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Abstract: This Special Issue hosts papers on aspects of remote sensing for atmospheric conditions
for wind energy applications. The wind lidar technology is presented from a theoretical view on
the coherent focused Doppler lidar principles. Furthermore, wind lidar for applied use for wind
turbine control, wind farm wake, and gust characterizations are presented, as well as methods to
reduce uncertainty when using lidar in complex terrain. Wind lidar observations are used to validate
numerical model results. Wind Doppler lidar mounted on aircraft used for observing winds in
hurricane conditions and Doppler radar on the ground used for very short-term wind forecasting
are presented. For the offshore environment, floating lidar data processing is presented as well
as an experiment with wind-profiling lidar on a ferry for model validation. Assessments of wind
resources in the coastal zone using wind-profiling lidar and global wind maps using satellite data
are presented.

Keywords: Doppler wind lidar; wind energy; aerosol; wind turbine; wind farm; wake; control;
complex terrain; offshore

1. Introduction

Wind power is an important ingredient in the energy mix for achieving the objectives of the Paris
Climate Change agreement and the Sustainable Development Goals. Next to hydropower, wind energy
is the renewable energy source that contributes the most to the electricity generation worldwide with
around 6%. By the end of 2018, the installed wind power capacity surpassed 600 GW with a growth of
nearly 54 GW during 2018 [1].

The levelized cost of energy from wind power is competitive with that of the conventional energy
sources at wind-favorable land sites. However, there is still a need to further understand and efficiently
use available wind resources. This is the key motivation for research in wind energy where efforts are
ongoing to lower the cost of wind energy at offshore sites, in complex terrain, and in forested areas.
The wake effect within and between wind farms and wind-power forecasting are areas with increasing
importance because of the need to accurately predict wind power. There is, therefore, a need for
reliable, robust, and accurate measurements and datasets to further improve our understanding of the
physical conditions in which wind turbines and wind farms operate and for flow model evaluation.

Nowadays, remote sensing observations are used widely in wind energy applications. During
recent years, remote sensing technologies for wind have been improved in terms of accuracy and
costs. The Research Infrastructure WindScanner.eu [2,3] and other new lidar advancements for the
measurement of atmospheric wind and turbulence have evolved and lidars are used for research in
many application fields. Site assessment based on lidar is being progressively achieved. Commercial
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acceptance of lidars, including floating lidars, for wind resource assessment and power performance
testing is taking place.

It has been an amazingly fast development of the modern wind lidars spurred by the
electro-optical developments in the telecom industry. The wind energy lidar application era started
in 2003 with the testing of a continuous-wave lidar near a tall meteorological mast onshore [4]. Still,
to the editors’ knowledge, no entire book has yet been written on remote sensing for wind energy
applications, but a compendium for education at PhD level [5] is available as well as a chapter in
a book about Energy Forecasting [6].

This Special Issue, “Remote Sensing of Atmospheric Conditions for Wind Energy”, from 2019 is
successor to the Special Issue, “Remote Sensing for Wind Energy” [7], from 2016. There are 15 articles
in the present special issue, of which 13 are on wind lidar, while in the first special issue, 9 out of
11 articles were on wind lidar. In conclusion, the wind lidar technology is dominant within remote
sensing research for wind energy application at present.

In the first special issue [7], 11 articles on remote sensing for wind energy were presented.
Three articles on wind lidar for wind farm wake application were given. Kumer et al. [8] focused on
characterization of turbulence in the wake using lidar. Doubrowa et al. [9] focused on the uncertainty
on mean winds within wind farm wake using lidar, while Dooren et al. [10] presented a methodology
to reconstruct the 2D horizontal wind fields in wind farm wake based on lidars.

Along the lines of obtaining the best possible data from wind lidar, a methodology for field
calibration of nacelle-based lidar was presented by Borraccino et al. [11] and a comparison of lidar data
observed using three scanning lidars directed to one point versus a profiling lidar installed in complex
terrain was presented by Pauscher et al. [12,13]. The latter result is important for site assessment in
complex terrain.

Site assessment using lidar was also presented for other types of terrain. Floors et al. [14] presented
the scanning lidar for wind resource assessment in the coastal offshore zone and Kim et al. [15]
presented the use of lidar for wind assessment for high-rise building planning in urban areas.

The wind gust detection using lidar was presented by Bos et al. [16] and Vasiljević et al. [17]
presented the so-called long-range WindScanner incorporating three synchronized lidar beam scanners
as well as a summary of lidar field experiments.

Two studies were on satellite remote sensing. Chang et al. [18] presented on land surface
temperature increase in very stable atmospheric conditions during nighttime at a large-scale wind
farm in China and Hasager et al. [19] presented on ocean surface wind speeds climatology during
25 years in the South China Sea and the Atlantic North Sea.

The following Section delivers a summary of all the 15 articles published in the current special
issue. Thirteen of the articles present on wind lidar. The listing of contributed articles starts with the
overview article on the way towards acceptance of wind lidar within the wind energy community
followed by contributions on the Doppler wind lidar technology, lidar for wind turbine control,
wind turbine wake measuring using lidar, gust characterization based on lidar, and lidar for use in
complex terrain. Airborne wind lidar used for measuring in hurricane conditions and ground-based
Doppler radar for very short-term periods follow. Next come contributions on offshore applications
including floating lidar, lidar on board a ferry, and lidars installed at the coast for characterizing coastal
offshore winds. Finally, a global perspective using satellite wind data is given.

2. Overview of Contributions

Within the wind energy community, the use of wind lidar is an important new focus area with
a wide spectrum of applications including site assessment, power performance testing, controls and
loads, and complex flows as presented in the overview given by Clifton et al. [20]. That contribution is
a status update for the International Energy Agency (IEA) Wind Task 32 called “Wind Lidar Systems for
Wind Energy Deployment” that since 2012 at international level aims to identify and mitigate barriers
to the adoption of lidar for wind energy applications. Already achieved are several recommended
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practices and expert reports that have contributed to the adoption of ground-based, nacelle-based,
and floating lidar by the wind industry. It is concluded that despite progress in identifying barriers to
the adoption of wind lidar for wind energy applications—and mitigating some of them—there remains
a significant amount of research to be done in this field.

The coherent focused continuous-wave Doppler wind lidar fundamental equations and principles
are presented in Hill [21]. The comprehensive overview in general aims at bringing forward the classical
radar/lidar lessons to the broader community presently applying coherent Doppler lidars. In particular,
the behavior that may be observed from a modern coherent lidar used at short ranges (e.g., in a wind
tunnel) and/or with weak aerosol seeding where only very few scatterers are present in the probe
volume is explained. Results on simulation of few-scatterer and multiscatterer lidar experiments are
revisited and in addition, a discussion of some problems (and solutions) for Doppler-sign-insensitive
lidars is presented.

Simley et al. [22] present the topic of optimizing lidars for wind turbine control. A large body
of work on the optimization of lidar beam configuration via the resulting controller performance,
time domain assessments of measurement accuracy, and direct frequency domain calculations of
measurement coherence and measurement error is presented. Simley et al [22] present results
considering beam configuration optimization for rotor effective wind speed. Various lidar types
including coherent continuous wave lidar and pulsed four-beam lidar are included. Also important is
the lidar data availability for the feedforward pitch controller for rotor speed regulation.

Wind turbine wake characterization based on observations using two nacelle-mounted pulsed
scanning Doppler lidars at 2.5 MW wind turbines is presented by Carbajo Fuertes et al. [23]. One lidar
measured the inflow while the other measured the downwind wake region. The observations were
dedicated to quantify the growth rate of the wake width, the near- and far-wake extent, and the
velocity deficit. The observations were compared to an analytical wake model, with good results for
the velocity deficit and wake expansion. It was observed that higher turbulence intensity in the inflow
resulted in shorter near-wake length and in faster recovery of the velocity deficit.

Carbajo Fuertes and Porté-Agel [24] used a virtual lidar approach to assess how accurate it appears
possible to observe with lidar in the full-scale wind turbine wake. The study was based on Large-Eddy
Simulation (LES) model results for a wake. The performance of a virtual lidar performing stacked
step-and-stare plan position indicator (PPI) scans within the volume was calculated and the volumetric
reconstruction of the winds and the accuracy were assessed for the average velocity. As an outcome,
optimization of the angle resolution that minimizes the total error was provided.

Zhou [25] contributed a study using a coherent Doppler lidar data set of three hours to study wind
gusts on a scale from 100 m to 1000 m. The method proposed to extract gusts from a wind field and
track their movement utilizes the “peak over threshold method”, Moore–Neighbor tracing algorithm,
and Taylor’s frozen turbulence hypothesis. The prediction model was used to estimate the impact of
gusts with respect to arrival time, the probability of arrival locations, the span-wise deviation of the
gusts, and the gust size. Finally, the method was used to estimate the impact of gust on the production
on a hypothetical wind farm.

Mayor and Dérian [26] refuted statements in Zhou [25] that argued on impracticality of motion
estimation methods to derive two-component vector wind fields from single scanning aerosol lidar
data. Two image-based motion estimation methods, namely the cross-correlation and wavelet-based
optical flow methods, were demonstrated to be also practical to use for wind gust detection and
impact prediction on wind turbines. The characteristics and performances of the cross-correlation and
wavelet-based methods were compared to a two-dimensional variational method applied to radial
velocity fields from a single scanning Doppler lidar. In conclusion, the wavelet-based method and
two-dimensional variational method have much in common and both are practical to use.

In complex terrain, ground-based wind-profiling lidars are used for observing the vertical wind
profile but with additional uncertainty as compared to use in flat terrain. Hofsäß et al. [27] analyzed
a wind lidar data set and compared to wind speeds observed at a 100 m tall meteorological mast

3



Remote Sens. 2019, 11, 781

near an escarpment of 150 m height in Germany. Three different methods to optimize the lidar data
reconstruction were evaluated. It was found that a linear approach performed the best. Furthermore,
the influences of the opening angle of the scanning cone and the scanning duration on data quality
were analyzed in the data set. The opening angle had importance, while the scanning duration did not.

Risan et al. [28] also investigated flow in complex terrain using lidar. This study was based on
a pulsed lidar measuring towards a ridge in Norway. The lidar data were used for comparison
to Computational Fluid Dynamic (CFD) model results using two methods: one was a hybrid
Reynolds-Averaged Navier Stokes (RANS)/Large-Eddy Simulation (LES) model, the other was a more
traditional RANS model. The lidar data 10-minute mean wind speeds were very accurate compared to
sonic wind data, while the 1-second turbulence had lower accuracy compared to sonic data. However,
both the mean wind speed along the line of sight and the turbulence data were useful for comparing
the performance of the two flow models. The first model performed well but overestimated the
turbulence at the ridge, while the other model failed to estimate the turbulence over the ridge.

Zhang et al. [29] presented analysis of airborne Doppler wind lidar observation from a tropical
storm called Erika (2015) in the US. The lidar was installed on a P3 Hurricane Hunter aircraft.
The observations were compared with two other types of vertical profiling data sets. One was the
dropsonde measurements, the other Doppler radar. Lidar and dropsonde wind speeds correlation was
high and root-mean-square error and bias were low. The wind lidar enlarged the sampling size and
spatial coverage of boundary layer winds, and was found valuable for real-time intensity forecasts and
for understanding boundary layer structure and dynamics, and can be used for offshore wind energy
applications. The lidar operates best in rain-free and low-rain conditions while the radar performs
better in rain. Thus the lidar and radar are complementary in observing winds.

Valldecabres et al. [30] investigated Dual-Doppler radar data from two radars located on the
coastline and observing several kilometers offshore covering an offshore wind farm in the North Sea.
The radar-based wind data are analyzed to produce very short-term wind power forecasts, around
five minutes ahead. The wind variations observed upstream are used in an advection Lagrangian
persistence technique to forecast the density of wind speeds at the target turbines. The radar-based
forecasts outperformed the persistence and climatology benchmarks when predicting the power
generated. The radar-based forecasts were corrected for induction effects. It is important that
a sufficiently large spatial coverage of the inflow for a turbine is observed to produce a reliable
density forecast.

The winds offshore in the coastal zone were investigated using two vertical profiling pulsed lidars
by Shimada et al. [31]. The instruments were located at the coast and 400 m out, mounted on a long
pier in Japan. Six months of observations were available for the analysis that focused on the effect of
fetch for winds blowing from land to sea. Also, the winds from the ocean towards land were analyzed.
The effect of fetch at several levels up to 200 m were quantified and a strong gradient was noted at the
lower heights but less pronounced at higher levels. The data set would be valuable for comparison to
model results of the coastal wind climate.

Gottschall et al. [32] also investigated offshore coastal winds using lidar observations. The study
was based on a pulsed vertical profiling lidar installed on board a ferry that daily passes a distance of
several hundreds of kilometers in the Baltic Sea. The lidar data were motion-corrected using relevant
motion measurements. The data availability was good and observations reached as high as 250 m.
The lidar data were subsequently used for comparison to a mesoscale numerical weather prediction
model, and the correlation of wind speeds was good. The ferry-based lidar data are from a trajectory
so the collocation of lidar data and model results prior to comparison had to be done.

Gutiérrez-Antuñano et al. [33] focused on motion correction of data from a floating vertical
profiling coherent continuous wave lidar observing in the Netherlands. The comparison of the
observations from the floating lidar uncorrected and corrected were done to sonic anemometer
measurements and data from a fixed vertical wind-profiling lidar nearby during 60 days of observations.
Both 10-minute mean wind speed and turbulence were analyzed. The proposed motion correction
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method combines a software-based velocity-azimuth display and motion simulator and a statistical
recursive procedure. It assumes simple-harmonic motional conditions such that only one motional
amplitude and period is needed and wind direction is neglected. The comparison was good for both
wind speed and turbulence in particular comparing lidar to lidar.

Guo et al. [34] analyzed the archive of satellite ocean wind speed products based on two
scatterometers, ASCAT and QuikSCAT, and one passive polarimetric microwave, WindSat, satellite.
Firstly, the wind products were compared to ocean buoy data during several years and differences in
the biases between the products and buoy winds were noted. Next, the collections of data sets were
combined and mean wind speed was calculated in all grid cells. A simple extrapolation to 100 m was
done and wind power density was estimated.

3. Conclusions

This Special Issue highlights the use of remote sensing for atmospheric conditions for wind energy
research. Wind lidar is the dominant remote sensing method giving new opportunities for observing
winds and turbulence and the wind lidar technology is applied broadly. The lidar observations prove
useful for validating models as well as for characterizing the boundary layer structure and dynamics.
This is particularly valuable in complex terrain and offshore. The flow near wind turbines and wind
farms influenced by the operating wind turbines (i.e., wake and inflow) is observed well by remote
sensing and remote sensing data are useful for forecasting the power at very short time scales.
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Abstract: IEA Wind Task 32 exists to identify and mitigate barriers to the adoption of lidar for
wind energy applications. It leverages ongoing international research and development activities
in academia and industry to investigate site assessment, power performance testing, controls and
loads, and complex flows. Since its initiation in 2011, Task 32 has been responsible for several
recommended practices and expert reports that have contributed to the adoption of ground-based,
nacelle-based, and floating lidar by the wind industry. Future challenges include the development of
lidar uncertainty models, best practices for data management, and developing community-based
tools for data analysis, planning of lidar measurements and lidar configuration. This paper describes
the barriers that Task 32 identified to the deployment of wind lidar in each of these application areas,
and the steps that have been taken to confirm or mitigate the barriers. Task 32 will continue to be a
meeting point for the international wind lidar community until at least 2020 and welcomes old and
new participants.

Keywords: wind energy; resource assessment; power performance testing; wind turbine controls;
complex flow; Doppler lidar

1. Introduction

Wind lidar can measure the line of sight (LOS) wind speed at distances from a few centimeters
to several kilometers. Depending on their deployment, the LOS speed is obtained by means of lidar
systems firmly sitting on the ground, floating in the water or orbiting around the Earth. The first
commercial wind lidar systems targeted at wind energy applications appeared in the early 2000s [1].
Because of their costs and ease of installation, lidar have become accepted as an alternative to the
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traditional mast-based wind sensors for site assessment and power performance testing, as evidenced
by their inclusion in international standards (e.g., [2]). They are popular offshore because they reduce
the need for a fixed platform (e.g., [3]). Additionally, because they can measure upwind of operating
turbines, wind lidars are being used for feed-forward control of wind turbines [4]. However, despite
their advantages, wind lidars have not replaced traditional anemometry in everyday use.

IEA Wind Task 32 “Wind Lidar”—herein referred to as “Task 32”—was set up in 2011 to support
the deployment of lidar for wind energy applications. Its members identify the barriers to the
deployment of lidar for wind energy and develop roadmaps to removing those barriers that can
then be implemented by the wind energy lidar community. Task 32 is one of several international
collaborative research tasks that are enabled by the International Energy Agency (IEA) Technology
Collaboration Programme (IEA Wind TCP). IEA Wind is a vehicle for member countries to exchange
information on the planning and execution of large-scale wind system projects and to undertake
co-operative research and development projects called Tasks or Annexes.

In 2015, participants in Task 32 identified four main application areas where an international
collaboration between researchers, device manufacturers, end users and other stakeholders could
mitigate barriers. These application areas include site assessment, wind turbine power performance,
wind turbine controls, and the use of lidar to measure complex flow. The application areas are currently
at different technology readiness levels: lidar systems are already used by industry for site assessment
and power performance, and so the barriers are more related to implementation. For loads and
control as well as for use in complex flow applications, there are still open research questions to solve
(Figure 1). This paper describes the barriers that Task 32 identified to the deployment of wind lidar in
each of these application areas, and the steps that have been taken to confirm or mitigate the barriers.

The barriers identified in this paper are generally described in terms of specific “use cases”,
for example for the use of nacelle-mounted, forward-looking lidar for wind turbine control. A use case
has three elements:

1. Data requirements. A fundamental aspect of the “use case” approach is the articulation of
the needs that are being fulfilled by the measurement campaign in advance, without reference
to any assumptions about instrument capabilities, to ensure an outcome-driven approach to
measurement and analysis campaign design is adopted. This contrasts with the constraint-driven
approach previously adopted in response to the limitations of instruments that preceded lidar,
such as met masts.

2. Measurement method. Given the diversity of methods that can be implemented using lidar, it is
important that a technique is selected that both fulfills the data requirements and is amenable
to complete documentation, such as risk assessments and method statements, to support
repeatability and reproducibility of measurements.

3. Measurement situation. A given measurement method will perform with respect to accuracy
in different ways under different sets of circumstances. It is important that the situation in
which the lidar is operated is documented and its influence on lidar performance is understood.
Assumptions entailed by wind flow reconstruction algorithms may be invalid under certain
sets of circumstances. The result of a calibration of a lidar operated in accordance with a given
method in a given situation is only transferable to situations (i.e., can be used later or elsewhere)
that are similar in all important respects (those that influence lidar performance) where the same
method is used.

The adoption of a use case approach to describing lidar operations ensures all the relevant
information is captured to ensure lidar is operated in a consistent manner that is fit for purpose and
supports calibrations and uncertainty evaluations that are transferable.

Readers are asked to note that, because of commercial considerations, it is not always possible to
provide quantitative information on business practices within the wind energy industry. Therefore,
some material in this text is by necessity qualitative. Unless otherwise stated, such material is based
on anecdotal evidence or from presentations and discussions at IEA Wind Task 32 and other meetings.
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Figure 1. Barriers to the use of lidar technology in wind energy applications are mostly related to
implementation and research.

2. Lidar for Site Assessment

Site assessment is the process of quantifying the wind and weather conditions on a potential wind
farm site on land or offshore. The objective of a site assessment is to measure parameters such as wind
speed, turbulence intensity, gusts, and wind direction at multiple heights, and also the temperature,
pressure, and precipitation at the site. This information is used to derive the information needed to
layout the plant (for example, wind shear or veer), help select suitable wind turbines, and estimate
power production before a wind farm is built [5,6]. The basic value of such studies is in providing the
data required for a wind energy development; further value can be added by reducing the uncertainty
of the data, which reduces financing costs [7,8].

2.1. On Land

Wind lidar have many applications in wind energy project development. For example, profiling
lidar can often measure wind speed and direction up to 300 m above ground and so can be used to
confirm hub-height wind speeds based on vertical extrapolation from meteorological (met) tower
measurements at lower heights above ground [9]. Profiling wind lidar can also directly measure the
wind speed at multiple heights across the potential turbine rotor disk [10]. Scanning devices may
measure up to 10 km away, enabling measurements across a site from one location (see, e.g., [11–13]).

These applications require measuring LOS wind speed with the lidar and converting them in to a
wind speed and direction. This process—known as wind field reconstruction—requires a model of
the flow. In simple terrain, a very basic homogeneous flow model is assumed, thus a wind vector for
the whole flow can be estimated by probing the wind field from different directions to give multiple
different line of sight speed, azimuth and elevation data. The wind vector is derived by fitting the
measured LOS wind speeds to a wind vector, assuming horizontal homogeneity [14].

An initial barrier to the adoption of wind lidar was a lack of guidelines or standards for specific
applications and situations. In order to support the adoption of wind lidar, Task 32 worked with IEA
Wind Task 11 to develop recommended practices for the use of remote sensing for resource assessment
in simple terrain [15]. This internationally recognized, community-led recommended practice and
other industry guidelines helped users gain confidence in lidar.

Another early barrier to the use of lidar was its purchase cost. Initially, manufacturers argued that
the total cost of ownership of a lidar was comparable to two or more tall met masts [8], and that value
could be gained by reducing uncertainty. Since then, the purchase price of lidar hardware has come
down. This may be related to the increasing availability of high-quality photonics and electronics at
lower prices, better manufacturing processes, and competition between manufacturers. The cost of
lidar is therefore no longer seen as a hard barrier to deployment, but even so a reduction in the lifetime
cost of lidar would make it even more compelling for wind energy applications. Although Task 32
does not address cost directly, the Task helps users exchange ideas and experiences with wind lidars
and thereby helps reduce the learning curve and increase the potential value that can be extracted
from the lidar data.

Because of the way they obtain and process data, the turbulence information obtained from a
lidar differ from those obtained by point measurements from a cup, or smaller volumes such as sonic
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anemometers [16,17]. Task 32 members produced a comprehensive report that summarized these
issues and potential solutions in 2015 [18]. The potential for differences between turbulence metrics
obtained by lidar and other devices does not appear to have become a barrier to adoption.

As lidar has become more widely used and wind energy developments have moved into more
complex terrain, questions have been raised around the use of lidar in complex terrain. This is because
flow reconstruction in complex terrain is challenging because the flow is no longer homogeneous
(e.g., [19]). Furthermore, heterogeneity makes measurements from traditional anemometers less
representative of an area as well. Early thoughts on the barriers to the use of lidar in complex terrain,
and potential ways to mitigate its effect, were summarized in a 2015 Task 32 report [11]. The most
common approach currently to measuring in complex terrain conditions is to use lidar and mast
measurements together with appropriate flow models (e.g., [20]). Other mitigation methods that can
be used with other types of complex flow are described in Section 6.

A Task 32 workshop in November 2017 explored the current barriers to the use of lidar for site
assessment in complex terrain. The workshop used a series of desktop planning studies around the use
of wind lidar in complex terrain. Many of the barriers that were identified also hold for simpler terrain:

• The role of flow models: One way to improve wind field reconstruction is to use flow models
to fit measurements to a modelled wind field, especially in complex terrain. If this approach
becomes common it would mean that the adoption of lidars is directly related to the validation
and acceptance of flow models.

• Unknown uncertainty: Current approaches quantify wind speed uncertainty as the root mean
square difference between the wind speed measured by lidars, and that measured by cup
anemometers. This requires either that a cup anemometer have no other sensitivity than to
the wind speed, or that all external factors are known and can be accounted for especially if they
change during a measurement. This uncertainty model may hold in simple, flat terrain with low
turbulence and no precipitation, icing, or vertical flow component. However, in complex terrain
or where there is significant variation in external conditions, the uncertainty of a lidar could be
considered undefined as both the cup and lidar have unknown sensitivities outside of a narrow
ideal range.

• Lacking or misleading guidelines: Existing recommended practices and standards do not cover
the whole range of potential applications and fail to explain what should be done to achieve
satisfactory measurements in complex terrain.

• Lack of experts: Deploying and operating wind lidar requires training and experience. There are
simply not enough experienced users available to support the many possible uses of wind lidar.
This delays its deployment and increases costs.

The November 2017 workshop and other events noted that complex terrain can make site access
difficult and that complex terrain is often associated with a lack of access to reliable power. Because
these issues are equally a problem for towers, they have not been a focus of Task 32 work. Importantly,
the reliability and availability of the lidar itself was not identified as an issue, which reflects progress
made in the last decade in developing lidar as a commercial product.

2.2. Offshore

Offshore lidar applications for site assessments can be subdivided into installations on fixed
platforms (Section 2.2.1) and on (or in) floating structures such as buoys (Section 2.2.2).

2.2.1. Fixed Lidar Offshore

Wind lidars mounted on existing offshore platforms near to project sites can be a viable alternative
to conventional offshore met towers (see, e.g., [21]). Potential deployment locations include offshore
meteorological stations as well as oil or natural gas rigs, whether disused or still in operation.
Some modifications may be required to make the lidar system reliable in the offshore environment.

11



Remote Sens. 2018, 10, 406

Based on the review of an extensive body of onshore and offshore evidence, as reported from various
industry stakeholders, the use of industry-proven ground-based lidars operated on an offshore
stationary platform is considered a benign scenario, provided that no significant flow distortion
from the platform or its components might affect the lidar measurements. Industry-proven lidars are
lidar types that are commercially available and have an accepted track record onshore. An example of
the steps required for a lidar type to be considered “industry-proven” is given in Section 2.2.2 of [22].
This benign scenario further increases the potential competitiveness of fixed lidar to conventional
offshore met masts.

As with any use of lidars, it is best practice to carry out an appropriate pre- and post-deployment
verification program onshore. Furthermore, a sufficient length of data set and data coverage rates
are key objectives in wind resource measurement campaigns. Hence, lidar deployments should span
a similar period as those undertaken with conventional anemometry. In addition, as with onshore
deployments, it is crucial to deploy a lidar system offshore with a sufficient power supply and an
appropriate operations and maintenance (O&M) program. If these conditions are met, it is anticipated
that similar amounts and quality of wind data would be obtained from industry-proven lidars mounted
on a stationary platform, as those from a classical offshore mast (see, e.g., [21]).

Traditional offshore met masts have relatively complex structure and low porosity, which results
in increased drag and flow distortion around the mast compared to guyed, land-based towers.
Such effects are also poorly predicted using current standards [23]. Although the platform itself
may cause localized effects, these flow distortions rarely extend to the measurement height [21],
and thus lidar wind measurements may even be more accurate than a mast. This further adds to the
advantages of a wind lidar in the offshore environment. The main barrier to adoption is to collect
evidence for these advantages.

Lidar on fixed offshore platforms can also be used to calibrate floating lidar systems. This method
was included in a IEA recommended practices document [24].

2.2.2. Floating Lidar

Floating Lidar Systems (FLSs) are essentially lidar units mounted on buoys. The first FLS were
developed and tested in the late 2000s to meet the wind industry’s needs for data for offshore wind
resource assessment. They offered the potential for reduced costs compared to fixed met masts, similar
data, and the ability to measure at the same or even greater heights above water. The first barrier
to their adoption was a lack of experience with such systems and a question of whether or not such
devices would survive and deliver the required data. Initial results were promising, which together
with the potential cost savings helped drive their adoption [25].

One early barrier to the adoption of floating lidar technology was the lack of objective measures
of the performance and maturity of an FLS. To address this, the Carbon Trust Offshore Wind
Accelerator programme (OWA) developed a “Roadmap for the commercial acceptance of floating
lidar technology” [22], which included key performance indicators (KPI). The Roadmap defined several
objective maturity stages based on the FLS performance measured using the KPIs and respective
acceptance criteria.

Another early challenge was how to effectively deploy and use an FLS for different use cases.
Therefore, Task 32 started an initiative in 2012 to collect recommended practices (RP) for the application
of FLSs. A first collection was published as a state-of-the-art report in early 2016, and then further
developed with the support of the Carbon Trust as part of a project within the OWA programme.
Finally, a new IEA Wind Recommended Practices document (RP 18, “Floating Lidar Systems”) that
combined aspects of all of these documents was published in autumn 2017 [24].

Today, there are about 10 different FLS providers, offering quite different designs. A schematic
diagram of one design is shown in Figure 2. Most current FLSs use industry-proven lidars that were
originally designed for use on land. Experience has shown that these lidars can be deployed on
floating platforms with minor adjustments such as an offshore-qualified casing or bird deterrents.
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At least six systems have so far reached the Carbon Trust’s “pre-commercial” maturity stage. KPIs for
commercial maturity are not yet fully defined, but will be developed in 2018 as part of an ongoing
Carbon Trust initiative.

Figure 2. Schematic drawing of an FLS and its components [3].

Despite progress, some barriers remain to the adoption of FLSs. These include:

• Motion: In an FLS, the movement of the sea imparts motion on the platform and the lidar,
which makes it challenging to maintain the accuracy of the wind speed and direction measured
by the FLS [26,27].

• Reliability: An FLS is often deployed in remote locations in extremely challenging environments,
which necessitates robust, autonomous, and reliable measurement, power supply, data logging,
and communication systems [25].

• Acceptance: During a Task 32 Workshop in February 2016 on “Floating Lidar Systems: Current
Technology Status and Requirements for Improved Maturity”, the acceptance of the (mature)
technology by the industry was identified as a remaining barrier to adoption.

A common understanding is that future activities for the further promotion of floating lidar
technology need to focus even more on the interests of the end-users. This is needed to reach full
acceptance of the technology by demonstrating a validated performance with respect to the final wind
resource estimates and at the most attractive costs. When these objectives are met, FLSs have the
potential to serve a significant part of the market for offshore wind resource assessments.

2.3. Lidar Verifications

Given the importance of accurate wind measurements, it is industry best practice to verify a
specific lidar device at an appropriate onshore flat terrain (or offshore) test site before and—should
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inconsistent behavior be observed during the measurement campaign—after the measurement
campaign. The purpose of lidar wind data comparisons against co-located cup data from a met
mast is to assess the capability of the lidar device to measure wind speed and direction to the same
level of accuracy as what is obtained with conventional anemometry. This verification process ensures
traceability back to classical anemometry, and provides a lidar unit specific standard uncertainty of
wind measurements.

Current best practice is therefore to verify the lidar against anemometers on a tall conventional
met mast. This mast should be documented as satisfying the guidelines of the International
Electrotechnical Commission (IEC) standard 61400-12-1, Ed 2 [2] for low uncertainty anemometry,
which allows traceability and confidence in the results. Such a mast is often known as “IEC compliant”.
While measurements from high quality cup anemometers are still seen as the norm against which any
new measurement device should be judged, alternative reference data are seriously discussed and
developed. For example, verification against a so-called “Golden Lidar” (a lidar unit of the same type
that has repeatedly been calibrated against a more accurate reference) may also prove to be sufficient.
However, the mechanical cup anemometer has been, and continues to be, the industry standard for
measuring the wind speed at potential wind farm development sites.

The usually applied direct comparison of the readily reconstructed wind speed and direction
(reconstructed from the line-of-sight measurements along the laser beams) with the corresponding
reference quantity is called a Black Box verification. It is “black” as no insight into the wind data
reconstruction process (i.e., neither of lidar geometry nor of algorithms) is needed. Only the final lidar
wind data output is used for comparison to the reference measurements. In contrast to that, a White
Box verification treats components of instrument function and reconstruction algorithm, individually.
The White Box approach can be applied if assumptions entailed by the reconstruction algorithm
(e.g., flow homogeneity within the lidar’s measurement volume) are valid for the test site (e.g., benign
flow conditions over non-complex terrain), and by extension, for sites for which the test results are
considered to be valid. Weaknesses of this approach are that these assumptions may not be valid,
and that multiple reference instruments are used to verify the wind speed and direction (cups and
vanes). Strengths of the white box approach include greater flexibility in the test setup: all the details
of the final deployment are not replicated during the test of the system’s individual components
and subsystems. However, if a feature of the final deployment is not adequately represented either
in the test setup or the assumptions on which wind field reconstruction is based, an unanticipated
bias or uncertainty can arise which cannot be observed without Black Box testing. There is a strong
need in the wind industry to foster the acceptance of this technology by reducing the measurement
uncertainty, as still too high uncertainties represent a barrier using lidar technology. It is often the
reference uncertainty from the cup calibrations which dominates the overall uncertainty of the lidar
verifications, compared to the uncertainty from the actual comparison. Thus, to mitigate this in the
future, it is important to obtain a less conservative handle on reference uncertainties than that currently
suggested by the IEC standard.

3. Lidar for Power Performance Testing of Wind Turbines

Wind lidars are attractive for power performance testing because they can be deployed temporarily
on the ground or turbine nacelle to provide the required wind data, or they can be integrated into
the turbine design and used to provide continuous performance monitoring. In addition, lidars have
the ability to provide wind speed and direction data at multiple heights across the rotor to better
characterize turbine response with respect to wind shear and wind veer. For nacelle or scanning
lidars, there is potential for a single device to measure data over a range of horizontal positions which
can allow modelling of turbine performance at any site and as subject to features (e.g., forest edges,
buildings, etc.) in flat terrain. Task 32 has been active in the promotion and validation of new methods
for defining wind speed for power performance using ground- and nacelle-based lidar.
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3.1. Ground-Based Measurements

Ground-based lidar operation includes onshore applications where the lidar is situated on the
ground or on a stable structure such as a building, and offshore operations where the lidar is situated
on a fixed structure such as a met mast platform, a substation or an offshore wind turbine transition
piece walkway. Task 32 has also supported validation of the uncertainty guidance published in Edition
2 (2017) of the IEC 61400-12-1 Standard [2]. Several barriers have been identified for the use of ground
based lidar in power performance measurements, including:

• Calculation of a rotor equivalent wind speed (REWS) from lidar measurements
• Reduction of lidar uncertainty compared to a cup anemometer
• Application of lidar in complex terrain.

Task 32 has addressed these barriers in partnership with other groups. In 2014, Task 32 conducted
a comparative exercise using common data to calculate REWS [10]. The exercise helped show where
discrepancies might exist in the interpretation of the draft standard and gave industry participants an
opportunity to apply and refine the method. Feedback from the exercise was incorporated into Ed. 2
of IEC 61400-12-1 to facilitate use of the REWS.

In 2016, Task 32 organized a second comparative exercise and follow-up workshop with support
from the Power Curve Working Group. The purpose of the exercise was to estimate the uncertainty in
power performance measurements when using a lidar as a standalone device or to normalize the hub
height wind speed for wind shear and wind veer across the rotor using a REWS. This exercise started
by using a time series dataset of 10-minute average wind speeds and required participants to create
the binned power curves and uncertainty values for power and annual energy production. The main
takeaway of the exercise was that based on current methods for calibration and classification of lidar,
there would be additional uncertainty when using only a lidar as the primary wind measurement
equipment. This is a potential barrier for the adoption of lidar which can be most easily be mitigated by
refining the calibration and classification methods. Having a common understanding of the potential
magnitude of additional uncertainty related to using lidar when following the uncertainty guidance in
the IEC Standard should help focus efforts towards the main uncertainty contributors. The workshop
discussed the results of the exercise but also provided a forum for different sections of the industry to
present their experiences in the application of lidar for power performance. The results of the exercise
have been submitted for publication at the conference Torque 2018.

3.2. Nacelle-Based Measurements

Nacelle-based lidar is one possible solution for power performance verification both onshore
and offshore. The IEC 61400-50-3 standard is currently being developed to provide guidance relevant
for this application. This will describe a method for nacelle-based lidar measurements suitable for
power performance measurements both offshore and onshore. This new IEC standard is expected to
be published by 2020.

The application of nacelle-based lidar shares similar barriers and needs to ground-based lidar.
These are:

• Development of a common framework for wind field reconstruction.
• Determination of the optimal methods to calibrate and classify nacelle lidars.
• Quantification of the uncertainty.
• Application in complex terrain.

In 2017, Task 32 organized a workshop around the application of nacelle lidar for power
performance. The workshop covered wind field reconstruction methods and calibration methods.
There were four main takeaways from the workshop:

• The requirement to measure at 2.5D upstream for the coming wind turbines with very large
rotor diameters (especially offshore) challenges the limitations of the measurement geometry of
currently available nacelle lidars.
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• The use of measurements at shorter range (inside the turbine’s induction zone) that are then
analyzed to find the freestream wind speed has been tested with good results [28].

• Nacelle lidars would also be a good solution for power performance testing in complex terrain,
however several challenges need to be overcome.

• The installation of the lidar on the nacelle should be facilitated by collaboration between the lidar
manufacturer (to make smaller and lighter lidars) and turbine OEMs (to include a dedicated
place/bracket for the nacelle lidars in their turbine design).

In 2018, Task 32 is planning an additional workshop to support development of a common
framework around wind field reconstruction and the application of nacelle lidar in complex terrain.
It is expected that the content of these workshops will directly support developments in IEC PT 50-3.

4. Lidar for Turbine Control

Although wind serves as the “fuel” for wind turbines, changes in the wind inflow act as
disturbances to the wind turbine which must be compensated for by the turbine’s control system.
Traditional feedback wind turbine control systems rely on measurements of generator speed to
maximize or regulate power capture and reduce structural loads using pitch and torque control.
Therefore, the controller can only react to wind disturbances after they impact the turbine. By using
preview measurements of the approaching wind field from a nacelle-based lidar, pitch or torque
commands from a “feedforward” controller can mitigate the impact of the wind disturbance on the
turbine, improving power regulation and reducing loads.

Nacelle lidar systems were demonstrated in the field as early as 2003 [29], while simulation-based
studies of lidar-assisted feedforward control began in 2005 [30]. Since then, lidar-assisted control (LAC)
has been investigated for several applications including:

1. Collective pitch control, primarily targeting improvements in rotor speed regulation and
reductions in tower base and blade root loads [31,32]

2. Individual pitch control, further improving blade and drive train component load reduction
using lidar measurements of shear [31,33]

3. Torque control during below-rated operation to improve power capture [31,34]
4. Combined torque and pitch control to improve loads, especially during the transition between

below-rated and above-rated operation [35,36]
5. Yaw control to improve power capture by improving rotor alignment with the wind

direction [37,38].

Due to its simplicity and effectiveness at improving rotor speed regulation along with reducing
tower and blade loads, lidar-assisted collective pitch control during above-rated operation has become
one of the most popular categories of LAC investigated. Starting in 2012, successful field tests of
lidar-assisted collective pitch controllers were performed, using the Controls Advanced Research
Turbines (CART 2 and CART 3 turbines) at the National Renewable Energy Laboratory’s National
Wind Technology Center in Colorado, USA [39–41]. These field tests qualitatively verified many of the
benefits observed in simulation by demonstrating improvements in rotor speed regulation [39–41],
tower base load reduction [40,41], and a reduction in pitch actuation [41].

One important difference between LAC and the traditional applications (i.e., site assessment,
power performance) is that the traditional applications focus on reproducing the point quantities
measured by a met mast. For example, standard wind field reconstruction methods calculate the
horizontal wind speed and direction from line-of-sight wind speeds. For LAC, new wind field
reconstruction approaches have been developed to estimate rotor effective quantities, for example
the rotor effective wind speed v0 in Figure 3. Another difference is that, in traditional applications,
the lidar data are usually post-processed offline and averaged over 10 min. For LAC, the signals are
provided to the control system online with a high temporal resolution (≥1 Hz) . Therefore, although
similar to the REWS discussed in Section 3.1, the rotor effective wind speed used for LAC describes the
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instantaneous wind speed at the rotor, whereas the REWS is typically a 10-min average value. Further,
uncorrelated frequencies are filtered out to avoid harmful control action (v0Lf in Figure 3). Due to
several issues such as the limitation to line-of-sight wind speeds or the evolution of the wind field from
the measurement point to the rotor, the lidar system is only capable of estimating the rotor-effective
quantities up to a certain frequency [42,43].

wind
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field
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system

wind field
reconstruction
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lidar-assisted
controller
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Figure 3. Basic control loop of lidar-assisted wind turbine control, based on [42].

4.1. Barriers

Research using both simulation and field testing shows meaningful structural load reduction
with LAC, yet the technology has not been widely adopted in the wind industry. Several barriers
preventing the widespread use of LAC have been identified by Task 32. The first barrier identified is the
multidisciplinary nature of lidar-assisted control. Lidar manufacturers are responsible for supplying
the lidar equipment while wind turbine manufacturers design the control algorithms that use the
lidar measurements. However, there is often insufficient collaboration between the two parties; lidar
systems may not necessarily be optimized for control applications (see above for some of the main
differences), and assumptions about lidar systems made by control engineers might not match reality.
For example, system cost, scan pattern, and availability requirements for control are different than
for other applications. More communication about these needs to the lidar community would allow
the most suitable products to be made available. On the other hand, myths about availability, system
performance, and cost may be preventing wind turbine manufacturers from moving forward with
LAC. More collaboration between wind turbine OEMs and lidar manufacturers could help address
these concerns.

Second, the value creation of LAC is very difficult to assess. Structural load reduction can lead
to cost reduction or allow an increase in annual energy production via larger rotors or taller towers
while maintaining original design loads. However, a sensor such as a lidar introduces capital and
O&M expenses. It can be challenging to determine whether the benefits outweigh the additional costs,
leading to a reduction in the levelized cost of energy (LCOE).

Finally, guidelines for certification of wind turbines with LAC are lacking. As an example, the
IEC 61400-1 design standard [44] defines the design load cases (DLCs) that must be simulated to assess
structural loads, a necessary step in wind turbine type certification. However, LAC presents additional
simulation requirements and several DLCs require further clarification when LAC is used. Without
clear design standards for wind turbines using LAC, it is difficult for wind turbine manufacturers to
understand how to include the technology in the design stage and assess the value creation.

4.2. Mitigation

To address the challenges caused by the multidisciplinary nature of LAC, the Task 32 workshop
“Optimizing Lidar Design for Wind Turbine Control Applications” was held in Boston, MA in July 2016.
The aim of the workshop was to bring together wind turbine OEMs, lidar suppliers, and researchers
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to identify the requirements of lidars for control applications and suggestions for optimizing lidar
scan patterns. Although a shared opinion among workshop attendees was that more collaboration
between lidar suppliers and wind turbine control engineers is needed, several useful suggestions and
strategies for optimizing lidars for control applications were developed. For example, availability
is very important for LAC applications; the benefits of LAC cannot be realized when the lidar is
unavailable, potentially requiring the turbine to operate in a reduced-power “safe mode” to satisfy
load requirements. Lidars for control applications should be designed for high availability, possibly
adapting the scan pattern or data processing stage to improve availability when atmospheric conditions
cause the signal-to-noise ratio of the backscattered light to become too low for reliable velocity estimates.
Unique definitions of availability for control applications were discussed to address the short time
scales (seconds) relevant to control. One useful metric for availability presented is the number of
valid measurements obtained from the lidar scan during the previous few seconds. The lidar can be
considered available when this value exceeds a threshold determined by a control engineer. Availability
requirements unique to LAC can then be addressed by lidar manufacturers. Another topic discussed
was the need to better anticipate and reduce the lifetime cost of the lidar, which is important for
determining the value creation of LAC. One strategy for mitigating this barrier is to make lidar
maintenance simple enough that it can be incorporated into standard wind turbine maintenance
schedules without requiring special attention by lidar technicians.

Scan pattern optimization was addressed through an exercise in which computational tools were
used to quickly assess the coherence and error between measurements from different scan patterns
and the rotor effective wind speed of interest at the turbine. Tools such as these can be used to assess
the performance vs. complexity of different scan patterns, allowing wind turbine manufacturers and
lidar suppliers to find an appropriate tradeoff for a specific control application. A report for the Task
32 workshop “Optimizing Lidar Design for Wind Turbine Control Applications” is being prepared.

Task 32 has not yet focused on the problem of quantifying the reduction in LCOE through the use
of LAC, but believes that this requires a systems engineering approach due to the complexity of the
problem. Therefore, a collaboration with IEA Wind Task 37: Systems Engineering has been proposed,
in which LAC can be applied to a reference wind turbine with a state-of-the-art baseline control system,
allowing a number of parameters to be optimized with the objective of reducing LCOE.

To address the need for clear guidelines on certification to foster the widespread adoption of
LAC, Task 32 recently held a workshop titled “Certification of Lidar-Assisted Control Applications” in
January 2018 in Hamburg, Germany. The workshop, hosted by DNV GL, brought together wind turbine
manufacturers, lidar suppliers, researchers, and certification bodies to develop ideas for modifications
to existing design standards that should be made to address the use of LAC. Four categories relevant
to certification were addressed: the lidar system, simulation models and load simulations, the control
and protection system, and prototype measurements. The ideas generated during the workshop are to
be incorporated into DNV GL’s guidelines on wind turbine certification with LAC, planned for later
in 2018.

5. Lidar for Load Verification

In addition to using lidar measurements for control, lidars have the potential to be used as part
of the load verification procedure. Load verification consists of the comparison of simulated and
measured structural loads on a wind turbine to verify the accuracy of the simulation environment,
and is a step in obtaining certification of the prototype turbine by a certifying body.

The steps involved in a typical load verification campaign are as follows. Wind turbines are
typically designed according to the IEC 61400-1 standards [44], where a range of wind conditions are
prescribed. A load case matrix is created for different wind conditions and wind turbine components,
and several load simulations are carried out. Eventually, extreme and fatigue loads are calculated,
which provide a basis for dimensioning of the different wind turbine components. Subsequently,
a prototype turbine is manufactured and installed at a test site for verification of the actual loads
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experienced by the turbine as compared to the simulated loads. The load measurements are usually
carried out using strain gauges mounted on different wind turbine components, whereas the wind
conditions are obtained using met mast anemometry. The instrumentation on the mast usually consists
of cup anemometers and wind vanes installed on booms at three heights at some distance in front of
the wind turbine. From the time series data of these instruments, first- and second-order statistics
are estimated; amongst others mean wind speed, wind direction, wind speed profile, and turbulence
intensity. Correspondingly statistics of the loads from the measured load time series are estimated.
Eventually, the relationship between the wind and load statistics is determined. Simultaneously, new
load simulations are carried out using wind conditions with the measured wind statistics (instead of
the IEC standard wind conditions). The newly simulated loads are then compared with the measured
loads, and subsequently verified to check whether the measured loads are smaller than the simulated
loads. It is usually observed that the simulated loads do not compare very well with the measured
loads, both in terms of accuracy and precision.

From the wind measurement side, two reasons have been attributed to the discrepancy between
simulated and measured loads during the load verification stage; the first is the lack of availability of
measurements with high spatial resolution that adequately represent the wind conditions across the
entire rotor, and the second is the distance between the mast and the turbine, potentially introducing
a mismatch between the measured wind conditions and those actually experienced by the turbine.
Lidars have the potential to counter both these problems by allowing measurements at many different
points relatively close to the turbine. The use of lidar to improve the estimation of the true wind
statistics could yield better agreement between measured and simulated loads, and the improved load
verification could ultimately lead to reducing the amount of material used for constructing certain
components, thereby reducing the cost of wind turbines. Nevertheless, there are some barriers to the
use of lidars for load verification.

5.1. Barriers

Lidars are proven to be quite accurate and precise for estimating first-order statistics such as
the mean wind speed, wind direction, and the wind profile [45]. However, estimating second-order
statistics required for load verification, such as turbulence intensity, from lidar measurements is not
yet acceptable. In [18], two barriers to using a ground-based lidar in a VAD scanning mode have
been identified; the first is the probe volume averaging along the lidar beam, and the second is the
contamination due to the cross-correlation of different components of the wind vector. These two
phenomena typically lead to underestimation and overestimation of the true turbulence intensity,
respectively. The second barrier can be countered to a considerable extent by either using a different
scanning configuration and data processing technique (e.g., six-beam method [18]), or by using three
lidars intersecting at a point. The challenge of probe-volume filtering still remains to be tackled.
In addition, due to the physical limitations of lidars, spatially interspersed measurements cannot be
obtained at very high sampling rates. This presents a further challenge in capturing all the relevant
turbulence scales that influence the loads on the wind turbine. Thus, the barriers to the use of
ground-based lidars for load verification can be summarized as:

1. Difficulty in overcoming the cross-correlation of different wind components when estimating
second-order statistics using a single lidar;

2. lidar probe-volume filtering affecting the second-order statistics of the measured wind velocities; and
3. obtaining measurements at a large number of points across the rotor disk with sufficient

temporal resolution.

An alternative to using ground-based lidars is to use nacelle-based lidars. However, besides
tackling the aforementioned challenges, a barrier to the use of nacelle lidars for load verification is that,
to the authors’ knowledge, a robust algorithm is yet to be developed for combining measurements in a
vertical plane from nacelle lidars for estimating second-order statistics.
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Lastly, the different configurations suggested above present economic challenges. Particularly
the use of three lidar systems to overcome the cross-correlation of different wind components would
increase the cost of measurements by a factor of three. It is therefore necessary to couple the benefits of
using any configuration with the potential reduction in LCOE. A barrier to such coupling is that there
is no robust model that provides a link between lidar-assisted load verification and LCOE.

5.2. Mitigation

Substantial efforts toward overcoming the barriers to the use of lidars for load verification remain
as future work within Task 32. Within the research community, however, there has been some work
related to the use of nacelle lidar measurements for load verification. In [46], the authors present a
method for using measurements from nacelle lidars to recreate as closely as possible the full wind
field that interacted with the turbine, as opposed to merely deriving second-order statistics from the
measurements. The full reconstructed wind field can then be used to perform simulations for load
comparison, with better agreement with field data expected. The authors consider how different
nacelle lidar scan patterns affect the accuracy of the recreated wind fields, but have not yet included
realistic sources of lidar measurement error such as probe-volume filtering and line-of-sight limitations.

6. Lidar in Complex Flow

Wind lidar’s ability to measure wind profiles to greater heights than is possible with conventional
met towers, to repeatedly sample large swathes using scanning lidars, and to retrieve multiple wind
vectors from a single point using coordinated scanning lidars [47] have made them a popular choice
for measuring flow over complex terrain [13], in turbine wakes, in the inflow to a turbine, and in
urban areas [11,28,48]. These complex flows exhibit spatial heterogeneity and transient features
introduced by terrain, patchy land cover, turbine or structural wakes, local meteorology, and other
effects. This heterogeneity and the transient features can lead to difficulties in interpreting LOS wind
speed data.

As with site assessment in complex terrain (Section 2.1), one way to mitigate the effect of flow
heterogeneity is to analyze the measured data in conjunction with flow models that can account for
the orography of the experiment site [49,50]. A similar methodology can be applied to scanning
lidar measurements of different types of complex flows such as the induction zone upstream a
wind turbine rotor, wind turbine wakes and low level jets and or various conditions of atmospheric
stratification [28,48,51–54]. Physical models can also be used to reconstruct the wind field from lidar
measurements. These models—such as flow complexity recognition (FCR) [55], MuLiWEA [56],
and the LINCOM [57] algorithms—aim to determine the three-dimensional flow field from the lidar
measurements, not just a few parameters such as wind speed and direction. These first attempts
to combine lidar measurements and flow models have given promising results and suggest that
this approach could help provide the most realistic wind field corresponding to the measurement
environmental conditions.

The need for a flow model can be avoided by using three lidar to simultaneously sample the
same point [58]. This approach, known as “multi lidar”, removes the unknowns in the wind field
reconstruction but only provides information at the intersecting measurement points. Two lidar—dual
lidar—can be used if an assumption is made regarding one of the velocity components.

IEA Wind Task 32 started to address the issues associated with complex flow by collecting experts’
know-how and methods applied within the research community into a summary of the state of the
art [11]. Early on in that work, the authors realized that there was no clear definition of “complex-flow”
and therefore recommended that practitioners should anticipate complex flow conditions when any of
the following indicators are observed:

• Complex terrain
• Heterogeneity in the upwind surface roughness or presence of trees
• Presence of natural or artificial obstacles whose wake could reach the measurement volume
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• Local meteorology or terrain condition that could make the flow within the measurement volume
non-homogeneous

• Bias or uncertainty from the comparison between lidar and cup or sonic anemometer
measurements that are unexpected according to standards (e.g., [2])

Because the impact of these indicators would vary by use case, it was decided not to create
thresholds for the quantitative metrics. Instead, the goal of these indicators was to prompt users to be
aware of the possible impact of complex flow on their measurements and make appropriate plans.

Several workshops about lidar measurements in complex flows followed. One was held in 2016
in conjunction with IEA Wind Task 31—Wakebench—to investigate the use of wind lidars to measure
wind turbine wakes. Another was held in June 2017 to define use cases for lidar in complex flow
situations. Lidar offers a variety of measurement methods exploiting capabilities that extend well
beyond what is possible with met masts. One outcome of this workshop was the understanding that
insufficient time is typically invested in understanding the relationship between the data requirements
and the capabilities of the lidar. This occurs because the approach to measurement campaigns typically
adopted in the wind energy industry is heavily conditioned by restrictions that were previously
imposed by more limited instruments. Often, data requirements for lidar have been assumed on the
basis of these more limited capabilities. A key challenge presented by lidar is the need to review basic
objectives given the measurement capabilities now available. Furthermore, as described in Section 2,
another workshop took place in November 2017 to explore the barriers to using lidar for measurements
in complex terrain.

The following barriers and potential solutions have been identified at these workshops and by
task participants:

• Forecasting complex flows: Potentially complex flow conditions need to be recognized before
a measurement takes place, so that an appropriate measurement technique can be applied.
Currently, there is no clear, objective definition of what counts as complex flow for lidar
measurements in recommended practices or standards, which means that either all conditions
should be considered potentially complex (which increases the cost of a campaign), or that
marginal cases might be treated as simple to avoid increasing costs.

• Detecting complex flows: Complex flow conditions need to be recognized during a measurement
or from the results, so that appropriate analysis methods can be used. Again, such conditions are
not defined in standards, but might only be detected from lidar data after a measurement—or not
even recognized.

• Difficulty of multi-lidar measurements: Using two or more lidar is challenging because of
equipment cost, the need for very detailed campaign planning, and the difficulty of operating
multiple lidar simultaneously.
Task 32 tried to show that these obstacles are not insurmountable. Successful examples of
multi-lidar measurements were presented during one of the workshops. In particular, it was
demonstrated that concurrent lidar measurement could be applied for the investigation of the
wind field spatial variability offshore but near coasts. Furthermore, the accuracy of scanning lidar
was addressed to point out the importance of the scanner pointing precision and the uncertainty
linked to dual Doppler wind field reconstruction methods.

In a joint meeting of Task 31 and Task 32, a discussion about a possible benchmark of wake
models based on multi-lidar measurements was initiated. With this activity, Task 32 intends
to provide support to communities that could benefit from lidar data, but lack the required
background knowledge.

• Unclear methods for uncertainty estimation: An estimate of the uncertainty associated with
lidar wind field reconstruction in complex terrain is not straightforward. Two main solutions
were proposed and discussed at the Task 32 workshops:
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– Simulation of lidar measurements within high-fidelity wind field simulations. Simulations
in a realistic (and therefore known) wind field can provide indications about the uncertainty
to be expected during a field experiment [56,59–61].

– Application of the uncertainty propagation [62] to the wind field reconstruction method.
This approach was introduced to deal with dual-Doppler data analysis [63,64] and further
investigated for nacelle-based power-performance testing applications.

• Lack of guidance: Participants also noted that new users might find it difficult to use the examples,
because of the slightly different approaches (e.g., scan patterns, flow models, data interpolation
algorithm) applied to pursue similar objectives. To solve this issue, it was concluded that
detailed definition of use cases could provide the needed guidance. From the data requirements,
the conditions situation and the methodology that generally describe a use case, an unambiguous
measurement and data analysis strategy could be outlined. If necessary, the field of application
should be restricted. In this sense, Task 32 aims to extend the definition of the most common uses
cases in the future.

• Using lidar measurements and flow simulations together needs further development:

In general, the lidar community is cautious with regards to the combination of lidar measurements
and flow simulations because of the complexity and wide scope of the topic and its very early
level of development. Task 32 identified the need of a state of art review to support and speed
up the development of this approach. Such document should describe the different method
implemented to incorporate lidar measurement into flow simulations and, for each case, point
out the assumptions used to develop the flow model and their field of applicability.

7. Future Challenges

The application areas discussed in Sections 2 to 6 were identified when Task 32 began its
second phase in 2014. Since then, as wind lidar devices have become more advanced and accepted,
other challenges have also become important. These challenges are discussed in this section and might
be investigated by Task 32 in the future.

7.1. Uncertainty COmpared to Conventional Anemometers

Several sources of uncertainty impact how well we can determine the wind speed and wind
direction based on a lidar’s observations of the flow field. These are uncertainties in the LOS, pointing,
ranging, and wind field reconstruction. Challenges related to wind field reconstruction are well known
and have been described elsewhere in this report.

LOS uncertainty is related to the process of extracting the LOS wind speed from the acquired
backscattered signal. Fundamentally, this uncertainty is tied to the characteristics of the lidar
components dedicated to the generation of the laser beam and detection of the corresponding
backscattered signal, atmospheric characteristics and a choice of the Doppler peak estimator.
LOS uncertainty has been extensively studied since the first lidars were introduced in the late
1970s (e.g., [65]). However, as lidar technology becomes more widely adopted, IEA Wind Task 32
identified a need to revisit the LOS uncertainty and communicate it in a more approachable manner.

Several studies indicate that wind lidars are capable of acquiring wind information with lower
uncertainty than the conventional cup or sonic anemometers mainly because the non-contact, remote
measurement avoids flow distortion. Despite this, LOS uncertainty is currently determined by
comparing the LOS measurements of wind lidar to reference measurements acquired by sensors
mounted on met masts. This approach downplays the performance of wind lidars because of the
relatively large uncertainties of mast based sensors and also results in a “black box” uncertainty, in
that the physics behind the uncertainty is hidden.

Participants in Task 32 identified a physics-based way to determine the LOS uncertainty—also
known as a “white box” method—for which the detailed understanding of contributions to the LOS
uncertainty is essential. In addition, because lidars are a remote measurement, understanding where
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the LOS speed is acquired in the atmosphere is tied to quantifying the pointing and ranging uncertainty.
A dedicated study of these two uncertainty sources has been presented in [63], while practical aspects
of determining these uncertainties in field are given in [13,47].

Uncertainties arising from assumptions associated with wind field reconstruction cannot be
neglected if the quantity that is ultimately the subject of the measurement is a reconstructed wind
parameter such as wind speed. Comparisons of concurrent white and black box calibration results
suggest these can often be the dominant source of uncertainty, with excellent white box results
failing to indicate poorer black box performance. An uncertainty evaluation that neglects wind
conditions that influence the validity of the wind field reconstruction is incomplete. Indeed, given the
impossibility of anticipating all possible influences, evaluations are necessarily incomplete from this
point of view. Completeness can only be achieved with respect to our prior knowledge of possible
influences. In that case, uncertainty should not be interpreted as the absolute likelihood of a given
outcome, but as a measure of information we obtain should a particular outcome occur, relative to our
prior understanding.

7.2. Developing the Wind Lidar Ecosystem

As technologies become more accepted, popular, and prevalent, an ecosystem of related
technologies, software, service providers and applications grows around them and adds value to the
end user. A recent example is the growth of new businesses in the last 10 years around smartphones,
where so-called app stores connect users with providers, data can be shared easily and securely,
and third parties provide a wide range of services. Such rapid growth in use and services is enabled
by clear use cases, data sharing, and the ability to rapidly try new applications. For wind lidar, only the
first—the use cases—have stabilized.

7.2.1. Data Tools

A wind lidar creates wind data that are transformed into information to support decision making.
Thus, choices made about how to set up and use lidar data directly impact the decision. Therefore, it is
important to consider many factors when designing a measurement campaign such as information
about the lidars that will be used (their capabilities and power requirements), local atmospheric
conditions (wind, aerosols, etc.), infrastructure (electricity, telecommunications, access roads) and
site restrictions. This information is used to derive an optimal lidar setup and lidar configuration,
and there may be complex interdependencies (for examples see, [13]). It is therefore possible to
envisage a tool or a suite of tools that can facilitate the deployment planning process.

As has been noted before, another issue is managing the data generated by a lidar measurement
campaign. The general complexity of lidar data analysis, and the fact that different lidar systems store
data in different formats with no or limited meta information, makes it harder to develop common
tools for data processing and restricts implementation of novel methods such as machine learning.

In 2017, the e-WindLidar initiative [66] started with a focus on development of community-based
tools for the facilitation of lidar data analysis, planning of lidar-based experiments, and lidar
configuration. The first result of this initiative is a proposal for the universal lidar data format [67]
which is in accordance with the FAIR principles [68]. In 2018, the e-WindLidar initiative will be
disseminated through a range of activities within Task 32, including a workshop about the universal
lidar data format and community-based tools for data analysis.

7.2.2. Modular Lidar

Commercial lidar have been designed around specific use cases, such as wind energy resource
assessment from the ground or a floating platform, for power performance testing from a nacelle,
or for broad area coverage. They are optimized for these use cases and are robust and reliable.
However, they are difficult to use for other applications. It is rare to encounter extremely flexible lidar
systems such as the long- or short- range WindScanner [13] and Stuttgart scanner [69] which allow the
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adaptation of the lidar for different applications. Although flexible systems might not be needed by
industry, a high level of flexibility is essential for research groups to explore new use case for lidars.

During the IEA Task 32 workshop in 2014, an OpenLidar initiative was proposed. Several
members of Task 32 then developed a concept for a platform for the open-source design, construction,
and operation of wind lidar devices. A central aspect of the OpenLidar initiative is the development
of modular lidar. A standardized modular lidar system architecture would support interoperability
and enable the development and testing of new technology as modules could be replaced with new
designs without having to redesign the entire lidar system. This approach would allow the same lidar
system to be employed for different use cases. Figure 4 depicts a modular lidar concept developed by
DTU Wind Energy.

Figure 4. A concept of a modular scanning lidar (courtesy of DTU Wind Energy).

