligence
optimization algorithm [13], however, can generally determine the optimal solution of a complex
optimization problem faster than traditional optimization algorithms [14]. This algorithm is simple to
calculate, is neither a centralized nor a global model, and is highly versatile since it utilizes the
advantages of group distributed searching. The artificial fish swarm algorithm is an emerging
metaheuristic, bionic cluster, intelligent optimization algorithm. Inspired by the operation of the
fish swarm system, this paper proposes a distributed hybrid fish swarm optimization algorithm
(DHFSOA). The proposed DHFSOA is implemented and its performance is evaluated by simulation.

The following is the general framework of this paper: Section 2 introduces related works; Section 3
defines the underwater sensor deployment problem and its performance metrics; Section 4 presents
a detailed introduction to the DHFSOA algorithm; Section 5 consists of a comprehensive evaluation;
Section 6 contains our summary and conclusions.

2. Related Works

Swarm Intelligence (SI) is a feature of subjects without intelligence or with simple intelligence
exhibiting intelligent behavior through any form of aggregation and collaboration. It is an important
branch of artificial intelligence (AI) [15]. Without centralized control and without providing a global
model, swarm intelligence provides the basis for finding solutions to complex distributed problems.
At present, many research achievements have been made in the field of underwater sensor network
coverage control. This section will summarize the coverage control algorithm based on group
intelligence optimization.

Iyer [16] proposed an underwater sensor network positioning and deployment scheme based
on the genetic algorithm of optimization technology, which determined the fewest number of nodes
required to cover an area of interest (AOI). However, this kind of algorithm is obviously easy to fall
into local optimum when the network connectivity is not high, and the influence of water flow is not
considered. Yiyue [17] proposed an optimal deployment algorithm based on an artificial fish swarm
algorithm. This deployment algorithm simulates the preying and following behaviors of artificial fish
in order to determine the maximum coverage value. The proposed artificial fish deployment algorithm
improves the coverage performance of the common artificial fish algorithm. The inadequacy is that it
does not take into account the self-adaptability of the search step size and the information sharing of
all nodes in the network, so it is easy to fall into local optimum in the later stage. Dhillon [18] proposed
the max average coverage deployment (MACD) algorithm, which uses the grid model to simulate the
monitoring area and completes node deployment by utilizing the greedy iterative strategy. The MACD
can achieve higher network coverage and connectivity rates, even achieving full network coverage and
connectivity. However, since high node density is needed for its successful deployment, this algorithm
cannot be applied in situations with sparse underwater sensor network deployment.

In response to the aforementioned shortcomings, Du [19] proposed a particle swarm-inspired
underwater sensor self-deployment (PSSD) algorithm that fully utilizes the behavioral characteristics
of particle swarms and effectively solves the network coverage problem. However, there exist
two obvious disadvantages in this algorithm, one is that it only considers the network coverage
of events, and it is difficult to obtain higher network connectivity rates. In addition, since nodes may
move blindly when using this algorithm, given their limited energy and the large energy consumption
in an underwater environment, underwater nodes will die due to the rapid exhaustion of energy.
The other is that the PSSD algorithm was inspired by the classic group intelligence optimization
algorithm-particle swarm optimization (PSO). For the traditional optimization algorithm, PSSD is

284

Appl. Sci. 2018, 8, 1638

a simple and effective optimization problem, with one obvious drawback, which is the tendency to fall
into local extremes [20].

Taking into consideration both the effectiveness and the limitations of the above PSSD algorithm,
as well as the non-uniform deployment of underwater monitoring nodes, a distributed hybrid fish
swarm optimization algorithm (DHFSOA) is proposed. The DHFSOA provides sensor nodes with an
autonomous tendency to cover events by simulating fish foraging behavior and congestion control.
Additionally, the concept of an “information pool” is introduced in order to expand the visual range of
nodes and avoid blind movements, thus reducing node energy consumption during deployment.

3. Preliminaries

3.1. Description of the Problem

Assume that n underwater sensor nodes are deployed in the monitoring area A and si represents
the ith node in the network, so that the corresponding sensor node set is S = {s1, s2, · · · , sn}.
The dynamic point e, which users are interested in, is referred to as an event; thus, in monitoring area A,
the event set E = {ei |ei ∈ A, i = 1, 2, · · · , m}. Assuming that any underwater node has the ability to
sense, communicate, and move, Bj =

(
rs

j , rc
j , lj, Pj

)
, where rs

j , rc
j , lj, Pj respectively represent the radius

of perception, the radius of communication, the maximum moving step length of node sj, and the
current position of the node sj, and rs

j ≥ 0, rc
j ≥ 0, and lj ≥ 0 (0 ≤ j ≤ n). In a homogeneous network,

all nodes have the same attributes, which are rs
j = rs, rc

j = rc, and lj = l (0 ≤ j ≤ n). A sensor node
can sense an event and communicate with its neighbor nodes to obtain status information (number of
events covered) of neighbor nodes. The task of a node is to cover an event, collect information about
the event, and maintain connectivity between nodes.

