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In the last decades the interest in statistical methods based on information measures and
particularly in pseudodistances or divergences has grown substantially. Minimization of a suitable
pseudodistance or divergence measure gives estimators (minimum pseudodistance estimators or
minimum divergence estimators) that have nice robustness properties in relation to the classical
maximum likelihood estimators with a not significant lost of efficiency. For more details we refer the
monographs of Basu et al. [1] and Pardo [2]. Parametric test statistics based on the minimum divergence
estimators have also given interesting results in relation to the robustness in comparison with the
classical likelihood ratio test, Wald test statistic and Rao’s score statistic. Worthy of special mention
are the Wald-type test statistics obtained as an extension of the classical Wald test statistic. These test
statistics are based on minimum divergence estimators instead of the maximum likelihood estimators
and have been considered in many different statistical problems: Censoring, see Ghosh et al. [3],
equality of means in normal and lognormal models, see Basu et al. [4,5], logistic regression models,
see Basu et al. [6], polytomous logistic regression models, see Castilla et al. [7], composite likelihood
methods, see Martín et al. [8], etc.

This Special Issue focuses on original and new research based on minimum divergence estimators,
divergence statistics as well as parametric tests based on pseudodistances or divergences, from
a theoretical and applied point of view, in different statistical problems with special emphasis on
efficiency and robustness. It comprises 15 selected papers that address novel issues, as well as specific
topics illustrating the importance of the divergence measures or pseudodistances in statistics. In the
following, the manuscripts are presented in alphabetical order.

The paper, “A Generalized Relative (α, β)-Entropy Geometric properties and Applications to
Robust Statistical Inference”, by A. Ghosh and A. Basu [9], proposes an alternative information
theoretic formulation of the logarithmic super divergence (LSD), Magie et al. [10], as a
two parametric generalization of the relative α−entropy, which they refer as the general
(α, β)-entropy. The paper explores its relation with various other entropies and divergences, which
also generates a two-parameter extension of Renyi entropy measure as a by-product. The paper is
primarily focused on the geometric properties of the relative (α, β)-entropy or the LSD measures:
Continuity and convexity in both the arguments along with an extended Pythagorean relation under
a power-transformation of the domain space. They also derived a set of sufficient conditions under
which the forward and the reverse projections of the relative (α, β)-entropy exist and are unique. Finally,
they briefly discuss the potential applications of the relative (α, β)-entropy or the LSD measures in
statistical inference, in particular, for robust parameter estimation and hypothesis testing. The results
in the reverse projection of the relative (α, β)-entropy establish, for the first time, the existence and
uniqueness of the minimum LSD estimators. Numerical illustrations are also provided for the problem
of estimating the binomial parameter.

In the work “Asymptotic Properties for methods Combining the Minimum Hellinger Distance
Estimate and the Bayesian Nonparametric Density Estimate”, Wu, Y. and Hooker, G. [11], pointed out
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that in frequentist inference, minimizing the Hellinger distance (Beran et al. [12]) between a kernel
density estimate and a parametric family produces estimators that are both robust to outliers and
statistically efficient when the parametric family contains the data-generating distribution. In this
paper the previous results are extended to the use of nonparametric Bayesian density estimators within
disparity methods. They proposed two estimators: One replaces the kernel density estimator with the
expected posterior density using a random histogram prior; the other transforms the posterior over
densities into a posterior over parameters through minimizing the Hellinger distance for each density.
They show that it is possible to adapt the mathematical machinery of efficient influence functions from
semiparametric models to demonstrate that both estimators introduced in this paper are efficient in
the sense of achieving the Cramér-Rao lower bound. They further demonstrate a Bernstein-von-Mises
result for the second estimator, indicating that its posterior is asymptotically Gaussian. In addition,
the robustness properties of classical minimum Hellinger distance estimators continue to hold.

In “Composite Likelihood Methods Based on Minimum Density Power Divergence Estimator”,
E. Castilla, N. Martin, L. Pardo and K. Zografos [13] pointed out that the classical likelihood function
requires exact specification of the probability density function, but in most applications, the true
distribution is unknown. In some cases, where the data distribution is available in an analytic form,
the likelihood function is still mathematically intractable due to the complexity of the probability
density function. There are many alternatives to the classical likelihood function; in this paper,
they focus on the composite likelihood. Composite likelihood is an inference function derived by
multiplying a collection of component likelihoods; the particular collection used is a conditional
determined by the context. Therefore, the composite likelihood reduces the computational complexity,
so that it is possible to deal with large datasets and very complex models even when the use of standard
likelihood methods is not feasible. Asymptotic normality of the composite maximum likelihood
estimator (CMLE) still holds with the Godambe information matrix to replace the expected information
in the expression of the asymptotic variance-covariance matrix. This allows the construction of
composite likelihood ratio test statistics, Wald-type test statistics, as well as score-type statistics.
A review of composite likelihood methods is given in Varin [14]. They mentioned at this point that
CMLE, as well as the respective test statistics are seriously affected by the presence of outliers in the
set of available data. The main purpose of this paper is to introduce a new robust family of estimators,
namely, composite minimum density power divergence estimators (CMDPDE), as well as a new family
of Wald-type test statistics based on the CMDPDE in order to get broad classes of robust estimators
and test statistics. A simulation study is presented, in order to study the robustness of the CMDPDE,
as well as the performance of the Wald-type test statistics based on CMDPDE.

The paper “Composite Tests under Corrupted Data”, by M. Broniatowski, J. Jurecková, A. Kumar
Moses and E. Miranda [15] investigate test procedures under corrupted data. They assume that the
observations Zi are mismeasured, due to the presence of measurement errors. Thus, instead of
observing Zi for i = 1, ..., n, we observe Xi = Zi +

√
δVi, with an unknown parameter δ and

an unobservable random variable Vi. It is assumed that the random variables Zi are independent
and identically distributed, as are the Xi and the Vi. The test procedure aims at deciding between
two simple hypotheses pertaining to the density of the variable Zi, namely f0 and g0. In this setting,
the density of the Vi is supposed to be known. The procedure which they propose aggregates
likelihood ratios for a collection of values of δ. A new definition of least-favorable hypotheses
for the aggregate family of tests is presented, and a relation with the Kullback-Leibler divergence
between the sets fδ(δ) and gδ(δ) is presented. Finite-sample lower bounds for the power of these tests
are presented, both through analytical inequalities and through simulation under the least-favorable
hypotheses. Since no optimality holds for the aggregation of likelihood ratio tests, a similar procedure is
proposed, replacing the individual likelihood ratio by some divergence based test statistics. It is shown
and discussed that the resulting aggregated test may perform better than the aggregate likelihood
ratio procedure.
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The article “Convex Optimization via Symmetrical H’́older Divergence for a WLAN Indoor
Positioning System”, by O. Abdullah [16], uses the Hölder divergence, which generalizes the
idea of divergence in information geometry by smooth the non-metric of statistical distances in
a way that are not required to follow the law of indiscernibles. The inequality of log-ratio gap
pseudo-divergence is built to measure the statistical distance of two classes based on Hölder’s ordinary
divergence. By experiment, the WiFi signal suffers from multimodal distribution; nevertheless,
the Hölder divergence is considered the proper divergence to measure the dissimilarities between
probability densities since the Hölder divergence is a projective divergence that does not need
the distribution be normalized and allows the closed form expressions when the expansion
family is an affine natural space like multinomial distributions. Hölder divergences encompass
both the skew Bhattacharyya divergences and Cauchy-Schwarz divergence, Nielsen et al. [17],
and can be symmetrized, and the symmetrized Hölder divergence outperformed the symmetrized
Cauchy-Schwarz divergence over the dataset of Gaussians. Both Cauchy-Schwarz divergences are
part of a projective divergence distance family with a closed-form expression that does not need to
be normalized when considering closed-form expressions with an affine and conic parameter space,
such as multivariate or multinomial distributions.

In the paper “Likelihood Ratio Testing under Measurement Errors”, M. Broniatowski, J. Jurecková
and J. Kalina [18] consider the likelihood ratio test of a simple null hypothesis (with density f0)
against a simple alternative hypothesis (with density g0) in the situation that observations Xi are
mismeasured due to the presence of measurement errors. Thus instead of Xi for i = 1, ..., n, we observe
Zi = Xi +

√
δVi with unobservable parameter δ and unobservable random variable Vi. When we

ignore the presence of measurement errors and perform the original test, the probability of type I error
becomes different from the nominal value, but the test is still the most powerful among all tests on
the modified level. Further, they derive the minimax test of some families of misspecified hypotheses
and alternatives.

The paper “Minimum Penalized φ-Divergence Estimation under Model Misspecification”,
by M. V. Alba-Fernández, M. D. Jiménez-Gamero and F. J. Ariza-López [19], focuses on the
consequences of assuming a wrong model for multinomial data when using minimum penalized
φ-divergence, also known as minimum penalized disparity estimators, to estimate the model
parameters. These estimators are shown to converge to a well-defined limit. An application of
the results obtained shows that a parametric bootstrap consistently estimates the null distribution of
a certain class of test statistics for model misspecification detection. An illustrative application to the
accuracy assessment of the thematic quality in a global land cover map is included.

In “Non-Quadratic Distances in Model Assessment”, M. Markatou and Y. Chen [20] consider
that as a natural way to measure model adequacy is by using statistical distances as loss functions.
A related fundamental question is how to construct loss functions that are scientifically and statistically
meaningful. In this paper, they investigate non-quadratic distances and their role in assessing the
adequacy of a model and/or ability to perform model selection. They first present the definition of
a statistical distance and its associated properties. Three popular distances, total variation, the mixture
index of fit and the Kullback-Leibler distance, are studied in detail, with the aim of understanding
their properties and potential interpretations that can offer insight into their performance as measures
of model misspecification. A small simulation study exemplifies the performance of these measures
and their application to different scientific fields is briefly discussed.

In “φ-Divergence in Contingency Table Analysis”, M. Kateri [21] presents a review about the
role of φ-divergence measures, see Pardo [2], in modelling association in two-way contingency tables,
and illustrated it for the special case of uniform association in ordinal contingency tables. This is
targeted at pointing out the potential of this modelling approach and the generated families of models.
Throughout this paper a multinomial sampling scheme is assumed. For the models considered here,
the other two classical sampling schemes for contingency tables (independent Poisson and product
multinomial) are inferentially equivalent. Furthermore, for ease of presentation, we restricted here

3
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to two-way tables. The proposed models extend straightforwardly to multi-way tables. For two or
higher-dimensional tables, the subset of models that are linear in their parameters (i.e., multiplicative
Row-Column (RC) and RC(M)-type terms are excluded) belong to the family of homogeneous linear
predictor models, Goodman [22] and can thus be fitted using the R-package mph.

In “Robust and Sparse Regression via γ-Divergence”, T. Kawashima and H. Fujisawa [23] study
robust and sparse regression based on the γ-divergence. They showed desirable robust properties under
both homogeneous and heterogeneous contamination. In particular, they presented the Pythagorean
relation for the regression case, although it was not shown in Kanamori and Fujisawa, [24]. In most of
the robust and sparse regression methods, it is difficult to obtain the efficient estimation algorithm,
because the objective function is non-convex and non-differentiable. Nonetheless, they succeeded
to propose the efficient estimation algorithm, which has a monotone decreasing property of the
objective function by using the Majorization–Minimization algorithm (MM-algorithm). The numerical
experiments and real data analyses suggested that their method was superior to comparative robust
and sparse linear regression methods in terms of both accuracy and computational costs. However, in
numerical experiments, a few results of performance measure “true negative rate (TNR)” were a little
less than the best results. Therefore, if more sparsity of coefficients is needed, other sparse penalties,
e.g., the Smoothly Clipped Absolute Deviations (SCAD), see Fan et al. [25] and the Minimax Concave
Penalty (MCP), see Zhang [26], can also be useful.

The manuscript “Robust-Bregman Divergence (BD) Estimation and Inference for General Partially
Linear Models”, by C. Zhang and Z. Zhang [27], proposes a class of “robust-Bregman divergence
(BD)” estimators of both the parametric and nonparametric components in the general partially
linear model (GPLM), which allows the distribution of the response variable to be partially specified,
without being fully known. Using the local-polynomial function estimation method, they proposed
a computationally-efficient procedure for obtaining “robust-BD” estimators and established the
consistency and asymptotic normality of the “robust-BD” estimator of the parametric component
β0. For inference procedures of β0 in the GPLM, they show that the Wald-type test statistic, Wn,
constructed from the “robust-BD” estimators is asymptotically distribution free under the null, whereas
the likelihood ratio-type test statistic, Λn, is not. This provides an insight into the distinction from
the asymptotic equivalence (Fan and Huang, [28]) between Wn and Λn in the partially linear model
constructed from profile least-squares estimators using the non-robust quadratic loss. Numerical
examples illustrate the computational effectiveness of the proposed “robust-BD” estimators and robust
Wald-type test in the appearance of outlying observations.

In “Robust Estimation for the Single Index Model Using Pseudodistances”, A. Toma and
C. Fulga [29] consider minimum pseudodistance estimators for the parameters of the single index
model (model to reduce the number of parameters in portfolios), see Sharpe [30], and using them
they construct new robust optimal portfolios. When outliers or atypical observations are present
in the data set, the new portfolio optimization method based on robust minimum pseudodistance
estimates yields better results than the classical single index method based on maximum likelihood
estimates, in the sense that it leads to larger returns for smaller risks. In literature, there exist various
methods for robust estimation in regression models. In the present paper, they proposed the method
based on the minimum pseudodistance approach, which suppose to solve a simple optimization
problem. In addition, from a theoretical point of view, these estimators have attractive properties,
such as being redescending robust, consistent, equivariant and asymptotically normally distributed.
The comparison with other known robust estimators of the regression parameters, such as the least
median of squares estimators, the S-estimators or the minimum density power divergence estimators,
shows that the minimum pseudodistance estimators represent an attractive alternative that may be
considered in other applications too. They study properties of the estimators, such as, consistency,
asymptotic normality, robustness and equivariance and illustrate the benefits of the proposed portfolio
optimization method through examples for real financial data.
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The paper “Robust Inference after Random Projections via Hellinger Distance for Location-scale
Family”, by L. Li, A. N. Vidyashankar, G. Diao and E. Ahmed [31], proposes Hellinger distance
based methods to obtain robust estimates for mean and variance in a location-scale model that takes
into account (i) storage issues, (ii) potential model misspecifications, and (iii) presence of aberrant
outliers. These issues-which are more likely to occur when dealing with massive amounts of data-if
not appropriately accounted in the methodological development, can lead to inaccurate inference and
misleading conclusions. On the other hand, incorporating them in the existing methodology may
not be feasible due to a computational burden. Our extensive simulations show the usefulness of
the methodology and hence can be applied in a variety of scientific settings. Several theoretical and
practical questions concerning robustness in a big data setting arise.

The paper “Robustness Property of Robust-BD Wald-Type Test for Varying-Dimensional General
Linear Models” by X. Guo and C. Zhang [32], aims to demonstrate the robustness property of the
robust-BD Wald-type test in Zhang et al. [33]. Nevertheless, it is a nontrivial task to address this
issue. Although the local stability for the Wald-type tests have been established for the M-estimators,
see Heritier and Ronchetti, [34], generalized method of moment estimators, Ronchetti and Trojan, [35],
minimum density power divergence estimator, Basu et al. [36] and general M-estimators under random
censoring, Ghosh et al. [3], their results for finite-dimensional settings are not directly applicable to our
situations with a diverging number of parameters. Under certain regularity conditions, we provide
rigorous theoretical derivations for robust testing based on the Wald-type test statistics. The essential
results are approximations of the asymptotic level and power under contaminated distributions of the
data in a small neighborhood of the null and alternative hypotheses, respectively.

The manuscript “Robust Relative Error Estimation” by K. Hirose and H. Masuda [37], presents
a relative error estimation procedure that is robust against outliers. The proposed procedure is based
on the γ-likelihood function, which is constructed by γ-cross entropy, Fujisawa and Eguch, [38].
They showed that the proposed method has the redescending property, a desirable property in robust
statistics literature. The asymptotic normality of the corresponding estimator together with a simple
consistent estimator of the asymptotic covariance matrix are derived, which allows the construction
of approximate confidence sets. Besides the theoretical results, they have constructed an efficient
algorithm, in which we minimize a convex loss function at each iteration. The proposed algorithm
monotonically decreases the objective function at each iteration.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Entropy and relative entropy measures play a crucial role in mathematical information
theory. The relative entropies are also widely used in statistics under the name of divergence measures
which link these two fields of science through the minimum divergence principle. Divergence
measures are popular among statisticians as many of the corresponding minimum divergence
methods lead to robust inference in the presence of outliers in the observed data; examples include
the φ-divergence, the density power divergence, the logarithmic density power divergence and the
recently developed family of logarithmic super divergence (LSD). In this paper, we will present an
alternative information theoretic formulation of the LSD measures as a two-parameter generalization
of the relative α-entropy, which we refer to as the general (α, β)-entropy. We explore its relation
with various other entropies and divergences, which also generates a two-parameter extension of
Renyi entropy measure as a by-product. This paper is primarily focused on the geometric properties
of the relative (α, β)-entropy or the LSD measures; we prove their continuity and convexity in
both the arguments along with an extended Pythagorean relation under a power-transformation of
the domain space. We also derive a set of sufficient conditions under which the forward and the
reverse projections of the relative (α, β)-entropy exist and are unique. Finally, we briefly discuss
the potential applications of the relative (α, β)-entropy or the LSD measures in statistical inference,
in particular, for robust parameter estimation and hypothesis testing. Our results on the reverse
projection of the relative (α, β)-entropy establish, for the first time, the existence and uniqueness of
the minimum LSD estimators. Numerical illustrations are also provided for the problem of estimating
the binomial parameter.

Keywords: relative entropy; logarithmic super divergence; robustness; minimum divergence inference;
generalized renyi entropy

1. Introduction

Decision making under uncertainty is the backbone of modern information science. The works
of C. E. Shannon and the development of his famous entropy measure [1–3] represent the early
mathematical foundations of information theory. The Shannon entropy and the corresponding relative
entropy, commonly known as the Kullback-Leibler divergence (KLD), has helped to link information
theory simultaneously with probability [4–8] and statistics [9–13]. If P and Q are two probability
measures on a measurable space (Ω,A) and have absolutely continuous densities p and q, respectively,
with respect to a common dominating σ-finite measure μ, then the Shannon entropy of P is defined as

E(P) = −
∫

p log(p)dμ, (1)
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and the KLD measure between P and Q is given by

RE(P, Q) =
∫

p log
(

p
q

)
dμ. (2)

In statistics, the minimization of the KLD measure produces the most likely approximation as
given by the maximum likelihood principle; the latter, in turn, has a direct equivalence to the
(Shannon) entropy maximization criterion in information theory. For example, if Ω is finite and
μ is the counting measure, it is easy to see that RE(P, U) = log |Ω| − E(P), where U is the uniform
measure on Ω. Minimization of this relative entropy, or equivalently maximization of the Shannon
entropy, with respect to P within a suitable convex set E, generates the most probable distribution
for an independent identically distributed finite source having true marginal probability in E with
non-informative (uniform) prior probability of guessing [14,15]. In general, with a finite source,
RE(P, Q) denotes the penalty in expected compressed length if the compressor assumes a mismatched
probability Q [16,17]. The corresponding general minimizer ofRE(P, Q) given Q, namely its forward
projection, and other geometric properties ofRE(P, Q) are well studied in the literature; see [18–29]
among others.

Although the maximum entropy or the minimum divergence criterion based on the classical
Shannon entropy E(P) and the KLD measure RE(P, Q) is still widely used in major (probabilistic)
decision making problems in information science and statistics [30–43], there also exist many different
useful generalizations of these quantities to address eminent issues in quantum statistical physics,
complex codings, statistical robustness and many other topics of interest. For example, if we consider
the standardized cumulant of compression length in place of the expected compression length in
Shannon’s theory, the optimum distribution turns out to be the maximizer of a generalization of the
Shannon entropy [44,45] which is given by

Eα(P) =
1

1− α
log
(∫

pαdμ

)
, α > 0, α �= 1 (3)

provided p ∈ Lα(μ), the complete vector space of functions for which the α-th power of their absolute
values are μ-integrable. This general entropy functional is popular by the name Renyi entropy of
order α [46] and covers many important entropy measures like Hartley entropy at α → 0 (for finite
source), Shannon entropy at α → 1, collision entropy at α = 2 and the min-entropy at α → ∞.
The corresponding Renyi divergence measure is given by

Dα(P, Q) =
1

α− 1
log
(∫

pαq1−αdμ

)
, α > 0, α �= 1, (4)

whenever p, q ∈ Lα(μ) and coincides with the classical KLD measure at α → 1. The Renyi entropy
and the Renyi divergence are widely used in recent complex physical and statistical problems;
see, for example, [47–56]. Other non-logarithmic extensions of Shannon entropy include the classical
f -entropies [57], the Tsallis entropy [58] as well as the more recent generalized (α, β, γ)-entropy [59,60]
among many others; the corresponding divergences and the minimum divergence criteria are widely
used in critical information theoretic and statistical problems; see [57,59–70] for details.

We have noted that there is a direct information theoretic connection of KLD to the Shannon entropy
under mismatched guessing by minimizing the expected compressed length. However, such a connection
does not exist between the Renyi entropy Eα(P) and the Renyi divergence Dα(P, Q) as recently noted
by [17,71]. Herein, it has been shown that, for a finite source with marginal distribution P and a (prior)
mismatched compressor distribution Q, the penalty in the normalized cumulant of compression length is
notDα(P, Q); rather it is given byD1/α(Pα, Qα) where Pα and Qα are defined by

dPα

dμ
= pα =

pα∫
pαdμ

,
dQα

dμ
= qα =

qα∫
qαdμ

. (5)
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The new quantity D1/α(Pα, Qα) also gives a measure of discrimination (i.e., is a divergence) between
the probability distributions P and Q and coincides with the KLD at α → 1. This functional is referred
to as the relative α-entropy in the terminology of [72] and has the simpler form

REα(P, Q) := D1/α(Pα, Qα)

=
α

1− α
log
∫

pqα−1dμ− 1
1− α

log
∫

pαdμ + log
∫

qαdμ, α > 0, α �= 1.
(6)

The geometric properties of this relative α-entropy along with its forward and reverse projections have
been studied recently [16,73]; see Section 2.1 for some details. This quantity had, however, already been
proposed earlier as a statistical divergence, although for α ≥ 1 only, by [74] while developing a robust
estimation procedure following the generalized method-of-moments approach of [75]. Later authors
referred to the divergence proposed in [74] as the logarithmic density power divergence (LDPD)
measure. The advantages of the minimum LDPD estimator in terms of robustness against outliers
in data have been studied by, among other, [66,74]. Fujisawa [76], Fujisawa and Eguchi [77] have
also used the same divergence measure with γ = (α− 1) ≥ 0 in different statistical problems and
have referred to it as the γ-divergence. Note that, the formulation in (6) extends the definition of the
divergence over the 0 < α < 1 region as well.

Motivated by the substantial advantages of the minimum LDPD inference in terms of statistical
robustness against outlying observations, Maji et al. [78,79] have recently developed a two-parameter
generalization of the LDPD family, namely the logarithmic super divergence (LSD) family, given by

LSDτ,γ(P, Q) =
1
B

log
∫

p1+τdμ− 1 + τ

AB
log
∫

pAqBdμ +
1
A

log
∫

q1+τdμ,

with A = 1 + γ(1− τ), B = 1 + τ − A, τ ≥ 0, γ ∈ R.
(7)

This rich superfamily of divergences contain many important divergence measures including the LDPD
at γ = 0 and the Kullback-Leibler divergence at τ = γ → 0; this family also contains a transformation
of Renyi divergence at τ = 0 which has been referred to as the logarithmic power-divergence family
by [80]. As shown in [78,79], the statistical inference based on some of the new members of this LSD
family, outside the existing ones including the LDPD, provide much better trade-off between the
robustness and efficiency of the corresponding minimum divergence estimators.

The statistical benefits of the LSD family over the LDPD family raise a natural question: is it
possible to translate this robustness advantage of the LSD family of divergences to the information
theoretic context, through the development of a corresponding generalization of the relative α-entropy
in (6)? In this paper, we partly answer this question by defining an independent information theoretic
generalization of the relative α-entropy measure coinciding with the LSD measure. We will refer to
this new generalized relative entropy measure as the “Relative (α, β)-entropy” and study its properties
for different values of α > 0 and β ∈ R. In particular, this new formulation will extend the scope
of the LSD measure for −1 < τ < 0 as well and generate several interesting new divergence and
entropy measures. We also study the geometric properties of all members of the relative (α, β)-entropy
family, or equivalently the LSD measures, including their continuity in both the arguments and a
Pythagorean-type relation. The related forward projection problem, i.e., the minimization of the
relative (α, β)-entropy in its first argument, is also studied extensively.

In summary, the main objective of the present paper is to study the geometric properties of the LSD
measure through the new information theoretic or entropic formulation (or the relative (α, β)-entropy).
Our results indeed generalize the properties of the relative α-entropy from [16,73]. The specific and
significant contributions of the paper can be summarized as follows.

1. We present a two parameter extension of the relative α-entropy measure in (6) motivated by the
logarithmic S-divergence measures. These divergence measures are known to generate more
robust statistical inference compared to the LDPD measures related to the relative α-entropy.
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2. In the new formulation of the relative (α, β)-entropy, the LSD measures are linked with
several important information theoretic divergences and entropy measures like the ones named
after Renyi. A new divergence family is discovered corresponding to α → 0 case (properly
standardized) for the finite measure cases.

3. As a by-product of our new formulation, we get a new two-parameter generalization of the Renyi
entropy measure, which we refer to as the Generalized Renyi entropy (GRE). This opens up a
new area of research to examine the detailed properties of GRE and its use in complex problems
in statistical physics and information theory. In this paper, we show that this new GRE satisfies
the basic entropic characteristics, i.e., it is zero when the argument probability is degenerate and
is maximum when the probability is uniform.

4. Here we provide a detailed geometric analysis of the robust LSD measure, or equivalently
the relative (α, β)-entropy in our new formulation. In particular, we show their continuity
or lower semi-continuity with respect to the first argument depending on the values of the
tuning parameters α and β. Also, its lower semi-continuity with respect to the second argument
is proved.

5. We also study the convexity of the LSD measures (or the relative (α, β)-entropies) with respect to
its argument densities. The relative α-entropy (i.e, the relative (α, β)-entropy at β = 1) is known
to be quasi-convex [16] only in its first argument. Here, we will show that, for general α > 0 and
β �= 1, the relative (α, β)-entropies are not quasi-convex on the space of densities, but they are
always quasi-convex with respect to both the arguments on a suitably (power) transformed space
of densities. Such convexity results in the second argument were unavailable in the literature
even for the relative α-entropy, which we will introduce in this paper through a transformation
of space.

6. Like the relative α-entropy, but unlike the relative entropy in (2), our new relative (α, β)-entropy
also does not satisfy the data processing inequalities. However, we prove an extended
Pythagorean relation for the relative (α, β)-entropy which makes it reasonable to treat them
as “squared distances” and talk about their projections.

7. The forward projection of a relative entropy or a suitable divergence, i.e., their minimization
with respect to the first argument, is very important for both statistical physics and information
theory. This is indeed equivalent to the maximum entropy principle and is also related to the
Gibbs conditioning principle. In this paper, we will examine the conditions under which such a
forward projection of the relative (α, β)-entropy (or, LSD) exists and is unique.

8. Finally, for completeness, we briefly present the application of the LSD measure or the relative
(α, β)-entropy measure in robust statistical inference in the spirit of [78,79] but now with extended
range of tuning parameters. It uses the reverse projection principle; a result on the existence of
the minimum LSD functional is first presented with the new formulation of this paper. Numerical
illustrations are provided for the binomial model, where we additionally study their properties
for the extended tuning parameter range α ∈ (0, 1) as well as for some new divergence families
(related to α = 0). Brief indications of the potential use of these divergences in testing of statistical
hypotheses are also provided.

Although we are primarily discussing the logarithmic entropies like the Renyi entropy and its
generalizations in this paper, it is important to point out that non-logarithmic entropies including
the f-entropy and the Tsallis entropy are also very useful in several applications with real systems.
Recently, several complex physical and social systems have been observed to follow the theory
developed from such non-logarithmic, non-additive entropies instead of the classical additive Shannon
entropy. In particular, the Tsallis entropy has led to the development of the nonextensive statistical
mechanics [61,64] to solve several critical issues in modern physics. Important areas of application
include, but certainly are not limited to, the motion of cold atoms in dissipative optical lattices [81,82],
the magnetic field fluctuations in the solar wind and related q-triplet [83], the distribution of velocity
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in driven dissipative dusty plasma [84], spin glass relaxation [85], the interaction of trapped ion with a
classical buffer gas [86], different high energy collisional experiments [87–89], derivation of the black
hole entropy [90], along with water engineering [63], text mining [65] and many others. Therefore, it is
also important to investigate the possible generalizations and manipulations of such non-logarithmic
entropies both from mathematical and application point of view. However, as our primary interest
here is in logarithmic entropies, we have, to keep the focus clear, otherwise avoided the description
and development of non-logarithmic entropies in this paper.

Although there are many applications of extended and general non-additive entropy and
divergence measures, there are also some criticisms of these non-additive measures that should
be kept in mind. It is of course possible to employ such quantities simply as new descriptors of
the complexity of systems, but at the same time, it is known that the minimization of a generalized
divergence (or maximization of the corresponding entropy) under constraints in order to determine
an optimal probability assignment leads to inconsistencies for information measures other than the
Kullback-Leibler divergence. See, for instance [91–96], among others. So, one needs to be very careful
in discriminating the application of the newly introduced entropies and divergence measures for
the purposes of inference under given information, from the ones where it is used as a measure of
complexity. In this respect, we would like to emphasize that, the main advantage of our two-parameter
extended family of LSD or relative (α, β)-entropy measures in parametric statistical inference is
in their strong robustness property against possible contamination (generally manifested through
outliers) in the sample data. The classical additive Shannon entropy and Kullback-Leibler divergence
produce non-robust inference even under a small proportion of data contamination, but the extremely
high robustness of the LSD has been investigated in detail, with both theoretical and empirical
justifications, by [78,79]; in this respect, we will present some numerical illustrations in Section 5.2.
Another important issue could be to decide whether to stop at the two-parameter level for information
measures or to extend it to three-parameters, four-parameters, etc. It is not an easy question to answer.
However, we have seen that many members of the two-parameter family of LSD measures generate
highly robust inference along with a desirable trade-off between efficiency under pure data and
robustness under contaminated data. Therefore a two-parameter system appears to work well in
practice. Since it is a known principle that one “should not multiply entities beyond necessity”, we will,
for the sake of parsimony, restrict ourselves to the second level of generalization for robust statistical
inference, at least until there is further convincing evidence that the next higher level of generalization
can produce a significant improvement.

2. The Relative (α, β)-Entropy Measure

2.1. Definition: An Extension of the Relative α-Entropy

In order to motivate the development of our generalized relative (α, β)-entropy measure, let us
first briefly describe an alternative formulation of the relative α-entropy following [16]. Consider
the mathematical set-up of Section 1 with α > 0 and assume that the space Lα(μ) is equipped with
the norm

|| f ||α =

{
(
∫
| f |αdμ)

1/α if α ≥ 1, f ∈ Lα(μ),∫
| f |αdμ if 0 < α < 1, f ∈ Lα(μ),

(8)

and the corresponding metric dα(g, f ) = ||g − f ||α for g, f ∈ Lα(μ). Then, the relative α-entropy
between two distributions P and Q is obtained as a function of the Cressie-Read power divergence
measure [97], defined below in (11), between the escort measures Pα and Qα defined in (5). Note that
the disparity family or the φ-divergence family [18,98–103] between P and Q is defined as

Dφ(P, Q) =
∫

qφ

(
p
q

)
dμ, (9)
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for a continuous convex function φ on [0, ∞) satisfying φ(0) = 0 and with the usual convention
0φ(0/0) = 0. We consider the φ-function given by

φ(u) = φλ(u) = sign(λ(λ + 1))
(

uλ+1 − 1
)

, λ ∈ R, u ≥ 0, (10)

with the convention that, for any u > 0, 0φλ(u/0) = 0 if λ < 0 and 0φλ(u/0) = ∞ if λ > 0.
The corresponding φ-divergence has the form

Dλ(P, Q) = Dφλ
(P, Q) = sign(λ(λ + 1))

∫
q

[(
p
q

)λ+1
− 1

]
dμ, (11)

which is just a positive multiple of the Cressie-Read power divergence with the multiplicative constant
being |λ(1 + λ)|; when this constant is present, the case λ = 0 leads to the KLD measure in a limiting
sense. Note that, our φ-function in (10) differs slightly from the one used by [16] in that we use
sign(λ(λ + 1)) in place of sign(λ) there; this is to make the divergence in (11) non-negative for all
λ ∈ R ([16] considered only λ > −1) which will be needed to define our generalized relative entropy.
Then, given an α > 0, [16,17] set λ = α−1 − 1(> −1) and show that the relative α-entropy of P with
respect to Q can be obtained as

REα(P, Q) = REμ
α(P, Q) =

1
λ

log [sign(λ)Dλ(Pα, Qα) + 1] . (12)

It is straightforward to see that the above formulation (12) coincides with the definition given in (6).
We often suppress the superscript μ whenever the underlying measure is clear from the context; in most
applications in information theory and statistics it is either counting measure or the Lebesgue measure
depending on whether the distribution is discrete or continuous.

We can now change the tuning parameters in the formulation given by (12) suitably as to arrive
at the more general form of the LSD family in (7). For this purpose, let us fix α > 0, β ∈ R and
assume that p, q ∈ Lα(μ) are the μ-densities of P and Q, respectively. Instead of considering the
re-parametrization λ = α−1 − 1 as above, we now consider the two-parameter re-parametrization
λ = βα−1 − 1 ∈ R. Note that, the feasible range of λ, in order to make α > 0, now clearly depends on
β through α = β

1+λ > 0; whenever β > 0 we have −1 < λ < ∞ and if β < 0 we need −∞ < λ < −1.
We have already taken care of this dependence through the modified φ function defined in (10)
which ensures that Dλ(·, ·) is non-negative for all λ ∈ R. So we can again use the relation as in (12),
after suitable standardization due to the additional parameter β, to define a new generalized relative
entropy measure as given in the following definition.

Definition 1 (Relative (α, β)-entropy). Given any α > 0 and β ∈ R, put λ = β
α − 1 (i.e., α = β

1+λ ).
Then, the relative (α, β)-entropy of P with respect to Q is defined as

REα,β(P, Q) = REμ
α,β(P, Q) =

1
βλ

log [sign(βλ)Dλ(Pα, Qα) + 1] . (13)

The cases β = 0 and λ = 0 (i.e, β = α) are defined in limiting sense; see Equations (15) and (16) below.

A straightforward simplification gives a simpler form of this new relative (α, β)-entropy which
coincides with the LSD measure as follows.

REα,β(P, Q) =
1

α− β
log
∫

pαdμ− α

β(α− β)
log
∫

pβqα−βdμ +
1
β

log
∫

qαdμ, (14)

= LSD
α−1, β−1

2−α
(P, Q).
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Note that, it coincides with the relative α-entropyREα(P, Q) at the choice β = 1. For the limiting cases,
it leads to the forms

REα,0(P, Q) =

∫
log(q/p)qαdμ∫

qαdμ
+

1
α

log
(∫

pαdμ∫
qαdμ

)
, (15)

REα,α(P, Q) =

∫
log(p/q)pαdμ∫

pαdμ
+

1
α

log
( ∫

qαdμ∫
pαdμ

)
. (16)

By the divergence property of Dλ(·, ·), all the relative (α, β)-entropies are non-negative and valid
statistical divergences. Note that, in view of (14), the formulation (13) extends the scope of LSD
measure, defined in (7), for τ ∈ (−1, 0).

Proposition 1. For any α > 0 and β ∈ R,REα,β(P, Q) ≥ 0 for all probability measures P and Q, whenever
it is defined. Further,REα,β(P, Q) = 0 if and only in P = Q[μ].

Also, it is important to identify the cases where the relative (α, β)-entropy is not finitely defined,
which can be obtained from the definition and convention related to Dλ divergence; these are
summarized in the following proposition.

Proposition 2. For any α > 0, β ∈ R and distributions P, Q having μ-densities in Lα(μ), the relative
(α, β)-entropyREα,β(P, Q) is a finite positive number except for the following three cases:

1. P is not absolutely continuous with respect to Q and α < β, in which caseREα,β(P, Q) = +∞.
2. P is mutually singular to Q and α > β, in which case alsoREα,β(P, Q) = +∞.
3. 0 < β < α and Dλ(Pα, Qα) ≥ 1, in which case alsoREα,β(P, Q) is undefined.

The above two propositions completely characterize the values and existence of our new relative
(α, β)-entropy measure. In the next subsection, we will now explore its relation with other existing
entropies and divergence measures; along the way we will get some new ones as by-products of our
generalized relative entropy formulation.

2.2. Relations with Different Existing or New Entropies and Divergences

The relative (α, β)-entropy measures form a large family containing several existing relative
entropies and divergences. Its relation with some popular ones are summarized in the following
proposition; the proof is straightforward from definitions and hence omitted.

Proposition 3. For α > 0, β ∈ R and distributions P, Q, the following results hold (whenever the relevant
integrals and divergences are defined finitely, even in limiting sense).

1. RE1,1(P, Q) = RE(P, Q), the KLD measure.
2. REα,1(P, Q) = REα(P, Q), the relative α-entropy.
3. RE1,β(P, Q) = 1

βDβ(P, Q), a scaled Renyi divergence, which also coincides with the logarithmic power
divergence measure of [80].

4. REα,β(P, Q) = 1
βDβ/α(Pα, Qα), where Pα and Qα are as defined in (5).

Remark 1. Note that, items 3 and 4 in Proposition 3 indicate a possible extension of the Renyi divergence
measure over negative values of the tuning parameter β as follows:

D∗β(P, Q) =
1
β
Dβ(P, Q), β ∈ R\{0}, D∗0 (P, Q) =

∫
q log

(
q
p

)
dμ.

14
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Note that this modified Renyi divergence also coincides with the KLD measure at β = 1. Statistical applications
of this divergence family have been studied by [80].

However, not all the members of the family of relative (α, β)-entropies are distinct or symmetric.
For example, REα,0(P, Q) = REα,α(Q, P) for any α > 0. The following proposition characterizes all
such identities.

Proposition 4. For α > 0, β ∈ R and distributions P, Q, the relative (α, β)-entropy REα,β(P, Q) is
symmetric if and only if β = α

2 . In general, we haveREα, α
2−γ(P, Q) = REα, α

2 +γ(Q, P) for any α > 0, γ ∈ R.

Recall that the KLD measure is linked to the Shannon entropy and the relative α-entropy is
linked with the Renyi entropy when the prior mismatched probability is uniform over the finite space.
To derive such a relation for our general relative (α, β)-entropy, let us assume μ(Ω) < ∞ and let U
denote the uniform probability measure on Ω. Then, we get

REα,β(P, U) =
1
β

[
log μ(Ω)− Eα,β(P)

]
, β �= 0 (17)

where the functional Eα,β(P) is given in Definition 2 below and coincides with the Renyi entropy at
β = 1. Thus, it can be used to define a two-parameter generalization of the Renyi entropy as follows.

Definition 2 (Generalized Renyi Entropy). For any probability measure P over a measurable space Ω,
we define the generalized Renyi entropy (GRE) of order (α, β) as

Eα,β(P) =
1

β− α
log

[
(
∫

pαdμ)
β(∫

pβdμ
)α

]
, α > 0, β ∈ R, β �= 0, α; (18)

Eα,α(P) = −
∫

log(p)pαdμ∫
pαdμ

+
1
α

log
(∫

pαdμ

)
, α > 0. (19)

Note that, at β = 1, we have Eα,1(P) = Eα(P), the usual Renyi entropy measure of order α.

The GRE is a new entropy to the best of our knowledge, and does not belong to the general
class of entropy functionals as given in [104] which covers many existing entropies (including most,
if not all, classical entropies). The following property of the functional Eα,β(P) is easy to verify and
justifies its use as a new entropy functional. To keep the focus of the present paper clear on the relative
(α, β)-entropy, further properties of the GRE will be explored in our future work.

Theorem 1 (Entropic characteristics of GRE). For any probability measure P over a finite measure space Ω,
we have 0 ≤ Eα,β(P) ≤ log μ(Ω) for all α > 0 and β ∈ R\{0}. The two extremes are attained as follows.

1. Eα,β(P) = 0 if P is degenerate at a point in Ω (no uncertainty).
2. Eα,β(P) = log μ(Ω) if P is uniform over Ω (maximum uncertainty).

Example 1 (Normal Distribution). Consider distributions Pi from the most common class of multivariate
(s-dimensional) normal distributions having mean μi ∈ Rs and variance matrix Σi for i = 1, 2. It is known that
the Shannon and the Renyi entropies of P1 are, respectively, given by

E(P1) =
s
2
+

s
2

log(2π) +
1
2

log |Σ1|,

Eα(P1) =
s
2

log α

α− 1
+

s
2

log(2π) +
1
2

log |Σ1|, α > 0, α �= 1.
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With the new entropy measure, GRE, the entropy of the normal distribution P1 can be seen to have the form

Eα,β(P1) =
s
2
(α log β− β log α)

(β− α)
+

s
2

log(2π) +
1
2

log |Σ1|, α > 0, β ∈ R\{0, α},

Eα,α(P1) =
s
2
(1− log α) +

s
2

log(2π) +
1
2

log |Σ1|, α > 0.

Interestingly, the GRE of a normal distribution is effectively the same as its Shannon entropy or Renyi entropy
up to an additive constant. However, similar characteristic does not hold between the relative entropy (KLD) and
relative (α, β)-entropy. The KLD measure between two normal distributions P1 and P2 is given by

RE(P1, P2) =
1
2

Trace(Σ−1
2 Σ1) +

1
2
(μ2 − μ1)

TΣ−1
2 (μ2 − μ1) +

1
2

log
( |Σ2|
|Σ1|

)
− s

2
,

whereas the general relative (α, β)-entropy, with α > 0 and β ∈ R\{0, α}, has the form

REα,β(P1, P2) =
α

2
(μ2 − μ1)

T [βΣ2 + (α− β)Σ1]
−1 (μ2 − μ1)

+
1

2β(β− α)
log
( |Σ2|β|Σ1|α−β

|βΣ2 + (α− β)Σ1|α
)
− sα log α

2β(α− β)
.

Note that the relative (α, β)-entropy gives a more general divergence measure which utilizes different weights for
the variance (or precision) matrix of the two normal distributions.

Example 2 (Exponential Distribution). Consider the exponential distribution P having density pθ(x) =
θe−θx I(x ≥ 0) with θ > 0. This distribution is very useful in lifetime modeling and reliability engineering; it is
also the maximum entropy distribution of a non-negative random variable with fixed mean. The Shannon and
the Renyi entropies of P are, respectively, given by

E(P) = 1− log θ, and Eα(P) =
log α

α− 1
− log θ, α > 0, α �= 1.

A simple calculation leads to the following form of the our new GRE measure of the exponential distribution P.

Eα,β(P) =
(α log β− β log α)

(β− α)
− log θ, α > 0, β ∈ R\{0, α},

Eα,α(P) = (1− log α)− log θ, α > 0.

Once again, the new GRE is effectively the same as the Shannon entropy or the Renyi entropy, up to an additive
constant, for the exponential distribution as well.

Further, if P1 and P2 are two exponential distributions with parameters θ1 and θ2, respectively, the relative
entropy (KLD) and the relative (α, β)-entropy between them are given by

RE(P1, P2) =
θ2

θ1
+ log θ1 − log θ2 − 1,

REα,β(P1, P2) =
α

β(α− β)
log [βθ1 + (α− β)θ2]−

1
α− β

log θ1 −
1
β

log θ2 −
α log α

β(α− β)
,

for α > 0 and β ∈ R\{0, α}. Clearly, the contributions of both the distribution is weighted differently by β and
(α− β) in their relative (α, β)-entropy measure.

Before concluding this section, we study the nature of our relative (α, β)-entropy as α → 0.
For this purpose, we restrict ourselves to the case of finite measure spaces with μ(Ω) < ∞. It is again
straightforward to note that lim

α→0
REα,β(P, Q) = 0 for any β ∈ R and any distributions P and Q on Ω.

16
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However, if we take the limit after scaling the relative entropy measure by α we get a non-degenerate
divergence measure as follows.

RE∗β(P, Q) = lim
α↓0

1
α
REα,β(P, Q) =

1
β2

[
log
∫ ( p

q

)β

dμ− β

μ(Ω)

∫
log
(

p
q

)
dμ− log μ(Ω)

]
,

for β ∈ R\{0}, and

RE∗0(P, Q) = lim
α↓0

1
α
REα,0(P, Q) =

1
2μ(Ω)

[∫
{log (p/q)}2 dμ− 1

μ(Ω)

{∫
log (p/q) dμ

}2
]

.

These interesting relative entropy measures again define a subfamily of valid statistical divergences,
from its construction. The particular member at β = 1 is linked to the LDPD (or the γ-divergence) with
tuning parameter −1 and can be thought of as a logarithmic extension of the famous Itakura–Saito
divergence [105] given by

DIS(P, Q) =
∫ ( p

q

)
dμ−

∫
log
(

p
q

)
dμ− μ(Ω). (20)

This Itakura–Saito-divergence has been successfully applied to non-negative matrix factorization in
different applications [106] which can be extended by using the new divergence familyRE∗β(P, Q) in
future works.

3. Geometry of the Relative (α, β)-Entropy

3.1. Continuity

We start the exploration of the geometric properties of the relative (α, β)-entropy with its
continuity over the functional space Lα(μ). In the following, we interchangeably use the notation
REα,β(p, q) and Dλ(p, q) to denote REα,β(P, Q) and Dλ(P, Q), respectively. Our results generalize
the corresponding properties of the relative α-entropy from [16,73] to our relative (α, β)-entropy or
equivalent LSD measure.

Proposition 5. For a given q ∈ Lα(μ), consider the function p �→ REα,β(p, q) from p ∈ Lα(μ) to [0, ∞].
This function is lower semi-continuous in Lα(μ) for any α > 0, β ∈ R. Additionally, it is continuous in Lα(μ)

when α > β > 0 and the relative entropy is finitely defined.

Proof. First let us consider any α > 0 and take pn → p in Lα(μ). Then, ||pn||α → ||p||α. Also, |pα
n −

pα| ≤ |pn|α + |p|α and hence a general version of the dominated convergence theorem yields pα
n → pα

in L1(μ). Thus, we get

pn,α :=
pα

n∫
pα

ndμ
→ pα in L1(μ). (21)

Further, following ([107], Lemma 1), we know that the function h →
∫

φλ(h)dν is lower
semi-continuous in L1(ν) for any λ ∈ R and any probability measure ν on (Ω,A). Taking ν = Qα,
we get from (21) that pn,α/qα → pα/qα in L1(ν). Therefore, the above lower semi-continuity result
along with (9) implies that

lim inf
n→∞

Dλ(pn,α, qα) ≥ Dλ(pα, qα) ≥ 0, λ ∈ R. (22)

17
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Now, note that the function ψ(u) = 1
ρ log(sign(ρ)u + 1) is continuous and increasing on [0, ∞)

for ρ > 0 and on [0, 1) for ρ < 0. Thus, combining (22) with the definition of the relative (α, β)-entropy
in (13), we get that

lim inf
n→∞

REα,β(pn, q) ≥ REα,β(p, q), (23)

i.e., the function p �→ REα,β(p, q) is lower semi-continuous.
Finally, consider the case α > β > 0. Note that the dual space of Lα/β(μ) is L α

α−β
(μ) since

α > β > 0. Also, for q ∈ Lα(μ), we have
(

q
||q||α

)α−β
∈ L α

α−β
(μ), the dual space of the Banach space

Lα/β(μ). Therefore, the function T : Lα/β(μ) �→ R defined by

T(h) =
∫

h
(

q
||q||α

)α−β

dμ, h ∈ Lα/β(μ),

is a bounded linear functional and hence continuous. Now, take pn → p in Lα(μ) so that ||pn||α →
||p||α as n → ∞. Therefore,

(
pn

||pn ||α

)
→
(

p
||p||α

)
in Lα(μ) implying

(
pn

||pn ||α

)β
→
(

p
||p||α

)β
in Lα/β(μ).

Hence, by the continuity of T on Lα/β(μ), we get

T

((
pn

||pn||α

)β
)
→ T

((
p

||p||α

)β
)

, as n → ∞.

However, from (14), we get

REα,β(pn, q) =
α

β(β− α)
log T

((
pn

||pn||α

)β
)
→ α

β(β− α)
log T

((
p

||p||α

)β
)

= REα,β(p, q). (24)

This proves the continuity ofREα,β(p, q) in its first argument when α > β > 0.

Remark 2. Whenever Ω is finite (discrete) equipped with the counting measure μ, all integrals in the definition
ofREα,β(P, Q) become finite sums and any limit can be taken inside these finite sums. Thus, whenever defined
finitely, the function p �→ REα,β(p, q) is always continuous in this case.

Remark 3. For a general infinite space Ω, the function p �→ REα,β(p, q) is not necessarily continuous for the
cases α < β. This can be seen by using the same counterexample as given in Remark 3 of [16]. However, it is yet
to be verified if this function can be continuous for β < 0 cases.

Proposition 6. For a given p ∈ Lα(μ), consider the function q �→ REα,β(p, q) from q ∈ Lα(μ) to [0, ∞].
This function is lower semi-continuous in Lα(μ) for any α > 0 and β ∈ R.

Proof. Fix an α > 0 and β ∈ R, which in turn fixes a λ ∈ R. Note that, the relative (α, β)-entropy
measure can be re-expressed from (13) as

REα,β(p, q) =
1

βλ
log
[
sign(βλ)D−(λ+1)(qα, pα) + 1

]
. (25)

Now, consider a sequence qn → q in Lα(μ) and proceed as in the proof of Proposition 5 using ([107],
Lemma 1) to obtain

lim inf
n→∞

D−(λ+1)(qn,α, pα) ≥ D−(λ+1)(qα, pα) ≥ 0, λ ∈ R. (26)

18
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Now, whenever D−(λ+1)(qα, pα) = 1 with βλ < 0 or D−(λ+1)(qα, pα) = ∞ with βλ > 0, we get
from (25) and (26) that

lim inf
n→∞

REα,β(p, qn) = REα,β(p, q) = +∞. (27)

In all other cases, we consider the function ψ(u) = 1
ρ log(sign(ρ)u + 1) as in the proof of Proposition 5.

This function is continuous and increasing whenever the corresponding relative entropy is finitely
defined for all tuning parameter values; on [0, ∞) for ρ > 0 and on [0, 1) for ρ < 0. Hence, again
combining (26) with (25) through the function ψ, we conclude that

lim inf
n→∞

REα,β(p, qn) ≥ REα,β(p, q). (28)

Therefore, the function q �→ REα,β(p, q) is also lower semi-continuous.

Remark 4. As in Remark 2, whenever Ω is finite (discrete) and is equipped with the counting measure μ,
the function q �→ REα,β(p, q) is continuous in Lα(μ) for any fixed p ∈ Lα(μ), α > 0 and β ∈ R.

3.2. Convexity

It has been shown in [16] that the relative α-entropy (i.e., REα,1(p, q)) is neither convex nor
bi-convex, but it is quasi-convex in p. For general β �= 1, however, the relative (α, β)-entropy
REα,β(p, q) is not even quasi-convex in p ∈ Lα(μ); rather it is quasi-convex on the β-power transformed
space of densities, Lα(μ)β =

{
pβ : p ∈ Lα(μ)

}
, as described in the following theorem. Note that,

for α, β > 0, Lα(μ)β = Lα/β(μ). Here we define the lower level set Bα,β(q, r) =
{

p : REα,β(p, q) ≤ r
}

and its power-transformed set Bα,β(q, r)β =
{

pβ : p ∈ Bα,β(q, r)
}

, for any q ∈ Lα(μ) and r > 0.

Theorem 2. For any given α > 0, β ∈ R and q ∈ Lα(μ), the sets Bα,β(q, r)β are convex for all r > 0.
Therefore, the function pβ �→ REα,β(p, q) is quasi-convex on Lα(μ)β.

Proof. Note that, at β = 1, our theorem coincides with Proposition 5 of [16]; so we will prove
the result for the case β �= 1. Fix α, r > 0, a real β /∈ {1, α}, q ∈ Lα(μ), and p0, p1 ∈ Bα,β(q, r).

Then pβ
0 , pβ

1 ∈ Bα,β(q, r)β. For τ ∈ [0, 1], we consider pβ
τ = τpβ

1 + τ̄pβ
0 with τ̄ = 1− τ. We need to show

that pβ
τ ∈ Bα,β(q, r)β, i.e.,REα,β(pτ , q) ≤ r.

Now, from (14), we have

REα,β(p, q) =
1

βλ
log
∫ ( p

||p||α

)β ( q
||q||α

)α−β

dμ =
1

βλ
log
∫ ( pα

qα

)β/α

dQα. (29)

Since pβ
0 , pβ

1 ∈ Bα,β(q, r)β, we have

sign(βλ)
∫ ( pτ

||pτ ||α

)β ( q
||q||α

)α−β

dμ ≤ sign(βλ)erβλ, for τ = 0, 1. (30)

For any τ ∈ (0, 1), we get

sign(βλ)
∫ ( pτ

||pτ ||α

)β ( q
||q||α

)α−β

dμ = sign(βλ)
∫ (

τpβ
1 + τ̄pβ

0

||pτ ||βα

)(
q

||q||α

)α−β

dμ, [by definition of pτ]

≤ sign(βλ)erβλ τ||p1||βα + τ̄||p0||βα
||pτ ||βα

, [by (30)].

(31)
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Now, using the extended Minkowski’s inequalities from Lemma 1, given below, along with (31) and
noting that βλ = β(β− α)/α, we get that

sign(βλ)
∫ ( pτ

||pτ ||α

)β ( q
||q||α

)α−β

dμ ≤ sign(βλ)erβλ.

Therefore, by (29) and the fact that 1
ρ log(sign(ρ)u) is increasing in u, we finally getREα,β(pτ , q) ≤ r.

This proves the result for α �= β.
The case β = α can be proved in a similar manner and is left as an exercise to the readers.

Lemma 1 (Extended Minkowski’s inequality). Fix α > 0, a real β /∈ {1, α}, p0, p1 ∈ Lα(μ), and τ ∈ [0, 1].
Define pβ

τ = τpβ
1 + τ̄pβ

0 with τ̄ = 1− τ. Then we have the following inequalities:

||pτ ||βα ≥ τ||p1||βα + τ̄||p0||βα , if β(β− α) > 0, (32)

||pτ ||βα ≤ τ||p1||βα + τ̄||p0||βα , if β(β− α) < 0. (33)

Proof. It follows by using the Jensen’s inequality and the convexity of the function xβ/α.

Next, note in view of Proposition 4 that, for any p, q ∈ Lα(μ), REα,β(p, q) = REα,α−β(q, p).
Using this result along with the above theorem, we also get the quasi-convexity of the relative
(α, β)-entropyREα,β(p, q) in q over a different power transformed space of densities. This leads to the
following theorem.

Theorem 3. For any given α > 0, β ∈ R and p ∈ Lα(μ), the function qα−β �→ REα,β(p, q) is quasi-convex
on Lα(μ)α−β. In particular, for the choice β = α− 1, the function q �→ REα,β(p, q) is quasi-convex on Lα(μ).

Remark 5. Note that, at α = β = 1, the RE1,1(p, q) coincides with the KLD measure (or relative entropy)
which is quasi-convex in both the arguments p and q on Lα(μ).

3.3. Extended Pythagorean Relation

Motivated by the quasi-convexity ofREα,β(p, q) on Lα(μ)β, we now present a Pythagorean-type
result for the general relative (α, β)-entropy over the power-transformed space. It generalizes the
corresponding result for relative α-entropy [16]; the proof is similar to that in [16] with necessary
modifications due to the transformation of the domain space.

Theorem 4 (Pythagorean Property). Fix an α > 0, β ∈ R with β �= α and p0, p1, q ∈ Lα(μ). Define
pτ ∈ Lα(μ) by pβ

τ = τpβ
1 + τ̄pβ

0 for τ ∈ [0, 1] and τ̄ = 1− τ.

(i) SupposeREα,β(p0, q) andREα,β(p1, q) are finite. Then,REα,β(pτ , q) ≥ REα,β(p0, q) for all τ ∈ [0, 1],

i.e., the back-transformation of line segment joining pβ
1 and pβ

0 on Lα(μ)β to Lα(μ) does not intersect
Bα,β(q,REα,β(p0, q)), if and only if

REα,β(p1, q) ≥ REα,β(p1, p0) +REα,β(p0, q). (34)

(ii) SupposeREα,β(pτ , q) is finite for some fixed τ ∈ (0, 1). Then, the back-transformation of line segment

joining pβ
1 and pβ

0 on Lα(μ)β to Lα(μ) does not intersect Bα,β(q,REα,β(pτ , q)) if and only if

REα,β(p1, q) = REα,β(p1, pτ) +REα,β(pτ , q), (35)

and REα,β(p0, q) = REα,β(p0, pτ) +REα,β(pτ , q). (36)
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Proof of Part (i). Let Pτ,α to be the probability measure having μ-density pτ,α = pα
τ∫

pα
τdμ

for τ ∈ [0, 1].
Also note that, with λ = β/α− 1, we have

Dλ(Pα, Qα) = sign(βλ)

[∫ ( p
||p||α

)β

(qα)
−λ dμ− 1

]
, for p, q ∈ Lα(μ). (37)

Thus, (34) is equivalent to the statement

sign(βλ)||p0||βα
∫

pβ
1 (qα)

−λ dμ ≥ sign(βλ)
∫

pβ
1 (p0,α)

−λ dμ ·
∫

pβ
0 (qα)

−λ dμ. (38)

and we have

Dλ(Pτ,α, Qα) = sign(βλ)

[∫ ( pτ

||pτ ||α

)β

(qα)
−λ dμ− 1

]
= sign(βλ)

s(τ)
t(τ)

, (39)

where s(τ) =
∫

pβ
τ (qα)

−λ dμ and t(τ) = ||pτ ||βα . Now consider the two implications separately.

Only if statement: Now, let us assume thatREα,β(pτ , q) ≥ REα,β(p0, q) for all τ ∈ (0, 1). Then, we get
1
τ [Dλ(Pτ,α, Qα)− Dλ(P0,α, Qα)] ≥ 0 for all τ ∈ (0, 1). Letting τ ↓ 0, we get that

∂

∂τ
Dλ(Pτ,α, Qα)

∣∣∣∣
τ=0

≥ 0. (40)

In order to find the derivative of Dλ(Pτ,α, Qα), we first note that

s(τ)− s(0)
τ

=
1
τ

[∫
pβ

τ (qα)
−λ dμ−

∫
pβ

0 (qα)
−λ dμ

]
=
∫
(pβ

1 − pβ
0 ) (qα)

−λ dμ,

and hence

s′(0) = lim
τ↓0

s(τ)− s(0)
τ

=
∫
(pβ

1 − pβ
0 ) (qα)

−λ dμ. (41)

Further, using a simple modification of the techniques in the proof of ([16], Theorem 9), it is easy to
verify that the derivative of t(τ) with respect to τ exists and is given by

t′(τ) =
(∫

pα
τdμ

) (β−α)
α
∫

pα−β
τ (pβ

1 − pβ
0 )dμ.

Hence we get

t′(0) =

(∫
pα

0dμ

) (β−α)
α
∫

pα−β
0 (pβ

1 − pβ
0 )dμ =

∫
pβ

1 (p0,α)
−λ dμ− ||p0||βα . (42)

Therefore, the derivative of Dλ(Pτ,α, Qα) = sign(βλ)s(τ)/t(τ) exists and is given by
sign(βλ) [t(0)s′(0)− t′(0)s(0)] /t(0)2. Therefore, using (40), we get that

sign(βλ)t(0)s′(0) ≥ sign(βλ)t′(0)s(0), (43)

which implies (38) after substituting the values from (41) and (42).

If statement: Now, let us assume that (34)—or equivalently (38)—holds true. Further, as in the derivation
of (38), we can start from the trivial statement

REα,β(p0, q) = REα,β(p0, p0) +REα,β(p0, q),
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to deduce

sign(βλ)||p0||βα
∫

pβ
0 (qα)

−λ dμ = sign(βλ)
∫

pβ
0 (p0,α)

−λ dμ ·
∫

pβ
0 (qα)

−λ dμ. (44)

Now, multiply (38) by τ and (44) by τ̄, and add to get

sign(βλ)||p0||βα
∫

pβ
τ (qα)

−λ dμ ≥ sign(βλ)
∫

pβ
τ (p0,α)

−λ dμ ·
∫

pβ
0 (qα)

−λ dμ.

In view of (37), this implies that

REα,β(pτ , q) ≥ REα,β(pτ , p0) +REα,β(p0, q) ≥ REα,β(p0, q).

This proves the if statement of Part (i) completing the proof.

Proof of Part (ii). Note that the if statement follows directly from Part (i).
To prove the only if statement, we first show that REα,β(p1, q) and REα,β(p0, q) are finite since

REα,β(pτ , q) is finite. For this purpose, we note that pβ
1 ≤ τ−1 pβ

τ by the definition of pτ and hence
(p1/q)β ≤ τ−1(pτ/q)β. Therefore, we get(

p1,α

qα

)β/α

=

(
p1

q

)β ( ||q||
||p1||

)β

≤ 1
τ

(
pτ

q

)β ( ||q||
||p1||

)β

=
1
τ

(
pτ,α

qα

)β ( ||pτ ||
||p1||

)β

. (45)

Integration with respect to Qα and using (29), we getREα,β(p1, q) ≤ REα,β(pτ , q) + c < ∞, where c is
a constant. Similarly one can also show thatREα,β(p0, q) < ∞.

Therefore, we can apply Part (i) to conclude that

REα,β(p1, q) ≥ REα,β(p1, pτ) +REα,β(pτ , q), and REα,β(p0, q) ≥ REα,β(p0, pτ) +REα,β(pτ , q). (46)

These relations imply that

sign(βλ)||pτ ||βα
∫

pβ
1 (qα)

−λ dμ ≥ sign(βλ)
∫

pβ
1 (pτ,α)

−λ dμ ·
∫

pβ
τ (qα)

−λ dμ, (47)

and sign(βλ)||pτ ||βα
∫

pβ
0 (qα)

−λ dμ ≥ sign(βλ)
∫

pβ
0 (pτ,α)

−λ dμ ·
∫

pβ
τ (qα)

−λ dμ. (48)

The proof of the above results proceed in a manner analogous to the proof of (38). Now, if either
of the inequalities in (46) is strict, the corresponding inequality in (47) or (48) will also be strict.
Then, multiplying (47) and (48) by τ and τ̄, respectively, and adding them we get (44) with a strict
inequality (in place of an equality), which is a contradiction. Hence, both inequalities in (46) must be
equalities implying (35) and (36). This completes the proof.

Note that, at β = 1, the above theorem coincides with Theorem 9 of [16]. However, for general
α, β as well, the above extended Pythagorean relation for the relative (α, β)-entropy suggests that it
behaves “like" a squared distance (although with a non-linear space transformation). So, one can
meaningfully define its projection on to a suitable set which we will explore in the following sections.

4. The Forward Projection of Relative (α, β)-Entropy

The forward projection, i.e., minimization with respect to the first argument given a fixed second
argument, leads to the important maximum entropy principle of information theory; it also relates to
the Gibbs conditioning principle from statistical physics [16]. Let us now formally define and study
the forward projection of the relative (α, β)-entropy. Let S∗ denote the set of probability measure on
(Ω,A) and let the set of corresponding μ-densities be denoted by S = {p = dP/dμ : P ∈ S∗}.
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Definition 3 (Forward (α, β)-Projection). Fix Q ∈ S∗ having μ-density q ∈ Lα(μ). Let E ⊂ S with
REα,β(p, q) < ∞ for some p ∈ E. Then, p∗ ∈ E is called the forward projection of the relative (α, β)-entropy
or simply the forward (α, β)-projection (or forward LSD projection) of q on E if it satisfies the relation

REα,β(p∗, q) = inf
p∈E

REα,β(p, q). (49)

Note that we must assume that, E ⊂ Lα(μ) so that the above relative (α, β)-entropy is finitely defined
for p ∈ E.

We first prove the uniqueness of the forward (α, β)-projection from the Pythagorean property,
whenever it exists. The following theorem describe the connection of the forward (α, β)-projection
with Pythagorean relation; the proof is same as that of ([16], Theorem 10) using Theorem 4 and hence
omitted for brevity.

Theorem 5. Consider the set E ⊂ S such that Eβ is convex and fix q ∈ Lα(μ). Then, p∗ ∈ E∩ Bα,β(q, ∞) is
a forward (α, β)-projection of q on E if and only if every p ∈ E∩ Bα,β(q, ∞) satisfies

REα,β(p, q) ≥ REα,β(p, p∗) +REα,β(p∗, q). (50)

Further, if (p∗)β is an algebraic inner point of Eβ, i.e., for every p ∈ E there exists p′ ∈ E and τ ∈ (0, 1) such
that (p∗)β = τpβ + (1− τ)(p′)β, then every p ∈ E satisfiesREα,β(p, q) < ∞ and

REα,β(p, q) = REα,β(p, p∗) +REα,β(p∗, q), and REα,β(p′, q) = REα,β(p′, p∗) +REα,β(p∗, q).

Corollary 1 (Uniqueness of Forward (α, β)-Projection). Consider the set E ⊂ S such that Eβ is convex and
fix q ∈ Lα(μ). If a forward (α, β)-projection of q on E exists, it must be unique a.s.[μ].

Proof. Suppose p∗1 and p∗2 are two forward (α, β)-projection of q on E. Then, by definition,
REα,β(p∗1, q) = REα,β(p∗2, q) < ∞. Applying Theorem 5 with p∗ = p∗1 and p = p∗2, we get

REα,β(p∗2, q) ≥ REα,β(p∗2, p∗1) +REα,β(p∗1, q).

Hence REα,β(p∗2, p∗1) ≤ 0 or REα,β(p∗2, p∗1) = 0 by non-negativity of relative entropy, which further
implies that p∗1 = p∗2 a.s.[μ] by Proposition 1.

Next we will show the existence of the forward (α, β)-projection under suitable conditions.
We need to use an extended Apollonius Theorem for the φ-divergence measure Dλ used in the
definition (13) of the relative (α, β)-entropy. Such a result is proved in [16] for the special case
α(1 + λ) = 1; the following lemma extends it for the general case α(1 + λ) = β ∈ R.

Lemma 2. Fix p0, p1, q ∈ Lα(μ), τ ∈ [0, 1] and α(1 + λ) = β ∈ R with α > 0 and define r satisfying

rβ =

τ

||p1||βα
pβ

1 + 1−τ

||p0||βα
pβ

0

τ

||p1||βα
+ 1−τ

||p0||βα

. (51)

Let pj,α = pα
j /
∫

pα
j dμ for j = 0, 1, and similarly qα and rα. Then, if β(β− α) > 0 we have

τDλ(p1,α, qα) + (1− τ)Dλ(p0,α, qα) ≥ τDλ(p1,α, rα) + (1− τ)Dλ(p0,α, rα) + Dλ(rα, qα), (52)

but the inequality gets reversed if β(β− α) < 0.
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Proof. By (37), we get

τDλ(p1,α, qα) + (1− τ)Dλ(p0,α, qα)− τDλ(p1,α, rα)− (1− τ)Dλ(p0,α, rα)

= sign(βλ)τ
∫ ( p1

||p1||α

)β [
(qα)

−λ − (rα)
−λ
]

dμ + sign(βλ)(1− τ)
∫ ( p0

||p0||α

)β [
(qα)

−λ − (rα)
−λ
]

dμ

= sign(βλ)||r||βα
[

τ

||p1||βα
+

1− τ

||p0||βα

] ∫ ( r
||r||α

)β [
(qα)

−λ − (rα)
−λ
]

dμ

= sign(βλ)||r||βα
[

τ

||p1||βα
+

1− τ

||p0||βα

]
Dλ(Rα, Qα).

Then the Lemma follows by an application of the extended Minkowski’s inequalities (32) and (33)
from Lemma 1.

We now present the sufficient conditions for the existence of the forward (α, β)-projection in the
following theorem.

Theorem 6 (Existence of Forward (α, β)-Projection). Fix α > 0 and β ∈ R with β �= α and q ∈ Lα(μ).
Given any set E ⊂ S for which Eβ is convex and closed and REα,β(p, q) < ∞ for some p ∈ E, a forward
(α, β)-projection of q on E always exists (and it is unique by Corollary 1).

Proof. We prove it separately for the cases βλ > 0 and βλ < 0, extending the arguments from [16].
The case βλ = 0 can be obtained from these two cases by standard limiting arguments and hence
omitted for brevity.

The Case βλ > 0:

Consider a sequence {pn} ⊂ E such that Dλ(pn,α, qα) < ∞ for each n and Dλ(pn,α, qα) →
inf
p∈E

Dλ(pα, qα) as n → ∞. Then, by Lemma 2 applied to pm and pn with τ = 1/2, we get

1
2

Dλ(pm,α, qα) +
1
2

Dλ(pn,α, qα) ≥
1
2

Dλ(pm,α, rm,n,α) +
1
2

Dλ(pn,α, rm,n,α) + Dλ(rm,n,α, qα), (53)

where rm,n is defined by

rβ
m,n =

τ

||pm ||βα
pβ

m + 1−τ

||pn ||βα
pβ

n

τ

||pm ||βα
+ 1−τ

||pn ||βα

. (54)

Note that, since Eβ is convex, rm,n ∈ Eβ and so rm,n ∈ E. Also, using the non-negativity of divergence,
(53) leads to

0 ≤ 1
2

Dλ(pm,α, rm,n,α) +
1
2

Dλ(pn,α, rm,n,α) ≤
1
2

Dλ(pm,α, qα) +
1
2

Dλ(pn,α, qα)− Dλ(rm,n,α, qα). (55)

Taking limit as m, n → ∞, one can see that
[

1
2 Dλ(pm,α, qα) +

1
2 Dλ(pn,α, qα)− Dλ(rm,n,α, qα)

]
→ 0

and hence [Dλ(pm,α, rm,n,α) + Dλ(pn,α, rm,n,α)] → 0. Thus, Dλ(pm,α, rm,n,α) → 0 as m, n → ∞ by
non-negativity. This along with a generalization of Pinker’s inequality for φ-divergence ([100],
Theorem 1) gives

lim
m,n→∞

||pm,α − rm,n,α||T = 0, (56)
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whenever λ(1 + λ) > 0 (which is true since βλ > 0); here || · ||T denotes the total variation norm.
Now, by triangle inequality

||pm,α − pn,α||T ≤ ||pm,α − rm,n,α||T + ||pn,α − rm,n,α||T → 0, as m, n → ∞.

Thus, {pn,α} is Cauchy in L1(μ) and hence converges to some g ∈ L1(μ), i.e.,

lim
n→∞

∫
|pn,α − g|dμ = 0, (57)

and g is a probability density with respect to μ since each pn is so. Also, (57) implies that pn,α → g
in [μ]-measure and hence p1/α

n,α → g1/α in Lα(μ) by an application of generalized dominated
convergence theorem.

Next, as in the proof of ([16], Theorem 8), we can show that ||pn||α is bounded and hence
||pn||α → c for some c > 0, possibly working with a subsequence if needed. Thus we have pn =

||pn||α p1/α
n,α → cg1/α in Lα(μ). However, since Eβ is closed, we have E is closed and hence cg1/α = p∗

for some p∗ ∈ E. Further, since
∫

gdμ = 1, we must have c = ||p∗||α and hence g = p∗α. Since pn → p∗

and p∗ ∈ E, Proposition 5 implies that

REα,β(p∗, q) ≤ lim inf
n→∞

REα,β(pn, q) = inf
p∈E

REα,β(p, q) ≤ REα,β(p∗, q),

where the second equality follows by continuity of the function f (u) = (βλ)−1 log(sign(βλ)u + 1),
definitions of pn sequence and (13). Hence, we must haveREα,β(p∗, q) = inf

p∈E
REα,β(p, q), i.e., p∗ is a

forward (α, β)-projection of q on E.

The Case βλ < 0:

Note that, in this case, we must have 0 < β < α, since α > 0. Then, using (29), we can see that

inf
p∈E

REα,β(p, q) =
1

βλ
log

[
sup
p∈E

∫ ( p
||p||α

)β ( q
||q||α

)α−β

dμ

]

=
1

βλ
log

[
sup
h∈Ẽ

∫
hgdμ

]
, (58)

where g =
(

q
||q||α

)α−β
∈ L α

α−β
(μ) and

Ẽ =

{
s
(

p
||p||α

)β

: p ∈ E, s ∈ [0, 1]

}
⊂ Lα/β(μ).

Now, since Eβ and hence E is closed, one can show that Ẽ is also closed; see, e.g., the proof of ([16],

Theorem 8). Next, we will show that Ẽ is also convex. For take s1

(
p1

||p1||α

)β
∈ Ẽ and s0

(
p0

||p0||α

)β
∈ Ẽ

for some s0, s1 ∈ [0, 1] and p0, p1 ∈ E, and take any τ ∈ [0, 1]. Note that

τs1

(
p1

||p1||α

)β

+ (1− τ)s0

(
p0

||p0||α

)β

= sτ

(
pτ

||pτ ||α

)β

,

where

pβ
τ =

τs1

(
p1

||p1||α

)β
+ (1− τ)s0

(
p0

||p0||α

)β

τs1

||p1||βα
+ (1−τ)s0

||p0||βα

, and sτ =

[
τs1

||p1||βα
+

(1− τ)s0

||p0||βα

]
||pτ ||βα .
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However, by convexity of Eβ, pτ ∈ E and also 0 ≤ sτ ≤ 1 by the extended Minkowski inequality (33).

Therefore, sτ

(
pτ

||pτ ||α

)β
∈ Ẽ and hence Ẽ is convex.

Finally, since 0 < β < α, Lα/β(μ) is a reflexive Banach space and hence the closed and convex
Ẽ ⊂ Lα/β(μ) is also closed in the weak topology. So, the unit ball is compact in the weak topology by
the Banach-Alaoglu theorem and hence its closed subset Ẽ is also weakly compact. However, since g
belongs to the dual space of Lα/β(μ), the linear functional h �→

∫
hgdμ is continuous in weak topology

and also increasing in s. Hence its supremum over Ẽ is attained at s = 1 and some p∗ ∈ E, which is
the required forward (α, β)-projection.

Before concluding this section, we will present one example of the forward (α, β)-projection onto
a transformed-linear family of distributions.

Example 3 (An example of the forward (α, β)-projection). Fix α > 0, β ∈ R\{0, α} and q ∈ Lα(μ)

related to the measure Q. Consider measurable functions fi : Ω �→ R for i ∈ I, an index set, and the family
of distributions

L∗β =

{
P ∈ S∗ :

∫
fγdPβ = 0

}
⊂ S∗.

Let us denote the corresponding μ-density set by Lβ =
{

p = dP
dμ : P ∈ L∗β

}
. We assume that, L∗β is non-empty,

every P ∈ L∗β is absolute continuous with respect to μ and Lβ ⊂ Lα(μ).
Then, p∗ is the forward (α, β)-projection of q on Lβ if and only if there exists a function g in the

L1(Qβ)-closure of the linear space spanned by { fi : i ∈ I} and a subset N ⊂ Ω such that, for every P ∈ L∗β{
P(N) = 0 if α < β,
c
∫

N qα−βdPβ ≤
∫

Ω\N gdPβ if α > β,

with c =
∫
(p∗)αdμ∫

(p∗)βqα−βdμ
and p∗ satisfies

p∗(x)α−β = cq(x)α−β + g(x), if x /∈ N,

p∗(x) = 0, if x ∈ N.

The proof follows by extending the arguments of the proof of ([16], Theorem 11) and hence it is left as an exercise
to the readers.

Remark 6. Note that, at the special case β = 1, L∗1 is a linear family of distributions and the above example
coincides with ([16], Theorem 11) on the forward projection of relative α-entropy on L∗1 . However, it is still an
open question to derive the forward (α, β)-projection on L∗1 .

5. Statistical Applications: The Minimum Relative Entropy Inference

5.1. The Reverse Projection and Parametric Estimation

As in the case of the forward projection of a relative entropy measure, we can also define the
reverse projection by minimizing it with respect to the second argument over a convex set E keeping
the first argument fixed. More formally, we use the following definition.

Definition 4 (Reverse (α, β)-Projection). Fix p ∈ Lα(μ) and let E ⊂ S with REα,β(p, q) < ∞ for some
q ∈ E. Then, q∗ ∈ E is called the reverse projection of the relative (α, β)-entropy or simply the reverse
(α, β)-projection (or reverse LSD projection) of p on E if it satisfies the relation

REα,β(p, q∗) = inf
q∈E
REα,β(p, q). (59)
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We can get sufficient conditions for the existence and uniqueness of the reverse (α, β)-projection
directly from Theorem 6 and the fact that REα,β(p, q) = REα,α−β(q, p); this is presented in the
following theorem.

Theorem 7 (Existence and Uniqueness of Reverse (α, β)-Projection). Fix α > 0 and β ∈ R with β �= α

and p ∈ Lα(μ). Given any set E ⊂ S for which Eα−β is convex and closed and REα,β(p, q) < ∞ for some
q ∈ E, a reverse (α, β)-projection of p on E exists and is unique.

The reverse projection is mostly used in statistical inference where we fix the first argument of a
relative entropy measure (or divergence measure) at the empirical data distribution and minimize the
relative entropy with respect to the model family of distributions in its second argument. The resulting
estimator, commonly known as the minimum distance or minimum divergence estimator, yields the
reverse projection of the observed data distribution on the family of model distributions with respect to
the relative entropy or divergence under consideration. This approach was initially studied by [9–13]
to obtain the popular maximum likelihood estimator as the reverse projection with respect to the
relative entropy in (2). More recently, this approach has become widely popular, but with more general
relative entropies or divergence measures, to obtain robust estimators against possible contamination
in the observed data. Let us describe it more rigorously in the following for our relative (α, β)-entropy.

Suppose we have independent and identically distributed data X1, . . . , Xn from a true distribution
G having density g with respect to some common dominating measure μ. We model g by a parametric
model family of μ-densities F = { fθ : θ ∈ Θ ⊆ Rp}, where it is assumed that both g and fθ have the
same support independent of θ. Our objective is to infer about the unknown parameter θ. In minimum
divergence inference, an estimator of θ is obtained by minimizing the divergence measure between (an
estimate of) g and fθ with respect to θ ∈ Θ. Maji et al. [78] have considered the LSD (or equivalently
the relative (α, β)-entropy) as the divergence under consideration and defined the corresponding
minimum divergence functional at G, say Tα,β(G), through the relation

REα,β

(
g, fTα,β(G)

)
= min

θ∈Θ
REα,β(g, fθ), (60)

whenever the minimum exists. We will refer to Tα,β(G) as the minimum relative (α, β)-entropy
(MRE) functional, or the minimum LSD functional in the language of [78,79]. Note that, if g ∈ F ,
i.e., g = fθ0 for some θ0 ∈ Θ, then we must have Tα,β(G) = θ0. If g /∈ F , we call Tα,β(G) as
the “best fitting parameter" value, since fTα,β(G) is the closest model element to g in the LSD sense.
In fact, for g /∈ F , Tα,β(G) is nothing but the reverse (α, β)-projection of the true density g on the
model family F , which exists and is unique under the sufficient conditions of Theorem 7. Therefore,
under identifiability of the model family F we get the existence and uniqueness of the MRE functional,
which is presented in the following corollary. Although this estimator was first introduced by [78] in
terms of the LSD, the results concerning the existence of the estimate were not provided.

Corollary 2 (Existence and Uniqueness of the MRE Functional). Consider the above parametric estimation
problem with g ∈ Lα(μ) and F ⊂ Lα(μ). Fix α > 0 and β ∈ R with β �= α and assume that the model family
F is identifiable in θ.

1. Suppose g = fθ0 for some θ0 ∈ Θ. Then the unique MRE functional is given by Tα,β(G) = θ0.
2. Suppose g /∈ F . If F α−β is convex and closed and REα,β(g, fθ) < ∞ for some θ ∈ Θ, the MRE

functional Tα,β(G) exists and is unique.
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Further, under standard differentiability assumptions, we can obtain the estimating equation of
the MRE functional Tα,β(G) as given by[∫

f α
θ uθdμ

] [∫
f α−β
θ gβdμ

]
=

[∫
f α−β
θ gβuθdμ

] [∫
f α
θ dμ

]
, (61)

where uθ(x) = ∂
∂θ ln fθ(x). It is important to note that, at β = α = 1, the MRE functional T1,1(G)

coincides with the maximum likelihood functional since RE1,1 = RE , the KLD measure. Based on
the estimating Equation (61), Maji et al. [78] extensively studied the theoretical robustness properties
of the MRE functional against gross-error contamination in data through the higher order influence
function analysis. The classical first order influence function was seen to be inadequate for this purpose;
it becomes independent of β at the model but the real-life performance of the MRE functional critically
depends on both α and β [78,79] as we will also see in Section 5.2.

In practice, however, the true data generating density is not known and so we need to use some
empirical estimate in place of g and the resulting value of the MRE functional is called the minimum
relative (α, β)-entropy estimator (MREE) or the minimum LSD estimator in the terminology of [78,79].
Note that, when the data are discrete and μ is the counting measure, one can use a simple estimate
of g given by the relative frequencies rn(x) = 1

n ∑n
i=1 I(Xi = x), where I(A) is the indicator function

of the event A; the corresponding MREE is then obtained by solving (61) with g(x) replaced by rn(x)
and integrals replaced by sums over the discrete support. Asymptotic properties of this MREE under
discrete models are well-studied by [78,79] for the tuning parameters α ≥ 1 and β ∈ R; the same line
of argument can be used to extend them also for the cases α ∈ (0, 1) in a straightforward manner.

However, in case of continuous data, there is no such simple estimator available to use in
place of g unless β = 1. When β = 1, the estimating Equation (61) depends on g through the
terms

∫
f α−1
θ gdμ =

∫
f α−1
θ dG and

∫
f α−1
θ uθgdμ =

∫
f α−1
θ uθdG; so we can simply use the empirical

distribution function Gn in place of G and solve the resulting equation to obtain the corresponding
MREE. However, for β �= 1, we must use a non-parametric kernel estimator gn of g in (61) to obtain
the MREE under continuous models; this leads to complications including bandwidth selection while
deriving the asymptotics of the resulting MREE. One possible approach to avoid such complications
is to use the smoothed model technique, which has been applied in [108] for the case of minimum
φ-divergence estimators. Another alternative approach has been discussed in [109,110]. However,
the detailed analyses of the MREE under the continuous model, in either of the above approaches, are
yet to be studied so far.

5.2. Numerical Illustration: Binomial Model

Let us now present numerical illustrations under the common binomial model to study the
finite sample performance of the MREEs. Along with the known properties of the MREE at α ≥ 1
(i.e., the minimum LSD estimators with τ ≥ 0 from [78,79]), here we will additionally explore their
properties in case of α ∈ (0, 1) and for the new divergencesRE∗β(P, Q) related to α = 0.

Suppose X1, . . . , Xn are random observations from a true density g having support χ =

{0, 1, 2, . . . , m} for some positive integer m. We model g by the Binomial(m, θ) densities fθ(x) =

(n
x)θ

x(1− θ)m−x for x ∈ χ and θ ∈ [0, 1]. Here an estimate ĝ of g is given by the relative frequency
ĝ(x) = rn(x). For any α > 0 and β ∈ R, the relative (α, β)-entropy between ĝ and fθ is given by

REα,β(ĝ, fθ) =
1
β

log

[
m

∑
x=0

(
n
x

)α ( θ

1− θ

)αx
(1− θ)mα

]
+

1
α− β

log

[
m

∑
x=0

rn(x)α

]

− α

β(α− β)
log

[
m

∑
x=0

(
n
x

)α−β ( θ

1− θ

)(α−β)x
(1− θ)m(α−β)rn(x)β

]
,
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which can be minimized with respect to θ ∈ [0, 1] to obtain the corresponding MREE of θ. Note that, it
is also the solution of the estimating Equation (61) with g(x) replaced by the relative frequency rn(x).
However, in this example, uθ(x) = x−mθ

θ(1−θ)
and hence the MREE estimating equation simplifies to

∑m
x=0 (

n
x)

α(x−mθ)
(

θ
1−θ

)αx

∑m
x=0 (

n
x)

α
(

θ
1−θ

)αx =
∑m

x=0(x−mθ)(n
x)

α−β
(

θ
1−θ

)(α−β)x
rn(x)β

∑m
x=0 (

n
x)

α−β
(

θ
1−θ

)(α−β)x
rn(x)β

. (62)

We can numerically solve the above estimating equation over θ ∈ [0, 1], or equivalently over the
transformed parameter p := θ

1−θ ∈ [0, ∞], to obtain the corresponding MREE (i.e., the minimum
LSD estimator).

We simulate random sample of size n from a binomial population with true parameter θ0 = 0.1
with m = 10 and numerically compute the MREE. Repeating this exercise 1000 times, we can obtain an
empirical estimate of the bias and the mean squared error (MSE) of the MREE of 10θ (since θ is very
small in magnitude). Tables 1 and 2 present these values for sample sizes n = 20, 50, 100 and different
values of tuning parameters α > 0 and β > 0; their existences are guaranteed by Corollary 2. Note that
the choice α = 1 = β gives the maximum likelihood estimator whereas β = 1 only yields the minimum
LDPD estimator with parameter α. Next, in order to study the robustness, we contaminate 10% of each
sample by random observations from a distant binomial distribution with parameters θ = 0.9 and
m = 10 and repeat the above simulation exercise; the resulting bias and MSE for the contaminated
samples are given in Tables 3 and 4. Our observations from these tables can be summarized as follows.

• Under pure data with no contamination, the maximum likelihood estimator (the MREE at α =

1 = β) has the least bias and MSE as expected, which further decrease as sample size increases.
• As we move away from α = 1 and β = 1 in either direction, the MSEs of the corresponding

MREEs under pure data increase slightly; but as long as the tuning parameters remain within a
reasonable window of the (1, 1) point and neither component is very close to zero, this loss in
efficiency is not very significant.

• When α or β approaches zero, the MREEs become somewhat unstable generating comparatively
larger MSE values. This is probably due to the presence of inliers under the discrete binomial
model. Note that, the relative (α, β)-entropy measures with β ≤ 0 are not finitely defined for the
binomial model if there is just only one empty cell present in the data.

• Under contamination, the bias and MSE of the maximum likelihood estimator increase
significantly but many MREEs remains stable. In particular, the MREEs with β ≥ α and the
MREEs with β close to zero are non-robust against data contamination. Many of the remaining
members of the MREE family provide significantly improved robust estimators.

• In the entire simulation, the combination (α = 1, β = 0.7) appears to provide the most stable
results. In Table 4, the best results are available along a tubular region which moves from the top
left-hand to the bottom right-hand of the table subject to the conditions that α > β and none of
them are very close to zero.

• Based on our numerical experiments, the optimum range of values of α, β providing the most
robust minimum relative (α, β)-estimators are α = 0.9, 1, 0.5 ≤ β ≤ 0.7 and 1 < α ≤ 1.5,
0.5 ≤ β < 1. Note that this range includes the estimators based on the logarithmic power
divergence measure as well as the new LSD measures with α < 1.

• Many of the MREEs, which belong to the optimum range mentioned in the last item and are close
to the combination α = 1 = β, generally also provide the best trade-off between efficiency under
pure data and robustness under contaminated data.
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In summary, many MREEs provide highly robust estimators under data contamination along
with only a very small loss in efficiency under pure data. These numerical findings about the finite
sample behavior of the MREEs under the binomial model and the corresponding optimum range of
tuning parameters, for the subclass with α ≥ 1, are consistent with the findings of [78,79] who used
a Poisson model. Additionally, our illustrations shed lights on the properties of the MREEs at α < 1
as well and show that some MREEs in this range, e.g., at α = 0.9 and β = 0.5, also yield optimum
estimators in terms of the dual goal of high robustness and high efficiency.

Table 1. Bias of the MREE for different α, β and sample sizes n under pure data.

β
α

0.3 0.5 0.7 0.9 1 1.1 1.3 1.5 1.7 2

n = 20

0.1 −0.210 −0.416 −0.397 −0.311 −0.277 −0.227 −0.130 0.021 0.024 0.122
0.3 2.218 −0.273 −0.229 −0.160 −0.141 −0.115 −0.096 −0.068 −0.036 0.034
0.5 −0.127 0.001 −0.125 −0.088 −0.082 −0.069 −0.058 −0.042 −0.032 −0.019
0.7 −0.093 −0.110 −0.010 −0.046 −0.044 −0.029 −0.023 −0.031 −0.023 −0.020
0.9 −0.066 −0.056 −0.028 −0.001 −0.015 −0.002 0.008 0.000 −0.006 −0.013

1 −0.041 −0.045 −0.017 0.005 −0.002 0.011 0.014 0.012 0.008 −0.003
1.3 −0.035 −0.013 0.023 0.036 0.030 0.039 0.088 0.039 0.035 0.021
1.5 −0.003 0.012 0.048 0.053 0.047 0.058 0.053 0.170 0.048 0.035
1.7 0.012 0.028 0.058 0.067 0.061 0.070 0.070 0.058 0.269 0.045

2 0.008 0.049 0.078 0.084 0.078 0.086 0.087 0.078 0.069 0.444

n = 50

0.1 −0.085 −0.301 −0.254 −0.183 −0.156 −0.106 −0.002 0.114 0.292 0.245
0.3 1.829 −0.176 −0.150 −0.078 −0.066 −0.042 −0.045 −0.014 0.005 0.030
0.5 −0.056 0.099 −0.054 −0.037 −0.033 −0.026 −0.019 −0.009 −0.007 −0.005
0.7 −0.009 −0.059 0.035 −0.012 −0.013 −0.005 −0.002 −0.009 −0.002 0.006
0.9 −0.031 −0.031 −0.009 0.012 0.002 0.013 0.021 0.015 0.008 0.004

1 0.014 −0.023 0.000 0.011 0.009 0.019 0.022 0.020 0.018 0.004
1.3 0.002 −0.004 0.022 0.034 0.027 0.030 0.084 0.034 0.035 0.028
1.5 0.009 0.023 0.038 0.044 0.037 0.042 0.034 0.174 0.040 0.032
1.7 0.028 0.029 0.049 0.054 0.047 0.050 0.047 0.036 0.277 0.039

2 0.040 0.051 0.065 0.068 0.059 0.063 0.060 0.051 0.041 0.464

n = 100

0.1 −0.028 −0.216 −0.175 −0.113 −0.103 −0.063 0.036 0.169 0.452 0.349
0.3 1.874 −0.135 −0.125 −0.052 −0.044 −0.022 −0.038 −0.023 0.009 0.024
0.5 −0.002 0.146 −0.034 −0.026 −0.025 −0.021 −0.019 -0.001 −0.008 −0.009
0.7 0.000 −0.042 0.045 −0.009 −0.013 −0.009 0.000 −0.009 −0.008 −0.001
0.9 0.007 −0.025 −0.015 0.001 −0.004 0.005 0.009 0.013 −0.001 −0.003

1 0.014 −0.010 −0.007 −0.001 −0.001 0.005 0.009 0.014 0.010 0.009
1.3 0.036 0.010 0.006 0.015 0.010 0.010 0.065 0.012 0.019 0.014
1.5 0.041 0.023 0.018 0.022 0.017 0.018 0.006 0.158 0.016 0.015
1.7 0.052 0.027 0.028 0.032 0.024 0.025 0.016 0.009 0.267 0.019

2 0.056 0.043 0.042 0.043 0.033 0.034 0.023 0.020 0.013 0.454

30



Entropy 2018, 20, 347

Table 2. MSE of the MREE for different α, β and sample sizes n under pure data.

β
α

0.3 0.5 0.7 0.9 1 1.1 1.3 1.5 1.7 2

n = 20

0.1 0.347 0.251 0.222 0.145 0.122 0.106 0.098 0.242 0.206 0.240
0.3 7.506 0.147 0.100 0.069 0.063 0.059 0.059 0.062 0.098 0.169
0.5 0.238 0.076 0.067 0.051 0.049 0.047 0.050 0.055 0.064 0.101
0.7 0.177 0.091 0.056 0.045 0.044 0.043 0.045 0.055 0.056 0.071
0.9 0.163 0.085 0.061 0.045 0.042 0.043 0.047 0.053 0.058 0.064

1 0.171 0.085 0.064 0.045 0.042 0.045 0.048 0.053 0.058 0.063
1.3 0.148 0.082 0.065 0.052 0.046 0.046 0.061 0.055 0.058 0.065
1.5 0.146 0.085 0.069 0.056 0.050 0.050 0.051 0.087 0.061 0.065
1.7 0.150 0.085 0.070 0.060 0.053 0.055 0.055 0.056 0.134 0.066

2 0.132 0.091 0.076 0.065 0.059 0.060 0.060 0.060 0.061 0.265

n = 50

0.1 0.334 0.170 0.118 0.066 0.044 0.037 0.067 0.195 0.401 0.275
0.3 5.050 0.093 0.051 0.026 0.021 0.020 0.024 0.027 0.035 0.050
0.5 0.196 0.059 0.030 0.018 0.017 0.018 0.021 0.026 0.030 0.037
0.7 0.191 0.053 0.031 0.018 0.016 0.017 0.023 0.025 0.028 0.035
0.9 0.131 0.050 0.029 0.019 0.016 0.018 0.022 0.025 0.028 0.029

1 0.154 0.044 0.031 0.018 0.017 0.020 0.022 0.024 0.027 0.031
1.3 0.112 0.046 0.029 0.023 0.018 0.018 0.033 0.028 0.029 0.031
1.5 0.108 0.049 0.033 0.024 0.020 0.022 0.022 0.059 0.031 0.031
1.7 0.119 0.049 0.036 0.026 0.022 0.023 0.025 0.025 0.108 0.033

2 0.108 0.053 0.040 0.030 0.025 0.026 0.028 0.029 0.028 0.249

n = 100

0.1 0.295 0.139 0.085 0.038 0.022 0.022 0.068 0.201 0.583 0.403
0.3 4.770 0.075 0.039 0.016 0.011 0.011 0.017 0.019 0.023 0.035
0.5 0.189 0.061 0.022 0.011 0.009 0.012 0.016 0.017 0.022 0.023
0.7 0.141 0.038 0.024 0.010 0.009 0.010 0.014 0.017 0.018 0.021
0.9 0.123 0.035 0.021 0.011 0.009 0.011 0.012 0.015 0.019 0.021

1 0.122 0.036 0.019 0.010 0.009 0.011 0.013 0.016 0.017 0.020
1.3 0.114 0.035 0.019 0.012 0.009 0.010 0.021 0.016 0.017 0.019
1.5 0.105 0.037 0.019 0.012 0.010 0.011 0.012 0.045 0.017 0.020
1.7 0.097 0.034 0.021 0.014 0.011 0.012 0.014 0.014 0.092 0.020

2 0.088 0.039 0.023 0.016 0.012 0.013 0.013 0.016 0.016 0.227

Table 3. Bias of the MREE for different α, β and sample sizes n under contaminated data.

β
α

0.3 0.5 0.7 0.9 1 1.1 1.3 1.5 1.7 2

n = 20

0.1 −0.104 −0.382 −0.340 −0.243 −0.131 −0.071 0.090 0.188 0.295 0.379
0.3 3.287 −0.157 −0.187 −0.135 −0.113 −0.091 −0.045 0.013 0.107 0.237
0.5 2.691 1.483 −0.024 −0.067 −0.069 −0.043 −0.031 −0.010 −0.003 0.051
0.7 3.004 2.546 1.168 0.036 −0.017 −0.008 0.003 0.006 0.005 0.010
0.9 3.133 2.889 2.319 0.917 0.222 0.058 0.019 0.023 0.017 0.022

1 3.183 2.986 2.558 1.619 0.805 0.214 0.039 0.030 0.031 0.019
1.3 3.239 3.121 2.902 2.550 2.262 1.872 0.613 0.077 0.049 0.040
1.5 3.255 3.170 3.012 2.775 2.606 2.396 1.676 0.571 0.069 0.051
1.7 3.271 3.194 3.071 2.903 2.790 2.661 2.256 1.489 0.578 0.057

2 3.289 3.216 3.122 3.012 2.942 2.865 2.649 2.305 1.690 0.682
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Table 3. Cont.

β
α

0.3 0.5 0.7 0.9 1 1.1 1.3 1.5 1.7 2

n = 50

0.1 0.384 −0.170 −0.189 −0.132 −0.054 0.024 0.104 0.171 0.261 0.382
0.3 3.549 0.000 −0.122 −0.086 −0.077 −0.053 −0.023 0.029 0.054 0.118
0.5 2.875 1.771 0.040 −0.048 −0.048 −0.029 −0.013 −0.015 −0.017 0.003
0.7 3.091 2.698 1.294 0.048 −0.010 −0.014 −0.001 0.004 0.001 −0.005
0.9 3.205 2.945 2.379 0.939 0.226 0.045 0.009 0.013 0.012 0.013

1 3.240 3.011 2.612 1.609 0.793 0.196 0.018 0.014 0.021 0.012
1.3 3.316 3.171 2.925 2.548 2.239 1.819 0.554 0.034 0.020 0.020
1.5 3.346 3.223 3.034 2.780 2.596 2.363 1.589 0.502 0.035 0.022
1.7 3.362 3.254 3.100 2.916 2.791 2.643 2.199 1.383 0.518 0.025

2 3.373 3.281 3.162 3.035 2.955 2.865 2.622 2.236 1.575 0.650

n = 100

0.1 0.610 −0.138 −0.105 −0.031 0.002 0.040 0.117 0.184 0.270 0.381
0.3 3.906 0.136 −0.071 −0.050 −0.052 −0.028 −0.028 −0.008 0.023 0.066
0.5 2.927 1.934 0.101 −0.034 −0.027 −0.016 0.006 0.000 −0.003 −0.008
0.7 3.122 2.761 1.348 0.066 0.004 −0.007 0.007 0.011 0.012 0.000
0.9 3.241 2.955 2.406 0.958 0.238 0.047 0.004 0.014 0.022 0.017

1 3.289 3.045 2.651 1.622 0.798 0.202 0.010 0.011 0.016 0.023
1.3 3.362 3.204 2.944 2.567 2.245 1.812 0.533 0.028 0.015 0.022
1.5 3.384 3.269 3.058 2.802 2.610 2.369 1.567 0.485 0.027 0.018
1.7 3.405 3.305 3.133 2.940 2.811 2.658 2.196 1.357 0.504 0.018

2 3.421 3.327 3.204 3.065 2.980 2.886 2.633 2.234 1.541 0.637

Table 4. MSE of the MREE for different α, β and sample sizes n under contaminated data.

β
α

0.3 0.5 0.7 0.9 1 1.1 1.3 1.5 1.7 2

n = 20

0.1 0.403 0.248 0.465 0.576 1.025 1.093 1.613 1.565 1.626 1.591
0.3 12.595 0.142 0.103 0.075 0.192 0.188 0.362 0.590 1.016 1.537
0.5 7.443 2.268 0.088 0.062 0.058 0.059 0.065 0.189 0.241 0.527
0.7 9.209 6.645 1.410 0.069 0.056 0.058 0.063 0.068 0.119 0.208
0.9 9.982 8.493 5.512 0.882 0.119 0.068 0.065 0.069 0.075 0.090

1 10.292 9.072 6.672 2.692 0.693 0.117 0.068 0.070 0.076 0.087
1.3 10.664 9.916 8.574 6.641 5.240 3.610 0.430 0.079 0.079 0.089
1.5 10.778 10.229 9.238 7.850 6.940 5.883 2.917 0.389 0.079 0.087
1.7 10.884 10.379 9.599 8.582 7.942 7.234 5.235 2.326 0.403 0.087

2 11.004 10.515 9.915 9.233 8.814 8.369 7.177 5.472 2.998 0.547

n = 50

0.1 1.552 0.815 0.741 0.703 0.966 1.190 1.129 1.224 1.165 1.210
0.3 14.969 0.105 0.047 0.030 0.078 0.075 0.280 0.559 0.566 0.881
0.5 8.345 3.190 0.049 0.025 0.021 0.022 0.025 0.029 0.035 0.184
0.7 9.634 7.335 1.694 0.031 0.020 0.022 0.027 0.029 0.033 0.039
0.9 10.353 8.723 5.712 0.898 0.077 0.027 0.028 0.030 0.032 0.039

1 10.578 9.126 6.871 2.619 0.645 0.067 0.027 0.030 0.033 0.039
1.3 11.069 10.129 8.608 6.548 5.064 3.359 0.329 0.033 0.034 0.038
1.5 11.263 10.457 9.268 7.787 6.801 5.648 2.576 0.279 0.032 0.038
1.7 11.371 10.655 9.676 8.567 7.854 7.051 4.908 1.968 0.298 0.037

2 11.449 10.833 10.060 9.275 8.793 8.276 6.947 5.079 2.560 0.461

32



Entropy 2018, 20, 347

Table 4. Cont.

β
α

0.3 0.5 0.7 0.9 1 1.1 1.3 1.5 1.7 2

n = 100

0.1 2.102 0.399 0.808 0.945 0.924 0.929 0.891 1.012 1.233 1.120
0.3 17.185 0.141 0.033 0.018 0.013 0.014 0.018 0.142 0.258 0.453
0.5 8.624 3.768 0.056 0.015 0.011 0.015 0.017 0.018 0.022 0.028
0.7 9.809 7.646 1.828 0.024 0.011 0.013 0.018 0.019 0.020 0.023
0.9 10.559 8.764 5.812 0.927 0.070 0.018 0.017 0.020 0.021 0.023

1 10.870 9.312 7.058 2.648 0.645 0.057 0.017 0.019 0.021 0.023
1.3 11.342 10.306 8.691 6.619 5.068 3.312 0.297 0.020 0.020 0.023
1.5 11.494 10.727 9.379 7.880 6.845 5.646 2.484 0.251 0.021 0.021
1.7 11.632 10.960 9.848 8.675 7.932 7.101 4.866 1.873 0.272 0.022

2 11.739 11.102 10.297 9.422 8.910 8.363 6.973 5.040 2.420 0.430

5.3. Application to Testing Statistical Hypothesis

We end the paper with a very brief indication on the potential of the relative (α, β)-entropy or the
LSD measure in statistical hypothesis testing problems. The minimum possible value of the relative
entropy or divergence measure between the data and the null distribution indicates the amount of
departure from null and hence can be used to develop a statistical testing procedure.

Consider the parametric estimation set-up as in Section 5.1 with g ∈ F and fix a parameter value
θ0 ∈ Θ. Suppose we want to test the simple null hypothesis in the one sample case given by

H0 : θ = θ0 against H1 : θ �= θ0.

Maji et al. [78] have developed the LSD-based test statistics for the above testing problem as given by

T(1)
n,α,β = 2nREα,β( fθ̂α,β

, fθ0), (63)

where θ̂α,β is the MREE with parameters α and β. [78,79] have also developed the LSD-based test for a
simple two-sample problem where two independent samples of sizes n1 and n2 are given from true
densities fθ1 , fθ2 ∈ F , respectively and we want to test for the homogeneity of the two samples trough
the hypothesis

H0 : θ1 = θ2 against H1 : θ1 �= θ2.

The proposed test statistics for this two-sample problem has the form

T(2)
n,α,β =

2n1n2

n1 + n2
REα,β( f(1) θ̂α,β

, f(2) θ̂α,β
), (64)

where (1) θ̂α,β and (2) θ̂α,β are the MREEs of θ1 and θ2, respectively, obtained from the two
samples separately Note that, at α = β = 1, both the test statistics in (63) and (64) become
asymptotically equivalent to the corresponding likelihood ratio tests under the respective null
hypothesis. Maji et al. [78,79] have studied the asymptotic properties of these two tests, which
have asymptotic null distributions as linear combinations of chi-square distributions. They have
also numerically illustrated the benefits of these LSD or relative (α, β)-entropy-based tests, although
with tuning parameters α ≥ 1 only, to achieve robust inference against possible contamination in the
sample data.

The same approach can also be used to develop robust tests for more complex hypothesis testing
problems based on the relative (α, β)-entropy or the LSD measures, now with parameters α > 0,
and also using the new divergencesRE∗β(·, ·). For example, consider the above one sample set-up and
a subset Θ0 ⊂ Θ and let we are interested in testing the composite hypothesis
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H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0.

with similar motivation from (63) and (64), we can construct relative entropy or LSD-based test statistics
for testing the above composite hypothesis as given by

T̃n,α,β
(1)

= 2nREα,β( fθ̂α,β
, fθ̃α,β

), (65)

where θ̃α,β is the restricted MREE with parameters α and β obtained by minimizing the relative
entropy over θ ∈ Θ0 and θ̂α,β is the corresponding unrestricted MREE obtained by minimizing over
θ ∈ Θ. It will surely be of significant interest to study the asymptotic and robustness properties of
this relative entropy-based test for the above composite hypothesis under one sample or even more
general hypotheses with two or more samples. However, considering the length of the present paper,
which is primarily focused on the geometric properties of entropies and relative entropies, we have
deferred the detailed analyses of such MREE-based hypothesis testing procedures in a future report.

6. Conclusions

We have explored the geometric properties of the LSD measures through a new information
theoretic formulation when we develop this divergence measure as a natural extension of the relative
α-entropy; we refer to it as the two-parameter relative (α, β)-entropy. It is shown to be always
lower semicontinuous in both the arguments, but is continuous in its first argument only if α >

β > 0. We also proved that the relative (α, β)-entropy is quasi-convex in both its arguments after a
suitable (different) transformation of the domain space and derive an extended Pythagorean relation
under these transformations. Along with the study of its forward and reverse projections, statistical
applications are also discussed.

It is worthwhile to note that the information theoretic divergences can also be used to define
new measures of robustness and efficiency of a parameter estimate; one can then obtain the optimum
robust estimator, along Hampel’s infinitesimal principle, to achieve the best trade-off between these
divergence-based summary measures [111–113]. In particular, the LDPD measure, a prominent
member of our LSD or relative (α, β)-entropy family, has been used by [113] who have illustrated
important theoretical properties including different types of equivariance of the resulting optimum
estimators besides their strong robustness properties. A similar approach can also be used with
our general relative (α, β)-entropies to develop estimators with enhanced optimality properties,
establishing a better robustness-efficiency trade-off.

The present work opens up several interesting problems to be solved in future research as already
noted throughout the paper. In particular, we recall that the relative α-entropy has an interpretation
from the problem of guessing under source uncertainty [17,71]. As an extension of relative α-entropy,
a similar information theoretic interpretation of the relative (α, β)-entropy (i.e., the LSD) is expected
and its proper interpretation will be a useful development. Additionally, we have obtained a new
extension of the Renyi entropy as a by-product and detailed study of this new entropy measure and
its potential applications may lead to a new aspect of the mathematical information theory. Also,
statistical applications of these measures need to be studied thoroughly specially for the continuous
models, where the complications of a kernel density estimator is unavoidable, and for testing complex
composite hypotheses from one or more samples. We hope to pursue some of these interesting
extensions in future.
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Abbreviations

The following abbreviations are used in this manuscript:

KLD Kullback-Leibler Divergence
LDPD Logarithmic Density Power Divergence
LSD Logarithmic Super Divergence
GRE Generalized Renyi Entropy
MRE Minimum Relative (α, β)-entropy
MREE Minimum Relative (α, β)-entropy Estimator
MSE Mean Squared Error
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Abstract: In frequentist inference, minimizing the Hellinger distance between a kernel density
estimate and a parametric family produces estimators that are both robust to outliers and statistically
efficient when the parametric family contains the data-generating distribution. This paper seeks to
extend these results to the use of nonparametric Bayesian density estimators within disparity methods.
We propose two estimators: one replaces the kernel density estimator with the expected posterior
density using a random histogram prior; the other transforms the posterior over densities into a
posterior over parameters through minimizing the Hellinger distance for each density. We show that it
is possible to adapt the mathematical machinery of efficient influence functions from semiparametric
models to demonstrate that both our estimators are efficient in the sense of achieving the Cramér-Rao
lower bound. We further demonstrate a Bernstein-von-Mises result for our second estimator,
indicating that its posterior is asymptotically Gaussian. In addition, the robustness properties
of classical minimum Hellinger distance estimators continue to hold.

Keywords: robustness; efficiency; Bayesian nonparametric; Bayesian semi-parametric; asymptotic
property; minimum disparity methods; Hellinger distance; Berstein von Mises theorem

1. Introduction

This paper develops Bayesian analogs of minimum Hellinger distance methods. In particular, we
aim to produce methods that enable a Bayesian analysis to be both robust to unusual values in the
data and to retain their asymptotic precision when a proposed parametric model is correct.

All statistical models include assumptions which may or may not be true of the mechanisms
producing a given data set. Robustness is a desired property in which a statistical procedure is
relatively insensitive to deviations from these assumptions. For frequentist inference, concerns are
largely associated with distributional robustness: the shape of the true underlying distribution deviates
slightly from the assumed model. Usually, this deviation represents the situation where there are some
outliers in the observed data set; see [1] for example. For Bayesian procedures, the deviations may
come from the model, prior distribution, or utility function, or some combination thereof. Much of the
literature on Bayesian robustness has been concerned with the prior distribution or utility function. By
contrast, the focus of this paper is robustness with respect to outliers in a Bayesian context, a relatively
understudied form of robustness for Bayesian models. For example, we know that Bayesian models
with heavy tailed data distributions are robust with respect to outliers for the case of one single location
parameter estimated by many observations. However, as a consequence of the Crámer–Rao lower
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bound and the efficiency of the MLE, modifying likelihoods to account for outliers will usually result in
a loss of precision in parameter estimates when they are not necessary. The methods we propose, and
the study of their robustness properties, will provide an alternative means of making any i.i.d. data
distribution robust to outliers that do not lose efficiency when no outliers are present. We speculate
that they can be extended beyond i.i.d. data as in [2], but we do not pursue this here.

Suppose we are given the task of estimating θ0 ∈ Θ from independent and identically distributed
univariate random variables X1, . . . , Xn, where we assume each Xi has density fθ0 ∈ F = { fθ : θ ∈ Θ}.
Within the frequentist literature, minimum Hellinger distance estimates proceed by first estimating a
kernel density ĝn(x) and then choosing θ to minimize the Hellinger distance h( fθ , gn) = [

∫
{ f 1/2

θ (x)−
ĝ1/2

n (x)}2dx]1/2. The minimum Hellinger distance estimator was shown in [3] to have the remarkable
properties of being both robust to outliers and statistically efficient, in the sense of asymptotically
attaining the information bound, when the data are generated from fθ0 . These methods have been
generalized to a class of minimum disparity estimators, based on alternative measures of the difference
between a kernel density estimate and a parametric model, which have been studied since then,
e.g., [4–8]. While some adaptive M-estimators can be shown to retain both robustness and efficiency,
e.g., [9], minimum disparity methods are the only generic methods we are aware of that retain both
properties and can also be readily employed within a Bayesian context. In this paper, we only consider
Hellinger distance in order to simplify the mathematical exposition; the extension to more general
disparity methods can be made following similar developments to those in [5,7].

Recent methodology proposed in [2] suggested the use of disparity-based methods within
Bayesian inference via the construction of a “disparity likelihood” by replacing the likelihood function
when calculating the Bayesian posterior distribution; they demonstrated that the resulting expected a
posteriori estimators retain the frequentist properties studied above. These methods first obtain kernel
density estimates from data and then calculate the disparity between the estimated density function
and the corresponding density functions in the parametric family.

In this paper, we propose the use of Bayesian non-parametric methods instead of the classical
kernel methods in applying the minimum Hellinger distance method. One method we proposed is just
to replace the kernel density estimate used in classical minimum Hellinger distance estimate by the
Bayesian nonparametric expected a posteriori density, which we denote by MHB (minimum Hellinger
distance method using a Bayesian nonparametric density estimate). The second method combines the
minimum Hellinger distance estimate with the Bayesian nonparametric posterior to give a posterior
distribution of the parameter of interest. This latter method is our main focus. We show that it is more
robust than usual Bayesian methods and demonstrate that it retains asymptotic efficiency, hence the
precision of the estimate is maintained. So far as we are aware, this is the first Bayesian method that
can be applied generically and retain both robustness and (asymptotic) efficiency. We denote it by
BHM (Bayesian inference using a minimum Hellinger distance).