7.2.3. Turbine Integrated Lidars

Currently, lidar systems are installed individually on the nacelles of wind turbines. In the future,
particularly for LAC, it will be important to integrate the lidar systems into the mechanical and
controller design of wind turbines. This will lead to lidar becoming a standard sensor, much in the
way that nacelle-mounted wind vanes are today. Challenges in this area will include the design of the
lidar and its reliable integration into the turbine control system, which (like other lidar applications)
will require support from standards.

8. Conclusions

Wind lidar is a maturing technology that helps to reduce the cost of wind energy through cheaper
siting, and provides the possibility for increased energy capture and reduced loads. However, wind
lidar is not uniformly accepted or used within the wind energy industry. IEA Wind Task 32 is an
international collaboration that aims to identify the barriers to the adoption of lidar for site assessment,
power performance testing, loads verification, lidar-assisted controls, and complex flows, and suggest
ways to mitigate those barriers.

IEA Wind Task 32 has identified barriers that are common to all areas of wind lidar use.
These barriers are relatively low and are all actively being addressed by the wind lidar community and
Task 32. It should be noted that none of them prevent the use of lidar at this time. Instead, these are
mostly barriers to extracting more valuable data from wind lidar:
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• Need for standards. End users have more confidence in data when the collection and use of the
data are supported by recommended practices and standards. Community-driven recommended
practices are available for some applications of wind lidar, while internationally-recognized
standards are only available for power performance testing. Standards for the use of lidar remote
sensing are in development and will mitigate this barrier in the next few years.

• Need for experts. As with any emerging technology, there are a limited number of expert lidar
users. This forms a barrier to the effective deployment of lidar for wind energy applications.
Efforts are underway within the wind lidar community to embed more knowledge in planning
and analysis tools, and to develop flexible and resilient processes, which will help mitigate this
barrier in the near future.

• Need for data tools. Although commercial systems have condensed the amount of data delivered
by a lidar to something similar to a conventional met tower, other applications can drown
the user in data. The need to manage this flood forms a barrier to its rapid and effective use.
Data management and processing tools are being developed to extract value from the data that
should help mitigate this. The development of standards will also support this as standardized
processes can be captured in such tools.

• Need for better physics models. Wind field reconstruction for wind lidars in complex flow and
other applications requires flow models. Such models would also enable dynamic uncertainty
estimates that include the effect of the lidar configuration, motion, external conditions and other
factors on the lidar measurement and wind field reconstruction. While there have been some
efforts in this area, more work is required. Importantly, work on on the other barriers will support
the development of solutions to this challenge.

Despite progress in identifying barriers to the adoption of wind lidar for wind energy
applications—and mitigating some of them—there remains a significant amount of research to be
done in this field. There are also opportunities for product development, to explore new applications,
and the potential for industry to provide value-adding commercial services. IEA Wind Task 32 has
supported the wind lidar community since its inception in 2011 and will continue to do so for the
foreseeable future. Interested parties are welcome to attend meetings and workshops and are invited
to contact the operating agent for more information.

Supplementary Materials: IEA wind Task 32 is operated by the Chair of Wind Energy at the Institute of Aircraft
design at the faculty of Aerospace Engineering at the University of Stuttgart. More information about IEA Wind
can be found at www.ieawind.org. More details about IEA Wind Task 32, including minutes from the workshops
and other documents, can be found at www.ieawindtask32.org.
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Abstract: Many coherent lidars are used today with aerosol targets for detailed studies of e.g., local
wind speed and turbulence. Fibre-optic lidars operating near 1.5 μm dominate the wind energy
market, with hundreds now installed worldwide. Here, we review some of the beam/target physics
for these lidars and discuss practical problems. In a monostatic Doppler lidar with matched local
oscillator and transmit beams, focusing of the beam gives rise to a spatial sensitivity along the
beam direction that depends on the inverse of beam area; for Gaussian beams, this sensitivity
follows a Lorentzian function. At short range, the associated probe volume can be extremely small
and contain very few scatterers; we describe predictions and simulations for few-scatterer and
multi-scatterer sensing. We review the single-particle mode (SPM) and volume mode (VM) modelling
of Frehlich et al. and some numerical modelling of lidar detector time series and statistics. Interesting
behaviour may be observed from a modern coherent lidar used at short ranges (e.g., in a wind
tunnel) and/or with weak aerosol seeding. We also review some problems (and solutions) for
Doppler-sign-insensitive lidars.

Keywords: coherent Doppler lidar; wind sensing; single-particle

1. Introduction

Near-infrared coherent lidars are familiar in anemometry and turbulence sensing. Their behaviour
has been fairly well understood and modelled since the 1960s. Fibre-optic versions are increasingly
used in the wind power industry for aerosol targets, and are also becoming popular for solid targets
such as vibrating or rotating machinery, structural panels, and turbine blades. Several tutorials and
reviews have recently been published, aimed at the growing number of readers—not necessarily
optical or laser specialists—who need to understand the main features and limitations of these
sensor tools. As they become widely used and extended to different technical areas, it is sometimes
necessary to return to the fundamentals and check that older radar/lidar lessons are correctly translated
and applied.

A recent review of modern fibre-optic lidars [1] discussed three main points:

(1) The most common references in the literature of “coherent continuous-wave focused monostatic
lidars” are now some 25–40 years old but still worth reading. In particular, the carrier-to-noise
analysis of Sonnenschein and Horrigan [2] agrees with alternative treatments based on the popular
“antenna theorem” or “back-propagated local oscillator” (BPLO) approach. Their analysis applies
to ZephIR and similar modern fibre-optic aerosol lidars.

(2) Such lidars work over a large range of conditions and spatial scales; for example, the so-called
“probe volume” of a variable-focus lidar may easily vary over eight orders of magnitude.
There may also be large variations in scattering particle density and average atmospheric
backscatter. The assumption that the probe volume contains “many” scatterers can lead to
simple mathematics (Gaussian statistics for long random walks where the central limit theorem
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holds) and is extremely common but can be faulty (e.g., with very clean air or short measurement
range).

(3) The desire for simple descriptions or “sensor performance metrics” conflicts with the
complications of real lidar measurements. For example, the expressions “range resolution”
and “bandwidth” have multiple meanings, and it is difficult (and often confusing) to characterise
a lidar's performance by a single value. In a well-known sense, the axial resolution of a coherent
CW focused monostatic lidar is a Lorentzian function with scale parameter equal to the beam
Rayleigh range. In another important sense, the lidar can “resolve” scattering events with much
finer range precision.

The present paper concentrates on aerosol scattering and a common commercial application:
the “lidar Doppler” estimation of aerosol/lidar relative velocity and thus (by using several or many
estimates) of wind flow and wind patterns. We start with a brief review of the beam geometry for
a standard coherent lidar (Section 2). Sections 3 and 4 discuss the detector output for direct and
heterodyne detection respectively. Section 5 has comments on the large preceding literature and
reviews some disagreements about “lidar collection efficiency”, which is one aspect of the dependence
of carrier-to-noise (CNR) on beam geometry.

Section 6 discusses a computer simulation of multi-scatterer experiments. Section 7 describes the
important practical constraint of sign ambiguity for moving targets and illustrates how, even if I&Q
data or other indications of sign are not immediately available, that ambiguity can be removed for
typical aerosol targets. For the common conical-scan or sector-scan geometry and its associated VAD
(velocity-azimuth display) output, Section 8 discusses examples of measurement bias.

2. Lidar Geometry

Consider the sketches in Figure 1.

 
(a) 

(b) 

Figure 1. Schematics of laser Doppler systems for remote wind sensing. (a) Reproduced from Lawrence
et al. [3] (“A laser velocimeter for remote wind sensing”, Rev. Sci. Instrum. 1972, vol. 43, pp. 512–518)
with the permission of AIP Publishing. This is concerned with Doppler measurements of wind-borne
scatterers in the atmosphere at relatively short ranges, but is more widely relevant; (b) From Hill [1],
concerned with modern fibre-optic lidars. See also below for Figure 2 and the original diagram in
Lindelöw [4].
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Figure 2. Schematic of focused monostatic CW coherent lidar based on fibre-optics components.
Distance to focus is xfocus, and distance to target scatterer is x; these are called f and L in Figure 1a.
Reproduced from Lindelöw [4].

The beam is brought to focus at a distance f from the telescope aperture (mirror or lens), and the
scatterers are carried across the beam by the wind at a possibly different distance L, with a crosswind
velocity component of V ms−1.

Let the beam be a lowest-order Gaussian beam with a field described by

E(x, y, z) =
E0

w(z)
exp

[
−(x2 + y2)

w(z)2

]
exp

[
jk
(x2 + y2)

2R(z)2

]
(1)

w(z) = w0

√
1 + (z/zR)

2 (2)

is the “beam 1/e2 intensity radius” at axial distance z from focus

R(z) = z + z2
R/z (3)

is the beam radius of phasefront curvature at z

zR = πw0
2/π (4)

is the beam parameter or Rayleigh range (often notated b or b/2)

I(x, y, z) =| E(x, y, z) |2= E0
2

w(z)2 exp

[
−2

(x2 + y2)

w(z)2

]
(5)

Some constant factors and the extra on-axis (Gouy) phase shift have been omitted.
According to Equations (1) and (2), the beam extends indefinitely in any XY cross-section

plane, but its field strength decays exponentially, with scale parameter w(z). The beam also extends
indefinitely along the z axis, but its field strength decays according to 1/w(z), with scale parameter zR.
For a uniformly and densely seeded atmosphere, we are usually justified in neglecting the contributions
from scatterers that are more than a few beam widths off-axis or more than a few Rayleigh ranges
away from the beam focus—see below. For a single scatterer, of course, we are interested in the lidar
response for any scatterer position if it is detectable.

For such a Gaussian beam of intensity I(r) = I0 exp(−2(x2 + y2)/w2) = I0 exp(−2r2/w2),
illuminating one thin “slice” between ranges z and z + dz, some simple properties are

• P0 = I0 (πw2/2) is the total power, I0 is the on-axis intensity, and w is the e−2 intensity radius of
the beam.

• The power enclosed by a circle of radius h is P0·[1 − exp(−2h2/w2)]. If h equals 2w, about 99.97%
of the total power is enclosed. This is effectively all the power for most practical purposes, and the
mean intensity within the circle of radius h is nearly P0/(πh2) if h ≥ 2w.

• The probability distribution for the illumination intensity I is p(I) = 1
I (

w2

2h2 ) with normalisation to
unit probability within the circle of radius h (i.e., the intensity lies between I0 exp(−2h2/w2) and I0).
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Similar but z-averaged properties may be derived for a focused Gaussian beam whose width
parameter w(z) varies along the beam according to Equation (2). However, the mean intensity and the
p(I) then depend on the z integration limits, which may not be symmetric around the focus distance.
For example, a “collimated” exit beam has a plane wavefront initially; the beam waist lies at the exit
aperture (z = 0) and the beam expands as it propagates through positive ranges z; negative values of z
are not relevant because they lie inside or behind the lidar.

Note that our Rayleigh range is defined here as zR = πw2
0/λ, so that the beam radius w(z = zR) is√

2 times the beam waist radius w0. Alternatively, the terms “beam parameter”, “confocal distance”,
and “Rayleigh range” are sometimes defined as 2πw2

0/λ to refer to the distance between the plane where
w(z = −zR) =

√
2w0 and the corresponding plane on the other side of the waist where w(z = zR) =

√
2w0.

3. The Detector Output (Direct Detection)

Consider the average backscattered power reaching the receive aperture: a quantity proportional
to the “photon count” due to scattering from all illuminated regions [5].

If there are N scatterers contributing, the instantaneous power is proportional to the
magnitude-squared of the sum over N phasors (one from each scatterer). A time or ensemble average
power, taken over all relative phases of the individual scatterer reflections (all phases being assumed
equally probable), is proportional to the sum of N positive terms, one for each scatterer; each term
depends on the scatterer’s position in the Gaussian illuminating beam, and also has an inverse-square
dependence of the strength of the spherical scattered wave as it propagates back to the receiver.
Cross-terms average to zero, regardless of N; the averaging to zero results from the random uniform
distribution of phases and does not require N >> 1. If we assume for simplicity that the fraction of
scattered light received within the aperture (and falling on the detector) is the same for all scatterers at
a particular range, that is usually a serious and restrictive assumption. The precise dependence on
scatterer position may not be easy to express, if we wish to consider scatterers in the near field—for
example, a thin slice so near the lidar aperture that the solid angle subtended by the aperture is not
the same for all scatterers in the beam. We can only mention here a large literature on the detailed
geometrical “form factors” and “collection efficiency” of direct-detection lidars [6].

This instantaneous power and this average power would be seen in direct-detection mode, where
we assume that photoelectrons are generated independently from every small sub-area of the detector,
and the total photoelectron current is (in the limit of large count) an accurate, “light-in-a-bucket”
record (subject to some detector response bandwidth) of the time-varying optical power that falls on
the whole detector surface. For the moment we can consider that a fixed (usually large) fraction of the
backscattered laser light that falls within the receive aperture reaches the detector. This backscattered
light forms an interference pattern due to its N randomly phased components (a Gaussian speckle
pattern, in the limit N >> 1). Using a single-mode optical fibre in the receive channel of a direct-detection
lidar has consequences. One advantage is that we know where we are looking (there is a well-defined
“receive antenna” pattern—not to be confused with the phase-sensitive heterodyne-lidar antenna
pattern below) but a disadvantage is that much light entering the receive aperture is lost because it
does not match the fibre mode at the entrance facet; another consequence, often undesirable in direct
detection, is that intensity fluctuations are not averaged out.

With this catch-all or “bucket” aperture, the average direct-detection backscattered power is
proportional to the sum over the individual N illumination intensities—for any value of N or any
seeding density; strictly, this holds without any lower limit, and we assume we never reach the other
extreme where the scatterers are so dense that multiple scattering is significant.

In terms of the standard random-walk problem on a complex plane, we have at any one point
(or any one sufficiently small detector element) the coherent summation of N randomly directed
vectors [1]. If each vector has the same length a, the total “intensity”—the mean value of the
square of the resulting distance from the origin—is <I> = Na2. The second moment of intensity
is <I2> = 2N(N − 1)a4 + Na4, which for large N approaches 2(Na2)2 = 2<I>2. The “normalised second
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moment” is thus <I2>/<I>2 = 2 − (1/N). If the vector lengths are drawn from a random distribution [7],
we can use the following result:

< I2 >

< I >2 = 2
(

1 − 1
N

)
+

1
N

< a4 >

< a2 >2 (6)

Many further expressions for the intensity moments of various orders have been studied, often
through the indirect mathematical methods of “generating functions”. The probability distribution of
intensity P(I) tends to be less tractable; few of the results, in terms of integrals of Bessel functions, reduce
to useful analytical expressions. (Note that we use p(I) above to describe the spatial variations, and P(I)
here to describe the time series at a detector point). For an illuminated collection of N non-fluctuating
scatterers, with N “moderately large”, Pusey et al. [8] expressed P(I) as the Gaussian-limit exponential
exp(−I/<I>)/I plus a series of stated correction terms. Some of the integrals involved in random-walk
analysis are difficult to compute with high precision, but this is not of major importance for lidar users.

A many-scatterer Gaussian-statistics limit of the random walk model should not be assumed
without thought; also, the definition of “CNR” depends on whether we include times when no
scatterers are present. In practice, perhaps with rather detailed “time-frequency” post-processing,
we may increase the “CNR” by discarding data from such times and by discarding frequency bands
which do not contain the (usually chirping) lidar returns.

Because of the Gaussian beam’s circular symmetry, the backscattering from the full 3D
scatterer-filled volume is usually treated by an integral over a set of thin discs (with radial scale
w(z) and extending from z to z + dz) considered to fill the space on one side of the lidar aperture.
We note that scattering from a collection of particles all confined to a very thin disk (or spherical shell
etc.) may not satisfy the requirement of uniformly distributed phase [7].

4. The Detector Output (Heterodyne Detection)

Now consider the heterodyne operating mode by adding the LO (and BPLO) to the picture, with
no other optical change; the backscattered light received at the detector is the same as before—say
Ps(N) for N scatterers—but in general, some fraction (1 − ηhet) of this incident light will not be
mode-matched with the LO and will not contribute to the heterodyne current, whose power is
proportional to ηhet, Ps(N), and the local oscillator power PLO. The overlap of incident light and
LO light can be evaluated at the detector surface or (by a considerable extension of the original
far-field “antenna theorem”) at any other convenient plane. When we evaluate it in the target plane,
the (time-averaged or ensemble-averaged) contribution to the heterodyne output power made by any
scatterer is proportional to the intensity of the transmitted beam at the scatterer coordinates and also to
the BPLO intensity there. Since we have assumed that transmit and BPLO beams are matched, we can
describe the spatial variation equally by the product of transmit and BPLO intensities or by the square
of the transmit intensity.

In direct detection, each small element of the detector produces its own photocurrent—which
can be described by a time series of non-negative real numbers. In heterodyne detection, each small
element produces a (usually dominant) shot noise photocurrent, plus a modulation—that is, an extra
term (which oscillates at the heterodyne frequency, taking both positive and negative values as the
interference fringes evolve). The net result of summing the outputs from the various detector elements
is thus phase-sensitive: the total photocurrent is never negative, but the coherent (phase-sensitive)
sum of the additional modulations—which is what interests us—can be positive or negative.

Once the lidar is shot-noise-limited, any further increase in LO power causes a proportionate
increase in shot noise power and does not change the CNR; that is, any multiplying constant of LO
power cancels top and bottom in a C/N expression.

The heterodyne current due to several scatterers is the vector sum of the individual currents,
one for each scatterer; each term is proportional to the beam intensity and to the BPLO intensity at
the scatterer. The mean square of the current (averaged over all relative phases as above) equals the
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sum of the individual squares; this is the same result as for the mean square of the length of a 2D
random walk.

Consider a single scatterer blown transversely through the beam along a straight line at uniform
speed V: its z and x values remain essentially constant, and its y value equals (t − t0)V. As it traverses
the beam it produces a detector output current with an intermediate-frequency (IF) component.

i(t) = 2R
√

ηhetPLOPs(t) cos (ωct + θ(t)) (7)

where R = detector responsivity, ωc = offset radian frequency, and θ = phase shift. The time variation
of i(t) includes variations in some or all of these parameters. Here we may take ωc to be constant (there
is no extra bulk target motion along the z-axis line of sight) and θ to express the time-varying Doppler
phase shift. We may also take PLO to be constant (the total local oscillator power at the detector) and Ps

to be the backscattered power reaching the detector (not constant). The scalar ηhet represents, for this
single scatterer, the “heterodyne efficiency” with which the LO and backscattered light overlap at the
detector. Note again that we write ηhet proportional to the square of output current, i.e., to output
power. In the literature on heterodyne lidars, there are various preferences for splitting the “efficiency”
into several terms identified with different parts of the total system [1,9].

Usually, Equation (7) is taken to say that PLO is a fixed quantity without spatial variation, and its
value (in units of Watts)—the LO power that reaches the detector—is adjustable at our discretion;
whereas, although the transmitted laser power is also a fixed number of Watts at our discretion,
the value of Ps(t) depends on other factors such as optical losses, atmospheric attenuation and the
position of the scatterer in the beam. In practice, Ps(t) will vary deterministically as the scatterer
moves across the Gaussian intensity beam profile, reaching some peak value (see Section 5.4) when the
scatterer makes its closest approach to the beam axis. The value of ηhet for the particular distribution in
space of scattered light at the detector (which will usually vary with time), and the particular (usually
fixed) LO light distribution in space, is then a further matter of fact or calculation.

That is, in our notation, the spatial dependence in Equation (7), as the scatterer traverses the
beam, brings a time dependence to Ps, and possibly to ηhet and θ, but not to PLO. This heterodyne
current component i(t), due to a single scatterer at position y(t), is proportional to the transmitted

beam intensity at the scatterer, i.e., the spatial variation is described by exp
[
−2(x2+y2)

w(z)2

]
. Note that

the transverse variation of the transmitted beam is the Gaussian in Equation (1); the local oscillator
(and hence the BPLO) will be assumed to keep a perfect copy of this Gaussian shape. Equation (14) in
the early paper by Sonnenschein and Horrigan [2] describes “the square of the signal current produced
by a single scatterer”, and a corrected version is

|is|2 ∝
R4

λ2L4
[

1 + (πR2

λL )
2
(1 − L

f )
2
]2 exp

⎧⎪⎪⎨⎪⎪⎩
−4(πRr

λL )
2[

1 + (πR2

λL )
2
(1 − L

f )
2
]
⎫⎪⎪⎬⎪⎪⎭ (8)

L is the range to target, f is the range to beam focus, their R is the transmitted beam radius (our
w(z) at the aperture where z = −f), and r is off-axis distance (r2 = x2 + y2).

In [1], we reviewed some of the differently notated but essentially similar versions of Equation (8)
in the literature and illustrated the frequency-chirp behaviour of scatterers that traverse the beam.
The product of chirp duration and chirp slope is roughly

chirp excursion (Hz) =
πw(z)

2V
2V2

λR(z)
=

πVw(z)
λR(z)

(9)

The chirp changes sign if the wavefront curvature changes sign (i.e., if we consider events on
one side of the beam focus and then the other). As we move away from the beam waist z = 0 (in
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either +ve or −ve direction), the absolute value of R(z) at first decreases, then reaches its minimum
of R(|z| = zR) = 2zR, then increases again. So, on each side of the beam focus, there are in principle
two distances z corresponding with any given value of R greater than 2zR. These two distances are
associated with the same chirp slope dθ(t)/dt but different beam widths w(z) and thus different
envelope durations and different chirp excursions.

5. Previous Literature

5.1. Semiclassical Account of Laser Radar

There are large relevant literatures on coherent lidar, photon correlators, laser Doppler
velocimeters (LDVs) and laser transit velocimeters (LTVs), electromagnetic scattering from small
particles, interference effects in the presence of more than one scatterer, and so on (see for
example [1,7,9], and their references). From an optical-radar viewpoint, the function of the scatterers
is to provide, at the receiver, copies of the transmitted waveform [10]; when all the different copies
are considered (with their various delays, attenuations, polarisations, frequency shifts etc.), we have
a total field at any given detector element whose intensity at any instant is proportional to the
mean rate of photoelectron production. That mean rate is vastly increased by the strong steady LO.
There are typically very many photoelectrons, but each has a random (Poisson point process) time of
origin. There is no one-to-one connection of individual photoelectrons with individual “photons” in
this typical semiclassical account of a shot-noise-dominated coherent lidar. It is generally assumed
that the photocurrents are so strong that, in line with our discussion above, the “full phase and
intensity” information in the optical field is indeed transferred intact to the heterodyne detector output;
for example, a very weak FM sideband (due to a faint micro-Doppler vibration) can still be isolated and
examined and assigned a conventional SNR that is negligibly degraded by the (intermittent, discrete,
Poisson) nature of the photoelectrons.

At power levels several orders of magnitude weaker, when we approach single-photon detection,
this picture must change, but we retain it here. We neglect many complexities of scattering theory,
vector wave effects, polarisation, and detector physics. But it is worth reviewing the detector output
current (above) and referring now to some literature including frequently quoted “fundamentals of
coherent lidar” papers.

The strength of the heterodyne current is usually judged by the average modulus-squared
<|i(t)|2>. (The average is taken over a time exceeding the longest fluctuation time, and there are
usually several types of fluctuations present). This strength is determined by how well the scattered
light and the LO overlap: the overlap integral, or antenna efficiency, includes both the magnitudes
and the relative phases of the signal and LO terms. The need for transmit and receive antennas to
be “matched” was familiar from earlier radar work, and was quickly imported and applied to lidar
studies in the 1960s and 1970s. A large literature developed on various sub-topics such as:

• The “best” designs of telescopes and truncating apertures, according to several different metrics
of efficiency;

• The benefits of angular selectivity or directionality of heterodyne antennas—and the corresponding
requirement to establish and maintain precise alignment in practice;

• The statistics of detector outputs for various types of target: solid, liquid, or gas; few scatterers or
many scatterers; concentrated or distributed in range; static or moving;

• The effects of one-way and two-way atmospheric turbulence;
• The differences between monostatic (shared apertures and collinear beams) and bistatic or

multistatic lidars.

The literature inevitably swelled as different approaches and notations were developed
and published by groups working on laser systems in private companies, universities, and
government organisations.
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5.2. Local Oscillator (LO) and BPLO

One important sub-topic is the “back-propagated local oscillator” or BPLO, which was presented
by Siegman [11] as follows:

Consider the complex LO amplitude distribution falling on the photodevice surface (weighted by
the quantum efficiency distribution if necessary). Reverse the direction of propagation of this LO
distribution and allow the reversed wavefront to propagate back out through any optical elements that
an incident signal wave would traverse. The resulting far-field or Fraunhofer diffraction pattern will
be the antenna pattern of the optical heterodyne receiver.

The general principle is that we may reverse the direction of propagation of the wavefront and
perform the overlap integral in any convenient place—not just the detector surface, but for example the
telescope aperture or the plane(s) of the target(s). Two aspects of this BPLO approach may be especially
relevant to modern wind lidars [1]. One is the advantageous choice of overlap plane. We are free to
evaluate the overlap at different places: it may be that some, from a practical, computational point of
view, are better than others. Zhao et al. [12] compare two expressions for a transmission function that
relates a point in the scattering plane to a point in the detector plane. The light successively encounters
a primary mirror, a secondary mirror, “a series of optical components, such as steering mirrors and
polarizers”, a detector lens, and the detector. The virtual BPLO encounters these in the reverse order,
and the corresponding expression is derived by “changing the order of integrals and invoking the
reciprocity theorem”. Formally, the expressions are equivalent, but in the BPLO one, “the result of
the first several steps of integration is common to all points in the scattering plane and needs only to
be calculated once . . . In addition, if the system is well aligned and free from astigmatism, circular
symmetric properties of the integrand further simplify the integration to a 1-D calculation . . . Thus the
BPLO treatment greatly reduces the amount of computation”.

The amount of computation needed for these integrals, and any “computational advantage”
of the BPLO approach, typically decrease when we change to fibre-optic lidars—because they have
fewer components and obstructions, and propagation within single-mode fibre needs negligible extra
calculation. That is, the non-BPLO approach may be less tedious in fibre lidars than in free-space lidars,
although still more tedious than the BPLO approach. We can calculate everything at the detector if we
wish; nothing forces us into BPLO calculations.

The second point is a difference between fibre-based lidars and the more familiar free-space optical
systems. Single-mode fibres act as spatial filters. They support only one spatial mode (transverse
mode), so any light that arrives at a fibre entrance plane in other modes does not propagate any
significant distance along the fibre and does not reach the fibre exit—it is lost. Similarly, any virtual
BPLO light “arriving” at the fibre from the detector contributes nothing to the antenna pattern (and the
overlap integral) unless it matches the fibre mode. The spatial form of the BPLO, once it leaves the
fibre and continues through any transmit optics toward the target, is always that of the launched single
transverse mode of the fibre. In particular, it is unaffected by apertures or obstructions between the
fibre and the detector or by spatial variations in detector response. Nothing we do before the fibre can
affect the antenna pattern after the fibre.

To the extent that detector output statistics are affected by the number and nature of the scatterers
in the probe volume, this is an important difference between single-mode-fibre lidars and most
free-space lidars. If we damage or partly block the fibre-lidar detector, then the probe volume
(the physical extent and shape of the region contributing to the spatial overlap), and the carrier
statistics, will not change. In free-space lidars there are often apertures, obstructions, and detector
imperfections; these are often inaccessible and/or hard to adjust, yet they strongly influence the probe
volume and statistics. Moreover, the practical difficulty of measuring detailed beam properties (such
as BPLO shape and phase) causes uncertainty about what parts of a target are contributing, and how
strongly. The ease of LO and BPLO alignment in fibre sensors, and the enforced limitation to one
well-defined mode, reduce this uncertainty.
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The situation is symmetrical; we could as easily have said “Nothing we do in free space can affect
the illumination pattern at the detector—it is determined by the propagation of the single mode from
the fibre end to the detector surface, through any distorting elements that may be present internally”.

Zhao et al.’s caveats still apply: “The LO field at the detector should also be calculated very
carefully . . . the field at the waist is usually different from an ideal Gaussian distribution . . . the
criterion for ignoring the diffraction effect of the sharp-edged apertures for a Gaussian beam is quite
stringent”. The point is that the presence of a truly single-mode filter, somewhere in the optical chain
between detector and target, defines the single mode that is relevant (e.g., in diffraction calculations)
for both internal and external regions.

We neglect the possibilities of systems that are not reciprocal, e.g., the beams have significant
frequency differences, and some components (such as modulators, amplifiers, and regenerative or
self-aligning cavities) are frequency-selective or dispersive [3].

In practice, there are also specific, small, but possibly significant departures from ideal theory
when fibres are involved:

• The fundamental mode of a single-mode fibre is normally modelled as a free-space Gaussian
TEM00 in spatial profile, and we make this assumption here; in practice the match is very good
but not perfect;

• Fibre-pigtailed collimators (FPCs) can improve the balance between lateral and angular
misalignment effects by increasing the effective TEM00 radius at the coupling plane [13]. Lens focal
length and lens-fibre distance will change accordingly, but otherwise, our efficiency calculations
are not affected—the FPC/fibre combination behaves as a single-mode fibre with, at one end,
a larger mode area;

• Higher-order terms in the mode field expressions imply that the wavefront in the fibre is slightly
curved instead of plane. This curvature is familiar in hollow waveguide physics [14] and leads to
measurable asymmetries in waveguide/beam coupling experiments, but we neglect it here.

There is a long history of cross-checks and calibrations of coherent lidars, with hard and distributed
targets, and a sometimes baffling range of discrepancies. Experienced scientists, trying hard to account
for all terms in the carrier-to-noise equations, still fall short by factors of around 2; indeed, Kavaya [15]
noted that CNR theory and experiment often disagreed by nearly 3 dB, and not by a random variable
factor ranging from say −3 dB to 3 dB. Note that this shortfall is in CNR (or sensitivity), and not
necessarily in accuracy, probe length etc.

5.3. Collection Efficiency for Coherent Lidars

Evidently, then, in modern coherent lidar sensors the nature of the beam overlapping that
determines optical efficiency and carrier-to-noise (and their variations as functions of range to target)
is essential to lidar calibration and operation.

Some disagreements about this in the wind lidar literature were discussed within the UpWIND
project [16–19]. First, Lindelöw [4] reconsidered the range weighting of wind lidars and proposed
a redefinition of “probe length” based on the WPP (“wind peak profile”) function; this is relevant to
pulsed lidars that are range-gated (whether focused or not). These two issues of focus and range-gating
are often present together, but it is possible to separate them and check the predicted discrepancies.
For incoherent (randomly phased) returns from many aerosol scatterers, with the algorithms of signal
processing and Doppler estimation that are most commonly used, the WPP proposal has not been
widely accepted and has not altered the current standard treatments. It is mentioned here because
“probe length” or “range resolution” is often presented as a figure of merit (that is, the shorter the
better), and thus enters discussions of whether one lidar or another is “better”, or whether pulsed or
CW operation is “better”. Readers should check which definition is being used.

A second topic is the “fibre lidar collection efficiency” relevant to focused monostatic coherent
lidars, both pulsed and CW. Most published models use a Lorentzian for this efficiency or sensitivity
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function, whether or not the scaling with “1/area” (which is a Lorentzian for a Gaussian beam,
with the conventions above) is recognised explicitly. Lindelöw [4] and then Lindelöw with
Risø/Leosphere colleagues [17] preferred a function that is spatially narrower (tighter) than the
Lorentzian. The discrepancy becomes larger at longer focus ranges, amounting to ~25% difference at
typical large-turbine sensing heights of 100–150 m.

Lindelöw’s model [4] “takes into account small receptor apertures and co-propagation of the local
oscillator and the received backscatter in a single mode fiber . . . A focused lidar will transmit a narrow
beam of light with a waist at distance xfocus, typically at 20–200 m. A sketch of a fiber optic based
focused monostatic coherent lidar is presented in Figure 31. The lidar has a combined emitter/receptor
in the form of a fiber end positioned in front of the focusing lens”. This “Sketch of system and principle
of a focused monostatic cw coherent lidar based on fiber optic components” is our Figure 2 below,
similar to Figure 1b above.

If we consider this as an imaging system, then an object or source at range x (in this case a thin
illuminated disk of air) creates an image on the other side of the lens. In Lindelöw’s treatment, the first
stage of light propagation (from fibre through lens to this target object) and the last stage (just before
recoupling to fibre) are described by standard Gaussian beam equations, but there is an intermediate
stage (backscattering by the target, then formation of an image) under different assumptions and using
thin-lens equations.

This mixing of Gaussian beams and rays has consequences illustrated in Figure 3.

(a) (b) 

Figure 3. Two models for heterodyne lidar collection efficiency. (a) Normalised curves of range
dependence for three different fixed focus ranges (50 m, 100 m, 200 m). Lorentzian (solid lines):
efficiency scales as the reciprocal of beam area. Lindelöw (dashed lines): modified Gaussian optics/ray
optics model proposed by Lindelöw [4]; (b) The quotient (Lorentzian efficiency)/(Lindelöw efficiency)
for a fixed target range of 100 m and a varying focus range. Wavelength 1.575 μm, equivalent fibre core
beam radius 4.5 μm, and lens focal length 200 mm (roughly representative of QinetiQ/ZephIR lidar).

The two “collection efficiency” functions are normalised so that their peak heights are equal for
short focus range (where the differences between ray optics and Gaussian beam optics are negligible).
This single normalisation factor is then applied for the other focus ranges. Any one curve in Figure 3a
shows the efficiency for the given choice of focus (e.g., 100 m) as the target range, and only the target
range, is varied. The Lorentzian curves peak at exactly the selected focus ranges (by construction,
because our “focus range” means the distance where beam area is smallest); the curves for Lindelöw’s
model peak at slightly more distant ranges.

Note that the focus distance is assumed to be changed by varying the fibre-to-lens distance as
mentioned above [20]. This means a slight but not always negligible dependence of beam size at
the lens on xfocus. The exact form of the curves depends on this and on the choice of normalisation,
but a comparison of the two approaches is not affected (because they use the same beam physics,
and give identical results, for propagation to the target).

In Figure 3a, the efficiencies are plotted for three choices of xfocus (50 m, 100 m, 200 m). The quotient
of the two efficiencies, for a fixed target range (100 m) and a varying focus range, is shown in Figure 3b.
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Note that these are two different feasible experiments: the first considers how the fixed-focus lidar
responds to scatterers placed at different ranges, and the second varies the fibre-to-lens distance to
explore the response to scatterers placed at a fixed range.

Lindelöw [4] notes the disagreement between his approach and the early theory of Sonnenschein
and Horrigan [2], which for our current geometry is equivalent to the BPLO approach. This “S&H”
paper predates 1.5 μm fibre lidars but applies to them without modification because we assume
untruncated pure TEM00 beams throughout. He notes that beams may overfill or underfill the detector,
and that the older literature does not consider the modern layouts where received and LO beams
co-propagate in optical fibre. But the transmit/BPLO approach remains valid, if the BPLO is correctly
calculated (including any variations or truncations or damage of the “photodevice surface”, and any
spatial filtering in the fibre). Results may be expressed as a diffraction integral in the detector plane,
the target plane or some other convenient plane. The standard approach is correct—or, at least, correctly
developed within its stated approximations—and Lindelöw’s, because of inconsistent shifting between
ray and beam optics, is not. But the differences are small, of the same order as current errors in
calibration, and so not easy to verify in practice—often less than 1 dB (in efficiency or power ratios) or
a few % (in the range for peak efficiency). Lindelöw’s −3 dB widths (FWHM) are 20–25% narrower
than the conventional predictions (see also [21] and its Figure 2.9). No experimental checks are offered
here, and few relevant ones are in the References; it would be good to see more.

Brewer et al. [22], before detailing a full diffraction-integral approach, describe a geometrical
approach similar to Lindelöw’s. They are more concerned with bistatic direct-detection lidars for
imaging distant targets, but they are still treating single-mode fibres (which, although not carrying
LO or BPLO beams, still reject any received light which is not mode-matched or, in geometric optics
language, does not fall within the fibre numerical aperture). Some changes or extra details are
needed before we apply their results to a monostatic focused coherent lidar: transmit and receive
fibre/telescope optics are matched (in their worked example, the transmit aperture diameter must
be taken as 10 cm), the far-field assumption is dropped, and care is needed when solving quadratic
Gaussian-beam equations.

This last point is already familiar from Hill and Harris [20]. Brewer et al.’s worked example uses
a nearly collimated transmitted beam that has a specified width (spot size) at a distant target. In their
“far-field” solution a slightly diverging transmitted beam appears to have a virtual beam waist some
67 m behind the lidar. They ignore the slightly converging “near-field” solution with a real beam waist
a similar distance in front of the lidar. The choice makes little difference to an ideal free-space imager,
but more difference to a lidar used for near-field wind measurements.

Frehlich and Kavaya [23] develop useful general expressions and, after translation between
various technical notations, show agreement with several other published accounts including
Sonnenschein and Horrigan [2] where there are several misprints and, as occasionally happens,
two cancelling factor-of-2 errors; Michael Kavaya has maintained and distributed a list of these and
other errata.

Sonnenschein and Horrigan proceed to sum over a large collection N >> 1 of scatterers
(representing a random diffuse target) and neither they nor Frehlich and Kavaya consider the
single-particle or few-particle cases in detail.

Lawrence et al. [3] show good agreement between their CO2 lidar and a conventional cup
anemometer, but do not analyse the few-particle case.

5.4. Single-Particle Mode and Volume Mode

This interesting distinction in lidar processing should perhaps be better known. It gives
an opportunity to recall the many friendships and the long productive career of Dr Rod Frehlich.
Indeed, large parts of the present paper and of its References are comments on and restatements of his
determined, thorough exploration of radar and lidar physics.
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A NASA report by Kavaya et al. [24] includes Frehlich’s comparison of single-particle mode (SPM)
and volume mode (VM) measurements. The contributions from scattering particles can be defined in
different ways. Essentially, VM adopts the theory and CNR definitions followed here and in most of
the literature, while SPM measures a particle’s peak contribution—that is, if a particle is detected in
the probe volume, then we record the photocurrent contribution from the instant of closest approach
to beam axis.

For decades, optical scientists have grumbled about the uncertainties in the shape(s) of laser
beam(s), the resulting distortions in fringe patterns, and the positions and trajectories of scatterers.
“Non-diametral traverses of particles across the scattering volume have also not been considered
in the broadening formulae. There is no convenient way to account for these effects . . . ” [25];
see also Schulz-Dubois [26]. Our point here is that these two definitions give different results for
range dependence, as shown in Figure 4. Errors may arise in calibration and interpretation unless
a consistent choice is made.

(a) (b)

Figure 4. (a) “Normalized range gain density” from Kavaya et al. [24], for volume mode and
single-particle mode (λ = 9.11 μm, beam radius to 1/e2 intensity points at the lens = 30.2 mm, focus
distance = 50 m); (b) Same quantities calculated for a ZephIR-type lidar (1.57 μm, 25 mm, 10 m).

6. Simulation of Multiple Scatterers in a Lidar Beam

The simulated measurement volume is assumed here to have rectangular (usually square) cross
section, with room for circles around the beam axis whose radii are at least 2w(z) for all relevant z.
The decrease in average intensity as we move away from the focus along the z axis follows, as in
Equations (1)–(5), a Lorentzian (rather than the steep Gaussian function for x and y), but for most
practical purposes a choice of (−3zR, 3zR) for the z-axis limits will include “almost all” the relevant
scattering. Indeed, these choices are overkill in the sense that many of the simulated scatterers are
illuminated so feebly that their contribution to the results is negligible; a conservative choice increases
confidence in the simulations.

Thus, we choose a focused lidar beam geometry (a certain transceiver aperture and focused
Gaussian beam parameters) and then simulate the movement of identical scattering particles which
enter a measurement “box” at random times and at random positions on the x–z “face” of the box,
the box being sufficiently large that any particles arriving outside it would not be “significantly”
illuminated. Each scatterer has a random Poisson-process arrival time and crosses the beam at uniform
speed, with a constant x and constant z each drawn from a uniform random distribution.

The scattering probe volume is shaped by our focused monostatic lidar [24], so the illumination
is non-uniform, and the wavefronts encountered away from focus are non-planar. At any instant,
Ntot(t) scatterers are within the box, and the time or ensemble average of this number is proportional
to the rate of the Poisson process and to the size of the box (the assumed measurement volume).
For precise experimental checks, the measurement volume should be carefully specified. For example,
in Figure 1b, the physically relevant volume lies to the right of the transmitting lens. Regions to the
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left are inside the lidar itself, and presumably not filled by scatterers; thus the “relevant” volume may
not be symmetric around the beam focus.

At any instant, the number of scatterers “contributing”, in the sense that they are significantly
illuminated, is at most Ntot and may (if we size the box conservatively) be much smaller. During some
time intervals, there may be no scatterer in the box or none that contributes significantly. The number
of scatterers illuminated in a fixed measurement volume will generally change with time (as would
happen in real life, because of random or wind-blown scatterer movement). The assumed measurement
volume itself may be altered during a simulation run (notably because of a varying beam focus), but of
course, consistency checks are advisable—runs for different measurement volumes may take very
different amounts of computation, but their average results should be similar so long as the box and
Ntot are sufficiently large.

There are many possible experimental scenarios, and many fluctuation processes and associated
timescales. It is important to keep in mind what is meant by an “average”—whether over time,
probability distribution, or ensemble of experiments.

For a collection of scatterers distributed (on average uniformly) across a slice of atmosphere at
a certain range z, and for randomly distributed phase terms, the mean squared quantity <|i(t)|2 >
contributed by that slice is proportional to the scatterer number density and inversely proportional to
the illuminated area of the slice—so it peaks at the beam focus, where the area is least (see also Section 4
of [1] for this “1/area” relation). If we fix the number density and vary the beam area, the number of
scatterers involved scales with beam area; but, because the average contribution per scatterer to the
detector power scales as the intensity squared (i.e., as the inverse square of beam area), the net result is
a power scaling with 1/area. We also see that the number of scatterers in a thin slice is proportional
to beam area A, and the beam intensity at each scatterer is proportional to 1/A. So, the fractional
backscattered power per slice is a constant, independent of beam size. So long as we continue to use
a time-averaged definition of power, this conclusion applies when we vary the beam size for arbitrarily
small seeding densities.

The heterodyne current due to several scatterers is the vector sum of the individual currents,
one for each scatterer as in Equation (7); for matched transmit and BPLO beams, each term can be
considered to vary as the beam intensity at the scatterer. The mean square of the current (averaged
over all relative phases as above) equals the sum of the individual squares; this is the same result as
for the mean square of the length of a 2D random walk.

We can illustrate some of the familiar results in the literature [1]. We assume a fixed transmit
power, a fixed LO power, and the usual optical arrangement described above (focused monostatic
coherent lidar, matched transmit and BPLO). First, Figure 5 shows the chirping behaviour of scatterers
that cross the beam away from the focal plane.

This modelling approach was discussed in [1], and similar time-frequency plots are well known.
Renard et al. [27] discuss airborne lidar options, and the general features of chirps are clear in their
exemplary figure (reproduced here as Figure 6).

42



Remote Sens. 2018, 10, 466

(a) (b) 

Figure 5. (a) Spectrogram of simulated lidar data for several scatterers crossing the beam. At any
instant, during this short (~3 ms) simulation, the number of scatterers significantly illuminated within
the probe volume is either 0 or 1; (b) Spectrogram of simulated lidar data (same duration ~3 ms) for
a larger density of scatterers crossing the beam. At any instant, it is likely that several scatterers (N > 1)
are significantly illuminated. The scatterers are given small random Doppler shifts to simulate slightly
oblique paths across the beam. As usual with spectrograms there are smearing and rippling effects,
and compromises are needed to choose filters and block lengths.

Figure 6. Example of time-frequency plot in Renard et al. [27]. See also Baral-Baron [28].

Second, we model an experiment where the beam waist position and radius are varied (for
constant beam width at the lens); the target is modelled as randomly generated scatterers (of equal
reflectance) within a box that encloses the waist as described above. The scatterer density (m−3) is
constant on average. We see in Figure 7 the variations in probe volume, CNR, and normalised second
moment of intensity.

Figure 7. Results from one simulation of a lidar with uniform aerosol seeding density, fixed aperture, and
varying focus range. Average CNR is almost independent of focus range, despite the variation of 4 orders
of magnitude in probe volume. Normalised 2nd moment of intensity <I2>/<I>2 is large at short ranges
but closely approaches 2 (characteristic of complex Gaussian statistics) if there are “many” randomly
arranged scatterers (say a few tens or more) in the probe volume. Figure 1.4 in Banakh and Smalikho [9] is
similar, illustrating their analytical expressions for “echo power” and the number of efficiently scattering
particles, with specific model assumptions for a CO2 atmospheric lidar (λ = 10.6 μm).
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Here, the simulation assumes constant measurement time (120 ms) at each focus range. At the
shortest ranges, there are so few scatterers contributing that the results for CNR and 2nd moment
are noisy. (The “No. of scatterers in probe volume” plotted is a theoretical average number given
by (2λ3/π2) × (focus distance/beam waist radius)4 × (seeding density), so it is not noisy). As the
range increases to tens of metres, the number of scatterers contributing rises quickly, because of this
fourth-power dependence of probe volume on range [24]. The CNR is almost constant with range as
we expect, and the 2nd moment of intensity falls to very nearly 2 when the probe volume contains
tens of scatterers. This computer run uses λ ~1.57 μm and w0 ~15 mm, with a seeding density of
500,000 m−3, and with the scatterer reflectance and shot noise level set to give a CNR of about 10 in
a bandwidth of 10 MHz. The 2nd moment is more than 100 at the shortest range of 5 m but within 1%
of 2.00 for ranges above 45 m. Of course, more stable results at the shorter ranges can be obtained if
(for example) we simulate a different experiment where the total number of contributing scatterers
(rather than the measurement time) is fixed at each range.

Such a simulation is easily run for hundreds or thousands of scatterers on a PC. This was harder
40 years ago, for example when Mayo [29] modelled the “triply stochastic” physics of turbulent flow,
particle arrivals, and photodetections.

Two more papers emphasising the practical side rather than simulations, but relevant to
understanding the various models, are the following:

Jarzembski and Srivastava [30] discuss some interference effects for the case of two illuminated
particles and treat some experimental time series at length. But they restrict their explanations to
particles near the beam focus and use a corresponding simplification of the Sonnenschein and Horrigan
equation. They neglect the information in the envelope of the two-scatterer lidar output, saying that
“it does not contain phase properties of backscatter”. For the linked amplitude and phase modulations
in such FM interference experiments, see Hill et al. [31] and its references.

Harris et al. [32] draw fresh attention to the possibilities for single-particle lidar anemometry and
to the need to consider different fluctuation statistics because the probe volume varies dramatically;
they do not consider time series analysis, chirp behaviour, or spectral moment estimation in detail.

This section has only sketched a very wide topic of relevance to short-range and/or thinly seeded
sensing (e.g., wind tunnel lidar and high-altitude anemometry); there are whole industries based on
particle/suspension analysis through optical scattering.

7. Direction Sensing for VAD Lidars with Sign Ambiguity

7.1. Deciding the Sign

We mention two related issues in coherent lidar Doppler sensing. One is the requirement to attach
signs (+ or −) as well as magnitudes to these estimates. The other is the estimation of the overall target
motion vector after the estimation of several Doppler shifts. Apart from brief comments here and
in Section 7.2 below, we cannot review the huge literature on estimating scatterer speed through the
Doppler effect. For the moment we assume that the detector output yields a well-defined spectral peak
and thus some reasonable mean-Doppler estimate.

Suppose for illustration that we are trying to estimate the magnitude and direction of the wind
and using a coherent lidar and a “conical scan” or “velocity-azimuth display” (VAD) mode. With
a system as described above, a change of sign (+/−) of the velocity component does not affect the
detector output: that is, one lidar measurement (one brief “snapshot” at a single viewing angle) does
not tell us whether the wind component along the line of sight is towards the lidar or away. Moreover,
for a uniformly flowing wind, although a collection of several or many measurements at different
viewing angles can tell us the wind speed (magnitude of wind vector), it still does not resolve this
180-degree ambiguity. For example, the ZephIR lidar collects approximately 50 separate estimates
of wind velocity component per second, spaced evenly around its 360-degree conical scan, and the
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resulting “figure of 8” pattern allows an accurate estimate of wind speed. However, the same pattern
would appear for a uniform wind flowing in the opposite (180 degrees different) sense (Figure 8).

(a) (b) (c) 

Figure 8. The appearance of Doppler estimates in a polar plot for a conical-scan lidar without direction
(+/−) discrimination. (a) “Figure-of-8” for a steady wind; (b) Perturbations soon after the passage
overhead of an A320 jet. Data from trials with ZephIR at Birmingham airport; (c) Simplified guide to
interpretation of “figures-of-8” (with thanks to Dr M Harris). The results from Hill et al. [33] here and
in Figures 9a and 10 below are reproduced by permission of QinetiQ Limited.

(a) (b) 

Figure 9. A passing aircraft leaves a pair of trailing wake vortices which form (briefly and
approximately) a stable “line feature” in the atmosphere. This line drifts with the mean wind across
the scan circle defined by the measurement points of a conical-scan lidar, and the angles where the
lidar detects a significant disturbance are recorded and plotted. (a) Example of data from trials with
ZephIR at Birmingham airport, adapted from Hill et al. [33]; (b) Sketch of the principle. This plan
view is simplified; in practice the lidar processing and scanning may take account of vertical as well as
horizontal drifts and may have complicated algorithms for estimating the vortex and wind parameters.

Wind speeds are routinely estimated with fewer and/or less widely spread viewing angles if
the CNR is sufficient and the wind is known (or assumed) to be steady so that we are confident of
a sinusoidal variation of speed with scan angle or equivalently of the typical figure-of-8 polar plot of
Figure 8. Schwiesow et al. [34] reported success with as little as 1/16 of a full scan (that is, less than half
a radian), and Leosphere’s Windcube lidars typically use 4 or 5 separate, fixed beam directions [35].
If we assume a steady wind and thus a figure-of-8 of known symmetric shape, far fewer than the
50 estimates per scan suffice for a good estimate of its size and orientation. But the same problem
arises in all such cases: we need some extra information in order to determine the sign of the wind.

45



Remote Sens. 2018, 10, 466

(a) (b) 

Figure 10. Spectrogram plots of ZephIR lidar data from airport trials. (a) Rectified cosine wave for
a fairly steady airflow on the southern approach to Birmingham airport [33]. A polar plot would
produce a “figure of 8” similar to Figure 8a; (b) Perturbed cosine wave after the passage of a Boeing
777. The vortex lines provide mainly positive Doppler contributions during one half-scan (vortex flow
towards the lidar, faster than the mean wind) and mainly negative ones during the other. The scan
angles at which the perturbation is judged “significant” according to some metric can be identified and
added to a plot such as the one in Figure 9a.

Of course, a separate non-lidar instrument may be added to measure, at one point or more, the
wind direction. In “ordinary” atmospheric conditions, it is sufficient to measure with a conventional
anemometer (vane/cup/ultrasonic) near the surface, and trust that the wind direction does not veer
sharply between measurements and between adjacent measurement heights; in this way, by assuming
a reasonable continuity, we can assign the wind vector to the correct quadrant at successively greater
heights [36]. But what if such a non-lidar instrument is unavailable or inappropriate?

There are several ways forward. An artificial frequency shift can be introduced, typically by
an acousto-optic modulator, so that the zero-Doppler region appears shifted from zero frequency in
the detector output. Or the in-phase and quadrature (I&Q) components of the complex carrier can
be separately detected, so that their relative phase can be tracked. Both approaches tend to involve
significant extra hardware and cost.

A third way, cruder but feasible, relies on the fact that real wind flows are not wholly “uniform”;
they always have fluctuations, for example of density, velocity, and backscatter. Nonetheless we
usually assume that they remain “uniform” or well-behaved over some extent and duration: that is,
we adopt a “frozen flow hypothesis” whereby the spatial patterns containing these fluctuations are
being transported with some overall mean wind motion. The patterns need only be sufficiently
distinct, and evolve sufficiently slowly, for us to track them with adequate confidence: it is a matter of
“sufficient” CNR and of timescales. If we look at the same small volume of atmosphere at intervals
of hours or many minutes, we may see no significant correlations of the departures from uniformity;
on a timescale of seconds or tenths of a second, we may have considerable success.

For example, Figure 9 shows unambiguous direction-sensing for a ZephIR lidar without frequency
offset or I&Q processing [33]. In this case, the atmosphere is perturbed by aircraft wake vortices that
typically last for many seconds and are (approximately) transported across the sky with the local
mean horizontal wind component, while descending slowly towards the ground. During a series of
one-second conical scans the lidar detects the perturbations caused by the vortex pair. For a typical
single scan, there are several detections (marked by the small red symbols in Figure 9a); as time evolves,
we see that these detections cluster in two groups that diverge. For one group the scan angles increase,
and for the other they decrease, because the line of the vortex pair—which is approximately a straight
line, considered on this scale of a few hundred metres—is entering the lidar’s conical-scan pattern.
For a line feature leaving the scan pattern, the two sets converge, and this distinction tells us the
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direction of the wind. For an ideal thin line, the two sets of detections coalesce when the line becomes
tangent to the scan circle; in practice the region of lidar detection sensitivity is 10–30 m across, and so
is the pair vortex structure from a typical medium aircraft. So, on this type of plot, the detections are
clustered only loosely, and we expect scatter of several metres or more (or the corresponding spreads
in angle/time), but after a few consecutive seconds of scanning, we are in no doubt of the overall
tendency (divergence in angle of the two groups, or convergence?) and thus in no doubt of the +/−
sign decision.

A conventional X-Y time-frequency (rather than polar) plot shows a rectified cosine wave when
the air is relatively unperturbed. When an aircraft passes overhead and the trailing vortices are
sampled by the lidar scan, there are considerable additions to (and subtractions from) the cosine
function (Figure 10).

The ZephIR example above, an early demonstration with eyesafe fibre-optic lidar, is deliberately
simple: the airflow is strongly perturbed, and we also have prior expectations about the general form
of the pair of counter-rotating vortices. But the principle [37–41] applies to the natural fluctuations of
velocity, backscatter etc. in “ordinary” air, with no helpful jet aircraft passing, and hence was of interest
for Malvern and Risø work with ZephIR-type lidars for wind applications. Evidently the “metrics”
for correlation-tracking of this sort (typically based on the first few spectral moments viz. carrier
strength, mean Doppler, and Doppler spread) will be adjusted to suit if we believe that particular
geometrical features may be present; for example we may expect to see these linear vortices, or 2-D
loops, or sheets of separated air flow, or 3-D volumes of turbulent air; but even a simple correlation
plot without special assumptions may strongly indicate the likely sense of the overall wind motion.
Many demonstrations are now in the literature with larger measurement sets, more detailed correlation
and wavelet algorithms, and heftier processors [42,43].

7.2. Some Issues in Frequency Estimation

The estimation of a Doppler shift in wind lidar is usually treated as a “mean frequency” problem
and attacked by forming power spectral estimates or autocorrelation functions. For light winds, there
are obvious technical issues.

First, in the absence of a frequency-shifting scheme such as the modulator mentioned above,
the informative carrier lies close to DC, where interferences such as local oscillator noise and laser
relative intensity noise (RIN) are usually strongest. The influences of “intensity” noise and “phase”
noise on frequency estimation depend on the estimator used, and we need to know the complex
(intensity and phase) variations associated with laser instability; an estimate of the power spectral
density attributed to RIN is insufficient. Evidently a two-point or “instantaneous frequency” algorithm,
as it relies on the phases alone, should be unaffected by AM when the CNR is high, but other
algorithms use more or less of the AM or envelope information—for good reasons—and will be
correspondingly affected.

Second, how is a wind speed defined when the measurement volume—usually, as we have seen,
a long thin volume extending through several or many metres—contains some scatterers approaching
us and some scatterers receding? The coherent addition of complex components with different Doppler
signs (clockwise and anticlockwise phasor rotations) does not necessarily give the same result as the
incoherent addition of the sign-insensitive outputs.

This is an issue not just of “ambiguity” but of distinctly different results in the detector output.
If we suppose for simplicity that there are only two scatterers present in the beam, one moving towards
the lidar and one away, and that their individual contributions to the detector output have equal
magnitudes and opposite signs, the net result in a frequency-shifted (direction-sensitive) coherent lidar
is the sum of two oppositely rotating phasors.

Also, the common use of a blocking or highpass filter (to remove both carrier and dominant noise
near DC) will in any case cause a bias in subsequent Doppler estimation. For example, the lowest few
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hundred kHz of ZephIR data (in practice, two or three frequency bins of the spectrogram display) are
not used in Figure 10.

8. Errors and Bias in Doppler Lidars for Steady Winds

Finally, we discuss two examples of how (according to the manufacturer’s publications) the
extraction of wind velocity from the lidar detector output must be imperfect. Any error or bias is likely
to be very small, but lidar users—including those involved in calibration and verification studies—are
advised to check if and how any corrections are applied.

There is a practical issue in conical-scan or sector-scan lidars where lidar measurements are
accumulated (usually in the form of averaged power spectral estimates or autocorrelations) during an
appreciable interval and hence over an appreciable range of angles. For example, the standard ZephIR
choice of 50 measurements per one-second scan means that each measurement represents a “wedge”
or segment of angular extent 360/50 = 7.2 degrees of scan. This, in turn, may mean a small but not
entirely negligible error in estimates of the figure-of-8 size (wind speed), orientation (wind direction),
and lobe symmetry (vertical wind component).

Suppose the lidar forms a spectral estimate at a given scan angle θ (not to be confused with the
phase angle above) by accumulating short-term estimates over the range θ − δ to θ + δ and then finds
a mean frequency (first spectral moment) from the accumulated estimate.

Denote the wind heading by θtrue, so that an ideal non-direction-sensing lidar would detect
a maximum line-of-sight component at θtrue and θtrue + π radians, and a minimum line-of-sight
component at θtrue + π/2 and θtrue + 3π/2 radians. Short-term estimates are incoherently accumulated
at a steady rate (per radian of scan). The power per estimate will fluctuate around a steady mean
(given assumptions of uniform operating conditions, backscatter etc.). But, neglecting the fluctuations,
we may assume that each incremental scan segment (θ, θ + dθ) contributes a spectral increment of the
same total power centred around a Doppler frequency proportional to abs(cos(θ)).

The measured wind speed can thus be taken as proportional to the average of abs(cos(θ)) over
the interval (θ − δ, θ + δ). Evidently, the wind speed may be underestimated near θ = θtrue and
θtrue + π and overestimated near θtrue + π/2 and θtrue + 3π/2. The direction-sensing lidar behaves
slightly differently because of the signed function cos(θ); the mean frequency is then proportional to
cos(θ)·sin(δ/δ).

First, we show results (as functions of θ) for 10 measurements per scan, that is δ = π/10. It is
assumed that scan segments are contiguous (without overlapping). In Figure 11a the scan origin θ

= 0 (the midpoint angle for the first segment) coincides with the true wind direction. In Figure 11b
we assume the maximum possible “offset” so that the true wind heading coincides with the edge of
a segment, that is, the angle where one segment finishes and the next one begins.

(a) (b)

Figure 11. Rectified cosine function and its time-windowed average, representing the
Doppler-estimating behaviour of a non-direction-sensing lidar; compare this with the typical ZephIR
display in Figure 10a. For each scan rotation, the average of the cosine is obtained for each of
10 contiguous segments (arcs) of π/5 radians. (a) The true wind heading coincides with the midpoint
angle of a segment (i.e., zero offset); (b) The true wind angle coincides with the edge of a segment
(i.e., offset = 0.5 segment).
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The “errors” shown here might be unacceptable. Figure 12 shows similar results for the ordinary
ZephIR case of 50 measurements per scan, that is δ = π/50 or 2δ = 7.2 degrees. Now the bias would
almost certainly be negligible in practice. It is still noticeable very close to π/2 and 3π/2 but, usually,
these regions are not used—any measurements within them are discarded, because (as just mentioned)
we do not trust the detector noise floor in the lowest spectral bin(s)—and the effect of this slight data
loss on curve-fitting algorithms is unimportant.

(a) (b) 

Figure 12. As for Figure 11, with 50 contiguous segments per scan rotation. The bias is now negligible.
(a) The true wind heading coincides with the midpoint angle of a segment (i.e., zero offset); (b) The true
wind angle coincides with the edge of a segment (i.e., offset = 0.5 segment).

Non-scanning lidars (such as standard WindCube) do not have this problem to the same extent,
as their field of view is tighter—essentially, the beam angular width of at most a few milliradians
rather than the wedge of a few degrees. But they have another issue if the speed and direction are
estimated directly (as described in [19]) from a small number, typically 4, of fixed-angle measurements.
When a horizontal wind speed is obtained as Vh =

√
u2 + v2, where its orthogonal components u

and v are derived from lidar line-of-sight speed estimates, any small zero-mean random noises on
these estimates will create small zero-mean random noises on u and v and (in general) non-zero-mean
random noise on Vh. For zero-mean Gaussian noises on the initial estimates, this bias of Vh will
be positive.

For each type of lidar, given our assumptions about uniform horizontal winds and our known
beam parameters, a compensation function could reduce the bias of the individual measurements
(before curve-fitting an equation for the wind vector). Or the biased measurements could be fitted to a
modified equation that included terms to describe the bias.

9. Conclusions

This paper is a companion to [1] and other recent overviews of fibre-optic lidars; a common
theme is the reexamination of basic equations and principles in radar or lidar. In [1], the emphasis
was on the hundreds of fibre-optic lidars installed today for wind and especially wind turbine farm
measurements; again we stressed what happens when the number of scatterers (components) changes
through 0, 1, 2, . . . up to the “many” of near-Gaussian statistics. The present paper has considered the
simulation of few-scatterer and multi-scatterer lidar experiments, and some problems (and solutions)
for Doppler-sign-insensitive lidars.