3.2. Coverage Perception Model

It is assumed that in the monitoring area A, the coverage model of each underwater sensor
node is a sphere with the sphere’s center as the node’s coordinates and rs

j as its radius of perception.
The communication range is also a sphere, with radius rc

j . To ensure the connectivity of the network,
the radius of communication is set to be greater than or equal to twice the radius of perception; that is,
rc

j ≥ 2rs
j [21]. Assume the Euclidean distance d

(
ei, sj

)
between event ei and sensor node sj is

d
(
ei, sj

)
=

√(
xj − x′ i

)2
+
(
yj − y′ i

)2
+
(
zj − z′ i

)2, (1)

where coordinate
(

xj, yj, zj
)

is the coordinate of node sj and coordinate
(

x′ j, y′ j, z′ j
)

is the coordinate

of event ei. The probability that the defined event ei is covered by the sensor node sj is p
(
ei, sj

)
.

A Boolean sensor coverage model is used to simplify the computation, and the probability is a binary
function [22]:

p
(
ei, sj

)
=

{
1, d

(
ei, sj

) ≤ rs,
0, otherwise.

(2)

If d
(
ei, sj

) ≤ rs, node sj covers event ei. In this case P
(
ei, sj

)
equals 1; otherwise, it is equal to 0.

Similar to the calculation process for a two-dimensional sensor coverage area, the probability that the
underwater three-dimensional space event ei is covered by node set S is P (ei, S), where

p (ei, S) = p (ei, s1) ∨ p (ei, s2) ∨ · · · ∨ p (ei, sN) = 1 −
N

∏
i=1

(1 − p (ei, si)). (3)

285

Appl. Sci. 2018, 8, 1638

Definition 1. According to the preceding analysis, the relative effective coverage degree of event ei can be
described as [19]:

DA (ei) = ∑
sj∈S

p
(
ei, sj

)
1 + ∑

ei∈E
I
(
d
(
ei, sj

) ≤ rs
) , (4)

where I(·) is an indicator function, that is, when the condition d
(
ei, sj

) ≤ rs is satisfied, I
(
d
(
ei, sj

) ≤ rs) is
equal to 1; otherwise, it is 0. ∑

ei∈E
I(d(ei, sj) ≤ rs) indicates the number of adjacent events ei for node sj.

3.3. Evaluation Standards

In this section, we introduce the coverage efficiency of the event set as well as the network
coverage in order to measure the performance of the proposed method.

Definition 2. Coverage entropy of the event set [19]. This measures the degree of coverage uniformity, and can
be calculated as

HA (E) = ∑
ei∈E

D′
A (ei) lg

1
D′

A (ei)
, (5)

where the normalized coverage degree D′
A (ei) is

D′
A (ei) =

DA (ei)

∑
ej∈E

DA
(
ej
) . (6)

It is well known that the coverage entropy of event set HA (E) reaches its maximum value lg m
only when D′

A (ei) = 1
m (for i = 1, ..., m) has equal probability.

Definition 3. Network coverage Cv is

Cv =
t̃e

te
, (7)

where t̃e is the number of the events covered by nodes and te is the total number of the events.

Definition 4. The coverage efficiency of the event set is [19]

η (E) = α
HA (E)

lg m
+ β

ñ
n

, (8)

where α, β ∈ [0, 1], α + β = 1 and ñ is the number of events covered by nodes.

From Definition 4, we can see that when all nodes cover events, that is, n = ñ, and simultaneously
the coverage entropy HA (E) reaches a maximum value of lg m, η (E) will reach its maximum value of
1. Putting it simply, the main goal of underwater node deployment is to place nodes so as to achieve
the maximum value of η (E).

4. Node Deployment Scheme for UASNs Based on the DHFSOA

The artificial fish swarm algorithm (AFSA) is a heuristic intelligent search algorithm for global
optimization. By simulating the preying and survival activities of fish, the AFSA can solve combination
optimization problems such as optimal ordering, grouping, or screening of discrete events with a faster
convergence speed than previous methods. The fish swarm algorithm and the underwater mobile

286

Appl. Sci. 2018, 8, 1638

sensor network are intrinsically related. The sensor node in the sensor network is equivalent to the
artificial fish in the AFSA, events are equivalent to food, and the process of the node sensing the event
is equivalent to the process of artificial fish searching for food. Therefore, the AFSA has been widely
used in underwater mobile sensor networks.