To study the properties of the proposed new methods, we treat both MHB and BMH as special
cases of semi-parametric models. The general form of a semi-parametric model has a natural
parametrization (θ, η) �→ Pθ,η , where θ ∈ Θ is a Euclidean parameter and η ∈ H belongs to an
infinite-dimensional set. For such models, θ is the parameter of primary interest, while η is a nuisance
parameter. Asymptotic properties of some of Bayesian semi-parametric models have been discussed
in [10]. Our disparity based methods involve parameters in Euclidean space and Hilbert space, with
the former being of most interest. However, unlike many semi-parametric models in which Pθ,η ∈ P
is specified jointly by θ and η, in our case, the finite dimensional parameter and the nonparametric
density functions are parallel specifications of the data distribution. Therefore, standard methods to
study asymptotic properties of semi-parametric models will not apply to the study of disparity-based
methods. Nevertheless, considering the problem of estimating ψ(P) of some function ψ : P �→ Rd,
where P is the space of the probability models P, semi-parametric models and disparity-based methods
can be unified into one framework.
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The MHB and BMH methods are introduced in detail in Section 2, where we also discuss
some related concepts and results, such as tangent sets, information, consistency, and the specific
nonparametric prior that we employ. In Section 3, both MHB and BMH are shown to be efficient, in the
sense that asymptotically the variance of the estimate achieves the lower bound of the Cramér–Rao
theorem. For MHB, we show that asymptotic normality of the estimate holds, where the asymptotic
variance is the inverse of the Fisher information. For BMH, we show that the Bernstein von Mises
(BvM) theorem holds. The robustness property and further discussion of these two methods are given
in Sections 4 and 5, respectively. A broader discussion is given in Section 6.

2. Minimum Hellinger Distance Estimates

Assume that random variables X1, . . . , Xn are independent and identically distributed (iid) with
density belonging to a specified parametric family F = { fθ : θ ∈ Θ}, where all the fθ in the family
have the same support, denoted by supp( f ). For simplicity, we use Xn to denote the random variables
X1, . . . , Xn. More flexibly, we model Xn ∼ gn, where g is a probability density function with respect to
the Lebesgue measure on supp( f ). Let G denote the collection of all such probability density functions.
If the parametric family contains the data-generating distribution, then g = fθ for some θ. Formally,
we can denote the probability model of the observations in the form of a semi-parametric model
(θ, g) �→ Pθ,g. We aim at estimating θ and consider g as a nuisance parameter, which is typical of
semi-parametric models.

Let π denote a prior on G , and for any measurable subset B ⊂ G , the posterior probability of
g ∈ B given Xn is

π(B | Xn) =

∫
B ∏n

i=1 g(Xi)π(dg)∫
G ∏n

i=1 g(Xi)π(dg)
.

Let g∗n =
∫

gπ(dg | Xn) denote the Bayesian nonparametric expected a posteriori estimate. Our first
proposed method can be described formally as follows:

MHB: Minimum Hellinger distance estimator with Bayesian nonparametric density estimation:

θ̂1 = argminθ∈Θ h ( fθ , g∗n) . (1)

This estimator replaces the kernel density estimate in the classical minimum Hellinger distance method
introduced in [3] by the posterior expectation of the density function.

For this method, we will view θ̂1 as the value at g∗n of a functional T : G �→ Θ, which is defined via

‖ f 1/2
T(g) − g1/2‖ = min

t∈Θ
‖ f 1/2

t − g1/2‖ (2)

where ‖ · ‖ denotes the L2 metric. We can also write θ̂1 as T(g∗n).
In a more general form, what we estimate is the value ψ(P) of some functional ψ : P �→ Rd,

where the P stands for the common distribution from which data are generated, and P is the set of
all possible values of P, which also denotes the corresponding probability model. In the setting of
minimum Hellinger distance estimation, the model P is set as F × G , P can be specified as Pθ,g, and
ψ(P) = ψ(Pθ,g) = θ. For the methods we proposed in this paper, we will focus on the functional
T : G �→ Θ, for a given F , as defined above. Note that the constraint associated with the family F is
implicitly applied by T.

Using functional T, we can also propose a Bayesian method, which assigns nonparametric prior
on the density space and gives inference on the unknown parameter θ of a parametric family as follows:

BMH: Bayesian inference with minimum Hellinger distance estimation:

π(θ | Xn) = π(T(g) | Xn). (3)
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A nonparametric prior π on the space G and the observation Xn leads to the posterior distribution
π(g | Xn), which can then be converted to the posterior distribution of the parameter θ ∈ Θ through
the functional T : G �→ Θ.

In the following subsections, we discuss properties associated with the functional T as well as the
consistency of MHB and BHM, and we provide a detailed example of the random histogram prior that
we will employ and its properties that will be used for the discussion of efficiency in Section 2.1.

2.1. Tangent Space and Information

In this subsection, we obtain the efficient influence function of the functional T on the linear span
of the tangent set on g0 and show that the local asymptotic normality (LAN) expansion related to the
norm of the efficient influence function attains the Caramér–Rao bound. These results play important
roles in showing that BvM holds for the BMH method in the next section.

Estimating the parameter by T(g) under the assumption g ∈ G uses less information than
estimating this parameter for g ∈ G ∗ ⊂ G . Hence, the lower bound of the variance of T(g) for g ∈ G

should be at least the supremum of the lower bounds of all parametric sub-models G ∗ = {Gλ : λ ∈
Λ} ⊂ G .

To use mathematical tools such as functional analysis to study the properties of the proposed
methods, we introduce some notations and concepts below. Without loss of generality, we consider
one-dimensional sub-models G ∗, which pass through the “true” distribution, denoted by G0 with
density function g0. We say a sub-model indexed by t, {gt : 0 < t < ε} ⊂ G , is differentiable in
quadratic mean at t = 0 if we have that, for some measurable function q : supp(g0) �→ R,

∫ [dG1/2
t − dG1/2

0
t

− 1
2

qdG1/2
0

]2

→ 0 (4)

where Gt is the cumulative distribution function associated with gt. Functions q(x)s are known as the
score functions associated with each sub-model. The collection of these score functions, which is called
a tangent set of the model G at g0 and denoted by Ġg0 , is induced by the collection of all sub-models
that are differentiable at g0.

We say that T is differentiable at g0 relative to a given tangent set Ġg0 , if there exists a continuous
linear map Ṫg0 : L2(G0) �→ R such that for every q ∈ Ġg0 and a sub-model t �→ gt with score function q,
there is

T(gt)− T(g0)

t
→ Ṫg0 q (5)

where L2(G0) = {q : supp(g0) �→ R,
∫

q2(x)g0(x)dx < ∞}. By the Riesz representation theorem
for Hilbert spaces, the map Ṫg0 can always be written in the form of an inner product with a fixed
vector-valued, measurable function T̃g0 : supp(g0) �→ R,

Ṫg0 q = 〈T̃g0 , q〉G0 =
∫

T̃g0 qdG0.

Let T̃g0 denote the unique function in linĠg0 , the closure of the linear span of the tangent set. The
function T̃g0 is the efficient influence function and can be found as the projection of any other “influence
function” onto the closed linear span of the tangent set.

For a sub-model t �→ gt whose score function is q, the Fisher information about t at 0 is G0q2 =∫
q2dG0. In this paper, we use the notation Fg to denote

∫
gdF for a general function g and distribution

F. Therefore, the “optimal asymptotic variance” for estimating the functional t �→ T(gt), evaluated at
t = 0, is greater than or equal to the Caramér–Rao bound

(dT(gt)/dt)2

G0q2 =
〈T̃g0 , q〉2G0

〈q, q〉G0

.
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The supremum of the right-hand side (RHS) of the above expression over all elements of the tangent
set is a lower bound for estimating T(g) given model G , if the true model is g0. The supremum can be
expressed in the norm of the efficient influence function T̃g0 by Lemma 25.19 in [11]. The lemma and
its proof is quite neat, and we reproduce it here for the completeness of the argument.

Lemma 1. Suppose that the functional T : G �→ R is differentiable at g0 relative to the tangent set Ġg0 . Then

sup
q∈lin ˙Gg0

〈T̃g0 , q〉2G0

〈q, q〉G0

= G0T̃2
g0

.

Proof. This is a consequence of the Cauchy–Schwarz inequality (G0T̃g0 q)2 ≤ G0T̃2
g0

G0q2 and the fact
that, by definition, the efficient influence function, T̃g0 , is contained in the closure of linĠG0 .

Now we show that functional T is differentiable under some mild conditions and construct its
efficient influence function in the following theorem.

Theorem 1. For the functional T defined in Equation (2), and for t ∈ Θ ⊂ R, let st(x) denote f 1/2
θ (x) for

θ = t. We assume that there exist ṡt(x) and s̈t(x) both in L2, such that for α in a neighborhood of zero,

st+α(x) = st(x) + αṡt(x) + αuα(x) (6)

ṡt+α(x) = ṡt(x) + αs̈t(x) + αvα(x), (7)

where uα and vα converge to zero as α → 0. Assuming T(g0) ∈ int(Θ), the efficient influence function of T is

T̃g0 =

(
−
[∫

s̈T(g0)
(x)g

1
2
0 (x)dx

]−1
+ at

)
ṡT(g0)

(x)

2g
1
2 (t)
0

(8)

where at converges to 0 as t → 0. In particular, for g0 = fθ ,

T̃fθ
=

(
−
[∫

s̈θ(x)sθ(x)dx
]−1

+ at

)
ṡθ(x)

2sθ(x)
. (9)

Proof. Let the t-indexed sub-model be

gt := (1 + tq(x))g0(x)

where q(x) satisfies
∫

q(x)g0(x)dx = 0 and q ∈ L2(g0). By direct calculation, we see that q is the score
function associated with such a sub-model at t = 0 in the sense of Equation (4) and thus the collection
of q is the maximal tangent set.

By the definition of T, T(g0) maximizes
∫

st(x)g1/2
0 (x)dx. From Equation (6), we have that

limα→0α−1
∫
[st+α(x)− st(x)]g1/2

0 (x)dx =
∫

ṡt(x)g1/2
0 (x)dx. (10)

Since T(g0) ∈ int(Θ), we have that ∫
ṡT(g0)

(x)g1/2
0 (x)dx = 0. (11)

Similarly,
∫

ṡT(gt)(x)g1/2
t (x)dx = 0. Using Equation (7) to substitute ṡT(gt), we have that

0 =
∫
[ṡT(g0)

(x) + s̈T(g0)
(x)(T(gt)− T(g0)) + vt(x)(T(gt)− T(g0))]g1/2

t (x)dx
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where vt(x) converge in L2 to zero as t → 0 since T(gt)→ T(g0). Thus,

lim
t→0

1
t
[T(gt)− T(g0)]

= − lim
t→0

1
t

[∫
(s̈T(g0)

(x) + vt(x))g
1
2
t (x)dx

]−1 ∫
ṡT(g0)

(x)g1/2
t (x)dx

= lim
t→0

1
t

(
−
[∫

(s̈T(g0)
(x))g

1
2
0 (x)dx

]−1
+ at

)∫
ṡT(g0)

(x)(g
1
2
t (x)− g

1
2
0 (x))dx

=

(
−
[∫

(s̈T(g0)
(x))g

1
2
0 (x)dx

]−1
+ at

)∫ ṡT(g0)
(x)

2g
1
2
0 (x)

q(x)g0(x)dx.

Since by the definition of T̃, which requires
∫

T̃g0 g0(x)dx = 0, we have that

T̃g0 =

(
−
[∫

s̈T(g0)
(x)g

1
2
0 (x)dx

]−1
+ at

)⎛⎝ ṡT(g0)
(x)

2g
1
2
0 (x)

−
∫ ṡT(g0)

(x)
2

g
1
2
0 (x)dx

⎞⎠
=

(
−
[∫

s̈T(g0)
(x)g

1
2
0 (x)dx

]−1
+ at

)
ṡT(g0)

(x)

2g
1
2
0 (x)

.

By the same argument we can show that, when g0 = fθ , Equation (9) holds.

Some relatively accessible conditions under which Equations (6) and (7) hold are given by
Lemmas 1 and 2 in [3]. We do not repeat them here.

Now we can expand T at g0 as

T(g)− T(g0) = 〈
g− g0

g0
, T̃g0〉G0 + r̃(g, g0) (12)

where T̃ is given in Theorem 1 and r̃ = 0.

2.2. Consistency of MHB and BMH

Since T(g) may have more than one value, the notation T(g) is used to denote any arbitrary one of
the possible values. In [3], the existence, continuity in Hellinger distance, and uniqueness of functional
T are ensured under the following condition:

A1 (i) Θ is compact, (ii) θ1 �= θ2 implies fθ1 �= fθ2 on a set of positive Lebesgue measures, and (iii), for
almost every x, fθ(x) is continuous in θ.

When a Bayesian nonparametric density estimator is used, we assume the posterior consistency:
A2 For any given ε > 0, π{g : h(g, fθ0) > ε | Xn} → 0 in probability.

Under Conditions A1 and A2, consistency holds for MHB and BMH.

Theorem 2. Suppose that Conditions A1 and A2 hold, then

1. ‖g∗1/2
n − f 1/2

θ0
‖2 → 0 in probability, T(g∗n)→ T( fθ0) in probability, and hence θ̂1 → θ0 in probability;

2. For any given ε > 0, π(|θ − θ0| > ε | Xn)→ 0 in probability.
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Proof. Part 1: To show that ‖g∗1/2
n − f 1/2

θ0
‖2 → 0 in probability, which is equivalent to

showing that
∫ (∫

gπ(dg | Xn)1/2 − f 1/2
θ0

)2
dx → 0 in probability, it is sufficient to show that∫ ∣∣∫ gπ(dg | Xn)− fθ0

∣∣ dx → 0 in probability, since h2( f , g) ≤ ‖ f − g‖1. We have that

∫ ∣∣∣∣∫ gπ(dg | Xn)− fθ0

∣∣∣∣ dx =
∫ ∣∣∣∣∫ (g− fθ0)π(dg | Xn)

∣∣∣∣ dx

≤
∫ ∫ ∣∣g− fθ0

∣∣π(dg | Xn)dx

=
∫ ∫ ∣∣g− fθ0

∣∣ dxπ(dg | Xn)

≤
∫ √

2h(g, fθ0)π(dg | Xn).

Note that the change of order of integration is due to Fubini’s theorem and the last inequality is due to
‖ f − g‖1 ≤

√
2h( f , g). Split the integral on the right-hand side of the above expression into two parts:∫

A

√
2h(g, fθ0)π(dg | Xn) +

∫
A c

√
2h(g, fθ0)π(dg | Xn)

where A = {g : h(g, fθ0) ≤ ε} for any given ε > 0. The first term is bounded by ε by construction.
By Condition A1, the posterior of measure of A c to 0 in probability as n → ∞. Since Hellinger distance
is bounded by 2, so does the second term above. This completes the proof for ‖g∗1/2

n − f 1/2
θ0
‖2 → 0

in probability.
To show T(g∗n)→ T( fθ0) and θ̂1 → θ0 in probability, we need that the functional T is continuous

and unique at fθ0 , which is proved by Theorem 1 in [3] under Condition A1.
Part 2: By Condition A1 and Theorem 1 in [3], the functional T is continuous and unique at

fθ0 . Hence, for any given ε > 0, there exist δ > 0 such that |T(g)− T( fθ0)| < ε when h(g, fθ0) < δ.
By Condition A2, we have that π(h(g, fθ0) < δ) → 1, which implies that π(|θ − θ0| < ε) → 1
in probability.

It should be noted that, if we change the ε in Condition A2 to εn, a sequence converging to 0, then
we can apply the results for the concentration rate of the Bayesian nonparametric density estimation
here. However, such an approach cannot lead to the general “efficiency” claim, no matter in the
form of rate of concentration or asymptotic normality. There are two reasons for this. First, the rate
of concentration for Bayesian nonparametric posterior is about n−2/5 for a rather general situation
and (log n)a × n−1/2, where a > 0, for some special cases (see [12–14]). This concentration rate
is not sufficient in many situations to directly imply that the concentration of the corresponding
parametric estimates achieves the lower bound of the variance given in the Cramér–Rao theorem.
Second, the Hellinger distances between pairs of densities as functions of parameters vary among
different parametric families. Therefore, obtaining the rate of concentration in parameters from the
rate of convergence in the densities cannot be generally applied to different distribution families.

It should also be noted that, although Θ is required to be compact in Condition A1, Theorem 2 is
useful for a Θ that is not compact, as long as the parametric family fθ : θ ∈ Θ can be re-parameterized
where the space of new parameters can be embedded within a compact set. An example of
re-parameterizing a general location-scale family with parameters μ ∈ R and σ ∈ R+ to a family
with parameters t1 = tan−1(μ) and t2 = tan−1(σ), where Θ(t1,t2)

= (−π/2, π/2) × (0, π/2) and
Θ ⊂ Θ̄ = [−π/2, π/2]× [0, π/2], is discussed in [3], and the conclusions of Theorem 1 in [3] is still
valid for a location-scale family. Therefore, Theorem 2 remains valid for the same type of the families,
whose parameter space may not be compact and for the same reasons; the compactness requirement
stated in the theorem is mainly for mathematical simplicity.
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2.3. Prior on Density Functions

We introduce a random histogram as an example for priors used in Bayesian nonparametric
density estimation. It can be seen as a simplified version of a Dirichlet process mixture (DPM) prior,
which is commonly used in practice. Both DPM and random histogram are mixture densities. While
DPM uses a Dirichlet process to model the weights within an infinite mixture of kernels, the random
histogram prior only has a finite number of components. Another difference is that, although we
specify the form of the kernel function for DPM, the kernel function could be any density function in
general, while the random histogram uses only the uniform density as its mixing kernel. Nevertheless,
the limit on the finite number of the mixing components is not that important in practice, since the
Dirichlet process will always be truncated in computation. In the next section, we will verify that the
random histogram satisfies the conditions that are needed for our proposed methods to be efficient.
On the other hand, although we believe that DPM should also lead to efficiency, the authors are
unaware of the theoretical results or tools required to prove it. This is mostly due to the flexibility of
DPM, which in turn significantly increases the mathematical complexity of the analysis.

For any k ∈ N, denote the set of all regular k bin histograms on [0, 1] by Hk = { f ∈ L2([0, 1]) :
m(x) = ∑k

j=1 f j1lIj(x), f j ∈ R, j = 1, . . . , k}, where Ij = [(j− 1)/k, j/k). Denote the unit simplex in

Rk by Sk = {ω ∈ [0, 1]k : ∑k
j=1 ωj = 1}. The subset of Hk, H 1

k = { f ∈ L2(R), f (x) = fω,k =

k · ∑k
j=1 ωj1lIj(x), (ω1, . . . , ωk) ∈ Sk}, denotes the collection of densities on [0, 1] in the form of

a histogram.
The set Hk is a closed subset of L2[0, 1]. For any function f ∈ L2[0, 1], denote its projection in the

L2 sense on Hk by f[k], where f[k] = k ∑k
j=1 1lIj

∫
Ij

f .

We assign priors on H 1
k via k and (ω1, . . . , ωk) for each k. A degenerate case is to let k = Kn = o(n).

Otherwise, let pk be a distribution on positive integers, where

k ∼ pk, e−b1k log(k) ≤ pk(k) ≤ e−b2k log(k) (13)

for all k large enough and some 0 < b1 < b2 < ∞. For example, Condition (13) is satisfied by the
Poisson distribution, which is commonly used in Bayesian nonparametric models.

Conditionally on k, we consider a Dirichlet prior on ω = {ω1, . . . , ωk}:

ω ∼ D(α1,k, . . . , αk,k), c1k−a ≤ αj,k ≤ c2 (14)

for some fixed constants a, c1, c2 > 0 and any 1 ≤ j ≤ k. For posterior consistency, we need the
following condition:

sup
k∈Kn

k

∑
j=1

αj,k = o(
√

n) (15)

where Kn ⊂ {1, 2, . . . , �n/(log n)2�}.
The consistency result of this prior is given by Proposition 1 in the supplement to [15]. For

n ≥ 2, k ≥ 1, M > 0, let
An,k(M) = {g ∈ H 1

k , h(g, g0,[k])} < Mεn,k (16)

where ε2
n,k = k log n/n denote a neighborhood of g0,[k], and we have that

• (a) there exist c, M > 0 such that

P0

[
∃k ≤ n

log n
; π[g /∈ An,k(M) | Xn, k] > e−ck log n

]
= o(1). (17)
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• (b) Suppose g0 ∈ C β with 0 < β ≤ 1, if kn(β) = (n log n)1/(2β+1) and εn(β) = kn(β)−β, then, for
k1 and a sufficiently large M,

π[h(g0, g) ≤ Mεn(β); k ≤ k1kn(β) | Xn] = 1 + op(1), (18)

where C β denotes the class of β-Hölder functions on [0, 1].

This means that the posterior of the density function concentrates around the projection g0[k] of g0 and
around g0 itself in terms of the Hellinger distance. We can easily conclude that π(Kn | Xn) = 1 + o(1)
from Equation (18) for g0 ∈ C β.

It should be noted that, although the priors we defined above are on the densities on [0, 1], this
is for mathematical simplicity, which could easily be extended to the space of probability densities
on any given compact set. Further, transformations of Xn, similar to those discussed at the end of
Section 2.2, can extend the analysis to the real line (refer to [3,16] for more example and details).

3. Efficiency

We say that both MHB and BMH methods are efficient if the lower bound of the variance of the
estimate, in the sense of Cramèr and Rao’s theorem, is achieved.

3.1. Asymptotic Normality of MHB

Consider the maximal tangent set at g0, which is defined as HT = {q ∈ L2(g0),
∫

qg0 = 0}.
Denote the inner product onHT by 〈q1, q2〉L =

∫
q1q2g0, which induces the L-norm as

‖g‖2
L =

∫ 1

0
(g− G0g)2g0. (19)

Note that the inner product 〈·, ·〉L is equivalent to the inner product introduced in Section 2.1, and the
induced L-norm corresponds to the local asymptotic normality (LAN) expansion. Refer to [17] and
Theorem 25.14 in [11] for more details.

With functional T and priors on g defined in the previous section, Theorem 3 shows that the MHB
method is efficient when the parametric family contains the true model.

Theorem 3. Let two priors π1 and π2 be defined by Equations (13)–(14) and let a prior on k be either a Dirac
mass at k = Kn = n1/2(log n)−2 for π1 or k ∼ πk given by Equation (13) for π2. Then the limit distribution
of n1/2[T(g∗n)− T(g0)] under g0 as n → ∞ is Norm(0, ‖T̃g0‖2

L), where ‖T̃g0‖2
L = I(θ0)

−1 when g0 = fθ0 .

Proof. To prove this result, we verify Lemma 25.23 in [11], which is equivalent to showing that

√
n(T(g∗n)− T(g0)) =

1√
n

n

∑
i=1

T̃g0(Xi) + op(1).

By the consistency result provided for priors π1 and π2 in the previous section, we consider only
g∗n ∈ An,k for an n that is sufficiently large. Then by Equation (12) we have that

√
n(T(g∗n)− T(g0)) =

√
n
〈

g∗n − g0

g0
, T̃g0

〉
L
+ op(1).

Therefore, showing

√
n
∫ 1

0
(g∗n(x)− g0(x))T̃g0(x)dx =

1√
n

n

∑
i=1

T̃g0(Xi) + op(1)
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will complete the proof. Due to
∫ 1

0 g0(x)T̃g0(x)dx = 0, we now need to show that
∫ 1

0 g∗n(x)T̃g0(x)dx =

(1/n)∑n
i=1 T̃g0(Xi) + op(1). By the law of large numbers, we have that 1

n ∑n
i=1 T̃g0(Xi) − G0T̃g0 =

op(1), and
∫ 1

0 g∗n(x)T̃g0(x)dx− G0T̃g0 = op(1) due to the posterior consistency demonstrated above.
Therefore, we have that

1
n

n

∑
i=1

T̃g0(Xi)−
∫ 1

0
g∗n(x)T̃g0(x)dx

=
1
n

n

∑
i=1

T̃g0(Xi)−
∫ 1

0
g∗n(x)T̃g0(x)dx +

∫ 1

0
g∗n(x)T̃g0(x)dx− G0T̃g0

= op(1).

3.2. The Bernstein von Mises Theorem for BMH

Theorem 2.1 in [15] yielded a general result and approach to show that the BvM Theorem holds
for smooth functionals in some semi-parametric models. The theorem shows that, under the continuity
and consistency condition, the moment generating function (MGF) of the parameter endowed with a
posterior distribution can be calculated approximately through the local asymptotic normal (LAN)
expansion, and its convergence to an MGF of some normal random variable can then be shown under
some assumptions on the statistical model.

We will show that the BvM theorem holds for the BMH Method via Theorem 4. The result also
shows that the approach given in [15] can be applied not only to simple examples but also to relatively
complicated frameworks. To prove it, we introduced Lemma 2, which is modified from Proposition 1
in [15], the proof of which was not given explicitly in the original paper.

For mathematical simplicity, we assume that the true density fθ0 belongs to the set F , which is
restricted to the space of all densities that are bounded away from 0 and ∞ on [0, 1]. As noted above,
the compactness of the domain can be relaxed by considering transformations of the parameters and
random variables.

To state the lemma, we need several more notations. Assume that the functional T satisfies
Equation (12) with bounded efficient influence function T̃g0 �= 0. We denote T̃g0 by T̃, where T̃[k]
denotes the projection of T̃ on Hk. For k ≥ 1, let

T̂k = T(g0[k]) +
GnT̃[k]√

n
, Vk = ‖T̃[k]‖2

L

T̂ = T(g0) +
GnT̃√

n
, V = ‖T̃‖2

L (20)

and denote

Gn(g) = Wn(g) =
1√
n

n

∑
i=1

[g(xi)− G0(g)]. (21)

Lemma 2. Let g0 belong to G , let the prior π be defined as in Section 2.3, and let Conditions (13, 14, 15) be
satisfied. Consider estimating a functional T(g), differentiable with respect to the tangent set HT := {q ∈
L2(g0),

∫
[0,1] qg0 = 0} ⊂ H = L2(g0), with efficient influence function T̃g0 bounded on [0, 1], and with r̃

defined in Equation (12), for Kn as introduced in Equation (15). If

max
k∈Kn

∣∣∣‖T̃[k]‖2
L − ‖T̃‖2

L

∣∣∣ = op(1) (22)

max
k∈Kn

Gn(T̃[k] − T̃) = op(1) (23)
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sup
k∈Kn

sup
g∈An,k(M)

√
nr̃(g, g0) = op(1) (24)

for any M > 0 and An,k(M) defined as in (16), as n → ∞, and

max
k∈Kn

√
n
∣∣∣∣∫ (T̃ − T̃[k])(g− g0)

∣∣∣∣ = o(1), (25)

then the BvM theorem for the functional T holds.

Proof. To show that BvM holds is to show that the posterior distribution converges to a normal
distribution. If we have that

π[
√

n(T − T̂k) ≤ z | Xn] = ∑
k∈Kn

π[k | Xn]π
[√

n(T − T̂) ≤ z +
√

n(T̂ − T̂k) | Xn, k
]
+ op(1)

= ∑
k∈Kn

π[k | Xn]Φ
(

z +
√

n(T̂ − T̂k)√
Vk

)
+ op(1), (26)

then the proof will be completed by showing that the RHS of Equation (26) reduces from the mixture
of normal to the target law N(0, V).

By Condition (22), we have that Vk goes to V uniformly for k ∈ Kn. Due to the definition of T̃ and
the Lemma 4 result (iii) in the supplement of [15], we have that

√
n(T̂ − T̂k) =

√
n
(

T(g0)− T(g[k])
)
+Gn(T̃ − T̃[k])

=
√

n
∫

T̃(g0[k] − g0) +Gn(T̃[k] − T̃) + op(1)

=
√

n
∫
(T̃ − T̃[k])(g0[k] − g0) +Gn(T̃[k] − T̃) + op(1).

By Conditions (25) and (23), the last line converges to 0 uniformly for k ∈ Kn.
Therefore, showing that for any given k, Equation (26) holds will complete the proof. We prove

this by showing that the MGF (Laplace transformation) of the posterior distribution of the parameter of
interest converges to the MGF of some normal distribution, which implies that the posterior converges
to the normal distribution weakly by Lemmas 1 and 2 in supplement to [15] or Theorem 2.2 in [18].

First, consider the deterministic k = Kn case. We calculate the MGF as

E[et
√

n(T(g)−T̂(g0[k])) | Xn, An] =

∫
An

et
√

n(T(g)−T̂(g0[k]))+ln(g)−ln(g0[k])dπ(g)∫
An

eln(g)−ln(g0[k])dπ(g)
(27)

where ln(g) is the log-likelihood for given g and Xn. Based on the LAN expansion of the log-likelihood
and the smoothness of the functional, the exponent in the numerator on the RHS of the equation can
be transformed with respect to T̄(k) = T̃[k] −

∫
T̃[k]g0[k]

t
√

n(T(g)− T̂k) + ln(g)− ln(g0[k])

= t
√

n

(
T(g)− T(g0[k])−

GnT̃[k]√
n

)
+ ln(g)− ln(g0[k])

= t
√

n

(〈
log

g
g0[k]

−
∫

log
g

g0[k]
g0[k], T̄[k]

〉
L

+B(g, g0[k]) + r̃(g, g0[k])−
GnT̄[k]√

n

)

−1
2

∥∥∥∥∥√n log
g

g0[k]

∥∥∥∥∥
2

L

+ Wn

(
√

n log
g

g0[k]

)
+ Rn,k(g, g0[k])
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where B(g, g0) =
∫ 1

0 [log(g/g0)− (g− g0)/g0](x)T̃g0(x)g0(x)dx. Note that Gn = Wn and add a term
of (t2/2)‖T̄(k)‖2

L. Re-arranging the RHS expression above, we have

t
√

n(T(g)− T̂k) + ln(g)− ln(g0,[k])

= −n
2

∥∥∥∥∥log
g

g0[k]
− t√

n
T̄(k)

∥∥∥∥∥
2

L,k

+
√

nWn

(
log

g
g0[k]

− t√
n

T̄(k)

)

+
t2

2
‖T̄(k)‖2

L,k + t
√

nBn,k + Rn,k(g, g0[k]) + r̃(g, g0[k])

= −n
2

∥∥∥∥∥∥log
ge−

t√
n T̄(k)

g0[k]

∥∥∥∥∥∥
2

L,k

+
√

nWn

⎛⎝log
ge−

t√
n T̄(k)

g0[k]

⎞⎠+
t2

2
‖T̄(k)‖2

L,k

+t
√

nBn,k + Rn,k(g, g0[k]) + r̃(g, g0[k]).

This is because the cross term in calculating the first term in the second line above is equal to the inner
product term in the equation above it.

Let gt,k = ge−
t√
n T̄(k)/Ge−

t√
n T̄(k) , the RHS of the above equation can be written as

t2

2
‖T̄(k)‖2

L,k + ln(gt,k)− ln(g0[k]) + o(1). (28)

Substituting the corresponding terms on the RHS of Equation (27) by (28), we have that

E[et
√

n(T(g)−T̂(g0[k])) | Xn, An] = e(t
2/2)‖T̄(k)‖2

L,k+o(1) ×
∫

An,k
eln(gt,k)−ln(g0[k])dπk(g)∫

An,k
eln(g)−ln(g0[k])dπk(g)

. (29)

Notice that the integration in the denominator of the second term is an expectation based on a Dirichlet
distribution on ω as described in Equation (14) and that gt,k = k ∑k

j=1 ζ j1lIj , where

ζ j =
ωjγ

−1
j

∑k
j=1 ωjγ

−1
j

(30)

with γj = etT̄j/
√

n and T̄j := k
∫

Ij
T̄(k). Let Sγ−1(ω) = ∑k

j=1 ωjγ
−1
j , by (30). We then have S−1

γ (ζ) =

Sγ−1(ω). Now using these notations,

∫
An,k

eln(gt,k)−ln(g0[k])dπk(g)∫
An,k

eln(g)−ln(g0[k])dπk(g)
=

∫
An,k

eln(gt,k)−ln(g0[k]) ∏k
j=1 ω

αj,k−1
j /B(α)dω∫

An,k
eln(g)−ln(g0[k]) ∏k

j=1 ω
αj,k−1
j /B(α)dω

=

∫
An,k

e
ln(k ∑k

j=1

ωjγ−1
j

∑k
j=1 ωjγ−1

j
1lIj

)−ln(g0[k])

∏k
j=1 ω

αj,k−1
j dω∫

An,k
e

ln(k ∑k
j=1 ωj1lIj

)−ln(g0[k]) ∏k
j=1 ω

αj,k−1
j dω

(31)

=

∫
An,k

e
ln(k ∑k

j=1 ζ j1lIj
)−ln(g0[k])Δζ ∏k

j=1[γjζ jS−1
γ (ζ)]αj,k−1dζ∫

An,k
e

ln(k ∑k
j=1 ωj1lIj

)−ln(g0[k]) ∏k
j=1 ω

αj,k−1
j dω

where Δζ = S−k
γ (ζ)∏k

j=1 γj is the Jacobian of the change of variable, (ω1, . . . , ωk−1)→ (ζ1, . . . , ζk−1),

which is given in Lemma 5 in supplement of [15], and B(α) = ∏k
i=1 Γ(αi)/Γ(∑k

i=1 αi) is the constant
for normalizing Dirichlet distribution.
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Notice that, over the set An,k,

k

∏
j=1

[γjS−1
γ (ζ)]αj,k−1Δζ = Sγ(ζ)

−∑k
j=1 αj,k γ

∑k
j=1 αj,k

j

= Sγ(ζ)
−∑k

j=1 αj,k et ∑k
j=1 aj,k T̄j/

√
n (32)

= et ∑k
j=1 αj,k T̄j/

√
n
(

1− t√
n

∫ 1

0
T̄(k)(g− g0) + O(n−1)

)∑k
j=1 αj,k

,

since

Sγ−1(ω) =
∫ 1

0
e−tT̄(k)(x)/

√
ng[k](x)dx = 1− t√

n

∫ 1

0
T̄(k)(g[k] − g0) + O(n−1)

by Taylor’s expansion. Expression (32) converges to 1 under Condition (15), so Expression (31)
converges to ∫

An,k
e

ln(k ∑k
j=1 ζ j1lIj

)−ln(g0[k]) ∏k
j=1 ζ

αj,k−1
j /B(αk)dζ∫

An,k
e

ln(k ∑k
j=1 ωj1lIj

)−ln(g0[k]) ∏k
j=1 ω

αj,k−1
j /B(αk)dω

(33)

since, when ‖ω−ω0‖1 ≤ M
√

k log n/
√

n,

‖ζ −ω0‖1 ≤ ‖ω−ω0‖1 + ‖ω− ζ‖1 =
M
√

k log n + 2|t|‖T̃‖∞√
n

≤ (M + 1)

√
k log n√

n

and, vice versa, when ‖ζ −ω0‖1 ≤ M
√

k log n/
√

n,

‖ω−ω0‖1 ≤ ‖ω− ζ‖1 + ‖ω0 − ζ‖1 =
M
√

k log n + 2|t|‖T̃‖∞√
n

≤ (M + 1)

√
k log n√

n
.

Choosing M, such that

π
[
‖ω−ω0‖1 ≤ (M + 1)

√
k log n | Xn, k

]
= 1 + op(1), (34)

Expression (33) equals 1 + op(1). Notice that ‖T̄(k)‖L,k = ‖T̃[k]‖L. We then have that

Eπ
[
et
√

n(T(g)−T̂k) | Xn, An,k

]
= et2‖T̃[k]‖2

L
(
1 + op(1)

)
, (35)

which completes the proof for a fixed k case.
For a random k case, the proof will follow the same steps as the corresponding part in the proof

for Theorem 4.2 in [15]. For completeness, we briefly sketch the proof here. Since k is not fixed, we
will calculate Eπ [et

√
n(T( f )−T̂k) | Xn] on Bn =

⋃
1≤k≤n An,k

⋂{ f = fω,k, k ∈ Kn}. Consider Kn a subset
of {1, 2, . . . , n/ log2 n} such that π(Kn | Xn) = 1 + op(1) by the concentration property (a) of the
random histogram, we have that π[Bn | Xn] = 1 + op(1). We rewrite the left-hand side (LHS) of

Equation (35) as Eπ [et
√

n(T( f )−T̂k) | Xn, Bn,k], which is also equal to et2‖T̃[k]‖2
L(1+ op(1)). Notice that o(1)

in this expression is uniform in k. This is because it holds in the proof for a deterministic case for any
given k < n. Therefore,

Eπ
[
et
√

n(T( f )−T̂) | Xn, Bn

]
= ∑

k∈Kn

Eπ
[
et
√

n(T( f )−T̂k)+T̂k)−T̂) | Xn, An,k, k
]

π[k | Xn]

= (1 + o(1)) ∑
k∈Kn

et2Vk/2+t
√

n(T̂k−T̂)π[k | Xn].
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Using Equations (23) and (25) together with the continuous mapping theorem for the exponential
function yields that the last display converges in probability to et2V/2 as n → ∞, which completes
the proof.

The following theorem shows that Method 2 is efficient, the proof of which consists in verifying
that the conditions in the above lemma are satisfied.

Theorem 4. Suppose g0 ∈ C β with β > 0. Let the prior on k be either a Dirac mass at k = Kn =

n1/2(log n)−2 or k ∼ πk given by (13), and let two priors π1 and π2 be defined by (14) and satisfy (13). Then,
for all β > 1/2, the BvM holds for T( f ) for both π1 and π2.

Proof. For T( f ) such that Equation (12) is satisfied, Condition (24) is satisfied obviously.
For Equation (23), the empirical process Gn(T̃[k] − T̃) is controlled and will converge to 0 by

applying Lemma 19.33 in [11].
Condition (25) is satisfied by Lemma 3 below.
Now we show that Equation (22) holds:

‖T̃f ‖2
L − ‖T̃[k]‖2

L ≤
∣∣∣∣∣
∫

ṡT( f )(x)dx−
∫ ṡT( f[k](x)) f (x)

f[k](x)
dx

∣∣∣∣∣
�

∣∣∣∣∫ ṡT( f )(x) f[k](x)− ṡT( f [k])(x) f (x)
∣∣∣∣

=

∣∣∣∣∫ ṡT( f[k])(x)[ f[k](x)− f (x)]
∣∣∣∣

�
∫
| f[k](x)− f (x)|dx.

The last equality is based on Conclusion (3) in Lemma 4 in [19], and the last inequality is due to the
assumption that T̃ is bounded. Then the last term is controlled by h( f , fn), which completes the proof.

Lemma 3. Under the same conditions as in Theorem 4, Equation (25) holds.

Proof. Since T̃ =

(
−
[∫

s̈T(g0)
(x)g

1
2
0 (x)dx

]−1
+ at

)
ṡT(g0)

(x)

2g
1
2
0 (x)

, under the deterministic k-prior with

k = Kn = n1/2(log n)−2 and β > 1/2,∣∣∣∣∫ (T̃ − T̃[k])(g0 − g0[k])

∣∣∣∣ � h2(g0, g0[k]) = o(1/
√

n).

For the random k-prior, since we restrict g to be bounded from above and below, so the Hellinger and
L2-distances considered are comparable. For a given k ∈ Kn, by definition, there exists g∗k ∈ H1

k with
h(g0, g∗k ) ≤ Mεn(β), so

h2(g0, g0[k]) �
∫
(g0 − g0[k])

2 ≤
∫
(g0 − g∗k )

2 � h2(g0, g∗k ) � ε2
n(β),

which completes the proof.

4. Robustness Properties

In frequentist analysis, robustness is usually measured by the influence function and breakdown
point of estimators. These have been used to study robustness in minimum Hellinger distance
estimators in [3] and in more general minimum disparity estimators in [2,7].
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In Bayesian inference, robustness is labeled “outlier rejection” and is studied under the framework
of the “theory of conflict resolution”. There is a large literature on this topic, e.g., [20–22]. While the
results of [22] are only about symmetric distributions, [23] provides corresponding results covering a
wider class of distributions with tails in the general exponential power family. These results provide a
complete theory for the case of many observations and a single location parameter.

We examine the behavior of the methods MHB and BMH under a mixture model for gross
errors. Let δz denote the uniform density of the interval (z− ε, z + ε), where ε > 0 is small, and let
fθ,α,z = (1− α) fθ + αδz, where θ ∈ Θ and α ∈ [0, 1)] and z is a real number. The density fθ,α,z models a
situation, where 100(1− α)% observations are distributed from fθ , and 100α% of the observations are
the gross errors located near z.

Theorem 5. For every α ∈ (0, 1) and every θ ∈ Θ, denote the mixture model for gross errors by fθ,α,z. We then
have that limz→∞limn→∞T(g∗n) = θ, under the assumptions of Theorem 3 and that, for the BMH method,
π(T(g) | Xn) → φ(θ, ‖T̃fθ,α,z

‖2
L) in the distribution as n → ∞ and z → ∞, where φ denotes the probability

function of the normal distribution, when conditions in Theorem 4 are satisfied.

Proof. By Theorem 7 in [3], for functional T, as we defined and under the conditions in this theorem,
we have that

limz→∞T( fθ,α,z) = θ.

We also have that, for MHB, under conditions of Theorem 3, limn→∞T(g∗n)→ T( fθ,α,z) in probability.
Combining the two results, limz→∞limn→∞T(g∗n) = θ, when the data is generated from a contaminated
distribution as fθ,α,z. Similarly, by Theorem 4, we have that π(T(g) | Xn)→ φ(T( fθ,α,a), ‖T̃fθ,α,z

‖2
L) in

distribution as n → ∞, and which converges to φ(θ, ‖T̃fθ,α,z
‖2

L), as z → ∞.

5. Demonstration

We provide a demonstration of both BMH and MHB methods on two data sets: the classical
Newcomb light speed data (see [24,25]), in which 2 out of 66 values are clearly negative oultiers, and a
bivariate simulation containing 10% contamination in two asymmetric locations.

We have implemented the BMH and MHB methods using two Bayesian nonparametric priors:

1. the random histogram prior studied in this paper based on a fixed k = 100 with the range naturally
extended to the range of the observed data (this is applied only to our first univariate example).

2. the popular Dirichlet Process (DP) kernel mixture of the form

yi | μi, Σi ∼ N(μi, Σi)

(μi, Σi) | G ∼ G

G | α, G0 ∼ DP(αG0)

where the baseline distribution is the conjugate normal-inverted Wishart,

G0 = N(μ | m1, (1/k0)Σ)IW(Σ | ν1, ψ1).

Note that, when yi values are univariate observations, the inverse Wishart (IW) distribution
reverts to an inverse Gamma distribution. To complete the model specification, independent
hyperpriors are assumed
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α | a0, b0 ∼ Gamma(a0, b0)

m1 | m2, s2 ∼ N(m2, s2)

k0 | τ1, τ2 ∼ Gamma(τ1/2, τ2/2)

ψ1 | ν2, ψ2 ∼ IW(ν2, ψ2).

We obtain posteriors for both using BUGS. We have elected to use BUGS here as opposed to the
package DPpackage within R despite the latter’s rather efficient MCMC algorithms because our BMH
method requires direct access to samples from the posterior distribution as opposed to the expected a
posteriori estimate. The R package distrEx is then used to construct the sampled density functions
and calculated the Hellinger distance between the sampled densities from the nonparametric model
and the assumed normal distribution. The R package optimx is also used to find the minima of the
Hellinger distances. The time cost of our methods are dominated by the optimization step rather than
by the obtaining of samples from the posterior density.

We first apply BMH and MHB on the Simon Newcomb’s measurements to measure the speed
of light. The data contains 66 observations. For this example, we specify the parameters and
hyper-parameters of the DPM as α = 1, m2 = 0, s2 = 1000, τ1 = 1, τ2 = 100, and ν2 = 2, ψ2 = 1.
We plot the data and a bivariate contour of the BMH posterior for both the mean and variance of the
assumed normal in Figure 1, where, despite outliers, the BvM result is readily apparent.

Table 1 summarizes these estimates. We report the estimated mean and variance with and
without the obvious outliers as well as the same quantities estimated using both MHB and BMH
methods with the last of these being the expected a posteriori estimates. Quantities in parentheses given
the “natural” standard error for each quantity: likelihood estimates correspond to standard normal
theory—dividing the estimated standard error by

√
n, and BMH standard errors are obtained from

the posterior distribution. For MHB, we used a bootstrap and note that, while the computational
cost involved in estimating MHB is significantly lower than BMH when obtaining a point estimate,
the standard errors require and MCMC chain for each bootstrap, significantly raising the cost of
obtaining these estimates. We observe that both prior specifications result in parameter estimates that
are identical to two decimal places and very close to those obtained after removing outliers.

Figure 1. Left: Histogram of the light speed data; Right: bivariate contour plots of the posterior for the
mean and variance of these data from the BMH method.
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Table 1. Estimation results for Newcomb’s light speed data. Direct Estimate refers to the standard
mean and variance estimates, and Without Outliers indicates the same estimates with outliers removed.
The first row for each parameter gives the estimate under a Dirichlet process prior and the second using
a random histogram. Standard errors for each estimate are given in parentheses: these are from the
normal theory for the first two columns via a bootstrap for MHB and from posterior samples for BMH.

Direct Estimate Without Outliers MHB BMH

μ̂ 26.21 (1.32) 27.75 (0.64) 27.72 (0.64) 27.73 (0.63)
27.72 (0.64) 27.73 (0.63)

σ̂ 10.75 (3.40) 5.08 (0.46) 5.07 (0.46) 5.00 (0.47)
5.07 (0.46) 5.00 (0.47)

To examine the practical implementation of methods that go beyond our theoretical results, we
applied these methods to a simulated two-dimensional data set of 100 data points generated from a
standard normal with two contamination distributions. Specifically, our data distribution comes from

9
10

N
((

10
5

)
,
(

3 1
1 5

))
+

1
20

N
((

−2
5

)
,
(

0.5 0.1
0.1 0.5

))
+

1
20

N
((

10
14

)
,
(

0.4 −0.1
−0.1 0.4

))
where exactly five points were generated from each of the second-two Gaussians. Our DP prior used
the same hyper-parameters as above with the exception that Ψ1 was obtained from the empirical
variance of the (contaminated) data, and (m2, S2) were extended to their 2-dimensional form as(
(0, 0)T , diag(1000, 1000)

)
. Figure 2 plots these data along with the posterior for the two means.

Figure 3 provides posterior distributions for the components of the variance matrix. Table 2 presents
estimation results for the full data and those with the contaminating distributions removed as well as
from the BMH method. Here we again observe that BMH yields results that are very close to those
obtained using the uncontaminated data. There is some more irregularity in our estimates, particularly
in Figure 3, which we speculate is due to poor optimization. There is considerable scope to improve
the numerics of minimum Hellinger distance methods more generally, but this is beyond the scope of
this paper.

Figure 2. Left: simulated two-dimensional normal example with two contamination components;
Right: BMH posterior for the mean vector (μ1, μ2).

Table 2. Estimation results for a contaminated bivariate normal. We provide generating estimates, the
natural maximum likelihood estimates with and without outliers and the BMH estimates. Reported
BMH estimates are expected a posteriori estimates with posterior standard errors given in parentheses.

μ01 μ02 Σ11 Σ12 Σ22

True 10 5 3 1 2
Contaminated data 9.07 5.36 9.76 1.67 5.80

Data with outliers removed 9.62 (0.13) 4.91 (0.11) 3.45 (0.13) 1.49 (0.13) 2.29 (0.11)
Estimated by BMH 9.59 (0.27) 4.93 (0.19) 2.79 (0.18) 0.98 (0.18) 1.97 (0.076)
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Figure 3. Posterior distributions for the elements of Σ in the simulated bivariate normal example.

6. Discussion

This paper investigates the use of minimum Hellinger distance methods that replace kernel density
estimates with Bayesian nonparametric models. We show that simply substituting the expected a
posteriori estimator will reproduce the efficiency and robustness properties of the classical disparity
methods first derived in [3]. Further, inducing a posterior distribution on θ through the posterior for g
results in a Bernstein von Mises theorem and a distributional robustness result.

There are multiple potential extensions of this work. While we have focused on the specific
pairing of Hellinger distance and random histogram priors, both of these can be generalized. A more
general class of disparities was examined in [7], and we believe the extension of our methods to this
class are straightforward. More general Bayesian nonparametric priors are discussed in [14], where the
Dirichlet process prior has been particularly popular. Extensions to each of these priors will require
separate analysis (e.g. [26]). Extensions of disparities to regression models were examined in [27] using
a conditional density estimate, where equivalent Bayesian nonparametrics are not as well developed.
Other modeling domains such as time series may require multivariate density estimates, resulting in
further challenges.

Our results are a counterpoint to the Bayesian extensions of Hellinger distance methods in [2]
where the kernel density was retained for gn but a prior was given for θ and the disparity treated as
a log likelihood. Combining both these approaches represents a fully Bayesian implementation of
disparity methods and is an important direction of future research.
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Abbreviations

The following abbreviations are used in this manuscript:

BMH Bayesian Minimum Hellinger Method
MHB Minimum Hellinger Method with Bayesian Density estimation
BvM Bernstein von Mises
MGF Moment Generating Function
DP Dirichlet Process
DPM Dirichlet Process Mixture
LAN local asymptotic normality
BUGS Bayesian inference Using Gibbs Sampling
MCMC Markov Chain Monte Carlo
IW inverse Wishart
RHS Right hand side
LHS Left hand side
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Abstract: In this paper, a robust version of the Wald test statistic for composite likelihood is considered
by using the composite minimum density power divergence estimator instead of the composite
maximum likelihood estimator. This new family of test statistics will be called Wald-type test
statistics. The problem of testing a simple and a composite null hypothesis is considered, and the
robustness is studied on the basis of a simulation study. The composite minimum density power
divergence estimator is also introduced, and its asymptotic properties are studied.
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composite minimum density power divergence estimator; Wald-type test statistics

1. Introduction

It is well known that the likelihood function is one of the most important tools in classical
inference, and the resultant estimator, the maximum likelihood estimator (MLE), has nice efficiency
properties, although it has not so good robustness properties.

Tests based on MLE (likelihood ratio test, Wald test, Rao’s test, etc.) have, usually, good efficiency
properties, but in the presence of outliers, the behavior is not so good. To solve these situations, many
robust estimators have been introduced in the statistical literature, some of them based on distance
measures or divergence measures. In particular, density power divergence measures introduced in [1]
have given good robust estimators: minimum density power divergences estimators (MDPDE) and,
based on them, some robust test statistics have been considered for testing simple and composite null
hypotheses. Some of these tests are based on divergence measures (see [2,3]), and some others are
used to extend the classical Wald test; see [4–6] and the references therein.

The classical likelihood function requires exact specification of the probability density function,
but in most applications, the true distribution is unknown. In some cases, where the data distribution
is available in an analytic form, the likelihood function is still mathematically intractable due to the
complexity of the probability density function. There are many alternatives to the classical likelihood
function; in this paper, we focus on the composite likelihood. Composite likelihood is an inference
function derived by multiplying a collection of component likelihoods; the particular collection
used is a conditional determined by the context. Therefore, the composite likelihood reduces the
computational complexity so that it is possible to deal with large datasets and very complex models
even when the use of standard likelihood methods is not feasible. Asymptotic normality of the
composite maximum likelihood estimator (CMLE) still holds with the Godambe information matrix
to replace the expected information in the expression of the asymptotic variance-covariance matrix.
This allows the construction of composite likelihood ratio test statistics, Wald-type test statistics, as well

Entropy 2018, 20, 18; doi:10.3390/e20010018 www.mdpi.com/journal/entropy60
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as score-type statistics. A review of composite likelihood methods is given in [7]. We have to mention
at this point that CMLE, as well as the respective test statistics are seriously affected by the presence of
outliers in the set of available data.

The main purpose of the paper is to introduce a new robust family of estimators, namely,
composite minimum density power divergence estimators (CMDPDE), as well as a new family of
Wald-type test statistics based on the CMDPDE in order to get broad classes of robust estimators and
test statistics.

In Section 2, we introduce the CMDPDE, and we provide the associated estimating system of
equations. The asymptotic distribution of the CMDPDE is obtained in Section 2.1. Section 2.2 is
devoted to the definition of a family of Wald-type test statistics, based on CMDPDE, for testing
simple and composite null hypotheses. The asymptotic distribution of these Wald-type test statistics is
obtained, as well as some asymptotic approximations to the power function. A numerical example,
presented previously in [8], is studied in Section 3. A simulation study based on this example is also
presented (Section 3), in order to study the robustness of the CMDPDE, as well as the performance of
the Wald-type test statistics based on CMDPDE. Proofs of the results are presented in the Appendix A.

2. Composite Minimum Density Power Divergence Estimator

We adopt here the notation by [9], regarding the composite likelihood function and the respective
CMLE. In this regard, let { f (·; θ), θ ∈ Θ ⊆ Rp, p ≥ 1} be a parametric identifiable family of
distributions for an observation y, a realization of a random m-vector Y . In this setting, the composite
density based on K different marginal or conditional distributions has the form:

CL(θ,y) =
K

∏
k=1

(
fAk (yj, j ∈ Ak; θ)

)wk

and the corresponding composite log-density has the form:

c�(θ,y ) =
K

∑
k=1

wk�Ak (θ,y),

with:
�Ak (θ,y) = log fAk (yj, j ∈ Ak; θ),

where {Ak}K
k=1 is a family of random variables associated either with marginal or conditional

distributions involving some yj and j ∈ {1, ..., m} and wk, k = 1, ..., K are non-negative and known
weights. If the weights are all equal, then they can be ignored. In this case, all the statistical procedures
produce equivalent results.

Let y1, ..., yn also be independent and identically distributed replications of y. We denote by:

c�(θ,y1, ..., yn) =
n

∑
i=1

c�(θ,yi)

the composite log-likelihood function for the whole sample. In complete accordance with the classical
MLE, the CMLE, θ̂c, is defined by:

θ̂c = arg max
θ∈Θ

n

∑
i=1

c�(θ,yi) = arg max
θ∈Θ

n

∑
i=1

K

∑
k=1

wk�Ak (θ,yi). (1)

It can also be obtained by solving the equations.

u(θ,y1, ...,yn) = 0p, (2)
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where:

u(θ,y1, ...,yn) =
∂c�(θ,y1, ...,yn)

∂θ
=

n

∑
i=1

K

∑
k=1

wk
∂�Ak (θ,yi)

∂θ
.

We are going to see how it is possible to get the CMLE, θ̂c, on the basis of the Kullback–Leibler
divergence measure. We shall denote by g (y) the density generating the data with the respective
distribution function denoted by G. The Kullback–Leibler divergence between the density function
g (y) and the composite density function CL(θ,y) is given by:

dKL(g (.) , CL(θ, .)) =
∫
Rm

g(y) log
g(y)

CL(θ,y)
dy

=
∫
Rm

g(y) log g(y) dy−
∫
Rm

g(y) log CL(θ,y)dy.

The term: ∫
Rm

g(y) log g(y)dy

can be removed because it does not depend on θ; hence, we can define the following estimator of θ,

based on the Kullback–Leibler divergence:

θ̂KL = arg min
θ

dKL(g (.) , CL(θ, .))

or equivalently:

θ̂KL = arg min
θ

(
−
∫
Rm

g(y) log CL(θ, y)dy
)

= arg min
θ

(
−
∫
Rm

log CL(θ,y)dG(y)
)

. (3)

If we replace in (3) the distribution function G by the empirical distribution function Gn, we have:

θ̂KL = arg min
θ

(
−
∫
Rm

log CL(θ,y)dGn(y)
)

= arg min
θ

(
− 1

n

n

∑
i=1

c�(θ,yi)

)

and this expression is equivalent to Expression (1). Therefore, the estimator θ̂KL coincides with the
CMLE. Based on the previous idea, we are going to introduce, in a natural way, the composite minimum
density power divergence estimator (CMDPDE).

The CMLE, θ̂c, obeys asymptotic normality (see [9]) and in particular:

√
n(θ̂c − θ)

L−→
n→∞

N
(

0, (G∗(θ))
−1
)

,

where G∗(θ) denotes the Godambe information matrix, defined by:

G∗(θ) = H(θ) (J(θ))−1 H(θ),

with H(θ) being the sensitivity or Hessian matrix and J(θ) being the variability matrix, defined,
respectively, by:

H(θ) = Eθ[− ∂
∂θ u(θ,Y)T ],

J(θ) = Varθ[u(θ,Y)] = Eθ[u(θ,Y)u(θ,Y)T ],
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where the superscript T denotes the transpose of a vector or a matrix.
The matrix J(θ) is nonnegative definite by definition. In the following, we shall assume that

the matrix H(θ) is of full rank. Since the component score functions can be correlated, we have
H(θ) �= J(θ). If c�(θ,y) is a true log-likelihood function, then H(θ) = J(θ) = IF(θ), IF(θ) being the
Fisher information matrix of the model. Using multivariate version of the Cauchy–Schwarz inequality,
we have that the matrix G∗(θ)− IF(θ) is non-negative definite, i.e., the full likelihood function is
more efficient than any other composite likelihood function (cf. [10], Lemma 4A).

We are now going to proceed to the definition of the CMDPDE, which is based on the density
power divergence measure, defined as follows. For two densities p and q associated with two
m-dimensional random variables, respectively, the density power divergence (DPD) between p and q
was defined in [1] by:

dβ(p, q) =
∫
Rm

{
q(y)1+β −

(
1 +

1
β

)
q(y)β p(y) +

1
β

p(y)1+β

}
dy, (4)

for β > 0, while for β = 0, it is defined by:

lim
β→0

dβ(p, q) = dKL(p, q).

For β = 1, Expression (4) reduces to the L2 distance:

L2(p, q) =
∫
Rm

(q(y)− p(y))2 dy.

It is also interesting to note that (4) is a special case of the so-called Bregman divergence∫
[T(p(y))− T(q(y))− {p(y)− q(y}T′(q(y))] dy. If we consider T(l) = l1+β, we get β times dβ(p, q).

The parameter β controls the trade-off between robustness and asymptotic efficiency of the parameter
estimates (see the Simulation Section), which are the minimizers of this family of divergences. For more
details about this family of divergence measures, we refer to [11].

In this paper, we are going to consider DPD measures between the density function g (y) and the
composite density function CL(θ,y), i.e.,

dβ(g (.) ,CL(θ, .)) =
∫
Rm

{
CL(θ,y)1+β −

(
1 +

1
β

)
CL(θ,y)βg(y) +

1
β

g(y)1+β

}
dy (5)

for β > 0, while for β = 0, we have,

lim
β→0

dβ(g (.) ,CL(θ, .)) = dKL(g (.) ,CL(θ, .)).

The CMDPDE, θ̂
β
c , is defined by:

θ̂
β
c = arg min

θ ∈Θ
dβ(g (.) ,CL(θ, .)).

The term: ∫
Rm

g(y)1+βdy

does not depend on θ, and consequently, the minimization of (5) with respect to θ is equivalent
to minimizing: ∫

Rm

(
CL(θ,y)1+β −

(
1 +

1
β

)
CL(θ,y)βg(y)

)
dy

or: ∫
Rm
CL(θ,y)1+βdy−

(
1 +

1
β

) ∫
Rm
CL(θ,y)βdG(y).
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Now, we replace the distribution function G by the empirical distribution function Gn, and we get:

∫
Rm
CL(θ,y)1+βdy−

(
1 +

1
β

)
1
n

n

∑
i=1
CL(θ,yi)

β. (6)

As a consequence, for a fixed value of β, the CMDPDE of θ can be obtained by minimizing the
expression given in (6); or equivalently, by maximizing the expression:

1
nβ

n

∑
i=1
CL(θ,yi)

β − 1
1 + β

∫
Rm
CL(θ,y)1+βdy. (7)

Under the differentiability of the model, the maximization of the function in Equation (7) leads to
an estimating system of equations of the form:

1
n

n

∑
i=1
CL(θ,yi)

β ∂c�(θ,yi)

∂θ
−
∫
Rm

∂c�(θ,y)
∂θ

CL(θ,y)1+βdy = 0. (8)

The system of Equations (8) can be written as:

1
n

n

∑
i=1
CL(θ,yi)

βu(θ,yi)−
∫
Rm

u(θ,y)CL(θ,y)1+βdy = 0. (9)

and the CMDPDE θ̂
β
c of θ is obtained by the solution of (9). For β = 0 in (9), we have:

1
n

n

∑
i=1

u(θ,y)−
∫
Rm

u(θ,y)CL(θ,y)dy.

but: ∫
Rm

u(θ,y)CL(θ,y)dy =
∂

∂θ
CL(θ,y)dy = 0

and we recover the estimating equation for the CMLE, θ̂c, presented in (2).

2.1. Asymptotic Distribution of the Composite Minimum Density Power Divergence Estimator

Equation (9) can be written as follows:

1
n

n

∑
i=1

Ψβ (yi, θ) = 0

with:
Ψβ (yi, θ) = CL(θ,yi)

βu(θ,yi)−
∫
Rm

u(θ,y)CL(θ,y)1+βdy.

Therefore, the CMDPDE, θ̂
β
c , is an M-estimator. In this case, it is well known (cf. [12]) that the

asymptotic distribution of θ̂
β
c is given by:

√
n(θ̂

β
c − θ)

L−→
n→∞

N
(

0,
(

Hβ(θ)
)−1 Jβ(θ)

(
Hβ(θ)

)−1
)

,

being:

Hβ(θ) = Eθ

[
−

∂Ψβ (Y , θ)

∂θT

]
and:

Jβ(θ) = Eθ

[
Ψβ (Y , θ)Ψβ (Y , θ)T

]
.
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We are going to establish the expressions of Hβ(θ) and Jβ(θ). In relation to Hβ(θ), we have:

∂Ψβ (y, θ)

∂θT = βCL(θ,y)β−1CL(θ,y)u(θ,y)Tu(θ,y )+ CL(θ,y)β ∂u(θ,y)T

∂θ

−
∫
Rm

∂u(θ,y)T

∂θ
CL(θ,y)1+βd y− (1 + β)

∫
Rm
CL(θ,y)βCL(θ,y)u(θ,y)Tu(θ,y)dy

and:

Hβ(θ) = Eθ

[
−

∂Ψβ (Y , θ)

∂θT

]
=
∫
Rm
CL(θ,y)β+1u(θ,y)Tu(θ,y)dy. (10)

In relation to Jβ(θ), we have,

Ψβ (Y , θ)Ψβ (Y , θ)T =

(
CL(θ, y)βu(θ, y)−

∫
Rm

u(θ, y)CL(θ, y)1+βdy
)

(
CL(θ, y)βu(θ,y)T −

∫
Rm

u(θ,y)TCL(θ,y)1+βdy
)

= CL(θ,y)2βu(θ,y)u(θ, y)T − CL(θ, y)βu(θ,y)
∫
Rm

u(θ,y)TCL(θ,y)1+βdy

−CL(θ,y)βu(θ,y)T
∫
Rm

u(θ, y)CL(θ,y)1+βdy

+

(∫
Rm

u(θ,y)CL(θ, y)1+βdy
)(∫

Rm
u(θ,y)TCL(θ,y)1+βdy

)
.

Then,

Jβ(θ) = Eθ

[
Ψβ (Y , θ)Ψβ (Y , θ)T

]
=
∫
Rm
CL(θ, y)2β+1u(θ,y)u(θ, y)Tdy (11)

−
∫
Rm
CL(θ,y)β+1u(θ, y)dy

∫
Rm

u(θ, y)TCL(θ, y)1+βdy. (12)

Based on the previous results, we have the following theorem.

Theorem 1. Under suitable regularity conditions, we have:

√
n(θ̂

β
c − θ)

L−→
n→∞

N
(

0,
(

Hβ(θ)
)−1 Jβ(θ)

(
Hβ(θ)

)−1
)

,

where the matrices Hβ(θ) and Jβ(θ) were defined in (10) and (11), respectively.

Remark 1. If we apply the previous theorem for β = 0, then we get the CMLE, and the asymptotic variance
covariance matrix coincides with the Godambe information matrix because:

Hβ(θ ) = H(θ) and Jβ(θ ) = J(θ),

for β = 0.

2.2. Wald-Type Tests Statistics Based on the Composite Minimum Power Divergence Estimator

Wald-type test statistics based on MDPDE have been considered with excellent results in relation
to the robustness in different statistical problems; see for instance [4–6].

Motivated by those works, we focus in this section on the definition and the study of Wald-type
test statistics, which are defined by means of CMDPDE estimators instead of MDPDE estimators.
In this context, if we are interested in testing:

H0 : θ = θ0 against H1 : θ �= θ0, (13)
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we can consider the family of Wald-type test statistics:

W0
n,β = n(θ̂

β
c − θ0)

T
((

Hβ(θ0)
)−1 Jβ(θ0)

(
Hβ(θ0)

)−1
)−1

(θ̂
β
c − θ0). (14)

For β = 0, we get the classical Wald-type test statistic considered in the composite likelihood
methods (see for instance [7]).

In the following theorem, we present the asymptotic null distribution of the family of the
Wald-type test statistics W0

n,β.

Theorem 2. The asymptotic distribution of the Wald-type test statistics given in (14) is a chi-square distribution
with p degrees of freedom.

The proof of this Theorem 2 is given in Appendix A.1.

Theorem 3. Let θ∗ be the true value of the parameter θ, with θ∗ �= θ0. Then, it holds:

√
n
(

l
(

θ̂
β
c

)
− l (θ∗)

) L−→
n→∞

N(0, σ2
W0

β
(θ∗)),

being:

l (θ) = (θ− θ0)
T
((

Hβ(θ0)
)−1 Jβ(θ0)

(
Hβ(θ0)

)−1
)−1

(θ− θ0)

and:
σ2

W0
β
(θ∗) = 4 (θ∗ − θ0)

T
((

Hβ(θ0)
)−1 Jβ(θ0)

(
Hβ(θ0)

)−1
)−1

(θ∗ − θ0) . (15)

The proof of the Theorem is outlined in Appendix A.2.

Remark 2. Based on the previous result, we can approximate the power, βW0
n
, of the Wald-type test statistics in

θ∗ by:

βW0
n,β

(θ∗) = Pr
(

W0
n,β > χ2

p,α/θ = θ∗
)

= Pr

(
l
(

θ̂
β
c

)
− l (θ∗) >

χ2
p,α

n
− l (θ∗)

∣∣∣∣∣ θ = θ∗
)

= Pr

(
√

n
(

l
(

θ̂
β
c

)
− l (θ∗)

)
>
√

n

(
χ2

p,α

n
− l (θ∗)

)∣∣∣∣∣ θ = θ∗
)

= Pr

⎛⎝√n

(
l
(

θ̂
β
c

)
− l (θ∗)

)
σW0

n,β
(θ∗)

>

√
n

σW0
n,β

(θ∗)

(
χ2

p,α

n
− l (θ∗)

)∣∣∣∣∣∣ θ = θ∗

⎞⎠
= 1−Φn

⎛⎝ √
n

σW0
n,β

(θ∗)

(
χ2

p,α

n
− l (θ∗)

)⎞⎠ ,

where Φn is a sequence of distribution functions tending uniformly to the standard normal distribution
function Φ(x).

It is clear that:
lim

n→∞
βW0

n,β
(θ∗) = 1

for all α ∈ (0, 1) . Therefore, the Wald-type test statistics are consistent in the sense of Fraser.
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In many practical hypothesis testing problems, the restricted parameter space Θ0 ⊂ Θ is defined
by a set of r restrictions of the form:

g(θ) = 0r (16)

on Θ, where g : Rp → Rr is a vector-valued function such that the p× r matrix:

G (θ) =
∂g(θ)T

∂θ
(17)

exists and is continuous in θ and rank(G (θ)) = r; where 0r denotes the null vector of dimension r.
Now, we are going to consider composite null hypotheses, Θ0 ⊂ Θ, in the way considered in (16),

and our interest is in testing:
H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0 (18)

on the basis of a random simple of size n, X1, ..., Xn.

Definition 1. The family of Wald-type test statistics for testing (18) is given by:

Wn,β = ng
(

θ̂
β
c

)T
[

G(θ̂
β
c )

T
(

Hβ(θ̂
β
c )
)−1

Jβ(θ̂
β
c )
(

Hβ(θ̂
β
c )
)−1

G(θ̂
β
c )

]−1
g
(

θ̂
β
c

)
, (19)

where the matrices G(θ), Hβ (θ) and Jβ (θ) were defined in (17), (10) and (11), respectively, and the function g
in (16).

If we consider β = 0, then θ̂
β
c coincides with the CMLE, θ̂c, of θ and (Hβ(θ̂c))−1 Jβ(θ̂c)(Hβ(θ̂c))−1

with the inverse of the Fisher information matrix, and then, we get the classical Wald test statistic
considered in the composite likelihood methods.

In the next theorem, we present the asymptotic distribution of Wn,β.

Theorem 4. The asymptotic distribution of the Wald-type test statistics, given in (19), is a chi-square
distribution with r degrees of freedom.

The proof of this Theorem is presented in Appendix A.3.
Consider the null hypothesis H0 : θ ∈ Θ0 ⊂ Θ. By Theorem 4, the null hypothesis should

be rejected if Wn,β ≥ χ2
r,α. The following theorem can be used to approximate the power function.

Assume that θ∗ /∈ Θ0 is the true value of the parameter, so that θ̂
β
c

a.s.−→
n→∞

θ∗.

Theorem 5. Let θ∗ be the true value of the parameter, with θ∗ �= θ0. Then, it holds:

√
n
(

l∗
(

θ̂
β
c

)
− l∗ (θ∗)

)
L−→

n→∞
N(0, σ2

Wβ
(θ∗))

being:

l∗ (θ) = ng (θ)T
[

G(θ0)
T (Hβ(θ0)

)−1 Jβ(θ0)
(

Hβ(θ0)
)−1 G(θ0)

]−1
g (θ)

and:

σ2
Wβ

(θ∗) =
(

∂l∗ (θ)
∂θ

)T

θ=θ∗

(
Hβ(θ0)

)−1 Jβ(θ0)
(

Hβ(θ0)
)−1
(

∂l∗ (θ)
∂θ

)
θ=θ∗

. (20)

3. Numerical Example

In this section, we shall consider an example, studied previously by [8], in order to study the
robustness of CMLE. The aim of this section is to clarify the different issues that were discussed in the
previous sections.
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Consider the random vector Y = (Y1, Y2, Y3, Y4)
T , which follows a four-dimensional normal

distribution with mean vector μ = (μ1, μ2, μ3, μ4)
T and variance-covariance matrix:

Σ =

⎛⎜⎜⎜⎝
1 ρ 2ρ 2ρ

ρ 1 2ρ 2ρ

2ρ 2ρ 1 ρ

2ρ 2ρ ρ 1

⎞⎟⎟⎟⎠ , (21)

i.e., we suppose that the correlation between Y1 and Y2 is the same as the correlation between Y3 and
Y4. Taking into account that Σ should be semi-positive definite, the following condition is imposed:
− 1

5 ≤ ρ ≤ 1
3 . In order to avoid several problems regarding the consistency of the CMLE of the

parameter ρ (cf. [8]), we shall consider the composite likelihood function:

CL(θ, y) = fA1(θ, y) fA2(θ, y),

where:

fA1(θ, y) = f12(μ1, μ2, ρ, y1, y2),

fA2(θ, y) = f34(μ3, μ4, ρ, y3, y4),

where f12 and f34 are the densities of the marginals of Y , i.e., bivariate normal distributions with mean
vectors (μ1, μ2)

T and (μ3, μ4)
T , respectively, and common variance-covariance matrix:(

1 ρ

ρ 1

)
,

with densities given by:

fh,h+1(μh, μh+1, ρ, yh, yh+1) =
1

2π
√

1− ρ2
exp

{
− 1

2(1−ρ2)
Q(yh, yh+1)

}
, h ∈ {1, 3},

being:

Q(yh, yh+1) = (yh − μh)
2 − 2ρ(yh − μh)(yh+1 − μh+1) + (yh+1 − μh+1)

2, h ∈ {1, 3}.

By θ, we are denoting the parameter vector of our model, i.e, θ = (μ1, μ2, μ3, μ4, ρ)T . The system
of equations that it is necessary to solve in order to obtain the CMDPDE:

θ̂
β
c =

(
μ̂

β
1,c, μ̂

β
2,c, μ̂

β
3,c, μ̂

β
4,c, ρ̂

β
c

)T
,

is given (see Appendix A.4) by:

1
n

n

∑
i=1

f12(μ1, μ2, ρ, y1i, y2i)
β−1 f34(μ3, μ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y1i − μ1) + 2ρ (y2i − μ2)]

}
= 0, (22)

1
n

n

∑
i=1

f12(μ1, μ2, ρ, y1i, y2i)
β−1 f34(μ3, μ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y2i − μ2) + 2ρ (y1i − μ1)]

}
= 0, (23)

1
n

n

∑
i=1

f12(μ1, μ2, ρ, y1i, y2i)
β−1 f34(μ3, μ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y3i − μ3) + 2ρ (y4i − μ4)]

}
= 0, (24)

1
n

n

∑
i=1

f12(μ1, μ2, ρ, y1i, y2i)
β f34(μ3, μ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y4i − μ4) + 2ρ (y3i − μ3)]

}
= 0 (25)

and:
1

nβ

n

∑
i=1

∂CL(θ, yi)
β

∂ρ
− β(2π)−2β

(β + 1)3
2ρ

(1− ρ2)
β+1 = 0, (26)
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being:

∂CL(θ, yi)
β

∂ρ
=

ρ

1− ρ2 β f12(μ1, μ2, ρ, y1i, y2i)
β f34(μ3, μ4, ρ, y3i, y4i)

β{
2 +

1
ρ
{(y1i − μ1) (y2i − μ2) + (y3i − μ3) (y4i − μ4)}

− 1
1− ρ2

(
(y1i − μ1)

2 − 2ρ (y1i − μ1) (y2i − μ2) + (y2i − μ2)
2
)

− 1
1− ρ2

(
(y3i − μ3)

2 − 2ρ (y3i − μ3) (y4i − μ4) + (y4i − μ4)
2
)}

.

After some heavy algebraic manipulations specified in Appendix A.5, the sensitivity and
variability matrices are given by:

Hβ(θ) =
Cβ

(β + 1)(1− ρ2)

⎛⎜⎜⎜⎜⎜⎜⎝
1 −ρ 0 0 0
−ρ 1 0 0 0
0 0 1 −ρ 0
0 0 −ρ 1 0

0 0 0 0 2 (ρ2+1)+2ρ2β2

(1−ρ2)(1+β)

⎞⎟⎟⎟⎟⎟⎟⎠ (27)

and:
Jβ(θ) = H2β(θ)− ξβ(θ)ξβ(θ)

T , (28)

where Cβ = 1
(β+1)2

(
1

(2π)2(1−ρ2)

)β
and ξβ(θ) = (0, 0, 0, 0,

2ρβCβ

(β+1)(1−ρ2)
)T .

Simulation Study

A simulation study, developed by using the R statistical programming environment, is presented
in order to study the behavior of the CMDPDE, as well as the behavior of the Wald-type test statistics
based on them. The theoretical model studied in the previous example is considered. The parameters
in the model are:

θ = (μ1, μ2, μ3, μ4, ρ)T

and we are interested in studying the behavior of the CMDPDE:

θ̂
β
c =

(
μ̂

β
1,c, μ̂

β
2,c, μ̂

β
3,c, μ̂

β
4,c, ρ̂

β
c

)T

as well as the behavior of the Wald-type test statistics for testing:

H0 : ρ = ρ0 against H1 : ρ �= ρ0. (29)

Through R = 10,000 replications of the simulation experiment, we compare, for different values
of β, the corresponding CMDPDE through the root of the mean square errors (RMSE), when the
true value of the parameters is θ = (0, 0, 0, 0, ρ)T and ρ ∈ {−0.1, 0, 0.15}. We pay special attention
to the problem of the existence of some outliers in the sample, generating 5% of the samples with
θ̃ = (1, 3,−2,−1, ρ̃)T and ρ̃ ∈ {−0.15, 0.1, 0.2}, respectively. Notice that, although the case ρ = 0 has
been considered; this case is less important taking into account the method of the theoretical model
under consideration, and having the case of independent observations, the composite likelihood theory
is useless. Results are presented in Tables 1 and 2. Two points deserve our attention. The first one is
that, as expected, RMSEs for contaminated data are always greater than RMSEs for pure data and that
the RMSEs decrease when the sample size n increases. The second is that, while in pure data, RMSEs
are greater for big values of β, when working with contaminated data, the CMDPDE with medium-low

69



Entropy 2018, 20, 18

values of β (β ∈ {0.1, 0.2, 0.3}) present the best behavior in terms of efficiency. These statements
are also true for larger levels of contamination, noting that, when larger percentages are considered,
larger values of β are also considerable in terms of efficiency (see Tables 3–5 for contamination equal to
10%, 15% and 20%, respectively). Considering the mean absolute error (MAE) for the evaluation of the
accuracy, we obtain similar results (Table 6).

Table 1. RMSEs for pure data.

n = 100 n = 200 n = 300

ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15

β = 0 0.0958 0.0950 0.0948 0.0683 0.0668 0.0666 0.0553 0.0552 0.0551
β = 0.1 0.0972 0.0961 0.0966 0.0693 0.0676 0.0677 0.0560 0.0559 0.0561
β = 0.2 0.1009 0.0991 0.1007 0.0718 0.0697 0.0704 0.0581 0.0575 0.0585
β = 0.3 0.1061 0.1034 0.1062 0.0754 0.0727 0.0742 0.0612 0.0599 0.0619
β = 0.4 0.1123 0.1087 0.1127 0.0797 0.0762 0.0787 0.0649 0.0628 0.0659
β = 0.5 0.1195 0.1147 0.1200 0.0845 0.0803 0.0837 0.0691 0.0661 0.0702
β = 0.6 0.1274 0.1215 0.1280 0.0898 0.0848 0.0892 0.0737 0.0697 0.0748
β = 0.7 0.1361 0.1291 0.1369 0.0955 0.0897 0.0952 0.0786 0.0736 0.0797
β = 0.8 0.1456 0.1374 0.1467 0.1015 0.0905 0.1016 0.0839 0.0778 0.0849

Table 2. RMSEs for contaminated data (5%).

n = 100 n = 200 n = 300

ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15

β = 0 0.1371 0.1336 0.1287 0.1210 0.1167 0.1113 0.1144 0.1098 0.1047
β = 0.1 0.1105 0.1104 0.1081 0.0875 0.0874 0.0843 0.0778 0.0786 0.0748
β = 0.2 0.1061 0.1053 0.1047 0.0783 0.0777 0.0759 0.0660 0.0669 0.0643
β = 0.3 0.1091 0.1072 0.1083 0.0783 0.0766 0.0761 0.0646 0.0645 0.0635
β = 0.4 0.1147 0.1118 0.1146 0.0814 0.0788 0.0798 0.0668 0.0657 0.0665
β = 0.5 0.1215 0.1176 0.1220 0.0858 0.0823 0.0848 0.0703 0.0683 0.0709
β = 0.6 0.1292 0.1242 0.1302 0.0907 0.0864 0.0905 0.0744 0.0716 0.0758
β = 0.7 0.1375 0.1315 0.1391 0.0961 0.0911 0.0966 0.0790 0.0753 0.0810
β = 0.8 0.1465 0.1396 0.1486 0.1018 0.0962 0.1031 0.0838 0.0794 0.0863

Table 3. RMSEs for contaminated data (10%).

n = 100 n = 200 n = 300

ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15

β = 0 0.2107 0.2052 0.2000 0.2003 0.1944 0.1884 0.1968 0.1911 0.1844
β = 0.1 0.1500 0.1472 0.1436 0.1324 0.1305 0.1264 0.1259 0.1250 0.1204
β = 0.2 0.1238 0.1229 0.1192 0.0991 0.0987 0.0951 0.0881 0.0898 0.0858
β = 0.3 0.1173 0.1170 0.1139 0.0882 0.0871 0.0846 0.0735 0.0754 0.0726
β = 0.4 0.1189 0.1187 0.1170 0.0872 0.0849 0.0845 0.0705 0.0714 0.0706
β = 0.5 0.1237 0.1234 0.1234 0.0901 0.0868 0.0884 0.0721 0.0718 0.0734
β = 0.6 0.1301 0.1296 0.1311 0.0944 0.0903 0.0938 0.0753 0.0742 0.0779
β = 0.7 0.1375 0.1367 0.1396 0.0995 0.0947 0.1000 0.0793 0.0776 0.0831
β = 0.8 0.1467 0.1446 0.1488 0.1050 0.0996 0.1064 0.0837 0.0814 0.0884
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Table 4. RMSEs for contaminated data (15%).

n = 100 n = 200 n = 300

ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15

β = 0 0.2912 0.2854 0.2788 0.2835 0.2770 0.2713 0.2814 0.2757 0.2687
β = 0.1 0.2036 0.1994 0.1951 0.1909 0.1874 0.1828 0.1871 0.185 0.1785
β = 0.2 0.1530 0.1497 0.1453 0.1325 0.1306 0.1252 0.1252 0.1256 0.1181
β = 0.3 0.1329 0.1295 0.1257 0.1049 0.1031 0.0976 0.0932 0.0945 0.0872
β = 0.4 0.1287 0.1249 0.1229 0.0957 0.0931 0.0893 0.0805 0.0815 0.0763
β = 0.5 0.1312 0.1272 0.1272 0.0949 0.0915 0.0902 0.0774 0.0777 0.0755
β = 0.6 0.1367 0.1323 0.1343 0.0977 0.0936 0.0947 0.0784 0.0781 0.0788
β = 0.7 0.1436 0.1389 0.1425 0.1019 0.0974 0.1005 0.0811 0.0804 0.0836
β = 0.8 0.1514 0.1465 0.1514 0.1070 0.1020 0.1069 0.0847 0.0837 0.0888

Table 5. RMSEs for contaminated data (20%).

n = 100 n = 200 n = 300

ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15

β = 0 0.3725 0.3680 0.3612 0.3684 0.3618 0.3554 0.3661 0.3610 0.3534
β = 0.1 0.2691 0.2657 0.2591 0.2625 0.2566 0.2506 0.2577 0.2547 0.2473
β = 0.2 0.1949 0.1921 0.1831 0.1819 0.1766 0.1683 0.1742 0.1723 0.1624
β = 0.3 0.1562 0.1537 0.1441 0.1345 0.1299 0.1204 0.1235 0.1222 0.1109
β = 0.4 0.1419 0.1391 0.1316 0.1126 0.1082 0.1003 0.0987 0.0971 0.0876
β = 0.5 0.1397 0.1366 0.1323 0.1050 0.1005 0.0962 0.0890 0.0867 0.0812
β = 0.6 0.1430 0.1395 0.1383 0.1042 0.0996 0.0990 0.0866 0.0837 0.0828
β = 0.7 0.1488 0.1450 0.1463 0.1066 0.1018 0.1043 0.0877 0.0843 0.0873
β = 0.8 0.1560 0.1518 0.1552 0.1106 0.1056 0.1105 0.0905 0.0866 0.0927

Table 6. MAEs for pure and contaminated data (5%, 10%, 15% and 20%), n = 100.

Pure data 5% 10% 15% 20%

ρ = −0.1 ρ = 0.15 ρ = −0.1 ρ = 0.15 ρ = −0.1 ρ = 0.15 ρ = −0.1 ρ = 0.15 ρ = −0.1 ρ = 0.15

β = 0 0.076 0.076 0.190 0.179 0.371 0.342 0.626 0.574 0.954 0.877
β = 0.1 0.077 0.077 0.167 0.163 0.289 0.277 0.464 0.437 0.697 0.652
β = 0.2 0.081 0.080 0.165 0.163 0.263 0.257 0.388 0.372 0.551 0.520
β = 0.3 0.085 0.085 0.172 0.170 0.264 0.260 0.370 0.359 0.495 0.473
β = 0.4 0.090 0.090 0.181 0.180 0.275 0.272 0.377 0.370 0.489 0.474
β = 0.5 0.095 0.095 0.192 0.192 0.290 0.289 0.394 0.391 0.504 0.496
β = 0.6 0.101 0.102 0.204 0.204 0.308 0.308 0.416 0.416 0.528 0.527
β = 0.7 0.108 0.109 0.218 0.218 0.328 0.329 0.441 0.444 0.558 0.561
β = 0.8 0.115 0.116 0.232 0.233 0.349 0.351 0.468 0.474 0.590 0.599

For a nominal size α = 0.05, with the model under the null hypothesis given in (29), the estimated
significance levels for different Wald-type test statistics are given by:

α̂
(β)
n (ρ0) = P̂r(Wβ

n > χ2
1,0.05|H0) =

R
∑

i=1
I(Wβ

n,i) > χ2
1,0.05|ρ0)

R
,

with I(S) being the indicator function (with a value of one if S is true and zero otherwise). Empirical
levels with the same previous parameter values are presented in Table 7 (pure data) and Table 8 (5%
of outliers). While medium-high values of β are not recommended at all, CMLE is generally the best
choice when working with pure data. However, the lack of robustness of the CMLE test is impressive,
as can be seen in Table 8. The effect of contamination in medium-low values of β is much lighter, while
for medium-high values of β, it can return to being deceptively beneficial.
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Table 7. Levels for pure data.

n = 100 n = 200 n = 300

ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15 ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15 ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15

β = 0 0.067 0.059 0.070 0.068 0.046 0.062 0.072 0.045 0.075
β = 0.1 0.067 0.060 0.072 0.062 0.046 0.070 0.085 0.045 0.079
β = 0.2 0.072 0.061 0.084 0.069 0.051 0.084 0.097 0.049 0.102
β = 0.3 0.081 0.062 0.093 0.084 0.053 0.100 0.112 0.051 0.121
β = 0.4 0.094 0.069 0.099 0.103 0.055 0.111 0.127 0.055 0.142
β = 0.5 0.105 0.071 0.111 0.118 0.056 0.122 0.149 0.051 0.155
β = 0.6 0.122 0.083 0.129 0.131 0.062 0.136 0.167 0.051 0.165
β = 0.7 0.135 0.088 0.141 0.139 0.063 0.146 0.181 0.055 0.177
β = 0.8 0.153 0.099 0.158 0.151 0.071 0.156 0.198 0.056 0.179

Table 8. Levels for contaminated data (5%).

n = 100 n = 200 n = 300

ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15 ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15 ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15

β = 0 0.357 0.223 0.081 0.638 0.429 0.155 0.788 0.623 0.24 0
β = 0.1 0.121 0.113 0.056 0.207 0.191 0.077 0.287 0.284 0.100
β = 0.2 0.065 0.074 0.048 0.066 0.099 0.049 0.086 0.129 0.059
β = 0.3 0.057 0.067 0.071 0.057 0.066 0.059 0.065 0.077 0.073
β = 0.4 0.075 0.066 0.087 0.067 0.058 0.081 0.079 0.060 0.095
β = 0.5 0.090 0.062 0.107 0.080 0.061 0.110 0.105 0.051 0.128
β = 0.6 0.096 0.063 0.126 0.095 0.063 0.131 0.117 0.049 0.151
β = 0.7 0.109 0.073 0.137 0.101 0.061 0.141 0.127 0.047 0.159
β = 0.8 0.125 0.083 0.147 0.109 0.061 0.149 0.141 0.049 0.171

For finite sample sizes and nominal size α = 0.05, the simulated powers are obtained under H1

in (29), when ρ ∈ {−0.1, 0, 0.1}, ρ̃ = 0.2 and ρ0 = 0.15 (Tables 9 and 10). The (simulated) power for
different composite Wald-type test statistics is obtained by:

β
(β)
n (ρ0, ρ) = Pr(Wβ

n > χ2
1,0.05|H1) and β̂

(λ)
n (ρ0, ρ) =

R
∑

i=1
I(Wβ

n,i > χ2
1,0.05|ρ0, ρ)

R
.

As expected, when we get closer to the null hypothesis and when decreasing the sample sizes,
the power decreases. With pure data, the best behavior is obtained with low values of β, and with this
level of contamination (5%), the best results are obtained for medium values of β.

Table 9. Powers for pure data, ρ0 = 0.15.

n = 100 n = 200 n = 300

ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15

β = 0 0.945 0.603 0.141 1 0.871 0.180 1 0.962 0.265
β = 0.1 0.954 0.588 0.157 1 0.863 0.207 1 0.96 0.299
β = 0.2 0.952 0.557 0.158 1 0.825 0.213 1 0.944 0.315
β = 0.3 0.941 0.510 0.153 0.999 0.783 0.213 1 0.913 0.313
β = 0.4 0.925 0.465 0.154 0.999 0.734 0.210 1 0.885 0.301
β = 0.5 0.904 0.424 0.159 0.996 0.677 0.202 1 0.845 0.289
β = 0.6 0.873 0.395 0.153 0.990 0.618 0.197 0.999 0.789 0.277
β = 0.7 0.830 0.361 0.153 0.985 0.555 0.183 0.999 0.733 0.261
β = 0.8 0.789 0.322 0.161 0.974 0.499 0.179 0.997 0.678 0.246
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Table 10. Powers for contaminated data (5%), ρ0 = 0.15.

n = 100 n = 200 n = 300

ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15

β = 0 0.424 0.090 0.029 0.746 0.141 0.030 0.919 0.246 0.037
β = 0.1 0.716 0.222 0.041 0.954 0.397 0.029 0.994 0.569 0.037
β = 0.2 0.838 0.333 0.071 0.989 0.555 0.075 0.999 0.744 0.096
β = 0.3 0.881 0.383 0.105 0.993 0.633 0.121 0.999 0.803 0.161
β = 0.4 0.879 0.393 0.129 0.993 0.642 0.150 0.999 0.809 0.213
β = 0.5 0.865 0.381 0.135 0.992 0.621 0.168 0.999 0.797 0.241
β = 0.6 0.836 0.357 0.149 0.984 0.583 0.174 0.998 0.769 0.252
β = 0.7 0.808 0.332 0.146 0.980 0.531 0.173 0.997 0.713 0.256
β = 0.8 0.773 0.309 0.152 0.961 0.487 0.173 0.995 0.657 0.243

4. Conclusions

The likelihood function is the basis of the maximum likelihood method in estimation theory, and it
also plays a key role in the development of log-likelihood ratio tests. However, it is not so tractable in
many cases, in practice. Maximum likelihood estimators are based on the likelihood function, and they
can be easily obtained; however, there are cases where they do not exist or they cannot be obtained.
In such a case, composite likelihood methods constitute an appealing methodology in the area of
estimation and testing of hypotheses. On the other hand, the distance or divergence based on methods
of estimation and testing have increasingly become fundamental tools in the field of mathematical
statistics. The work in [13] is the first, to the best of our knowledge, to link the notion of composite
likelihood with divergence based on methods for testing statistical hypotheses.

In this paper, MDPDE are introduced, and they are exploited to develop Wald-type test statistics
for testing simple or composite null hypotheses, in a composite likelihood framework. The validity
of the proposed procedures is investigated by means of simulations. The simulation results point
out the robustness of the proposed information theoretic procedures in estimation and testing, in the
composite likelihood context. There are several areas where the notions of divergence and composite
likelihood are crucial, including spatial statistics and time series analysis. These are areas of interest,
and they will be explored elsewhere.
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Appendix A. Proof of the Results

Appendix A.1. Proof of Theorem 2

The result follows in a straightforward manner because of the asymptotic normality of θ̂
β
c ,

√
n(θ̂

β
c − θ0)

L−→
n→∞

N
(

0,
(

Hβ(θ0)
)−1 Jβ(θ0)

(
Hβ(θ0)

)−1
)

.

Appendix A.2. Proof of Theorem 3

A first order Taylor expansion of l (θ) at θ̂
β
c around θ∗ gives:

l
(

θ̂
β
c

)
− l (θ∗) =

(
∂l (θ)

∂θ

)
θ=θ∗

(
θ̂

β
c − θ∗

)
+ op

(∥∥∥θ̂
β
c − θ∗

∥∥∥) .

Now, the result follows because the asymptotic distribution of
(

l
(

θ̂
β
c

)
− l (θ∗)

)
coincides with

the asymptotic distribution of
√

n
(

∂l(θ)
∂θ

)
θ=θ∗

(
θ̂

β
c − θ∗

)
.

Appendix A.3. Proof of Theorem 4

We have:

g(θ̂
β
c ) = g (θ0) + G(θ0)

T
(

θ̂
β
c − θ0

)
+ op

(∥∥∥θ̂
β
c − θ0

∥∥∥)
= G(θ0)

T
(

θ̂
β
c − θ0

)
+ op

(∥∥∥θ̂
β
c − θ0

∥∥∥) ,

because g (θ0) = 0r .
Therefore:

√
ng
(

θ̂
β
c

) L−→
n−→∞

N (0, Gβ (θ0)
T (Hβ(θ0)

)−1 Jβ(θ0)
(

Hβ(θ0)
)−1 Gβ (θ0))

because: √
n
(

θ̂
β
c − θ0

) L−→
n−→∞

N(0,
(

Hβ(θ0)
)−1 Jβ(θ0)

(
Hβ(θ0)

)−1
).

Now:

Wn,β = ng
(

θ̂β

)T [
G(θ0)

T (Hβ(θ0)
)−1 Jβ(θ0)

(
Hβ(θ0)

)−1 G(θ0)
]−1

g
(

θ̂β

) L−→
n−→∞

χ2
r .

Appendix A.4. CMDPE for the Numerical Example

The estimator θ̂
β
c is obtained by maximizing Expression (6) with respect to θ. Firstly, we are going

to get:

∫
R4

∂CL(θ, y)1+β

∂θ
dy =

∂

∂θ

∫
R4
CL(θ, y)1+βdy

=
∂

∂θ

∫
R4

f12(μ1, μ2, ρ, y1, y2)
β+1 f34(μ3, μ4, ρ, y3, y4)

β+1dy1dy2dy3dy4

=
∂

∂θ

(∫
R2

f12(μ1, μ2, ρ, y1, y2)
β+1dy1dy2

∫
R2

f34(μ3, μ4, ρ, y3, y4)
β+1dy3dy4

)
.

Based on [14] (p. 32):

∫
R2

f12(μ1, μ2, ρ, y1, y2)
β+1dy1dy2 =

∫
R2

f34(μ3, μ4, ρ, y3, y4)
β+1dy3dy4 =

(
1− ρ2)− β

2

β + 1
(2π)−β.
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Then:

∫
R4

∂CL(θ, y)1+β

∂θ
d y =

∂

∂θ

∫
R4
CL(θ, y)1+βd y =

∂

∂θ

(
1− ρ2)−β

(β + 1)2 (2π)−2β

and:
∂

∂μi

(
1− ρ2)−β

(β + 1)2 (2π)−2β = 0, i = 1, 2, 3, 4,

while:

∂

∂ρ

(
1− ρ2)−β

(β + 1)2 (2π)−2β =
β(2π)−2β

(β + 1)2
2ρ

(1− ρ2)
β+1 .

Now, we are going to get:
1

nβ

n

∑
i=1

∂CL(θ, yi)
β

∂θ

in order to obtain the CMDPDE, θ̂
β
c , by maximizing (6) with respect to θ.

We have,
CL(θ, y)β = f12(μ1, μ2, ρ, y1, y2)

β f34(μ3, μ4, ρ, y3, y4)
β.

Therefore,

∂CL(θ, yi)
β

∂μ1
= β f12(μ1, μ2, ρ, y1i, y2i)

β−1
{
− 1

2 (1− ρ2)
[−2 (y1i − μ1) + 2ρ (y2i − μ2)]

}
f34(μ3, μ4, ρ, y3i, y4i)

β

and the expression:
1

nβ

n

∑
i=1

∂CL(θ, yi)
β

∂μ1
= 0

leads to the estimator of μ1, given by:

1
n

n

∑
i=1

f12(μ1, μ2, ρ, y1i, y2i)
β−1 f34(μ3, μ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y1i − μ1) + 2ρ (y2i − μ2)]

}
= 0. (A1)

In a similar way:

∂CL(θ, yi)
β

∂μ2
= β f12(μ1, μ2, ρ, y1i, y2i)

β−1
{
− 1

2 (1− ρ2)
[−2 (y2i − μ2) + 2ρ (y1i − μ1)]

}
f34(μ3, μ4, ρ, y3i, y4i)

β,

∂CL(θ, yi)
β

∂μ3
= β f12(μ1, μ2, ρ, y1i, y2i)

β

{
− 1

2 (1− ρ2)
[−2 (y3i − μ3) + 2ρ (y4i − μ4)]

}
f34(μ3, μ4, ρ, y3i, y4i)

β−1

and:

∂CL(θ, yi)
β

∂μ4
= β f12(μ1, μ2, ρ, y1i, y2i)

β

{
− 1

2 (1− ρ2)
[−2 (y4i − μ4) + 2ρ (y3i − μ3)]

}
f34(μ3, μ4, ρ, y3i, y4i)

β−1.

Therefore, the equations:

1
nβ

n

∑
i=1

∂CL(θ, yi)
β

∂μ2
= 0,

1
nβ

n

∑
i=1

∂CL(θ, yi)
β

∂μ3
= 0 and

1
nβ

n

∑
i=1

∂CL(θ, yi)
β

∂μ4
= 0

lead to the estimators of μ2, μ3 and μ4, which should be read as follows:

1
n

n

∑
i=1

f12(μ1, μ2, ρ, y1i, y2i)
β−1 f34(μ3, μ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y2i − μ2) + 2ρ (y1i − μ1)]

}
= 0, (A2)

1
n

n

∑
i=1

f12(μ1, μ2, ρ, y1i, y2i)
β−1 f34(μ3, μ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y3i − μ3) + 2ρ (y4i − μ4)]

}
= 0 (A3)
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and:

1
n

n

∑
i=1

f12(μ1, μ2, ρ, y1i, y2i)
β f34(μ3, μ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y4i − μ4) + 2ρ (y3i − μ3)]

}
= 0. (A4)

Now, it is necessary to get:

∂CL(θ, yi)
β

∂ρ
=

∂ f12(μ1, μ2, ρ, y1i, y2i)
β f34(μ3, μ4, ρ, y3i, y4i)

β

∂ρ

= β f12(μ1, μ2, ρ, y1i, y2i)
β−1 f34(μ3, μ4, ρ, y3i, y4i)

β ∂ f12(μ1, μ2, ρ, y1i, y2i)

∂ρ

+β f12(μ1, μ2, ρ, y1i, y2i)
β f34(μ3, μ4, ρ, y3i, y4i)

β−1 ∂ f34(μ3, μ4, ρ, y3i, y4i)

∂ρ
.

However, ∂ f12(μ1,μ2,ρ,y1i ,y2i)
∂ρ is given by:

1
2π

(−1)
(1− ρ2)

(−2ρ)

2 (1− ρ2)
1
2

exp
{

(−1)
2 (1− ρ2)

[
(y1i − μ1)

2 − 2ρ (y1i − μ1) (y2i − μ2) + (y2i − μ2)
2
]}

+
1

2π (1− ρ2)
1
2

exp
{

(−1)
2 (1− ρ2)

[
(y1i − μ1)

2 − 2ρ (y1i − μ1) (y2i − μ2) + (y2i − μ2)
2
]}

[
−ρ

(1− ρ2)
2

(
(y1i − μ1)

2 − 2ρ (y1i − μ1) (y2i − μ2) + (y2i − μ2)
2
)
+

1
(1− ρ2)

(y1i − μ1) (y2i − μ2)

]
=

ρ

1− ρ2 f12(μ1, μ2, ρ, y1i, y2i) + f12(μ1, μ2, ρ, y1i, y2i)[
−ρ

(1− ρ2)
2

(
(y1i − μ1)

2 − 2ρ (y1i − μ1) (y2i − μ2) + (y2i − μ2)
2
)
+

1
(1− ρ2)

(y1i − μ1) (y2i − μ2)

]

= f12(μ1, μ2, ρ, y1i, y2i)
ρ

1− ρ2

[
1− 1

1− ρ2

(
(y1i − μ1)

2 − 2ρ (y1i − μ1) (y2i − μ2) + (y2i − μ2)
2
)

+
1
ρ
(y1i − μ1) (y2i − μ2)

]
.

In a similar way, ∂ f34(μ3,μ4,ρ,y3i ,y4i)
∂ρ is given by:

f34(μ3, μ4, ρ, y3i, y4i)
ρ

1− ρ2

[
1− 1

1− ρ2

(
(y3i − μ3)

2 − 2ρ (y3i − μ3) (y4i − μ4) + (y4i − μ4)
2
)

+
1
ρ
(y3i − μ3) (y4i − μ4)

]
.

Therefore,

∂CL(θ, yi)
β

∂ρ
=

ρ

1− ρ2 β f12(μ1, μ2, ρ, y1i, y2i)
β f34(μ3, μ4, ρ, y3i, y4i)

β{
2 +

1
ρ
{(y1i − μ1) (y2i − μ2) + (y3i − μ3) (y4i − μ4)}

− 1
1− ρ2

(
(y1i − μ1)

2 − 2ρ (y1i − μ1) (y2i − μ2) + (y2i − μ2)
2
)

− 1
1− ρ2

(
(y3i − μ3)

2 − 2ρ (y3i − μ3) (y4i − μ4) + (y4i − μ4)
2
)}

. (A5)

Therefore, the equation in relation to ρ is given by:

1
nβ

n

∑
i=1

∂CL(θ, yi)
β

∂ρ
− 1

β + 1

∫
Rm

∂CL(θ, yi)
β+1

∂ρ
dy = 0
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being: ∫
Rm

∂CL(θ, yi)
β+1

∂θ
dy =

β(2π)−2β

(β + 1)2
2ρ

(1− ρ2)
β+1 (A6)

and:
∂CL(θ, yi)

β

∂ρ

was given in (A5).
Finally,

θ̂
β
c =

(
μ̂

β
1,c, μ̂

β
2,c, μ̂

β
3,c, μ̂

β
4,c, ρ̂

β
c

)T

will be obtained as the solution of the system of equations given by (A1)–(A6).

Appendix A.5. Computation of Sensitivity and Variability Matrices in the Numerical Example

We want to compute:

Hβ(θ) =
∫
Rm
CL(θ, y)β+1u(θ,y)Tu(θ, y)dy

Jβ(θ) =
∫
Rm
CL(θ, y)2β+1u(θ,y)Tu(θ,y)dy

−
∫
Rm
CL(θ,y)β+1u(θ, y)dy

∫
Rm

(u(θ, y))T CL(θ, y)β+1dy.

First of all, we can see that:

CL(θ,y)β+1 = ( fA1 (θ, y) fA2 (θ, y))β+1

=

(
1

2π
√

1− ρ2
exp

{
− 1

2(1−ρ2)
Q(y1, y2)

}
· 1

2π
√

1− ρ2
exp

{
− 1

2(1−ρ2)
Q(y3, y4)

})β+1

=

(
1

(2π)2(1− ρ2)

)β+1
exp

{
− β+1

2(1−ρ2)
[Q(y1, y2) + Q(y3, y4)]

}
=

1
(β + 1)2

(
1

(2π)2(1− ρ2)

)β (β + 1)2

(2π)2(1− ρ2)
exp

{
− β+1

2(1−ρ2)
[Q(y1, y2) + Q(y3, y4)]

}
= Cβ · CL∗β,

where Cβ = 1
(β+1)2

(
1

(2π)2(1−ρ2)

)β
and CL∗β = CLβ(θ, y)∗ ∼ N (μ, Σ∗), with Σ∗ = 1

β+1 Σ.

While u(θ,y) =
∂ log CL(θ, y)

∂θ
, we will denote as u(θ,y)∗ to u(θ,y)∗ =

∂ log CL∗β
∂θ

. Then:

u(θ,y) =
∂ log CL(θ, y)

∂θ
=

1
β + 1

∂ log CL(θ, y)β+1

∂θ
=

1
β + 1

∂ log(Cβ · CL∗β)
∂θ

=
1

β + 1

(
∂ log Cβ

∂θ
+

∂ log CL∗β
∂θ

)
=

1
β + 1

(
∂ log Cβ

∂θ
+ u(θ,y)∗

)
. (A7)

Further,∫
Rm
CL(θ,y)β+1u(θ,y)dy =

∫
Rm
CL(θ,y)β+1 ∂ log CL(θ,y)

∂θ
dy =

∫
Rm
CL(θ,y)β ∂CL(θ,y)

∂θ
dy

=
∫
Rm

1
β + 1

∂CL(θ,y)β+1

∂θ
dy =

1
β + 1

∂

∂θ

∫
Rm
CL(θ,y)β+1dy

=
1

β + 1
∂Cβ

∂θ
= (0, 0, 0, 0,

2ρβCβ

(β + 1)(1− ρ2)
)T = ξβ(θ). (A8)
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Now:∫
R4
CLβ+1u(θ,y)Tu(θ,y)dy (A9)

=
∫
R4
(Cβ · CL∗β)

1
(β + 1)2

(
∂ log Cβ

∂θ
+ u(θ,y)∗

)T ( ∂ log Cβ

∂θ
+ u(θ,y)∗

)
dy

=
Cβ

(β + 1)2

∫
R4

[(
∂ log Cβ

∂θ

)T ( ∂ log Cβ

∂θ

)
CL∗β

+CL∗β
(
u(θ,y)∗

)T ∂ log Cβ

∂θ
+ CL∗β

(
∂ log Cβ

∂θ

)T

u(θ,y)∗ + CL∗β(u(θ,y)∗)Tu(θ,y)∗
]

dy

=
Cβ

(β + 1)2

[(
∂ log Cβ

∂θ

)T ( ∂ log Cβ

∂θ

) ∫
R4
CL∗βdy +

(∫
R4
CL∗βu(θ,y)∗dy

)T ( ∂ log Cβ

∂θ

)

+

(
∂ log Cβ

∂θ

)T ∫
R4
CL∗βu(θ,y)∗dy +

∫
R4
CL∗β(u(θ,y)∗)Tu(θ,y)∗dy

]

=
Cβ

(β + 1)2

[
KTK +

(∫
R4
CL∗βu(θ,y)∗dy

)T
K + KT

∫
R4
CL∗βu(θ,y)∗dy +

∫
R4
CL∗β(u(θ,y)∗)Tu(θ,y)∗dy

]
,

where K =
∂ log Cβ

∂θ = (0, 0, 0, 0, 2ρ·β
1−ρ2 ). However:

∫
R4
CL∗βu(θ,y)∗dy =

∫
R4

(
1

Cβ
CL(θ,y)β+1

)[
(β + 1)u(θ,y)−

∂ log Cβ

∂θ

]
dy

=
β + 1

Cβ

[∫
R4
CL(θ,y)β+1u(θ,y)dy

]
− K

Cβ

∫
R4
CL(θ,y)β+1dy

=
1

Cβ

∂Cβ

∂θ
− K = K − K = 0,

and thus, (A9) can be expressed as:

∫
R4
CL(θ, y)β+1u(θ,y)Tu(θ,y)dy =

Cβ

(β + 1)2

[
KTK +

∫
R4
CL∗β(u(θ,y)∗)Tu(θ,y)∗dy

]
.

On the other hand, it is not difficult to prove that:∫
R4
CL∗β(u(θ,y)∗)Tu(θ,y)∗dy = C ·

∫
R4
CL(θ, y)u(θ,y)Tu(θ,y)dy = C · H0(θ),

where C = diag(β + 1, β + 1, β + 1, β + 1, 1) and ([13]):

H0(θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1−ρ2

−ρ

1−ρ2 0 0 0
−ρ

1−ρ2
1

1−ρ2 0 0 0

0 0 1
1−ρ2

−ρ

1−ρ2 0

0 0 −ρ

1−ρ2
1

1−ρ2 0

0 0 0 0 2(ρ2+1)
(1−ρ2)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A10)

Therefore,

Hβ(θ) =
Cβ

(β + 1)2

[
C · H0(θ) + KTK

]
,
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that is:

Hβ(θ) =
Cβ

(β + 1)(1− ρ2)

⎛⎜⎜⎜⎜⎜⎜⎝
1 −ρ 0 0 0
−ρ 1 0 0 0
0 0 1 −ρ 0
0 0 −ρ 1 0

0 0 0 0 2 (ρ2+1)+2ρ2β2

(1−ρ2)(1+β)

⎞⎟⎟⎟⎟⎟⎟⎠ . (A11)

Note that, for β = 0, (A11) reduces to (A10).
On the other hand, the expression of the variability matrix Jβ(θ) can be obtained from

Expressions (27) and (A8) as:
Jβ(θ) = H2β(θ)− ξβ(θ)ξβ(θ)

T . (A12)
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Abstract: This paper focuses on test procedures under corrupted data. We assume that the observations
Zi are mismeasured, due to the presence of measurement errors. Thus, instead of Zi for i = 1, . . . , n,
we observe Xi = Zi +

√
δVi, with an unknown parameter δ and an unobservable random variable Vi.

It is assumed that the random variables Zi are i.i.d., as are the Xi and the Vi. The test procedure
aims at deciding between two simple hyptheses pertaining to the density of the variable Zi, namely
f0 and g0. In this setting, the density of the Vi is supposed to be known. The procedure which we
propose aggregates likelihood ratios for a collection of values of δ. A new definition of least-favorable
hypotheses for the aggregate family of tests is presented, and a relation with the Kullback-Leibler
divergence between the sets ( fδ)δ and (gδ)δ is presented. Finite-sample lower bounds for the power
of these tests are presented, both through analytical inequalities and through simulation under the
least-favorable hypotheses. Since no optimality holds for the aggregation of likelihood ratio tests,
a similar procedure is proposed, replacing the individual likelihood ratio by some divergence based
test statistics. It is shown and discussed that the resulting aggregated test may perform better than the
aggregate likelihood ratio procedure.

Keywords: composite hypotheses; corrupted data; least-favorable hypotheses; Neyman Pearson test;
divergence based testing; Chernoff Stein lemma

1. Introduction

A situation which is commonly met in quality control is the following: Some characteristic Z
of an item is supposed to be random, and a decision about its distribution has to be made based
on a sample of such items, each with the same distribution F0 (with density f0) or G0 (with density
g0). The measurement device adds a random noise Vδ to each measurement, mutually independent
and independent of the item, with a common distribution function Hδ and density hδ, where δ is
an unknown scaling parameter. Therefore the density of the measurement X := Z + Vδ is either
fδ := f0 ∗ hδ or gδ := g0 ∗ hδ, where ∗ denotes the convolution operation. We denote Fδ (respectively
Gδ) to be the distribution function with density fδ (respectively gδ).

The problem of interest, studied in [1], is how the measurement errors can affect the conclusion of
the likelihood ratio test with statistics

Ln :=
1
n ∑ log

g0

f0
(Xi).
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For small δ, the result of [2] enables us to estimate the true log-likelihood ratio (true Kullback-
Leibler divergence) even when we only dispose of locally perturbed data by additive measurement
errors. The distribution function H0 of the measurement errors is considered unknown, up to zero
expectation and unit variance. When we use the likelihood ratio test, while ignoring the possible
measurement errors, we can incur a loss in both errors of the first and second kind. However, it is
shown, in [1], that for small δ the original likelihood ratio test (LRT) is still the most powerful, only on
a slightly changed significance level. The test problem leads to a composite of null and alternative
classes H0 or H1 of distributions of random variables Z +Vδ with Vδ :=

√
δV, where V has distribution

H1. If those families are bounded by alternating Choquet capacities of order 2, then the minimax test is
based on the likelihood ratio of the pair of the least-favorable distributions of H0 and H1, respectively
(see Huber and Strassen [3]). Moreover, Eguchi and Copas [4] showed that the overall loss of power
caused by a misspecified alternative equals the Kullback-Leibler divergence between the original and
the corrupted alternatives. Surprisingly, the value of the overall loss is independent of the choice of
null hypothesis. The arguments of [2] and of [5] enable us to approximate the loss of power locally,
for a broad set of alternatives. The asymptotic behavior of the loss of power of the test based on
sampled data is considered in [1], and is supplemented with numerical illustration.

Statement of the Test Problem

Our aim is to propose a class of statistics for testing the composite hypotheses H0 and H1,
extending the optimal Neyman-Pearson LRT between f0 and g0. Unlike in [1], the scaling parameter δ

is not supposed to be small, but merely to belong to some interval bounded away from 0.
We assume that the distribution H of the random variable (r.v.) V is known; indeed, in the tuning

of the offset of a measurement device, it is customary to perform a large number of observations on
the noise under a controlled environment.