We reviewed the BPLO description of the integrals for lidar CNR and efficiency. In a monostatic
Doppler lidar with matched LO and transmit beams, “focusing of the beam gives rise to a spatial
sensitivity along the beam direction that depends on the inverse of beam area; it follows that the
sensitivity rises to a peak at the beam waist and falls symmetrically on either side” [20]. The sensitivity
function Q used by Banakh, Smalikho et al. [44] is an exact Lorentzian, and (once we make the necessary
adjustments in notation) it is the same Lorentzian used by Sonnenschein and Horrigan [2], Frehlich
and Kavaya [23], Qi Hu et al. [45], and others. We contrasted this with Lindelöw’s description of
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“collection efficiency”, which departs from the “1/area” rule. A fair and separate question, though, is
whether the usual calibration experiments are sufficiently precise to tell these two descriptions apart.

We reviewed the single-particle mode (SPM) and volume mode (VM) modelling of Frehlich et al.
and some numerical modelling of lidar detector time series and statistics.

We have tried to highlight and explain behaviour that may be observed from a modern coherent
lidar used at short ranges (e.g., in a wind tunnel) and/or with weak aerosol seeding. It is worth noting
that non-Gaussian statistics (and opportunities for improved processing) may arise at focus distances
of 10–20 m, even when there are 106–107 scatterers per cubic metre.

Finally, we reviewed some issues in direction sensing, sign ambiguity, and limited angular
resolution for standard Doppler-sensing coherent lidars.

It has been interesting to watch these fibre-optic lidars grow into accurate reliable calibrated tools
of the wind energy trade, with accompanying expectations and responsibilities.
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Glossary

BPLO Back propagated local oscillator. A fictitious aid in analysing heterodyne lidars.
CNR Carrier-to-noise ratio. Strictly this should mean a ratio C:N but it often appears as

a quotient C/N or a decibel measure. In lidars with nonlinear processing steps such as
frequency estimation, the CNR or carrier-to-noise (at the detector, before processing) is
often distinguished from SNR or signal-to-noise (after processing); these two noises “N”
may have quite different statistics.

CW Continuous wave.
FM Frequency modulation.
I&Q In-phase and quadrature (the two parts of a complex quantity, usually the detector output

current, giving a phase angle tan−1(Q/I).
LO Local oscillator.
SPM Single-particle mode: lidar scattering events are individually registered and treated as

follows: if a particle is detected in the beam, then the peak resulting detector output counts
towards an overall metric. See VM.

TEM00 Transverse electromagnetic mode of lowest order; the first in a nominally complete
orthogonal set of “Gaussian beams” into which a propagating monochromatic lidar beam
can be decomposed.

VAD Velocity-azimuth display. Usually refers to a conical-scan lidar.
VM Volume mode: the entire time series of a scattering event counts towards an overall metric.

This is normal procedure in an atmospheric lidar illuminating a volume densely seeded
with scatterers; individual scattering events are not usually isolated and examined even if
that is technically feasible. But other metrics exist (see SPM) and may show different
dependences on target range.

Windcube A brand of pulsed lidars operating near 1.5 μm; based on research at ONERA, Palaiseau,
and later developed and marketed by Leosphere.

ZephIR A brand of CW lidars operating near 1.5 μm; based on research at QinetiQ, Malvern,
and later developed and marketed by ZephIR Lidar.
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Abstract: IEA Wind Task 32 serves as an international platform for the research community
and industry to identify and mitigate barriers to the use of lidars in wind energy applications.
The workshop “Optimizing Lidar Design for Wind Energy Applications” was held in July 2016
to identify lidar system properties that are desirable for wind turbine control applications and
help foster the widespread application of lidar-assisted control (LAC). One of the main barriers this
workshop aimed to address is the multidisciplinary nature of LAC. Since lidar suppliers, wind turbine
manufacturers, and researchers typically focus on their own areas of expertise, it is possible that
current lidar systems are not optimal for control purposes. This paper summarizes the results of the
workshop, addressing both practical and theoretical aspects, beginning with a review of the literature
on lidar optimization for control applications. Next, barriers to the use of lidar for wind turbine
control are identified, such as availability and reliability concerns, followed by practical suggestions
for mitigating those barriers. From a theoretical perspective, the optimization of lidar scan patterns
by minimizing the error between the measurements and the rotor effective wind speed of interest is
discussed. Frequency domain methods for directly calculating measurement error using a stochastic
wind field model are reviewed and applied to the optimization of several continuous wave and
pulsed Doppler lidar scan patterns based on commercially-available systems. An overview of the
design process for a lidar-assisted pitch controller for rotor speed regulation highlights design choices
that can impact the usefulness of lidar measurements beyond scan pattern optimization. Finally,
using measurements from an optimized scan pattern, it is shown that the rotor speed regulation
achieved after optimizing the lidar-assisted control scenario via time domain simulations matches
the performance predicted by the theoretical frequency domain model.

Keywords: wind energy; Doppler lidar; wind turbine controls; lidar-assisted control (LAC); IEA Wind
Task 32

1. Introduction

In the past decade, lidar-assisted control (LAC) of wind turbines has become an important research
topic in the wind energy community [1]. Whereas traditional wind turbine control systems rely on
feedback measurements to control blade pitch, generator torque, and yaw direction, Light Detection
and Ranging (lidar) allows preview information about the approaching wind to be used to improve
wind turbine control. The shared goal of the various LAC research efforts is to enable a reduction
in the levelized cost of energy (LCOE) of wind energy (i.e., the average cost per unit of energy over
the lifetime of the turbine, including capital costs, operations and maintenance costs, and all other
relevant expenses) through (a) an increase in energy production or (b) a decrease in turbine cost made
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possible by structural load reduction [1]. Although several successful field trials have been reported
(as discussed in Section 2.3), LAC is generally still limited to research activities; there remain a variety
of obstacles preventing the widespread use of LAC in the wind industry. The objective of this paper is
to provide a summary of how lidar systems can be optimized specifically for control applications in
order to overcome the barriers preventing the widespread deployment of LAC.

The results presented in this paper are based on the outcome of the IEA Wind Task 32 workshop
“Optimizing Lidar Design for Wind Turbine Control Applications” held in Boston, MA in July 2016.
IEA Wind Task 32: “Wind Lidar Systems for Wind Energy Deployment” is an international open
platform with the objective of bringing together experts from the academic and industrial communities
to identify and mitigate barriers to the use of lidar for wind energy applications. During the workshop,
participants from academia, national research laboratories, as well as the lidar and wind turbine
industries discussed the barriers preventing the widespread use of lidars for wind turbine control,
strategies for overcoming those barriers, and ideas for maximizing the effectiveness of lidars for control
applications. In this paper, both practical considerations for overcoming the obstacles to the use of
lidars for control and theoretical approaches for optimizing lidar scan patterns are discussed.

The remainder of this paper is organized as follows. A review of lidar technology, LAC, and
previous work on lidar optimization for control purposes is provided in Section 2. Sections 3 and 4
discuss the identified practical barriers to the widespread use of lidars for control and strategies for
overcoming the barriers, respectively. Theoretical approaches to optimizing lidar scan patterns by
minimizing either (a) the error between the lidar measurements and the rotor effective wind speed
or (b) the deviation from the intended setpoint of a control variable of interest (e.g., rotor speed)
with the use of LAC are described in Section 5. Section 6 outlines how a frequency domain model
can be used to calculate measurement or controller setpoint error for different scan configurations.
Optimal scan parameters are provided for a variety of scan scenarios. In Section 7, design choices
required to maximize the utility of lidar measurements in a feedforward pitch control scenario are
illustrated. Time domain simulations show that the rotor speed regulation (or equivalently, generator
speed regulation) achieved by an optimized control scenario matches the performance predicted by
the frequency domain model. Next, a technology outlook, discussing potential future directions of
lidars for control purposes, is provided in Section 8. Finally, Section 9 concludes the paper.

2. Background

In this section, a summary of lidar systems developed for control purposes is provided, followed
by a brief overview of the different categories of LAC that have been investigated and a discussion of
successful field tests that have been reported. The remainder of the section provides a review of the
subset of the LAC literature that focuses on lidar optimization for control purposes.

2.1. Lidar Systems for Control Applications

A variety of nacelle lidar systems have been developed for wind turbine control applications,
both commercially and for research purposes. The first field demonstration of a nacelle-mounted
lidar that is reported in the literature was made in 2003 by Harris et al. [2], where the authors tested
a single-beam continuous wave (CW) lidar mounted atop a utility-scale wind turbine, measuring
200 m upstream of the turbine. CW lidars measure the wind velocity by focusing a laser beam at a
specific range and detecting the Doppler shift of the light backscattered from aerosols at the focus
point [3]. Note that, although CW lidars can only measure at a single distance at one time, the
focus distance of the lidar can often be adjusted. The technology behind this initial CW lidar [2]
eventually led to the creation of the ZephIR DM nacelle-mounted circularly-scanning CW lidar by
ZephIR Lidar (Hollybush, Ledbury, UK). With a configurable focus distance between 10 m and 300 m,
the ZephIR DM lidar completes a circular scan containing 50 measurement points once per second [4].
A similar ZephIR lidar system was placed in the hub, or spinner, of a MW-scale wind turbine, as
discussed by Mikkelsen et al. [5], allowing continuous measurement of the wind inflow without
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periodic obstruction from blade passage. A more complex spinner-mounted lidar system developed by
Sjöholm et al. [6], also based on a ZephIR, uses two rotating beam-redirecting prisms to scan 400 points
per second, roughly evenly distributed over a 100 m-diameter disk, at a preview distance of 100 m,
allowing two-dimensional turbulence structures to be examined. In contrast to research-oriented
lidar systems relying on complex scan patterns, a nacelle-mounted CW lidar developed by Windar
Photonics (Taastrup, Denmark) uses four fixed beam directions to measure the wind 80 m upstream of
the turbine [7]. This simple design is meant to reduce the cost of nacelle lidars for control purposes.

Whereas CW lidars are limited to measuring one point at a time, but are capable of high
sampling rates, pulsed lidar systems can measure the wind speed at multiple ranges along the
beam simultaneously, but typically require longer sampling periods. Instead of tightly focusing
the laser beam at a specific distance, pulsed lidars attribute the backscattered light to different
measurement ranges (range gates) according to the elapsed time since the light was emitted by the
lidar. Schlipf et al. [8] used a custom scanning pulsed lidar system based on the Leosphere Windcube
V1 lidar to provide preview measurements for lidar-assisted pitch control field tests. The authors
configured the lidar to scan a circular trajectory containing six evenly-spaced beam directions with
five range gates from 42.7 m (1 rotor diameter (D)) to 85.3 m (2 D) upstream of the test turbine with
a scan period of 1.33 s. Additionally, a five-beam pulsed nacelle lidar has been developed by Avent
Lidar Technology (Orsay, France) for control applications. This lidar was used for LAC field field tests
performed by Kumar et al. [9]. The five-beam Avent lidar provides measurements at up to 10 range
gates per beam with a maximum range of 300 m and a scan period of approximately 1.25 s [10].
Note that, while CW lidars can typically measure the wind at a greater number of beam directions
per scan than pulsed systems, pulsed lidars have the advantage of being able to measure the wind at
multiple ranges per beam direction. Because each range gate corresponds to a different radial distance
from the center of the rotor, pulsed lidars are capable of measuring a large portion of the rotor disk
area with a small number of beam directions.

2.2. Lidar-Assisted Control Strategies

The study of LAC began in earnest with the 2005 simulation-based investigation of blade
pitch control for rotor speed regulation and blade load reduction presented by Harris et al. [3].
Since then, LAC strategies have been explored using all three main types of wind turbine control
actuation: yaw control, generator torque control, and blade pitch control. Furthermore, the use of
lidar measurements for control has been investigated for both below-rated operation, particularly for
optimizing power capture, as well as operation in above-rated wind speeds, where the objective is to
regulate rotor speed and minimize structural loads.

In the below-rated control region, both lidar-assisted yaw control and generator torque control
have been investigated. Traditionally, yaw control is performed using wind direction measurements
from a nacelle wind vane. However, improper calibration and flow disturbance behind the rotor
can produce inaccurate wind vane measurements and rotor misalignment. Field tests performed by
Fleming et al. [11] show that a bias in the wind vane measurements can be detected and removed using
measurements from a nacelle lidar, leading to an improvement in energy capture. Scholbrock et al. [12]
discuss yaw control experiments where information from the wind vane is completely replaced by more
accurate lidar measurements, similarly resulting in greater energy capture. However, several authors
argue that most of the performance increase from full-time lidar-assisted yaw control could likely
be achieved by simply removing the wind vane bias, which could be accomplished with a one-time
lidar-based wind vane calibration [11,13,14].

During below-rated operation, the primary purpose of generator torque control is to regulate
rotor speed. For a subset of the below-rated control region, the objective is traditionally to maintain
the tip-speed ratio of the rotor at its optimal value in order to maximize power capture. The use
of lidar preview measurements to improve optimal tip-speed ratio regulation via generator torque
control has been shown to provide a small increase in energy capture [13–16]. However, as observed
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by Bossanyi et al. [13] and Schlipf et al. [16], the large generator torque fluctuations and drivetrain
loads that result from this control strategy likely outweigh the modest benefits.

Blade pitch control has been recognized as one of the more promising types of LAC because
of the significant rotor speed regulation improvement as well as structural load reduction that can
be achieved. Both collective pitch control, requiring estimates of the “rotor effective wind speed”
(e.g., rotor average wind speed) [13,17,18], and individual pitch control (IPC), in which each blade
is controlled differently to account for spatial variations in the wind field [13,19–22], have been
investigated. By mitigating the effect of spatially-varying wind speeds, using lidar measurements of
either rotor effective quantities like wind shear or wind speeds local to the individual blades, IPC has
the advantage of reducing blade loads as well as non-rotating loads transferred to the drivetrain and
turbine structure beyond what can be achieved with collective pitch control. Note that, while most
lidar-assisted IPC controller designs only use measurements of the wind speed variations over the rotor
area, Wortmann et al. [23] have recently proposed a lidar-assisted IPC controller that mitigates the
impact of yaw misalignment and vertical inflow in addition to wind shear on blade loads. A subset of
lidar-assisted controllers combine pitch control and torque control to optimize the impact of the two
types of actuation together [24–27], especially during the transition between below-rated operation
(primarily torque control) and above-rated operation (primarily pitch control) [24].

When considering optimal lidar configurations for control applications, it should be noted that
LAC applications typically require only a few seconds of preview time, as explained for a variety of
lidar-assisted pitch control strategies; Laks et al. [28] find that a preview time of only 0.2 s is sufficient
for reducing blade loads, Bottasso et al. [26] conclude that only 1 s of preview time is necessary to
minimize tower fore-aft loads and generator speed error, and Dunne and Pao [29] find diminishing
returns for generator speed regulation and pitch activity reduction with preview times beyond 2–3 s.
As explained by Dunne et al. [21], less than one second is fundamentally required to overcome the
delay from the pitch actuator, while up to a few additional seconds are required to overcome the delay
from filtering the lidar measurements to remove unwanted noise.

2.3. Lidar-Assisted Control Field Tests

Despite the large LAC research literature from the past decade, only a small number of field
tests have been reported. However, the results of these experiments show that the types of control
improvements revealed by theory and simulation can be demonstrated in the field. As mentioned
in Section 2.2, Scholbrock et al. [12] demonstrated a reduction in yaw error when replacing the wind
vane measurements in the yaw controller of the three-bladed 600-kW CART 3 (Controls Advanced
Research Turbine), located at the US National Renewable Energy Laboratory (NREL)’s National
Wind Technology Center, with wind direction measurements from a nacelle lidar. These yaw control
improvements were achieved using the circularly-scanning ZephIR DM CW lidar introduced in
Section 2.1. Several lidar-assisted collective pitch control field tests were performed at NREL’s National
Wind Technology Center as well, all using simple feedforward controllers based on wind speed-to-pitch
angle lookup tables. In 2012, Schlipf et al. [8] evaluated a feedforward pitch controller on the 600-kW,
two-bladed CART 2 wind turbine using measurements from the custom circularly-scanning pulsed
lidar system mentioned in Section 2.1. During the same year, a similar feedforward controller was
tested on the CART 3 turbine using measurements from a BlueScout Optical Control System (OCS)
three-beam pulsed lidar, as described by Scholbrock et al. [30]. Based on these two experiments,
Schlipf et al. [8] report a reduction in rotor speed standard deviation during the above-rated operation
when using LAC, while Scholbrock et al. [30] additionally reveal a decrease in tower fore-aft loads.
Kumar et al. [9] discuss feedforward pitch control experiments on the CART 2 turbine using preview
measurements provided by the five-beam pulsed Avent lidar system, described in Section 2.1 as well.
By re-tuning the feedback pitch controller with which the feedforward controller is combined, the
authors demonstrated the ability to maintain roughly the same rotor speed error as the original baseline
feedback controller allowed, but with significant reductions in tower fatigue loads and pitch activity.
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2.4. Lidar System Optimization for Control Applications

Although much of the literature on LAC focuses on controller design rather than the remote
sensing aspect, a significant amount of research has been conducted specifically on the optimization
of lidar systems for LAC. This section provides a review of existing research on the optimization of
lidars for control applications, organized into four categories: (1) lidar optimization via the analysis
of controller performance; (2) scan pattern optimization by minimizing measurement error using
simulated lidar measurements; (3) scan pattern optimization by minimizing measurement error using
computationally efficient frequency domain calculations; and (4) lidar configuration optimization to
address practical considerations.

2.4.1. Optimizing Lidars by Assessing Controller Performance

While many lidar-assisted control studies rely on a single lidar scenario for simulations or field
testing, some authors have directly analyzed the impact of different lidar configurations on controller
performance. In an overview of the benefits of various LAC applications, Bossanyi et al. [13] arrive at
the general conclusion that both pulsed and CW lidars are suitable for control purposes, as long as they
can measure roughly 10 points distributed around the rotor area upstream of the turbine every second
while providing a few seconds of preview time. They claim that additional measurement points and
faster sampling provide diminishing returns, and that a circular scan pattern is nearly as useful as more
advanced scan patterns. The lidar model used in this study includes the spatial averaging, or “range
weighting”, along the beam that is inherent to both pulsed and CW lidars as well as the limitation to
line-of-sight (LOS) velocity measurements (i.e., the projection of the three-dimensional wind vector
onto the beam direction). The authors also find that the optimal scan configuration depends on the
wind field parameter being estimated; large cone angles are beneficial for measuring wind direction,
but harm the accuracy of rotor effective wind speed and wind shear estimates. Finally, the authors
suggest that spatial averaging along the beam is helpful for estimating rotor effective wind quantities
for control because it resembles the spatial averaging of the wind field by the rotor.

Focusing on a circularly-scanning pulsed lidar, Koerber and Mehendale [31] discuss the potential
for different LAC applications to reduce the cost of energy generated by a wind turbine. The authors
investigate the impact of the number of beams (2, 4, 6, or 8) and the number of range gates (1–10)
on rotor speed regulation and structural fatigue load reduction for a collective pitch feedforward
controller. As expected, the study finds that the controller performance improves as the number of
beams and range gates increases, with the largest improvement occurring when moving from two to
four beams and diminishing returns beyond eight range gates. Although the authors do not reveal the
specific range gate distances, for the maximum 10-range gate scenario, the range gates are roughly
evenly spaced so that they span the entire rotor disk area when projected onto the rotor plane. It is
concluded that coverage of the rotor plane area is the most important factor for the scan pattern.
Finally, the authors show that sampling frequency has little impact on load reduction, as long as it is
above 0.5 Hz.

After first analyzing the influence of the scan pattern, spatial averaging, and LOS velocity
limitations on overall measurement quality, researchers began to introduce models of wind evolution
into LAC simulations. Wind evolution describes the change in turbulent structures as they advect
from the measurement location downstream towards the turbine. This represents a deviation from
Taylor’s frozen turbulence hypothesis [32], traditionally assumed during wind turbine simulation,
which maintains that turbulent structures remain unchanged while traveling downstream at the mean
wind speed. Wind evolution models are typically defined in terms of longitudinal spatial coherence
(i.e., the correlation between wind speeds separated by different longitudinal distances as a function of
frequency), with low frequency components of the turbulence remaining highly correlated as the wind
travels downstream but high frequency components becoming decorrelated due to eddy decay [33].

Bossanyi [34] incorporated wind evolution into collective pitch LAC simulations using the
theoretical Kristensen wind evolution model [33], and found that evolving turbulence does not
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significantly impact the load reduction potential of LAC. Laks et al. similarly included the Kristensen
wind evolution model while simulating lidar-assisted IPC for a 600 kW wind turbine. Assuming a
hub-mounted CW lidar with three rotating beams, the authors found that blade loads were reduced
to nearly the same level as with frozen turbulence for a preview distance of 126 m (∼3 D). At this
preview distance, the spatial averaging along the lidar beam was found to effectively filter out the
high-frequency structures in the wind that change the most due to wind evolution.

2.4.2. Optimizing Lidars by Assessing the Accuracy of Simulated Lidar Measurements

Another strategy for optimizing lidar scan patterns is the direct comparison between simulated
lidar measurements and the true variables they are intended to represent, thereby removing the
controller from the analysis entirely. Kragh et al. [35] examined how accurately different scan patterns
are able to measure yaw misalignment (i.e., the relative wind direction) in stochastic turbulent wind
fields with a constant yaw error imposed. By modeling a CW lidar with a focus distance of 100 m,
the authors compared the accuracy of measurements from a linear scan pattern sweeping left and
right at hub height, a circular scan pattern, and a 2D scan pattern that covers more of the rotor disk
area, for cone angles of 15◦ and 30◦. Using a 10-min averaging time, it was found that the circular scan
results in the lowest error. For all scan patterns, the larger 30◦ cone angle improves accuracy. However,
the authors showed that when horizontal shear is introduced to the wind fields, the accuracy of the
wind direction estimates becomes worse; horizontal shear appears similar to yaw misalignment when
measurements are constrained to LOS velocities.

Returning to longitudinal wind speed measurements, Simley et al. [36] simulated measurements
from circularly-scanning CW and pulsed lidars rotating at the same speed as the 126 m-diameter
rotor of the NREL 5 MW reference turbine model [37] in stochastic turbulent wind fields. The lidar
optimization is made relevant for pitch controlled turbines by analyzing root mean square (RMS)
measurement error for the “blade effective wind speed”, approximated by averaging the longitudinal
wind speed along a line representing the blade, weighted by the radially-dependent contribution to
aerodynamic torque production. A scan radius near 44 m (70% of the rotor radius (R)) produced the
most accurate measurements, in part because the aerodynamic torque production is concentrated near
this region of the blade. For the CW lidar model, the optimal preview distance was found to be in
the range of 150 to 180 m (1.2 to 1.4 D), depending on the amount of turbulence. Beyond the optimal
preview distance, the amount of spatial averaging increases too much (the effective length that is
averaged along the beam scales with the square of the focus distance). For shorter preview distances,
the cone angle becomes too large and the measured LOS velocities contain too many contributions
from the transverse and vertical wind components, instead of the longitudinal component of interest.
For the pulsed lidar, however, the measurement error was found to always improve as preview
distance increases because the amount of range weighting along the beam remains constant.

Whereas the previous two studies rely on stochastic turbulent wind fields, Simley et al. [38]
simulated lidar measurements using a more physically realistic wind field generated using large-eddy
simulation (LES), a computational fluid dynamics (CFD) technique. The LES wind field, with 8 m/s
mean wind speed, includes the interaction with a model of an operating NREL 5 MW reference
turbine, causing reduced velocities upstream of the rotor in the turbine’s “induction zone”.
Wind evolution is also inherently included. Note that wind evolution places an additional penalty on
long preview distances due to the decorrelation of the wind. By simulating a hub-mounted 3-beam
circularly-scanning CW lidar at (a) the location of the operating turbine and (b) far upstream of the
turbine, the impact of the induction zone on measurement quality was investigated. A model-based
wind speed estimator, which relies on measured turbine variables to estimate the true wind
disturbances, was used to determine the rotor effective wind speed as well as horizontal and vertical
shear. With induction zone effects included, the optimal scan radii and preview distances for measuring
rotor effective wind speed and shear were found to be 70% R (44 m) and 60% to 70% D (76–88 m),
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respectively. These values are only slightly smaller than the optimal parameters without induction
zone effects.

2.4.3. Lidar Optimization Using Frequency Domain Techniques

As an alternative to performing lidar simulations in stochastic or CFD-based wind fields, metrics
of lidar measurement quality can often be calculated directly in the frequency domain. This approach is
possible because (a) stochastic wind fields are defined by their frequency domain statistics (turbulence
power spectra and spatial coherence) and (b) many useful metrics for measurement quality are
either directly based on frequency domain definitions, such as the coherence bandwidth, or can
be easily calculated using frequency domain information, such as mean square measurement error.
Measurement coherence (the correlation between the lidar measurements and the true wind speed at
the rotor plane as a function of frequency) can be calculated using a frequency domain wind field model
as long as the lidar measurements and true wind speed variables are defined as linear combinations
of wind speeds. Because lidar measurements and rotor effective wind speeds can be modeled as
weighted averages of the wind speeds along the lidar beam and along the blades or across the rotor
plane, respectively, they are well-suited for frequency domain analysis.

There are two main advantages to determining measurement quality directly in the frequency
domain rather than based on time domain simulations. First, generating stochastic or CFD-based wind
fields and performing time domain lidar simulations is computationally expensive. Second, to arrive
at statistically significant measurement quality statistics, results from many different time domain
simulations must be averaged together. Frequency domain calculations, on the other hand, only need
to be performed once for each lidar configuration and set of wind field parameters, and produce the
exact measurement coherence.

Schlipf et al. [39,40] combine a simple exponential longitudinal coherence model of wind evolution,
introduced by Pielke and Panofsky [41], with a standard wind field model based on frozen turbulence
to form an evolving wind field model. The model is used to calculate the measurement coherence
between pulsed lidar measurements and the rotor effective wind speed, defined as the spatial average
of the longitudinal wind speeds across the rotor disk. Specifically, the authors calculate the −3 dB
cutoff frequency of the transfer function from the lidar measurements to the rotor effective wind speed,
describing the bandwidth where the measurements are correlated with the true wind disturbance.

In addition to lidar range weighting and LOS velocity limitations, the frequency domain
measurement coherence model used in [40] includes the effects of sequential scanning (i.e., the use
of a single laser to scan across all beam directions in a finite amount of time). In the pulsed lidar
measurement model used, the velocity measurements at different range gates are delayed by the
amount of time it takes them to reach the first range gate (determined by the mean wind speed
according to Taylor’s frozen turbulence hypothesis [32]). The delayed velocities, which should be
roughly in phase with each other, are then averaged together to estimate the rotor effective wind speed.
Schlipf et al. [39] describe the direct frequency domain calculation of lidar measurement coherence as
a “semianalytic” approach because spatial averages are approximated using discretization along the
lidar beams and across the rotor disk.

Building upon the theory described in [39], Schlipf et al. [40] optimize the scan trajectory of a
nacelle-mounted circularly-scanning pulsed lidar with five range gates for a wind turbine with a
109 m rotor diameter by maximizing the −3 dB cutoff frequency of the rotor effective wind speed
measurement transfer function. Subject to realistic lidar constraints, the cone angle, number of beam
directions, the distance of the first range gate, and the spacing between range gates are optimized.
Furthermore, the preview time provided by the measurement configuration must be large enough to
overcome the time delay resulting from the measurement filter required to remove the uncorrelated
high frequencies (discussed in [39,42]). Adhering to the constraints, the optimal scan pattern is
found to consist of six beam directions along the scan circle (requiring a scan time of 4.8 s) with a
cone angle of 21.8◦, with the first range gate at 68 m (0.625 D) and a range gate spacing of 13.6 m.
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This configuration allows the range gates to radially cover almost all of the rotor area. These parameters
result in a measurement transfer function cutoff frequency of 0.03 rad/m (which can be converted to a
temporal frequency in Hz by multiplying by U/2π, where U is the mean wind speed). More details
about the semianalytic frequency domain model for computing measurement coherence used by
Schlipf et al. [40] can be found in the dissertation of Schlipf [43].

Simley and Pao [44] use a frequency domain wind field model similar to that of Schlipf et al. [40],
combining the Kristensen wind evolution model [33] with a standard wind field definition to
semianalytically calculate measurement coherence and other metrics. However, instead of modeling
the rotor disk average wind speed, the authors calculate measurement coherence for rotating
“blade effective wind speeds”, defined as the average of the longitudinal wind speeds along
the length of the blade weighted by the local contribution to aerodynamic torque production.
To determine measurement quality, the authors calculate the mean square error (MSE) between
the lidar measurements and the blade effective wind speed, assuming an optimal minimum-MSE
measurement filter is used (see [42]). Using the NREL 5 MW reference turbine model, Simley and
Pao [44] optimize the scan parameters of a circularly-scanning hub-mounted CW lidar, finding that the
measurement MSE is minimized using a scan radius of 44 m (70% R) and preview distance of 170 m
(1.35 D).

In the dissertation of Simley [45], the blade effective wind speed model from Simley and Pao [44]
is extended to calculate the “rotor effective” wind speed as well as linear horizontal and vertical
shear that result from three rotating blades. The lidar scenario modeled in [45] consists of a CW lidar
with three rotating beams, one for each blade. The measurements from the three beams are used to
estimate the rotor effective wind speed and shear components. Wind evolution is included using an
empirical exponential coherence formula based on the coherence measured in a variety of LES wind
fields [46]. As described by Simley [45], for a mean wind speed of 13 m/s and a turbulence intensity
(TI) of 10%, the optimal scan radius and preview distance for measuring the rotor effective wind speed
for the NREL 5 MW reference turbine are found to be 38 m (60% R) and 100 m (0.8 D), respectively.
The same parameters for measuring horizontal and vertical shear are found to be 44 m (70% R) and
113 m (0.9 D), respectively. By exploring different wind conditions, Simley [45] finds that the optimal
lidar configuration changes very little as the mean wind speed varies. However, as TI increases,
wind evolution becomes more severe, causing the optimal preview distances to become shorter.

2.4.4. Practical Lidar Considerations

Although the frequency domain measurement coherence models discussed in the previous section
provide an efficient way to assess the accuracy of different scan patterns, they do not incorporate
many practical lidar considerations. Several studies have focused on more practical aspects of lidar
optimization, however.

In addition to their assessment of feedforward controller performance for different scan pattern
parameters mentioned in Section 2.4.1, Koerber and Mehendale [31] discuss the need for high
availability and reliability for LAC applications. For a collective pitch feedforward control system
relying on measurements from a multiple-beam pulsed lidar system, the authors conclude that the load
reduction and rotor speed regulation performance begins to suffer significantly when the availability
drops below 50%. Here, availability is defined as the fraction of measurements that are considered
acceptable during a given time series, with the majority of the unavailability arising from blockage
by passing blades. Given that controller performance is acceptable with 50% availability, the authors
suggest that nacelle mounting is a sufficient approach. Note that more specific definitions of availability
for control applications, where even a few seconds of measurement unavailability can compromise
control performance, are discussed by Davoust et al. [47]. Using a 5-beam pulsed lidar with 10 range
gates, the authors identify the number of valid measurements out of all beam directions and range
gates during the previous 3 s as a good indicator of usefulness, concluding that at least 40 valid
measurements (out of a maximum of about 130) are needed for reliable control.
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Davoust et al. [48] explore the impact of the scan parameters of a nacelle-mounted Avent pulsed
lidar on availability, as well as the relationship between atmospheric conditions and availability.
With respect to rotor blockage, the authors explain that one of the most important parameters that
determines availability is the fraction of time that a lidar beam direction is unobstructed by a passing
blade. This parameter is a function of the diameter of the blade root and the position where the beam
intersects the rotor disk. The fraction of time when the lidar beam is unobstructed by the blades
increases as the lidar cone angle increases, the height of the lidar above the rotor axis becomes larger,
or the position of the lidar behind the rotor plane increases.

Davoust et al. [48] show that an additional parameter that impacts availability is the ratio between
the averaging time used to measure a single LOS velocity and the time it takes for a blade to pass
across the lidar beam direction. If this parameter is greater than 1, then the lidar beam will be
unobstructed by the blade for part of the signal integration time. As long as the carrier-to-noise
ratio (CNR) of the measurement remains above the necessary threshold, a reliable measurement can
still be formed. The authors show that lidar availability can be described as a linear combination of
the aforementioned geometrical blockage ratio and averaging time ratio parameters, improving as
either parameter increases until the averaging time parameter reaches 1. Therefore, availability can be
improved not only by adjustments to scan geometry and lidar position, but also by the measurement
integration time.

3. Barriers to the Use of Lidar for Control

The following two sections recapitulate the outcome of the group discussions during the IEA Wind
Task 32 workshop “Optimizing Lidar Design for Wind Turbine Control Applications”. Furthermore,
they summarize the main conclusions of the given presentations where wind turbine manufacturers
as well as lidar vendors talked about their perspectives of the requirements and objectives of lidar
systems for control purposes. The whole is augmented with the authors‘ point of view. In general,
most of the raised issues are consented by a vast majority, but that does not necessarily represent a
consensus of all the workshop participants. Finally, the barriers preventing the widespread use of lidar
for control are structured as follows:

3.1. Lack of Clarity in Cost–Benefit Assessment

Based on the current state of the art, it is likely that LAC could contribute to lower LCOE
either by (1) an increase in energy production, (2) a decrease in unit costs of a wind turbine by
reduction of structural loads, or (3) an extension of the turbines‘ lifetime, which combines aspects of
the aforementioned. However, the question is “how much exactly?”. In particular, the turbine OEMs
are interested in assessing the full lifetime costs of the lidar intended to be used for LAC. Besides
the initial cost of the device (volume manufacturing already considered), this includes the costs for
turbine integration, which consist of mechanical and electrical installation as well as alignment and
calibration. Furthermore, all operational costs have to be taken into account. In the end, it all adds
up to the need for appropriate cost models for LAC. They should reveal the link between the load
reduction potential/increase in energy capture and all relevant aspects of the monetary impact on the
wind turbine. Once a break-even point is exceeded, a business case can be established.

3.2. Absence of 100% Availability

It is generally accepted that a lidar device cannot provide uninterrupted measurement data
throughout its operating time. Due to the passing of the blades, some portion of the measurements are
not suitable for reconstructing the rotor effective wind speed or other wind characteristics. However,
even when the lidar is mounted in the spinner, it is nearly impossible to receive 100% availability.
Especially on sites with severe atmospheric conditions (clean air, heavy fog), it is challenging to get a
high-quality signal all the time. The next difficulty is deciding when the quality should be considered
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as “good” and how trustworthy the data are. All in all, there is the need to identify a specific metric
where the measurement availability can be regarded as acceptable for applicability to LAC actions.

3.3. Risk Assessment and Reliability Issues

On the basis of the preceding section, there are general concerns that come up when implementing
LAC on a wind turbine. The question “what happens if there is no or a faulty signal from the lidar?” is
ubiquitous among all workshop participants. Understandably, no one would risk harming the turbine
or at worst putting people in danger, if the safe operation of the turbine depends on the reliability of
the lidar itself. Because of failures in hardware components and/or in software applications, lidars
have not always been able to provide service reliably in the past. It is claimed that the technology
readiness level (TRL) of currently-available lidar systems for LAC is still too low. As a result, there
are not only the aforementioned safety concerns but also the high costs of troubleshooting and repair.
Overall, considerations must be made on how long the lidar’s lifetime should be and how it should be
designed to require the least maintenance effort.

3.4. Lack of Common Guidelines and Standards

As shown in the previous sections, there is a need for measures to evaluate the performance
of a lidar device or of the whole LAC structure. These metrics, such as availability, have to be well
defined and all their calculation constraints have to be fully revealed in order to ensure comparability.
Another ambiguity is an appropriate threshold for the metrics. Depending on the application, it is not
clear how to decide whether an availability value can be considered as “good” or when in terms of
LAC an acceptable limit is reached. It would be desirable for all of this information to be provided in
common sources to keep all stakeholders aligned. Ideally, a guideline or a standard specifically for
LAC would exist.

3.5. Bringing Theoretical Knowhow and Practical Needs into Accordance

It has already been emphasized in Section 2 that many theoretical aspects of LAC have been
covered quite well. Nevertheless, the technology has not advanced beyond prototype field testing on a
wide scale yet. Significant long-term tests on multi-megawatt wind turbines have not been reported.
On the one hand, this is mainly due to the aforementioned barriers, but it is also because the research
community sometimes does not know the mechanisms of the industry as well as the needs of the end
users. On the other hand, turbine manufacturers and lidar vendors are often not aware of what is
theoretically possible and what is worth trying to implement. In summary, it can be stated that the
level of collaboration between different stakeholders still has room to improve.

4. Suggestions for Mitigating the Barriers to the Use of Lidar for Control

The two questions posed during the second part of the workshop’s roundtable discussion were:
what are the design suggestions that can mitigate the identified barriers and what are the design
suggestions to optimize lidars for control applications, taking into account the identified constraints?
The following is an excerpt of the suggestions made by the workshop participants extended by some
recommendations by the authors. There is no claim of completeness, neither should the impression
arise that work has not already been done in some of the areas. The challenge for the LAC community
is to bring all the different aspects together to adequately address the barriers.

4.1. Assess the Cost–Benefit Relationship by Using Methods of Systems Engineering

As mentioned in Section 3.1, the ultimate goal for LAC is to prove that the technology is able to
reduce LCOE significantly. Because LAC is an interdisciplinary field of engineering where technically
advanced systems interact with each other, a holistic approach is needed to fully manage complexity.
Systems Engineering (SE) methods are designed to combine contributions and balance trade-offs
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among optimal performance, cost, and schedule while maintaining an acceptable level of risk covering
the entire life cycle of a system. Thus, by combining technical and human-centered disciplines like
optimization, reliability engineering, and risk management, SE is almost predestined to meet the
challenges of LAC. However, there is probably no general answer to the question “how much?”.
It is only possible to investigate if turbine A with lidar B on site C is profitable, provided that the
most important boundary conditions are known. A key factor for solving these large optimization
problems is the existence of cost models for all systems involved. Thus, it is important to get the turbine
manufacturers as well as the lidar suppliers involved. On the level of wind turbine optimization,
there are already some promising approaches [49]. The integration of a lidar into the overall system
is still missing though. Therefore, a collaboration with “IEA Wind Task 37: Systems Engineering” is
highly recommended.

4.2. Improve Measurement Availability with Self-Adjusting Lidars

The mitigation of the availability problem is quite challenging, sometimes impossible. Even the
best lidar cannot measure a LOS velocity if there are no aerosols in the air. In the case of finding
a threshold when a single measurement can be considered as exploitable for further processing,
the key is “adaptivity”. By smartly adjusting e.g., CNR thresholds, sampling periods, lidar data
processing parameters depending on wind evolution, or spacings of range gates, a significant increase
in availability should be possible. Of course, the lidar should be capable of adjusting “by itself,”
without human intervention.

Another way to increase the percentage of availability is by redefinition. In terms of LAC, it would
be more functional if rotor effective quantities were used as a metric. Because of averaging effects, it is
not necessary for every LOS measurement to be available to calculate these measures and achieve 100%
availability. A suitable metric to quantify the overall quality for LAC is the measurement coherence
(see also Section 6.1).

Furthermore, one could address the availability matter by going a step backwards to the site
assessment process. When evaluating if several areas are suitable for energy production through wind
turbines, the sites could be checked for characteristics that are beneficial for LAC. Besides high aerosol
concentration and practically no severe weather conditions, other measures have to be defined to
characterize a site as “LAC compliant”. This would probably limit the applicability of LAC to a small
proportion of all explored sites, but once a location is found, the likelihood of good availability will be
high. Especially for an emerging technology, it is important to reduce risk factors.

4.3. Improve Reliability and Gain Confidence in TRL by Fault Tolerant Control

Even under perfect environmental conditions, it is still possible to get no measurements from the
lidar device because of hardware defects or software errors. These reliability issues were discussed
a lot amongst the workshop participants. Generally, the more complexity that is added to a system,
the more complicated the assurance of keeping technical products highly reliable becomes. A lidar
with few but robust components and a manageable amount of features could probably be considered
as less error prone. The challenge for the designer is to find a good trade-off between effort, time, and
cost in particular. An important aspect to improving reliability in the near term is maintainability.
First, it has to be ensured that the maintenance staff of a wind turbine operator is able to perform
maintenance work during regular service intervals. Second, the subsystems of a lidar should be
designed in a modular way so that they can be quickly replaced as entire units by plug-and play
operations in case of a failure.

Finally, let us assume the worst case: a wind turbine is running in LAC mode and suddenly there
are faulty measurements or no measurements at all because of availability or reliability problems. In a
retrofit scenario for a fatigue load designed wind turbine, there is a simple but effective countermeasure.
By switching back to a “normal operation mode”, the wind turbine acts with its standard feedback
controller for which it was originally designed. When availability exceeds the specified threshold or

64



Remote Sens. 2018, 10, 863

the lidar device is put back into operation, the feedforward mode takes over once again. Note that the
challenge of smooth switching is still present.

However, the situation is more complicated when the margin of load reduction has already
been taken into account during the design of the wind turbine. In that case, a lidar failure would
immediately have a negative effect on the turbine’s lifetime and on the safety of the whole system.
On a fatigue load designed turbine, one could limit the damage by derating the turbine to a certain
percentage of its rated power where the load margins are kept. In the end, it is a matter of the
cost–benefit relationship again.

The by far riskiest scenario occurs when LAC is intended to be used in an extreme load driven
wind turbine design to detect extreme events and counteract them. Here, even for an LAC compliant
site with a self-adjusting highly reliable lidar, there is still some probability that an extreme operating
gust could impact and destroy the turbine when the lidar is not in operation. This issue can only be
bypassed by adding redundancy to the system.

4.4. Pave the Way towards International Standards

The first step of mitigating the barrier of missing standards has already been taken by publishing
this article. This broad summary of lidar optimization for control purposes could serve as a basis for
further input from relevant stakeholders. The medium-term goal should be to create a recommended
practices document for LAC applications that is to be updated regularly.

Another important aspect regarding standards was revealed during the workshop. The question
of how to carry out a type certification for a turbine with LAC came up. To address this question,
an IEA Wind Task 32 workshop on the topic took place in Hamburg, Germany in early 2018.

4.5. Strengthen the Collaboration between Academia and Industry

The fact that 33 people attended the workshop clearly shows that there is already a strong
motivation from universities (12 participants), national research laboratories (6), wind turbine
manufacturers (10) and lidar vendors (5) in such a knowledge sharing event. Researchers and scientists
presented their latest findings and representatives from industrial departments reported on their
current developments and gave insights into their products and services. Furthermore, it was intended
that the different stakeholders would share some of their experience with LAC, including the problems
they face. In the future, the challenge for academia will be to summarize and condense its achievements
in an easily understandable manner and point out the benefits clearly. To enhance the possibility of
creating significant value, the industry should be encouraged to share more of their key knowledge
(e.g., cost models)—of course in compliance with non-disclosure agreements between all parties.

4.6. Use a Standardized Simulation Environment in the Early Design Phase

When thinking about the optimization of lidars for control purposes, one should not be
limited to the hardware device itself or the implemented software. In fact, there is still a huge
potential for improving the preceding simulation process, more precisely the simulation tool chain.
The better adjusted these techniques/tools are to the various subtasks of LAC, the more realistic
and therefore more reliable the outcomes become. Consequently, establishing a kind of standardized
LAC simulation environment would create added value. Furthermore, a modularized process with
defined interfaces would ensure that every potential user is not limited to default features. One can
optionally swap modules or extend them with needed functions. Wherever possible, new and useful
developments should be shared within the community. The following modules are suggested as
minimal requirements for a LAC simulation environment:

1. Pre-Processors: Tools for generating input files for the most common aeroelastic simulation tools
(e.g., Bladed, FAST). Furthermore, lidar vendors could share scripts to convert the output data of
their specific devices to a defined data format that is compatible with the other modules’ interfaces.
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2. Wind Field Generator: In the context of LAC, wind fields should be generated differently for
realistic simulation. Several types of wind events (e.g., extreme operating gusts) have to be
included in turbulent wind fields while ensuring acceptable computational effort [50].

3. Lidar Simulator: The lidar should be modeled with its most important properties, e.g., number of
beams, scanning angles, number and spacing of range gates, update/measurement rate, range
weighting function, probe length, etc.

4. Wind Field Reconstruction: Tools and algorithms for reconstruction of rotor effective wind
characteristics from LOS data. A common data format with a defined interface is preferable for
immediate application of new lidar devices.

5. Controller Compilation Framework: Here, the feedback as well as the feedforward controllers and
all their subfeatures are included. It is not mandatory to use Matlab/Simulink (The MathWorks,
Inc., Natick, MA, USA) like many control engineers, but it is beneficial when source code can be
compiled to a dynamic link library (DLL) so the controllers can be shared within the community.

6. Post-Processing: A wide variety of tools for statistical evaluation and plotting of simulation results.

It is intended that, within one module class, there are several versions that can vary in complexity
quite significantly. Depending on the stakeholder’s needs, one can combine the submodules to
create user-specific simulation environments. Wherever necessary, modules should also be executable
independently to allow focusing on a specific problem.

5. Lidar Scan Pattern Optimization

While ideas for improving lidar availability and reliability, as well as other practical considerations,
were presented in Section 4, this section focuses on the selection of lidar scan locations upstream of the
turbine that result in measurements that best represent the actual wind variables of interest that arrive
at the turbine. Lidar scan patterns can be optimized for different control strategies (e.g., collective pitch
control for rotor speed regulation, IPC for asymmetric rotor load reduction, yaw control), which require
measurements of different wind variables (e.g., rotor effective wind speed, wind shear, wind direction).
Therefore, there is generally no single scan pattern that is optimal for all control objectives. Because of
the great interest in collective pitch feedforward control for rotor speed regulation in the literature,
however, the detailed investigations of scan pattern optimization presented in the rest of this paper
will focus on measurements of the rotor effective wind speed.

For the purposes of the scan pattern optimization discussed here and in Section 6, rotor effective
wind speed is defined as the time-varying mean value of the longitudinal u components of the wind
over the rotor disk area. For simplicity, it is assumed that (1) all locations in the rotor disk have
equal importance; (2) the response of the rotor is purely a function of the linear combination of
wind speeds across the rotor disk; and (3) the transverse v and vertical w wind components can be
neglected. Perfect alignment between the rotor and the mean wind direction is assumed (i.e., no yaw
misalignment or vertical inflow angle).

The scan pattern optimization performed here is subject to the following potential sources of
measurement error: (1) the evolution of the wind as it travels from the measurement location to
the rotor plane; (2) the limitation to LOS measurements (i.e., the “corruption” of the wind speed
measurements by the v and w components of the wind, when the u component of the wind is of
interest); (3) range weighting, or the spatial averaging of the wind speeds along the beam direction;
and (4) the fact that a scan pattern containing a finite number of points will not perfectly resemble
a rotor disk average. All scan patterns are optimized for a rotor diameter of D = 126 m, the rotor
diameter of the NREL 5 MW reference turbine [37].

5.1. Metrics for Assessing Measurement Quality

To compare the effectiveness of different scan patterns, an appropriate metric representing lidar
measurement quality must be defined. One simple metric that describes measurement accuracy is the
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MSE between the true rotor effective wind speed at the turbine uef f and its estimated value based on
the lidar measurement ûef f :

E

[∣∣∣uef f − ûef f

∣∣∣2] . (1)

However, because lidar-based estimates of the rotor effective wind speed are not perfectly
correlated with the wind at the rotor due to wind evolution and other sources of measurement
error, it is beneficial to low-pass filter the measurements before they are used by the controller. As will
be described in the next section, an optimal filter Hopt can be derived that minimizes the measurement
MSE. Therefore, a useful metric for determining measurement accuracy is the MSE between the true
rotor effective wind speed and its optimally-filtered lidar-based estimate:

E

[∣∣∣uef f − Hoptûef f

∣∣∣2] . (2)

Metrics describing measurement quality can be made more meaningful by including the response
of the turbine to the wind inflow, instead of concentrating on the wind variables alone. For example,
the impact of the wind inflow on a turbine variable of interest yWT , when the imperfect measurement
ûef f is used as input to the feedforward controller, can be used to judge measurement quality. Assuming
the objective of the lidar-assisted controller is to minimize the magnitude of a wind turbine variable,
the variance of yWT is an appropriate measurement quality metric. Specifically, for the control objective
of minimizing the mean square error between the generator speed ωgen and the rated generator speed
ωgen,0, this metric becomes:

E
[∣∣ωgen − ωgen,0

∣∣2] . (3)

Finally, measurement quality can be judged by the highest frequency at which the measurement
remains correlated with the true rotor effective wind speed. In this case, the objective of the scan pattern
optimization is to maximize the correlation bandwidth, allowing the feedforward controller to mitigate
the impact of as much of the frequency content of the wind as possible. The correlation between the
rotor effective wind speed uef f and its lidar-based estimate ûef f as a function of frequency is described
by the magnitude-squared coherence between the two signals: γ2

uef f ûef f
( f ). The magnitude-squared

coherence between two signals a and b is defined as

γ2
ab ( f ) =

|Sab ( f )|2
Saa ( f ) Sbb ( f )

, (4)

where Sab ( f ) is the cross-power spectral density (CPSD) between signals a and b, Saa ( f ) is the power
spectral density (PSD) of a, and Sbb ( f ) is the PSD of b. Values of coherence range from 0 to 1, where a
value of 0 indicates that the two signals are completely uncorrelated while a value of 1 indicates
perfect correlation. A reasonable value of coherence for representing the boundary between frequency
components that are uncorrelated and correlated is 0.5 [51]. Therefore, a useful metric for indicating
measurement quality is the frequency at which the measurement coherence crosses below 0.5:

f : γ2
uef f ûef f

( f ) = 0.5. (5)

5.2. Lidar System Configurations

The coordinate system and basic parameters used to describe the scan patterns analyzed in
this paper are shown in Figure 1. A scan pattern may contain many different measurement points,
but each point can be defined by its upstream preview distance d from the lidar unit in the −x direction,
its radial distance r in the yz plane from the point d m directly upstream of the lidar unit, and the
azimuth angle ψ in the yz plane, where ψ = 0 indicates a measurement at the top of the scan circle
defined by d and r. The measurement points can be equivalently described by their measurement
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distance F and cone angle θ. For simplicity, it is assumed that the lidar is located at the origin, which is
defined as the rotor hub position.

Figure 1. Scan pattern coordinate system and scan variables for a single lidar measurement point.

Both CW and pulsed lidars are examined here when analyzing scan patterns. Measurements from
both types of lidars consist of wind speeds spatially averaged along the beam direction. However, the
range weighting functions, which describe how heavily wind speeds at different radial distances are
weighted, are different. The range weighting function for a CW lidar changes as the focus distance of
the lidar increases; the full-width-at-half-maximum width of the weighting function is proportional
to the square of the focus distance. Therefore, the farther a CW lidar is focused, the more spatial
averaging occurs. The range weighting functions for pulsed lidars remain approximately constant
regardless of the range gate distance. Figure 2 shows theoretical range weighting functions for a CW
lidar with focus distances of 50 m, 100 m, and 150 m as well as for a pulsed lidar (shown without loss
of generality at a measurement distance of 100 m), with parameters roughly based on the ZephIR
300 CW lidar [52,53] and the WindCube WLS7 pulsed lidar [53,54], respectively. More information
about the range weighting functions can be found in Simley et al. [36].

Figure 2. Normalized range weighting functions for a continuous wave (CW) lidar with focus distances
of 50 m, 100 m, and 150 m as well as a pulsed lidar.
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Several types of scan patterns are investigated in this paper for CW and pulsed lidars, all roughly
based on lidar systems that have been developed commercially. The measurement quality achieved by
each scan pattern is compared to a single point measurement upstream of the turbine at hub height,
representing the most basic measurement scenario, as well as the longitudinal wind speed averaged
over the rotor disk area upstream of the turbine, acting as an “ideal” preview measurement of the rotor
effective wind speed. A preview distance of 50 m is used for the single-point and ideal measurements
to match the closest range gate available for pulsed lidar measurements in this analysis.

After the point measurement, the simplest lidar scan pattern investigated is the two-beam lidar,
with both beams measuring at hub height. This configuration is analyzed for a CW lidar, as shown
in Figure 3b, and a pulsed lidar, illustrated in Figure 3c. Note that all pulsed lidar scan patterns
modeled in this paper contain 10 evenly spaced range gates beginning at a range of 50 m and ending
at the farthest range (no more than 300 m), parameters achievable with the Avent lidar system [9,10].
The next level of complexity is represented by a four-beam lidar, with CW and pulsed configurations
shown in Figure 3d,e, respectively, based on the Windar lidar [7] and the four-beam version of the
Avent system [10]. For the four-beam configuration, the beams are oriented at azimuth angles of ψ =45,
135, 225, and 315 degrees. The last realistic scan pattern investigated is the circular scan consisting
of 50 points evenly spaced around a scan circle, based on the ZephIR DM lidar system [4], shown
in Figure 3f. Because pulsed lidars typically require longer sampling times than CW lidars, only the
CW configuration is analyzed for the circular scan scenario due to the high sampling rate required to
complete the scan in a reasonable amount of time relative to the lidar preview time.

All of the commercial lidars that these scan patterns are inspired by can complete a full scan
in approximately 1 s. Because of the relatively short scan times compared to typical feedforward
control time scales, the calculations of measurement quality are simplified in this investigation by
assuming each point in the scan pattern is measured simultaneously. Each of the scan patterns shown in
Figure 3 is optimized by varying the preview distance d and scan radius r of the scan (or, equivalently,
the measurement distance F and cone angle θ). For the pulsed lidar configurations, the 10 range
gates measured are evenly spaced between 50 m and the maximum range given by the measurement
distance parameter F =

√
d2 + r2.

Figure 3. Lidar scan pattern scenarios investigated for scan pattern optimization.
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5.3. Lidar-Based Wind Parameter Estimation

Line-of-sight velocity measurements from a lidar can be described as the opposite of the dot
product between the unit vector in the direction that the beam is oriented (� =

[
�x, �y, �z

]
) and the

wind speed vector at the measurement point ([u, v, w]):

vLOS = −�xu − �yv − �zw. (6)

Note that the true velocity measured by a lidar is a spatial average of the LOS velocities along
the lidar beam, modeled as the integral of the LOS velocities along the beam weighted by the range
weighting function. For control purposes, wind parameters such as the rotor average wind speed,
wind shear, and wind direction are more useful than the LOS velocities provided directly by a lidar.
Therefore, the wind parameters of interest must be estimated from the LOS velocities.

To estimate the wind parameters, an appropriate wind field model must first be defined.
In general, it is not possible to distinguish between horizontal wind direction and horizontal shear (or
vertical inflow angle and vertical shear) using LOS velocity measurements from a lidar scan pattern.
Consequently, the two most common wind field models used for wind parameter estimation consist of
(a) uniform wind speed across the rotor including horizontal and vertical wind direction, and (b) no
transverse or vertical wind speeds, but linear horizontal and vertical shear [55].

Regardless of which wind field model is assumed, for a scan pattern with N unique beam
directions, �1 . . . �N , the solution for the estimate of the rotor average wind speed perpendicular to the
rotor, used for optimizing CW lidars in this paper, is given by

ûe f f = − 1
N

N

∑
i=1

vLOS,i

�x,i
. (7)

However, for pulsed lidars, measurements at different range gates can be combined more
effectively by delaying the measured velocity signals at each scan point by the estimated amount of
time it takes the wind to travel to the plane where the closest range gate is located, according to Taylor’s
frozen turbulence hypothesis [32]. This effectively “stacks” the measurements from different range
gates together before averaging by removing their relative time shifts (although the farther a range
gate is from the rotor plane, the more the measurements will suffer from wind evolution). For pulsed
lidars, an estimate of the rotor average wind speed, which is used for scan pattern optimization in this
paper, can therefore be expressed as

ûe f f (t) = − 1
N

N

∑
i=1

vLOS,i

(
t − x0−xi

U

)
�x,i

, (8)

where xi is the longitudinal position of measurement point i, x0 is the longitudinal position of the
range gate closest to the rotor, and U is the mean rotor effective wind speed. Note that, in practice,
the estimation of the rotor effective wind speed could be improved by delaying measurements at the
different range gates according to their height-dependent mean wind speed, accounting for wind shear.
In this work, however, it is assumed that the wind advection speed is the same at all heights.

More information about wind parameter estimation using lidar measurements, including a
discussion of nonlinear methods for estimating all five wind parameters described in this section
simultaneously, can be found in Raach et al. [55].

6. Frequency Domain Optimization

This section begins with a discussion about how the lidar measurement quality metrics introduced
in Section 5.1 can be directly computed via frequency domain calculations using a frequency domain
wind field model. Next, the frequency domain calculation procedures are used to optimize the
parameters for the scan patterns presented in Section 5.2 for each measurement quality metric.
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6.1. Frequency Domain Calculations for Assessing Measurement Quality

Because lidar measurements and the rotor effective wind speed can be modeled as linear
combinations of the wind speeds at different points in space, it is relatively straightforward to compute
the measurement quality metrics in Section 5.1 using a frequency domain wind field model containing
the power spectral densities (PSDs) of the three wind speed components and the spatial coherence
between wind speeds at different points. As discussed in Section 2.4.3, direct frequency domain
calculations of the metrics describing measurement quality are much more computationally efficient
than calculations based on simulated lidar measurements and wind speeds.

The wind field model used here consists of the Kaimal turbulence spectrum and the spatial
coherence model described in the International Standard IEC 61400-1 Ed. 3 [56]. Whereas the IEC
standard only describes spatial coherence for the transverse y and vertical z directions, wind evolution
is modeled here using the empirical longitudinal coherence formula based on LES data developed
by Simley and Pao [46]. Note that the theoretical longitudinal spatial coherence model described by
Kristensen [33] is often used as well. The spatial coherence model defined in the IEC standard [56]
is modified further by extending the transverse and vertical spatial coherence formula used for the
u component of the wind to the v and w components as well (the IEC standard defines the v and w
components as having zero spatial correlation, but this could lead to unrealistically low error from
LOS limitations).

Although Section 5.1 describes the possibility of assessing measurement quality using the raw
lidar measurement MSE (Equation (1)), it is more appropriate to filter the lidar measurements to remove
unwanted noise before using them in the controller (Equation (2)) [42]. Therefore, the following three
metrics introduced in Section 5.1 will be used for scan pattern optimization in this section: (1) mean
square measurement error with optimal filtering; (2) generator speed variance resulting from combined
feedback-feedforward control with optimally filtered lidar measurements; and (3) the 0.5 measurement
coherence bandwidth. As explained in Schlipf et al. [39] and Simley and Pao [42], the optimal filter
that minimizes the MSE between the lidar measurement and the true rotor effective wind speed is
given by the transfer function

Hopt ( f ) =
Suef f ûef f ( f )

Sûef f ûef f ( f )
, (9)

where Suef f ûef f ( f ) is the CPSD between the rotor effective wind speed and its lidar-based estimate and
Sûef f ûef f ( f ) is the PSD of the lidar measurement.

The simplest measurement quality metric to calculate is the correlation bandwidth, based on
the measurement coherence: γ2

uef f ûef f
( f ). As derived by Simley and Pao [42], the measurement

MSE using the optimal filter from Equation (9) can be calculated by integrating over the PSD of the
measurement error:

E

[∣∣∣uef f − Hoptûef f

∣∣∣2] =
∫ ∞

0
Suef f uef f ( f )

(
1 − γ2

uef f ûef f
( f )

)
d f , (10)

where Suef f uef f ( f ) is the PSD of the true rotor effective wind speed.
Additionally, as shown by Simley and Pao [42], the generator speed MSE (letting ωgen simply

represent the deviation from the generator speed setpoint) resulting from the use of combined
feedback-feedforward control with optimally-filtered lidar measurements can be expressed as

E
[∣∣ωgen

∣∣2] =
∫ ∞

0

∣∣∣Tωgenuef f ( f )
∣∣∣2 Suef f uef f ( f )

(
1 − γ2

uef f ûef f
( f )

)
d f , (11)

where Tωgenuef f is the closed-loop transfer function from rotor effective wind speed to generator speed
error. Equation (11) uses the assumption that the feedforward controller is designed to perfectly
cancel the impact of the wind speed disturbance on the generator speed, as long as perfect preview
information is provided. Following the pitch controller tuning recommendations in Hansen et al. [57],
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the closed-loop transfer function Tωgenuef f used in this paper is chosen to have a second order response
with natural frequency ωn = 0.6 rad/s and damping ratio ζ = 0.65. More information about the
combined feedback-feedforward controller is provided in Section 7.1.

Detailed descriptions of how the PSDs Suef f uef f ( f ) and Sûef f ûef f ( f ) as well as the CPSD Suef f ûef f ( f ),
used to compute all of the performance metrics discussed here, can be calculated from a frequency
domain wind field model using Fourier properties are available in Schlipf et al. [40] and Simley [45].

6.2. Detailed Optimization Example: Circular Scan Pattern

All measurement quality calculations are performed for a wind field with mean wind speed
U = 13 m/s (1.6 m/s above rated wind speed for the NREL 5 MW reference turbine) and IEC
Class B normal turbulence model turbulence intensity [56]. Figure 4 reveals how the coherence
bandwidth, optimally-filtered measurement MSE, and generator speed MSE with optimally filtered
preview measurements depend on the scan radius and preview distance for the circular-scanning
CW lidar scenario. The optimal scan radii that maximize the coherence bandwidth and minimize
measurement MSE as well as generator speed variance are all around 40 m (∼0.65 R) indicating that
measurements at this radius yield the best approximation to a rotor disk average. Although the optimal
preview distances are different for the three metrics (∼70–90 m), they reveal the same general trend.
Measurements closer to the rotor than the optimal preview distance, resulting in larger cone angles,
suffer from LOS velocities that contain too many contributions from the transverse and vertical wind
speeds. Measuring the wind farther away than the optimal preview distances causes wind evolution
to become more severe, increasing measurement error as well. Note that the measurement quality is
more sensitive to deviations in scan radius from the optimal point than to different preview distances.
The specific optimal scan parameters for the different measurement quality metrics in Figure 4 depend
on which frequencies are weighted most heavily in the particular metric.