In this study, we propose a DHFSOA and apply it to UASNs. Inspired by the operation of the
fish swarm system, the DHFSOA gives the sensor nodes an autonomous tendency to cover events
by simulating fish foraging and adjusts the distribution of nodes based on the degree of congestion.
Additionally, the concept of an “information pool” is proposed, which expands the node’s visual range
and accelerates the algorithm’s global search capability. Figure 1 is the flow chart of the artificial fish
swarm algorithm. Behaviors such as preying, following, and swarming, which occur when fish forage,
are the basis for the overall optimization.

Figure 1. Flow chart of the artificial fish swarm algorithm.

(1) Preying behavior: preying behavior consists of fish randomly swimming in search of food; let the
current state of the artificial fish be Xi, randomly select a state Xj within its visual range. When the

287

Appl. Sci. 2018, 8, 1638

maximal value problem is obtained, if Yi < Yj, then go further in the direction, that is Xnext;
otherwise, re-randomly select the state Xj, judging whether the forward condition is satisfied;
after repeatedly trying Nmax times, if the forward condition is still not satisfied, the step is
randomly moved.

(2) Following behavior: following behavior occurs when a fish finds a location with abundant food
and other fish quickly follow; suppose the current state of the artificial fish is Xi, the number of
partners in the current neighborhood (dij < Visual) is n f , and the partner with the highest food

concentration among the (n f) partners is Xj (food concentration is Yj), if
Yj
n f

> δYi, indicating that
the state of partner Xj has a higher food concentration and it is not too crowded around, then
goes further in the direction of Xj; otherwise, the preying behavior is performed.

(3) Swarming behavior: swarming behavior is the tendency for fish to naturally gather in groups
while swimming. Set the number of partners in the current neighborhood (dij < Visual) to be n f ,
and the central position status to be Xc. if Yc

n f
> δYi, indicating that the partner center has more

food and the surrounding area is less crowded, moving further toward the partner center position
Xc; otherwise, the preying behavior is performed.

Of course, the proposed DSFSOA mainly includes two kinds of behaviors: preying and following.
In the following sections, the DHFSOA will be described in detail.

4.1. Construction of the Information Pool

Fish, whether real or artificial, rely on their vision to perceive external conditions, as shown in
Figure 2. Here, Xi is the current position of the artificial fish, Visual is its visual range, and Xh is
the visual position at a particular time. If the concentration of food at the visual position is greater
than that of the current position, it is assumed that the fish will proceed towards the visual position,
thus arriving at the next position, Xnext. Otherwise, the artificial fish continues to swim within its visual
range. The more the fish swims within its visual range, the more comprehensive the understanding of
the state within its visual range will become. This results in a full-scale, stereoscopic perception of the
surrounding environment, which aids with corresponding judgments and decisions.

Figure 2. Concept of artificial fish vision.

The sensor node in the DHFSOA is equivalent to the artificial fish in the AFSA, the radius of the
communication rc is equivalent to the visual range of the artificial fish, and the event is equivalent to
the food. The process of the mobile node exploring the larger network coverage in the sensor network
is similar to the preying and following behaviors of individual artificial fish, and the network coverage
of the sensor nodes is analogous to the food concentration in the environment of the artificial fish.
However, the traditional artificial fish swarm algorithm cannot be directly applied to the underwater

288

Appl. Sci. 2018, 8, 1638

sensor network, mainly due to the fact that sensor nodes have limited amounts of energy. Given this
limitation, excessive exploration by sensor nodes within their visual range will lead to their premature
death. To enhance the global optimization and neighborhood search capabilities of the artificial fish
swarm algorithm, while at the same time avoiding falling into a local optimum, an information pool
is introduced here. As shown in Figure 3, it is assumed that there are five nodes in the underwater
sensor network S = {s1, · · · , s5}, and that each node can sense the surrounding events, here the event
coverage is defined as the concentration F = { f1, · · · , f5}. If all other nodes within the radius of
communication of a node are referred to as neighbor nodes, then the neighbor nodes of the five nodes
si (i = 1, 2, · · · , 5) are represented as g1 = {s2, s3}, g2 = {s1}, g3 = {s1, s4}, g4 = {s3}, and g5 = {φ}.