Therefore, this first step produces a good basis for the modelling of the distribution of the density
h. Although the distribution of V is known, under operational conditions the distribution of the noise
is modified: For a given δ in [δmin, δmax] with δmin > 0, denote by Vδ a r.v. whose distribution is
obtained through some transformation from the distribution of V, which quantifies the level of the
random noise. A classical example is when Vδ =

√
δV, but at times we have a weaker assumption,

which amounts to some decomposability property with respect to δ: For instance, in the Gaussian case,
we assume that for all δ, η, there exists some r.v. Wδ,η such that Vδ+η =d Vδ + Wδ,η , where Vδ and Wδ,η
are independent.

The test problem can be stated as follows: A batch of i.i.d. measurements Xi := Zi + Vδ,i is
performed, where δ > 0 is unknown, and we consider the family of tests of H0(δ):=[X has density fδ] vs.
H1(δ):=[X has density gδ], with δ ∈ Δ = [δmin, δmax] . Only the Xi are observed. A class of combined
tests of H0 vs. H1 is proposed, in the spirit of [6–9].

Under every fixed n, we assume that δ is allowed to run over a finite set pn of components of
the vector Δn := [δmin = δ0,n, ..., δpn ,n = δmax]. The present construction is essentially non-asymptotic,
neither on n nor on δ, in contrast with [1], where δ was supposed to lie in a small neighborhood of 0.
However, with increasing n, it would be useful to consider that the array

(
δj,n
)pn

j=1 is getting dense in
Δ = [δmin, δmax] and that

lim
n→∞

log pn

n
= 0. (1)

For the sake of notational brevity, we denote by Δ the above grid Δn, and all suprema or infima
over Δ are supposed to be over Δn. For any event B and any δ in Δ , Fδ(B) (respectively Gδ(B))
designates the probability of B under the distribution Fδ (respectively Gδ). Given a sequence of
levels αn, we consider a sequence of test criteria Tn := Tn (X1, ..., Xn) of H0(δ), and the pertaining
critical regions

Tn (X1, ..., Xn) > An, (2)
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such that
Fδ (Tn (X1, ..., Xn) > An) ≤ αn ∀δ ∈ Δ,

leading to rejection of H0(δ) for at least some δ ∈ Δ.
In an asymptotic context, it is natural to assume that αn converges to 0 as n increases, since an

increase in the sample size allows for a smaller first kind risk. For example, in [8], αn takes the form
αn := exp{−nan} for some sequence an → ∞.

In the sequel, the Kullback-Leibler discrepancy between probability measures Q and P, with
respective densities p and q (with respect to the Lebesgue measure on R), is denoted

K(Q, P) :=
∫

log
q(x)
p(x)

q(x)dx

whenever defined, and takes value +∞ otherwise.
The present paper handles some issues with respect to this context. In Section 2, we consider some

test procedures based on the supremum of Likelihood Ratios (LR) for various values of δ, and define Tn.
The threshold for such a test is obtained for any level αn, and a lower bound for its power is provided.
In Section 3, we develop an asymptotic approach to the Least Favorable Hypotheses (LFH) for these
tests. We prove that asymptotically least-favorable hypotheses are obtained through minimization of
the Kullback-Leibler divergence between the two composite classes H0 and H1 independently upon
the level of the test.

We next consider, in Section 3.3, the performance of the test numerically; indeed, under the
least-favorable pair of hypotheses we compare the power of the test (as obtained through simulation)
with the theoretical lower bound, as obtained in Section 2. We show that the minimal power,
as measured under the LFH, is indeed larger than the theoretical lower bound—this result shows that
the simulation results overperform on theoretical bounds. These results are developed in a number
of examples.

Since no argument plays in favor of any type of optimality for the test based on the supremum of
likelihood ratios for composite testing, we consider substituting those ratios with other kinds of scores
in the family of divergence-based concepts, extending the likelihood ratio in a natural way. Such an
approach has a long history, stemming from the seminal book by Liese and Vajda [10]. Extensions of
the Kullback-Leibler based criterions (such as the likelihood ratio) to power-type criterions have been
proposed for many applications in Physics and in Statistics (see, e.g., [11]). We explore the properties
of those new tests under the pair of hypotheses minimizing the Kullback-Leibler divergence between
the two composite classes H0 and H1. We show that, in some cases, we can build a test procedure
whose properties overperform the above supremum of the LRTs, and we provide an explanation for
this fact. This is the scope of Section 4.

2. An Extension of the Likelihood Ratio Test

For any δ in Δ, let

Tn,δ :=
1
n

n

∑
i=1

log
gδ

fδ
(Xi), (3)

and define
Tn := sup

δ∈Δ
Tn,δ.

Consider, for fixed δ, the Likelihood Ratio Test with statistics Tn,δ which is uniformly most
powerful (UMP) within all tests of H0(δ):= pT = fδ vs. H1(δ):= pT = gδ, where pT designates the
distribution of the generic r.v. X. The test procedure to be discussed aims at solving the question: Does
there exist some δ, for which H0(δ) would be rejected vs. H1(δ), for some prescribed value of the first
kind risk?
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Whenever H0(δ) is rejected in favor of H1(δ), for some δ, we reject H0:= f0 = g0 in favor of
H1:= f0 �= g0. A critical region for this test with level αn is defined by

Tn > An,

with

PH0(H1) = sup
δ∈Δ

Fδ (Tn > An)

= sup
δ∈Δ

Fδ

(⋃
δ′

Tn,δ′ > An

)
≤ αn.

Since, for any sequence of events B1, . . . , Bpn ,

Fδ

( pn⋃
k=1

Bk

)
≤ pn max

1≤k≤pn
Fδ (Bk) ,

it holds that
PH0(H1) ≤ pn max

δ∈Δ
max
δ′∈Δ

Fδ

(
Tn,δ′ > An

)
. (4)

An upper bound for PH0(H1) can be obtained, making use of the Chernoff inequality for the right
side of (4), providing an upper bound for the risk of first kind for a given An. The correspondence
between An and this risk allows us to define the threshold An accordingly.

Turning to the power of this test, we define the risk of second kind by

PH1(H0) := sup
η∈Δ

Gη (Tn ≤ An) (5)

= sup
η∈Δ

Gη

(
sup
δ∈Δ

Tn,δ ≤ An

)

= sup
η∈Δ

Gη

(⋂
δ∈Δ

Tn,δ ≤ An

)
≤ sup

η∈Δ
Gη

(
Tn,η ≤ An

)
,

a crude bound which, in turn, can be bounded from above through the Chernoff inequality, which
yields a lower bound for the power of the test under any hypothesis gη in H1.

Let αn denote a sequence of levels, such that

lim sup
n→∞

αn < 1.

We make use of the following hypothesis:

sup
δ∈Δ

sup
δ′∈Δ

∫
log

fδ′

gδ′
fδ < 0. (6)

Remark 1. Since ∫
log

fδ′

gδ′
fδ = K (Fδ, Gδ′)− K (Fδ, Fδ′) ,

making use of the Chernoff-Stein Lemma (see Theorem A1 in the Appendix A), Hypothesis (6) means that any
LRT with H0: pT = fδ vs. H1: pT = gδ′ is asymptotically more powerful than any LRT with H0: pT = fδ vs.
H1: pT = fδ′ .
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Both hypotheses (7) and (8), which are defined below, are used to provide the critical region and
the power of the test.

For all δ, δ′ define
Zδ′ := log

gδ′

fδ′
(X),

and let

ϕδ,δ′(t) := log EFδ
(exp (tZδ′)) = log

∫ ( gδ′(x)
fδ′(x)

)t
fδ(x)dx.

With Nδ,δ′ , the set of all t such that ϕδ,δ′(t) is finite, we assume

Nδ,δ′ is a non void open neighborhood of 0. (7)

Define, further,
Jδ,δ′(x) := sup

t
tx− ϕδ,δ′(t),

and let
J(x) := min

(δ,δ′)∈Δ×Δ
Jδ,δ′(x).

For any η, let

Wη := − log
gη

fη
(X),

and let
ψη(t) := log EGη

(
exp

(
tWη

))
.

LetMη be the set of all t such that ψη(t) is finite. Assume

Mη is a non void neighborhood of 0. (8)

Let
Iη(x) := sup

t
tx− log EGη

(
exp

(
tWη

))
, (9)

and
I(x) := inf

η
Iη(x).

We also assume an accessory condition on the support of Zδ′ and Wη , respectively under Fδ and
under Gη (see (A2) and (A5) in the proof of Theorem A1). Suppose the regularity assumptions (7)
and (8) are fulfilled for all δ, δ′ and η. Assume, further, that pn fulfills (1).

The following result holds:

Proposition 2. Whenever (6) holds, for any sequence of levels αn bounded away from 1, defining

An := J−1
(
− 1

n
log

αn

pn

)
,

it holds, for large n, that
PH0 (H1) = sup

δ∈Δ
Fδ (Tn > An) ≤ αn

and
PH1 (H1) = sup

δ∈Δ
Gδ (Tn > An) ≥ 1− exp (−nI (An)) .
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3. Minimax Tests under Noisy Data, Least-Favorable Hypotheses

3.1. An Asymptotic Definition for the Least-Favorable Hypotheses

We prove that the above procedure is asymptotically minimax for testing the composite hypothesis
H0 against the composite alternative H1. Indeed, we identify the least-favorable hypotheses, say
Fδ∗ ∈ H0 and Gδ∗ ∈ H1, which lead to minimal power and maximal first kind risk for these tests. This
requires a discussion of the definition and existence of such a least-favourable pair of hypotheses in
an asymptotic context; indeed, for a fixed sample size, the usual definition only leads to an explicit
definition in very specific cases. Unlike in [1], the minimax tests will not be in the sense of Huber and
Strassen. Indeed, on one hand, hypotheses H0 and H1 are not defined in topological neighbourhoods
of F0 and G0, but rather through a convolution under a parametric setting. On the other hand,
the specific test of {H0(δ), δ ∈ Δ} against {H1(δ), δ ∈ Δ} does not require capacities dominating the
corresponding probability measures.

Throughout the subsequent text, we shall assume that there exists δ∗ such that

min
δ∈Δ

K (Fδ, Gδ) = K (Fδ∗ , Gδ∗) . (10)

We shall call the pair of distributions
(

Fδ, Gδ

)
least-favorable for the sequence of tests 1 {Tn > An}

if they satisfy

Fδ (Tn ≤ An) ≥ Fδ (Tn ≤ An) (11)

≥Gδ (Tn ≤ An) ≥ Gδ (Tn ≤ An)

for all δ ∈ Δ. The condition of unbiasedness of the test is captured by the central inequality in (11).
Because, for finite n, such a pair can be constructed only in few cases, we should take a recourse

of (11) to the asymptotics n → ∞. We shall show that any pair of distributions (Fδ∗Gδ∗) achieving (10)
are least-favorable. Indeed, it satisfies the inequality (11) asymptotically on the logarithmic scale.

Specifically, we say that
(

Fδ, Gδ

)
is a least-favorable pair of distributions when, for any δ ∈ Δ,

lim inf
n→∞

1
n

log Fδ (Tn ≤ An) ≥ lim
n→∞

1
n

log Gδ (Tn ≤ An) (12)

≥ lim
n→∞

sup
1
n

log Gδ (Tn ≤ An) .

Define the total variation distance

dTV (Fδ, Gδ) := sup
B
|Fδ(B)− Gδ(B)| ,

where the supremum is over all Borel sets B of R. We will assume that, for all n,

αn < 1− sup
δ∈Δ

dTV (Fδ, Gδ) . (13)

We state our main result, whose proof is deferred to the Appendix B.

Theorem 3. For any level αn satisfying (13), the pair (Fδ∗ , Gδ∗) is a least-favorable pair of hypotheses for the
family of tests 1 {Tn ≥ An}, in the sense of (12).

3.2. Identifying the Least-Favorable Hypotheses

We now concentrate on (10).
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For given δ ∈ [δmin, δmax] with δmin > 0, the distribution of the r.v. Vδ is obtained through some
transformation from the known distribution of V. The classical example is Vδ =

√
δV, which is a

scaling, and where
√

δ is the signal to noise ratio. The following results state that the Kullback-Leibler
discrepancy K (Fδ, Gδ) reaches its minimal value when the noise Vδ is “maximal”, under some additivity
property with respect to δ. This result is not surprising: Adding noise deteriorates the ability to
discriminate between the two distributions F0 and G0—this effect is captured in K (Fδ, Gδ), which takes
its minimal value for the maximal δ.

Proposition 4. Assume that, for all δ, η, there exists some r.v. Wδ,η such that Vδ+η =d Vδ + Wδ,η where Vδ

and Wδ,η are independent. Then
δ∗ = δmax.

This result holds as a consequence of Lemma A5 in the Appendix C.
In the Gaussian case, when h is the standard normal density, Proposition 4 holds, since hδ+η =

hδ ∗ hη−δ with hε(x) :=
(
1/
√

ε
)

h
(
x/
√

ε
)

. In order to model symmetric noise, we may consider a
symmetrized Gamma density as follows: Set hδ(x) := (1/2) γ+(1, δ)(x) + (1/2) γ−(1, δ)(x), where
γ+(1, δ) designates the Gamma density with scale parameter 1 and shape parameter δ, and γ−(1, δ) the
Gamma density on R− with same parameter. Hence a r.v. with density hδ is symmetrically distributed
and has variance 2δ. Clearly, hδ+η(x) = hδ ∗ hη(x), which shows that Proposition 4 also holds in this
case. Note that, except for values of δ less than or equal to 1, the density hδ is bimodal, which does not
play in favour of such densities for modelling the uncertainty, due to the noise. In contrast with the
Gaussian case, hδ cannot be obtained from h1 by any scaling. The centred Cauchy distribution may
help as a description of heavy tailed symmetric noise, and keeps uni-modality through convolution;
it satisfies the requirements of Proposition 4 since fδ ∗ fη(x) = fδ+η(x) where fε(x) := ε/π

(
x2 + ε2).

In this case, δ acts as a scaling, since fδ is the density of δX where X has density f1.
In practice, the interesting case is when δ is the variance of the noise and corresponds to a scaling

of a generic density, as occurs for the Gaussian case or for the Cauchy case. In the examples, which
will be used below, we also consider symmetric, exponentially distributed densities (Laplace densities)
or symmetric Weibull densities with a given shape parameter. The Weibull distribution also fulfills the
condition in Proposition 4, being infinitely divisible (see [12]).

3.3. Numerical Performances of the Minimax Test

As frequently observed, numerical results deduced from theoretical bounds are of poor interest
due to the sub-optimality of the involved inequalities. They may be sharpened on specific cases. This
motivates the need for simulation. We study two cases, which can be considered as benchmarks.

A. In the first case, f0 is a normal density with expectation 0 and variance 1, whereas g0 is a normal
density with expectation 0.3 and variance 1.

B. The second case handles a situation where f0 and g0 belong to different models: f0 is a log-normal
density with location parameter 1 and scale parameter 0.2, whereas g0 is a Weibull density on R+

with shape parameter 5 and scale parameter 3. Those two densities differ strongly, in terms of
asymptotic decay. They are, however, very close to one another in terms of their symmetrized
Kullback-Leibler divergence (the so-called Jeffrey distance). Indeed, centering on the log-normal
distribution f0, the closest among all Weibull densities is at distance 0.10—the density g0 is at
distance 0.12 from f0.

Both cases are treated, considering four types of distribution for the noise:

a. The noise hδ is a centered normal density with variance δ2;
b. the noise hδ is a centered Laplace density with parameter λ(δ);
c. the noise hδ is a symmetrized Weibull density with shape parameter 1.5 and variable scale

parameter β(δ); and
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d. the noise hδ is Cauchy with density hδ(x) = γ(δ)/π
(
γ(δ)2 + x2).

In order to compare the performances of the test under those four distributions, we have adopted
the following rule: The parameter of the distribution of the noise is tuned such that, for each value δ,
it holds that P

(∣∣Vδ

∣∣ > δ
)

= Φ(1) − Φ(−1) ∼ 0.65, where Φ stands for the standard Gaussian
cumulative function. Thus, distributions b to d are scaled with respect to the Gaussian noise with
variance δ2.

In both cases A and B, the range of δ is Δ = (δmin = 0.1, δmax), and we have selected a number of
possibilities for δmax, ranging from 0.2 to 0.7.

In case A, we selected = δ2
max = 0.5, which has a signal-to-noise ratio equal to 0.7, a commonly

chosen bound in quality control tests.
In case B, the variance of f0 is roughly 0.6 and the variance of g0 is roughly 0.4. The maximal

value of δ2
max is roughly 0.5. This is thus a maximal upper bound for a practical modeling.

We present some power functions, making use of the theoretical bounds together with the
corresponding ones based on simulation runs. As seen, the performances in the theoretical approach is
weak. We have focused on simulation, after some comparison with the theoretical bounds.

3.3.1. Case A: The Shift Problem

In this subsection, we evaluate the quality of the theoretical power bound, defined in the previous
sections. Thus, we compare the theoretical formula to the empirical lower performances obtained
through simulations under the least-favorable hypotheses.

Theoretical Power Bound

While supposedly valid for finite n, the theoretical power bound given by (A8) still assumes some
sort of asymptotics, since a good approximation of the bound implies a fine discretization of Δ to
compute I(An) = infη∈Δn Iη(An). Thus, by condition (1), n has to be large. Therefore, in the following,
we will compute this lower bound for n sufficiently large (that is, at least 100 observations), which is
also consistent with industrial applications.

Numerical Power Bound

In order to obtain a minimal bound for the power of the composite test, we compute the power of
the test H0(δ∗) against H1(δ∗), where δ∗ defines the LFH pair (Fδ∗ , Gδ∗).

Following Proposition 4, the LFH for the test defined by Tn when the noise follows a Gaussian,
a Cauchy, or a symmetrized Weibull distribution is achieved for (Fδmax , Gδmax).

When the noise follows a Laplace distribution, the pair of LFH is the one that satisfies:

(Fδ∗ , Gδ∗) = arg min
(Fδ ,Gδ),δ∈Δn

K(Fδ, Gδ). (14)

In both of the cases A and B, this condition is also satisfied for δ∗ = δmax.

Comparison of the Two Power Curves

As expected, Figures 1–3 show that the theoretical lower bound is always below the empirical
lower bound, when n is high enough to provide a good approximation of I(An). This is also true
when the noise follows a Cauchy distribution, but for a bigger sample size than in the figures above
(n > 250).
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Figure 1. Theoretical and numerical power bound of the test of case A under Gaussian noise (with
respect to n), for the first kind risk α = 0.05.

Figure 2. Theoretical and numerical power bound of the test of case A under symmetrized Weibull
noise (with respect to n), for the first kind risk α = 0.05.

Figure 3. Theoretical and numerical power bound of the test of case A under a symmetrized Laplacian
noise (with respect to n), for the first kind risk α = 0.05.

In most cases, the theoretical bound tends to largely underestimate the power of the test, when
compared to its minimal performance given by simulations under the least-favorable hypotheses.
The gap between the two also tends to increase as n grows. This result may be explained by the
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large bound provided by (5), while the numerical performances are obtained with respect to the
least-favorable hypotheses.

From a computational perspective, the computational cost of the theoretical bound is far higher
than its numeric counterpart.

3.3.2. Case B: The Tail Thickness Problem

The calculation of the moment-generating function, appearing in the formula of Iη(x) in (9),
is numerically unstable, which renders the computation of the theoretical bound impossible. Thus,
in the following sections, the performances of the test will be evaluated numerically, through Monte
Carlo replications.

4. Some Alternative Statistics for Testing

4.1. A Family of Composite Tests Based on Divergence Distances

This section provides a similar treatment as above, dealing now with some extensions of the LRT
test to the same composite setting. The class of tests is related to the divergence-based approach to
testing, and it includes the cases considered so far. For reasons developed in Section 3.3, we argue
through simulation and do not develop the corresponding large deviation approach.

The statistics Tn can be generalized in a natural way, by defining a family of tests depending on
some parameter γ. For γ �= 0, 1, let

φγ(x) :=
xγ − γx + γ− 1

γ(γ− 1)

be a function defined on (0, ∞) with values in (0, ∞), setting

φ0(x) := − log x + x− 1

and
φ1(x) := x log x− x + 1.

For γ ≤ 2, this class of functions is instrumental in order to define the so-called power divergences
between probability measures, a class of pseudo-distances widely used in statistical inference (see,
for example, [13]).

Associated to this class, consider the function

ϕγ(x) := − d
dx

φγ(x)

=
1− xγ−1

γ− 1
for γ �= 0, 1.

We also consider

ϕ1(x) := − log x

ϕ0(x) :=
1
x
− 1,

from which the statistics

Tγ
n,δ :=

1
n

n

∑
i=1

ϕγ(Xi)

and
Tγ

n := sup
δ

Tγ
n,δ
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are well defined, for all γ ≤ 2. Figure 4 illustrates the functions ϕγ, according to γ.

Figure 4. ϕγ for γ = 0.5, 1, and 2.

Fix a risk of first kind α, and the corresponding power of the LRT pertaining to H0(δ∗) vs. H1(δ∗) by

1− β := Gδ∗

(
T1

n,δ∗ > sα

)
,

with
sα := inf

{
s : Fδ∗

(
T1

n,δ∗ > s
)
≤ α
}

.

Define, accordingly, the power of the test, based on Tγ
n under the same hypotheses, by

sγ
α := inf

{
s : Fδ∗

(
Tγ

n > s
)
≤ α
}

and
1− β′ := Gδ∗

(
Tγ

n > sγ
α

)
.

First, δ∗ defines the pair of hypotheses (Fδ∗ , Gδ∗), such that the LRT with statistics T1
n,δ∗ has

maximal power among all tests H0(δ∗) vs. H1(δ∗). Furthermore, by Theorem A1, it has minimal
power on the logarithmic scale among all tests H0(δ) vs. H1(δ).

On the other hand, (Fδ∗ , Gδ∗) is the LF pair for the test with statistics T1
n among all pairs (Fδ, Gδ) .

These two facts allow for the definition of the loss of power, making use of T1
n instead of T1

n,δ∗
for testing H0(δ∗) vs. H1(δ∗). This amounts to considering the price of aggregating the local tests
T1

n,δ, a necessity since the true value of δ is unknown. A natural indicator for this loss consists in
the difference

Δ1
n := Gδ∗

(
T1

n,δ∗ > sα

)
− Gδ∗

(
T1

n > s1
α

)
≥ 0.

Consider, now, aggregated test statistics Tγ
n . We do not have at hand a similar result, as in

Proposition 2. We, thus, consider the behavior of the test H0(δ∗) vs. H1(δ∗), although (Fδ∗ , Gδ∗) may
not be a LFH for the test statistics Tγ

n . The heuristics, which we propose, makes use of the corresponding
loss of power with respect to the LRT, through

Δγ
n := Gδ∗

(
T1

n,δ∗ > sα

)
− Gδ∗

(
Tγ

n > sγ
α

)
.

We will see that it may happen that Δγ
n improves over Δ1

n. We define the optimal value of γ, say γ∗,
such that

Δγ∗
n ≤ Δγ

n ,
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for all γ.
In the various figures hereafter, NP corresponds to the LRT defined between the LFH’s (Fδ∗ , Gδ∗) ,

KL to the test with statistics T1
n (hence, as presented Section 2), HELL corresponds to T1/2

n , which is
associated to the Hellinger power divergence, and G = 2 corresponds to γ = 2.

4.2. A Practical Choice for Composite Tests Based on Simulation

We consider the same cases A and B, as described in Section 3.3.

As stated in the previous section, the performances of the different test statistics are compared,
considering the test of H0(δ∗) against H1(δ∗) where δ∗ is defined, as explained in Section 3.3 as the
LFH for the test T1

n . In both cases A and B, this corresponds to δ∗ = δmax.

4.2.1. Case A: The Shift Problem

Overall, the aggregated tests perform well, when the problem consists in identifying a shift in a
distribution. Indeed, for the three values of γ (0.5, 1, and 2), the power remains above 0.7 for any kind
of noise and any value of δ∗. Moreover, the power curves associated to Tγ

n mainly overlap with the
optimal test T1

n,δ∗ .

a. Under Gaussian noise, the power remains mostly stable over the values of δ∗, as shown by
Figure 5. The tests with statistics T1

n and T2
n are equivalently powerful for large values of δ∗, while

the first one achieves higher power when δ∗ is small.

Figure 5. Power of the test of case A under Gaussian noise (with respect to δmax), for the first kind risk
α = 0.05 and sample size n = 100.

b. When the noise follows a Laplace distribution, the three power curves overlap the NP power
curve, and the different test statistics can be indifferently used. Under such a noise, the alternative
hypotheses are extremely well distinguished by the class of tests considered, and this remains
true as δ∗ increases (cf. Figure 6).
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Figure 6. Power of the test of case A under Laplacian noise (with respect to δmax), for the first kind risk
α = 0.05 and sample size n = 100.

c. Under the Weibull hypothesis, T1
n and T2

n perform similarly well, and almost always as well as
T1

n,δ∗ , while the power curve associated to T1/2
n remains below. Figure 7 illustrates that, as δmax

increases, the power does not decrease much.

Figure 7. Power of the test of case A under symmetrized Weibull noise (with respect to δmax), for the
first kind risk α = 0.05 and sample size n = 100.

d. Under a Cauchy assumption, the alternate hypotheses are less distinguishable than under any
other parametric hypothesis on the noise, since the maximal power is about 0.84, while it exceeds
0.9 in cases a, b, and c (cf. Figures 5–8). The capacity of the tests to discriminate between H0(δmax)

and H1(δmax) is almost independent of the value of δmax, and the power curves are mainly flat.
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Figure 8. Power of the test of case A under noise following a Cauchy distribution (with respect to
δmax), for the first kind risk α = 0.05 and sample size n = 100.

4.2.2. Case B: The Tail Thickness Problem

a. With the noise defined by case A (Gaussian noise), for KL (γ = 1), δ∗ = δmax due to Proposition 4
and statistics T1

n provides the best power uniformly upon δmax. Figure 9 shows a net decrease
of the power as δmax increases (recall that the power is evaluated under the least favorable
alternative Gδmax ).

Figure 9. Power of the test of case B under Gaussian noise (with respect to δmax), for the first kind risk
α = 0.05 and sample size n = 100. The NP curve corresponds to the optimal Neyman Pearson test
under δmax. The KL, Hellinger, and G = 2 curves stand respectively for γ = 1, γ = 0.5, and γ = 2 cases.

b. When the noise follows a Laplace distribution, the situation is quite peculiar. For any value of δ

in Δ , the modes MGδmax
and MFδmax

of the distributions of ( fδ/gδ) (X) under Gδmax and under Fδmax

are quite separated; both larger than 1. Also, for δ all the values of
∣∣∣φγ

(
MGδmax

)
− φγ

(
MFδmax

)∣∣∣
are quite large for large values of γ. We may infer that the distributions of φγ (( fδ/gδ) (X)) under
Gδmax and under Fδmax are quite distinct for all δ, which in turn implies that the same fact holds
for the distributions of Tγ

n for large γ. Indeed, simulations presented in Figure 10 show that the
maximal power of the test tends to be achieved when γ = 2.

93



Entropy 2019, 21, 63

Figure 10. Power of the test of case B under Laplacian noise (with respect to δmax), for the first kind
risk α = 0.05 and sample size n = 100.

c. When the noise follows a symmetric Weibull distribution, the power function when γ = 1 is very
close to the power of the LRT between Fδmax and Gδmax (cf. Figure 11). Indeed, uniformly on δ,
and on x, the ratio ( fδ/gδ) (x) is close to 1. Therefore, the distribution of T1

n is close to that of
T1

n,δmax
, which plays in favor of the KL composite test.

Figure 11. Power of the test of case B under symmetrized Weibull noise (with respect to δmax), for the
first kind risk α = 0.05 and sample size n = 100.

d. Under a Cauchy distribution, similarly to case A, Figure 12 shows that Tγ
n achieves the maximal

power for γ = 1 and 2, closely followed by γ = 0.5.
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Figure 12. Power of the test of case B under a noise following a Cauchy distribution (with respect to
δmax), for the first kind risk α = 0.05 and sample size n = 100.

5. Conclusions

We have considered a composite testing problem, where simple hypotheses in either H0 and
H1 were paired, due to corruption in the data. The test statistics were defined through aggregation
of simple likelihood ratio tests. The critical region for this test and a lower bound of its power was
produced. We have shown that this test is minimax, evidencing the least-favorable hypotheses.
We have considered the minimal power of the test under such a least favorable hypothesis, both
theoretically and by simulation, and for a number of cases (including corruption by Gaussian,
Laplacian, symmetrized Weibull, and Cauchy noise). Whatever this noise, the actual minimal power,
as measured through simulation, was quite higher than obtained through analytic developments.
Least-favorable hypotheses were defined in an asymptotic sense, and were proved to be the pair
of simple hypotheses in H0 and H1 which are closest, in terms of the Kullback-Leibler divergence;
this holds as a consequence of the Chernoff-Stein Lemma. We, next, considered aggregation of tests
where the likelihood ratio was substituted by a divergence-based statistics. This choice extended the
former one, and may produce aggregate tests with higher power than obtained through aggregation
of the LRTs, as examplified and analysed. Open questions are related to possible extensions of the
Chernoff-Stein Lemma for divergence-based statistics.
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Appendix A. Proof of Proposition 2

Appendix A.1. The Critical Region of the Test

Define
Zδ′ := log

gδ′

fδ′
(X),
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which satisfies

EFδ
(Zδ′) =

∫
log

gδ′

fδ′
(x) fδ(x)dx

=
∫

log
gδ′

fδ
(x) fδ(x)dx +

∫
log

fδ

fδ′
(x) fδ(x)dx

= K (Fδ, Gδ′)− K (Fδ, Gδ′) .

Note that, for all δ,
K (Fδ, Gδ′)− K (Fδ, Gδ′) =

∫
log

gδ′

fδ′
fδ

is negative for δ′ close to δ, assuming that

δ′ �→
∫

log
gδ′

fδ′
fδ

is a continuous mapping. Assume, therefore, that (6) holds, which means that the classes of distributions
(Gδ) and (Fδ) are somehow well separated. This implies that EFδ

(Zδ′) < 0, for all δ and δ′.
In order to obtain an upper bound for Fδ

(
Tn,δ′ (Xn) > An

)
, for all δ, δ′ in Δ, through the Chernoff

Inequality, consider

ϕδ,δ′(t) := log EFδ
(exp (tZδ′)) = log

∫ ( gδ′(x)
fδ′(x)

)t
gδ(x)dx.

Let
t+
(
Nδ,δ′

)
:= sup

{
t ∈ Nδ,δ′ : ϕδ,δ′(t) < ∞

}
.

The function (δ, δ′, x) �→ Jδ,δ′(x) is continuous on its domain, and since t �→ ϕδ,δ′(t) is a strictly
convex function which tends to infinity as t tends to t+

(
Nδ,δ′

)
, it holds that

lim
x→∞

Jδ,δ′(x) = +∞

for all δ, δ′ in Δn.
We now consider an upper bound for the risk of first kind on a logarithmic scale.
We consider

An > EFδ
(Zδ′) , (A1)

for all δ, δ′ . Then, by the Chernoff inequality

1
n

log Fδ

(
Tn,δ′ (Xn) > An

)
≤ −Jδ,δ′ (An) .

Since An should satisfy
exp

(
−nJδ,δ′ (An)

)
≤ αn,

with αn bounded away from 1, An surely satisfies (A1) for large n.
The mapping mδ,δ′(t) := (d/dt) ϕδ,δ′(t) is a homeomorphism from Nδ,δ′ onto the closure of the

convex hull of the support of the distribution of Zδ′ under Fδ (see, e.g., [14]). Denote

ess sup
δ

Zδ′ := sup {x : for all ε > 0, Fδ (Zδ′ ∈ (x− ε, x) > 0)} .

We assume that
ess sup

δ

Zδ′ = +∞, (A2)
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which is convenient for our task, and quite common in practical industrial modelling. This assumption
may be weakened, at notational cost mostly. It follows that

lim
t→t+(Nδ,δ′)

mδ,δ′(t) = +∞.

It holds that
Jδ,δ′
(
EFδ

(Zδ′)
)
= 0,

and, as seen previously
lim

x→∞
Jδ,δ′ (x) = +∞.

On the other hand,

mδ,δ′(0) = EFδ
(Zδ′) = K (Fδ, Fδ′)− K (Fδ, Gδ′) < 0.

Let

I :=

(
sup
δ,δ′

EFδ
(Zδ′) , ∞

)

=

(
sup
δ,δ′

K (Fδ, Fδ′)− K (Fδ, Gδ′) , ∞

)
.

By (A2), the interval I is not void.
We now define An such that (4) holds, namely

PH0(H1) ≤ pn max
δ

max
δ′

Fδ

(
Tn,δ′ > An

)
≤ αn

holds for any αn in (0, 1) . Note that

An ≥ max
δ,δ′

EFδ
(Zδ′) = max

(δ,δ′)∈Δ×Δ
K (Fδ, Fδ′)− K (Fδ, Gδ′) , (A3)

for all n large enough, since αn is bounded away from 1.
The function

J(x) := min
(δ,δ′)∈Δ×Δ

Jδ,δ′(x)

is continuous and increasing, as it is the infimum of a finite collection of continuous increasing functions
defined on I .

Since
PH0(H1) ≤ pn exp (−nJ(An)) ,

given αn, define

An := J−1
(
− 1

n
log

αn

pn

)
. (A4)

This is well defined for αn ∈ (0, 1), as sup(δ,δ′)∈Δ×Δ EFδ
(Zδ′) < 0 and − (1/n) log (αn/pn) > 0.

Appendix A.2. The Power Function

We now evaluate a lower bound for the power of this test, making use of the Chernoff inequality
to get an upper bound for the second risk.

Starting from (5),
PH1(H0) ≤ sup

η∈Δ
Gη

(
Tn,η ≤ An

)
,
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and define
Wη := − log

gη

fη
(x).

It holds that

EGη

(
Wη

)
=
∫

log
fη(x)
gη(x)

gη(x)dx = −K(Gη , Fη),

and
mη(t) := (d/dt) log EGη

(
exp tWη

)
,

which is an increasing homeomorphism fromMη onto the closure of the convex hull of the support of
Wη under Gη . For any η, the mapping

x �→ Iη(x)

is a strictly increasing function of Kη :=
(

EGη

(
Wη

)
, ∞
)

onto (0,+∞), where the same notation as
above holds for ess supη Wη (here under Gη), and where we assumed

ess sup
η

Wη = ∞ (A5)

for all η.
Assume that An satisfies

An ∈ K :=
⋂

η∈Δ

Kη (A6)

namely
An ≥ sup

η∈Δ
EGη

(
Wη

)
= − inf

η∈Δ
K
(
Gη , Fη

)
. (A7)

Making use of the Chernoff inequality, we get

PH1(H0) ≤ exp
(
−n inf

η∈Δ
Iη(An)

)
.

Each function x �→ Iη(x) is increasing on (EGη

(
Wη

)
, ∞). Therefore the function

x �→ I(x) := inf
η∈Δ

Iη(x)

is continuous and increasing, as it is the infimum of a finite number of continuous increasing functions
on the same interval K, which is not void due to (A5).

We have proven that, whenever (A7) holds, a lower bound tor the test of H0 vs. H1 is given by

PH1(H1) ≥ 1− exp (−nI(An)) (A8)

= 1− exp
(
−nI

(
J−1
(
− 1

n
log

αn

pn

)))
.

We now collect the above discussion, in order to complete the proof.

Appendix A.3. A Synthetic Result

The function J is one-to-one from I onto K :=
(

J
(

sup(δ,δ′)∈Δ×Δ Eδ (Zδ′)
)

, ∞
)

. Since Fδ, Jδ,δ′ (Eδ (Zδ′))

= 0, it follows that J
(

sup(δ,δ′)∈Δ×Δ Eδ (Zδ′)
)
≥ 0. Since EFδ

(Zδ′) = K (Fδ, Fδ′)− K (Fδ, Gδ′) < 0,

whenever αn in (0, 1) there exists a unique An ∈
(
− inf(δ,δ′)∈Δ×Δ (K (Fδ, Gδ′)− K (Fδ, Fδ′)) , ∞

)
which

defines the critical region with level αn.
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For the lower bound on the power of the test, we have assumed An ∈ K =
(

supη∈Δ Eη

(
Wη

)
, ∞
)
=(

− infη∈Δ K(Gη, Fη), ∞
)

.
In order to collect our results in a unified setting, it is useful to state some connection between

inf(δ,δ′)∈Δ×Δ[K(Fδ, Gδ′)− K(Fδ, Fδ′)] and infη∈Δ K(Gη , Fη). See (A3) and (A7).
Since K(Gδ, Fδ) is positive, it follows from (6) that

sup
(δ,δ′)∈Δ×Δ

∫
log

fδ′

gδ′
fδ < sup

δ∈Δ
K(Gδ, Fδ), (A9)

which implies the following fact:
Let αn be bounded away from 1. Then (A3) is fulfilled for large n, and therefore there exists An

such that
sup
δ∈Δ

Fδ (Tn > An) ≤ αn.

Furthermore, by (A9), Condition (A7) holds, which yields the lower bound for the power of this
test, as stated in (A8).

Appendix B. Proof of Theorem 3

We will repeatedly make use of the following result (Theorem 3 in [15]), which is an extension of
the Chernoff-Stein Lemma (see [16]).

Theorem A1. [Krafft and Plachky] Let xn, such that

Fδ (Tn,δ > xn) ≤ αn

with limsupn→∞αn < 1. Then

lim
n→∞

1
n

log Gδ (Tn,δ ≤ xn) = −K (Fδ, Gδ) .

Remark A2. The above result indicates that the power of the Neyman-Pearson test only depends on its level on
the second order on the logarithmic scale.

Define An,δ∗ such that
Fδ∗ (Tn ≤ An) = Fδ∗ (Tn,δ∗ ≤ An,δ∗) .

This exists and is uniquely defined, due to the regularity of the distribution of Tn,δ∗ under Fδ∗ .
Since 1 [Tn,δ∗ > An] is the likelihood ratio test of H0(δ∗) against H1(δ∗) of the size αn, it follows,
by unbiasedness of the LRT, that

Fδ∗ (Tn ≤ An) = Fδ∗ (Tn,δ∗ ≤ An,δ∗) ≥ Gδ∗ (Tn,δ∗ ≤ An,δ∗) .

We shall later verify the validity of the conditions of Theorem A1; namely, that

lim sup
n→∞

Fδ∗ (Tn,δ∗ ≤ An,δ∗) < 1. (A10)

Assuming (A10) we get, by Theorem A1,

lim sup
n→∞

1
n

log Fδ∗ (Tn ≤ An) ≥ lim
n→∞

1
n

log Gδ∗ (Tn,δ∗ ≤ An,δ∗) = −K (Fδ∗ , Gδ∗) .

We shall now prove that
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lim
n→∞

1
n

log Gδ∗ (Tn,δ∗ ≤ An,δ∗) = lim
n→∞

1
n

log Gδ∗ (Tn ≤ An) .

Let Bn,δ∗ , such that
Gδ∗ (Tn,δ∗ ≤ Bn,δ∗) = Gδ∗ (Tn ≤ An) .

By regularity of the distribution of Tn,δ∗ under Gδ∗ , such a Bn,δ∗ is defined in a unique way. We will
prove that the condition in Theorem A1 holds, namely

lim sup
n→∞

Fδ∗ (Tn,δ∗ ≤ Bn,δ∗) < 1. (A11)

lim
n→∞

1
n

log Gδ∗ (Tn,δ∗ ≤ An,δ∗) = lim
n→∞

1
n

log Gδ∗ (Tn ≤ An) = −K (Fδ∗ , Gδ∗) .

Incidentally, we have obtained that limn→∞
1
n log Gδ∗ (Tn ≤ An) exists. Therefore we have

proven that

lim sup
n→∞

1
n

log Fδ∗ (Tn ≤ An) ≥ lim
n→∞

1
n

log Gδ∗ (Tn ≤ An) ,

which is a form of unbiasedness. For δ �= δ∗, let Bn,δ be defined by

Gδ (Tn,δ ≤ Bn,δ) = Gδ (Tn ≤ An) .

As above, Bn,δ is well-defined. Assuming

lim sup
n→∞

Fδ (Tn,δ ≤ Bn,δ) < 1, (A12)

it follows, from Theorem A1, that

lim
n→∞

1
n

log Gδ (Tn ≤ An) = lim
n→∞

1
n

log Gδ (Tn,δ ≤ Bn,δ) = −K (Fδ, Gδ) .

Since K (Fδ∗ , Gδ∗) ≤ K (Fδ, Gδ) , we have proven

lim sup
n→∞

1
n

log Fδ∗ (Tn ≤ An) ≥ lim
n→∞

1
n

log Gδ∗ (Tn ≤ An) ≥ lim
n→∞

1
n

log Gδ (Tn ≤ An) .

It remains to verify the conditions (A10)–(A12). We will only verify (A12), as the two other
conditions differ only by notation. We have

Gδ (Tn,δ > Bn,δ) = Gδ (Tn > An) ≤ Fδ (Tn > An) + dTV (Fδ, Gδ)

≤ αn + dTV (Fδ, Gδ) < 1,

by hypothesis (13). By the law of large numbers, under Gδ

lim
n→∞

Tn,δ = K(Gδ, Fδ) [Gδ − a.s. ].

Therefore, for large n,
lim inf

n→∞
Bn,δ ≥ K(Gδ, Fδ) [Gδ − a.s.].

Since, under Fδ,
lim

n→∞
Tn,δ = −K(Fδ, Gδ) [Fδ − a.s.],

this implies that
lim

n→∞
Fδ (Tn,δ > Bn,δ) < 1.
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Appendix C. Proof of Proposition 4

We now prove the three lemmas that we used.

Lemma A3. Let P, Q, and R denote three distributions with respective continuous and bounded densities p, q,
and r. Then

K(P ∗ R, Q ∗ R) ≤ K(P, Q). (A13)

Proof. Let P := (A1, . . . , AK) be a partition of R and p := (p1, . . . , pK) denote the probabilities of
A1, . . . , AK under P. Set the same definition for q1, . . . , qK and for r1, . . . , rK. Recall that the log-sum
inequality writes (

∑ ai
)

log ∑ bi

∑ ci
≤ ∑ ai log

bi
ci

for positive vectors (ai)i , (bi)i and (ci)i . By the above inequality, for any i ∈ {1, . . . , K}, denoting
(p ∗ r) to be the convolution of p and r,

(p ∗ r)j log
(p ∗ r)j

(q ∗ r)j
≤

K

∑
i=1

pjri−j log
pjri−j

qjri−j
.

Summing over j ∈ {1, . . . , K} yields

K

∑
j=1

(p ∗ r)j log
(p ∗ r)j

(q ∗ r)j
≤

K

∑
j=1

pj log
pj

qj
,

which is equivalent to
KP (P ∗ R, Q ∗ R) ≤ KP (P, Q),

where KP designates the Kullback-Leibler divergence defined on P . Refine the partition and go to the
limit (Riemann Integrals), to obtain (A13)

We now set a classical general result which states that, when Rδ denotes a family of distributions
with some decomposability property, then the Kullback-Leibler divergence between P ∗ Rδ and Q ∗ Rδ

is a decreasing function of δ.

Lemma A4. Let P and Q satisfy the hypotheses of Lemma A3 and let (Rδ)δ>0 denote a family of p.m.’s on R,
and denote accordingly Vδ to be a r.v. with distribution Rδ. Assume that, for all δ and η, there exists a r.v. Wδ,η ,
independent upon Vδ, such that

Vδ+η =d Vδ + Wδ,η .

Then the function δ �→ K (P ∗ Rδ, Q ∗ Rδ) is non-increasing.

Proof. Using Lemma A3, it holds that, for positive η,

K
(

P ∗ Rδ+η , Q ∗ Rδ+η

)
= K

(
(P ∗ Rδ) ∗Wδ,η , (Q ∗ Rδ) ∗Wδ,η

)
≤ K (P ∗ Rδ, Q ∗ Rδ) ,

which proves the claim.

Lemma A5. Let P, Q, and R be three probability distributions with respective continuous and bounded densities
p, q, and r.Assume that

K(P, Q) ≤ K(Q, P),
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where all involved quantities are assumed to be finite. Then

K(P ∗ R, Q ∗ R) ≤ K(Q ∗ R, P ∗ R).

Proof. We proceed as in Lemma A3, using partitions and denoting by p1, ..., pK the induced probability
of P on P . Then,

KP (P ∗ R, Q ∗ R)− KP (Q ∗ R, P ∗ R) = ∑
i

∑
j

(
pjri−j + qjri−j

)
log

∑j pjri−j

∑j qjri−j

≤ ∑
j

∑
i

(
pjri−j + qjri−j

)
log

pj

qj

= ∑
j

(
pj + qj

)
log

pj

qj

= KP (P, Q)− KP (Q, P) ≤ 0,

where we used the log-sum inequality and the fact that K(P, Q) ≤ K(Q, P) implies KP (P, Q) ≤
KP (Q, P), by the data-processing inequality.
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1. Broniatowski, M.; Jurečková, J.; Kalina, J. Likelihood ratio testing under measurement errors. Entropy 2018,
20, 966. [CrossRef]

2. Guo, D. Relative entropy and score function: New information-estimation relationships through arbitrary
additive perturbation. In Proceedings of the IEEE International Symposium on Information Theory (ISIT 2009),
Seoul, Korea, 28 June–3 July 2009; pp. 814–818.

3. Huber, P.; Strassen, V. Minimax tests and the Neyman-Pearson lemma for capacities. Ann. Stat. 1973, 2,
251–273. [CrossRef]

4. Eguchi, S.; Copas, J. Interpreting Kullback-Leibler divergence with the Neyman-Pearson lemma. J. Multivar. Anal.
2006, 97, 2034–2040. [CrossRef]

5. Narayanan, K.R.; Srinivasa, A.R. On the thermodynamic temperature of a general distribution. arXiv 2007,
arXiv:0711.1460.

6. Bahadur, R.R. Stochastic comparison of tests. Ann. Math. Stat. 1960, 31, 276–295. [CrossRef]
7. Bahadur, R.R. Some Limit Theorems in Statistics; Society for Industrial and Applied Mathematics: Philadelpha,

PA, USA, 1971.
8. Birgé, L. Vitesses maximales de décroissance des erreurs et tests optimaux associés. Z. Wahrsch. Verw. Gebiete

1981, 55, 261–273. [CrossRef]
9. Tusnády, G. On asymptotically optimal tests. Ann. Stat. 1987, 5, 385–393. [CrossRef]
10. Liese, F.; Vajda, I. Convex Statistical Distances; Teubner: Leipzig, Germany, 1987.
11. Tsallis, C. Possible generalization of BG statistics. J. Stat. Phys. 1987, 52, 479–485. [CrossRef]
12. Goldie, C. A class of infinitely divisible random variables. Proc. Camb. Philos. Soc. 1967, 63, 1141–1143.

[CrossRef]
13. Basu, A.; Shioya, H.; Park, C. Statistical Inference: The Minimum Distance Approach; CRC Press: Boca Raton, FL,

USA, 2011.
14. Barndorff-Nielsen, O. Information and Exponential Families in Statistical Theory; John Wiley & Sons: New York,

NY, USA, 1978.
15. Krafft, O.; Plachky, D. Bounds for the power of likelihood ratio tests and their asymptotic properties.

Ann. Math. Stat. 1970, 41, 1646–1654. [CrossRef]
16. Chernoff, H. Large-sample theory: Parametric case. Ann. Math. Stat. 1956, 27, 1–22. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

102



entropy

Article

Convex Optimization via Symmetrical Hölder
Divergence for a WLAN Indoor Positioning System

Osamah Abdullah

Department of Electrical Power Engineering Techniques, Al-Ma’moun University College, Baghdad 00964, Iraq;
osamah.abdullah@wmich.edu

Received: 3 July 2018; Accepted: 14 August 2018; Published: 25 August 2018
��������	
�������

Abstract: Modern indoor positioning system services are important technologies that play vital
roles in modern life, providing many services such as recruiting emergency healthcare providers
and for security purposes. Several large companies, such as Microsoft, Apple, Nokia, and Google,
have researched location-based services. Wireless indoor localization is key for pervasive computing
applications and network optimization. Different approaches have been developed for this
technique using WiFi signals. WiFi fingerprinting-based indoor localization has been widely
used due to its simplicity, and algorithms that fingerprint WiFi signals at separate locations can
achieve accuracy within a few meters. However, a major drawback of WiFi fingerprinting is the
variance in received signal strength (RSS), as it fluctuates with time and changing environment.
As the signal changes, so does the fingerprint database, which can change the distribution of
the RSS (multimodal distribution). Thus, in this paper, we propose that symmetrical Hölder
divergence, which is a statistical model of entropy that encapsulates both the skew Bhattacharyya
divergence and Cauchy–Schwarz divergence that are closed-form formulas that can be used to
measure the statistical dissimilarities between the same exponential family for the signals that have
multivariate distributions. The Hölder divergence is asymmetric, so we used both left-sided and
right-sided data so the centroid can be symmetrized to obtain the minimizer of the proposed algorithm.
The experimental results showed that the symmetrized Hölder divergence consistently outperformed
the traditional k nearest neighbor and probability neural network. In addition, with the proposed
algorithm, the position error accuracy was about 1 m in buildings.

Keywords: information geometry; centroid; Bregman information; Hölder divergence;
indoor localization

1. Introduction

The global positioning system (GPS) is the world’s most utilized location system, but it cannot
be used to accurately identify indoor locations due to the lack of line-of-sight between GPS receivers
and satellites. Smartphones can provide location-based services in pervasive computing; they bring the
power of GPS inside buildings. A previous study [1] showed that the global indoor positioning market
is expected to grow from $935.05 million in 2014 to approximately $4.42 billion in 2019, corresponding to
compound annual growth rate of 36.5%. Many technologies have been used instead of GPS, such as
radiofrequency identification, Bluetooth, magnetic field variations, ultrasound, light-emitting diode
light bulbs, ZigBee, and WiFi signals, to create high-accuracy indoor localization-based systems.
These technologies are considered from a cost perspective.

With the widespread use of smart phones in the past decade, there has been an increasing demand
to use indoor positioning systems (IPSs) to determine the position of objects and people inside buildings.
In general, there are trade-offs between cost and an IPS technology. For example, ultrasonic technology
has high accuracy but is also costly due to the large installation required. Since deployment of the
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WiFi infrastructure, it has been widely used to estimate the position of an object. The received signal
strength (RSS) is a metric value that can be obtained from existing WiFi access points (APs) by any
device equipped with a WiFi network adapter. The WiFi infrastructure does not require installation
costs or specific hardware [2,3]. Nevertheless, IPSs face many challenges in indoor environments
due to the unique properties and transient phenomena such as multipath propagation and signal
attenuation. Signal attenuation is caused by people, furniture, and walls, which can limit the ability to
design an accurate positioning system [4,5].

IPSs can be classified into two main categories: fingerprint-based techniques and log-distance
propagation model algorithms, the latter of can be divided into angulation and lateration methods.
Lateration methods calculate the absolute or relative position of an object by measuring distances from
multiple reference points using geometry information such as angle of arrival, time of arrival, and time
difference of arrival from the signals of APs. However, lateration-based techniques suffer from inaccurate
location estimation; for example, it was reported in Reference [6] that the average localization distance
error is 24.73 ft with a width of 80 ft and a length of 200 ft in a typical office scenario. Such inaccurate
estimations occur for two reasons: non-line-of-sight propagation and inaccurate calculation of one or
more of the APs’ axes. Thus, fingerprinting-based localization has become the more dominant technique
in IPSs and has two major phases. First, the offline phase, in which the RSS value is recorded with their
coordinates at predetermined reference points (RPs) to generate a radio map database [7–9].

The k nearest neighbor (kNN) is one simple way to estimate the location of an object by
using the Euclidean distance to estimate the dissimilarity between the offline and online phases.
The kNN algorithm has low accuracy and is easy to implement compared to other algorithms, such as
Bayesian modeling and statistical learning, which have been used to estimate the location of an object.
The localization distance error is one of the most fundamental metrics that determine the accuracy
and reliability of the system. Variation in WiFi signals is an important issue [10,11]. There are several
factors that affect WiFi signal propagation such as human bodies, radiofrequency (RF) equipment,
and physical obstructions. These factors cause multiple issues, such as multipath wave propagation
and signal attenuation, which can decrease the accuracy of the localization system [12].

The values stored in data maps represent the mean value of the RSS. Some approaches presume
that the RSS distribution is Gaussian [13], whereas others presume non-Gaussian distributions [14].
Nevertheless, WiFi-based indoor localization systems have many advantages such as low cost
and availability. Different hardware can significantly affect the accuracy of IPSs; for instance, it was
reported in Reference [12] that RSS values collected using different smartphones at the same time and
same location had different values. Furthermore, the orientation of the body can also contribute to the
variance of the RSS signal; thus, the human body can be a significant signal attenuator.

In this paper, we use the Hölder divergence, which generalizes the idea of divergence in
information geometry by smooth the non-metric of statistical distances in a way that are not
required to follow the law of indiscernibles. The inequality of log-ratio gap pseudo-divergence
is built to measure the statistical distance of two classes based on Hölder’s ordinary divergence.
By experiment, the WiFi signal suffers from multimodal distribution; nevertheless, the Hölder
divergence is considered the proper divergence to measure the dissimilarities between probability
densities since the Hölder divergence is a projective divergence that does not need the distribution be
normalized and allows the closed form expressions when the expansion family is an affine natural
space like multinomial distributions.

Hölder divergences encompass both the skew Bhattacharyya divergences and Cauchy–Schwarz
divergence and can be symmetrized, and the symmetrized Hölder divergence outperformed the
symmetrized Cauchy–Schwarz divergence over the dataset of Gaussians. Both Cauchy–Schwarz
divergences are part of a projective divergence distance family with a closed-form expression that
does not need to be normalized when considering closed-form expressions with an affine and conic
parameter space, such as multivariate or multinomial distributions.
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The fingerprinting-based localization has two phases, the off-line phase and the on-line phase.
In the off-line phase, we propose a procedure with a high characterization distribution. The RSS values
were taken from four different orientations (45◦, 135◦, 225◦, and 315◦) to prevent body-blocking effects,
with a scan performed for 100 s in each direction to reduce the effects of signal variation.

The fingerprinting radio-maps were decomposed into many clsuters using k-means-Bregman.
The symmetrized k-means-Bregman showed unique results; the left-side centroid is the same
Jensen–Shannon information radius as the right-side centroid that generalized the mean value of
the cluster. Nevertheless, the right-side centroid was independent and always coincided with the
center of the mass of the cluster point set. The symmetrized k-means-Bregman can be geometrically
interpreted as a unique intersection of the linking between the two-sided centroid and the mixed-type
bisector, and that generalized the two-sided centroid for a symmetrized k-means-Bregman.

2. Related Work

Most research on WiFi fingerprinting localization algorithms has focused on improvements in
collecting fingerprinting data, which can decrease localization distance error and improve accuracy.
Different algorithms have been proposed, some of which use the propagation properties of the signal,
others that use ray tracing [15], and still others that use crowdsourcing-based inertial sensor data
and indoor WiFi signal propagation models. Fingerprint-based location methods suffer from time
variation between the offline and online phases. kNN is considered a pioneer algorithm that is
used in localization-based algorithms. It uses the Euclidean distance to measure the similarity and
dissimilarity between runtime and training data, after which the distance is sorted in increasing order.
Some researchers use clustering techniques to reduce the impact of time variation by clustering the
fingerprinting radio map into multi-partitions, after that the cluster that has lowest RSS-based distance
will be chosen [15].

The cluster filtered kNN method was proposed in Reference [16] to partition the fingerprint radio
map using hierarchical clustering; the proposed algorithm showed some improvement in the results.
To improve the accuracy of the positioning system, Altintas and Serif [17] replaced the k-means
algorithm with hierarchical clustering, which led to some improvement in the localization distance
error. Likewise, it was proposed to incorporate kNN information into the fuzzy c-means clustering
algorithm, so that a cluster could be chosen that matches an object’s location to estimate its location;
the proposed algorithm resulted in little improvement in localization distance error within 2 m [18].
In Reference [19], affinity propagation was proposed with the coarse positioning algorithm to cluster
the off-line of the database; the coarse algorithm works within one or more clusters to estimate the
location of the object.

A new idea was proposed in Reference [20] by using a probabilistic distribution measurement,
using a Bayesian network as a probabilistic framework to estimate the object’s location. The authors in
Reference [21] proposed a modified probability neural network to estimate the location of the object,
and this method outperformed the lateration technique. The authors in Reference [22] used a
histogram of the RSS as a kernel method to estimate the object’s location. In Reference [23],
the Kullback–Leibler divergence (KLD) algorithm was proposed to estimate the probability density
function (PDF) as a composite hypothesis test between the test point and fingerprinting radio map,
whereas in Reference [24], to estimate the location of the object, the authors assumed that the RSS had
a multivariate Gaussian and used the KLD algorithm to estimate the PDF impact of the test point
on the fingerprinting radio map. In Reference [25], a low energy RSS-based Bluetooth technique
was proposed to create a radio map for fingerprinting, after which probabilistic kernel regression
based on the KLD was used to estimate the location of the object. The localization distance error was
approximately 1 m in an office environment.
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3. Overall Structure of the IPS

A typical WiFi fingerprint-based localization scenario was performed, in which a person held a
smartphone device that had WiFi access, which was used to collect RSS measurements from different
APs at various locations within the College of Engineering and Applied Sciences (CEAS) at Western
Michigan University (WMU). As mentioned in Reference [26], an RSS distribution from multiple APs
as a multimodal distribution commonly occurs. In our study, the signal-to-noise ratio was recorded
for 35 min in a long corridor for a single AP. The mobile robot would stop every five minutes at each
location and move 4 m further, and these steps were repeated for seven locations. We noticed values
that differed by as much as 10 dBm, as shown in Figure 1.

Figure 1. Signal-to-noise ratio of received strength signal indicator variations over time.

There are many parameters that can affect the distribution of a signal such as diffraction, reflection,
and pedestrian traffic [27]. We looked for a scenario that would lead to a better distribution of the
AP signals. During the offline phase, a realistic scenario was performed that took signal variation
into account. Because the human body can be an obstacle for signals, including the person holding
the phone and the pedestrian in traffic, the fingerprint radio map was recorded from four different
directions (45◦, 135◦, 225◦, and 315◦). At each RP, the RSS data were collected within the time sample,
which was denoted as {q(

◦)
i,j (τ), τ = 1, · · · , t, t = 100}, where (◦) is the orientation direction and t

represents the number of time samples. The covariance matrix and average of the RSS were calculated
from four different directions, and 10 scans were used to create the radio map of the fingerprinting
database, as represented by Q(◦) [28]:
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where q(
◦)

i,j = 1
q ∑t

t=1 q(
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i,j (τ) and t = 10, which were arbitrarily chosen from 100 time
samples. This can help us calculate the average value of RSS data over time for different APs,
i = 1, 2, · · · , L, j = 1, 2, · · · , N, where L is the number of APs and N represents the number of RPs.
The variance vector of each RP can be defined as:
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where Δ(◦)
i,j is the variance for AP i at RP j with orientation (◦); thus, the database table of the radio

map is (xj, yj,q
(◦)
j , Δ(◦)

j ) with q(
◦)

j defined as:

q(
◦)

j = �q(
◦)

1,j , q(
◦)

2,j , q(
◦)

3,j , . . . .q(
◦)

L,j � (4)

During the online phase, the RSS measurement is denoted as:

pr = �p1,r, p2,r, p3,r,....... pL,r� (5)

4. Bregman Divergence Algorithm Formulation

The heterogeneity of RSS data makes it difficult to design IPSs with high accuracy that are
dependent on fingerprinting-based locations. Indeed, the Lp-norm and usual Euclidean distance do
not always lead to IPSs with the highest accuracy, especially for systems with various histograms
and other geometric features. It has been shown that using the information-theoretic relative entropy,
known as the KLD, can lead to better results [29]. Bregman divergence has become a more attractive
method for measuring similarity/dissimilarity between classes because it encapsulates the geometric
Euclidean distance and information-theoretic relative entropy. The Bregman divergence DF between
two sets of data, p = (p1, . . . , pd) and q = (q1, . . . , qd), and that associated with F (defined as a strictly
convex function) can be defined as:

DF(p, q ) = F(p)− F(q)− 〈∇F(p), p− q〉 (6)

where 〈..,..〉 denotes the dot product:

〈p, q〉 = ∑ d
i=1 p(i)q(i) = pTq (7)

and ∇F(p) denotes the gradient decent operator:

∇F(p) =
[

∂F
∂p1

. . . .
∂F
∂pd

]T
(8)

The Bregman distance unifies the KLD with the Euclidean distance by defining dissimilarity
measurements as follows:

• The squared Euclidean distance is measured by substituting the convex fucntion of the Bregman
as F(p) = ∑d

i=1 p2
i = 〈p, q〉, as shown in Figure 2.

• The Bregman divergence will lead to the KLD if the strictly convex function used is

Figure 2. The Bregman divergence represents the vertical distance between the potential function and
hyperplane at q.
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F(p) = ∑d
i=1 pilogpi, which is defined as negative Shannon entropy. The KLD is defined as:

KL(p||q) = ∑s p(S = s ) log(
p(S = s)
q(S = s)

) (9)

In information-theoretic relative entropy, the Shannon entropy measures the uncertainty of a
random variable by:

H(p) = plog
1
p

(10)

The KLD is equal to the cross-entropy of two discrete distributions minus the Shannon differential
entropy [30]:

KL(p||q) = ∑s Hx(p(s) ||q(s))−H(p(s)) (11)

where Hx is the cross-entropy:

Hx(p(s) ||q(s)) = ∑s p(s)log
1

q(s)
(12)

Such a KLD has two major drawbacks. First, the output is undefined if q = 0 and p �= 0; and second,
the KLD is not bound by terms of metric distance. To avoid these drawbacks and avoid the log(0) or to
divide by 0, the authors in Reference [31] proposed a Jensen–Shannon divergence (JSD) dependent on
the KLD as follows:

JSD(p||q) = 1
2
(KL
(

p,
p + q

2

)
+ KL

(
q,

p + q
2

)
) (13)

The JSD can be defined, is bound by an L1-metric, and is finite. In the same vein, the Bregman
divergence (SDF) can be symmetrized as:

SDF(p||q) = 1
2 (DF

(
p, p+q

2

)
+ DF

(
q, p+q

2

)
)

=
F(p) +F(qj)

2 − F(
p+qj

2 )

(14)

where p represents the test point dataset, q represents the fingerprint dataset, and j represents the
number of APs that the smartphone has received. Because F is a strictly convex function, the SD(p||q)
equals zero if and only if p = q; the geometric interpretation for this is represented in Figure 3. For a
positive definite matrix, the JBD is known as the Mahalanobis distance.

SD(p, q) = F(p)+F(q)
2 − F

(
p+q

2

)
= 2〈Qp,p〉+2〈Qq,q〉−2〈Q(p,q),p+q〉

4

= 1
4 (〈Qp, p〉+ 〈Qq, q〉 − 2〈Qp, q〉)

= 1
4 〈Q(p− q)− p− q〉
= 1

4 ||p− q ||2Q
Due to RSS variation and the hardware variance problem, the fingerprinting database of the offline

phase was clustered by using a clustering algorithms technique. The k-means algorithm was proposed
by Lloyd in 1957 [32], who is considered a pioneer in clustering methods. In general, the k-means
was used to solve the vector quantization problem. k-means is an iterative clustering algorithm that
works by choosing random data points (seeds) to be the initial centroid (cluster center); the points of
each cluster are associated with the closest cluster center. Each cluster center is updated and reiterated
until the difference between any successive calculation goes below the “loss function” or convergence
is met. The squared Euclidean distance is used to minimize the intra-cluster distance that leads to the
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centroids. Lloyd [32] further proved that the iterative k-means algorithm monotonically converges
to a local optima of the quadratic function loss (minimum variance loss). The cluster Ci’s center ci is
defined as follows:

ci = argmin ∑
pjεci

‖pj − ci‖ (15)

= argmin AVGL2
2
(Ci, c) (16)

ci =
1
|Ci | ∑

pjεci

pj (17)

where ci denotes the center of the cluster Ci, and |Ci| denotes the cardinality of Ci. In 2004, Reference [33]
proposed a new clustering algorithm method, in which the k-means algorithm is modified by using
the symmetric Bregman divergence. The minimum distance of the centroid of the point set has been
defined as:

c = argpmin =
1
n ∑ iSDF(p, pi) (18)

cF
R = argc∈RPmin

1
n

n

∑
i=1

SDF(pi||c) (19)

cF
L = argc∈RPmin

1
n

n

∑
i=1

SDF(c||pi) (20)

cF = argc∈RPmin
1
n

n

∑
i=1

SDF(c||pi) + SDF(c||pi)

2
(21)

where cF
R and cF

L represent the right- and left-sided centroid, the centroid cF stands for the symmetrized
Bregman divergence centroid, and n stands for the number of cells of the off-line database in
each cluster.

 

Figure 3. Interpreting the Jensen-Bregman divergence.

5. Overall Structure of Proposed Positioning Algorithm

Designing an IPS by depending on fingerprinting-based locations is difficult because the
environment suffers from inference and discrimination, which can lead to a heterogeneous RSS.
As a result, depending on Lp-norm or square Euclidean distance algorithms do not always lead to
systems with high accuracy. For example, it was proved in Reference [7] that the concave-convex
procedure can obtain higher accuracy than algorithms that depend on the square Euclidean distance
such as the kNN and probabilistic neural network (PNN). In this section, we introduce the symmetric
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Hölder divergence. To measure the similarity between p and q, where rhs and lhs denote the
right-hand side and left-hand side, respectively, one can use bi-parametric inequalities, i.e., one can
use lhs(p,q) ≤ rhs(p,q), and a similarity can be measured by using the log-ratio gap:

D(p : q ) = − log(
lhs(p, q)
rhs(p, q)

) = log(
rhs(p, q)
lhs(p, q)

) ≥ 0 (22)

The Hölder divergence between two values p(x) and q(x) is:

DH(p : q ) = − log(

∫
p(x)γ/αq(x)γ/βdx(∫

p(x)γdx
)1/α(∫ q(x)γdx

)1/β
) (23)

where γ represents the power of the absolute value Lebesgue integrable, α, β represents the conjugate
exponents, and p(x) and q(x) are positive measures as scalar values. Hölder divergence suffers from the
law of the identity of indiscernible (self-distance is not equal to zero if p(x) = q(x)), the triangle-inequality,
and the symmetry. The Hölder divergence encapsulates both the one-parameter family of skew
Bhattacharyya divergence and Cauchy–Schwarz divergence [34]. The Hölder divergence yields to the
Cauchy–Schwarz divergence if we set γ, α, β = 2:

DH
2,2 (p : q) = CS(p : q) := − log(

∫
p(x)q(x)dx(∫

p(x)2dx
)1/2(∫

q(x)2dx
)1/2 ) (24)

The Hölder divergence will yield to the skew Bhattacharyya divergence if we set γ=1:

DH
α,1 (p : q) = B1/α(p : q) := − log (

∫
p(x)1/αq(x)1/βdx) (25)

The relationship between the divergence families is illustrated in Figure 4.

Figure 4. Hölder divergence encompasses the skew Bhattacharyya divergence and the
Cauchy-Schwarz divergence.

Similarly, for conjugate exponents β and α, the Hölder divergence satisfies:

DH
α,γ(p : q) = DH

β,γ(p : q) (26)

The symmetrized Hölder divergence is:

DH
α,1(p : q) =

1
2

(
DH

α,γ(p : q) + DH
α,γ(q : p)

)
(27)

=
1
2

[
F(γp) + F(γq)− F

(
γ

α
p +

γ

β
q
)
− F(

γ

β
p +

γ

α
q)
]

(28)
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To improve the accuracy of the IPS, we proposed that sided and symmetrized Bregman centroids
incorporate the symmetrized Hölder divergence. Furthermore, we introduce three different approaches
to define the APs that will be used in the proposed algorithm, as shown in Figure 5.

 

Figure 5. The offline and online stages of location WiFi-based fingerprinting architecture.

• Strongest APs (MaxMean) [35]

Previous studies have proposed that the RSS be chosen based on the signal strength in the
online phase, and that the same set of APs from the fingerprinting radio map be used in the calculations,
with the assumption that the APs with the highest signal provide the highest coverage over time.
However, the strongest AP scheme may not render a good criterion in our calculation.

• Fisher Criterion:

The Fisher criterion is a metric that is used to quantify the discrimination ability of APs across a
fingerprinting radio map in four different orientations. The statistical properties of the RPs are used
to determine the APs that will be used based on their performance. A score is pointed to each AP
separately as [36]:

ξi =
∑N

j=1

(
qi(o)

j − qi

)2

∑N
j=1 Δi(o)

j

(29)

qi =
1
N ∑N

j=1 qi
j (30)

The Fisher criterion proposes that APs with higher variance are less reliable to use in IPS
calculations; the APs will be sorted with respect to their score, and those with high scores will
be much more likely to be selected. However, Fisher criterion discrimination is only used in offline
fingerprinting based-localization. If one or more APs are not available in the online phase, the Fisher
criterion is not suitable to use.

• Random Selection

Unlike the above schemes, in which APs are selected based on some criteria, in random selection,
the APs are selected arbitrarily without considering AP performance. This scheme has less computational
complexity, as the matrix of the APs needs to be generated at different runs and does not need the variance
to be calculated, as with the Fisher criterion.
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6. Simulation and Implementation Results

This section provides details on the proposed algorithms outlined in subsequent subsections.
The RSS data were collected on the first floor of the CEAS at WMU with an area of interest map,
as shown in Figure 6. A Samsung smartphone with operating system 4.4.2 (S5, Samsung Company,
Suwon, Korea) was used to collect the RSS data. Furthermore, the proposed algorithms were
implemented on an HP Laptop using Java software (HP, Beijing, China) with an Eclipse framework
(Photon, IBM, NY, USA). Cisco Linksys E2500 Simultaneous Dual-Band Routers were used for the area
of interest. The RSS value and MAC address of the WiFi APs were collected within a time frame of
1 s for 100 s over 84 RPs within an average grid of 1 m. At each RP, a total of 47 APs were detected
throughout the area of interest.

Figure 6. The layout used in the experimental work in the College of Engineering and Applied.

To evaluate the performance, online phase data were collected in varying environments on
different days in 65 unknown locations with four repetitions as test points. The localization distance
error was measured by calculating the Euclidean distance between the actual location of the testing
point and the location that was estimated by the proposed algorithms. To reduce the RSS time variation,
the k-means-Bregman divergence was used on the fingerprinting radio map to cluster the offline data.
Figure 7 illustrates the effects of the clustering algorithms on localization distance error with the
number of APs when five NNs are used. As shown in Figure 7, the localization distance error was
decreased as the numbers of cluster increased, which reduced the area of interest that could improve
object localization.

Figure 8 shows the localization distance error when a different AP selection scheme was used
with the symmetrized Hölder divergence and k-mean-Bregman divergence, where the y-axis is the
localization distance error and the x-axis is the number of APs. The Fisher criterion had the highest
accuracy when the APs were less than 18, and the proposed random scheme achieved the next highest
performance. The strongest AP scheme had a lower accuracy than the other schemes. In general,
using more APs may not necessarily yield the lowest localization error. As shown in Figure 8,
the best performance occurred when 22 APs were used; as the number of APs increased after that,
the performance of the proposed systems decreased. Thus, we conclude that not only the number but
also the selection scheme of APs can affect the IPS performance.
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Figure 7. The implementation results of different number of clusters with respect to the average of the
localization distance.

Figure 8. The implementation result of the average localization error under different AP
selection schemes.

Comparison to Prior Work

The proposed fingerprint based-localization method is compared with prior fingerprinting
approaches such as the kernel-based localization method, kNN. Figure 9 illustrates the corresponding
cumulative probability distributions of the localization error for the three methods. In particular,
the median error for the k-means-BD-HD was 0.92 m, 0.97 m for k-means-PNN, and 1.23 m
for k-means-kNN.
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Figure 9. Experiment results: The Cumulative distribution function (CDF) of localization error when
using 50 nearest neighbors.

As noticed, the proposed k-means-BD-HD method provides a 90th percentile error of 0.92 m,
while for k-means-PNN it was 0.97 m, and for k-means-kNN it was 1.23 m.

7. Conclusions

IPSs incorporate the power of GPS and indoor mapping and have many potential applications
that make them very important in modern life. For example, they can be used for healthcare
services such as aiding people with impaired vision, and navigating unfamiliar buildings (e.g.,
malls, airports, subways). Several large companies, such as Apple, Google, and Microsoft, started
a fund to initiate research on IPSs. Cluster methods can be used to reduce the impact of time
variation by clustering the fingerprinting radio map into multiple partitions and then choosing
the cluster that has the lowest distance error. A radio map fingerprint was developed in CEAS to
investigate different localization algorithms and compare different approaches such as kNN and PNN.
We proposed a symmetrical Hölder divergence, which uses statistical entropy that encapsulates both
skew Bhattacharyya divergence and Cauchy–Schwarz divergence, and assessed their performance
with different AP selection schemes. The results were quite adequate for the indoor environment
with an average error of less than 1 m. the symmetrical Hölder divergence that incorporated the
k-means-Bregman divergence had the highest accuracy when 25 clusters were used with 22 APs.

We are currently in the process of investigating the user position inside smaller clusters/areas
and position prediction error distributions and quantifying the localization variation of WiFi signals
distributed in space.
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Abstract: We consider the likelihood ratio test of a simple null hypothesis (with density f0) against a
simple alternative hypothesis (with density g0) in the situation that observations Xi are mismeasured
due to the presence of measurement errors. Thus instead of Xi for i = 1, . . . , n, we observe
Zi = Xi +

√
δVi with unobservable parameter δ and unobservable random variable Vi. When we

ignore the presence of measurement errors and perform the original test, the probability of type I error
becomes different from the nominal value, but the test is still the most powerful among all tests on
the modified level. Further, we derive the minimax test of some families of misspecified hypotheses
and alternatives. The test exploits the concept of pseudo-capacities elaborated by Huber and Strassen
(1973) and Buja (1986). A numerical experiment illustrates the principles and performance of the
novel test.

Keywords: measurement errors; robust testing; two-sample test; misspecified hypothesis and
alternative; 2-alternating capacities

1. Introduction

Measurement technologies are often affected by random errors; if the goal of the experiment is to
compare two probability distributions using data, then the conclusion can be distorted if the data are
affected by some measurement errors. If the data are mismeasured due to the presence of measurement
errors, the statistical inference performed with them is biased and trends or associations in the data
are deformed. This is common for a broad spectrum of applications e.g., in engineering, physics,
biomedicine, molecular genetics, chemometrics, econometrics etc. Some observations can be even
undetected, e.g., in measurements of magnetic or luminous flux in analytical chemistry when the flux
intensity falls below some flux limit. Actually, we can hardly imagine real data free of measurement
errors; the question is how severe the measurement errors are and what their influence on the data
analysis is [1–3].

A variety of functional models have been proposed for handling measurement errors in statistical
inference. Technicians, geologists, and other specialists are aware of this problem, and try to reduce
the effect of measurement errors with various ad hoc procedures. However, this effect cannot be
completely eliminated or substantially reduced unless we have some additional knowledge on the
behavior of measurement errors.

There exists a rich literature on the statistical inference in the error-in-variables (EV) models as
is evidenced by the monographs of Fuller [4], Carroll et al. [5], and Cheng and van Ness [6], and the
references therein. The monographs [4] and [6] deal mostly with classical Gaussian set up while [5]
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discusses numerous inference procedure under semi-parametric set up. Nonparametric methods in
EV models are considered in [7,8] and in references therein, and in [9], among others. The regression
quantile theory in the area of EV models was started by He and Liang [10]. Arias [11] used an
instrumental variable estimator for quantile regression, considering biases arising from unmeasured
ability and measurement errors. The papers dealing with practical aspects of measurement error
models include [12–16], among others. Recent developments in treating the effect of measurement
errors on econometric models was presented in [17] or [18] The advantage of rank and signed rank
procedures in the measurement errors models was discovered recently in [19–24]. The problem of
interest in the present paper is to study how the measurement errors can affect the conclusion of the
likelihood ratio test.

The distribution function of measurement errors is considered unknown, up to zero expectation
and unit variance. When we use the the likelihood ratio test while ignoring the possible measurement
errors, we can suffer a loss in both errors of the first and second kind. However, we show that under a
small variance of measurement errors, the original likelihood ratio test is still most powerful, only on a
slightly changed significance level.

On the other hand, we may consider the situation that H0 or H1 are classes of distributions of
random variables Z +

√
δV. Hence, both hypothesis and alternative are composite as families H0

and H1; if they are bounded by alternating Choquet capacities of order 2, then we can look for a
minimax test based on the ratio of the capacities, and/over on the ratio of the pair of the least favorable
distributions of H0 and H1, respectively (cf. Huber and Strassen [25]).

2. Likelihood Ratio Test under Measurement Errors

Our primary goal is to test the null hypothesis H0 that independent observations
X = (X1, . . . , Xn)� come from a population with a density f against the alternative H1 that the true
density is g, where f and g are fixed densities of our interest. For the identifiability, we shall assume
that f and g are continuous and symmetric around 0. Although the alternative is the main concern of
the experimenter, some measurement errors or just the nature may cause the situation that the true
alternative should be considered as composite. Specifically, X1, . . . , Xn, can be affected by additive
measurement errors, what appears in numerous fields, as illustrated in Section 1.

Hence the alternative is H1,δ under which the observations are Zi,δ = Xi +
√

δVi, identically
distributed with continuous density gδ. Here, both under the hypothesis and under the alternative,
Vi are independent random variables, unobservable with unknown distribution, independent of
Xi; i = 1, . . . , n. The parameter δ > 0 is also unknown, only we assume that IE Vi = 0 and IEV2

i = 1,
for simplicity. The mismeasured, hence unobservable, Xi are assumed to have the density g under
the alternative. Quite analogously, the mismeasured observations lead to a composite hypothesis
H0,δ under which the density of observations Zi,δ = Xi +

√
δVi is fδ while the Xi are assumed to have

density f .
If we knew fδ and gδ, we would use the Neyman-Pearson critical region

W =

{
z :

n

∑
i=1

ln
(

gδ(zi)

fδ(zi)

)
≥ u

}
(1)

with u determined so that

Pfδ

{
n

∑
i=1

ln
(

gδ(zi)

fδ(zi)

)
≥ u

}
= α,
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with a significance level α. Evidently

∫
I

[
n

∑
i=1

ln
(

gδ(zi)

fδ(zi)

)
≥ u

]
n

∏
i=1

gδ(zi)dzi =
∫

I

[
n

∑
i=1

ln
(

g(xi)

f (xi)

)
≥ u

]
n

∏
i=1

g(xi)dxi

∫
I

[
n

∑
i=1

ln
(

gδ(zi)

fδ(zi)

)
≥ u

]
n

∏
i=1

fδ(zi)dzi =
∫

I

[
n

∑
i=1

ln
(

g(xi)

f (xi)

)
≥ u

]
n

∏
i=1

f (xi)dxi.

Indeed, notice that

IEgδ

{
I
[ n

∑
i=1

ln
( gδ(Zi)

fδ(Zi)

)
≥ u
]∣∣∣V1 = v1, . . . , Vn = vn

}

= IEg

{
I
[ n

∑
i=1

ln
( g(Xi)

f (Xi)

)
≥ u
]∣∣∣V1 = v1, . . . , Vn = vn

}
∀vi ∈ �, i = 1, . . . , n,

where the expectations are considered with respect to the conditional distribution; a similar equality
holds for fδ.

Combining the integration transmission in the conditional distribution, we obtain

∫
I

[
n

∑
i=1

ln

(
gδ(xi +

√
δVi)

fδ(xi +
√

δVi)

)
≥ u

]
n

∏
i=1

f (xi)dxi

�=
∫

I

[
n

∑
i=1

ln
(

g(xi)

f (xi)

)
≥ u

]
n

∏
i=1

f (xi)dxi = α, (2)

hence the size of the critical region W when used for testingH0 againstH1 differs from α. Then we ask
how the critical region W in (1) behaves when it is used as a test ofH0. This problem we shall try to
attack with an expansion of fδ, gδ in δ close to zero.

2.1. Approximations of Densities

Put f = f0, g = g0 the densities of X under the hypotheses and alternative, respectively. For the
identifiability, we shall assume that f0 and g0 are continuous and symmetric around 0. Denote fδ the
density of Zδ = X +

√
δV. This means that X is affected by an additive measurement error

√
δ V,

where V is independent of X and IEV = 0, IEV2 = 1, IEV4 < ∞. Notice that if densities of X and V
are strongly unimodal, then that of Z is also strongly unimodal (see [26]). Under some additional
conditions on f0, g0, we shall derive approximations of fδ and gδ for small δ > 0. More precisely,
we assume that both f0 and g0 have differentiable and integrable derivatives up to order 5. Then we
have the following expansion of fδ and a parallel result for gδ:

Theorem 1. Assume that f0 and g0 are symmetric around 0, strongly unimodal with differentiable and
integrable derivatives, up to the order 5. Then, as δ ↓ 0,

fδ(z) = f0(x +
√

δV) = f0(x) +
δ

2
d2

dz2 f0(x) +
δ2

4!
d4

dz4 f0(x)IE(V4) + o(δ2), (3)

gδ(z) = g0(x +
√

δV) = g0(x) +
δ

2
d2

dz2 g0(x) +
δ2

4!
d4

dz4 g0(x)IE(V4) + o(δ2)
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Proof. Let ϕ(u, δ) = IE{eiuZ} be the characteristic function of Z. Then

ϕ(u, δ) = IE{eiuX}IE{eiu
√

δV} = ϕ(0, 0)ϕV(u
√

δ)

= ϕ(u, 0)
[

1 +
1
2

δ(iu)2 +
1
4!

δ2(iu)4 IE(V4) + o(δ2)

]
= ϕ(u, 0)

[
1− δ

2
u2 +

1
4!

δ2u4 IE(V4) + o(δ2)

]
,

where ϕV denotes the characteristic function of V. Taking the inverse Fourier transform on both sides,
we obtain (3), taking the above assumptions on V into account.

Consider the problem of testing the hypothesis H0 that the observations are distributed according
to density f0 against the alternative H1 that they are distributed according to density g0. Parallelly,
we consider the hypothesis H0,δ that observations are distributed according the gδ against the
alternative H1,δ that the true density is gδ. Let Φ(x) be the likelihood ratio test with critical region

W =
{

x : ∑n
i=1 ln

(
g0(xi)
f0(xi)

)
> u
}

and the significance level α, and Φ∗ = Φ∗(z) be the test with critical

region W∗ =
{

z : ∑n
i=1 ln

(
g0(zi))
f0(zi)

)
> u
}

based on observations zi = xi +
√

δVi, i = 1, . . . , n. We know
neither δ nor V, hence the test Φ∗ is just an application of the critical region W for contaminated data
Z1, . . . , Zn. Thus, due to our lack of information, we use the test Φ even for testing H0,δ against H1,δ,
and the performance of this test is of interest. This is described in the following theorem:

Theorem 2 (Assume the conditions of Theorem 1). Then, as δ ↓ 0, the test Φ∗ is the most powerful even for
testing H0,δ against H1,δ, with a modified significance level satisfying

αδ ≤ α +
δ

2
| f ′0(0)|+

δ2

24
IEV4 | f (3)0 (0)|+O(δ).

Proof.

IEf0 Φ∗(X) =
∫

I

[
ln

(
g0(x +

√
δV)

f0(x +
√

δV)

)
> u

]
f0(x)dx

=
∫

I

[
ln

(
g0(x +

√
δV)

f0(x +
√

δV)

)
> u

]
f0(x)

f0(x +
√

δV)
f0(x +

√
δV)dx

=
∫

I
[

ln
(

g0(x)
f0(x)

)
> u
]

f0(x−
√

δV)

f0(x)
f0(x)dx.

If f0 is symmetric, then the derivative f (k)0 is symmetric for k even and skew-symmetric for k odd,

k = 1, . . . , 4. Moreover, because | f ′0(x)| and | f (3)0 (x)| are integrable, then limx→±∞ | f ′0(x)| = 0 and

limx→±∞ | f (3)0 (x)| = 0. Hence, using the expansion (3), we obtain

IEf0 Φ∗(X) = IEf0 Φ(X) +
∫

I
[

ln
(

g0(x)
f0(x)

)
> u
] (

δ

2
f ′′0 (x) +

δ2

24
IEV4 f (4)(x)dx

)
+ o(δ2)

≤ IEf0 Φ(X) +
δ

2
| f ′0(0)|+

δ2

24
IEV4 | f (3)0 (0)|+ o(δ2) = α +O(δ) as δ ↓ 0.

3. Robust Testing

If the observations are missmeasured or contaminated, we observe Zδ = Z +
√

δV with unknown
δ and unobservable V instead of Z. Hence, instead of simple f0 and g0, we are led to composite
hypothesis and alternativeH and K. Following [25], we can try to find suitable 2-alternating capacities,
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dominating H and K and to construct a pertaining minimax test. As before, we assume that Z
and V are independent, IEV = 0, IEV2 = 1, and IEV4 < ∞. Moreover, we assume that f0 and g0

are symmetric, strongly unimodal and differentiable up to order 5, with derivatives integrable and
increasing distribution functions F0 and G0, respectively. The measurement errors V are assumed
to satisfy

1 ≤ IEV4 ≤ K (4)

with a fixed K, 0 < K < ∞. Hence the distribution of V is restricted to have the tails lighter than
t-distribution with 4 degrees of freedom. We shall construct a pair of 2-alternating capacities around
specific subfamilies of f0 and g0.

Let us determine the capacity around g0; that for f0 is analogous. By Theorem 1 we have

gδ(z) = g0(z) +
δ

2
d2

dz2 g0(z) +
δ2

4!
d4

dz4 g0(z)IE(V4) + o(δ2), as δ ↓ 0.

We shall concentrate on the following family K∗ of densities (similarly for f0):

K∗ =
{

g∗δ,κ : g∗δ,κ(z) = g0(z) +
δ

2
g′′0 (z) + κ

δ2

24
g(4)0 (z)

∣∣∣ δ ≤ Δ, 1 ≤ κ ≤ K
}

(5)

with fixed suitable Δ, K > 0.
Indeed, under our assumptions, each g∗δ,κ ∈ K∗ is a positive and symmetric density satisfying

sup
δ≤Δ,κ≤K

sup
z∈{R

∣∣g∗δ,κ(z)− g0(z)
∣∣ ≤ CKΔ2 + o(Δ2)

for some C, 0 < C < ∞.
Let G∗δ,κ(B), B ∈ B, be the probability distribution induced by density g∗δ,κ ∈ K∗, with B being

the Borel σ-algebra. Then the set function

w(B) =

⎧⎪⎨⎪⎩
sup {G∗(B) : G∗ ∈ K∗} if B �= ∅

0 if B = ∅
(6)

is a pseudo-capacity in the sense of Buja [27], i.e., satisfying

(a) w(∅) = 0, w(Ω) = 1
(b) w(A) ≤ w(B) ∀A ⊂ B
(c) w(An) ↑ w(A) ∀An ↑ A
(d) w(An) ↓ w(A) ∀An ↓ A �= ∅
(e) w(A ∪ B) + w(A ∩ B) ≤ w(A) + w(B).

Analogously, consider a density f0, symmetric around 0 and satisfying the assumptions of Theorem 1 as
a simple hypothesis. Construct the familyH∗ of densities and the corresponding family of distributions{

F∗δ,κ(·), δ ≤ Δ, κ ≤ K
}

similarly as above. Then the set function

v(B) =

⎧⎪⎨⎪⎩
sup {F∗(B) : F∗ ∈ H∗} if B �= ∅

0 if B = ∅
(7)

is a pseudo-capacity in the sense of Buja [27].
Buja [27] showed that on any Polish space exists a (possibly different) topology which generates

the same Borel algebra and on which every pseudo-capacity is a 2-alternating capacity in the sense
of [25].
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Let us now consider the problem of testing the hypothesisH = {F∗ ∈ H∗|F∗(·) ≤ v(·)} against
the alternative K = {G∗ ∈ K∗|G∗(·) ≤ w(·)} , based on an independent random sample Z1, . . . , Zn.
Assume thatH∗ and K∗ satisfy (5). Then, following [27] and [25], we have the main theorem providing
the minimax test ofH against K with significance level α ∈ (0, 1) :

Theorem 3. The test

φ(z1, . . . , zn) =

1 if ∏n
i=1 π(zi) > C

γ if ∏n
i=1 π(zi) = C

0 if ∏n
i=1 π(zi) < C

where π(·) is a version of dw
dv (·) and C and γ are chosen so that IEvφ(Z) = α, is a minimax test ofH against K

of level α.

4. Numerical Illustration

We assume to observe independent observations Z1,δ, . . . , Zn,δ for i = 1, . . . , n, where
Zi,δ = Xi +

√
δVi as described in Section 3, where X1, . . . , Xn are independent identically distributed

(with a distribution function F) but unobserved. Let us further denote by Φ the distribution
function of N(0, 1) and by Φ∗σ the distribution function of N(0, σ2). The primary task here is to
testH0 : F ≡ Φ against

H1 : F(x) = (1− λ)Φ(x) + λΦ∗σ(x), x ∈ IR,

with a fixed σ > 1 and λ ∈ (0, 1). We perform all the computations using the R software [28].
To describe our approach to computing the test, we will need the notation for the set of

pseudo-distribution functions corresponding to the set of pseudo-densitiesH∗ denotes as

H̃∗ =
{

F∗δ,κ : F∗δ,κ(z) = Φ(z) +
δ

2
f ′0(z) + κ

δ2

24
f (3)0 (z)

∣∣∣ δ ≤ Δ, 1 ≤ κ ≤ K
}

,

where Φ denotes the distribution function of N(0, 1) distribution. Under the alternative, the set
analogous to K∗ is defined as

K̃∗ =
{

G∗δ,κ : G∗δ,κ(z) = G0(z) +
δ

2
g′0(z) + κ

δ2

24
g(3)0 (z)

∣∣∣ 0 ≤ δ ≤ Δ, 1 ≤ κ ≤ K
}

.

Our task is to approximate

v ((−∞, z)) = sup{F∗δ,κ(z); F∗δ,κ ∈ H̃∗}, z ∈ IR, (8)

and
w ((−∞, z)) = sup{G∗δ,κ(z); G∗δ,κ ∈ K̃∗}, z ∈ IR. (9)

Here, the functions F∗δ,κ(z) and G∗δ,κ(z) are evaluated over a grid with step 0.05. Then, the maximization
in (8) and (9) is performed for values of z over the grid and over four boundary values of (δ, κ)T ,
which are equal to (0, 0)T , (0, K)T , (Δ, 0)T , and (Δ, K)T . Additional computations with 10 randomly
selected pairs of (δ, κ)T over δ ∈ [0, Δ] and κ ∈ [0, K] revealed that the optimum is attained in one of
the boundary values. Further, the Radon-Nikodym derivatives of V and W are estimated by a finite
difference approximation in order to compute the test statistic.

The test rejects H0 if the test statistics ∏n
i=1 π(zi) exceeds a critical value, which (as well as the

p-value) can be approximated by a Monte Carlo simulation, i.e., by a repeated random generating
random variables X1, . . . , Xn underH0, and we generate them 10,000 times here.
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We perform the following particular numerical study. We compute the critical value of the α-test
for n = 20 (or n = 40), λ = 0.25, σ2 = 3, Δ = 0.2, K = 1.1, and α = 0.05. Further, we are interested in
evaluating the probability of rejecting this test for data generated from

F(x) = (1− λ̃)Φ(x) + λ̃Φ∗σ̃(x), x ∈ IR, (10)

with different values of λ̃ and σ̃2. Its values are shown in Table 1 (for n = 20) and Table 2 (for n = 40),
which are approximated using (again) 10,000 randomly generated variables from (10). The boldface
numbers are equal to the power of the test (under the simple H1). The proposed test seems meaningful,
while its power is increased for n = 40 compared to n = 20; in addition, the power increases with an
increasing λ̃ if σ̃2 is retained; and the power also increases with an increasing σ̃2 if λ̃ is retained.

Table 1. Probability of rejecting the test in the simulation with n = 20.

Value of λ̃
Value of σ̃2

3 4 5 6

0.25 0.39 0.52 0.61 0.67
0.35 0.50 0.67 0.75 0.81
0.45 0.61 0.76 0.85 0.89

Table 2. Probability of rejecting the test in the simulation with n = 40.

Value of λ̃
Value of σ̃2

3 4 5 6

0.25 0.55 0.73 0.82 0.87
0.35 0.72 0.86 0.93 0.96
0.45 0.82 0.94 0.97 0.99

5. Conclusions

The likelihood ratio test of f0 against g0 is considered in the situation that observations Xi are
mismeasured due to the presence of measurement errors. Thus instead of Xi for i = 1, . . . , n, we observe
Zi = Xi +

√
δVi with unobservable parameter δ and unobservable random variable Vi. When we

ignore the presence of measurement errors and perform the original test, the probability of type I error
becomes different from the nominal value, but the test is still the most powerful among all tests on the
modified level.

Under some assumptions on f0 and g0 and for δ < Δ, IEV4 ≤ K, we further construct a minimax
likelihood ratio test of some families of distributions of the Zi = Xi +

√
δVi, based on the capacities of

the Huber-Strassen type. The test treats the composite null and alternative hypotheses, which cover
all possible measurement errors satisfying the assumptions. The advantage of the novel test is
that it keeps the probability of type I error below the desired value (α = 0.05) across all possible
measurement errors. The test is performed in a straightforward way, while the user must specify
particular (not excessively large) values of Δ and K. We do not consider this a limiting requirement,
because parameters corresponding to the severity of measurement errors are commonly chosen in a
similar way in numerous measurement error models [5,23] or robust optimization procedures [29].
The critical value of the test can be approximated by a simulation. The numerical experiment in
Section 4 illustrates the principles and performance of the novel test.
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Funding: The research of Jana Jurečková was supported by the Grant 18-01137S of the Czech Science Foundation.
The research of Jan Kalina was supported by the Grant 17-01251S of the Czech Science Foundation.

123



Entropy 2018, 20, 966

Acknowledgments: The authors would like to thank two anonymous referees for constructive advice.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Boyd, A.; Lankford, H.; Loeb, S.; Wyckoff, J. Measuring test measurement error: A general approach.
J. Educ. Behav. Stat. 2013, 38, 629–663. [CrossRef]

2. Brakenhoff, T.B.; Mitroiu, M.; Keogh, R.H.; Moons, K.G.M.; Groenwold, R.H.H.; van Smeden, M.
Measurement error is often neglected in medical literature: A systematic review. J. Clin. Epidemiol. 2018, 98,
89–97. [CrossRef] [PubMed]

3. Edwards, J.K.; Cole, S.R.; Westreich, D. All your data are always missing: Incorporating bias due to
measurement error into the potential outcomes framework. Int. J. Epidemiol. 2015, 44, 1452–1459. [CrossRef]
[PubMed]

4. Fuller, W.A. Measurement Error Models; John Wiley & Sons: New York, NY, USA, 1987.
5. Carroll, R.J.; Ruppert, D.; Stefanski, L.A.; Crainiceanu, C.M. Measurement Error in Nonlinear Models: A Modern

Perspective, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2006
6. Cheng, C.L.; van Ness, J.W. Statistical Regression with Measurement Error; Arnold: London, UK, 1999.
7. Carroll, R.J.; Maca, J.D.; Ruppert, D. Nonparametric regression in the presence of measurement error.

Biometrika 1999, 86, 541–554. [CrossRef]
8. Carroll, R.J.; Delaigle, A.; Hall, P. Non-parametric regression estimation from data contaminated by a mixture

of Berkson and classical errors. J. R. Stat. Soc. B 2007, 69, 859–878. [CrossRef]
9. Fan, J.; Truong, Y.K. Nonparametric regression estimation involving errors-in-variables. Ann. Stat. 1993, 21,

23–37. [CrossRef]
10. He, X.; Liang, H. Quantile regression estimate for a class of linear and partially linear errors-in-variables

models. Stat. Sin. 2000, 10, 129–140.
11. Arias, O.; Hallock, K.F.; Sosa-Escudero, W. Individual heterogeneity in the returns to schooling: Instrumental

variables quantile regression using twins data. Empir. Econ. 2001, 26, 7–40. [CrossRef]
12. Hyk, W.; Stojek, Z. Quantifying uncertainty of determination by standard additions and serial dilutions

methods taking into account standard uncertainties in both axes. Anal. Chem. 2013, 85, 5933–5939. [CrossRef]
13. Kelly, B.C. Some aspects of measurement error in linear regression of astronomical data. Astrophys. J. 2007,

665, 1489–1506. [CrossRef]
14. Marques, T.A. Predicting and correcting bias caused by measurement error in line transect sampling using

multiplicative error model. Biometrics 2004, 60, 757–763. [CrossRef] [PubMed]
15. Rocke, D.M.; Lorenzato, S. A two-component model for measurement error in analytical chemistry.

Technometrics 1995, 37, 176–184. [CrossRef]
16. Akritas, M.G.; Bershady, M.A. Linear regression for astronomical data with measurement errors and intrinsic

scatter. Astrophys. J. 1996, 470, 706–728. [CrossRef]
17. Hausman, J. Mismeasured variables in econometric analysis: Problems from the right and problems from

the left. J. Econ. Perspect. 2001, 15, 57–67. [CrossRef]
18. Hyslop, D.R.; Imbens, Q.W. Bias from classical and other forms of measurement error. J. Bus. Econ. Stat. 2001,

19, 475–481. [CrossRef]
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20. Jurečková, J.; Koul, H. L.; Navrátil, R.; Picek, J. Behavior of R-estimators under Measurement Errors. Bernoulli

2016, 22, 1093–1112. [CrossRef]
21. Navrátil, R.; Saleh, A.K.M.E. Rank tests of symmetry and R-estimation of location parameter under

measurement errors. Acta Univ. Palacki. Olomuc. Fac. Rerum Nat. Math. 2011, 50, 95–102.
22. Navrátil, R. Rank tests and R-estimates in location model with measurement errors. In Proceedings of Workshop

of the Jaroslav Hájek Center and Financial Mathematics in Practice I; Masaryk University: Brno, Czech Republic,
2012; pp. 37–44.

23. Saleh, A.K.M.E.; Picek, J.; Kalina, J. R-estimation of the parameters of a multiple regression model with
measurement errors. Metrika 2012, 75, 311–328. [CrossRef]
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Abstract: This paper focuses on the consequences of assuming a wrong model for multinomial
data when using minimum penalized φ-divergence, also known as minimum penalized disparity
estimators, to estimate the model parameters. These estimators are shown to converge to
a well-defined limit. An application of the results obtained shows that a parametric bootstrap
consistently estimates the null distribution of a certain class of test statistics for model misspecification
detection. An illustrative application to the accuracy assessment of the thematic quality in a global
land cover map is included.

Keywords: minimum penalized φ-divergence estimator; consistency; asymptotic normality;
goodness-of-fit; bootstrap distribution estimator; thematic quality assessment

1. Introduction

In many practical settings, individuals are classified into a finite number of unique nonoverlapping
categories, and the experimenter collects the number of observations falling in each of such categories.
In statistics, that sort data is called multinomial data. Examples arise in many scientific disciplines: in
economics, when dealing with the number of different types of industries observed in a geographical
area; in biology, when counting the number of individuals belonging to one of k species (see, for
example, Pardo [1], pp. 94–95); in sports, when considering the number of injured players in soccer
matches (see, for example, Pardo [1], p. 146); and many others.

When dealing with multinomial data, one often finds zero cell frequencies, even for large samples.
Although many examples can be given, we will center on the following one, since two related data
sets will be analyzed in Section 4. Zero cell frequencies are usually observed when the quality of
the geographic information data is assessed, and specifically, when we pay attention to the thematic
component of this quality. Roughly speaking, the thematic quality refers to the correctness of the
qualitative aspect of an element (pixel, feature, etc.). To give an assessment of the thematic accuracy,
a comparison is needed between the label considered as true of a feature and the label assigned
to the same feature after a classification (among a number of labels previously stated). This way,
each element/feature, which really belongs to a particular category, can be classified as belonging
to the same category (correct assignment), or as belonging to another one (incorrect assignment).
Given a sample of n elements belonging to a particular category, after collecting the number of
elements correctly classified, X1, and the number of incorrect classifications in a set of k− 1 possible
categories, Xi, i = 2, . . . , k, we obtain a multinomial vector (X1, X2, . . . , Xk)

t, for which small or zero
cell frequencies are often observed associated with the incorrect classifications, Xi, i = 2, . . . , k.
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Motivated by this example in the geographic information data context, as well as many others,
along this paper, it will be assumed that the available information can be summarized by means of
a random vector X = (X1, . . . , Xk)

t having a k-cell multinomial distribution with parameters n and
π = (π1, . . . , πk)

t ∈ Δ0k = {(π1, . . . , πk)
t : πi ≥ 0, 1 ≤ i ≤ k, ∑k

i=1 πi = 1}, X ∼ Mk(n; π) in short.
Notice that, if π ∈ Δ0k, then some components of π may equal 0, implying that some cell frequencies can be
equal to zero, even for large samples. In many instances, it is assumed that π belongs to a parametric family
π ∈ P = {P(θ) = (p1(θ), . . . , pk(θ))

t, θ ∈ Θ} ⊂ Δk = {(π1, . . . , πk)
t : πi > 0, 1 ≤ i ≤ k, ∑k

i=1 πi = 1},
where Θ ⊆ Rs, k− s− 1 > 0 and p1(·), . . . , pk(·) are known real functions.

When it is assumed that π ∈ P , π is usually estimated through P(θ̂) = (p1(θ̂), . . . , pk(θ̂))
t for

some estimator θ̂ of θ. A common choice for θ̂ is the maximum likelihood estimator (MLE), which is
known to have good asymptotic properties. Basu and Sarkar [2] and Morales et al. [3] have shown
that these properties are shared by a larger class of estimators: the minimum φ-divergence estimators
(MφE). This class includes MLEs as a particular case. However, as illustrated in Mandal et al. [4],
the finite sample performance of these estimators can be improved by modifying the weight that each
φ-divergence assigns to the empty cells. The resulting estimator is called the minimum penalized
φ-divergence estimator (MPφE). Moreover, Mandal et al. [4] have shown that such estimators have the
same asymptotic properties as the MφEs. Specifically, they are strongly consistent and, conveniently
normalized, asymptotically normal. To derive these asymptotic properties, it is assumed that the
probability model is correctly specified, that is to say, that we are sure about π ∈ P .

If the parametric model is not correctly specified, Jiménez-Gamero et al. [5] have shown that,
under certain assumptions, the MφEs still have a well defined limit, and, conveniently normalized,
they are asymptotically normal. For the MLE, these results were known from those in [6]. Because,
as argued before, the use of penalized φ-divergences may lead to better performance of the resulting
estimators, the aim of this piece of research is to investigate the asymptotic properties of the MPφEs
under model misspecification. If the model considered is true, we obtain as a particular case the results
in [4].

The usefulness of the results obtained is illustrated by applying them to the problem of testing
goodness-of-fit to the parametric family P ,

H0 : π ∈ P ,

against the alternative
H1 : π /∈ P ,

using as a test statistic a penalized φ1-divergence between a nonparametric estimator of π, the relative
frequencies, and a parametric estimator of π, obtained by assuming that the null hypothesis is true,
P(θ̂), θ̂ being an MPφ2E. Here, φ1 and φ2 may differ. The convenience of using this type of test statistics
is justified in Mandal et al. [7]. Although these authors show that, under H0, such test statistics are
asymptotically distribution free, the asymptotic approximation to the null distribution of the test
statistics in this class is rather poor. Some numerical examples illustrate this unsatisfactory behavior of
the asymptotic approximation. By using the fact that the MPφE always converges to a well-defined
limit, whether the model in H0 is true or not, we prove that the bootstrap consistently estimates
the null distribution of these test statistics. We then retake the previously cited numerical examples
to exemplify the usefulness of the bootstrap approximation which, despite the demand for more
computing time, is more accurate than that yielded by the asymptotic null distribution for small and
moderate sample sizes.

The rest of the paper is organized as follows. Section 2 studies certain asymptotic properties
of MPφ2Es; specifically, conditions are given for the strong consistency and asymptotic normality.
Section 3 uses such results to prove that a parametric bootstrap provides a consistent estimator to the
null distribution of test statistics based on penalized φ-divergences for testing H0. Section 4 displays
an application of the results obtained in the context of a classification work in a cover land map.
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Before ending this section we introduce some notation: all limits in this paper are taken when

n → ∞; L→ denotes convergence in distribution; P→ denotes convergence in probability; a.s.→ denotes the
almost sure convergence; let {An} be a sequence of random variables and let ε ∈ R, then An = OP(n−ε)

means that nε An is bounded in probability, An = oP(n−ε) means that nε An
P→ 0, and An = o(n−ε)

means that nε An
a.s.→ 0; Nk(μ, Σ) denotes the k-variate normal law with mean μ and variance matrix Σ;

all vectors are column vectors; the superscript t denotes transpose; if x ∈ Rk, with xt = (x1, . . . , xk),
then Diag(x) is the k× k diagonal matrix whose (i, i) entry is xi, 1 ≤ i ≤ k, and

Σx = Diag(x)− xxt;

Ik denotes the k× k identity matrix; to simplify notation, all 0s appearing in the paper represent vectors
of the appropriate dimension.

2. Some Asymptotic Properties of MPφEs

Let X ∼ Mk(n; π), with π ∈ Δ0k, and let π̂ = (π̂1, π̂2, . . . , π̂k)
t be the vector of

relative frequencies,

π̂i =
Xi
n

, 1 ≤ i ≤ k. (1)

Let P be a parametric model satisfying Assumption 1 below.

Assumption 1. P = {P(θ) = (p1(θ), . . . , pk(θ))
t, θ ∈ Θ} ⊂ Δk, where Θ ⊆ Rs, k − s − 1 > 0 and

p1(.), . . . , pk(.) : Θ −→ R are known twice continuously differentiable in intΘ functions.

Let φ : [0, ∞)→ R∪ {∞} be a continuous convex function. For arbitrary Q = (q1, . . . , qk)
t ∈ Δ0k

and P = (p1, . . . , pk)
t ∈ Δk, the φ-divergence between Q and P is defined by (Csiszár [8])

Dφ(Q, P) =
k

∑
i=1

piφ(qi/pi).

Note that

Dφ(Q, P) = ∑
i/qi>0

piφ(qi/pi) + φ(0) ∑
i/qi=0

pi.

The penalized φ-divergence for the tuning parameter h between Q and P is defined from the
above expression by replacing φ(0) with h as follows (see Mandal et al. [4]):

Dφ,h(Q, P) = ∑
i/qi>0

piφ(qi/pi) + h ∑
i/qi=0

pi.

If
θ̂φ,h = arg min

θ
Dφ,h(π̂, P(θ)),

then θ̂φ,h is called the MPφE of θ.
In order to study some of the properties of θ̂φ,h, we will assume that φ satisfies Assumption 2

below.

Assumption 2. φ : [0, ∞)→ R is a strictly convex function, twice continuously differentiable in (0, ∞).

Assumption 2 is assumed when dealing with estimators based on minimum divergence, since it
lets us take Taylor series expansions of Dφ(π̂, P(θ)), which is useful to derive asymptotic properties of
the MφEs. For example, Section 3 of Lindsay [9] assumes that the function φ (he calls G what we call φ)
is a thrice differentiable function (which is stronger than Assumption 2); Theorem 3 in Morales et al. [3]
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requires, among other conditions, φ to meet Assumption 2 to derive the consistency and asymptotic
normality of MφEs.

Assumption 2 is also assumed in Mandal et al. [4] (they call G what we call φ) to study the
consistency and asymptotic normality of MPφEs. Specifically, these authors show that, if π ∈ P and
θ0 is the true parameter value, then, under suitable regularity conditions including Assumption 2,
the MPφE is consistent for θ0, and

√
n(θ̂φ,h − θ0) is asymptotically normal with a mean of 0 and a

variance matrix equal to the inverse of the information matrix.
Next we will only assume that π ∈ Δ0k, that is, the assumption that π ∈ P is dropped. In this

context, we prove that the MPφE is consistent for θ0, where now θ0 is the parameter vector that
minimizes Dφ,h(π, P(θ)), that is to say, θ0 = arg minθ Dφ,h(π, P(θ)). Note that θ0 also depends on φ

and h, so to be rigorous we should denote it by θ0,φ,h, but to simplify notation we will simply denote
it as θ0. We also show that

√
n(θ̂φ,h − θ0) is asymptotically normal with a mean of 0. With this aim,

we will also assume the following.

Assumption 3. Dφ,h(π, P(θ)) has a unique minimum at θ0 ∈ intΘ.

Assumption 3 is assumed in papers on estimators based on minimum divergence estimation.
For example, it is Assumption A3(b) in [6], which states, that it is the fundamental identification
condition for quasi-maximum likelihood estimators to have a well-defined limit; and it is contained in
Assumptions 7 and 9 in [10], required for minimum chi-square estimators to have a well-defined limit;
it also coincides with Assumption 30 in [9], imposed for the same reason.

Let θ0 be as defined in Assumption 3. Then P(θ0) is the (φ, h)-projection of π on P . Section 3 in [11]
shows that Assumption 3 holds for two-way tables when P is the uniform association model, so the
(φ, h)-projection always exists for such model. Nevertheless, this projection may not exist, or may not
be defined uniquely. See Example 2 in [12] for an instance where there is no unique minimum (because
although Θ is that example is convex, the family {P(θ), θ ∈ Θ} is not convex, so the uniqueness of the
projection is not guaranteed). Let Δk(φ,P , h) = {π ∈ Δ0k such that Assumption 3 holds}.

From now on, we will assume that the components of π are sorted so that π1, . . . , πm > 0, and
πm+1 = . . . = πk = 0, for some 1 < m ≤ k, where, if m = k, then it is understood that all components
of π are positive. We will write π+ = (π1, . . . , πm)t and π̂+ = (π̂1, . . . , π̂m)t. The next result shows
the strong consistency and asymptotic normality of the MPφE.

Theorem 1. Let P be a parametric family satisfying Assumption 1. Let φ be a real function satisfying
Assumption 2. Let X ∼Mk(n; π) with π ∈ Δk(φ,P , h). Then

(a) θ̂φ,h
a.s.−→ θ0.

(b)
√

n

(
π̂+ − π+

θ̂φ,h − θ0

)
L−→ Nm+s(0, AΣπ+ At), where At = (Im, Gt) and G is defined in Equation (7).

In particular, √
n(θ̂φ,h − θ0)

L−→ Ns(0, GΣπ+Gt) (2)

(c)
√

n

(
π̂+ − π+

P(θ̂φ,h)− P(θ0)

)
L−→ N2m(0, BΣπ+Bt), where Bt = (Im, GtD1(P(θ0))), with D1(P(θ))

defined in Equation (8).

Remark 1. Observe that, if m = k, then the penalization has no effect asymptotically; by contrast, if m < k, then
the presence of the tuning parameter h influences the covariance matrix of the asymptotic law of

√
n(θ̂φ,h − θ0)

and
√

n(P(θ̂φ,h)− P(θ0)).

Remark 2. If π ∈ P , we obtain as a particular case the results in Mandal et al. [4]. Our conditions are weaker
than those in [4]. The reason is that they allow an infinite number of categories, while we are assuming that
such a number is finite, k. Therefore, when the number of categories is finite, the assumptions in [4] for the
consistency and asymptotic normality of the MPφE can be weakened.
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As a consequence of Theorem 1, the following corollary gives the asymptotic behavior of
Dφ1,h1(π̂, P(θ̂φ2,h2)), for arbitrary φ1, φ2, and h1, h2, that may or may not coincide. Part (a) of Corollary 1,
which assumes that the model P is correctly specified, has been previously proven in [7]. It is included
here for the sake of completeness. Part (b), which describes the limit in law under alternatives is, to the
best of our knowledge, new.

Corollary 1. Let P be a parametric family satisfying Assumption 1. Let φ1 and φ2 be two real functions
satisfying Assumption 2. Let X ∼Mk(n; π) with π ∈ Δk(φ,P , h).

(a) For π ∈ P ,

T =
2n

φ′′1 (1)
{Dφ1,h1(π̂, P(θ̂φ2,h2))− φ1(1)} L−→ χ2

k−s−1.