Figure 4. Dependence of coherence bandwidth, rotor effective wind speed measurement mean square
error (MSE) (normalized by rotor effective wind speed variance), and linearized generator speed MSE
(normalized by generator speed MSE with baseline feedback control) on scan radius r and preview
distance d for the circular continuous wave (CW) lidar scan pattern.

6.3. Scan Pattern Optimization Results

For the seven lidar scan scenarios provided in Figure 3, the maximum achievable coherence
bandwidth along with the minimum achievable measurement MSE and generator speed MSE
corresponding to the optimal scan parameters with optimal filtering are compared in Figure 5.
The provided measurement MSE values are normalized by the variance of the rotor effective wind
speed, whereas the generator speed MSE values are normalized by the generator speed variance
with feedback control only. All three measurement quality metrics reveal the same trends: (1) as the
number of beams increases, the measurement accuracy increases as well and (2) for the same number of
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beams, the additional measurement ranges afforded by pulsed lidars improve measurement accuracy
compared to a CW lidar. All lidar measurement scenarios improve upon a single point measurement of
the wind speed at hub height. However, the measurement accuracy is much higher for the ideal rotor
disk average wind speed measurements than for any realistic lidar scenario. Here, the only source
of measurement error is wind evolution due to the 50 m preview distance between the measurement
plane and the rotor disk.

Figure 5. Maximum achievable coherence bandwidth and minimum achievable rotor effective wind
speed measurement MSE (normalized by rotor effective wind speed variance) and linearized generator
speed MSE (normalized by generator speed MSE with baseline feedback control) corresponding to the
optimized scan parameters for each scan pattern category.

The optimal coherence bandwidth, measurement MSE, and generator speed MSE values shown in
Figure 5 for the seven lidar measurement scenarios are listed in Table 1, along with the scan parameters
required to achieve them. For the two pulsed lidar scenarios, the scan radius r, preview distance d,
and focus distance F indicate the values corresponding to the farthest range gate measured. Table 1
reveals that the optimal scan parameters depend on the measurement quality metric that is being
optimized. Note that the optimal scan parameters for maximizing coherence bandwidth and
minimizing generator speed MSE are almost always the same. However, the optimal scan radius and
preview distance values that minimize measurement MSE are typically greater than they are for the
other two metrics.

The reasons why the optimal scan parameters that maximize coherence bandwidth or minimize
generator speed MSE are shorter than for minimizing measurement MSE are related to the frequencies
that are weighted most heavily when calculating each metric (see Equations (10) and (11)). For example,
due to the frequency response of the closed-loop transfer function Tωgenuef f , the generator speed MSE is
most sensitive to measurement error in the frequency band near 0.05 Hz, while the measurement MSE
is more sensitive to measurement error at lower frequencies, where more of the energy in the wind
is concentrated. This explains why generator speed MSE is minimized (and coherence bandwidth
is maximized) using shorter preview distances, which prevent the coherence at higher frequencies
from decaying too much from wind evolution. When minimizing measurement MSE, on the other
hand, it is more important to measure farther away, thereby reducing LOS errors, which affect the low
frequencies as much as the high frequencies.
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Table 1. Optimal coherence bandwidth, rotor effective wind speed measurement mean square
error (MSE) (normalized by rotor effective wind speed variance), and linearized generator speed
MSE (normalized by generator speed MSE with baseline feedback control) along with optimal scan
parameters for each scan pattern. Optimal scan radii and preview distances are expressed in meters
and as fractions of the rotor radius and preview distance, respectively.

Optimal Parameters for Maximizing Coherence Bandwidth

Scan Pattern
Coherence

Bandwidth (Hz)
r d θ (deg.) F (m)

Point Measurement 0.025 N/A 50 m (0.4 D) N/A N/A
2-Beam CW 0.037 22.1 m (0.35 R) 88.2 m (0.7 D) 14.0 90.9

2-Beam Pulsed 0.046 44.1 m (0.7 R) 163.8 m (1.3 D) 15.1 169.6
4-Beam CW 0.056 31.5 m (0.5 R) 75.6 m (0.6 D) 22.6 81.9

4-Beam Pulsed 0.073 53.6 m (0.85 R) 138.6 m (1.1 D) 21.1 148.6
Circular Scan CW 0.091 37.8 m (0.6 R) 75.6 m (0.6 D) 26.6 84.5
Rotor Disk Avg. 0.27 N/A 50 m (0.4 D) N/A N/A

Optimal Parameters for Minimizing Rotor Effective Wind Speed Measurement MSE

Scan Pattern
Normalized

ueff MSE
r d θ (deg.) F (m)

Point Measurement 0.242 N/A 50 m (0.4 D) N/A N/A
2-Beam CW 0.151 25.2 m (0.4 R) 100.8 m (0.8 D) 14.0 103.9

2-Beam Pulsed 0.118 50.4 m (0.8 R) 201.6 m (1.6 D) 14.0 207.8
4-Beam CW 0.079 37.8 m (0.6 R) 100.8 m (0.8 D) 20.6 107.7

4-Beam Pulsed 0.054 59.9 m (0.95 R) 151.2 m (1.2 D) 21.6 162.6
Circular Scan CW 0.045 41 m (0.65 R) 88.2 m (0.7 D) 24.9 97.2
Rotor Disk Avg. 0.007 N/A 50 m (0.4 D) N/A N/A

Optimal Parameters for Minimizing Generator Speed MSE

Scan Pattern
Normalized
ωgen MSE

r d θ (deg.) F (m)

Point Measurement 0.63 N/A 50 m (0.4 D) N/A N/A
2-Beam CW 0.52 22.1 m (0.35 R) 75.6 m (0.6 D) 16.3 78.8

2-Beam Pulsed 0.45 44.1 m (0.7 R) 163.8 m (1.3 D) 15.1 169.6
4-Beam CW 0.38 31.5 m (0.5 R) 75.6 m (0.6 D) 22.6 81.9

4-Beam Pulsed 0.29 53.6 m (0.85 R) 138.6 m (1.1 D) 21.1 148.6
Circular Scan CW 0.23 37.8 m (0.6 R) 75.6 m (0.6 D) 26.6 84.5
Rotor Disk Avg. 0.046 N/A 50 m (0.4 D) N/A N/A

Measuring farther away from the turbine adds the benefit of more volume averaging along the
lidar beam due to the wider range weighting function for CW lidars. Longer preview distances also
permit larger scan radii to be achieved with smaller cone angles, allowing greater radial coverage of
the rotor disk area while reducing LOS errors. The additional volume averaging and greater rotor disk
coverage help approximate the rotor effective wind speed, further explaining why longer preview
distances and larger scan radii are optimal for minimizing MSE, where additional wind evolution at
high frequencies can be tolerated.

It should be noted that the optimal scan radius and preview distance parameters listed in
Table 1 are specific to a 126 m-rotor diameter turbine. However, when expressed in non-dimensional
units of rotor diameters and rotor radii, the optimal scan parameters roughly translate to different
rotor sizes. Furthermore, the optimal scan parameters presented in this section are only valid for
measurements of rotor effective wind speed; when measuring other wind variables such as shear
or wind direction, the optimal parameters are typically different. For example, as discussed by
Simley [45], measurements of horizontal and vertical wind shear are more accurate with larger scan
radii. Additionally, as presented by Kragh et al. [35], measurements of wind direction tend to improve
with larger cone angles. Finally, the presence of yaw misalignment or vertical inflow may change the
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optimal scan parameters, likely favoring shorter preview distances so that the measured wind is more
representative of what hits the rotor.

While this section presented a method for optimizing lidar scan patterns for measurement
accuracy, it should be noted that in practice there may be other objectives that are as important or
even more important than minimizing measurement error. For example, the load reduction offered by
the lidar-assisted controller is likely a more useful metric for comparing different lidar scan patterns,
although it is harder to calculate using frequency domain techniques. Additionally, the extra preview
time provided by longer preview distances may be useful when attempting to detect extreme wind
events and take necessary actions to protect the turbine. Finally, measuring the wind at multiple
range gates with a pulsed lidar offers the advantage of being able to track wind speeds as they travel
towards the turbine as well as allowing measurements at different preview distances to be combined
to improve the simultaneous estimation of wind shear and direction, as described by Raach et al. [55].

7. Time Domain Optimization

In the two previous sections, the question of how lidar scan patterns can be optimized for control
has been addressed using a few different metrics. This section now deals with the question “how can
the lidar data processing and feedforward controller be optimized to improve the performance of
wind turbine control?”. To provide a basic understanding of LAC, the section focuses on the following
two aspects:

• Filtering: Measurement filtering is crucial. No filtering or insufficient filtering of uncorrelated
frequencies will cause unnecessary control actions, which will likely result in increased loads.
By filtering out correlated frequencies, however, possible benefits of LAC algorithms will not
reach their full potential.

• Timing: Temporal information about the inflowing wind field is necessary for control purposes.
Because this information is available ahead in time, the lidar-assisted control action needs to be
synchronized with the disturbance impact on the rotor.

The remainder of the section is organized as follows: Section 7.1 provides the basic background to
understand the main objectives of the section. Thereafter, the feedforward collective pitch controller
is introduced followed by a short description of the filter used for the lidar wind preview signal in
Section 7.2. Finally, Section 7.3 summarizes the results from the time domain optimization.

7.1. Combined Feedback and Feedforward Control

This section first describes the design of a collective pitch controller with a combined feedback
and feedforward controller assuming perfect wind preview. The section is based on the work of
Schlipf [43], where more details can be found. Wind turbine control is designed to deal with variations
in the wind to aim for the two most desirable goals: increasing the energy yield and reducing
structural loads. Traditional feedback controllers are only able to react to impacts of wind changes
on the turbine dynamics after these impacts have already occurred. The collective pitch feedforward
controller is a promising approach to improve the control performance significantly over conventional
feedback controllers due to its load reduction potential, robustness, and simplicity of implementation.
This approach is based on a reduced nonlinear model and adds a feedforward update to the baseline
collective pitch controller. It is designed for the entire full load region and it is able to almost perfectly
cancel out the impact of the wind disturbance on the rotor speed assuming perfect wind preview.
It is combined with an adaptive filter when used either with simulated lidar measurements or in
real applications.

7.1.1. Reduced Wind Turbine Model for Controller Design

For controller design, a full aero-elastic model is too complex due to the required iterative
calculation of the aerodynamics. Here, a SLOW (Simplified Low Order Wind turbine) model based
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on [58] is used considering only the rotor motion (see Figure 6 (left)). The model consists of a reduced
servo-elastic and aerodynamic module (see Figure 6 (center)).

In the servo-elastic part, the motion of the rotor speed ω is described by

Jω̇ = Maero − Mgen, (12)

where Maero is the aerodynamic torque and Mgen is the generator torque. Further, J is the sum of the
moments of inertia about the rotation axis.

In the aerodynamic part, the aerodynamic torque acting on the rotor with radius R is

Maero =
1
2

ρπR3 cP(λ, β)

λ
with λ =

ωR
uef f

, (13)

where ρ is the air density, λ the tip-speed ratio, and cP is the power coefficient. A two-dimensional
look-up table shown in Figure 6 (right) is used, which is calculated from steady-state simulations with
the full simulation model of the NREL 5 MW turbine [37].
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Figure 6. Degrees of freedom for the reduced nonlinear model (left). Control and disturbance inputs
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7.1.2. Baseline Wind Turbine Controller

The baseline controller used in this paper is a simplified version of the NREL 5 MW controller
described in [37] and combines an Indirect Speed Controller (ISC) and a collective blade pitch controller
(CPC) (see Figure 7 (left)). The main control goal of the CPC is to maintain the rated rotational speed
ωrated in the presence of changing wind speed uef f by adjusting the blade pitch angle β. The ISC
additionally adjusts the generator torque Mgen to maintain constant electrical power above rated
wind speed.

7.1.3. Collective Pitch Feedforward Controller

The basic idea of the “two-degrees-of-freedom-control” [59] is to complete the two main tasks of a
controller (reference signal tracking and disturbance compensation) independently by a feedback and
a feedforward controller, while the controllers should not obstruct each other. For example, it would
be possible to calculate an update to the generator torque to cancel out wind speed changes and to
maintain constant generator speed. However, this would yield changing electrical power and thus
interfere with the control goal of the ISC.

Here, the feedforward controller is designed such that changes from the wind speed uef f to
the rotational speed ω are compensated by an additional blade pitch angle βFF. In this case,
the feedforward controller is not counteracting the control action of the CPC and ISC.

With the reduced nonlinear model introduced above, it can be shown that, if Mgen is used to
control electrical power, then the aerodynamic torque needs to be held at its rated value to maintain
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constant rotor speed. This can be achieved for changing uef f by adjusting the pitch angle using the
static pitch curve βss(uef f ):

βFF = βss(uef f ). (14)

This curve is obtained by steady-state simulations (see Figure 7 (right)).
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Figure 7. Feedback control loops and collective pitch feedforward control loop assuming perfect wind
preview (left). Static pitch curve (right).

7.2. Design of an Adaptive Filter

As discussed in Sections 5 and 6, in reality, the rotor effective wind speed uef f cannot be measured
perfectly. While the lidar system measures in a three-dimensional wind field, it is only able to yield
an estimate of the rotor effective wind speed ûef f due to limitations of the measurement principle.
The wind field also evolves from the place of measurement to the rotor.

However, with an Adaptive Filter (AF), the lidar estimate ûef f can be matched in the best possible
way to the rotor effective wind speed uef f . The transfer function between the rotor effective wind speed
measured by the lidar and that sensed by the turbine’s rotor can be calculated by

Guef f ûef f ( f ) =
Suef f ûef f ( f )

Sûef f ûef f ( f )
, (15)

where Suef f ûef f ( f ) is the CPSD between both signals and Sûef f ûef f ( f ) is the PSD of the signal from
the lidar. As introduced in Section 6 (see Equation (9)), a filter fitting to this transfer function will
match the correlated part of ûef f to uef f in an optimal minimum-MSE sense (see [42]). However, due
to its simplicity in implementation, a linear low-pass filter can be fitted to the magnitude of the
transfer function Guef f ûef f ( f ) for a given mean wind speed. Here, a first-order Butterworth filter with
cutoff frequency fcuto f f is chosen. Because the correlation and thus the transfer function depends,
among other factors, on the mean wind speed (e.g., see [8]), the cutoff frequency needs to be adjusted
continuously. In this paper, constant correlation and mean wind speed is assumed.

In addition to the filtering, the timing of the feedforward control action is important. Due to the
lidar measuring in front of the turbine, a certain preview time is obtained (depending mainly on the
distance and the mean wind speed). A certain fraction of the preview will be consumed by the filtering.
However, the feedforward control action βFF needs to be synchronized with the rotor effective wind
speed disturbing the system. Thus, an appropriate buffer time Tbuf f er needs to be found to buffer the
filtered signal from the lidar.

The PSD of the rotor speed is a useful measure to evaluate the benefit of the combined
feedback-feedforward controller over the conventional feedback controller. As described by Simley
and Pao [42], the PSD for the feedback-only case can be calculated by multiplying the spectrum of the
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rotor effective wind speed Sue f f ue f f with the magnitude of the closed-loop transfer function Tωgenuef f

(introduced in Section 6.1):

Sω,FB ( f ) = |Tωgenuef f ( f ) |2Suef f uef f ( f ) . (16)

As introduced in Equation (11), the PSD for the combined feedback-feedforward case with optimal
filtering is determined by:

Sω,FBFF ( f ) = Sω,FB ( f ) (1 − γ2
uef f ûef f

( f )). (17)

Thus, the measurement coherence γ2
uef f ûef f

( f ) has a direct impact on the optimal spectrum
of the controlled variable. This spectrum can be used to evaluate the implementation of a
feedforward controller.

7.3. Time Domain Optimization Results

Based on the PSDs and CPSD discussed in Section 6, wind time series with a length of 8192 s for
the rotor effective wind speed uef f and its lidar estimate ûef f , using the optimal circularly-scanning
CW lidar configuration for minimizing measurement MSE presented in Table 1, are generated. Next,
simulations are carried out with the wind time series, the combined feedback-feedforward controller,
as well as the wind turbine model described above. Here, 3 × 9 simulations are performed with
nine different buffer times Tbuf f er and three different cutoff frequencies fcutof f . For each simulation,
the standard deviation of the rotor speed is calculated (see Figure 8).
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Figure 8. Standard deviation of rotor speed for different buffer times and cutoff frequencies using
optimal circularly-scanning continuous wave (CW) lidar measurements.

In this case, the lowest value of 0.0796 RPM and thus the optimal result is achieved with a buffer
time of 3.5 s and a cutoff frequency of 0.1 Hz. The standard deviation in the feedback-only case is
0.2078 RPM and, thus, an improvement of over 60% is obtained with LAC.

Finally, Figure 9 (left) compares the transfer function calculated using the frequency domain
model described in Section 6 and the simplified filter used in the simulations. This confirms that the
best filter in practice is close to the transfer function. Figure 9 (right) compares the PSDs of the rotor
speed estimated from both the feedback-only and combined feedback-feedforward simulations to the
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theoretical values calculated using frequency domain methods presented in Section 6. The estimated
spectra from the simulations fit well to the model. This confirms that the feedforward controller
combined with the simplified filter is close to the optimal configuration predicted in Section 6.
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Figure 9. (Left) Transfer function from frequency domain model and fitted filter using optimal
circularly-scanning CW lidar scan. (Right) Power spectral density of rotor speed for feedback-only
(FB) and combined feedback-feedforward (FBFF) control from frequency domain model as well as
simulations using optimal lidar scan.

8. Technology Outlook

There is a variety of technology that has the potential to influence the future development of LAC
applications positively. Although the establishment is pushed forward with this work, there are various
other promising control approaches, many of which are collected in Section 2. As a first step, these
have to be implemented on multi-megawatt wind turbines in the field and long-term investigations
have to be carried out. Another advantageous addition to conventional feedback controllers and CPC
feedforward controllers is given by a multivariable approach where the transition between partial and
full load operation is improved in a straightforward manner [27]. Further load reduction potential
lies within the field of extreme event detection. A simulation environment has been developed that
allows the modeling of realistic extreme events, aiding the design of controllers that can transition the
turbine into a safety mode [60]. In addition to individual wind turbine control applications, preview
measurements of the wind provided by lidar are beginning to be explored for measuring wakes as
part of wind plant control strategies [61].

Wind field reconstruction methods are being improved by (1) applying nonlinear optimization
methods for estimating shear and direction simultaneously [55] and (2) integrating lidar measurements
into state estimation algorithms based on fluid dynamics models, allowing the individual components
of the wind to be estimated at locations not limited to the measurement points, thereby partially
overcoming LOS limitations and wind evolution [62]. Additionally, in the near future, it will be
possible to study wind evolution phenomena by combining lidar measurements at several range
gates with high resolution wind measurements performed by a swarm of unmanned aerial vehicles
(UAVs) [63].

Finally, the primary question explored in this paper arises: “how should lidar hardware be
designed in the future to fit control purposes optimally?”. As outlined in the previous sections, there is
no universal answer. Several boundary conditions like the control task (yaw, CPC, IPC, etc.), the turbine
size, and the site characteristics, to list a few, determine optimal scanning angles and preview distances,
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etc. As a logical consequence, there is no “one” lidar for all LAC applications. In fact, one key to
keeping a sustainable market position is to offer customizable lidar systems optimized for special
purposes. This can even lead to varying designs for different turbines belonging to the same OEM.
Of course, this does not imply developing dozens of lidar systems in parallel. A modularization
approach could overcome the need for many different lidar configurations, by placing lidars in the
context of a platform architecture. Starting from a common base, customer-specific modules could
be assembled to create an entire system. Another advantage of modularization is that submodules
could be optimized individually, potentially through outsourcing to specialized companies, which
could increase reliability and save costs at the same time. In addition, maintenance services would
likely be simplified. However, pointing out this scenario does not mean that every lidar should be
trimmed to fulfill a specific task. On the contrary, there is still a need for more complex high-tech
lidar systems in the future. They are typically more costly and over-designed for certain applications,
but the flexibility to address many different questions with a single device can compensate for these
disadvantages. Especially for the research community, this will continue to be of inestimable value.

9. Conclusions

The IEA Wind Task 32 workshop “Optimizing Lidar Design for Wind Turbine Control
Applications” made it clear that there is no single metric that can determine whether a lidar is
optimal for control purposes. Indeed, workshop participants had different views of what it means
to optimize a lidar for control purposes. Instead, several objectives must be achieved to arrive at an
optimal lidar for control purposes, including availability, reliability, measurement accuracy, and system
cost. A review of the literature on lidar optimization for control applications revealed a large body of
work on the optimization of lidar scan patterns via the resulting controller performance, time domain
assessments of measurement accuracy, and direct frequency domain calculations of measurement
coherence and measurement error. More practical aspects of lidar optimization have been treated as
well, including the determination of availability requirements through feedforward control simulations
as well as analyses of how the lidar beam angle, mounting position on the nacelle, and sampling time
affect measurement availability.

Presentations and group discussions at the workshop, augmented by additional input from the
authors, reveal a number of practical barriers preventing the widespread use of lidars for control.
Some of the main barriers related to the lidar system are:

• High lidar measurement availability is necessary to maximize the value creation of lidar-assisted
control (LAC). However, due to weather and atmospheric conditions, 100% availability cannot
be achieved.

• Lidar reliability is seen as a potential problem. Again, the value creation depends heavily on the
ability of the lidar to function properly when needed.

• Difficulty in assessing the cost–benefit relationship for LAC.
• The lack of common guidelines for assessing lidar applicability to LAC.
• The need to bring theoretical knowledge from the research community and practical requirements

from industry into accordance.

Proposed solutions to these barriers include:

• Lidars that can adapt to changing measurement quality to increase availability. For example,
a lidar could switch to shorter measurement ranges when poor atmospheric conditions make
measuring at the ideal preview distance impossible.

• Reducing the amount of lidar downtime due to reliability issues by developing a regular
maintenance plan involving modular lidar components.

• Using a systems engineering approach to improve the understanding of the cost–benefit
relationship of LAC, where the complexity of the lidar system can be optimized.
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• The creation of common documents providing guidelines for evaluating LAC performance and
defining variables such as availability. The recent IEA Wind Task 32 workshop“Certification of
Lidar-Assisted Control Applications” served as a first step in this direction.

• Perhaps most importantly, further collaboration between the research community and industry
is needed to ensure that common goals are being targeted and the latest methods are
being employed.

Scan pattern optimization was analyzed from a theoretical perspective by using frequency domain
methods from the literature to directly calculate mean square rotor effective wind speed measurement
error and measurement coherence bandwidth for various continuous wave and pulsed lidar scenarios.
The models were extended in this paper to include the direct calculation of mean square generator
speed error for a simple feedforward control scenario. This paper only considered scan pattern
optimization for rotor effective wind speed. In general, the optimal configurations for measuring shear
or wind direction are different. The main conclusions from the frequency domain optimization are:

• In general, measurement locations should approximate a rotor disk average. Line-of-sight errors
penalize large cone angles and errors from wind evolution penalize long preview distances.

• As the number of beams increases, measurement/generator speed error decreases.
• For a fixed number of beams, measurement/generator speed error is lower with a pulsed lidar,

measuring at multiple range gates.
• Of all the realistic scan patterns investigated, the circularly-scanning continuous wave lidar

yields the lowest measurement/generator speed error. For minimizing generator speed error,
the optimal scan parameters for this scan pattern consist of a scan radius of 60% of the rotor
radius and preview distance of 60% of the rotor diameter of the 126 m-rotor diameter NREL 5 MW
reference turbine (resulting in a focus distance of 84.5 m and a cone angle of 26.6◦).

• The optimal scan parameters for the 4-beam pulsed lidar configuration, combining measurements
from multiple ranges, consist of a scan radius of 85% rotor radius and preview distance of 110%
rotor diameter for the farthest range gate, yielding a cone angle of 21.1◦.

It should be noted, however, that, while minimizing measurement error is an important objective,
it is not the only objective that should be considered. For example, a lidar with a suboptimal scan
pattern but very high availability and reliability may be more useful than a lidar with an optimal scan
pattern but lower availability. This further highlights the need for a systems engineering approach to
lidar optimization for control applications.

The steps involved in the design of a feedforward pitch controller for rotor speed regulation
were described, illustrating how lidar measurements should be filtered and delayed properly to
maximize the controller effectiveness. Through time domain simulations, it was shown that the rotor
speed regulation achieved by the controller matches the value predicted by the theoretical frequency
domain model.

Finally, there are many promising directions that lidars for control applications could take
in the future. For example, the design of LAC scenarios for extreme event detection is gaining
importance. Additionally, new approaches to wind field estimation, such as the coupling of raw
lidar measurements with fluid dynamics models, are being explored. Finally, it is anticipated that a
modular lidar design philosophy will be adopted to address the variety of lidar system requirements
for different control applications.
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Abstract: This study presents the setup, methodology and results from a measurement campaign
dedicated to the characterization of full-scale wind turbine wakes under different inflow conditions.
The measurements have been obtained from two pulsed scanning Doppler lidars mounted on the nacelle
of a 2.5 MW wind turbine. The first lidar is upstream oriented and dedicated to the characterization of the
inflow with a variety of scanning patterns, while the second one is downstream oriented and performs
horizontal planar scans of the wake. The calculated velocity deficit profiles exhibit self-similarity in the
far wake region and they can be fitted accurately to Gaussian functions. This allows for the study of the
growth rate of the wake width and the recovery of the wind speed, as well as the extent of the near-wake
region. The results show that a higher incoming turbulence intensity enhances the entrainment and flow
mixing in the wake region, resulting in a shorter near-wake length, a faster growth rate of the wake
width and a faster recovery of the velocity deficit. The relationships obtained are compared to analytical
models for wind turbine wakes and allow to correct the parameters prescribed until now, which were
obtained from wind-tunnel measurements and large-eddy simulations (LES), with new, more accurate
values directly derived from full-scale experiments.

Keywords: wind energy; atmospheric boundary layer; wind turbine wake; wind lidar; turbulence;
wake modeling; field experiments

1. Introduction

The wind flow around the rotating blades of a wind turbine creates aerodynamic forces that
result in a torque on the rotor axis, which ultimately generates electrical energy, and an axial thrust
force, which pushes back the rotor. Following Newton’s third law, these actions are compensated with
reactions on the wind flow, altering its characteristics within a volume downstream of the wind turbine
that is called the wake region [1]. The reaction force of the thrust creates an axial induction opposite to
the air motion direction which reduces the kinetic energy of the flow, causing a reduction in velocity.
The reaction torque, instead, creates a tangential induction which causes the flow to spin in the opposite
sense of the rotation of the blades. Since the reaction aerodynamic forces have a dynamic nature and
they generate important shear locally in the flow, they result as well in increased levels of turbulence.
A wind turbine wake has two main negative effects on surrounding wind turbines within its area of
influence. First, the kinetic energy deficit results in a decrease in energy production [2,3], and second,
the higher turbulence levels result in higher fatigue loads and a potential life time reduction [4].
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The correct understanding, characterization, and accurate modeling of wind turbine wakes is of
utmost importance for accurate power prediction of wind farms [5,6] as well as layout optimization [7,8].
Wind turbine wake models may also play a key role in the control of wind farms [9,10].

Wind turbine wake models can be analytical [11], numerical [12], empirical, or a mixture of them [13].
In all cases the wake models need to be validated with experimental data. Wind tunnel experiments
present some advantages for validation purposes (e.g., repeatability, flow control, wind turbine control,
wind farm layout, etc.) [14–20] but it is very challenging to ensure complete flow similarity for scaled
tests [21]. Ideally, the validation would include a comparison of model prediction under different
conditions of the atmospheric boundary layer (ABL) with measurements of full scale wind turbine wakes.
The measurement technique best suited to measurements of the wake is the wind lidar (Light Detection
and Ranging), which is a remote sensing measurement technique based on the Doppler effect of reflected
laser light from aerosol. A pulsed wind lidar, in particular, is able to measure wind speed with relatively
high spatial and temporal resolutions (around 20 m and 10 Hz can be easily achieved with state-of-the-art
systems under normal atmospheric conditions) up to distances of a few kilometers.

Comparing full-scale measurements of wind turbine wakes and model predictions is particularly
challenging and presents a number of difficulties, especially given the limited amount of data available
during the experiments. The discussion presented by Barthelmie et al. [22] is particularly interesting
and relevant for this manuscript. They address the issues related to correctly establishing the free
stream flow characteristics (i.e., horizontal wind speed, wind direction, nacelle orientation and yaw
misalignment, turbulence intensity and atmospheric stability), to the accuracy of the site specific power
curve and thrust coefficients, and to ensuring equivalent time averaging in models and measurements.
These difficulties often arise from two important sources, which are the horizontal inhomogeneity and
the non-stationarity of the atmospheric flow (i.e., the horizontal gradients and the natural fluctuations
in the wind speed and direction in any period).

Recently, an increasing number of studies have investigated wind turbine wakes either via planar
or volumetric scans with ground-based scanning lidars [23–31] using different scanning strategies
and post-processing algorithms. Nevertheless, nacelle-based lidar experiments [32–36] have inherent
advantages when measuring wakes. Some of these advantages are: the lidar always has the same
alignment with the rotor, this alignment is independent from the wind direction, the errors due to the
assumption of unidirectional average flow are smaller, and it can perform horizontal planar scans of
the wake.

The objective of this study is to present an experimental setup and data post processing
methodology for the characterization of single wind turbine wakes under different atmospheric
conditions based on two nacelle-mounted lidars. The first lidar is upstream-looking and it is dedicated
to the characterization of the inflow conditions in terms of average wind speed, turbulence intensity,
yaw and vertical wind shear. The second lidar is downstream-looking and executes horizontal plan
position indicator (PPI) scans of the wake. This allows accurate measurements of the velocity deficit in
the wake and is ideal for the comparison with the predictions from wake models.

2. Methodology

This section describes the characteristics of the site where the tests were performed, as well as the
meteorological tower, the wind turbine, the lidar setup, and the methodology used to analyze the data.

2.1. Test Site

The selected test site is located at the Kirkwood Community College campus, in the state of Iowa.
The wind turbine studied is a 2.5 MW Liberty C96 model, manufactured by Clipper Windpower. It is
equipped with a Supervisory Control And Data Acquisition (SCADA) system which continuously
collects data at 10 min intervals about the wind turbine operation. The main characteristics of the wind
turbine are detailed in Table 1.
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Table 1. Wind turbine main characteristics.

Clipper Windpower-Liberty C96

Rated power 2.5 MW (at 15 m/s)
Rotor diameter (D) 96 m

Tower height 80 m
Minimum rotor speed 9.5 rpm
Maximum rotor speed 15.5 rpm

Cut-in wind speed 4 m/s
Cut-off wind speed 25 m/s

Figure 1 shows the power coefficient of the wind turbine and the blade pitch angle imposed
by the control system as function of the incoming wind speed as registered by the SCADA system.
This information helps determining the range of usable wind speeds for the analysis of the wake.
The power coefficient CP is quasi-constant and close to a value of 0.37 for velocities between 5 and
10 m/s. This is the range of velocities where the wind turbine operates optimally and therefore the
aerodynamic forces are most important. Once the wind velocity reaches 10 m/s the control system
changes the pitch angle of the blades, reducing the aerodynamic efficiency of the rotor and effectively
decreasing the thrust forces. We consider that the thrust coefficient CT is close to constant within the
same range of wind speeds, which is common in most wind turbines, and limit the study of the wake to
this range. In the absence of manufacturer’s data, and given the similarity in terms of thrust coefficient
from commercial wind turbines, a value of CT = 0.82 is estimated for the 5–10 m/s wind speed range.

Figure 1. Power coefficient and blade pitch angle as a function of the wind speed for the 2.5 MW Liberty
C96 wind turbine obtained from SCADA data. The 10 min values are shown in blue dots and binned
averages in red. A quasi constant power coefficient is observed for wind speeds from 5 to 10 m/s.

Figure 2 shows a satellite image of the Kirkwood Community College campus and its
surroundings with the location of the wind turbine and the meteorological tower. The predominant
wind directions in the area are NW and SSE as shown in Figure 3. The wind turbine is situated at
an elevation of 246 m and the surrounding terrain can be considered as rolling terrain. In an area of
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3 km around the turbine the maximum elevation difference does not exceed 30 m and the terrain slope
rarely exceeds 1%. The surface roughness, which plays a role in the ambient turbulence of the ABL,
changes from higher roughness lengths associated to the suburban area of the city of Cedar Rapids (W
to N directions) to lower values associated to agricultural fields (NE to SW directions). The campus is
equipped with a 106 m tall meteorological tower situated at a distance of approximately 900 m from
the wind turbine towards the SSW direction. The tower is equipped with sonic anemometers, cup
anemometers and wind vanes—among other instruments—situated at heights of 10, 32, 80 and 106 m
for the characterization of the ABL.

0 1 2 3 4 5 km

Wind Turbine

Cedar Rapids

Meteorological 
tower

N

W E

S

Figure 2. Location of the wind turbine and the meteorological tower inside Kirkwood’s campus as well
as the outskirts of Cedar Rapids. Map data: Google, Image NASA.

Figure 3 presents the wind rose for the last ten years obtained from measurements at the Eastern
Iowa Airport, shown in the lower left corner of Figure 2. The airport is situated approximately 5 km
to the SW of the test site. The wind presents two main directions: NW are affected by relatively high
surface roughness of the suburban area of Cedar Rapids, while SSE are affected by the lower roughness
of the agricultural fields.

89



Remote Sens. 2018, 10, 668

Figure 3. Wind rose measured at the Eastern Iowa Airport for 10 years, situated approximately 5 km to
the SW of the wind turbine and visible in Figure 2. The wind presents two main directions: NW and SSE.
Data obtained from Iowa State University, Iowa Environmental Mesonet. The length of the bars indicate
frequency in percentage units.

2.2. Lidar Setup

The two lidar units used in the experiment are StreamLine models manufactured by
Halo-Photonics. These instruments are infrared Doppler pulsed wind lidars which emit 1.5 μm
wavelength pulses at a frequency of 10 kHz. They are scanning lidars, which means that the laser
beam can be oriented towards any direction thanks to a steerable head. The units are able to provide
measurements of the radial velocity with a resolution of 3.82 cm/s at intervals of 18 m along the laser
beam direction or Line-of-Sight (LoS) and their measurement range extends from 63 m to more than
1000 m under most atmospheric conditions.

Both lidars are mounted on level platforms installed on the nacelle of the wind turbine. The first
unit is an upstream-looking lidar dedicated to the characterization of the incoming flow conditions of
the ABL and the second one is a downstream-looking lidar dedicated to the characterization of the
wind turbine wake. A sketch of the lidar setup measurement configuration is presented in Figure 4.
The forward-looking lidar laser beam is commonly blocked by the passage of the wind turbine blades
and a quality check algorithm is implemented in order to filter out blocked measurements. Between 5
and 20% of the measurements are rejected under normal operating conditions, although this rarely
compromises the analysis of the inflow data.
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Figure 4. Sketch of the lidar setup with one lidar dedicated to the measurement of the incoming flow
conditions and another one dedicated to the characterization of the wake.

2.3. Upstream Scanning

Both the inflow and the wake scans are grouped into synchronized periods of 30 min. The length
of the periods is a compromise between the need for multiple samples in order to decrease the statistical
error of the measurements and the requirement of stationarity of the flow. Each period of upstream
scanning is divided into four successive scans that quantify different variables of the incoming
flow. The calculations assume horizontally homogeneous flow in the region 250–600 m (2.6–6.25D)
upstream of the rotor. Only measurements within this range are taken into consideration. Some of the
measurements are redundant, such as the wind speed at hub height Uhub, yaw angle γ and longitudinal
turbulence intensity TIx, and they help to understand the degree of stationarity of the atmospheric
conditions during the 30 min periods. The sub-indexes ppi, rhi and st indicate parameters obtained
from Range Height Indicator (RHI), Plan Position Indicator (PPI) and staring-mode scans respectively.

An example of the characterization of the inflow conditions for the period between 22h30 and
23h00 (GMT-6) of 15 September 2017 is provided in the following subsections.

2.3.1. Yaw

The determination of the yaw angle γppi and the wind speed at hub height Uhub,ppi is done with
upstream horizontal PPI scans of a ±60◦ range around the rotor axis direction. The scans are performed
at an angular resolution of 4◦ and a measurement frequency of 3 Hz during 5 min. The yaw angle and
the wind speed at hub height are determined by fitting a cosine function to the radial velocities as
a function of the azimuth angle ϕ as detailed in the following equation:

Vr(ϕ) = Uhub,ppi cos(ϕ − γppi) . (1)

The azimuth angle is defined as the horizontal angle between the laser beam orientation and the
downstream axis of the rotor. An example of the wind speed is provided in Figure 5 where one can see
all the radial velocity measurements taken in the upstream range previously described and plotted
against the azimuth angle, the cosine fit and the calculated yaw angle.
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Figure 5. Example of the estimation of the yaw angle and the horizontal wind speed at hub height with
plan position indicator (PPI) scans. Data corresponding to the period 22h30–22h35, 15 September 2017.

2.3.2. Vertical Profile of the Horizontal Velocity

The determination of the vertical profile of horizontal velocity is done with upstream vertical
Range Height Indicator (RHI) scans aligned with the rotor axis direction of a ±15◦ around the
horizontal plane. The scans are performed with an angular resolution of 1◦ in the elevation angle θ and
a frequency of 3 Hz during 5 min. The measurements of radial velocity are corrected with the elevation
angle and the yaw angle previously quantified in Section 2.3.1 in order to obtain an estimation of the
undisturbed horizontal velocity at different heights:

u∞(z) = Vr(z)/(cos(θ) cos(γppi)) . (2)

The measurements of the horizontal component of the wind velocity are divided into blocks of
10 m in the vertical direction, and the average U∞(z) and standard deviation σu,rhi(z) are calculated.
From these vertical profiles it is possible to extract the values at hub height of the mean horizontal
velocity Uhub,rhi and the longitudinal turbulence intensity TIx,rhi = σu,rhi(zhub)/Uhub,rhi. An example is
provided in Figure 6. Figure 6a shows all the corrected horizontal wind speed measurements taken in
the upstream range previously described and plotted against height, while Figure 6b shows the binned
statistics for each block of 10 m in the vertical direction.
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(a) (b)

Figure 6. Example of the characterization of the vertical profile of horizontal velocity with range height
indicator (RHI) scans. The red dashed lines indicate the upper and lower limits of the rotor. (a) All
measurements; (b) Binned statistics. 22h35–22h40, 15 September 2017.

2.3.3. Turbulence Intensity

The determination of the longitudinal turbulence intensity TIx,st and a supplementary calculation
of the wind speed at hub height Uhub,st is done with a staring-mode scan aligned with the rotor
axis direction for a duration of 10 min. Measurements are taken at a frequency of 1.5 Hz. Only the
measurements of radial velocity in the mentioned upstream range are considered and their average
and standard deviation calculated. The wind speed at hub height is corrected with the yaw angle
previously calculated in Section 2.3.1:

Uhub,st = Vr(ϕ=0◦)/ cos(γppi) . (3)

The standard deviations of the longitudinal component of the wind speed and the radial velocity
are equated:

σu = σVr(ϕ=0◦) , (4)

and the longitudinal turbulence intensity is calculated as:

TIx,st = σu/Uhub,st . (5)

The transversal turbulence intensity calculation uses a horizontal staring-mode scan of the same
duration at an angle of 90◦ with the rotor axis direction. The same relationship between the standard
deviations of the longitudinal component of the wind speed and the radial velocity is used:

σv = σVr(ϕ=90◦) , (6)

Additionally, the transversal turbulence intensity is calculated as:

TIy,st = σv/Uhub,st . (7)

A supplementary estimation of the yaw angle can be obtained by:

γst = tan−1
(

Vr(ϕ=90◦)/Uhub,st

)
(8)
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The calculated values of the wind speed and longitudinal turbulence intensity for the period
22h40–22h50, 15 September 2017, are Uhub,st = 9.12 m/s and TIx,st = 5.7%. The values of the
longitudinal turbulence intensity and yaw angle for the period 22h50–23h00 are TIy,st = 4.2% and
γst = 2.17◦.

2.4. Downstream Scanning and Reconstruction of Planar Velocity Fields

The wake scanning consists of consecutive downstream horizontal PPI scans with a range of ±20◦

around the rotor axis direction. The scans are performed at an angular resolution of 2◦ and a frequency
of 2 Hz during 30 min.

The reconstruction of the longitudinal velocity fields in terms of its average and standard deviation
follows these steps:

1. The average radial velocity Vr(ϕ, r) and its standard deviation σVr(ϕ, r) for all PPI scans are
calculated at each point in space separated 2◦ in the azimuth ϕ and 18 m in the radial direction r,
conforming a regular polar grid.

2. The average radial velocity is corrected with the calculated yaw angle γppi in order to estimate
the longitudinal velocity component:

u(ϕ, r) = Vr(ϕ, r)/ cos(γppi − ϕ) . (9)

3. The standard deviation of the streamwise velocity component and the radial velocity are assumed
to be the same and are directly equated:

σu(ϕ, r) = σVr(ϕ, r) . (10)

4. The values in the polar grid are interpolated linearly into a Cartesian grid of 10 m resolution
obtaining u(x, y) and σu(x, y), more suitable to the post-processing of the data and the comparison
with wake models.

An example of the average and standard deviation fields is provided in Figure 7, where it is
possible to see the effect of the interpolation from polar coordinates to Cartesian. The interpolation
from a polar grid with a resolution of 2◦ and 18 m into a Cartesian one with a resolution of 10 m
means that the data will be slightly oversampled overall except closer to the rotor, where it will be
slightly downsampled in the transversal direction. This should not affect the results obtained from
the post-processing of the data. Although the turbulence fields of the wind turbine wake are not
used in this study, the authors consider illustrative to show it as proof of the potential of the simple
reconstruction technique used from PPI scans.

94



Remote Sens. 2018, 10, 668

Figure 7. Example of the average and standard deviation of the wake in polar and Cartesian coordinates.
22h30–23h00, 15 September 2017. Units in m/s.

2.5. Wake Analysis

The analysis of the measurement of the wake of the wind turbine will vary depending on the
objective of the study (e.g., wake meandering, yaw and skew angles, near/far wake determination,
etc.). In this case the objective is the comparison with the predictions of the analytical model by
Bastankhah and Porté-Agel in [11], who assumed Gaussian velocity deficit profiles in the far wake
region and used mass and momentum conservation to link the growth rate of the wake and the
recovery of the velocity deficit for different inflow conditions.

The local velocity deficit is defined as the difference between the local wind speed and the
undisturbed wind speed at hub height:

Δu(x, y) = Uhub − u(x, y) . (11)

The far wake of the wind turbine is defined as the region of the wake that exhibits self-similar
velocity deficit transversal profiles, which are well approximated by a Gaussian function of the form:

Δu(x, y) = C(x)e
− (y−yc(x))2

2σy(x)2 , (12)

where C is the amplitude in m/s and corresponds to the velocity deficit along the centerline,
yc corresponds to the deviation of the center of the wake in meters from the longitudinal rotor
axis and, finally, σy is the standard deviation in meters and corresponds to the wake width. In order
to avoid contamination from data outside the area of interest, such as horizontal inhomogeneities of
the free stream wind flow, the Gaussian fit to measured data uses a weighted nonlinear least squares
regression. The weighting function is the resulting Gaussian function, but 50% wider. The goodness
of the fit has been estimated by calculating the correlation ρ between measured and Gaussian fitted
velocity profiles. It gives an indication of the beginning of the far wake region, or, conversely, the length
of the near wake �nw. A value of ρ = 0.99 has been selected in [37] as the threshold to determine
this distance.
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An example of the analysis of a wind turbine wake is presented in Figure 8. In Figure 8a it is
possible to see the velocity deficit vectors measured and the fitted Gaussian functions. It is noticeable
the characteristic bimodal velocity deficit profile in the near wake, where a Gaussian function is not
a good representation. In contrast, in the far wake the velocity deficit profile is self similar and shows
an almost perfect fit to a Gaussian function. Figure 8b shows the longitudinal evolution of the Gaussian
parameters of the fit. The first plot from the top shows the correlation coefficient between the measured
velocity deficit and the Gaussian fit, together with the threshold ρ = 0.99 that indicates the beginning
of the far wake [37]. In the case depicted it occurs at a distance of 3.9D from the rotor. The second
plot shows the growth of the wake width in the longitudinal direction. Several wake models assume
a linear expansion of the wake and it is possible to observe that it is a good assumption for the far
wake region. The figure shows the coefficients of the linear fit in the form:

σy(x) =
(

k∗ x
D

+ ε
)

D , (13)

where D is the rotor diameter, k∗ is the longitudinal growth rate of the wake width and ε is the wake
width at the rotor plane.

The third plot of Figure 8b shows the velocity deficit along the centerline C and its decrease in
the longitudinal direction, corresponding to the recovery of the wake velocity. Based on conservation
of mass and momentum, this parameter has been linked to the wake width in the far wake by the
following relationship [11]:

C(x)
Uhub

= 1 −
√

1 − CT

8(σy(x)/D)2 . (14)

The plot also shows in a continuous red line the prediction of the C parameter by the analytical
model, which shows good agreement for the far wake using the calculated wake expansion from the
previous quadrant. It is also possible to observe that the prediction deviates substantially from the
measured values when the Gaussian profile is not a good representation of the velocity deficit profile
(ρ < 0.99). Finally, the last plot shows the deviation of the center of the Gaussian profile from the axis
of rotation. The deviation follows a linear trend for the far wake as well and it is possible to calculate
the skew angle of the wake by:

χ = tan−1(∂yc/∂x) , (15)

which, in the case presented, is 1.3◦. This parameter could be useful to study the relationship between
the yaw angle and the skew angle.

The analysis procedure described above is applied to all the 30 min periods in which the
experiment has been divided and results are presented in Section 3.
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(a) (b)

Figure 8. Example of the analysis of the wake of the wind turbine. (a) Velocity deficit and Gaussian fits;
(b) Downstream evolution of the fit parameters. 22h30–23h00, 15 September 2017.

3. Results

This section describes the first measurements used for the analysis of the wake of the wind turbine
as well as the conditions which entail a removal of those periods which are not suitable. The aggregated
results are then presented and compared to data used to further validate and calibrate the analytical
model discussed in Section 2.5.

The experiment data consists of a series of 30 min periods obtained between 20 August and
16 October 2017. One 30 min period is obtained every two hours for a total number of approximately
700. The inflow conditions for each period have been thoroughly studied in order to filter out those
not suitable for the analysis of the wake. Criteria that were used to filter out measurement periods
include (although are not limited to):

• Down times of the wind turbine.
• Wind speed outside the 5–10 m/s range.
• Low signal-to-noise ratio of the lidar measurements due to precipitation.
• Non-stationary undisturbed wind speed at hub height (comparison of Uhub,st , Uhub,ppi , Uhub,rhi).

• Non-stationary undisturbed wind direction at hub height (comparison of γst , γppi).

• Non-stationary undisturbed turbulence intensity at hub height (comparison of TIx,st , TIx,rhi).
• Horizontal inhomogeneity of the wind speed in the surroundings of the wind turbine

(this horizontal inhomogeneity can be easily observed when reconstructing the average of the
longitudinal velocity field u(x, y) and observing the regions not affected by the wake. It can be
seen that the case presented in Figure 7 shows a horizontally homogeneous flow outside the area
of influence of the wake).

• Changing orientation of the rotor by the control system of the wind turbine.
• Measured yaw angles above ±10◦.
• Disagreements among the inflow measured by the nacelle-mounted lidar, the data from the

meteorological tower, and the SCADA data.

From all the collected data, only 44 periods have been selected as suitable for analysis, which yields
a validity rate of around 6%. Three of the selected cases are shown for illustrative purposes in Figure 9.
They are ordered in increasing inflow turbulence intensity at hub height from left to right. The top
quadrants present the adimensional velocity deficit in the horizontal plane at hub height and it is
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observed that the wind speed recovery occurs significantly faster for higher turbulence conditions. It is
also observed that lower turbulence conditions retard the occurrence of a self-similar Gaussian velocity
deficit profile, indicating there is a significantly longer near wake region. The bottom quadrants
present the longitudinal turbulence intensity in the horizontal plane at hub height. It is observed that
the background turbulence intensity levels in those areas not affected by the wind turbine wake as
well as the turbulence generated by the shear, which is greatest in the mixing layers at the edge of the
wake. The values of the incoming turbulence intensity, wake growth rate, wake width at the origin,
and length of the near wake for these three cases are highlighted in Figures 10–12.

Figure 9. Example of three cases of wakes for increasing different longitudinal turbulence intensity
conditions at hub height (Case 1–2.2%; Case 2–4.6%; Case 3–9.9%). The top quadrants present the
adimensional velocity deficit while the bottom quadrants present the longitudinal turbulence intensity
in the horizontal plane at hub height. These three example cases are further referenced in Figures 10–12.

The relationship found between the wake width growth rate k∗ and the longitudinal turbulence
intensity TIx is presented in Figure 10. The data from the full scale field experiment (blue stars) as
well as data from validated LES simulations (black squares) and wind tunnel experiment (black circle),
presented in [11], agree well, taking into account the significant variability of the data. The data show
clearly that the rate of growth of the wake width increases with the turbulence intensity. The growth of
the wake is linked to the velocity recovery by mass and momentum conservation as already discussed.
This implies a faster recovery of the velocity deficit for higher background turbulence since turbulence
enhances flow mixing and the transfer of momentum from the undisturbed flow region into the wake.
The linear fit to the full-scale field data is presented as a dashed red line in Figure 10, and it can be
expressed as:

k∗ = 0.35 TIx . (16)

The linear relationship of Equation (16) is similar to the one used in [38] by fitting a straight line
to the data presented in [11], k∗ = 0.383 TIx + 0.0037 (presented as a dashed black line in Figure 10).
When using these relationships, it is important to take into account the variability of the data, which
indicates that it is not uncommon to find wake growths that differ by a factor of two or three for very
similar conditions of longitudinal turbulence intensity. This suggests that further experiments should
be addressed to understand the role of other variables that could also play an important role on the
development of the wind turbine wake.

One particularly interesting effect to study is the occurrence of different wake growths in the
vertical and horizontal directions, which makes the velocity deficit profiles not self-similar in the radial
direction, leading to an elliptical profile instead of a circular one. Only considering the horizontal
growth rate violates mass and momentum conservation and could be a reason for the variability of the
results. Volumetric downstream scans with a similar setup have been performed during the same dates
to further study this fact and preliminary analysis proves the occurrence of non circular velocity deficit
profiles under certain atmospheric conditions. A more complete analysis can be provided in the future.
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Figure 10. Relationship between wake growth k∗ and longitudinal turbulence intensity TIx. In blue all
the data collected during the experiment, in dashed red the linear fit to the full-scale field data presented
in Equation (16). In black the data obtained from [11] and the linear fit used in [38]. Numbers 1 to 3
indicate the cases presented in Figure 9.

The relationship between the growth rate of the wake and the wake width at the rotor plane ε

is presented in Figure 11. ε is not physical, but rather a theoretical parameter, which indicates the
hypothetical wake width at the rotor plane when considering a Gaussian wake from its origin (i.e., no
existence of a near wake region). The correlation is negative, which means that for a higher growth rate,
the width at the rotor plane is smaller. The figure presents the data obtained during this experiment
(blue stars) together with its linear fit, which allows for the calculation of the wake width at the origin
for a particular wake growth rate is presented as a dashed red line:

ε = −1.91k∗ + 0.34 . (17)

The agreement between the full-scale field data and the data from the validated LES simulations
(black squares) is good, but it is poor for the wind tunnel measurements (black circle).

Finally, the relationship between the length of the near wake �nw and the longitudinal turbulence
intensity is presented in Figure 12. The setup used, and the range of the downstream PPI scans
(see Section 2.4) does not allow for scans of the full width of the wake for shorter distances than
approximately 200 m and, therefore, shorter near wake lengths are not included in the analysis. This is
represented by the gray shaded area at the bottom of the figure. Similarly to the effect of the growth
rate, a higher inflow turbulence intensity enhances flow mixing and this helps the wake reaching
a self-similar state in a shorter distance. The length of the near wake reaches long distances, higher than
six diameters in some cases, for particularly low turbulence flow. It can be observed that in this range
of low turbulence intensities, the variability of the data becomes also greater.

A semi-analytical expression for the length of the near wake of a wind turbine under yaw
conditions is presented in Bastankhah and Porté-Agel [19]. The corresponding relationship for zero or
negligible yaw angles is:

�nw

D
=

1 +
√

1 − CT√
2(α TIx + β (1 −√

1 − CT))
, (18)

where β is a parameter obtained from analogy with jet flows and has a value of 0.154 and α is obtained from
experimental data. The value of α = 2.32 prescribed in [19] was obtained from wind-tunnel experiments.
The expression for the length of the near wake using this value is represented in Figure 12 as a dashed
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black line. A value of α = 3.6 provides a better fit to the full scale experimental data, as shown by the red
dashed line in Figure 12. It should be noted that the experimental data used in order to obtain the value of
3.6 is more exhaustive in terms of range of turbulence intensities covered and number of independent data
points obtained.

Figure 11. Relationship between wake growth k∗ and wake width at the rotor ε. In blue all the data collected
during the experiment, in dashed red the linear fit to the full-scale field data presented in Equation (17).
In black the data obtained from [11]. Labels numbered 1 to 3 indicate the cases presented in Figure 9.

Figure 12. Relationship between near wake length �nw and longitudinal turbulence intensity TIx.
In blue all the data collected during the experiment, in dashed black Equation (18) for the estimation of
the near wake length with the value of α = 2.32 prescribed in [19] and in dashed red the same equation
with the value of α = 3.6 that provides a better fit to the full-scale field data. The grey rectangle at the
bottom indicates the lowest bound for a possible calculation of the near wake length with the presented
setup and analysis. Numbers 1 to 3 indicate the cases presented in Figure 9.
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4. Conclusions

The study demonstrates that a measurement setup based on two nacelle-mounted lidars can be
used to measure different characteristics of the incoming flow via RHI, PPI and staring-mode scans,
while at the same time perform planar scans of the wake. The upstream oriented lidar data were
processed with simple algorithms to calculate the vertical profile of horizontal velocity, the yaw angle
of the incoming flow, and the longitudinal and transversal turbulence intensities. The downstream
oriented lidar data were aggregated statistically and used to reconstruct the longitudinal velocity field
in terms of its average and standard deviation. The velocity deficit profiles were fitted to Gaussian
functions and provide information about the wake width and the velocity deficit along the center line
at different longitudinal distances.

With the calculated inflow and wake parameters described above, it is possible to study the
relationships between wake growth rate, wake width at the rotor plane, length of the near wake,
and longitudinal turbulence intensity. A higher incoming turbulence increases mixing and the
transfer of momentum from the regions outside the wake into it, reduces the length of the near
wake, and increases the velocity recovery. A higher wake growth rate, in turn, implies a smaller wake
width at the rotor plane. Different relationships have been established for these relationships.

The presented data have been compared to the predictions of the analytical wake model based
on Gaussian velocity profiles and mass and momentum conservation developed by Bastankhah and
Porté-Agel [11,19]. It has been found that the model predicts the wake expansion and velocity deficit
well, as well as the length of the near wake region. The empirical parameters prescribed in the original
model have been updated with the field experiment data.

This study can be extended to use volumetric measurements of the wake and using a similar
methodology, in order to understand the implications in the development of the far wake under certain
atmospheric conditions when the velocity deficit profile is not self-similar in the radial direction (i.e.,
not circular).
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Abstract: Scanning Doppler lidars are the best tools for acquiring 3D velocity fields of full scale wind
turbine wakes, whether the objective is a better understanding of some features of the wake or the
validation of wake models. Since these lidars are based on the Doppler effect, a single scanning
lidar normally relies on certain assumptions when estimating some components of the wind velocity
vector. Furthermore, in order to reconstruct volumetric information, one needs to aggregate data,
perform statistics on it and, most likely, interpolate to a convenient coordinate system, all of which
introduce uncertainty in the measurements. This study simulates the performance of a virtual lidar
performing stacked step-and-stare plan position indicator (PPI) scans on large-eddy simulation (LES)
data, reconstructs the wake in terms of the average and the standard deviation of the longitudinal
velocity component, and quantifies the errors. The variables included in the study are as follows:
the location of the lidar (ground-based and nacelle-mounted), different atmospheric conditions,
and varying scan speeds, which in turn determine the angular resolution of the measurements.
Testing different angular resolutions allows one to find an optimum that balances the different error
sources and minimizes the total error. An optimum angular resolution of 3◦ has been found to
provide the best results. The errors found when reconstructing the average velocity are low (less than
2% of the freestream velocity at hub height), which indicates the possibility of high quality field
measurements with an optimal angular resolution. The errors made when calculating the standard
deviation are similar in magnitude, although higher in relative terms than for the mean, thus leading
to a poorer quality estimation of the standard deviation. This holds true for the different inflow cases
studied and for both ground-based and nacelle-mounted lidars.

Keywords: wind energy; atmospheric boundary layer; wind turbine wake; wind lidar; virtual lidar;
turbulence; wake modeling; large-eddy simulations

1. Introduction

Wind power growth worldwide is a result of an ever increasing demand for renewable energy.
With upper limits of rated power for single turbines reaching the order of 10 MW, the common solution
to keep increasing the generated power is to install a larger number of wind turbines. Due to space
limitations, in most cases, wind turbines are clustered together in wind farms and effectively this
means a higher number of turbines in each wind farm. In large wind farms, most of the wind turbines
are affected by the wake flow of others, resulting in a reduction of incoming wind speed and an
increase of turbulence [1]. Therefore, a careful evaluation of wind resources is needed for an accurate
estimation of not only produced power from a future wind farm [2,3], but also the power losses and
increased fatigue loads associated with the wind turbine wakes [4]. Accurate wake models are needed
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to that end, and the location of each of the wind turbines inside the farm needs to be optimized in
order to minimize the losses [5,6].

There are a number of strategies to model the wake of a wind turbine: numerical models [7]
discretize the Navier–Stokes (N.S.) equations, either in the physical space or the Fourier space, and solve
them with the help of various turbulence models; analytical models [8] use certain assumptions
(e.g., the shape of the wind velocity deficit in the wake) and combine them with the N.S. equations
either in 1D or 3D; lastly, empirical models can be based on either measurements alone or a mixture
between important simplifications of the Navier–Stokes equations and empirical parameters [9]. All of
them must, inevitably, be contrasted with measurements of wind turbine wakes in order to estimate
their accuracy and, if applicable, be validated under certain conditions.

The interaction between the atmospheric boundary layer (ABL) and a full scale wind turbine
is a three-dimensional, dynamic flow phenomenon that extends from approximately two diameters
in front of the rotor to several hundred meters, possibly a few kilometers, downwind [1]. The ideal
measurement set for a characterization of a single wind turbine wake would include the three
components of the wind velocity vector, at all times and at all positions in space within the region of
influence. Unfortunately, no measurement technique is able to provide such data. Different instruments
provide different sets of measurements, with varying levels of suitability for the characterization of a
wind turbine wake.

The standard instrument for turbulence measurements in the atmosphere, the sonic anemometer,
is not well suited for the measurement of turbine wake flows. Sonic anemometers only offer
point-wise information and it is not practical to cover an extensive volume by mounting them on
meteorological masts. Alternatives to the sonic anemometer and the meteorological mast are, in some
cases, unmanned aerial vehicle platforms, since they are able to fly and measure in any point in
space [10–14]. Nevertheless, they have important limitations: most of them are s till mostly in
prototype phase, they are not suitable for long-term statistics, and covering a volume with point-wise
measurements would imply thousands of hours of flight.

As an alternative, remote sensing techniques are increasingly popular in atmospheric flows
because of their ability to measure where other sensors cannot. Among these, Doppler light detection
and ranging (lidar) is the preferred remote sensing technique for atmospheric turbulence measurements
due to its accuracy and relatively high spatial resolution and long range. As of today, it is the most
suitable measurement technique to study the different characteristics of wind turbine wakes [15–23].

One limitation of the lidar technique arises from the fact that it is based on the Doppler effect
and uses backscattered light from aerosol. Therefore, it can only measure the velocity component
parallel to the laser beam (radial velocity). A scanning Doppler lidar can orient its laser beam in any
direction; this implies that, unless the laser beam is completely vertical or aligned with the direction of
the flow or transversal to it, the measured velocity is normally a mixture of the three components of
the wind velocity vector. As a consequence, most lidar measurements rely on some assumptions when
calculating the relevant variables such as horizontal wind speed, vertical wind speed, or the different
turbulence quantities [24–26]. Multiple-lidar techniques exist and can overcome this limitation [27–29]
although they multiply the cost, are more cumbersome to use, and require a significantly higher degree
of expertise to be properly operated. The use of a single lidar and the necessary assumptions is a
source of uncertainty that needs to be estimated.

Another limitation of the lidar technique is the speed of the measurements. A scanning pulsed
lidar emits several thousand laser pulses in a particular direction or line-of-sight (LoS), evaluates the
backscattered signal, calculates the Doppler shift at different distances from the lidar, and then proceeds
to the next laser beam orientation. Since a wind turbine wake is inherently dynamic, in order to cover a
volume with lidar measurements, a scanning strategy is needed in order to balance angular resolution
and number of measurements at each orientation. This translates into finding a compromise between a
spatial interpolation error and a statistical uncertainty. These two need to be estimated as well.
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As discussed above, no technique is able to provide the velocity field in order to estimate the
errors and uncertainties associated with a volumetric lidar scan of a wind turbine wake. Therefore,
a good strategy is to use a virtual lidar technique to perform a virtual experiment. Specifically,
a turbulence-resolving large-eddy simulation (LES) is performed and then the characteristics and
scanning pattern of a virtual instrument can be programmed to extract information or virtual
measurements from LES simulated velocity field. These virtual measurements can be post-processed
with the same algorithms used to treat real measurements in order to reconstruct the desired flow
feature (in this case, the far wake of the wind turbine) and then it can be compared to the original
velocity field from the LES simulation. A virtual lidar technique allows the estimation of the different
sources of uncertainties or errors separately. In this manuscript, the sources of error studied are three:
the assumptions used to convert the radial velocity to longitudinal velocity, the statistical error, and the
interpolation error. Finally, testing different scanning patterns allows one to find an optimum that
minimizes the errors. The error magnitude, in turn, will determine the quality of future real (time and
resource-consuming) field experiments.