The information pool (which can also be thought of as a set) is constructed as follows: each node
si transmits data (the data mainly consist of the neighbor nodes and the number of coverage events)
to each of its neighbor nodes through the network, and each neighbor node then transmits data to
neighbor nodes other than the node that sent the data. Continue in this fashion until the data have
traversed all the nodes in the connected state. Thus, the information pool in Figure 3 consists of
node s1, s2, s3, and s4, that is, Csum = {s1, s2, s3, s4}, and node s5 is an isolated point. The benefits of
the information pool in DSFSOA do not just include an increase in the global search speed of nodes
(analogous to fish), but also consist of improvements in network connectivity through collaboration
between nodes. As shown in Figure 4, the isolated node s5 improves its isolated state through the
preying behavior, establishes the connectivity between the node s5 and the network, and expands the
amount of information in the information pool, that is, Csum = {s1, s2, s3, s4, s5}, The next step will be
to focus on the self-organizing deployment process of nodes. The pseudo-code of the information pool
construction algorithm is in Algorithm 1.

Algorithm 1: Construction of the Information Pool (Output Set Csum).
1: si ← a node in monitoring area A;
2: Compute the set formed by node sj, neighbor of node si, Ci = {sj|d(si, sj) ≤ rc};
3: Csum = Ci

⋃{si};
4: Ctmp = Ci;
5: while

(∣∣Ctmp
∣∣ �= 0

)
do

6: Ck =
|Ctmp|⋃

j=1

{
sk
∣∣d (sk, sj

) ≤ rc };

7: Ctmp = Ck − Csum;
8: Csum = Ck

⋃
Csum;

9: end while

10: Output Csum;

Figure 3. An example of information pool construction (there is an isolated node s5).

289

Appl. Sci. 2018, 8, 1638

Figure 4. An example of information pool construction (no isolated nodes).

4.2. Description of Artificial Fish Behaviors

The artificial fish swarm optimization algorithm is a centralized, group intelligence search method.
Inspired by the operation of the artificial fish swarm system, this paper proposes a distributed and
achievable underwater sensor node deployment algorithm, the DHFSOA. The process in which
nodes in the sensor network tend to increase network coverage is similar to the preying and
following behaviors of artificial fish. Prior to introducing the two behaviors, the following definitions
are provided:

Definition 5. Congestion. The allowed congestion of node si in monitoring area A is

σ (si) = ψ · Ne (si) , (9)

where the constant ψ represents the expected coverage of a single event and Ne (si) represents the number of
events covered by node si, expressed as

Ne (si) = ∑
ej∈E

p
(
ej, si

)
. (10)

Definition 6. The number of nodes Ns
ne (si) within the communication range and the number of nodes Ns

co (si)

within the perceived range of the node si can be expressed as

Ns
ne(si) = card(λ(sj)), (11)

where card(λ(sj)) indicates the number of nodes in the collection λ(sj), λ
(
sj
)

={
sj
∣∣d (si, sj

) ≤ rc, 1 ≤ i, j ≤ n, i �= j
}

represents the set of nodes sj within the communication radius
of the node si, and d

(
si, sj

)
represents the Euclidean distance between node si and sj:

Ns
co(si) = card(γ(sj)), (12)

where γ
(
sj
)

=
{

sj
∣∣d (si, sj

) ≤ rs, 1 ≤ i, j ≤ n, i �= j
}

represents the set of nodes sj within the perceived range
of the node si

Next, the behavioral description of the artificial fish will be specifically described. n sensor nodes
are randomly scattered in the underwater monitoring area A. Node si may perform the following
operations based on its own status as well as that of its neighbor nodes:

(1) Following behavior: Set the number of partners in the visible domain (radius of communication
being rc) of node si as Ns

ne (si), Ns
ne (si) > 0 and information pool built with the partners as Csum,

and determine the optimal node sopt in Csum,

290

Appl. Sci. 2018, 8, 1638

sopt = arg max
sk∈Csum

{Ns
ne (sk)} . (13)

If node si finds more events covered at sopt and sopt is less crowded, i.e., Ne
(
sopt

) ≥ Ne (si) and
Ns

co
(
sopt

)
< σ

(
sopt

)
, then move one step toward the position of partner sopt:

Xnext = Xi + rand (l)× Xopt − Xi∥∥Xopt − Xi
∥∥ , (14)

where Xi and Xopt represent position vectors of si and sopt respectively, and l is the value of the
moving step.

(2) Preying behavior: Set the number of partners in the visible domain (radius of communication
being rc) of node si as Ns

ne (si), Ns
ne (si) = 0, which indicates that node si is in an isolated state. l is

the maximum value of the moving step. Set the current position of node si as �xi, and randomly
move to the new position �xj within its maximum moving step l:

Xnext = Xi + rand (l)× Xi − Xj∥∥Xi − Xj
∥∥ , (15)

where rand(l) represents the random value between 0 to l. If Ne (si) increases, the preying
behavior is successful; if the preying fails, then it randomly reselects a new position. After
repeating this process Nmax times (In general, the value of Nmax is small, mainly based on our
practical experience and repeated experiments [23].), if Ne (si) still cannot be increased, then
randomly move forward one step:

Xnext = Xi + rand (−l, l)× U, (16)

where U is an arbitrary unit vector, and rand(−l, l) represents a random number between −l and l.