(b) For π ∈ Δk(φ2,P , h2)−P , let θ0 = arg minθ Dφ2,h2(π, P(θ)). Then

W =
√

n{Dφ1,h1(π̂, P(θ̂φ2,h2))− Dφ1,h1(π, P(θ0))} L−→ N(0, �2)

where �2 = atBΣπ Bta, with B, as defined in Theorem 1 with φ = φ2 and h = h2,

at =

⎛⎜⎝φ′1

(
π1

p1(θ0)

)
, . . . , φ′1

(
πm

pm(θ0)

)
, v1, . . . , vm, h1, . . . , h1︸ ︷︷ ︸

k−m times

⎞⎟⎠ ,

and vi, 1 ≤ i ≤ m, are as defined in Equation (5) with φ = φ1 and h = h1.

Remark 3. If π ∈ P , the asymptotic behavior of the statistic T does not depend either on φ1, φ2, or on h1, h2.
In fact, the asymptotic law of T is the same as if non-penalized divergences were used.

Remark 4. When π ∈ Δk(φ2,P , h2)−P , if m = k, then the asymptotic distribution of W does not depend on
h1, h2; by contrast, if m < k, then the asymptotic distribution of W does depend on h1 and h2.

Remark 5. (Properties of the asymptotic test) As a consequence of Corollary 1(a), we have that for testing H0

vs. H1, the test that rejects the null hypothesis when T ≥ χ2
k−s−1,1−α is asymptotically correct, in the sense that

P0(T ≥ χ2
k−s−1,1−α)→ α, where χ2

k−s−1,1−α stands for the 1− α percentile of the χ2
k−s−1 distribution and P0

stands for the probability when the null hypothesis is true. From Corollary 1(b), it follows that such a test is
consistent against fixed alternatives π ∈ Δk(φ2,P , h2)−P , in the sense that P(T ≥ χ2

k−s−1,1−α)→ 1.

3. Application to Bootstrapping Goodness-Of-Fit Tests

As observed in Remark 5, the test that rejects H0 when T ≥ χ2
k−s−1,1−α is asymptotically correct

and consistent against fixed alternatives. Nevertheless, the χ2 approximation to the null distribution
of the test statistic is rather poor. Next we illustrate this fact with three examples. The last one is
motivated by a real data set application in Section 4. All computations have been performed using
programs written in the R language [13].

Example 1. Let X ∼M3(n; π), with π ∈ P so that

p1(θ) =
1
3
− θ, p2(θ) =

2
3
− θ, p3(θ) = 2θ, 0 < θ < 1/3.

The problem of testing goodness-of-fit to this family is dealt with by considering as test statistic a
penalized φ1-divergence and an MPφ2E, with φ1 and φ2, two members of the power-divergence family,
defined as follows:

PDλ(x) =
1

λ(λ + 1)

(
x(λ+1) − x− λ(x− 1)

)
, λ �= 0,−1,
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PD0(x) = x log(x) − x + 1, for λ = 0, and PD−1(x) = − log(x) + x − 1, for λ = −1. We thank
an anonymous referee for pointing out that the power divergence family is also known as the
α-divergence family (see, for example, Section 4 of Amari [14]).

In order to evaluate the performance of the χ2 approximation to the null distribution of T,
we carried out an extensive simulation experiment. As a previous part of the simulation experiment,
we evaluated the possible effect of the tuning parameter h2 on the accuracy of the MPφ2E. For this goal,
we generated 10,000 samples of size 200 from the parametric family with θ = 0.3333, and calculated
the MPφ2E with h2 = 0.5, 1, 2, 5, 10 and φ2 = PD−2, which correspond to the modified chi-square test
statistic (see, for example, [1], p. 114). We calculated the root mean square deviation (RMSD) of the
resulting estimations,

RMSD =

√
∑10,000

i=1

(
θ̂−2,h2 − θ

)2

10, 000
,

obtaining 0.00156, 0.00128, 0.00128, 0.00128, and 0.00128, respectively. According to these results,
there are rather small differences in the performance of the MPφ2E for the values of h2 considered.
Because of this, we fixed φ2 = PD−2 and h2 = 0.5, 1, 2.

Next, to study the goodness of the asymptotic approximation, we generated 10,000 samples of
size n = 100 from the parametric family with θ = 0.3333, and calculated the test statistic T with
h1 = h2 = 0.5 and φ1(x) = φ2(x) = PD−2(x), as well as the associated p-values corresponding to the
asymptotic null distribution. We then computed the fraction of these p-values, which are less than or
equal to the nominal values α = 0.05, 0.10 (top and below in tables). This experiment was repeated
for n = 150, 200, h1 = h2 = 1, 2, φ1 = PD1 (which corresponds to the chi-square test statistic) and
φ1 = PD2. Table 1 shows the results obtained. We also considered the case h1 �= h2, obtaining quite
close outcomes. Table 2 displays the results obtained for n = 200 and φ1 = φ2 = PD−2. Looking at
these tables, we conclude that the asymptotic null distribution does not provide an accurate estimation
of the null distribution of T since the type I error probabilities are much greater than the nominal
values, 0.05 and 0.10. Therefore, other approximations of the null distribution should be studied.

Table 1. Type I error probabilities obtained using asymptotic approximation for Example 1 with
θ = 0.3333, φ1 = PDλ, λ ∈ {−2, 1, 2}, φ2 = PD−2, and h1 = h2 ∈ {0.5, 1, 2}.

φ1 = PD−2 φ1 = PD1 φ1 = PD2

h1 = h2 h1 = h2 h1 = h2

n 0.5 1 2 0.5 1 2 0.5 1 2

100 0.996 0.996 0.998 0.995 0.997 0.996 0.995 0.997 0.997
0.996 0.996 0.998 0.995 0.997 0.996 0.995 0.997 0.997

150 0.995 0.995 0.996 0.994 0.995 0.996 0.994 0.994 0.995
0.995 0.995 0.996 0.994 0.995 0.996 0.994 0.994 0.995

200 0.992 0.993 0.994 0.992 0.994 0.991 0.993 0.993 0.994
0.992 0.994 0.994 0.992 0.994 0.991 0.993 0.993 0.994

Table 2. Type I error probabilities obtained using asymptotic approximation for Example 1 with
n = 200, θ = 0.3333, φ1 = φ2 = PD−2, h1 �= h2, and h1, h2 ∈ {0.5, 1, 2}.

(h1, h2) (0.5, 1) (1, 0.5) (0.5, 2) (2, 0.5) (1, 2) (2, 1)

0.989 0.997 0.998 0.998 0.994 0.998
0.999 0.997 0.998 0.998 0.994 0.999

Example 2. Let X ∼M3(n; π), with π ∈ P so that

p1(θ) = 0.5− 2θ, p2(θ) = 0.5 + θ, p3(θ) = θ, 0 < θ < 1/4.
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We repeated the simulation schedule described in Example 1 for this law with θ = 0.24.
Tables 3 and 4 report the obtained results. In contrast to the results for Example 1, where the asymptotic
approximation gives a rather liberal test, in this case the resulting test is very conservative. Therefore,
we again conclude that the asymptotic null distribution does not provide an accurate estimation of the
null distribution of T.

Table 3. Type I error probabilities obtained using asymptotic approximation for Example 2 with
θ = 0.24, φ1 = PDλ, λ ∈ {−2, 1, 2}, φ2 = PD−2, and h1 = h2 ∈ {0.5, 1, 2}.

φ1 = PD−2 φ1 = PD1 φ1 = PD2

h1 = h2 h1 = h2 h1 = h2

n 0.5 1 2 0.5 1 2 0.5 1 2

100 0.016 0.017 0.017 0.013 0.013 0.014 0.013 0.014 0.015
0.034 0.036 0.036 0.031 0.030 0.031 0.030 0.033 0.033

150 0.018 0.019 0.017 0.014 0.014 0.014 0.013 0.015 0.016
0.035 0.039 0.037 0.031 0.033 0.032 0.035 0.033 0.032

200 0.024 0.022 0.022 0.014 0.016 0.016 0.014 0.015 0.016
0.043 0.042 0.040 0.032 0.034 0.032 0.032 0.035 0.033

Table 4. Type I error probabilities obtained using asymptotic approximation for Example 2 with
n = 200, θ = 0.24, φ1 = φ2 = PD−2, h1 �= h2, and h1, h2 ∈ {0.5, 1, 2}.

(h1, h2) (0.5, 1) (1, 0.5) (0.5, 2) (2, 0.5) (1, 2) (2, 1)

0.017 0.017 0.018 0.019 0.018 0.016
0.035 0.033 0.035 0.040 0.036 0.034

Example 3. Let X ∼M4(n; π), with π ∈ P so that

p1(θ) = θ2, p2(θ) = θ(1− θ), p3(θ) = θ(1− θ), p4(θ) = (1− θ)2, 0 < θ < 1. (3)

We repeated the simulation schedule described in Example 1 for this law with θ = 0.8.
Tables 5 and 6 report the results obtained. Looking at these tables, we see that the test based
on asymptotic approximation is liberal, and conclude, as in the previous examples, that other
approximations of the null distribution should be considered.

Table 5. Type I error probabilities obtained using asymptotic approximation for Example 3 with θ = 0.8,
φ1 = PDλ, λ ∈ {−2, 1, 2}, φ2 = PD−2, and h1 = h2 ∈ {0.5, 1, 2}.

φ1 = PD−2 φ1 = PD1 φ1 = PD2

h1 = h2 h1 = h2 h1 = h2

n 0.5 1 2 0.5 1 2 0.5 1 2

100 0.063 0.066 0.074 0.095 0.107 0.111 0.122 0.136 0.131
0.122 0.120 0.125 0.157 0.165 0.161 0.181 0.190 0.182

150 0.063 0.064 0.066 0.083 0.082 0.084 0.099 0.105 0.100
0.114 0.118 0.113 0.137 0.134 0.136 0.153 0.159 0.152

200 0.062 0.061 0.061 0.075 0.079 0.074 0.086 0.091 0.086
0.111 0.111 0.115 0.129 0.137 0.123 0.145 0.148 0.144
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Table 6. Type I error probabilities obtained using asymptotic approximation for Example 3 with
n = 200, θ = 0.8, φ1 = φ2 = PD−2, h1 �= h2, and h1, h2 ∈ {0.5, 1, 2}.

(h1, h2) (0.5, 1) (1, 0.5) (0.5, 2) (2, 0.5) (1, 2) (2, 1)

0.060 0.062 0.063 0.062 0.063 0.058
0.108 0.114 0.113 0.112 0.113 0.109

The reason for the unsatisfactory results in the three examples is that the asymptotic approximation
requires unaffordably large sample sizes when some cells have extremely small probabilities,
which provoke the presence of zero cell frequencies. To appreciate this fact, notice that Example
1 requires n > 30, 000 to obtain expected cell frequencies greater than 10.

Motivated by these examples, the aim of this section is to study another way of approximating the
null distribution of T, the bootstrap. The null bootstrap distribution of T is the conditional distribution of

T∗ =
2n

φ′′1 (1)
{Dφ1,h1(π̂

∗, P(θ̂∗φ2,h2
))− φ1(1)},

given (X1, . . . , Xk), where π̂∗ is defined as π̂ with (X1, . . . , Xk) replaced by (X∗1 , . . . , X∗k ) ∼
Mk(n; P(θ̂φ2,h2)), and θ̂∗φ2,h2

= arg minθ Dφ2,h2(π̂
∗, P(θ)).

Let P∗ denote the bootstrap conditional probability law, given (X1, . . . , Xk). The next theorem
gives the weak limit of T∗.

Theorem 2. Let P be a parametric family satisfying Assumption 1. Let φ1 and φ2 be two real functions
satisfying Assumption 2. Let X ∼Mk(n; π) with π ∈ Δk(φ,P , h). Then

sup
x
|P∗(T∗ ≤ x)− P(Y ≤ x)| P−→ 0

where Y ∼ χ2
k−s−1.

Recall that, from Corollary 1(a), when H0 is true, the test statistic T converges in law to a χ2
k−s−1

law. Thus, the result in Theorem 2 implies the consistency of the null bootstrap distribution of T as
an estimator of the null distribution of T. It is important to remark that the result in Theorem 2 holds
whether H0 is true or not, that is, the bootstrap properly estimates the null distribution, even if the
available data does not obey the law in the null hypothesis. This is due to the fact that, under the
assumed conditions, the MPφE always converges to a well-defined limit.

Remark 6. Properties of the Bootstrap Test. Similarly to Remark 5, as a consequence of Corollary 1(a) and
Theorem 2, we have that, for testing H0 vs. H1, the test that rejects the null hypothesis when T ≥ T∗1−α is
asymptotically correct, in the sense that P0(T ≥ T∗1−α)→ α, where T∗1−α stands for the 1− α percentile of the
bootstrap distribution of T. From Corollary 1(b) and Theorem 2, it follows that such a test is consistent against
fixed alternatives π ∈ Δk(φ2,P , h2)−P , in the sense that P(T ≥ T∗1−α)→ 1.

In practice, the bootstrap p-value must be approximated by simulation as follows:

1. Calculate the observed value of the test statistic for the available data (X1, . . . , Xk), Tobs.
2. Generate B bootstrap samples (Xb∗

1 , . . . , Xb∗
k ) ∼Mk(n; P(θ̂φ2,h2)), b = 1, . . . , B, and calculate the

test statistic for each bootstrap sample obtaining T∗b, b = 1, . . . , B.
3. Approximate the p-value by means of the expression

p̂boot =
card{b : T∗b

b ≥ Tobs}
B

.

133



Entropy 2018, 20, 329

For the numerical experiments previously described, whose results are displayed in Tables 1–6,
we also calculated the bootstrap p-values. This was done by generating B = 1000 bootstrap samples
to approximate each p-value, and calculating the fraction of these p-values, which are less than
or equal to 0.05 and 0.10 (top and bottom in the tables). Tables 7–12 display the estimated type I
error probabilities obtained by using the bootstrap approximation as well as those obtained with
the asymptotic approximation (bootstrap, B, and asymptotic, A, in the tables) taken from Tables 1–6
in order to facilitate the comparison between them. Looking at Tables 7–12, we conclude that the
bootstrap approximation is superior to the asymptotic one for small and moderate sample sizes, since
in all cases the bootstrap type I error probabilities were closer to the nominal values than those obtained
using the asymptotic null distribution. This superior performance of the bootstrap null distribution
estimator has been noticed in other inferential problems, where φ-divergences are used as test statistics
(see, for example, [5,12,15,16]).

Table 7. Asymptotic and bootstrap type I error probabilities for Example 1 with θ = 0.3333, φ1 = PDλ,
λ ∈ {−2, 1, 2}, φ2 = PD−2, h1 = h2 ∈ {0.5, 1, 2}.

h1 = h2 0.5 1 2

φ1 n B A B A B A

PD−2 100 0.051 0.996 0.048 0.996 0.048 0.998
0.110 0.996 0.103 0.996 0.109 0.998

150 0.055 0.995 0.050 0.995 0.056 0.996
0.106 0.995 0.101 0.995 0.109 0.996

200 0.053 0.992 0.053 0.993 0.056 0.994
0.103 0.992 0.106 0.994 0.108 0.994

PD1 100 0.057 0.995 0.056 0.997 0.055 0.996
0.110 0.995 0.110 0.997 0.107 0.996

150 0.054 0.994 0.052 0.995 0.055 0.996
0.110 0.994 0.104 0.995 0.114 0.996

200 0.055 0.992 0.051 0.994 0.052 0.991
0.106 0.992 0.103 0.994 0.106 0.991

PD2 100 0.055 0.995 0.056 0.997 0.054 0.997
0.110 0.995 0.109 0.997 0.107 0.997

150 0.054 0.994 0.055 0.994 0.056 0.995
0.107 0.994 0.106 0.994 0.110 0.995

200 0.054 0.993 0.053 0.993 0.055 0.994
0.107 0.993 0.105 0.993 0.108 0.994

Table 8. Asymptotic and bootstrap type I error probabilities for Example 1 with n = 200, θ = 0.3333,
φ1 = φ2 = PD−2, h1 �= h2, and h1, h2 ∈ {0.5, 1, 2}.

(h1, h2) (0.5, 1) (1, 0.5) (0.5, 2) (2, 0.5) (1, 2) (2, 1)

B A B A B A B A B A B A

0.061 0.989 0.050 0.997 0.059 0.996 0.042 0.998 0.044 0.994 0.063 0.998
0.107 0.999 0.113 0.997 0.106 0.996 0.095 0.998 0.105 0.994 0.115 0.999
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Table 9. Asymptotic and bootstrap type I error probabilities for Example 2 with θ = 0.24, φ1 = PDλ,
λ ∈ {−2, 1, 2}, φ2 = PD−2, and h1 = h2 ∈ {0.5, 1, 2}.

h1 = h2 0.5 1 2

φ1 n B A B A B A

PD−2 100 0.057 0.016 0.055 0.017 0.051 0.017
0.111 0.034 0.110 0.036 0.102 0.036

150 0.049 0.018 0.048 0.019 0.051 0.017
0.097 0.035 0.103 0.039 0.101 0.036

200 0.051 0.024 0.055 0.022 0.051 0.022
0.099 0.043 0.102 0.042 0.099 0.040

PD1 100 0.058 0.013 0.054 0.013 0.051 0.014
0.114 0.031 0.113 0.030 0.106 0.031

150 0.050 0.014 0.051 0.014 0.052 0.014
0.098 0.031 0.103 0.031 0.100 0.032

200 0.049 0.014 0.054 0.016 0.052 0.016
0.099 0.032 0.104 0.034 0.099 0.032

PD2 100 0.055 0.013 0.053 0.014 0.050 0.015
0.110 0.030 0.108 0.033 0.104 0.033

150 0.050 0.013 0.052 0.015 0.051 0.016
0.097 0.032 0.103 0.033 0.098 0.032

200 0.049 0.014 0.051 0.015 0.051 0.016
0.100 0.032 0.102 0.035 0.098 0.033

Table 10. Asymptotic and bootstrap type I error probabilities for Example 2 with n = 200, θ = 0.24,
φ1 = φ2 = PD−2, h1 �= h2, and h1, h2 ∈ {0.5, 1, 2}.

(h1, h2) (0.5, 1) (1, 0.5) (0.5, 2) (2, 0.5) (1, 2) (2, 1)

B A B A B A B A B A B A

0.048 0.017 0.051 0.017 0.052 0.018 0.053 0.019 0.050 0.018 0.049 0.016
0.101 0.035 0.099 0.033 0.100 0.035 0.105 0.040 0.103 0.036 0.101 0.034

Table 11. Asymptotic and bootstrap type I error probabilities for Example 3 with θ = 0.8, φ1 = PDλ,
λ ∈ {−2, 1, 2}, φ2 = PD−2, and h1 = h2 ∈ {0.5, 1, 2}.

h1 = h2 0.5 1 2

φ1 n B A B A B A

PD−2 100 0.066 0.063 0.058 0.066 0.044 0.074
0.119 0.122 0.101 0.120 0.086 0.125

150 0.053 0.063 0.050 0.064 0.045 0.066
0.098 0.114 0.095 0.118 0.093 0.113

200 0.051 0.062 0.047 0.061 0.046 0.061
0.099 0.111 0.096 0.111 0.100 0.115

PD1 100 0.049 0.095 0.049 0.107 0.041 0.111
0.103 0.157 0.098 0.065 0.084 0.161

150 0.050 0.083 0.040 0.082 0.040 0.084
0.098 0.137 0.090 0.134 0.087 0.136

200 0.046 0.075 0.048 0.079 0.044 0.074
0.095 0.129 0.102 0.137 0.092 0.123

PD2 100 0.043 0.122 0.045 0.136 0.037 0.131
0.099 0.181 0.046 0.190 0.077 0.182

150 0.040 0.099 0.047 0.105 0.035 0.100
0.041 0.153 0.093 0.159 0.081 0.152

200 0.043 0.086 0.048 0.091 0.043 0.086
0.092 0.145 0.097 0.148 0.090 0.144
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Table 12. Asymptotic and bootstrap type I error probabilities for Example 3 with n = 200, θ = 0.8,
φ1 = φ2 = PD−2, h1 �= h2, and h1, h2 ∈ {0.5, 1, 2}.

(h1, h2) (0.5, 1) (1, 0.5) (0.5, 2) (2, 0.5) (1, 2) (2, 1)

B A B A B A B A B A B A

0.047 0.060 0.048 0.062 0.051 0.063 0.049 0.062 0.048 0.063 0.044 0.058
0.095 0.108 0.099 0.114 0.099 0.113 0.097 0.112 0.099 0.113 0.092 0.109

4. Application to the Evaluation of the Thematic Classification in Global Land Cover Maps

This section displays the results of an application of our proposal to two real data sets related to
the thematic quality assessment of a global land cover (GLC) map. The data comprise the results of two
thematic classifications of the land cover category “Evergreen Broadleaf Trees” (EBL) and summarize
the number of sample units correctly classified in this class, and the number of confusions with other
land cover classes: “Deciduous Broadleaf Trees” (DBL), “Evergreeen Needleleaf Trees” (ENL), and
“Urban/Built Up” (U). The results of these two classifications were collected from two different global
land cover maps: the Globcover map and the LC-CCI map (see Tsendbazar et al. [17] for additional
details) and they are displayed in Table 13.

Table 13. Thematic classification of the Evergreen Broadleaf Trees (EBL) class.

Globcover Map LC-CCI Map

Classified Data EBL 165 172
DBL 13 5
ENL 7 5

U 0 0

Parametric specifications of the multinomial vector of probabilities are quite attractive since they
describe in a concise way the classification pattern. Because of this, given the similarity between the two
observed classifications in Table 13, we are interested in the search of a parametric model suitable to depict
the thematic accuracy of this class in both GLC maps. For this purpose, we consider the parametric family
in Equation (3) of Example 3. The presence of a zero cell frequency in each data set leads us to consider a
penalized φ-divergence as a test statistic for testing goodness-of-fit to such a parametric family.

Table 14 displays the observed values of the test statistic T and the associated bootstrap p-values
for the goodness-of-fit test with respect to the parametric family in Equation (3) for the two observed
classifications of the EBL class in Table 13. Looking at this table, it can be concluded that the null hypothesis
cannot be rejected in both cases. Therefore, the parametric model in Equation (3) provides an adequate
description of the thematic classification of the EBL class.
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Table 14. Results of the goodness-of-fit test applied to the thematic classification of the EBL class.

Globcover Map LC-CCI Map

θ̂−2,0.5 = 0.9490 θ̂−2,0.5 = 0.9721

φ1 PD−2 PD1 PD2 PD−2 PD1 PD2

Tobs 2.3015 2.7618 3.0111 0.1432 0.1432 0.1433
p̂boot 0.1700 0.2253 0.2926 0.9283 0.9200 0.9148

θ̂−2,1 = 0.9503 θ̂−2,1 = 0.9725

Tobs 2.7686 3.3752 3.6962 0.2821 0.2823 0.2826
p̂boot 0.1801 0.2325 0.2671 0.8431 0.9162 0.9182

θ̂−2,2 = 0.9527 θ̂−2,2 = 0.9732

Tobs 3.6352 4.5400 5.0219 0.5492 0.5508 0.5514
p̂boot 0.1300 0.2492 0.2584 0.7526 0.8144 0.8291

5. Proofs

Notice that

Dφ,h(π, P(θ)) =
m

∑
i=1

pi(θ)φ

(
πi

pi(θ)

)
+ h

k

∑
i=m+1

pi(θ)

= hI(m < k) +
m

∑
i=1

pi(θ)φh

(
πi

pi(θ)

)
where I stands for the indicator function, φh(x) = φ(x)− h, if m < k, and φh(x) = φ(x), if m = k. Let

D+
φ,h(π, P(θ)) =

m

∑
i=1

pi(θ)φh

(
πi

pi(θ)

)
.

Clearly,
arg min

θ
Dφ,h(π̂, P(θ)) = arg min

θ
D+

φ,h(π̂, P(θ)).

Note that, if Assumptions 1 and 2 hold, then Assumption 3 implies that

∂

∂θ
D+

φ (π, P(θ0)) =
m

∑
i=1

∂

∂θ
pi(θ0)vi = 0 (4)

where

vi = φ

(
πi

pi(θ0)

)
− πi

pi(θ0)
φ′
(

π1

pi(θ0)

)
− hI(m < k) (5)

1 ≤ i ≤ m, and φ′(x) = ∂
∂x φ(x). The s× s matrix

D2 =
∂2

∂θ∂θt D+
φ (π, P(θ0)) =

m

∑
i=1

∂2

∂θ∂θt pi(θ0)vi +
m

∑
i=1

∂

∂θ
pi(θ0)

∂

∂θ
pi(θ0)

twi (6)

is positive definite, where

wi =
π2

i
p3

i (θ0)
φ′′
(

πi
pi(θ0)

)
,

1 ≤ i ≤ m, and φ′′(x) = ∂2

∂x2 φ(x). Therefore, by the Implicit Function Theorem (see, for example,
Dieudonne [18], p. 272), there is an open neighborhood U ⊆ (0, 1)m of π+ and s unique functions,
gi : U → R, 1 ≤ i ≤ s, so that

(i) θ̂φ = (g1(π̂
+), . . . , gs(π̂+))t, ∀ n ≥ n0, for some n0 ∈ N;
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(ii) θ0 = (g1(π
+), . . . , gs(π+))t;

(iii) g = (g1, . . . , gs)t is continuously differentiable in U and the s × m Jacobian matrix of g at
(π1, . . . , πm) is given by

G = D−1
2 D1(P(θ0))Diag(�) (7)

where

D1(P(θ)) =
(

∂

∂θ
p1(θ), . . . ,

∂

∂θ
pm(θ)

)
, (8)

� = (�1, . . . , �m)t,

�i =
πi

p2
i (θ0)

φ′′
(

πi
pi(θ0)

)
,

and 1 ≤ i ≤ m.

Proof of Theorem 1. Part (a) follows from (i) and (ii) above and the fact that π̂+ → π+ a.s. From
(i)–(ii), and taking into account that

√
n(π̂+ − π+) is asymptotically normal, it follows that

θ̂φ = θ0 + G(π, P(θ0), φ)(π̂ − π) + oP(n−1/2). (9)

Parts (b) and (c) follow from Equation (9) and the asymptotic normality of
√

n(π̂+ − π+).

Proof of Corollary 1. Part (a) was shown in Theorem 5.1 in [7]. To prove (b), we first demonstrate that

W = W0 + rn (10)

where

W0 =
√

n

{
m

∑
j=1

pj(θ̂φ2,h2)φ1

(
π̂j

pj(θ̂φ2,h2)

)
+ h1

k

∑
j=m+1

pj(θ̂φ2,h2)− Dφ1,h1(π, P(θ0))

}
+ rn,

and rn = oP(1). Notice that

rn =
√

n{h1 − φ1(0)} ∑
j:π̂j=0, πj>0

pj(θ̂φ2,h2)

=
√

n{h1 − φ1(0)}
m

∑
j=1

pj(θ̂φ2,h2)I(π̂j = 0).

Therefore,

0 ≤ E|rn| ≤
√

n|h1 − φ1(0)|
m

∑
j=1

P(π̂j = 0) =
√

n|h1 − φ1(0)|
m

∑
j=1

(1− πj)
n → 0,

which implies rn = oP(1). From Theorem 1 and Taylor expansion, it follows that W0
L−→ N(0, �2);

hence, the result in part (b) is proven.

Proof of Theorem 2. The proof of Theorem 2 is parallel to that of Theorem 2 in [5], so we omit it.
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Abbreviations

The following abbreviations are used in this manuscript:

MLE maximum likelihood estimator
MφE minimum φ-divergence estimator
MPφE minimum penalized φ-divergence estimator
RMSD root mean square deviation
B bootstrap
A asymptotic
GLC global land cover
EBL evergreen broadleaf trees
DBL deciduous broadleaf trees
ENL evergreeen needleleaf trees
U urban/built up
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Abstract: One natural way to measure model adequacy is by using statistical distances as loss
functions. A related fundamental question is how to construct loss functions that are scientifically
and statistically meaningful. In this paper, we investigate non-quadratic distances and their role in
assessing the adequacy of a model and/or ability to perform model selection. We first present the
definition of a statistical distance and its associated properties. Three popular distances, total variation,
the mixture index of fit and the Kullback-Leibler distance, are studied in detail, with the aim
of understanding their properties and potential interpretations that can offer insight into their
performance as measures of model misspecification. A small simulation study exemplifies the
performance of these measures and their application to different scientific fields is briefly discussed.

Keywords: model assessment; statistical distance; non-quadratic distance; total variation; mixture
index of fit; Kullback-Leibler distance; divergence measure

1. Introduction

Model assessment, that is assessing the adequacy of a model and/or ability to perform model
selection, is one of the fundamental components of statistical analyses. For example, in the model
adequacy problem one usually begins with a fixed model and interest centers on measuring the
model misspecification cost. A natural way to create a framework within which we can assess model
misspecification is by using statistical distances as loss functions. These constructs measure the
distance between the unknown distribution that generated the data and an estimate from the data
model. By identifying statistical distances as loss functions, we can begin to understand the role
distances play in model fitting and selection, as they become measures of the overall cost of model
misspecification. This strategy will allow us to investigate the construction of a loss function as the
maximum error in a list of model fit questions. Therefore, our fundamental question is the following.
How can one design a loss function ρ that is scientifically and statistically meaningful? We would like
to be able to attach a specific scientific meaning to the numerical values of the loss, so that a value of the
distance equal to 4, for example, has an explicit interpretation in terms of our statistical goals. When
we select between models, we would like to measure the quality of the approximation via the model’s
ability to provide answers to important scientific questions. This presupposes that the meaning of
“best fitting model” should depend on the “statistical questions” being asked of the model.

Lindsay [1] discusses a distance-based framework for assessing model adequacy. A fundamental
tenet of the framework for model adequacy put forward by Lindsay [1] is that it is possible and
reasonable to carry out a model-based scientific inquiry without believing that the model is true,
and without assuming that the truth is included in the model. All this of course, assuming that
we have a way to measure the quality of the approximation to the “truth”, is offered by the model.
This point of view never assumes the correctness of the model. Of course, it is rather presumptuous
to label any distribution as the truth as any basic modeling assumption generated by the sampling
scheme that provided the data is never exactly true. An example of a basic modeling assumption
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might be “X1, X2, · · · , Xn are independent, identically distributed from an unknown distribution τ”.
This, as any other statistical assumption, is subject to question even in the most idealized of data
collection frameworks. However, we believe that well designed experiments can generate data that
is similar to data from idealized models, therefore we operate as if the basic assumption is true.
This means that we assume that there is a true distribution τ that generates the data, which is
“knowable” if we can collect an infinite amount of data. Furthermore, we note that the basic modeling
assumption will be the global framework for assessment of all more restrictive assumptions about the
data generation mechanism. In a sense, it is the “nonparametric” extension of the more restrictive
models that might be considered.

We let P be the class of all distributions consistent with the basic assumptions. Hence τ ∈P, and sets
H ∈P are called models. We assume that τ /∈H ; hence, there is a permanent model misspecification
error. Statistical distances will then provide a measure for the model misspecification error.

One natural way to measure model adequacy is to define a loss function ρ(τ, M) that describes
the loss incurred when the model element M is used instead of the true distribution τ. Such a loss
function should, in principle, indicate, in an inferential sense, how far apart the two distributions τ,
M are. In the next section, we offer a formal definition of the concept of a statistical distance.

If the statistical questions of interest can be expressed as a list of functionals T(M) of the model
M that we wish to be uniformly close to the same functionals T(τ) of the true distribution, then we
can turn the set of model fit questions into a distance via

ρ(τ, M) = sup
T(·)

|T(τ)− T(M)|,

where the supremum is taken over the class of functionals of interest. Using the supremum of the
individual errors is one way of assessing overall error, but using this measure has the nice feature that
its value gives a bound on all individual errors. The statistical questions of interest may be global,
such as: is the normal model correct in every aspect? Or we may be interested to have answers on
a few key characteristics, such as the mean.

Lindsay et al. [2] introduced a class of statistical distances, called quadratic distances, and studied
their use in the context of goodness-of-fit testing. Furthermore, Markatou et al. [3] discuss extensively
the chi-squared distance, a special case of quadratic distance, and its role in robustness. In this
paper, we study non-quadratic distances and their role in model assessment. The paper is organized
as follows. Section 2 presents the definition of a statistical distance and its associated properties.
Sections 3–5 discuss in detail three popular distances, total variation, the mixture index of fit and the
Kullback-Leibler distance, with the aim of understanding their role in model assessment problems.
The likelihood distance is also briefly discussed in Section 5. Section 6 illustrates computation and
applications of total variation, mixture index of fit and Kullback-Leibler distances. Finally, Section 7
presents discussion and conclusions pertaining to the use of total variation and mixture index of
fit distances.

2. Statistical Distances and Their Properties

If we adopt the usual convention that loss functions are nonnegative in their arguments, and zero
if the correct model is used, and have larger value if the two distributions are not very similar, then the
loss ρ(τ, M) can also be viewed as a distance between τ, M. In fact, we will always assume that for
any two distributions F, G

ρ(F, G) ≥ 0 with ρ(F, F) = 0.

If this holds, we will say that ρ is a statistical distance. Unlike the requirements for a metric,
we do not require symmetry. In fact, there is no reason that the loss should be symmetric, as the roles
of τ, M are different. We also do not require ρ to be nonzero when the arguments differ. This zero
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property will allow us to specify that two distributions are equivalent as far as our statistical purposes
are concerned by giving them zero distance.

Furthermore, it is important to note that if τ is in H and τ = Mθ0 , and M ∈ H , say Mθ , then the
distance ρ(τ, M) induces a loss function on the parameter space via

Lρ(θ0, θ)
def
= ρ(Mθ0 , Mθ).

Therefore, if τ is in the model, the losses defined by ρ are parametric losses.
We begin within the discrete distribution framework. Let T = {0, 1, 2, · · · , T}, where T is possibly

infinite, be a discrete sample space. On this sample space we define a true probability density τ(t),
as well as a family of densities M = {mθ(t) : θ ∈ Θ}, where Θ is the parameter space. Assume we have
independent and identically distributed random variables X1, X2, · · · , Xn producing the realizations
x1, x2, · · · , xn from τ(·). We record the data as d(t) = n(t)/n, where n(t) is the number of observations
in the sample with value equal to t. We note here that we use the word “density” in a generic fashion
that incorporates both, probability mass functions as well as probability density functions. A rather
formal definition of the concept of statistical distance is as follows.

Definition 1. (Markatou et al. [3]) Let τ, m be two probability density functions. Then ρ(τ, m) is a statistical
distance between the corresponding probability distributions if ρ(τ, m) ≥ 0, with equality if and only if τ and m
are the same for all statistical purposes.

We would require ρ(τ, m) to indicate the worst mistake that we can make if we use m instead of τ.
The precise meaning of this statement is obvious in the case of total variation that we discuss in detail
in Section 3 of the paper.

We would also like our statistical distances to be convex in their arguments.

Definition 2. Let τ, m be a pair of probability density functions, with m being represented as m = αm1 + (1−
α)m2, 0 ≤ α ≤ 1. We say that the statistical distance ρ(τ, m) is convex in the right argument if

ρ(τ, αm1 + (1− α)m2) ≤ αρ(τ, m1) + (1− α)ρ(τ, m2),

where m1, m2 are two probability density functions.

Definition 3. Let τ, m be a pair of probability density functions, and assume τ = γτ1 + (1− γ)τ2, 0 ≤ γ ≤ 1.
Then, we say that ρ(τ, m) is convex in the left argument if

ρ(γτ1 + (1− γ)τ2, m) ≤ γρ(τ1, m) + (1− γ)ρ(τ2, m),

where τ1, τ2 are two densities.

Lindsay et al. [2] define and study quadratic distances as measures of goodness of fit, a form of
model assessment. In the next sections, we study non-quadratic distances and their role in the problem
of model assessment. We begin with the total variation distance.

3. Total Variation

In this section, we study the properties of the total variation distance. We offer a loss function
interpretation of this distance and discuss sensitivity issues associated with its use. We will begin
with the case of discrete probability measures and then move to the case of continuous probability
measures. The results presented here are novel and are useful in selecting the distances to be used in
any given problem.

The total variation distance is defined as follows.
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Definition 4. Let τ, m be two probability distributions. We define the total variation distance between the
probability mass functions τ, m to be

V(τ, m) =
1
2 ∑

t
|τ(t)−m(t)| .

This measure is also known as the L1-distance (without the factor 1/2) or index of dissimilarity.

Corollary 1. The total variation distance takes values in the interval [0, 1].

Proof. By definition V(τ, m) ≥ 0 with equality if and only if τ = m, ∀t. Moreover, |τ(t)−m(t)| ≤
|τ(t)|+ |m(t)|. But τ, m are probability mass functions (or densities), therefore

|τ(t)−m(t)| ≤ τ(t) + m(t)

and hence
1
2 ∑

t
|τ(t)−m(t)| ≤ 1

2
(
∑

t
τ(t) + ∑

t
m(t)

)
or, equivalently

1
2 ∑

t
|τ(t)−m(t)| ≤ 1

2
(1 + 1) = 1.

Therefore 0 ≤ V(τ, m) ≤ 1.

Proposition 1. The total variation distance is a metric.

Proof. By definition, the total variation distance is non-negative. Moreover, it is symmetric because
V(τ, m) = V(m, τ) and it satisfies the triangle inequality since

V(τ, m) =
1
2 ∑ |τ(t)−m(t)|

=
1
2 ∑ |τ(t)− g(t) + g(t)−m(t)|

≤ 1
2
(
∑ |τ(t)− g(t)|+ ∑ |g(t)−m(t)|

)
= V(τ, g) + V(g, m).

Thus, it is a metric.

The following proposition states that the total variation distance is convex in both, left and
right arguments.

Proposition 2. Let τ, m be a pair of densities with τ represented as τ = ατ1 + (1− α)τ2, 0 ≤ α ≤ 1. Then

V(ατ1 + (1− α)τ2, m) ≤ αV(τ1, m) + (1− α)V(τ2, m).

Moreover, if m is represented as m = γm1 + (1− γ)m2, 0 ≤ γ ≤ 1, then

V(τ, γm1 + (1− γ)m2) ≤ γV(τ, m1) + (1− γ)V(τ, m2).

Proof. It is a straightforward application of the definition of the total variation distance.

The total variation measure has major implications for prediction probabilities. A statistically
useful interpretation of the total variation distance is that it can be thought of as the worst error we can
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commit in probability when we use the model m instead of the truth τ. The maximum value of this
error equals 1 and it occurs when τ, m are mutually singular.

Denote by Pτ the probability of a set under the measure τ and by Pm the probability of a set under
the measure m.

Proposition 3. Let τ, m be two probability mass functions. Then

V(τ, m) = sup
A⊂B

|Pτ(A)−Pm(A)| ,

where A is a subset of the Borel set B.

Proof. Define the sets B1 = {t : τ(t) > m(t)}, B2 = {t : τ(t) < m(t)}, B3 = {t : τ(t) = m(t)}.
Notice that

Pτ(B1) +Pτ(B2) +Pτ(B3) = Pm(B1) +Pm(B2) +Pm(B3) = 1.

Because on the set B3 the two probability mass functions are equal Pτ(B3) = Pm(B3), and hence

Pτ(B1)−Pm(B1) = Pm(B2)−Pτ(B2).

Note that, because of the nature of the sets B1 and B2, both terms in the last expression are
positive. Therefore

V(τ, m) =
1
2 ∑ |τ(t)−m(t)|

=
1
2
(

∑
t∈B1

|τ(t)−m(t)|+ ∑
t∈B2

|τ(t)−m(t)|+ ∑
t∈B3

|τ(t)−m(t)|
)

=
1
2
{(

Pτ(B1)−Pm(B1)
)
+
(
Pm(B2)−Pτ(B2)

)}
= Pτ(B1)−Pm(B1).

Furthermore

sup
A⊂B

|Pτ(A)−Pm(A)| = max

{
sup
A⊂B

(
Pτ(A)−Pm(A)

)
, sup

A⊂B

(
Pm(A)−Pτ(A)

)}
.

But
sup
A⊂B

(
Pτ(A)−Pm(A)

)
= Pτ(B1)−Pm(B1)

and
sup
A⊂B

(
Pm(A)−Pτ(A)

)
= Pm(B2)−Pτ(B2) = Pτ(B1)−Pm(B1).

Therefore
sup
A⊂B

|Pτ(A)−Pm(A)| = Pτ(B1)−Pm(B1),

and hence
V(τ, m) = sup

A⊂B
|Pτ(A)−Pm(A)| .
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Remark 1. The model misspecification measure V(τ, m) has a “minimax ”expression

V(τ, M ) = inf
m∈M

sup
A
{|Pτ(A)−Pm(A)| : A ⊂ B} .

This indicates the sense in which the measure assesses the overall risk of using m instead of τ, then chooses
m that minimizes the aforementioned risk.

We now offer a testing interpretation of the total variation distance. We establish that the total
variation distance can be obtained as a solution to a suitably defined optimization problem. It is
obtained as that test function which maximizes the difference between the power and level of a suitably
defined test problem.

Definition 5. A randomized test function for testing a statistical hypothesis H0 versus the alternative H1 is
a (measurable) function φ defined on Rn and taking values in the interval [0, 1] with the following interpretation.
If x is the observed value of X and φ(x) = y, then a coin whose probability of falling heads is y is tossed and H0

is rejected when head appears. In the case where y is either 0 or 1, ∀x, the test is called non-randomized.

Proposition 4. Let H0 : τ(x) = f (x) versus H1 : τ(x) = g(x) and φ(x) is a test function, f , g are
probability mass functions. Then

V( f , g) = max
φ

{
EH1

(
φ(X)

)
−EH0

(
φ(X)

)}
.

Proof. We have
EH1

(
φ(X)

)
−EH0

(
φ(X)

)
= ∑ φ(x)

(
g(x)− f (x)

)
.

Then
φ(x) = 1 if x ∈ B1 = {x : g(x) > f (x)} ,

So
max

φ
∑ φ(x)

(
g(x)− f (x)

)
= Pg(B1)−P f (B1) = V( f , g).

An advantage of the total variation distance is that it is not sensitive to small changes in the density.
That is, if τ(t) is replaced by τ(t) + e(t) where ∑t e(t) = 0 and ∑t |e(t)| is small then

V(τ + e, m) =
1
2 ∑ |τ(t) + e(t)−m(t)|

≤ 1
2 ∑ |τ(t)−m(t)|+ 1

2 ∑ |e(t)|

= V(τ, m) +
1
2 ∑ |e(t)| .

Therefore, when the changes in the density are small V(τ + e, m) ≈ V(τ, m). When describing
a population, it is natural to describe it via the proportion of individuals in various subgroups.
Having V(τ, m) small would ensure uniform accuracy for all such descriptions. On the other hand,
populations are also described in terms of a variety of other variables, such as means. Having the total
variation measure small does not imply that means are close on the scale of standard deviation.

Remark 2. The total variation distance is not differentiable in the arguments. Using V(d, mθ) as an inference
function, where d denotes the data estimate of τ (i.e., τ̂), yields estimators of θ that have the feature of not
generating smooth, asymptotically normal estimators when the model is true [4]. This feature is related to the
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pathologies of the variation distance described by Donoho and Liu [5]. However, if parameter estimation is of
interest, one can use alternative divergences that are free of these pathologies.

We now study the total variation distance in continuous probability models.

Definition 6. The total variation distance between two probability density functions τ, m is defined as

V(τ, m) =
1
2

∫
|τ(x)−m(x)| dx.

The total variation distance has the same interpretation as in the discrete probability model case.
That is

V(τ, m) = sup
A⊂B

|Pτ(A)−Pm(A)| .

One of the important issues in the construction of distances in continuous spaces is the issue of
invariance, because the behavior of distance measures under transformations of the data is of interest.
Suppose we take a monotone transformation of the observed variable X and use the corresponding
model distribution; how does this transformation affect the distance between X and the model?

Invariance seems to be desirable from an inferential point of view, but difficult to achieve without
forcing one of the distributions to be continuous and appealing to the probability integral transform
for a common scale. In multivariate continuous spaces, the problem of transformation invariance is
even more difficult, as there is no longer a natural probability integral transformation to bring data
and model on a common scale.

Proposition 5. Let V(τX, mX) be the total variation distance between the densities τX, mX for a random
variable X. If Y = a(X) is a one-to-one transformation of the random variable X, then

V(τX , mX) = V(τY, mY).

Proof. Write

V(τY, mY) =
1
2

∫
|τY(y)−mY(y)| dy

=
1
2

∫ ∣∣∣∣τX
(
b(y)

)
· | d

dy
b(y)| −mX

(
b(y)

)
· | d

dy
b(y)|

∣∣∣∣ dy

=
1
2

∫ ∣∣τX
(
b(y)

)
−mX

(
b(y)

)∣∣ · ∣∣∣∣ d
dy

b(y)
∣∣∣∣ dy,

where b(y) is the inverse transformation. Next, we do a change of variable in the integral. Set x = b(y)
from where we obtain y = a(x) and dy = a′(x)dx; the prime denotes derivative with respect to the
corresponding argument. Then

V(τY, mY) =
1
2

∫
|τX(x)−mX(x)| ·

∣∣b′(a(x)
)∣∣ · a′(x)dx.

But

b
(
a(x)

)
= x =⇒ d

dx
b
(
a(x)

)
= 1

=⇒ b′
(
a(x)

)
a′(x) = 1

=⇒ b′
(
a(x)

)
=

1
a′(x)

,
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hence

V(τY, mY) =
1
2

∫
|τX(x)−mX(x)| · a′(x)

|a′(x)|dx

=
1
2

∫
|τX(x)−mX(x)| · sign

(
a′(x)

)
dx.

Now since a(·) is a one-to-one transformation, a(x) is either increasing or decreasing on different
segments of R. Thus

V(τY, mY) = V(τX , mX),

where Y = a(X).

A fundamental problem with the total variation distance is that it cannot be used to compute
the distance between a discrete distribution and a continuous distribution because the total variation
distance between a continuous measure and a discrete measure is always the maximum possible,
that is 1. This inability of the total variation distance to discriminate between discrete and continuous
measures can be interpreted as asking “too many questions”at once, without any prioritization.
This limits its use despite its invariant characteristics.

We now discuss the relationship between the total variation distance and Fisher information.
Denote by m(n) the joint density of n independent and identically distributed random variables.
Then we have the following proposition.

Proposition 6. The total variation distance is locally equivalent to the Fisher information number, that is

1
n

V(m(n)
θ , m(n)

θ0
)→ |θ − θ0|

√
I(θ0)

2π
, as n → ∞,

where mθ , mθ0 are two discrete probability models.

Proof. By definition

V(m(n)
θ , m(n)

θ0
) =

1
2 ∑ |m(n)

θ (t)−m(n)
θ0

(t)|.

Now, expand m(n)
θ (t) using Taylor series in the neighborhood of θ0 to obtain

m(n)
θ (t)  m(n)

θ0
(t) + (θ − θ0)

(
m(n)

θ0
(t)
)′,

where the prime denotes derivative with respect to the parameter θ. Further, write

(
m(n)

θ0
(t)
)′

= m(n)
θ0

(t)
( d

dθ
log m(n)

θ (t)
∣∣
θ0

)
to obtain

1
n

V(m(n)
θ , m(n)

θ0
)  1

2
|θ − θ0|E

{ 1
n
∣∣ d
dθ

log m(n)
θ (t)

∣∣
θ0

∣∣}
=

1
2
|θ − θ0|E

{∣∣ 1
n

n

∑
i=1

uθ0(ti)
∣∣},

where
uθ0(ti) =

d
dθ

log mθ(ti)
∣∣
θ0

.
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Therefore, assuming that 1
n ∑ uθ0(ti) converges to a normal random variable in absolute mean, then

1
n

V(m(n)
θ , m(n)

θ0
)→ 1

2
|θ − θ0|

√
I(θ0)

√
2
π

= |θ − θ0|
√

I(θ0)

2π
, as n → ∞,

because E
(
uθ0(ti)

)
= 0, Var

(
uθ0(ti)

)
= I(θ0) and E(|Z|) =

√
2
π when Z ∼ N(0, 1).

The total variation is a non-quadratic distance. It is however related to a quadratic distance,
the Hellinger distance, defined as H2(τ, m) = 1

2 ∑
(√

τ(t)−
√

m(t)
)2 by the following inequality.

Proposition 7. Let τ, m be two probability mass functions. Then

0 ≤ H2(τ, m) ≤ V(τ, m) ≤
[
H2(τ, m)

(
2− H2(τ, m)

)] 1
2 .

Proof. Straightforward using the definitions of the distances involved and Cauchy-Swartz inequality.
Holder’s inequality provides 1−∑

√
τ(t)m(t) ≥ 0.

Note that 2H2(τ, m) = ∑[
√

τ(t)−
√

m(t)]2; the square root of this quantity, that is
{

∑[
√

τ(t)−√
m(t)]2

}1/2, is known as Matusita’s distance [6,7]. Further, define the affinity between two probability
densities by

ρ(τ, m) = ∑
t

τ1/2(t)m1/2(t).

Then, it is easy to prove that

∑
t
[
√

τ(t)−
√

m(t)]2 = 2
(
1− ρ(τ, m)

)
≤ V(τ, m) ≤ 2

{
∑

t
[
√

τ(t)−
√

m(t)]2
}1/2.

The above inequality indicates the relationship between total variation and Matusita’s distance.

4. Mixture Index of Fit

Rudas, Clogg, and Lindsay [8] proposed a new index of fit approach to evaluate the goodness
of fit analysis of contingency tables based on the mixture model framework. The approach focuses
attention on the discrepancy between the model and the data, and allows comparisons across studies.
Suppose M is the baseline model. The family of models which are proposed for evaluating goodness
of fit is a two-point mixture model given by

Mπ = {τ : τ(t) = (1− π)mθ(t) + πe(t), mθ(t) ∈ M , e(t) arbitrary, θ ∈ Θ}.

Here π denotes the mixing proportion, which is interpreted as the proportion of the population
outside the model M . In the robustness literature the mixing proportion corresponds to the
contamination proportion, as explained below. In the contingency table framework mθ(t), e(t) describe
the tables of probabilities for each latent class. The family of models Mπ defines a class of nested
models as π varies from zero to one. Thus, if the model M does not fit well the data, then by
increasing π, the model Mπ will be an adequate fit for π sufficiently large.

We can motivate the index of fit by thinking of the population as being composed of two classes
with proportions 1− π and π respectively. The first class is perfectly described by M , whereas the
second class contains the “outliers”. The index of fit can then be interpreted as the fraction of the
population intrinsically outside M , that is, the proportion of outliers in the sample.

We note here that these ideas can be extended beyond the contingency table framework.
In our setting, the probability distribution describing the true data generating mechanism may be
written as τ(t) = (1− π)mθ(t) + πe(t), where mθ(t) ∈ M and e(t) is arbitrary. This representation
of τ(t) is arbitrary such that we can construct another representation τ(t) = (1− π − δ)mθ(t) + (π +
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δ)e∗(t). However, there always exists the smallest unique π such that there exists a representation of
τ(t) that puts the maximum proportion in one of the population classes. Next, we define formally the
mixture index of fit.

Definition 7. (Rudas, Clogg, and Lindsay [8]) The mixture index of fit π* is defined by

π∗(τ) = inf{π : τ(t) = (1− π)mθ(t) + πe(t), mθ(t) ∈ M , e(t) arbitrary}.

Notice that π∗(τ) is a distance. This is because if we set π∗(τ, mθ) = inf{π : τ(t) = (1 −
π)mθ(t) + πe(t), e(t) arbitrary} for a fixed mθ(t), we have π∗(τ, mθ) > 0 and π∗(τ, mθ) = 0 if τ = mθ .

Definition 8. Define the statistical distance π∗(τ, M ) as follows:

π∗(τ, M ) = inf
m∈M

π∗(τ, m).

Remark 3. Note that, to be able to present Proposition 8 below, we have turned arbitrary discrete distributions
into vectors. As an example, if the sample space T = {0, 1, 2} and P(X = 0) = P(X = 1) = P(X =

2) = 1/3, we write this discrete distribution as the vector (1/3, 1/3, 1/3)T. If, furthermore, we consider the
vectors �δ0 = (1, 0, 0)T, �δ1 = (0, 1, 0)T, and �δ2 = (0, 0, 1)T as degenerate distributions assigning mass 1 at
positions 0, 1, 2 then (1/3, 1/3, 1/3)T = 1

3
�δ0 +

1
3
�δ1 +

1
3
�δ2. This representation of distributions is used in the

proof of Proposition 8.

Proposition 8. The set of vectors �τ satisfying the relationship π∗(�τ, �m) ≤ π0 is a simplex with extremal
points (1− π0)�m + π0�δi, where �δi is the vector with 1 at the (i + 1)th position and 0 everywhere else.

Proof. Given �τ with π∗ ≤ π0, there exists a representation of

�τ = (1− π0)�m + π0�e.

Write any arbitrary discrete distribution�e as follows:

�e = e0�δ0 + · · ·+ eT�δT ,

where ∑T
i=0 ei = 1 and δi takes the value 1 at the (i + 1)th position and the value 0 everywhere else.

Then
(1− π0)�m + π0�e = e0[(1− π0)�m + π0�δ0] + · · ·+ eT [(1− π0)�m + π0�δT ],

which belongs to a simplex.

Proposition 9. We have

π∗(τ, m) = sup
t

{
1− τ(t)

m(t)
}
= 1− inf

t

{ τ(t)
m(t)

}
.

Proof. Define

λ = 1− inf
t

{ τ(t)
m(t)

}
and λ̄ = 1− λ.

Then

τ(t)− (1− λ)m(t) = τ(t)− inf
t

{ τ(t)
m(t)

}
m(t)

= m(t)
[

τ(t)
m(t)

− inf
t

{ τ(t)
m(t)

}]
≥ 0,
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with equality at some t. Let now the error term be

e∗(t) =
1
λ

[
τ(t)− λ̄m(t)

]
.

Then τ(t) = (1− λ)m(t) + λe∗(t) and λ cannot be made smaller without making e∗(t) negative
at a point t0. This concludes the proof.

Corollary 2. We have
π∗(τ, m) = 1

if there exists t0 such that τ(t0) = 0 and m(t0) > 0.

Proof. By Proposition 9 π∗ ≤ 1, but it equals 1 at t0.

One of the advantages of the mixture index of fit is that it has an intuitive interpretation that does
not depend upon the specific nature of the model being assessed. Liu and Lindsay [9] extended the
results of Rudas et al. [8] to the Kullback-Leibler distance. Computational aspects of the mixture index
of fit are discussed in Xi and Lindsay [4] as well as in Dayton [10] and Ispány and Verdes [11].

Finally, a new interpretation to the mixture index of fit was presented by Ispány and Verdes [11].
Let P be the set of probability measures and H ⊂ P . If d is a distance measure on P and N(H , π) ={

Q : Q = (1− π)M + πR, M ∈ H , R ∈ P
}

, then π∗ = π∗(P , H ) is the least non-negative solution
of the equation d(P , N(H , π)) := minQ∈N(H ,π) d(P, Q) = 0 in π.

Next, we offer some interpretations associated with the mixture index of fit. The statistical
interpretations made with this measure are attractive, as any statement based on the model applies to
at least 1− π∗ of the population involved. However, while the “outlier”model seems interpretable
and attractive, the distance itself is not very robust.

In other words, small changes in the probability mass function do not necessarily mean small
changes in distance. This is because if m(t0) = ε, then a change of ε in τ(t0) from ε to 0 causes π∗(τ, m)

to go to 1. Moreover, assume that our framework is that of continuous probability measures, and that
our model is a normal density. If τ(t) is a lighter tailed distribution than our normal model m(t), then

lim
t→∞

{
1− τ(t)

m(t)
}
= 1,

and therefore

π∗(τ, m) = sup
t

{
1− τ(t)

m(t)
}
= 1.

That is, light tailed densities are interpreted as 100% outliers. Therefore, the mixture index of
fit measures error from the model in a “one-sided” way. This is in contrast to total variation,
which measures the size of “holes” as well as the “outliers” by allowing the distributional errors to
be neutral.

In what follows, we show that if we can find a mixture representation for the true distribution
then this implies a small total variation distance between the true probability mass function and the
assumed model m. Specifically, we have the following.

Proposition 10. Let π* be the mixture index of fit. If τ(t) = (1− π)m(t) + πe(t), then

V(τ, m) ≤ π∗.
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Proof. Write

V(τ, m) =
1
2 ∑ |(1− π)m(t) + πe(t)−m(t)|

=
1
2 ∑ |π

(
e(t)−m(t)

)
|

=
1
2 ∑ π∗|e(t)−m(t)|,

with π = π∗. This is because there always exists the smallest unique π such that τ(t) can be represented
as a mixture model.

Thus, the above relationship can be written as

V(τ, m) =
1
2

π∗∑ |e(t)−m(t)| = π∗V(e, m) ≤ π∗.

There is a mixture representation that connects total variation with the mixture index of fit. This is
presented below.

Proposition 11. Denote by

W(τ, m) = inf
π

{
π : (1− π)τ(t) + πe1(t) = (1− π)m(t) + πe2(t)

}
.

Then

W(τ, m) =
V(τ, m)

1 + V(τ, m)
.

Proof. Fix τ; for any given m let (e1, e2, π̃) be a solution to the equation

π̃τ + (1− π̃)e1i = π̃ei + (1− π̃)e2i, i = 1, 2, · · · , T. (1)

Let q1i = (1− π̃)e1i and q2i = (1− π̃)e2i and note that since

∑ e1i = ∑ e2i = 1

then

∑ q1i = ∑ q2i = 1− π̃.

Rewrite now Equation (1) as follows:

π̃τi + q1i = π̃mi + q2i

⇒ q2i − q1i = π̃(τi −mi)

⇒ q2i − q1i = π̃(τi −mi)
+ − π̃(τi −mi)

−,

where (x)+ = max(x, 0) and (x)− = −min(x, 0). Thus, ignoring the constraints, every pair (e1i, e2i)

satisfying the equation above also satisfies

q1i = π̃(τi −mi)
− + εi,

q2i = π̃(τi −mi)
+ + εi,
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for some number εi. Moreover, such pair must have εi ≥ 0 in order the constraints q1i ≥ 0, q2i ≥ 0 to
be satisfied. Hence, varying εi over εi ≥ 0 gives a class of solutions. To determine π̃,

∑
i

q1i = ∑
i
(π̃(τi −mi)

− + εi) = 1− π̃,

∑
i

q2i = ∑
i
(π̃(τi −mi)

+ + εi) = 1− π̃,

and adding these we obtain

2(1− π̃) = π̃ ∑ |τi −mi|+ 2 ∑ εi

⇒ 2 = π̃
(
2 + ∑ |τi −mi|

)
+ 2 ∑ εi

⇒ 2− 2 ∑ εi = π̃
(
2 + ∑ |τi −mi|

)
⇒ π̃ =

2− 2 ∑ εi
2 + ∑ |τi −mi|

,

and the maximum value is obtained when ∑ εi = 0 ⇒ εi = 0, ∀i. Therefore

π̃ =
2

2 + ∑ |τi −mi|
=

1
1 + 1

2 ∑ |τi −mi|
=

1
1 + V(τ, m)

and so

W(τ, m) =
V(τ, m)

1 + V(τ, m)
.

Therefore, for small V(τ, m) the mixture index of fit and the total variation distance are
nearly equal.

5. Kullback-Leibler Distance

The Kullback-Leibler distance [12] is extensively used in statistics and in particular in model
selection. The celebrated AIC model selection criterion [13] is based on this distance. In this section,
we present the Kullback-Leibler distance and some of its properties with particular emphasis
on interpretations.

Definition 9. The Kullback-Leibler distance between two densities τ, m is defined as

K2(τ, m) = ∑ m(t) log
(m(t)

τ(t)
)
,

or

K2(τ, m) =
∫

m(t) log
(m(t)

τ(t)
)
dt.

Proposition 12. The Kullback-Leibler distance is nonnegative, that is

K2(τ, m) ≥ 0

with equality if and only if τ(t) = m(t).

Proof. Write

K2(τ, m) = ∑ m(t)
[

log
(m(t)

τ(t)
)
+

τ(t)
m(t)

− 1
]
= ∑ m(t)

[
− log

( τ(t)
m(t)

)
+

τ(t)
m(t)

− 1
]
.
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Set X = τ(t)
m(t) ≥ 0, then − log X + X− 1 is a convex, non-negative function that equals 0 at X = 1.

Therefore K2(τ, m) ≥ 0.

Definition 10. We define the likelihood distance between two densities τ, m as

λ2(τ, m) = ∑ τ(t) log
( τ(t)

m(t)
)
.

The intuition behind the above expression of the likelihood distance comes from the fact that the
log-likelihood in the case of discrete random variables taking nj discrete values, ∑m

j=1 nj = n, m is the
number of groups, can be written, after appropriate algebraic manipulations, in the above form.

Alternatively, we can write the likelihood distance as

λ2(τ, m) = ∑ m(t)
[ τ(t)

m(t)
log
( τ(t)

m(t)
)
− τ(t)

m(t)
+ 1
]
,

and use this relationship to obtain insight into connections of the likelihood distance with the
chi-squared measures studied by Markatou et al. [3].

Specifically, if we write the Pearson’s chi-squared statistic as

P2(τ, m) = ∑ m(t)
[ τ(t)

m(t)
− 1
]2,

then from the functional relationship r log r − r + 1 ≤ (r − 1)2 we obtain that λ2(τ, m) ≤ P2(τ, m).
However, it is also clear from the right tails of the functions that there is no way to bound λ2(τ, m)

below by a multiple of P2(τ, m). Hence, these measures are not equivalent in the same way that
Hellinger distance and symmetric chi-squared are (see Lemma 4, Markatou et al. [3]). In particular,
knowing that λ2(τ, m) is small is no guarantee that all Pearson z-statistics are uniformly small.

On the other hand, one can show by the same mechanism that S2 ≤ 2kλ2, where k < 32/9 and S2

is the symmetric chi-squared distance given as

S2(τ, m) = ∑
(
τ(t)−m(t)

)2

1
2 τ(t) + 1

2 m(t)
.

It is therefore true that small likelihood distance λ2 implies small z-statistics with blended variance
estimators. However, the reverse is not true because the right tail in r for S2 is of magnitude r,
as opposed to r log r for the likelihood distance.

These comparisons provide some feeling for the statistical interpretation of the likelihood distance.
Its meaning as a measure of model misspecification is unclear. Furthermore, our impression is
that likelihood, like Pearson’s chi-squared is too sensitive to outliers and gross errors in the data.
Despite Kullback-Leibler’s theoretical and computational advantages, a point of inconvenience in
the context of model selection is the lack of symmetry. One can show that reversing the roles of the
arguments in the Kullback-Leibler divergence can yield substantially different results. The sum of
the Kullback-Leibler distance and the likelihood distance produces the symmetric Kullback-Leibler
distance or J divergence. This measure is symmetric in the arguments, and when used as a model
selection measure it is expected to be more sensitive than each of the individual components.

6. Computation and Applications of Total Variation, Mixture Index of Fit and Kullback-
Leibler Distances

The distances discussed in this paper are used in a number of important applications. Euán et al. [14]
use the total variation to detect changes in wave spectra, while Alvarez- Esteban et al. [15] cluster time
series data on the basis of the total variation distance. The mixture index of fit has found a number of
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applications in the area of social sciences. Rudas et al. [8] provided examples of the application of π* to
two-way contingency tables. Applications involving differential item functioning and latent class analysis
were presented in Rudas and Zwick [16] and Dayton [17] respectively. Formann [18] applied it in regression
models involving continuous variables. Finally, Revuelta [19] applied the π* goodness-of-fit statistic to
finite mixture item response models that were developed mainly in connection with Rasch models [20,21].
The Kullback-Leibler (KL) distance [12] is fundamental in information theory and its applications.
In statistics, the celebrated Akaike information Criterion (AIC) [13,22], widely used in model selection,
is based on the Kullback-Leibler distance. There are numerous additional applications of the KL
distance in fields such as fluid mechanics, neuroscience, machine learning. In economics, Smith, Naik,
and Tsai [23] use KL distance to simultaneously select the number of states and variables associated
with Markov-switching regression models that are used in marketing and other business applications.
KL distance is also used in diagnostic testing for ruling in or ruling out disease [24,25], as well as in
a variety of other fields [26].

Table 1 presents the software, written in R, that can be used to compute the aforementioned
distances. Additionally, Zhang and Dayton [27] present a SAS program to compute the two-point
mixture index of fit for the two-class latent class analysis models with dichotomous variables.
There are a number of different algorithms that can be used to compute the mixture index of fit
for contingency tables. Rudas et al. [8] propose to use a standard EM algorithm, Xi and Lindsay [4]
use sequential quadratic programming and discuss technical details and numerical issues related
to applying nonlinear programming techniques to estimate π*. Dayton [10] discusses explicitly the
practical advantages associated with the use of nonlinear programming as well as the limitations,
while Pan and Dayton [28] study a variety of additional issues associated with computing π*.
Additional algorithms associated with the computation of π* can be found in Verdes [29] and Ispány
and Verdes [11].

We now describe a simulation study that aims to illustrate the performance of the total variation,
Kullback-Leibler, and mixture index of fit as model selection measures. Data are generated from either
an asymmetric (1− ε)N(0, 1) + εN(μ, σ2) contamination model, or from a symmetric (1− ε)N(0, 1) +
εN(0, σ2) contamination model, where ε is the percentage of contamination. Specifically, we generate
500 Monte Carlo samples of sample sizes 200, 1000, and 5000 as follows. If the sample has size n and
the percentage of contamination is ε, then nε of the sample size is generated from model N(μ, σ2)

or N(0, σ2) and the remaining n(1− ε) from a N(0, 1) model. We use μ = 1, 5, 10 and σ2 = 1 in the
N(μ, σ2) model and σ2 = 4, 9, 16 in the N(0, σ2) model. The total variation distance was computed
between the simulated data and the N(0, 1) model. The Kullback-Leibler distance was calculated
between the data generated from the aforementioned contamination models and a random sample of
the same size n from N(0, 1). When computing the mixture index of fit, we specified the component
distribution as a normal distribution with initial mean 0 and variance 1. All simulations were carried
out on a laptop computer with an Intel Core i7 processor and 64 bit Windows 7 operation system.
The R packages used are presented in Table 1.

Tables 2 and 3 present means and standard deviations of the total variation and Kullback-Leibler
distances as a function of the contamination model and the sample size. To compute the total variation
distance we use the R function “TotalVarDist” of the R package “distrEx”. It smooths the empirical
distribution of the provided data using a normal kernel and computes the distance between the
smoothed empirical distribution and the provided continuous distribution (in our case this distribution
is N(0, 1)). We note here that the package “distrEx” provides an alternative option to compute
the total variation which relies on discretizing the continuous distribution and then computes the
distance between the discretized continuous distribution and the data. We think that smoothing
the data to obtain an empirical estimator of the density and then calculating its distance from the
continuous density is a more natural way to handle the difference in scale between the discrete
data and the continuous model. Lindsay [1] and Markatou et al. [3] discuss this phenomenon and
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call it discretization robustness. The Kullback-Leibler distance was computed using the function
“KLD.matrix” of the R package “bioDist”.

Table 1. Computer packages for calculating total variation, mixture index of fit, and Kullback-
Leibler distances.

Information Total Variation Kullback-Leibler Mixture Index of Fit

R package distrEx bioDist pistar
R function TotalVarDist KLD.matrix pistar.uv
Dimension Univariate Univariate Univariate

Website https://cran.r-project.org http://bioconductor.org/packages https://rdrr.io/github/
/web/packages/distrEx/ /release/bioc/html/bioDist.html jmedzihorsky/pistar/man/

Table 2. Means and standard deviations (SD) of the total variation (TV) and Kullback-Leibler (KLD)
distances. Data are generated from the model (1− ε)N(0, 1) + εN(μ, 1) with μ = 1, 5, 10. The sample
size n is 200, 1000, 5000. The number of Monte Carlo replications is 500.

Contaminating Percentage of
Summary

n = 200 n = 1000 n = 5000
Model Contamination (ε) TV KLD TV KLD TV KLD

N(1, 1)

0.01 Mean 0.144 0.224 0.065 0.048 0.029 0.008
SD 0.017 0.244 0.007 0.051 0.004 0.009

0.05 Mean 0.146 0.255 0.069 0.065 0.034 0.017
SD 0.017 0.267 0.009 0.059 0.004 0.015

0.1 Mean 0.149 0.323 0.076 0.088 0.047 0.026
SD 0.017 0.343 0.009 0.073 0.005 0.018

0.2 Mean 0.162 0.482 0.097 0.147 0.081 0.059
SD 0.020 0.462 0.011 0.123 0.006 0.030

0.3 Mean 0.181 0.616 0.128 0.215 0.117 0.102
SD 0.022 0.528 0.013 0.150 0.007 0.044

0.4 Mean 0.201 0.733 0.162 0.293 0.155 0.153
SD 0.024 0.616 0.014 0.176 0.007 0.058

0.5 Mean 0.232 0.937 0.198 0.392 0.192 0.207
SD 0.026 0.735 0.014 0.203 0.007 0.067

N(5, 1)

0.01 Mean 0.149 0.577 0.070 0.338 0.034 0.231
SD 0.017 0.373 0.008 0.131 0.004 0.063

0.05 Mean 0.167 1.416 0.092 1.041 0.060 0.838
SD 0.020 0.499 0.009 0.248 0.004 0.138

0.1 Mean 0.196 2.392 0.126 2.002 0.103 1.731
SD 0.020 0.609 0.010 0.335 0.004 0.219

0.2 Mean 0.259 4.841 0.210 4.404 0.199 3.947
SD 0.023 0.941 0.012 0.512 0.006 0.383

0.3 Mean 0.336 7.924 0.302 7.305 0.297 6.652
SD 0.028 1.182 0.014 0.730 0.007 0.569

0.4 Mean 0.419 11.317 0.398 10.655 0.396 9.843
SD 0.031 1.388 0.016 0.863 0.006 0.792

0.5 Mean 0.506 15.045 0.495 14.443 0.494 13.573
SD 0.035 1.768 0.016 1.027 0.007 0.999

N(10, 1)

0.01 Mean 0.149 0.352 0.070 0.129 0.034 0.082
SD 0.017 0.275 0.008 0.071 0.004 0.024

0.05 Mean 0.169 0.862 0.094 0.713 0.061 0.705
SD 0.018 0.408 0.009 0.178 0.004 0.093

0.1 Mean 0.197 1.898 0.128 1.850 0.105 1.854
SD 0.020 0.593 0.010 0.261 0.004 0.132

0.2 Mean 0.259 4.685 0.211 4.640 0.202 4.638
SD 0.026 0.968 0.013 0.423 0.006 0.253

0.3 Mean 0.340 8.393 0.305 8.055 0.300 7.909
SD 0.029 1.391 0.014 0.631 0.007 0.388

0.4 Mean 0.420 12.209 0.402 11.846 0.401 11.653
SD 0.031 1.433 0.014 0.657 0.007 0.448

0.5 Mean 0.515 16.544 0.503 16.041 0.501 15.841
SD 0.032 1.499 0.016 0.730 0.007 0.432
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Table 3. Means and standard deviations (SD) of the total variation (TV) and Kullback-Leibler (KLD)
distances. Data are generated from the model (1− ε)N(0, 1) + εN(0, σ2) with σ2 = 4, 9, 16. The sample
size n is 200, 1000, 5000. The number of Monte Carlo replications is 500.

Contaminating Percentage of
Summary

n = 200 n = 1000 n = 5000
Model Contamination (ε) TV KLD TV KLD TV KLD

N(0, 4)

0.01 Mean 0.145 0.263 0.066 0.068 0.030 0.021
SD 0.017 0.250 0.008 0.058 0.003 0.014

0.05 Mean 0.147 0.497 0.069 0.204 0.034 0.079
SD 0.017 0.391 0.008 0.130 0.004 0.036

0.1 Mean 0.154 0.778 0.076 0.368 0.044 0.181
SD 0.018 0.527 0.008 0.168 0.004 0.062

0.2 Mean 0.166 1.275 0.094 0.712 0.071 0.426
SD 0.020 0.639 0.010 0.255 0.005 0.108

0.3 Mean 0.182 1.797 0.118 1.067 0.101 0.671
SD 0.021 0.738 0.012 0.324 0.006 0.158

0.4 Mean 0.201 2.320 0.144 1.407 0.133 0.924
SD 0.021 0.875 0.012 0.403 0.006 0.198

0.5 Mean 0.220 2.766 0.173 1.755 0.164 1.164
SD 0.025 0.932 0.013 0.450 0.006 0.219

N(0, 9)

0.01 Mean 0.146 0.369 0.067 0.122 0.031 0.046
SD 0.018 0.348 0.007 0.089 0.003 0.022

0.05 Mean 0.154 0.839 0.074 0.490 0.040 0.321
SD 0.017 0.477 0.008 0.187 0.004 0.081

0.1 Mean 0.164 1.414 0.087 0.945 0.058 0.661
SD 0.018 0.602 0.009 0.256 0.005 0.120

0.2 Mean 0.189 2.529 0.120 1.748 0.101 1.300
SD 0.021 0.801 0.011 0.366 0.005 0.188

0.3 Mean 0.216 3.529 0.161 2.526 0.149 1.954
SD 0.023 0.957 0.012 0.466 0.006 0.276

0.4 Mean 0.252 4.608 0.205 3.444 0.196 2.660
SD 0.026 1.071 0.014 0.549 0.006 0.339

0.5 Mean 0.286 5.630 0.250 4.289 0.244 3.423
SD 0.026 1.123 0.014 0.657 0.007 0.406

N(0, 16)

0.01 Mean 0.146 0.429 0.067 0.166 0.031 0.078
SD 0.016 0.374 0.007 0.100 0.003 0.032

0.05 Mean 0.156 1.073 0.078 0.716 0.044 0.511
SD 0.017 0.514 0.008 0.203 0.004 0.088

0.1 Mean 0.169 1.774 0.094 1.281 0.066 0.981
SD 0.019 0.606 0.008 0.277 0.005 0.142

0.2 Mean 0.200 3.160 0.137 2.383 0.120 1.927
SD 0.021 0.800 0.011 0.408 0.005 0.218

0.3 Mean 0.239 4.471 0.187 3.532 0.177 2.937
SD 0.025 1.045 0.013 0.485 0.006 0.278

0.4 Mean 0.280 5.812 0.242 4.822 0.235 4.044
SD 0.026 1.125 0.014 0.589 0.007 0.355

0.5 Mean 0.331 7.537 0.298 6.145 0.293 5.218
SD 0.029 1.274 0.015 0.693 0.007 0.433

We observe from the results of Tables 2 and 3 that the total variation distance for small percentages
of contamination is small and generally smaller than the Kullback-Leibler distance for both asymmetric
and symmetric contamination models with a considerably smaller standard deviation. The above
behavior of the total variation distance in comparison to the Kullback-Leibler manifests itself across all
sample sizes used.

Table 4 presents the mixture index of fit computed using the R function “pistar.uv” from the
R package “pistar” (https://rdrr.io/github/jmedzihorsky/pistar/man/; accessed on 5 June 2018).
Since the fundamental assumption in the definition of the mixture index of fit is that the population on

157



Entropy 2018, 20, 464

which the index is applied is heterogeneous and expressed via the two-point model, we only used the
asymmetric contamination model for various values of the contamination distribution.

Table 4. Means and standard deviations (SD) for the mixture index of fit. Data are generated
from an asymmetric contamination model of the form (1− ε)N(0, 1) + εN(μ, 1), μ = 1, 5, 10 with
sample sizes, n, of 1000, 5000. The number of Monte Carlo replications is 500.

Percentage of
Summary

N(1, 1) N(5, 1) N(10, 1)
Contamination ε n = 1000 n = 5000 n = 1000 n = 5000 n = 1000 n = 5000

0.1 Mean 0.180 0.160 0.223 0.213 0.837 0.934
SD 0.045 0.044 0.041 0.040 0.279 0.198

0.2 Mean 0.184 0.172 0.288 0.287 0.433 0.521
SD 0.044 0.042 0.036 0.036 0.144 0.240

0.3 Mean 0.189 0.179 0.344 0.346 0.314 0.317
SD 0.047 0.039 0.028 0.024 0.016 0.012

0.4 Mean 0.194 0.186 0.436 0.436 0.410 0.413
SD 0.044 0.034 0.026 0.021 0.017 0.011

0.5 Mean 0.194 0.185 0.529 0.533 0.511 0.512
SD 0.047 0.035 0.024 0.020 0.017 0.010

We observe that the mixture index of fit generally estimates well the mixing proportion ε.
We observe (see Table 4) that when the second population is N(1, 1) the bias associated with estimating
the mixing (or contamination) population can be as high as 30.6%. This is expected because the
population N(1, 1) is very close to N(0, 1) creating essentially a unimodal sample. As the means of the
two normal components get more separated, the mixture index of fit provides better estimates of the
mixing quantity and the percentage of observations that need to be removed so that N(0, 1) provides
a good fit to the remaining data points.

7. Discussion and Conclusions

Divergence measures are widely used in scientific work, and popular examples of these measures
include the Kullback-Leibler divergence, Bregman Divergence [30], the power divergence family of
Cressie and Read [31], the density power divergence family [32] and many others. Two relatively
recent books that discuss various families of divergences are Pardo [33] and Basu et al. [34].

In this paper we discuss specific divergences that do not belong to the family of quadratic
divergences, and examine their role in assessing model adequacy. The total variation distance might
be preferable as it seems closest to a robust measure, in that if the two probability measures differ only
on a set of small probability, such as a few outliers, then the distance must be small. This was clearly
exemplified in Tables 2 and 3 of Section 6. Outliers influence chi-squared measures more. For example,
the Pearson’s chi-squared distance can be made dramatically larger by increasing the amount of data in
a cell with small model probability mθ(t). In fact, if there is data in a cell with model probability zero,
the distance is infinite. Note that if data occur in a cell with probability, under the model, equal to zero,
then it is possible that the model is not true. Still, even in this case, we might wish to use it on the
premise that mθ provides a good approximation.

There is a pressing need for the further development of well-tested software for computing the
mixture index of fit. This measure is intuitive and has found many applications in the social sciences.
Reiczigel et al. [35] discuss bias-corrected point estimates of π*, as well as a bootstrap test and new
confidence limits, in the context of contingency tables. Well-developed and tested software will further
popularize the dissemination and use of this method.

The mixture index of fit ideas were extended in the context of testing general model adequacy
problems by Liu and Lindsay [9]. Recent work by Ghosh and Basu [36] presents a systematic procedure
of generating new divergences. Ghosh and Basu [36], building upon the work of Liu and Lindsay [9],
generate new divergences through suitable model adequacy tests using existing divergences. Additionally,
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Dimova et al. [37] use the quadratic divergences introduced in Lindsay et al. [2] and construct a model
selection criterion from which we can obtain AIC and BIC as special cases.

In this paper, we discuss non-quadratic distances that are used in many scientific fields where the
problem of assessing the fitted models is of importance. In particular, our interest centered around
the properties and potential interpretations of these distances, as we think this offers insight into their
performance as measures of model misspecification. One important aspect for the dissemination and
use of these distances is the existence of well-tested software that facilitates computation. This is
an area where further development is required.
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Abstract: The φ-divergence association models for two-way contingency tables is a family of models
that includes the association and correlation models as special cases. We present this family of models,
discussing its features and demonstrating the role of φ-divergence in building this family. The most
parsimonious member of this family, the model of φ-scaled uniform local association, is considered
in detail. It is implemented and representative examples are commented on.

Keywords: log-linear models; ordinal classification variables; association models; correlation models

1. Introduction

Contingency tables and their analysis are of special importance for various diverse fields,
like medical sciences, psychology, education, demography and social sciences. In these fields,
categorical variables and their cross-classification play a predominant role, since characteristics of
interest are often categorical, nominal or most frequently ordinal. For example, diagnostic ratings,
strength of opinions or preferences, educational attainments and socioeconomic characteristics are
expressed in ordinal scales. The origins of contingency table analysis (CTA) lie back in 1900 with the
well-known contributions by Pearson and Yule, while, for the history of CTA before 1900, we refer to
the interesting paper by Stigler [1]. The interest lies mainly in identifying and describing structures
of underlying association in terms of appropriate models or measures. Divergence measures have
been employed in the CTA mainly for hypothesis testing (model fit) and estimation, leading to general
families of test statistics and estimators. The family of φ-divergence test statistics contain the classical
likelihood ratio and Pearson test statistics as special cases while the maximum likelihood estimators
(MLEs) belong to the family of the minimum φ-divergence estimators (MφEs). Families of φ-divergence
based test statistics as well as MφEs for various standard models in CTA have a long history. However,
their consideration and discussion is out of our scope. For a detailed overview and related references,
we refer to the comprehensive book of Pardo [2]. For log-linear models, see also [3].

Here, we aim at highlighting a different structural role of φ-divergence in contingency tables
modelling, namely that of linking phenomenological different models, forming thus a family of models
and providing a basis for their comparison, understanding and unified treatment. Through this
approach, new insight is gained for the standard association and correlation models (see [4,5]) while
further alternatives are considered. We restrict our discussion on two-dimensional contingency tables,
but the models and approaches discussed are directly extendable to tables of higher dimension.

The organization of the paper is as follows. Preliminaries on log-linear models, divergence measures,
association and correlation models for two-way tables are provided in Section 2. In the sequel, the general
family of φ-divergence based association models (AMs), which includes the classical association and
correlation models as special cases, is reviewed in Section 3. The most parsimonious φ-divergence
based association model, that of φ-scaled uniform local association, and its role in conditional testing of
independence is considered and discussed in Section 4. For this family of models, the effect of the specific
φ-function used is illustrated by analysing representative examples in Section 5. Some final comments are
provided in Section 6.

Entropy 2018, 20, 324; doi:10.3390/e20050324 www.mdpi.com/journal/entropy161
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2. Preliminaries

Consider an I × J contingency table n = (nij) with rows and columns classification variables X
and Y, respectively, where nij is the observed frequency in cell (i, j). The total sample size n = ∑i,j nij
is fixed and the random table N is multinomial distributed N ∼ M(n, π), with probability table
π ∈ ΔI J , where ΔI J is the simplex ΔI J = {π = (πij) : πij > 0, ∑i,j πij = 1}. Let m = E(N) = nπ

be the table of expected cell frequencies. Since the mapping (n, π) �→ m is one-to-one on ΔI J ,
m ∈ {m = (mij) : mij > 0, ∑i,j mij = n} and models (hypotheses) for π can equivalently be expressed
in terms of m. Furthermore, let πr = (π1+, . . . , πI+)

T and πc = (π+1, . . . , π+J)
T be the row and

column marginal probabilities vectors, respectively, and p = (pij) the table of sample proportions with
pij = nij/n.

The classical independence hypothesis for the classification variables X and Y (π = πrπT
c = πI)

corresponds to the log-linear model of independence (I), defined in terms of expected cell frequencies as

log(mij) = λ + λX
i + λY

j , i = 1, . . . , I, j = 1, . . . , J, (1)

where λX
i and λY

j are the i-th row and j-th column main effects, respectively, while λ is the intercept.
If the independence model is rejected, the interaction between X and Y is significant and the only
alternative in the standard log-linear models set-up is the saturated model

log(mij) = λ + λX
i + λY

j + λXY
ij , i = 1, . . . , I, j = 1, . . . , J, (2)

which imposes no structure on π. Identifiability constraints need to be imposed on the main effect and
interaction parameters of these models, like λX

1 = λY
1 = 0 and λXY

1j = λXY
i1 = 0, for all i, j.

An important generalized measure for measuring the divergence between two probability
distributions is the φ-divergence. Let π = (πij), q = (qij) ∈ ΔI J be two discrete finite bivariate
probability distributions. Then, the φ–divergence between q and π (or Csiszar’s measure of
information in q about π), is given by

IC
φ (q, π) = ∑

i,j
πijφ(qij/πij), (3)

where φ is a real–valued strictly convex function on [0, ∞) with φ(1) = φ′(1) = 0, 0φ(0/0) = 0,
0φ(y/0) = limx→∞ φ(x)/x (cf. [2]). Setting φ(x) = x log x, (3) is reduced to the Kullback–Leibler
(KL) divergence

IKL(q, π) = ∑
i,j

qij log(qij/πij), (4)

while, for φ(x) = (1− x)2, Pearson’s divergence is derived. If φ(x) = xλ+1−x
λ(λ+1) , (3) becomes the power

divergence measure of Cressie and Read [6]

ICR
λ (q, π) =

1
λ(λ + 1)

K

∑
i=1

qi

[(
qi
πi

)λ

− 1

]
, −∞ < λ < ∞ , λ �= −1, 0. (5)

For λ → −1 and λ → −0, (5) converges to the IKL(π, q) and IKL(q, π), respectively, while λ = 1
corresponds to Pearson’s divergence.

The goodness of fit (GOF) of model (1) is usually tested by the likelihood ratio test statistic
G2 = 2nIKL(p, π̂) or Pearson’s X2 = 2nICR

1 (p, π̂), where π̂ is the MLE of π under (1). Both test
statistics are under (1) asymptotically X 2

(I−1)(J−1) distributed. Alternatively, φ-divergence test statistics
can be used (see [3]).

162



Entropy 2018, 20, 324

2.1. Association Models

In case of ordinal classification variables, the association models (AMs) impose a special structure
on the underlying association and thus provide non-saturated models of dependence. AMs are based
on scores μ = (μ1, . . . , μI) and ν = (ν1, . . . , νJ) assigned to the rows and columns of the ordinal
classification variables, respectively. They are defined by the expression

log(mij) = λ + λX
i + λY

j + ζμiνj , i = 1, . . . , I, j = 1, . . . , J, (6)

where the row and column scores are standardized subject to weights w1 = (w11, . . . , w1I)
T and

w2 = (w21, . . . , w2J)
T , respectively, i.e., it holds

∑
i

w1iμi = ∑
j

w2jνj = 0 and ∑
i

w1iμ
2
i = ∑

j
w2jν

2
j = 1. (7)

Usually, the uniform (w1 = 1I , w2 = 1J , where 1k is a k× 1 vector of 1s) or the marginal weights
(w1 = πr, w2 = πc) are used.

If μ and ν are both known and ordered, then (6) has just one parameter more than independence,
parameter ζ, and is known as the Linear-by-Linear (LL) AM. In case the vector μ is unknown, (6) is
the Row effect (R) AM, while the Column effect (C) AM is defined analogously. Finally, when the
row and the column scores are all unknown parameters to be estimated, (6) is the multiplicative
Row-Column (RC) AM. Scores that are unknown need not necessarily to be ordered. Note that
models LL, R and C are log-linear while the RC is not. The degrees of freedom (d f ) of these
AMs equal d f (LL) = (I − 1)(J − 1)− 1, d f (R) = (I − 1)(J − 2), d f (C) = (I − 2)(J − 1) and
d f (RC) = (I − 2)(J − 2). The special LL model for which the row and column scores are equidistant
for successive categories is known as the Uniform (U) AM.

In case the RC model is not of adequate fit, multiplicative row-column AMs of higher order can
be considered. Such a model of M-th order is defined as

log mij = λ + λX
i + λY

j +
M

∑
m=1

ζmμimνjm , i = 1, . . . , I , j = 1, . . . , J , (8)

with 1 ≤ M ≤ M∗ = min(I, J) − 1, and denoted by RC(M). Model RC(M∗) is an equivalent
expression of the saturated model (2). The sum ∑M

m=1 ζmμimνjm in (8) corresponds to the generalized

singular value decomposition of the matrix of interaction parameters of model (2), Λ =
(

λXY
ij

)
I×J

,

and M is the rank of Λ. The ζms are the associated eigenvalues, satisfying thus ζ1 ≥ . . . ≥ ζM > 0.
Vectors μm = (μ1m, . . . , μIm) and νm = (ν1m, . . . , νJm) are the corresponding row and column
eigenvectors, m = 1, . . . , M, which are orthonormalized with respect to the weights w1 and w2, i.e.,
the following constraints are satisfied:

∑
i

w1iμim = ∑
j

w2jνjm = 0, m = 1, . . . , M , (9)

∑
i

w1iμimμi� = ∑
j

w2jνjmνj� = δm�, m, � = 1, . . . , M,

where δm� is Kronecker’s delta. It can easily be verified that d f (RC(M)) = (I − M− 1)(J − M− 1).
AMs have been mainly developed by Goodman (see [4,5] and references therein) and are thus often
referred to as Goodman’s AMs. For a detailed presentation of the association models, their inference,
properties, interpretation, the role of the weights used and associated literature, we refer to the book of
Kateri [7] (Chapter 6).
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For ease in understanding but also for interpretation purposes, it is convenient to think in terms
of the local associations of the table and define thus AMs through the local odds ratios (LORs)

θij =
πijπi+1,j+1

πi+1,jπi,j+1
, i = 1, . . . , I − 1, j = 1, . . . , J − 1. (10)

Recall that the (I − 1)× (J − 1) table of LORs θ = (θij), jointly with the marginal probabilities
vectors πr and πc, specify uniquely the corresponding I× J probability table π. Thus, given πr and πc,
a model on π can equivalently be expressed in terms of θ. Hence, model (8) is alternatively defined as

log θij =
M

∑
m=1

ζm(μim − μi+1,m)(νjm − νj+1,m) , (11)

for i = 1, . . . , I − 1 , j = 1, . . . , J − 1. In this set-up, the diffrences of successive row and column scores
are constant for the U model, equal to

μi − μi+1 = Δ1 and νj − νj+1 = Δ2, i = 1, . . . , I − 1, j = 1, . . . , J − 1 , (12)

since scores for successive categories are equidistant. Hence, the U model is equivalently defined as

log θij = ζ(μi − μi+1)(νj − νj+1) = ζΔ1Δ2 = log θ = θ(0) (13)

and is the model under which all local odds ratios are equal across the table, justifying its ‘uniform
association’ characterization.

2.2. Correlation Models

A popular, mainly descriptive method for exploring the pattern of association in contingency
tables is correspondence analysis (CA). The detailed discussion of CA is beyond our scope. For this,
we refer to the book of Greenacre [8]. Correspondence analysis is a reparameterized version of the
canonical correlation model of order M

pij = pi+p+j

(
1 +

M

∑
m=1

ρmximyjm

)
, i = 1 . . . , I, j = 1, . . . , J , (14)

with 1 ≤ M ≤ M∗. The row and column scores (xm = (x1m, . . . , xIm) and ym = (y1m, . . . , yJm),
m = 1, . . . , M) satisfy constraints (9) subject to the marginal weights. Usually, it is assumed M = 2 and
the row and column scores (coordinates) are graphically displayed as points in two-dimensional plots.
The similarities between (8), expressed in terms of π in its multiplicative form, and (14) are obvious.
Thus, motivated by the inferential approaches for AMs, MLEs have been considered for model (14),
leading to the row-column correlation model of order M, while, for M = 1, special correlation models
of U, R or C type have also been discussed by Goodman [4,5].

3. φ-Divergence Based Association Models

AMs and correlation models were developed competitively and opposed to each other (cf. [5]),
until Gilula et al. [9] linked them in an inspiring manner under an information theoretical approach.
They proved that, under certain (common) conditions, both of them are the closest model to
independence. Their difference lies on the divergence used for measuring their closeness to
independence. AMs are the closest in terms of the KL divergence and correlation models in terms of the
Pearson’s divergence. This result motivated subsequent research and led to the definition of general
classes of dependence models by substituting the KL and Pearson divergences through generalized
families of divergences.
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Under the conditions of [9], namely for given marginal distributions (πr and πc), given scores (μ
and ν) and given their correlation ρ = corr(μ, ν), Kateri and Papaioannou [10] derived that the joint
distribution π that is closest to independence in terms of the φ–divergence is of the form

πij = πi+π+jF−1 (αi + β j + ζμiνj
)

, i = 1, . . . , I, j = 1, . . . , J , (15)

where F−1 is the inverse function of F(x) = φ′(x). The scores μ and ν satisfy the constraints (7) with
marginal weights. Under these constraints, it can easily be verified that ρ = corr(μ, ν) = ∑i,j μiνjπij.
Additionally, the identifiability constraints

∑
i

πi+αi = ∑
j

π+jβ j = 0 (16)

are imposed on parameters α = (α1, . . . , αI)) and β = (β1, . . . , β J)). The parameter ζ is
measuring association. It can be verified that (15), due to (7) with marginal weights and (16), leads to

ζ(π, μ, ν) = ∑
i,j

πi+π+jμiνjF

(
πij

πi+π+j

)
(17)

and that ζ = 0 if and only if the independence model holds (π = πI). Furthermore, under model (15),
the correlation ρ between the row and column scores is increasing in ζ and the φ-divergence measure
IC
φ (π, πI), for given φ-function, is increasing in |ζ|.

Model (15), with known row and column scores, is the φ–divergence based extension of
the LL model and is denoted by LLφ. If the scores are additionally equidistant for successive
categories, (15) becomes the φ–divergence based U model, Uφ, while the classes of models Rφ, Cφ

and RCφ are defined analogously. The standard LL, R, C or RC models correspond to φ(x) = x log x.
The analogue correlation models, defined by (14) for M = 1, are derived for φ(x) = (1− x)2, setting
μ = x1, ν = y1 and ζ = ρ1. For the standard association and correlation models, (17) simplifies to

ζ(π, μ, ν) = ∑
i,j

πi+π+jμiνj log(πij) (18)

and
ζ(π, μ, ν) = ∑

i,j
μiνjπij = corr(μ, ν) = ρ , (19)

respectively.
For the power divergence (for φ(x) = xλ+1−x

λ(λ+1) , λ �= −1, 0), model (15) becomes

πij = πi+π+j

[
1

λ + 1
+ λ(α1 + β j + ζμiνj)

]1/λ

, i = 1, . . . , I, j = 1, . . . , J , (20)

considered by Rom and Sarkar [11]. Expression (20) defines parametric classes of AMs, controlled by
the parameter λ, which are denoted by LLλ, Uλ, Rλ, Cλ or RCλ, according to the assumption made for
the row and column scores.

The RC(M) model, 1 ≤ M ≤ M∗, is analogously generalized to RCφ(M), the class of φ–divergence
AMs of order M, given by

πij = πi+π+jF−1

(
αi + β j +

M

∑
m=1

ζmμimνjm

)
, i = 1, . . . , I, j = 1, . . . , J , (21)
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where the scores μm and νm satisfy restrictions (9) with marginal weights. The standard RC(M)
model (8) is derived for φ(x) = x log x, while, for φ(x) = (1− x)2, model (21) becomes the correlation
model (14) with μm = xm, νm = ym and ζm = ρm, m = 1, . . . , M.

Models (15) and (21) can alternatively be expressed as

θ
(φ)
ij = ζ(μi − μi+1)(νj − νj+1), i = 1, . . . , I − 1, j = 1, . . . , J − 1 , (22)

and

θ
(φ)
ij =

M

∑
m=1

ζm(μim − μi+1,m)(νjm − νj+1,m), i = 1, . . . , I − 1, j = 1, . . . , J − 1 , (23)

respectively, where θ
(φ)
ij is a scaled measure of local dependence, defined for i = 1, . . . , I − 1,

j = 1, . . . , J − 1 as

θ
(φ)
ij (π) = F

(
πij

πi+π+j

)
+ F

(
πi+1,j+1

πi+1,+π+,j+1

)
− F

(
πi+1,j

πi+1,+π+j

)
− F

(
πi,j+1

πi+π+,j+1

)
. (24)

For φ(x) = x log x, (24) becomes the well-known log local odds ratio log(θij), modelled in (13)

and from now on denoted as θ
(0)
ij = log(θij). For the power divergence, we get

θ
(λ)
ij (π) =

1
λ

⎡⎣( πij

πi+π+j

)λ

+

(
πi+1,j+1

πi+1,+π+,j+1

)λ

−
(

πi+1,j

πi+1,+π+j

)λ

−
(

πi,j+1

πi+π+,j+1

)λ
⎤⎦ . (25)

Remark 1. Kateri and Papaioannou [10] studied properties of the class of φ-divergence based AMs. Additionally,
they developed a test based on a φ-divergence statistic for testing the GOF of φ-divergence AMs and studied
its efficiency. The choice of the φ-function in the test statistic is independent of the φ-function used for the
model definition. Thus, it serves as a φ-divergence based GOF test for the traditional well-known association or
correlation models.

In order to understand the role and nature of the scaled measures of local association (24), one
can examine a simple 2× 2 contingency table. In this case, (10) becomes the well-known odds ratio
θ (= θ11). Its φ-divergence scaled generalization, (24) for I = J = 2, has been explored by Espendiller
and Kateri [12]. For these φ-scaled association measures for 2× 2 tables, asymptotic tests of significance
and confidence intervals (CIs) are constructed based on the fact that they are asymptotically normal
distributed. An interesting feature of the family of φ-scaled association measures for 2× 2 tables is that
when the odds ratio θ cannot be finitely estimated (due to sampling zeros), some members of this family
provide finite estimates, while, for a subset of them, their variance is also finite. Extensive evaluation
studies verified earlier statements in the literature about the low coverage of the log odds ratio CIs
when the association is very high (log θ > 4). In such cases, focusing on the power divergence scaled
odds ratios θ(λ), θ(1/3) for λ = 1/3 is to be preferred, since the corresponding CI is of better coverage
when approaching the borders of the parameter space and is in general less conservative than the
classical log odds ratio CI [12]. Here, the role of the scale effect on measuring the local dependence
will be further clarified in the examples discussed in Section 5.

Remark 2. The idea of viewing a model as a departure from a parsimonious reference model, with the property
of being the closest to this reference model under certain conditions in terms of the KL divergence, can be adopted
for other types of models as well, such as the quasi symmetry (QS) model and the logistic regression, lightening
thus a different interpretational aspect of these models. Substitution of the KL divergence by the φ-divergence,
leads further, in an analogous manner to AMs, to the derivation of generalized φ-divergence based classes of QS
models [13], ordinal QS [14] and logistic regression models [15]. For example, in case of the QS, the role of the
scaled measures (24) take the analogously defined scaled deviations from the model of complete symmetry.
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4. Uniform Local Association

We shall focus on the case of uniform local association and the corresponding φ divergence scaled
model Uφ, defined by (15) or (22) with row and column scores satisfying (12). Model Uφ is equivalently
expressed as

θ
(φ)
ij = ζΔ1Δ2 = θ(φ) , i = 1, . . . , I − 1, j = 1, . . . , J − 1 (26)

and forms a family of models. Compare to (13) for the U model defined in terms of the usual log
odds ratio. The associated probability table under model Uφ is uniquely specified by the one-to-one
map (πr, πc, θ(φ)) �→ πUφ , not given in a closed-form expression.

The MLEs of the marginal probabilities are the corresponding marginal sample proportions
π̂r = pr = (p1+, . . . , pI+)

T , π̂c = pc = (p+1, . . . , p+J)
T , while the MLE of θ(φ), θ̂(φ), is not available in

explicit form. For a given φ-function, model Uφ belongs to the family of homogeneous linear predictor
(HLP) models [16]. It is straightforward to verify that it satisfies the two conditions of Definition 3
in [16]. In practice, it can be fitted using Lang’s mph R-package. The standard U model, denoted in the
sequel as U0, has the equivalent HLP model expression

L(mv) = C log(mv) = Xβ = 1(I−1)(J−1)θ
(0) , (27)

where X and β are the model’s design matrix and parameter vector (scalar for U0), respectively.
Furthermore, θ(0) = log(θ), mv is the I J × 1 vector of expected cell frequencies, corresponding to the
I × J table m expanded by rows, and C is an (I − 1)(J − 1)× I J design matrix so that the vector of all
log(LOR)s is derived, i.e., C log(mv) = (θ

(0)
11 , . . . , θ

(0)
I−1,J−1)

T . For more details on inference for model
U0 through HLP models, we refer to [7] (Sections 5.6 and 6.6.4). In Section 6.6.4 of [7], the approach
is implemented in R for the example of Table 1 (see Section 5), while an R-function for constructing
the design matrix C for two-way tables of any size is provided in the web appendix of the book.
This approach is easily adjusted for model Uφ, by replacing log(mv) in (27) by F(mvs), where mvs is
the I J × 1 vector with entries

mij
mi+m+j/n =

πij
πi+π+j

, expanded by rows.
Under Uφ, all 2× 2 subtables, formed by any successive rows and any successive columns, share

the same φ-scaled local association θ(φ). It is of practical interest to have estimators of this common
local association, alternative to the MLEs, that are provided in explicit forms. One such estimator,
based on the sample version of (17), is given by

θ̃(φ) = ζ(p, μ, ν)Δ1Δ2 = Δ1Δ2 ∑
i,j

pi+p+jμiνjF

(
pij

pi+p+j

)
. (28)

Another option is

θ
(φ)

=
1

(I − 1)(J − 1)

I−1

∑
i=1

J−1

∑
j=1

θ
(φ)
ij (p) , (29)

which is the mean of the sample φ-scaled local association measures (24). For the power-divergence
based models Uλ, estimators (28) and (29) are denoted by θ̃(λ) and θ̃(λ), respectively. For the U
correlation model, derived for λ = 1 and denoted thus by U1, estimator (28) takes the form

θ̃(1) = Δ1Δ2 ∑
i,j

μiνj pij = Δ1Δ2r, (30)

where r is the sample correlation between the row and column scores (compare to (19)).
Under the Uφ model, θ(φ) is the single association parameter, measuring the strength of the

local association that is uniform across the table. Furthermore, θ(φ) = 0(⇔ ζ = 0) if and only if the
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independence (I) model holds. Since model I is nested in Uφ, the following test of independence,
conditional on Uφ, can be considered

G2(I|Uφ) = G2(I)− G2(Uφ) , (31)

which is asymptotically X 2
1 distributed. This test is well-known for the standard U0 model (see [17]

and Section 6.3 in [7]).

Remark 3. For model U0, Tomizawa [18] proposed a measure of divergence from uniform association, based on
the KL-divergence, taking values in the interval [0, 1) and being equal to 0 if and only if U0 holds. He constructed
also asymptotic confidence interval for this measure, provided U0 does not hold. Conde and Salicrú [19] extended
his work by considering such a measure based on the φ-divergence and developed asymptotic inference for it, and
also for the case that U0 holds. Their approach and measures should not be confused with the approach followed
here. They aim at detecting departures from U0 (in favor of a non-uniform association structure) while here we
focus on measuring the strength of uniform association, provided that U0 (or Uφ) holds.

Tomizawa [18] as well as Conde and Salicrú [19] based the estimation of their measures on the
following closed-form estimator of θ(0) under U0

θ
(0)
∗ = log

⎛⎝∑I−1
i=1 ∑J−1

j=1 θ
(0)
ij (p)

(I − 1)(J − 1)

⎞⎠ . (32)

Remark 4. For square contingency tables with commensurable classification variables, analogous to the measure
of departure from U0 (see Remark 3), Tomizawa et al. [20] introduced a measure of departure from complete
symmetry relying on the power divergence and Tomizawa [21] a measure of departure from marginal homogeneity.
Kateri and Papaioannou [22] extended these measures to corresponding φ-divergence based measures and
proposed further φ-divergence based measures of departure from the QS and triangular symmetry models.
The work of Menéndez et al. [23,24] is also related.

5. Illustrations

We revisit a classical data set of Grizzle [25], provided in Table 2, which is adequately modelled
by the U0 model (see [18,19]). Our second data set in Table 1 corresponds to a study in [26] and
provides strong evidence in favor of U0 (see [7]). The maximum likelihood estimates of the expected
cell frequencies under U0 are also given in parentheses in Tables 1 and 2.

Table 1. Students’ survey about cannabis use at the University of Ioannina, Greece (1995).
The maximum likelihood estimates of the expected cell frequencies under the U0 model are given
in parentheses.

Alcohol Consumption
I Tried Cannabis...

Never Once or Twice More Often Total

at most once/month 204 (204.4) 6 (5.7) 1 (0.9) 211
twice/month 211 (211.4) 13 (13.1) 5 (4.5) 229
twice/week 357 (352.8) 44 (48.8) 38 (37.4) 439
more often 92 (95.3) 34 (29.4) 49 (50.3) 175

Total 864 97 93 1054
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Table 2. Cross-classification of duodenal ulcer patients according to operation and dumping severity.
The maximum likelihood estimates of the expected cell frequencies under the U0 model are given
in parentheses.

Operation
Dumping Severity

None Slight Moderate Total

A 61 (62.5) 28 (26.2) 7 (7.3) 96
B 68 (62.9) 23 (30.9) 13 (10.2) 104
C 58 (61.0) 40 (35.3) 12 (13.7) 110
D 53 (53.7) 38 (36.6) 16 (16.7) 107

Total 240 129 48 417

The G2 test statistics for the Uλ models fitted on these data, for λ → 0 and λ = 1/3, 2/3, 1 are
provided in Table 3, along with corresponding θ̂(λ), θ̃(λ) and θ

(λ)
values, i.e., the estimates of the

θ(λ)s discussed in Section 4. For U0, the θ
(0)
∗ estimates (32) for Tables 1 and 2 are equal to 0.2890 and

0.7972, respectively.
We observe that all considered Uλ models are of very similar (acceptable) fit for the first example

while they differ enormously for the second one. For the data of Table 1, the fit of U0 is impressive,
that of U1/3 acceptable while U2/3 and U1 are of very bad fit. A reverse situation appears for another
data set, given in Table 4. In this case model, U1 can be accepted while U0 can not (see Table 5).
The maximum likelihood estimates of the expected cell frequencies under U1 are provided in Table 4
in parentheses.

Table 3. Goodness of fit of the Uλ models for the data of Tables 1 and 2 along with estimates of the
common λ-scaled local association θ(λ) under Uλ.

Example in Table 1

λ G2 (p-value) θ̂(λ) / θ̃(λ)/ θ
(λ)

0 1.47 (0.917) 0.8026/0.7817/0.7814
1/3 7.19 (0.207) 0.6857/0.6451/0.6432
2/3 25.21 (0.000) 0.4720/0.5853/0.5974

1 40.76 (0.000) 0.3667/0.5732/0.6096

Example in Table 2

λ G2 (p-value) θ̂(λ) / θ̃(λ) / θ
(λ)

0 4.59 (0.468) 0.1626/0.1665/0.1612
1/3 4.57 (0.471) 0.1619/0.1638/0.1573
2/3 4.55 (0.473) 0.1612/0.1616/0.1541

1 4.52 (0.477) 0.1606/0.1599/0.1515

Table 4. Hypothetical 4 × 3 data table with maximum likelihood estimates of the expected cell
frequencies under U1 (in parentheses).

160 (159.5) 8 (7.8) 1 (1.4)
198 (199.4) 16 (14.7) 14 (13.9)
310 (321.8) 40 (32.9) 50 (45.4)
161 (149.1) 12 (20.4) 30 (33.8)
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Table 5. Goodness of fit of the Uλ models and maximum likelihood estimates of the common λ-scaled
local association θ(λ) under Uλ for the data of Table 4.

λ G2 (p-Value) θ̂(λ)

0 15.99 (0.007) 0.3082
1/3 13.52 (0.019) 0.3266
2/3 10.64 (0.059) 0.3391

1 7.95 (0.159) 0.3215

Observe (in Table 3) that the closed form estimates for the λ-scaled local associations are close to
the corresponding maximum likelihood estimates in case the assumed model is of adequate fit while
they diverge for models of bad fit.

6. Conclusions

We revealed the role of φ-divergence in modelling association in two-way contingency tables and
illustrated it for the special case of uniform association in ordinal contingency tables. Targeting at
pointing out the potential of this modelling approach and the generated families of models, we avoided
presenting technical details, properties and inferential results for these models, which can be found in
the initial sources cited.

Crucial quantities are the θ
(φ)
ij s, the φ-scaled measures of local association. The generalized family

of φ-divergence based AMs enriches the modelling options in CTA, since the pattern of underlying
association structure in a table may be simplified and thus described by a more parsimonious model
when considering a different scale. A crucial issue, as also pointed out by one of the reviewers, is how
to decide on the scale. So far, such a decision is based on trials of various alternative options. A formal
approach selecting the scale is missing. In case of a parametric family, like the one based on the power
divergence, the problem can be tackled by considering λ as an unknown parameter and estimating
it from the data. Such an approach has been followed in the logistic regression set-up by Kateri and
Agresti [15].

It is important to realize that, due to the scale difference, θ
(φ)
ij s are not directly comparable for

different φ-function (or λ-values in case of the power divergence). Thus, comparisons across different
φs (or λs) are possible only in terms of the corresponding expected cell frequencies or a common
measure of local association evaluated on them. AMs can also be considered for other types of
generalized odds ratios, like, for example, the global odds ratios. The extension of such models
through the φ-divergence and their study is the subject of a work in progress. Inference for closed
form estimators of the common θ(φ) of the Uφ model and comparisons among them is the content of a
paper under preparation.

The conditional test of independence (31) can be based not only on Uφ but on LLφ models as well.
Another 1 d f test of independence for ordinal classification variables is the linear trend test of Mantel
(see [27]). It considers the testing problem H0 : ρ = 0 vs. H1 : ρ �= 0, where ρ is the correlation
between ordered scores assigned to the categories of the classification variables of the table. It is thus
applicable only when the underlying association exhibits a linear trend for the assigned scores. The test
of Mantel uses the test statistic M2 = (n− 1)r2, which is under H0 asymptotically X 2

1 distributed.
The way this test is linked to the above-mentioned conditional tests, in view also of (19), is interesting
to be investigated further.

Throughout this paper, we assumed a multinomial sampling scheme. For the models considered
here, the other two classical sampling schemes for contingency tables (independent Poisson and
product multinomial) are inferentially equivalent. Furthermore, for ease of presentation, we restricted
here to two-way tables. The proposed models extend straightforwardly to multi-way tables. For two-
or higher-dimensional tables, the subset of models that are linear in their parameters (i.e., RC-
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and RC(M)-type terms are excluded) belong to the family of homogeneous linear predictor (HLP)
models [16] and can thus be fitted using the R-package mph.
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Abbreviations

The following abbreviations are used in this manuscript:

CTA contingency table analysis
MLE maximum likelihood estimator
MφEs minimum φ-divergence estimators
KL Kullback–Leibler
GOF goodness of fit
I independence model
AMs association models
LL model linear by linear association model
R model row effect association model
C model column effect association model
RC model multiplicative row-column effect association model
U model uniform association model
d f degrees of freedom
LOR local odds ratio
CA correspondence analysis
CI confidence interval
QS quasi symmetry
HLP homogeneous linear predictor
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Abstract: In high-dimensional data, many sparse regression methods have been proposed. However,
they may not be robust against outliers. Recently, the use of density power weight has been studied
for robust parameter estimation, and the corresponding divergences have been discussed. One such
divergence is the γ-divergence, and the robust estimator using the γ-divergence is known for having
a strong robustness. In this paper, we extend the γ-divergence to the regression problem, consider
the robust and sparse regression based on the γ-divergence and show that it has a strong robustness
under heavy contamination even when outliers are heterogeneous. The loss function is constructed
by an empirical estimate of the γ-divergence with sparse regularization, and the parameter estimate
is defined as the minimizer of the loss function. To obtain the robust and sparse estimate, we propose
an efficient update algorithm, which has a monotone decreasing property of the loss function.
Particularly, we discuss a linear regression problem with L1 regularization in detail. In numerical
experiments and real data analyses, we see that the proposed method outperforms past robust and
sparse methods.

Keywords: sparse; robust; divergence; MM algorithm

1. Introduction

In high-dimensional data, sparse regression methods have been intensively studied. The Lasso [1]
is a typical sparse linear regression method with L1 regularization, but is not robust against outliers.
Recently, robust and sparse linear regression methods have been proposed. The robust least angle
regression (RLARS) [2] is a robust version of LARS [3], which replaces the sample correlation by a
robust estimate of correlation in the update algorithm. The sparse least trimmed squares (sLTS) [4] is a
sparse version of the well-known robust linear regression method LTS [5] based on the trimmed loss
function with L1 regularization.

Recently, the robust parameter estimation using density power weight has been discussed by
Windham [6], Basu et al. [7], Jones et al. [8], Fujisawa and Eguchi [9], Basu et al. [10], Kanamori and
Fujisawa [11], and so on. The density power weight gives a small weight to the terms related to
outliers, and then, the parameter estimation becomes robust against outliers. By virtue of this validity,
some applications using density power weights have been proposed in signal processing and machine
learning [12,13]. Among them, the γ-divergence proposed by Fujisawa and Eguchi [9] is known for
having a strong robustness, which implies that the latent bias can be sufficiently small even under
heavy contamination. The other robust methods including density power-divergence cannot achieve
the above property, and the estimator can be affected by the outlier ratio. In addition, to obtain the
robust estimate, an efficient update algorithm was proposed with a monotone decreasing property of
the loss function.