Most of the literature regarding virtual lidar studies is very recent. Stawiarski et al. [30] created a
virtual lidar measurement simulator based on LES results in which lidar characteristics such as range
gate length, pulse length, total range, and measurement frequency are adjustable. In their simulator,
they include the effect of the convolution of the laser pulse as a cylindrical volume centered around
the range gate center, and they use a weighted averaging function over the LES data points inside that
volume. They discuss extensively the different kinds of errors connected with single- and double-lidar
measurements and provide the methodology to study the sources of errors and the optimization
of dual-Doppler scan patterns. Stawiarski et al. [31] further performed virtual planar dual-lidar
experiments to study the reconstruction and the detection of planar turbulent structures.

Lundquist et al. [32] studied the uncertainty of the Doppler beam swinging (DBS) technique,
used by many commercial profiling lidars, when calculating horizontal and vertical velocities while
violating the assumption of horizontally homogeneous flow that the technique requires. The calculation
of the vertical profiles of horizontal velocity is done using virtual measurements obtained from LES
simulations of a wind turbine wake. Similarly, Mirocha et al. [33] have simulated the effect of
the inhomogeneity on profiling lidar measurements using a virtual lidar technique approach under
different atmospheric stability conditions.

Van Dooren et al. [34] used virtual lidar experiments to explore the possibilities and uncertainty
of wind turbine wake reconstruction with ground-based dual-lidar plan position indicator (PPI) scans.
For that, they obtained non-synchronous dual-Doppler lidar measurements from LES simulations,
and they improved the accuracy of the reconstructed wind field by including a correction based on the
mass continuity equation.

Meyer Forsting et al. [35] developed a novel validation methodology for computational fluid
dynamics (CFD) models over the wind turbine induction zone using measurements from three
synchronous lidars. The validation procedure relied on making the CFD simulation results comparable
with the triple lidar data. To that end, they discretized in space the probability density function of
the measured free-stream wind speed. Then they reproduced those distributions numerically by
weighting the steady-state Reynolds averaged Navier–Stokes simulations. As a last step, the spatial
and temporal uncertainty of the triple lidar measurements were quantified and propagated through
the data processing.

Lastly, and although the virtual lidar technique is not used, it is worth mentioning that
van Dooren et al. [36] studied the uncertainty of synchronous short-range continuous dual-lidar
measurements for the measurement of scaled wind turbine wakes placed inside a wind tunnel.
They were able to compare the estimated uncertainty of some of their configurations by comparing the
lidar measurements to those taken by a triple hot-wire probe.

In this study, a virtual lidar technique based on LES simulations, similar to what has been used
in some of the above-mentioned references, is used to calculate different error sources for a single
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pulsed lidar performing volumetric scans of a full scale wind turbine wake under different atmospheric
conditions and for two different lidar locations: nacelle-mounted and ground-based. The technique
allows one to optimize the scanning of the wake and evaluate the quality of the measurement strategy
and the assumptions used for the treatment of the data.

There are a number of practical advantages to using nacelle-mounted lidars over ground-based
ones. Arguably, the most important one is the fact that a lidar fixed to the structure of the nacelle of
a wind turbine always maintains the same angular orientation with respect to the rotor. This means
that it does not need any reorientation with a changing wind direction and it never gets blocked by
the tower of the turbine. Nevertheless, practical considerations of this kind are beyond the scope of
this study.

2. Methodology

A virtual lidar approach is based on the idea of performing virtual experiments on a flow field
in which the three components of the wind velocity vector v(x, y, z, t) are calculated at each point
in space and at each point in time. A convenient way of creating such a flow field is through LES
simulations. The results of these simulations can be interpreted as a virtual reality from which lidar
virtual measurements can be extracted, knowing the characteristics of a particular lidar (spatial resolution,
repetition rate, range, etc.), its scanning pattern, and that it measures only the projection of the wind
velocity vector onto the laser beam direction or LoS. The lidar virtual measurements obtained can then
be processed by the same algorithm used to treat real lidar measurements in order to reconstruct a
particular flow feature. Examples include vertical wind profiles in the ABL, 2D horizontal velocity fields
of atmospheric surface layer flow, and 3D velocity fields of wind turbine wakes. The reconstructed
flow features can be compared to those obtained from the complete three-dimensional, unsteady LES
flow fields as a way to estimate the errors introduced by the assumptions used in the algorithm, by the
spatial interpolation, and by the limited number of samples in time (statistical error). This also allows
for the optimization of scanning patterns in order to minimize the uncertainty for a particular type
of experiment.

Next, details are provided about the LES simulations used in this study, the characteristics of the
virtual lidar and its scanning strategy, the algorithm for the reconstruction of the 3D flow field, and the
optimization process.

2.1. LES Simulations

The virtual measurements are extracted from the results of LES simulations of the interaction of a
single turbine with atmospheric boundary layer flow on flat terrain. The WiRE-LES code, described in
detail in [37–39], was used for the simulations.

2.1.1. Turbulence Model, Boundary Conditions, and Numerical Methods

LES solves the spatially filtered Navier–Stokes equations and, therefore, solves explicitly all the
scales of turbulence greater than the filter scale (same as the grid scale for implicit filters), while the
subgrid-scale stresses (SGSs) are parameterized using a subgrid-scale model. In the case of the
WiRE-LES code, the spatial derivatives are discretized using a pseudospectral representation for the
horizontal directions (hence, periodic lateral boundary conditions) and second-order finite differences
for the vertical direction, with a wall modeling based on the log law for the bottom boundary. The top
boundary condition is a fixed stress-free lid. The code is fully dealiased using the 3/2 rule and the
temporal advancement of the simulation uses a second-order accurate Adams–Bashforth scheme.
The SGS turbulence model is the Lagrangian scale-dependent dynamic model detailed in [40,41].
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2.1.2. Domain Size and Resolution

The domain size is 3200 m in the longitudinal direction (x), 800 m in the transversal direction (y),
and 500 m in the vertical direction (z). The domain is divided uniformly into 160 × 60 × 64 grid points,
respectively, which yields a spatial resolution of 20 m in x, 13.3 m in y, and 7.8 m in z.

Since in the horizontal direction, there are periodic boundary conditions, a buffer zone upstream
of the wind turbine is required in order to create an undisturbed incoming flow. The inflow condition
is obtained via a separate precursor simulation.

2.1.3. Inflow

The boundary-layer flow in the simulations is driven by a constant streamwise pressure gradient
over flat homogeneous surfaces and is neutrally stratified. Five inflow conditions are used in order
to study the influence of different wind speeds and different turbulence intensities. The different
turbulence intensities are recreated by using different surface roughness lengths. They are chosen
to cover a very wide range between the lowest value corresponding to water or sand (0.0002 m)
to grass-covered land (0.005 m) and finally the highest roughness corresponding to suburban or
forestal land (0.5 m) [42]. Different wind speeds at hub height are achieved by modifying the forcing
longitudinal pressure gradient dP/dx. The wind speeds selected (6, 7.5, and 9 m/s) cover the range in
which the turbine operates at maximum efficiency CP 	 0.42 and maximum thrust CT 	 0.80.

The nomenclature of the different inflow cases is (X)V-(X)T, where V denotes wind velocity,
T denotes turbulence intensity, and finally (X) can be L-low, M-medium, or H-high (e.g., MV-HT
indicates medium wind speed and high turbulence intensity). Figure 1 shows the different inflow
conditions for the five simulations.

The coordinate system used in this manuscript has its origin at the center of the rotor, and the
longitudinal, transversal, and vertical directions are represented by X, Y, and Z, respectively.
Distances appear normalized by the rotor diameter D, which is 80 m, as described in the section
below.

(a) Different wind speeds.

Figure 1. Cont.
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(b) Different turbulence intensities.

Figure 1. Inflow conditions in terms of average horizontal wind speed and longitudinal, transversal and
vertical turbulence intensity. The panels on top (a) show three cases with the same turbulence intensity
(medium) but different wind speeds, while the panels at the bottom (b) show three cases with the
same wind speed (medium) at hub height but different turbulence intensities. The resulting average
transversal and vertical velocities from the LES simulations are negligible.

2.1.4. Turbine Modeling

The simulation of the aerodynamic forces of the wind turbine and their interaction with the
ABL flow is performed through an actuator disk model that includes rotation as described in
[37,38], where the lift and drag forces of the wind turbine blades are calculated using Blade-Element
Momentum theory (BEM) and distributed in a Gaussian manner by convolving the local load and a
regularization kernel [43] and integrated over the spatial and temporal resolution of the simulation.

The wind turbine simulated is a V80-2.0 MW Vestas wind turbine with a hub height of 70 m and
a rotor diameter of 80 m. All the details of the modeling of the wind turbine can be found in [39].
The results of the simulations are shown in Figure 2 as vertical planes at Y = 0 of the temporal average
of the longitudinal component of the wind speed u and its standard deviation σu.

The simulations were first run for a period of time long enough to achieve stationary flow
conditions, and a period of 30 min was then used to sample the simulation results at a resolution of
2 Hz.

(a) u(x, z) for the different cases studied.

Figure 2. Cont.
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(b) σu(x, z) for the different cases studied.

Figure 2. Flow statistics of the simulated wind turbine wakes for the five different inflow cases studied.
The figures present vertical planes at Y = 0 of the longitudinal component of the wind velocity in terms
of its average (a) and its standard deviation (b). The black boxes correspond to the location of the wind
turbine rotor.

2.2. Lidar Virtual Measurements

The lidar simulated in this study is a Halo-Photonics Streamline lidar. It is a pulsed Doppler
scanning lidar, which means that it provides measurements of the radial velocity Vr (the projection
of the wind velocity into the LoS) at regular distance intervals along the laser beam direction. In this
case, the Streamline lidar is able to provide a spatial resolution of 18 m along its LoS, at an acquisition
frequency of 2 Hz. The range has been set to infinite since, on our own experience, it exceeds 1.5 km
under most atmospheric conditions.

The virtual radial velocity measurements taken by the lidar are then calculated as

Vr(t) = u(x, y, z, t)cos(θ(t))cos(ϕ(t)) + v(x, y, z, t)cos(θ(t))sin(ϕ(t)) + w(x, y, z, t)sin(θ(t)) (1)

where u, v, and w are the components of the wind velocity vector field from the LES simulations,
and are defined in space (x, y, z) and time (t), ϕ is the azimuth angle (angle between the laser beam
and the the vertical plane at Y = 0 of the wake), and θ is the elevation angle (angle between the laser
beam and a horizontal plane) that define the orientation of the laser beam in time.

The formally correct calculation of the virtual radial velocity for each laser gate of 18 m would
be a convolution of the envelope of the laser pulse on the simulated and projected velocity field [44].
In this study, the convolution is not calculated and the result is instead a point-wise calculation in the
linearly interpolated projected field every 18 m. The reason for this is that the resolution of the LES
simulation (20 m in the longitudinal direction) is almost the same as the lidar one. This means that the
lidar convolution is similar to the spatial filtering already performed by the LES.

The effect of the spatial convolution of high-resolution (20 m) lidar measurements in the
attenuation of the longitudinal turbulence intensity has been studied by comparing lidar measurements
to sonic anemometry [27]. These experiments, under arguably less favorable conditions than the virtual
setup presented here, have shown that the attenuation is in the order of a few tenths of a percentage
point, since most of the energy-containing scales are resolved at that resolution. These results may not
be extended to lower resolution measurements. No significant effect is expected when reconstructing
average velocity fields.

It must be noted that in this study the accuracy of the lidar (instrument error) is neglected.
The virtual measurement of the radial velocity (Equation (1)) could include a random error that varies
for each instrument and that it depends on the signal-to-noise ratio (SNR) of each measurement. This,
in turn, depends on the quality of the different optical parts of the instrument, the power of the laser
pulse, the aerosol content, the humidity, and other parameters related to the processing of the Doppler
signal such as the length of the laser gate or the number of pulses averaged. It has been shown that
a similar pulsed Doppler lidar to the one discussed in this study can achieve, with favorable SNR,
accuracies in the order of ±0.1 m/s or lower [45]. In theory, the effect of simulating this error for
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any particular instrument will have the effect of slightly increasing the statistical error (in a random
manner, therefore no bias introduced) and slightly increasing the standard deviation measurements
(therefore, inducing a small bias). Nevertheless, the instrument error of an accurate lidar should be
significantly smaller than the turbulent velocity fluctuations found in the wake of a wind turbine and
can, in most of the cases, be neglected.

Finally, if a continuous scanning strategy is chosen, the radial velocity calculation has to include
the convolution along the arc that the lidar gate covers between two consecutive measurements.
This effect can be particularly important when calculating the standard deviation of the radial velocity
for locations far downstream and for low angular resolutions of the measurements. On the other
hand, a step-and-stare scan avoids this convolution and arguably provides a better estimation of the
turbulent fluctuations. This is why only step-and-stare scans are considered in this study.

2.3. Scanning Strategy and Reconstruction of 3D Fields

Depending on the position of the lidar, the ranges of the azimuth and elevation angles are
calculated in order to cover the whole volume of interest and are shown in Table 1. A pulsed scanning
lidar can only measure along a particular direction each time, which implies that there will have to be
a compromise between the number of measurements at each point and the angular resolution. Due to
the wake being quasi-axial symmetric, the angular resolution is kept the same for the elevation and
the azimuth angles. Once a particular angular resolution is set, the virtual lidar scans the volume of
interest in consecutive step-and-stare swipes at constant elevation angles (equivalent to PPI scans) at a
frequency of 2 Hz between measurements until the end of the 30 min period of each simulation.

Table 1. Ranges of the azimuth and elevation angles needed to cover the whole volume of interest for
both lidar locations.

Nacelle-Mounted Ground-Based

Azimuth angle range −16.7◦ to +16.7◦ −16.7◦ to +16.7◦
Elevation angle range −16.7◦ to +16.7◦ +1.3◦ to +34.0◦

The reconstruction of the longitudinal velocity field at the volume of interest is similar to the
procedure described in [16,18] and starts by calculating the average of the radial velocity measurements
Vr(ϕ, θ, r) for each laser beam orientation determined by the angles ϕ and θ and distance r, creating a
regular spherical grid with the origin at the lidar location. It continues with the assumption of a
negligible effect of the average transversal and vertical components of the velocity into the projection
on the laser beam direction: v(x, y, z)cos(θ)sin(ϕ) = 0; w(x, y, z)sin(θ) = 0. This allows one to
reconstruct the longitudinal component of the velocity from the radial velocity measurement simply by

u(ϕ, θ, r) =
Vr(ϕ, θ, r)

cos(θ) cos(ϕ)
. (2)

The error of this assumption is simply calculated as

ε = v(x, y, z)cos(θ)sin(ϕ) + w(x, y, z)sin(θ) . (3)

The reconstruction of the standard deviation field of the longitudinal velocity component uses a
different assumption (stronger than the previous one), which directly equates the variations of the
instantaneous radial velocity to those of the longitudinal velocity component:

σu(ϕ, θ, r) = σVr(ϕ, θ, r) . (4)
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Lastly the values in the regular spherical grid (ϕ, θ, r) are converted to the original Cartesian grid
of the LES simulations (x, y, z) via a linear interpolation. These values constitute the final reconstructed
velocity fields from virtual lidar measurements that can be compared directly to the original LES fields.

2.4. Optimization

The approach detailed in this section allows one to study three different error sources:

• the error of the assumption of unidirectional flow, which depends on the average spanwise and
vertical velocity components v(x, y, z) and w(x, y, z) of the wake flow field and the position of the
lidar, which determines the angles θ and ϕ at which, in turn, the laser beam operates;

• the statistical error when calculating the average radial velocity at each point in the spherical grid
Vr(ϕ, θ, r), which depends on the number of independent lidar measurements for each orientation
of the laser beam;

• the interpolation error when converting u(ϕ, θ, r) in the spherical grid to u(x, y, z) in the
original Cartesian grid, which depends on the angular resolution between consecutive laser
beam orientations.

The error associated with the unidimensional average flow assumption is independent from
the other two and the only way to minimize it is by locating the lidar in a different position,
effectively changing the orientation angles θ and ϕ of the laser beam, as expressed in Equation (3).
Two lidar locations are tested in this study: ground-based at the tower base and nacelle-mounted.

The statistical error and the interpolation error are linked by the fact that the lidar can only
measure at one laser beam orientation at a time. A coarser angular resolution will mean more
measurements along each orientation (thus, a higher interpolation error but lower statistical one) and
vice versa. An optimum compromise can be found in which the sum of both errors is minimum.
Seven different angular resolutions are tested, and they imply a number of measurements along each
orientation during a 30 min period for a 2 Hz sampling rate, as shown in Table 2. For both lidar
locations (ground and nacelle) the range of angles that the lidar has to cover in order to scan the whole
region of interest is very similar (see Section 2.3) and therefore the number of repetitions is the same in
both cases. For each of these cases, the total error is studied and an optimum compromise is found.

Table 2. Angular resolutions used for the 3D scan optimization and corresponding number of
repetitions for each laser beam orientation. Note that the elevation and azimuthal angular resolutions
are kept the same.

Angular resolution 1◦ 1.5◦ 2◦ 2.5◦ 3◦ 4◦ 5◦
Number of repetitions 3 7 12 21 29 44 73

As detailed above, this study does not include other sources of error, such as the effect of the laser
pulse convolution, other errors associated with possible non-stationarity and non-uniformity of the
atmospheric flow or the error on the radial velocity measurement (instrument error).

3. Results

This section presents the results of all the calculations of the errors for the reconstruction
of the longitudinal velocity field in terms of its average value u(x, y, z) and standard deviation
σu(x, y, z). All errors calculated in this study are presented as absolute values (no difference between
positive and negative values), whether they are expressed dimensionally (in m/s) or as a percentage
value. The average of the real values of the errors within the volume of interest is close to zero,
excluding significant biases in the reconstruction of the different cases.
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3.1. Error of the Average Longitudinal Velocity Component

The error associated with the reconstruction of the average longitudinal velocity component has,
as discussed in Section 2.4, three sources. The first one, which is the assumption of unidirectional
average flow, is independent from the other two and it can be treated separately. The remaining
two are the statistical and interpolation errors, which are linked by the lidar measurement frequency,
as described previously. Together, the three error sources conform the total error.

3.1.1. Error Associated with the Assumption of Unidirectional Average Flow

The calculation of the error associated with the assumption of unidirectional average flow has three
steps: The first step is fixing the location of the lidar as a point in the virtual flow field and calculating
the angles ϕ and θ that correspond to the laser orientation from the lidar to every point in the flow
field. The second one is calculating the radial velocity Vr from Equation (1) using the average values
u, v, w instead of the instantaneous ones. The third one is applying the assumption of unidirectional
average flow and reconstructing the longitudinal velocity field by using Equation (2). Since the error
is evaluated at exactly the same grid points as the LES simulation, there is no interpolation error,
and since the average velocity components are used, there is no statistical error.

One example of error fields for the inflow case MV-MT is shown in Figure 3 for a nacelle-mounted
lidar and for a ground-based lidar situated at the base of the tower. The origin of the error within the
volume of interest can be divided into two: first, the deviation from the assumption of unidirectional
average flow (i.e., non-zero spanwise and vertical average velocity components), which is greater in
the near wake due mostly to the tangential induction of the rotor, and, second, the angle between the
laser beam orientation and the x axis (given by ϕ and θ), whose magnitude is larger for those points at
the most upstream outer edges of the region of interest, and it is smaller for the nacelle-mounted lidar
case. Therefore, it is easy to notice that the errors are greater when measuring with a ground-based
lidar, and it is particularly well illustrated in the transversal planes at a downstream distance of 3D,
as shown in Figure 3a,b . While the v and w components are the same in both cases, a ground-based
lidar requires higher elevation angles (θ). This is responsible for errors reaching up to 1.5%, while for
the nacelle-based lidar they never exceed 0.25%.

Table 3 shows the errors associated with the assumption of unidirectional average flow for the
five different inflow cases studied and for both nacelle-mounted and ground-based lidars. The table
shows average and maximum errors for the volume of interest already defined in Section 2.3. It is
possible to extract three main conclusions from it:

• The assumption of unidirectional average flow when reconstructing the average longitudinal
component of the wind velocity u is a good approximation, because of the low average and
maximum errors, for the study of the far wake for all inflow cases and both lidar locations.

• The nacelle-mounted lidar yields lower average and maximum errors (between two and five
times lower) than the ground-based lidar situated at the bottom of the tower.

• Different inflow conditions do not affect significantly the relative magnitude of the error associated
with the assumption of unidirectional average flow.

From the results presented in this section, it can be concluded that the best option to minimize only
the error associated with the assumption of unidimensional average flow is to use a nacelle-mounted
lidar, although it does not give a very significant advantage since both lidar positions provide
acceptably low errors for most analysis purposes.
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(a) Nacelle-based lidar. (b) Ground-based lidar.

Figure 3. Example of errors in the reconstruction of the longitudinal average velocity component
associated only with the assumption of unidimensional flow. The errors correspond to the MV-MT
inflow case and for the lidar installed on the nacelle (a) and at the base of the tower (b). The volume
of interest is delimited by the white dashed line. The figures show the error as a percentage of the
undisturbed wind speed at hub height (see Section 2.1.3).

Table 3. Errors in the reconstruction of the average longitudinal velocity component associated only
with the assumption of unidimensional flow. The errors are presented for the different inflow cases
studied in terms of average and maximum values found within the volume of interest (see Section 2.3
and white dashed lines in Figure 3) for both nacelle-mounted and ground-based lidars. Percentages are
based on the undisturbed wind speed at hub height (see Section 2.1.3).

Average Error [%] Maximum Error [%]

Nacelle Ground Nacelle Ground

MV-MT 0.09 0.29 0.29 1.73
MV-LT 0.10 0.29 0.28 1.87
MV-HT 0.12 0.24 0.59 1.23
LV-MT 0.16 0.25 0.72 1.47
HV-LT 0.06 0.22 0.30 1.44

3.1.2. Total Error

The total error includes, on top of the error discussed in the previous section, the effects of the
limited number of samples for statistics calculations and the error made when interpolating back from
a spherical grid to a Cartesian one. The calculation of the total error follows these steps:

1. For a given lidar position (nacelle or ground) the range of maximum and minimum values of the
azimuth ϕ and elevation θ angles is calculated. Then, for a given angular resolution, the laser
beam performs consecutive PPI scans until the end of the 30 min periods. This determines the
evolution of the elevation and azimuth angles in time θ(t) and ϕ(t). The number of repetitions or
samples for each orientation is shown in Table 2.

2. For each time step, the virtual lidar measurement is simulated by calculating the radial velocity
Vr at each point along the laser beam using Equation (1).
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3. The average of the radial velocity is calculated at each point in space in which the virtual lidar
obtains the measurements, creating a spherical regular grid with its origin at the lidar location
Vr(ϕ, θ, r).

4. The assumption of unidirectional average flow is used to calculate the average longitudinal
component of the wind speed u(ϕ, θ, r) as shown in Equation (2).

5. The data in the spherical grid are interpolated linearly to the original Cartesian grid to obtain
u(x, y, z).

6. The difference between the reconstructed u(x, y, z) and the same variable obtained from the
original LES results conforms the error at each point in space. The average and maximum values
of the error inside the volume of interest are computed.

The statistical uncertainty of the average of the radial velocity is inversely proportional to the
square root of the number of independent samples

√
N [46]. Since the measurement frequency of

the lidar has an upper limit, a higher angular resolution means fewer measurements at each point in
space for a given period and vice versa. Thus, a higher angular resolution yields a lower interpolation
error, but a higher statistical error. This holds true until the time between measurements at each
point in space approaches the integral time scale, which is considered the time between statistically
independent measurements. It must be noted, though, that samples along the same laser beam are
correlated, and those corresponding to the same PPI scans are unlikely to be independent of each other
since they are consecutive measurements in time.

The linear interpolation error, in turn, is proportional to the gradient of the spatial derivative
of the average flow field and proportional to the distance between the measurement points of the
spherical grid. The horizontal gradient of the wind speed is greater close to the wind turbine, while the
distance between measurement points increases with increasing distance to the lidar location and
decreasing angular resolution.

Figure 4 shows an example of the total errors for different angular resolutions for the case MV-MT
and a nacelle-based lidar. The first noticeable fact is that the angular resolution of 3◦ (Figure 4b) shows
the lowest errors and therefore is a good compromise between angular resolution and the number of
samples or repetitions at each point. On the other hand, a resolution of 1◦ (Figure 4a) shows a high
statistical error, evident by the fact that the errors are randomly distributed (except in the horizontal
plane, since it is based on the same PPI scan as explained above), while a resolution of 5◦ (Figure 4c)
shows a high interpolation error, visible between the white dots that represent the points at which the
virtual lidar takes measurements and from which interpolation then takes place (this is most noticeable
at approximately Z/D= 0.1 and Y/D = −0.1).

Table 4 presents an example of an optimization of the angular resolution for the inflow case
MV-MT for both lidar locations. As discussed in the previous paragraphs, when scanning the wake
with either a high angular resolution (1◦) or a low one (5◦), the errors are greater than when using
a compromise resolution. The optimum value in the two cases presented is 3◦, which balances the
statistical errors and the interpolation errors. An extension of this table for all inflow cases studied is
presented in Appendix A, Table A1, where it is possible to identify the optimum angular resolution
for each case. For most cases, the optimum value is still 3◦, while for a few cases it is 2.5◦ or 4◦,
although the error is not significantly sensitive in this range of angular resolutions. It can therefore be
concluded that 3◦ is the overall optimum angular resolution.

Table 5 shows the error associated with each inflow case when using an optimum angular
resolution of 3◦. It can be seen that the errors are reasonably low for most analysis purposes and
similar for all inflow cases. Contrary to what is discussed in Section 3.1.1, the nacelle-mounted and
ground-based lidars show similar results when considering the total error.

Four main conclusions can be derived from all the information presented in this section:

• An optimum angular resolution which balances the statistical error and the interpolation error
can be found.
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• The optimum angular resolution is nearly the same for all inflow cases and both lidar locations,
and the overall optimum value is 3◦.

• Different inflow cases or lidar locations do not affect significantly the optimized total error.
• The total errors found inside the volume of interest are low (average error smaller than 2% and

maximum error lower than 8%), which are deemed acceptable for most applications.

(a) Angular resolution 1◦.

(b) Angular resolution 3◦. (c) Angular resolution 5◦.

Figure 4. Example of total errors in the reconstruction of u(x, y, z). The errors correspond to the MV-MT
inflow case with the nacelle-mounted lidar and for three different angular resolutions: 1◦ (a), 3◦ (b),
and 5◦ (c). The volume of interest is delimited by the white dashed line, and spherical grid points are
marked as white dots. The figures show the error as a percentage of the undisturbed wind speed at
hub height (see Section 2.1.3).
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Table 4. Example of optimization of the angular resolution for one inflow case and both lidar
locations. The table presents the average and maximum total errors for the reconstruction of the
average longitudinal velocity component inside the volume of interest. The errors are shown as a
percentage of the undisturbed wind speed at hub height (see Section 2.1.3).

Angular Resolution 1◦ 1.5◦ 2◦ 2.5◦ 3◦ 4◦ 5◦

MV-MT nacelle-mounted

Average error [%] 5.2 2.6 1.6 1.8 1.5 1.7 2.5
Maximum error [%] 18.6 12.2 5.8 6.9 5.4 5.7 8.0

MV-MT ground-based

Average error [%] 4.7 2.5 1.7 1.7 1.6 1.8 2.5
Maximum error [%] 18.9 15.3 7.7 7.8 6.3 6.9 8.5

Table 5. Total average and maximum errors for the reconstruction of u(x, y, z) inside the volume
of interest for all inflow cases studied and both lidar locations with the overall optimum angular
resolution of 3◦. The errors are shown as a percentage of the undisturbed wind speed at hub height
(see Section 2.1.3). The optimum values found in Table 4 correspond to the first column of this table.

Nacelle-Mounted

MV-MT MV-LT MV-HT LV-MT HV-MT

Average error [%] 1.5 1.9 1.4 1.6 1.7
Maximum error [%] 5.4 7.1 5.7 5.8 5.4

Ground-Based

MV-MT MV-LT MV-HT LV-MT HV-MT

Average error [%] 1.6 2.0 1.8 1.5 1.4
Maximum error [%] 6.3 7.6 6.5 7.0 6.6

3.2. Error of the Standard Deviation of the Longitudinal Velocity Component

The total error of the reconstruction of the standard deviation of the longitudinal velocity
component includes the error of the assumption detailed in Equation (4), the statistical error, and the
interpolation error. The calculation follows the same steps presented in Section 3.1.2, except for Point 3,
where σVr(ϕ, θ, r) is calculated instead of u(ϕ, θ, r), and Point 4, in which Equation (4) is used instead of
Equation (2). The same considerations regarding the statistical uncertainty and the interpolation error
explained previously are also valid for the reconstruction of the standard deviation of the longitudinal
velocity component.

Figure 5 illustrates the impact of the total error on the reconstruction of the standard deviation
of the longitudinal velocity component field σu(x, y, z) for different angular resolutions for the case
MV-MT and the nacelle-based lidar. It must be noted that, in this figure, for the sake of clarity,
the magnitude of σu(x, y, z) is used instead of the error. It can be seen that a high angular resolution
(Figure 5b) results in a poor performance, while coarser resolutions (Figure 5c,d) yield visibly
lower errors.

All the errors associated with each inflow case and both lidar locations are shown in Appendix A,
Table A2. The minimization of the average and maximum errors found inside the volume of interest
indicates that the optimum values for the angular resolution are always between 2.5 and 4◦, so 3◦ is
chosen again as an overall optimum angular resolution.
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(a) LES simulation. (b) Angular resolution 1◦.

(c) Angular resolution 3◦. (d) Angular resolution 5◦.

Figure 5. σu(x, y, z) from (a) LES simulations and an example of its reconstruction using three different
angular resolutions: (b) 1◦, (c) 3◦, and (d) 5◦. The example corresponds to the MV-MT inflow case and
to the nacelle-mounted lidar. The volume of interest is delimited by the white dashed line, and spherical
grid points are marked as white dots. The figures show the magnitude of σu(x, y, z) in m/s.

Table 6 shows only the errors associated with an angular resolution of 3◦. The errors are close in
magnitude, although slightly higher, to the errors of u(x, y, z) (see Table 5). This fact might induce some
confusion when comparing them. However, it should be noted that the values of σu are significantly
smaller than the values of u, so the accuracy of the calculation of the standard deviations is considerably
poorer than that of the mean velocity. It can also be observed that a nacelle-mounted lidar offers a
slightly better performance than a ground-based one.
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Table 6. Total average and maximum errors for the reconstruction of σu(x, y, z) inside the volume
of interest for all inflow cases studied and both lidar locations with the overall optimum angular
resolution of 3◦. The errors are shown as a percentage of the undisturbed wind speed at hub height
(see Section 2.1.3).

Nacelle-Mounted

MV-MT MV-LT MV-HT LV-MT HV-MT

Average error [%] 1.9 1.7 1.9 2.1 1.6
Maximum error [%] 6.0 6.4 6.7 7.2 5.7

Ground-Based

MV-MT MV-LT MV-HT LV-MT HV-MT

Average error [%] 2.4 2.0 2.9 2.5 2.0
Maximum error [%] 7.1 6.5 8.9 8.1 5.8

The findings in this section can be summarized in three main points:

• The overall optimum angular resolution for the reconstruction of σu is also 3◦.
• The reconstruction of the σu(x, y, z) field is of worse quality than that of u(x, y, z).
• A nacelle-mounted lidar offers a slight advantage over a ground-based one.

4. Conclusions

This study exploits the potential of the virtual lidar technique to explore the uncertainty associated
with a volumetric scan of the wake of a wind turbine. When performing a succession of PPI
scans, an optimum angular resolution can be found that minimizes the errors when calculating
the longitudinal velocity field in terms of its average and its standard deviation. This kind of analysis
is important during the experiment design part, prior to a lidar measurement campaign, in order
to optimize the scanning pattern. First, the optimization dictates the best way to perform the scan,
and the quantification of the error estimates the expected quality of the measurements, which will
determine if they are acceptable (accurate enough) or not for a particular purpose.

Our analysis has found that, when performing a volumetric scan of the far wake of an 80 m
diameter wind turbine, an angular resolution close to 3◦ provides the best overall results. This holds
true for a lidar with a measurement frequency of 2 Hz and a spatial resolution of 18 m. The accuracy
of experiments with lidars with different characteristics can be studied using the same methodology.
The study has also shown that different turbulence intensity conditions and different wind speeds do
not seem to affect the quality of the measurements significantly. The location of the lidar does not seem
to play a significant role on the magnitude of the errors, although a nacelle-mounted lidar has a slight
advantage over a ground-based one. Other practical advantages associated with a nacelle-mounted
lidar, such as a constant angular orientation with the turbine rotor, are not discussed in this study.

Finally, the errors found when reconstructing the average longitudinal velocity component are low,
regardless of the configuration or inflow case studied. This fact suggests that full scale measurements
using the setup and data processing detailed previously should be of high quality and potentially
acceptable for most applications. On the other hand, the error associated with the reconstruction of the
standard deviation of the longitudinal velocity component is almost identical in magnitude to that of
the average velocity, which means that, in relative terms, it is higher. This should be considered when
assessing the acceptability of the lidar measurement of this variable, depending on its final purpose.

Future studies could address the effect of the thermal stability of the ABL, the wind veer,
non-stationary conditions, or the horizontal inhomogeneity of the undisturbed boundary layer within
the wind turbine wake region.
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Abbreviations

The following abbreviations are used in this manuscript:

ABL Atmospheric Boundary Layer
BEM Blade Element Momentum
DBS Doppler Beam Swinging
CFD Computational Fluid Dynamics
LES Large Eddy Simulation
Lidar LIght Detection And Ranging
LoS Line-of-Sight
SGS Subgrid Scale
SNR Signal-to-Noise Ratio
PPI Plan Position Indicator

Appendix A. Total Errors for All Cases Studied

Table A1. Total average and maximum errors for the reconstruction of u(x, y, z) inside the volume of
interest for all inflow cases studied and both lidar locations. The errors are shown as a percentage of
the undisturbed wind speed at hub height (see Section 2.1.3). The errors corresponding to an optimum
angular resolution for each case are identified with an asterisk.

Angular Resolution 1◦ 1.5◦ 2◦ 2.5◦ 3◦ 4◦ 5◦ 1◦ 1.5◦ 2◦ 2.5◦ 3◦ 4◦ 5◦

MV-MT nacelle-mounted MV-MT ground-based
Average error [%] 5.2 2.6 1.6 1.8 1.5 * 1.7 2.5 4.7 2.5 1.7 1.7 1.6 * 1.8 2.5

Maximum error [%] 18.6 12.2 5.8 6.9 5.4 * 5.7 8 18.9 15.3 7.7 7.8 6.3 * 6.9 8.5

MV-LT nacelle-mounted MV-LT ground-based
Average error [%] 3.9 2.4 2.5 1.7 * 1.9 2.5 3.7 3.4 2.4 2.4 1.9 * 2 2.5 3.6

Maximum error [%] 17.2 10.7 12.1 5.2 * 7.1 8.5 11.7 21.9 10.4 11.2 7.3 * 7.6 8.9 11.5

MV-HT nacelle-mounted MV-HT ground-based
Average error [%] 5.8 3.3 2.5 2.1 1.4 1.3 * 1.5 6.2 3.6 3 1.8 1.8 1.3 * 1.5

Maximum error [%] 21.7 20.7 10.6 7.1 5.7 5 * 12.6 26.9 15.6 11.2 6.3 6.5 5.9 * 6.6

LV-MT nacelle-mounted LV-MT ground-based
Average error [%] 4.6 3.5 2.8 2 1.6 1.4 * 2.2 4.4 3.8 2.7 2.5 1.5 * 1.6 2.3

Maximum error [%] 24.8 21.2 11 7.5 5.8 * 6.3 9 20.7 18 11.7 11.2 7 6.2 * 8.8

HV-MT nacelle-mounted HV-MT ground-based
Average error [%] 4.1 3.3 2 1.8 1.7 1.6 * 2.3 4.7 2.6 2.2 1.8 1.4* 1.7 2.2

Maximum error [%] 28.7 17.6 8.3 8.6 5.4 * 6.3 9.2 18 13.2 9.6 7.4 6.6 6.1 * 8.7
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Table A2. Total average and maximum errors for the reconstruction of σu(x, y, z) inside the volume of
interest for all inflow cases studied and both lidar locations. The errors are shown as a percentage of
the undisturbed wind speed at hub height (see Section 2.1.3). The errors corresponding to an optimum
angular resolution for each case are identified with an asterisk.

Angular Resolution 1◦ 1.5◦ 2◦ 2.5◦ 3◦ 4◦ 5◦ 1◦ 1.5◦ 2◦ 2.5◦ 3◦ 4◦ 5◦

MV-MT nacelle-mounted MV-MT ground-based
Average error [%] 5.5 2.9 2.2 2.0 1.9 * 2.0 2.1 5.2 3.2 2.5 2.4 2.4 2.2 * 2.5

Maximum error [%] 15.0 11.9 8.5 6.6 6.0 5.0 * 5.3 14.6 11.3 9.8 8.8 7.1 6.4 * 6.5

MV-LT nacelle-mounted MV-LT ground-based
Average error [%] 4.2 3.1 2.5 1.7 * 1.7 * 1.9 2.1 4.4 2.7 2.8 2.0 * 2.0 * 2.0 * 2.3

Maximum error [%] 12.7 9.2 8.8 6.4 * 6.4 * 6.7 7.7 13.5 9.3 8.3 7.2 6.5 6.4 * 7.2

MV-HT nacelle-mounted MV-HT ground-based
Average error [%] 6.3 3.6 2.9 2.0 1.9 1.7 * 2.0 6.9 3.9 3.6 2.8 2.9 2.6 * 2.7

Maximum error [%] 19.8 12.8 11.5 8.1 6.7 6.1 5.4 * 19.6 13.3 13.4 9.4 8.9 7.2 * 8.2

LV-MT nacelle-mounted LV-MT ground-based
Average error [%] 5.3 3.5 2.8 2.3 2.0 * 2.1 2.3 5.9 3.8 2.8 2.7 2.5 2.4 * 2.7

Maximum error [%] 16.0 12.2 9.2 7.2 8.0 7.2 6.8 * 16.8 13.4 11.0 10.0 8.1 7.2 * 8.0

HV-MT nacelle-mounted HV-MT ground-based
Average error [%] 4.6 2.7 1.8 1.6 * 1.6 * 1.6 * 1.7 4.7 2.7 2.3 2.0 2.0 1.9 * 2.1

Maximum error [%] 14.2 10.8 6.7 5.6 5.7 5.7 5.1 * 13.9 9.7 8.1 5.9 5.8 * 5.9 6.0
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Abstract: Wind gusts on a scale from 100 m to 1000 m are studied due to their significant influence
on wind turbine performance. A detecting and tracking algorithm is proposed to extract gusts from
a wind field and track their movement. The algorithm utilizes the “peak over threshold method,”
Moore-Neighbor tracing algorithm, and Taylor’s frozen turbulence hypothesis. The algorithm was
implemented for a three-hour, two-dimensional wind field retrieved from the measurements of
a coherent Doppler lidar. The Gaussian shape distribution of the gust spanwise deviation from the
streamline was demonstrated. Size dependency of gust deviations is discussed, and an empirical
power function is derived. A prediction model estimating the impact of gusts with respect to arrival
time and the probability of arrival locations is introduced, in which the Gaussian plume model and
random walk theory including size dependency are applied. The prediction model was tested and
the results reveal that the prediction model can represent the spanwise deviation of the gusts and
capture the effect of gust size. The prediction model was applied to a virtual wind turbine array,
and estimates are given for which wind turbines would be impacted.

Keywords: wind gusts; Doppler lidar; detecting and tracking; impact prediction

1. Introduction

Rapid changes of wind speed in the atmosphere, also called wind gusts, cause large fatigue
loads on wind turbines. These loads reduce the lifetime of wind turbine components. Oscillations or
ramping of the generated power can result in fast fluctuations of grid voltage and may pose additional
burdens to the electric grid. Researchers have proposed adaptive and feed-forward control systems,
which can adjust wind turbine settings for approaching winds [1–4]. A feed-forward control system
requires accurate and fast gust detection system. Our purpose is to provide the information of wind
gusts to the control systems.

There are a variety of gust detecting and tracking algorithms in the literature. The international
standard IEC 61400-1 specifies standardization of several temporal gust models for wind turbine
design. Branlard defined gusts as a short-term wind speed variation within a turbulent wind field [5,6].
Although different definitions exist, all suggest gusts invoke rapid wind speed changes. As many
atmospheric sensors measure winds in relatively small volumes, changes in wind speed have been
considered temporally. Temporal variations of wind speed can be converted to spatial variations using
Taylor’s frozen turbulence hypothesis. Note that spatial variations in pressure on wind speed also
damage buildings [7]. However, fewer studies directly measure spatial variations. The lack of such
studies could be due to the limitation of the available instruments. Anemometers on met masts are
the most common instruments for gust studies, but they are limited to measuring wind speed at fixed
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points. On the other hand, Doppler lidar can address this limitation. A long-range Doppler lidar can
provide wind velocity field in a 3D domain up to 10 km with high temporal and spatial resolution.

The scale of a spatial gust is an important factor. Kelley et al. [8] and Chamorro et al. [9] studied
the flow-structure interaction between wind turbines and atmospheric coherent structures with a scale
ranging from the size of a wind turbine rotor to the thickness of the atmospheric boundary layer.
They found that structures primarily in that range have a high correlation with the generated power
and can induce strong structural responses. For structures with scales smaller than the size of a wind
turbine rotor, the effects of their high-frequency components will be averaged out along the turbine
blades and will not propagate to the drive train of a wind turbine and affect the power generation.
For atmospheric gusts larger than 1000 m, varying winds in these large-scale gusts can be classified
and captured as “meandering of the wind.” Effects of the wind meandering on wind turbines are
complicated and begin to become relevant for yaw control. Therefore, we believe the gusts with scales
between 100 m and 1000 m have the most significant effects on wind turbine performance.

In addition to the definition of wind gusts, the literature contains a variety of ideas for
gust detecting and tracking. Mayor adapted two computer-vision methods for flow motion
estimation: the cross-correlation method and the wavelet-based optical flow method [10,11]. However,
the cross-correlation method has limitations for non-uniform velocity fields, and the optical flow method
requires relatively small (few pixels) movement and is computationally demanding. These requirements
make them impractical. On the other hand, Branlart [6] proposed several detection methods for different
gust models, but gusts are defined in the time domain. He also estimated the arrival time of the gusts
and presented an exponential probability distribution of the gust’s spanwise propagation. However,
the gust distribution may not be representative, as the signal collected behind the turbine rotor would
be heavily contaminated by the turbulence induced by the blades. The number of measurement points
from anemometers is also limited. Therefore, a fast detecting and tracking algorithm and a reliable
prediction model that can be used in real-time prediction of spatial gusts need to be developed.

In this work, we focus on spatial wind gusts within a limited range of scales. We propose
a practical gust detecting and tracking algorithm with low computational cost. The novelty of the
algorithm is to utilize dispersion and transport theory to create a practical tool which can provide
short-range predictions of probable impact zones downstream for puffs or gusts detected upstream
with a long-range Doppler lidar. The tool can provide real-time short-term predictions of impact time
and location for gusts approaching a wind farm. The propagation of the wind gusts through the
wind farm is not considered in this paper. By taking the gust size into consideration, the accuracy of
the prediction can be increased, and valuable wind forecasting information can be provided to the
control system.

2. Materials and Methods

2.1. Definition of Spatial Gusts

The spatial gust studied in the present work is defined mathematically in this section. The scale
of the gust of interest ranges from 1D to 10D (D is the diameter of a wind turbine. D = 100 m is used,
hereinafter). The magnitude of the wind speed fluctuation of a gust region, |v′|, should be 1.5 times
larger than the standard deviation σ of the wind speed over the wind field, i.e., |v′| > 1.5σ and
v′ = v − v, where v is the local velocity vector and v is the mean wind velocity. The gust regions should
also have good temporal coherency and local spatial connectivity around their centers. Gusts are
assumed to advect roughly along the mean streamline, and the major structure should preserve
during traveling.

2.2. Data Information and Wind Field Retrieval

The wind field utilized in this work was retrieved by a new proposed two-dimensional variational
analysis method (2D-VAR) from the measurements collected by a Lockheed Martin Coherent
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Technologies (LMCT) WindTracer® Doppler lidar (Louisville, CO, USA) during 25–27 June 2014,
at Tehachapi, California [12]. The specification of the Doppler lidar is listed in Table 1. The lidar
was located on a hill (1450 m above sea level (ASL)) at a wind farm near Tehachapi City, which is
at an altitude of 1220 m (ASL). The data was collected in a horizontal plane at 1453 m ASL which
included the height of the lidar system (3 m).

Table 1. Specifications of the Doppler lidar.

Parameters Settings

Wavelength 1.6 μm
Pulse energy 2 mJ

Pulse repetition frequency 750 Hz
Range resolution 100 m

Blind zone 436 m
Max range 10 km

The 2D-VAR method used in the present work is based on a variational parameter identification
formulation [12]. The method involves finding the best fit 2D wind velocity vector (X) which minimizes
a cost function: J(X) = 1

Ω

∫
∑ WiC2

i dΩ, where W is a pre-defined weight matrix which determines
the relative importance of the terms in the cost function. The constrains, C, are functions of the wind
vector X, and are comprised of radial velocity equation, tangential velocity equation for low elevation
angles and the advection equation. And Ω represents the analysis domain. A quasi-Newton method
is implemented for the minimization. This retrieval algorithm has the advantage of preserving local
structures in complex flows while being computationally efficient with possible real-time applications.

The retrieval algorithm was used to convert the measured radial velocities to two-dimensional (2D)
wind field in Cartesian coordinate in a domain of size 6 km × 4 km. A sample contour plot of the retrieved
wind field is shown in Figure 1. The temporal resolution of the retrieved results is 30 s as determined
by the lidar scanning pattern, and the size of the spatial grid is 80 m × 80 m as specified by the retrieval
algorithm. Note that even though the 2D-VAR method was used in the present work, the proposed
detecting and tracking algorithm can be applied to any 2D wind field retrieved from any algorithm or
obtained from any experimental instrument, given sufficient spatial and temporal resolution.

Figure 1. Wind field retrieved by the two-dimensional variational analysis method (2D-VAR) algorithm.
Background colors indicate the magnitude of the local wind speed, and the arrows show the local
wind direction.
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2.3. Data Preprocessing

Data quality control was first performed in the wind field. The dark red regions at the northeast
and southwest corners in Figure 1 were removed. The reason the data at the two corners were removed
is two-fold: First, the hills were treated as hard targets, and therefore, due to possible contamination
in the range-gates immediately in front of the hard targets, the data at the hills and 1–2 range gates
before the hills were removed before running the retrieval algorithm. Second, the retrieval algorithm
requires the data to be treated with a Gaussian filter to minimize the effect of noise on the gradients
for the advection term in the cost function. Therefore, the Gaussian filter could not be applied at
the boundaries of the lidar scan due to the missing data, which caused the artifacts at the corners in
Figure 1, so the results 1–2 more range gates before the hills were removed.

Additionally, data with very high magnitudes above 30 m/s were rejected since they were judged
to be spurious for this dataset. While a small amount of still valid data might be filtered out, we found
empirically 30 m/s could be a reasonable trade-off value between removing most of the noises and
keeping sufficient valid data points.

Moreover, the spatial resolution of the dataset needs to be considered. The current grid size is
80 m, implying any structures smaller than the grid size will be smoothed. Only very few data points
were left for atmospheric structures with scales of a few hundred meters. Because the gust extraction
process in the next step (Section 2.4) is based on the wind speed at the data points and the size and
shape of the gust patch, the truncation process may cause unnatural-looking contours of the extracted
gusts. Because the shape of the small-scale gusts is reduced to few pixels connected only at the vertices,
some small patches could be easily neglected during the boundary tracing process. Therefore, to avoid
losing many valid small-scale patches, linear interpolation using Delaunay triangulation was used
to keep the shape of the gust contour to some extent [13]. Delaunay triangulation is a method that
triangulates the discrete points in a plane such that no discrete point is inside the circumcircle of any
triangle in the triangulation of the points. In the Delaunay triangulation, same weights were assigned
to the vertices of the triangular. The wind field after the interpolation is shown in Figure 2. However,
the interpolated boundaries should not be interpreted as better approximations to true boundaries
than the coarse grid. Ideally, one may avoid the interpolation step, if the lidar range-gate size were
significantly smaller.

Figure 2. Wind field in Figure 1 after data preprocessing. Colors indicate the magnitude of the local
wind speed.
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2.4. Detection of Gust Patches

Peak over threshold (POT) method was used to extract gust regions from the wind field [6].
The POT method is to detect any wind event that has an amplitude over a predefined threshold.
Here, we used the POT method for both up-crossing and down-crossing the threshold. The POT
method removes the data points not satisfying the velocity threshold mentioned in Section 2.1 and
only keeps the gust regions. The resultant data was converted to binaries to facilitate the boundary
tracing algorithm. The extracted and converted gust regions are shown in Figure 3, with gust regions
in white. Note that no scale filters were applied to the patches presented in Figure 3.

Next, the Moore-Neighbor tracing algorithm with Jacob’s termination condition was applied to
the binary data to trace the boundaries of the patches [14]. In the Moore-Neighbor tracing algorithm,
an important concept is the Moore neighborhood which is a set of 8 pixels around a target pixel
that share a vertex or edge with the target pixel. To track the boundary of a patch, as in Figure 3,
the tracking algorithm uses any one of the white pixels on the boundary of the patch as the target
pixel, and visits (moving clockwise for example) its Moore-neighbor pixels (black pixels) before
entering another white pixel. Then, it uses the next white pixel (moving clockwise for example) as
the target pixel and repeats the procedure. When it revisits the first white pixel it entered originally,
the algorithm stops and all the visited black pixels comprise the boundary of the patch. There are two
widely used termination conditions for the algorithm. The original one is to stop the algorithm after
reentering the first white pixel for the second time. The other one is called Jacob’s stopping condition,
which also stops the algorithm after reentering the first white pixel for the second time, but in the
same direction one originally enters it. Since concave shapes are common for gust regions as seen in
Figure 3, Jacob’s stopping condition was applied because it is more powerful to trace such shapes than
the original stopping condition.

Moreover, since the patches with holes inside due to the above filtering still need to be considered
as a whole, only exterior boundaries of the patches were traced. Additionally, patches with scale out of
the range from 1D to 10D were filtered out and the centroids of the patches were calculated during the
tracing process. The scale of a patch is defined as the square root of its area calculated by multiplying
the grid area (10 m × 10 m) by the number of the grid points inside or on the boundary. The retrieved
wind field along with detected gust boundaries is shown in Figure 4.

Figure 3. Extracted gust regions in black-white scale from the wind field in Figure 2. The gust regions
are in white.
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Figure 4. Retrieved wind field with detected boundaries of gust regions. Black contours are the
boundaries of the detected patches.

2.5. Tracking of Gust Patches

To predict the future location of the gust patches, their advective characteristics need to be
confirmed at first. Therefore, the next question is how to associate the patches between time
frames given the detected regions. Given the formation of the spatial gust is contributed by the
atmospheric turbulence, we assume that the gust regions propagate along the mean wind direction
and their turbulent properties remain unchanged according to Taylor’s frozen turbulence hypothesis.
Nevertheless, since the time intervals between two wind fields are integers, multiples of 30 s, they are
relatively long compared to the eddies in the atmosphere, so Taylor’s hypothesis is relaxed to some
extent. It means slight changes in wind speed and wind direction, variations of scales, and deformation
of the shapes are allowed in the proposed algorithm.

After extracting the gust regions from the wind field at two time frames, the tracking algorithm
takes the detected gusts as inputs. The patches at an earlier frame are called “original patches,”
and patches at later frame are called “candidate patches.” The time interval between the two frames
should not be larger than 90 s. Otherwise, the tracking algorithm will fail due to large changes in wind
speed or shape caused by the evolution of the wind field.

Next, a searching zone is assigned to each original patch. In the searching zone, the algorithm
searches for the corresponding target patch on the second frame over all the candidate patches.
The candidate patches close to the boundaries of the studied wind field are neglected because of
partial observation of the patches. The searching zone is placed downstream of the original patches
and oriented along the mean wind direction of the measurement domain. The distance between the
original patch and the center of the searching zone is set to the product of the mean wind speed of
the measurement domain and the time interval between the frames. The size of the searching zone
changes adaptively because a patch could deviate further from the streamline as time elapses. In that
case, a large searching zone is needed to cover the possible area that the target patch could reach.
The spanwise searching range is set proportional to the product of time and the standard deviation of
wind velocity in the spanwise direction, and the same method is applied in the streamwise direction.
The spanwise and streamwise velocity components can be calculated by projecting the retrieved x
and y velocity components to the streamwise and spanwise directions. The searching zone constrains

129



Remote Sens. 2018, 10, 514

the tracking algorithm to a small window instead of the whole domain, which avoids unnecessary
calculation. Examples of the original-target patch pairs along with their searching zones are presented
in Figure 5c. The wind fields are shown in Figure 5 a,b.

For an original patch, the algorithm searches for the target patch over all the candidate patches.
Then, it loops the same procedure over all the other original patches. The target patch of each original
patch is chosen from the candidate patches according to predefined criteria, and scores are assigned to
the candidate patches for each criterion. The criteria include the changes of wind speed, the directional
difference between the mean wind direction and the real moving direction, size difference, and shape
deformation. For the changes of wind speed and direction, the root-mean-square deviations (RMSD)
of the wind speed and direction between the points in the original and candidate patch are calculated
using Equation (1), and the scores are assigned according to the RMSDs in Equation (2).

RMSDp =

√√√√∑N
i=1

(
xi, original − xi, target

)2

N
(1)

Scorep =

{
1, RMSDp < 0.5
0, RMSDp ≥ 0.5

(2)

Here, the subscript “p” represents the calculated variable name, wind speed or wind direction,
and xi stands for the value of the corresponding variable of the point i inside or on the original or
candidate patch. In the calculation, we assume that the original and candidate patches share the
same centroid. N represents the number of the points that are in both original and candidate patches.
If a point is only in either the original or candidate patch, the point is ignored during the calculation.

For size changes and shape deformation, the intersection of union (IoU) value for each
original-candidate pair is obtained by calculating the ratio of the number of intersection points to the
number of union points. Here, we assume the original and candidate patch share the same centroid as
well. The score for the shape change is calculated by Equation (3).

Scoreshape =

{
0, IoU < 0.5

IoU, IoU ≥ 0.5
(3)

The threshold value (0.5) in Equations (2) and (3) is determined empirically. After the individual
score for each criterion is obtained, the total score for each candidate patch m, TotalScorem, is calculated
by summarizing over all the individual scores.

TotalScorem = Scorespeed + Scoredirection + Scoreshape (4)

Patches with small difference earn high total scores, and patches with zero total scores are rejected.
If multiple candidates have non-zero total scores, the one with the highest total score is chosen as the
target. If such a target is identified, we claim that the original patch is advecting, and the target patch
is the counterpart of the original at the second frame. Conversely, if no target is detected, the original
patch loses its temporal coherency during traveling.

The tracking algorithm was tested on the wind fields shown in Figure 5a,b. Three examples of
tracked original-target pairs are shown in Figure 5c. The time interval between the original and target
patches is 60 s. The other patch pairs are not shown. In Figure 5, we can see many small-scale patches
shown in Figure 5a are not shown inside the corresponding searching zones in Figure 5b where they
should arrive after 60 s by following Taylors’ hypothesis. It provides the evidence that smaller patches
are more difficult to track than larger ones. The reason would be that larger-scale patches have strong
connectivity inside their internal structures, while the spatial correlation of small patches is weak and
unstable. The coherency can be easily destroyed by the stretching and compression of larger-scale
turbulent eddies. The destructive effect can reduce the velocity of the patches to a value beyond the
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threshold, deform or separate the patches, or merge small patches with other structures. All these
situations can make the detecting and tracking algorithm ineffective.

Figure 5. (a) Wind field at the first time frame. Colors indicate the wind speed. Black contours are the
boundaries of detected patches; (b) Wind field at the second time frame; (c) Example original- target
patch pairs. Black patches are the original gust regions extracted from (a), and red patches are the
corresponding target gust regions extracted from (b). Green dashed boxes are the searching zones.
Black and red dashed lines indicate the moving direction of the streamline and the real movement of
the patches, respectively. Pink crosses indicate the locations of a virtual wind turbine array.
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2.6. Prediction of Impact

After identifying advecting patches, the arrival time and probability of arrival locations of the
patches can be predicted.

2.6.1. Prediction of Impact Time

The impact time of gust patches at a certain location can be predicted using Taylor’s hypothesis,
that is, dividing the distance between the gust and the location by the mean velocity. The equation is
shown in Equation (5):

t =
dstream

vstream
. (5)

Both the distance dstream and velocity vstream are the values projected on the mean wind direction.
The digression of wind speed along the streamline during traveling to the location of interest is ignored
due to the negligible difference for high wind speed (>15 m/s) [6]. Equation (5) provides us with
fair estimation of the arrival time, since the gust generally follows Taylor’s hypothesis in a short time
period without much deviation, and this simple estimation makes the real-time prediction possible.
However, spatial gusts do not always travel with the same velocity in reality. Alternatively, one can
track the same patch for several time steps, calculate the actual traveling speed, and replace the mean
wind speed with the obtained wind speed. Using the actual speed could improve the accuracy of the
prediction, but it might also increase the complexity of the algorithm. Since the present work is to
provide a fast prediction within a few seconds for wind turbine control, we focus on using the mean
wind speed to calculate the arrival time.

2.6.2. Prediction of the Probability of Impact Location

If Taylor’s hypothesis holds, the gust region should arrive at a point downstream from the original
patch, called the “predicted point.” However, due to the turbulent nature of the atmosphere, the real
arrival point can only be estimated by a statistical probability centered at the predicted point. Here,
we treat the gust patches as massless passive particles that are released from a point source, and use
the concentration distribution model of plumes to model the spanwise distribution of gust patches
dispersing in a turbulent wind field.

Several plume models and puff models have been developed by researchers to investigate the
particle distribution in the air, such as Gaussian plume model [15,16], K-model, statistical model,
and similarity model [17] etc., and more advanced but computationally more expensive models like
SCIPUFF [18], RIMPUFF [19], and LODI [20]. Since this work is aimed at estimating the impact of gusts
in a few seconds or minutes in advance of wind turbine control, the fast Gaussian plume model is used.

The reason for using the Gaussian plume model for wind gust studies is explained in the following.
First, since the gusts travel in a relatively short distance in this study, we assume the interaction between
the large-scale structures and the background turbulence is small. Therefore, we can treat the gusts
as passive quantities. Second, we assume the eddy viscosity and eddy diffusivity are of comparable
value, i.e., the Prandtl number is close to 1. The reason is that, according to the Reynold analysis,
under stable or neutral boundary conditions, the turbulent transport of scalar quantities is similar
to the transport of momentum, given the transport agents are the same [21]. In our case, the mean
wind speed during the studied time period is relatively high (around 15 m/s), so the neutral boundary
condition dominated the studied time period (The strong mechanical mixing due to the high wind
speed balanced the buoyance-driven turbulence in the atmosphere.). Therefore, we can apply the
plume model that was used for passive particles to the transportation of gust structures studied in the
present work.

The original Gaussian model (Equation (6)) is modified to suit the current case: vertical
distribution is neglected since only the deviation of gusts in the horizontal plane is of interest.
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The velocity term is removed as the probabilities will be normalized by the maximum value, meaning
only relative probabilities matter. The modified equation is shown in Equation (7).

P(y, z) =
1

2πσyσzu
e−y2/2σ2

y × [e−(z−h)2/2σ2
z + e−(z+h)2/2σ2

z ] (6)

P(y) =
1√

2πσy
e−y2/2σ2

y (7)

where y refers to the spanwise deviation of a gust patch from the streamline with y equal to zero on the
streamline, and z indicates the height above the ground. In Equation (6) h is the distance from the source
to the ground. P is the probability at the deviation y, and σy is the standard deviation of y. We assume
the turbulence field driving the gust patches is stationary and homogeneous. Taylors’ dispersion
theorem provides an expression of σ2

y as a function of the releasing time t for stationary turbulence [17].

σ2
y = 2σ2

v′L

∫ t

0

∫ τ

0
r(τ)dτdt (8)

where σv′L is the standard deviation of the spanwise Lagrangian velocity fluctuation in which the
subscript “L” stands for Lagrangian scale, and r is the autocorrelation of the spanwise velocity
fluctuation. Using the random walk theory [22], the standard deviation of the deviation y, σy in the
Lagrangian system can be approximated by Equation (8) when t → ∞

σy =
√

2σ2
v′L

TLt (9)

and TL is the Lagrangian integral time scale.
Here, we assume the gust patches are ‘released’ for sufficient time ( t → ∞ ) in the atmosphere,

so the gust structures only advect but not disperse (grow) during traveling. It indicates that the

diffusivity is constant, i.e., K ∼ σ2
v′TL. As the diffusivity is defined as K = 1

2
dσ2

y
dt , Equation (9) can

be deduced from the diffusivity. On the other hand, because of the stationary and homogenous
turbulence assumption, the temporal correlation of the spanwise velocity fluctuation is approximated
by instantaneous spatial correlation. The standard deviation of the Lagrangian velocity fluctuation
σv′L was replaced by the standard deviation of Eulerian velocity fluctuation σv′ , due to instantaneous
velocities being studied in this work [23]. The spanwise velocity fluctuation and its standard deviation
were obtained from the given wind field. Equation (9) is transformed to

σy =
√

2σ2
v′TLt (10)

where the Lagrangian time scale TL = 200 s, adapted from the work of Dosio et al. [24]. The reason of
the adoption is that, we did not have sufficient statistical measurements for the time scale calculation in
the present work, since the time interval of our lidar measurements is relatively long (30 s) and we did
not have any other supplementary device installed locally. Therefore, instead of calculating the time
scale directly, we adapted the result from Dosio’s simulation of a convective boundary layer. The data
used in this paper is between 3 pm and 6 pm (local time), so the atmospheric flow may be expected to
contain some convective activity. Therefore, we believe the selected value could be considered as the
best available approximation of the time scale during the studied period. However, we suggest to use
meteorological measurements (like a met mast) if available to calculate the time scale, which would
improve the estimations.