4.3. Description of the DHFSOA

The preceding section describes the process of the sensor nodes simulating the preying and
following behaviors of artificial fish. The following analogous behavior can help the sensor node
move to an improved state, thus accelerating the convergence of the algorithm. Preying behavior
is characterized by the searching activity of the sensor node within the radius of communication rc,
which ensures that the sensor node continues moving towards the optimal state. In addition, in the
early stages of algorithm implementation, a larger step size should be adopted. This allows the sensor
node to perform a coarse search within a larger range and helps to enhance the global search ability
and convergence speed of the algorithm. As the search progresses, the step size is gradually reduced,
and the algorithm slowly evolves into a local search. The sensor node eventually locates the area near
the optimal position for a precise search, thereby improving the local search capability of the algorithm
and the accuracy of the optimization result. Therefore, the step size l of the node is adjusted as follows:

lIter = lIter−1 × a + lmin, (17)

a = exp
(
−g ×

(
Iter

IterNum

)g)
, (18)

where l is the maximum value of the moving step, lmin is the minimum value of the moving step, Iter is
the current number of iterations, and IterNum is the maximum number of iterations. It is known from
Equation (17) that the moving step depends on the value of a, and the value of a is determined by k
and g. Figure 5a depicts the relationship between parameter k, g and a when Iter is 20 and IterNum is

291

Appl. Sci. 2018, 8, 1638

50. It is easy to see that the value of a increases as g increases, but decreases as k increases. When k
and g are fixed, it is apparent that function a = f (Iter) in Equation (18) is a subtraction function in the
interval [1, IterNum]. Therefore, the choice of k should be as large as possible, while the choice of g
should be as small as possible. k = 20 and g = 5 are based on our practical experience and repeated
experiments. Figure 5b shows the relationship between a and Iter when k = 20 and g = 5. The DHFSOA
algorithm uses the maximum value at the beginning of the search, then gradually reduces it, eventually
reaching and maintaining the minimum, which is in line with the original intention of the design.
Based on the above description, a complete underwater sensor node placement algorithm inspired by
fish swarms is presented in Algorithm 2.

Algorithm 2: DHFSOA Description

1: Input: Bi =
(
rs

i , rc
i , li, Pi

)
, IterNum;

2: Output: Pk+1
i ;

3: S = {s1, s2, · · · , sn} ← Randomly deploy sensors in UWSNs;
4: for k = 1, 2,· · · , IterNum do

5: Ne (si), i ∈ [1, n] ← Detect events covered by node si;
6: Ns

co (si),i ∈ [1, n] ← Number of nodes within the node’s perceived range;
7: if Ns

ne(si) > 0 then

8: Use Algorithm 1 to get Set Csum;
9: Sort the nodes in Set Csum according to the number of events covered, find Set �,

and satisfy Ne
(
sopt

) ≥ Ne (si) and Ns
co
(
sopt

)
< σ

(
sopt

)
;

10: sopt = arg max
sk∈�

{Ne (si)};

11: Perform following behavior and move closer to node sopt;
12: else

13: for Nprey = 1, 2, · · · , Nmax do

14: Perform preying behavior and randomly move;
15: if Ne (s′ i) > Ne (si) do

16: break;

17: endif

18: endfor

19: end if

20: end for

(a) (b)

Figure 5. Selection of relevant parameters of the moving step in the DSFSOA(distributed hybrid fish
swarm optimization algorithm) algorithm. (a) the relationship between parameter k, g and a when Iter
is 20 and IterNum is 50; (b) the relationship between a and Iter when k = 20 and g = 5.

292

Appl. Sci. 2018, 8, 1638

5. Performance Analysis

To fully verify the performance of the DHFSOA algorithm proposed in this paper, multiple Monte
Carlo simulation experiments were implemented in the ocean (3D) node deployment on the Matlab
platform(2016b, MathWorks, Natick, MA, USA). The PSSD algorithm is a typical non-uniform
deployment algorithm for underwater wireless sensor network nodes. To evaluate the performance
of the DHFSOA algorithm, the PSSD algorithm was selected for comparison. Evaluation included
simulation, comparison, and analysis of network coverage, coverage efficacy of the event set, and total
moving distance of the node. In addition, to eliminate any random effects of individual experiments,
the final result was the average of 30 experiments. The parameter settings and experimental parameters
of the algorithm are shown in Table 1.

Table 1. Simulation parameters.