Entropy 2017, 19, 608; doi:10.3390/e19110608 www.mdpi.com/journal/entropy173
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In this paper, we propose the robust and sparse regression problem based on the γ-divergence.
First, we extend the γ-divergence to the regression problem. Next, we consider a loss function
based on the γ-divergence with sparse regularization and propose an update algorithm to obtain
the robust and sparse estimate. Fujisawa and Eguchi [9] used a Pythagorean relation on the
γ-divergence, but it is not compatible with sparse regularization. Instead of this relation, we use
the majorization-minimization algorithm [14]. This idea is deeply considered in a linear regression
problem with L1 regularization. The MM algorithm was also adopted in Hirose and Fujisawa [15] for
robust and sparse Gaussian graphical modeling. A tuning parameter selection is proposed using a
robust cross-validation. We also show a strong robustness under heavy contamination even when
outliers are heterogeneous. Finally, in numerical experiments and real data analyses, we show that our
method is computationally efficient and outperforms other robust and sparse methods. The R language
software package “gamreg”, which we use to implement our proposed method, can be downloaded at
http://cran.r-project.org/web/packages/gamreg/.

2. Regression Based on γ-Divergence

The γ-divergence was defined for two probability density functions, and its properties were
investigated by Fujisawa and Eguchi [9]. In this section, the γ-divergence is extended to the regression
problem, in other words, defined for two conditional probability density functions.

2.1. γ-Divergence for Regression

We suppose that g(x, y), g(y|x) and g(x) are the underlying probability density functions of (x, y),
y given x and x, respectively. Let f (y|x) be another parametric conditional probability density function
of y given x. Let us define the γ-cross-entropy for regression by:

dγ(g(y|x), f (y|x); g(x))

= − 1
γ

log
∫ (∫

g(y|x) f (y|x)γdy
)

g(x)dx+
1

1 + γ
log
∫ (∫

f (y|x)1+γdy
)

g(x)dx

= − 1
γ

log
∫ ∫

f (y|x)γg(x, y)dxdy +
1

1 + γ
log
∫ (∫

f (y|x)1+γdy
)

g(x)dx f or γ > 0. (1)

The γ-divergence for regression is defined by:

Dγ(g(y|x), f (y|x); g(x)) = −dγ(g(y|x), g(y|x); g(x)) + dγ(g(y|x), f (y|x); g(x)). (2)

The γ-divergence for regression was first proposed by Fujisawa and Eguchi [9], and many
properties were already shown. However, we adopt the definition (2), which is slightly different from
the past one, because (2) satisfies the Pythagorean relation approximately (see Section 4).

Theorem 1. We can show that:

(i) Dγ(g(y|x), f (y|x); g(x)) ≥ 0,

(ii) Dγ(g(y|x), f (y|x); g(x)) = 0 ⇔ g(y|x) = f (y|x) (a.e.),

(iii) lim
γ→0

Dγ(g(y|x), f (y|x); g(x)) =
∫

DKL(g(y|x), f (y|x))g(x)dx,

where DKL(g(y|x), f (y|x)) =
∫

g(y|x) log g(y|x)dy−
∫

g(y|x) log f (y|x)dy.

The proof is in Appendix A. In what follows, we refer to the regression based on the γ-divergence
as the γ-regression.
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2.2. Estimation for γ-Regression

Let f (y|x; θ) be the conditional probability density function of y given x with parameter θ.
The target parameter can be considered by:

θ∗γ = argmin
θ

Dγ(g(y|x), f (y|x; θ); g(x))

= argmin
θ

dγ(g(y|x), f (y|x; θ); g(x)). (3)

When g(y|x) = f (y|x; θ∗), we have θ∗γ = θ∗.
Let (x1, y1), . . . , (xn, yn) be the observations randomly drawn from the underlying distribution

g(x, y). Using the formula (1), the γ-cross-entropy for regression, dγ(g(y|x), f (y|x; θ); g(x)), can be
empirically estimated by:

d̄γ( f (y|x; θ)) = − 1
γ

log

{
1
n

n

∑
i=1

f (yi|xi; θ)γ

}
+

1
1 + γ

log

{
1
n

n

∑
i=1

∫
f (y|xi; θ)1+γdy

}
.

By virtue of (3), we define the γ-estimator by:

θ̂γ = argmin
θ

d̄γ( f (y|x; θ)). (4)

In a similar way as in Fujisawa and Eguchi [9], we can show the consistency of θ̂γ to θ∗γ under
some conditions.

Here, we briefly show why the γ-estimator is robust. Suppose that y1 is an outlier. The conditional
probability density f (y1|x1; θ) can be expected to be sufficiently small. We see from f (y1|x1; θ) ≈ 0
and (4) that:

argmin
θ

d̄γ( f (y|x; θ))

= argmin
θ

− 1
γ

log

{
1
n

n

∑
i=1

f (yi|xi; θ)γ

}
+

1
1 + γ

log

{
1
n

n

∑
i=1

∫
f (y|xi; θ)1+γdy

}

≈ argmin
θ

− 1
γ

log

{
1

n− 1

n

∑
i=2

f (yi|xi; θ)γ

}
+

1
1 + γ

log

{
1
n

n

∑
i=1

∫
f (y|xi; θ)1+γdy

}
.

Therefore, the term f (y1|x1; θ) is naturally ignored in (4). However, for the KL-divergence,
log f (y1|x1; θ) diverges from f (y1|x1; θ) ≈ 0. That is why the KL-divergence is not robust.
The theoretical robust properties are presented in Section 4.

Moreover, the empirical estimation of the γ-cross-entropy with a penalty term can be given by:

Lγ(θ; λ) = d̄γ( f (y|x; θ)) + λP(θ),

where P(θ) is a penalty for parameter θ and λ is a tuning parameter for the penalty term. As an example
of the penalty term, we can consider L1 (Lasso, Tibshirani 1), elasticnet [16], group Lasso [17], fused
Lasso [18], and so on. The sparse γ-estimator can be proposed by:

θ̂S = argmin
θ

Lγ(θ; λ).

To obtain the minimizer, we propose the iterative algorithm by the majorization-minimization
algorithm (MM algorithm) [14].
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3. Parameter Estimation Procedure

3.1. MM Algorithm for Sparse γ-Regression

The MM algorithm is constructed as follows. Let h(η) be the objective function. Let us prepare
the majorization function hMM satisfying:

hMM(η(m)|η(m)) = h(η(m)),

hMM(η|η(m)) ≥ h(η) for all η,

where η(m) is the parameter of the m-th iterative step for m = 0, 1, 2, . . . Let us consider the iterative
algorithm by:

η(m+1) = argmin
η

hMM(η|η(m)).

Then, we can show that the objective function h(η) monotonically decreases at each step, because:

h(η(m)) = hMM(η(m)|η(m))

≥ hMM(η(m+1)|η(m))

≥ h(η(m+1)).

Note that η(m+1) does not necessarily have to be the minimizer of hMM(η|η(m)). We only need:

hMM(η(m)|η(m)) ≥ hMM(η(m+1)|η(m)).

We construct the majorization function for the sparse γ-regression by the following inequality:

κ(zTη) ≤ ∑
i

ziη
(m)
i

zTη(m)
κ

[
ηi

zTη(m)

η
(m)
i

]
, (5)

where κ(u) is a convex function, z = (z1, . . . , zn)T , η = (η1, . . . , ηn)T , η(m) = (η
(m)
1 , . . . , η

(m)
n )T , and

zi, ηi and η
(m)
i are positive. The inequality (5) holds from Jensen’s inequality. Here, we take zi =

1
n ,

ηi = f (yi|xi; θ)γ, η
(m)
i = f (yi|xi; θ(m))γ, and κ(u) = − log u in (5). We can propose the majorization

function as follows:

h(θ)

= Lγ(θ; λ)

= − 1
γ

log

{
1
n

n

∑
i=1

f (yi|xi; θ)γ

}
+

1
1 + γ

log

{
1
n

n

∑
i=1

∫
f (y|xi; θ)1+γdy

}
+λP(θ)

≤ − 1
γ

n

∑
i=1

α
(m)
i log

{
f (yi|xi; θ)γ

1
n ∑n

l=1 f (yl |xl ; θ(m))γ

f (yi|xi; θ(m))γ

}

+
1

1 + γ
log

{
1
n

n

∑
i=1

∫
f (y|xi; θ)1+γdy

}
+ λP(θ)

= −
n

∑
i=1

α
(m)
i log f (yi|xi; θ) +

1
1 + γ

log

{
1
n

n

∑
i=1

∫
f (y|xi; θ)1+γdy

}
+ λP(θ)

+ const

= hMM(θ|θ(m)) + const,
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where α
(m)
i = f (yi |xi ;θ(m))γ

∑n
l=1 f (yl |xl ;θ(m))γ and const is a term that does not depend on the parameter θ.

The first term on the original target function h(θ) is a mixture type of densities, which is not
easy to optimize, while the first term on hMM(θ|θ(m)) is a weighted log-likelihood, which is often easy
to optimize.

3.2. Sparse γ-Linear Regression

Let f (y|x; θ) be the conditional density with θ = (β0, β, σ2), given by:

f (y|x; θ) = φ(y; β0 + xT β, σ2),

where φ(y; μ, σ2) is the normal density with mean parameter μ and variance parameter σ2.
Suppose that P(θ) is the L1 regularization ||β||1. After a simple calculation, we have:

hMM(θ|θ(m)) =
1

2(1 + γ)
log σ2 +

1
2

n

∑
i=1

α
(m)
i

(yi − β0 − xT
i β)2

σ2 + λ||β||1. (6)

This function is easy to optimize by an update algorithm. For a fixed value of σ2, the function hMM
is almost the same as Lasso except for the weight, so that it can be updated using the coordinate decent
algorithm with a decreasing property of the loss function. For a fixed value of (β0, βT)T , the function
hMM is easy to minimize. Consequently, we can obtain the update algorithm in Algorithm 1 with the
decreasing property:

hMM(θ(m+1)|θ(m)) ≤ hMM(θ(m)|θ(m)).

Algorithm 1 Sparse γ-linear regression.

Require: β
(0)
0 , β(0), σ2(0)

repeat m = 0, 1, 2, . . .

α
(m)
i ← φ(yi ;β0

(m)+xT
i β(m) ,σ2(m)

)γ

∑n
l=1 φ(yl ;β0

(m)+xl
T β(m) ,σ2(m)

)γ
(i = 1, 2, . . . , n).

β0
(m+1) ← ∑n

i=1 α
(m)
i (yi − xi

T β(m)).
for do j = 1, . . . , p

β j
(m+1) ←

S
(

∑n
i=1 α

(m)
i (yi−β

(m+1)
0 −r(m)

i,−j)xij , σ2(m)
λ
)

(
∑n

i=1 α
(m)
i x2

ij

) ,

where S(t, λ) = sign(t)(|t| − λ)+ and r(m)
i,−j = ∑k �=j xik(�(k<j)β

(m+1)
k + �(k>j)β

(m)
k ).

σ2(m+1) ← (1+γ)∑n
i=1 α

(m)
i (yi−β

(m+1)
0 −xT

i β(m+1))2.
until convergence

Ensure: β̂0, β̂, σ̂2

It should be noted that hMM is convex with respect to parameter β0, β and has the global minimum
with respect to parameter σ2, but the original objective function h is not convex with respect to them,
so that the initial points of Algorithm 1 are important. This issue is discussed in Section 5.4.

In practice, we also use the active set strategy [19] in the coordinate decent algorithm for updating
β(m). The active set consists of the non-zero coordinates of β(m). Specifically, for a given β(m),
we only update the non-zero coordinates of β(m), until they are converged. Then, the non-active
set parameter estimates are updated once. When they remain zero, the coordinate descent algorithm
stops. If some of them do not remain zero, those are added to the active set, and the coordinate descent
algorithm continues.
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3.3. Robust Cross-Validation

In sparse regression, a regularization parameter is often selected via a criterion. Cross-validation
is often used for selecting the regularization parameter. Ordinal cross-validation is based on the
squared error, and it can also be constructed using the KL-cross-entropy with the normal density.
However, the ordinal cross-validation will fail due to outliers. Therefore, we propose the robust
cross-validation based on the γ-cross-entropy. Let θ̂γ be the robust estimate based on the γ-cross-entropy.
The cross-validation based on the γ-cross-entropy can be given by:

RoCV(λ)

= − 1
γ0

log

{
1
n

n

∑
i=1

f (yi|xi; θ̂
[−i]
γ )γ0

}
+

1
1 + γ0

log

{
1
n

n

∑
i=1

∫
f (y|xi; θ̂

[−i]
γ )1+γ0 dy

}
,

where θ̂
[−i]
γ is the γ-estimator deleting the i-th observation and γ0 is an appropriate tuning parameter.

We can also adopt the K-fold cross-validation to reduce the computational task [20].
Here, we give a small modification of the above. We often focus only on the mean structure for

prediction, not on the variance parameter. Therefore, in this paper, θ̂
[−i]
γ =

(
β̂
[−i]
γ , σ̂2[−i]

γ

)
is replaced

by
(

β̂
[−i]
γ , σ̂2

f ix

)
. In numerical experiments and real data analyses, we used σ2(0) as σ2

f ix.

4. Robust Properties

In this section, the robust properties are presented from two viewpoints of latent bias and
Pythagorean relation. The latent bias was discussed in Fujisawa and Eguchi [9] and Kanamori and
Fujisawa [11], which is described later. Using the results obtained there, the Pythagorean relation is
shown in Theorems 2 and 3.

Let f ∗(y|x) = fθ∗(y|x) = f (y|x; θ∗) and δ(y|x) be the target conditional probability density
function and the contamination conditional probability density function related to outliers, respectively.
Let ε and ε(x) denote the outlier ratios, which are independent of and dependent on x, respectively.
Under homogeneous and heterogeneous contaminations, we suppose that the underlying conditional
probability density function can be expressed as:

g(y|x) = (1− ε) f (y|x; θ∗) + εδ(y|x),
g(y|x) = (1− ε(x)) f (y|x; θ∗) + ε(x)δ(y|x).

Let:

ν f ,γ(x) =
{∫

δ(y|x) f (y|x)γdy
} 1

γ

(γ > 0),

and let:

ν f ,γ =

{∫
ν f ,γ(x)γg(x)dx

} 1
γ

.

Here, we assume that:

ν fθ∗ ,γ ≈ 0,

which implies that ν fθ∗ ,γ(x) ≈ 0 for any x (a.e.) and illustrates that the contamination conditional
probability density function δ(y|x) lies on the tail of the target conditional probability density function
f (y|x; θ∗). For example, if δ(y|x) is the Dirac function at the outlier y†(x) given x, then we have
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ν fθ∗ ,γ(x) = f (y†(x)|x; θ∗), which should be sufficiently small because y†(x) is an outlier. In this
section, we show that θ∗γ − θ∗ is expected to be small even if ε or ε(x) is not small. To make the
discussion easier, we prepare the monotone transformation of the γ-cross-entropy for regression by:

d̃γ(g(y|x), f (y|x; θ); g(x))

= − exp {−γdγ(g(y|x), f (y|x; θ); g(x))}

= −
∫
(
∫

g(y|x) f (y|x; θ)γdy) g(x)dx{∫
(
∫

f (y|x; θ)1+γdy) g(x)dx
} γ

1+γ

.

4.1. Homogeneous Contamination

Here, we provide the following proposition, which was given in Kanamori and Fujisawa [11].

Proposition 1.

d̃γ(g(y|x), f (y|x; θ); g(x))

= (1− ε)d̃γ( f (y|x; θ∗), f (y|x; θ); g(x))−
εν

γ
fθ ,γ{∫

(
∫

f (y|x; θ)1+γdy) g(x)dx
} γ

1+γ

.

Recall that θ∗γ and θ∗ are also the minimizers of d̃γ(g(y|x), f (y|x; θ); g(x)) and d̃γ( f (y|x; θ∗),
f (y|x; θ); g(x)), respectively. We can expect ν fθ ,γ ≈ 0 from the assumption ν fθ∗ ,γ ≈ 0 if the tail behavior
of f (y|x; θ) is close to that of f (y|x; θ∗). We see from Proposition 1 and the condition ν fθ ,γ ≈ 0 that:

θ∗γ = argmin
θ

d̃γ(g(y|x), f (y|x; θ); g(x))

= argmin
θ

[
(1− ε)d̃γ( f (y|x; θ∗), f (y|x; θ); g(x))

−
εν

γ
fθ ,γ{∫

(
∫

f (y|x; θ)1+γdy) g(x)dx
} γ

1+γ

⎤⎦
≈ argmin

θ

(1− ε)d̃γ( f (y|x; θ∗), f (y|x; θ); g(x))

= θ∗.

Therefore, under homogeneous contamination, it can be expected that the latent bias θ∗γ − θ∗ is
small even if ε is not small. Moreover, we can show the following theorem, using Proposition 1.

Theorem 2. Let ν = max{ν fθ ,γ, ν fθ∗ ,γ}. Then, the Pythagorean relation among g(y|x), f (y|x; θ∗), f (y|x; θ)

approximately holds:

Dγ(g(y|x), f (y|x; θ); g(x))− Dγ(g(y|x), f (y|x; θ∗); g(x))

= Dγ( f (y|x; θ∗), f (y|x; θ); g(x)) + O(νγ).

The proof is in Appendix A. The Pythagorean relation implies that the minimization of the
divergence from f (y|x; θ) to the underlying conditional probability density function g(y|x) is
approximately the same as that to the target conditional probability density function f (y|x; θ∗).
Therefore, under homogeneous contamination, we can see why our proposed method works well in
terms of the minimization of the γ-divergence.

179



Entropy 2017, 19, 608

4.2. Heterogeneous Contamination

Under heterogeneous contamination, we assume that the parametric conditional probability
density function f (y|x; θ) is a location-scale family given by:

f (y|x; θ) =
1
σ

s
(

y− q(x; ξ)

σ

)
,

where s(y) is a probability density function, σ is a scale parameter and q(x; ξ) is a location function
with a regression parameter ξ, e.g., q(x; ξ) = ξTx. Then, we can obtain:

∫
f (y|x; θ)1+γdy =

∫ 1
σ1+γ

s
(

y− q(x; ξ)

σ

)1+γ

dy

= σ−γ
∫

s(z)1+γdz.

That does not depend on the explanatory variable x. Here, we provide the following proposition,
which was given in Kanamori and Fujisawa [11].

Proposition 2.

d̃γ(g(y|x), f (y|x; θ); g(x))

= cd̃γ( f (y|x; θ∗), f (y|x; θ); g̃(x))−
∫

ν fθ ,γ(x)γε(x)g(x)dx{
σ−γ

∫
s(z)1+γdz

} γ
1+γ

,

where c = (1−
∫

ε(x)g(x)dx)
γ

1+γ and g̃(x) = (1− ε(x))g(x).

The second term
∫

ν fθ ,γ(x)γε(x)g(x)dx

{σ−γ
∫

s(z)1+γdz}
γ

1+γ
can be approximated to be zero from the condition ν fθ ,γ ≈ 0

and ε(x) < 1 as follows: ∫
ν fθ ,γ(x)γε(x)g(x)dx{

σ−γ
∫

s(z)1+γdz
} γ

1+γ

<

∫
ν fθ ,γ(x)γg(x)dx{

σ−γ
∫

s(z)1+γdz
} γ

1+γ

=
ν

γ
fθ ,γ{

σ−γ
∫

s(z)1+γdz
} γ

1+γ

≈ 0. (7)

We see from Proposition 2 and (7) that:

θ∗γ = argmin
θ

d̃γ(g(y|x), f (y|x; θ); g(x))

= argmin
θ

[
cd̃γ( f (y|x; θ∗), f (y|x; θ); g̃(x))

−
∫

ν fθ ,γ(x)γε(x)g(x)dx{
σ−γ

∫
s(z)1+γdz

} γ
1+γ

⎤⎦
≈ argmin

θ

cd̃γ( f (y|x; θ∗), f (y|x; θ); g̃(x))

= θ∗.
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Therefore, under heterogeneous contamination in a location-scale family, it can be expected that
the latent bias θ∗γ − θ∗ is small even if ε(x) is not small. Moreover, we can show the following theorem,
using Proposition 2.

Theorem 3. Let ν = max{ν fθ ,γ, ν fθ∗ ,γ}. Then, the following relation among g(y|x), f (y|x; θ∗), f (y|x; θ)

approximately holds:

Dγ(g(y|x), f (y|x; θ); g(x))− Dγ(g(y|x), f (y|x; θ∗); g(x))

= Dγ( f (y|x; θ∗), f (y|x; θ); g̃(x)) + O(νγ).

The proof is in Appendix A. The above is slightly different from a conventional Pythagorean
relation, because the base measure changes from g(x) to g̃(x) in part. However, it also implies that
the minimization of the divergence from f (y|x; θ) to the underlying conditional probability density
function g(y|x) is approximately the same as that to the target conditional probability density function
f (y|x; θ∗). Therefore, under heterogeneous contamination in a location-scale family, we can see why
our proposed method works well in terms of the minimization of the γ-divergence.

4.3. Redescending Property

First, we review a redescending property on M-estimation (see, e.g., [21]), which is often used
in robust statistics. Suppose that the estimating equation is given by ∑n

i=1 ζ(zi; θ) = 0. Let θ̂ be a
solution of the estimating equation. The bias caused by outlier zo is expressed as θ̂n=∞ − θ∗, where
θ̂n=∞ is the limiting value of θ̂ and θ∗ is the true parameter. We hope the bias is small even if the
outlier zo exists. Under some conditions, the bias can be approximated to εIF(zo; θ∗), where ε is a small
outlier ratio and IF(z; θ∗) is the influence function. The bias is expected to be small when the influence
function is small. The influence function can be expressed as IF(z; θ∗) = Aζ(z; θ∗), where A is a matrix
independent of z, so that the bias is also expected to be small when ζ(zo; θ∗) is small. In particular,
the estimating equation is said to have a redescending property if ζ(z; θ∗) goes to zero as ||z|| goes to
infinity. This property is favorable in robust statistics, because the bias is expected to be sufficiently
small when zo is very large.

Here, we prove a redescending property on the sparse γ-linear regression, i.e., when
f (y|x; θ) = φ(y; β0 + xT β, σ2) with θ = (β0, β, σ2) for fixed x. Recall that the estimate of the sparse
γ-linear regression is the minimizer of the loss function:

Lγ(θ; λ) = − 1
γ

log

{
1
n

n

∑
i=1

φ(yi; β0 + xi
T β, σ2)γ

}
+ bγ(θ; λ),

where bγ(θ; λ) = 1
1+γ log

{
1
n ∑n

i=1
∫

φ(y; β0 + xi
T β, σ2)1+γdy

}
+ λ||β||1 Then, the estimating equation

is given by:

0 =
∂

∂θ
Lγ(θ; λ)

= −∑n
i=1 φ(yi; β0 + xi

T β, σ2)γs(yi|xi; θ)

∑n
i=1 φ(yi; β0 + xi

T β, σ2)γ
+

∂

∂θ
bγ(θ; λ),

where s(y|x; θ) =
∂ log φ(y;β0+xT β,σ2)

∂θ . This can be expressed by the M-estimation formula given by:

0 =
n

∑
i=1

ψ(yi|xi; θ),

where ψ(y|x; θ) = φ(y; β0 + xT β, σ2)γs(y|x; θ) − φ(y; β0 + xT β, σ2)γ ∂
∂θ bγ(θ; λ). We can easily show

that as ||y|| goes to infinity, φ(y; β0 + xT β, σ2) goes to zero and φ(y; β0 + xT β, σ2)s(y|x; θ) also goes
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to zero. Therefore, the function ψ(y|x; θ) goes to zero as ||y|| goes to infinity, so that the estimating
equation has a redescending property.

5. Numerical Experiment

In this section, we compare our method (sparse γ-linear regression) with the representative sparse
linear regression method, the least absolute shrinkage and selection operator (Lasso) [1], and the
robust and sparse regression methods, sparse least trimmed squares (sLTS) [4] and robust least angle
regression (RLARS) [2].

5.1. Regression Models for Simulation

We used the simulation model given by:

y = β0 + β1x1 + β2x2 + · · ·+ βpxp + e, e ∼ N(0, 0.52).

The sample size and the number of explanatory variables were set to be n = 100 and p = 100, 200,
respectively. The true coefficients were given by:

β1 = 1, β2 = 2, β4 = 4, β7 = 7, β11 = 11,

β j = 0 for j ∈ {0, . . . , p}\{1, 2, 4, 7, 11}.

We arranged a broad range of regression coefficients to observe sparsity for various degrees of
regression coefficients. The explanatory variables were generated from a normal distribution N(0, Σ)
with Σ = (ρ|i−j|)1≤i,j≤p. We generated 100 random samples.

Outliers were incorporated into simulations. We investigated two outlier ratios (ε = 0.1 and 0.3)
and two outlier patterns: (a) the outliers were generated around the middle part of the explanatory
variable, where the explanatory variables were generated from N(0, 0.52) and the error terms were
generated from N(20, 0.52); (b) the outliers were generated around the edge part of the explanatory
variable, where the explanatory variables were generated from N(−1.5, 0.52) and the error terms were
generated from N(20, 0.52).

5.2. Performance Measure

The root mean squared prediction error (RMSPE) and mean squared error (MSE) were examined
to verify the predictive performance and fitness of regression coefficient:

RMSPE(β̂) =

√
1
n

n

∑
i=1

(y∗i − x∗i
T β̂)2,

MSE =
1

p + 1

p

∑
j=0

(β∗j − β̂ j)
2,

where (x∗i , y∗i ) (i = 1, . . . , n) is the test sample generated from the simulation model without outliers
and β∗j ’s are the true coefficients. The true positive rate (TPR) and true negative rate (TNR) were also
reported to verify the sparsity:

TPR(β̂) =
|{j ∈ {1, . . . , p} : β̂ j �= 0∧ β∗j �= 0}|

|{j ∈ {1, . . . , p} : β∗j �= 0}| ,

TNR(β̂) =
|{j ∈ {1, . . . , p} : β̂ j = 0∧ β∗j = 0}|

|{j ∈ {1, . . . , p} : β∗j = 0}| .
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5.3. Comparative Methods

In this subsection, we explain three comparative methods: Lasso, RLARS and sLTS.
Lasso is performed by the R-package “glmnet”. The regularization parameter λLasso is selected by

grid search via cross-validation in “glmnet”. We used “glmnet” by default.
RLARS is performed by the R-package “robustHD”. This is a robust version of LARS [3].

The optimal model is selected via BIC by default.
sLTS is performed by the R-package “robustHD”. sLTS has the regularization parameter λsLTS

and the fraction parameter α of squared residuals used for trimmed squares. The regularization
parameter λsLTS is selected by grid search via BIC. The number of grids is 40 by default. However,
we considered that this would be small under heavy contamination. Therefore, we used 80 grids under
heavy contamination to obtain a good performance. The fraction parameter α is 0.75 by default. In the
case of α = 0.75, the ratio of outlier is less than 25%. We considered this would be small under heavy
contamination and large under low contamination in terms of statistical efficiency. Therefore, we used
0.65, 0.75, 0.85 as α under low contamination and 0.50, 0.65, 0.75 under heavy contamination.

5.4. Details of Our Method

5.4.1. Initial Points

In our method, we need an initial point to obtain the estimate, because we use the iterative
algorithm proposed in Section 3.2. The estimate of other conventional robust and sparse regression
methods would give a good initial point. For another choice, the estimate of RANSAC (random sample
consensus) algorithm would also give a good initial point. In this experiment, we used the estimate of
sLTS as an initial point.

5.4.2. How to Choose Tuning Parameters

In our method, we have to choose some tuning parameters. The parameter γ in the γ-divergence
was set to 0.1 or 0.5. The parameter γ0 in the robust cross-validation was set to 0.5. In our experience,
the result via RoCVis not sensitive to the selection of γ0 when γ0 is large enough, e.g., γ0 = 0.5, 1.
The parameter λ of L1 regularization is often selected via grid search. We used 50 grids in the
range [0.05λ0, λ0] with the log scale, where λ0 is an estimate of λ, which would shrink regression
coefficients to zero. More specifically, in a similar way as in Lasso, we can derive λ0, which shrinks the
coefficients β to zero in hMM(θ|θ(0)) [6] with respect to β, and we used it. This idea was proposed by
the R-package “glmnet”.

5.5. Result

Table 1 is the low contamination case with Outlier Pattern (a). For the RMSPE, our method
outperformed other comparative methods (the oracle value of the RMSPE is 0.5). For the TPR and TNR,
sLTS showed a similar performance to our method. Lasso presented the worst performance, because it
is sensitive to outliers. Table 2 is the heavy contamination case with Outlier Pattern (a). For the RMSPE,
our method outperformed other comparative methods except in the case (p, ε, ρ) = (100, 0.3, 0.2) for
sLTS with α = 0.5. Lasso also presented a worse performance, and furthermore, sLTS with α = 0.75
showed the worst performance due to a lack of truncation. For the TPR and TNR, our method
showed the best performance. Table 3 is the low contamination case with Outlier Pattern (b). For the
RMSPE, our method outperformed other comparative methods (the oracle value of the RMSPE is 0.5).
For the TPR and TNR, sLTS showed a similar performance to our method. Lasso presented the worst
performance, because it is sensitive to outliers. Table 4 is the heavy contamination case with Outlier
Pattern (b). For the RMSPE, our method outperformed other comparative methods. sLTS with α = 0.5
showed the worst performance. For the TPR and TNR, it seems that our method showed the best
performance. Table 5 is the no contamination case. RLARS showed the best performance, but our
method presented comparable performances. In spite of no contamination case, Lasso was clearly
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worse than RLARS and our method. This would be because the underlying distribution can generate a
large value in simulation, although it is a small probability.

Table 1. Outlier Pattern (a) with p = 100, 200, ε = 0.1 and ρ = 0.2, 0.5. RMSPE, root mean squared
prediction error (RMSPE); RLARS, robust least angle regression; sLTS, sparse least trimmed squares.

p = 100, ε = 0.1, ρ = 0.2 p = 100, ε = 0.1, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 3.04 9.72 × 10−2 0.936 0.909 3.1 1.05 × 10−1 0.952 0.918
RLARS 0.806 6.46 × 10−3 0.936 0.949 0.718 6.7 × 10−3 0.944 0.962

sLTS (α = 0.85, 80 grids) 0.626 1.34 × 10−3 1.0 0.964 0.599 1.05 × 10−3 1.0 0.966
sLTS (α = 0.75, 80 grids) 0.651 1.71 × 10−3 1.0 0.961 0.623 1.33 × 10−3 1.0 0.961
sLTS (α = 0.65, 80 grids) 0.685 2.31 × 10−3 1.0 0.957 0.668 1.76 × 10−3 1.0 0.961

sparse γ-linear reg (γ = 0.1) 0.557 6.71 × 10−4 1.0 0.966 0.561 6.99 × 10−4 1.0 0.965
sparse γ-linear reg (γ = 0.5) 0.575 8.25 × 10−4 1.0 0.961 0.573 9.05 × 10−4 1.0 0.959

p = 200, ε = 0.1, ρ = 0.2 p = 200, ε = 0.1, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 3.55 6.28 × 10−2 0.904 0.956 3.37 6.08 × 10−2 0.928 0.961
RLARS 0.88 3.8 × 10−3 0.904 0.977 0.843 4.46 × 10−3 0.9 0.986

sLTS (α = 0.85, 80 grids) 0.631 7.48 × 10−4 1.0 0.972 0.614 5.77 × 10−4 1.0 0.976
sLTS (α = 0.75, 80 grids) 0.677 1.03 × 10−3 1.0 0.966 0.632 7.08 × 10−4 1.0 0.973
sLTS (α = 0.65, 80 grids) 0.823 2.34 × 10−3 0.998 0.96 0.7 1.25 × 10−3 1.0 0.967

sparse γ-linear reg (γ = 0.1) 0.58 4.19 × 10−4 1.0 0.981 0.557 3.71 × 10−4 1.0 0.977
sparse γ-linear reg (γ = 0.5) 0.589 5.15 × 10−4 1.0 0.979 0.586 5.13 × 10−4 1.0 0.977

Table 2. Outlier Pattern (a) with p = 100, 200, ε = 0.3 and ρ = 0.2, 0.5.

p = 100, ε = 0.3, ρ = 0.2 p = 100, ε = 0.3, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 8.07 6.72 × 10−1 0.806 0.903 8.1 3.32 × 10−1 0.8 0.952
RLARS 2.65 1.54 × 10−1 0.75 0.963 2.09 1.17 × 10−1 0.812 0.966

sLTS (α = 0.75, 80 grids) 10.4 2.08 0.886 0.709 11.7 2.36 0.854 0.67
sLTS (α = 0.65, 80 grids) 2.12 3.66 × 10−1 0.972 0.899 2.89 5.13 × 10−1 0.966 0.887
sLTS (α = 0.5, 80 grids) 1.37 1.46 × 10−1 0.984 0.896 1.53 1.97 × 10−1 0.976 0.909

sparse γ-linear reg (γ = 0.1) 1.13 9.16 × 10−2 0.964 0.97 0.961 5.38 × 10−2 0.982 0.977
sparse γ-linear reg (γ = 0.5) 1.28 1.5 × 10−1 0.986 0.952 1.00 8.48 × 10−2 0.988 0.958

p = 200, ε = 0.3, ρ = 0.2 p = 200, ε = 0.3, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 8.11 3.4 × 10−1 0.77 0.951 8.02 6.51 × 10−1 0.81 0.91
RLARS 3.6 1.7 × 10−1 0.71 0.978 2.67 1.02 × 10−1 0.76 0.984

sLTS (α = 0.75, 80 grids) 11.5 1.16 0.738 0.809 11.9 1.17 0.78 0.811
sLTS (α = 0.65, 80 grids) 3.34 3.01 × 10−1 0.94 0.929 4.22 4.08 × 10−1 0.928 0.924
sLTS (α = 0.5, 80 grids) 4.02 3.33 × 10−1 0.892 0.903 4.94 4.44 × 10−1 0.842 0.909

sparse γ-linear reg (γ = 0.1) 2.03 1.45 × 10−1 0.964 0.924 3.2 2.86 × 10−1 0.94 0.936
sparse γ-linear reg (γ = 0.5) 1.23 7.69 × 10−2 0.988 0.942 3.13 2.98 × 10−1 0.944 0.94
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Table 3. Outlier Pattern (b) with p = 100, 200, ε = 0.1 and ρ = 0.2, 0.5.

p = 100, ε = 0.1, ρ = 0.2 p = 100, ε = 0.1, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 2.48 5.31 × 10−2 0.982 0.518 2.84 5.91 × 10−2 0.98 0.565
RLARS 0.85 6.58 × 10−3 0.93 0.827 0.829 7.97 × 10−3 0.91 0.885

sLTS (α = 0.85, 80 grids) 0.734 5.21 × 10−3 0.998 0.964 0.684 3.76 × 10−3 1.0 0.961
sLTS (α = 0.75, 80 grids) 0.66 1.78 × 10−3 1.0 0.975 0.648 1.59 × 10−3 1.0 0.961
sLTS (α = 0.65, 80 grids) 0.734 2.9 × 10−3 1.0 0.96 0.66 1.74 × 10−3 1.0 0.962

sparse γ-linear reg (γ = 0.1) 0.577 8.54 × 10−4 1.0 0.894 0.545 5.44 × 10−4 1.0 0.975
sparse γ-linear reg (γ = 0.5) 0.581 7.96 × 10−4 1.0 0.971 0.546 5.95 × 10−4 1.0 0.977

p = 200, ε = 0.1, ρ = 0.2 p = 200, ε = 0.1, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 2.39 2.57 × 10−2 0.988 0.696 2.57 2.54 × 10−2 0.944 0.706
RLARS 1.01 5.44 × 10−3 0.896 0.923 0.877 4.82 × 10−3 0.898 0.94

sLTS (α = 0.85, 80 grids) 0.708 1.91 × 10−3 1.0 0.975 0.790 3.40 × 10−3 0.994 0.97
sLTS (α = 0.75, 80 grids) 0.683 1.06 × 10−4 1.0 0.975 0.635 7.40 × 10−4 1.0 0.977
sLTS (α = 0.65, 80 grids) 1.11 1.13 × 10−2 0.984 0.956 0.768 2.60 × 10−3 0.998 0.968

sparse γ-linear reg (γ = 0.1) 0.603 5.71 × 10−4 1.0 0.924 0.563 3.78 × 10−3 1.0 0.979
sparse γ-linear reg (γ = 0.5) 0.592 5.04 × 10−4 1.0 0.982 0.566 4.05 × 10−3 1.0 0.981

Table 4. Outlier Pattern (b) with p = 100, 200, ε = 0.3 and ρ = 0.2, 0.5.

p = 100, ε = 0.3, ρ = 0.2 p = 100, ε = 0.3, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 2.81 6.88 × 10−2 0.956 0.567 3.13 7.11 × 10−2 0.97 0.584
RLARS 2.70 7.69 × 10−2 0.872 0.789 2.22 6.1 × 10−2 0.852 0.855

sLTS (α = 0.75, 80 grids) 3.99 1.57 × 10−1 0.856 0.757 4.18 1.54 × 10−1 0.878 0.771
sLTS (α = 0.65, 80 grids) 3.2 1.46 × 10−1 0.888 0.854 2.69 1.08 × 10−1 0.922 0.867
sLTS (α = 0.5, 80 grids) 6.51 4.62 × 10−1 0.77 0.772 7.14 5.11 × 10−1 0.844 0.778

sparse γ-linear reg (γ = 0.1) 1.75 3.89 × 10−2 0.974 0.725 1.47 2.66 × 10−2 0.976 0.865
sparse γ-linear reg (γ = 0.5) 1.68 3.44 × 10−2 0.98 0.782 1.65 3.58 × 10−2 0.974 0.863

p = 200, ε = 0.3, ρ = 0.2 p = 200, ε = 0.3, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 2.71 3.32 × 10−2 0.964 0.734 2.86 3.05 × 10−2 0.974 0.728
RLARS 3.03 4.59 × 10−2 0.844 0.876 2.85 4.33 × 10−2 0.862 0.896

sLTS (α = 0.75, 80 grids) 3.73 7.95 × 10−2 0.864 0.872 4.20 8.17 × 10−2 0.878 0.87
sLTS (α = 0.65, 80 grids) 4.45 1.23 × 10−1 0.85 0.886 3.61 8.95 × 10−2 0.904 0.908
sLTS (α = 0.5, 80 grids) 9.05 4.24 × 10−1 0.66 0.853 8.63 3.73 × 10−1 0.748 0.864

sparse γ-linear reg (γ = 0.1) 1.78 1.62 × 10−2 0.994 0.731 1.82 1.62 × 10−2 0.988 0.844
sparse γ-linear reg (γ = 0.5) 1.79 1.69 × 10−2 0.988 0.79 1.77 1.51 × 10−2 0.996 0.77

Table 5. No contamination case with p = 100, 200, ε = 0 and ρ = 0.2, 0.5.

p = 100, ε = 0, ρ = 0.2 p = 100, ε = 0, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 0.621 1.34 × 10−3 1.0 0.987 0.621 1.12 × 10−3 1.0 0.987
RLARS 0.551 7.15 × 10−4 0.996 0.969 0.543 6.74 × 10−4 0.996 0.971

sLTS (α = 0.75, 40 grids) 0.954 4.47 × 10−3 1.0 0.996 0.899 4.53 × 10−3 1.0 0.993
sparse γ-linear reg (γ = 0.1) 0.564 7.27 × 10−4 1.0 0.878 0.565 6.59 × 10−4 1.0 0.908
sparse γ-linear reg (γ = 0.5) 0.59 1.0 × 10−3 1.0 0.923 0.584 8.47 × 10−4 1.0 0.94

p = 200, ε = 0, ρ = 0.2 p = 200, ε = 0, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 0.635 7.18 × 10−4 1.0 0.992 0.624 6.17 × 10−4 1.0 0.991
RLARS 0.55 3.63 × 10−4 0.994 0.983 0.544 3.48 × 10−4 0.996 0.985

sLTS (α = 0.75, 40 grids) 1.01 3.76 × 10−3 1.0 0.996 0.909 2.47 × 10−3 1.0 0.996
sparse γ-linear reg (γ = 0.1) 0.584 4.45 × 10−4 1.0 0.935 0.573 3.99 × 10−4 1.0 0.938
sparse γ-linear reg (γ = 0.5) 0.621 6.55 × 10−4 1.0 0.967 0.602 5.58 × 10−4 1.0 0.966
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5.6. Computational Cost

In this subsection, we consider the CPU times for Lasso, RLARS, sLTS and our method. The data
were generated from the simulation model in Section 5.1. The sample size and the number of
explanatory variables were set to be n = 100 and p = 100, 500, 1000, 2000, 5000, respectively. In Lasso,
RLARS and sLTS, all parameters were used by default (see Section 5.3). Our method used the estimate
of the RANSAC algorithm as an initial point. The number of candidates for the RANSAC algorithm
was set to 1000. The parameters γ and γ0 were set to 0.1 and 0.5, respectively. No method used parallel
computing methods. Figure 1 shows the average CPU times over 10 runs in seconds. All results were
obtained in R Version 3.3.0 with an Intel Core i7-4790K machine. sLTS shows very high computational
cost. RLARS is faster, but does not give a good estimate, as seen in Section 5.5. Our proposed method
is fast enough even for p = 5000.
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Figure 1. CPU times (in seconds).

6. Real Data Analyses

In this section, we use two real datasets to compare our method with comparative methods in
real data analysis. We show the best result of comparative methods among some parameter situations
(e.g., Section 5.3).

6.1. NCI-60 Cancer Cell Panel

We applied our method and comparative methods to regress protein expression on gene
expression data at the cancer cell panel of the National Cancer Institute. Experimental conditions were
set in the same way as in Alfons et al. [4] as follows. The gene expression data were obtained
with an Affymetrix HG-U133A chip and the normalized GCRMAmethod, resulting in a set of
p = 22,283 explanatory variables. The protein expressions based on 162 antibodies were acquired
via reverse-phase protein lysate arrays and log2 transformed. One observation had to be removed
since all values were missing in the gene expression data, reducing the number of observations to
n = 59. Then, the KRT18 antibody was selected as the response variable because it had the largest
MAD among 162 antibodies, i.e., KRT18 may include a large number of outliers. Both the protein
expressions and the gene expression data can be downloaded via the web application CellMiner
(http://discover.nci.nih.gov/cellminer/). As a measure of prediction performance, the root trimmed
mean squared prediction error (RTMSPE) was computed via leave-one-out cross-validation given by:

RTMSPE =

√√√√1
h

h

∑
i=1

(e)2
[i:n],
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where e2 = ((y1 − xT
1 β̂[−1])2, . . . , (yn − xT

n β̂[−n])2) and (e)2
[1:n] ≤ · · · ≤ (e)2

[n:n] are the order statistics

of e2 and h = �(n + 1)0.75�. The choice of h is important because it is preferable for estimating
prediction performance that trimmed squares does not include outliers. We set h in the same way as in
Alfons et al. [4], because the sLTS detected 13 outliers in Alfons et al. [4]. In this experiment, we used
the estimate of the RANSAC algorithm as an initial point instead of sLTS because sLTS required high
computational cost with such high dimensional data.

Table 6 shows that our method outperformed other comparative methods for the RTMSPE with
high dimensional data. Our method presented the smallest RTMSPE with the second smallest number
of explanatory variables. RLARS presented the smallest number of explanatory variables, but a much
larger RTMSPE than our method.

Table 6. Root trimmed mean squared prediction error (RTMSPE) for protein expressions based on the
KRT18 antibody (NCI-60 cancer cell panel data), computed from leave-one-out cross-validation.

Methods RTMSPE 1 Selected Variables

Lasso 1.058 52
RLARS 0.936 18

sLTS 0.721 33
Our method (γ = 0.1) 0.679 29
Our method (γ = 0.5) 0.700 30

1 This means the number of non-zero elements.

6.2. Protein Homology Dataset

We applied our method and comparative methods to the protein sequence dataset used for
KDD-Cup 2004. Experimental conditions were set in the same way as in Khan et al. [2] as follows.
The whole dataset consists of n = 145,751 protein sequences, which has 153 blocks corresponding to
native protein. Each data point in a particular block is a candidate homologous protein. There were
75 variables in the dataset: the block number (categorical) and 74 measurements of protein features.
The first protein feature was used as the response variable. Then, five blocks with a total of n = 4141
protein sequences were selected because they contained the highest proportions of homologous
proteins (and hence, the highest proportions of potential outliers). The data of each block were split
into two almost equal parts to get a training sample of size ntra = 2072 and a test sample of size
ntest = 2069. The number of explanatory variables was p = 77, consisting of four block indicators
(Variables 1–4) and 73 features. The whole protein, training and test dataset can be downloaded from
http://users.ugent.be/~svaelst/software/RLARS.html. As a measure of prediction performance,
the root trimmed mean squared prediction error (RTMSPE) was computed for the test sample given by:

RTMSPE =

√√√√1
h

h

∑
i=1

(e)2
[i:ntest ]

,

where e2 = ((y1 − x1
T β̂)2, . . . , (yntest − xT

ntest β̂)
2) and (e)2

[1:ntest ]
≤ · · · ≤ (e)2

[ntest :ntest ]
are the order

statistics of e2 and h = �(ntest + 1)0.99�, �(ntest + 1)0.95� or �(ntest + 1)0.9�. In this experiment,
we used the estimate of sLTS as an initial point.

Table 7 shows that our method outperformed other comparative methods for the RTMSPE.
Our method presented the smallest RTMSPE with the largest number of explanatory variables. It might
seem that other methods gave a smaller number of explanatory variables than necessary.
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Table 7. Root trimmed mean squared prediction error in the protein test set.

Trimming Fraction

Methods 1% 5% 10% 1 Selected Variables

Lasso 10.697 9.66 8.729 22
RLARS 10.473 9.435 8.527 27

sLTS 10.614 9.52 8.575 21
Our method (γ = 0.1) 10.461 9.403 8.481 44
Our method (γ = 0.5) 10.463 9.369 8.419 42

1 This means the number of non-zero elements.

7. Conclusions

We proposed robust and sparse regression based on the γ-divergence. We showed desirable robust
properties under both homogeneous and heterogeneous contamination. In particular, we presented the
Pythagorean relation for the regression case, although it was not shown in Kanamori and Fujisawa [11].
In most of the robust and sparse regression methods, it is difficult to obtain the efficient estimation
algorithm, because the objective function is non-convex and non-differentiable. Nonetheless,
we succeeded to propose the efficient estimation algorithm, which has a monotone decreasing property
of the objective function by using the MM-algorithm. The numerical experiments and real data analyses
suggested that our method was superior to comparative robust and sparse linear regression methods
in terms of both accuracy and computational costs. However, in numerical experiments, a few results
of performance measure “TNR” were a little less than the best results. Therefore, if more sparsity
of coefficients is needed, other sparse penalties, e.g., the Smoothly Clipped Absolute Deviations
(SCAD) [22] and the Minimax Concave Penalty (MCP)[23], can also be useful.
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Appendix A

Proof of Theorem 1. For two non-negative functions r(x, y) and u(x, y) and probability density
function g(x), it follows from Hölder’s inequality that:

∫
r(x, y)u(x, y)g(x)dxdy ≤

(∫
r(x, y)αg(x)dxdy

) 1
α
(∫

u(x, y)βg(x)dxdy
) 1

β

,

where α and β are positive constants and 1
α + 1

β = 1. The equality holds if and only if

r(x, y)α = τu(x, y)β for a positive constant τ. Let r(x, y) = g(y|x), u(x, y) = f (y|x)γ, α = 1 + γ

and β = 1+γ
γ . Then, it holds that:

∫ (∫
g(y|x) f (y|x)γdy

)
dg(x)

≤
{∫ (∫

g(y|x)1+γdy
)

dg(x)
} 1

1+γ
{∫ (∫

f (y|x)1+γdy
)

dg(x)
} γ

1+γ

.

The equality holds if and only if g(y|x)1+γ = τ( f (y|x)γ)
1+γ

γ , i.e., g(y|x) = f (y|x) because g(y|x)
and f (y|x) are conditional probability density functions. Properties (i), (ii) follow from this inequality,
the equality condition and the definition of Dγ(g(y|x), f (y|x); g(x)).
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Let us prove Property (iii). Suppose that γ is sufficiently small. Then, it holds that
f γ = 1 + γ log f + O(γ2). The γ-divergence for regression is expressed by:

Dγ(g(y|x), f (y|x); g(x))

=
1

γ(1 + γ)
log
∫ {∫

g(y|x)(1+γ log g(y|x)+O(γ2))dy
}

g(x)dx

− 1
γ

log
∫ {∫

g(y|x)(1 + γ log f (y|x) + O(γ2))dy
}

g(x)dx

+
1

1+γ
log
∫ {∫

f (y|x)(1+γ log f (y|x) + O(γ2))dy
}

g(x)dx

=
1

γ(1+γ)
log
{

1+γ
∫ (∫

g(y|x) log g(y|x)dy
)

g(x)dx+O(γ2)

}
− 1

γ
log
{

1 + γ
∫ (∫

g(y|x) log f (y|x)dy
)

g(x)dx + O(γ2)

}
1

1 + γ
log
{

1 + γ
∫ (∫

f (y|x) log f (y|x)dy
)

g(x)dx + O(γ2)

}
=

1
(1 + γ)

∫ (∫
g(y|x) log g(y|x)dy

)
g(x)dx

−
∫ (∫

g(y|x) log f (y|x)dy
)

g(x)dx + O(γ)

=
∫

DKL(g(y|x), f (y|x))g(x)dx + O(γ).

Proof of Theorem 2. We see that:∫ (∫
g(y|x) f (y|x; θ)γdy

)
g(x)dx

=
∫ (∫

{(1−ε) f (y|x; θ∗)+εδ(y|x)} f (y|x; θ)γdy
)

g(x)dx

= (1− ε)

{∫ (∫
f (y|x; θ∗) f (y|x; θ)γdy

)
g(x)dx

}
+ ε

{∫ (∫
δ(y|x) f (y|x; θ)γdy

)
g(x)dx

}
.

It follows from the assumption ε < 1
2 that:

{
ε
∫ (∫

δ(y|x) f (y|x; θ)γdy
)

g(x)dx
} 1

γ

<

{
1
2

∫ (∫
δ(y|x) f (y|x; θ)γdy

)
g(x)dx

} 1
γ

<

{∫ (∫
δ(y|x) f (y|x; θ)γdy

)
g(x)dx

} 1
γ

= ν fθ ,γ.
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Hence, ∫ (∫
g(y|x) f (y|x; θ)γdy

)
g(x)dx =

(1−ε)

{∫ (∫
f (y|x; θ∗) f (y|x; θ)γdy

)
g(x)dx

}
+O

(
ν

γ
fθ ,γ

)
.

Therefore, it holds that:

dγ(g(y|x), f (y|x; θ); g(x))

= − 1
γ

log
∫ (∫

g(y|x) f (y|x; θ)γdy
)

g(x)dx

+
1

1 + γ
log
∫ (∫

f (y|x; θ)1+γdy
)

g(x)dx

= − 1
γ

log
∫ (∫

f (y|x; θ∗) f (y|x; θ)γdy
)

g(x)dx

+
1

1 + γ
log
∫ (∫

f (y|x; θ)1+γdy
)

g(x)dx

− 1
γ

log(1− ε) + O
(

ν
γ
fθ ,γ

)
= dγ( f (y|x; θ∗), f (y|x; θ); g(x))

− 1
γ

log(1− ε) + O
(

ν
γ
fθ ,γ

)
.

Then, it follows that:

Dγ(g(y|x), f (y|x; θ); g(x))− Dγ(g(y|x), f (y|x; θ∗); g(x))

− Dγ( f (y|x; θ∗), f (y|x; θ); g(x))

= {−dγ(g(y|x), g(y|x); g(x)) + dγ(g(y|x), f (y|x; θ); g(x))}
− {−dγ(g(y|x), g(y|x); g(x)) + dγ(g(y|x), f (y|x; θ∗); g(x))}
− {−dγ( f (y|x; θ∗), f (y|x; θ∗); g(x)) + dγ( f (y|x; θ∗), f (y|x; θ); g(x))}
= dγ(g(y|x), f (y|x; θ); g(x))− dγ( f (y|x; θ∗), f (y|x; θ); g(x))

−dγ(g(y|x), f (y|x; θ∗); g(x))+dγ( f (y|x; θ∗), f (y|x; θ∗); g(x))

= O (νγ) .

Proof of Theorem 3. We see that:∫ (∫
g(y|x) f (y|x; θ)γdy

)
g(x)dx

=

{∫ (∫
f (y|x; θ∗) f (y|x; θ)γdy

)
(1− ε(x))g(x)dx

+
∫ (∫

δ(y|x) f (y|x; θ)γdy
)

ε(x)g(x)dx
}

.

190



Entropy 2017, 19, 608

It follows from the assumption ε(x) < 1
2 that:

{∫ (∫
δ(y|x) f (y|x; θ)γdy

)
ε(x)g(x)dx

} 1
γ

<

{∫ (∫
δ(y|x) f (y|x; θ)γdy

)
g(x)

2
dx
} 1

γ

<

{∫ (∫
δ(y|x) f (y|x; θ)γdy

)
g(x)dx

} 1
γ

= ν fθ,γ
.

Hence, ∫ (∫
g(y|x) f (y|x; θ)γdy

)
g(x)dx

=

{∫ (∫
f (y|x; θ∗) f (y|x; θ)γdy

)
(1− ε(x))g(x)dx

}
+ O(νγ

fθ ,γ).

Therefore, it holds that:

dγ(g(y|x), f (y|x; θ); g(x))

= − 1
γ

log
∫ (∫

g(y|x) f (y|x; θ)γdy
)

g(x)dx

+
1

1 + γ
log
∫ (∫

f (y|x; θ)1+γdy
)

g(x)dx

= − 1
γ

log
{∫ (∫

f (y|x; θ∗) f (y|x; θ)γdy
)
(1−ε(x))g(x)dx

}
+ O(νγ

fθ ,γ) +
1

1 + γ
log
∫ (∫

f (y|x; θ)1+γdy
)

g(x)dx

= dγ( f (y|x; θ∗), f (y|x; θ); (1− ε(x))g(x)) + O(νγ
fθ ,γ)

− 1
1 + γ

log
∫ (∫

f (y|x; θ)1+γdy
)
(1− ε(x))g(x)dx

+
1

1 + γ
log
∫ (∫

f (y|x; θ)1+γdy
)

g(x)dx

= dγ( f (y|x; θ∗), f (y|x; θ); (1− ε(x))g(x))

+ O(νγ
fθ ,γ)−

1
1 + γ

log
{

1−
∫

ε(x)g(x)dx
}

.
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Then, it follows that:

Dγ(g(y|x), f (y|x; θ); g(x))

− Dγ(g(y|x), f (y|x; θ∗); g(x))

− Dγ( f (y|x; θ∗), f (y|x; θ); (1− ε(x))g(x))

= {−dγ(g(y|x), g(y|x); g(x)) + dγ(g(y|x), f (y|x; θ); g(x))}
− {−dγ(g(y|x), g(y|x); g(x))+dγ(g(y|x), f (y|x; θ∗); g(x))}
− {−dγ( f (y|x; θ∗), f (y|x; θ∗); (1− ε(x))g(x))

+dγ( f (y|x; θ∗), f (y|x; θ); (1− ε(x))g(x))}
= dγ(g(y|x), f (y|x; θ); g(x))

− dγ( f (y|x; θ∗), f (y|x; θ); (1− ε(x))g(x))

− dγ(g(y|x), f (y|x; θ∗); g(x))

+ dγ( f (y|x; θ∗), f (y|x; θ∗); (1− ε(x))g(x))

= O (νγ) .
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Abstract: The classical quadratic loss for the partially linear model (PLM) and the likelihood
function for the generalized PLM are not resistant to outliers. This inspires us to propose a class of
“robust-Bregman divergence (BD)” estimators of both the parametric and nonparametric components
in the general partially linear model (GPLM), which allows the distribution of the response variable
to be partially specified, without being fully known. Using the local-polynomial function estimation
method, we propose a computationally-efficient procedure for obtaining “robust-BD” estimators and
establish the consistency and asymptotic normality of the “robust-BD” estimator of the parametric
component βo. For inference procedures of βo in the GPLM, we show that the Wald-type test
statistic Wn constructed from the “robust-BD” estimators is asymptotically distribution free under
the null, whereas the likelihood ratio-type test statistic Λn is not. This provides an insight into the
distinction from the asymptotic equivalence (Fan and Huang 2005) between Wn and Λn in the PLM
constructed from profile least-squares estimators using the non-robust quadratic loss. Numerical
examples illustrate the computational effectiveness of the proposed “robust-BD” estimators and
robust Wald-type test in the appearance of outlying observations.

Keywords: Bregman divergence; generalized linear model; local-polynomial regression; model check;
nonparametric test; quasi-likelihood; semiparametric model; Wald statistic

1. Introduction

Semiparametric models, such as the partially linear model (PLM) and generalized PLM, play an
important role in statistics, biostatistics, economics and engineering studies [1–5]. For the response
variable Y and covariates (X, T), where X = (X1, . . . , Xd)

T ∈ Rd and T ∈ T ⊆ RD, the PLM, which is
widely used for continuous responses Y, describes the model structure according to:

Y = XT βo + ηo(T) + ε, E(ε | X, T) = 0, (1)

where βo = (β1;o, . . . , βd;o)
T is a vector of unknown parameters and ηo(·) is an unknown smooth

function; the generalized PLM, which is more suited to discrete responses Y and extends the
generalized linear model [6], assumes:

m(x, t) = E(Y | X = x, T = t) = F−1(xT βo + ηo(t)), (2)

Y | (X, T) ∼ exponential family of distributions, (3)

where F is a known link function. Typically, the parametric component βo is of primary interest,
while the nonparametric component ηo(·) serves as a nuisance function. For illustration clarity,
this paper focuses on D = 1. An important application of PLM to brain fMRI data was given in [7] for
detecting activated brain voxels in response to external stimuli. There, βo corresponds to the part of
hemodynamic response values, which is the object of primary interest to neuroscientists; ηo(·) is the
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Entropy 2017, 19, 625

slowly drifting baseline of time. Determining whether a voxel is activated or not can be formulated as
testing for the linear form of hypotheses,

H0 : Aβo = g0 versus H1 : Aβo �= g0, (4)

where A is a given k× d full row rank matrix and g0 is a known k× 1 vector.
Estimation of the parametric and nonparametric components of PLM and generalized PLM has

received much attention in the literature. On the other hand, the existing work has some limitations:
(i) The generalized PLM assumes that Y | (X, T) follows the distribution in (3), so that the likelihood
function is fully available. From the practical viewpoint, results from the generalized PLM are not
applicable to situations where the distribution of Y | (X, T) either departs from (3) or is incompletely
known. (ii) Some commonly-used error measures, such as the quadratic loss in PLM for Gaussian-type
responses (see for example [7,8]) and the (negative) likelihood function used in the generalized
PLM, are not resistant to outliers. The work in [9] studied robust inference based on the kernel
regression method for the generalized PLM with a canonical link, based on either the (negative)
likelihood or (negative) quasi-likelihood as the error measure, and illustrated numerical examples
with the dimension d = 1. However, the quasi-likelihood is not suitable for the exponential loss
function (defined in Section 2.1), commonly used in machine learning and data mining. (iii) The work
in [8] developed the inference of (4) for PLM, via the classical quadratic loss as the error measure,
and demonstrated that the asymptotic distributions of the likelihood ratio-type statistic and Wald
statistic under the null of (4) are both χ2

k. It remains unknown whether this conclusion holds when the
tests are constructed based on robust estimators.

Without completely specifying the distribution of Y | (X, T), we assume:

var(Y | X = x, T = t) = V(m(x, t)), (5)

with a known functional form of V(·). We refer to a model specified by (2) and (5) as the “general
partially linear model” (GPLM). This paper aims to develop robust estimation of GPLM and robust
inference of βo, allowing the distribution of Y | (X, T) to be partially specified. To introduce robust
estimation, we adopt a broader class of robust error measures, called “robust-Bregman divergence (BD)”
developed in [10], for a GLM, in which BD includes the quadratic loss, the (negative) quasi-likelihood,
the exponential loss and many other commonly-used error measures as special cases. We propose
the “robust-BD estimators” for both the parametric and nonparametric components of the GPLM.
Distinct from the explicit-form estimators for PLM using the classical quadratic loss (see [8]), the
“robust-BD estimators” for GPLM do not have closed-form expressions, which makes the theoretical
derivation challenging. Moreover, the robust-BD estimators, as numerical solutions to non-linear
optimization problems, pose key implementation challenges. Our major contributions are given below.

• The robust fitting of the nonparametric component ηo(·) is formulated using the local-polynomial
regression technique [11]. See Section 2.3.

• We develop a coordinate descent algorithm for the robust-BD estimator of βo, which is
computationally efficient particularly when the dimension d is large. See Section 3.

• Theorems 1 and 2 demonstrate that under the GPLM, the consistency and asymptotic normality
of the proposed robust-BD estimator for βo are achieved. See Section 4.

• For robust inference of βo, we propose a robust version of the Wald-type test statistic Wn, based on
the robust-BD estimators, and justify its validity in Theorems 3–5. It is shown to be asymptotically
χ2 (central) under the null, thus distribution free, and χ2 (noncentral) under the contiguous
alternatives. Hence, this result, when applied to the exponential loss, as well as other loss
functions in the wider class of BD, is practically feasible. See Section 5.1.
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• For robust inference of βo, we re-examine the likelihood ratio-type test statistic Λn, constructed
by replacing the negative log-likelihood with the robust-BD. Our Theorem 6 reveals that the
asymptotic null distribution of Λn is generally not χ2, but a linear combination of independent
χ2 variables, with weights relying on unknown quantities. Even in the particular case of using
the classical-BD, the limit distribution is not invariant with re-scaling the generating function of
the BD. Moreover, the limit null distribution of Λn (in either the non-robust or robust version)
using the exponential loss, which does not belong to the (negative) quasi-likelihood, but falls in
BD, is always a weighted χ2, thus limiting its use in practical applications. See Section 5.2.

Simulation studies in Section 6 demonstrate that the proposed class of robust-BD estimators
and robust Wald-type test either compare well with or perform better than the classical non-robust
counterparts: the former is less sensitive to outliers than the latter, and both perform comparably well
for non-contaminated cases. Section 7 illustrates some real data applications. Section 8 ends the paper
with brief discussions. Details of technical derivations are relegated to Appendix A.

2. Robust-BD and Robust-BD Estimators

This section starts with a brief review of BD in Section 2.1 and “robust-BD” in Section 2.2, followed
by the proposed “robust-BD” estimators of ηo(·) and βo in Sections 2.3 and 2.4.

2.1. Classical-BD

To broaden the scope of robust estimation and inference, we consider a class of error measures
motivated from the Bregman divergence (BD). For a given concave q-function, [12] defined a
bivariate function,

Qq(ν, μ) = −q(ν) + q(μ) + (ν− μ)q′(μ). (6)

We call Qq the BD and call q the generating q-function of the BD. For example, a function
q(μ) = aμ−μ2 for some constant a yields the quadratic loss Qq(Y, μ) = (Y−μ)2. For a binary response
variable Y, q(μ) = min{μ, (1− μ)} gives the misclassification loss Qq(Y, μ) = I{Y �= I(μ > 1/2)},
where I(·) is an indicator function; q(μ) = −2{μ log(μ) + (1− μ) log(1− μ)} gives the Bernoulli
deviance loss log-likelihood Qq(Y, μ) = −2{Y log(μ) + (1−Y) log(1− μ)}; q(μ) = 2 min{μ, (1− μ)}
results in the hinge loss Qq(Y, μ) = max{1− (2Y− 1) sign(μ− 0.5), 0} of the support vector machine;
q(μ) = 2{μ(1− μ)}1/2 yields the exponential loss Qq(Y, μ) = exp[−(Y− 0.5) log{μ/(1− μ)}] used
in AdaBoost [13]. Moreover, [14] showed that if:

q(μ) =
∫ μ

a

s− μ

V(s)
ds, (7)

with a finite constant a such that the integral is well defined, then Qq(y, μ) matches the “classical
(negative) quasi-likelihood” function.

2.2. Robust-BD ρq(y, μ)

Let r(y, μ) = (y− μ)/
√

V(μ) denote the Pearson residual, which reduces to the standardized
residual for linear models. In contrast to the “classical-BD”, denoted by Qq in (6), the “robust-BD”
developed in [10] for a GLM [6], is formed by:

ρq(y, μ) =
∫ μ

y
ψ(r(y, s)){q′′(s)

√
V(s)}ds− G(μ), (8)

where ψ(r) is chosen to be a bounded, odd function, such as the Huber ψ-function [15],
ψ(r) = r min(1, c/|r|), and the bias-correction term, G(μ), entails the Fisher consistency of the
parameter estimator and satisfies:

G′(μ) = G′1(μ){q′′(μ)
√

V(μ)},
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with
G′1(m(x, t)) = E{ψ(r(Y, m(x, t))) | X = x, T = t}. (9)

We make the following discussions regarding features of the “robust-BD”. To facilitate the
discussion, we first introduce some necessary notation. Assume that the quantities:

pj(y; θ) =
∂j

∂θ j ρq(y, F−1(θ)), j = 0, 1, . . . , (10)

exist finitely up to any order required. Then, we have the following expressions,

p1(y; θ) = {ψ(r(y, μ))− G′1(μ)}{q′′(μ)
√

V(μ)}/F′(μ),

p2(y; θ) = A0(y, μ) + {ψ(r(y, μ))− G′1(μ)}A1(μ), (11)

p3(y; θ) = A2(y, μ) + {ψ(r(y, μ))− G′1(μ)}A′1(μ)/F′(μ),

where μ = F−1(θ),

A0(y, μ) = −
[
ψ′(r(y, μ))

{
1 +

y− μ√
V(μ)

× V′(μ)
2
√

V(μ)

}
+ G′′1 (μ)

√
V(μ)

] q′′(μ)
{F′(μ)}2 ,

A1(μ) = [{q(3)(μ)
√

V(μ) + 2−1q′′(μ)V′(μ)/
√

V(μ)}F′(μ) − q′′(μ)
√

V(μ)F′′(μ)]/{F′(μ)}3 and
A2(y, μ) = [∂A0(y, μ)/∂μ + ∂{ψ(r(y, μ))− G′1(μ)}/∂μ A1(μ)]/F′(μ). Particularly, p1(y; θ) contains
ψ(r); p2(y; θ) contains ψ(r), ψ′(r) and ψ′(r)r; p3(y; θ) contains ψ(r), ψ′(r), ψ′(r)r, ψ′′(r), ψ′′(r)r,
and ψ′′(r)r2, where r = r(y, μ) = (y− μ)/

√
V(μ) denotes the Pearson residual. Accordingly,

{pj(y; θ) : j = 1, 2, 3} depend on y through ψ(r) and its derivatives coupled with r. Then, we observe
from (9) and (11) that:

E{p1(Y; XT βo + ηo(T)) | X, T} = 0. (12)

In the particular choice of ψ(r) = r, it is clearly noticed from (9) that G′1(·) = 0, and thus, G′(·) = 0.
In such a case, the proposed “robust-BD” ρq(y, μ) reduces to the “classical-BD” Qq(y, μ).

2.3. Local-Polynomial Robust-BD Estimator of ηo(·)
Let {(Yi, X i, Ti)}n

i=1 be i.i.d. observations of (Y, X, T) captured by the GPLM in (2) and (5), where
the dimension d ≥ 1 is a finite integer. From (2), it is directly observed that if the true value of βo is
known, then estimating ηo(·) becomes estimating a nonparametric function; conversely, if the actual
form of ηo(·) is available, then estimating βo amounts to estimating a vector parameter.

To motivate the estimation of ηo(·) at a fitting point t, a proper way to characterize ηo(t) is desired.
For any given value of β, define:

S(a; t, β) = E{ρq(Y, F−1(XT β + a))w1(X) | T = t}, (13)

where a is a scalar, ρq(y, μ) is the “robust-BD” defined in (8), which aims to guard against outlying
observations in the response space of Y, and w1(·) ≥ 0 is a given bounded weight function that
downweights high leverage points in the covariate space of X. See Sections 6 and 7 for an example of
w1(x). Set:

η
β
(t) = arg min

a∈R1
S(a; t, β). (14)

Theoretically, ηo(t) = η
βo
(t) will be assumed (in Condition A3) for obtaining asymptotically

unbiased estimators of ηo(·). Such property indeed holds, for example, when a classical quadratic loss
combined with an identity link is used in (14). Thus, we call η

β
(·) the “surrogate function” for ηo(·).

The characterization of the surrogate function η
β
(t) in (14) enables us to develop

its robust-BD estimator η̂
β
(t) based on nonparametric function estimation. Assume that
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ηo(·) is (p + 1)-times continuously differentiable at the fitting point t. Denote by
ao(t) = (ηo(t), (ηo)(1)(t), . . . , (ηo)(p)(t)/p!)T ∈ Rp+1 the vector consisting of ηo(t) along with its
(re-scaled) derivatives. For observed covariates Ti close to the point t, the Taylor expansion implies that:

ηo(Ti) ≈ ηo(t) + (Ti − t)(ηo)(1)(t) + · · ·+ (Ti − t)p(ηo)(p)(t)/p!

= ti(t)Tao(t),
(15)

where ti(t) = (1, (Ti − t), . . . , (Ti − t)p)T . For any given value of β, let â(t; β) =

(â0(t; β), â1(t; β), . . . , âp(t; β))T be the minimizer of the criterion function,

Sn(a; t, β) =
1
n

n

∑
i=1

ρq(Yi, F−1(XT
i β + ti(t)Ta))w1(X i)Kh(Ti − t), (16)

with respect to a ∈ Rp+1, where Kh(·) = K(·/h)/h is re-scaled from a kernel function K and h > 0
is termed a bandwidth parameter. The first entry of â(t; β) supplies the local-polynomial robust-BD
estimator η̂

β
(t) of η

β
(t), i.e.,

η̂
β
(t) = eT

1,p+1

{
arg min

a∈Rp+1
Sn(a; t, β)

}
, (17)

where ej,p+1 denotes the j-th column of a (p + 1)× (p + 1) identity matrix.
It is noted that the reliance of η̂

β
(t) on β does not guarantee its consistency to ηo(t). Nonetheless,

it is anticipated from the uniform consistency of η̂
β̂

in Lemma 1 that η̂
β̂
(t) will offer a valid estimator

of ηo(t), provided that β̂ consistently estimates βo. Section 2.4 will discuss our proposed robust-BD
estimator β̂. Furthermore, Lemma 1 will assume (in Condition A1) that η

β
(t) is the unique minimizer

of S(a; t, β) with respect to a.

Remark 1. The case of using the “kernel estimation”, or locally-constant estimation, corresponds to the choice
of degree p = 0 in (15). In that case, the criterion function in (16) and the estimator in (17) reduce to:

Sn(a; t, β) =
1
n

n

∑
i=1

ρq(Yi, F−1(XT
i β + a))w1(X i)Kh(Ti − t), (18)

η̂
β
(t) = arg min

a∈R1
Sn(a; t, β), (19)

respectively.

2.4. Robust-BD Estimator of βo

For any given value of β, define:

J(β, η
β
) = E{ρq(Y, F−1(XT β + η

β
(T)))w2(X)}, (20)

where η
β
(·) is as defined in (14) and w2(·) plays the same role as w1(·) in (13). Theoretically, it is

anticipated that:
βo = arg min

β∈Rd
J(β, η

β
), (21)

which holds for example in the case where a classical quadratic loss combined with an identity link is
used. To estimate βo, it is natural to replace (20) by its sample-based criterion,

Jn(β, η̂
β
) =

1
n

n

∑
i=1

ρq(Yi, F−1(XT
i β + η̂

β
(Ti)))w2(X i), (22)
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where η̂
β
(·) is as defined in (17). Hence, a parametric estimator of βo is provided by:

β̂ = arg min
β∈Rd

Jn(β, η̂
β
). (23)

Finally, the estimator of ηo(·) is given by:

η̂(·) = η̂
β̂
(·).

To achieve asymptotic normality of β̂, Theorem 2 assumes (in Condition A2) that βo is the unique
minimizer in (21), a standard condition for consistent M-estimators [16].

As a comparison, it is seen that w1(·) in (16) is used to robustify covariates X i in estimating ηo(·),
w2(·) in (22) is used to robustify covariates X i in estimating βo and ρq(·, ·) serves to robustify the
responses Yi in both estimating procedures.

3. Two-Step Iterative Algorithm for Robust-BD Estimation

In a special case of using the classical quadratic loss combined with an identity link function,
the robust-BD estimators for parametric and nonparametric components have explicit expressions,

β̂ = (X̃Tw2X̃)−1(X̃Tw2ỹ), (η̂(T1), . . . , η̂(Tn))
T = Sh(y− Xβ̂), (24)

where w2 = diag(w2(X1), . . . , w2(Xn)), ỹ = (I− Sh)y, X̃ = (I− Sh)X, with I being an identity matrix,
y = (Y1, . . . , Yn)T , X = (X1, . . . , Xn)T the design matrix,

Sh =

⎛⎜⎜⎝
eT

1,p+1[{T(T1)}TWw1 ;K(T1)T(T1)]
−1{T(T1)}TWw1 ;K(T1)

...
eT

1,p+1[{T(Tn)}TWw1 ;K(Tn)T(Tn)]−1{T(Tn)}TWw1 ;K(Tn)

⎞⎟⎟⎠ ,

and:
T(t) = (t1(t), . . . , tn(t))T , Ww1 ;K(t) = diag{w1(X i)Kh(Ti − t) : i = 1, . . . , n}.

When w1(x) = w2(x) ≡ 1, (24) reduces to the “profile least-squares estimators” of [8].
In other cases, robust-BD estimators from (17) and (23) do not have closed-form expressions and

need to be solved numerically, which are computationally challenging and intensive. We now discuss a

two-step robust proposal for iteratively estimating βo and ηo(·). Let β̂
[k−1]

and {η̂[k−1](Ti)}n
i=1 denote

the estimates in the (k − 1)-th iteration, where η̂[k−1](·) = η̂
β̂
[k−1] (·). The k-th iteration consists of

two steps below.

Step 1: Instead of solving (23) directly, we propose to solve a surrogate optimization problem,

β̂
[k]

= arg minβ∈Rd Jn(β, η̂[k−1]). This minimizer approximates β̂.
Step 2: Obtain η̂[k](Ti) = η̂

β̂
[k] (Ti), i = 1, . . . , n, where η̂

β
(t) is defined in (17).

The algorithm terminates provided that ‖β̂
[k] − β̂

[k−1]‖ is below some pre-specified threshold
value, and all {η̂[k](Ti)}n

i=1 stabilize.

3.1. Step 1

For the above two-step algorithm, we first elaborate on the procedure of acquiring β̂
[k]

in Step 1,
by extending the coordinate descent (CD) iterative algorithm [17] designed for penalized estimation
to our current robust-BD estimation, which is computationally efficient. For any given value of η,
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by Taylor expansion, around some initial estimate β∗ (for example, β̂
[k−1]

), we obtain the weighted
quadratic approximation,

ρq(Yi, F−1(XT
i β + η)) ≈ 1

2
sI

i(ZI
i − XT

i β)2 + Ci,

where Ci is a constant not depending on β,

sI
i = p2(Yi; XT

i β∗ + η),
ZI

i = XT
i β∗ − p1(Yi; XT

i β∗ + η)/p2(Yi; XT
i β∗ + η),

with pj(y; θ) defined in (10). Hence,

Jn(β, η) =
1
n

n

∑
i=1

ρq(Yi, F−1(XT
i β + η))w2(X i)

≈ 1
2

n

∑
i=1

{
n−1sI

i w2(X i)
}
(ZI

i − XT
i β)2 + constant.

Thus it suffices to conduct minimization of ∑n
i=1 sI

i w2(X i)(ZI
i − XT

i β)2 with respect to β,
using a coordinate descent (CD) updating procedure. Suppose that the current estimate is

β̂
old

= (β̂old
1 , . . . , β̂old

d )T , with the current residual vector r̂old = (r̂old
1 , . . . , r̂old

n ) = zI − Xβ̂
old

,
where zI = (ZI

1, . . . , ZI
n)

T is the vector of pseudo responses. Adopting the Newton–Raphson algorithm,
the estimate of the j-th coordinate based on the previous estimate β̂old

j is updated to:

β̂new
j = β̂old

j +
∑n

i=1{sI
i w2(X i)}r̂old

i Xi,j

∑n
i=1{sI

i w2(X i)}X2
i,j

.

As a result, the residuals due to such an update are updated to:

r̂new
i = r̂old

i − Xi,j(β̂new
j − β̂old

j ), i = 1, . . . , n.

Cycling through j = 1, . . . , d, we obtain the estimate β̂
new

= (β̂new
1 , . . . , β̂new

d )T . Now, we set

η = η̂[k−1] and β∗ = β̂
[k−1]

. Iterate the process of weighted quadratic approximation followed by the

CD updating, for a number of times, until the estimate β̂
new

stabilizes to the solution β̂
[k]

.

The validity of β̂
[k]

in Step 1 converging to the true parameter βo is justified as follows.
(i) Standard results for M-estimation [16] indicate that the minimizer of Jn(β, η

βo
) is consistent with

βo. (ii) According to our Theorem 1 (ii) in Section 4.1, supt∈T |η̂β̂
(t)− η

βo
(t)| P−→ 0 for a compact

set T , where P−→ stands for convergence in probability. Using derivations similar to those of (A4)

gives supβ∈K |Jn(β, η̂
β̂
) − Jn(β, η

βo
)| P−→ 0 for any compact set K. Thus, minimizing Jn(β, η̂

β̂
) is

asymptotically equivalent to minimizing Jn(β, η
βo
). (iii) Similarly, provided that β̂

[k−1]
is close to β̂,

minimizing Jn(β, η̂
β̂
[k−1] ) is asymptotically equivalent to minimizing Jn(β, η̂

β̂
). Assembling these three

results with the definition of β̂
[k]

yields:

β̂
[k]

= arg min
β

Jn(β, η̂
β̂
[k−1] )

= arg min
β

Jn(β, η̂
β̂
) + oP(1)

= arg min
β

Jn(β, η
βo
) + oP(1)

= βo + oP(1).
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3.2. Step 2

In Step 2, obtaining η̂
β
(t) for any given values of β and t is equivalent to minimizing Sn(a; t, β)

in (16). Notice that the dimension (p + 1) of a is typically low, with degrees p = 0 or p = 1 being
the most commonly used in practice. Hence, the minimizer of Sn(a; t, β) can be obtained by directly
applying the Newton–Raphson iteration: for k = 0, 1, . . .,

a[k+1](t; β) = a[k](t; β)−
{∂2Sn(a; t, β)

∂a∂aT

∣∣∣
a=a[k](t;β)

}−1 ∂Sn(a; t, β)

∂a

∣∣∣
a=a[k](t;β)

,

where a[k](t; β) denotes the estimate in the k-th iteration, and:

∂Sn(a; t, β)

∂a
=

1
n

n

∑
i=1

p1(Yi; XT
i β + ti(t)Ta) ti(t)w1(X i)Kh(Ti − t),

∂2Sn(a; t, β)

∂a∂aT =
1
n

n

∑
i=1

p2(Yi; XT
i β + ti(t)Ta) ti(t)ti(t)T w1(X i)Kh(Ti − t).

The iterations terminate until the estimate η̂[k+1](t) = eT
1,p+1a[k+1](t; β) stabilizes.

Our numerical studies of the robust-BD estimation indicate that (i) the kernel regression method
can be both faster and stabler than the local-linear method; (ii) to estimate the nonparametric
component ηo(·), the local-linear method outperforms the kernel method, especially at the edges
of points {Ti}n

i=1; (iii) for the performance of the robust estimation of βo, which is of major interest,
there is a relatively negligible difference between choices of using the kernel and local-linear methods
in estimating nonparametric components.

4. Asymptotic Property of the Robust-BD Estimators

This section investigates the asymptotic behavior of robust-BD estimators β̂ and η̂
β̂
, under

regularity conditions. The consistency of β̂ to βo and uniform consistency of η̂
β̂

to ηo are

given in Theorem 1; the asymptotic normality of β̂ is obtained in Theorem 2. For the sake of
exposition, the asymptotic results will be derived using local-linear estimation with degree p = 1.
Analogous results can be obtained for local-polynomial methods with lengthier technical details and
are omitted.

We assume that T ∈ T , and let T0 ⊆ T be a compact set. For any continuous function v :
T �→ R, define ‖v‖∞ = supt∈T |v(t)| and ‖v‖T0 ;∞ = supt∈T0

|v(t)|. For a matrix M, the smallest
and largest eigenvalues are denoted by λj(M), λmin(M) and λmax(M), respectively. Let ‖M‖ =

sup‖x‖=1 ‖Mx‖ = {λmax(MT M)}1/2 be the matrix L2 norm. Denote by P−→ convergence in probability

and D−→ convergence in distribution.

4.1. Consistency

We first present Lemma 1, which states the uniform consistency of η̂
β
(·) to the surrogate function

η
β
(·). Theorem 1 gives the consistency of β̂ and η̂

β̂
.

Lemma 1 (For the non-parametric surrogate η
β
(·)). Let K ⊆ Rd and T0 ⊆ T be compact sets.

Assume Condition A1 and Condition B in the Appendix. If n → ∞, h → 0, nh → ∞, log(1/h)/(nh) → 0,

then supβ∈K ‖η̂
β
− η

β
‖T0 ;∞

P−→ 0.

Theorem 1 (For βo and ηo(·)). Assume conditions in Lemma 1.

(i) If there exists a compact set K1 such that limn→∞ P(β̂ ∈ K1) = 1 and Condition A2 holds, then

β̂
P−→ βo.
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(ii) Moreover, if Condition A3 holds, then ‖η̂
β̂
− ηo‖T0 ;∞

P−→ 0.

4.2. Asymptotic Normality

The asymptotic normality of β̂ is provided in Theorem 2.

Theorem 2 (For the parametric part βo). Assume Conditions A and Condition B in the Appendix. If n → ∞,
nh4 → 0 and log(1/h)/(nh2)→ 0, then:

√
n(β̂− βo)

D−→ N(0, H−1
0 Ω∗

0H−1
0 ),

where:

H0 = E
[
p2(Y; XT βo + ηo(T))

{
X +

∂η
β
(T)

∂β

∣∣∣
β=βo

}{
X +

∂η
β
(T)

∂β

∣∣∣
β=βo

}T
w2(X)

]
, (25)

and:

Ω∗
0 = E

(
p2

1
(Y; XT βo + ηo(T))

[{
X +

∂η
β
(T)

∂β

∣∣∣
β=βo

}
w2(X)− γ(T)

g2(T; T, β
o
)

w1(X)
]

×
[{

X +
∂η

β
(T)

∂β

∣∣∣
β=βo

}
w2(X)− γ(T)

g2(T; T, β
o
)

w1(X)
]T) (26)

with:

γ(t) = E
[
p2(Y; XT βo + ηo(t))

{
X +

∂η
β
(t)

∂β

∣∣∣
β=βo

}
w2(X)

∣∣∣T = t
]
,

g2(t; t, β) = E{p2(Y; XT β + η
β
(t))w1(X) | T = t}.

From Condition A1, (13) and (14), we can show that if w1(·) ≡ Cw2(·) for some constant
C ∈ (0, ∞), then γ(t) = 0. In that case, Ω∗

0 = Ω0, where:

Ω0 = E
[
p2

1
(Y; XT βo + ηo(T))

{
X +

∂η
β
(T)

∂β

∣∣∣
β=βo

}{
X +

∂η
β
(T)

∂β

∣∣∣
β=βo

}T
w2

2
(X)
]
. (27)

Consider the conventional PLM in (1), estimated using the classical quadratic loss, identity link
and w1(·) = w2(·) ≡ 1. If var(ε | X, T) ≡ σ2, then H−1

0 Ω0H−1
0 = σ2[E{var(X | T)}]−1, and thus,

the result of Theorem 2 agrees with that in [18].

Remark 2. Theorem 2 implies the root-n convergence rate of β̂. This differs from η̂
β̂
(t), which converges at

some rate incorporating both the sample size n and the bandwidth h, as seen in the proofs of Lemma 1 and
Theorem 2.

5. Robust Inference for βo Based on BD

In many statistical applications, we will check whether or not a subset of explanatory variables
used is statistically significant. Specific examples include:

H0 : β j;o = 0, for j = j0,
H0 : β j;o = 0, for j = j1, . . . , j2.

These forms of linear hypotheses for βo can be more generally formulated as: (4).

202



Entropy 2017, 19, 625

5.1. Wald-Type Test Wn

We propose a robust version of the Wald-type test statistic,

Wn = n(Aβ̂− g0)
T(AĤ−1

0 Ω̂∗
0Ĥ−1

0 AT)−1(Aβ̂− g0), (28)

based on the robust-BD estimator β̂ proposed in Section 2.4, where Ω̂∗
0 and Ĥ0 are estimates of Ω∗

0 and

H0 satisfying Ĥ−1
0 Ω̂∗

0Ĥ−1
0

P−→ H−1
0 Ω∗

0H−1
0 . For example,

Ĥ0 =
1
n

n

∑
i=1

p2(Yi; XT
i β̂ + η̂

β̂
(Ti))

{
X i +

∂η̂
β
(Ti)

∂β

∣∣∣
β=β̂

}{
X i +

∂η̂
β
(Ti)

∂β

∣∣∣
β=β̂

}T
w2(X i),

and:

Ω̂∗
0 =

1
n

n

∑
i=1

p2
1
(Yi; XT

i β̂ + η̂
β̂
(Ti))

[{
X i +

∂η̂
β
(Ti)

∂β

∣∣∣
β=β̂

}
w2(X i)−

γ̂(Ti)

ĝ2(Ti; Ti, β̂)
w1(X i)

]
×
[{

X i +
∂η̂

β
(Ti)

∂β

∣∣∣
β=β̂

}
w2(X i)−

γ̂(Ti)

ĝ2(Ti; Ti, β̂)
w1(X i)

]T
,

fulfill the requirement, where:

∂η̂
β
(t)

∂β
= −

∑n
k=1 p2(Yk; XT

k β + η̂
β
(t))Xk w1(Xk)Kh(Tk − t)

∑n
k=1 p2(Yk; XT

k β + η̂
β
(t))w1(Xk)Kh(Tk − t)

,

γ̂(t) =
1
n

n

∑
k=1

p2(Yk; XT
k β̂ + η̂

β̂
(t))
{

Xk +
∂η̂

β
(t)

∂β

∣∣∣
β=β̂

}
w2(Xk)Kh(Tk − t),

ĝ2(t; t, β) =
1
n

n

∑
k=1

p2(Yk; XT
k β + η̂

β
(t))w1(Xk)Kh(Tk − t).

Again, we can verify that if w1(·) ≡ Cw2(·) for some constant C ∈ (0, ∞) and η̂
β
(t) is obtained

from kernel estimation method, then γ̂(t) = 0, and hence, Ω̂∗
0 = Ω̂0, where:

Ω̂0 =
1
n

n

∑
i=1

p2
1
(Yi; XT

i β̂ + η̂
β̂
(Ti))

{
X i +

∂η̂
β
(Ti)

∂β

∣∣∣
β=β̂

}{
X i +

∂η̂
β
(Ti)

∂β

∣∣∣
β=β̂

}T
w2

2
(X i).

Theorem 3 justifies that under the null, Wn would for large n be distributed as χ2
k, thus

asymptotically distribution-free.

Theorem 3 (Wald-type test based on robust-BD under H0). Assume conditions in Theorem 2,

and Ĥ−1
0 Ω̂∗

0Ĥ−1
0

P−→ H−1
0 Ω∗

0H−1
0 in (28). Then, under H0 in (4), we have that:

Wn
D−→ χ2

k.

Theorem 4 indicates that Wn has a non-trivial local power detecting contiguous alternatives
approaching the null at the rate n−1/2:

H1n : Aβo − g0 = c/
√

n {1 + o(1)}, (29)

where c = (c1, . . . , ck)
T �= 0.

Theorem 4 (Wald-type test based on robust-BD under H1n). Assume conditions in Theorem 2,

and Ĥ−1
0 Ω̂∗

0Ĥ−1
0

P−→ H−1
0 Ω∗

0H−1
0 in (28). Then, under H1n in (29), Wn

D−→ χ2
k(τ

2), where
τ2 = cT(AH−1

0 Ω∗
0H−1

0 AT)−1c > 0.
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To appreciate the discriminating power of Wn in assessing the significance, the asymptotic power

is analyzed. Theorem 5 manifests that under the fixed alternative H1, Wn
P−→ +∞ at the rate n. Thus,

Wn has the power approaching to one against fixed alternatives.

Theorem 5 (Wald-type test based on robust-BD under H1). Assume conditions in Theorem

2, and Ĥ−1
0 Ω̂∗

0Ĥ−1
0

P−→ H−1
0 Ω∗

0H−1
0 in (28). Then, under H1 in (4), n−1Wn ≥

λ−1
max(AH−1

0 Ω∗
0H−1

0 AT)‖Aβo − g0‖2 + oP(1).

For the conventional PLM in (1) estimated using the non-robust quadratic loss, [8] showed the
asymptotic equivalence between the Wald-type test and likelihood ratio-type test. Our results in the
next Section 5.2 reveal that such equivalence is violated when estimators are obtained using the robust
loss functions.

5.2. Likelihood Ratio-Type Test Λn

This section explores the degree to which the likelihood ratio-type test is extended to the
“robust-BD” for testing the null hypothesis in (4) for the GPLM. The robust-BD test statistic is:

Λn = 2n
{

min
β∈Rd :Aβ=g0

Jn(β, η̂
β
)− Jn(β̂, η̂

β̂
)
}

, (30)

where β̂ is the robust-BD estimator for βo developed in Section 2.4.
Theorem 6 indicates that the limit distribution of Λn under H0 is a linear combination of

independent chi-squared variables, with weights relying on some unknown quantities, thus not
distribution free.

Theorem 6 (Likelihood ratio-type test based on robust-BD under H0). Assume conditions in Theorem 2.

(i) Under H0 in (4), we obtain:

Λn
D−→

k

∑
j=1

λj{(AH−1
0 AT)−1(AV0AT)}Z2

j ,

where V0 = H−1
0 Ω∗

0H−1
0 and {Zj}kj=1

i.i.d.∼ N(0, 1).

(ii) Moreover, if ψ(r) = r, w1(x) = w2(x) ≡ 1, and the generating q-function of BD satisfies:

q′′(m(x, t)) = − C
V(m(x, t))

, for a constant C > 0, (31)

then under H0 in (4), we have that Λn/C D−→ χ2
k.

Theorem 7 states that Λn has non-trivial local power for identifying contiguous alternatives

approaching the null at rate n−1/2 and that Λn
P−→ +∞ at the rate n under H1, thus having the power

approaching to one against fixed alternatives.

Theorem 7 (Likelihood ratio-type test based on robust-BD under H1n and H1). Assume conditions in
Theorem 2. Let V0 = H−1

0 Ω∗
0H−1

0 and λj = λj{(AH−1
0 AT)−1(AV0AT)}, j = 1, . . . , k.

(i) Under H1n in (29), Λn
D−→ ∑k

j=1(
√

λjZj + eT
j,kSc)2, where {Zj}kj=1

i.i.d.∼ N(0, 1), and S is a matrix

satisfying STS = (AH−1
0 AT)−1 and S(AV0AT)ST = diag(λ1, . . . , λk).

(ii) Under H1 in (4), n−1Λn ≥ c‖Aβo − g0‖2 + oP(1) for a constant c > 0.
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5.3. Comparison between Wn and Λn

In summary, the test Wn has some advantages over the test Λn. First, the asymptotic null
distribution of Wn is distribution-free, whereas the asymptotic null distribution of Λn in general
depends on unknown quantities. Second, Wn is invariant with re-scaling the generating q-function of
the BD, but Λn is not. Third, the computational expense of Wn is much more reduced than that of Λn,
partly because the integration operations for ρq are involved in Λn, but not in Wn, and partly because
Λn requires both unrestricted and restricted parameter estimates, while Wn is useful in cases where
restricted parameter estimates are difficult to compute. Thus, Wn will be focused on in numerical
studies of Section 6.

6. Simulation Study

We conduct simulation evaluations of the performance of robust-BD estimation methods for
general partially linear models. We use the Huber ψ-function ψ(·) with c = 1.345. The weight
functions are chosen to be w1(x) = w2(x) = 1/{1 + ∑d

j=1(
xj−mj

sj
)2}1/2, where x = (x1, . . . , xd)

T ,

mj and sj denote the sample median and sample median absolute deviation of {Xi,j : i = 1, . . . , n}
respectively, j = 1, . . . , d. As a comparison, the classical non-robust estimation counterparts correspond
to using ψ(r) = r and w1(x) = w2(x) ≡ 1. Throughout the numerical work, the Epanechnikov kernel
function K(t) = 0.75 max(1− t2, 0) is used. All these choices (among many others) are for feasibility;
the issues on the trade-off between robustness and efficiency are not pursued further in the paper.

The following setup is used in the simulation studies. The sample size is n = 200, and the number
of replications is 500. (Incorporating a nonparametric component in the GPLM desires a larger n
when the number of covariates increases for better numerical performance.) Local-linear robust-BD
estimation is illustrated with the bandwidth parameter h to be 20% of the interval length of the variable
T. Results using other data-driven choices of h are similar and are omitted.

6.1. Bernoulli Responses

We generate observations {(X i, Ti, Yi)}n
i=1 randomly from the model,

Y | (X, T) ∼ Bernoulli(m(X, T)), X ∼ N(0, Σ), T ∼ Uniform(0, 1),

where Σ = (σjk ) with σjk = 0.2|j−k|, and X is independent of T. The link function is logit{m(x, t)} =
xT βo + ηo(t), where βo = (2, 2, 0, 0)T and ηo(t) = 2 sin{π(1 + 2t)}. Both the deviance and
exponential loss functions are employed as the BD.

For each generated dataset from the true model, we create a contaminated dataset, where 10 data
points (Xi,j, Yi) are contaminated as follows: they are replaced by (X∗i,j, Y∗i ), where Y∗i = 1 − Yi,
i = 1, . . . , 5,

X∗1,2 = 5 sign(U1 − 0.5), X∗2,2 = 5 sign(U2 − 0.5), X∗3,2 = 5 sign(U3 − 0.5),
X∗4,4 = 5 sign(U4 − 0.5), X∗5,1 = 5 sign(U5 − 0.5), X∗6,2 = 5 sign(U6 − 0.5),
X∗7,3 = 5 sign(U7 − 0.5), X∗8,4 = 5 sign(U8 − 0.5), X∗9,2 = 5 sign(U9 − 0.5),
X∗10,3 = 5 sign(U10 − 0.5),

with {Ui} i.i.d.∼ Uniform(0, 1).
Figures 1 and 2 compare the boxplots of (β̂ j − β j;o), j = 1, . . . , d, based on the non-robust and

robust-BD estimates, where the deviance loss and exponential loss are used as the BD in the top and
bottom panels respectively. As seen from Figure 1 in the absence of contamination, both non-robust
and robust methods perform comparably well. Besides, the bias in non-robust methods using the
exponential loss (with p2(y; θ) unbounded) is larger than that of the deviance loss (with p2(y; θ)

bounded). In the presence of contamination, Figure 2 reveals that the robust method is more effective
in decreasing the estimation bias without excessively increasing the estimation variance.
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Figure 1. Simulated Bernoulli response data without contamination. Boxplots of (β̂ j − β j;o),
j = 1, . . . , d (from left to right). (Left panels): non-robust method; (right panels): robust method.

Figure 2. Simulated Bernoulli response data with contamination. The captions are identical to those in
Figure 1.

For each replication, we calculate MSE(η̂) = n−1 ∑n
i=1{η̂

β̂
(ti)− ηo(ti)}2. Figures 3 and 4 compare

the plots of η̂
β̂
(t) from typical samples, using non-robust and robust-BD estimates, where the

deviance loss and exponential loss are used as the BD in the top and bottom panels, respectively.
There, the typical sample in each panel is selected in a way such that its MSE value corresponds to
the 50-th percentile among the MSE-ranked values from 500 replications. These fitted curves reveal
little difference between using the robust and non-robust methods, in the absence of contamination.
For contaminated cases, robust estimates perform slightly better than non-robust estimates. Moreover,
the boundary bias issue arising from the curve estimates at the edges using the local constant method
can be ameliorated by using the local-linear method.
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Figure 3. Simulated Bernoulli response data without contamination. Plots of ηo(t) and η̂
β̂
(t).

(Left panels): non-robust method; (right panels): robust method.

Figure 4. Simulated Bernoulli response data with contamination. Plots of ηo(t) and η̂
β̂
(t). (Left panels):

non-robust method; (right panels): robust method.

6.2. Gaussian Responses

We generate independent observations {(X i, Ti, Yi)}n
i=1 from (X, T, Y) satisfying:

Y | (X, T) ∼ N(m(X, T), σ2), (X, Φ−1(T)) ∼ N(0, Σ),

where σ = 1, Σ = (σjk ) with σjk = 0.2|j−k|, Φ denotes the CDF of the standard normal
distribution. The link function is m(x, t) = xT βo + ηo(t), where βo = (2, −2, 1, −1, 0, 0)T and
ηo(t) = 2 sin{π(1 + 2t)}. The quadratic loss is utilized as the BD.
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For each dataset simulated from the true model, a contaminated data-set is created, where 10 data
points (Xi,j, Yi) are subject to contamination. They are replaced by (X∗i,j, Y∗i ), where Y∗i = Yi I{|Yi −
m(X i, Ti)|/σ > 2}+ 15 I{|Yi −m(X i, Ti)|/σ ≤ 2}, i = 1, . . . , 10,

X∗1,2 = 5 sign(U1 − 0.5), X∗2,2 = 5 sign(U2 − 0.5), X∗3,2 = 5 sign(U3 − 0.5),
X∗4,4 = 5 sign(U4 − 0.5), X∗5,6 = 5 sign(U5 − 0.5), X∗6,1 = 5 sign(U6 − 0.5),
X∗7,2 = 5 sign(U7 − 0.5), X∗8,3 = 5 sign(U8 − 0.5), X∗9,4 = 5 sign(U9 − 0.5),
X∗10,5 = 5 sign(U10 − 0.5),

with {Ui} i.i.d.∼ Uniform(0, 1).
Figures 5 and 6 compare the boxplots of (β̂ j − β j;o), j = 1, . . . , d, on the top panels, and plots

of η̂
β̂
(t) from typical samples, on the bottom panels, using the non-robust and robust-BD estimates.

The typical samples are selected similar to those in Section 6.1. The simulation results in Figure 5
indicate that the robust method performs, as well as the non-robust method for estimating both the
parameter vector and non-parametric curve in non-contaminated cases. Figure 6 reveals that the
robust estimates are less sensitive to outliers than the non-robust counterparts. Indeed, the non-robust
method yields a conceivable bias for parametric estimation, and non-parametric estimation is worse
than that of the robust method.

Figure 5. Simulated Gaussian response data without contamination. Top panels: boxplots of (β̂ j − β j;o),
j = 1, . . . , d (from left to right). Bottom panels: plots of ηo(t) and η̂

β̂
(t). (Left panels): non-robust

method; (right panels): robust method.

Figure 7 gives the QQ plots of the (first to 95-th) percentiles of the Wald-type statistic Wn versus
those of the χ2

2 distribution for testing the null hypothesis:

H0 : β2;o = −2 and β4;o = −1. (32)

The plots depict that in both clean and contaminated cases, the robust Wn (in right panels) closely
follows the χ2

2 distribution, lending support to Theorem 3. On the other hand, the non-robust Wn

agrees well with the χ2
2 distribution in clean data; the presence of a small number of outlying data

points severely distorts the sampling distribution of the non-robust Wn (in the bottom left panel) from
the χ2

2 distribution, yielding inaccurate levels of the test.
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Figure 6. Simulated Gaussian response data with contamination. Top panels: boxplots of
(β̂ j − β j;o), j = 1, . . . , d (from left to right). Bottom panels: plots of ηo(t) and η̂

β̂
(t). (Left panels):

non-robust method; (right panels): robust method.

Figure 7. Simulated Gaussian response data with contamination. Empirical quantiles (on the y-axis)
of the Wald-type statistics Wn versus quantiles (on the x-axis) of the χ2 distribution. Solid line: the
45 degree reference line. (Left panels): non-robust method; (right panels): robust method.

To assess the stability of the power of the Wald-type test for testing the hypothesis (32),
we evaluate the power in a sequence of alternatives with parameters βo + Δc for each given Δ,
where c = βo + (1, . . . , 1)T . Figure 8 plots the empirical rejection rates of the null model in the
non-contaminated case and the contaminated case. The price to pay for the robust Wn is a little loss of
power in the non-contaminated cases. However, under contamination, a very different behavior is
observed. The observed power curve of the robust Wn is close to those attained in the non-contaminated
case. On the contrary, the non-robust Wn is less informative, since its power curve is much lower than
that of the robust Wn against the alternative hypotheses with Δ �= 0, but higher than the nominal level
at the null hypothesis with Δ = 0.
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Figure 8. Observed power curves of tests for the Gaussian response data. The dashed line
corresponds to the non-robust Wald-type test Wn; the solid line corresponds to the robust Wn;
the dotted line indicates the 5% nominal level. (Left panels): non-contaminated case; (right panels):
contaminated case.

7. Real Data Analysis

Two real datasets are analyzed. In both cases, the quadratic loss is set to be the BD, and the
nonparametric function is fitted via local-linear regression method, where the bandwidth parameter is
chosen to be 25% of the interval length of the variable T. Choices of the Huber ψ-function and weight
functions are identical to those in Section 6.

7.1. Example 1

The dataset studied in [19] consists of 2447 observations on three variables, log(wage), age and
education, for women. It is of interest to learn how wages change with years of age and years of
education. It is anticipated to find an increasing regression function of Y = log(wage) in T = age as
well as in X1 = education. We fit a partially linear model Y = η(T) + β1X1 + ε. Profiles of the fitted
nonparametric functions η̂(·) in Figure 9 indeed exhibit the overall upward trend in age. The coefficient
estimate is β̂1 = 0.0809 with standard error 0.0042 using the non-robust method, and is β̂1 = 0.1334
with standard error 0.0046 by means of the robust method. It is seen that robust estimates are similar
to the non-robust counterparts. Our evaluation, based on both the non-robust and robust methods,
supports the predicted result in theoretical and empirical literature in socio-economical studies.

Figure 9. The dataset in [19]. (Left panels): estimate of η(T) via the non-robust quadratic loss;
(right panels): estimate of η(T) via the robust quadratic loss.

7.2. Example 2

We analyze an employee dataset (Example 11.3 of [20]) of the Fifth National Bank of Springfield,
based on year 1995 data. The bank, whose name has been changed, was charged in court with that
its female employees received substantially smaller salaries than its male employees. For each of
its 208 employees, the dataset consists of seven variables, EducLev (education level), JobGrade (job
grade), YrHired (year that an employee was hired), YrBorn (year that an employee was born), Female
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(indicator of being female), YrsPrior (years of work experience at another bank before working at the
Fifth National bank), and Salary (current annual salary in thousands of dollars).

To explain variation in salary, we fit a partial linear model, Y = η(T) + β1X1 + β2X2 + β3X3 +

β4X4 + β5X5 + ε, for Y = log(Salary), T = Age, X1 = Female, X2 = YrHired, X3 = EducLev,
X4 = JobGrade and X5 = YrsPrior, where Age = 95 − YrBorn is age. Table 1 presents parameter
estimates and their standard errors (given within brackets), along with p-values calculated from the
Wald-type test Wn. Figure 10 depicts the estimated nonparametric functions.

It is interesting to note that for this dataset, results from using the robust and non-robust methods
make a difference in drawing conclusions. For example, from Table 1, the non-robust method
gives the estimate of parameter β1 for gender to be below zero, which may be interpreted as the
evidence of discrimination against female employees in salary and lends support to the plaintiff.
In contrast, the robust method yields β̂1 > 0, which does not indicate that gender has an adverse
effect. (A similar conclusion made from penalized-likelihood was obtained in Section 4.1 of [21]).
Moreover, the estimated nonparametric functions η̂(·) obtained from non-robust and robust methods
are qualitatively different: the former method does not deliver a monotone increasing pattern with Age,
whereas the latter method does. Whether or not the difference was caused by outlying observations
will be an interesting issue to be investigated.

Table 1. Parameter estimates and p-values for partially linear model of the dataset in [20]

Variable
Classical-BD Estimation Robust-BD Estimation

Estimate (s.e.) p-Value of Wn Estimate (s.e.) p-Value of Wn

Female −0.0491 (0.0232) 0.0339 0.0530 (0.0323) 0.1010
YrHired −0.0093 (0.0026) 0.0005 0.0359 (0.0086) 0.0000
EducLev 0.0179 (0.0079) 0.0228 −0.0133 (0.0131) 0.3103
JobGrade 0.0899 (0.0075) 0.0000 0.1672 (0.0168) 0.0000
YrsPrior 0.0033 (0.0023) 0.1528 −0.0050 (0.0061) 0.4104

Figure 10. The dataset in [20]. (Left panel): estimate of η(T) via the non-robust quadratic loss;
(right panel): estimate of η(T) via the robust quadratic loss.

8. Discussion

Over the past two decades, nonparametric inference procedures for testing hypotheses concerning
nonparametric regression functions have been developed extensively. See [22–26] and the references
therein. The work on the generalized likelihood ratio test [24] offers light into nonparametric inference,
based on function estimation under nonparametric models, using the quadratic loss function as the
error measure. These works do not directly deal with the robust procedure. Exploring the inference on
nonparametric functions, such as ηo(t) in GPLM associated with a scalar variable T and the additive
structure ∑D

d=1 ηo
d (td) as in [27] with a vector variable T = (T1, . . . , TD), estimated via the “robust-BD”

as the error measure, when there are possible outlying data points, will be the future work.
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This paper utilizes the class BD of loss functions, the optimal choice of which depends on specific
settings and criteria. For e.g., regression and classification will utilize different loss functions, and thus
further study on optimality is desirable.

Some recent work on partially linear models in econometrics includes [28–30]. There, the nonparametric
function is approximated via linear expansions, with the number of coefficients diverging with n.
Developing inference procedures to be resistant to outliers could be of interest.
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Appendix A. Proofs of Main Results

Throughout the proof, C represents a generic finite constant. We impose some regularity
conditions, which may not be the weakest, but facilitate the technical derivations.

Notation:

For integers j ≥ 0, μj(K) =
∫

ujK(u)du; cp = (μp+1(K), . . . , μ2p+1(K))T ;
S = (μj+k−2(K))1≤j,k≤p+1. Define: η(x, t) = F(m(x, t)) = xT βo + ηo(t); ηi = η(X i, Ti).

Set ηi(t; β) = XT
i β + η

β
(t) + ∑

p
k=1(Ti − t)kη

(k)
β (t)/k!; g1(τ; t, β) = E{p1(Yi; ηi(t; β))w1(X i) | Ti = τ};

g2(τ; t, β) = E{p2(Yi; ηi(t; β))w1(X i) | Ti = τ}.

Condition A:

A1. η
β
(t) is the unique minimizer of S(a; t, β) with respect to a ∈ R1.

A2. βo ∈ Rd is the unique minimizer of J(β, η
β
) with respect to β, where d ≥ 1.

A3. ηo(·) = η
βo
(·).

Condition B:

B1. The function ρq(y, μ) is continuous and bounded. The functions p1(y; θ), p2(y; θ), p3(y; θ), w1(·)
and w2(·) are bounded; p2(y; θ) is continuous in θ.

B2. The kernel function K is Lipschitz continuous, a symmetric probability density function with
bounded support. The matrix S is positive definite.

B3. The marginal density fT(t) of T is a continuous function, uniformly bounded away from zero
and ∞ for t ∈ T0 .

B4. The function S(a; t, β) is continuous and η
β
(t) is a continuous function of (t, β).

B5. Assume g2(τ; t, β) is continuous in τ; g2(t; t, β) is continuous in t ∈ T0 .
B6. Functions η

β
(t) and ηo(t) are (p + 1)-times continuously differentiable at t.

B7. The link function F(·) is monotone increasing and a bijection, F(3)(·) is continuous, and F(1)(·) >
0. The matrix var(X | T = t) is positive definite for a.e. t.

B8. The matrix H0 in (25) is invertible; Ω∗
0 in (26) is positive-definite.

B9. η̂
β
(t) and η

β
(t) are continuously differentiable with respect to (t, β), and twice continuously

differentiable with respect to β such that for any 1 ≤ j, k ≤ d, ∂2

∂β j∂βk
η

β
(t)|β=βo

is bounded.

Furthermore, for any 1 ≤ j, k ≤ d, ∂2

∂β j∂βk
η

β
(t) satisfies the equicontinuity condition:

∀ε > 0, ∃ δε > 0 : ‖β1 − βo‖ < δε =⇒
∥∥∥ ∂2

∂β j∂βk
η

β

∣∣∣
β=β1

− ∂2

∂β j∂βk
η

β

∣∣∣
β=βo

∥∥∥
∞
< ε.

Note that Conditions A, B2–B5 and B8–B9 were similarly used in [9]. Conditions B1 and B7
follow [10]. Condition B6 is due to the local p-th-degree polynomial regression estimation.
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Proof of Lemma 1: From Condition A1, we obtain E{p1(Y; XT β + η
β
(t))w1(X) | T = t} = 0 and

E{p2(Y; XT β + η
β
(t))w1(X) | T = t} > 0, i.e.,

g1(t; t, β) = E{p1(Y; XT β + η
β
(t))w1(X) | T = t} = 0, (A1)

g2(t; t, β) = E{p2(Y; XT β + η
β
(t))w1(X) | T = t} > 0. (A2)

Define by η(0,...,p)
β

(t) = (η
β
(t), η

(1)
β (t), . . . , η

(p)
β (t)/p!)T the vector of η

β
(t) along with re-scaled

derivatives with respect to t up to the order p. Note that:

ηi(t; β) = XT
i β +

p

∑
k=0

(Ti − t)k η
(k)
β (t)
k!

= XT
i β + ti(t)Tη(0,...,p)

β
(t)

= XT
i β + {H−1ti(t)}T Hη(0,...,p)

β
(t)

= XT
i β + t∗i (t)

T Hη(0,...,p)
β

(t),

where H = diag{(1, h, . . . , hp)} and t∗i (t) = H−1ti(t) = (1, (Ti − t)/h, . . . , (Ti − t)p/hp)T denotes the
re-scaled ti(t). Then:

XT
i β + ti(t)Ta

= XT
i β + t∗i (t)

T Ha
= XT

i β + t∗i (t)
T Hη(0,...,p)

β
(t) + t∗i (t)

T H{a− η(0,...,p)
β

(t)}
= ηi(t; β) + t∗i (t)

T H{a− η(0,...,p)
β

(t)}.

Hence, we rewrite (16) as:

Sn(a; t, β) =
1
n

n

∑
i=1

ρq(Yi, F−1(ηi(t; β) + t∗i (t)
T H{a− η(0,...,p)

β
(t)}))w1(X i)Kh(Ti − t).