Additionally, we assume the atmospheric characteristics, with respect to the meandering of
gusts, are preserved during the studied period so that the Lagrangian time scale remains constant.
Furthermore, the random walk theory used above is only for particles. The effect of the scales of
the gusts needs to be considered in Equation (10) since we are modeling gusts. The details will be
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illustrated in Section 3, and the modified random walk theory is given in Equation (11). The modified
random walk theory (Equation (11)) and the Gaussian model (Equation (7)) comprise the impact
prediction model for advecting gust patches with different sizes.

3. Results and Discussion

3.1. Preliminary Results

Three hours of retrieved wind fields (during 3–6 pm PST on 26 June) were processed. A time
interval of 60 s between original patches and target patches was used. The original patches and
corresponding target patches were extracted and associated using the detecting and tracking algorithm.
Original random walk theory, Equation (10) was used for prediction. The spanwise deviation (Lreal) of
the target patches was measured. The spanwise deviation is defined as the deviation of the centroid of
the gust from the streamline of the wind field, in the direction perpendicular to the mean wind direction
of the measurement domain. Then, the spanwise deviation was normalized by the rotor diameter,
i.e., lreal = Lreal/D, and lreal is the dimensionless spanwise deviation. The histogram of the distribution
probability of the dimensionless deviation is shown in Figure 6. The probability is normalized by
the value at the ‘predicted point’. The predicted point is assumed to have the maximum probability.
Figure 6 presents a Gaussian shape distribution of the gust spanwise deviation. It demonstrates our
assumption that the spanwise distribution of advecting patches can be represented by a Gaussian
model, rather than the exponential shape found by Branlard [6].

However, a large discrepancy was observed between the modeled distribution of the gust
spanwise deviation (dashed line) and the real deviation using the detecting and tracking algorithm
(histogram). The reason is that the original random walk theory does not consider the size of the
particles, as the random walk theory assumes that the size difference between particles is negligible.
However, the assumption does not hold for gust patches with scales in the order larger than 100 m.
The size of the gusts significantly affects their movement. Small gusts are easy to move because many
large-scale eddies in the atmosphere move them around, which makes their movement relatively
random. On the other hand, large-scale gusts that need even larger-scale eddies to move them are
more likely to flow along the streamline of the wind field. Therefore, size dependency of the gust
patches needs to be considered.

Figure 6. Normalized distribution probability of the spanwise deviation of patches from the predicted
points. The dashed line represents the normalized probability modeled by Equation (10), and the
histogram shows the normalized probability of the real spanwise deviations.
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3.2. Size Dependency

To study the effect of the size of the gusts on the spanwise deviation, the dimensionless deviation
lreal was further normalized by the square root of the time interval, i.e., lreal, Δt =

lreal√
Δt

, to remove the
dependency of the deviation on time. The usage of the square root is according to the relationship
between the deviation and time presented in Equation (10). The patch scale (Lpat) was normalized
by the rotor diameter, i.e., lpat = Lpat/D, and lpat is the dimensionless scale. A scatter plot of the
normalized deviation lreal, Δt of all the detected patches with the dimensionless scale lpat is shown
in Figure 7. Then, the dimensionless deviations were grouped to bins according to their sizes, and
inside each bin, the deviations and the dimensionless scales were averaged, respectively. The averaged
values were fitted by a power function. The results and the fitting curve are plotted in Figure 8.
Figures 7 and 8 present a negative dependency of the deviation on the patch scale. The relationship
can be well expressed by a function lreal, Δt = αlpat

−β, where α and β are fitting parameters, and α = 1.0
and β = −0.36 is found for the current dataset.

After the size dependency was empirically derived, Equation (10) was modified to include the
derived relationship by multiplying it by the derived power function.

σ̃y,mod = σ̃y·α
(
lpat

)β

σ̃y =
√

2σ2
v′TLt/D

lpat = Lpat/D

(11)

where σ̃y is the dimensionless standard deviation of the deviation y, modeled by the original random
walk theory.

Figure 7. Scatter plot of normalized deviations and patch scales. The streamline overlays the line with
the deviation lreal, Δt equal to zero. The red dashed lines imply the edges of the bins. The average
dimensionless scales at the bins are 1.75, 3.25, 4.75, 6.25, 7.75, and 9.25.
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Figure 8. The relationship between dimensionless deviations and dimensionless gust scales. Circles are
the average dimensionless deviations at different average gust scales, and the solid line is the
fitting curve.

3.3. Improved Results Using the Modified Prediction Model

After the size dependency correction was added to Equation (10), the modified model was retested
on the data presented in Figure 6. The patches were separated into three groups according to their sizes:
1D–2.5D, 2.5D–4D, and 4D–5.5D. Patches larger than 5.5D are not included due to insufficient sample
points. The results are shown in Figure 9. Gaussian functions (red lines) were fitted to the histograms.
The modeled distribution (black lines) were computed using Equations (7) and (11). A good match for
different sizes of patches are shown in the comparison between the real measured distribution and the
modeled distribution. It illustrates that the distribution probability of gust spanwise deviation can be
well represented by the proposed prediction model at least for the current dataset.

Figure 9. Normalized distribution probability of the modeled deviation (black lines) and real deviation
(histogram) of the patches. The red lines are the fitting curves to the histograms. The same dataset was
used as in Figure 6. The patches were separated into three groups according to their sizes.
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3.4. Application of the Modified Prediction Model

By applying the detecting and tracking algorithm to the retrieved wind field, we monitored the
movement of the gusts during the three-hour period. Next, we positioned a virtual wind turbine
array in the wind field shown in Figure 5a, and used the three original gusts in Figure 5c as examples,
to illustrate what the time of impact and probable arrival locations of the gusts are for the hypothetical
turbines. Here, the impact time and locations were calculated by the prediction model. The wind
turbine array consists of four turbines that align perpendicular to the mean wind direction. The distance
between two adjacent wind turbines is 700 m. The distance between the gusts and the wind turbine
locations were measured, and the time taken by the gusts to reach the turbines was estimated using
Equation (5). The real arrival time was also obtained by applying the detecting and tracking algorithm
to the wind field at different time frames. Additionally, the spanwise distribution probabilities of the
gusts at different wind turbines were predicted and are shown in Figure 10. Both predicted and real
arrival time and positions are listed in Table 2. Patch 11 disappeared before reaching any wind turbine,
so the real arrival time and position were left blank in Table 2 and the real arrival position is not shown
in Figure 10. This fact also verifies that small patches are more difficult to track. Table 2 shows a
good match between the predicted and real arrival time and locations within reasonable tolerances,
which validates the proposed prediction model. However, a further quantitative validation is needed
in the future work.

Figure 10. Real and predicted arrival positions, and predicted normalized spanwise distribution
probability of the gusts. The patch numbers correspond to the gust numbers in Figure 5c. Green dash
lines indicate the locations of the wind turbines relative to Turbine 1, and the distance is measured
along the wind turbine array. The blue and black dash lines represent the real arrival positions of Patch
13 and 17, respectively. Since Patch 11 disappeared before arriving any wind turbine, no line indicates
its real arrival location in the figure.
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Table 2. Predicted and real arrival time and position of patches.

Patch Number #11 #13 #17

Impact wind turbine Turbine 3 Turbine 2 Turbine 4
Predicted arrival time 183.03 s 116.37 s 92.9 s

Real arrival time - ~119.54 s ~119.54 s
Spanwise distance between predicted

arrival position and wind turbine of impact 285.2 m (to its left) 153.7 m (to its left) 144.9 m (to its left)

Spanwise distance between real arrival
position and wind turbine of impact - 106.16 m (to its left) 87.48 m (to its left)

4. Conclusions

Due to the importance of wind gusts for wind turbine performance, spatial wind gusts with
a scale from 100 m to 1000 m are studied using a Doppler lidar. A detecting and tracking algorithm
for the spatial gusts is introduced. The proposed algorithm is computationally inexpensive and
can provide real-time tracking and prediction. However, it is sensitive to the temporal and spatial
resolution of the dataset. The algorithm was performed on a three-hour wind field data obtained from
the measurements of a WindTracer Doppler lidar. The results reveal a Gaussian shape distribution of
gust spanwise deviation from the streamline and a negative power-law dependency of the deviation
on gust scales. Furthermore, a prediction model using the Gaussian plume model and random walk
theory was introduced and corrected by the size dependency. The prediction model was tested on the
same dataset, and the results further demonstrate the power law relationship. The prediction model
was applied to a virtual wind turbine array to estimate the impact time and locations of the gusts on
the turbines. The model was validated in a limited set of conditions, due to the lack of the dataset
with a longer time period. Therefore, more quantitative validation of the model is suggested for future
work. However, the major value of this work is to provide a novel approach for the study of large-scale
wind gusts using a long-range Doppler lidar. In real-life applications, the proposed algorithm could
be efficiently integrated to feed-forward wind turbine control systems given 2D wind fields in time
series, and the wind field could be provided by a long-range Doppler lidar. Given the knowledge of
the movement of potential hazardous gusts, the control system would have sufficient leading time to
adjust wind turbines to optimal settings. In this case, the power generation could remain stable at the
desired value, and the loads on the turbine components could be reduced. Consequently, the impact
on the electric grid due to the power fluctuation could be mitigated.

Future research can be focused on the validation of the detecting and tracking algorithms on other
datasets with a shorter time interval between frames and a higher spatial resolution. Using Kalman
filters or other multiple object tracking algorithms, the detecting and tracking algorithm might be
improved. Deep learning approaches might be expected to recognize patches quickly with acceptable
accuracy. For the prediction model since the size dependency was derived empirically from the current
dataset, the parameters need fine calibration for other datasets and the dependency of gusts with
scales larger than 5.5D is not presently clear. In addition, the quality of the prediction model needs to
be validated, which could be addressed in a dataset with longer time and in more varied atmospheric
conditions. Finally, using real-time measurements, like lidar or meteorological tower, the Lagrangian
time scale estimation can be improved.
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Abstract: We refute statements in “Zhou, K., et al. Wind gust detection and impact prediction for wind
turbines. Remote Sens. 2018, 10, 514.” about the impracticality of motion estimation methods to derive
two-component vector wind fields from single scanning aerosol lidar data. Our assertion is supported
by recently published results on the performance of two image-based motion estimation methods:
cross-correlation (CC) and wavelet-based optical flow (WOF). The characteristics and performances
of CC and WOF are compared with those of a two-dimensional variational (2D-VAR) method that
was applied to radial velocity fields from a single scanning Doppler lidar. The algorithmic aspects
of WOF and 2D-VAR are reviewed and we conclude that these two approaches are in fact similar
and practical.

Keywords: lidar; wind; Doppler; aerosol; motion estimation; optical flow; cross-correlation;
wind energy; gust prediction; variational analysis

1. Introduction

Zhou et al. [1] provided an excellent example of the value of remote observations of
two-component wind fields in the lower atmospheric boundary layer. They obtained two-component
wind fields by applying a 2D variational (2D-VAR) method [2] to single component velocity data from
a single Doppler lidar. While their paper mentions cross-correlation (CC) and wavelet-based optical
flow (WOF) algorithms as alternative ways to obtain such wind fields, statements about these two
methods are inaccurate and do not consider the latest published research on this subject. In this note,
we correct statements in [1] based on our recent work [3,4] and put the CC, OF, and 2D-VAR methods
into perspective. We contend that the WOF and 2D-VAR algorithms are in fact similar and that motion
estimation methods should not be discounted for remote wind sensing applications such as the one
they developed.

2. Statements in Zhou et al. [1] About Motion Estimation Methods

Zhou et al. [1] described an algorithm to detect and track wind gusts. Their algorithm operates on
two-dimensional (2D) two-component (2C) wind fields which must first be made available. They chose
to compute the wind fields by applying a 2D variational analysis method (2D-VAR) to radial component
velocities measured by a single Doppler lidar ([1], Section 2.2). Alternative approaches to remotely
observe similar 2D-2C wind fields are also mentioned in the introduction of the paper:

“Mayor adapted two computer-vision methods for flow motion estimation: the cross-correlation
method and the wavelet-based optical flow method [5,6].”—(Zhou et al. [1], Section 1).

However, after the above sentence, the paper continues with:
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“[. . . ] the cross-correlation method has limitations for non-uniform velocity fields and the optical flow
method requires relatively small (few pixels) movement and is computationally demanding. These
requirements make them impractical.”—(Zhou et al. [1], Section 1).

We thank Zhou et al. [1] for citing these two papers [5,6]. Their statements regarding our research
results are however inaccurate and do not include the latest peer-reviewed research in the field.
The purpose of this note is: (1) to correct their statements; and (2) to demonstrate that the method they
chose and the motion estimation approach that we have been focused on are, in fact, comparable in
terms of temporal and spatial discretization, accuracy, and computational load, and thus are similarly
practical given the presently available information.

3. The Practicality of Motion Estimation Methods

The quoted statements above ignore the abundance of published evidence of the strong skill of
motion estimation algorithms and dismiss the approach for use in meteorological applications [3–5,7–9].
The literature shows that two numerical techniques (cross-correlation (CC) and wavelet-based optical
flow (WOF)) are capable of extracting horizontal 2D-2C vector wind fields from near-horizontal aerosol
lidar scans. We believe that these flow fields could be used in applications such as gust detection and
prediction for wind turbines. In fact, the WOF motion estimation technique is currently in use for other
short-term wind prediction applications [10].

First, we begin with the statement: “[. . . ] the cross-correlation method has limitations for non-uniform
velocity fields”. While this statement is correct in that the CC approach has limitations, as does any
measurement technique, it fails to acknowledge the vastly more important point that the algorithm
works well over a wide range of wind conditions. This includes moderate and strong winds,
when non-uniformity in wind direction is small compared to light wind conditions that may occur
in boundary layers driven exclusively by convection [4]. Zhou et al. [1] focused on detecting and
tracking gusts in the context of wind power production. Given that windy conditions are favorable for
generating electricity, our opinion is that the CC method would not be limited by non-uniformity of
the wind field within the interrogation window in such applications. Furthermore, Hamada et al. [4]
(Section 4.a.1 “Light wind case”) showed good results for cross-correlation even when winds are light
and variable.

Second, we have shown that “small (few pixels) movement” is not a problem for WOF applied to
non-Doppler scanning elastic lidars [3]. It is true that the application of optical flow algorithms are
often limited to image sequences in which features move with small displacements from frame to frame.
However, the WOF algorithm is designed to handle large displacements, first by taking advantage
of the multiscale nature of the wavelet framework [11], and second by incorporating the algorithm
into a more classical pyramidal approach ([3], (Appendix B)). Velocities as high as 15 m·s−1 have been
successfully measured [3] (Section 5.a.3, “Strong wind case”). With a typical scan time of 17 s and
a 8 m·pixel−1 grid spacing, this amounts to displacements above 30 pixel which cannot be deemed
“small”.

Third, all of the calculations for CC and WOF are performed in real-time during the time between
scans (10 s to 20 s) using general purpose graphical processing units (GPGPUs). In fact, the appendix
of the paper by Mayor et al. [5] describes the methodology used to accelerate the process using
common computer architectures. Further, two conference presentations detail the steps to achieve this
performance [12,13]. GPGPUs are available for almost any computer and the models with the required
performance cost about 1000 USD.

4. Comparing CC, WOF, and 2D-VAR Methods

We now put the three CC, WOF, and 2D-VAR methods into perspective. Let us first clarify that
the objective here is not to state whether any method is better or worse than another.

We first consider the spatial and temporal discretization of the 2D-2C wind fields produced by the
three approaches: parameters used in Hamada et al. [4], Dérian et al. [3], and Zhou et al. [1] are listed
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in Table 1. The time steps are comparable (17 s for CC and WOF, and 30 s for 2D-VAR). (By time steps,
we mean the elapsed time between scans, which is dependent upon the angular width of the sector
scanned and the performance of the lidar used.). The biggest differences lie in the spatial domain:
the 2D-VAR method covers a much larger domain than CC and WOF (24 km2 for 2D-VAR versus
4.6–13 km2 for the other two). (The area observed is dependent mostly upon the angular width of
the sector scan and the maximum range of the useful data. These, in turn, are strongly dependent
upon aerosol signal-to-noise ratio for aerosol lidars or the coherent signal-to-noise ratio for Doppler
lidars, both of which vary with geographic location and weather conditions.) However, the vector
spacing is much finer for WOF than for 2D-VAR: 8 m versus 80 m. WOF provides 10–50 times more
vectors than 2D-VAR while operating in a shorter time window. Therefore, it can be safely assumed
that WOF could deliver wind fields comparable to those given by 2D-VAR in terms of domain size,
spatial, and temporal discretizations.

Table 1. Characteristics of 2D-2C wind field retrieval algorithms.

Method
Hamada et al. [4]

(Cross-Correlations)
Dérian et al. [3]

(Wavelet-Based Optical Flow)
Zhou et al. [1]

(2D-VAR)

Domain shape 60◦ sector, 0.5 km to
3–5 km range

60◦ sector, 0.5 km to
3–5 km range 6 km × 4 km

Domain area 4.6 km2 to 13 km2 4.6 km2 to 13 km2 24 km2

Vector spacing sparse dense, 8 m dense, 80 m

Number of vectors variable ≈ 5 × 104 to 2 × 105 ≈ 4 × 103

Time step ≈17 s ≈17 s 30 s

Real-time computations yes yes “possible”

We now examine the accuracy of the estimated wind vectors. Zhou et al. [1] did not comment on
the accuracy of the wind fields retrieved with the 2D-VAR algorithm. They cited Cherukuru et al. [2]
for details, so we turn to it instead. Cherukuru et al. [2] validated their approach based on 10-min
averages, the standard averaging period for the wind energy industry, and compared the 2D-VAR
results with measures from a cup and vane anemometer. Hamada et al. [4] and Dérian et al. [3] also
considered 10-min averages to validate the CC and WOF algorithms, respectively, by comparing
measurements from a Doppler lidar operating in vertical profiling mode. Statistics for the CC, WOF,
and 2D-VAR methods are gathered in Table 2. The methods are not directly comparable as Hamada
et al. [4] and Dérian et al. [3] gave per-component values, whereas Cherukuru et al. [2] reported on
wind speed and direction. Nevertheless, they appear to be similarly accurate.

Finally, we briefly mention algorithmic aspects for WOF and 2D-VAR. They are more comparable
as they both deliver dense fields, whereas CC is intrinsically a sparse, local approach. Moreover, optical
flow is actually a form of 2D variational analysis. For both algorithms, the wind field is obtained
by minimizing a cost function defined as an integral over the spatial domain, and the minimization
is achieved by a quasi-Newton method. The differences lie in the choice of the data model—which
connects the partial observations (aerosol backscatter for WOF and radial velocity component for
2D-VAR) to the unknown (the 2D-2C horizontal wind field)—and the regularizer (which closes the
problem and facilitates a successful minimization). In WOF, the data model is based on the advection
of a passive scalar field ([3], Equation (4)): the aerosol backscatter, itself similar to a concentration
of particles [14]. In 2D-VAR, the data-model involves the advection of an active scalar field and
the radial velocity component ([2], Section 3, Equations (5)–(8)). The regularizer used in WOF is
a first-order smoothing term that penalizes strong gradients in the estimated velocity fields ([3],
Equation (5)). Authors of the 2D-VAR used the departure of the estimated wind field from a prior
solution obtained using another method ([2], the “background constraint” in Section 3). We note that
the latter requires solving another wind reconstruction problem before running 2D-VAR, which adds
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to the computational load. To summarize, both approaches solve inverse problems that are different in
terms of models but comparable in terms of structure.

Table 2. Accuracy of wind field retrieval algorithms measured on 10-min averages. Values for
Hamada et al. [4] are from Tables 4 and 5. Values for Dérian et al. [3] are from Tables 2 and 3 and
Section 5.a.4. Zhou et al. [1] did not report on the accuracy of wind retrieval; values listed here for the
2D-VAR are obtained from Cherukuru et al. [2] (Figure 2 and Table 1). “n.r.” stands for “not reported”.
Note that horizontal wind vectors derived from the Streamline Doppler lidar resulted from a Doppler
beam swinging technique that placed off-zenith sample volumes for radial velocities approximately 210
m apart, whereas the cup and vane anemometer is sampled at essentially one point in the atmosphere.

Method
Hamada et al. [4]

(Cross-Correlations)

Dérian et al. [3]
(Wavelet-Based
Optical Flow)

Cherukuru et al.
[2] (2D-Var)

Reference measure Streamline Doppler lidar Streamline Doppler lidar cup and vane
anemometer

Number of points
(duration) 891 (≈150 h) 892 (≈150 h) 120 (20 h)

Wind speed RMS error n.r. n.r. 0.383 m·s−1

Wind speed correl. coeff. n.r.
√

0.991 ≈ 0.995 0.96

Wind direction error n.r. 1.1◦ −1.4◦

Wind direction correl.
coeff. n.r.

√
0.944 ≈ 0.976 0.98

West–east component u
RMS error 0.36 m·s−1 0.29 m·s−1 n.r.

West–east component u
correl. coeff.

√
0.993 ≈ 0.996

√
0.995 ≈ 0.997 n.r.

South–north component
v RMS error 0.37 m·s−1 0.29 m·s−1 n.r.

South–north component
v correl. coeff.

√
0.995 ≈ 0.997

√
0.997 ≈ 0.998 n.r.

In our opinion, the largest weaknesses of the motion estimation approaches (CC and WOF)
to wind field measurement using current aerosol lidars are: (1) the failure of the technique during
periods when small-scale aerosol inhomogeneities are not present; and (2) the rarity and expense of
commercially available scanning aerosol lidars with the required high-performance. Stable stratification
can suppress the production of turbulent eddies and the formation of aerosol inhomogeneities that
are required. Based on only two field experiments that we have conducted over land in the Central
Valley of California, this condition often occurs at night. We also note that at least one compact and
portable aerosol lidar with the required performance is now commercially available and that wind
fields derived from it are shown in [7]. As laser, detector, and optical technologies mature, we expect
to see improvements in the performance and accessibility to this approach of wind field measurement.

5. Conclusions

Motion estimation approaches for computing 2D-2C wind fields are not impractical for the
reasons stated in [1]. Two recent peer-reviewed publications document the performance of CC and
WOF techniques which are comparable to those published for their 2D-VAR. We have also taken
this opportunity to provide a comparison of the WOC and 2D-VAR techniques to show that the two
methods actually have much in common and that both are practical.

Author Contributions: S.D.M. and P.D. shared all aspects of producing this note.
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Abstract: In complex terrain, ground-based lidar wind speed measurements sometimes show
noticeable differences compared to measurements made with in-situ sensors mounted on
meteorological masts. These differences are mostly caused by the inhomogeneities of the flow field
and the applied reconstruction methods. This study investigates three different methods to optimize
the reconstruction algorithm in order to improve the agreement between lidar measurements and
data from sensors on meteorological masts. The methods include a typical velocity azimuth display
(VAD) method, a leave-one-out cross-validation method, and a linear model which takes into account
the gradients of the wind velocity components. In addition, further aspects such as the influence of
the half opening angle of the scanning cone and the scan duration are considered. The measurements
were carried out with two different lidar systems, that measured simultaneously. The reference was
a 100 m high meteorological mast. The measurements took place in complex terrain characterized
by a 150 m high escarpment. The results from the individual methods are quantitatively compared
with the measurements of the cup anemometer mounted on the meteorological mast by means of
the three parameters of a linear regression (slope, offset, R2) and the width of the 5th–95th quantile.
The results show that expanding the half angle of the scanning cone from 20◦ to 55◦ reduces the offset
by a factor of 14.9, but reducing the scan duration does not have an observable benefit. The linear
method has the lowest uncertainty and the best agreement with the reference data (i.e., lowest offset
and scatter) of all of the methods that were investigated.

Keywords: complex terrain; complex flow; lidar; VAD; remote sensing; wind energy

1. Introduction

Doppler wind lidar (light detection and ranging) systems emit laser pulses that are reflected by
aerosols in the atmosphere. This backscattered light has a frequency shift (the Doppler effect) due to
the movement of the aerosols. The wind speed in direction of the laser beam can be calculated from the
frequency shift using the Doppler equation. The alignment of the laser can be described by the azimuth
and elevation angle. Ground-based lidar systems can be operated with different operating modes,
such as staring, velocity azimuth display (VAD), plan position indicator (PPI) or range height indicator
(RHI). The operating modes differ in how the two angles to each other are moved. In PPI mode the
elevation angle is fixed and only the azimuth angle is varied over a small sector range. In RHI mode
the azimuth angle is fixed and the elevation angle is varied. Both angles are fixed when a lidar operates
in a so-called staring mode. The most common mode for commercial wind profilers is the VAD mode.
In VAD mode, the azimuth angle is varied over a circle with a fixed elevation angle. The number

Remote Sens. 2018, 10, 1465; doi:10.3390/rs10091465 www.mdpi.com/journal/remotesensing146



Remote Sens. 2018, 10, 1465

of measuring points over the circle are specified by the manufacturer. Also, the backscattered light
does not come from a single point but instead along a finite length. This probe length depends on
the pulse duration and the measurement technology, for example the use of a pulsed or continuous
wave (CW) light source [1]. The CW lidars measure the heights one after the other, while pulsed lidar
systems measure several heights simultaneously. It is then possible to estimate a wind vector at one or
more points in the lidar scan volume using the wind speed data and azimuth, elevation, and range
information and by making assumptions about homogeneity and stationarity. This process is known
as wind field reconstruction [1].

Ground-based doppler wind lidar systems have many advantages over wind measurements made
with in-situ instruments mounted on meteorological masts (met masts). Commercial ground-based
lidar devices can measure at heights up to 300 m, which is above the tip heights of modern wind
turbines, while met masts frequently only reach 80–100 m. The lidar can also be reconfigured
for different tasks [2], and moved easily so that several locations can be investigated with short
measurement campaigns.

Previous comparisons between lidar measurements and measurements made with cup anemometers
on met masts show an almost perfect match between the two: [3] estimated a slope of 0.9558 and an offset
of 0.1577 m·s−1 and a R2 of 0.9984 in flat terrain and homogeneous flow conditions, while [4] found a
slope of 1.004, offset of −0.079 m·s−1 and an R2 of 0.996 based on 10 min averages.

In complex terrain, the correlations between wind speed measurements with single points
sensors on met masts and lidar systems show considerable differences. The reason for the large
differences are the inhomogeneous flow conditions, which can be caused, for example, by the terrain
(momentum-induced turbulence) or by thermal effects (buoyancy-induced turbulence). Further causes
can be found in [5]. The magnitude of the differences depends on local conditions:

• Fluctuations in the flow field: Changes in terrain roughness upstream of the measurements cause
large variations and changes in wind speed with height lead to uncertainty in the wind speed [6].

• Lidar technology: The weighting function of the lidar signal processing also leads to over- or
under estimation of the wind speed.

In this study pulsed ground-based lidar systems were used, which performed modified VAD
scans. In a VAD scan, the elevation angle is the half opening angle φ of the cone. The lidar devices
determine, at selected points, the line-of-sight velocity vlos(θ, φ, fd), which is the projection of the
wind velocity vector �v(x, y, z) onto the normal vector �n(θ, φ) of the laser beam (Equation (1),
the index indicates the axis direction). The line-of-sight velocity depends on the half opening angle φ,
the azimuth angle θ and the measuring distance or focal distance fd. The normal vector is calculated as
�n(θ, φ) = [cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)] = [nx, ny, nz] = �n(x, y, z) where ni is the component
of the normal vector in i = x, y, z direction. The vector �n(θ, φ) can also be expressed in Cartesian
coordinates, which are mainly used in this study. The line-of-sight velocity is given by:

vlos = u · nx + v · ny + w · nz (1)

If vlos is measured from multiple azimuthal directions and elevations, the wind velocity
components u, v, w can be calculated. If these measurements are made from a single point and
encompass a volume of the atmosphere, it must be assumed that u, v, and w apply at all points in the
wind field, i.e., that the flow is homogeneous. This leads to errors in the determination of wind speeds
in heterogeneous, “complex” flow. Bingöl [7] has shown with a simple mathematical model of a flow
over a hill, that the error in the horizontal wind speed can be in the order of magnitude of 10%.

In order to reduce the error during data collection, multi-lidar systems [8–10] can be used.
The multi-lidar systems measure simultaneously vlos(x, y, z) at the same point. From this system of
equations, the wind velocity components can be calculated without assuming the flow is homogeneous.
The first simultaneous measurements with several lidar systems were carried out at the Musketeer
Experiment 2007 in flat terrain [8]. Measurements in complex terrain were made during the Kassel
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Experiment 2014 [9] and during the NEWA campaign in Perdigão [11]. However, this measurement
configuration is very cost-intensive (greater than 200,000e per lidar device), which is not affordable for
site assessments. Furthermore, a large effort has to be made for a successful operation of the multi-lidar
configuration [10].

Another possibility to improve the measurements is to use wind field reconstruction models to
better convert vlos data into a wind vector or wind field [5,12,13].

Finally, it is possible to use flow modelling to try to reduce differences between lidar measurement
and traditional measurements when a campaign has already been completed. These typically focus on
the use of commercial Computational Fluid Dynamics (CFD) programs to model flows and “correct”
(in reality, “adjust”) lidar measurements in complex terrain to better match point measurements from
anemometers. Despite a continuing need to validate such tools in complex terrain, a 2015 study [14]
concluded that with proper parametrization and flow modelling, flow simulations can be a useful tool
in the post-processing of lidar measurements in complex terrain and this is likely to be an important
approach in future [2].

In this study, the main focus is on the use of ground-based lidar systems with VAD scan patterns
with additional vertical measuring points. This paper introduces several modified measurement
strategies and adapted evaluation algorithms to show that it is possible to reduce uncertainties without
having to forego the advantages of ground-based lidar systems. The results were also used to explore
three questions about the effect of the scan design:

1. Is the length of the trajectory circulation time important in the comparisons with the met mast?
2. Does the half opening-angle φ have an influence on the accuracy of the correlations?
3. Is the local resolution of the measurement points important for the result?

Section 2 gives an overview over the measurement campaign, the test site and the methods used
for the wind field reconstruction. In Section 3 the results of the comparison between the results of the
investigated methods and the reference in-situ measurements are presented. The discussion of the
results is in Section 4 and conclusions are presented in Section 5.

2. Materials and Methods

This study uses lidar data obtained during a measurement campaign in complex terrain in
Southern Germany. This section provides an overview of the test site, the used measuring systems
and the settings and scan patterns. Furthermore, the data preprocessing and data filtering will be
discussed. Finally, the wind field reconstruction methods are presented.

2.1. Test Site and Measurement Campaign

The experiment was carried out in south-west Germany on the Swabian Alb. The Swabian Alb
extends for around 100 km and can be categorized as a very hilly area consisting of high plateaus
surrounded by a pronounced 100–150 m tall wooded escarpment known in the region as the Albtrauf.
The measurements described here are centred on a 100 m high met mast in relatively flat land less than
1 km from a section of Albtrauf (Figure 1).
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(a)

(b)

Figure 1. (a) The test site topography. An aerial picture ( c©2016 Google) is overlain with elevation
contours ( c©2009 GeoBasis–DE/BKG, LGL (Geobasisdaten c©LGL Landesamt für Geoinformation und
Landentwicklung Baden-Württemberg, Az.: 2851.9-1/19)). The locations of the met mast (�), lidars (•),
wind turbines (�), and vertical profiles from [15,16] are also shown. The Albtrauf is between the two
thicker elevation contours. (b) Terrain cross section. The locations of the met mast (�) and lidars (•) are
shown. The experiment site. (a) Topography and structures (b) Terrain section along red dashed line.

Two wind lidars were installed near the mast. These lidar were the SWE Scanner [17] and a
Galion all sky long-range scanning wind lidar. The measurement campaign ran from March 2015
until February 2016. Not all systems were available during the whole measurement period. The SWE
Scanner measured from March 2015 to February 2016 and the Galion system measured from March
2015 until June 2015.

Ideally the lidar and met mast would have been co-located or the lidar would been positioned a
few 10s of meters upwind of the met mast to avoid wakes. However, this was not possible in this study
because the lidars required around 2 kW of power, which could not be supplied directly at the mast’s
location. Instead the lidars were located at a nearby farm building (visible in Figure 1a), approximately
≈300 m from the met mast.

In a second short measurement period from November 2015 to February 2016 the SWE Scanner
was installed at the foot of the met mast guy wires, approximately 48 m from the met mast on a bearing
of 330◦. During this time the same configuration as in the main measurement period was used, but the
number of pulses were lowered from 10,000 to 3000 to reduce the the scanning time. The met mast and
both lidar systems were time synchronized with a GPS time signal.
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2.1.1. Local Conditions

This site has been the subject of many coordinated studies [16,18–20]. A small remotely-piloted
aircraft was used to measure the flow conditions [18]. Detailed Detached-Eddy Simulations (DES) of
the flow have been validated using different measurement methods [15,16]. Wind tunnel tests and
CFD simulations have also been to model the flow over the site [20].

The wind at this site is mostly from the west to north-west (Figure 2). Around 38% of winds
are perpendicular to the Albtrauf, and so changes in wind direction of 10◦ can result in significantly
different inflow profiles downwind of the Albtrauf [21].

Figure 2. Windrose at the experiment site.

The goal of this study is to compare the data from the met mast and the lidar to assess different
measurement and data processing approaches. It is therefore essential that there is minimal external
influence on the results, for example as a result of differences in flow between the lidar and tower that
might be introduced by the ground cover or the terrain. The impact of these differences can be judged
using the International Electrotechnical Committee (IEC) 61400-12-1 Standard (2005, [22]) for power
performance testing of wind turbines, which quantifies the potential impact of obstacles as a function
of size and distance. At 1400 m south-west of the mast, there is a small forest (not visible in Figure 1),
which, according to the Standard, is far away enough that it should not have an influence. East of
the met mast, the terrain rises again up to a height of 720 m above sea level. There are also several
commercial wind turbines near to the mast which could influence the flow. These obstructions would
therefore reduce the free stream sector (according to [22]) from 171◦ to 341◦. However, this large a
sector still introduces the chance for flow differences between the devices.

Other studies of this site can be used to understand the podar location and the met mast.
The vertical wind profile at the points M1–M4 in Figure 1a was simulated for wind from 295◦ using
CFD that was validated against measurements from an unmanned aerial vehicle [15,16]. Results
from the CFD (Figure 3) showed a speed-up of ≈20% at 100 m above ground at M4, closest to the
escarpment. At M3 the speed-up factor at 100 m above ground is ≈1.15, while at M1 the speed up
effect has disappeared and the vertical profile is fully recovered. From these profiles it can also be seen
that the 100-m wind speed at M2 is within 2% of M1, i.e., the mean wind speed difference between
M2 (near the lidar) and M1 (near the met mast) is minimal. Based on the results from the CFD study,
it was decided to limit the data used to a 70◦ inflow wind direction sector from 245◦ to 315◦.

150



Remote Sens. 2018, 10, 1465

G
ro
un

d

In ow pro le
Simulation

Figure 3. The vertical wind profile near the escarpment and on the plateau. M4 is at the escarpment, M2
is closest to the lidar, and M1 is closest to the met mast (Figure adapted and translated from Figure 5.8
in Ref. [16]).

2.1.2. Met Mast

The 100 m met mast is located 1000 m east of the escarpment and is equipped with numerous
measurement instruments, which are mounted at several heights. It is a met tower that meets
the guidelines of the IEC 61400-12-1 (2005) standard for power performance measurements [22].
These include various first class cup anemometers (at 10 m, 25 m and 100 m), first class wind vanes
(at 25 m, 50 m, 75 m and 92 m), barometers (at 5 m and 98 m), thermometers (at 5 m, 50 m, 75 m
and 98 m), hygrometers (at 5 m, 50 m, 75 m and 98 m) and three three-dimensional (3-D) ultra sonic
anemometers (USA) mounted at 50 m, 75 m and 98 m. In north-south direction the mast is equipped
with booms of a length of 5 m to reduce the influence and the flow interaction with the met mast main
body. The sampling frequency of the met mast sensors has been set to 20 Hz. In this context, first class
means that the sensor has an accuracy class of 0.5 and meets all requirements of the IEC 61400-12-1
(2005) standard [22] for wind turbine power performance testing. The met mast therefore meets or
exceeds wind industry best practices for wind measurements.

2.1.3. Lidar

The SWE Scanner system and Galion lidar were installed next to each other ≈300 m west of the
met mast. Both lidar systems used pulsed lasers and so can measure several heights simultaneously.

The global coordinate system is a right hand system where the u or x1-axis points in north
direction, the v or x2-axis points west direction and the w or x3-axis points vertical to the sky. The wind
direction corresponds to the Geographic Coordinates from north clock wise. The device coordinate
systems (θ = 0◦) correspond to the global coordinate system (North).

The SWE Scanner was configured to use a modified VAD method known as the six beam
trajectory [23]. The trajectory has five points on a circle with a half-opening angle of φ = 15◦

and one vertical point in the centre of the circle (Figure 4a). The azimuth angle θ is equally spaced
on the circle with �θ = 72◦. The scan duration of the trajectory was 8.8 s. Five focal distances were
measured simultaneously (50 m, 75 m, 100 m, 125 m, 150 m) at each azimuthal position.

The Galion lidar has a maximum measurement range of approximately 4000 m. The device is
fully configurable, with freely chosen azimuth and elevation angles and a maximum half opening
angle of φmax = 92◦. In this campaign, the device measured three six beam trajectories with three
different opening angles φ1,2,3 = [20◦, 39.2◦, 55◦] one after another (Figure 4b). These measurements
were also used to test a method for determining the second statistical moments of the measured wind
speed in complex terrain [24,25]. The opening angles used were therefore the same as used in [24].
The azimuth angle was equally spaced with �θ = 72◦. The order of trajectory points was chosen to
give the least time for every measurement sequence. The trajectory looks like a pentagram (Figure 4c)
because the elevation angle can be changed faster than the azimuth angle. For a given combination of
θ and φ the device is able to measure the radial velocity vlos at multiple focal distances d f . The data
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includes measurements for different distances ranging from 45 m to 735 m in 30 m intervals. The scan
duration for all 18 points within the trajectory was 49 s.

Figure 4. Measurement trajectories for (a) the SWE Scanner and (b,c) the Galion lidar.

The two lidar systems differ in trajectory duration and in the configuration of the half opening
angle φ. This difference in configuration enables the influence of these parameters on the measurement
quality to be studied.

2.1.4. Data Filtering and Selection

In order to compare the different wind field reconstruction methods with the reference data from
the met mast, these must be prepared and filtered in the pre-process. It is necessary to filter the data in
order to accurately compare the different systems. The process of filtering and selection is shown in
Figure 5. Data from the lidar and met mast are treated differently:

Lidar: The high-resolution recorded lidar data are processed with the wind field reconstruction
methods: The last N data points are used for each time step. These methods determine both the
wind velocity components u, v, w and statistical parameters (CNRmean, CNRmin and CNRmax) for
the carrier-to-noise ratio (CNR). The CNR parameters are still required for later data processing.
The horizontal wind speed is calculated from the wind speed components u, v (Equation (2)).
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These data are now subjected to a CNR filter to exclude samples outside of the CNR range. It is
important that both the CNRmin and the CNRmax are within the CNR limits. Values outside these
limits are not taken into account for further consideration. From these data the 10 min statistics are
calculated and selected.

vh =
√
(u2 + v2) (2)

Met mast: The recorded data is first subjected to a plausibility test where the system checks that
values are within a realistic range. If data is available from a second sensor at nearly the same height a
comparison of the data from those sensors is also made, e.g., between the cup anemometer at 100 m
and the horizontal wind speed from the sonic at 98 m. Then the 10 min statistics are calculated, and
the data is selected according to the selection criteria in Table 1 .

The directional dependency of the lidar met mast data is checked in a different way, represented
by the green path in Figure 5.

Figure 5. Steps in processing and selecting data from the lidar and met mast.
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Table 1. Selection criterion used in Figure 5.

Parameter
Acceptable Range

Minimum Maximum

Lidar measurements
CNR (min, mean) [dB] −22 10

Weather conditions
Wind direction [◦] 245 315
Temperature [◦] >2 -

Mast function
Std. cup anemometer >0.01 -

Data availability
lidar [%] 90 100
met mast [%] 100 -

After filtering and selection, both data streams will contain gaps. Only lidar and met mast
measurement data that are available at the same time step are used.

2.2. Wind Field Reconstruction Methods

Two different wind field reconstruction methods were used, the Continuous least-square method
and a linear model, which additionally use the velocity gradient. In addition, these two algorithms are
combined with predicted residual error sum of squares (PRESS) statistics.⎡⎢⎣ vlos1

...
vlos N

⎤⎥⎦ =

⎡⎢⎣nx1 ny1 nz1
...

...
...

nx N ny N nz N

⎤⎥⎦
⎡⎢⎣u

v
w

⎤⎥⎦
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b
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A
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x

(3)

2.2.1. Continuous Least-Square

This procedure, here referred to as continuous least-square (CLS), is a modified variant of the
standard VAD method as used in commercial systems [26] to determine the wind velocity components.
The idea behind this is that the velocity components are calculated continuously and not after just
one trajectory cycle. This means that if the trajectory has N data points, the last N data points will be
used for the calculation. Considering Equation (1), a system of equations (Equation (3)) can then be
established from these N data points to determine the wind velocity components u, v, w from the lidar
data. The matrix A of the equation system consists of the components of the normal vectors�n(x, y, z)i
of the used N data points. To solve Equation (3), the vector b is multiplied by the inverse Matrix
A−1. If the trajectory has more than three data points (which are at least necessary) the Moore-Penroe
pseudoinverse A−1 will be used to solve the system of equations at the time step t. In order to solve this
system of equations, it is not necessary to assume the homogeneous flow, since a solution is estimated
which has the smallest absolute error. As a result, measurement errors (unrealistic data (e.g., due to
bad CNR) strongly distort the solution of the equation system (Equation (3)). These unrealistic data
must then be filtered in post-processing.

2.2.2. Predicted Residual Error Sum of Squares (PRESS)

The PRESS method [27,28] can be used to make the CLS procedure more robust. PRESS detects
outliers and excludes them from the evaluation using leave-one-out cross validation. The PRESS
method has been used for comparable applications such as cross-validation of samples [29], but this
paper is the first known application of the PRESS method to lidar wind data.
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In PRESS, the initial record—containing N data points—is reduced by one value and the reduced
record N-1 is used to calculate the underlying model. The calculation scheme is represented in Figure 6
and repeats itself N times for each time step. The new estimated reconstructed line-of-sight velocity
v̂los are calculated from this solution and the inverted model. Then the coefficient of determination R2

(Equation (4)) is calculated to quantify the goodness of fit. The R2 is calculated as:

R2 =
SSreg

SStot
(4)

SSreg = ∑
i
(v̂los,i − vlos)

2 (5)

SStot = ∑
i
(vlos,i − vlos)

2 (6)

where SS is the sum of the squares for the regression (reg) and the total (tot); vlos represents the mean
values and v̂los is the reconstructed line-of-sight velocity. In each time step a different point is omitted.
From these N iterations, the variant with the highest R2 is selected for further post-processing.

vlos

reconstruction
model

SStot

u, v, w

R2

inverse
reconstruction

model

SSreg

v̂los

Figure 6. Overview of the workflow to estimate the combination of data points the maximized
the coefficient of determination R2, based on the input variables vlos, the estimated wind velocity
components u, v, w, the model predicted v̂los and the total sum of squares (SStot) and the regression
sum of squares SSreg.

2.2.3. Linear VAD Model

This procedure is based on the idea of converting the turbulent wind vector �v(x, y, z) at the
point x0, y0, z0 into a linear function through a Taylor polynomial up to the first order to represent the
inhomogeneous flow conditions in complex terrain more accurately. The resulting Taylor polynomial
for the wind velocity vector �v(x, y, z) is represented in Equation (7). This is made up of a stationary
value �v(x0, y0, z0) and three directional derivative in space at the point of development (index 0).

�v(x, y, z) = �v(x0, y0, z0) +
∂�v
∂x

(x − x0) +
∂�v
∂y

(y − y0) +
∂�v
∂z

(z − z0) (7)

vlos = u0nx + ux
′nx(x − x0) + uy

′nx(y − y0) + uz
′nx(z − z0)

+ v0ny + vx
′ny(x − x0) + vy

′ny(y − y0) + vz
′ny(z − z0)

+ w0nz + wx
′nz(x − x0) + wy

′nz(y − y0) + wz
′nz(z − z0)

(8)

The linear approximation (Equation (8)) consists of twelve unknown variables. These are the three
wind vector components (u, v, w with index 0) at the point x0, y0, z0 and the other nine variables
are the partial derivatives (mark with a ′ in Equation (8)) of the three wind vector components in the
Cartesian coordinate space (index x, y, z). This equation cannot be solved without further assumptions.
Some terms have the same geometric identity and are linearly dependent: the components uy

′ and vx
′

and the terms uz
′ and wx

′ and the vz
′ and wy

′ terms had the same prefactors.
Each gradient pair has the same prefactors as shown in the example for uy and vx:
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nxy = xy/ fd = xny with nx = x/ fd ( fd is the distance of the lidar measuring point).

To solve the Equation (8), two important assumptions have to be made:

1. The components are only evaluated along the vertical axis of the lidar device (coordinate origin),
which means that x0 = y0 = 0.

2. The gradient of the vertical wind speed components in x- and y-direction wx and wy

would be zero.

CFD simulations and the results show very small changes in the inclination angle at this test site
that support the second assumption [16]. There are no more assumptions possible for the components
uy and vx to simplify the Equation (8) and so the two terms are not separable. A case to simplify
Equation (8) is when all trajectory points are located on a horizontal plane with the height z0 = z, then
the partial derivatives in the direction of z would disappear. In this work, a lidar system is used which
works with constant focal lengths fd and thus places the measuring points along a sphere in space.

With these assumptions it was possible to reduce the number of unknown variables from twelve
to nine and a system of equations with these nine unknown variables is obtained. These nine variables
consists of the three wind velocity components and the six simplified components of the strain tensor.
In order to calculate the unknown components, at least nine linearly independent measuring points are
required. The reduced system of equations is represented in Equation (9). On the left hand side is the
known vector b which contains the N measured vlosi and on the right hand side are the components of
the normal vector in matrix A and the nine components of the linear approximation of the velocity
vector in vector x. Equation (9) can be solved by inverting matrix A−1 and multiplying by the vector b.
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3. Results

This section presents the results of the data analysis. First, the lidar data is compared with the
three dimensional ultra sonic anemometers (USA) data to determine if there is a directional dependency.
For this comparison, the 3-D velocity information from the USA are reduced to the line-of-sight velocity
by applying a projection on to the direction of the laser beam. Furthermore, in a second step the
results of the three wind field reconstruction methods are compared with the met mast data. For the
comparison between lidar and met mast data the method of the ordinary least squares (OLS) is used.
The data from the Galion lidar were used for further investigations. Furthermore, the influence of the
opening angle on the correlation with the met mast was examined and whether the scan duration has
an influence on the results. In order to compare the different methods with each other, the determined
confidence intervals are compared with each other.

3.1. Directional Dependency

To find out if there is a directional dependency at this test site, the wind vector from the USA
�vusa at 98 m was projected onto the normal vectors �nlidar of the laser beams of the SWE Scanner.
The projection is done using Equation (1).

The relative and absolute differences depending on the wind direction and the horizontal wind
speed for each azimuthal position of the laser beam are shown in Figure 7. When looking at these
plots, it should be noted that the sector disturbed by turbine wakes is from 341◦ to 171◦ (Figure 1).
Figure 7 clearly shows increases in differences between the lidar and ultrasonic measurements in
this sector. A closer inspection of the beam in the 288◦ direction shows that the positive differences
(red dots) are mainly in the direction of the escarpment. There also appears to be an effect of the flow
direction on the sign of the difference between the projected lidar wind speed and the value from the
met mast in some sectors, whereby flow towards the lidar has a positive difference and flow away
has a negative difference. This effect can be seen clearly in the beams at 288◦ and 216◦ but less so in
the other directions. The particularly small differences do not appear to depend on direction or wind
speed and also appear to have random distribution.

When the wind is perpendicular to the laser direction (e.g., from 18◦ or 198◦ for the azimuthal
beam from 288◦), the lidar can only observe the existing vertical component w and the horizontal
components should be zero if the alignment is perfect. This arises from Equation (3). From Figure 7 it
can be seen that the points on the axes orthogonal to the beam do not have zero magnitude. However,
because of different sampling rates, the chance that the lidar and met mast were not perfectly aligned
(despite using best practice), and the possibility that the wind direction was not exactly the same at the
lidar and mast, it is impossible to say that this difference is solely the vertical wind component w.
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Figure 7. Results of the projection of the USA onto the five lidar beam normal vectors. Each polar
plot represents a combination of azimuth-elevation angles of the laser beam. The positions of the
plots correspond to the azimuth angle of the scanner laser beam: the upper left graph is equivalent
to the azimuth angle at 288◦, the lower left graph is equivalent to 216◦, the middle graphic is the
vertical measurement, etc. The axes of the graphs are rotated in the respective angles of the laser beam
direction. The azimuth is the wind direction from the met mast. The distance of the point from the
origin corresponds to horizontal wind speed (8, 12, 16mper s). The absolute differences between met
mast and lidar (�vusa · �n, ilidar − vlos,i) are represented in colour and the size of points shows the relative
differences between met mast and lidar. Positive absolute differences are marked in red, very small
differences (magnitude < 0.001) are shown in grey, and negative differences in blue.

3.2. Wind Speed Comparisons

In this subsection the results of the different wind field reconstruction method compared to the
cup anemometer are presented. The results of the statistical parameters of the OLS are summarized in
Table 2.

SWE Scanner: Figure 8 shows the results of the comparison between the SWE Scanner and the
cup anemometer installed at 100 m using the CLS and PRESS methods.

The results show very similar results for the methods and locations which are investigated.
The parameter offset differs by up to 0.4 m·s−1 between the results and the slope changes by 0.04
between the lowest and the highest value. R2 is similar with values between 0.94 and 0.95. It is
noticeable that the results with PRESS (Figure 8b,d) have larger offsets and slopes than the CLS method
( Figure 8a,c). These 10 min lidar data contain the point combinations that had the highest R2 in time
step t, which should reduce the effect of outliers. However, this does not lead to an improvement in
the agreement between lidar and mast.
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The investigated wind speed range in this case was range 0–20 m·s−1. Data are most frequent in
the lower range (up to 10 m·s−1), where the 5–95th quantile range of the data is large compared to that
seen in the more sporadic wind speeds over 15 m·s−1.

Figure 8. Correlation between SWE Scanner and the cup anemometer at 100 m above ground. The black
dots represent the 10 min data points, the black line is the regression line, and the blue lines are the 5th
and 95th quantiles.

The same comparison was also made using data from the SWE scanner at the second measurement
location near the foot of the met mast. For brevity these results are not shown here. Results at this
second (closer) site deviate more from the met mast at low wind speeds than at the first (further)
site. At speeds greater than 8.8 m·s−1, the deviations are smaller compared to position one. These
results suggest that the improvement in agreement between the lidar and the met mast are due to the
measurement method, not the different locations.

Galion: The results from the Galion system are shown in Figure 9. For the CLS method all
18 trajectory points were used for the evaluation. A multiple overdetermined system of equations has
to be solved. This lidar and method shows a better agreement between the lidar measurements and the
met mast than the SWE Scanner measurements (Figure 9a; offset 0.018 m·s−1 , slope 1.033, R2 0.974).
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Figure 9. Correlation between Galion lidar and the cup anemometer at 100 m above ground. The black
dots represent the 10 min data points, the black line is the regression line, and the blue lines are the 5th
and 95th quantiles.

The trajectory of the Galion lidar consists of three identical trajectories with different half opening
angles φ. In order to check whether there is an influence of the opening angle on the measuring
quality, the three trajectories were examined and evaluated separately (Figure 9b–d). It can be seen that
reducing the opening angle—implying a sharper cone which is narrower at a given height—leads to a
worse correlation (i.e., increased offset, slope further from 1.0, or reduced R2; details are in the Figures).

Results from the linear model are presented in Figure 9e. The offset is 0.03 and the slope (1.026)
implies results that are very close to the met mast measurements. The dispersion of the data is small
(R2 = 0.976), the width of the 5–95th quantile is significantly reduced. Increased relative errors occur
in the lower wind speed range (≤2 m·s−1), likely due to the high turbulence intensity that reduces
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homogeneity across the measurement cone. However, this wind speed range is not relevant for the
production of wind energy.

Table 2. Summary of the OLS (Ordinary least-squares) results.

Lidar System Method Slope [-] Offset [m·s−1] R2

SWE Scanner CLS 1.074 0.219 0.949
SWE Scanner PRESS 1.103 0.385 0.938
SWE Scanner 2nd position CLS 1.046 0.537 0.942
SWE Scanner 2nd position PRESS 1.09 0.674 0.936
Galion 18 Pts. CLS 1.033 0.02 0.974
Galion 20◦ CLS 1.00 0.293 0.93
Galion 39.2◦ CLS 1.013 0.067 0.962
Galion 55◦ CLS 1.032 0.03 0.960
Galion linear 1.026 0.03 0.976

3.3. Comparison of the Statistical Parameters of Methods

Figure 10a shows the cumulative relative occurrence of R2 of individual 10 min data for the
different methods. The PRESS method has a very concentrated distribution with all R2 greater than
0.85, and over 78% of the R2 data greater than 0.95. The CLS method in combination with the SWE
Scanner has the widest distribution of the systems and methods that was investigated. The results
when using the Galion with an opening angle of φ = 20◦ are similarly wide, the differences of the
shape of the distribution is very similar to the distribution of the SWE Scanner.
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Figure 10. Overview of the distribution of R2 and the reduction of the 5th and 95th percentile.

A comparison of the ranges of quantiles for the individual methods against a reference value
gives a good impression of the relative dispersion of the individual methods. For this purpose the
width of the 5–95th quantile is calculated for each method (Figure 10b). The results of the SWE Scanner
with the CLS method were taken as reference because this trajectory is very similar to commercial lidar
wind profilers. The narrowest quantile is observed using the linear model and the CLS model for the
Galion Lidar with all 18 trajectory points. These procedures achieve a reduction between 20% and 60%.
In comparison, the PRESS method raises the dispersion by up to 20%. The range is reduced for the
other procedures, but not in order as for the linear model.
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4. Discussion

The projection of the met mast USA data onto the normal vector of the lidar showed a directional
dependence. This is in line with observations that the terrain significantly influences the inflow over
the Albtrauf [16,21]. CFD analysis [16] does not give a value to quantify the difference and, the CFD
analysis assumes neutral stratification. If stratification effects are added as in reality, this could explain
the discrepancies between the lidar and the USA.

The difference in error between the met mast and wind field reconstruction using the CLS and
PRESS methods is shown in Figure 11. The results are visualized using the frequency of

∣∣vcup − vCLS
∣∣−∣∣vcup − vPRESS

∣∣. Consider a case where the reference or ‘true’ wind speed is 10 m·s−1, and the CLS
result is 9.7 m·s−1 while the PRESS result is 10.2 m·s−1. In this case, the PRESS method has led
to a better wind field reconstruction, and the result is 0.3 m·s−1 − 0.2 m·s−1 = 0.1 m·s−1. In this
study of 3820 data points, the CLS method resulted in a lower error in 91.1% of the measurement
periods. One reason for this is, that the additional measuring point of the CLS method reduces
the reconstruction error compared to the PRESS algorithm; the reconstruction error for the wind
components is proportional to 1/

√
N where N as number of laser beams [30]. This is also surprising

as it was hoped initially that the PRESS method would be more robust than the CLS method because
of the rejection of outliers.
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Figure 11. The error in the wind field reconstruction using the CLS method, versus the error due to the
PRESS method. Negative values indicate that the CLS method had lower error compared to the met
mast than the PRESS for a particular 10-minute period.

In the previous section, the correlation between the presented methods applied to lidar
measurements and the horizontal wind speeds of in-situ sensors mounted on a met mast was presented.
From those results it can be observed that a suitable measurement strategy can improve the agreement
between the lidar and met mast.

In this study, using the linear model the agreement with the met mast was considerably
improved. The results varies in the magnitude of the CFD simulation of ≈2% and the offset is
nearly zero with 0.03 m·s−1.

In addition, the width of the 5–95th quantile is significantly reduced in average of 26.96%.
In summary, it is a clear improvement using the linear method compared to the CLS method. Due to
the extended linear model, the horizontal wind speed in complex flow (at least at this location) can be
determined much more precisely than with the standard VAD method. Whether this model delivers
useful results in general for complex locations is still to be verified by further tests. For this location,
the correlation is closer to unity and the offset is nearly zero. Furthermore, there are also optimization
possibilities for this model in the trajectory configuration as well as in the selection of the angles φ and θ.

If this result is related to the distributions of R2 (Figure 10a), then the influence of the used model
is clearly visible. For the PRESS method, the R2 distribution shows a very concentrated form with
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over 75% of the data with over R2 ≥ 0.95. The results of the correlation (Figure 8b) show, however,
the worst matches with the measuring mast data. This has the highest offset, the highest slope and the
smallest R2, as well as the widest confidence interval. The results in Figure 10a shows a very good
agreement between the data and the used model, however Figure 8b shows that the used model does
not match the met mast measurements.

These results show that increasing the half opening angle φ leads to better correlations between
the lidar and mast. The reason for this is that the deterministic error is reduced. This aspect has
been shown by the determination of the second statistical moment by lidar data using an analytical
model [23]. The optimum angle of a four point VAD method was estimated with an analytical solution
to φ = 54.7356◦ [30]. This correlates very well with the result in this study. The condition number κ of
the A solution matrix illustrates this. The κ describes the sensitivity of the solution to changes in the
data. This means that in worst case, the input error is amplified by this κ.

The condition number κ of the different solutions tested here is shown in Table 3. The largest κ

occurs in the CLS procedure for the SWE Scanner with a φ = 15◦. The smallest κ is found using the
CLS method with a φ = 55◦. The ratio between largest and smallest κ (4.6) is not directly reflected in
difference between the results, but the ability of κ to identify improved scan geometry for the same
analysis methods is confirmed by the results.

The question that naturally arises is, how representative are measurements with a φ = 55◦

at a measuring height of 100 m? After all, the radius of the circle for this configuration is 76.5 m.
This question cannot be answered without further investigation. For load simulations of wind turbines
according to IEC 61400-01 [31], coherent wind fields are created using the exponential coherence model.
This model depends on the average wind speed, distance of the observed points and the considered
frequency. The validity of the coherence model is related to structures in the wind fields and the wind
evolution over time and space, and should be investigated in future studies.

Table 3. Characteristics for the different configurations.

SWE Scanner Galion

VAD 5+1 VAD 18 φ20 φ39.2 φ55 linear

φ [◦] 15 15 20, 39.2, 55 20 39.2 55 20, 39.2, 55
scan duration [m·s−1] 8.8 4.78 49 16.3 16.3 16.3 49

κ [-] 5.78 5.78 2.02 4.30 2.00 1.26 120.66
Nb. of Points [-] 6 6 18 6 6 6 18

Location [-] 1 2 1 1 1 1 1

Another aspect that needs to be addressed here is the influence of the different scan durations on
the measurement results. An overview of the detailed scan duration for the different trajectories is listed
in Table 3. The SWE Scanner measures 5.57 times more data in 10 min than the Galion. This should lead
to a reduction of the random error. This can be seen to a lesser extent in the comparison of Figures 8a
and 9b which measured with a very similar φ. The characteristic of the different trajectories are listed
in Table 3. The differences between these two half opening angles are marginal (the offset differs by
0.074 m·s−1, the slope by 0.074 and R2 by 0.019). At the second position the scan duration was reduced
by a factor of 1.84, but there are no noticeable improvements. The averaged error over the wind speed
range between 0 m·s−1 and 20 m·s−1 is for CLS at the first position 1.034 m·s−1 and at the second
position is a bit less with 1.00 m·s−1. Unfortunately, the question of the influence of the scan duration
cannot be answered on the basis of the results. It is quite clear that the random error is reduced by a
higher data availability, but other effects (e.g., opening angle) have a greater influence. Conducting
additional experiments in flat terrain with homogeneous flow conditions would be a possible solution
there to answer the question on the scan duration.

Further investigations are also necessary into the suitability of the linear model. It should be used
at more sites to see if the results observed here apply for different complex terrains types. Furthermore,
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the gradients should be examined to see whether the assumed values are plausible and realistic.
This could be done with the help of CFD simulations, or with the help of gradients the numerical
simulation can be validated more precisely. So far, only the 10 min statistics have been compared;
investigations with high-resolution data and in the frequency domain should also be carried out.