Parameter Value Parameter Value

Node’s radius of perception rs 50 m Maximum number of iterations Tmax 50
Node’s radius of communication rc 100 m Constant Nmax 5

Length of moving step l 15 m Constant ψ 0.1

5.1. Static Environment Sensor Deployment

Three sets of experiments were implemented in a three-dimensional monitoring area of
200 m × 200 m × 200 m: (1) six sensor nodes and 40 events were unevenly distributed in a T shape;
(2) six sensor nodes and 40 events were randomly distributed; and (3) six sensor nodes and 40 events
were unevenly distributed in a line.

Figure 6 shows the results of the DSFSOA algorithm for self-organizing deployment of nodes.
The light blue sphere represents the three-dimensional sensing range of the sensor node (the red center
of the sphere is the position of the node), and the blue star represents the event. It can be seen that
the DHFSOA algorithm is capable of achieving a final state in which all events covered by nodes and
there is a good match between node distribution density and event distribution density.

The PSSD algorithm and the DHFSOA were used to deploy the sensor nodes. Figure 7 shows
the evolution of the total moving distance and event coverage for the two algorithms in the three
experiments. It should be noted that the final result for each set of experiments here is the average
of 30 experiments. It can be seen in Figure 7a,c,e that the DHFSOA algorithm not only achieved
high coverage of the event, but indeed achieved optimal coverage after just a few moves of the
node, demonstrating faster convergence speed than the PSSD. More critically, the DHFSOA algorithm
overcame the node blindness found in the traditional heuristic random search algorithm, while the
PSSD algorithm exhibited significant instability and a poor final result. Figure 7b,d,f, is a comparison
of the trend of the total moving distance of the node with the change of the number of iterations of
the DSFSOA algorithm and the PSSD. It is clear that the DHFSOA algorithm greatly decreases the
total moving distance of nodes during deployment compared with the PSSD algorithm. This is mainly
due to the fact that the nodes in the PSSD algorithm make blind movements. The DHFSOA algorithm
utilizes information sharing between the nodes based on the information pool. This improves the
global sensing ability of the distributed fish swarm algorithm and thus avoids the blind movement of
nodes, thereby reducing the total moving distance of nodes during deployment.

293

Appl. Sci. 2018, 8, 1638

(a) (b)

(c)

Figure 6. Achievement of self-organized Deployment of Nodes using the DHFSOA. (a) events unevenly
distributed in a T shape; (b) 40 events randomly distributed; (c) 40 events unevenly distributed linearly.

(a) (b)

Figure 7. Cont.

294

Appl. Sci. 2018, 8, 1638

(c) (d)

(e) (f)

Figure 7. Comparison of the evolution of total moving distance and event coverage of two methods
in three sets of experiments. (a) Experiment 1: average coverage; (b) Experiment 1: total moving
distance of nodes; (c) Experiment 2: average coverage; (d) Experiment 2: total moving distance of
nodes; (e) Experiment 3: average coverage; (f) Experiment 3: total moving distance of nodes.

5.2. Sensor Deployment in a Dynamic Environment

To analyze the reliability and adaptability of the DHFSOA algorithm, this section explores the
results of sensor deployment in a non-uniformly covered, dynamic ocean environment. Water flow
velocity was generated based on a model presented in a previous study [19,24]; model parameters are
listed in Table 2. The update period T for sensors in the DHFSOA was 0.5 s.

For the case in which events take place in a dynamic ocean environment, flowing water will cause
their positions to change. The simulation results at four different times are shown in Figure 8a–d.
As can be seen in the figures, when events present a linear distribution, underwater nodes also exhibit
a linear distribution, and regions with high event densities have more underwater nodes. It can be seen
that underwater nodes move with events and always present the same distribution shape. The node
covers the events well, and achieves the matching of underwater node density and event density.

295

Appl. Sci. 2018, 8, 1638

(g) (h)

(i) (j)

Figure 8. The distribution of sensor nodes and events at times t1 to t4. (a) initial time node t1 and
event distribution; (b) initial time node t2 and event distribution; (c) initial time node t3 and event
distribution; (d) initial time node t4 and event distribution.

Next, the network operation time was divided into 10 segments. Figures 9 and 10 respectively
compare the coverage efficacy of the event set and the evolution of the total moving distance of the
nodes during each monitoring period. It can be seen in Figure 8 that the coverage efficacy of the event
set is constantly changing with time, and both the DHFSOA and PSSD algorithms maintain good states.
The DHFSOA, however, dynamically adjusts quickly and is slightly better than the PSSD algorithm.
Figure 9 is a comparison diagram between the PSSD algorithm and the DHFSOA for the changes in
total node moving distance during the network running time. It can be seen that, compared with
the PSSD, the DHFSOA algorithm greatly reduces the total moving distance of the nodes during the
network operation, thus reducing total energy consumption. This allows the nodes to retain more
energy, which can be used to participate in other tasks, effectively extending the network life cycle.