Therefore, â(t, β) minimizing Sn(a; t, β) is equivalent to the one minimizing:

1
n

n

∑
i=1

{
ρq(Yi, F−1(ηi(t; β) + t∗i (t)

T H{a− η(0,...,p)
β

(t)}))

−ρq(Yi, F−1(ηi(t; β)))
}

w1(X i)Kh(Ti − t)

with respect to a. It follows that â∗(t, β), defined by â∗(t, β) =
√

nh H{â(t, β) − η(0,...,p)
β

(t)},
minimizes:

Gn(a∗; t, β) = nh
[

1
n

n

∑
i=1

{
ρq(Yi, F−1(ηi(t; β) + {ant∗i (t)

Ta∗}))− ρq(Yi, F−1(ηi(t; β)))
}

w1(X i)Kh(Ti − t)
]

with respect to a∗ ∈ Rp+1, where an = 1/
√

nh. Note that for any fixed a∗, |t∗i (t)Ta∗| ≤ C.
By Taylor expansion,

Gn(a∗; t, β) = nh
(

an

[
1
n

n

∑
i=1

p1(Yi; ηi(t; β)){t∗i (t)
Ta∗}w1(X i)Kh(Ti − t)

]
+a2

n
1
2

[
1
n

n

∑
i=1

p2(Yi; ηi(t; β)){t∗i (t)
Ta∗}2w1(X i)Kh(Ti − t)

]
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+a3
n

1
6

[
1
n

n

∑
i=1

p3(Yi; η∗i (t; β)){t∗i (t)
Ta∗}3w1(X i)Kh(Ti − t)

])
= In,1 + In,2 + In,3,

where η∗i (t; β) is located between ηi(t; β) and ηi(t; β) + {ant∗i (t)
Ta∗}. We notice that:

In,1 ≡
√

nh Wn(t, β)Ta∗,

where:

Wn(t, β) =
1
n

n

∑
i=1

p1(Yi; ηi(t; β))t∗i (t)w1(X i)Kh(Ti − t);

also, Lemma A1 implies:

In,2 = nha2
n

1
2

a∗T
[

1
n

n

∑
i=1

p2(Yi; ηi(t; β)){t∗i (t)t
∗
i (t)

T}w1(X i)Kh(Ti − t)
]

a∗

=
1
2

a∗TS2(t, β)a∗ + oP(1),

where:
S2(t, β) = g2(t; t, β) fT(t)S $ 0

by (A2), Condition B2 and B5; and (by using Xn = OP(E(|Xn|))):

In,3 ≤ C OP(nha3
n) = OP(1/

√
nh) = oP(1).

Then:

Gn(a∗; t, β) =
√

nh Wn(t, β)Ta∗ +
1
2

a∗TS2(t, β)a∗ + oP(1),

where a∗TS2(t, β)a∗ = (a∗TSa∗)g2(t; t, β) fT(t) is continuous in t ∈ T0 by B3 and B5.
We now examine Wn(t, β). Note that:

var{Wn(t, β)} =
1
n

var{p1(Yi; ηi(t; β))t∗i (t)w1(X i)Kh(Ti − t)}

≤ 1
n

E
[
p2

1
(Yi; ηi(t; β)){t∗i (t)t

∗
i (t)

T}w2
1
(X i) {Kh(Ti − t)}2

]
≤ C

n
E
[ 1

h2

{
K
(Ti − t

h

)}2]
=

C
nh

.

To evaluate E{Wn(t, β)}, it is easy to see that for each j ∈ {0, 1, . . . , p},

eT
j+1,p+1E{Wn(t, β)} = E{p1(Yi; ηi(t; β))eT

j+1,p+1t∗i (t)w1(X i)Kh(Ti − t)}

= E
{

p1(Yi; ηi(t; β))
(Ti − t

h

)j
w1(X i)Kh(Ti − t)

}
= E

[
E{p1(Yi; ηi(t; β))w1(X i) | Ti}

(Ti − t
h

)j
Kh(Ti − t)

]
= E

{
g1(Ti; t, β)

(Ti − t
h

)j
Kh(Ti − t)

}
=

∫
g1(y; t, β)

(y− t
h

)j 1
h

K
(y− t

h

)
fT(y)dy

=
∫

g1(t + hx; t, β)xjK(x) fT(t + hx)dx.

Note that by Taylor expansion,
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η
β
(t + hx) =

p

∑
k=0

(hx)k η
(k)
β (t)
k!

+ (hx)p+1 η
(p+1)
β (t)
(p + 1)!

+ o(hp+1).

This combined with the facts (A1) and (A2) give that:

g1(t + hx; t, β)

= E
{

p1

(
Y; XT β +

p

∑
k=0

(hx)k η
(k)
β (t)
k!

)
w1(X)

∣∣∣ T = t + hx
}

= E
[

p1(Y; XT β + η
β
(t + hx))w1(X)

+p2(Y; XT β + η
β
(t + hx))

{ p

∑
k=0

(hx)k η
(k)
β (t)
k!

− η
β
(t + hx)

}
w1(X)

∣∣∣ T = t + hx
]

+o(hp+1)

= g1(t + hx; t + hx, β)− (hx)p+1 η
(p+1)
β (t)
(p + 1)!

g2(t + hx; t + hx, β) + o(hp+1)

= −(hx)p+1 η
(p+1)
β (t)
(p + 1)!

g2(t + hx; t + hx, β) + o(hp+1).

Thus, using the continuity of g2(t; t, β) and fT(t) in t, we obtain:

E{Wn(t, β)} = −cp
η
(p+1)
β (t)
(p + 1)!

g2(t; t, β) fT(t)hp+1 + o(hp+1)

uniformly in (t, β). Thus, we conclude that
√

nh Wn(t, β) = OP(1) when nh2p+3 = O(1).
By Lemma A2,

sup
a∗∈Θ, t∈T0 , β∈K

∣∣∣Gn(a∗; t, β)−
√

nh Wn(t, β)Ta∗ − 1
2

a∗TS2(t, β)a∗
∣∣∣ = oP(1).

This along with Lemma A.1 of [18] yields:

sup
t∈T0 , β∈K

‖â∗(t, β) + {S2(t, β)}−1
√

nh Wn(t, β)‖ = oP(1),

the first entry of which satisfies:

sup
t∈T0 , β∈K

|
√

nh{η̂
β
(t)− η

β
(t)}+ eT

1,p+1{S2(t, β)}−1
√

nh Wn(t, β)| = oP(1),

namely, supt∈T0 , β∈K |η̂β
(t) − η

β
(t) + eT

1,p+1{S2(t, β)}−1Wn(t, β)| = oP(1/
√

nh). By [31],

supt∈T0 , β∈K ‖Wn(t, β)− E{Wn(t, β)}‖ = OP({
log(1/h)

nh }1/2). Furthermore,

{S2(t, β)}−1E{Wn(t, β)} = −S−1cp
η
(p+1)
β (t)
(p + 1)!

hp+1 + o(hp+1)

uniformly in (t, β). Therefore,

sup
t∈T0 , β∈K

∣∣∣η̂β
(t)− η

β
(t)− eT

1,p+1S−1cp
η
(p+1)
β (t)
(p + 1)!

hp+1
∣∣∣ = oP(1).

This yields:
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sup
β∈K

sup
t∈T0

∣∣∣η̂β
(t)− η

β
(t)− eT

1,p+1S−1cp
η
(p+1)
β (t)
(p + 1)!

hp+1
∣∣∣

≤ sup
t∈T0 , β∈K

∣∣∣η̂β
(t)− η

β
(t)− eT

1,p+1S−1cp
η
(p+1)
β (t)
(p + 1)!

hp+1
∣∣∣ = oP(1).

Note that for p = 1, eT
1,p+1S−1cp = μ2(K). This completes the proof.

Lemma A1. Assume Condition B in the Appendix. If n → ∞, h → 0 and nh → ∞, then for given t ∈ T0 an
β ∈ K,

1
n

n

∑
i=1

p2(Yi; ηi(t; β)){t∗i (t)t
∗
i (t)

T}w1(X i)Kh(Ti − t) = S2(t, β) + oP(1),

where S2(t, β) = g2(t; t, β) fT(t)S , with S = (μj+k−2(K))1≤j,k≤p+1 and μj(K) =
∫

ujK(u)du,
j = 0, 1, . . . , 2p.

Proof. Recall the (p + 1) × (p + 1) matrix t∗i (t)t
∗
i (t)

T = (( Ti−t
h )j+k−2)1≤j,k≤p+1.

Set Xj =
1
n ∑n

i=1 p2(Yi; ηi(t; β))( Ti−t
h )jw1(X i)Kh(Ti − t) for j = 0, 1, . . . , 2p. We observe that:

E(Xj) =
1
n

n

∑
i=1

E
[
E{p2(Yi; ηi(t; β))w1(X i) | Ti}

(Ti − t
h

)j
Kh(Ti − t)

]
=

1
n

n

∑
i=1

E
{

g2(Ti; t, β)
(Ti − t

h

)j
Kh(Ti − t)

}
= E

{
g2(T; t, β)

(T − t
h

)j
Kh(T − t)

}
=

∫
g2(y; t, β)

(y− t
h

)j 1
h

K
(y− t

h

)
fT(y)dy

=
∫

g2(t + hx; t, β)xjK(x) fT(t + hx)dx

= g2(t; t, β) fT(t)μj(K) + o(1),

using the continuity of g2(τ; t, β) in τ and fT(t) in t. Similarly,

var(Xj) =
1
n2

n

∑
i=1

var
{

p2(Yi; ηi(t; β))
(Ti − t

h

)j
w1(X i)Kh(Ti − t)

}
≤ 1

n2

n

∑
i=1

E
[
p2

2
(Yi; ηi(t; β))

(Ti − t
h

)2j
w2

1
(X i) {Kh(Ti − t)}2

]
≤ C

nh
.

This completes the proof.

Lemma A2. Assume Condition B. If n → ∞, h → 0, nh → ∞, log(1/h)/(nh) → 0,
then supa∗∈Θ, t∈T0 , β∈K |Gn(a∗; t, β) −

√
nh Wn(t, β)Ta∗ − 2−1a∗TS2(t, β)a∗| = oP(1), with a compact

set Θ ⊆ Rp+1.

Proof. Let Dn(a∗; t, β) = Gn(a∗; t, β)−
√

nh Wn(t, β)Ta∗. Note that:

Dn(a∗; t, β)

= nh
[

1
n

n

∑
i=1

ρq(Yi, F−1(ηi(t; β) + {ant∗i (t)
Ta∗}))w1(X i)Kh(Ti − t)

− 1
n

n

∑
i=1

ρq(Yi, F−1(ηi(t; β)))w1(X i)Kh(Ti − t)
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− 1
n

n

∑
i=1

p1(Yi; ηi(t; β)){ant∗i (t)
Ta∗}w1(X i)Kh(Ti − t)

]
=

1
2

a∗T
[

1
n

n

∑
i=1

p2(Yi; η̃i(t; β)){t∗i (t)t
∗
i (t)

T}w1(X i)Kh(Ti − t)
]

a∗,

where an = 1/
√

nh and η̃i(t; β) is between ηi(t; β) and ηi(t; β) + {ant∗i (t)
Ta∗}. Then:

|Dn(a∗; t, β)− 2−1a∗TS2(t, β)a∗|
=

1
2

∣∣∣∣a∗T
[

1
n

n

∑
i=1

p2(Yi; η̃i(t; β)){t∗i (t)t
∗
i (t)

T}w1(X i)Kh(Ti − t)− S2(t, β)

]
a∗
∣∣∣∣

≤ ‖a∗‖2
∣∣∣∣ 1n n

∑
i=1

p2(Yi; η̃i(t; β)){t∗i (t)t
∗
i (t)

T}w1(X i)Kh(Ti − t)− S2(t, β)

∣∣∣∣.
The proof completes by applying [31].

Proof of Theorem 1. Before showing Theorem 1, we need Proposition A1 (whose proof is omitted),
where the following notation will be used. Denote by C1(T ) the set of continuously differentiable
functions in T . Let V(β) denote the neighborhood of β ∈ K. LetHδ(β) denote the neighborhood of
η

β
such that V(β) ⊆ K andHδ(β) = {u ∈ C1(T ) : ‖u− η

β
‖∞ ≤ δ, ‖ ∂

∂t u− ∂
∂t η

β
‖∞ ≤ δ}.

Proposition A1. Let {(Yi, X i, Ti)}n
i=1 be independent observations of (Y, X, T) modeled by (2) and (5).

Assume that a random variable T is distributed on T . Let K and H1(β) be compact sets, g(·; ·) : R2 → R

be a continuous and bounded function, W(x, t) : Rd+1 → R be such that E{|W(X, T)|} < ∞ and
η

β
(t) = η(t, β) : Rd+1 → R be a continuous function of (t, β). Then:

(i) E{g(Y; XTθ+ v(T))W(X, T)} → E{g(Y; XT β + η
β
(T))W(X, T)} as ‖θ− β‖+ ‖v− η

β
‖∞ → 0;

(ii) supθ∈K |n−1 ∑n
i=1 g(Yi; XT

i θ+ η
θ
(Ti))W(X, T)− E{g(Y; XTθ+ η

θ
(T))W(X, T)} P−→ 0 as n → ∞;

(iii) if, in addition, T is compact and η
β
∈ C1(T ), then supθ∈K, v∈H1(β)

|n−1 ∑n
i=1 g(Yi; XT

i θ+ v(Ti))W(X i, Ti)− E{g(Y; XTθ+ v(T))W(X, T)}| P−→ 0 as n → ∞.

For part (i), we first show that for any compact set K in Rd,

sup
β∈K

|Jn(β, η̂
β
)− J(β, η

β
)| P−→ 0. (A3)

It suffices to show supβ∈K |Jn(β, η
β
)− J(β, η

β
)| P−→ 0, which follows from Proposition A1 (ii), and:

sup
β∈K

|Jn(β, η̂
β
)− Jn(β, η

β
)| P−→ 0. (A4)

To show (A4), we note that for any ε > 0, let T0 be a compact set such that P(Ti /∈ T0) < ε. Then:

Jn(β, η̂
β
)− Jn(β, η

β
)

=
1
n

n

∑
i=1
{ρq(Yi, F−1(XT

i β + η̂
β
(Ti)))− ρq(Yi, F−1(XT

i β + η
β
(Ti)))}w2(X i) I(Ti ∈ T0)

+
1
n

n

∑
i=1
{ρq(Yi, F−1(XT

i β + η̂
β
(Ti)))− ρq(Yi, F−1(XT

i β + η
β
(Ti)))}w2(X i) I(Ti /∈ T0).

For Ti ∈ T0 , by the mean-value theorem,

|ρq(Yi, F−1(XT
i β + η̂

β
(Ti)))− ρq(Yi, F−1(XT

i β + η
β
(Ti)))|

= |p1(Yi; XT
i β + η∗i,β){η̂

β
(Ti)− η

β
(Ti)}|
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≤ ‖p1(·; ·)‖∞ sup
β∈K

‖η̂
β
− η

β
‖T0 ;∞,

where η∗i,β is located between η̂
β
(Ti) and η

β
(Ti). For Ti /∈ T0 , it follows that:

|ρq(Yi, F−1(XT
i β + η̂

β
(Ti)))− ρq(Yi, F−1(XT

i β + η
β
(Ti)))|

≤ 2‖ρq(·, ·)‖∞.

Hence,

|Jn(β, η̂
β
)− Jn(β, η

β
)| ≤

{
‖p1(·; ·)‖∞ sup

β∈K
‖η̂

β
− η

β
‖T0 ;∞ + 2‖ρq(·, ·)‖∞ T∗n

}
‖w2‖∞

≤ 2ε,

where the last inequality is entailed by Lemma 1 and the law of large numbers for T∗n = n−1 ∑n
i=1 I(Ti /∈

T0). This completes the proof of (A3). The proof of β̂
P−→ βo follows from combining Lemma A-1

of [1] with (A3) and Condition A2.
Part (ii) follows from Lemma 1, Part (i) and Condition B5 for η

β
(t).

Proof of Theorem 2. Similar to the proof of Lemma 1, it can be shown that |η̂
β
(t) − η

β
(t) +

eT
1,p+1{S2(t, β)}−1 1

n ∑n
i=1 p1(Yi; ηi(t; β))t∗i (t)w1(X i)Kh(Ti − t)| = OP(h

2an + a2
n
√

log(1/h)). Note that
for p = 1,

eT
1,p+1{S2(t, β)}−1t∗i (t) =

1
g2(t; t, β) fT(t)

(1, 0)

(
1 0
0 1/μ2(K)

)(
1

(Ti − t)/h

)
=

1
g2(t; t, β) fT(t)

.

Thus:∣∣∣∣η̂β
(t)− η

β
(t) +

1
n fT(t)g2(t; t, β)

n

∑
i=1

p1(Yi; ηi(t; β))w1(X i)Kh(Ti − t)
∣∣∣∣ = OP(h

2an + a2
n

√
log(1/h)).

Consider β̂ defined in (23). Note that:

XT
i β + η̂

β
(Ti) = XT

i βo + XT
i (β− βo) + η̂

(β−βo)+βo
(Ti)

= XT
i βo + cnXT

i {
√

n(β− βo)}+ η̂
cn{

√
n(β−βo)}+βo

(Ti),

where cn = 1/
√

n. Then, θ̂ =
√

n(β̂− βo) minimizes:

Jn(θ) = n
[

1
n

n

∑
i=1

{
ρq(Yi, F−1(XT

i βo + cnXT
i θ+ η̂cnθ+βo

(Ti)))w2(X i)

−ρq(Yi, F−1(XT
i βo + η̂

βo
(Ti)))w2(X i)

}]
with respect to θ. By Taylor expansion,

Jn(θ)

= n
(

1
n

n

∑
i=1

p1(Yi; XT
i βo + η̂

βo
(Ti))[cnXT

i θ+ {η̂cnθ+βo
(Ti)− η̂

βo
(Ti)}]w2(X i)
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+
1

2n

n

∑
i=1

p2(Yi; XT
i βo + η̂

βo
(Ti))[cnXT

i θ+ {η̂cnθ+βo
(Ti)− η̂

βo
(Ti)}]2w2(X i)

+
1

6n

n

∑
i=1

p3(Yi; η∗i )[cnXT
i θ+ {η̂cnθ+βo

(Ti)− η̂
βo
(Ti)}]3w2(X i)

)
= In,1 + In,2 + In,3,

where η∗i is located between XT
i βo + η̂

βo
(Ti) and XT

i βo + cnXT
i θ+ η̂cnθ+βo

(Ti),

In,1 =
n

∑
i=1

p1(Yi; XT
i βo + η̂

βo
(Ti))

{
cnXT

i θ+
∂η̂

β
(Ti)

∂β

T∣∣∣
β=βn

cnθ
}

w2(X i)

=
1√
n

n

∑
i=1

p1(Yi; XT
i βo + η̂

βo
(Ti))

{
X i +

∂η̂
β
(Ti)

∂β

∣∣∣
β=βn

}T
θw2(X i)

=
1√
n

n

∑
i=1

p1(Yi; XT
i βo + η̂

βo
(Ti))

{
X i +

∂η
β
(Ti)

∂β

∣∣∣
β=βo

}T
θw2(X i) + oP(1),

In,2 =
1
2

θT
[

1
n

n

∑
i=1

p2(Yi; XT
i βo + η̂

βo
(Ti)){

X i +
∂η̂

β
(Ti)

∂β

∣∣∣
β=βn

}{
X i +

∂η̂
β
(Ti)

∂β

∣∣∣
β=βn

}T
w2(X i)

]
θ

=
1
2

θTB2θ+ oP(1),

In,3 = oP(1),

with βn located between β
o

and cnθ + β
o
, and B2 = H0 following Lemma 1, Condition A3 and

Proposition A1. Thus:

Jn(θ) = I∗n,1
Tθ+

1
2

θTB2θ+ oP(1), (A5)

where I∗n,1 = 1√
n ∑n

i=1 p1(Yi; XT
i βo + η̂

βo
(Ti)){X i +

∂η
β
(Ti)

∂β |β=βo
}w2(X i). Note that:

I∗n,1 =
1√
n

n

∑
i=1

[
p1(Yi; XT

i βo + η
βo
(Ti))

{
X i +

∂η
β
(Ti)

∂β

∣∣∣
β=βo

}
w2(X i)

+p2(Yi; XT
i βo + η

βo
(Ti))

{
X i +

∂η
β
(Ti)

∂β

∣∣∣
β=βo

}
w2(X i){η̂

βo
(Ti)− η

βo
(Ti)}

+
1
2

p3(Yi; η∗∗i )
{

X i +
∂η

β
(Ti)

∂β

∣∣∣
β=βo

}
w2(X i){η̂

βo
(Ti)− η

βo
(Ti)}2

]
= Tn,1 + Tn,2 + Tn,3,

where η∗∗i is between XT
i βo + η̂

βo
(Ti) and XT

i βo + η
βo
(Ti),

Tn,3 = oP(1),

Tn,2 =
1√
n

n

∑
i=1

p2(Yi; XT
i βo + η

βo
(Ti))

{
X i +

∂η
β
(Ti)

∂β

∣∣∣
β=βo

}
w2(X i)

× (−1)
n fT(Ti)g2(Ti; Ti, β

o
)

n

∑
j=1

p1(Yj; ηj(Ti; β
o
))w1(X j)Kh(Tj − Ti)

= − 1√
n

n

∑
j=1

p1(Yj; ηj)w1(X j)

g2(Tj; Tj, β
o
)

E
[
p2(Yj; ηj)

{
X j +

∂η
β
(Tj)

∂β

∣∣∣
β=βo

}
w2(X j)

∣∣∣Tj

]
≡ − 1√

n

n

∑
j=1

p1(Yj; ηj)
γ(Tj)

g2(Tj; Tj, β
o
)

w1(X j),
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with:

γ(t) = E
[

p2(Y; η(X, T))
{

X +
∂η

β
(T)

∂β

∣∣∣
β=βo

}
w2(X)

∣∣∣T = t
]

.

Therefore,

I∗n,1 =
1√
n

n

∑
i=1

p1(Yi; ηi)

[{
X i +

∂η
β
(Ti)

∂β

∣∣∣
β=βo

}
w2(X i)−

γ(Ti)

g2(Ti; Ti, β
o
)

w1(X i)

]
+ oP(1).

By the central limit theorem,

I∗n,1
D−→ N(0, Ω∗

0), (A6)

where:

Ω∗
0 = E

(
p2

1
(Y; η(X, T))

[{
X +

∂η
β
(T)

∂β

∣∣∣
β=βo

}
w2(X)− γ(T)

g2(T; T, β
o
)

w1(X)
]

[{
X +

∂η
β
(T)

∂β

∣∣∣
β=βo

}
w2(X)− γ(T)

g2(T; T, β
o
)

w1(X)
]T)

.

From (A5) and (A6), θ̂ = −B−1
2 I∗n,1 + oP(1). This implies that

√
n(β̂ − βo)

D−→
N(0, H−1

0 Ω∗
0H−1

0 ).

Proof of Theorem 3. Denote V0 = H−1
0 Ω∗

0H−1
0 and V̂n = Ĥ−1

0 Ω̂∗
0Ĥ−1

0 . Note that Aβ̂− g0 = A(β̂−
βo) + (Aβo − g0). Thus:

(AV̂nAT)−1/2√n(Aβ̂− g0)

= (AV̂nAT)−1/2{A
√

n(β̂− βo)}+ (AV̂nAT)−1/2{
√

n(Aβo − g0)}
≡ I1 + I2,

which implies that Wn = ‖I1 + I2‖2. Arguments for Theorem 2 give I1
D−→ N(0, Ik). Under H0 in (4),

I2 ≡ 0 and thus (I1 + I2)
D−→ N(0, Ik), which completes the proof.

Proof of Theorem 4. Follow the notation and proof in Theorem 3. Under H1n in (29), I2
P−→

(AV0AT)−1/2c and thus (I1 + I2)
D−→ N((AV0AT)−1/2c, Ik). This completes the proof.

Proof of Theorem 5. Following the notation and proof in Theorem 3, Wn = ‖I1‖2 + 2IT
1 I2 + ‖I2‖2.

We see that ‖I1‖2 D−→ χ2
k. Under H1 in (4), I2 = (AV0AT)−1/2√n(Aβo− g0){1+ oP(1)}, which means

‖I2‖2 = n(Aβo − g0)
T(AV0AT)−1(Aβo − g0){1 + oP(1)} and thus IT

1 I2 = OP(
√

n). Hence, n−1Wn ≥
λmin{(AV0AT)−1}‖Aβo − g0‖2 + oP(1). This completes the proof.

Proof of Theorem 6. Denote Jn(β) = Jn(β, η̂
β
). For the matrix A in (4), there exists a (d− k)× d matrix

B satisfying BBT = Id−k and ABT = 0. Therefore, Aβ = g0 is equivalent to β = BTγ + b0 for some
vector γ ∈ Rd−k and b0 = AT(AAT)−1g0. Then, minimizing Jn(β) subject to Aβ = g0 is equivalent to
minimizing Jn(BTγ + b0) with respect to γ, and we denote by γ̂ the minimizer. Furthermore, under

H0 in (4), we have βo = BTγ0 + b0 for γ0 = Bβo, and γ̂− γ0
P−→ 0.

For Part (i), using the Taylor expansion around β̂, we get:

Jn(BTγ̂ + b0)− Jn(β̂) =
1

2n
{
√

n(BTγ̂ + b0 − β̂)}TJ′′n(β̃){
√

n(BTγ̂ + b0 − β̂)}, (A7)
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where β̃ is between BTγ̂ + b0 and β̂. We now discuss BTγ̂ + b0 − β̂. From the proof in Theorem 2,
(β̂− βo) = −H−1

0 J′n(βo){1 + oP(1)}, where J′n(βo) = {I∗n,1 + oP(1)}/
√

n. Similar arguments deduce
γ̂− γ0 = −(BH0BT)−1BJ′n(βo){1 + oP(1)}. Thus, under H0 in (4),

BTγ̂ + b0 − β̂ = BT(γ̂− γ0)− (β̂− βo) = H−1/2
0 P

H−1/2
0 AT H−1/2

0 J′n(βo){1 + oP(1)},

and thus by (A6),
√

n(BTγ̂ + b0 − β̂)
D−→ H−1/2

0 P
H−1/2

0 AT H−1/2
0 Ω∗

0
1/2Z, (A8)

where Z = (Z1, . . . , Zd)
T ∼ N(0, Id). Combining the fact J′′n(β̃)

P−→ H0, (A7) and (A8) gives:

Λn = {
√

n(BTγ̂ + b0 − β̂)}TH0{
√

n(BTγ̂ + b0 − β̂)}{1 + oP(1)}
D−→ ZTΩ∗

0
1/2H−1/2

0 P
H−1/2

0 AT H−1/2
0 Ω∗

0
1/2Z

=
d

∑
j=1

λj(Ω∗
0

1/2H−1/2
0 P

H−1/2
0 AT H−1/2

0 Ω∗
0

1/2)Z2
j

=
k

∑
j=1

λj{(AH−1
0 AT)−1(AV0AT)}Z2

j . (A9)

This proves Part (i).
For Part (ii), using ψ(r) = r, w1(x) = w2(x) ≡ 1 and (31), we obtain Ω∗

0 = Ω0 = CH0, and thus,
AV0AT = C(AH−1

0 AT). Thus, (A9) = C ∑k
j=1 Z2

j ∼ Cχ2
k, which completes the proof.

Proof of Theorem 7. The proofs are similar to those used in Theorem 4 and Theorems 5 and 6.
The lengthy details are omitted.
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Abstract: For portfolios with a large number of assets, the single index model allows for expressing
the large number of covariances between individual asset returns through a significantly smaller
number of parameters. This avoids the constraint of having very large samples to estimate the
mean and the covariance matrix of the asset returns, which practically would be unrealistic given
the dynamic of market conditions. The traditional way to estimate the regression parameters in
the single index model is the maximum likelihood method. Although the maximum likelihood
estimators have desirable theoretical properties when the model is exactly satisfied, they may give
completely erroneous results when outliers are present in the data set. In this paper, we define
minimum pseudodistance estimators for the parameters of the single index model and using them
we construct new robust optimal portfolios. We prove theoretical properties of the estimators, such as
consistency, asymptotic normality, equivariance, robustness, and illustrate the benefits of the new
portfolio optimization method for real financial data.

Keywords: minimum divergence methods; robustness; single index model

1. Introduction

The problem of portfolio optimization in the mean-variance approach depends on a large number
of parameters that need to be estimated on the basis of relatively small samples. Due to the dynamics
of market conditions, only a short period of market history can be used for estimation of the model’s
parameters. In order to reduce the number of parameters that need to be estimated, the single index
model proposed by Sharpe (see [1,2]) can be used. The traditional estimators for parameters of the
single index model are based on the maximum likelihood method. These estimators have optimal
properties for normally distributed variables, but they may give completely erroneous results in the
presence of outlying observations. Since the presence of outliers in financial asset returns is a frequently
occurring phenomenon, robust estimates for the parameters of the single index model are necessary in
order to provide robust and optimal portfolios.

Our contribution to robust portfolio optimization through the single index model is based on
using minimum pseudodistance estimators.

The interest on statistical methods based on information measures and particularly on divergences
has grown substantially in recent years. It is a known fact that, for a wide variety of models, statistical
methods based on divergence measures have some optimal properties in relation to efficiency,
but especially in relation to robustness, representing viable alternatives to the classical methods.
We refer to the monographs of Pardo [3] and Basu et al. [4] for an excellent presentation of such
methods, for their importance and applications.

Entropy 2018, 20, 374; doi:10.3390/e20050374 www.mdpi.com/journal/entropy223
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We can say that the minimum pseudodistance methods for estimation go to the same category as the
minimum divergence methods. The minimum divergence estimators are defined by minimizing some
appropriate divergence between the assumed theoretical model and the true model corresponding
to the data. Depending on the choice of the divergence, minimum divergence estimators can afford
considerable robustness with a minimal loss of efficiency. The classical minimum divergence methods
require nonparametric density estimation, which imply some difficulties such as the bandwidth
selection. In order to avoid the nonparametric density estimation in minimum divergence estimation
methods, some proposals have been made in [5–7] and robustness properties of such estimators have
been studied in [8,9].

The pseudodistances that we use in the present paper were originally introduced in [6], where they
are called "type-0" divergences, and corresponding minimum divergence estimators have been studied.
They are also obtained (using a cross entropy argument) and extensively studied in [10] where they are
called γ-divergences. They are also introduced in [11] in the context of decomposable pseudodistances.
By its very definition, a pseudodistance satisfies two properties, namely the nonnegativity and the
fact that the pseudodistance between two probability measures equals to zero if and only if the
two measures are equal. The divergences are moreover characterized by the information processing
property, i.e., by the complete invariance with respect to statistically sufficient transformations of
the observation space (see [11], p. 617). In general, a pseudodistance may not satisfy this property.
We adopted the term pseudodistance for this reason, but in the literature we can also meet the other
terms above. The minimum pseudodistance estimators for general parametric models have been
presented in [12] and consist of minimization of an empirical version of a pseudodistance between
the assumed theoretical model and the true model underlying the data. These estimators have the
advantages of not requiring any prior smoothing and conciliate robustness with high efficiency, usually
requiring distinct techniques.

In this paper, we define minimum pseudodistance estimators for the parameters of the single
index model and using them we construct new robust optimal portfolios. We study properties of the
estimators, such as, consistency, asymptotic normality, robustness and equivariance and illustrate the
benefits of the proposed portfolio optimization method through examples for real financial data.

We mention that we define minimum pseudodistance estimators, and prove corresponding
theoretical properties, for the parameters of the simple linear regression model (35), associated with
the single index model. However, in a very similar way, we can define minimum pseudodistance
estimators and obtain the same theoretical results for the more general linear regression model
Yj = XT

j β + ej, j = 1, . . . , n, where the errors ej are i.i.d. normal variables with mean zero and variance

σ2, Xj = (Xj1, . . . , Xjp)
T is the vector of independent variables corresponding to the j-th observation

and β = (β1, . . . , βp)T represents the regression coefficients.
The rest of the paper is organized as follows. In Section 2, we present the problem of robust

estimation for some portfolio optimization models. In Section 3, we present the proposed approach.
We define minimum pseudodistance estimators for regression parameters corresponding to the
single index model and obtain corresponding estimating equations. Some asymptotic properties
and equivariance properties of these estimators are studied. The robustness issue for estimators is
considered through the influence function analysis. Using minimum pseudodistance estimators,
new optimal portfolios are defined. Section 4 presents numerical results illustrating the performance
of the proposed methodology. Finally, the proofs of the theorems are provided in the Appendix A.

2. The Single Index Model

Portfolio selection represents the problem of allocating a given capital over a number of available
assets in order to maximize the return of the investment while minimizing the risk. We consider
a portfolio formed by a collection of N assets. The returns of the assets are given by the random
vector X := (X1, . . . , XN)

T . Usually, it is supposed that X follows a multivariate normal distribution
NN(μ, Σ), with μ being the vector containing the mean returns of the assets and Σ = (σij) the
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covariance matrix of the assets returns. Let w := (w1, . . . , wN)
T be the vector of weights associated

with the portfolio, where wi is the proportion of capital invested in the asset i. Then, the total return of
the portfolio is defined by the random variable

wTX = w1X1 + · · ·+ wN XN . (1)

The mean and the variance of the portfolio return are given by

R(w) := wTμ, (2)

S(w) := wTΣw. (3)

A classical approach for portfolio selection is the mean-variance optimization introduced by
Markowitz [13]. For a given investor’s risk aversion λ > 0, the mean-variance optimization gives the
optimal portfolio w∗, solution of the problem

arg max
w
{R(w)− λ

2
S(w)}, (4)

with the constraint wTeN = 1, eN being the N-dimensional vector of ones. The solution of the
optimization problem (4) is explicit, the optimal portfolio weights for a given value of λ being

w∗ =
1
λ

Σ−1(μ− ηeN), (5)

where

η =
eT

NΣ−1μ− λ

eT
NΣ−1eN

. (6)

This is the case when short selling is allowed. When short selling is not allowed, we have
a supplementary constraint in the optimization problem, namely all the weights wi are positive.

Another classical approach for portfolio selection is to minimize the portfolio risk defined by
the portfolio variance, under given constraints. This means determining the optimal portfolio w∗ as
a solution of the optimization problem

arg min
w

S(w), (7)

subject to R(w) = wTμ ≥ μ0, for a given value μ0 of the portfolio return.
However, the mean-variance analysis has been criticized for being sensitive to estimation errors of

the mean and the covariance of the assets returns. For both optimization problems above, estimations
of the input parameters μ and Σ are necessary. The quality and hence the usefulness of the results
of the portfolio optimization problem critically depend on the quality of the statistical estimates for
these input parameters. The mean vector and the covariance matrix of the returns are in practice
estimated by the maximum likelihood estimators under the multivariate normal assumption. When the
model is exactly satisfied, the maximum likelihood estimators have optimal properties, being the
most efficient. On the other hand, in the presence of outlying observations, these estimators may give
completely erroneous results and consequently the weights of the corresponding optimal portfolio
may be completely misleading. It is a known fact that outliers frequently occur in asset returns,
where an outlier is defined to be an unusually large value well separated from the bulk of the returns.
Therefore, robust alternatives to the classical approaches need to be carefully analyzed.

For an overview on the robust methods for portfolio optimization, using robust estimators of
the mean and covariance matrix in the Markowitz’s model, we refer to [14]. We also cite the methods
proposed by Vaz-de Melo and Camara [15], Perret-Gentil and Victoria-Feser [16], Welsch and Zhou [17],
DeMiguel and Nogales [18], and Toma and Leoni-Aubin [19].
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On the other hand, in portfolio analysis, one is sometimes faced with two conflicting demands.
Good quality statistical estimates require a large sample size. When estimating the covariance matrix,
the sample size must be larger than the number of different elements of the matrix. For example,
for a portfolio involving 100 securities, this would mean observations from 5050 trading days, which is
about 20 years. From a practical point of view, considering such large samples is not adequate
for the considered problem. Since the market conditions change rapidly, very old observations
would lead to irrelevant estimates for the current or future market conditions. In addition, in some
situations, the number of assets could even be much larger than the sample size of exploitable
historical data. Therefore, estimating the covariance matrix of asset returns is challenging due to the
high dimensionality and also to the heavy-tailedness of asset return data. It is a known fact that
extreme events are typical in financial asset prices, leading to heavy-tailed asset returns. One way to
treat these problems is to use the single index model.

The single index model (see [1]) allows us to express the large number of covariances between the
returns of the individual assets through a significantly smaller number of parameters. This is possible
under the hypothesis that the correlation between two assets is strictly given by their dependence on
a common market index. The return of each asset i is expressed under the form

Xi = αi + βiXM + ei, (8)

where XM is the random variable representing the return of the market index, ei are zero mean random
variables representing error terms and αi, βi are new parameters to be estimated. It is supposed that
the ei’s are independent and also that the eis are independent of xM. Thus, E(ei) = 0, E(eiej) = 0 and
E(eixM) = 0 for all i and all j �= i.

The intercept in Equation (35) represents the asset’s expected return when the market index return
is zero. The slope coefficient βi represents the asset’s sensitivity to the index, namely the impact of
a unit change in the return of the index. The error ei is the return variation that cannot be explained by
the index.

The following notations are also used:

σ2
i := Var(ei), μM := E(XM), σ2

M := Var(XM).

Using Equation (35), the components of the parameters μ and Σ from the models (4) and (7) are
given by

μi = αi + βiμM, (9)

σii = β2
i σ2

M + σ2
i , (10)

σij = βiβ jσ
2
M. (11)

Both variances and covariances are determined by the assets’ betas and sigmas and by the
standard deviation of the market index. Thus, the N(N + 1)/2 different elements of the covariance
matrix Σ can be expressed by 2N + 1 parameters βi, σi, σM. This is a significant reduction of the number
of parameters that need to be estimated.

The traditional estimators for parameters of the single index model are based on the maximum
likelihood method. These estimators have optimal properties for normally distributed variables,
but they may give completely erroneous results in the presence of outlying observations. Therefore,
robust estimates for the parameters of the single index model are necessary in order to provide robust
and optimal portfolios.
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3. Robust Estimators for the Single Index Model and Robust Portfolios

3.1. Definitions of the Estimators

Consider the linear regression model

X = α + βXM + e. (12)

Suppose we have i.i.d. two-dimensional random vectors Zj = (XMj, Xj), j = 1, . . . , n, such that
Xj = α + βXMj + ej. The random variables ej, j = 1, . . . , n, are i.i.d. with N (0, σ) and independent on
the XMj, j = 1, . . . , n.

The classical estimators for the unknown parameters α, β, σ of the linear regression model are
the maximum likelihood estimators (MLE). The classical MLE estimators perform well if the model
hypotheses are satisfied exactly and may otherwise perform poorly. It is well known that the MLE
are not robust, since a small fraction of outliers, even one outlier may have an important effect
inducing significant errors on the estimates. Therefore, robust alternatives of the MLE should be
considered, in order to propose robust estimates for the single index model, leading then to robust
portfolio weights.

In order to robustly estimate the unknown parameters α, β, σ, suppressing the outsized effects of
outliers, we use the approach based on pseudodistance minimization.

For two probability measures P, Q admitting densities p, respectively, q with respect to the
Lebesgue measure, we consider the following family of pseudodistances (also called γ-divergences in
some articles) of orders γ > 0

Rγ(P, Q) :=
1

(1 + γ)
ln
(∫

pγdP
)
+

1
γ(1 + γ)

ln
(∫

qγdQ
)
− 1

γ
ln
(∫

pγdQ
)

, (13)

satisfying the limit relation

Rγ(P, Q)→ R0(P, Q) :=
∫

ln
q
p

dQ for γ ↓ 0.

Note that R0(P, Q) is the well-known modified Kullback–Leibler divergence. Minimum
pseudodistance estimators for parametric models, using the family (13), have been studied by [6,10,11].
We also mention that pseudodistances (13) have also been used for defining optimal robust M-estimators
with the Hampel’s infinitesimal approach in [20].

For the linear regression model, we consider the joint distribution of the entire data,
the explanatory variable XM being random together with the response variable X, and write
a pseudodistance between a theoretical model and the data. Let Pθ , with θ =: (α, β, σ), be the
probability measure associated with the theoretical model given by the random vector (XM, X),
where X = α + βXM + e with e ∼ N (0, σ), e independent on XM, and Q the probability measure
associated with the data. Denote by pθ , respectively, q, the corresponding densities. For γ > 0,
the pseudodistance between Pθ and Q is defined by

Rγ(Pθ , Q) :=
1

(1 + γ)
ln
(∫

pγ
θ (xM, x)dPθ(xM, x)

)
+

1
γ(1 + γ)

ln
(∫

qγ(xM, x)dQ(xM, x)
)
−

1
γ

ln
(∫

pγ
θ (xM, x)dQ(xM, x)

)
.

(14)

Using the change of variables (xM, x)→ (u, v) := (xM, x− α− βxM) and taking into account that
f (u, v) := pθ(u, v + α + βu) is the density of (XM, e), since XM and e are independent, we can write
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∫
pγ

θ (xM, x)dPθ(xM, x) =
∫

pγ+1
M (u)du ·

∫
φ

γ+1
σ (v)dv, (15)∫

pγ
θ (xM, x)dQ(xM, x) =

∫
pγ

M(xM) · φγ
σ (x− α− βxM)dQ(xM, x), (16)

where pM is the density of XM and φσ is the density of the random variable e ∼ N (0, σ). Then,

Rγ(Pθ , Q) =
1

(1 + γ)
ln
(∫

pγ+1
M (u)du

)
+

1
(1 + γ)

ln
(∫

φ
γ+1
σ (v)dv

)
+

1
γ(1 + γ)

ln
(∫

qγ(xM, x)dQ(xM, x)
)

− 1
γ

ln
(∫

pγ
M(xM) · φγ

σ (x− α− βxM)dQ(xM, x)
)

.

Notice that the first and the third terms in the pseudodistance Rγ(Pθ , Q) do not depend on θ and
hence are not included in the minimization process. The parameter θ0 := (α0, β0, σ0) of interest is then
given by

(α0, β0, σ0) := arg min
α,β,σ

Rγ(Pθ , Q)

= arg min
α,β,σ

{
1

(1 + γ)
ln
(∫

φ
γ+1
σ (v)dv

)
− 1

γ
ln
(∫

pγ
M(xM) · φγ

σ (x− α− βxM)dQ(xM, x)
)}

.
(17)

Suppose now that an i.i.d. sample Z1, . . . , Zn is available from the true model. For a given γ > 0,
we define a minimum pseudodistance estimator of θ0 = (α0, β0, σ0) by minimizing an empirical version
of the objective function in Equation (17). This empirical version is obtained by replacing pM(xM)

with the empirical density function p̂M(xM) = 1
n ∑n

i=1 δ(xM − XMi), where δ(·) is the Dirac delta
function, and Q with the empirical measure corresponding to the sample. More precisely, we define
θ̂ := (α̂, β̂, σ̂)

(α̂, β̂, σ̂) := arg min
α,β,σ

{
1

(1 + γ)
ln
(∫

φ
γ+1
σ (v)dv

)
− 1

γ
ln
(∫

p̂γ
M(xM) · φγ

σ (x− α− βxM)dPn(xM, x)
)}

= arg min
α,β,σ

{
1

(1 + γ)
ln
(∫

φ
γ+1
σ (v)dv

)
− 1

γ
ln

(
1

nγ+1

n

∑
j=1

φ
γ
σ (Xj − α− βXMj)

)}
,

(18)

or equivalently

(α̂, β̂, σ̂) = arg max
α,β,σ

n

∑
j=1

φ
γ
σ (Xj − α− βXMj)

[
∫

φ
γ+1
σ (v)dv]γ/(γ+1)

= arg max
α,β,σ

n

∑
j=1

σ−γ/(γ+1) exp

(
−γ

2

(Xj − α− βXMj

σ

)2
)

.

Differentiating with respect to α, β, σ, the estimators α̂, β̂, σ̂ are solutions of the system

n

∑
j=1

exp

(
−γ

2

(Xj − α− βXMj

σ

)2
)(Xj − α− βXMj

σ

)
= 0, (19)

n

∑
j=1

exp

(
−γ

2

(Xj − α− βXMj

σ

)2
)(Xj − α− βXMj

σ

)
XMj = 0, (20)

n

∑
j=1

exp

(
−γ

2

(Xj − α− βXMj

σ

)2
)[(Xj − α− βXMj

σ

)2

− 1
γ + 1

]
= 0. (21)
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Note that, for γ = 0, the solution of this system is nothing but the maximum likelihood
estimator of (α, β, σ). Therefore, the estimating Equations (19)–(21) are generalizations of the maximum
likelihood score equations. The tuning parameter γ associated with the pseudodistance controls the
trade-off between robustness and efficiency of the minimum pseudodistance estimators.

We can also write that θ̂ = (α̂, β̂, σ̂) is a solution of

n

∑
j=1

Ψ(Zj, θ̂) = 0 or
∫

Ψ(z, θ̂)dPn(z) = 0, (22)

where

Ψ(z, θ) =

(
φ

(
x− α− βxM

σ

)
, φ

(
x− α− βxM

σ

)
xM, χ

(
x− α− βxM

σ

))T
, (23)

with z = (xM, x), θ = (α, β, σ), φ(t) = exp(− γ
2 t2)t and χ(t) = exp(− γ

2 t2)[t2 − 1
γ+1 ].

When the measure Q corresponding to the data pertain to the theoretical model, hence Q = Pθ0 ,
it holds that ∫

Ψ(z, θ0)dPθ0(z) = 0. (24)

Thus, we can consider θ̂ = (α̂, β̂, σ̂) as a Z-estimator of θ0 = (α0, β0, σ0), which allows for adapting
in the present context asymptotic results from the general theory of Z-estimators (see [21]).

Remark 1. In the case when the density pM is known, by replacing Q with the empirical measure Pn in
Equation (17), a new class of estimators of (α0, β0, σ0) can be obtained. These estimators can also be written
under the form of Z-estimators, using the same reasoning as above. The results of Theorems 1–4 below could
be adapted for these new estimators, and moreover all the influence functions of these estimators would be
redescending bounded. However, in practice, the density of the index return is not known. Therefore, we will
work with the class of minimum pseudodistance estimators as defined above.

3.2. Asymptotic Properties

In order to prove the consistency of the estimators, we use their definition (22) as Z-estimators.

3.2.1. Consistency

Theorem 1. Assume that, for any ε > 0, the following condition for the separability of solution holds

inf
θ∈M

∥∥∥∥∫ ψ(z, θ)dPθ0(z)
∥∥∥∥ > 0 =

∥∥∥∥∫ ψ(z, θ0)dPθ0(z)
∥∥∥∥ , (25)

where M := {θ s.t. ‖θ − θ0‖ ≥ ε}. Then, θ̂ = (α̂, β̂, σ̂) converges in probability to θ0 = (α0, β0, σ0).

3.2.2. Asymptotic Normality

Assume that Z1, . . . , Zn are i.i.d. two-dimensional random vectors having the common probability
distribution Pθ0 . For γ > 0 fixed, let θ̂ = (α̂, β̂, σ̂) be a sequence of estimators of the unknown parameter
θ0 = (α0, β0, σ0), solution of

n

∑
j=1

Ψ(Zj, θ̂) = 0, (26)

where

Ψ(z, θ) =

(
σ2φ

(
x− α− βxM

σ

)
, σ2φ

(
x− α− βxM

σ

)
xM, σ2χ

(
x− α− βxM

σ

))T
, (27)
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with z = (xM, x), θ = (α, β, σ), φ(t) = exp(− γ
2 t2)t and χ(t) = exp(− γ

2 t2)[t2 − 1
γ+1 ]. Note that the

estimators θ̂ = (α̂, β̂, σ̂) defined by Equations (19)–(21), or equivalently by (22), are also solutions of
the system (26). Using the function (27) for defining the estimators allows for obtaining the asymptotic
normality, only imposing the consistency condition of the estimators, without other supplementary
assumptions that are usually imposed in the case of Z-estimators.

Theorem 2. Assume that θ̂ → θ0 in probability. Then,

√
n(θ̂ − θ0)→ N3(0, B−1 A(B−1)T) (28)

in distribution, where A = E(Ψ(Z, θ0)Ψ(Z, θ0)
T) and B = E(Ψ̇(Z, θ0)), with Ψ defined by (27), Ψ̇ being the

matrix with elements Ψ̇ik =
∂Ψi
∂θk

.

After some calculations, we obtain the asymptotic covariance matrix of θ̂ having the form

σ2
0

(γ + 1)3

(2γ + 1)3/2

⎛⎜⎜⎜⎜⎜⎝
μ2

M + σ2
M

σ2
M

−μM

σ2
M

0

−μM

σ2
M

1
σ2

M
0

0 0 3γ2+4γ+2
4(2γ+1)

⎞⎟⎟⎟⎟⎟⎠ .

It follows that β̂ and σ̂ are asymptotically independent; in addition, α̂ and σ̂ are asymptotically
independent.

3.3. Influence Functions

In order to describe stability properties of the estimators, we use the following well-known
concepts from the theory of robust statistics. A map T, defined on a set of probability measures and
parameter space valued, is a statistical functional corresponding to an estimator θ̂ of the parameter θ,
if θ̂ = T(Pn), Pn being the empirical measure pertaining to the sample. The influence function of T at
Pθ is defined by

IF(z; T, Pθ) :=
∂T(P̃εz)

∂ε

∣∣∣∣∣
ε=0

,

where P̃εz := (1− ε)Pθ + εδz, δz being the Dirac measure putting all mass at z. As a consequence,
the influence function describes the linearized asymptotic bias of a statistic under a single point
contamination of the model Pθ . An unbounded influence function implies an unbounded asymptotic
bias of a statistic under single point contamination of the model. Therefore, a natural robustness
requirement on a statistical functional is the boundedness of its influence function.

For γ > 0 fixed and a given probability measure P, the statistical functionals α(P), β(P) and σ(P),
corresponding to the minimum pseudodistance estimators α̂, β̂ and σ̂, are defined by the solution of
the system ∫

Ψ(z, T(P))dP(z) = 0, (29)

with Ψ defined by (23) and T(P) := (α(P), β(P), σ(P)), whenever this solution exists.
When P = Pθ corresponds to the considered theoretical model, the solution of system (29) is

T(Pθ) = θ = (α, β, σ).
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Theorem 3. The influence functions corresponding to the estimators α̂, β̂ and σ̂ are respectively given by

IF(xM0, x0; α, Pθ) = σ(γ + 1)3/2φ

(
x0 − α− βxM0

σ

) [
1− (xM0 − E(XM))E(XM)

Var(XM)

]
, (30)

IF(xM0, x0; β, Pθ) = σ(γ + 1)3/2φ

(
x0 − α− βxM0

σ

)
xM0 − E(XM)

Var(XM)
, (31)

IF(xM0, x0; σ, Pθ) =
σ(γ + 1)5/2

2
χ

(
x0 − α− βxM0

σ

)
. (32)

Since χ is redescending, σ̂ has a bounded influence function and hence it is a redescending
B-robust estimator. On the other hand, IF(xM0, x0, α, P) and IF(xM0, x0, β, P) will tend to infinity
only when xM0 tends to infinity and | x0−α−βxM0

σ | ≤ k, for some k. Hence, these influence functions
are bounded with respect to partial outliers or leverage points (outlying values of the independent
variable). This means that large outliers with respect to xM, or with respect to x, will have a reduced
influence on the estimates. However, the influence functions are clearly unbounded for γ = 0,
which corresponds to the non-robust maximum likelihood estimators.

3.4. Equivariance of the Regression Coefficients’ Estimators

If an estimator is equivariant, it means that it transforms "properly" in some sense. Rousseeuw
and Leroy [22] (p. 116) discuss three important equivariance properties for a regression estimator:
regression equivariance, scale equivariance and affine equivariance. These are desirable properties
since they allow one to know how the estimates change under different types of transformations of
the data. Regression equivariance means that any additional linear dependence is reflected in the
regression vector accordingly. The regression equivariance is routinely used when studying regression
estimators. It allows for assuming, without loss generality, any value for the parameter (α, β) for
proving asymptotic properties or describing Monte-Carlo studies. An estimator being scale equivariant
means that the fit produced by it is independent of the choice of measurement unit for the response
variable. The affine equivariance is useful because it means that changing to a different co-ordinate
system for the explanatory variable will not affect the estimate. It is known that the maximum
likelihood estimator of the regression coefficients satisfies all these three properties. We show that the
minimum pseudodistance estimators of the regression coefficients satisfy all the three equivariance
properties, for all γ > 0.

Theorem 4. For all γ > 0, the minimum pseudodistance estimators (α̂, β̂)T of the regression coefficients
(α, β)T are regression equivariant, scale equivariant and affine equivariant.

On the other hand, the objective function in the definition of the estimators depends on data only
through the summation

n

∑
j=1

σ−γ/(γ+1) exp

(
−γ

2

(Xj − α− βXMj

σ

)2
)

, (33)

which is permutation invariant. Thus, the corresponding estimators of the regression coefficients and
of the error standard deviation are permutation invariant, therefore the ordering of data does not affect
the estimators.

The minimum pseudodistance estimators are also equivariant with respect to reparametrizations.
If θ = (α, β, σ) and the model is reparametrized to Υ = Υ(θ) with a one-to-one transformation, then the
minimum pseudodistance estimator of Υ is simply Υ̂ = Υ(θ̂), in terms of the minimum pseudodistance
estimator θ̂ of θ, for the same γ.
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3.5. Robust Portfolios Using Minimum Pseudodistance Estimators

The robust estimation of the parameters αi, βi, σi from the single index model given by (35), using
minimum pseudodistance estimators, together with the robust estimation of μM and σM lead to robust
estimates of μ and Σ, on the basis of relations (9)–(11). Since we do not model the explanatory variable
XM in a specific way, we estimate μM and the standard deviation σM using as robust estimators the
median, respectively the median absolute deviation. Then, the portfolio weights, obtained as solutions
of the optimization problems (4) or (7) with input parameters robustly estimated, will also be robust.
This methodology leads to new optimal robust portfolios. In the next section, on the basis of real
financial data, we illustrate this new methodology and compare it with the traditional method based
on maximum likelihood estimators.

4. Applications

4.1. Comparisons of the Minimum Pseudodistance Estimators with Other Robust Estimators for the Linear
Regression Model

In order to illustrate the performance of the minimum pseudodistance estimators for the
simple linear regression model, we compare them with the least median of squares (LMS) estimator
(see [22,23]), with S-estimators (SE) (see [24]) and with the minimum density power divergence
(MDPD) estimators (see [25]), estimators that are known to have a good behavior from the robustness
point of view.

We considered a data set that comes from astronomy, namely the data from the Hertzsprung–Russell
diagram of the star clusters CYG OB1 containing 47 stars in the direction of Cygnus. For these data,
the independent variable is the logarithm of the effective temperature at the surface of the star and
the dependent variable is the logarithm of its light intensity. The data are given in Rousseeuw and
Leroy [22] (p. 27), who underlined that there are two groups of points: the majority, following a steep
band, and four stars clearly forming a separate group from the rest of the data. These four stars are
known as giants in astronomy. Thus, these outliers are not recording errors, but represents leverage
points coming from a different group.

The estimates of the regression coefficients and of error standard deviation obtained with
minimum pseudodistance estimators for several values of γ are given in Table 1 and some of the
fitted models are plotted in Figure 1. For comparison, in Table 1, we also give estimates obtained with
S-estimators based on the Tukey biweighted function, these estimates being taken from [24], as well
as estimations obtained with minimum density power divergence methods for several values of the
tuning parameter, and estimates obtained with the least median of squares method, all these estimates
being taken from [25]. The MLE estimates, given on the first line of Table 1, are significantly affected
by the four leverage points. On the other hand, like the robust least median of squares estimator,
the robust S-estimators and some minimum density power divergence estimators, the minimum
pseudodistance estimators with γ ≥ 0.32 can successfully ignore outliers. In addition, the minimum
pseudodistance estimators with γ ≥ 0.5 give robust fits that are closer to the fits generated by the least
median of squares estimates or by the S-estimates than the fits generated by the minimum density
power divergence estimates.

232



Entropy 2018, 20, 374

Table 1. The parameter estimates for the linear regression model for the Hertzsprung–Russell data
using several minimum pseudodistance (MP) methods, several minimum density power divergence
(MDPD) methods, the least median of squares (LMS) method, S-estimators and the MLE method. γ

represents tuning parameter.

MLE Estimates

α β σ

6.79 −0.41 0.55

MP Estimates

γ α β σ

0.01 6.79 −0.41 0.55
0.1 6.81 −0.41 0.56

0.25 6.86 −0.42 0.58
0.3 6.88 −0.42 0.59

0.31 6.89 −0.43 0.59
0.32 −6.81 2.66 0.39
0.35 −7.16 2.74 0.38
0.4 −7.62 2.85 0.38
0.5 −8.17 2.97 0.37

0.75 −8.65 3.08 0.38
1 −8.84 3.12 0.39

1.2 −8.94 3.15 0.40
1.5 −9.08 3.18 0.41
2 −9.31 3.23 0.43

MDPD Estimates

γ α β σ

0.1 6.78 −0.41 0.60
0.25 −5.16 2.30 0.42
0.5 −7.22 2.76 0.40
0.8 −7.89 2.91 0.40
1 −8.03 2.95 0.41

S-Estimates

α β σ

−9.59 3.28 −
LMS Estimates

α β σ

−12.30 3.90 −
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Figure 1. Plots of the Hertzsprung–Russell data and fitted regression lines using MLE, minimum
density power divergence (MDPD) methods for several values of γ, minimum pseudodistance (MP)
methods for several values of γ, S-estimators (SE) and the least median of squares (LMS) method.
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4.2. Robust Portfolios Using Minimum Pseudodistance Estimators

In order to illustrate the performance of the proposed robust portfolio optimization method,
we considered real data sets for the Russell 2000 index and for 50 stocks from its components. The stocks
are listed in Appendix B. We selected daily return data for the Russell 2000 index and for all these
stocks from 2 January 2013 to 30 June 2016. The data were retrieved from Yahoo Finance.

The data has been divided by quarter, in total 14 quarters for index and each stock. For each
quarter, on the basis of data corresponding to the index, we estimated μM and the standard deviation
σM using as robust estimators the median (MED), respectively the median absolute deviation (MAD)
defined by

MAD :=
1

0.6745
·MED(|Xi −MED(Xi)|). (34)

We also estimated μM and σM classically, using sample mean and sample variance. Then, for each
quarter and each of the 50 stocks, we estimated α, β and σ from the regression model using robust
minimum pseudodistance estimators, respectively the classical MLE estimators. Then, on the basis of
relations (9), (10) and (11), we estimated μ and Σ first using the robust estimates and then the classical
estimates, all being previously computed.

Once the input parameters for the portfolio optimization procedure were estimated, for each
quarter, we determined efficient frontiers, for both robust estimates and classical estimates. In both
cases, the efficient frontier is determined as follows. Firstly, the range of returns is determined as the
interval comprised between the return of the portfolio of global minimum risk (variance) and the
maximum value of the return of a feasible portfolio, where the feasible region is

X =
{

w ∈ RN
∣∣∣wTeN = 1, wk ≥ 0, k ∈ {1, . . . , 50}

}
and N = 50. We trace each efficient frontier in 100 points; therefore, the range of returns is divided,
in each case, in ninety-nine sub-intervals with

μ1 < μ2 < · · · < μ100,

where μ1 is the return of the portfolio of global minimum variance and μ100 is the maximum return for
the feasible region X. We determined μ1 and μ100 using robust estimates of μ and Σ (for the robust
frontier) and then using classical estimates (for the classical frontier). In each case, 100 optimization
problems are solved:

arg min
w∈RN

S(w)

wk ≥ 0, k ∈ {1, . . . , 50}
wTeN = 1

R(w) ≥ μi,

where i ∈ {1, . . . , 100}.
In Figure 2, for eight quarters (the first four quarters and the last four quarters), we present efficient

frontiers corresponding to the optimal minimum variance portfolios based on the robust minimum
pseudodistance estimates with γ = 0.5, respectively based on the classical estimates. Thus, on the
ox-axis, we consider the portfolio risk (given by the portfolio standard deviation) and, on the oy-axis,
we represent the portfolio return. We notice that, in comparison with the classical method based on
MLE, the proposed robust method provides optimal portfolios that have higher returns for the same
level of risk (standard deviation). Indeed, for each quarter, the robust frontier is situated above the
classical one, the standard deviations of the robust portfolios being smaller compared with those of
the classical portfolios. We obtained similar results for the other quarters and for other choices of the
tuning parameter γ, corresponding to the minimum pseudodistance estimators, too.
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We also illustrate the empirical performance of the proposed optimal portfolios through
an out-of-sample analysis, by using the Sharpe ratio as out-of-sample measure. For this analysis,
we apply a “rolling-horizon” procedure as presented in [18]. First, we choose a window over which to
perform the estimation. We denote the length of the estimation window by τ < T, where T is the size
of the entire data set. Then, using the data in the first estimation window, we compute the weights for
the considered portfolios. We repeat this procedure for the next window, by including the data for the
next day and dropping the data for the earliest day. We continue doing this until the end of the data
set is reached. At the end of this process, we have generated T − τ portfolio weight vectors for each
strategy, which are the vectors wk

t for t ∈ {τ, . . . , T − 1}, k denoting the strategy. For a strategy k, wk
t

has the components wk
j,t, where wk

j,t denotes the portfolio weight in asset j chosen at the time t.

The out-of-sample return at the time t+ 1, corresponding to the strategy k, is defined as (wk
t )

TXt+1,
Xt+1 := (X1,t+1, . . . , XN,t+1)

T representing the data at the time t + 1. For each strategy k, using these
out-of-sample returns, the out-of-sample mean and the out-of-sample variance are defined by

μ̂k =
1

T − τ

T−1

∑
t=τ

(wk
t )

TXt+1 and (σ̂k)2 =
1

T − τ − 1

T−1

∑
t=τ

((wk
t )

TXt+1 − μ̂k)2 (35)

and the out-of-sample Sharpe ratio is defined by

ŜR
k
=

μ̂k

σ̂k . (36)

In this example, we considered the data set corresponding to the quarters 13 and 14. The size of
the entire data set was T = 126 and the length of the estimation window was τ = 63 points. For the
data from the first window, classical and robust efficient frontiers were traced, following all the steps
that we explained in the first part of this subsection. More precisely, we considered the classical
efficient frontier corresponding to the optimal minimum variance portfolios based on MLE and three
robust frontiers, corresponding to the optimal minimum variance portfolios using robust minimum
pseudodistance estimations with γ = 1, γ = 1.2 and γ = 1.5, respectively. Then, on each frontier,
we chose the optimal portfolio associated with the maximal value of the ratio between the portfolio
return and portfolio standard deviation. These four optimal portfolios represent the strategies that we
compared in the out-of-sample analysis. For each of these portfolios, we computed the out-of-sample
returns for the next time (next day). Then, we repeated all these procedures for the next window,
and so on until the end of the data set has been reached. In the spirit of [18] Section 5, using (35)
and (36), we computed out-of-sample means, out-of-sample variances and out-of-sample Sharpe
ratios for each strategy. The out-of-sample means and out-of-sample variances were annualized,
and we also considered a benchmark rate of 1.5 %. In this way, we obtained the following values
for the out-of-sample Sharpe ratio: ŜR = 0.22 for the optimal portfolio based on MLE, ŜR = 0.74
for the optimal portfolio based on minimum pseudodistance estimations with γ = 1, ŜR = 0.71 for
the optimal portfolio based on minimum pseudodistance estimations with γ = 1.2 and ŜR = 0.29
for the optimal portfolio based on minimum pseudodistance estimations with γ = 1.5. In Figure 3,
we illustrate efficient frontiers for the windows 7 and 8, as well as the optimal portfolios chosen on
each frontier.

This example shows that the optimal minimum variance portfolios based on robust minimum
pseudodistance estimations in the single index model may attain higher Sharpe ratios than the
traditional optimal minimum variance portfolios given by the single index model using MLE.
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Figure 2. Efficient frontiers, classical (MLE) vs. robust corresponding to γ = 0.5 (RE), for eight quarters
(the first four quarters and the last four quarters).
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Figure 3. Efficient frontiers, classical (MLE) vs. robust corresponding to γ = 1 (RE), and optimal
portfolios chosen on frontiers, for the windows 7 (left) and 8 (right).

The obtained numerical results show that, for the single index model, the presented robust
technique for portfolio optimization yields better results than the classical method based on MLE,
in the sense that it leads to larger returns for the same value of risk in the case when outliers or atypical
observations are present in the data set. The considered data sets contain such outliers. This is often
the case for the considered problem, since outliers frequently occur in asset returns data. However,
when there are no outliers in the data set, the classical method based on MLE is more efficient than the
robust ones and therefore may lead to better results.

5. Conclusions

When outliers or atypical observations are present in the data set, the new portfolio optimization
method based on robust minimum pseudodistance estimates yields better results than the classical
single index method based on MLE estimates, in the sense that it leads to larger returns for smaller
risks. In literature, there exist various methods for robust estimation in regression models. In the present
paper, we proposed the method based on the minimum pseudodistance approach, which suppose to
solve a simple optimization problem. In addition, from a theoretical point of view, these estimators have
attractive properties, such as being redescending robust, consistent, equivariant and asymptotically
normally distributed. The comparison with other known robust estimators of the regression parameters,
such as the least median of squares estimators, the S-estimators or the minimum density power
divergence estimators, shows that the minimum pseudodistance estimators represent an attractive
alternative that may be considered in other applications too.
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Appendix A. Proof of the Results

Proof of Theorem 1. Since the functions φ and χ are redescending bounded functions, for a compact
neighborhood Nθ0 of θ0, it holds
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∫
sup

θ∈Nθ0

‖Ψ(z, θ)‖dPθ0(z) < ∞. (A1)

Since θ �→ Ψ(z, θ) is continuous, by the uniform law of large numbers, (A1) implies

sup
θ∈Nθ0

∥∥∥∥∫ ψ(z, θ)dPn(z)−
∫

ψ(z, θ)dPθ0(z)
∥∥∥∥→ 0 (A2)

in probability.
Then, (A2) together with assumption (25) assure the convergence in probability of θ̂ toward θ0.

The arguments are the same as those from van der Vaart [21], Theorem 5.9, p. 46.

Proof of Theorem 2. First, note that Ψ defined by (27) is twice differentiable with respect to θ with
bounded derivatives. The matrix Ψ̇(z, θ) has the form⎛⎜⎜⎜⎝

−σφ′
(

x−α−βxM
σ

)
−σφ′

(
x−α−βxM

σ

)
xM 2σφ

(
x−α−βxM

σ

)
− σφ′

(
x−α−βxM

σ

) (
x−α−βxM

σ

)
−σφ′

(
x−α−βxM

σ

)
xM −σφ′

(
x−α−βxM

σ

)
x2

M 2σφ
(

x−α−βxM
σ

)
xM − σφ′

(
x−α−βxM

σ

) (
x−α−βxM

σ

)
xM

−σχ′
(

x−α−βxM
σ

)
−σχ′

(
x−α−βxM

σ

)
xM 2σχ

(
x−α−βxM

σ

)
− σχ′

(
x−α−βxM

σ

) (
x−α−βxM

σ

)
⎞⎟⎟⎟⎠

with φ′(t) = [1− γt2] exp(− γ
2 t2) and χ′(t) = [ 3γ+2

γ+1 t − γt3] exp(− γ
2 t2). Since φ(t), χ(t), φ′(t), χ′(t)

are redescending bounded functions, for θ = θ0, it holds

|Ψ̇ik(z, θ0)| ≤ K(z) with E(K(Z)) < ∞. (A3)

In addition, a simple calculation shows that each component ∂Ψi
∂θk∂θl

is a bounded function, since
it can be expressed through the functions φ(t), χ(t), φ′(t), χ′(t), φ′′(t), χ′′(t), which are redescending
bounded functions. In addition, bounds that can be established for each component ∂Ψi

∂θk∂θl
do not

depend on the parameter θ.
For each i, call Ψ̈i the matrix with elements ∂Ψi

∂θk∂θl
and Cn(z, θ) the matrix with its i-th raw equal to

(θ̂ − θ0)
TΨ̈i(z, θ). Using a Taylor expansion, we get

0 =
n

∑
j=1

Ψ(Zj, θ̂) =
n

∑
j=1
{Ψ(Zj, θ0) + Ψ̇(Zj, θ0)(θ̂ − θ0) +

1
2

Cn(Zj, θj)(θ̂ − θ0)}. (A4)

Therefore,
0 = An + (Bn + Cn)(θ̂ − θ0) (A5)

with

An =
1
n

n

∑
j=1

Ψ(Zj, θ0), Bn =
1
n

n

∑
j=1

Ψ̇(Zj, θ0), Cn =
1

2n

n

∑
j=1

Cn(Zj, θj) (A6)

i.e., Cn is the matrix with its i-th raw equal to (θ̂ − θ0)
TΨ̈−i , where

Ψ̈−i =
1

2n

n

∑
j=1

Ψ̈i(Zj, θj), (A7)

which is bounded by a constant that does not depend on θ, according to the arguments mentioned
above. Since θ̂ − θ0 → 0 in probability, this implies that Cn → 0 in probability.

We have √
n(θ̂ − θ0) = −(Bn + Cn)

−1√nAn. (A8)

Note that, for j = 1, . . . , n, the vectors Ψ(Zj, θ0) are i.i.d. with mean zero and the covariance
matrix A, and the matrices Ψ̇(Zj, θ0) are i.i.d. with mean B. Hence, when n → ∞, using (A3), the law of
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large numbers implies that Bn → B in probability, which implies Bn + Cn → B in probability, which is
nonsingular. Then, the multivariate central limit theorem implies

√
nAn → N3(0, A) in distribution.

Then, √
n(θ̂ − θ0)→ N3(0, B−1 A(B−1)T) (A9)

in distribution, according to the multivariate Slutzki’s Lemma.

Proof of Theorem 3. The system (29) can be written as

∫
φ

(
x− α(P)− β(P)xM

σ(P)

)
dP(xM, x) = 0,∫

φ

(
x− α(P)− β(P)xM

σ(P)

)
xMdP(xM, x) = 0,∫

χ

(
x− α(P)− β(P)xM

σ(P)

)
dP(xM, x) = 0.

We consider the contaminated model P̃ε,xM0,x0 := (1− ε)Pθ + εδ(xM0,x0)
, where δ(xM0,x0)

is the Dirac
measure putting all mass in the point (xM0, x0), which we simply denote here by P̃ε. Then, it holds

(1− ε)
∫

φ

(
x− α(P̃ε)− β(P̃ε)xM

σ(P̃ε)

)
dPθ(xM, x) + εφ

(
x0 − α(P̃ε)− β(P̃ε)xM0

σ(P̃ε)

)
= 0, (A10)

(1− ε)
∫

φ

(
x− α(P̃ε)− β(P̃ε)xM

σ(P̃ε)

)
xMdPθ(xM, x) + εφ

(
x0 − α(P̃ε)− β(P̃ε)xM0

σ(P̃ε)

)
xM0 = 0, (A11)

(1− ε)
∫

χ

(
x− α(P̃ε)− β(P̃ε)xM

σ(P̃ε)

)
dPθ(xM, x) + εχ

(
x0 − α(P̃ε)− β(P̃ε)xM0

σ(P̃ε)

)
= 0. (A12)

Derivating the first equation with respect to ε and taking the derivatives in ε = 0, we obtain

∫
φ′
(

x− α− βxM
σ

) [
1
σ
(−IF(xM0, x0, α, Pθ)− xM IF(xM0, x0, β, Pθ))

− x− α− βxM

σ2 IF(xM0, x0, σ, Pθ)

]
dPθ(xM, x) + φ

(
x0 − α− βxM0

σ

)
= 0.

After some calculations, we obtain the relation

− 1
σ(γ + 1)3/2 IF(xM0, x0, α, Pθ)−

1
σ(γ + 1)3/2 IF(xM0, x0, β, Pθ)E(XM) + φ

(
x0 − α− βxM0

σ

)
= 0. (A13)

Similarly, derivating with respect to ε Equations (A11) and (A12) and taking the derivatives in
ε = 0, we get

− 1
σ(γ + 1)3/2 E(XM)IF(xM0, x0, α, Pθ)−

1
σ(γ + 1)3/2 E(X2

M)IF(xM0, x0, β, Pθ)

+φ

(
x0 − α− βxM0

σ

)
xM0 = 0 (A14)

and

− 2
σ(γ + 1)5/2 IF(xM0, x0, σ, Pθ) + χ

(
x0 − α− βxM0

σ

)
= 0. (A15)

Solving the system formed with the Equations (A13)–(A15), we find the expressions for the
influence functions.
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Proof of Theorem 4. In the following, we simply denote by XMj the vector (1, XMj)
T . Then,

(α̂, β̂)T({(XMj, Xj) : j = 1, . . . , n})

= arg(α,β)T max
(α,β,σ)

n

∑
j=1

σ−γ/(γ+1) exp

⎛⎝−γ

2

(
Xj − XT

Mj(α, β)T

σ

)2
⎞⎠ .

For any two-dimensional column vector v, we have

(α̂, β̂)T({(XMj, Xj + XT
Mjv) : j = 1, . . . , n})

= arg(α,β)T max
(α,β,σ)

n

∑
j=1

σ−γ/(γ+1) exp

⎛⎝−γ

2

(
Xj + XT

Mjv− XT
Mj(α, β)T

σ

)2
⎞⎠

= arg(α,β)T max
(α,β,σ)

n

∑
j=1

σ−γ/(γ+1) exp

⎛⎝−γ

2

(
Xj − XT

Mj((α, β)T − v)

σ

)2
⎞⎠

= arg((α,β)T−v) max
((α,β)T−v)T ,σ)

n

∑
j=1

σ−γ/(γ+1) exp

⎛⎝−γ

2

(
Xj − XT

Mj((α, β)T − v)

σ

)2
⎞⎠+ v

= (α̂, β̂)T({(XMj, Xj) : j = 1, . . . , n}) + v,

which show that (α̂, β̂)T is regression equivariant.
For any constant c �= 0, we have

(α̂, β̂)T({(XMj, cXj) : j = 1, . . . , n})

= arg(α,β)T max
(α,β,σ)

n

∑
j=1

σ−γ/(γ+1) exp

⎛⎝−γ

2

(
cXj − XT

Mj(α, β)T

σ

)2
⎞⎠

= arg(α,β)T max
(α,β,σ)

n

∑
j=1

c−γ/(γ+1) (σ/c)−γ/(γ+1) exp

⎛⎝−γ

2

(
Xj − XT

Mj((α, β)T/c)

(σ/c)

)2
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= c · arg(α/c,β/c)T max
(α/c,β/c,σ/c)

n

∑
j=1

c−γ/(γ+1) (σ/c)−γ/(γ+1) exp

⎛⎝−γ

2

(
Xj − XT

Mj((α, β)T/c)

(σ/c)

)2
⎞⎠

= c · (α̂, β̂)T({(XMj, Xj) : j = 1, . . . , n}).

This implies that the estimator (α̂, β̂) = (α̂, β̂)({(XMj, Xj) : j = 1, . . . , n}) is scale equivariant.
Now, for any two-dimensional square matrix A, we get

(α̂, β̂)T({(ATXMj, Xj) : j = 1, . . . , n})

= arg(α,β)T max
(α,β,σ)

n

∑
j=1

σ−γ/(γ+1) exp

⎛⎝−γ

2

(
Xj − XT

Mj A(α, β)T

σ

)2
⎞⎠

= A−1 argA(α,β)T max
((α,β)AT ,σ)

n

∑
j=1

σ−γ/(γ+1) exp

⎛⎝−γ

2

(
Xj − XT

Mj(A(α, β)T)

σ

)2
⎞⎠

= A−1 · (α̂, β̂)T({(XMj, Xj) : j = 1, . . . , n}),

which show the affine equivariance of the estimator (α̂, β̂) = (α̂, β̂)({(XMj, Xj) : j = 1, . . . , n}).
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Appendix B. The 50 Stocks and Their Abbreviations

1. Asbury Automotive Group, Inc. (ABG)
2. Arctic Cat Inc. (ACAT)
3. American Eagle Outfitters, Inc. (AEO)
4. AK Steel Holding Corporation (AKS)
5. Albany Molecular Research, Inc. (AMRI)
6. The Andersons, Inc. (ANDE)
7. ARMOUR Residential REIT, Inc. (ARR)
8. BJ’s Restaurants, Inc. (BJRI)
9. Brooks Automation, Inc. (BRKS)

10. Caleres, Inc. (CAL)
11. Cincinnati Bell Inc. (CBB)
12. Calgon Carbon Corporation (CCC)
13. Coeur Mining, Inc. (CDE)
14. Cohen & Steers, Inc. (CNS)
15. Cray Inc. (CRAY)
16. Cirrus Logic, Inc. (CRUS)
17. Covenant Transportation Group, Inc. (CVTI)
18. EarthLink Holdings Corp. (ELNK)
19. Gray Television, Inc. (GTN)
20. Triple-S Management Corporation (GTS)
21. Getty Realty Corp. (GTY)
22. Hecla Mining Company (HL)
23. Harmonic Inc. (HLIT)
24. Ligand Pharmaceuticals Incorporated (LGND)
25. Louisiana-Pacific Corporation (LPX)
26. Lattice Semiconductor Corporation (LSCC)
27. ManTech International Corporation (MANT)
28. MiMedx Group, Inc. (MDXG)
29. Medifast, Inc. (MED)
30. Mentor Graphics Corporation (MENT)
31. Mistras Group, Inc. (MG)
32. Mesa Laboratories, Inc. (MLAB)
33. Meritor, Inc. (MTOR)
34. Monster Worldwide, Inc. (MWW)
35. Nektar Therapeutics (NKTR)
36. Osiris Therapeutics, Inc. (OSIR)
37. PennyMac Mortgage Investment Trust (PMT)
38. Paratek Pharmaceuticals, Inc. (PRTK)
39. Repligen Corporation (RGEN)
40. Rigel Pharmaceuticals, Inc. (RIGL)
41. Schnitzer Steel Industries, Inc. (SCHN)
42. comScore, Inc. (SCOR)
43. Safeguard Scientifics, Inc. (SFE)
44. Silicon Graphics International (SGI)
45. Sagent Pharmaceuticals, Inc. (SGNT)
46. Semtech Corporation (SMTC)
47. Sapiens International Corporation N.V. (SPNS)
48. Sarepta Therapeutics, Inc. (SRPT)
49. Take-Two Interactive Software, Inc. (TTWO)
50. Park Sterling Corporation (PSTB)
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Abstract: Big data and streaming data are encountered in a variety of contemporary applications
in business and industry. In such cases, it is common to use random projections to reduce the
dimension of the data yielding compressed data. These data however possess various anomalies
such as heterogeneity, outliers, and round-off errors which are hard to detect due to volume and
processing challenges. This paper describes a new robust and efficient methodology, using Hellinger
distance, to analyze the compressed data. Using large sample methods and numerical experiments,
it is demonstrated that a routine use of robust estimation procedure is feasible. The role of double
limits in understanding the efficiency and robustness is brought out, which is of independent interest.

Keywords: compressed data; Hellinger distance; representation formula; iterated limits;
influence function; consistency; asymptotic normality; location-scale family

1. Introduction

Streaming data are commonly encountered in several business and industrial applications leading
to the so-called Big Data. These are commonly characterized using four V’s: velocity, volume, variety,
and veracity. Velocity refers to the speed of data processing while volume refers to the amount of data.
Variety refers to various types of data while veracity refers to uncertainty and imprecision in data. It is
believed that veracity is due to data inconsistencies, incompleteness, and approximations. Whatever
be the real cause, it is hard to identify and pre-process data for veracity in a big data setting. The issues
are even more complicated when the data are streaming.

A consequence of the data veracity is that statistical assumptions used for analytics tend to be
inaccurate. Specifically, considerations such as model misspecification, statistical efficiency, robustness,
and uncertainty assessment-which are standard part of a statistical toolkit-cannot be routinely carried
out due to storage limitations. Statistical methods that facilitate simultaneous addressal of twin
problems of volume and veracity would enhance the value of the big data. While health care industry
and financial industries would be the prime benefactors of this technology, the methods can be
routinely applied in a variety of problems that use big data for decision making.

We consider a collection of n (n is of the order of at least 106) observations, assumed to be
independent and identically distributed (i.i.d.), from a probability distribution f (·) belonging to a
location-scale family; that is,

f (x; μ, σ) =
1
σ

f
(

x− μ

σ

)
, μ ∈ IR, σ > 0.
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We denote by Θ the parameter space and without loss of generality take it as compact
since otherwise it can be re-parametrized in a such a way that the resulting parameter space is
compact (see [1]).

The purpose of this paper is to describe a methodology for joint robust and efficient estimation
of μ and σ2 that takes into account (i) storage issues, (ii) potential model misspecifications, and
(iii) presence of aberrant outliers. These issues-which are more likely to occur when dealing with
massive amounts of data-if not appropriately accounted in the methodological development, can lead
to inaccurate inference and misleading conclusions. On the other hand, incorporating them in the
existing methodology may not be feasible due to a computational burden.

Hellinger distance-based methods have long been used to handle the dual issue of robustness
and statistical efficiency. Since the work of [1,2] statistical methods that invoke alternative objective
functions which converge to the objective function under the posited model have been developed
and the methods have been shown to possess efficiency and robustness. However, their routine use
in the context of big data problems is not feasible due to the complexity in the computations and
other statistical challenges. Recently, a class of algorithms-referred to as Divide and Conquer—have
been developed to address some of these issues in the context of likelihood. These algorithms
consist in distributing the data across multiple processors and, in the context of the problem
under consideration, estimating the parameters from each processor separately and then combining
them to obtain an overall estimate. The algorithm assumes availability of several processors,
with substantial processing power, to solve the complex problem at hand. Since robust procedures involve
complex iterative computations-invoking the increased demand for several high-speed processors
and enhanced memory-routine use of available analytical methods in a big data setting is challenging.
Maximum likelihood method of estimation in the context of location-scale family of distributions
has received much attention in the literature ([3–7]). It is well-known that the maximum likelihood
estimators (MLE) of location-scale families may not exist unless the defining function f (·) satisfies
certain regularity conditions. Hence, it is natural to ask if other methods of estimation such as minimum
Hellinger distance estimator(MHDE) under weaker regularity conditions. This manuscript provides a
first step towards addressing this question. Random projections and sparse random projections are
being increasingly used to “compress data” and then use the resulting compressed data for inference.
The methodology, primarily developed by computer scientists, is increasingly gaining attention among
the statistical community and is investigated in a variety of recent work ([8–12]). In this manuscript,
we describe a Hellinger distance-based methodology for robust and efficient estimation after the use
of random projections for compressing i.i.d data belonging to the location-scale family. The proposed
method consists in reducing the dimension of the data to facilitate the ease of computations and
simultaneously maintain robustness and efficiency when the posited model is correct. While primarily
developed to handle big and streaming data, the approach can also be used to handle privacy issues in
a variety of applications [13].

The rest of the paper is organized as follows: Section 2 provides background on minimum
Hellinger distance estimation; Section 3 is concerned with the development of Hellinger distance-based
methods for compressed data obtained after using random projections; additionally, it contains the
main results and their proofs. Section 4 contains results of the numerical experiments and also describes
an algorithm for implementation of the proposed methods. Section 5 contains a real data example
from financial analytics. Section 6 is concerned with discussions and extensions. Section 7 contains
some concluding remarks.

2. Background on Minimum Hellinger Distance Estimation

Ref. [1] proposed minimum Hellinger distance (MHD) estimation for i.i.d. observations
and established that MHD estimators (MHDE) are simultaneously robust and first-order efficient
under the true model. Other researchers have investigated related estimators, for example, [14–20].
These authors establish that when the model is correct, the MHDE is asymptotically equivalent to the
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maximum likelihood estimator (MLE) in a variety of independent and dependent data settings. For a
comprehensive discussion of minimum divergence theory see [21].

We begin by recalling that the Hellinger distance between two probability densities is the L2

distance between the square root of the densities. Specifically, let, for p ≥ 1, || · ||p denote the Lp norm
defined by

||h||p =

{∫
|h|p
}1/p

.

The Hellinger distance between the densities f (·) and g(·) is given by

H2( f (·), g(·)) = || f 1/2(·)− g1/2(·)||22.

Let f (·|θ) denote the density of IRd valued independent and identically distributed random
variables X1, · · · , Xn, where θ ∈ Θ ⊂ IRp; let gn(·) be a nonparametric density estimate (typically a
kernel density estimator). The Hellinger distance between f (·|θ) and gn(·) is then

H2 ( f (·|θ), gn(·)) = || f 1/2(·|θ)− g1/2
n (·)||22.

The MHDE is a mapping T(·) from the set of all densities to IRp defined as follows:

θg = T(g) = argmin
θ∈Θ

H2 ( f (·|θ), g(·)) . (1)

Please note that the above minimization problem is equivalent to maximizing A ( f (·|θ), g(·)) =∫
f 1/2(x|θ)g1/2(x)dx. Hence MHDE can alternatively be defined as

θg = argmax
θ∈Θ

A ( f (·|θ), g(·)) .

To study the robustness of MHDE, ref. [1] showed that to assess the robustness of a functional
with respect to the gross-error model it is necessary to examine the α-influence curve rather than the
influence curve, except when the influence curve provides a uniform approximation to the α-influence
curve. Specifically, the α-influence function (IFα(θ, z)) is defined as follows: for θ ∈ Θ, let fα,θ,z =

(1− α) f (·|θ) + αηz, where ηz denotes the uniform density on the interval (z− ε, z + ε), where ε > 0 is
small, α ∈ (0, 1), z ∈ IR; the α-influence function is then defined to be

IFα(θ, z) =
T( fα,θ,z)− θ

α
, (2)

where T( fα,θ,z) is the functional for the model with density fα,θ,z(·). Equation (2) represents a complete
description of the behavior of the estimator in the presence of contamination, up to the shape of
the contaminating density. If IFα(θ, z) is a bounded function of z such that limz→∞ IFα(θ, z) =

0, for every θ ∈ Θ, then the functional T is robust at f (·|θ) against 100%α contamination by
gross errors at arbitrary large value z. The influence function can be obtained by letting α → 0.
Under standard regularity conditions, the minimum divergence estimators (MDE) are first order
efficient and have the same influence function as the MLE under the model, which is often unbounded.
Hence the robustness of these estimators cannot be explained through their influence functions.
In contrast, the α-influence function of the estimators are often bounded, continuous functions of
the contaminating point. Finally, this approach often leads to high breakdown points in parametric
estimation. Other explanations can also be found in [22,23].

Ref. [1] showed that the MHDE of location has a breakdown point equal to 50%. Roughly speaking,
the breakdown point is the smallest fraction of data that, when strategically placed, can cause an
estimator to take arbitrary values. Ref. [24] obtained breakdown results for MHDE of multivariate
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location and covariance. They showed that the affine-invariant MHDE for multivariate location and
covariance has a breakdown point of at least 25%. Ref. [18] showed that the MHDE has 50% breakdown
in some discrete models.

3. Hellinger Distance Methodology for Compressed Data

In this section we describe the Hellinger distance-based methodology as applied to the
compressed data. Since we are seeking to model the streaming independent and identically
distributed data, we denote by J the number of observations in a fixed time-interval (for instance,
every ten minutes, or every half-hour, or every three hours). Let B denote the total number
of time intervals. Alternatively, B could also represent the number of sources from which
the data are collected. Then, the incoming data can be expressed as {Xjl , 1 ≤ j ≤ J;
1 ≤ l ≤ B}. Throughout this paper, we assume that the density of Xjl belongs to a location-scale family

and is given by f (x; θ∗) = 1
σ∗ f ( x−μ∗

σ∗ ), where θ∗ = (μ∗, σ∗). A typical example is a data store receiving
data from multiple sources, for instance financial or healthcare organizations, where information from
multiple sources across several hours are used to monitor events of interest such as cumulative usage
of certain financial instruments or drugs.

3.1. Random Projections

Let Rl = (rijl) be a S× J matrix, where S is the number of compressed observations in each time
interval, S % J, and rijl’s are independent and identically distributed random variables and assumed
to be independent of {Xjl , j = 1, 2, · · · , J; 1 ≤ l ≤ B}. Let

Ỹil =
J

∑
j=1

rijlXjl

and set Ỹl = (Ỹ1l , · · · , ỸSl)
′; in matrix form this can be expressed as Ỹl = RlXl . The matrix Rl is

referred to as the sensing matrix and {Ỹil , i = 1, 2 · · · , S; l = 1, 2, · · · , B} is referred to as the compressed
data. The total number of compressed observations m = SB is much smaller than the number of
original observations n = JB. We notice here that Rl’s are independent and identically distributed
random matrices of order S× J. Referring to each time interval or a source as a group, the following
Table 1 is a tabular representation of the compressed data.

Table 1. Illustration of Data Reduction Mechanism, Here r∗il = (ri·l , ωil).

Grp 1 Grp 2 · · · Grp B Grp 1 Grp 2 · · · Grp B

Original X11 X12 · · · X1B Compressed (Ỹ11, r∗11) (Ỹ12, r∗12) · · · (Ỹ1B, r∗1B)

Data X21 X22 · · · X2B Data (Ỹ21, r∗21) (Ỹ22, r∗22) · · · (Ỹ2B, r∗2B)
...

...
...

... S%J
=⇒

...
...

...
...

XJ1 XJ2 · · · XJB (ỸS1, r∗S1) (ỸS2, r∗S2) · · · (ỸSB, r∗SB)

In random projections literature, the distribution of rijl is typically taken to be Gaussian;
but other distributions such as Rademacher distribution, exponential distribution and extreme
value distributions are also used (for instance, see [25]). In this paper, we do not make any strong
distributional assumptions on rijl . We only assume that E

[
rijl

]
= 1 and Var

[
rijl

]
= γ2

0, where E[·]
represents the expectation of the random variable and Var [·] represents the variance of the random
variable. Additionally, we denote the density of rijl by q(·).

We next return to the storage issue. When S = 1 and rijl = 1, Ỹil is a sum of J random
variables. In this case, one retains (stores) only the sum of J observations and robust estimates
of θ∗ are sought using the sum of observations. In other situations, that is when rijl are not degenerate
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at 1, the distribution of Ỹil is complicated. Indeed, even if rijl are assumed to be normally distributed,
the marginal distribution of Ỹil is complicated. The conditional distribution is Ỹil (given rijl) is a
weighted sum of location scale distributions and does not have a useful closed form expression.
Hence, in general for these problems the MLE method is not feasible. We denote by ω2

il = ∑J
j=1 r2

ijl

and work with the random variables Yil ≡ ω−1
il Ỹil . We denote the true density of Yil to be hJ(·|θ∗, γ0).

Also, when γ0 = 0 (which implies rijl ≡ 1) we denote the true density of Yil by h∗J(·|θ∗) to emphasize
that the true density is a convolution of J independent and identically distributed random variables.

3.2. Hellinger Distance Method for Compressed Data

In this section, we describe the Hellinger distance-based method for estimating the parameters
of the location scale family using the compressed data. As described in the last section, let {Xjl , j =
1, 2, · · · , J; l = 1, 2, · · · , B} be a doubly indexed collection of independent and identically distributed
random variables with true density 1

σ∗ f
( ·−μ∗

σ∗

)
. Our goal is to estimate θ∗ = (μ∗, σ2∗) using the

compressed data {Yil , i = 1, 2, · · · , S; l = 1, 2, · · · , B}. We re-emphasize here that the density of Yil
depends additionally on γ0, the variance of the sensing random variables rijl .

To formulate the Hellinger-distance estimation method, let G be a class of densities metrized by
the L1 distance. Let {hJ(·|θ, γ0); θ ∈ Θ} be a parametric family of densities. The Hellinger distance
functional T is a measurable mapping mapping from G to Θ, defined as follows:

T(g) ≡ arg min
θ

∫
IR

(
g

1
2 (y)− h

1
2
J (y|θ, γ0)

)2
dy

= arg min
θ

HD2 (g, hJ(·|θ, γ0)
)
= θ∗g(γ0).

When g(·) = hJ(·|θ∗, γ0), then under additional assumptions θ∗g(γ0) = θ∗(γ0). Since minimizing
the Hellinger-distance is equivalent to maximizing the affinity, it follows that

T(g) = arg max
θ

A
(

g, hJ(·|θ, γ0)
)

, where

A(g, hJ(·|θ, γ0)) ≡
∫

IR
g

1
2 (y)h

1
2
J (y|θ, γ0)dy.

It is worth noticing here that

A(g, hJ(·|θ, γ0)) = 1− 1
2

HD2(g, hJ(·|θ, γ0)). (3)

To obtain the Hellinger distance estimator of the true unknown parameters θ∗, expectedly we
choose the parametric family hJ(·|θ, γ0) to be density of Yil and g(·) to be a non-parametric L1

consistent estimator gB(·) of hJ(·|θ, γ0). Thus, the MHDE of θ∗B is given by

θ̂B(γ0) = arg max
θ

A
(

gB, hJ(·|θ, γ0)
)
= T(gB).

In the notation above, we emphasize the dependence of the estimator on the variance of the
projecting random variables. We notice here that the solution to (1) may not be unique. In such cases,
we choose one of the solutions in a measurable manner.

The choice of the density estimate, typically employed in the literature is the kernel density
estimate. However, in the setting of the compressed data investigated here, there are S observations
per group. These S observations are, conditioned on rijl independent; however they are marginally
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dependent (if S > 1). In the case when S > 1, we propose the following formula for gB(·). First, we
consider the estimator

g(i)B (y) =
1

BcB

B

∑
l=1

K
(

y−Yil
cB

)
, i = 1, 2, · · · , S.

With this choice, the MHDE of θ∗B is given by, for 1 ≤ i ≤ S,

θ̂i,B(γ0) = arg max
θ

A
(

g(i)B , hJ(·|θ, γ0)
)

. (4)

The above estimate of the density chooses ith observation from each group and obtains the kernel
density estimator using the B independent and identically distributed compressed observations. This
is one choice for the estimator. Of course, alternatively, one could obtain SB different estimators by
choosing different combinations of observations from each group.

It is well-known that the estimator is almost surely L1 consistent for hJ(·|θ∗, γ0) as long as cB → 0
and BcB → ∞ as B → ∞. Hence, under additional regularity and identifiability conditions and further
conditions on the bandwidth cB, existence, uniqueness, consistency and asymptotic normality of
θ̂i,B(γ0), for fixed γ0, follows from the existing results in the literature.

When γ0 = 0 and rijl ≡ 1, as explained previously, the true density is a J−fold convolution
of f (·|θ∗), it is natural to ask the following question: if one lets γ0 → 0, will the asymptotic results
converge to what one would obtain by taking γ0 = 0. We refer to this property as a continuity property
in γ0 of the procedure. Furthermore, it is natural to wonder if these asymptotic properties can be
established uniformly in γ0. If that is the case, then one can also allow γ0 to depend on B. This idea
has an intuitive appeal since one can choose the parameters of the sensing random variables to achieve
an optimal inferential scheme. We address some of these issues in the next subsection.

Finally, we emphasize here that while we do not require S > 1, in applications involving streaming
data and privacy problems S tends to greater than one. In problems where the variance of sensing
variables are large, one can obtain an overall estimator by averaging θ̂i,B(γ0) over various choices of
1 ≤ i ≤ S; that is,

θ̂B(γ0) =
1
S

S

∑
i=1

θ̂i,B(γ0). (5)

The averaging improves the accuracy of the estimator in small compressed samples (data not
presented). For this reason, we provide results for this general case, even though our simulation and
theoretical results demonstrate that for some problems considered in this paper, S can be taken to
be one. We now turn to our main results which are presented in the next subsection. The following
Figure 1 provides a overview of our work.

Figure 1. MLE vs. MHDE after Data Compression.
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3.3. Main Results

In this section we state our main results concerning the asymptotic properties of the MHDE
of compressed data Yil . We emphasize here that we only store {(Ỹil , ri·l , ω2

il) : i = 1, 2, · · · , S; l =

1, 2, · · · , B}. Specifically, we establish the continuity property in γ0 of the proposed methods by
establishing the existence of the iterated limits. This provides a first step in establishing the double
limit. The first proposition is well-known and is concerned with the existence and uniqueness of
MHDE for the location-scale family defined in (4) using compressed data.

Proposition 1. Assume that hJ(·|θ, γ0) is a continuous density function. Assume further that if θ1 �= θ2.
Then for every γ0 ≥ 0, hJ(y|θ1, γ0) �= hJ(y|θ2, γ0) on a set of positive Lebesgue measure, the MHDE in (4)
exists and is unique.

Proof. The proof follows from Theorem 2.2 of [20] since, without loss of generality, Θ is taken to be
compact and the density function hJ(·|θ, γ0) is continuous in θ.

Consistency: We next turn our attention to consistency. As explained previously, under regularity
conditions for each fixed γ0, the MHDE θ̂i,B(γ0) is consistent for θ∗(γ0). The next result says that
under additional conditions, the consistency property of MHDE is continuous in γ0.

Proposition 2. Let hJ(·|θ, γ0) be a continuous probability density function satisfying the conditions of
Proposition 1. Assume that

lim
γ0→0

sup
θ∈Θ

∫
IR
|hJ(y|θ, γ0)− h∗J(y|θ)|dy = 0. (6)

Then, with probability one (wp1) the iterated limits also exist and equals θ∗; that is, for 1 ≤ i ≤ S,

lim
B→∞

lim
γ0→0

θ̂i,B(γ0) = lim
γ0→0

lim
B→∞

θ̂i,B(γ0) = θ∗.

Proof. Without loss of generality let Θ be compact since otherwise it can be embedded into a compact
set as described in [1]. Since f (·) is continuous in θ and g(·) is continuous in γ0, it follows that
hJ(·|θ, γ0) is continuous in θ and γ0. Hence by Theorem 1 of [1] for every fixed γ0 ≥ 0 and 1 ≤ i ≤ S,

lim
B→∞

θ̂i,B(γ0) = θ∗(γ0).

Thus, to verify the convergence of θ∗(γ0) to θ∗ as γ0 → 0, we first establish, using (6), that

lim
γ0→0

sup
θ∈Θ

|A(hJ(·|θ, γ0), h∗J(·|θ))− 1| = 0.

To this end, we first notice that

sup
θ∈Θ

HD2(hJ(·|θ, γ0), h∗J(·|θ)) ≤ sup
θ∈Θ

∫
IR
|(hJ(y|θ, γ0)− h∗J(y|θ)|dy.

Hence, using (3),

sup
θ∈Θ

|A(hJ(·|θ, γ0), h∗J(·|θ))− 1| =
1
2

sup
θ∈Θ

HD2(hJ(·|θ, γ0), h∗J(·|θ))

→ 0 as γ0 → 0.
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Hence,

lim
γ0→0

A(hJ(·|θ∗(γ0), γ0), h∗J(·|θ∗(γ0))) = 1.

Also, by continuity,

lim
γ0→0

A(h∗J(·|θ∗(γ0), γ0), h∗J(·|θ∗)) = 1,

which, in turn implies that

lim
γ0→0

A(hJ(·|θ∗(γ0), γ0), h∗J(·|θ∗)) = 1.

Thus existence of the iterated limit first as B → ∞ and then γ0 → 0 follows using compactness of
Θ and the identifiability of the model. As for the other iterated limit, again notice notice that for each
1 ≤ i ≤ S, A(g(i)B , hJ(·|θ, γ0)) converges to A(g(i)B , h∗J(·|θ)) with probability one as γ0 converges to 0.
The result then follows again by an application of Theorem 1 of [20].

Remark 1. Verification of condition (6) seems to be involved even in the case of standard Gaussian random
variables and standard Gaussian sensing random variables. Indeed in this case, the density of hJ(·|θ, γ0) is
a J−fold convolution of a Bessel function of second kind. It may be possible to verify the condition (6) using
the properties of these functions and compactness of the parameter space Θ. However, if one is focused only on
weak-consistency, it is an immediate consequence of Theorems 1 and 2 below and condition (6) is not required.
Finally, it is worth mentioning here that the convergence in (6) without uniformity over Θ is a consequence of
convergence in probability of rijl to 1 and Glick’s Theorem.

Asymptotic limit distribution: We now proceed to investigate the limit distribution of θ∗B(γ0)

as B → ∞ and γ0 → 0. It is well-known that for fixed γ0 ≥ 0, after centering and scaling, θ∗B(γ0)

has a limiting Gaussian distribution, under appropriate regularity conditions (see for instance [20]).
However to evaluate the iterated limits as γ0 → 0 and B → ∞, additional refinements of the techniques

in [20] are required. To this end, we start with additional notations. Let sJ(·|θ, γ0) = h
1
2
J (·|θ, γ0) and let

the score function be denoted by uJ(·|θ, γ0) ≡ ∇ log hJ(·|θ, γ0) =
(

∂ log hJ(·|θ,γ0)
∂μ , ∂ log hJ(·|θ,γ0)

∂σ

)′
. Also,

the Fisher information I(θ(γ0)) is given by

I(θ(γ0)) =
∫

IR
uJ(y|θ, γ0)u′J(y|θ, γ0)hJ(y|θ, γ0)dy.

In addition, let ṡ J(·|θ, γ0) be the gradient of sJ(·|θ, γ0) with respect to θ, and s̈ J(·|θ, γ0) is the

second derivative matrix of sJ(·|θ, γ0) with respect to θ. In addition, let tJ(·|θ) = h∗J 1
2 (·|θ) and

vJ(·|θ) = ∇ log h∗J(·|θ). Furthermore, let Y∗il denote Yil when γ0 ≡ 0. Please note that in this case,
Yil = Y1l for all i = 1, 2, · · · , S. The corresponding kernel density estimate of Y∗il is given by

g∗B(y) =
1

BcB

B

∑
l=1

K
(

y−Y∗il
cB

)
. (7)

We emphasize here that we suppress i on the LHS of the above equation since g(i)∗B (·) are equal
for all 1 ≤ i ≤ S.

The iterated limit distribution involves additional regularity conditions which are stated in the
Appendix. The first step towards this aim is a representation formula which expresses the quantity
of interest, viz.,

√
B
(
θ̂i,B(γ0)− θ∗(γ0)

)
as a sum of two terms, one involving sums of compressed

i.i.d. random variables and the other involving remainder terms that converge to 0 at a specific rate.
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This expression will appear in different guises in the rest of the manuscript and will play a critical role
in the proofs.

3.4. Representation Formula

Before we state the lemma, we first provide two crucial assumptions that allow differentiating the
objective function and interchanging the differentiation and integration:

Model assumptions on hJ(·|θ, γ0)

(D1) hJ(·|θ, γ0) is twice continuously differentiable in θ.
(D2) Assume further that ||∇sJ(·|θ, γ0)||2 is continuous and bounded.

Lemma 1. Assume that the conditions (D1) and (D2) hold. Then for every 1 ≤ i ≤ S and γ0 ≥ 0,
the following holds:

B
1
2
(
θ̂i,B(γ0)− θ∗(γ0)

)′
= A1B(γ0) + A2B(γ0), where (8)

A1B(γ0) = B
1
2 D−1

B (θ̃i,B(γ0))TB(γ0), A2B(γ0) = B
1
2 D−1

B (θ̃i,B(γ0))RB(γ0), (9)

θ̃i,B(γ0) ∈ UB(θ
′(γ0)), UB(θ

′(γ0)) = {θ′ : θ′(γ0) = tθ∗(γ0) + (1− t)θ̂i,B(γ0), t ∈ [0, 1]}, (10)

DB(θ(γ0)) = −1
2

∫
IR

u̇J(y|θ, γ0)sJ(y|θ, γ0)g(i)
1
2

B (y)dy

−1
4

∫
IR

uJ(y|θ, γ0)u′J(y|θ, γ0)sJ(y|θ, γ0)g(i)
1
2

B (y)dy

≡ D1B(θ(γ0)) + D2B(θ(γ0)), (11)

TB(γ0) ≡
1
4

∫
IR

uJ(y|θ∗, γ0)
(

hJ(y|θ∗, γ0)− g(i)B (y)
)

dy, and (12)

RB(γ0) ≡
1
4

∫
IR

uJ(y|θ∗, γ0)

(
h

1
2
J (y|θ∗, γ0)− g(i)

1
2

B (y)
)2

dy. (13)

Proof. By algebra, note that ṡ J(y|θ, γ0) = 1
2 uJ(y|θ, γ0)sJ(y|θ, γ0). Furthermore, the second

partial derivative of sJ(·|θ, γ0) is given by s̈ J(y|θ, γ0) = 1
2 u̇J(y|θ, γ0)sJ(y|θ, γ0) +

1
4 uJ(y|θ, γ0)u′J(y|θ, γ0)sJ(y|θ, γ0). Now using (D1) and (D2) and partially differentiating

HD2
B (θ(γ0)) ≡ HD2(g(i)B (·), hJ(·|θ, γ0)) with respect to θ and setting it equal to 0, the estimating

equations for θ∗(γ0) is

∇HD2
B (θ∗(γ0)) = 0. (14)

Let θ̂i,B(γ0) be the solution to (14). Now applying first order Taylor expansion of (14) we get

∇HD2
B (θ∗(γ0)) = ∇HD2

B
(
θ̂i,B(γ0)

)
+ DB(θ̃i,B(γ0))

(
θ̂i,B(γ0)− θ∗(γ0)

)
,

251



Entropy 2019, 21, 348

where θ̃i,B(γ0) is defined in (10), and DB(·) is given by

DB(θ(γ0)) = −1
2

∫
IR

u̇J(y|θ, γ0)sJ(y|θ, γ0)g(i)
1
2

B (y)dy

−1
4

∫
IR

uJ(y|θ, γ0)u′J(y|θ, γ0)sJ(y|θ, γ0)g(i)
1
2

B (y)dy

≡ D1B(θ(γ0)) + D2B(θ(γ0)),

and ∇HD2
B(·) is given by

∇HD2
B(θ(γ0)) = −

1
2

∫
IR

uJ(y|θ, γ0)sJ(y|θ, γ0)

(
h

1
2
J (y|θ∗, γ0)− g(i)

1
2

B (y)
)

dy.

Thus, (
θ̂i,B(γ0)− θ∗(γ0)

)′
= D−1

B (θ̃i,B(γ0))∇HD2
B(θ

∗(γ0)).

By using the identity, b
1
2 − a

1
2 = (2a

1
2 )−1

(
(b− a)− (b

1
2 − a

1
2 )2
)

, ∇HD2
B(θ

∗(γ0)) can be
expressed as the difference of TB(γ0) and RB(γ0), where

TB(γ0) ≡
1
4

∫
IR

uJ(y|θ∗, γ0)
(

hJ(y|θ∗, γ0)− g(i)B (y)
)

dy,

and

RB(γ0) ≡
1
4

∫
IR

uJ(y|θ∗, γ0)

(
h

1
2
J (y|θ∗, γ0)− g(i)

1
2

B (y)
)2

dy.

Hence,

B
1
2
(
θ̂i,B(γ0)− θ∗(γ0)

)′
= A1B(γ0) + A2B(γ0),

where A1B(γ0) and A2B(γ0) are given in (9).

Remark 2. In the rest of the manuscript, we will refer to A2B(γ0) as the remainder term in the
representation formula.

We now turn to the first main result of the manuscript, namely a central limit theorem for θ̂i,B(γ0)

as first B → ∞ and then γ0 → 0. As a first step, we note that the Fisher information of the density
h∗J(·|θ) is given by

I(θ) =
∫

IR
vJ(y|θ)v′J(y|θ)h∗J(y|θ)dy. (15)

Next we state the assumptions needed in the proof of Theorem 1. We separate these conditions as
(i) model assumptions, (ii) kernel assumptions, (iii) regularity conditions, (iV) conditions that allow
comparison of original data and compressed data.

Model assumptions on h∗J(·|θ)

(D1’) h∗J(·|θ) is twice continuously differentiable in θ.
(D2’) Assume further that ||∇tJ(·|θ)||2 is continuous and bounded.
Kernel assumptions

(B1) K(·) is symmetric about 0 on a compact support and bounded in L2. We denote the support of
K(·) by Supp(K).
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(B2) The bandwidth cB satisfies cB → 0, B
1
2 cB → ∞, B

1
2 c2

B → 0.

Regularity conditions

(M1) The function uJ(·|θ, γ0)sJ(·|θ, γ0) is continuously differentiable and bounded in L2 at θ∗.
(M2) The function u̇J(·|θ, γ0)sJ(·|θ, γ0) is continuous and bounded in L2 at θ∗. In addition,
assume that

lim
B→∞

∫
IR

(
u̇J(y|θi,B, γ0)sJ(y|θi,B, γ0)− u̇J(y|θ∗, γ0)sJ(y|θ∗, γ0)

)2 dy = 0.

(M3) The function uJ(·|θ, γ0)u′J(·|θ, γ0)sJ(·|θ, γ0) is continuous and bounded in L2 at θ∗; also,

lim
B→∞

∫
IR

(
uJ(y|θ̂i,B, γ0)u′J(y|θ̂i,B, γ0)sJ(y|θi,B, γ0)− uJ(y|θ∗, γ0)u′J(y|θ∗, γ0)sJ(y|θ∗, γ0)

)2
dy = 0.

(M4) Let {αB : B ≥ 1} be a sequence diverging to infinity. Assume that

lim
B→∞

B sup
t∈Supp(K)

Pθ∗(γ0) (|Δ− cBt| > αB) = 0,

where Supp(K) is the support of the kernel density K(·) and Δ is a generic random variable with
density hJ(·|θ∗, γ0).
(M5) Let

MB = sup
|y|≤αB

sup
t∈Supp(K)

∣∣∣∣ hJ(y− tcB|θ∗, γ0)

hJ(y|θ∗, γ0)

∣∣∣∣ .
Assume sup

B≥1
MB < ∞.

(M6) The score function has a regular central behavior relative to the smoothing constants, i.e.,

lim
B→∞

(B
1
2 cB)

−1
∫ αB

−αB

uJ(y|θ∗, γ0)dy = 0.

Furthermore,

lim
B→∞

(B
1
2 c4

B)
∫ αB

−αB

uJ(y|θ∗, γ0)dy = 0.

(M7) The density functions are smooth in an L2 sense; i.e.,

lim
B→∞

sup
t∈Supp(K)

∫
IR

(
uJ(y + cBt|θ∗, γ0)− uJ(y|θ∗, γ0)

)2 hJ(y|θ∗, γ0)dy = 0.

(M1’) The function vJ(·|θ)tJ(·|θ) is continuously differentiable and bounded in L2 at θ∗.
(M2’) The function v̇J(·|θ)tJ(·|θ) is continuous and bounded in L2 at θ∗. In addition, assume that

lim
B→∞

∫
IR

(
v̇J(y|θB)tJ(y|θB)− v̇J(y|θ∗)tJ(y|θ∗)

)2 dy = 0.

(M3’) The function vJ(·|θ)v′J(·|θ)tJ(·|θ) is continuous and bounded in L2 at θ∗. also,

lim
B→∞

∫
IR

(
vJ(y|θ̂i,B)v′J(y|θ̂i,B)tJ(y|θ̂i,B)− vJ(y|θ∗)v′J(y|θ∗)tJ(y|θ∗)

)2
dy = 0.

Assumptions comparing models for original and compressed data
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(O1) For all θ ∈ Θ,

lim
γ0→0

∫
IR

(
uJ(y|θ, γ0)u′J(y|θ, γ0)sJ(y|θ, γ0)− vJ(y|θ)v′J(y|θ)tJ(y|θ)

)2
dy = 0.

(O2) For all θ ∈ Θ,

lim
γ0→0

∫
IR

(
u̇J(y|θ, γ0)sJ(y|θ, γ0)− v̇J(y|θ)tJ(y|θ)

)2 dy = 0.

Theorem 1. Assume that the conditions (B1)–(B2), (D1)–(D2) , (D1’)–(D2’), (M1)–(M7), (M1’)–(M3’),
and (O1)–(O2) hold. Then, for every 1 ≤ i ≤ S, the following holds:

lim
γ0→0

lim
B→∞

P
(√

B
(
θ̂i,B(γ0)− θ∗(γ0)

)
≤ x
)
= P (G ≤ x) ,

where G is a bivariate Gaussian random variable with mean 0 and variance I−1(θ∗), where I(θ) is defined
in (15).

Before we embark on the proof of Theorem 1, we first discuss the assumptions. Assumptions (B1)
and (B2) are standard assumptions on the kernel and the bandwidth and are typically employed
when investigating the asymptotic behavior of divergence-based estimators (see for instance [1]).
Assumptions (M1)–(M7) and (M1’)–(M3’) are regularity conditions which are concerned essentially
with L2 continuity and boundedness of the scores and their derivatives. Assumptions (O1)–(O2) allow
for comparison of uJ(·|θ, γ0) and vJ(·|θ). Returning to the proof of Theorem 1, using representation
formula, we will first show that limγ0→0 limB→∞ P (A1B(γ0) ≤ x) = P (G ≤ x), and then prove that
limγ0→0 limB→∞ A2B(γ0) = 0 in probability. We start with the following proposition.

Proposition 3. Assume that the conditions (B1), (D1)–(D2), (M1)–(M3), (M1’)–(M3’), (M7) and (O1)–(O2)
hold. Then,

lim
γ0→0

lim
B→∞

P (A1B(γ0) ≤ x) = P (G ≤ x) ,

where G is given in Theorem 1.