5. Conclusions

In this study, different methods for lidar-based wind field reconstruction in complex terrain were
investigated. The main objective was to reduce uncertainties in the measurements by using optimized
methods for wind field reconstruction. As a side product, the influence of the opening angle and the
scanning duration could also be investigated. Two different methods were investigated and these were
additionally coupled with the statistical PRESS procedure. The result of the CLS method in combination
with PRESS shows a very skewed distribution of high values of R2 based on the 10 min data, but this is
not reflected in the correlation comparison with the in-situ measurements at the met mast. The results
of the correlation are worse than the results of the CLS method without PRESS statistics. It could be
shown that with the linear model for wind field reconstruction the agreement with the measurements
of the in-situ sensors can reach the level of measurements with homogeneous flow. Furthermore,
the range of the 5–95th quantile could be reduced by 32.2% on average compared to the reference VAD
method. Furthermore, the influence of the opening angle on the measurement results could be shown.
The agreement with the mast measurements and the width of the 5–95th quantile was reduced with
larger half opening angles φ. The influence of the scan duration on the uncertainties reduction could
not be verified with the current data set and measurement set up. In future measurement campaigns
with complex flow, the linear model with an optimized trajectory should be used. However, this
naturally also requires an appropriate lidar system in which the azimuth and elevation angle can
be adjusted because for the application of the linear model, three different half-opening angles φ are
necessary. This is currently not possible with the standard lidar wind profilers and it requires so-called
all sky scanning devices.
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Abstract: Computational Fluid Dynamics (CFD) is widely used to predict wind conditions for wind
energy production purposes. However, as wind power development expands into areas of even
more complex terrain and challenging flow conditions, more research is needed to investigate the
ability of such models to describe turbulent flow features. In this study, the performance of a hybrid
Reynolds-Averaged Navier-Stokes (RANS)/Large Eddy Simulation (LES) model in highly complex
terrain has been investigated. The model was compared with measurements from a long range
pulsed Lidar, which first were validated with sonic anemometer data. The accuracy of the Lidar
was considered to be sufficient for validation of flow model turbulence estimates. By reducing the
range gate length of the Lidar a slight additional improvement in accuracy was obtained, but the
availability of measurements was reduced due to the increased noise floor in the returned signal.
The DES model was able to capture the variations of velocity and turbulence along the line-of-sight
of the Lidar beam but overestimated the turbulence level in regions of complex flow.

Keywords: detached eddy simulation; turbulence; Lidar; range gate length

1. Introduction

In recent years, computational fluid dynamics (CFD) have frequently been applied for predicting
wind conditions in the wind energy industry. Such flow models can provide a three-dimensional
description of the flow field in a large area using input data from point measurements or meso-scale
meteorological models. However, although CFD models have become increasingly advanced,
the challenge of accurately describing turbulent flow, e.g., in complex terrain, remains. For a large
three-dimensional area, the requirement of spatial and temporal resolution to accurately resolve
turbulent structures is simply not computationally affordable. An approach that has proved to yield
valuable results for turbulence prediction is the Large Eddy Simulation (LES) method, which separates
the flow in large and small scale eddies to save computational effort [1].

Research has been done regarding the performance of various LES models for describing turbulent
wind conditions in complex terrain. A comprehensive blind test including several models, called the
Bolund experiment, has been conducted by Bechmann et al. [1], where the accuracy of these models
across an isolated hill was tested. The performance of the LES models included in the analysis yielded
somewhat disappointing results with significant speed-up errors over the Bolund Hill. One reason for
the large deviations might be the challenge of obtaining the correct free stream boundary condition,
which the LES models failed to do in this study [1]. A similar experiment has been done by Bechmann
and Sørensen [2], where a hybrid Reynolds-Averaged Navier-Stokes (RANS)/Large Eddy Simulation
(LES) model was tested over the Askervein Hill in Scotland. In this model, the near-wall regions
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are resolved in a Reynolds-Averaging manner with the two-equation k-Epsilon turbulence model.
The model was able to predict the high turbulence level in the complex wake region downwind of the
hill reasonably well, but underestimated the mean velocity [2].

Experiments like Askervein Hill and Bolund Hill have provided invaluable insights into flow
model performance and provided a benchmark for further flow model development. However, as wind
power development expands into areas of even more complex terrain and challenging flow conditions,
there is a need for full-scale validation cases, which reflects the challenges the wind industry meets
today. This paper presents a validation case in highly complex terrain, using a pulsed Doppler Lidar.
Lidars are particularly useful for this purpose as they can measure the spatial distribution of the wind
along the Lidar beam. However, there are limitations in the Lidar technology that need to be addressed
in order to make the measurements useful for flow model validation purposes.

One of the main limitations of the Lidar technology is that a horizontally homogeneous velocity
field is assumed when deriving the three-dimensional wind field, which is not a valid assumption in
complex terrain. Several studies regarding the performance of Lidars in complex terrain have been
conducted, among others by Guillén et al. [3] and Vogstad et al. [4]. Guillén et al. found that the
deviation between ten-minute averaged Lidar and cup anemometer measurements was significantly
larger when the wind direction was such that the complex terrain features were most prominent.
A greater discrepancy was also observed for higher turbulence intensities, and for higher vertical
velocities [3]. Vogstad et al. [4] tested the performance of three different Lidars—WindCube V1, ZephIR
300 and Galion/StreamLine in complex terrain by comparing measurements with cup anemometer
data. A numerical flow model was used to correct for the inhomogeneities of the terrain when
deriving the three-dimensional velocity field. They found that the uncertainty of the ten-minute
averaged velocities from all Lidars were in the order of 2.5% when applying the appropriate numerical
corrections, which is comparable to the uncertainty of cup anemometers [4]. However, none of the Lidar
instruments were found to predict the ten-minute averaged horizontal turbulence intensity accurately.

Lidar systems are also limited by spatial averaging along the Lidar beam. This effect is most
prominent in the accuracy of turbulence estimations when small fluctuations are of vital importance.
Several studies have investigated the ability of Lidar systems to provide accurate one-dimensional
turbulence statistics, and methods such as the one described by Lenschow et al. [5] can be applied to
improve the accuracy of these estimates under the assumption of isotropic turbulence. Bonin et al. [6]
shows how measurement noise in Lidar data can be treated to improve the turbulence estimates.
They investigated the performance of a StreamLine and WindCube Lidar compared to a sonic
anemometer, and applied the methods of Lenschow to correct for white noise and limitations of
spatiotemporal averaging of the measurements. Sjöholm et al. [7] investigated the spatial averaging
effect for a ZephIR continuous-wave Lidar by comparing one-dimensional velocities with sonic
measurements projected onto the line-of-sight (LOS) of the Lidar. Two periods with different
atmospheric conditions were investigated—one with low clouds and high backscattering, and one
with clear conditions. The power density spectra were almost identical for low frequencies, but the
Lidar spectrum fell off more rapidly than the sonic spectrum for higher frequencies in both cases,
proving that the Lidar did not capture the small-scale turbulent features of the wind as accurately as
the sonic anemometer. The spectra deviated at approximately 0.02 Hz in the clear conditions case and
0.05 Hz in the low cloud case with stronger backscattering. Cañadillas et al. [8] investigated the same
effect for a WindCube pulsed Lidar with a range gate length of 20 m on an offshore site. In this case,
the power density spectra for line-of-sight velocities from the Lidar and the sonic anemometer were
only comparable up to a frequency of 0.21 Hz due to the scanning pattern of the Lidar. The spectra
showed a good compliance, and it was concluded that the spatial averaging along the Lidar beam had
a negligible effect for this range of frequencies.

Although Lidars have become widely used in wind energy applications [9], they can only
provide a relatively accurate estimate of turbulence along the line of sight. Multi-Lidar systems
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are capable of addressing this shortcoming [10,11]; however, these systems can still only measure the
three-dimensional wind in one point at a time.

The lack of ability to provide a three-dimensional estimate of atmospheric turbulence limits the
applicability of Lidar systems for evaluation of wind turbine structural integrity in complex terrain,
where flow homogeneity and isotropic turbulence cannot be assumed. Therefore, CFD flow models are
widely used to evaluate the spatial distribution of turbulence in complex terrain. However, such models
are often only validated against point measurements, being meteorological masts or Lidars operating
in Velocity azimuth display (VAD) mode. Using the method proposed in this paper, we believe that a
pulsed Lidar, capable of measuring higher-order statistics of the wind along the line of sight, can be
used efficiently to improve the accuracy of the flow models used in the industry today.

In this study, we have used a free-scanning Lidar operating in fixed direction stare-mode aligned
with the mean flow direction. This way, accurate estimations of the wind fluctuations along the
line-of-sight may be derived, which can be used to validate how the flow model predicts the variations
of turbulence in the mean flow along the same line. The results can also give an indication of where
the model succeeds or fails in predicting turbulence transport, production or dissipation.

The main objectives of this study are to (1) evaluate the accuracy of 1D Lidar measurements with
a focus on turbulence estimation; (2) investigate how reduced gate length may increase the accuracy
of turbulence estimations with the Lidar; and (3) use the Lidar data to validate a computational
flow model in highly complex terrain. Lidar line-of-sight measurements will be validated with sonic
anemometer data projected onto the Lidar beam, and the effect of spatial averaging will be investigated
by changing the range gate length of the Lidar. For the flow model validation, a hybrid RANS/LES
(DES) model will be applied along a horizontal Lidar beam parallel to the mean flow.

2. Materials and Methods

The measurement campaign was carried out by Meventus in Roan in Sør-Trøndelag, Norway,
with a ground-based StreamLine XR pulsed Lidar in the proximity of a meteorological mast. The Lidar
system is capable of recording raw data, making it possible to reprocess the data to provide time series
with different gate lengths and frequencies. The system is operated with a collimated output beam,
and the full width at half maximum (FWHM) is about 35 m. The instrument is described in more detail
in Pearson et al. [12]. In the following sections, a brief description of the site will be provided before
the setup of the instruments and the methodology of the analysis will be explained.

2.1. Site Description

The site is located in central Norway, approximately 3 km from the coastline. The terrain at the site
is complex, with rocky, mountainous and open topography. A steep ridge located 1300 m west of the
Lidar and mast is expected to generate complex flow with large-scale turbulent eddies. The positions
of the Lidar and mast, and the surrounding terrain are shown in Figure 1.

2.2. Experimental Setup for Lidar Validation

The triangular lattice mast is located at 366 meters above sea level (m a.s.l.). The instrumentation
installed on the mast are summarized in Table 1. The StreamLine XR v14-8 Lidar is located 344 m north
of the mast at 370 m a.s.l. The range gate length of the Lidar was set to 18 m.

In order to avoid movement of the Lidar in strong winds, the Lidar was bolted to the ground
using rock anchors. The instrument was leveled and oriented towards north using binoculars with
compass. Lidar roll and tilt was logged throughout the campaign. The Lidar bearing was determined
by scanning towards the mast and identifying at what azimuth backscatter from the mast was observed.
The Lidar bearing was confirmed at the end of the measurement program, in order to confirm that no
drift occurred.
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Figure 1. Map of the site with the position of the Lidar (64◦08′20.7′′ N 10◦19′04.0′′ E) and the
meteorological mast (64◦08′09.7′′ N 10◦19′00.7′′ E). The height contours represent 5 m height difference.

Table 1. Instrumentation installed on the measurement mast. All cup anemometers are mounted on
booms pointing southwest from the mast. At 100.5 m height, there is an additional cup anemometer on
a boom pointing northeast.

Parameter Type
Height

(m)
Boom Direction

(◦) from Mast
Boom Length

(m)

Wind speed Thies First ClassAdvanced 100.5 225 1.015
Wind speed Thies First ClassAdvanced 100.5 45 1.015
Wind speed Thies First ClassAdvanced 80.0 225 5.028
Wind speed Thies First ClassAdvanced 60.0 225 5.028
Wind speed Thies First ClassAdvanced 40.0 225 5.028
Wind speed Thies First ClassAdvanced 20.7 225 5.028
Wind speed 3D UltrasonicThies 98.0 225 5.028

Wind direction 3D UltrasonicThies 98.0 225 5.028
Temperature 3D UltrasonicThies 98.0 225 5.028

Vertical wind speed 3D UltrasonicThies 98.0 225 5.028
Wind direction Thies First ClassTMR 98.0 44 5.028
Wind direction Thies First ClassTMR 40.0 44 5.028
Wind direction NRG IceFree3 80.0 42 5.028
Temperature Galltec Mess KP 97.0 20 0.305

Relative humidity Galltec Mess KP 97.0 20 0.305
Temperature Galltec Mess TP 3.0 20 0.305

Barometric pressure Ammonit AB 60 3.0 - -
Aviation lights ObeluxLI-32+IR-DCW-F 97.6 - -

Line-of-sight velocities from the Lidar were collected with a sampling frequency of 1 Hz
throughout a two-month period from 13 April 2015 to 11 June 2015. Corresponding horizontal
and vertical velocities and wind directions were collected with the sonic anemometer at 98 m height
for the same period. Due to inaccuracies in alignment tools for the sonic anemometer, an offset in the
alignment of −7◦ was detected and corrected for. The offset was determined through a correlation
analysis determining the offset required to obtain the highest correlation between the Lidar and the
corresponding decomposed sonic signal. Figure 2 illustrates the setup of the two instruments.
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Figure 2. Schematic of the Lidar and mast positions. Left: side view of the setup. The elevation angle
is 15.26◦; Right: top view of the setup. Azimuth angle = 180◦ + a, a = 6.86◦. To avoid backscatter from
the sonic anemometer, the Lidar azimuth was set to 186.94◦, pointing approximately 0.5 m west of the
sonic anemometer. The sonic anemometer is mounted on a 5 m long boom at an angle b = 45◦.

Data Analysis

The sonic anemometer measurements were projected onto the line-of-sight of the Lidar to allow
for a comparison of one-dimensional velocities along the Lidar beam. As the elevation angle is fairly
large, a 3D projection was applied to account for the vertical velocity component.

To provide information about the quality of the Lidar data, these include values for the pitch and
roll angles and the signal-to-noise ratio (SNR) of the backscattered signal. The pitch and roll angles
are the forward/backward and sideways tilt angles of the Lidar. During the measurement period,
these were checked remotely to be within a 0.25◦ threshold. This yields a maximum deviation of 1.55 m
of the beam from the sonic anemometer. When validating the Lidar data, a stronger filtration of these
values was performed to ensure that the beam deviation was within 1 m, corresponding to a maximum
0.16◦ pitch and roll angle. An analysis was carried out to determine how the correlation of the Lidar
and sonic anemometer data was affected by filtration of SNR values. Although recent studies [6,13]
have shown that the spatial averaging effects of the Lidar can be corrected to some extent, none of
these methods were applied. The aim of this study was to verify that the Lidar is sufficiently accurate
to validate numerical models in complex terrain. As the uncertainty involved in numerical models is
generally much higher than the Lidar uncertainty, additional corrections were considered to be outside
the scope of this study.

Velocity measurements and turbulence estimates were compared using standard linear regression
analysis. The coefficient of determination R2, defined by Equation (1) [14] for data sets x and y, was used
as a measure of the correlation between the Lidar and sonic anemometer measurements, respectively:

R2 =
(∑(x − x)(y − y))2

∑(x − x)2 ∑(y − y)2 . (1)

A spectral analysis was performed for a more detailed comparison of the data. Power density
spectra illustrate how the energy is transferred from larger to smaller eddies. As a reference, the spectra
were compared with the theoretical Kolmogorov slope of −5/3 in the inertial subrange [15].

The effect of changing the range gate length of the Lidar was investigated by reprocessing raw
Lidar data in the program Raw Data Processor v14 developed by Halo Photonics (Worcestershire, UK).
A 24 h period on 30 April 2015 with large variations in wind velocity and direction was chosen for
this analysis to challenge the Lidar with varying wind conditions. The wind velocity and direction
measured by the sonic anemometer during this period are illustrated in Figure 3. Data were reprocessed
with range gate lengths of 9 m and 30 m.

Throughout the entire analysis, only coinciding data from the Lidar and the sonic anemometer
were used. For periods when Lidar data were not available due to filtration requirements, the sonic
anemometer data were also removed. This data removal causes the spectra to appear with certain
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artifacts, as the resulting time series does not represent the physical processes in the atmosphere.
However, the spectra will be suitable for evaluating the ability of the Lidar system to represent
high-frequency wind speed variations.

Figure 3. Wind velocity and direction during 30 April 2015 measured by the sonic anemometer.
Times are local (UTC + 1:00).

2.3. Experimental Setup for the Flow Model Validation

The large-scale turbulent structures of interest in this study are expected to be generated
downwind of the ridge located approximately 1300 m southwest of the Lidar. The ridge has a steep
vertical cliff with an elevation of 150 m facing westward. For the purpose of validating the flow models,
the Lidar was operating in stare-mode towards this ridge, with an azimuth of 262◦, parallel to the
mean flow. This corresponds to an azimuth of 259.70◦ relative to grid north (UTM zone 32, WGS 84).
(The use of grid north as the reference is chosen in order to avoid differences between the coordinate
system of the flow model and the Lidar.) The velocity was measured along the length of the beam,
and the locations (a)–(c) shown in Figure 4 were used for a more detailed spectral analysis.

Figure 4. Schematic describing the location of the Lidar and meteorological mast, and the ridge
of interest to the study. Flow model results were compared with Lidar measurements along the
line-of-sight parallel to the mean flow, and points at distances (a) 1000 m; (b) 600 m; and (c) 400 m from
the Lidar were used for further evaluations.

A detailed assessment of wind data from the mast was used to identify a period with steady wind
speeds and wind direction approximately orthogonal to the ridge. The estimated Monin–Obukhov
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length scale [16] was found to be near-neutral (|MOL| > 450) for the entire period, implying that
the vertical heat flux is close to zero. The conditions during the selected time period are presented
in Table 2.

Table 2. Wind conditions observed during the selected time period. Times are local (UTC + 1:00).

Time Period
Wind Speed @100 m

Mean (min, max) (m/s)
Wind Direction @100 m

Mean (min, max) (◦)
Monin–Obhukov

Length Scale (min) (m)

14 June 2015
1:00 p.m. to 10:30 p.m. 8.3 (7, 10) 260 (250, 290) (450)

Lidar alignment was verified by pointing the Lidar beam towards the hill at different elevations,
obtaining solid target return values where the Lidar beam hit the terrain. The Lidar beam was aligned
to pass approximately 5 m over the crest of the hill, with an elevation angle of 2◦. Analysis of the
variations in pitch and roll during the experiment showed that the variation in elevation of the Lidar
beam was on the order of 0.2 degrees. This corresponds to ±4.4 m at the crest of the hill.

Results from the flow models were extracted along a line that started at the position of the Lidar
and passed through a point 5 m above the digital terrain elevation at the crest of the hill. The azimuth
was kept at 259.7◦ for the evaluations of the mean flow field.

Simulation Procedure

Classical methodology regarding wind farm modeling using computational fluid dynamics (CFD)
refers to two general strategies: the Reynolds–Averaged Navier–Stokes (RANS) and Large Eddy
Simulation (LES) methods. In the RANS method, the simulation is executed aiming for a steady state
solution, for which the turbulent properties are modeled in the framework of applied transport models.
As a result, the transient behavior of turbulent flows is suppressed. The general principle of the LES
method is to resolve the turbulent structures in the mean flow, i.e., the large eddies, and model the
effect of the smaller eddies. Although this approach will yield more realistic results, the computational
cost is much higher [17].

Due to the filtering of large and small eddies, LES models encounter severe difficulties in the
near-wall region, for which the correct physical characteristics cannot be reproduced due to insufficient
mesh resolution. This is a significant problem for atmospheric boundary layer flows with high
Reynolds numbers, as the mesh requirement becomes computationally unaffordable. To solve this
issue, a Detached Eddy Simulation (DES) is used in this study. A DES is a hybrid RANS/LES
method, which compensates this shortcoming by applying the RANS model in the near-wall region.
The switch from LES to RANS is based on the to-wall distance, as well as the modeling length scale
and cell size [2]. The hybrid RANS/LES approach selected for this numerical study was first proposed
by Spalart [17]. Details about the transport models, as well as the filtering strategies are described by
Bechmann et al. [2]. The traditional RANS model is also included in the analysis for comparison.

The computational domain was constructed by Fraunhofer Institute for Wind Energy and
Energy System Technology’s (IWES) terrainMesher (Oldenburg, Germany), and the simulations
were performed by Fraunhofer IWES in OpenFOAM (version 2.3.1, OpenCFD Ltd, Bracknell, UK).
A region covering a 9.5 km × 7.3 km area orthogonal to the wind direction was meshed by ∼56 million
degrees of freedom, with increasing mesh resolution near the surface. The governing equation system
is the Navier–Stokes equations, and the RANS and DES flow models are applied without heat transfer
(neutral conditions).

The inlet condition with a mean bulk velocity of 8.3 m/s was first estimated by a RANS simulation
using the k-Epsilon turbulence model. This model is widely used in the wind energy industry today,
and serves as a baseline for the evaluation of the DES model. The RANS model also served as
the starting point for the DES simulation. However, to obtain the required eddy structures in the
inlet profile for the DES simulation, a prolonged inlet with circulating flow was used. The velocity
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fluctuations were triggered by surface shear, which caused an instability in the momentum equation.
The domain with the prolonged inlet is shown in Figure 5.

Figure 5. Right: illustration of the computational domain with the prolonged inlet. The boundary
conditions used in the simulation are illustrated. The ridge of interest can be seen in the center of
the domain. The color coding represent velocity magnitude; Left: close up of the structured grid at
the ridge.

The DES simulation was executed over 25,000 physical seconds, which corresponds to
approximately 20 flow through times (FTT). The results were averaged over 15 FTT, which can
demonstrate a plausible statistical representation.

A spectral analysis was performed for a few locations along the beam. The spectra were
compared with the predicted Kaimal spectrum for the longitudinal wind speed, which is given
by Equation (2) [18]:

nSu(n)
u∗2 =

105 f
(1 + 33 f )5/3 . (2)

u∗ is the friction velocity, Su is the power density for the longitudinal wind and f is the normalized
frequency, related to frequency n, height z and velocity U(z) by relation (3):

f =
nz

U(z)
. (3)

The friction velocity is estimated using the logarithmic law, given by Equation (4) [19]:

u(z) =
u∗
K

ln
( z

z0

)
. (4)

K is the von Karman constant (=0.4) [19], and z0 is the surface roughness, which is approximately
0.03 m for bare mountains [20]. The friction velocity is estimated at 100 m height at the measurement
mast. Using the mean velocity of 8.3 m/s yields a friction velocity of 0.41 m/s.

3. Results

In this section, a validation of the Lidar will be presented by comparison with sonic anemometer
data. Next, the effect of changing the range gate length of the Lidar will be analyzed. At last, the Lidar
measurements will be used to validate the performance of a RANS and DES flow model.

3.1. Validation of Lidar Measurements

For evaluating the accuracy of turbulence estimates with the Lidar, the data were compared to
sonic anemometer measurements with a sampling frequency of 1 Hz. As an initial analysis, the effect of
the level of filtration of Lidar data was investigated. Noisy measurements were removed by increasing
the filtering limit on the Signal-to-noise ratio (SNR) value of the Lidar signals, and the correlation
between the Lidar and sonic anemometer data were evaluated by incrementally increasing the SNR
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filter value by 0.01 for each step. Figure 6 shows how the coefficient of determination changes with the
limiting SNR value, and how the availability of measurements is affected.

Figure 6. Coefficient of determination R2 and availability versus the lower Signal-to-noise ratio
(SNR) limit.

The figure shows that the coefficient of determination has a maximum value of R2 = 0.9454 with an
optimal SNR limit of −10 dB. The slope of the linear regression line for this limit is 0.9705. With a higher
limit, the reduction of availability will dominate and cause a decrease in the coefficient of determination.
This effect occurs because the differences between the Lidar and sonic anemometer measurements are
amplified for large and rapid changes in velocity, which typically occurs across long time gaps.

When increasing the SNR limit, periods with clear conditions are also filtered out. Figure 7
illustrates how the relative humidity and SNR are related. In clear conditions with low humidity,
the SNR is low due to a weak backscattering. When the humidity increases, the aerosols swell and
the backscattering is increased [21]. With the optimal SNR limit of −10 dB, the availability is reduced
to 74.2% due to a loss of such periods. The figure only shows a time period of 24 h on 30 April 2015,
but the illustrated phenomenon is applicable for all times and causes a loss of clear-condition periods
with higher SNR limits.

Figure 7. Temperature, relative humidity and SNR versus time for a 24 h period on 30 April 2015.
The optimal SNR limit of −10 dB is included as a reference. Times are local (UTC+1:00).
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In Figure 8, the one-dimensional wind velocity measured with the Lidar and the sonic anemometer
with a sampling frequency of 1 Hz and the optimal SNR limit of −10 dB are plotted as a function
of time. Due to clear conditions during the first four days, these data have been filtered out with an
SNR limit of −10 dB. The Lidar measurements follow the sonic measurements very well, although the
sonic anemometer captures more fluctuations than the Lidar. As explained in Section 1, the spatial
averaging along the Lidar beam removes some of the small-scale features of the wind, and hence the
small fluctuations are not described as accurately as with the sonic anemometer. Similar results were
observed by Sjöholm et al. [7].

Figure 8. Time series of one-dimensional 1 Hz velocities from 13 April 2015–11 June 2015 measured
with the Lidar and the sonic anemometer. Times are local (UTC + 1:00).

Figure 9 shows a correlation plot of one-dimensional ten-minute averaged velocities from the
Lidar and the sonic anemometer. The coefficient of determination during this period is R2 = 0.9972,
and the linear regression slope is 1.0043. The figure confirms the Lidars’ ability to obtain accurate
mean velocities. The ten-minute averaged velocities correlate almost perfectly and are comparable
with results from similar experiments done in previous research [4,22].

Figure 9. Correlation plot of ten-minute averaged velocities from 13 April 2015–11 June 2015.
The coefficient of determination is R2 = 0.9972 and the linear regression slope is 1.0043.

Figure 10 shows a correlation plot with the optimal SNR limit of −10 dB and a sampling frequency
of 1 Hz. There is a larger spread in this case than for the ten-minute averaged velocities in Figure 9,
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which is also reflected in the lower coefficient of determination R2 = 0.9454 and slope of the linear
regression line 0.9705. The spread does not necessarily represent a flaw in the instruments, but rather
a physically different approach to wind speed estimation. While the sonic anemometer is close to a
point measurement, the Lidar measures the wind over a larger volume.

Figure 10. Correlation plot of one-second velocities from 13 April 2015–11 June 2015. The coefficient of
determination is R2 = 0.9454 and the linear regression slope is 0.9705.

In Figure 11, the ten-minute mean standard deviations along the line-of-sight estimated by the
Lidar and the sonic anemometer are plotted as a function of velocity. There is a slightly larger spread
between the instruments for low velocities, when the standard deviation is also low. On a mean level,
the Lidar slightly underestimates the turbulence intensity.

Figure 11. Ten-minute mean turbulence intensity versus velocity for the Lidar and the sonic anemometer.

Figure 12 shows the power density spectra for the Lidar and the sonic anemometer as well as the
theoretical Kolmogorov −5/3 slope for the inertial subrange [15].
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Figure 12. Power density spectra for the Lidar and the sonic anemometer, and the theoretical
Kolmogorov slope.

The spectra does not fall in line with the −5/3 slope for the higher frequencies. This is probably
due to the fact that the dataset is structured so that the longest complete sequential measurement
series covers a period of 600 s. However, with data gaps in between, the majority of the complete
sequential measurement series are shorter. As data in between these measurement series are removed,
data gaps will lead to an increased power spectral density in the region below 2 × 10−3 Hz, as is
clearly visible in the figure. As we approach the higher frequencies, the majority of the sequential
periods of corresponding shorter time periods will fall inside a longer sequential measurement series.
Hence, the power spectral density falls with a steeper slope for higher frequencies compared to the
Kolmogorov slope.

The figure also shows that the Lidar spectrum has a lower power density for higher frequencies
than the sonic anemometer spectrum. Hence, the Lidar does not capture the small-scale turbulent
features of the wind as accurately as the sonic anemometer due to the spatial averaging along the
Lidar beam. The deviation between the spectra occurs at approximately 0.03–0.07 Hz. Similar results
were observed by Sjöholm et al., with a deviation in the spectra at 0.02–0.05 Hz [7]. As mentioned in
Section 1, Cañadillas et al. concluded that the spatial averaging had a negligible effect up to 0.21 Hz [8].
In their analysis, the availability was over 90%, which might be a reason for the favorable results.
Bonin et al. [6] reports that the deviations are apparent for frequencies higher than 0.1 Hz, but are able
to obtain better estimates by applying the methods of Lenchow [5]. However, as the measurements in
this study are performed in the presence of large-scale recirculation, isotropic turbulence cannot be
expected. Therefore, these methods are not applied.

3.2. Effect of Range Gate Length

Figure 13 shows how the coefficient of determination changes with the SNR limit for the different
range gate lengths during the 24 h analysis period on 30 April 2015. The same methodology as for
Figure 6 of calculating the coefficient of determination for increasing values of the SNR limit was
used. It can be seen that R2 is higher for longer range gate lengths with low SNR limits (<−10 dB),
and higher for shorter range gate lengths with higher limits (>−10 dB). This is because the uncertainty
of a line-of-sight measurement increases for a given SNR value when the range gate length is reduced.
With a short range gate length, the amount of noisy measurements with a high uncertainty is larger,
contributing to a lower correlation. However, when the SNR limit is increased, many of the uncertain
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measurements are filtered out and a shorter range gate length with a smaller spatial averaging effect
gives a better correlation than a longer range gate length.

Figure 13. Coefficient of determination versus lower SNR limit for the three different range gate lengths
on 30 April 2015.

Table 3 summarizes the optimal case for each range gate length. The table shows that the
optimal SNR limit is higher for shorter range gate lengths. This appears to be because the smaller
spatial averaging effect with shorter range gate lengths dominates the effect of reduced availability.
Thus, the SNR limit can be increased further before the correlation decreases, notwithstanding the
reduced availability.

Table 3. Optimal R2 values and the corresponding Signal-to-noise ratio (SNR) limit and availability for
the different range gate lengths.

Range Gate
Length (m)

Opt. R2

(-)
Opt. SNR
Limit (dB)

Availability
(%)

9 0.9657 −4.44 55.4
18 0.9657 −4.69 57.2
30 0.9650 −4.95 58.0

Note that the optimal SNR limit is higher with the 18 m range gate length for this period (−4.69 dB)
than for the longer period discussed in Section 3.1 (−10 dB). This difference is due to differences in
availability and atmospheric conditions during the two different time periods.

In Figure 14, the power density spectrum for the sonic anemometer is plotted together with the
Lidar spectra using different range gate lengths. In order to avoid any effects of time gaps, the spectra
are averaged for the ten-minute stare mode periods with a 100% availability only. Additionally, the data
were filtered with an SNR limit of −4.95 dB to obtain the best possible correlation for all range gate
lengths, before concurrent measurements were plotted.

The Lidar spectra have a steeper slope than the sonic spectrum, and the deviation occurs at
approximately 0.05 Hz for all three range gate lengths. However, a higher power density is obtained
with a range gate length of 9 m for the very highest frequencies. As the noise floor is raised when
the gate length is reduced, it is difficult to state that the increased power level is caused by better
representation of the flow turbulence. A more probable cause might be that an increasing noise level in
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the signal is causing the energy level to rise. With the FWHM significantly larger than the gate length,
this is assumed to be the probable cause.

Figure 14. Power density spectra for the Lidar with different range gate lengths, the sonic anemometer
and the theoretical Kolmogorov slope.

3.3. Validation of Numerical Model

Figure 15 shows the flow model results compared to the Lidar measurements averaged for the
time period 14 June 2015 1:00 p.m. to 10:30 p.m. along the Lidar beam parallel to the mean flow.
The DES model is averaged over 15 FTT. Velocity estimates for both flow models are normalized by
the upstream free flow velocity at 250 m from the Lidar.

Figure 15. Velocity along the Lidar beam normalized by the upstream free flow velocity averaged for
14 June 2015 1:00 p.m. to 10:30 p.m. measured by the Lidar and computed with the Reynolds-Averaged
Navier-Stokes (RANS) and Detached Eddy Simulation (DES) model.

The numerical results are found to predict the speed-up on the crest of the hill. However, both models
predict a much higher adverse pressure gradient on the lee-side of the hill, resulting in a lower wind
speed compared to the measurements. The RANS model is found to predict a full recirculation,
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with zero velocity at the crest of the hill. For the DES model, the largest deviations are found at
approximately 1300 m from the Lidar. In the region close to the Lidar location, from approximately
0–900 m from the Lidar, the DES model provides a very good estimate for the wind speed variations
along the line-of-sight. The RANS model over predicts the velocity in most of the region between the
Lidar and the crest, but falls in agreement for the closest 300 m.

Figure 16 shows the measured and computational results for the one-dimensional standard
deviation along the Lidar beam. The RANS model fails in predicting the variations in turbulence
along the line of sight, predicting a large increase in turbulence at the peak of the crest, where both the
measurements and DES-model indicates a reduction. This is expected according to theory, as wind
acceleration should cause a relative reduction in turbulence at this point.

Figure 16. Standard deviation along the Lidar beam averaged for 14 June 2015 1:00 p.m. to 10:30 p.m.
estimated by the Lidar and computed with the RANS and DES model.

It is clear that the RANS model fails to predict the expected behavior of turbulence production
and advection over the crest. The DES model provides a qualitative improvement even though the
erroneous prediction of flow separation on the lee-side of the hill causes a relatively large discrepancy
in the estimates.

A spectral analysis was performed at three different distances from the Lidar ((a) 1000 m, (b) 600 m
and (c) 400 m). The results were compared to the predicted Kaimal spectrum for the longitudinal wind
based on the measured wind speed at 100 m at the measurement mast. The power density spectra for
the Lidar and the DES model at the three locations are plotted in Figure 17 together with the predicted
Kaimal spectrum. The RANS model is not included in this analysis as it is not a transient model.

The figure shows how the model manages to predict the low-frequency part of the spectra for all
locations. There is a significant cut-off in the higher frequencies at ∼4 × 10−3 Hz most probably due to
insufficient mesh and temporal resolution to capture the small-scale fluctuations.

For the Lidar measurements, the spectrum for location (a) has a higher power density than for
location (b) and (c) for the highest frequencies. This is expected, as the measurement location is very
close to the ground, where turbulence production by high shear is present.

Concerning the numerical results, the expected −5/3 slope can be observed in the frequency
region between 5 × 10−3 and 5 × 10−2, where quantitative agreement with the measurements
is achieved. For the higher frequency region (5 × 10−2–5 × 10−1), the numerical simulation
under-predicts the turbulent kinetic energy, denoting less fine flow structures are captured at all
3 positions than for the measured data. Abnormal evolutions can be seen in highest frequency region
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(f > 5 × 10−2). This denotes that the temporal resolution (time step size) is incapable of adopting the
mesh resolution (cell size) applied in the simulation, and only numerical noise without any physical
meaning is obtained.

Figure 17. Power density spectra for the Lidar and the DES model at distances (a) 1000 m, (b) 600 m
and (c) 400 m from the Lidar, and the estimated Kaimal spectrum during 14 June 2015 1:00 p.m. to
10:30 p.m.

The predicted Kaimal spectrum underestimates the power density for most frequencies
(<10−1 Hz). The model is based on shear-introduced turbulence [18], and these results suggest
that the model is not able to capture the additional mechanically induced turbulence due to the
complexity of the terrain. For higher frequencies, the model is a good fit for location (a) with a higher
turbulence level. Nonetheless, as the model is based on the measured speed at 100 m height, the model
is not expected to be a highly accurate fit.

Note that there is a difference in the azimuth angle of 0.3◦ and elevation angle of ±0.2◦ between
the measured and modeled results. The resulting deviations in the horizontal and vertical directions at
the three locations along the beam are presented in Table 4.

Table 4. Horizontal and vertical deviations at the three locations along the beam caused by the
difference in azimuth and elevation angle between the measured and modeled results.

Location
Horizontal Deviation

(m)
Vertical Deviation

(m)

(a) 5.2 3.5
(b) 3.1 2.1
(c) 2.1 1.4

Even though the error introduced is non-negligible, it can be disregarded considering the
resolution of the mesh and the uncertainties involved in predicting the wind regime in this terrain.

4. Conclusions

In this study, the performance of a hybrid RANS/LES (DES) flow model for turbulence estimation
has been evaluated by comparison with Lidar measurements in highly complex terrain.
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First, the accuracy of Lidar turbulence estimates were evaluated by validation with sonic
anemometer data. The analysis proved the Lidar to be very accurate in prediction of 10-min mean
velocities, while the accuracy was lower for one-second measurements. This is expected, as the Lidar
is affected by both spatial averaging and presence of white noise in the measurements. The possibility
of increasing the accuracy of the Lidar was investigated by reducing the range gate length. With a
shorter range gate length, the spatial averaging is done over a smaller volume, and the system is
less affected by the spatial averaging effect. However, as the range gate is reduced, the noise level is
increased, and only a slight improvement was observed when reducing the gate length from 30 m
to 18 m, which is about half the FWHM scale of the Lidar. As the uncertainties related to the spatial
averaging of the Lidar are relatively small compared to uncertainties in the computational model,
the Lidar is assumed to be suitable for validation of flow model turbulence estimates.

The transient numerical simulation using a DES modeling strategy for turbulence estimation
was tested by comparison with Lidar measurements along a beam aligned with the mean flow,
pointing towards a steep ridge. This way the variation of velocity and turbulence along the beam
can be determined, providing a significant improvement compared to a traditional meteorological
mast measurement campaign, where only point measurements can be used for flow model
validation. The DES simulation in this study overestimated the mean turbulence level somewhat,
but outperformed a more traditional RANS model approach that failed to describe the turbulence
behavior over the ridge.

The study shows the applicability and viability of using Lidar systems in stare mode for validating
numerical models over larger distances, without a need for a significant number of point measurements.
The study also shows the need for better and more reliable numerical models for predicting turbulence
in highly complex terrain.
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Abstract: This study presents a verification and an analysis of wind profile data collected during
Tropical Storm Erika (2015) by a Doppler Wind Lidar (DWL) instrument aboard a P3 Hurricane
Hunter aircraft of the National Oceanic and Atmospheric Administration (NOAA). DWL-measured
winds are compared to those from nearly collocated GPS dropsondes, and show good agreement in
terms of both the wind magnitude and asymmetric distribution of the wind field. A comparison of
the DWL-measured wind speeds versus dropsonde-measured wind speeds yields a reasonably good
correlation (r2 = 0.95), with a root mean square error (RMSE) of 1.58 m s−1 and a bias of −0.023 m s−1.
Our analysis shows that the DWL complements the existing P3 Doppler radar, in that it collects
wind data in rain-free and low-rain regions where Doppler radar is limited for wind observations.
The DWL observations also complement dropsonde measurements by significantly enlarging the
sampling size and spatial coverage of the boundary layer winds. An analysis of the DWL wind data
shows that the boundary layer of Erika was much deeper than that of a typical hurricane-strength
storm. Streamline and vorticity analyses based on DWL wind observations explain why Erika
maintained intensity in a sheared environment. This study suggests that DWL wind data are valuable
for real-time intensity forecasts, basic understanding of the boundary layer structure and dynamics,
and offshore wind energy applications under tropical cyclone conditions.

Keywords: tropical cyclones; Doppler Wind Lidar; atmospheric boundary layer; wind structure

1. Introduction

Although substantial progress has been made in the accuracy of tropical cyclone (TC) track
forecasts, progress to improve intensity forecasts has lagged, especially for TCs undergoing rapid
intensity (RI) change [1]. The difficulty in forecasting intensity change is due mainly to the complicated
nature of TC intensification, which has been neither well understood nor correctly represented in
forecast models. The atmospheric boundary layer that connects the ocean with the upper level TC
vortex is a critical region for intensity change, because it governs both the energy distribution and
dynamics required for TC intensification [2–4]. Numerical studies have also emphasized the critical role
of the boundary layer parameterization in simulations of TC intensity and structure [5–9]. However,
the TC boundary layer has been the least observed part of a storm until now.

The routine collection of kinematic and thermodynamic observations in the TC boundary layer
remains limited [10]. Currently, boundary-layer observations are scarce, due to the danger involved

Remote Sens. 2018, 10, 825; doi:10.3390/rs10060825 www.mdpi.com/journal/remotesensing185



Remote Sens. 2018, 10, 825

in manned aircraft gathering direct wind and humidity measurements in this turbulent region of the
storm. The use of unmanned aircraft is a promising tool for TC boundary layer observations, but the
technology is not yet advanced enough to collect fast response wind and thermal data (e.g., the rate
of data transfer through a satellite). Other in-situ observing platforms such as research buoys suffer
the same plight as manned aircraft, due to the likelihood of damage to instrumentation. Even if a
research buoy does occasionally survive in a strong TC [11], it must be located in the eyewall to obtain
hurricane-force wind measurements. The probability of this occurring is small, due to uncertainties in
the track forecast at the time of the buoy’s pre-storm deployment. This lack of observational data is
believed to be one of the primary reasons why boundary layer processes remain poorly represented in
operational TC models [12,13], which limits their ability to improve intensity forecasts.

Our understanding of the mean boundary layer structure has improved since the advent of
the Global Positioning System (GPS) dropsonde in 1997 [14]. Due to limited resources, however,
the sampling size of GPS dropsondes in individual storms is generally quite small (<20 for a 12 h
observational period). In rare cases where multiple research aircraft are flown simultaneously, such as
in Hurricanes Earl (2010) and Edouard (2014), more than 40 dropsondes can be collected in a 12-h
window. Such composite analyses can present a radius-height view of the boundary layer [15,16].
Previous studies have used this type of composite method to analyze a large number of dropsonde
data collected in multiple storms, in order to characterize the mean climatological boundary-layer
structure [17,18]. Of note, these studies focused on the boundary layer of TCs with hurricane-force
(33 m s−1) and stronger-strength winds. The differences in the boundary layer structure between that
of a tropical storm and a hurricane are not well documented.

Doppler radar onboard research aircraft provides extensive wind observations in hurricanes,
but its vertical resolution is generally too coarse for boundary layer studies. When a TC experiences
strong environmental vertical wind shear, its convective structure is usually asymmetric, which makes
the distribution of precipitation asymmetric. Under such a scenario, Doppler radar wind measurements
are limited by the lack of backscattering from precipitation. Doppler Wind Lidar (DWL) observations
complement Doppler radar observations in regions of little to no precipitation in TCs. Additionally,
the DWL provides a much larger data coverage area for wind profiles than GPS dropsondes.

Baker et al. [19] provided an excellent review of previous impact studies that used both simulated
satellite and real-world, aircraft-based DWL data to demonstrate the DWL’s ability to measure winds in
TCs. Impact experiments with real data, termed Observing System Experiments, have been conducted
with and without DWL data to show the positive impact of this observing system on TC track and
intensity forecasts [20]. Similar experiments with simulated DWL data, termed Observing System
Simulation Experiments, have also shown positive impacts on track forecasts [21–23]. The present study
further illustrates the usefulness of the DWL for TC studies, with a focus on understanding TC structure
by analyzing wind profiles collected in Tropical Storm (TS) Erika (2015). More recently, a coherent
DWL was flown in 2017 on the National Aeronautics and Space Administration (NASA)’s DC8 aircraft
during the Convective Processes Experiment (CPEX), which has provided a new perspective on
tropical convective systems [24]. DWLs continue to mature as airborne systems, based on their ability
to derive wind measurements from molecular motions through direct detection, providing wind data
in aerosol-sparse areas.

2. Material and Methods

The DWL aboard the National Oceanic and Atmospheric Administration (NOAA) P3 aircraft is a
coherent system (1.6-micron wavelength) that depends on atmospheric aerosols for its return signal,
such that vertical coverage varies from one storm to the next [25]. In general, however, the convection
and high winds associated with TCs provide ample aerosols and thus profiles from the flight level
(usually 3 km) down to the ocean surface. The three main components of the DWL are the transceiver,
scanner, and data processing system. Table 1 summarizes general information about the DWL.
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Table 1. National Oceanic and Atmospheric Administration (NOAA) P3 DWL system and data product
generation parameters.

Parameter (units) Value Comments

Wavelength (nm) 1600 Eyesafe for NOAA P3 DWL configuration

Pulse energy (Joules) 0.0015 0.0023 maximum

Pulse repetition frequency (Hz) 500 Due to data processing limitations, the effective pulse
repetition frequency is 166 Hz

Pulse full width half maximum (m) 90 Full width half maximum of Gaussian pulse;
duration is 320 ns

Telescope diameter (m) 0.10

Scanner Biaxial conical scanner side mounted starboard on P3

Digitization rate (MHz) 250

Line of sight range gate (m) ~90 Sliding gate provides 45 m line of sight product

Shot integration, nominal (seconds) 1 Nominal scan consists of 12 point step and stares
with 1-s dwells

Time between u,v,w profiles (seconds) ~25 Assumes 1 s dwells

Distance between u,v,w profiles (km) 3.75 Assumes 150 m/s P3 ground velocity

The latest version of the coherent Doppler transceiver developed by Lockheed Martin Coherent
Technologies was used aboard the NOAA P3 aircraft. The scanner shown in Figure 1 is a bi-axial
scanner that has a scanning range of 30 degrees in azimuth and 120 degrees in elevation. The scanner
can be programmed to change scanning modes during a flight. The standard scanning mode employs
12 step-stares at 20 degrees off nadir, with a 1-s duration at each stare and a 1-s transition between
stares, followed by a 5-s dwell at nadir. During the mission into TS Erika, however, the scanner was set
to scan forward at 30 degrees off nadir and ±30 degrees azimuth.

 

Figure 1. P3 Doppler Wind Lidar (DWL) bi-axis scanner.
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The DWL was operated at 166 Hz, such that each 1-s line of sight (LOS) integrated product
contained 166 laser shots. The shot pulses were approximately Gaussian in shape with a full width
half maximum of about 90 m and a diameter of about 10 cm. During the Erika mission, the DWL
operated within a range of 4000 m. A “sliding range gate” approach was used in generating a 50 m
vertical resolution wind profile based on 100 m basic range gates. The closest usable signals were about
300 m below or above the aircraft. The aircraft’s position, speed, and attitude (pitch, roll, and yaw)
were obtained from the DWL’s dedicated Global Positioning System (GPS) and Inertial Navigation
System (INS). The LOS winds were navigated in space and converted into vertical profiles of the full
three-dimensional (3D) mean wind vectors. At nominal P3 cruising speeds (~100 m s−1), the wind
profiles are representative of the mean flow over approximately 3 km. The data processing system,
along with other instruments that help cool the system, is shown in Figure 2.

 

Figure 2. The Doppler Wind Lidar system inside the P3 aircraft, showing the laser (transceiver), data
processing system, and cooling system from top to bottom. GPS represents the Global Positioning
System, INS represents the Inertial Navigation System, RASP represents the Real-time Advanced Signal
Processor, and TCU represents the Transceiver Control Unit.

The DWL has been successfully flown on one of NOAA’s P3 Hurricane Hunter aircraft since the
2015 hurricane season. DWL wind profile data were first collected in TS Erika (2015). Erika began as a
tropical wave west of Africa on 21 August and became a tropical storm in the Atlantic on 24 August
(Figure 3a). The system remained nearly steady-state throughout its life cycle, weakening by 5 kt
(~2.5 m s−1) in the first two days, and then intensifying by 10 kt (~5 m s−1) until 28 August (Figure 3b).

The P3 mission into TS Erika was conducted on 26 August, when the storm’s intensity was 40 kt,
just before its weak intensification. During the period of P3 observations, Erika was under strong
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northwesterly environmental wind shear, and convective activity mostly appeared in the downshear
side of the storm (Figure 4). Despite the detrimental influence of the shear, Erika maintained steady
state and slightly intensified after the period of DWL measurements.

 

Figure 3. Plots of the track (a) and intensity (b) of Tropical Storm Erika (2015) from the National
Hurricane Center’s best track. The red line indicates the period of P3 observations.

 

Figure 4. (a) GOES satellite Infrared (IR) image and (b) visible image of Tropical Storm Erika (2015) on
26 August during the time of the P3 observations. The yellow arrow represents the shear direction.
The colors in the IR image show the cloud top brightness temperature, with red and green colors
indicating convective activity. In the visible image, the cloudy region indicates convection.
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The earth-relative flight track of the P3 aircraft flown in TS Erika is shown in Figure 5a,
and followed a standard Figure 4 flight pattern that is routinely flown as part of the NOAA Hurricane
Research Division’s annual operational hurricane field program. After taking into account the storm’s
motion, the flight track was plotted in a storm-relative framework, using center fixes based on flight
level wind observations (Figure 5b). Of note, when calculating the storm-relative track, the storm
centers from both the best track of the National Hurricane Center (NHC) and fixes based on flight-level
winds are used, following the method of Willoughby and Chelmow [26]. The dropsondes released in
TS Erika were mostly located in the storm center and turn points, as shown in Figure 5b by red circles.
As mentioned earlier, the number of dropsondes deployed in a P3 mission is limited by available
resources, and typically only the eye, eyewall, and turn points at the end of each radial penetration
leg are sampled, as was the case with Erika. With this type of limited coverage, dropsonde data can
only provide isolated snapshots of the mean boundary layer structure. The DWL, on the other hand,
can provide extensive wind observations of the boundary layer, as shown in next section.

 

Figure 5. Plots of the earth-relative (a) and storm-relative (b) P3 aircraft track into Tropical Storm Erika
(2015). Red circles represent the location of dropsonde deployments.

3. Results

We first compared GPS dropsonde data to DWL wind profiles. Of note, dropsondes provide an
inherently different measure of the wind from that of DWL. Dropsondes usually follow a drifting
trajectory, and take approximately 2–3 min to reach the ocean surface. Depending on the relative
direction of the flight path and mean wind, dropsondes generally sample a very different part of

190



Remote Sens. 2018, 10, 825

the mean flow. In a strongly sheared and turbulent boundary layer, such as is found in tropical
cyclones, dropsonde profiles are best considered to be single realizations of the wind. Furthermore,
since dropsondes follow a slanted path in conditions of both strong horizontal and vertical shear,
the near-surface portion of the dropsonde profile may not be representative of what the near-surface
profile would be below the portion of the profile that was sampled higher in the atmosphere. In contrast,
the DWL is closer to the mean wind measurement within a volume of the atmosphere.

Figure 6 shows vertical wind profiles from the DWL measurements that are collocated with the
dropsondes at each dropsonde location shown in Figure 5b. The wind comparison in Figure 6 is
displayed in a storm-relative sense, in that the eye sounding is placed at the center of the figure. It is
evident from Figure 6 that in the storm center, the wind speed is weak (<5 m/s); this wind feature is
captured by both the DWL and dropsonde instruments. Furthermore, both the DWL and dropsonde
observations show that the surface wind speed is strongest in the right-front quadrant, on the order of
20 m s−1. The DWL data also captured a similar asymmetric distribution (front versus back, and left
versus right) of the wind field that was observed by the dropsondes. The difference between the
dropsonde and DWL wind speed measurements near the surface (<100 m altitude) is mainly due to
the dropsonde drift effect mentioned above.

 

Figure 6. Plots of vertical wind profiles from the DWL (red) and GPS dropsonde (blue) observations.
The wind comparison is plotted in a storm-relative framework, with the location of the observations
shown in the title of each panel.
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A comparison of wind speeds measured by the DWL within a 10-km distance from the dropsonde
data and within a 2-min time interval of the two types of observations shows good agreement (Figure 7).
There is also a reasonably good correlation (r2 = 0.95) with the root mean square error (RMSE) of
1.58 m s−1 compared to the dropsonde data. The bias of the DWL-measured winds appears to be
small (−0.023 m s−1). This result is consistent with previous verifications of the DWL-measured
wind speeds with dropsonde data [20,27]. Other studies [28–31] have shown comparisons of DWL
data to dropsonde data that are in better agreement than with our study (i.e., smaller RMSE). This is
most likely due to the fact that TCs have a highly variable wind field, and the different measurement
volumes had different wind speeds in the comparison. Of note, the RMSE of the DWL-measured wind
speed is much smaller (~4 m s−1) than that of the wind speed measured by the Stepped Frequency
Microwave Radiometer (SFMR), both compared to dropsonde data [32,33]. Given that the SFMR wind
measurements have been routinely used for real-time TC intensity forecasts, the DWL wind data have
great potential to assist forecasters with intensity estimates.

 

Figure 7. Scatterplot of the DWL measured wind speed (WS) versus dropsonde wind speed and the
linear regress (red line). The blue line shows the 1:1 ratio, which is the line of perfect correlation.
The regression equation, correlation coefficient (r), root mean square error (RMSE), and bias are
also shown.

To further evaluate the usefulness of the DWL wind observations in TCs, we conducted a
two-dimensional (2D) analysis of wind speeds measured by the DWL, at 500 m and 1 km altitudes,
and compared these observations to Tail Doppler radar observations at the same altitudes (Figure 8).
As mentioned earlier, Doppler radar has been used to routinely measure 3D wind velocities during
NOAA P3 missions before the DWL was installed on the P3. We used a piece-wise cubic spline method
for the 2D wind analysis, following Zhang et al. [34]. This method preserves original data (i.e., along
the flight track) and only interpolates data at locations where no observations are available.

It is evident from Figure 8 that wind speeds measured by the DWL at the two altitudes of interest,
i.e., 500 m and 1 km, generally agreed with those measured by the Doppler radar in terms of wind
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asymmetry. For instance, the Doppler radar measured the strongest and weakest wind speeds on
the northeast and southwest sides of the storm, respectively, which were captured by the DWL wind
observations. Since Doppler radar can only measure wind speed when there is precipitation, winds in
almost the entire northwest quadrant were not measured well, due to there being little precipitation in
this region. The strong winds (~20 m/s) to the left of the storm at ~100 m radius were measured by the
DWL, but these winds were not observed by Doppler radar (c.f., Figure 6). This result suggests that
the DWL wind data had better spatial coverage, clouds permitting, than the Tail Doppler radar data at
the two altitudes of the Doppler radar observations.

Figure 8. Plots of the wind speed at 500 m (a,b) and 1 km (c,d) altitudes from the DWL two-dimensional
(2D) analysis (a,c) and Doppler radar observations (b,d). Black crosses in the left panels indicate the
location of the DWL wind observations used in the analysis, while black dashed lines indicate the
radial distance from the center every 50 km.

Furthermore, Doppler radar is limited by its vertical resolution (500 m), and the swath data have
no observations below an altitude of 500 m. On the other hand, the DWL measures the wind to 25 m
above the sea surface with a vertical resolution of ~50 m [35]. Figure 9 shows the wind speed measured
by the DWL at altitudes as low as 25 m (middle of 50 m height gate). This suggests the DWL is capable
of measuring the near-surface maximum wind speed, which is close to a tropical cyclone’s intensity.

The maximum wind speed measured by the DWL at 25 m in Erika (2015) was 23 m s−1, which
is quite close to the storm’s intensity, based on the NHC’s best track (c.f., Figure 3b). These highly
accurate DWL wind measurements not only complement dropsonde observations by significantly
enlarging the sampling size, but also provide useful information for validating SFMR surface wind
observations. Large biases in SFMR wind measurements can be identified and corrected by using the
collocated DWL wind profiles. This process can improve NHC forecasts by providing better real-time
intensity estimates.
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Figure 9. Plot of the wind speed measured by the DWL at 25 m in Tropical Storm Erika (2015). The black
crosses are the location of the DWL winds used in the 2D analysis. The black dashed lines indicate the
radial distance from the center every 50 km.

4. Discussion

Given the excellent data coverage provided by the DWL wind observations, storm-relative
tangential and radial velocities can be studied. Due to a lack of observations, no previous study has
shown the detailed inflow layer structure of an individual TC, to the authors’ knowledge. Figure 10
shows the boundary layer inflow and outflow structure of Erika at four vertical levels (25 m, 100 m,
500 m, and 1000 m).

 

Figure 10. Plots of the radial wind velocity at 25 m, 100 m, 500 m, and 1000 m altitudes, respectively.
The black arrow represents the shear direction, while black dashed lines indicate the radial distance
from the center every 50 km.
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It is evident that inflow is much stronger on the right side of the storm than on the left side.
Note that the strongest inflow is located along the shear direction, as indicated by the black arrow in
Figure 10. The inflow layer being deeper on the downshear side rather than on the upshear side in
Erika is consistent with the result of the dropsonde composite analysis given by Zhang et al. [18].

An analysis of the height of the maximum tangential wind speed also shows that Erika’s boundary
layer is deeper on the downshear side of the storm (Figure 11). Of note, both the inflow layer depth
and height of the maximum tangential wind speed are found to decrease toward the storm center,
consistent with a previous dropsonde composite [17]. However, the kinematic boundary layer heights
on average are much larger than that of a typical hurricane-strength TC, which suggests that the
boundary layer structure of a tropical storm is different from that of a hurricane. Forecast models
should consider this difference.

 

Figure 11. Height of the maximum tangential wind speed based on the DWL data in Tropical Storm
Erika (2015). The black arrow represents the shear direction, while black dashed lines indicate the
radial distance from the center every 50 km.

The streamline pattern based on storm-relative winds is shown in Figure 12, at the four altitude
levels in Figure 10, along with the relative vorticity shown in shading. The closed circulation and
large vorticity near the storm center suggest that Erika was able to maintain tropical storm strength
despite strong wind shear, likely due to vorticity development in the boundary layer. It is evident from
Figure 12 that absolute vorticity is maximized in the storm center, with a broad region of relatively
large values of vorticity (>4 × 10−4 s−1) located in the downshear side of the storm in the boundary
layer. Interestingly, the circulation center of the vortex of Erika varies with height, showing a weak tilt
of the vortex in the upper levels (>750 m) toward the downshear direction, and implying a vortex tilt
signature even in the boundary layer. This type of structure can only be detected by high-resolution
wind measurements from an instrument like the DWL.

Of note, there is no distinct eyewall in a tropical storm like Erika, so the radius of the maximum
wind speed is not well defined. The maximum azimuthally-averaged tangential wind speed is found
to be located at a radius of ~100 km, which is nearly twice the size of a typical hurricane. Streamline
analysis shows that the circulation of the vortex near the surface is closed. The vortex center is slightly
tilted to the shear direction in the boundary layer. Despite this vortex tilt feature, the largest vorticity
is located in the storm center, suggesting the development of circulation occurs within the boundary
layer. This is consistent with the hypothesis of a progressive boundary layer control of the spin-up
process, as suggested by previous theoretical studies [3,36].
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Figure 12. Plots of the relative vorticity (shading) and streamlines (contour) at (a) 250 m, (b) 500 m,
(c) 750 m, and (d) 1000 m altitudes based on the DWL measured winds.

5. Conclusions

This study presents an analysis of wind profile data collected by the DWL onboard NOAA’s
P3 aircraft in TS Erika (2015). The DWL observations complement the existing P3 Doppler radar
observations, in that the DWL collects wind data in rain-free and low-rain regions where Doppler
radar is limited by its inability to capture the backscatter. In addition, the DWL wind data have a much
higher vertical resolution (50 m) than the Doppler radar wind data (500 m). The DWL observations also
complement the dropsonde measurements by significantly enlarging the sampling size of the wind
profiles. Observations of wind speeds down to ~25 m can provide valuable intensity information in real
time to NHC forecasters when a NOAA P3 Hurricane Hunter mission is flown with a DWL onboard.

Our analysis shows good agreement when DWL-measured wind profiles are compared to those
from collocated dropsondes (i.e., high correlation, small bias, and relatively small RMSE). A comparison
of DWL-measured wind speeds at the same altitudes as the Doppler radar observations also show
good agreement in regions where there are extensive Doppler data (i.e., rain regions) in terms of wind
asymmetry. To the authors’ knowledge, the DWL data collected in TS Erika provide the best data
coverage of the boundary layer of any given tropical cyclone. The DWL data presented in this study
will be invaluable for evaluating the boundary layer structure and physics in TC forecast models.

The kinematic boundary layer height as depicted by both the inflow layer depth and height of
the maximum tangential wind speed is found to decrease with decreasing distance from the storm
center, consistent with the structure of a typical hurricane. However, the boundary layer in TS Erika
is much deeper than in a hurricane based on climatology. The shear-relative analysis of the DWL
data shows that the strength of the inflow is larger in the downshear-side quadrants than in the
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upshear-side quadrants, again mimicking the structure of a hurricane. On the other hand, the extent of
the asymmetry of both the tangential and radial winds was larger in TS Erika than that observed in the
hurricane composites.

Future work will analyze DWL data collected in recent hurricanes, including landfall cases,
in order to further explore wind structure in the boundary layer for both science and engineering
applications. For instance, DWL wind data can be used to improve our understanding of the boundary
layer structure of TCs close to US coastal regions where offshore wind energy development has been
conducted under the guidelines of the Department of Energy. Wind turbines built offshore for power
generation are usually affected by tropical cyclone winds, especially strong wind gusts [37]. However,
the impact of tropical cyclone winds on the structural integrity of turbines is poorly understood, due to
a lack of observations at typical turbine heights (<200 m above sea level). Dropsondes provide single
slant profiles of wind observations that are inadequate for high temporal or spatial analysis across the
rotor layer at the turbine height. Offshore tower and buoy observations usually only collect wind data
near the ocean surface with a measurement altitude of <50 m. Airborne DWL provides a unique tool
for 3D wind observations around offshore wind turbines, which can be used in future investigations to
explore the impact of tropical cyclones on turbine loads.
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Abstract: Very short-term forecasts of wind power provide electricity market participants with
extremely valuable information, especially in power systems with high penetration of wind energy.
In very short-term horizons, statistical methods based on historical data are frequently used.
This paper explores the use of dual-Doppler radar observations of wind speed and direction to derive
five-minute ahead deterministic and probabilistic forecasts of wind power. An advection-based
technique is introduced, which estimates the predictive densities of wind speed at the target wind
turbine. In a case study, the proposed methodology is used to forecast the power generated by
seven turbines in the North Sea with a temporal resolution of one minute. The radar-based forecast
outperforms the persistence and climatology benchmarks in terms of overall forecasting skill. Results
indicate that when a large spatial coverage of the inflow of the wind turbine is available, the proposed
methodology is also able to generate reliable density forecasts. Future perspectives on the application
of Doppler radar observations for very short-term wind power forecasting are discussed in this paper.

Keywords: Doppler radar; five-minute ahead wind power forecasting; probabilistic forecasting;
remote sensing forecasting; offshore wind speed forecasting

1. Introduction

The increasing participation of offshore wind power in electricity markets continuously poses
challenges for ensuring grid stability and power quality, especially due to the enhanced variability
of offshore wind power in short scales [1]. A recent project in Germany allows wind farms to
downregulate their power to participate in the reserve market, where reserves are calculated in
one-minute intervals [2]. During the pilot phase of the project, the standard deviation of the prediction
error of the possible power is required to be less than ± 5%. These changes in grid regulations,
driven by faster temporal responses of the grid, show the importance of improving wind power
forecasts with shorter horizons and higher temporal resolutions in order to reduce the costs associated
with operating the grid and minimize balancing reserves.