296

Appl. Sci. 2018, 8, 1638

Figure 9. Comparison of the evolution of coverage efficacy at different times.

Figure 10. Comparison of the evolution of the total moving distance of nodes at different times.

We can see from the preceding figures that, compared to the PSSD algorithm, the DHFSOA has
obvious advantages in terms of network coverage, coverage efficacy of event sets, and total moving
distance of nodes. This is due to that fact that, during network operation, the DHFSOA constructs an
information pool, expands the nodes’ field of vision, enhances information sharing between nodes in
the network connectivity state, avoids blind movement of nodes, and retains the global search ability
of the traditional fish swarm heuristic algorithm.

Table 2. Parameters of the dynamic ocean environment.

Parameter
The Water Flow Field Target Number

k c av ε ω Sensors Events

Value 2π
7.5 0.12 1.2 0.3 0.4 6 40

297

Appl. Sci. 2018, 8, 1638

6. Conclusions

This paper has proposed a distributed hybrid fish swarm optimization algorithm (DHFSOA) in
order to optimize the deployment of underwater acoustic sensor nodes. The proposed DHFSOA was
inspired by the artificial fish swarm operation system designed to simulate the preying, following,
and swarming behaviors of fish. Applying these sorts of behaviors to sensor nodes gives them the
autonomous tendency and ability to cover events within a monitoring area. Congestion distribution
control was used to match node and event distribution densities. In addition, by constructing
an information pool, the DHFSOA not only overcame the blindness of the traditional artificial fish
swarm heuristic algorithm random search, but also retained the global search ability of the traditional
fish swarm heuristic algorithm.

The proposed algorithm was evaluated by running a large number of comparative simulation
experiments. Once the static and dynamic environments of the underwater acoustic sensor networks
(UASNs) were established, the proposed DHFSOA was used for actual testing. The simulation results
showed that the DHFSOA has the following three advantages over the PSSD algorithm: (1) the DHFSOA
can maintain higher event coverage and coverage efficacy of event sets; (2) the DHFSOA can avoid
blind movement of nodes, thus reducing total node moving distance and thereby reducing total energy
consumption during node deployment; and (3) DHFSOA is a distributed algorithm, which shows
strong extensibility during node deployment. In our next study, we will improve the proof of DHFSOA
convergence and begin experimenting in actual underwater environments.

Author Contributions: H.W. and Y.L. conceived and designed the whole procedure of this paper. T.C.
contributed to the introduction and system model sections. S.C. and Y.F. performed and analyzed the computer
simulation results.

Funding: This research was supported by the National Natural Science Foundation of China (61571250),
the Zhejiang Natural Science Foundation (LY18F010010), the Key Laboratory of Mobile Network Application
Technology of Zhejiang Province, the K. C. Wong Magna Fund of Ningbo University, the Youth Project
of Ningde Normal University (2017Q105,018Q103), the Teaching Reform Project of the Ningde Normal
University (JG20180122), the project of the Education Department of Fujian Province (JT180596) and the project of
the Fujian Provincial Natural Science Fund (2017I0016, 2017J01775).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Akyildiz, I.F.; Pompili, D.; Melodia, T. Underwater acoustic sensor networks: Research challenges.
Ad Hoc Netw. 2005, 3, 257–279. [CrossRef]

2. Chen, K.; Ma, M.; Cheng, E.; Yuan, F.; Su, W. A survey on MAC protocols for underwater wireless sensor
networks. IEEE Commun. Surv. Tutor. 2014, 16, 1433–1447. [CrossRef]

3. Davis, A.; Chang, H. Underwater wireless sensor networks. In Proceedings of the IEEE Oceans 2012,
Hampton Road, VA, USA, 14–19 October 2012; pp. 1–5.

4. Berger, C.R.; Zhou, S.L.; Willett, P.; Liu, L.B. Stratification Effect Compensation for Improved Underwater
Acoustic Ranging. IEEE Trans. Signal Process. 2008, 56, 3779–3783. [CrossRef]

5. Wang, C.; Lin, H.; Jiang, H. CANS: A Congestion-Adaptive WSN-Assisted Emergency Navigation Algorithm
with Small Stretch. IEEE Trans. Mob. Comput. 2016, 15, 1077–1089. [CrossRef]

6. Wang, H.; Li, Y.; Chang, T.; Chang, S. An Effective Scheduling Algorithm for Coverage Control in Underwater
Acoustic Sensor Network. Sensors 2018, 18, 2512. [CrossRef] [PubMed]

7. Ian, F. Wireless sensor networks in challenged environments such as underwater and underground.
In Proceedings of the 17th ACM International Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems, New York, NY, USA, 21–26 September 2014; pp. 1–2.