We divide the proof of Proposition 3 into two lemmas. In the first lemma we will show that

lim
γ0→0

lim
B→∞

DB(θ̃i,B(γ0)) =
1
4

I(θ∗).

Next in the second lemma we will show that first letting B → ∞ and then allowing γ0 → 0,

4B
1
2 TB(γ0)

d→ N (0, I(θ∗)) .

We start with the first part.

Lemma 2. Assume that the conditions (D1)–(D2), (D1’)–(D2’), (M1)–(M3), (M1’)–(M3’) and (O1)–(O2)
hold. Then, with probability one, the following prevails:

lim
γ0→0

lim
B→∞

DB(θ̃i,B(γ0)) =
1
4

I(θ∗).
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Proof. Using representation formula in Lemma 1. First fix γ0 > 0. It suffices to show

lim
B→∞

D1B(θ̃i,B(γ0)) =
1
2

I(θ∗(γ0)), and lim
B→∞

D2B(θ̃i,B(γ0)) = −
1
4

I(θ∗(γ0)).

We begin with D1B(θ̃i,B(γ0)). By algebra, D1B(θ̃i,B(γ0)) can be expressed as

D1B(θ̃i,B(γ0)) = D(1)
1B (θ̃i,B(γ0)) + D(2)

1B (θ̃i,B(γ0)) + D(3)
1B (θ∗(γ0)), where

D(1)
1B (θ̃i,B(γ0)) = −

1
2

∫
IR

u̇J(y|θ̃i,B, γ0)sJ(y|θ̃i,B, γ0)

(
g(i)

1
2

B (y)− sJ(y|θ∗, γ0)

)
dy,

D(2)
1B (θ̃i,B(γ0)) = −

1
2

∫
IR

(
u̇J(y|θ̃i,B, γ0)sJ(y|θ̃i,B, γ0)− u̇J(y|θ∗, γ0)sJ(y|θ∗, γ0)

)
h

1
2
J (y|θ∗, γ0)dy,

and D(3)
1B (θ∗B(γ0)) = −

1
2

∫
IR

u̇J(y|θ∗, γ0)hJ(y|θ∗, γ0)dy =
1
2

I(θ∗(γ0)).

It suffices to show that as B → ∞, D(1)
1B (θ̃i,B(γ0))→ 0, and D(2)

1B (θ̃i,B(γ0))→ 0. We first consider

D(1)
1B (θ̃i,B(γ0)). By Cauchy-Schwarz inequality and assumption (M2), it follows that there exists

0 < C1 < ∞,

∣∣∣D(1)
1B (θ̃i,B(γ0))

∣∣∣ ≤ 1
2

{∫
IR

(
u̇J(y|θ̃i,B, γ0)sJ(y|θ̃i,B, γ0)

)2 dy
} 1

2
{∫

IR

(
g(i)

1
2

B (y)− sJ(y|θ∗, γ0)

)2
dy

} 1
2

≤ C1

{∫
IR

(
g(i)

1
2

B (y)− sJ(y|θ∗, γ0)

)2
dy

} 1
2

→ 0,

where the last convergence follows from the L1 convergence of g(i)B (·) and hJ(·|θ∗, γ0). Hence, as B →
∞, D(1)

1B (θ̃i,B(γ0))→ 0. Next we consider D(2)
1B (θ̃i,B(γ0)). Again, by Cauchy-Schwarz inequality and

assumption (M2), it follows that D(2)
1B (θ̃i,B(γ0))→ 0. Hence D1B(θ̃i,B(γ0))→ 1

2 I(θ∗(γ0)). Turning to
D2B(θ̃i,B(γ0)), by similar argument, using Cauchy-Schwarz inequality and assumption (M3), it follows
that D2B(θ̃i,B(γ0))→ − 1

4 I(θ∗(γ0)). Thus, to complete the proof, it is enough to show that

lim
γ0→0

lim
B→∞

D1B(θ̃i,B(γ0)) =
1
2

I(θ∗) and lim
γ0→0

lim
B→∞

D2B(θ̃i,B(γ0)) = −
1
4

I(θ∗). (16)

We start with the first term of (16). Let

J1(γ0) =
∫

IR
u̇J(y|θ∗, γ0)hJ(y|θ∗, γ0)dy−

∫
IR

v̇J(y|θ∗)h∗J(y|θ∗)dy.

We will show that limγ0→0 J1(γ0) = 0. By algebra, the difference of the above two terms can be
expressed as the sum of J11(γ0) and J12(γ0), where

J11(γ0) =
∫

IR

(
u̇J(y|θ∗, γ0)sJ(y|θ∗, γ0)− v̇J(y|θ∗)tJ(y|θ∗)

)
sJ(y|θ∗, γ0)dy, and

J12(γ0) =
∫

IR
v̇J(y|θ∗)tJ(y|θ∗)

(
sJ(y|θ∗, γ0)− tJ(y|θ∗)

)
dy.
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J11(γ0) converges to zero by Cauchy-Schwarz inequality and assumption (O2), and J12(γ0) converges
to zero by Cauchy-Schwarz inequality, assumption (M2’) and Scheffe’s theorem. Next we consider the
second term of (16). Let

J2(γ0) =
∫

IR
uJ(y|θ∗, γ0)u′J(y|θ∗, γ0)hJ(y|θ∗, γ0)dy−

∫
IR

vJ(y|θ∗)v′J(y|θ∗)h∗J(y|θ∗)dy.

We will show that limγ0→0 J2(γ0) = 0. By algebra, the difference of the above two terms can be
expressed as the sum of J21(γ0) and J22(γ0), where

J21(γ0) =
∫

IR

(
uJ(y|θ∗, γ0)u′J(y|θ∗, γ0)sJ(y|θ∗, γ0)− vJ(y|θ∗)v′J(y|θ∗)tJ(y|θ∗)

)
sJ(y|θ∗, γ0)dy,

and J22(γ0) =
∫

IR
vJ(y|θ∗)v′J(y|θ∗)tJ(y|θ∗)

(
sJ(y|θ∗, γ0)− tJ(y|θ∗)

)
dy.

J11(γ0) converges to zero by Cauchy-Schwarz inequality and assumption (O1), and J12(γ0) converges
to zero by Cauchy-Schwarz inequality, assumption (M3’) and Scheffe’s theorem. Therefore the
lemma holds.

Lemma 3. Assume that the conditions (B1), (D1)–(D2), (D1’)–(D2’), (M1)–(M3), (M3’), (M7) and (O1)–(O2)
hold. Then, first letting B → ∞, and then γ0 → 0,

4B
1
2 TB(γ0)

d→ N (0, I(θ∗)) .

Proof. First fix γ0 > 0. Please note that using
∫

IR uJ(y|θ∗, γ0)hJ(y|θ∗, γ0)dy = 0, we have that

4B
1
2 TB(γ0) = B

1
2

∫
IR

uJ(y|θ∗, γ0)g(i)B (y)dy

= B
1
2

∫
IR

uJ(y|θ∗, γ0)
1
B

B

∑
l=1

1
cB

K
(

y−Yil
cB

)
dy

= B
1
2

1
B

B

∑
l=1

∫
IR

uJ(Yil + cBt|θ∗, γ0)K(t)dt.

Therefore,

4B
1
2 TB(γ0)− B

1
2

1
B

B

∑
l=1

uJ(Yil |θ∗, γ0) = B
1
2

1
B

B

∑
l=1

∫
IR

(
uJ(Yil + cBt|θ∗, γ0)− uJ(Yil |θ∗, γ0)

)
K(t)dt.

Since Yil ’s are i.i.d. across l, using Cauchy-Schwarz inequality and assumption (B1), we can show
that there exists 0 < C < ∞,

E

[
4B

1
2 TB − B

1
2

1
B

B

∑
l=1

uJ(Yil |θ∗, γ0)

]2

= E
[∫

IR

(
uJ(Yi1 + cBt|θ∗, γ0)− uJ(Yi1|θ∗, γ0)

)
K(t)dt

]2

≤ CE

[{∫
IR

(
uJ(Yi1 + cBt|θ∗, γ0)− uJ(Yi1|θ∗, γ0)

)2 dt
} 1

2
]2

≤ CE
[∫

IR

(
uJ(Yi1 + cBt|θ∗, γ0)− uJ(Yi1|θ∗, γ0)

)2 dt
]

= C
∫

IR

∫
IR

(
uJ(y + cBt|θ∗, γ0)− uJ(y|θ∗, γ0)

)2 hJ(y|θ∗, γ0)dydt,
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converging to zero as B → ∞ by assumption (M7). Also, the limiting distribution of 4B
1
2 TB(γ0)

is N(0, I(θ∗(γ0))) as B → ∞. Now let γ0 → 0. It is enough to show that as γ0 → 0 the density
of N(0, I(θ∗(γ0))) converges to the density of N(0, I(θ∗)). To this end, it suffices to show that
limγ0→0 I(θ∗(γ0)) = I(θ∗). However, this is established in Lemma 2. Combining the results, the
lemma follows.

Proof of Proposition 3. The proof of Proposition 3 follows immediately by combining
Lemmas 2 and 3.

We now turn to establishing that the remainder term in the representation formula converges
to zero.

Lemma 4. Assume that the assumptions (B1)–(B2), (M1)–(M6) hold. Then

lim
γ0→0

lim
B→∞

A2B(γ0) = 0 in probability.

Proof. Using Lemma 2, it is sufficient to show that B
1
2 RB converges to 0 in probability as B → ∞. Let

dJ(y|θ∗(γ0)) = g(i)
1
2

B (y)− sJ(y|θ∗, γ0).

Please note that

d2
J (y|θ∗(γ0)) ≤ 2

{(
hJ(y|θ∗, γ0)− E

[
g(i)B (y)

])2
+
(

E
[

g(i)B (y)
]
− g(i)B (y)

)2
}

h−1
J (y|θ∗, γ0).

Then

|RB(γ0)| ≤ 1
2

∫
IR
|uJ(y|θ∗, γ0)|d2

J (y|θ∗(γ0))dy

≤ 1
2

∫ αB

−αB

|uJ(y|θ∗, γ0)|d2
J (y|θ∗(γ0))dy +

1
2

∫
|y|≥αB

|uJ(y|θ∗, γ0)|d2
J (y|θ∗(γ0))dy

≡ R1B(γ0) + R2B(γ0).

We first deal with R1B(γ0), which can be expressed as the sum of R1B(γ0) and R2B(γ0), where

R(1)
1B (γ0) =

∫ αB

−αB

|uJ(y|θ∗, γ0)|
(

hJ(y|θ∗, γ0)− E
[

g(i)B (y)
])2

h−1
J (y|θ∗, γ0)dy, (17)

and R(2)
1B (γ0) =

∫ αB

−αB

|u(y|θ∗, γ0)|
(

E
[

g(i)B (y)
]
− g(i)B (y)

)2
h−1

J (y|θ∗, γ0)dy.

Now consider R(2)
1B . Let ε > 0 be arbitrary but fixed. Then, by Markov’s inequality,

P
(

B
1
2 R(2)

1B > ε
)

≤ ε−1B
1
2 E
[

R(2)
1B

]
≤ ε−1B

1
2

∫ αB

αB

|uJ(y|θ∗, γ0)|
(

Var
[

g(i)B (y)
])

h−1
J (y|θ∗, γ0)dy. (18)

Now since Y′il s are independent and identically distributed across l, it follows that

Var
[

g(i)B (y)
]
≤ 1

BcB

∫
IR

K2(t)hJ(y− tcB|θ∗, γ0)dt. (19)
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Now plugging (19) into (18), interchanging the order of integration (using Tonelli’s Theorem),
we get

P
(

B
1
2 R(2)

1B > ε
)
≤ C

(
B

1
2 cB

)−1 ∫ αB

−αB

|uJ(y|θ∗, γ0)|dy → 0,

where C is a universal constant, and the last convergence follows from conditions (M5)–(M6). We now

deal with R(1)
1B . To this end, we need to calculate

(
E
[

g(i)B (y)
]
− hJ(y|θ∗, γ0)

)2
. Using change of

variables, two-step Taylor approximation, and assumption (B1), we get

E
[

g(i)B (y)
]
− hJ(y|θ∗, γ0) =

∫
IR

K(t)
(
hJ(y− tcB|θ∗, γ0)− hJ(y|θ∗, γ0)

)
dt

=
∫

IR
K(t)

(tcB)
2

2
h
′′
J (y

∗
B(t)|θ∗, γ0)dt. (20)

Now plugging in (20) into (17) and using conditions (M3) and (M6), we get

B
1
2 R(1)

1B (γ0) ≤ CB
1
2 c4

B

∫ αB

−αB

|uJ(y|θ∗, γ0)|dy. (21)

Convergence of (21) to 0 now follows from condition (M6). We next deal with R2B(γ0). To this
end, by writing our the square term of dJ(·|θ∗(γ0)), we have

B
1
2 R2B(γ0) =

∫
|y|≥αB

|uJ(y|θ∗, γ0)|
(

hJ(y|θ∗, γ0) + g(i)B (y)− sJ(y|θ∗, γ0)g(i)
1
2

B (y)
)

dy. (22)

We will show that the RHS of (22) converges to 0 as B → ∞. We begin with the first term.
Please note that by Cauchy-Schwarz inequality,

B
(∫

|y|≥αB

|uJ(y|θ∗, γ0)|hJ(y|θ∗, γ0)dy
)2

≤
{∫

IR
uJ(y|θ∗, γ0)u′J(y|θ∗, γ0)hJ(y|θ∗, γ0)dy

}
{BPθ∗(γ0)

(|Δ| ≥ αB)},

the last term converges to 0 by (M4). As for the second term, note that, a.s., by
Cauchy-Schwarz inequality,(∫

|y|≥αB

|uJ(y|θ∗, γ0)|g(i)B (y)dy
)2
≤
∫
|y|≥αB

uJ(y|θ∗, γ0)u′J(y|θ∗, γ0)g(i)B (y)dy.

Now taking the expectation and using Cauchy-Schwarz inequality, one can show that

BE
[∫
|y|≥αm

|uJ(y|θ∗, γ0)|g(i)B (y)dy
]2
≤ aB

∫
IR

K(t)
∫

IR
uJ(y|θ∗, γ0)u′J(y|θ∗, γ0)hJ(y− cBt|θ∗, γ0)dydt,

where aB = B sup
z∈Supp(K)

Pθ∗ (|Δ− cBz| > αB). The convergence to 0 of the RHS of above inequality now

follows from condition (M4). Finally, by another application of the Cauchy-Schwarz inequality,

BE
[∫
|y|≥αm

|uJ(y|θ∗, γ0)|g(i)
1
2

B (y)sJ(y|θ∗, γ0)dy
]
≤ aB

∫
IR

uJ(y− cBt|θ∗, γ0)u′J(y− cBt|θ∗, γ0)hJ(y|θ∗, γ0)dy.

The convergence of RHS of above inequality to zero follows from (M4). Now the
lemma follows.
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Proof of Theorem 1. Recall that

B
1
2
(
θ̂i,B(γ0)− θ∗(γ0)

)′
= A1B(γ0) + A2B(γ0),

where A1B(γ0) and A2B(γ0) are given in (9). Proposition 3 shows that limγ0→0 limB→∞ A1B(γ0) =

N(0, I−1(θ∗)); while Lemma 4 shows that limγ0→0 limB→∞ A2B(γ0) = 0 in probability. The result
follows from Slutsky’s theorem.

We next show that by interchanging the limits, namely first allowing γ0 to converge to 0 and
then letting B → ∞ the limit distribution of θ̂i,B(γ0) is Gaussian with the same covariance matrix as
Theorem 1. We begin with additional assumptions required in the proof of the theorem.

Regularity conditions

(M4’) Let {αB : B ≥ 1} be a sequence diverging to infinity. Assume that

lim
B→∞

B sup
t∈Supp(K)

Pθ∗ (|Δ− cBt| > αB) = 0,

where Supp(K) is the support of the kernel density K(·) and Δ is a generic random variable with
density h∗J(·|θ∗).
(M5’) Let

MB = sup
|y|≤αB

sup
t∈Supp(K)

∣∣∣∣ h∗J(y− tcB|θ∗)
h∗J(y|θ∗)

∣∣∣∣ .
Assume that sup

B≥1
MB < ∞.

(M6’) The score function has a regular central behavior relative to the smoothing constants, i.e.,

lim
B→∞

(B
1
2 cB)

−1
∫ αB

−αB

vJ(y|θ∗)dy = 0.

Furthermore,

lim
B→∞

(B
1
2 c4

B)
∫ αB

−αB

vJ(y|θ∗)dy = 0.

(M7’) The density functions are smooth in an L2 sense; i.e.,

lim
B→∞

sup
t∈Supp(K)

∫
IR

(
vJ(y + cBt|θ∗)− vJ(y|θ∗)

)2 h∗J(y|θ∗)dy = 0.

Assumptions comparing models for original and compressed data

(V1) Assume that limγ0→0 supy |uJ(y|θ∗, γ0)− vJ(y|θ∗)| = 0.

(V2) vJ(·|θ) is L1 continuous in the sense that Xn
p→ X implies that E

[
vJ(Xn|θ)− vJ(X|θ)

]
= 0,

where the expectation is with respect to distribution K(·).
(V3) Assume that for all θ ∈ Θ,

∫
IR∇h∗J(y|θ)dy < ∞.

(V4) Assume that for all θ ∈ Θ, limγ0→0 supy

∣∣∣ sJ(y|θ,γ0)

tJ(y|θ) − 1
∣∣∣ = 0.

Theorem 2. Assume that the conditions (B1)–(B2), (D1’)–(D2’), (M1’)–(M7’), (O1)–(O2) and (V1)–(V4)
hold. Then,

lim
B→∞

lim
γ0→0

P
(√

B
(
θ̂i,B(γ0)− θ∗(γ0)

)
≤ x
)
= P (G ≤ x) ,
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where G is a bivariate Gaussian random variable with mean 0 and variance I−1(θ∗).

We notice that in the above Theorem 2 that we use conditions (V2)–(V4) which are regularity
conditions on the scores of the J− fold convolution of f (·) while (V1) facilitates comparison of the
scores of the densities of the compressed data and that of the J−fold convolution. As before, we will
first establish (a):

lim
B→∞

lim
γ0→0

P (A1B(γ0) ≤ x) = P (G ≤ x) ,

and then (b): limB→∞ limγ0→0 A2B(γ0) = 0 in probability. We start with the proof of (a).

Proposition 4. Assume that the conditions (B1)–(B2), (D1’)–(D2’), (M1’)–(M3’), (M7’), (O1)–(O2), and
(V1)–(V2) hold. Then,

lim
B→∞

lim
γ0→0

P (A1B(γ0) ≤ x) = P (G ≤ x) .

We divide the proof of Proposition 4 into two lemmas. In the first lemma, we will show that

lim
B→∞

lim
γ0→0

DB(θ̃i,B(γ0)) =
1
4

I(θ∗).

In the second lemma, we will show that first let γ0 → 0, then let B → ∞,

4B
1
2 TB(γ0)

d→ N (0, I(θ∗)) .

Lemma 5. Assume that the conditions (B1)–(B2), (D1’)–(D2’), (M1’)–(M3’), (O1)–(O2), and (V1)–(V2) hold.
Then,

lim
B→∞

lim
γ0→0

DB(θ̃i,B(γ0)) =
1
4

I(θ∗). (23)

Proof. First fix B. Recall that

DB(θ(γ0)) = −1
2

∫
IR

u̇J(y|θ, γ0)sJ(y|θ, γ0)(g(i)B (y))
1
2 dy

−1
4

∫
IR

uJ(y|θ, γ0)u′J(y|θ, γ0)sJ(y|θ, γ0)(g(i)B (y))
1
2 dy

≡ D1B(θ(γ0)) + D2B(θ(γ0)).

By algebra, D1B(θ̃i,B(γ0)) can be expressed as the sum of H(1)
1B , H(2)

1B , H(3)
1B , H(4)

1B and H(5)
1B , where

H(1)
1B = −1

2

∫
IR

[
u̇J(y|θ̃i,B, γ0)sJ(y|θ̃i,B, γ0)− v̇J(y|θ̃i,B)tJ(y|θ̃i,B)

]
g(i)

1
2

B (y)dy,

H(2)
1B = −1

2

∫
IR

[
v̇J(y|θ̃i,B)tJ(y|θ̃i,B)− v̇J(y|θ∗)tJ(y|θ∗)

]
g(i)

1
2

B (y)dy,

H(3)
1B = −1

2

∫
IR

v̇J(y|θ∗)tJ(y|θ∗)
[

g(i)
1
2

B (y)− h
1
2
J (y|θ∗, γ0)

]
dy,

H(4)
1B = −1

2

∫
IR

v̇J(y|θ∗)tJ(y|θ∗)
[
sJ(y|θ∗, γ0)− tJ(y|θ∗)

]
dy, and H(5)

1B =
1
2

I(θ∗).
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We will show that

lim
γ0→0

D1B(θ̃i,B(γ0)) = H(2)
1B + lim

γ0→0
H(3)

1B + H(5)
1B , (24)

where

lim
γ0→0

H(3)
1B = −1

2

∫
IR

v̇J(y|θ∗)tJ(y|θ∗)
[

g∗
1
2

B (y)− tJ(y|θ∗)
]

dy and (25)

g∗B(·) is given in (7). First consider H(1)
1B . it converges to zero as γ0 → 0 by Cauchy-Schwarz inequality

and assumption (O2). Next we consider H(3)
1B . We will first show that

lim
γ0→0

−1
2

∫
IR

v̇J(y|θ∗)tJ(y|θ∗)g(i)
1
2

B (y)dy = −1
2

∫
IR

v̇J(y|θ∗)tJ(y|θ∗)g∗
1
2

B (y)dy.

To this end, notice that by Cauchy-Schwarz inequality and boundedness of v̇J(y|θ∗)tJ(y|θ∗) in L2,
it follows that there exists a constant C such that

∣∣∣∣∫IR
v̇J(y|θ∗)tJ(y|θ∗)

[
g(i)

1
2

B (y)− g∗
1
2

B (y)
]

dy
∣∣∣∣ ≤ C

{∫
IR

(
g(i)

1
2

B (y)− g∗
1
2

B (y)
)2

dy

} 1
2

≤ C
{∫

IR

∣∣∣g(i)B (y)− g∗B(y)
∣∣∣ dy
} 1

2
.

It suffices to show that g(i)B (·) converges to g∗B(·) in L1. Since∫
IR
|g(i)B (y)− g∗B(y)|dy = 2− 2

∫
IR

min
{

g(i)B (y), g∗B(y)
}

dy,

and min
{

g(i)B (y), g∗B(y)
}
≤ g∗B(y), by dominated convergence theorem, g(i)B (·) L1→ g∗B(·). Next we will

show that

lim
γ0→0

−1
2

∫
IR

v̇J(y|θ∗)tJ(y|θ∗)sJ(y|θ∗, γ0)dy = −1
2

∫
IR

v̇J(y|θ∗)tJ(y|θ∗)tJ(y|θ∗)dy.

In addition, by Cauchy-Schwarz inequality, boundedness of v̇J(y|θ∗)tJ(y|θ∗) in L2 and Scheffe’s

theorem, we have that
∫

IR v̇J(y|θ∗)h
1
2
J (y|θ∗, γ0)

(
sJ(y|θ∗|γ0)− tJ(y|θ∗)

)
dy converges to zero as γ0 → 0.

Next we consider H(4)
1B . it converges to zero by Cauchy-Schwarz inequality and assumption (M2’).

Thus (24) holds. Now let B → ∞, we will show that limB→∞ H(2)
1B = 0 and limB→∞ limγ0→0 H(3)

1B = 0.

First consider limB→∞ H(2)
1B . It converges to zero by Cauchy-Schwarz inequality and assumption (M2’).

Next we consider limB→∞ limγ0→0 H(3)
1B . It converges to zero by Cauchy-Schwarz inequality and L1

convergence of g∗B(·) and h∗J(·|θ∗). Therefore limB→∞ limγ0→0 D1B(θ̃i,B(γ0)) =
1
2 I(θ∗).

We now turn to show that limB→∞ limγ0→0 D2B(θ̃i,B(γ0)) = − 1
4 I(θ∗). First fix B and express

D2B(θ̃i,B(γ0)) as the sum of H(1)
2B , H(2)

2B , H(3)
2B , H(4)

2B , and H(5)
2B , where

H(1)
2B = −1

4

∫
IR

[
uJ(y|θ̃i,B, γ0)u′J(y|θ̃i,B, γ0)sJ(y|θ̃i,B, γ0)− vJ(y|θ̃i,B)v′J(y|θ̃i,B)tJ(y|θ̃i,B)

]
g(i)

1
2

B (y)dy,

H(2)
2B = −1

4

∫
IR

[
vJ(y|θ̃i,B)v′J(y|θ̃i,B)tJ(y|θ̃i,B)− vJ(y|θ∗)v′J(y|θ∗)tJ(y|θ∗)

]
g(i)

1
2

B (y)dy,

H(3)
2B = −1

4

∫
IR

vJ(y|θ∗)v′J(y|θ∗)tJ(y|θ∗)
[

g(i)
1
2

B (y)− h
1
2
J (y|θ∗, γ0)

]
dy,
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H(4)
2B = −1

4

∫
IR

vJ(y|θ∗)v′J(y|θ∗)tJ(y|θ∗)
[
sJ(y|θ∗, γ0)− tJ(y|θ∗)

]
dy, and H(5)

2B = −1
4

I(θ∗).

We will show that

lim
γ0→0

D2B(θ̃i,B(γ0)) = H(2)
2B + lim

γ0→0
H(3)

2B + H(5)
2B , where (26)

lim
γ0→0

H(3)
2B = −1

2

∫
IR

vJ(y|θ∗)v′J(y|θ∗)tJ(y|θ∗)
[

g∗
1
2

B (y)− tJ(y|θ∗)
]

dy. (27)

First consider H(1)
2B . It converges to zero as γ0 → 0 by Cauchy-Schwarz inequality and

assumption (O1). Next consider H(3)
2B . By similar argument as above and boundedness of

v2
J (y|θ∗)tJ(y|θ∗), it follows that (27) holds. Next consider H(4)

2B . It converges to zero as γ0 → 0
by Cauchy-Schwarz inequality and assumption (M3’). Now let B → ∞, we will show that
limB→∞ H(2)

2B = 0 and limB→∞ limγ0→0 H(3)
2B = 0. First consider H(2)

2B . It converges to zero by

Cauchy-Schwarz inequality and assumption (M3’) as B → ∞. Finally consider limB→∞ limγ0→0 H(3)
2B .

It converges to zero by Cauchy-Schwarz inequality and L1 convergence of g∗B(·) and h∗J(·|θ∗).
Thus limB→∞ limγ0→0 D2B(θ̃i,B(γ0)) = − 1

4 I(θ∗). Now letting B → ∞, the proof of (23) follows
using arguments similar to the one in Lemma 2.

Lemma 6. Assume that the conditions (B1)–(B2),(D1’)–(D2’), (M1’)–(M3’), (M7’), (O1)–(O2),
and (V1)–(V2) hold. Then, first letting B → ∞, and then letting γ0 → 0,

4B
1
2 TB(γ0)

d→ N (0, I(θ∗)) . (28)

Proof. First fix B. We will show that as γ0 → 0,

4B
1
2 TB(γ0)

d→
∫

IR
vJ(y|θ∗)g∗B(y)dy.

First observe that

4B
1
2 TB(γ0)−

∫
IR

vJ(y|θ∗)g∗B(y)dy =
∫

IR

[
uJ(y|θ∗, γ0)− vJ(y|θ∗)

]
g(i)B (y)dy (29)

+
∫

IR
vJ(y|θ∗)

[
g(i)B (y)− g∗B(y)

]
dy. (30)

We will show that the RHS of (29) converges to zero as γ0 → 0 and the RHS of (30) converges to
zero in probability as γ0 → 0. First consider the RHS of (29). Since∫

IR

[
uJ(y|θ∗, γ0)− vJ(y|θ∗)

]
g(i)B (y)dy ≤

∫
IR

sup
y
|uJ(y|θ∗, γ0)− vJ(y|θ∗)|g(i)B (y)dy,

which converges to zero as γ0 → 0 by assumption (V1). Next consider the RHS of (30). Since

∫
IR

vJ(y|θ∗)
[

g(i)B (y)− g∗B(y)
]

dy =
1
B

B

∑
l=1

∫
IR

[
vJ(Yil + ucB)− vJ(Y∗il + ucB)

]
K(u)du.

By assumption (V2), it follows that as γ0 → 0, (30) converges to zero in probability. Now letting
B → ∞, we have

B
1
2

∫
IR

vJ(y|θ∗)g∗B(y)dy− B
1
2

1
B

B

∑
l=1

vJ(Y∗il |θ∗) = B
1
2

1
B

B

∑
l=1

∫
IR

(
vJ(Y∗il + cBt|θ∗)− vJ(Y∗il |θ∗)

)
K(t)dt,
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and

E

[
B

1
2

∫
IR

vJ(y|θ∗)g∗B(y)dy− B
1
2

1
B

B

∑
l=1

vJ(Y∗il |θ∗)
]2

= E

[
B

1
2

1
B

B

∑
l=1

∫
IR

(
vJ(Y∗il + cBt|θ∗)− vJ(Y∗il |θ∗)

)
K(t)dt

]2

≤ CE
[∫

IR

(
vJ(Y∗i1 + cBt|θ∗)− vJ(Y∗i1|θ∗)

)2 dt
]

= C
∫

IR

∫
IR

(
vJ(y + cBt|θ∗)− vJ(y|θ∗)

)2 h∗J(y|θ∗)dydt

→ 0 as B → ∞,

where the last convergence follows by assumption (M7’). Hence, using the Central limit theorem for
independent and identically distributed random variables it follows that the limiting distribution of
B

1
2
∫

IR vJ(y|θ∗)g∗B(y)dy is N(0, I(θ∗)), proving the lemma.

Proof of Proposition 4. The proof of Proposition 4 follows by combining Lemmas 5 and 6.

Lemma 7. Assume that the conditions (M1’)–(M6’) and (V1)–(V4) hold. Then,

lim
B→∞

lim
γ0→0

A2B(γ0) = 0 in probability.

Proof. First fix B. Let

HB(γ0) =
∫

IR
uJ(y|θ∗, γ0)

[
h

1
2
J (y|θ∗, γ0)− g(i)B (y)

]2
dy−

∫
IR

vJ(y|θ∗)
[
tJ(y|θ∗)− g∗B(y)

]2 dy.

we will show that as γ0 → 0,HB(γ0)→ 0. By algebra,HB(γ0) can be written as the sum ofH1B(γ0)

andH2B(γ0), where

H1B(γ0) =
∫

IR

(
uJ(y|θ∗, γ0)− vJ(y|θ∗)

) [
h

1
2
J (y|θ∗, γ0)− g(i)B (y)

]2
dy, and

H2B(γ0) =
∫

IR
vJ(y|θ∗)

[
h

1
2
J (y|θ∗, γ0)− g(i)B (y)

]2
dy.

First considerH1B(γ0). It is bounded above by C supy |uJ(y|θ∗, γ0)− vJ(y|θ∗)|, which converges
to zero as γ0 → 0 by assumption (V1), where C is a constant. Next consider H2B(γ0). We will show
thatH2B(γ0) converges to ∫

IR
vJ(y|θ∗)

[
tJ(y|θ∗, γ0)− g∗B(y)

]2 dy.

In fact, the difference ofH2B(γ0) and the above formula can be expressed as the sum ofH(1)
2B (γ0),

H(2)
2B (γ0), andH(3)

2B (γ0), where

H(1)
2B (γ0) =

∫
IR

vJ(y|θ∗)
(

hJ(y|θ∗, γ0)− h∗J(y|θ∗)
)

dy,

H(2)
2B (γ0) =

∫
IR

vJ(y|θ∗)
(

g(i)B (y)− g∗B(y)
)

dy, and

H(3)
2B (γ0) =

∫
IR

vJ(y|θ∗)
(

h
1
2
J (y|θ∗, γ0)g(i)B (y)− tJ(y|θ∗, γ0)g∗B(y)

)
dy.
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First considerH(1)
2B (γ0). Please note that

∣∣∣H(1)
2B (γ0)

∣∣∣ ≤
∫

IR
|∇h∗J(y|θ∗)|

∣∣∣∣ hJ(y|θ∗, γ0)

h∗J(y|θ∗) − 1
∣∣∣∣ dy

≤

⎧⎨⎩
(

sup
y

∣∣∣∣ sJ(y|θ, γ0)

tJ(y|θ)
− 1
∣∣∣∣
)2

+ 2 sup
y

∣∣∣∣ sJ(y|θ, γ0)

tJ(y|θ)
− 1
∣∣∣∣
⎫⎬⎭
∫

IR
|∇h∗J(y|θ∗)|dy,

which converges to 0 as γ0 → 0 by assumptions (V3) and (V4). Next we considerH(2)
2B (γ0). Since

H(2)
2B (γ0) =

1
B

B

∑
l=1

∫
IR

(
vJ(Yil + ucB|θ∗)− vJ(Y∗il + ucB|θ∗)

)
K(u)du,

which converges to zero as γ0 → 0 due to assumption (V2). Finally considerH(3)
2B (γ0), which can be

expressed as the sum of L1B(γ0) and L2B, where

L1B(γ0) =
∫

IR
vJ(y|θ∗)

(
h

1
2
J (y|θ∗, γ0)− tJ(y|θ∗)

)
g(i)

1
2

B (y)dy, and

L2B =
∫

IR
vJ(y|θ∗)tJ(y|θ∗)

(
g(i)

1
2

B (y)− g∗
1
2

B (y)
)

dy.

First consider L1B(γ0). Notice that

|L1B(γ0)| ≤ sup
y

∣∣∣∣ sJ(y|θ, γ0)

tJ(y|θ)
− 1
∣∣∣∣ ∫IR

vJ(y|θ∗)tJ(y|θ∗)g(i)
1
2

B (y)dy → 0,

where the last convergence follows by Cauchy-Schwarz inequality and assumption (V4). Next we
consider L2B. By Cauchy-Schwarz inequality, it is bounded above by

{∫
IR

vJ(y|θ∗)v′J(y|θ∗)h∗J(y|θ∗)dy
} 1

2
{∫

IR

(
g(i)

1
2

B (y)− g∗
1
2

B (y)
)2

dy

} 1
2

. (31)

Equation (31) converges to zero as γ0 → 0 by boundedness of
∫

IR vJ(y|θ∗)v′J(y|θ∗)h∗J(y|θ∗)dy and

L1 convergence between g(i)B (·) and g∗B(·), where the L1 convergence has already been established in
Lemma 5. Now letting B → ∞, following similar argument as Lemma 4 and assumptions (M1’)–(M6’),
the lemma follows.

Proof of Theorem 2. Recall that

B
1
2
(
θ̂i,B(γ0)− θ∗(γ0)

)′
= A1B(γ0) + A2B(γ0).

Proposition 4 shows that first letting γ0 → 0, then B → ∞, A1B(γ0)
d→ N(0, I−1(θ∗));

while Lemma 7 shows that limB→∞ limγ0→0 A2B(γ0) = 0 in probability. The theorem follows from
Slutsky’s theorem.

Remark 3. The above two theorems (Theorems 1 and 2) do not immediately imply the double limit exists. This
requires stronger conditions and more delicate calculations and will be considered elsewhere.
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3.5. Robustness of MHDE

In this section, we describe the robustness properties of MHDE for compressed data. Accordingly,
let hJ,α,z(·|θ, γ0) ≡ (1− α)hJ(·|θ, γ0) + αηz, where ηz denotes the uniform density on the interval

(z− ε, z+ ε), where ε > 0 is small, θ ∈ Θ, α ∈ (0, 1), and z ∈ IR. Also, let sJ,α,z(y|θ, γ0) = h
1
2
J,α,z(y|θ, γ0),

uJ,α,z(y|θ, γ0) = ∇ log hJ,α,z(y|θ, γ0), h∗J
α,z(·|θ) ≡ (1− α)h∗J(·|θ) + αηz, s∗J

α,z(·|θ) = h∗J 1
2

α,z (·|θ), and u∗J
α,z =

∇ log h∗J
α,z(·|θ). Before we state the theorem, we describe certain additional assumptions-which are

essentially L2− continuity conditions-that are needed in the proof.

Model assumptions for robustness analysis

(O3) For α ∈ [0, 1] and all θ ∈ Θ,

lim
γ0→0

∫
IR

(
u̇J,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)− u̇∗J

α,z(y|θ)s∗J
α,z(y|θ)

)2
dy = 0.

(O4) For α ∈ [0, 1] and all θ ∈ Θ,

lim
γ0→0

∫
IR

(
uJ,α,z(y|θ, γ0)u′J,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)− u∗J

α,z(y|θ)u∗J′
α,z(y|θ)s∗J

α,z(y|θ)
)2

dy = 0.

Theorem 3. (i) Let α ∈ (0, 1), and assume that for all θ ∈ Θ, and assume that the assumptions of Proposition
1 hold, also assume that T(hJ,α,z(·|θ, γ0)) is unique for all z. Then, T(hJ,α,z(·|θ, γ0)) is a bounded, continuous
function of z and

lim
γ0→0

lim
|z|→∞

T(hJ,α,z(·|θ, γ0)) = θ; (32)

(ii) Assume further that the conditions (V1), (M2)-(M3), and (O3)-(O4) hold. Then,

lim
γ0→0

lim
α→0

α−1 [T(hJ,α,z(·|θ, γ0))− θ
]
= [I(θ)]−1

∫
IR

[
ηz(y)vJ(y|θ)

]
dy,

Proof. Let θz(γ0) denote T(hJ,α,z(·|θ, γ0)) and let θz denote T(h∗J
α,z(·|θ)) We first show that (32) holds.

Let γ0 ≥ 0 be fixed. Then, by triangle inequality,

lim
|z|→∞

|θz(γ0)− θ| ≤ lim
|z|→∞

|θz(γ0)− θ(γ0)|+ lim
|z|→∞

|θ(γ0)− θ|. (33)

We will show that the first term of RHS of (33) is equal to zero. Suppose that it is not zero, without
loss of generality, by going to a subsequence if necessary, we may assume that θz → θ1 �= θ as |z| → ∞.
Since θz(γ0) minimizes HD2(hJ(·|θ, γ0), hJ(·|θ, γ0)), it follows that

HD2(hJ,α,z(·|θ, γ0), hJ(·|θz, γ0)) ≤ HD2(hJ,α,z(·|θ, γ0), hJ(·|θ′, γ0)) (34)

for every θ′ ∈ Θ. We now show that as |z| → ∞,

HD2(hJ,α,z(·|θ, γ0), hJ(·|θz, γ0))→ HD2((1− α)hJ(·|θ, γ0), hJ(·|θ1, γ0)). (35)

To this end, note that as |z| → ∞, for every y,

hJ,α,z(y|θ, γ0)→ (1− α)hJ(y|θ, γ0), and hJ(y|θz, γ0)→ hJ(y|θ1, γ0)

Therefore, as |z| → ∞,∣∣∣HD2(hJ,α,z(·|θ, γ0), hJ(·|θz, γ0))− HD2((1− α)hJ(·|θ, γ0), hJ(·|θ1, γ0))
∣∣∣ ≤ 2(Q1 + Q2),
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where

Q1 =
∫

IR

∣∣∣∣h 1
2
J,α,z(y|θ, γ0)−

(
(1− α)hJ(y|θ, γ0)

) 1
2

∣∣∣∣ (hJ(y|θz, γ0))
) 1

2 dy,

Q2 =
∫

IR

∣∣∣∣h 1
2
J (y|θz, γ0)−

(
hJ(y|θ1, γ0)

) 1
2

∣∣∣∣ ((1− α)hJ(y|θ, γ0)
) 1

2 dy.

Now, by Cauchy-Schwarz inequality and Scheffe’s theorem, it follows that as |z| → ∞, Q1 → 0
and Q2 → 0. Therefore, (35) holds. By Equations (34) and (35), we have

HD2((1− α)hJ(·|θ, γ0), hJ(·|θ1, γ0)) ≤ HD2((1− α)hJ(·|θ, γ0), hJ(·|θ′, γ0)) (36)

for every θ′ ∈ Θ. Now consider

HIF(α, hJ(·|θ, γ0), hJ(·|θ′, γ0)) ≡
∫

IR

([
(1− α)δ(hJ(·|θ, γ0), hJ(y|θ′, γ0)) + 1

] 1
2 − 1

)2
hJ(y|θ′, γ0)dy,

where δ(hJ(·|θ, γ0), hJ(y|θ′, γ0)) =
hJ(y|θ,γ0)

hJ(y|θ′ ,γ0)
− 1. Since G∗(δ) =

[
((1− α)δ + 1)

1
2 − 1

]2
is a

non-negative and strictly convex function with δ = 0 as the unique point of minimum. Hence
HIF(α, hJ(·|θ, γ0), hJ(·|θ′, γ0)) > 0 unless δ(hJ(·|θ, γ0), hJ(y|θ′, γ0)) = 0 on a set of Lebesgue measure
zero, which by the model identifiability assumption , is true if and only if θ′ = θ. Since θ1 �= θ, it
follows that

HIF(α, hJ(·|θ, γ0), hJ(·|θ1, γ0)) > HIF(α, hJ(·|θ, γ0), hJ(·|θ, γ0)).

Since HIF(α, hJ(·|θ, γ0), hJ(·|θ′, γ0)) = HD2((1− α)hJ(·|θ, γ0), hJ(·|θ′, γ0))− α. This implies that

HD2((1− α)hJ(·|θ, γ0), hJ(·|θ1, γ0)) > HD2((1− α)hJ(·|θ, γ0), hJ(·|θ′, γ0)),

which contradicts (36). The continuity of θz follows from Proposition 2 and the boundedness follows
from the compactness of Θ. Now let γ0 → 0, the second term of RHS of (33) converges to zero by
Proposition 2.

We now turn to part (ii) of the Theorem. First fix γ0 ≥ 0. Since θz minimizes
H2(hJ,α,z(·|θ, γ0), t(γ0)) over Θ. By Taylor expansion of HD2(hJ,α,z(·|θ, γ0), hJ(·|θz, γ0)) around θ,
we get

0 = ∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θz, γ0)) = HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0))

+(θz − θ)D(hJ,α,z(·|θ, γ0), hJ(·|θ∗z , γ0)),

where θ∗z(γ0) is a point between θ and θz,

∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) =
1
2

∫
IR

uJ,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)
(
sJ,α,z(y|θ, γ0)− sJ(y|θ, γ0)

)
dy, (37)

and D(hJ,α,z(·|θ, γ0), hJ(·|θ′, γ0)) can be expressed the sum of D1(hJ,α,z(·|θ, γ0), hJ(·|θ′, γ0)) and
D2(hJ,α,z(·|θ, γ0), hJ(·|θ′, γ0)), where

D1(hJ,α,z(·|θ, γ0), hJ(·|θ′, γ0)) =
1
2

∫
IR

u̇J,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)sJ(y|θ′, γ0)dy and (38)

D2(hJ,α,z(·|θ, γ0), hJ(·|θ′, γ0)) =
1
4

∫
IR

uJ,α,z(y|θ, γ0)u′J,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)sJ(y|θ′, γ0)dy. (39)
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Therefore,

α−1 (θz − θ) = −α−1D−1(hJ,α,z(·|θ, γ0), hJ(·|θ∗z , γ0))∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)).

We will show that

lim
α→0

D(hJ,α,z(·|θ, γ0), hJ(·|θ∗z , γ0)) = −
1
4

I(θ(γ0)), and (40)

lim
α→0

α−1∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) =
1
4

∫
IR

[
ηz(y)uJ(y|θ, γ0)

]
dy. (41)

We will first establish (40). Please note that as α → 0, by definition θz(α) → θ. Thus,
limα→0 θ∗z(α) = θ. In addition, by assumptions (O3) and (O4), D(hJ,α,z(·|θ, γ0), hJ(·|θz, γ0)) is
continuous in θz. Therefore, to prove (40), it suffices to show that

lim
α→0

D1(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) = −
1
2

∫
IR

u̇J,α,z(y|θ, γ0)hJ(y|θ, γ0)dy = −1
2

I(θ(γ0)), and (42)

lim
α→0

D2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) =
1
4

∫
IR

uJ,α,z(y|θ, γ0)u′J,α,z(y|θ, γ0)hJ(y|θ, γ0)dy =
1
4

I(θ(γ0)). (43)

We begin with D2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)). Notice that

lim
α→0

sJ,α,z(y|θ, γ0) = sJ(y|θ, γ0), lim
α→0

uJ,α,z(y|θ, γ0) = uJ(y|θ, γ0), and

lim
α→0

u̇J,α,z(y|θ, γ0) = u̇J(y|θ, γ0).

Thus,

lim
α→0

u̇J,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)sJ(y|θ, γ0) = u̇J(y|θ, γ0)hJ(y|θ, γ0).

In addition, in order to pass the limit inside the integral, note that, for every component of matrix
uJ,α,z(·|θ, γ0)u′J,α,z(·|θ, γ0), we have

∣∣∣uJ,α,z(y|θ, γ0)u′J,α,z(y|θ, γ0)
∣∣∣ =

∣∣∣∣∣
(

(1− α)∇hJ,α,z(y|θ, γ0)

(1− α)hJ,α,z(y|θ, γ0) + αηz(y)

)(
(1− α)∇hJ,α,z(y|θ, γ0)

(1− α)hJ,α,z(y|θ, γ0) + αηz(y)

)′∣∣∣∣∣
=

∣∣∣∣∣
(

∇hJ,α,z(y|θ, γ0)

hJ,α,z(y|θ, γ0) +
α

1−α ηz(y)

)(
∇hJ,α,z(y|θ, γ0)

hJ,α,z(y|θ, γ0) +
α

1−α ηz(y)

)′∣∣∣∣∣
≤

∣∣∣∣∣
(∇hJ,α,z(y|θ, γ0)

hJ,α,z(y|θ, γ0)

)(∇hJ,α,z(y|θ, γ0)

hJ,α,z(y|θ, γ0)

)′∣∣∣∣∣ = ∣∣∣uJ(y|θ, γ0)u′J(y|θ, γ0)
∣∣∣ ,

where | · | represents the absolute function for each component of the matrix, and

∣∣sJ,α,z(y|θ, γ0)
∣∣ ≤ [hJ(y|θ, γ0) + ηz(y)

] 1
2 .

Now choosing the dominating function

m(1)
J (y|θ, γ0) =

∣∣∣uJ(y|θ, γ0)u′J(y|θ, γ0)
∣∣∣ [hJ(y|θ, γ0) + ηz(y)

] 1
2 sJ(y|θ, γ0)
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and applying Cauchy-Schwarz inequality, we obtain that there exists a constant C such that

∫
IR

∣∣∣m(1)
J (y|θ, γ0)

∣∣∣ dy ≤ C
{∫

IR

(
uJ(y|θ, γ0)u′J(y|θ, γ0)sJ(y|θ, γ0)

)2
dy
} 1

2
,

which is finite by assumption (M2). Hence, by the dominated convergence theorem, (43) holds.
Turning to (42), notice that for each component of the matrix u̇J,α,z(y|θ, γ0),

∣∣u̇J,α,z(y|θ, γ0)
∣∣ =

∣∣∣∣∣ ḧJ(y|θ, γ0)
[
hJ(y|θ, γ0) +

α
1−α ηz(y)

]
−
(
∇hJ(y|θ, γ0)

) (
∇hJ(y|θ, γ0)

)′(
hJ(y|θ, γ0) +

α
1−α ηz(y)

)2

∣∣∣∣∣
≤

∣∣∣∣∣ ḧJ(y|θ, γ0)

hJ(y|θ, γ0)

∣∣∣∣∣+
∣∣∣∣∣
(
∇hJ(y|θ, γ0)

) (
∇hJ(y|θ, γ0)

)′
h2

J (y|θ, γ0)

∣∣∣∣∣ ,
where | · | denotes the absolute function for each component. Now choosing the dominating function

m(2)
J (y|θ, γ0) =

(∣∣∣∣∣ ḧJ(y|θ, γ0)

hJ(y|θ, γ0)

∣∣∣∣∣+
∣∣∣∣∣
(
∇hJ(y|θ, γ0)

) (
∇hJ(y|θ, γ0)

)′
h2

J (y|θ, γ0)

∣∣∣∣∣
) [

hJ(y|θ, γ0) + ηz(y)
] 1

2 sJ(y|θ, γ0),

and applying the Cauchy-Schwarz inequality it follows, using (M3), that∫
IR

∣∣∣m(2)
J (y|θ, γ0)

∣∣∣ dy < ∞.

Finally, by the dominated convergence theorem, it follows that

lim
α→0

D1(hJ,α,z(·|θ, γ0), hJ(·|θ∗z , γ0)) = −
1
2

I(θ(γ0)).

Therefore (40) follows. It remains to show that (41) holds. To this end, note that

∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) = −1
2

∫
IR

sJ,α,z(y|θ, γ0)uJ,α,z(y|θ, γ0)sJ(y|θ, γ0)dy.

Now taking partial derivative of HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) with respect to α, it can be
expressed as the sum of U1, U2 and U3, where

U1 = −1
4

∫
IR

−hJ(y|θ, γ0) + ηz(y)
sJ,α,z(y|θ, γ0)

uJ,α,z(y|θ, γ0)sJ(y|θ, γ0)dy,

U2 = −1
2

∫
IR

sJ,α,z(y|θ, γ0)
−∇hJ(y|θ, γ0)hJ,α,z(y|θ, γ0)

h2
J,α,z(y|θ, γ0)

sJ(y|θ, γ0)dy, and

U3 = −1
2

∫
IR

sJ,α,z(y|θ, γ0)
−(1− α)∇hJ(y|θ, γ0)(−hJ(y|θ, γ0) + ηz(y))

h2
J,α,z(y|θ, γ0)

sJ(y|θ, γ0)dy.

By dominated convergence theorem (using similar idea as above to find dominating functions),
we have

lim
α→0

∂∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0))

∂α
=

1
4

∫
IR

uJ(y|θ, γ0)ηz(y)dy.
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Hence, by L’Hospital rule, (41) holds. It remains to show that

lim
γ0→0

lim
α→0

D(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) = −
1
4

I(θ), and (44)

lim
γ0→0

lim
α→0

α−1∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) =
1
4

∫
IR

[
ηz(y)vJ(y|θ)

]
dy. (45)

We start with (44). Since for fixed γ0 ≥ 0, by the above argument, it follows that

lim
α→0

D(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) = −
1
4

I(θ(γ0)) = −
1
4

∫
IR

uJ(y|θ, γ0)u′J(y|θ, γ0)hJ(y|θ, γ0)dy,

it is enough to show

lim
γ0→0

∫
IR

uJ(y|θ, γ0)u′J(y|θ, γ0)hJ(y|θ, γ0)dy =
∫

IR
vJ(y|θ)v′J(y|θ)h∗J(y|θ)dy,

which is proved in Lemma 2. Hence (44) holds. Next we prove (45). By the argument used to establish
(40), it is enough to show that

lim
γ0→0

∫
IR

[
ηz(y)uJ(y|θ, γ0)

]
dy =

∫
IR

[
ηz(y)vJ(y|θ)

]
dy. (46)

However, ∫
IR

ηz(y)
[
uJ(y|θ, γ0)− vJ(y|θ)

]
dy ≤ sup

y

∣∣uJ(y|θ, γ0)− vJ(y|θ)
∣∣ ,

and the RHS of the above inequality converges to zero as γ0 → 0 from assumption (V1). Hence (46)
holds. This completes the proof.

Our next result is concerned with the behavior of the α−influence function when γ0 → 0 first and
then |z| → ∞ or α → 0. The following three additional assumptions will be used in the proof of part
(ii) of Theorem 4.

Model assumptions for robustness analysis

(O5) For α ∈ [0, 1] and all θ ∈ Θ, u̇∗J
α,z(y|θ)s∗J

α,z(y|θ) is bounded in L2.
(O6) For α ∈ [0, 1] and all θ ∈ Θ, u∗J

α,z(y|θ)u∗J′
α,z(y|θ)s∗J

α,z(y|θ) is bounded in L2.
(O7) For α ∈ [0, 1] and all θ ∈ Θ,

lim
γ0→0

∫
IR

(
sJ,α,z(y|θ, γ0)uJ,α,z(y|θ, γ0)− s∗J

α,z(y|θ)u∗J
α,z(y|θ)

)2
dy = 0.

Theorem 4. (i) Let α ∈ (0, 1), and assume that for all θ ∈ Θ, assume that the assumptions of Proposition 1
hold, also assume that T(hJ,α,z(·|θ, γ0)) is unique for all z. Then, T(hJ,α,z(·|θ, γ0)) is a bounded, continuous
function of z such that

lim
|z|→∞

lim
γ0→0

T(hJ,α,z(·|θ, γ0)) = θ;

(ii) Assume further that the conditions (O3)–(O7) hold. Then,

lim
α→0

lim
γ0→0

α−1 [T(hJ,α,z(·|θ, γ0))− θ
]
= [I(θ)]−1

∫
IR

[
ηz(y)vJ(y|θ)

]
dy.
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Proof. Let θz(γ0) denote T(hJ,α,z(·|θ, γ0)) and let θz denote T(h∗J
α,z(·|θ)). First fix z ∈ IR; then by the

triangular inequality,

lim
γ0→0

|θz(γ0)− θ| ≤ lim
γ0→0

|θz(γ0)− θz|+ lim
γ0→0

|θz − θ|. (47)

The first term of RHS of (47) is equal to zero due to proposition 2. Now let |z| → ∞, then the
second term on the RHS of (47) converges to zero using similar argument as Theorem 3 with density
converging to h∗J

α,z(·|θ). This completes the proof of I). Turning to (ii), we will prove that

lim
α→0

lim
γ0→0

D(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) = −
1
4

I(θ), (48)

lim
α→0

lim
γ0→0

α−1∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) =
1
4

∫
IR

[
ηz(y)vJ(y|θ)

]
dy. (49)

Recall from the proof of part (ii) of Theorem 3 that

D(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) =
1
2

∫
IR

u̇J,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)sJ(y|θ, γ0)

+
1
4

∫
IR

uJ,α,z(y|θ, γ0)u′J,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)sJ(y|θ, γ0)

≡ D1(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) + D2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)).

We will now show that for fixed α ∈ (0, 1)

lim
γ0→0

D1(hJ,α,z(θ, γ0), hJ(·|θ, γ0)) =
1
2

∫
IR

u̇∗J
α,z(y|θ)s∗J

α,z(y|θ)tJ(y|θ)dy, and (50)

lim
γ0→0

D2(hJ,α,z(θ, γ0), hJ(·|θ, γ0)) =
1
4

∫
IR

u∗J
α,z(y|θ)u∗J′

α,z(y|θ)s∗J
α,z(y|θ)tJ(y|θ)dy. (51)

We begin with (50). A standard calculation shows that D1(hJ,α,z(θ, γ0), u∗J
α,z(y|θ)) can be expressed

as the sum of D11, D12 and D13, where

D11 =
1
2

∫
IR

(
u̇J,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)− u̇∗J

α,z(y|θ)s∗J
α,z(y|θ)

)
sJ(y|θ, γ0)dy,

D12 =
1
2

∫
IR

u̇∗J
α,z(y|θ)s∗J

α,z(y|θ)
(
sJ(y|θ, γ0)− tJ(y|θ)

)
dy, and

D13 =
1
2

∫
IR

u̇∗J
α,z(y|θ)s∗J

α,z(y|θ)tJ(y|θ)dy.

It can be seen thatD11 converges to zero as γ0 → 0 by Cauchy-Schwarz inequality and assumption
(O3); also, D12 converges to zero as γ0 → 0 by Cauchy-Schwarz inequality, assumption (O5) and
Scheffe’s theorem. Hence (50) follows. Similarly (51) follows as γ0 → 0 by Cauchy-Schwarz inequality,
assumption (O4), assumption (O6) and Scheffe’s theorem.

Now let α → 0. Using the same idea as in Theorem 3 to find dominating functions, one can apply
the dominated convergence Theorem to establish that

lim
α→0

1
2

∫
IR

u̇∗J
α,z(y|θ)s∗J

α,z(y|θ)tJ(y|θ)dy = −1
2

I(θ), and
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lim
α→0

1
4

∫
IR

u∗J
α,z(y|θ)u∗J′

α,z(y|θ)s∗J
α,z(y|θ)tJ(y|θ)dy =

1
4

I(θ).

Hence (48) follows. Finally, it remains to establish (49). First fix α ∈ (0, 1); we will show that

lim
γ0→0

∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) = −
1
2

∫
IR

s∗J
α,z(y|θ)u∗J

α,z(y|θ)tJ(y|θ)dy. (52)

Please ∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) can be expressed as the sum of T1, T2 and T3, where

T1 = −1
2

∫
IR

(
sJ,α,z(y|θ, γ0)uJ,α,z(y|θ, γ0)− s∗J

α,z(y|θ)u∗J
α,z(y|θ)

)
sJ(y|θ, γ0)dy,

T2 = −1
2

∫
IR

s∗J
α,z(y|θ)u∗J

α,z(y|θ)
(
sJ(y|θ, γ0)− tJ(y|θ)

)
dy, and

T3 = −1
2

∫
IR

s∗J
α,z(y|θ)u∗J

α,z(y|θ)tJ(y|θ)dy.

It can be seen thatr T1 converges to zero as γ0 → 0 by Cauchy-Schwarz inequality and assumption
(O7); T2 converges to zero as γ0 → 0 by Cauchy-Schwarz inequality, boundedness of u∗J

α,z(·)s∗J
α,z(·) in

L2, and Scheffe’s theorem. Therefore, (52) holds. Finally, letting α → 0 and using the same idea as in
Theorem 3 to find the dominating function, it follows by the dominated convergence theorem and
L’Hospital rule that (49) holds. This completes the proof of the Theorem.

Remark 4. Theorems 3 and 4 do not imply that the double limit exists. This is beyond the scope of this paper.

In the next section, we describe the implementation details and provide several simulation results
in support of our methodology.

4. Implementation and Numerical Results

In this section, we apply the proposed MHD based methods to estimate the unknown parameters
θ = (μ, σ2) using the compressed data. We set J = 10,000 and B = 100. All simulations are based on
5000 replications. We consider the Gaussian kernel and Epanechnikov kernel for the nonparametric
density estimation. The Gaussian kernel is given by

K(x) =
1√
2π

exp
(
− x2

2

)
,

and the Epanechnikov kernel is given by

K(x) =
3
4

(
1− x2

)
1(|x|≤1).
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We generate X and uncontaminated compressed data Ỹ in the following way:

• Step 1. Generate Xl , where Xjl
i.i.d.∼ N(μ, σ2).

• Step 2. Generate Rl , where rijl
i.i.d.∼ N(1, γ2

0).

• Step 3. Generate the uncontaminated Ỹl by calculating Ỹl = RlXl .

4.1. Objective Function

In practice, we store the compressed data (Ỹl , r·l , ωl) for all 1 ≤ l ≤ B. Hence if Xjl follows
Normal distribution with mean μ and variance σ2, the form of the marginal density of the compressed
data, viz., Yil is complicated and does not have a closed form expression. However, for large J,
using the local limit theorem its density can be approximated by Gaussian density with mean

√
Jμ

and variance σ2 + γ2
0(μ

2 + σ2). Hence, we work with Uil , where Uil =
Ỹil−μri·l

ωil
. Please note that with

this transformation, E[Uil ] = 0 and Var[Uil ] = σ2. Hence, the kernel density estimate of the unknown
true density is given by

g(i)B (y|μ) = 1
BcB

B

∑
l=1

K
(

y−Uil
cB

)
.

The difference between the kernel density estimate and the one proposed here is that we include
the unknown parameter μ in the kernel. Additionally, this allows one to incorporate (r·r, ωl) into the
kernel. Consequently, only the scale parameter σ is part of the parametric model. Using the local limit
theorem, we approximate the true parametric model by φ(·|σ), where φ(·|σ) is the density of N(0, σ2).
Hence, the objective function is

Ψ(i, θ) ≡ A(g(i)B (·|μ), φ(·|σ)) =
∫

IR
g(i)

1
2

B (y|μ)φ 1
2 (y|σ)dy;

and, the estimator is given by

θ̂B(γ0) =
1
S

S

∑
i=1

θ̂i,B(γ0), where θ̂i,B(γ0) = argmax
θ∈Θ

Ψ(i, θ).

It is clear that θ̂B(γ0) is a consistent estimator of θ∗. In the next subsection, we use Quasi-Newton
method with Broyden-Fletcher-Goldfarb-Shanno (BFGS) update to estimate θ. Quasi-Newton
method is appealing since (i) it replaces the complicated calculation of the Hessian matrix with
an approximation which is easier to compute (Δk(θ) given in the next subsection) and (ii) gives more
flexible step size t (compared to the Newton-Raphson method), ensuring that it does not “jump” too
far at every step and hence guaranteeing convergence of the estimating equation. The BFGS update
(Hk) is a popular method for approximating the Hessian matrix via gradient evaluations. The step size
t is determined using Backtracking line search algorithm described in Algorithm 2. The algorithms are
given in detail in the next subsection. Our analysis also includes the case where S ≡ 1 and rijl ≡ 1.
In this case, as explained previously, one obtains significant reduction in storage and computational
complexity. Finally, we emphasize here that the density estimate contains μ and is not parameter free
as is typical in classical MHDE analysis. In the next subsection, we describe an algorithm to implement
our method.

4.2. Algorithm

As explained previously, we use the Quasi-Newton Algorithm with BFGS update to obtain
θ̂MHDE. To describe this method, consider the objective function (suppressing i) Ψ(θ), which is twice
continuously differentiable. Let the initial value of θ be θ(0) =

(
μ(0), σ(0)

)
and H0 = I, where I is the

identity matrix.
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Algorithm 1: The Quasi-Newton Algorithm.
Set k = 1.

repeat

1. Calculate Δk(θ) = −H−1
k−1∇Ψ(θ(k−1)), where ∇Ψ(y; θk−1) is the first derivative of Ψ(θ) with

respect to θ at (k− 1)th step.

2. Determine the step length parameter t via backtracking line search.

3. Compute θ(k) = θ(k−1) + tΔk(θ).

4. Compute Hk, where the BFGS update is

Hk = Hk−1 +
qk−1qT

k−1

qT
k−1dk−1

−
Hk−1dk−1dT

k−1HT
k−1

dT
k−1Hk−1dk−1

,

where

dk−1 = θ(k) − θ(k−1),

qk−1 = ∇Ψ(θ(k))−∇Ψ(θ(k−1)).

5. Compute ek = |Ψ(θ(k))−Ψ(θ(k−1))|.

6. Set k = k + 1.

until (ek) < threshold.

Remark 5. In step 1, one can directly use the Inverse update for H−1
k as follows:

H−1
k =

(
I −

dk−1qT
k−1

qT
k−1dk−1

)
H−1

k−1

(
I −

qk−1dT
k−1

qT
k−1dk−1

)
+

dk−1dT
k−1

qT
k−1dk−1

.

Remark 6. In step 2, the step size t should satisfy the Wolfe conditions:

Ψ
(

y; θ(k) + tΔk

)
≤ Ψ

(
θ(k)
)
+ u1t∇ΨT

(
θ(k)
)

Δk,

∇Ψ
(

θ(k) + tΔk

)
≥ u2∇ΨT

(
θ(k)
)

Δk,

where u1 and u2 are constants with 0 < u1 < u2 < 1. The first condition requires that t sufficiently decrease
the objective function. The second condition ensures that the step size is not too small. The Backtracking line
search algorithm proceeds as follows (see [26]):

Algorithm 2: The Backtracking Line Search Algorithm.

Given a descent direction Δ(θ) for Ψ at θ, ζ ∈ (0, 0.5), κ ∈ (0, 1). t := 1.

while Ψ(θ+ tΔθ) > Ψ(θ) + ζt∇Ψ(θ)TΔθ,
do

t := κt.

end while
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4.3. Initial Values

The initial value for θ are taken to be

μ(0) = median
(

Ỹil

)
/J,

σ(0) = 1.48×median
(
|Ỹil −median(Ỹil)|

)
/B.

Another choice of the initial value for σ is:

σ̂(0) =

√√√√√ (
̂Var[Ỹil ]

J − γ2
0μ)

γ2
0 + μ2

0
, (53)

where ̂Var[Ỹil ] is an empirical estimate of the variance of Ỹ1.
Bandwidth Selection: A key issue in implementing the above method of estimation is the choice

of the bandwidth. We express the bandwidth in the form hB = cBsB, where cB ∈ {0.3, 0.4, 0.5, 0.7, 0.9},
and sB is set equal to 1.48×median

(
|Ỹil −median(Ỹil)|

)
/B.

In all the tables below, we report the average (Ave), standard deviation (StD) and mean square
error (MSE) to assess the performance of the proposed methods.

4.4. Analyses Without Contamination

From Tables 2–5, we let true μ = 2, σ = 1, and take the kernel to be Gaussian kernel. In Table 2,
we compare the estimates of the parameters as the dimension of the compressed data S increases.
In this table, we allow S to take values in the set {1, 2, 5, 10}. Also, we let the number of groups
B = 100, the bandwidth is chosen to be cB = 0.3, and γ0 = 0.1. In addition, in Table 2, S∗ = 1 means
that S = 1 with γ0 ≡ 0.

Table 2. MHDE as the dimension S changes for compressed data Ỹ using Gaussian kernel.

μ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

S∗ = 1 2.000 1.010 0.001 1.016 74.03 5.722
S = 1 2.000 1.014 0.001 1.018 74.22 5.844
S = 2 2.000 1.005 0.001 1.019 73.81 5.832
S = 5 2.000 0.987 0.001 1.017 74.16 5.798

S = 10 2.000 0.995 0.001 1.019 71.87 5.525

From Table 2 we observe that as S increases, the estimates for μ and σ remain stable. The case
S∗ = 1 is interesting, since even by storing the sum we are able to obtain point estimates which are
close to the true value. In Table 3, we choose S = 1, B = 100 and cB = 0.3 and compare the estimates as
γ0 changes from 0.01 to 1.00. We can see that as γ0 increases, the estimate for μ remains stable, whereas
the bias, standard deviation and MSE for σ increase.

Table 3. MHDE as γ0 changes for compressed data Ỹ using Gaussian kernel.

μ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

γ0 = 0.00 2.000 1.010 0.001 1.016 74.03 5.722
γ0 = 0.01 2.000 1.017 0.001 1.015 74.83 5.814
γ0 = 0.10 2.000 1.023 0.001 1.021 72.80 5.717
γ0 = 0.50 2.000 1.119 0.001 1.076 72.59 11.08
γ0 = 1.00 2.000 1.399 0.002 1.226 82.21 57.75
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In Table 4, we fix S = 1, B = 100 and γ0 = 0.1 and allow the bandwidth cB to increase.
Also, c∗B = 0.30 means that the bandwidth is chosen as 0.30 with γ0 ≡ 0. Notice that in this case
when cB = 0.9 B

1
2 cB = 9 while B

1
2 c2

B = 8.1 which is not small as is required in assumption (B2). We
notice again that as cB decreases, the estimates of μ and σ are close to the true value with small MSE
and StD.

Table 4. MHDE as the bandwidth cB changes for compressed data Ỹ using Gaussian kernel.

μ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

c∗B = 0.30 2.000 1.010 0.001 1.016 74.03 5.722
cB = 0.30 2.000 1.014 0.001 1.018 74.22 5.844
cB = 0.40 2.000 1.015 0.001 1.063 79.68 10.26
cB = 0.50 2.000 1.014 0.001 1.108 82.33 18.33
cB = 0.70 2.000 1.004 0.001 1.212 93.96 53.64
cB = 0.90 2.000 1.009 0.001 1.346 110.5 132.2

In Table 5, we let S = 1, cB = 0.3 and γ0 = 0.1 and let the number of groups B increase. This table
implies that as B increases, the estimate performs better in terms of bias, standard deviation and MSE.

Table 5. MHDE as B changes for compressed data Ỹ using Gaussian kernel with γ0 = 0.1.

μ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

B = 20 2.000 2.205 0.005 1.739 378.5 688.6
B = 50 2.000 1.409 0.002 1.136 125.2 34.17
B = 100 2.000 1.010 0.001 1.016 74.03 5.722
B = 500 2.000 0.455 0.000 0.972 32.63 1.873

In Table 6, we set γ0 ≡ 0 and keep other settings same as Table 5. This table implies that as B
increases, the estimate performs better in terms of bias, standard deviation and MSE. Furthermore,
the standard deviation and MSE are slightly smaller than the results in Table 5.

Table 6. MHDE as B changes for compressed data Ỹ using Gaussian kernel with γ0 = 0.

μ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

B = 20 2.000 2.282 0.005 1.749 381.4 706.0
B = 50 2.000 1.440 0.002 1.148 125.2 37.42
B = 100 2.000 1.014 0.001 1.018 74.22 5.844
B = 500 2.000 0.465 0.000 0.973 31.33 1.692

We next move on to investigating the effect of other sensing variables. In the following table,
we use Gamma model to generate the additive matrix Rl . Specifically, the mean of Gamma random
variable is set as α0β0 = 1, and the variance var ≡ α0β2

0 is chosen from the set {0, 0.012, 0.01, 0.25, 1.00}
which are also the variances in Table 3.

From Table 7, notice that using Gamma sensing variable yields similar results as Gaussian sensing
variable. Our next example considers the case when the mean of the sensing variable is not equal to one
and the sensing variable is taken to have a discrete distribution.Specifically, we use Bernoulli sensing
variables with parameter p. Moreover, we fix S = 1 and let pJ = S. Therefore p = 1/J. Hence as J
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increases, the variance decreases. Now notice that in this case the mean of sensing variable is p instead
of 1. In addition, E[Ỹil ] = μ and Var[Ỹil ] = σ2 + μ2(1− 1

J ). Hence we set the initial value as

μ(0) = median
(

Ỹil

)
,

σ(0) = 1.48×median
(
|Ỹil −median(Ỹil)|

)
.

Additionally, we take B = 100, cB = 0.30 and sB to be 1.48×median
(
|Ỹil −median(Ỹil)|

)
.

Table 7. MHDE as variance changes for compressed data Ỹ using Gaussian kernel under Gamma
sensing variable.

μ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

var = 0.00 2.000 1.010 0.001 1.016 74.03 5.722
var = 0.012 2.000 1.005 0.001 1.016 74.56 5.806
var = 0.01 2.000 1.006 0.001 1.018 73.70 5.762
var = 0.25 2.000 1.120 0.001 1.078 73.70 11.56
var = 1.00 2.000 1.438 0.001 1.228 81.94 58.48

Table 8 shows that MHD method also performs well with Bernoulli sensing variable, although
the bias of σ, standard deviation and mean squre error for both estimates are larger than those using
Gaussian sensing variable and Gamma sensing variable.

Table 8. MHDE as J changes for compressed data Ỹ using Gaussian kernel under Bernoulli sensing
variable.

μ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

J = 10 2.000 104.9 11.01 1.215 97.78 55.79
J = 100 1.998 104.5 10.93 1.201 104.5 51.26

J = 1000 1.998 104.7 10.96 1.195 106.6 49.36
J = 5000 2.001 103.9 10.80 1.200 105.7 51.20
J = 10000 1.996 105.1 11.07 1.196 104.4 49.16

4.5. Robustness and Model Misspecification

In this section, we provide a numerical assessment of the robustness of the proposed methodology.
To this end, let

fα,η(x|θ) = (1− α) f (x|θ) + αη(x),

where η(x) is a contaminating component, α ∈ [0, 1). We generate the contaminated reduced data Y in
the following way:

• Step 1. Generate Xl , where Xjl
i.i.d.∼ N(2, 1).

• Step 2. Generate Rl , where rijl
i.i.d.∼ N(1, γ2

0).

• Step 3. Generate uncontaminated Ỹl by calculating Ỹl = RlXl .

• Step 4. Generate contaminated Ỹc
il , where Ỹc

il = Ỹil + η(x) with probability α, and Ỹc
il = Ỹil with

probability 1− α.

In the above description, the contamination with outliers is within blocks. A conceptual issue
that one encounters is the meaning of outliers in this setting. Specifically, a data point which is an
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outlier in the original data set may not remain an outlier in the reduced data and vice-versa. Hence the
concepts such as breakdown point and influence function need to be carefully studied. The tables
below present one version of the robustness exhibited by the proposed method. In Tables 9 and 10,
we set J = 104, B = 100, S = 1, γ0 = 0.1, cB = 0.3, η = 1000. In addition, α∗ = 0 means that α = 0 with
γ0 ≡ 0.

Table 9. MHDE as α changes for contaminated data Ỹ using Gaussian kernel.

μ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

α∗ = 0.00 2.000 1.010 0.001 1.016 74.03 5.722
α = 0.00 2.000 1.014 0.001 1.018 74.22 5.844
α = 0.01 2.000 1.002 0.001 1.022 74.89 6.079
α = 0.05 2.000 1.053 0.001 1.023 77.86 6.599
α = 0.10 2.000 1.086 0.001 1.034 79.30 7.350
α = 0.20 2.000 1.146 0.001 1.073 93.45 14.06
α = 0.30 2.001 7.205 0.054 1.264 688.2 542.5
α = 0.40 2.026 21.60 1.100 3.454 1861 9480
α = 0.50 2.051 14.00 2.600 4.809 1005 15513

Table 10. MHDE as α changes for contaminated data Ỹ using Epanechnikov kernel.

μ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

α∗ = 0.00 2.000 0.972 0.001 1.008 73.22 5.425
α = 0.00 2.000 1.014 0.001 1.018 74.22 5.844
α = 0.01 2.000 0.978 0.001 1.028 107.4 12.19
α = 0.05 2.000 1.264 0.002 1.025 108.7 12.35
α = 0.10 2.000 1.202 0.001 1.008 114.7 13.09
α = 0.20 2.000 1.263 0.002 1.046 129.8 18.76
α = 0.30 2.001 5.098 0.026 1.104 557.8 318.9
α = 0.40 2.021 21.80 0.900 3.004 1973 7870
α = 0.50 2.051 10.21 3.000 4.893 720.4 15669

From the above Table we observe that, even under 50% contamination the estimate of the mean
remains stable; however, the estimate of the variance is affected at high-levels of contamination (beyond
30%). An interesting and important issue is to investigate the role of γ0 on the breakdown point of
the estimator.

Finally, we investigate the bias in MHDE as a function of the values of the outlier. The graphs
below (Figure 2) describe the changes to MHDE when outlier values (η) increase. Here we
set S = 1, B = 100, γ0 = 0.1. In addition, we let α = 0.2, and η to take values from
{100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}. We can see that as η increases, both μ̂ and σ̂ increase up
to η = 500 then decrease, although μ̂ does not change too much. This phenomenon is because when
the outlier value is small (or closer to the observations), then it may not be considered as an “outlier”
by the MHD method. However, as the outlier values move “far enough” from other values, then the
estimate for μ and σ remain the stable.
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(a) (b)

Figure 2. Comparison of estimates of μ (a) and σ (b) as outlier changes.

5. Example

In this section we describe an analysis of data from financial analytics, using the proposed
methods. The data are from a bank (a cash and credit card issuer) in Taiwan and the targets of analyses
were credit card holders of the bank. The research focused on the case of customers’ default payments.
The data set (see [27] for details) contains 180,000 observations and includes information on twenty five
variables such as default payments, demographic factors, credit data, history of payment, and billing
statements of credit card clients from April 2005 to September 2005. Ref. [28] study machine learning
methods for evaluating the probability of default. Here, we work with the first three months of data
containing 90,000 observations concerning bill payments. For our analyses we remove zero payments
and negative payment from the data set and perform a logarithmic transformation of the bill payments
. Since the log-transformed data was multi-modal and exhibited features of a mixture of normal
distributions, we work with the log-transformed data with values in the range (6.1, 13). Next, we
performed the Box-Cox transformation to the log-transformed data. This transformation identifies the
best transformation that yields approximately normal distribution (which belongs to the location-scale
family). Specifically, let L denote the log-transformed data in range (6.1, 13), then the data after
Box-Cox transformation is given by X =

(
L2 − 1

)
/19.9091. The histogram for X is given in Figure 3.

The number of observations at the end of data processing was 70,000.

Figure 3. The histogram of credit payment data after Box-Cox transformation to Normality.
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Our goal is to estimate the average bill payment during the first three months. For this, we will
apply the proposed method. In this analysis, we assume that the target model for X is Gaussian and
split the data, randomly, into B = 100 blocks yielding J = 700 observations per block.

In Table 11, “est” represents the estimator, “95% CI” stands for 95% confidence interval for the
estimator. When analyzing the whole data and choosing bandwidth as cn = 0.30, we get the MHDE of
μ to be μ̂ = 5.183 with 95% confidence interval (5.171, 5.194), and the MHDE of σ as σ̂ = 1.425 with
confidence interval (1.418, 1.433).

In Table 11, we choose the bandwidth as cB = 0.30. Also, S∗ = 1 represents the case where S = 1
and γ0 ≡ 0. In all other settings, we keep γ0 = 0.1. We observe that all estimates are similar as
S changes.

Table 11. MHDE from the real data analysis.

μ̂ σ̂

S∗ = 1 est 5.171 1.362
95% CI (4.904, 5.438) (1.158, 1.540)

S = 1 est 5.171 1.391
95% CI (4.898, 5.443) (1.183, 1.572)

S = 5 est 5.172 1.359
95% CI (4.905, 5.438) (1.155, 1.535)

S = 10 est 5.171 1.372
95% CI (4.902, 5.440) (1.167, 1.551)

S = 20 est 5.171 1.388
95% CI (4.899, 5.443) (1.180, 1.569)

Next we study the robustness of MHDE for this data by investigating the relative bias and
studying the influence function. Specifically, we first reduce the dimension from J = 700 to S = 1 for
each of the B = 100 blocks and obtain the compressed data Ỹ ; next, we generate the contaminated
reduced data Ỹc

il from step 4 in Section 4.5. Also, we set α = 0.20, γ0 = 0.20; the kernel is taken
to be to be Epanechnikov density with bandwidth cB = 0.30. η(x) is assumed to takes values in
{50, 100, 200, 300, 500, 800, 1000} (note that the approximate mean of Ỹ is around 3600). Let TMHD be the
Hellinger distance functional. The influence function given by

IF(α; T, Ỹ) =
TMHD(Ỹ c)− TMHD(Ỹ)

α
,

which we use to assess the robustness. The graphs shown below (Figure 4) illustrate how the
influence function changes as the outlier values increase. We observe that for both estimates (μ̂
and σ̂), the influence function first increase and then decrease fast. From η(x) = 300, the influence
functions remain stable and are close to zero, which clearly indicate that MHDE is stable.

Additional Analyses: The histogram in Figure 3 suggests that, may be a mixture of normal
distributions may fit the log and Box-Cox transformed data better than the normal distribution. For this
reason, we calculated the Hellinger distance between four component mixture (chosen using BIC
criteria) and the normal distribution and this was determined to be 0.0237, approximately. Thus, the
normal distribution (which belongs to the location-scale family) can be viewed as a misspecified target
distribution; admittedly, one does lose information about the components of the mixture distribution
due to model misspecification. However, since our goal was to estimate the overall mean and variance
the proposed estimate seems to possess the properties described in the manuscript.
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(a) Influence Function of μ̂ (b) Influence Function of σ̂

Figure 4. Influence function of μ̂ (a) and σ̂ (b) for MHDE.

6. Discussion and Extensions

The results in the manuscript focus on the iterated limit theory for MHDE of the compressed
data obtained from a location-scale family. Two pertinent questions arise: (i) is it easy to extend this
theory to MHDE of compressed data arising from non location-scale family of distributions? and (ii) is it
possible to extend the theory from iterated limits to a double limit? Turning to (i), we note that the
heuristic for considering the location-scale family comes from the fact that the first and the second
moment are consistently estimable for partially observed random walks (see [29,30]). This is related to
the size of J and can be of exponential order. For such large J, other moments may not be consistently
estimable. Hence, the entire theory goes through as long as one is considering parametric models
f (·|θ), where θ =W(μ, σ2), for a known functionW(·, ·). The case in point is the Gamma distribution
which can be re-parametrized in terms of the first two moments.

As for (ii), it is well-known that existence and equality of iterated limits for real sequences does
not imply the existence of the double limit unless additional uniformity of convergence holds (see [31]
for instance). Extension of this notion for distributional convergence requires additional assumptions
and are investigated in a different manuscript wherein more general divergences are also considered.

7. Concluding Remarks

In this paper we proposed the Hellinger distance-based method to obtain robust estimates
for mean and variance in a location-scale model using compressed data. Our extensive theoretical
investigations and simulations show the usefulness of the methodology and hence can be applied in a
variety of scientific settings. Several theoretical and practical questions concerning robustness in a big
data setting arise. For instance, the effect of the variability in the R matrix and its effect on outliers are
important issues that need further investigation. Furthermore, statistical properties such as uniform
consistency and uniform asymptotic normality under different choices for the distribution of R would
be useful. These are under investigation by the authors.
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Abbreviations

The following abbreviations are used in this manuscript:
MHDE Minimum Hellinger Distance Estimator
MHD Minimum Hellinger Distance
i.i.d. independent and identically distributed
MLE Maximum Likelihood Estimator
CI Confidence Interval
IF Influence Function
RHS Right Hand Side
LHS Left Hand Side
BFGS Broyden-Fletcher-Goldfarb-Shanno
var Variance
StD Standard Deviation
MSE Mean Square Error
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Abstract: An important issue for robust inference is to examine the stability of the asymptotic level
and power of the test statistic in the presence of contaminated data. Most existing results are derived
in finite-dimensional settings with some particular choices of loss functions. This paper re-examines
this issue by allowing for a diverging number of parameters combined with a broader array of
robust error measures, called “robust-BD”, for the class of “general linear models”. Under regularity
conditions, we derive the influence function of the robust-BD parameter estimator and demonstrate
that the robust-BD Wald-type test enjoys the robustness of validity and efficiency asymptotically.
Specifically, the asymptotic level of the test is stable under a small amount of contamination of the
null hypothesis, whereas the asymptotic power is large enough under a contaminated distribution in
a neighborhood of the contiguous alternatives, thus lending supports to the utility of the proposed
robust-BD Wald-type test.

Keywords: Bregman divergence; general linear model; hypothesis testing; influence function; robust;
Wald-type test

1. Introduction

The class of varying-dimensional “general linear models” [1], including the conventional
generalized linear model (GLM in [2]), is flexible and powerful for modeling a large variety of data
and plays an important role in many statistical applications. In the literature, it has been extensively
studied that the conventional maximum likelihood estimator for the GLM is nonrobust; for example,
see [3,4]. To enhance the resistance to outliers in applications, many efforts have been made to obtain
robust estimators. For example, Noh et al. [5] and Künsch et al. [6] developed robust estimator for the
GLM, and Stefanski et al. [7], Bianco et al. [8] and Croux et al. [9] studied robust estimation for the
logistic regression model with the deviance loss as the error measure.

Besides robust estimation for the GLM, robust inference is another important issue,
which, however, receives relatively less attention. Basically, the study of robust testing includes
two aspects: (i) establishing the stability of the asymptotic level under small departures from
the null hypothesis (i.e., robustness of “validity”); and (ii) demonstrating that the asymptotic
power is sufficiently large under small departures from specified alternatives (i.e., robustness of
“efficiency”). In the literature, robust inference has been conducted for different models. For example,
Heritier et al. [10] studied the robustness properties of the Wald, score and likelihood ratio tests based
on M estimators for general parametric models. Cantoni et al. [11] developed a test statistic based on
the robust deviance, and conducted robust inference for the GLM using quasi-likelihood as the loss
function. A robust Wald-type test for the logistic regression model is studied in [12]. Ronchetti et al. [13]
concerned the robustness property for the generalized method of moments estimators. Basu et al. [14]
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proposed robust tests based on the density power divergence (DPD) measure for the equality of
two normal means. Robust tests for parameter change have been studied using the density-based
divergence method in [15,16]. However, the aforementioned methods based on the GLM mostly focus
on situations where the number of parameters is fixed and the loss function is specific.

Zhang et al. [1] developed robust estimation and testing for the “general linear model” based on
a broader array of error measures, namely Bregman divergence, allowing for a diverging number of
parameters. The Bregman divergence includes a wide class of error measures as special cases, e.g., the
(negative) quasi-likelihood in regression, the deviance loss and exponential loss in machine learning
practice, among many other commonly used loss functions. Zhang et al. [1] studied the consistency
and asymptotic normality of their proposed robust-BD parameter estimator and demonstrated the
asymptotic distribution of the Wald-type test constructed from robust-BD estimators. Naturally,
it remains an important issue to examine the robustness property of the robust-BD Wald-type test [1] in
the varying-dimensional case, i.e., whether the test still has stable asymptotic level and power, in the
presence of contaminated data.

This paper aims to demonstrate the robustness property of the robust-BD Wald-type test in [1].
Nevertheless, it is a nontrivial task to address this issue. Although the local stability for the
Wald-type tests have been established for the M estimators [10], generalized method of moment
estimators [13], minimum density power divergence estimator [17] and general M estimators under
random censoring [18], their results for finite-dimensional settings are not directly applicable to our
situations with a diverging number of parameters. Under certain regularity conditions, we provide
rigorous theoretical derivation for robust testing based on the Wald-type test statistic. The essential
results are approximations of the asymptotic level and power under contaminated distributions of the
data in a small neighborhood of the null and alternative hypotheses, respectively.

• Specifically, we show in Theorem 1 that, if the influence function of the estimator is bounded,
then the asymptotic level of the test is also bounded under a small amount of contamination.

• We also demonstrate in Theorem 2 that, if the contamination belongs to a neighborhood of the
contiguous alternatives, then the asymptotic power is also stable.

Hence, we contribute to establish the robustness of validity and efficiency for the robust-BD
Wald-type test for the “general linear model” with a diverging number of parameters.

The rest of the paper is organized as follows. Section 2 reviews the Bregman divergence (BD),
robust-BD estimation and the Wald-type test statistic proposed in [1]. Section 3 derives the influence
function of the robust-BD estimator and studies the robustness properties of the asymptotic level and
power of the Wald-type test under a small amount of contamination. Section 4 conducts the simulation
studies. The technical conditions and proofs are given in Appendix A. A list of notations and symbols
is provided in Appendix B.

We will introduce some necessary notations. In the following, C and c are generic finite
constants which may vary from place to place, but do not depend on the sample size n. Denote
by EK(·) the expectation with respect to the underlying distribution K. For a positive integer
q, let 0q = (0, . . . , 0)T ∈ Rq be a q × 1 zero vector and Iq be the q × q identity matrix. For a
vector v = (v1, . . . , vq)T ∈ Rq, the L1 norm is ‖v‖1 = ∑

q
i=1 |vi|, L2 norm is ‖v‖2 = (∑

q
i=1 v2

i )
1/2

and the L∞ norm is ‖v‖∞ = maxi=1,...,q |vi|. For a q × q matrix A, the L2 and Frobenius norms
of A are ‖A‖2 = {λmax(AT A)}1/2 and ‖A‖F =

√
tr(AAT), respectively, where λmax(·) denotes the

largest eigenvalue of a matrix and tr(·) denotes the trace of a matrix.

2. Review of Robust-BD Estimation and Inference for “General Linear Models”

This section briefly reviews the robust-BD estimation and inference methods for the “general linear
model” developed in [1]. Let {(Xn1, Y1), . . . , (Xnn, Yn)} be i.i.d. observations from some underlying
distribution (Xn, Y) with Xn = (X1, . . . , Xpn)

T ∈ Rpn the explanatory variables and Y the response
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variable. The dimension pn is allowed to diverge with the sample size n. The “general linear model” is
given by

m(xn) ≡ E(Y | Xn = xn) = F−1(x̃T
n β̃n,0), (1)

and

var(Y | Xn = xn) = V(m(xn)), (2)

where F is a known link function, β̃n,0 ∈ Rpn+1 is the vector of unknown true regression parameters,
x̃n = (1, xT

n )
T and V(·) is a known function. Note that the conventional generalized linear model

(GLM) satisfying Equations (1) and (2) assumes that Y | Xn = xn follows a particular distribution
in the exponential family. However, our “general linear model” does not require explicit form of
distributions of the response. Hence, the “general linear model” includes the GLM as a special case.

For notational simplicity, denote Zn = (XT
n , Y)T and Z̃n = (X̃

T
n , Y)T .

Bregman divergence (BD) is a class of error measures, which is introduced in [19] and covers
a wide range of loss functions. Specifically, Bregman divergence is defined as a bivariate function,

Qq(ν, μ) = −q(ν) + q(μ) + (ν− μ)q′(μ),

where q(·) is the concave generating q-function. For example, q(μ) = aμ − μ2 for a constant
a corresponds to the quadratic loss Qa(Y, μ) = (Y − μ)2. For a binary response variable
Y, q(μ) = min{μ, 1− μ} gives the misclassification loss Qq(Y, μ) = I{Y �= I(μ > 0.5)};
q(μ) = −2{μ log(μ) + (1− μ) log(1− μ)} gives Bernoulli deviance loss Qq(Y, μ) = −2{Y log(μ) +
(1 − Y) log(1 − μ)}; q(μ) = 2 min{μ, 1 − μ} gives the hinge loss Qq(Y, μ) = max{1 − (2Y −
1)sign(μ − 0.5), 0} for the support vector machine; q(μ) = 2{μ(1− μ)}1/2 yields the exponential
loss Qq(Y, μ) = exp[−(Y− 0.5) log{μ/(1− μ)}] used in AdaBoost [20]. Furthermore, Zhang et al. [21]
showed that if

q(μ) =
∫ μ

a

s− μ

V(s)
ds, (3)

where a is a finite constant such that the integral is well-defined, then Qq(y, μ) is the “classical (negative)
quasi-likelihood” function −QQL(y, μ) with ∂QQL(y, μ)/∂μ = (y− μ)/V(μ).

To obtain a robust estimator based on BD, Zhang et al. [1] developed the robust-BD loss function

ρq(y, μ) =
∫ μ

y
ψ(r(y, s)){q′′(s)

√
V(s)}ds− G(μ), (4)

where ψ(·) is a bounded odd function, such as the Huber ψ-function [22], r(y, s) = (y− s)/
√

V(s)
denotes the Pearson residual and G(μ) is the bias-correction term satisfying

G′(μ) = G′1(μ){q′′(μ)
√

V(μ)},

with

G′1(m(xn)) = E{ψ(r(Y, m(xn))) | Xn = xn}.

Based on robust-BD, the estimator of β̃n,0 proposed in [1] is defined as

̂̃
β = arg min

β̃

{ 1
n

n

∑
i=1

ρq(Yi, F−1(X̃
T
ni β̃))w(Xni)

}
, (5)
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where w(·) ≥ 0 is a known bounded weight function which downweights the high leverage points.
In [11], the “robust quasi-likelihood estimator” of β̃n,0 is formulated according to the “robust

quasi-likelihood function” defined as

QRQL(xn, y, μ)

=
{ ∫ μ

μ0

ψ(r(y, s))/
√

V(s)ds
}

w(xn)−
1
n

n

∑
j=1

∫ μj

μ0

[
E{ψ(r(Yj, s))|Xnj}/

√
V(s)ds

]
w(Xnj),

where μ = F−1(x̃T
n β̃) and μj = μj(β̃) = F−1(X̃

T
nj β̃), j = 1, . . . , n. To describe the intuition of

the “robust-BD”, we use the following diagram from [1], which illustrates the relation among the
“robust-BD”, “classical-BD”, “robust quasi-likelihood” and “classical (negative) quasi-likelihood”.

ρq(y, μ)w(xn)
robust-BD

Qq(y, μ)
classical-BD

−QRQL(xn, y, μ)
robust quasi-likelihood

−QQL(y, μ)
classical (negative) quasi-likelihood

q in Equation (3)

ψ(r) = r

w(xn) ≡ 1

ψ(r) = r

w(xn) ≡ 1

q in Equation (3)

For the robust-BD, assume that

pj(y; θ) =
∂j

∂θ j ρq(y, F−1(θ)), j = 0, 1, . . . ,

exist finitely up to any order required. For example, for j = 1,

p1(y; θ) = {ψ(r(y, μ))− G′1(μ)}{q′′(μ)
√

V(μ)}/F′(μ), (6)

where μ = F−1(θ). Explicit expressions for pj(y; θ) (j = 2, 3) can be found in Equation (3.7) of [1].

Then, the estimation equation for ̂̃β is

1
n

n

∑
i=1

ψRBD(Zni; β̃) = 0,

where the score vector is

ψRBD(zn; β̃) = p1(y; θ)w(xn)x̃n, (7)

with θ = x̃T
n β̃. The consistency and asymptotic normality of ̂̃β have been studied in [1];

see Theorems 1 and 2 therein.
Furthermore, to conduct statistical inference for the “general linear model”, the following

hypotheses are considered,

H0 : An β̃n,0 = g0 versus H1 : An β̃n,0 �= g0, (8)

where An is a given k× (pn + 1) matrix such that An AT
n → G with G being a k× k positive-definite

matrix, and g0 is a known k× 1 vector.
To perform the test of Equation (8), Zhang et al. [1] proposed the Wald-type test statistic,

Wn = n(An
̂̃
β− g0)

T(AnĤ−1
n Ω̂nĤ−1

n AT
n )
−1(An

̂̃
β− g0), (9)
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constructed from the robust-BD estimator ̂̃β in Equation (5), where

Ω̂n =
1
n

n

∑
i=1

p2
1(Yi; X̃

T
ni
̂̃β)w2(Xni)X̃niX̃

T
ni,

Ĥn =
1
n

n

∑
i=1

p2(Yi; X̃
T
ni
̂̃
β)w(Xni)X̃niX̃

T
ni.

The asymptotic distributions of Wn under the null and alternative hypotheses have been
developed in [1]; see Theorems 4–6 therein.

On the other hand, the issue on the robustness of Wn, used for possibly contaminated data,
remains unknown. Section 3 of this paper will address this issue with detailed derivations.

3. Robustness Properties of Wn in Equation (9)

This section derives the influence function of the robust-BD Wald-type test and studies the
influence of a small amount of contamination on the asymptotic level and power of the test. The proofs
of the theoretical results are given in Appendix A.

Denote by Kn,0 the true distribution of Zn following the “general linear model” characterized
by Equations (1) and (2). To facilitate the discussion of robustness properties, we consider the
ε-contamination,

Kn,ε =
(

1− ε√
n

)
Kn,0 +

ε√
n

J, (10)

where J is an arbitrary distribution and ε > 0 is a constant. Then, Kn,ε is a contaminated distribution
of Zn with the amount of contamination converging to 0 at rate 1/

√
n. Denote by Kn the empirical

distribution of {Zni}n
i=1.

For a generic distribution K of Zn, define

�K(β̃) = EK{ρq(Y, F−1(X̃
T
n β̃))w(Xn)}, (11)

SK = {β̃ : EK{ψRBD(Zn; β̃)} = 0},

where ρq(·, ·) and ψRBD(·; ·) are defined in Equations (4) and (7), respectively. It’s worth noting that
the solution to EK{ψRBD(Zn; β̃)} = 0 may not be unique, i.e., SK may contain more than one element.
We then define a functional for the estimator of β̃n,0 as follows,

T(K) = arg min
β̃∈SK

‖β̃− β̃n,0‖. (12)

From the result of Lemma A1 in Appendix A, T(Kn,ε) is the unique local minimizer
of �Kn,ε(β̃) in the

√
pn/n-neighborhood of β̃n,0. Particularly, T(Kn,0) = β̃n,0. Similarly,

from Lemma A2 in Appendix A, T(Kn) is the unique local minimizer of �Kn(β̃) which satisfies
‖T(Kn)− β̃n,0‖ = OP(

√
pn/n).

From [23] (Equation (2.1.6) on pp. 84), the influence function of T(·) at Kn,0 is defined as

IF(zn; T , Kn,0) =
∂

∂t
T((1− t)Kn,0 + tΔzn)

∣∣∣
t=0

= lim
t↓0

T((1− t)Kn,0 + tΔzn)− β̃n,0

t
,

where Δzn is the probability measure which puts mass 1 at the point zn. Since the dimension of T(·)
diverges with n, its influence function is defined for each fixed n. From Lemma A8 in Appendix A,
under certain regularity conditions, the influence function exists and has the following expression:

IF(zn; T , Kn,0) = −H−1
n ψRBD(zn; β̃n,0), (13)
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where Hn = EKn,0{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nX̃

T
n}. The form of the influence function for diverging pn in

Equation(13) coincides with that in [23,24] for fixed pn.
In our theoretical derivations, approximations of the asymptotic level and power of Wn will

involve the following matrices:

Ωn = EKn,0{p2
1(Y; X̃

T
n β̃n,0)w

2(Xn)X̃nX̃
T
n},

Un = AnH−1
n ΩnH−1

n AT
n .

3.1. Asymptotic Level of Wn under Contamination

We now investigate the asymptotic level of the Wald-type test Wn under the ε-contamination.

Theorem 1. Assume Conditions A0–A9 and B4 in Appendix A. Suppose p6
n/n → 0 as n →

∞, supn EJ(‖w(Xn)X̃n‖) ≤ C. Denote by α(Kn,ε) the level of Wn = n{AnT(Kn) −
g0}T(AnĤ−1

n Ω̂nĤ−1
n AT

n )
−1{AnT(Kn) − g0} when the underlying distribution is Kn,ε in Equation (10)

and by α0 the nominal level. Under H0 in Equation (8), it follows that

lim sup
n→∞

α(Kn,ε) = α0 + ε2μkD + o(ε2) as ε → 0,

where

D = lim sup
n→∞

‖U−1/2
n An EJ{IF(Zn; T , Kn,0)}‖2 < ∞,

μk = − ∂
∂δ Hk(η1−α0

; δ)|δ=0, Hk(·; δ) is the cumulative distribution function of a χ2
k(δ) distribution, and η1−α0

is the 1− α0 quantile of the central χ2
k distribution.

Theorem 1 indicates that if the influence function for T(·) is bounded, then the asymptotic
level of Wn under the ε-contamination is also bounded and close to the nominal level when ε is
sufficiently small. As a comparison, the robustness property in [10] of the Wald-type test is studied
based on M-estimator for general parametric models with a fixed dimension pn. They assumed certain
conditions that guarantee Fréchet differentiability which further implies the existence of the influence
function and the asymptotic normality of the corresponding estimator. However, in the set-ups of our
paper, it’s difficult to check those conditions, due to the use of Bregman divergence and the diverging
dimension pn. Hence, the assumptions we make in Theorem 1 are different from those in [10], and are
comparatively mild and easy to check. Moreover, the result of Theorem 1 cannot be easily derived
from that of [10].

In Theorem 1, pn is allowed to diverge with p6
n/n = o(1), which is slower than that in [1]

with p5
n/n = o(1). Theoretically, the assumption p5

n/n = o(1) is required to obtain the asymptotic
distribution of Wn in [1]. Furthermore, to derive the limit distribution of Wn under the ε-contamination,
assumption p6

n/n = o(1) is needed (see Lemma A7 in Appendix A). Hence, the reason that our
assumption is stronger than that in [1] is the consideration of the ε-contamination of the data. Practically,
due to the advancement of technology and different forms of data gathering, large dimension becomes
a common characteristic and hence the varying-dimensional model has a wide range of applications,
e.g., brain imaging data, financial data, web term-document data and gene expression data. Even
some of the classical settings, e.g. the Framingham heart study with n = 25, 000 and pn = 100, can be
viewed as varying-dimensional cases.

As an illustration, we apply the general result of Theorem 1 to the special case of a point mass
contamination.

Corollary 1. With the notations in Theorem 1, assume Conditions A0–A9 in Appendix A,
supxn∈Rpn ‖w(xn)xn‖ ≤ C and supμ∈R |q′′(μ)

√
V(μ)/F′(μ)| ≤ C.
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(i) If pn ≡ p, An ≡ A, β̃n,0 ≡ β̃0, Kn,0 ≡ K0 and Un ≡ U are fixed, then, for Kn,ε = (1− ε/
√

n)K0 +

ε/
√

nΔz with z ∈ Rp a fixed point, under H0 in Equation (8), it follows that

sup
z∈Rp

lim
n→∞

α(Kn,ε) = α0 + ε2μkD1 + o(ε2) as ε → 0,

where

D1 = sup
z∈Rp

‖U−1/2 A IF(z; T , K0)‖2 < ∞.

(ii) If pn diverges with p6
n/n → 0, for Kn,ε = (1− ε/

√
n)Kn,0 + ε/

√
nΔzn with zn ∈ Rpn a sequence of

deterministic points, then, under H0 in Equation (8),

sup
C0>0

sup
zn∈SC0

lim sup
n→∞

α(Kn,ε) = α0 + ε2μkD2 + o(ε2) as ε → 0,

where SC0 = {zn = (xT
n , y)T : ‖xn‖∞ ≤ C0}, C0 > 0 is a constant and

D2 = sup
C0>0

sup
zn∈SC0

lim sup
n→∞

‖U−1/2
n AnIF(zn; T , Kn,0)‖2 < ∞.

In Corollary 1, conditions supxn∈Rpn ‖w(xn)xn‖ ≤ C and supμ∈R |q′′(μ)
√

V(μ)/F′(μ)| ≤ C are
needed to guarantee the boundedness of the score function in Equation (7). Particularly, the function
w(xn) downweights the high leverage points and can be chosen as, e.g., w(xn) = 1/(1 + ‖xn‖). The
condition supμ∈R |q′′(μ)

√
V(μ)/F′(μ)| ≤ C is needed to bound Equation (6), and is satisfied in many

situations.

• For example, for the linear model with q(μ) = aμ− μ2, V(μ) = σ2 and F(μ) = μ, where a and σ2

are constants, we observe |q′′(μ)
√

V(μ)/F′(μ)| = 2σ ≤ C.
• Another example is the logistic regression model with binary response and

q(μ) = −2{μ log(μ) + (1− μ) log(1− μ)} (corresponding to Bernoulli deviance loss),
V(μ) = μ(1− μ), F(μ) = log{μ/(1− μ)}. In this case, |q′′(μ)

√
V(μ)/F′(μ)| = 2{μ(1 −

μ)}1/2 ≤ C since μ ∈ [0, 1]. Likewise, if q(μ) = 2{μ(1− μ)}1/2 (for the exponential loss), then
|q′′(μ)

√
V(μ)/F′(μ)| = 1/2.

Furthermore, the bound on ψ(·) is useful to control deviations in the Y-space, which ensures the
stability of the robust-BD test if Y is arbitrarily contaminated.

Concerning the dimensionality pn, Corollary 1 reveals the following implications. If pn is fixed,
then the asymptotic level of Wn under the ε-contamination is uniformly bounded for all z ∈ Rp,
which implies the robustness of validity of the test. This result coincides with that in Proposition 5
of [10]. When pn diverges, the asymptotic level is still stable if the point contamination satisfies
‖xn‖∞ ≤ C0, where C0 > 0 is an arbitrary constant. Although this condition may not be the weakest, it
still covers a wide range of point mass contaminations.

3.2. Asymptotic Power of Wn under Contamination

Now, we will study the asymptotic power of Wn under a sequence of contiguous alternatives of
the form

H1n : An β̃n,0 − g0 = n−1/2c, (14)

where c = (c1, . . . , ck)
T �= 0 is fixed.

Theorem 2. Assume Conditions A0–A9 and B4 in Appendix A. Suppose p6
n/n → 0 as n →

∞, supn EJ(‖w(Xn)X̃n‖) ≤ C. Denote by β(Kn,ε) the power of Wn = n{AnT(Kn) −
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g0}T(AnĤ−1
n Ω̂nĤ−1

n AT
n )
−1{AnT(Kn) − g0} when the underlying distribution is Kn,ε in Equation (10)

and by β0 the nominal power. Under H1n in Equation (14), it follows that

lim inf
n→∞

β(Kn,ε) = β0 + ενkB + o(ε) as ε → 0,

where

B = lim inf
n→∞

2cTU−1
n An EJ{IF(Zn; T , Kn,0)},

with |B| < ∞, νk = − ∂
∂δ Hk(η1−α0

; δ)|
δ=cTU−1

n c and Hk(·; δ) and η1−α0
being defined in Theorem 1.

The result for the asymptotic power is similar in spirit to that for the level. From Theorem 2, if the
influence function is bounded, the asymptotic power is also bounded from below and close to the
nominal power under a small amount of contamination. This means that the robust-BD Wald-type test
enjoys the robustness of efficiency. In addition, the property of the asymptotic power can be obtained
for a point mass contamination.

Corollary 2. With the notations in Theorem 2, assume Conditions A0–A9 in Appendix A,
supxn∈Rpn ‖w(xn)xn‖ ≤ C and supμ∈R |q′′(μ)

√
V(μ)/F′(μ)| ≤ C.

(i) If pn ≡ p, An ≡ A, β̃n,0 ≡ β̃0, Kn,0 ≡ K0 and Un ≡ U are fixed, then, for Kn,ε = (1− ε/
√

n)K0 +

ε/
√

nΔz with z ∈ Rp a fixed point, under H1n in Equation (14), it follows that

inf
z∈Rp

lim
n→∞

β(Kn,ε) = β0 + ενkB1 + o(ε) as ε → 0,

where

B1 = inf
z∈Rp

2cTU−1 A IF(z; T , K0),

with |B1| < ∞.
(ii) If pn diverges with p6

n/n → 0, for Kn,ε = (1− ε/
√

n)Kn,0 + ε/
√

nΔzn with zn ∈ Rpn a sequence of
deterministic points, then, under H1n in Equation (14),

inf
C0>0

inf
zn∈SC0

lim inf
n→∞

β(Kn,ε) = β0 + ενkB2 + o(ε) as ε → 0,

where SC0 = {zn = (xT
n , y)T : ‖xn‖∞ ≤ C0}, C0 > 0 is a constant and

B2 = inf
C0>0

inf
zn∈SC0

lim inf
n→∞

2cTU−1
n AnIF(Zn; T , Kn,0),

with |B2| < ∞.

4. Simulation

Regarding the practical utility of Wn, numerical studies concerning the empirical level and power
of Wn under a fixed amount of contamination have been conducted in Section 6 of [1]. To support the
theoretical results in our paper, we conduct new simulations to check the robustness of validity and
efficiency of Wn. Specifically, we will examine the empirical level and power of the test statistic as
ε varies.

The robust-BD estimation utilizes the Huber ψ-function ψc(·) with c = 1.345 and the weight
function w(Xn) = 1/(1 + ‖Xn‖). Comparisons are made with the classical non-robust counterparts
corresponding to using ψ(r) = r and w(xn) ≡ 1. For each situation below, we set n = 1000 and
conduct 400 replications.
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4.1. Overdispersed Poisson Responses

Overdispersed Poisson counts Y, satisfying var(Y|Xn = xn) = 2m(xn), are generated via
a negative Binomial(m(xn), 1/2) distribution. Let pn = �4(n1/5.5 − 1)� and β̃n,0 = (0, 2, 0, . . . , 0)T ,

where �·� denotes the floor function. Generate Xni = (Xi,1, . . . , Xi,pn)
T by Xi,j

i.i.d.∼ Unif[−0.5, 0.5].
The log link function is considered and the (negative) quasi-likelihood is utilized as the BD, generated
by the q-function in Equation (3) with V(μ) = μ. The estimator and test statistic are calculated by
assuming Y follows Poisson distribution.

The data are contaminated by X∗i,mod(i,pn−1)+1 = 3sign(Ui − 0.5) and Y∗i = YiI(Yi > 20) + 20I(Yi ≤ 20)
for i = 1, . . . , k, with k ∈ {2, 4, 6, 8, 10, 12, 14, 16} the number of contaminated data points,

where mod(a, b) is the modulo operation “a modulo b” and {Ui} i.i.d.∼ Unif(0, 1). Then, the proportion
of contaminated data, k/n, is equal to ε/

√
n as in Equation (10), which implies ε = k/

√
n.

Consider the null hypothesis H0 : An β̃n,0 = 0 with An = (0, 0, 0, 1, 0, . . . , 0). Figure 1 plots the
empirical level of Wn versus ε. We observe that the asymptotic nominal level 0.05 is approximately
retained by the robust Wald-type test. On the other hand, under contaminations, the non-robust
Wald-type test breaks in level, showing high sensitivity to the presence of outliers.

Figure 1. Observed level of Wn versus ε for overdispersed Poisson responses. The dotted line indicates
the 5% significance level.

To assess the stability of the power of the test, we generate the original data from the true
model, but with the true parameter β̃n,0 replaced by β̃n = β̃n,0 + δc with δ ∈ {−0.4, 0.4, −0.6, 0.6}
and c = (1, . . . , 1)T a vector of ones. Figure 2 plots the empirical rejection rates of the null model,
which implies that the robust Wald-type test has sufficiently large power to detect the alternative
hypothesis. In addition, the power of the robust method is generally larger than that of the
non-robust method.

Figure 2. Observed power of Wn versus ε for overdispersed Poisson responses. The statistics in the left
panel correspond to non-robust method and those in the right panel are for robust method. The asterisk
line indicates the 5% significance level.
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4.2. Bernoulli Responses

We generate data with two classes from the model, Y|Xn = xn ∼ Bernoulli{m(xn)},

where logit{m(xn)} = x̃T
n β̃n,0. Let pn = 2, β̃n,0 = (0, 1, 1)T and Xni

i.i.d.∼ N(0, Ipn). The null
hypothesis is H0 : β̃n,0 = (0, 1, 1)T . Both the deviance loss and the exponential loss are employed
as the BD. We contaminate the data by setting X∗i,1 = 2 + i/8 and Y∗i = 0 for i = 1, . . . , k with
k ∈ {2, 4, 6, 8, 10, 12, 14, 16}. To investigate the robustness of validity of Wn, we plot the observed
level versus ε in Figure 3. We find that the level of the non-robust method diverges fast as ε increases.
It’s also clear that the empirical level of the robust method is close to the nominal level when ε is small
and increases slightly with ε, which coincides with our results in Theorem 1.

Figure 3. Observed level of Wn versus ε for Bernoulli responses. The statistics in (a) use deviance loss
and those in (b) use exponential loss. The dotted line indicates the 5% significancelevel.

To assess the stability of the power of Wn, we generate the original data from the true model,
but with the true parameter β̃n,0 replaced by β̃n = β̃n,0 + δc with δ ∈ {−0.1, 0.2, −0.3, 0.4} and
c = (1, . . . , 1)T a vector of ones. Figure 4 plots the power of the Wald-type test versus ε, which implies
that the robust method has sufficiently large power, and hence supports the theoretical results in
Theorem 2.
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Figure 4. Observed power of Wn versus ε for Bernoulli responses. The top panels correspond to
deviance loss while the bottom panels are for exponential loss. The statistics in the left panels are
calculated using non-robust method and those in the right panels are from robust method. The asterisk
line indicates the 5% significance level.
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Appendix A. Conditions and Proofs of Main Results

We first introduce some necessary notations used in the proof.

Notations. For arbitrary distributions K and K′ of Zn, define

Ωn,K,T(K′) = EK{p2
1(Y; X̃

T
n T(K′))w2(Xn)X̃nX̃

T
n},

Hn,K,T(K′) = EK{p2(Y; X̃
T
n T(K′))w(Xn)X̃nX̃

T
n}.

Therefore, Ωn = Ωn,Kn,0,β̃n,0
, Hn = Hn,Kn,0,β̃n,0

, Ω̂n = Ωn,Kn ,T(Kn) and Ĥn = Hn,Kn ,T(Kn). For

notational simplicity, let Ωn,ε = Ωn,Kn,ε ,T(Kn,ε) and Hn,ε = Hn,Kn,ε ,T(Kn,ε).
Define the following matrices,

U(Kn,ε) = AnH−1
n,εΩn,εH−1

n,ε AT
n ,

U(Kn) = AnĤ−1
n Ω̂nĤ−1

n AT
n .
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The following conditions are needed in the proof, which are adopted from [1].
Condition A.

A0. supn≥1 ‖β̃n,0‖1 < ∞.
A1. w(·) is a bounded function. Assume that ψ(r) is a bounded, odd function, and twice

differentiable, such that ψ′(r), ψ′(r)r, ψ′′(r), ψ′′(r)r and ψ′′(r)r2 are bounded; V(·) > 0,
V(2) is continuous.

A2. q(4)(·) is continuous, and q(2)(·) < 0. G(3)
1 is continuous.

A3. F(·) is monotone and a bijection, F(3)(·) is continuous, and F(1)(·) �= 0.
A4. ‖Xn‖∞ ≤ C almost surely if the underlying distribution is Kn,0.

A5. EKn,0(X̃nX̃
T
n ) exists and is nonsingular.