8. Yang, X.; Miao, P.; Gibson, J.; Xie, G.G.; Du, D.Z.; Vasilakos, A.V. Tight performance bounds of multihop fair
access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Mob. Comput.
2011, 11, 1538–1554

9. Luo, X.; Feng, L.; Yan, J.; Guan, X. Dynamic Coverage with Wireless Sensor and Actor Networks in
Underwater Environment. IEEE/CAA J. Autom. Sin. 2015, 2, 274–281.

298

Appl. Sci. 2018, 8, 1638

10. Liu, L.F. A deployment algorithm for underwater sensor networks in ocean environment. J. Circuits
Syst. Comput. 2011, 20, 1051–1066. [CrossRef]

11. Abo-Zahhad, M.; Ahmed, S.M.; Sabor, N.; Sasaki, S. Rearrangement of mobile wireless sensor nodes for
coverage maximization based on immune node deployment algorithm. Comput. Electr. Eng. 2015, 43, 76–89.
[CrossRef]

12. Hua, C.B.; Wei, Z.; Nan, C.Z. Underwater Acoustic Sensor Networks Deployment Using Improved
Self-Organize Map Algorithm. Cybern. Inf. Technol. 2014, 14, 63–77. [CrossRef]

13. Bonabeau, E.; Dorigo, M.; Theraulaz, G. Swarm Intelligence: From Natural to Artificial Systems; Oxford
University Press, Inc.: New York, NY, USA, 1999.

14. Liu, X. Sensor deployment of wireless sensor networks based on ant colony optimization with three classes
of ant transitions. IEEE Trans. Commun. Lett. 2012, 16, 1604–1607. [CrossRef]

15. Wang, H.B.; Fan, C.C.; Tu, X.Y. AFSAOCP: A novel artificial fish swarm optimization algorithm aided by
ocean current power. Appl. Intell. 2016, 45, 1–16. [CrossRef]

16. Iyer, S.; Rao, D.V. Genetic algorithm based optimization technique for underwater sensor network
positioning and deployment. In Proceedings of the 2015 IEEE Underwater Technology (UT), Chennai,
India, 23–25 February 2015; pp. 1–6.

17. Wang, Y.; Liao, H.; Hu, H. Wireless Sensor Network Deployment Using an Optimized Artificial Fish Swarm
Algorithm. In Proceedings of the International Conference on Computer Science and Electronics Engineering,
Hangzhou, China, 23–25 March 2012; pp. 90–94.

18. Dhillon, S.S.; Chakrabarty, K. Sensor placement for effective coverage and surveillance in distributed sensor
networks. In Proceedings of the Wireless Communications and Networking, New Orleans, LA, USA,
16–20 March 2003; pp. 1609–1614.

19. Du, H.; Na, X.; Rong, Z. Particle Swarm Inspired Underwater Sensor Self-Deployment. Sensors 2014,
14, 15262–15281. [CrossRef] [PubMed]

20. Das, S.; Liu, H.; Nayak, A. A localized algorithm for bi-connectivity of connected mobile robots.
Telecommun. Syst. 2009, 40, 129–140. [CrossRef]

21. Zhang, H.H.; Hou, J.C. Maintaining Sensing Coverage and Connectivity in Large Sensor Networks. Ad Hoc
Sens. Wirel. Netw. 2005, 1, 89–124.

22. Ghosh, A.; Das, S.K. Coverage and connectivity issues in wireless sensor networks: A survey.
Pervasive Mob. Comput. 2008, 4, 303–334. [CrossRef]

23. Neshat, M.; Sepidnam, G.; Sargolzaei, M.; Toosi, A.N. Artificial fish swarm algorithm: A survey of the
state-of-the-art, hybridization, combinatorial and indicative applications. Artif. Intell. Rev. 2014, 42, 965–997.
[CrossRef]

24. Caruso, A.; Paparella, F.; Vieira, L.F.M.; Erol, M.; Gerla, M. The Meandering Current Mobility Model and its
Impact on Underwater Mobile Sensor Networks. In Proceedings of the IEEE INFOCOM 2008, Phoenix, AZ,
USA, 13–18 April 2008; pp. 771–775.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

299

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Applied Sciences Editorial Office
E-mail: applsci@mdpi.com

www.mdpi.com/journal/applsci

MDPI
St. Alban-Anlage 66
4052 Basel
Switzerland

Tel: +41 61 683 77 34
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03897-923-4

	Blank Page