A6. There is a large enough open subset of Rpn+1 which contains β̃n,0, such that F−1(x̃T
n β̃) is bounded

for all β̃ in the subset and all x̃n such that ‖x̃n‖∞ ≤ C, where C > 0 is a large enough constant.
A7. Hn is positive definite, with eigenvalues uniformly bounded away from 0.
A8. Ωn is positive definite, with eigenvalues uniformly bounded away from 0.
A9. ‖H−1

n Ωn‖ is bounded away from ∞.

Condition B.

B4. ‖Xn‖∞ ≤ C almost surely if the underlying distribution is J.

The following Lemmas A1–A9 are needed to prove the main theoretical results in this paper.

Lemma A1 (‖T(Kn,ε) − β̃n,0‖). Assume Conditions A0–A7 and B4. For Kn,ε in Equation (10), �K(·) in
Equation (11) and T(·) in Equation (12), if p4

n/n → 0 as n → ∞, then T(Kn,ε) is a local minimizer of �Kn,ε(β̃)

such that ‖T(Kn,ε)− β̃n,0‖ = O(
√

pn/n). Furthermore, T(Kn,ε) is unique.

Proof. We follow the idea of the proof in [25]. Let rn =
√

pn/n and ũn = (u0, u1, . . . , upn)
T ∈ Rpn+1.

First, we show that there exists a sufficiently large constant C such that, for large n, we have

inf
‖ũn‖=C

�Kn,ε(β̃n,0 + rnũn) > �Kn,ε(β̃n,0). (A1)

To show Equation (A1), consider

�Kn,ε(β̃n,0 + rnũn)− �Kn,ε(β̃n,0) = EKn,ε

{
ρq
(
Y, F−1(X̃

T
n β̃n,0 + rnX̃

T
n ũn))w(Xn)

−ρq(Y, F−1(X̃
T
n β̃n,0))w(Xn)

}
≡ I1,

where ‖ũn‖ = C.
By Taylor expansion,

I1 = I1,1 + I1,2 + I1,3, (A2)

where

I1,1 = rn EKn,ε{p1(Y; X̃
T
n β̃n,0)w(Xn)X̃

T
n}ũn,

I1,2 = r2
n/2 EKn,ε{p2(Y; X̃

T
n β̃n,0)w(Xn)(X̃

T
n ũn)

2},

I1,3 = r3
n/6 EKn,ε{p3(Y; X̃

T
n β̃
∗
n)w(Xn)(X̃

T
n ũn)

3},

for β̃
∗
n located between β̃n,0 and β̃n,0 + rnũn. Hence

|I1,1| ≤ rn‖EKn,ε{p1(Y; X̃
T
n β̃n,0)w(Xn)X̃n}‖‖ũn‖
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= rn
ε√
n
‖EJ{p1(Y; X̃

T
n β̃n,0)w(Xn)X̃n}‖‖ũn‖

≤ Crn
√

pn/n‖ũn‖,

since ‖EJ{p1(Y; X̃
T
n β̃n,0)w(Xn)X̃n}‖ = O(

√
pn) and EKn,0{p1(Y; X̃

T
n β̃n,0)w(Xn)X̃n} = 0. For I1,2 in

Equation (A2),

I1,2 =
r2

n
2

EKn,0{p2(Y; X̃
T
n β̃n,0)w(Xn)(X̃

T
n ũn)

2}

+
r2

n
2
[EKn,ε{p2(Y; X̃

T
n β̃n,0)w(Xn)(X̃

T
n ũn)

2} − EKn,0{p2(Y; X̃
T
n β̃n,0)w(Xn)(X̃

T
n ũn)

2}]
≡ I1,2,1 + I1,2,2,

where I1,2,1 = 2−1r2
nũT

n Hnũn. Meanwhile, we have

|I1,2,2|
≤ r2

n‖EKn,ε{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nX̃

T
n} − EKn,0{p2(Y; X̃

T
n β̃n,0)w(Xn)X̃nX̃

T
n}‖F‖ũn‖2

= r2
n

ε√
n
‖EJ{p2(Y; X̃

T
n β̃n,0)w(Xn)X̃nX̃

T
n} − EKn,0{p2(Y; X̃

T
n β̃n,0)w(Xn)X̃nX̃

T
n}‖F‖ũn‖2

≤ Cr2
n pn‖ũn‖2/

√
n,

where ‖EJ{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nX̃

T
n}‖F = O(pn) and ‖EKn,0{p2(Y; X̃

T
n β̃n,0)w(Xn)X̃nX̃

T
n}‖F = O(pn). Thus,

I1,2 = 2−1r2
nũT

n Hnũn + O(r2
n pn/

√
n)‖ũn‖2. (A3)

For I1,3 in Equation (A2), we observe that

|I1,3| ≤ Cr3
n EKn,ε{|p3(Y; X̃

T
n β̃
∗
n)|w(Xn)|X̃T

n ũn|3} = O(r3
n p3/2

n )‖ũn‖3.

We can choose some large C such that I1,1 , I1,2,2 and I1,3 are all dominated by the first term of
I1,2 in Equation (A3), which is positive by the eigenvalue assumption. This implies Equation (A1).
Therefore, there exists a local minimizer of �Kn,ε(β̃) in the

√
pn/n neighborhood of β̃n,0, and denote

this minimizer by β̃n,ε.
Next, we show that the local minimizer β̃n,ε of �Kn,ε(β̃) is unique in the

√
pn/n neighborhood of

β̃n,0. For all β̃ such that ‖β̃− β̃n,0‖ = O(n−1/4 p−1/2
n ),

EKn,ε

∥∥∥ ∂

∂β̃
ρq(Y, F−1(X̃

T
n β̃))w(Xn)

∥∥∥ = EKn,ε‖p1(Y; X̃
T
n β̃)w(Xn)X̃n‖ ≤ C

√
pn

EKn,ε

∥∥∥ ∂2

∂β̃
2 ρq(Y, F−1(X̃

T
n β̃))w(Xn)

∥∥∥ = EKn,ε‖p2(Y; X̃
T
n β̃)w(Xn)X̃nXT

n‖ ≤ Cpn

and hence,

∂

∂β̃
EKn,ε{ρq(Y, F−1(X̃

T
n β̃))w(Xn)} = EKn,ε

{ ∂

∂β̃
ρq(Y, F−1(X̃

T
n β̃))w(Xn)

}
∂2

∂β̃
2 EKn,ε{ρq(Y, F−1(X̃

T
n β̃))w(Xn)} = EKn,ε

{ ∂2

∂β̃
2 ρq(Y, F−1(X̃

T
n β̃))w(Xn)

}
.

Therefore,

∂2

∂β̃
2 EKn,ε{ρq(Y, F−1(X̃

T
n β̃))w(Xn)}

= EKn,ε{p2(Y; X̃
T
n β̃)w(Xn)X̃nX̃

T
n}
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= EKn,0{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nX̃

T
n}

+EKn,0 [{p2(Y; X̃
T
n β̃)− p2(Y; X̃

T
n β̃n,0)}w(Xn)X̃nX̃

T
n ]

+[EKn,ε{p2(Y; X̃
T
n β̃)w(Xn)X̃nX̃

T
n} − EKn,0{p2(Y; X̃

T
n β̃)w(Xn)X̃nX̃

T
n}]

= I∗1 + I∗2 + I∗3 .

We know that the minimum eigenvalues of I∗1 are uniformly bounded away from 0,

‖I∗2 ‖ = ‖EKn,0{p3(Y; X̃
T
n β̃
∗∗
)w(Xn)X̃nX̃

T
n X̃

T
n (β̃− β̃n,0)}‖ ≤ Cpn/n1/4 = o(1)

‖I∗3 ‖ ≤ ε/
√

n[‖EKn,0{p2(Y; X̃
T
n β̃)w(Xn)X̃nX̃

T
n}‖+ ‖EJ{p2(Y; X̃

T
n β̃)w(Xn)X̃nX̃

T
n}‖]

≤ Cpn/
√

n = o(1).

Hence, for n large enough, ∂2

∂β̃
2 EKn,ε{ρq(Y, F−1(X̃

T
n β̃))w(Xn)} is positive definite for all β̃ such

that ‖β̃ − β̃n,0‖ = O(n−1/4 p−1/2
n ). Therefore, there exists a unique minimizer of �Kn,ε(β̃) in the

n−1/4 p−1/2
n neighborhood of β̃n,0 which covers β̃n,ε. From

0 =
∂

∂β̃
EKn,ε{ρq(Y, F−1(X̃

T
n β̃))w(Xn)}

∣∣∣
β̃=β̃n,ε

= EKn,ε

{ ∂

∂β̃
ρq(Y, F−1(X̃

T
n β̃))

∣∣∣
β̃=β̃n,ε

w(Xn)
}

= EKn,ε{p1(Y; X̃
T
n β̃n,ε)w(Xn)X̃n},

we know T(Kn,ε) = β̃n,ε. From the definition of T(·), it’s easy to see that T(Kn,ε) is unique.

Lemma A2 (‖T(Kn)− T(Kn,ε)‖). Assume Conditions A0–A7 and B4. For Kn,ε in Equation (10), �K(·) in
Equation (11) and T(·) in Equation (12), if p4

n/n → 0 as n → ∞ and the distribution of (Xn, Y) is Kn,ε, then

there exists a unique local minimizer ̂̃βn of �Kn(β̃) such that ‖̂̃βn − T(Kn,ε)‖ = OP(
√

pn/n). Furthermore,

‖̂̃βn − β̃n,0‖ = OP(
√

pn/n) and T(Kn) =
̂̃β.

Proof. Let rn =
√

pn/n and ũn = (u0, u1, . . . , upn)
T ∈ Rpn+1. To show the existence of the estimator, it

suffices to show that for any given κ > 0, there exists a sufficiently large constant Cκ such that, for large
n we have

P
{

inf
‖ũn‖=Cκ

�Kn(T(Kn,ε) + rnũn) > �Kn(T(Kn,ε))
}
≥ 1− κ. (A4)

This implies that with probability at least 1− κ, there exists a local minimizer ̂̃βn of �Kn(β̃) in the
ball {T(Kn,ε) + rnũn : ‖ũn‖ ≤ Cκ}. To show Equation (A4), consider

�Kn(T(Kn,ε) + rnũn)− �Kn(T(Kn,ε)) =
1
n

n

∑
i=1
{ρq(Yi, F−1(X̃

T
ni(T(Kn,ε) + rnũn)))w(Xni)

−ρq(Yi, F−1(X̃
T
niT(Kn,ε)))w(Xni)}

≡ I1,

where ‖ũn‖ = Cκ .
By Taylor expansion,

I1 = I1,1 + I1,2 + I1,3, (A5)

where

I1,1 = rn/n
n

∑
i=1

p1(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃

T
niũn,
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I1,2 = r2
n/(2n)

n

∑
i=1

p2(Yi; X̃
T
niT(Kn,ε))w(Xni)(X̃

T
niũn)

2,

I1,3 = r3
n/(6n)

n

∑
i=1

p3(Yi; X̃
T
ni β̃

∗
n)w(Xni)(X̃

T
niũn)

3

for β̃
∗
n located between T(Kn,ε) and T(Kn,ε) + rnũn.
Since ‖T(Kn,ε) − β̃n,0‖ = O(

√
pn/n) = o(1), the large open set considered in Condition A6

contains T(Kn,ε) when n is large enough, say n ≥ N where N is a positive constant. Therefore, for any
fixed n ≥ N, there exists a bounded open subset of Rpn+1 containing T(Kn,ε) such that for all β̃ in this

set, ‖p1(Y; X̃
T
n β̃)w(Xn)X̃n‖ ≤ C‖X̃n‖ which is integrable with respect to Kn,ε, where C is a positive

constant. Thus, for n ≥ N,

0 =
∂

∂β̃
EKn,ε{ρq(Y, F−1(X̃

T
n β̃))w(Xn)}

∣∣∣
β̃=T(Kn,ε)

= EKn,ε{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n}. (A6)

Hence,

|I1,1| ≤ rn

∥∥∥ 1
n

n

∑
i=1

p1(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃ni

∥∥∥‖ũn‖ = OP(rn
√

pn/n)‖ũn‖.

For I1,2 in Equation (A5),

I1,2 =
r2

n
2n

n

∑
i=1

EKn,ε{p2(Yi; X̃
T
niT(Kn,ε))w(Xni)(X̃

T
niũn)

2}

+
r2

n
2n

n

∑
i=1

[p2(Yi; X̃
T
niT(Kn,ε))w(Xni)(X̃

T
niũn)

2

−EKn,ε{p2(Yi; X̃
T
niT(Kn,ε))w(Xni)(X̃

T
niũn)

2}]
≡ I1,2,1 + I1,2,2,

where I1,2,1 = 2−1r2
nũT

n Hn,εũn. Meanwhile, we have

|I1,2,2| ≤ r2
n
2

∥∥∥ 1
n

n

∑
i=1

[p2(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃niX̃

T
ni

−EKn,ε{p2(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃niX̃

T
ni}]
∥∥∥

F
‖ũn‖2

= r2
nOP(pn/

√
n)‖ũn‖2.

Thus,

I1,2 = 2−1r2
nũT

n Hn,εũn + OP(r2
n pn/

√
n)‖ũn‖2. (A7)

For I1,3 in Equation (A5), we observe that

|I1,3| ≤ Cr3
n

1
n

n

∑
i=1
|p3(Yi; X̃

T
ni β̃

∗
n)|w(Xni)|X̃

T
niũn|3 = OP(r3

n p3/2
n )‖ũn‖3.

We will show that the minimum eigenvalue of Hn,ε is uniformly bounded away from 0.
Hn,ε = (1− ε/

√
n)Hn,Kn,0,T(Kn,ε) + ε/

√
nHn,J,T(Kn,ε). Note

‖Hn,Kn,0,T(Kn,ε) −Hn‖
= ‖EKn,0 [{p2(Y; X̃

T
n T(Kn,ε))− p2(Y; X̃

T
n β̃n,0)}w(Xn)X̃nX̃

T
n ]‖

= ‖EKn,0 [p3(Y; X̃
T
n β̃
∗∗
n )w(Xn)X̃nX̃

T
n X̃

T
n{T(Kn,ε)− β̃n,0}]‖ = O(p2

n/
√

n).
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Since the eigenvalues of Hn are uniformly bounded away from 0, so are those of Hn,Kn,0,T(Kn,ε)

and Hn,ε.
We can choose some large Cκ such that I1,1 and I1,3 are both dominated by the first term of I1,2 in

Equation (A7), which is positive by the eigenvalue assumption. This implies Equation (A4).

Next we show the uniqueness of ̂̃β. For all β̃ such that ‖β̃− T(Kn,ε)‖ = O(n−1/4 p−1/2
n ),

1
n

n

∑
i=1

p2(Yi; X̃
T
ni β̃)w(Xni)X̃niX̃

T
ni

= EKn,0{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nXT

n}
+EKn,0 [{p2(Y; X̃

T
n β̃)− p2(Y; X̃

T
n β̃n,0)}w(Xn)X̃nXT

n ]

+[EKn,ε{p2(Y; X̃
T
n β̃)w(Xn)X̃nXT

n} − EKn,0{p2(Y; X̃
T
n β̃)w(Xn)X̃nXT

n}]

+
[ 1

n

n

∑
i=1

p2(Yi; X̃
T
ni β̃))w(Xni)X̃niX̃

T
ni − EKn,ε{p2(Y; X̃

T
n β̃)w(Xn)X̃nXT

n}
]

= I∗1 + I∗2 + I∗3 + I∗4 .

We know that the minimum eigenvalues of I∗1 are uniformly bounded away from 0. Following
the proof of Lemma A1, we have ‖I∗2 ‖ = o(1) and ‖I∗3 ‖ = o(1). It’s easy to see ‖I∗4 ‖ = OP(pn/

√
n).

Hence, for n large enough, ∂2

∂β̃
2 �Kn(β̃) is positive definite with high probability for all β̃ such that

‖β̃− β̃n,0‖ = O(n−1/4 p−1/2
n ). Therefore, there exists a unique minimizer of �Kn(β̃) in the n−1/4 p−1/2

n

neighborhood of T(Kn,ε) which covers ̂̃β.

Lemma A3 (‖An{T(Kn,ε)− β̃n,0}‖). Assume Conditions A0–A7 and B4. For Kn,ε in Equation (10) and T(·)
in Equation (12), if p5

n/n → 0 as n → ∞, the distribution of (Xn, Y) is Kn,ε and EJ(‖w(Xn)Xn‖) ≤ C, then

√
nAn{T(Kn,ε)− β̃n,0} = O(1),

where An is any given k× (pn + 1) matrix such that An AT
n → G, with G being a k× k positive-definite

matrix and k is a fixed integer.

Proof. Taylor’s expansion yields

0 = EKn,ε{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n}

= EKn,ε{p1(Y; X̃
T
n β̃n,0)w(Xn)X̃n}

+EKn,ε{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nX̃

T
n}{T(Kn,ε)− β̃n,0}

+1/2 EKn,ε

(
p3(Y; X̃

T
n β̃
∗
n)w(Xn)X̃n[X̃

T
n{T(Kn,ε)− β̃n,0}]2

)
= I1 + I2{T(Kn,ε)− β̃n,0}+ I3,

where β̃
∗
n lies between T(Kn,ε) and β̃n,0. Below, we will show

‖I1‖ = O(1/
√

n), ‖I2 −Hn‖ = O(pn/
√

n), ‖I3‖ = O(p5/2
n /n).

First, ‖I1‖ = ε/
√

n‖EJ{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n}‖ ≤ Cε/

√
n EJ(‖w(Xn)Xn‖) = O(1/

√
n).

Following the proof of I∗3 in Lemma A1, ‖I2−Hn‖ = O(pn/
√

n). Since ‖T(Kn,ε)− β̃n,0‖ = O(
√

pn/n),
we have ‖I3‖ = O(p5/2

n /n).
Therefore,

√
nAn{T(Kn,ε)− β̃n,0} = −

√
nAnH−1

n I1 + o(1), which completes the proof.
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Lemma A4 (asymptotic normality of T(Kn)− T(Kn,ε)). Assume Conditions A0–A8 and B4. If p5
n/n → 0

as n → ∞ and the distribution of (Xn, Y) is Kn,ε, then

√
n{U(Kn,ε)}−1/2 An{T(Kn)− T(Kn,ε)} L−→ N(0, Ik),

where U(Kn,ε) = AnH−1
n,εΩn,εH−1

n,ε AT
n , An is any given k× (pn + 1) matrix such that An AT

n → G, with G

being a k× k positive-definite matrix, k is a fixed integer.

Proof. We will first show that

T(Kn)− T(Kn,ε) = −
1
n

H−1
n,ε

n

∑
i=1

p1(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃ni + oP(n−1/2). (A8)

From ∂�Kn (β̃)

∂β̃
|
β̃=T(Kn)

= 0, Taylor’s expansion yields

0 =
{ 1

n

n

∑
i=1

p1(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃ni

}
+
{ 1

n

n

∑
i=1

p2(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃niX̃

T
ni

}
{T(Kn)− T(Kn,ε)}

+
1

2n

n

∑
i=1

p3(Yi; X̃
T
ni β̃

∗
n)w(Xni)[X̃

T
ni{T(Kn)− T(Kn,ε)}]2X̃ni

≡
{ 1

n

n

∑
i=1

p1(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃ni

}
+ I2{T(Kn)− T(Kn,ε)}+ I3, (A9)

where β̃
∗
n lies between T(Kn,ε) and T(Kn). Below, we will show

‖I2 −Hn,ε‖ = OP(pn/
√

n), ‖I3‖ = OP(p5/2
n /n).

Similar arguments for the proof of I1,2 of Lemma A2, we have ‖I2 −Hn,ε‖ = OP(pn/
√

n).
Second, a similar proof used for I∗1,3 in Equation (A5) gives ‖I3‖ = OP(p5/2

n /n).
Third, by Equation (A9) and ‖T(Kn)− T(Kn,ε)‖ = OP(

√
pn/n), we see that

Hn,ε{T(Kn)− T(Kn,ε)} = −
1
n

n

∑
i=1

p1(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃ni + un,

where ‖un‖ = OP(p5/2
n /n) = oP(n−1/2). From the proof of Lemma A2, the eigenvalues of Hn,ε are

uniformly bounded away from 0 and we complete the proof of Equation (A8).
Following the proof for the bounded eigenvalues of Hn,ε in Lemma A2, we can show that the

eigenvalues of Ωn,ε are uniformly bounded away from 0. Hence, the eigenvalues of H−1
n,εΩn,εH−1

n,ε are
uniformly bounded away from 0, as are the eigenvalues of U(Kn,ε). From Equation (A8), we see that

An{T(Kn)− T(Kn,ε)} = −
1
n

AnH−1
n,ε

n

∑
i=1

p1(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃ni + oP(n−1/2).

It follows that

√
n{U(Kn,ε)}−1/2 An{T(Kn)− T(Kn,ε)} =

n

∑
i=1

Rni + oP(1),

where Rni = −n−1/2{U(Kn,ε)}−1/2 AnH−1
n,εp1(Yi; X̃

T
niT(Kn,ε))w(Xni)X̃ni. Following (A6) in

Lemma A2, one can show that EKn,ε(Rni) = 0 for n large enough.

299



Entropy 2018, 20, 168

To show ∑n
i=1 Rni

L−→ N(0, Ik), we apply the Lindeberg-Feller central limit theorem in [26].
Specifically, we check (I) ∑n

i=1 covKn,ε(Rni) → Ik; (II) ∑n
i=1 EKn,ε(‖Rni‖2+δ) = o(1) for some δ >

0. Condition (I) is straightforward since ∑n
i=1 covKn,ε(Rni) = {U(Kn,ε)}−1/2U(Kn,ε){U(Kn,ε)}−1/2 = Ik.

To check condition (II), we can show that EKn,ε(‖Rni‖2+δ) = O((pn/n)(2+δ)/2). This yields

∑n
i=1 EKn,ε(‖Rni‖2+δ) ≤ O(p(2+δ)/2

n /nδ/2) = o(1). Hence

√
n{U(Kn,ε)}−1/2 An{T(Kn)− T(Kn,ε)} L−→ N(0, Ik).

Thus, we complete the proof.

Lemma A5 (asymptotic covariance matrices U(Kn,ε) and Un). Assume Conditions A0–A9 and B4.
If p4

n/n → 0 as n → ∞, then

‖U−1/2
n {U(Kn,ε)}1/2 − Ik‖ = O(pn/n1/4),

where U(Kn,ε) = AnH−1
n,εΩn,εH−1

n,ε AT
n , An is any given k× (pn + 1) matrix such that An AT

n → G, with G

being a k× k positive-definite matrix, and k is a fixed integer.

Proof. Note that

‖{U(Kn,ε)}1/2 −U1/2
n ‖2 ≤ ‖U(Kn,ε)−Un‖

≤ ‖H−1
n,εΩn,εH−1

n,ε −H−1
n ΩnH−1

n ‖‖An‖2
F.

Since ‖An‖2
F → tr(G), it suffices to prove that ‖H−1

n,εΩn,εH−1
n,ε −H−1

n ΩnH−1
n ‖ = O(p2

n/
√

n).
First, we prove ‖Hn,ε −Hn‖ = O(p2

n/
√

n). Note that

Hn,ε −Hn = EKn,ε [{p2(Y; X̃
T
n T(Kn,ε))− p2(Y; X̃

T
n β̃n,0)}w(Xn)X̃nX̃

T
n ]

+[EKn,ε{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nX̃

T
n} −Hn]

= EKn,ε [p3(Y; X̃
T
n β̃
∗
)w(Xn)X̃nX̃

T
n X̃

T
n{T(Kn,ε)− β̃n,0}]

+[EKn,ε{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nX̃

T
n} −Hn]

≡ I1 + I2.

We know that ‖I1‖ = O(p2
n/
√

n) and ‖I2‖ = O(pn/
√

n). Thus, ‖I1‖ = O(p2
n/
√

n).
Second, we show ‖Ωn,ε −Ωn‖ = O(p2

n/
√

n). It is easy to see that

Ωn,ε −Ωn = EKn,ε [{p2
1(Y; X̃

T
n T(Kn,ε))− p2

1(Y; X̃
T
n β̃n,0)}w2(Xn)X̃nX̃

T
n ]

+[EKn,ε{p2
1(Y; X̃

T
n β̃n,0)w

2(Xn)X̃nX̃
T
n} −Ωn]

= Δ1,1 + Δ1,2,

where ‖Δ1,1‖ = O(p2
n/
√

n) and ‖Δ1,2‖ = O(pn/
√

n). We observe that ‖Ωn,ε −Ωn‖ = O(p2
n/
√

n).
Third, we show ‖H−1

n,εΩn,εH−1
n,ε − H−1

n ΩnH−1
n ‖ = O(p2

n/
√

n). Note H−1
n,εΩn,εH−1

n,ε −
H−1

n ΩnH−1
n = L1 + L2 + L3, where L1 = H−1

n,ε(Ωn,ε − Ωn)H−1
n,ε, L2 = H−1

n,ε(Hn − Hn,ε)H−1
n ΩnH−1

n,ε
and L3 = H−1

n ΩnH−1
n,ε(Hn − Hn,ε)H−1

n . Under Conditions A7 and A9, it is straightforward to see
that ‖H−1

n,ε‖ = O(1), ‖H−1
n ‖ = O(1) and ‖H−1

n Ωn‖ = O(1). Since ‖L1‖ ≤ ‖H−1
n,ε‖‖Ωn,ε −Ωn‖‖H−1

n,ε‖,
we conclude ‖L1‖ = O(p2

n/
√

n), and similarly ‖L2‖ = O(p2
n/
√

n) and ‖L3‖ = O(p2
n/
√

n). Hence,
‖H−1

n,εΩn,εH−1
n,ε −H−1

n ΩnH−1
n ‖ = O(p2

n/
√

n).
Thus, we can conclude that ‖U(Kn,ε)−Un‖ = O(p2

n/
√

n) and that the eigenvalues of U(Kn,ε) and
Un are uniformly bounded away from 0 and ∞. Consequently, ‖{U(Kn,ε)}1/2 −U1/2

n ‖ = O(pn/n1/4)

and proof is finished.
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Lemma A6 (asymptotic covariance matrices U(Kn) and U(Kn,ε)). Assume Conditions A0–A9 and B4.
If p4

n/n → 0 as n → ∞ and the distribution of (Xn, Y) is Kn,ε, then

‖{U(Kn)}−1/2{U(Kn,ε)}1/2 − Ik‖ = OP(pn/n1/4),

where U(Kn,ε) = AnH−1
n,εΩn,εH−1

n,ε AT
n , U(Kn) = AnĤ−1

n Ω̂nĤ−1
n AT

n , An is any given k× (pn + 1) matrix
such that An AT

n → G, with G being a k× k positive-definite matrix, and k is a fixed integer.

Proof. Note that ‖{U(Kn)}1/2 − {U(Kn,ε)}1/2‖2 ≤ ‖U(Kn) − U(Kn,ε)‖ ≤ ‖Ĥ−1
n Ω̂nĤ−1

n −
H−1

n,εΩn,εH−1
n,ε‖‖An‖2

F. Since ‖An‖2
F → tr(G), it suffices to prove that ‖Ĥ−1

n Ω̂nĤ−1
n −H−1

n,εΩn,εH−1
n,ε‖ =

OP(p2
n/
√

n).
Following the proof of Proposition 1 in [1], we can show that ‖Ĥn −Hn,ε‖ = OP(p2

n/
√

n) and
‖Ω̂n −Ωn,ε‖ = OP(p2

n/
√

n).
To show ‖Ĥ−1

n Ω̂nĤ−1
n − H−1

n,εΩn,εH−1
n,ε‖ = OP(p2

n/
√

n), note Ĥ−1
n Ω̂nĤ−1

n − H−1
n,εΩn,εH−1

n,ε =

L1 + L2 + L3, where L1 = Ĥ−1
n (Ω̂n − Ωn,ε)Ĥ−1

n , L2 = Ĥ−1
n (Hn,ε − Ĥn)H−1

n,εΩn,εĤ−1
n and L3 =

H−1
n,εΩn,εĤ−1

n (Hn,ε − Ĥn)H−1
n,ε. Following the proof in Lemma A2, it is straightforward to verify

that ‖H−1
n,ε‖ = O(1), ‖Ĥ−1

n ‖ = OP(1). In addition, ‖H−1
n,εΩn,ε‖ = ‖(H−1

n,ε −H−1
n )Ωn,ε + H−1

n (Ωn,ε −
Ωn) + H−1

n Ωn‖ ≤ ‖H−1
n,ε‖‖Hn,ε −Hn‖‖H−1

n ‖‖Ωn,ε‖+ ‖H−1
n ‖‖Ωn,ε −Ωn‖+ ‖H−1

n Ωn‖ = O(1).
Since ‖L1‖ ≤ ‖Ĥ−1

n ‖‖Ω̂n − Ωn,ε‖‖Ĥ−1
n ‖, we conclude ‖L1‖ = OP(p2

n/
√

n), and similarly
‖L2‖ = OP(p2

n/
√

n) and ‖L3‖ = OP(p2
n/
√

n). Hence, ‖Ĥ−1
n Ω̂nĤ−1

n −H−1
n,εΩn,εH−1

n,ε‖ = OP(p2
n/
√

n).
Thus, we can conclude that ‖U(Kn)−U(Kn,ε)‖ = OP(p2

n/
√

n) and the eigenvalues of U(Kn) are
uniformly bounded away from 0 and ∞ with probability tending to 1. Noting that ‖{U(Kn)}1/2 −
{U(Kn,ε)}1/2‖2 ≤ ‖U(Kn)−U(Kn,ε)‖.

Lemma A7 (asymptotic distribution of test statistic). Assume Conditions A0–A9 and B4. If p6
n/n → 0 as

n → ∞ and the distribution of (Xn, Y) is Kn,ε, then

√
n[{U(Kn)}−1/2 An{T(Kn)− β̃n,0} −U−1/2

n An{T(Kn,ε)− β̃n,0}]
L−→ N(0, Ik),

where An is any given k× (pn + 1) matrix such that An AT
n → G, with G being a k× k positive-definite

matrix, and k is a fixed integer.

Proof. Note that

√
n[{U(Kn)}−1/2 An{T(Kn)− β̃n,0} −U−1/2

n An{T(Kn,ε)− β̃n,0}]
=

√
n{U(Kn)}−1/2 An{T(Kn)− T(Kn,ε)}

+
√

n[{U(Kn)}−1/2 − {U(Kn,ε)}−1/2]An{T(Kn,ε)− β̃n,0}
+
√

n[{U(Kn,ε)}−1/2 −U−1/2
n ]An{T(Kn,ε)− β̃n,0}

≡ I + II + III.

For term I, we obtain from Lemma A4 that
√

n{U(Kn,ε)}−1/2 An(T(Kn)− T(Kn,ε))
L−→ N(0, Ik).

From Lemma A6, we get ‖{U(Kn)}−1/2{U(Kn,ε)}1/2 − Ik‖ = oP(1). Thus, by Slutsky theorem,

I L−→ N(0, Ik). (A10)

For term II, we see from Lemma A6 that

‖{U(Kn)}−1/2 − {U(Kn,ε)}−1/2‖ = OP(pn/n1/4).

Since

‖An{T(Kn,ε)− β̃n,0}‖ ≤ ‖An‖‖T(Kn,ε)− β̃n,0‖ = O(
√

pn/n).
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Thus,

‖II‖ ≤
√

n‖{U(Kn)}−1/2 − {U(Kn,ε)}−1/2‖‖An‖‖T(Kn,ε)− β̃n,0‖ = OP(p3/2
n /n1/4). (A11)

Similarly, ‖III‖ = oP(1). Combining (A10) and (A11) with Slutsky theorem completes
the proof.

Lemma A8 (Influence Function IF). Assume Conditions A1–A8 and B4. For any fixed sample size n,

∂

∂t
T
(
(1− t)Kn,0 + tJ

)∣∣∣
t=t0

≡ lim
t→t0

T
(
(1− t)Kn,0 + tJ

)
− T
(
(1− t0)Kn,0 + t0 J

)
t− t0

= −H−1
n,Kt0 ,T(Kt0 )

[EJ{ψRBD(Zn; T(Kt0))} − EKn,0{ψRBD(Zn; T(Kt0))}],

where Kt0 = (1− t0)Kn,0 + t0 J and t0 is a positive constant such that t0 ≤ c/p2
n with c > 0 a sufficiently

small constant. In addition, ‖H−1
n,Kt0 ,T(Kt0 )

‖ ≤ C uniformly for all n and t0 such that t0 ≤ c/p2
n with c > 0 a

sufficiently small constant.

Proof. We follow the proof of Theorem 5.1 in [27]. Note

lim
t→t0

T
(
(1− t)Kn,0 + tJ

)
− T
(
(1− t0)Kn,0 + t0 J

)
t− t0

= lim
Δ→0

T
(
Kt0 + Δ(J − Kn,0)

)
− T
(
Kt0

)
Δ

,

where Δ = t− t0.
It suffices to prove that for any sequence {Δj}∞

j=1 such that limj→∞ Δj = 0, we have

lim
j→∞

T
(
Kt0 + Δj(J − Kn,0)

)
− T(Kt0)

Δj

= −H−1
n,Kt0 ,T(Kt0 )

[EJ{ψRBD(Zn; T(Kt0))} − EKn,0{ψRBD(Zn; T(Kt0))}].

Following similar proofs in Lemma A1, we can show that for t0 sufficiently small,

‖β̃n,0 − T(Kt0)‖ ≤ Ct0
√

pn. (A12)

Next we will show that the eigenvalues of Hn,Kt0 ,T(Kt0 )
are bounded away from 0.

Hn,Kt0 ,T(Kt0 )
= (1− t0)Hn,Kn,0,T(Kt0 )

+ t0Hn,J,T(Kt0 )

= (1− t0)Hn + t0Hn,J,β̃n,0
+ (1− t0){Hn,Kn,0,T(Kt0 )

−Hn}
+t0{Hn,J,T(Kt0 )

−Hn,J,β̃n,0
} = (1− t0)I1 + t0 I2 + I3 + I4.

First,

‖I3‖ ≤ C EKn,0‖{p2(Y; X̃
T
n T(Kt0))− p2(Y; X̃

T
n β̃n,0)}w(Xn)X̃nX̃

T
n‖

≤ Cp3/2
n ‖T(Kt0)− β̃n,0‖ ≤ Cp2

nt0.

Similarly, ‖I2‖ ≤ Cpnt0 and ‖I4‖ ≤ Cp2
nt2

0. Since the eigenvalues of I1 are bounded away from
zero, ‖I2‖, ‖I3‖ and ‖I4‖ could be sufficiently small, we conclude that for t0 ≤ c/p2

n when c is
sufficiently small, the eigenvalues of Hn,Kt0 ,T(Kt0 )

are uniformly bounded away from 0.
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Define Kj = Kt0 + Δj(J − Kn,0). Following similar arguments for (A6) in Lemma A2, for j large
enough, EKj{ψRBD(Zn; T(Kj))} = 0. We will only consider j large enough below. The two term Taylor
expansion yields

0 = EKj{ψRBD(Zn; T(Kj))} = EKj{ψRBD(Zn; T(Kt0))}+ Hn,Kj ,β̃
∗
j
{T(Kj)− T(Kt0)}, (A13)

where β̃
∗
j lies between T(Kt0) and T(Kj).

Thus, from (A13) and the fact EKj{ψRBD(Zn; T(Kt0))} = Δj[EJ{ψRBD(Zn; T(Kt0))} −
EKn,0{ψRBD(Zn; T(Kt0))}], we have

0 = EKj{ψRBD(Zn; T(Kt0))}+ Hn,Kt0 ,T(Kt0 )
{T(Kj)− T(Kt0)}

+{Hn,Kj ,β̃
∗
j
−Hn,Kt0 ,T(Kt0 )

}{T(Kj)− T(Kt0)}
= Δj[EJ{ψRBD(Zn; T(Kt0))} − EKn,0{ψRBD(Zn; T(Kt0))}]

+Hn,Kt0 ,T(Kt0 )
{T(Kj)− T(Kt0)}+ (Hn,Kj ,β̃

∗
j
−Hn,Kt0 ,T(Kt0 )

){T(Kj)− T(Kt0)},

and we obtain that

T(Kj)− T(Kt0)

= −ΔjH
−1
n,Kt0 ,T(Kt0 )

[EJ{ψRBD(Zn; T(Kt0))} − EKn,0{ψRBD(Zn; T(Kt0))}]
−H−1

n,Kt0 ,T(Kt0 )
{Hn,Kj ,β̃

∗
j
−Hn,Kt0 ,T(Kt0 )

}{T(Kj)− T(Kt0)}. (A14)

Next, we will show that ‖Hn,Kj ,β̃
∗
j
− Hn,Kt0 ,T(Kt0 )

‖ = o(1) as j → ∞ for any fixed n. Since

‖β̃
∗
j − T(Kt0)‖ ≤ ‖T(Kj)− T(Kt0)‖ = O(Δj),

‖Hn,Kj ,β̃
∗
j
−Hn,Kt0 ,β̃

∗
j
‖

= Δj‖EJ{p2(Y; X̃
T
n β̃
∗
j )w(Xn)X̃nX̃

T
n} − EKn,0{p2(Y; X̃

T
n β̃
∗
j )w(Xn)X̃nX̃

T
n}‖

= O(Δj) = o(1) as j → ∞, (A15)

and also,

‖Hn,Kt0 ,β̃
∗
j
−Hn,Kt0 ,T(Kt0 )

‖

= ‖EKt0
[{p2(Y; X̃

T
n β̃
∗
j )− p2(Y; X̃

T
n T(Kt0))}w(Xn)X̃nX̃

T
n ]‖

= o(1) as j → ∞. (A16)

From Equations (A15) and (A16),

‖Hn,Kj ,β̃
∗
j
−Hn,Kt0 ,T(Kt0 )

‖ = o(1) as j → ∞

which, together with Equations (A12) and (A14), implies that

‖T(Kj)− T(Kt0) + ΔjH
−1
n,Kt0 ,T(Kt0 )

[EJ{ψRBD(Zn; T(Kt0))} − EKn,0{ψRBD(Zn; T(Kt0))}]‖ = o(Δj).

This completes the proof.

Lemma A9. Assume Conditions A1–A8 and B4 and supn EJ(‖w(Xn)X̃n‖) ≤ C. Let Hk(·; δ)

be the cumulative distribution function of χ2
k(δ) distribution with δ the noncentrality parameter.

Denote δ(ε) = n‖U−1/2
n {AnT(Kn,ε) − g0}‖2. Let b(ε) = −Hk(x; δ(ε)). Then, for any fixed x > 0,

supε∈[0,C] lim supn→∞ |b(3)(ε)| ≤ C under H0 and supε∈[0,C] lim supn→∞ |b′′(ε)| ≤ C under H1n.
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Proof. Since b(ε) = −Hk(x; δ(ε)), we have

b′(ε) = − ∂

∂ε
Hk(x; δ(ε)) =

{
− ∂

∂δ
Hk(x; δ)

∣∣∣
δ=δ(ε)

}{∂δ(ε)

∂ε

}
b′′(ε) =

{
− ∂2

∂δ2 Hk(x; δ)
∣∣∣
δ=δ(ε)

}{∂δ(ε)

∂ε

}2
+
{
− ∂

∂δ
Hk(x; δ)

∣∣∣
δ=δ(ε)

}{∂2δ(ε)

∂ε2

}
b(3)(ε) =

{
− ∂3

∂δ3 Hk(x; δ)
∣∣∣
δ=δ(ε)

}{∂δ(ε)

∂ε

}3

+3
{
− ∂2

∂δ2 Hk(x; δ)
∣∣∣
δ=δ(ε)

}{∂δ(ε)

∂ε

}{∂2δ(ε)

∂ε2

}
+
{
− ∂

∂δ
Hk(x; δ)

∣∣∣
δ=δ(ε)

}{∂3δ(ε)

∂ε3

}
.

To complete the proof, we only need to show that ∂i/∂δi Hk(x; δ)|δ=δ(ε) and ∂iδ(ε)/∂εi (i = 1, 2, 3)
are bounded as n → ∞ for all ε ∈ [0, C]. Note that

Hk(x; δ) = e−δ/2
∞

∑
j=0

(δ/2)j

j!
γ(j + k/2, x/2)

Γ(j + k/2)
,

where Γ(·) is the Gamma function, and γ(·, ·) is the lower incomplete gamma function γ(s, x) =∫ x
0 ts−1e−tdt, which satisfies γ(s, x) = (s− 1)γ(s− 1, x)− xs−1e−x. Therefore,

∂

∂δ
Hk(x; δ) = − e−δ/2

2

∞

∑
j=0

(δ/2)j

j!
γ(j + k/2, x/2)

Γ(j + k/2)
+

e−δ/2

2

∞

∑
j=1

(δ/2)j−1

(j− 1)!
γ(j + k/2, x/2)

Γ(j + k/2)

=
1
2

e−δ/2
∞

∑
j=0

(δ/2)j

j!

{
− γ(j + k/2, x/2)

Γ(j + k/2)
+

γ(j + 1 + k/2, x/2)
Γ(j + 1 + k/2)

}
.

Since

γ(j + 1 + k/2, x/2)
Γ(j + 1 + k/2)

=
(j + k/2)γ(j + k/2, x/2)− (x/2)j+k/2e−x/2

Γ(j + 1 + k/2)

=
γ(j + k/2, x/2)

Γ(j + k/2)
− (x/2)j+k/2e−x/2

Γ(j + 1 + k/2)
,

we have

∂

∂δ
Hk(x; δ) = −1

2
e−δ/2

∞

∑
j=0

(δ/2)j

j!
(x/2)j+k/2e−x/2

Γ(j + 1 + k/2)

∂2

∂δ2 Hk(x; δ) =
1
4

e−δ/2
∞

∑
j=0

(δ/2)j

j!
(x/2)j+k/2e−x/2

Γ(j + 1 + k/2)
− 1

4
e−δ/2

∞

∑
j=0

(δ/2)j

j!
(x/2)j+1+k/2e−x/2

Γ(j + 2 + k/2)

=
1
4
(x/2)k/2e−x/2e−δ/2

∞

∑
j=0

(δ/2)j

j!

{ (x/2)j

Γ(j + 1 + k/2)
− (x/2)j+1

Γ(j + 2 + k/2)

}
=

1
4
(x/2)k/2e−x/2e−δ/2

∞

∑
j=0

(δ/2)j

j!
(x/2)j

Γ(j + 1 + k/2)

{
1− (x/2)

j + 1 + k/2

}
∂3

∂δ3 Hk(x; δ) = −1
8
(x/2)k/2e−x/2e−δ/2

∞

∑
j=0

(δ/2)j

j!
(x/2)j

Γ(j + 1 + k/2)

{
1− (x/2)

j + 1 + k/2

}
+

1
8
(x/2)k/2e−x/2e−δ/2

∞

∑
j=0

(δ/2)j

j!
(x/2)j+1

Γ(j + 2 + k/2)

{
1− (x/2)

j + 2 + k/2

}
=

1
8
(x/2)k/2e−x/2e−δ/2

∞

∑
j=0

(δ/2)j

j!
(x/2)j

Γ(j + 1 + k/2)
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·
[ (x/2)

j + 1 + k/2

{
1− (x/2)

j + 2 + k/2

}
−
{

1− (x/2)
j + 1 + k/2

}]
.

From the results of Lemma A3, that |δ(ε)| is bounded as n → ∞ for all ε ∈ [0, C] under both H0

and H1n, so are ∂i/∂δi Hk(x; δ)|δ=δ(ε) (i = 1, 2, 3). Now, we consider the derivatives of δ(ε),

∂δ(ε)

∂ε
= 2n

{
An

∂T(Kn,ε)

∂ε

}T
U−1

n {AnT(Kn,ε)− g0}
∂2δ(ε)

∂ε2 = 2n
{

An
∂T(Kn,ε)

∂ε

}T
U−1

n

{
An

∂T(Kn,ε)

∂ε

}
+2n

{
An

∂2T(Kn,ε)

∂ε2

}T
U−1

n {AnT(Kn,ε)− g0}
∂3δ(ε)

∂ε3 = 6n
{

An
∂2T(Kn,ε)

∂ε2

}T
U−1

n

{
An

∂T(Kn,ε)

∂ε

}
+2n

{
An

∂3T(Kn,ε)

∂ε3

}T
U−1

n {AnT(Kn,ε)− g0}.

To complete the proof, we only need to show that
√

n‖∂i/∂εiT(Kn,ε)‖ (i = 1, 2, 3) are bounded
as n → ∞ for all ε ∈ [0, C], and

√
n‖AnT(Kn,ε)− g0‖ is bounded under H0 and H1n as n → ∞ for all

ε ∈ [0, C]. The result for
√

n‖AnT(Kn,ε)− g0‖ is straightforward from Lemma A3.
First, for the first order derivative of T(Kn,ε),

√
n

∂

∂ε
T(Kn,ε)

= −H−1
n,Kn,ε ,T(Kn,ε)

[EJ{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}].

Since ‖H−1
n,Kn,ε ,T(Kn,ε)

‖ ≤ C, ‖EJ{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n}‖ ≤ C EJ‖w(Xn)X̃n‖ ≤ C and

‖EKn,0{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n}‖

= ‖EKn,0{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n β̃n,0)w(Xn)X̃n}‖

= ‖EKn,0 [p2(Y; X̃
T
n β̃
∗
)w(Xn)X̃nX̃

T
n{T(Kn,ε)− β̃n,0}]‖

≤ Cp3/2
n /

√
n,

we conclude that
√

n‖∂/∂εT(Kn,ε)‖ is uniformly bounded for all ε ∈ [0, C] as n → ∞.
Second, for the second order derivative of T(Kn,ε),

√
n

∂2

∂ε2 T
(
(1− ε/

√
n)Kn,0 + ε/

√
nJ
)

= −
∂H−1

n,Kn,ε ,T(Kn,ε)

∂ε

·[EJ{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}]

−H−1
n,Kn,ε ,T(Kn,ε)

· ∂

∂ε
[EJ{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}]

with

∂

∂ε
H−1

n,Kn,ε ,T(Kn,ε)
= −H−1

n,Kn,ε ,T(Kn,ε)

∂Hn,Kn,ε ,T(Kn,ε)

∂ε
H−1

n,Kn,ε ,T(Kn,ε)
,

∂Hn,Kn,ε ,T(Kn,ε)

∂ε
= − 1√

n
EKn,0{p2(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n}

+
1√
n

EJ{p2(Y; X̃
T
n T(Kn,ε))w(Xn)X̃nX̃

T
n}
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+(1− ε/
√

n)EKn,0

{
p3(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n X̃

T
n

∂

∂ε
T(Kn,ε)

}
+ε/

√
n EJ

{
p3(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n X̃

T
n

∂

∂ε
T(Kn,ε)

}
.

Therefore, ‖∂/∂εH−1
n,Kn,ε ,T(Kn,ε)

‖ ≤ C‖∂/∂εHn,Kn,ε ,T(Kn,ε)‖ ≤ Cp3/2
n /

√
n. In addition,

∥∥∥ ∂

∂ε
[EJ{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}]

∥∥∥
=

∥∥∥EJ

{
p2(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n

∂

∂ε
T(Kn,ε)

}
−EKn,0

{
p2(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n

∂

∂ε
T(Kn,ε)

}∥∥∥
≤ Cpn/

√
n.

Therefore, ‖√n ∂2

∂ε2 T
(
(1− ε/

√
n)Kn,0 + ε/

√
nJ
)
‖ = o(1) for all ε ∈ [0, C].

Finally, for the third order derivative of T(Kn,ε),

√
n

∂3

∂ε3 T
(
(1− ε/

√
n)Kn,0 + ε/

√
nJ
)

= −
∂2H−1

n,Kn,ε ,T(Kn,ε)

∂ε2

·[EJ{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}]

−2
∂H−1

n,Kn,ε ,T(Kn,ε)

∂ε

· ∂

∂ε
[EJ{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}]

−H−1
n,Kn,ε ,T(Kn,ε)

· ∂2

∂ε2 [EJ{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}].

Note:

∂2

∂ε2 H−1
n,Kn,ε ,T(Kn,ε)

= −
∂H−1

n,Kn,ε ,T(Kn,ε)

∂ε

∂Hn,Kn,ε ,T(Kn,ε)

∂ε
H−1

n,Kn,ε ,T(Kn,ε)

−H−1
n,Kn,ε ,T(Kn,ε)

∂2Hn,Kn,ε ,T(Kn,ε)

∂ε2 H−1
n,Kn,ε ,T(Kn,ε)

−H−1
n,Kn,ε ,T(Kn,ε)

∂Hn,Kn,ε ,T(Kn,ε)

∂ε

∂H−1
n,Kn,ε ,T(Kn,ε)

∂ε
,

where

∂2

∂ε2 Hn,Kn,ε ,T(Kn,ε)

= − 2√
n

EKn,0

{
p3(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n X̃

T
n

∂

∂ε
T(Kn,ε)

}
+

2√
n

EJ

{
p3(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n X̃

T
n

∂

∂ε
T(Kn,ε)

}
+(1− ε/

√
n)EKn,0

{
p4(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n (X̃

T
n

∂

∂ε
T(Kn,ε))

2
}

+ε/
√

n EJ

{
p4(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n (X̃

T
n

∂

∂ε
T(Kn,ε))

2
}

.
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Hence, ‖ ∂2

∂ε2 Hn,Kn,ε ,T(Kn,ε)‖ ≤ Cp2
n/n which implies that ‖ ∂2

∂ε2 H−1
n,Kn,ε ,T(Kn,ε)

‖ = o(1) for all
ε ∈ [0, C]. In addition,

∂2

∂ε2 [EJ{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}]

=
∂

∂ε

[
EJ

{
p2(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n

∂

∂ε
T(Kn,ε)

}
−EKn,0

{
p2(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n

∂

∂ε
T(Kn,ε)

}]
= EJ

{
p3(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n

(
X̃

T
n

∂

∂ε
T(Kn,ε)

)2}
+EJ

{
p2(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n

∂2

∂ε2 T(Kn,ε)
}

−E
β̃n,0

{
p3(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n

(
X̃

T
n

∂

∂ε
T(Kn,ε)

)2}
−E

β̃n,0

{
p2(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n

∂2

∂ε2 T(Kn,ε)
}

.

Hence, ‖ ∂2

∂ε2 [EJ{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}]‖ ≤ Cpn/

√
n.

Therefore, ‖√n ∂3

∂ε3 T
(
(1 − ε/

√
n)Kn,0 + ε/

√
nJ
)
‖ = o(1) for all ε ∈ [0, C]. Hence, we complete

the proof.

Proof of Theorem 1. We follow the idea of the proof in [10]. Lemma A7 implies that
the Wald-type test statistic Wn is asymptotically noncentral χ2

k with noncentrality parameter
δ(ε) = n‖U−1/2

n {AnT(Kn,ε)− g0}‖2. Therefore, α(Kn,ε) = P(Wn > η1−α0
|H0) = 1− Hk(η1−α0

; δ(ε)) +

h(n, ε) where h(n, ε) = α(Kn,ε) − 1 + Hk(η1−α0
; δ(ε)) → 0 as n → ∞ for any fixed ε.

Let b(ε) = −Hk(η1−α0
; δ(ε)). Then, for ε close to 0, we have

α(Kn,ε)− α0 = b(ε)− b(0) + h(n, ε)− h(n, 0)

= εb′(0) +
1
2

ε2b′′(0) +
1
6

ε3b(3)(ε∗) + h(n, ε)− h(n, 0), (A17)

where 0 < ε∗ < ε. Note that under H0

b′(0) = μk

{∂δ(ε)

∂ε

∣∣∣
ε=0

}
= 2μkn

{
An

∂T(Kn,ε)

∂ε

}T∣∣∣
ε=0

U−1
n {An β̃n,0 − g0} = 0.

From Lemma A8, under H0

∂T(Kn,ε)

∂ε

∣∣∣
ε=0

= 1/
√

n EJ{IF(Zn; T , Kn,0)}.

Thus,

b′′(0) = μk

{∂2δ(ε)

∂ε2

∣∣∣
ε=0

}
= 2μk‖U−1/2

n An EJ{IF(Zn; T , Kn,0)}‖2.

Since from Lemma A8, IF(zn; T, Kn,0) = −H−1
n EJ{ψRBD(zn; β̃n,0)} is uniformly bounded,

we have

D = lim sup
n→∞

‖U−1/2
n An EJ{IF(Zn; T , Kn,0)}‖2 < ∞.
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From Equation (A17)

lim sup
n→∞

α(Kn,ε) = α0 + ε2μkD + o(ε2),

since supε∈[0,C] lim supn→∞ |b(3)(ε)| ≤ C from Lemma A9. We complete the proof.

Proof of Corollary 1. For Part (i), following the proof of Theorem 1, for any fixed z,

lim
n→∞

α(Kn,ε) = α0 + ε2μk‖U−1/2 A IF(z; T , K0)‖2 + d(z, ε),

where d(z, ε) = o(ε2). From the assumption that supx∈Rp ‖w(x)x‖ ≤ C and
supμ∈R |q′′(μ)

√
V(μ)/F′(μ)| ≤ C, we know D1 ≤ ∞. Following the proof of Lemma A9,

supz∈R |d(z, ε)| = o(ε2). We finished the proof of part (i).
Part (ii) is straightforward by applying Theorem 1 with J = Δzn .

Proof of Theorem 2. Lemma A7 implies that

√
n[{U(Kn)}−1/2{AnT(Kn)− g0} − {U(Kn)}−1/2(An β̃n,0 − g0)

−U−1/2
n An{T(Kn,ε)− β̃n,0}]

L−→ (0, Ik).

From Lemmas A5 and A6,

√
n[{U(Kn)}−1/2{AnT(Kn)− g0} −U−1/2

n {AnT(Kn,ε)− g0}]
L−→ (0, Ik).

Then, Wn is asymptotically χ2
k(δ(ε)) with δ(ε) = n‖U−1/2

n {AnT(Kn,ε) − g0}‖2 under H1n.
Therefore, β(Kn,ε) = P(Wn > η1−α0

|H1n) = 1− Hk(η1−α0
; δ(ε)) + h(n, ε), where h(n, ε) = β(Kn,ε)−

1 + Hk(η1−α0
; δ(ε))→ 0 as n → ∞ for any fixed ε. Let b(ε) = −Hk(η1−α0

; δ(ε)). Then, for ε close to 0,
we have

β(Kn,ε)− β0 = b(ε)− b(0) + h(n, ε)− h(n, 0)

= εb′(0) +
1
2

ε2b′′(ε∗) + h(n, ε)− h(n, 0), (A18)

where 0 < ε∗ < ε. Note that under H1n, δ(0) = n‖U−1/2
n (An β̃n,0 − g0)‖2 = cTU−1

n c. Then,

b′(0) =
−∂Hk(η1−α0

; δ)

∂δ

∣∣∣
δ=δ(0)

∂δ(ε)

∂ε

∣∣∣
ε=0

= 2νkn
{

An
∂T(Kn,ε)

∂ε

}T∣∣∣
ε=0

U−1
n {An β̃n,0 − g0}

= 2νk
√

n
{

An
∂T(Kn,ε)

∂ε

}T∣∣∣
ε=0

U−1
n c.

From Lemma A8,

∂T(Kn,ε)

∂ε

∣∣∣
ε=0

= 1/
√

n EJ{IF(Zn; T , Kn,0)},

and hence,

b′(0) = 2νkcTU−1
n An EJ{IF(Zn; T , Kn,0)}.

Since supε∈[0,C] lim supn→∞ |b′′(ε)| ≤ C under H1n by Lemma A9, we have
lim infn→∞ 1/2ε2b′′(ε∗) = o(ε) as ε → 0.

Since from Lemma A8, IF(zn; T , Kn,0) = −H−1
n EJ{ψRBD(zn; β̃n,0)} is uniformly bounded,

|B| = | lim inf
n→∞

2cTU−1
n An EJ{IF(Zn; T , Kn,0)}| < ∞.
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From Equation (A18), we complete the proof.

Proof of Corollary 2. The proof is similar to that for Corollary 1, using the results in Theorem 2.

Appendix B. List of Notations and Symbols

• An: k× (pn + 1) matrix in hypotheses Equations (8) and (14)
• c: k dimensional vector in H1n in Equation (14)
• F(·): link function
• G: bias-correction term in “robust-BD”
• G: limit of An AT

n , i.e. An AT
n

n→∞−→ G

• Hn: Hn = EKn,0{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nX̃

T
n}

• IF(·; ·, ·): influence function
• J: an arbitrary distribution in the contamination of Equation (10)
• Kn,0: true parametric distribution of Zn
• Kn,ε: Kn,ε = (1− ε√

n )Kn,0 +
ε√
n J, ε-contamination in Equation (10)

• Kn: empirical distribution of {Zni}n
i=1

• �K(·): expectation of robust-BD in Equation (11)
• m(·): conditional mean of Y given Xn in Equation (1)
• n: sample size
• pn: dimension of β

• pi(·; ·): ith order derivative of robust-BD
• q(·): generating q-function of BD
• T(·): vector, a functional of estimator in Equation (12)
• Un: Un = AnH−1

n ΩnH−1
n AT

n
• V(·): conditional variance of Y given Xn in Equation (2)
• Wn: Wald-type test statistic in Equation (9)
• w(·): weight function
• Xn: explanatory variables
• Y: response variable
• Zn = (XT

n , Y)T

• α(·): level of the test
• β(·): power of the test
• β̃n,0: true regression parameter
• Δzn : probability measure which puts mass 1 at the point zn
• ε: amount of contamination in Equation (10), positive constant
• ψRBD(·; ·): score vector in Equation (7)

• Ωn: Ωn = EKn,0{p2
1(Y; X̃

T
n β̃n,0)w

2(Xn)X̃nX̃
T
n}

• ρq(·, ·): robust-BD in Equation (4)
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Abstract: Relative error estimation has been recently used in regression analysis. A crucial issue
of the existing relative error estimation procedures is that they are sensitive to outliers. To address
this issue, we employ the γ-likelihood function, which is constructed through γ-cross entropy
with keeping the original statistical model in use. The estimating equation has a redescending
property, a desirable property in robust statistics, for a broad class of noise distributions. To find
a minimizer of the negative γ-likelihood function, a majorize-minimization (MM) algorithm is
constructed. The proposed algorithm is guaranteed to decrease the negative γ-likelihood function at
each iteration. We also derive asymptotic normality of the corresponding estimator together with
a simple consistent estimator of the asymptotic covariance matrix, so that we can readily construct
approximate confidence sets. Monte Carlo simulation is conducted to investigate the effectiveness of
the proposed procedure. Real data analysis illustrates the usefulness of our proposed procedure.

Keywords: γ-divergence; relative error estimation; robust estimation

1. Introduction

In regression analysis, many analysts use the (penalized) least squares estimation, which aims at
minimizing the mean squared prediction error [1]. On the other hand, the relative (percentage) error
is often more useful and/or adequate than the mean squared error. For example, in econometrics,
the comparison of prediction performance between different stock prices with different units should be
made by relative error; we refer to [2,3] among others. Additionally, the prediction error of photovoltaic
power production or electricity consumption is evaluated by not only mean squared error but also
relative error (see, e.g., [4]). We refer to [5] regarding the usefulness and importance of the relative error.

In relative error estimation, we minimize a loss function based on the relative error. An advantage
of using such a loss function is that it is scale free or unit free. Recently, several researchers have
proposed various loss functions based on relative error [2,3,6–9]. Some of these procedures have been
extended to the nonparameteric model [10] and random effect model [11]. The relative error estimation
via the L1 regularization, including the least absolute shrinkage and operator (lasso; [12]), and the
group lasso [13], have also been proposed by several authors [14–16], to allow for the analysis of
high-dimensional data.

In practice, a response variable y(> 0) can turn out to be extremely large or close to zero.
For example, the electricity consumption of a company may be low during holidays and high
on exceptionally hot days. These responses may often be considered to be outliers, to which the
relative error estimator is sensitive because the loss function diverges when y → ∞ or y → 0.
Therefore, a relative error estimation that is robust against outliers must be considered. Recently,
Chen et al. [8] discussed the robustness of various relative error estimation procedures by investigating
the corresponding distributions, and concluded that the distribution of least product relative error

Entropy 2018, 20, 632; doi:10.3390/e20090632 www.mdpi.com/journal/entropy311



Entropy 2018, 20, 632

estimation (LPRE) proposed by [8] has heavier tails than others, implying that the LPRE might be
more robust than others in practical applications. However, our numerical experiments show that the
LPRE is not as robust as expected, so that the robustification of the LPRE is yet to be investigated from
the both theoretical and practical viewpoints.

To achieve a relative error estimation that is robust against outliers, this paper employs the
γ-likelihood function for regression analysis by Kawashima and Fujisawa [17], which is constructed by
the γ-cross entropy [18]. The estimating equation is shown to have a redescending property, a desirable
property in robust statistics literature [19]. To find a minimizer of the negative γ-likelihood function,
we construct a majorize-minimization (MM) algorithm. The loss function of our algorithm at each
iteration is shown to be convex, although the original negative γ-likelihood function is nonconvex. Our
algorithm is guaranteed to decrease the objective function at each iteration. Moreover, we derive the
asymptotic normality of the corresponding estimator together with a simple consistent estimator
of the asymptotic covariance matrix, which enables us to straightforwardly create approximate
confidence sets. Monte Carlo simulation is conducted to investigate the performance of our proposed
procedure. An analysis of electricity consumption data is presented to illustrate the usefulness of
our procedure. Supplemental material includes our R package rree (robust relative error estimation),
which implements our algorithm, along with a sample program of the rree function.

The reminder of this paper is organized as follows: Section 2 reviews several relative error
estimation procedures. In Section 3, we propose a relative error estimation that is robust against
outliers via the γ-likelihood function. Section 4 presents theoretical properties: the redescending
property of our method and the asymptotic distribution of the estimator, the proof of the latter being
deferred to Appendix A. In Section 5, the MM algorithm is constructed to find the minimizer of the
negative γ-likelihood function. Section 6 investigates the effectiveness of our proposed procedure
via Monte Carlo simulations. Section 7 presents the analysis on electricity consumption data. Finally,
concluding remarks are given in Section 8.

2. Relative Error Estimation

Suppose that xi = (xi1, . . . , xip)
T (i = 1, ..., n) are predictors and y = (y1, ..., yn)T is a vector of

positive responses. Consider the multiplicative regression model

yi = exp(xT
i β)εi = exp

(
p

∑
j=1

xijβ j

)
εi, (i = 1, . . . , n), (1)

where β = (β1, · · · , βp)T is a p-dimensional coefficient vector, and εi are positive random variables.
Predictors xi ∈ Rp may be random and serially dependent, while we often set xi1 = 1, that is,
incorporate the intercept in the exponent. The parameter space B ⊂ Rp of β is a bounded convex
domain such that β0 ∈ B. We implicitly assume that the model is correctly specified, so that there
exists a true parameter β0 = (β1,0, . . . , βp,0) ∈ B. We want to estimate β0 from a sample {(xi, yi),
i = 1, . . . , n}.

We first remark that the condition xi1 = 1 ensures that the model (1) is scale-free
regarding variables εi, which is an essentially different nature from the linear regression model
yi = xT

i β + εi. Specifically, multiplying a positive constant σ to εi results in the translation of the
intercept in the exponent:

yi = exp(xT
i β)σεi = exp(log σ + xT

i β)εi

so that the change from εi to σεi is equivalent to that from β1 to β1 + log σ. See Remark 1 on the
distribution of ε1.

To provide a simple expression of the loss functions based on the relative error, we write

ti = ti(β) = exp(xT
i β), (i = 1, . . . , n).
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Chen et al. [6,8] pointed out that the loss criterion for relative error may depend on |(yi − ti)/yi| and /
or |(yi − ti)/ti|. These authors also proposed general relative error (GRE) criteria, defined as

G(β) =
n

∑
i=1

g
(∣∣∣∣yi − ti

yi

∣∣∣∣ , ∣∣∣∣yi − ti
ti

∣∣∣∣) , (2)

where g : [0, ∞)× [0, ∞)→ [0, ∞). Most of the loss functions based on the relative error are included
in the GRE. Park and Stefanski [2] considered a loss function g(a, b) = a2. It may highly depend
on a small yi because it includes 1/y2

i terms, and then the estimator can be numerically unstable.
Consistency and asymptotic normality may not be established under general regularity conditions [8].
The loss functions based on g(a, b) = max{a, b} [3] and g(a, b) = a + b (least absolute relative error
estimation, [6]) can have desirable asymptotic properties [3,6]. However, the minimization of the loss
function can be challenging, in particular for high-dimensional data, when the function is nonsmooth
or nonconvex.

In practice, the following two criteria would be useful:

Least product relative error estimation (LPRE) Chen et al. [8] proposed the LPRE given by g(a, b) =
ab. The LPRE tries to minimize the product |1− ti/yi| × |1− yi/ti|, not necessarily both terms
at once.

Least squared-sum relative error estimation (LSRE) Chen et al. [8] considered the LSRE given by
g(a, b) = a2 + b2. The LSRE aims to minimize both |1− ti/yi| and |1− yi/ti| through sum of
squares (1− ti/yi)

2 + (1− yi/ti)
2.

The loss functions of LPRE and LSRE are smooth and convex, and also possess desirable
asymptotic properties [8]. The above-described GRE criteria and their properties are summarized
in Table 1. Particularly, the “convexity” in the case of g(a, b) = a + b holds when
εi > 0, εi �= 1, and ∑n

i=1 xixT
i is positive definite, since the Hessian matrix of the corresponding

G(β) is ∑n
i=1 |εi − ε−1

i |xixT
i a.s.

Table 1. Several examples of general relative error (GRE) criteria and their properties. “Likelihood” in
the second column means the existence of a likelihood function that corresponds to the loss function.
The properties of “Convexity” and “Smoothness” in the last two columns respectively indicate those
with respect to β of the corresponding loss function.

g(a, b) Likelihood Convexity Smoothness

a2 √
a + b

√ √
max{a, b} √

ab
√ √ √

a2 + b2 √ √ √

Although not essential, we assume that the variables εi in Equation (1) are i.i.d. with common
density function h. As in Chen et al. [8], we consider the following class of h associated with g:

h(ε) :=
C(g)

ε
exp {−ρ(ε)} I+(ε), (3)

where

ρ(ε) = ρ(ε; g) := g
(∣∣∣∣1− 1

ε

∣∣∣∣ , |1− ε|
)

,

and C(g) is a normalizing constant (
∫

h(ε)dε = 1) and I+ denotes the indicator function of set (0, ∞).
Furthermore, we assume the symmetry property g(a, b) = g(b, a), a, b ≥ 0, from which it follows
that ε1 ∼ ε−1

1 . The latter property is necessary for a score function to be associated with the gradient
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of a GRE loss function, hence being a martingale with respect to a suitable filtration, which often
entails estimation efficiency. Indeed, the asymmetry of g(a, b) (i.e., g(a, b) �= g(b, a)) may produce
a substantial bias in the estimation [3]. The entire set of our regularity conditions will be shown in
Section 4.3. The conditions therein concerning g are easily verified for both LPRE and LSRE.

In this paper, we implicitly suppose that i = 1, . . . , n denote “time” indices. As usual, in
order to deal with cases of non-random and random predictors in a unified manner, we employ the
partial-likelihood framework. Specifically, in the expression of the joint density (with the obvious
notation for the densities)

f (x1, . . . , xn, y1, . . . , yn)

=

{
f (x1)

n

∏
i=2

f (xi| x1‘, . . . , xi−1, y1, . . . , yi−1)

}{
f (y1| x1)

n

∏
i=2

f (yi| x1, . . . , xi, y1, . . . , yi−1)

}
,

we ignore the first product {. . . } and only look at the second one {. . . }, which is defined as the partial
likelihood. We further assume that the ith-stage noise εi is independent of (x1, . . . , xi, y1, . . . , yi−1),
so that, in view of Equation (1), we have

f (yi| x1, . . . , xi, y1, . . . , yi−1) = f (yi| xi), i = 1, . . . , n.

The density function of response y given xi is

f (y|xi; β) = exp(−xT
i β)h

(
y exp(−xT

i β)
)

(4)

=
1
ti

h
(

y
ti

)
(5)

From Equation (3), we see that the maximum likelihood estimator (MLE) based on the error
distribution in Equation (5) is obtained by the minimization of Equation (2). For example, the density
functions of LPRE and LSRE are

LPRE : f (y|xi) =
1

2K0(2)
y−1 exp

(
− y

ti
− ti

y

)
, (y > 0), (6)

LSRE : f (y|xi) = CLSREy−1 exp

{
−
(

1− ti
y

)2
−
(

1− y
ti

)2
}

, (y > 0),

where Kν(z) denotes the modified Bessel function of third kind with index ν ∈ R:

Kν(z) =
zν

2ν+1

∫ ∞

0
t−ν−1 exp

(
−t− z2

4t

)
dt

and CLSRE is a constant term. Constant terms are numerically computed as K0(2) ≈ 0.1139 and
CLSRE ≈ 0.911411. Density (6) is a special case of the generalized inverse Gaussian distribution (see,
e.g., [20]).

Remark 1. We assume that the noise density h is fully specified in the sense that, given g, the density h does
not involve any unknown quantity. However, this is never essential. For example, for the LPRE defined by
Equation (6), we could naturally incorporate one more parameter σ > 0 into h, the resulting form of h(ε) being

ε �→ 1
2K0(σ)

ε−1 exp
{
−σ

2

(
ε +

1
ε

)}
I+(ε).

Then, we can verify that the distributional equivalence ε1 ∼ ε−1
1 holds whatever the value of σ is.

Particularly, the estimation of parameter σ does make statistical sense and, indeed, it is possible to deduce the
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asymptotic normality of the joint maximum-(partial-) likelihood estimator of (β, σ). In this paper, we do not
pay attention to such a possible additional parameter, but instead regard it (whenever it exists) as a nuisance
parameter, as in the noise variance in the least-squares estimation of a linear regression model.

3. Robust Estimation via γ-Likelihood

In practice, outliers can often be observed. For example, the electricity consumption data can
have the outliers on extremely hot days. The estimation methods via GRE criteria, including LPRE and
LSRE, are not robust against outliers, because the corresponding density functions are not generally
heavy-tailed. Therefore, a relative error estimation method that is robust against the outliers is needed.
To achieve this, we consider minimizing the negative γ-(partial-)likelihood function based on the
γ-cross entropy [17].

We now define the negative γ-(partial-)likelihood function by

�γ,n(β) = − 1
γ

log

{
1
n

n

∑
i=1

f (yi|xi; β)γ

}
+

1
1 + γ

log

{
1
n

n

∑
i=1

∫ ∞

0
f (y|xi; β)1+γdy

}
, (7)

where γ > 0 is a parameter that controls the degrees of robustness; γ → 0 corresponds to the negative
log-likelihood function, and robustness is enhanced as γ increases. On the other hand, a too large
γ can decrease the efficiency of the estimator [18]. In practice, the value of γ may be selected by a
cross-validation based on γ-cross entropy (see, e.g., [18,21]). We refer to Kawashima and Fujisawa [22]
for more recent observations on comparison of the γ-divergences between Fujisawa and Eguchi [18]
and Kawashima and Fujisawa [17].

There are several likelihood functions which yield robust estimation. Examples include the
Lq-likelihood [23], and the likelihood based on the density power divergence [24], referred to as
β-likelihood. It is shown that the γ-likelihood, the Lq-likelihood, and the β-likelihood are closely
related. The negative β-likelihood function �α,n(β) and the negative Lq-likelihood function �q,n(β) are,
respectively, expressed as

�α,n(β) = − 1
α

1
n

n

∑
i=1

f (yi|xi; β)α +
1

1 + α

1
n

n

∑
i=1

∫ ∞

0
f (y|xi; β)1+αdy, (8)

�q,n(β) = −
n

∑
i=1

f (yi|xi; β)1−q − 1
1− q

. (9)

The difference between γ-likelihood and β-likelihood is just the existence of the logarithm on
�γ,n(β). Furthermore, substituting q = 1− α into Equation (9) gives us

�q,n(β) = − 1
α

n

∑
i=1

f (yi|xi; β)α + const.

Therefore, the minimization of the negative Lq-likelihood function is equivalent to minimization
of the negative β-likelihood function without second term in the right side of Equation (8). Note that
the γ-likelihood has the redescending property, a desirable property in robust statistics literature, as
shown in Section 4.2. Moreover, it is known that the γ-likelihood is the essentially unique divergence
that is robust against heavy contamination (see [18] for details). On the other hand, we have not shown
whether the Lq-likelihood and/or the β-likelihood have the redescending property or not.

The integration
∫

f (y|xi; β)1+γdy in the second term on the right-hand side of Equation (7) is

∫ ∞

0
f (y|xi; β)1+γdy =

1

t1+γ
i

∫ ∞

0

{
h
(

y
ti

)}1+γ

dy =: t−γ
i C(γ, h),
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where
C(γ, h) :=

∫ ∞

0
h(v)1+γdv (10)

is a constant term, which is assumed to be finite. Then, Equation (7) is expressed as

�γ,n(β) = − 1
γ

log

{
n

∑
i=1

f (yi|xi; β)γ

}
︸ ︷︷ ︸

=: �1(β)

+
1

1 + γ
log

{
n

∑
i=1

t−γ
i

}
︸ ︷︷ ︸

=: �2(β)

+C0(γ, h), (11)

where C0(γ, h) is a constant term free from β. We define the maximum γ-likelihood estimator to be
any element such that

β̂γ ∈ argmin �γ,n.

4. Theoretical Properties

4.1. Technical Assumptions

Let
p−→ denote the convergence in probability.

Assumption 1 (Stability of the predictor). There exists a probability measure π(dx) on the state space X
of the predictors and positive constants δ, δ′ > 0 such that

1
n

n

∑
i=1
|xi|3 exp

(
δ′|xi|1+δ

)
= Op(1),

and that
1
n

n

∑
i=1

η(xi)
p−→
∫
X

η(x)π(dx), n → ∞,

where the limit is finite for any measurable η satisfying that

sup
x∈Rp

|η(x)|
(1 + |x|3) exp

(
δ′|x|1+δ

) < ∞.

Assumption 2 (Noise structure). The a.s. positive i.i.d. random variables ε1, ε2, . . . have a common positive
density h of the form (3):

h(ε) =
C(g)

ε
exp {−ρ(ε)} I+(ε),

for which the following conditions hold.

1. Function g : [0, ∞)× [0, ∞)→ [0, ∞) is three times continuously differentiable on (0, ∞) and satisfies
that

g(a, b) = g(b, a), a, b ≥ 0.

2. There exist constants κ0, κ∞ > 0, and c > 1 such that

1
c
(
ε−κ0 ∨ εκ∞

)
≤ ρ(ε) ≤ c

(
ε−κ0 ∨ εκ∞

)
for every ε > 0.

3. There exist constants c0, c∞ ≥ 0 such that

sup
ε>0

(
ε−c0 ∨ εc∞

)−1 max
k=1,2,3

∣∣∣∂k
ε ρ(ε)

∣∣∣ < ∞.
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Here and in the sequel, for a variable a, we denote by ∂k
a the kth-order partial differentiation with

respect to a.
Assumption 1 is necessary to identify the large-sample stochastic limits of the several key

quantities in the proofs: without them, we will not be able to deduce an explicit asymptotic normality
result. Assumption 2 holds for many cases, including the LPRE and the LSRE (i.e., g(a, b) = ab and
a2 + b2), while excluding g(a, b) = a2 and g(a, b) = b2. The smoothness condition on h on (0, ∞) is not
essential and could be weakened in light of the M-estimation theory ([25], Chapter 5). Under these
assumptions, we can deduce the following statements.

• h is three times continuously differentiable on (0, ∞), and for each α > 0,∫ ∞

0
hα(ε)dε < ∞ and max

k=0,1,2,3
sup
ε>0

∣∣∣∂k
ε {h(ε)α}

∣∣∣ < ∞.

• For each γ > 0 and α > 0 (recall that the value of γ > 0 is given),

lim
ε↓0

h(ε)γ |uh(ε)|α = lim
ε↑∞

h(ε)γ |uh(ε)|α = 0, (12)

where

uh(z) := 1 + z ∂z log h(z) = 1 + z
h′(z)
h(z)

.

The verifications are straightforward hence omitted.
Finally, we impose the following assumption:

Assumption 3 (Identifiability). We have β = β0 if

ρ
(
e−xT βy

)
= ρ
(
e−xT β0 y

)
π(dx)⊗ λ+(dy)-a.e. (x, y),

where λ+ denotes the Lebesgue measure on (0, ∞).

4.2. Redescending Property

The estimating function based on the negative γ-likelihood function is given by

n

∑
i=1

ψ(yi|xi; β) = 0.

In our model, we consider not only too large yis but also too small yis as outliers: the estimating
equation is said to have the redescending property if

lim
y→∞

ψ(y|x; β0) = lim
y→+0

ψ(y|x; β0) = 0

for each x. The redescending property is known as a desirable property in robust statistics literature [19].
Here, we show the proposed procedure has the redescending property.

The estimating equation based on the negative γ-likelihood function is

−∑n
i=1 f (yi|xi; β)γs(yi|xi; β)

∑n
j=1 f (yj|xj; β)γ

+
∂

∂β
�2(β) = 0,

where

s(y|x; β) =
∂ log f (y|x; β)

∂β
.
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We have expression

ψ(y|x; β) = f (y|x; β)γ

{
s(y|x; β)− ∂

∂β
�2(β)

}
.

Note that ∂
∂β �2(β) is free from y. For each (x, β), direct computations give the estimate

|ψ(y|x; β)| ≤ C(x; β)h
(

exp(−xT β)y
)γ ∣∣∣uh

(
exp(−xT β)y

)∣∣∣ (13)

for some constant C(x; β) free from y. Hence, Equation (12) combined with the inequality (13) leads to
the redescending property.

4.3. Asymptotic Distribution

Recall Equation (10) for the definition of C(γ, h) and let

C1(γ, h) :=
∫ ∞

0
εh(ε)γh′(ε)dε,

C2(γ, h) :=
∫ ∞

0
uh(ε)

2h(ε)2γ+1dε,

Πk(γ) :=
∫

x⊗k exp(−γxT β0)π(dx), k = 0, 1, 2,

where x⊗0 := 1 ∈ R, x⊗1 := x ∈ Rp, and x⊗2 := xxT ∈ Rp ⊗Rp; Assumptions 1 and 2 ensure that all
these quantities are finite for each γ > 0. Moreover,

H′γ(β0) :=
∫∫

f (y|x; β0)
γ+1dyπ(dx) = C(γ, h)Π0(γ),

H′′γ(β0) :=
∫∫

f (y|x; β0)
γ+1s(y|x; β0)dyπ(dx) = −{C(γ, h) + C1(γ, h)}Π1(γ),

Δγ(β0) := C(γ, h)2C2(γ, h)Π0(γ)
2Π2(2γ)

+ {C(γ, h) + C1(γ, h)}2 C(2γ, h)Π0(2γ)Π1(γ)
⊗2

− 2C(γ, h) {C(γ, h) + C1(γ, h)} {C(2γ, h) + C1(2γ, h)}Π0(γ)Π1(2γ)Π1(γ)
T , (14)

Jγ(β0) := C(γ, h)C2(γ/2, h)Π0(γ)Π2(γ)− {C(γ, h) + C1(γ, h)}2 Π1(γ)
⊗2. (15)

We are assuming that density h and tuning parameter γ are given a priori, hence we can
(numerically) compute constants C(γ, h), C1(γ, h), and C2(γ, h). In the following, we often omit
“(β0)” from the notation.

Let L−→ denote the convergence in distribution.

Theorem 1. Under Assumptions 1–3, we have

√
n
(

β̂γ − β0

) L−→ Np

(
0, J−1

γ Δγ J−1
γ

)
. (16)

The asymptotic covariance matrix can be consistently estimated through expressions (14) and (15) with
quantities Πk(γ) therein replaced by the empirical estimates:

Π̂k,n(γ) :=
1
n

n

∑
i=1

x⊗k
i exp(−γxT

i β̂γ)
p−→ Πk(γ), k = 0, 1, 2. (17)
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The proof of Theorem 1 will be given in Appendix A. Note that, for γ → 0, we have C(γ, h)→ 1,
C1(γ, h) → −1, and C2(γ, h) →

∫ ∞
0 uh(ε)

2h(ε)dε, which in particular entails H′γ → 1 and H′′γ → 0.
Then, both Δγ and Jγ tend to the Fisher information matrix

I0 :=
∫∫

s(y|x; β0)
⊗2 f (y|x, β0)π(dx)dy =

∫ ∞

0
uh(ε)

2h(ε)dε
∫

x⊗2π(dx)

as γ → 0, so that the asymptotic distribution Np(0, J−1
γ Δγ J−1

γ ) becomes Np(0, I−1
0 ), the usual one of

the MLE.
We also note that, without details, we could deduce a density-power divergence (also known

as the β-divergence [26]) counterpart to Theorem 1 similarly but with slightly lesser computation
cost; in that case, we consider the objective function �α,n(β) defined by Equation (8) instead of the
γ-(partial-)likelihood (7). See Basu et al. [24] and Jone et al. [21] for details of the density-power
divergence.

5. Algorithm

Even if the GRE criterion in Equation (2) is a convex function, the negative γ-likelihood
function is nonconvex. Therefore, it is difficult to find a global minimum. Here, we derive the
MM (majorize-minimization) algorithm to obtain a local minimum. The MM algorithm monotonically
decreases the objective function at each iteration. We refer to Hunter and Lange [27] for a concise
account of the MM algorithm.

Let β(t) be the value of the parameter at the tth iteration. The negative γ-likelihood function in
Equation (11) consists of two nonconvex functions, �1(β) and �2(β). The majorization functions of
�j(β), say �̃j(β|β(t)) (j = 1, 2), are constructed so that the optimization of minβ �̃j(β|β(t)) is much
easier than that of minβ �j(β). The majorization functions must satisfy the following inequalities:

�̃j(β|β(t)) ≥ �j(β), (18)

�̃j(β(t)|β(t)) = �j(β(t)). (19)

Here, we construct majorization functions �̃j(β|β(t)) for j = 1, 2.

5.1. Majorization Function for �1(β)

Let

w(t)
i =

f (yi|xi; β(t))γ

∑n
j=1 f (yj|xj; β(t))γ

, (20)

r(t)i =
n

∑
j=1

f (yj|xj; β(t))γ f (yi|xi; β)γ

f (yi|xi; β(t))γ
. (21)

Obviously, ∑n
i=1 w(t)

i = 1 and w(t)
i r(t)i = f (yi|xi; β)γ. Applying Jensen’s inequality to y = − log x,

we obtain inequality

− log

(
n

∑
i=1

w(t)
i r(t)i

)
≤ −

n

∑
i=1

w(t)
i log r(t)i . (22)

Substituting Equation (20) and Equation (21) into Equation (22) gives

�1(β) ≤ −
n

∑
i=1

w(t)
i log f (yi|xi; β) + C,
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where C = 1
γ ∑i w(t)

i log w(t)
i . Denoting

�̃1(β|β(t)) = −
n

∑
i=1

w(t)
i log f (yi|xi; β) + C, (23)

we observe that Equation (23) satisfies Equation (18) and Equation (19). It is shown that �̃1(β|β(t)) is
a convex function if the original relative error loss function is convex. Particularly, the majorization
functions �̃1(β|β(t)) based on LPRE and LSRE are both convex.

5.2. Majorization Function for �2(β)

Let θi = −γxT
i β. We view �2(β) as a function of θ = (θ1, . . . , θn)T . Let

s(θ) := log

(
n

∑
i=1

t−γ
i

)
= log

(
n

∑
i=1

exp(θi)

)
. (24)

By taking the derivative of s(θ) with respect to θ, we have

∂s(θ)
∂θi

= πi,
∂2s(θ)
∂θj∂θi

= πiδij − πiπj,

where πi = exp(θi)/{∑n
k=1 exp(θk)}. Note that ∑n

i=1 πi = 1 for any θ.
The Taylor expansion of s(θ) at θ = θ(t) is expressed as

s(θ) = s(θ(t)) + π(t)T(θ− θ(t)) +
1
2
(θ− θ(t))T ∂2s(θ∗)

∂θ∂θT (θ− θ(t)), (25)

where π(t) = (π
(t)
1 , . . . , π

(t)
n )T and θ∗ is an n-dimensional vector located between θ and θ(t). We

define an n× n matrix B as follows:

B :=
1
2

(
I − 1

n
11T
)

.

It follows from [28] that, in the matrix sense,

∂2s(θ)
∂θ∂θT ≤ B (26)

for any θ. Combining Equation (25) and Equation (26), we have

s(θ) ≤ s(θ(t)) + π(t)T(θ− θ(t)) +
1
2
(θ− θ(t))T B(θ− θ(t)). (27)

Substituting Equation (24) into Equation (27) gives

log

{
n

∑
i=1

exp(−γxT
i β)

}
≤ log

{
n

∑
i=1

exp(−γxT
i β(t))

}
− γπ(t)TX(β− β(t))

+
γ2

2
(β− β(t))TXT BX(β− β(t)),

where X = (x1, . . . , xn)T . The majorization function of �2(β) is then constructed by

�̃2(β|β(t)) =
γ2

2(1 + γ)
βTXT BXβ− γ

1 + γ
βT(XTπ(t) + γXT BXβ(t)) + C, (28)

320



Entropy 2018, 20, 632

where C is a constant term free from β. We observe that �̃2(β|β(t)) in Equation (28) satisfies Equation
(18) and Equation (19). It is shown that �̃2(β|β(t)) is a convex function because XT BX is positive
semi-definite.

5.3. MM Algorithm for Robust Relative Error Estimation

In Sections 5.1 and 5.2, we have constructed the majorization functions for both �1(β) and
�2(β). The MM algorithm based on these majorization functions is detailed in Algorithm 1.
The majorization function �̃1(β|β(t)) + �̃2(β|β(t)) is convex if the original relative error loss function is
convex. Particularly, the majorization functions of LPRE and LSRE are both convex.

Algorithm 1 Algorithm of robust relative error estimation.

1: t ← 0
2: Set an initial value of parameter vector β(0).
3: while β(t) is converged do

4: Update the weights by Equation (20)
5: Update β by

β(t+1) ← arg min
β
{�̃1(β|β(t)) + �̃2(β|β(t))},

where �̃1(β|β(t)) and �̃2(β|β(t)) are given by Equation (23) and Equation (28), respectively.
6: t ← t + 1
7: end while

Remark 2. Instead of the MM algorithm, one can directly use the quasi-Newton method, such as the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm to minimize the negative γ-likelihood function. In our
experience, the BFGS algorithm is faster than the MM algorithm but is more sensitive to an initial value than
the MM algorithm. The strengths of BFGS and MM algorithms would be shared by using the following hybrid
algorithm:

1. We first conduct the MM algorithm with a small number of iterations.
2. Then, the BFGS algorithm is conducted. We use the estimate obtained by the MM algorithm as an initial

value of the BFGS algorithm.

The stableness of the MM algorithm is investigated through the real data analysis in Section 7.

Remark 3. To deal with high-dimensional data, we often use the L1 regulzarization, such as the lasso [12],
elastic net [29], and Smoothly Clipped Absolute Deviation (SCAD) [30]. In robust relative error estimation,
the loss function based on the lasso is expressed as

�γ,n(β) + λ
p

∑
j=1
|β j|, (29)

where λ > 0 is a regularization parameter. However, the loss function in Equation (29) is non-convex and
non-differentiable. Instead of directly minimizing the non-convex loss function in Equation (29), we may use the
MM algorithm; the following convex loss function is minimized at each iteration:

�̃1(β|β(t)) + �̃2(β|β(t)) + λ
p

∑
j=1
|β j|. (30)

The minimization of Equation (30) can be realized by the alternating direction method of multipliers
algorithm [14] or the coordinate descent algorithm with quadratic approximation of �̃1(β|β(t)) + �̃2(β|β(t))

[31].
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6. Monte Carlo Simulation

6.1. Setting

We consider the following two simulation models as follows:

Model 1: β0 = (1, 1, 1)T ,

Model 2: β0 = (0.5, · · · , 0.5︸ ︷︷ ︸
6

, 0, · · · , 0︸ ︷︷ ︸
45

)T .

The number of observations is set to be n = 200. For each model, we generate T=10,000 datasets of
predictors xi (i = 1, . . . , n) according to N(0, (1− ρ)I + ρ11T). Here, we consider the case of ρ = 0.0
and ρ = 0.6. Responses yi are generated from the mixture distribution

(1− δ) f (y|xi; β0) + δq(y) (i = 1, . . . , n),

where f (y|x; β0) is a density function corresponding to the LPRE defined as Equation (6), q(y) is a
density function of distribution of outliers, and δ (0 ≤ δ < 1) is an outlier ratio. The outlier ratio
is set to be δ = 0, 0.05, 0.1, and 0.2 in this simulation. We assume that q(y) follows a log-normal
distribution (pdf: q(y) = 1/(

√
2πyσ) exp{−(log y− μ)2/(2σ2)}) with (μ, σ) = (±5, 1). When μ = 5,

the outliers take extremely large values. On the other hand, when μ = −5, the data values of outliers
are nearly zero.

6.2. Investigation of Relative Prediction Error and Mean Squared Error of the Estimator

To investigate the performance of our proposed procedure, we use the relative prediction error
(RPE) and the mean square error (MSE) for the tth dataset, defined as

RPE(t) =
n

∑
i=1

[ynew
i (t)− exp{xi(t)T β̂(t)}]2
ynew

i (t) exp{xi(t)T β̂(t)}
, (31)

MSE(t) = ‖β̂(t)− β0‖2, (32)

respectively, where β̂(t) is an estimator obtained from the dataset {(xi(t), yi(t)); i = 1, . . . , n},
and ynew

i (t) is an observation from ynew
i (t)|xi(t). Here, ynew

i (t)|xi(t) follows a distribution of
f (y|xi(t); β0) and is independent of yi(t)|xi(t). Figure 1 shows the median and error bar of

{RPE(1), . . . , RPE(T)} and {MSE(1), . . . , MSE(T)}. The error bars are delineated by the 25th and
75th percentiles.
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Figure 1. Median and error bar of relative prediction error (RPE) in Equation (31) and mean squared
error (MSE) of β in Equation (32) when parameters of the log-normal distribution (distribution of
outliers) are (μ, σ) = (±5, 1). The error bars are delineated by 25th and 75th percentiles.

We observe the following tendencies from the results in Figure 1:

• As the outlier ratio increases, the performance becomes worse in all cases. Interestingly, the length
of the error bar of RPE increases as the outlier ratio increases.

• The proposed method becomes robust against outliers as the value of γ increases. We observe that
a too large γ, such as γ = 10, leads to extremely poor RPE and MSE because most observations
are regarded as outliers. Therefore, the not too large γ, such as the γ = 0.5 used here, generally
results in better estimation accuracy than the MLE.

• The cases of ρ = 0.6, where the predictors are correlated, are worse than those of ρ = 0. Particularly,
when γ = 0, the value of RPE of ρ = 0.6 becomes large on the large outlier ratio. However,
increasing γ has led to better estimation performance uniformly.

• The results for different simulation models on the same value of γ are generally different, which
implies the appropriate value of γ may change according to the data generating mechanisms.

323



Entropy 2018, 20, 632

6.3. Investigation of Asymptotic Distribution

The asymptotic distribution is derived under the assumption that the true distribution of y|xi
follows f (y|xi; β0), that is, δ = 0. However, we expect that, when γ is sufficiently large and δ is
moderate, the asymptotic distribution may approximate the true distribution well, a point underlined
by Fujisawa and Eguchi ([18], Theorem 5.1) in the case of i.i.d. data. We investigate whether the
asymptotic distribution given by Equation (16) appropriately works when there exist outliers.

The asymptotic covariance matrix in Equation (16) depends on C(γ, h), C1(γ, h), and C2(γ, h).
For the LPRE, simple calculations provide

C(γ, h) =
∫ ∞

0
h(x)1+γdx =

Kγ(2 + 2γ)

2γK0(2)1+γ
,

C1(γ, h) =
∫ ∞

0
xh(x)γh′(x)dx = − Kγ(2 + 2γ)

(1 + γ)2γK0(2)1+γ
,

C2(γ, h) =
∫ ∞

0
u(x)2h(x)2γ+1dx

=
21−2γ

(2γ + 1)2K0(2)2γ+1

{
γ(2γ + 1)K2γ−2(4γ + 2) + (1 + γ + 2γ2)K2γ−1(4γ + 2)

}
.

The Bessel function of third kind, K·(·), can be numerically computed, and then we obtain the
values of C(γ, h), C1(γ, h), and C2(γ, h).

Let z = (z1, . . . , zp)T be

z :=
√

n
{

diag
(

J−1
γ Δγ J−1

γ

)}− 1
2
(

β̂γ − β0

)
.

Equation (16) implies that

zj
L−→ N (0, 1) , (j = 1, . . . , p).

We expect that the histogram of zj obtained by the simulation would approximate the density
function of the standard normal distribution when there are no (or a few) outliers. When there exists a
significant number of outliers, the asymptotic distribution of zj may not be N(0, 1) but is expected to
be close to N(0, 1) for large γ. Figure 2 shows the histograms of T=10,000 samples of z2 along with the
density function of the standard normal distribution for μ = 5 in Model 1.
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Figure 2. Histograms of T = 100,00 samples of z2 along with the density function of standard normal
distribution for μ = 5 in Model 1.

When there are no outliers, the distribution of z2 is close to the standard normal distribution
whatever the value of γ is selected. When the outlier ratio is large, the histogram of z2 is far from the
density function of N(0, 1) for a small γ. However, when the value of γ is large, the histogram of z2

is close to the density function of N(0, 1), which implies the asymptotic distribution in Equation (16)
appropriately approximates the distribution of estimators even when there exist outliers. We observe
that the result of the asymptotic distributions for other zjs shows a similar tendency to that of z2.

7. Real Data Analysis

We apply the proposed method to electricity consumption data from the UCI (University of
California, Irvine) Machine Learning repository [32]. The dataset consists of 370 household electricity
consumption observations from January 2011 to December 2014. The electricity consumption is in kWh
at 15-minute intervals. We consider the problem of prediction of the electricity consumption for next
day by using past electricity consumption. The prediction of the day ahead electricity consumption
is needed when we trade electricity on markets, such as the European Power Exchange (EPEX) day
ahead market (https://www.epexspot.com/en/market-data/dayaheadauction) and the Japan Power
Exchange (JEPX) day ahead market (http://www.jepx.org/english/index.html). In the JEPX market,
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when the prediction value of electricity consumption ŷt is smaller than actual electricity consumption
yt, the price of the amount of yt − ŷt becomes “imbalance price”, which is usually higher than the
ordinary price. For details, please refer to Sioshansi and Pfaffenberger [33].

To investigate the effectiveness of the proposed procedure, we choose one household that includes
small positive values of electricity consumption. The consumption data for 25 December 2014 were
deleted because the corresponding data values are zero. We predict the electricity consumption from
January 2012 to December 2014 (the data in 2011 are used only for estimating the parameter). The
actual electricity consumption data from January 2012 to December 2014 are depicted in Figure 3.

Figure 3. Electricity consumption from January 2012 to December 2014 for one of the 370 households.

We observe that several data values are close to zero from Figure 3. Particularly, from October to
December 2014, several spikes exist that attain nearly zero values. In this case, the estimation accuracy
is poor with ordinary GRE criteria, as shown in our numerical simulation in the previous section.

We assume the multiplicative regression model in Equation (1) to predict electricity consumption.
Let yt denote the electricity consumption at t (t = 1, . . . , T). The number of observations is
T = (365× 3 + 366− 1)× 96 = 146,160. Here, 96 is the number of measurements in one day because
electricity demand is expressed in 15-minute intervals. We define xt as xt = (yt−d, . . . , yt−dq)

T , where
d = 96. In our model, the electricity consumption at t is explained by the electricity consumption
of the past q days for the same period. We set q = 5 for data analysis and use past n = 100 days of
observations to estimate the model.

The model parameters are estimated by robust LPRE. The values of γ are set to be regular
sequences from 0 to 0.1, with increments of 0.01. To minimize the negative γ-likelihood function, we
apply our proposed MM algorithm. As the electricity consumption pattern on weekdays is known
to be completely different from that on weekends, we make predictions for weekdays and weekends
separately. The results of the relative prediction error are depicted in Figure 4.

Figure 4. Relative prediction error for various values of γ for household electricity consumption data.
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The relative prediction error is large when γ = 0 (i.e., ordinary LPRE estimation). The minimum
value of relative prediction error is 0.049 and the corresponding value of γ is γ = 0.03. When we set a
too large value of γ, efficiency decreases and the relative prediction error might increase.

Figure 5 shows the prediction value when γ = 0. We observe that there exist several extremely
large prediction values (e.g., 8 July 2013 and 6 November 2014) due to the model parameters, which
are heavily affected by the nearly zero values of electricity consumption.

Figure 5. Prediction value based on least product relative error (LPRE) loss for household electricity
consumption data.

Figure 6 shows the prediction values when γ = 0.03. Extremely large prediction values are not
observed and the prediction values are similar to the actual electricity demand in Figure 3. Therefore,
our proposed procedure is robust against outliers.

Figure 6. Prediction value based on the proposed method with γ = 0.03 for household electricity
consumption data.

Additionally, we apply the Yule–Walker method, one of the most popular estimation procedures
in the autoregressive (AR) model. Note that the Yule–Walker method does not regard a small positive
value of yt as an outlier, so that we do not have to conduct the robust AR model for this dataset.
The relative prediction error of the Yule–Walker is 0.123, which is larger than that of our proposed
method (0.049).

Furthermore, to investigate the stableness of the MM algorithm described in Section 5, we also
apply the BFGS method to obtain the minimizer of the negative γ-likelihood function. The optim
function in R is used to implement the BFGS method. With the BFGS method, relative prediction errors
diverge when γ ≥ 0.03. Consequently, the MM algorithm is more stable than the BFGS algorithm for
this dataset.
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8. Discussion

We proposed a relative error estimation procedure that is robust against outliers. The proposed
procedure is based on the γ-likelihood function, which is constructed by γ-cross entropy [18]. We
showed that the proposed method has the redescending property, a desirable property in robust
statistics literature. The asymptotic normality of the corresponding estimator together with a simple
consistent estimator of the asymptotic covariance matrix are derived, which allows the construction of
approximate confidence sets. Besides the theoretical results, we have constructed an efficient algorithm,
in which we minimize a convex loss function at each iteration. The proposed algorithm monotonically
decreases the objective function at each iteration.

Our simulation results showed that the proposed method performed better than the ordinary
relative error estimation procedures in terms of prediction accuracy. Furthermore, the asymptotic
distribution of the estimator yielded a good approximation, with an appropriate value of γ, even when
outliers existed. The proposed method was applied to electricity consumption data, which included
small positive values. Although the ordinary LPRE was sensitive to small positive values, our method
was able to appropriately eliminate the negative effect of these values.

In practice, variable selection is one of the most important topics in regression analysis. The
ordinary AIC (Akaike information criterion, Akaike [34]) cannot be directly applied to our proposed
method because the AIC aims at minimizing the Kullback–Leibler divergence, whereas our method
aims at minimizing the γ-divergence. As a future research topic, it would be interesting to derive the
model selection criterion for evaluating a model estimated by the γ-likelihood method.

High-dimensional data analysis is also an important topic in statistics. In particular, the sparse
estimation, such as the lasso [12], is a standard tool to deal with high-dimensional data. As shown in
Remark 3, our method may be extended to L1 regularization. An important point in the regularization
procedure is the selection of a regularization parameter. Hao et al. [14] suggested using the
BIC (Bayesian information criterion)-type criterion of Wang et al. [35,36] for the ordinary LPRE
estimator. It would also be interesting to consider the problem of regularization parameter selection in
high-dimensional robust relative error estimation.

In regression analysis, we may formulate two types of γ-likelihood functions: Fujisawa and
Eguchi’s formulation [18] and Kawashima and Fujisawa’s formulation [17]. Kawashima and Fujisawa
[22] reported that the difference of performance occurs when the outlier ratio depends on the
explanatory variable. In multiplicative regression model in Equation (1), the responses yi highly
depend on the exploratory variables xi compared with the ordinary linear regression model because
yi is an exponential function of xij. As a result, the comparison of the above two formulations of the
γ-likelihood functions would be important from both theoretical and practical points of view.
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Appendix A. Proof of Theorem 1

All of the asymptotics will be taken under n → ∞. We write an � bn if there exists a universal
constant c > 0 such that an ≤ cbn for every n large enough. For any random functions Xn and X0 on

B, we denote Xn(β)
p
⇒ X0(β) if supβ∈B |Xn(β)− X0(β)| p−→ 0; below, we will simply write supβ for

supβ∈B .
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First, we state a preliminary lemma, which will be repeatedly used in the sequel.

Lemma A1. Let η(x; β) and ζ(x, y; β) be vector-valued measurable functions satisfying that

sup
β

max
k∈{0,1}

∣∣∣∂k
βη(x; β)

∣∣∣ ≤ η(x),

sup
β

max
k∈{0,1}

∣∣∣∂k
βζ(x, y; β)

∣∣∣ ≤ ζ(x, y),

for some η and ζ such that

η +
∫ ∞

0
ζ(·, y)dy ∈

⋂
q>0

Lq(π).

Then,

1
n

n

∑
i=1

η(xi; β)
p
⇒
∫
X

η(x; β)π(dx), (A1)

1
n

n

∑
i=1

ζ(xi, yi; β)
p
⇒
∫ ∞

0

∫
X

ζ(x, y; β) f (y|x, β0)π(dx)dy. (A2)

Proof. Equation (A1) is a special case of Equation (A2), hence we only show the latter. Observe that

sup
β

∣∣∣∣∣ 1n n

∑
i=1

ζ(xi, yi; β)−
∫∫

ζ(x, y; β) f (y|x, β0)π(dx)dy

∣∣∣∣∣
≤ 1√

n
sup

β

∣∣∣∣∣ n

∑
i=1

1√
n

(
ζ(xi, yi; β)−

∫
ζ(xi, y; β) f (y|xi, β0)dy

)∣∣∣∣∣
+ sup

β

∣∣∣∣∣ 1n n

∑
i=1

∫
ζ(xi, y; β) f (y|xi, β0)dy−

∫∫
ζ(x, y; β) f (y|x, β0)π(dx)dy

∣∣∣∣∣
=:

1√
n

sup
β

|Mn(β)|+ sup
β

|Cn(β)| .

For the first term, let us recall the Sobolev inequality ([37], Section 10.2):

E

(
sup

β

|Mn(β)|q
)

� sup
β

E {|Mn(β)|q}+ sup
β

E
{
|∂β Mn(β)|q

}
(A3)

for q > p. The summands of Mn(β) trivially form a martingale difference array with respect to the
filtration Fi := σ(xj; j ≤ i), i ∈ N: since we are assuming that the conditional distribution of yi given
{(xi, xi−1, xi−2, . . . ), (yi−1, yi−2, . . . )} equals that given xi (Sections 2 and 3), each summand of
Mn(β) equals 1√

n (ζ(xi, yi; β)− E{ζ(xi, yi; β)| Fi−1}). Hence, by means of the Burkholder’s inequality
for martingales, we obtain, for q > p ∨ 2,

sup
β

E {|Mn(β)|q} � sup
β

1
n

n

∑
i=1

E
{∣∣∣∣(ζ(xi, yi; β)−

∫
ζ(xi, y; β) f (y|xi, β0)dy

)∣∣∣∣q} < ∞.

We can take the same route for the summands of ∂β Mn(β) to conclude that
supβ E

{
|∂β Mn(β)|q

}
< ∞. These estimates combined with Equation (A3) then lead to the

conclusion that
sup

β

|Mn(β)| = Op(1).
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As for the other term, we have Cn(β)
p−→ 0 for each β and also

sup
n

E

(
sup

β

∣∣∂βCn(β)
∣∣) < ∞.

The latter implies the tightness of the family {Cn(β)}n of continuous random functions on the

compact set B, thereby entailing that Cn(β)
p
⇒ 0. The proof is complete.

Appendix A.1. Consistency

Let fi(β) := f (yi|xi; β) for brevity and

Aγ,n(β) :=
1
n

n

∑
i=1

fi(β)γ,

Aγ,n(β) :=
1
n

n

∑
i=1

∫
f (y|xi; β)γ+1dy = C(γ, h)

1
n

n

∑
i=1

exp(−γxT
i β).

By means of Lemma A1, we have

Aγ,n(β)
p
⇒ Aγ(β) :=

∫∫
f (y|x; β)γ f (y|x, β0)π(dx)dy,

Aγ,n(β)
p
⇒ Aγ(β) :=

∫∫
f (y|x; β)γ+1π(dx)dy = C(γ, h)

∫
exp(−γxT β)π(dx).

Since infβ

{
Aγ(β) ∧ Aγ(β)

}
> 0, we see that taking the logarithm preserves the uniformity of

the convergence in probability: for the γ-likelihood function (7), it holds that

�γ,n(β)
p
⇒ �γ,0(β) := − 1

γ
log {Aγ(β)}+ 1

1 + γ
log
{

Aγ(β)
}

. (A4)

The limit equals the γ-cross entropy from g(·|·) = f (·|·; β0) to f (·|·; β). We have �γ,0(β) ≥
�γ,0(β0), the equality holding if and only if f (·|·; β0) = f (·|·; β) (see [17], Theorem 1). By Equation (4),
the latter condition is equivalent to ρ(e−xT βy) = ρ(e−xT β0 y), followed by β = β0 from Assumption
3. This, combined with Equation (A4) and the argmin theorem (cf. [25], Chapter 5), concludes the

consistency β̂γ
p−→ β0. Note that we do not need Assumption 3 if �γ,n is a.s. convex, which generally

may not be the case for γ > 0.

Appendix A.2. Asymptotic Normality

First, we note that Assumption 2 ensures that, for every α > 0, there corresponds a function
Fα ∈ L1 ( f (y|x, β0)π(dx)dy) such that

max
k=0,1,2,3

sup
β

∣∣∣∂k
β { f (y|x, β)α}

∣∣∣ ≤ Fα(x, y).

This estimate will enable us to interchange the order of ∂β and the dy-Lebesgue integration,
repeatedly used below without mention.

Let si(β) = s(yi|xi; β), and

Sγ,n(β) :=
1
n

n

∑
i=1

fi(β)γsi(β),

Sγ,n(β) :=
1
n

n

∑
i=1

∫
f (y|xi; β)γ+1s(y|xi; β)dy.
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Then, the γ-likelihood equation ∂β�γ,n(β) = 0 is equivalent to

Ψγ,n(β) := Aγ,n(β)Sγ,n(β)− Aγ,n(β)Sγ,n(β) = 0.

By the consistency of β̂γ, we have P(β̂γ ∈ B) → 1; hence P{Ψγ,n(β̂γ) = 0} → 1 as well, for B
is open. Therefore, virtually defining β̂γ to be β0 ∈ B if Ψγ,n(β̂γ) = 0 has no root, we may and do
proceed as if Ψγ,n(β̂γ) = 0 a.s. Because of the Taylor expansion(

−
∫ 1

0
∂βΨγ,n

(
β0 + s(β̂n − β0)

)
ds
)√

n
(

β̂γ − β0

)
=
√

nΨγ,n(β0)

to conclude Equation (16), it suffices to show that (recall the definitions (14) and (15))

√
nΨγ,n(β0)

L−→ Np (0, Δγ) , (A5)

−∂βΨγ,n(β̂′n)
p−→ Jγ for every β̂′n

p−→ β0. (A6)

First, we prove Equation (A5). By direct computations and Lemma A1, we see that

√
nΨγ,n = Aγ,n

√
n
(
Sγ,n − Sγ,n

)
−
√

n
(

Aγ,n − Aγ,n
)

Sγ,n

=
n

∑
i=1

1√
n

{
H′γ

(
f γ
i si −

∫
f (y|xi; β0)

γ+1s(y|xi; β0)dy
)
−
(

f γ
i −

∫
f (y|xi; β0)

γ+1dy
)

H′′γ

}
=:

n

∑
i=1

χγ,i.

The sequence (χγ,i)i≤n is an (Fj)-martingale-difference array. It is easy to verify the Lapunov
condition:

∃α > 0, sup
n

sup
i≤n

E
(∣∣χγ,i

∣∣2+α
)
< ∞.

Hence, the martingale central limit theorem concludes Equation (A5) if we show the following
convergence of the quadratic characteristic:

1
n

n

∑
i=1

E
(

χ⊗2
γ,i

∣∣∣Fi−1

) p−→ Δγ.

This follows upon observation that

1
n

n

∑
i=1

E
(

χ⊗2
γ,i

∣∣∣Fi−1

)
= (H′γ)

2 1
n

n

∑
i=1

var
(

f γ
j sj
∣∣Fi−1

)
+ (H′′γ)

⊗2 1
n

n

∑
i=1

var
(

f γ
j

∣∣Fi−1
)
− 2H′γ

1
n

n

∑
i=1

cov
(

f γ
j sj, f γ

j

∣∣Fi−1
)

H′′γ

= (H′γ)
2
{∫∫

f (y|x; β0)
2γ+1s(y|x; β0)

⊗2dyπ(dx)− (H′′γ)
⊗2
}

+ (H′′γ)
⊗2
{∫∫

f (y|x; β0)
2γ+1dyπ(dx)− (H′γ)

2
}

− 2H′γ

{∫∫
f (y|x; β0)

2γ+1s(y|x; β0)dyπ(dx)− H′γ H′′γ

}
(H′′γ)

T + op(1)

= (H′γ)
2
∫∫

f (y|x; β0)
2γ+1s(y|x; β0)

⊗2dyπ(dx)

+ (H′′γ)
⊗2
∫∫

f (y|x; β0)
2γ+1dyπ(dx)− 2H′γ

∫∫
f (y|x; β0)

2γ+1s(y|x; β0)dyπ(dx)(H′′γ)
T + op(1)

= Δγ + op(1)
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invoke the expression (4) for the last equality.
Next, we show Equation (A6). Under the present regularity condition, we can deduce that

sup
β

|∂2
βΨγ,n(β)| = Op(1).

It therefore suffices to verify that −∂βΨγ,n(β0)
p−→ Jγ(β0) = Jγ. This follows from a direct

computation of −∂βΨγ,n(β0), combined with the applications of Lemma A1 (note that Aγ,n and Aγ,n

have the same limit in probability):

−∂βΨγ,n(β0) = Aγ,n

(
1
n

n

∑
i=1

∫
f (y|xi; β0)

γ+1s(y|xi; β0)
⊗2dy

)
− Sγ,nST

γ,n

+ γ
(

Sγ,nST
γ,n − Sγ,nST

γ,n

)
+ γ

{
Aγ,n

(
1
n

n

∑
i=1

∫
f (y|xi; β0)

γ+1s(y|xi; β0)
⊗2dy

)
− Aγ,n

(
1
n

n

∑
i=1

f γ
i s⊗2

i

)}

+

{
Aγ,n

(
1
n

n

∑
i=1

∫
f (y|xi; β0)

γ+1∂βs(y|xi; β0)dy

)
− Aγ,n

(
1
n

n

∑
i=1

f γ
i ∂βsi

)}

= Aγ,n

(
1
n

n

∑
i=1

∫
f (y|xi; β0)

γ+1s(y|xi; β0)
⊗2dy

)
− Sγ,nST

γ,n + op(1)

= H′γ
∫∫

f (y|x; β0)
γ+1s(y|x; β0)

⊗2dyπ(dx)− (H′′γ)
⊗2 + op(1)

= Jγ + op(1).

Appendix A.3. Consistent Estimator of the Asymptotic Covariance Matrix

Thanks to the stability assumptions on the sequence x1, x2, . . . , we have

1
n

n

∑
i=1

x⊗k
i exp(−γxT

i β0)
p−→ Πk(γ), k = 0, 1, 2.

Moreover, for δ, δ′ > 0 given in Assumption 1, we have∣∣∣∣∣ 1n n

∑
i=1

x⊗k
i exp(−γxT

i β0)−
1
n

n

∑
i=1

x⊗k
i exp(−γxT

i β̂γ)

∣∣∣∣∣
�
(

1
n

n

∑
i=1
|xi|k+1 exp

(
δ′|xi|1+δ

)) ∣∣∣β̂γ − β0

∣∣∣ = Op(1)
∣∣∣β̂γ − β0

∣∣∣ p−→ 0.

These observations are enough to conclude Equation (17).
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