Reliable very short-term forecasts of wind power also benefit electricity market participants since
they allow them to be more competitive in intraday markets [3]. As electricity markets are becoming
more flexible with the use of intraday gate closure times as short as five minutes [4], the technical
challenge arises on how to generate accurate very short-term wind power forecasts.

Very short-term or minute-scale forecasts of wind power (<60 min) are usually based on statistical
time-series models. For larger horizons, numerical weather prediction (NWP) models are more
accurate [5]. Examples of very short-term forecasts of wind speed and power using time series
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methods can be found in [6–8]. Very short-term forecasts of wind speed and power are often based
on machine learning methods such as artificial neural networks [9] or Markov chain models [10,11],
which are trained with historical data. Alternatively, combinations of different models (known as
hybrid models) have been proposed to overcome the deficiencies of single models [12]. Parallel to
the development of single point or deterministic forecasting models, the use of probabilistic forecasts,
which include information about the uncertainty associated with the predicted events, has increased.
Examples of very short-term probabilistic forecasts of wind power using statistical methods can
be found in [13,14]. These probabilistic forecasts are known as predictive densities or probability
distributions and provide important information for making risk-based decisions [15].

Over the last two decades, the use of remote sensing measurements such as long-range lidars [16]
has been extended in the wind industry. These systems are capable of measuring wind speed and
direction (under certain assumptions) up to 30 km [17]. Unlike conventional wind measurements from
met-mast or satellites, they present an adequate trade-off between temporal and spatial resolution
for wind farm applications. However, the prediction horizon of a remote sensing-based forecasting
model is limited by the maximum range of the remote sensing measurements and also influenced
by meteorological conditions [18]. Indeed, publications on the use of long-range lidar measurements
for wind energy applications have reported measurements with a maximum range of less than
ten kilometers [19–21]. Despite those limitations, a recent contribution showed that a lidar-based
forecasting technique can provide better results than conventional statistical benchmarks when
forecasting near-coastal winds with lead times of five minutes [22].

Alternatively, the use of weather radars has also been investigated for short-term (minutes
to few hours) forecasting of wind power, due to its appropriate spatial and temporal resolution.
Trombe et al. [23] introduced the use of ground-based weather radars, which measure precipitation
reflectivity, for predicting large power fluctuations in the offshore wind farm Horns Rev.
As precipitation fields are highly correlated to strong wind speed fluctuations, weather radar systems
show a high potential in anticipating strong power fluctuations at offshore sites [24].

The use of wind speed and direction observations from Doppler radars for wind energy
applications has recently been explored. Wind farm operational data was coupled with wind fields
derived from dual-Doppler (two synchronized Doppler radars) measurements to further investigate
wind farm wake effects and evaluate wake modelling [25]. Dual-Doppler (DD) radar measurements of
the wake behind an offshore wind farm were also reported in [26]. Power performance studies [27]
and ramp events detection [28] were also documented using DD radar measurements.

In [29], the authors introduced a methodology that uses DD radar measurements as input for
predicting the average aggregated power of seven offshore wind turbines in a probabilistic framework.
This paper extends the methodology presented in [29] to predict the power generated by individual
wind turbines and analyses the characteristics of DD radar measurements for very short-term forecasts
of wind power. Thus, the main goals of this paper are (i) the description of a methodology that uses
fully resolved DD radar measurements to create probabilistic forecasts of wind power, (ii) its evaluation
on seven wind turbines in an offshore wind farm with a very short-term horizon of five minutes and
(iii) the assessment of the measurement characteristics and quality aspects of DD radar observations
for very short-term forecast of wind power.

Our paper is organised as follows: first, we introduce the DD radar system along with the
measurement campaign in Section 2. The forecasting methodology is detailed in Section 3. We investigate
the use of probabilistic and deterministic forecasts of power for individual wind turbines and a row of
wind turbines in Section 4. A discussion on the use of DD radar observations for wind power forecasting
is given in Section 5. Conclusions are drawn in Section 6.

2. Data Description

The data used in this analysis was collected during the BEACon research and development
(R&D) project conducted by Ørsted [26]. The BEACon measurement campaign started in July 2016,
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lasting until the spring of 2018. Two Doppler radar units scanned the flow within and surrounding the
Westermost Rough offshore wind farm in the North Sea (Figure 1a,b). Westermost Rough is composed
of 35 turbines with a hub height of 106 m, a rotor diameter (D) of 154 m and a rated power of 6 MW.
The two Doppler radars (Figure 2) are located at the shoreline 8 km from the closest wind turbines
(Figure 1b). The last row of turbines is 14 km from the coast.

Figure 1. (a) location of the Westermost Rough wind farm ( ), 8 km off the Holderness coast, in the
North Sea. The colourbar indicates the height above mean sea level in meters; (b) layout of the wind
farm showing the position of the radars ( ) and the wind turbines ( and ). Wind turbines used for this
analysis ( ) are labeled. The dark and light gray shadowed areas indicate the overlapping dual-Doppler
measurement area.

Figure 2. Doppler radar unit deployed on the shore of the Westermost Rough wind farm.
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The DD radar system [26] was configured to obtain volumetric wind field measurements with a
temporal resolution of roughly one minute. Each radar scanned a 60◦ sector at 13 different elevation
tilts, ranging from 0.2 to 1.4◦. During the performance of a one-minute volumetric measurement cycle,
flow homogeneity is assumed. The radars measured the flow with a spatial resolution of 0.5◦ in the
azimuthal direction, given by the beam width, and 15 m along the beam direction. To retrieve the two
horizontal wind speed components, the line-of-sight (radial) velocity measurements from the two
radars are interpolated into a three-dimensional Cartesian grid over the overlapping region measured
by the radars (Figure 1b). It is assumed that no vertical flow component exists. The maximum
range of the radar measurements is 32 km. After interpolation into the Cartesian grid, the final DD
volumetric wind fields have a spatial horizontal resolution of 50 m and vertical resolution of 25 m.
The accuracy of the radial velocity measurements of one of the Doppler radars has been validated
in a measurement campaign using a scanning lidar, which had been previously calibrated with an
anemometer. Results indicate a good correlation between the Doppler radar and the scanning lidar
measurements [30]. The uncertainty in the dual-Doppler wind speed data is currently being quantified
and will be reported elsewhere.

A sample of 2795 one-minute DD radar measurements during south-westerly winds was made
available for this study. Those periods were continuously collected during several hours on 11 days
between November 2016 and February 2017 and correspond to free-flow conditions (DD wind direction:
191.7–281.7◦) for the first row of wind turbines (Figure 1b). We focus our analysis only on these wind
turbines to avoid the additional complication of wake effects. The horizontal spacing of those wind
turbines ranges from 5.92D to 6.43D. The DD radar images were filtered for periods with spatial
availability greater than 90% in the area corresponding to the inflow zone of the first row of wind
turbines (dark gray shadowed area in Figure 1b). Only continuous periods of at least 20 min were
considered. With these criterion applied, a total number of 1134 one-minute DD radar wind fields,
with a mean spatial availability in the inflow area of 98.4%, were further investigated. During these
periods, mean wind speeds at 100 m height (averaged over the radar domain) in the range of 5–14 m/s
with a prevailing south-southwesterly direction were observed (Figure 3).

Figure 3. Wind rose of one-minute mean wind speeds at the height of 100 m (averaged over the radar
domain) observed by the dual-Doppler radar system during the period covered in this analysis.

In addition to the DD wind field data, power data from the wind turbines’ supervisory control
and data acquisition (SCADA) system is used to derive the wind turbine power curve and to validate
the performance of the forecast. The power data with a frequency of 1 Hz is averaged every minute
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and temporally synchronized with the DD data. Periods with start-ups, shut-downs and abnormal
performance such as power curtailment, power boosting and downtimes have been filtered.

3. Forecasting Methodology

The forecasting methodology presented here uses fully-resolved DD wind field measurements as
input to derive probabilistic forecasts of wind power. Figure 4 outlines the proposed methodology.
To calculate a remote sensing-based forecast (RF) of power for the ith wind turbine PRF

i at a future
time t + k, we need first to estimate the density forecast of the hub height wind speed wsRF

i at instant
t + k. Then, the predictive density of wind speed at each rotor is transformed to power density by
means of a probabilistic power curve. Due to the prevailing wind direction of the available data set
and the particular measurement setup of the BEACon project focusing on wake effects, we forecast
wind power output with a five-minute prediction horizon, i.e., five-steps ahead (k = 5). Here, we first
introduce how the predictive densities of wind speed are estimated.

WT1

….
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N≥20
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DD radar wind 
field vectors
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correction at 
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Figure 4. Scheme of the remote sensing probabilistic forecasting model (RF) showing the unmodified
wind speed predictive densities (wsi), the wind speed densities after correcting for induction effects
(wsRF

i ) and the predictive densities of power (PRF
i ).

3.1. Predictive Wind Speed Densities

The probabilistic forecast of wind speed is based on a Lagrangian persistence technique widely
applied in probabilistic forecasts of precipitation [31,32]. The principle underlying this method is
the persistence of moving radar precipitation patterns. Our model uses wind speed information
measured by the DD radar system at 100 m height to create the probabilistic forecast of wind speed.
Thus, given a DD radar observed wind field at any given time t, the model propagates the horizontal
wind field vectors with their respective trajectories defined by their local wind speed and direction
for a duration k. The probabilistic wind speed advection forecast is constructed under the following
premises: During the prediction horizon, (i) the observed DD radar wind field vectors maintain a
constant horizontal trajectory (ii) mass conservation, vorticity and diffusion are neglected.

A simple approach to generate the predictive wind speed densities wsi at time t + k at the target
wind turbine is to search in the surroundings of the wind turbine for the velocity vectors advected
during the forecast horizon. The ensemble of the magnitude of the advected velocity vectors comprises
the distribution of wind speeds or predictive densities of wind speed.

The forecasting location or point of interest is defined as an area of influence Ai encompassing the
target wind turbine. We only consider the wind vectors from the DD scan at 100 m that will reach the
area of influence within a time window of τ = 60 s centred around the forecast horizon. Thus, the basis
of our probabilistic very short-term forecast of wind speed is the cloud of points or observations that
fall inside the defined spatio-temporal window. For a forecasting horizon of five minutes, as it is the
case here, we consider the wind field vectors found within the area of influence between 4.5 min and
5.5 min after the forecast is issued, under the Lagrangian persistence hypothesis.
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To evaluate the predictive wind speed densities, we compare them with the DD wind speeds
observed in front of the rotor (at 100 m height) of the considered wind turbines. Close to the rotor,
a reduction of wind speed is experienced due to the extraction of axial momentum of the flow. The axial
induction factor a expresses the velocity reduction at the rotor and can be defined in terms of the thrust
coefficient CT by:

a =
1
2

(
1 −

√
1 − CT

)
. (1)

The International Electrotechnical Commission (IEC) standard for power curve measurements [33]
recommends rotor wind speed observations to be measured 2.5D upstream of the rotor. At this distance,
the flow is assumed to be “outside” the induction zone. The power curve used in this analysis and
introduced in Section 3.2 is based on DD measurements at this distance, at the height of 100 m.
Wind tunnel measurements have shown, however, that wind speed deficits due to the rotor blockage
effect extend to 3D and beyond upstream of the wind turbine [34]. In considering the velocity reduction
due to the induction zone in front of the rotor, we correct our wind speed distributions wsi using
Equation (2), [34], at the distance of x = −2.5D upstream of the wind turbine, where x is the spatial
coordinate in the longitudinal flow direction. In our case, U∞ refers to the predicted DD wind speed
wsi based on observations upstream (or in the undisturbed zone) and U (here wsRF

i ) denotes the wind
speed at the distance of 2.5D upstream of the rotor. As mentioned before, wsRF

i will be transformed
into power by using a power curve based on measurements at this distance. The induction factor is
obtained from Equation (1), using the CT given by the manufacturer’s thrust curve at each wind speed
level. For an induction factor a = 1

3 , the correction factor at x = −2.5D equals 0.994, which is close
to unity:

wsRF
i

wsi
=

U
U∞

= 1 − a

⎛⎝1 +
2x
D

(
1 +

(
2x
D

)2
)−0.5

⎞⎠ . (2)

3.1.1. Optimization of the Wind Turbine Area of Influence

To optimize the probabilistic forecasting methodology, we conducted a sensitivity analysis on the
area of influence encompassing the target wind turbine, as introduced in [29]. The area of influence
Ai is defined as a circle centred at the wind turbine (Figure 5c). The optimization criterion is the
minimization of the average continuous ranked probability score (CRPS) of the wind speed predictions,
after correcting for induction effects of the wind turbines in the first row. The continuos ranked
probability score (crps) evaluates the spread of the predictive densities in regard to the observation [35]
and is given by:

crps (F, x0) =
∫ ∞

−∞
[F(x)− θ(x − xo)]

2 dx, (3)

where F is the cumulative distribution function of the predictive density (in our case wsRF
i ), x0 is the

observation (here ws2.5D
i ) and θ is the Heaveside step function which takes the value 1 when x ≥ xo

and 0 otherwise. If the predictive density is reduced to a point forecast, then the crps can be understood
as the absolute error. The lower the crps, the better the density forecast. For a skillful forecast, crps is
close to zero, as F approximates the Heaviside step function of the observation. CRPS is given by:

CRPS =
1
T

T

∑
j=1

crps(Fj, xo,j), (4)

where T refers to the number of samples analysed. To optimize the area of influence, we use wind
speed densities predicted one-minute ahead (k = 1), as we want to optimize the area of influence with
predictions close to the real distribution of wind speeds in front of the rotor.
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Figure 5. Wind speed forecast for WT4 (marked in red). (a) Dual-Doppler flow field at the time that the
forecast is issued and (b) validated; (c) cloud of wind vectors used to derive the probabilistic forecast
for WT4 and the respective area of influence (blue circle). Notice the different scales on Figure 5c.

Figure 6 depicts the CRPS for different areas of influence, in terms of number of rotor diameters
D. Here, we consider samples with a minimum number of wind field vectors Nmin = 20 to estimate the
predictive densities, following [29]. A total of T = 10,447 predictions are considered for the sensitivity
analysis. The figure also depicts the CRPS for a wind speed distribution estimated with the probabilistic
extension of the forecasting model persistence. Persistence is the most often employed forecasting
benchmark, which uses the last available measurement at time t, as the prediction at time t + k, and is
known for being difficult to outperform for short horizons [5]. As we want to compare our model
to a probabilistic prediction, we consider a persistence distribution using the persistence point and
the 19 previous forecasting errors, as defined in [36]. The CRPS for the predictions based on the DD
observations is smaller than for persistence. A decrease in the CRPS value can be observed when
increasing the diameter of the area of influence up to 2D. Further increase of the area of influence
shows no improvement. An area of influence larger than the optimum appears to extend the temporal
and spatial characteristics of the wind speed distribution, which seem to be no longer representative of
the sampling effect of the rotor. At the same time, a smaller area of influence than the optimum is not
able to capture the distribution of wind speeds characteristic of the rotor.

Based on the results of the sensitivity analysis of the area of influence, we use an area of influence
with a diameter of 2D, for the results presented below. Figure 5c shows an example of the cloud of
wind field vectors that will reach the area of influence of the wind turbine WT4 (in red) in 5 min ± 30 s.
The wind fields at the time that the prediction is issued at and validated are illustrated in Figure 5a,b,
respectively. The predicted wind speed distribution after implementing the correction due to the
induction zone, along with its mean and the observed DD wind speed 2.5D upstream of the rotor at
the validation time are depicted in Figure 7a.
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Figure 6. Average continuous ranked probability score (CRPS) for the one-minute ahead wind speed
predictive densities for different areas of influence Ai with the remote-sensing forecasting (RF) model
(blue dots) and for a probabilistic persistence method (magenta line). The area of influence is expressed
in number of rotor diameters (D).
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Figure 7. (a) predictive histogram distribution of wind speeds for WT4 at the time shown in Figure 5b.
The blue line represents the mean of the distribution and the magenta line the verifying dual-Doppler
wind speed 2.5D upstream of the rotor. N indicates the number of wind field vectors; (b) predictive
empirical cumulative distribution function of the normalised power for WT4 at the same time.
The magenta line indicates the observed power.

3.1.2. Evaluation of Predicted Wind Speeds

Five-minute ahead single point predicted wind speeds wsRF
i are evaluated by comparison with

the wind speeds observed 2.5D upstream of the turbine rotor ws2.5D
i . Following the perspective of [36]

and [13], the optimal single point predictor should be chosen from the predictive densities according
to the target metric. Given that the focus of the paper is on evaluating the root-mean-square error
(RMSE) of the predicted variables, the mean of the distribution is considered. Figure 8a–c compare
the wind speeds observed 2.5D upstream of the turbine rotor with the mean of the predictive wind
speed densities forecasted five minutes ahead, before and after applying the wind speed correction
due to induction effects, and for the persistence method, respectively. The correction of wind speeds
considering the induction effects improves the RMSE by 2%. Relative to persistence there is an
improvement of 6%. In general, a high correlation is found between the predicted and the observed

207



Remote Sens. 2018, 10, 1701

wind speeds. For wind speeds below 6 m/s, the DD predicted mean wind speeds (including the
induction correction) overestimate the DD wind speeds 2.5D upstream by an average of 0.32 m/s.
For wind speeds in the range 6–10 m/s, the predicted wind speeds exceed the DD wind speeds 2.5D
upstream by an average of 0.15 m/s. Over 10 m/s, this difference is 0.12 m/s. Those differences are
attributed, among others, to the assumption of the persistence of the wind field trajectories during the
forecasting horizon and to the radar uncertainty.

Although this work focuses on predicting coastal winds, we are not considering the effects of
the wind speed gradient present at the discontinuity between the land and the sea, which increases
the uncertainty in the predictions. Studies on coastal gradients [37] have reported velocity reductions
between 4% and 8% from 3 km to 1 km from the shore. Over 3 km from the coast, velocity gradients of
0.5%/km have been observed for different offshore sites [38]. Future work should include corrections
for wind speeds due to coastal effects.
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Figure 8. (a) density scatter plot of the dual-Doppler wind speeds 2.5D upstream of the wind turbine
rotor (observed wind speed) and the mean of the five-minute ahead wind speeds distributions without
velocity correction due to induction effects, (b) including the velocity correction due to induction effects
and (c) for persistence.

3.2. Predictive Wind Power Densities

To estimate the predictive wind power densities PRF
i , we transform the predictive wind speed

densities wsRF
i into power densities using a probabilistic wind turbine power curve. Wind turbine

power curves are normally built using ten-minute averages of wind speed and power, following an
IEC standard [33]. Since our goal is to forecast wind power with a frequency of one minute, we derive
the power curve from the one-minute DD wind speeds observed 2.5D upstream of the rotor of the
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considered wind turbines (Figure 9). This power curve is representative of an undisturbed inflow
as only free-flow sectors are considered. The resulting power curve presents an irregular degree of
variance for different wind speed levels, as shown in Figure 9. This is characteristic of a power curve
constructed with high frequency data [39]. To include the uncertainty of the power curve in our
forecasting model, a probabilistic power curve is built. First, we collect the power data into wind speed
bins of 0.5 m/s width. Next, we estimate the empirical cumulative distribution function (ecd f ) of the
wind turbine power for each wind speed bin. We apply a resampling technique with replacement
(bootstrap) [40] to derive the wind power predictive distributions, as wind speed predictive densities
are based on an irregular number of wind field vectors. Thus, for each wind speed distribution, a total
of 10,000 random values, out of the original ecd f of the predicted wind speed distributions, are selected.
With the resulting set of wind speed values, the predictive densities of power are derived by random
selection from the power ecd f associated to each wind speed bin. The estimated ecd f of the predictive
density of power for WT4, for the example introduced in Figure 5, is shown in Figure 7b.
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0.25

0.5

0.75

1

Figure 9. Normalised wind turbine power curve based on 1656 samples of dual-Doppler wind speeds
2.5D upstream of the rotor, at 100 m height (first row of wind turbines). The line is the binned mean
power. The error bars represent the standard deviation in 0.5 m/s wind speed bins.

4. Results

We assess the predictive performance of the RF model in terms of single point and probabilistic
forecasts. Five-minute ahead predictions of power from the wind turbines of the first row and its
aggregation are evaluated. The forecasting skill of the RF model is compared with the benchmarks
persistence and climatology, which are described below. An analysis of the influence of the radar
spatial availability on the performance of the RF model is also included.

4.1. Probabilistic Forecast Evaluation

To evaluate our probabilistic forecast, we follow Gneiting guidelines [35]. A probabilistic forecast
aims at maximizing the sharpness of the predictive distributions under the constraint of calibration.
Sharpness refers to the spread of the predictive distributions and is only a property of the forecasting
variable. Calibration, however, is a joint property of the forecasts and observations and indicates
the statistical consistency between the predictive distributions and the observed values. To evaluate
the skill of the RF model we compare its sharpness and calibration with the probabilistic version
of persistence and the climatology benchmarks. Climatology is the most common benchmark to
assess climatological variables and can be understood as the average of the variable during a long
period. Here, we define the climatology distribution as the probability distribution of all available
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SCADA power measurements. We derive the persistence distribution, defined in Section 3.1.1, using
the persistence point forecast and the 19 most recent consecutive observed values of the persistence
error, as described in [36].

4.1.1. Individual Wind Turbine Power

The overall performance of the predictive power densities of the seven wind turbines is assessed
with the CRPS, previously defined in Section 3.1.1, but in this case using power. CRPS addresses
both calibration and sharpness. Due to the reduced availability of time stamps with simultaneous
measurements for the seven wind turbines, we first explore the results for all measurements available
for each wind turbine. The respective results are given in % of nominal power Pn (Table 1, upper row).
In general, the CRPS of the predictions with the RF model for individual wind turbines outperforms
persistence and climatology. When evaluating the predictions made with the climatology and
persistence models, a similar CRPS is found for each wind turbine, except for WT1 which shows a
worse performance in general. We assume that these differences stem from the different operational
behaviour of the wind turbines. In contrast to the benchmarks, the CRPS of the RF model shows higher
variability among the wind turbines. Wind turbines WT1 and WT7 show higher CRPS values than the
other wind turbines whilst WT3 performs best. Figure 10 depicts a one-hour episode of the RF model
of power for WT3 together with the observed power. As stated before, the forecast is generated every
minute. A strong decrease of power during the first half hour of the event is shown, which is properly
captured by the RF model. To assess all wind turbines equally, we reduce the number of samples to the
periods where all wind turbines operate simultaneously (Table 1, lower row) and there are available
forecasts (T = 343). In general, RF is more skillful than persistence, except for WT1.

Table 1. Average continous ranked probability score (CRPS), in % of the nominal capacity (Pn), of the
five-minute ahead power forecasts for the seven wind turbines evaluated. Results are shown for the
remote sensing-based forecast (RF), persistence and climatology benchmarks. Upper row presents the
results for all available measurements (T) of each wind turbine. Lower row provides the results for all
simultaneous available measurements. Minimum values are shown in bold.

WT1 WT2 WT3 WT4 WT5 WT6 WT7

T 596 903 997 983 960 846 608

RF 5.11 4.06 3.92 4.57 4.50 4.29 4.82
CRPS [%] Persistence 5.37 4.98 5.04 5.07 4.96 4.88 4.85

Climatology 17.93 17.45 17.32 17.15 17.07 16.96 16.79

T 343 343 343 343 343 343 343

RF 6.42 5.03 4.83 5.27 4.76 4.39 4.76
CRPS [%] Persistence 6.12 5.79 5.63 5.76 5.76 5.85 5.91

Climatology 16.78 16.31 15.58 15.37 15.32 15.03 14.94

When assessing calibration of predictive densities, the use of quantile–quantile reliability diagrams
is recommended [41]. In a reliable probabilistic forecast model, x% of the observations should be below
the xth percentile of the distributions, as in the diagonals of Figure 11. However, the sample size of
the evaluated forecast strongly influences the reliability of the diagrams, and even if the forecasts are
highly reliable, a reduced sample size can lead to a reliability diagram deviating from the diagonal.
Therefore, 95% consistency bars are generated following the work of Bröcker and Smith [42]. Here,
we evaluate the predictions in quantile intervals with steps of 5%. Climatology is not represented since
it has perfect reliability when evaluated over the whole sample set, as predictive densities are directly
derived from the observations.
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Figure 10. A 60 min episode of five-minute ahead predictions of normalised power for WT3 with
the remote sensing-based forecasting model (RF). Prediction intervals are shown together with the
observed power (red squares).

Figure 11a illustrates the reliability diagram of the RF model for the seven wind turbines of the
first row, considering all available measurements. In the legend, the number of periods evaluated
for each wind turbine (T), along with the average number of DD wind field vectors used to derive
the predictive densities (N) is included. Wind turbines WT3, WT4 and WT5 show reliable forecasts,
as their reliability diagrams are close to the diagonal and most of the evaluated quantiles fall within the
confidence intervals. In Figure 11b, the reliability diagram of the seven wind turbines when forecasted
with the persistence method is depicted. The persistence method shows a poor calibration since nearly
18% of the observations are below the 5% quantile, while only around 88% of the observations are
below the 95% quantile. In addition, over half of the evaluated quantiles do not lie within the 95%
intervals around the diagonal. Contrary to the RF method, little differences are found among the
reliability of the seven wind turbines. Figure 11c,d illustrate the previous reliability diagrams but
limiting the analysis to simultaneous periods. In the case of the RF model, WT1, WT2, WT6 and WT7
also highly deviate from the diagonal, while the central wind turbines show a consistently reliable
performance. Again, little differences are found among the seven wind turbines for the persistence
model, but a generally worse performance than the the RF model is distinguished for wind turbines
WT3, WT4 and WT5.

These results allow us to infer that the reliability of the RF model is not directly affected by the
reduced sample size of the evaluation set, but by the individual position of each wind turbine within
the radar measurement domain. Indeed, the fact that WT3, WT4 and WT5 lie closer to the center of
the radar image and have a larger area from which the wind vectors can be advected to the target
wind turbine, results in a more skillful forecast for those wind turbines. This hypothesis is further
investigated in the following subsection by limiting the spatial availability of the radar measurements.

4.2. Analysis on Limited Radar Availability

Here, we conduct a further analysis of the probabilistic performance of the RF model for individual
wind turbines, relating the spatial coverage of the radar scan to the inflow area of each wind turbine,
where potential wind vectors can originate from.
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Figure 11. Reliability diagram for all wind turbines (WTs) during available measurements (T) for (a)
the remote sensing-based forecasting model (RF) and (b) persistence model, simultaneous periods for
(c) the RF and (d) persistence model, a reduced radar availability case for (e) RF and (f) persistence
model and (g) the aggregation of WT1 to WT7 and (h) WT3 to WT5 for both models. N indicates
the average number of wind field vectors conforming the wind speed distributions of the RF model.
In addition, 95% consistency bars are indicated by the error bars.
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Figure 12a depicts the wind speeds that could be observed by each wind turbine for a given
south–south westerly direction, setting a forecasting horizon of five minutes. As it can be seen,
the turbines in the center have an advantageous positioning within the radar scan, as the range of
wind speeds that can be observed is larger than that of the outer wind turbines. To test the hypothesis
that the position of the wind turbines with respect to the radar domain influences the reliability of
the RF model, we conduct a further experiment. Data measured in the furthest section of the radar
domain (dark gray are in Figure 12b) are discarded, as if the radars no longer measure that section.

Figure 12. Wind speeds to be forecasted at the wind turbines (white dots) for a horizon of five minutes,
a south-southwesterly wind direction and the radar available distance for (a) full radar availability;
(b) limited radar availability.

The results for the probabilistic forecast are presented in Table 2. Regarding the overall skill,
the RF performs better than the benchmarks in all WTs except for WT1.

Table 2. Average continous ranked probability score (CRPS) of five-minute ahead forecasts of power
for the seven wind turbines evaluated, in the case of a reduced radar availability (Figure 12b). Results
(in % of the nominal capacity (Pn)) are shown for the remote sensing-based forecasting (RF) model,
persistence and climatology benchmarks.

WT1 WT2 WT3 WT4 WT5 WT6 WT7

T 162 162 162 162 162 162 162

RF 5.09 3.75 3.45 4.25 3.91 3.49 3.99
CRPS [%] Persistence 4.58 4.56 4.41 4.84 4.10 3.75 4.36

Climatology 20.73 19.86 19.19 18.83 18.51 17.97 17.57

As for the calibration, Figure 11e shows the reliability diagram for the RF model, in the case of
having a reduced radar spatial coverage. It can be seen that the reliability of wind turbines WT3, WT4
and WT5 strongly decreases when the radar available area is reduced. Furthermore, the reliability
of the other wind turbines is almost unchanged. For persistence (Figure 11f), small differences are
found among the wind turbines, but here the reduced sample size analysed (T = 162) also influences
the calibration.

4.2.1. Wind Farm Row Aggregated Power Output

In this section, we evaluate the probabilistic forecast for the average aggregated power produced
by the wind turbines. The aggregated power is calculated adding the power distributions of the wind
turbines using again a bootstrap resampling technique. Here, we evaluate the aggregated power of
the seven wind turbines (P17) and the aggregation of the central wind turbines WT3 to WT5 (P35).
The average aggregated power for both cases is given below:
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P17 =
1
7

7

∑
i=1

Pi and P35 =
1
3

5

∑
i=3

Pi. (5)

Table 3 summarizes the results for the aggregation of the wind turbines WT1 to WT7 (P17) and
WT3 to WT5 (P35). The RF model has the lowest CRPS when evaluating the aggregation in both cases.

Table 3. Average continous ranked probability score (CRPS), in % of the nominal capacity (Pn),
for the five-minute ahead predictive densities of aggregated power of different sets of wind turbines.
T indicates the sample size evaluated. Minimum values are shown in bold. Results are shown for the
remote sensing-based forecasting (RF) model, persistence and climatology benchmarks.

P17 P35

T 340 902

RF 4.19 3.87
CRPS [%] Persistence 4.98 4.75

Climatology 15.51 16.61

Regarding reliability, the quantile–quantile reliability diagram of the RF model for P17 (Figure 11g)
performs worse than the probabilistic extension of persistence. We attribute this results to the fact that
there are large differences in the RF model for the seven wind turbines, as mentioned in Section 4.1.1.
As WT3, WT4 and WT5 are located at a more favourable position in the radar scanned area, in terms of
inflow measurements coverage for the prevailing south–southwesterly direction, we further evaluate
the aggregation of power considering only those wind turbines. Figure 11h depicts the reliability
diagram of the RF model for the aggregation of wind turbines WT3 to WT5. In this case, the RF model
is better calibrated than that of the P17 case, and presents even a better performance than persistence.
However, in all cases reliability diagrams fall outside of the confidence intervals and it is clear that
further work needs to be conducted to increase the reliability of the RF forecasts. However, given that
spatio-temporal correlations among wind turbines can not be neglected, a different method to generate
confidence intervals should be considered to draw more solid conclusions about the reliability of the
evaluated methods for aggregated wind power.

4.3. Evaluation of Single Point Predictions

In this section, we evaluate the performance of single point or deterministic forecasts of wind
power for individual and aggregated wind turbines and compare them with the persistence and
climatology benchmarks. As stated before, the classical persistence reference forecast is a naive
predictor, since it assumes that there is no change in the predicted variable. For climatology, we use the
mean of the climatology distributions previously defined. Given that our target evaluation score is the
RMSE of the produced power, we use the mean of the predictive density as the single point forecast.

4.3.1. Individual Wind Turbine Power

Table 4 compares the normalised root-mean-square error (NRMSE) of the five-minute ahead
power predictions based on the RF model with persistence and climatology for the first row of wind
turbines. The metric is normalised with the nominal power of the wind turbines. We show the results
considering all periods available for each wind turbine. In four of the seven wind turbines, the NRMSE
of the RF model is lower than that of the persistence method. For WT1 and WT7, persistence is better.
For WT4, small differences between RF and persistence are found.
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Table 4. Normalised root-mean-square-error (NRMSE), in % of the nominal capacity (Pn), of the
five-minute ahead forecasts for the seven turbines of the first row. T indicates the number of periods
evaluated. Minimum values are shown in bold. Results are shown for the remote sensing-based
forecasting (RF) model, persistence and climatology benchmarks.

WT1 WT2 WT3 WT4 WT5 WT6 WT7

T 596 903 997 983 960 846 608

RF 10.06 7.90 7.70 8.93 8.50 8.16 9.06
NRMSE [%] Persistence 9.40 8.54 8.68 8.89 8.81 8.49 8.80

Climatology 31.34 30.39 30.13 29.84 29.66 29.49 29.19

The way the RF model is able to anticipate strong variations of wind power, given by sudden
changes in the flow can be clearly illustrated by exploring some interesting events. Figure 13 shows
an episode of nearly 45 min of observed and predicted power for the wind turbines WT1 and WT6
together with the radar images at two time instants. On the left scan, a relatively homogeneous wind
field is approaching the wind turbines in the first row, with slightly lower wind speeds in front of WT1
and WT2. Only five minutes later, higher wind speeds are experienced close to wind turbines WT6
and WT7, where two elongated streaks hit those wind turbines. This second period can be clearly
identified in the time series at the bottom of Figure 13, where WT6 produces nearly double the power
than WT1. The upcoming coherent structures can be observed in the top left image, in front of WT6.
This episode highlights the importance of using observations for very short-term forecasting. A naive
model such as persistence will predict the arrival of the increase in power for WT6 with a delay of
five minutes.

Figure 13. (Top) two radar observed wind fields about five minutes apart; (Bottom) time series of
power produced and predicted with the remote sensing-based forecasting (RF) model for the wind
turbines WT1 and WT6. Grey lines indicate the two timestamps above the top panels.
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In Table 5, the results for the single point prediction, in the case of having a reduced radar
availability are also listed. In this case, the limited radar domain spatial availability results in the RF
model performing worse than in the case of having a full spatial radar availability.

Table 5. Normalised root-mean-square-error (NRMSE), in % of the nominal capacity (Pn), of five-minute
ahead forecasts for the seven turbines of the first row, for the case of a reduced radar availability
(Figure 12b). Results are shown for the remote sensing-based forecasting (RF) model, persistence and
climatology benchmarks.

WT1 WT2 WT3 WT4 WT5 WT6 WT7

T 162 162 162 162 162 162 162

RF 10.09 7.35 6.83 8.89 8.01 7.09 8.01
NRMSE [%] Persistence 8.02 7.89 7.48 8.74 7.86 6.93 8.56

Climatology 35.49 34.15 33.08 32.51 32.04 31.00 30.51

4.3.2. Wind Farm Row Aggregated Power Output

Table 6 comprises the NRMSE for the case of aggregated power. The RF model exhibits the lowest
NRMSE compared to climatology and persistence for both aggregated cases, P17 and P35. In the case
of the aggregation of wind turbines WT3 to WT5, persistence is also a competitive model.

Table 6. Normalised root-mean-square-error (NRMSE), in % of the nominal capacity (Pn),
for five-minute ahead forecasts of average aggregated power. Results are shown for the remote
sensing-based forecasting (RF) model, persistence and climatology benchmarks.

P17 P35

T 340 902

RF 8.02 8.19
NRMSE [%] Persistence 8.50 8.22

Climatology 26.24 28.88

5. Discussion

In the current section, we discuss further uses of Doppler radar observations for wind power very
short-term forecasting and address the limitations found in our proposed methodology.

5.1. On Further Use of Doppler Radar Measurements for Wind Power Forecasting

Doppler radars, like the ones used in the BEACon project, can measure up to 32 km, covering
an area of more than 100 km2, which is in line with the size of modern offshore wind farms.
Radar measurements covering the whole wind farm, such as the ones presented here, are very valuable
to understand the turbine-to-turbine interaction. However, when it comes to forecasting wind power,
the radars’ spatial coverage strongly influences the predictions. In the present case, an unfavourable
scan geometry, with respect to the inflow area upstream of the outer wind turbines in the first row,
resulted in degraded power predictions compared to the wind turbines positioned in the centre.

Therefore, an operational wind power forecasting system based on Doppler radar measurements
should be configured with the aim of covering a sufficiently wide upstream area. As wake effects will
influence the performance of downstream wind turbines, predictions of time series of the accumulated
power of a whole wind farm are not straightforward. Both the power of the individual wind turbines,
as well as the propagation of transient wind fields inside the wind farm, will strongly depend on
the local dynamics and inhomogeneity of the wind farm flow. Further investigations are required to
establish a suitable forecasting methodology. One approach might be to limit wind speed forecast to the
first row of wind turbines (according to the prevailing wind direction). Additionally, turbine-to-turbine
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predictions of wind power accounting for wake losses could be used to predict the whole wind farm
power generation.

One example time series demonstrated the ability of the radars to predict coherent structures
affecting “locally” the power of individual wind turbines, which is beyond the current capabilities of
commonly-used statistical methods for very short-term predictions. In a similar manner, it should be
possible to probabilistically describe the effect of strong and fast changes in wind speed or direction,
which cause wind power ramp events. Those crucial situations require risk-based decisions to be
made, and there lies the importance of using a probabilistic approach. Given the current limitations
of forecasting ramp events with NWP [43] and statistical [44] methods, radars could serve as a tool
for detecting those extreme events. The maximal range of the BEACon radars (32 km) could detect a
strong weather front of high wind speed (20 m/s) and give enough time for end-users to react.

As Doppler radars measure with a high temporal and spatial resolution, tracking techniques
could also be applied to determine the vorticity and diffusion of identified patterns, extending the
available information to determine the future position of the wind field vectors or wind coherent
structures. Additionally, vertical information from the radars could be used to better describe gusts
and lulls. Following this line, radar measurements at multiple heights could be used to derive a rotor
equivalent wind speed which extends to the whole rotor plane and, unlike the hub height wind speed,
accounts for the shear.

5.2. On Extension of the Forecasting Horizon

Due to the setup of the experiment and the prevailing south-westerly direction of the analysed
data set, the wind field could only be evaluated over a relatively short distance of 5 km limiting
the prediction horizon to five minutes. However, the long measurement range and the high spatial
and temporal resolution of the used Doppler radars of up to 32 km should enable longer lead times
on the order of 10 to 15 min as well. In principle, the proposed methodology should be capable of
such horizons.

The proposed methodology is based on the advection of the wind field vectors with their
respective motion, i.e., the persistence of their trajectories. Despite the promising results presented in
this work, the question remains whether such assumption could be considered for longer horizons,
increased turbulence, different types of stratifications, ramp events, strong veering or complex terrains.
Based on our understanding, using a probabilistic approach should be able to include some (if not all)
related uncertainties.

5.3. On Data Quality

One limitation of remote sensing prediction models is the uncertainty associated with the
observations. Forecasting wind power based on wind speed observations introduces a new source
of uncertainty. In this work, we overcome this problem by using a power curve based on the local
dual-Doppler observations and the observed SCADA data that could, systematically, remove any
bias introduced from the different type of measurements used to derive power curves. In a similar
way, hybrid models using the radar observations and correcting for time-dependent errors should
be explored.

Finally, reduced availability of data is a limitation inherent in remote sensing measurements,
as the quality of those measurements highly depends on the meteorological conditions. In this regard,
solutions for using Doppler radars in non-optimal meteorological situations need to be explored.
Emphasis should be put on using data assimilation techniques, where observations are fed into
statistical methods or NWP models, as such methods have shown to be improved when combined
with real observations [45,46].
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6. Conclusions

This paper investigated the use of DD radar observations to derive deterministic and probabilistic
forecasts of wind power in a very short-term horizon of five minutes. An advection Lagrangian
persistence technique was introduced to determine the predictive densities of rotor wind speed. In a
case study, the proposed methodology was used to forecast the power generated by seven wind
turbines in the North Sea, during free-flow conditions. The five-minute ahead predicted mean wind
speeds corrected for induction effects showed a high degree of correlation with the observed DD wind
speeds 2.5D upstream of the wind turbines. The predicted wind speeds densities were transformed
into power densities by using a probabilistic power curve. We compared the proposed probabilistic
forecast of wind power with the benchmarks persistence and climatology. Our results have shown the
superiority of the remote sensing-based forecasting model regarding overall forecasting skill. However,
a large spatial radar coverage of the inflow of a wind turbine is necessary to generate reliable density
forecasts. The results have also proven that upstream remote sensing observations are especially
crucial to detect strong changes in wind power, as shown in an example of a fast and strong predicted
increase in power. Based on our results, a DD radar-based forecast might have a positive impact on the
integration of offshore wind power into the grid.

Future works should be devoted to forecast the power produced of the whole wind farm,
including wake effects, and to detect ramp events where the wind speed and direction changes
rapidly. In addition, it is considered promising to further analyse DD radar measurements to enable
the extension of the forecasting horizon and to improve the wind power predictions for different
meteorological conditions.
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ecd f Empirical cumulative distribution function
RF Remote sensing-based forecast
PRF

i Predictive densities of power
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i Predictive densities of wind speed
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Abstract: An offshore wind measurement campaign using vertical light detection and ranging
(LiDAR) devices was conducted at the Hazaki Oceanographic Research Station (HORS) as part of an
investigation into determining the optimal distance from the coast for a nearshore wind farm from
a meteorological perspective. The research platform was a 427 m long pier located on a rectilinear
coastline on the Pacific coast of the central Honshu Island in Japan. The relationship between the
ratios of the increase of wind speed near the surface and fetch length within 5 km of the coast was
analyzed via LiDAR observations taken at heights from 40 to 200 m. The results showed that the
speed of the coastal wind blowing from land to sea gradually increased as the fetch length increased,
by approximately 15–20% at 50 m above sea level around a fetch length of 2 km. Moreover, empirical
equations were derived by applying the power law to the relationship between the increase of wind
speed and fetch lengths at 1–5 km, as obtained from the LiDAR measurements. It was also found
that the wind speed increase at a 2 km fetch length was equivalent to the effect of a 50–90 m vertical
height increase on the coast in this region.

Keywords: coastal wind measurement; vertical Light Detection and Ranging; NeoWins; fetch effect;
Hazaki Oceanographical Research Station; empirical equation

1. Introduction

As part of efforts to obtain additional offshore wind observations for the New Energy and
Industrial Technology Development Organization, the Offshore Wind Information System (NeoWins)
project [1], a coastal wind measurement campaign using light detection and ranging (LiDAR) was
conducted from October 2015 to December 2016 at the Hazaki Oceanographic Research Station
(HORS) [2] operated by the Port and Airport Research Institute in Japan’s Ibaraki Prefecture
(see Figure 1). The observations obtained from the measurement campaign were used to evaluate the
accuracy of 500 m grid offshore wind simulations using the mesoscale meteorological model Weather
Research and Forecasting (WRF) version 3.6.1 [3], which was employed to create a new Japanese
offshore wind atlas.

Mesoscale meteorological models are useful for offshore wind resource assessments [4].
However, some previous studies [5–7] have shown that offshore winds simulated by WRF near
the coast, where offshore wind farms are likely to be located in Japan in the near future, are less
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accurate than those simulated over the open ocean. Therefore, the authors have recently focused on
the horizontal wind speed gradient near the coast to improve the WRF offshore wind simulation in this
location. In addition to the LiDAR over the sea on the HORS research platform, another LiDAR was
deployed on land to investigate coastal wind modifications, which is known as the fetch length effect,
by comparing the onshore and offshore LiDAR observations. Because the performance of mesoscale
models for the fetch length effect has yet to be thoroughly studied, and there were almost no suitable
observations for the investigation, the authors believed that focusing on the fetch effect with LiDAR
measurements would provide a means for enhancing the accuracy of coastal wind simulations with
mesoscale models.

 
(a) Location and orientation (b) Aerial photograph 

Figure 1. (a) Location and orientation and (b) aerial photograph of the Hazaki Oceanographic Research
Station (HORS) research platform.

The fetch length effect in coastal environments has already been extensively studied in the field
of coastal engineering. For example, Hasselmann et al. (1973) [8] investigated the relationship
between the fetch length and the evolution of the wave spectrum in the Joint North Sea Wave
Project, a comprehensive wind wave measurement campaign. They observed the atmospheric and
oceanographic parameters for the distance from 2 to 160 km at a site on the Danish coast. From the
results of this comprehensive measurement campaign, equations for describing wave characteristics
such as wave height and peak spectral period were derived [9].

As well as wind waves for coastal engineering, several studies [10–16] have considered the
implications for wind energy applications of the relationship between the wind speed and fetch
length over the sea by comparing wind speeds measured onshore and offshore. According to these
observational studies, onshore wind speeds increased between 5% and 45% over long marine fetch
lengths. However, the increase in wind speed over fetch lengths less than a few kilometers, which are
relevant for nearshore wind farm developments, has not been investigated, primarily due to the lack
of suitable in situ observations available for such analyses.

The results of previous studies based on in situ observations were reviewed in Barthelmie and
Palutikof (1996) [15]. Since the fetch effect depends on local conditions, such as the topography,
land use, measurement height, and atmospheric stability, large variations in the relationship between
the fetch length and wind speed can be found in these previous studies. For example, Sethuraman and
Raynor (1980) [12] showed a wind speed increase of 10–15% at a 5 km fetch length near the sea surface,
whereas Lindley et al. (1980) [11] suggested that at a height of 100 m wind speed increases of 5% and
12% are possible for fetch lengths of 7.5 and 20 km, respectively.

Recently, a comprehensive near-shore wind measurement campaign using a total of nine LiDAR
systems (three scanning LiDARs, two LiDAR buoys, and four vertical LiDARs) was conducted at a site

223



Remote Sens. 2018, 10, 1408

on the Danish coast as part of the Reducing Uncertainty of Near-shore wind resource Estimates (RUNE)
experiment [17]. A RUNE experiment report [18] introduced the horizontal wind speed gradient,
which is an index reflecting the fetch effect. During the RUNE experiment, the prevailing winds were
strong westerly winds moving from sea to land. The horizontal wind speed gradient that was expected
to be dependent on the distance from the shore was largely absent, because an insufficient amount of
wind blew from land to sea during the three-month measurement campaign.

In this paper, the authors explain their attempt to explore the increase in wind speed as a function
of the fetch length by means of a simple measurement setup using just two vertical LiDARs located
on the HORS research platform. From this measurement campaign, they obtained vertical onshore
and offshore wind profiles for approximately six months. After analyzing these LiDAR observations,
they estimated an optimal coast-to-wind-farm distance from a meteorological perspective, which they
believe will be useful for planning nearshore wind farm developments. The authors also believe that
the results from these LiDAR observations could provide a useful benchmark dataset for improving
the accuracy of numerical models.

2. Experimental Setup

The measurement setup, shown in Figure 2, is a 427 m long pier constructed at a height of 7 m
above sea level (ASL) at the HORS research station. Since this research platform was originally
established for studies of coastal engineering, it has observed atmospheric and oceanographic
parameters for more than 30 years. During the measurement campaign, two vertical profiling LiDAR
devices were deployed on the pier. Vertical wind speed profiles at heights of 40 to 200 m from the
LiDAR installation level were measured at 20 m intervals with two Windcube V1 units, for which
detailed specifications can be found in the literature [19]. One Windcube WLS7-86 (hereafter referred to
as LiDAR #1) was attached at the seaside end of the pier, and the other Windcube WLS7-78 (LiDAR #2)
was located on the roof of a 3.5 m tall observational hut located at the landside end of the pier. The two
LiDAR devices were exactly 400 m apart. Air temperature at 7 m ASL and seawater temperature at
a depth of 2 m were observed at the halfway point of the pier, and they were used to evaluate the
atmospheric stability during the measurement campaign.

 

Figure 2. Experimental setup.

Figure 3 describes the topography and land use in the area surrounding of the HORS research
platform; the figure covers an area of 20 km × 20 km. The topography distribution is based on
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the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation
Model [20], which has a spatial resolution of 30 m, and the land use distribution is based on a 100 m
resolution land use map provided by the government of Japan [21]. The terrain in this region, which is
located outside a sparsely populated industrial area, is flat. Since this section of the coastline is
rectilinear, the research platform provides ideal conditions for investigating variations in wind speed
related to the fetch length effect. For example, categorizing onshore (land to sea) or offshore (sea to
land) winds based on wind direction is frequently applied in coastal wind analysis, but it is difficult
to accomplish this in regions with complex coastlines. Due to the straight coastline running from
150◦ to 330◦ at the HORS research platform, the authors could clearly distinguish between onshore or
offshore winds.

HORS 

Figure 3. (a) Topography and (b) land use around the HORS research platform.

It is to be noted that some winds observed by both LiDARs, blowing from between 165◦ and
215◦, were influenced by nearby 1.25 MW wind turbines, which have hub heights of 64.5 m. Since the
wind turbines have rotor diameters of 62 m and are built about 5 m above ground level, observations
between 40 and 100 m ASL might be significantly influenced by these wind turbines. As a result,
the authors categorized the winds with wind directions between 335◦ and 145◦ as offshore winds
(sea to land), winds with directions between 165◦ and 215◦ as turbine wakes, and winds with directions
between 215◦ and 325◦ as onshore winds (land to sea).

Measurements using the two vertical LiDAR devices began in March 2016. Prior to the actual
measurement campaign, LiDAR #2 was located at the seaside end of the pier for two weeks to
investigate the instrumental differences between the two LiDAR systems. Comparisons of 10 min
mean wind speeds and wind directions at a height of 100 m above the pier for the period of 7–21 March
2016 are shown in Figure 4. The LiDAR devices used in the measurements output both instantaneous
values at intervals of a few seconds and 10 min statistics. In this study, 10 min statistics of average and
standard deviation were used. Since the LiDAR data acquisition ratio, which is generally associated
with data reliability, depended on the atmospheric conditions, the authors used only observations
where the ratio exceeded 30% for 10 min.

In Figure 4, the number of samples, average, bias, root mean square difference (RMSD) and
coefficient of determination R2 are also described. Although the data acquisition ratio slightly decreased
as the height increased, it was found that the differences between the two instruments were negligibly
small. The wind speeds and wind directions had biases of 0.01 m/s and 1.08◦, respectively. In addition,
they had determination coefficients of more than 0.999. Namely, the authors could confirm that the
observed wind speeds contained no unreasonable offsets that might lead to a misinterpretation of the
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measured data. After this comparison, the measurement campaign started on 23 March 2016, and it
concluded on 30 September 2016.

Figure 4. Comparison of (a) wind speed and (b) wind direction from light detection and ranging
(LiDAR) #1 and LiDAR #2 at a height of 100 m above the pier for the period of 7–21 March 2016.

3. Results and Discussion

Figure 5 shows the timeseries of 10 min wind speed observations for LiDAR #1 and LiDAR #2 at
100 m above the LiDAR installation level during the whole measurement campaign. As seen in the
figure, LiDAR #1 observations for July 2016 are missing, which is attributable to a problem with an
electricity supply failure associated with the high air temperature. Overall, LiDAR #1 data availability
during the whole measurement period was 81.6% for 100 m and 70.0% for 200 m. The timeseries of
wind directions is also shown in Figure 6. When the observed winds were categorized by the sectors
based on the LiDAR #1 wind direction at a height of 100 m, wind results of 59.3%, 25.4%, and 9.0%
were recorded for offshore (sea to land), turbine wake, and onshore (land to sea) winds, respectively.

 

 

Figure 5. Timeseries of 10 min wind speeds at a height of 100 m for (a) LiDAR #1 and (b) LiDAR #2 for
the period 22 March to 30 September 2016.

226



Remote Sens. 2018, 10, 1408

 

Figure 6. Same as Figure 5, but for wind directions.

The differences between the air and seawater temperature shown in Figure 7 indicate that neutral
to stable atmospheric stability conditions prevailed during the measurement period of spring to
early autumn. The wintertime seawater temperature is usually higher than air temperature in this
region, and vice versa for spring to summer. The fetch effect depends strongly on the atmospheric
stability [16], but because the period of the measurement campaign did not cover the winter months
with their expected dominance of unstable conditions, an analysis of the dependence of the fetch effect
on stability was not part of this study.

 

Figure 7. Comparison of 10 min mean air temperature on the pier and seawater temperatures at a
depth of 2 m for the period of January to October 2016 at the HORS research platform.

The two LiDAR observation datasets, when visualized, show no obvious significant differences,
especially when basic wind climate statistics, such as the average or occurrence frequency,
are compared. Figures 8 and 9 show the occurrence frequencies and wind roses at 100 m above
the LiDAR installation level for the period of March to September 2016. The Weibull scale parameter
A and shape parameter k are described in Figure 8. In addition, the occurrence frequency at wind
speeds greater than 20 m/s is also depicted in the insets in Figure 8. The maximum 10 min wind
speeds for LiDAR #1 and LiDAR #2 were 30.4 m/s and 31.1 m/s, respectively, and the occurrence of
wind speeds greater than 20 m/s due to extreme events such as typhoons was less than 1% during the
measurement period.

Overall, the differences in the occurrence distributions for wind speed and wind direction between
the two LiDAR devices, which were only 400 m apart, were small. However, interesting characteristics
could be found in the instantaneous values of the wind speed ratios, especially for some wind directions.
Accordingly, the authors will now focus on the wind speed ratio between the LiDAR observations.

227



Remote Sens. 2018, 10, 1408

It is to be noted that, since there was a 3.5 m height difference between the LiDAR installation levels
due to the building height, 10 min averages were vertically interpolated onto the same levels before
the analysis was carried out using a logarithmic function to calculate the wind speed ratio at the
same levels.

 

Figure 8. Comparison of occurrence frequency of 10 min wind speed for LiDAR #1 and LiDAR #2 at a
height of 100 m from the LiDAR installation levels.

Figure 9. Comparison of wind roses for LiDAR #1 and LiDAR #2 at a height of 100 m from the LiDAR
installation levels.

The wind speed ratio for LiDAR #1 to LiDAR #2 at 50 m ASL, as a function of wind direction,
is shown in Figure 10. The bin-average and standard deviation were calculated at 5◦ intervals and then
plotted in red for the 10 min values. The 10 min data for calm wind conditions, which corresponded
to wind speed less than 2 m/s, were excluded from this analysis. In the figure, two peaks with
bin-average ratios of approximately 1.15 to 1.2 can be seen around wind directions of 155◦ and 325◦,
which nearly coincide with the coastline. For these directions, winds measured by LiDAR #1 on the
pier top had long marine fetch lengths, whereas those measured by LiDAR #2 were entirely onshore
winds. This result suggested that the fetch length effect could increase the offshore wind speeds by up
to 15–20% when they travelled over water at 50 m ASL. In contrast, the small ratios seen at around
200◦ might be attributable to the wake from the nearby 1.5 MW wind turbines.
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Figure 10. LiDAR #1 to LiDAR #2 wind speed ratios at 50 m above sea level (ASL) as a function of
wind direction. Only LiDAR #2 wind speeds greater than 2 m/s were used in the analysis.

Considering the shape of the straight coastline, the fetch length effect should be approximately
symmetrical in the figure. However, the wind speed ratios around 155◦ were slightly higher than
those around 325◦. This asymmetry might be attributable to the contamination of the wake effect at
LiDAR #2 from the nearby wind turbine. The LiDAR #2 observations between 140◦ and 175◦ might
be impacted by the wind turbine at a direction of 170◦, since LiDAR #2 was located only 370 m away
from the wind turbine. As a result, the fetch effect around 155◦ may be enhanced by the wake effect
for LiDAR #2.

The strength of the wake and fetch effects was found to depend significantly on height when
the same relationships were illustrated with the LiDAR observations at different heights. Figure 11
shows the same relationships as Figure 10, but the relationships for all heights are depicted because,
in this figure, the authors considered the height dependency of the wake and fetch effects. Figure 11
shows that the variations of the wind speed ratios dependent on wind directions found at 50 m ASL
became ambiguous as the height increased. The wake effect around a direction of 200◦ disappeared for
heights above 130 m. Moreover, the increase in wind speeds around wind directions of 155◦ and 325◦,
which might be associated with the fetch length effects, ultimately declined to a few points at 207 m
height ASL.

Figures 10 and 11 already suggest the maximum range of an increase of the wind speed due to
the fetch effect within the surface layer near the coast, but the results are insufficient for understanding
the relationship in detail. Thus, the authors converted the relationships between wind direction and
wind speed ratio into fetch length and wind speed by taking into account the characteristics of the
research platform. As mentioned above, since the region where the HORS research platform is located
on a rectilinear coastline, the fetch length at the top of the pier can be defined simply as a function of
wind direction θ as follows:

Fetch(θ) = Lpier/cos(θ − θpier − 180◦), (1)

where Lpier and θpier are the pier length of 400 m from the shore and the heading angle of 59◦,
respectively. Although the pier is only 400 m long, the fetch length effect for a few kilometers
can be analyzed when the characteristics of the site’s rectilinear coastline are considered.
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Figure 11. Bin-averaged LiDAR #1 to LiDAR #2 wind speed ratio as a function of wind direction at
heights of 50, 70, 90, 110, 130, 150, 170, 190, and 207 m ASL.

The wind speed ratio for LiDAR #1 to LiDAR #2 at 50 m ASL as a function of fetch length is
shown in Figure 12. The bin width is 100 m. As can be seen in the figure, the wind speed ratio drops
twice at fetch lengths of 500 m and 700 m due to the wind turbine wake effects, and then increases
monotonically for fetch lengths of 700 to 1100 m. Moreover, it continues to increase slightly to 1.2 at a
fetch length of 1900 m, after which the gradient of the variation appears to be moderate.

 

Figure 12. Wind speed ratio as a function of fetch length at 50 m ASL.

From this figure, one can see some interesting features with respect to the fetch length effect. It is
difficult to discuss the fetch length effect at 600 m and 800 m, since the wind speeds from LiDAR #1,
which was located at the seaside end of the pier, are disturbed by the nearby wind turbines. However,
at 400 m, there is no wake effect for both LiDAR #1 and LiDAR #2, since it corresponds to the direction
along the pier. Therefore, this might imply that the fetch effect needs some distance to appear, and the
distance would be more than 400 m from the shore at a height of 50 m. Moreover, the wind speed
at 50 m increased by up to 1.2 times while traveling over 2 km of water, and the fetch length effect
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appears to become less pronounced at distances exceeding 2 km. These results could provide a limit
for the optimal distance for nearshore wind farms.

The relationships for the ratio of turbulence intensity, which is the standard deviation of wind
speed for 10 min normalized by the mean value, are shown in Figure 13. Note that because it is difficult
to adjust the height difference in the standard deviation, there is a 3 m height difference between the
LiDAR #1 and LiDAR #2 values. Generally speaking, offshore winds have less turbulence than onshore
winds. As shown in the figure, the turbulence intensity decreases rapidly as the fetch length reaches
about 2 km. Additionally, much like the wind speed ratio shown in Figure 12, the ratios of turbulence
intensity at fetch lengths of more than 2 km also become almost constant. These results indicated that
the transition from onshore to offshore winds might occur within a few kilometers of the coast for flat
terrain without forests and settlements.

 

Figure 13. Ratios of turbulence intensity between LiDAR #1 at 47 m and LiDAR #2 at 50 m ASL as a
function of fetch length.

Although there have been large variations in the fetch length effect in previous studies, a similar
result to Figure 12 can be found in Barthelmie et al. (1996) [13]. They showed that onshore wind speeds
at 38 m could increase by up to approximately 20% at a distance of 1630 m by comparing onshore
and offshore met mast observations from the Vindeby project [22]. Moreover, they also analyzed the
wind speed increase ratio using the Wind Atlas Analysis and Application Program (WAsP) model [23],
which is a frequently used application for analyzing wind climates over flat terrain. Specifically,
wind speeds observed by a land meteorological mast were input into the WAsP model and wind speed
increases, as a function of the distance from the coast, were extracted. As a result, a strong gradient
creating a wind speed increase of up to 15% could be found within a fetch length of 3 km, after which
the gradient flattened.

In addition, a similar result is found in another numerical study using a simple calculation model
based on the internal boundary layer theory by Barthelmie and Palutikof [15]. In their theoretical
analysis, the wind speed increase ratio shows its steepest gradient until reaching a 2 km fetch length,
after which the ratio stops increasing. The results from the numerical studies are similar to the results
obtained from the measurement campaign that are shown in Figure 12. From the results described
above, the authors concluded that the results obtained in this study were in line with previous results
that were calculated from simple numerical models.

As expected from Figure 11, the increase of the wind speed ratio relevant to the fetch effect
becomes unclear as the height increases. The relationships between the fetch length and bin-averaged
wind speed ratio at 50 to 207 m ASL are shown in Figure 14. Due to the reduced data availability for
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levels higher than 50 m, the plots for heights from 70 to 207 m are slightly less stable than those for
the lower levels. However, it can unmistakably be seen that the turbine wake and fetch length effects
decrease gradually as the height increases, and that almost no clear fetch length-dependent differences
can be found above 130 m ASL. Ultimately, the wind speed ratio at a height of 207 m seems to be
independent of both the fetch length and turbine wake.

 

Figure 14. Bin-averaged wind speed ratio as a function of fetch length at heights of 50, 70, 90, 110, 130,
150, 170, 190, and 207 m ASL.

To compare this study’s results with those from other sites and numerical models, the relationships
of the increase in wind speed and fetch length would be preferable as formulations. Empirical equations
derived from the results in Figure 14 are illustrated in Figure 15. The equations are derived by fitting
the power law as follows:

Usea/Uland(x, z) = a(z) × xb(z), (2)

where Usea/Uland is the ratio of wind speed on the land and sea as a function of the fetch length x in
meters. The values of coefficients a and b, which are parameters dependent on the height z, are listed in
the figure legend. Since the wind speed ratio at a fetch length less than 1000 m seemed to be strongly
influenced by wind turbines at this site, the coefficients were derived using only the data obtained
with fetch lengths of more than 1000 m. These coefficients might be useful for investigating the fetch
length effect at the other sites, as well as for comparing results with numerical models.

Because the authors’ analysis of the LiDAR observations revealed that the 50 m wind speed
increased up to 15–20% around a fetch length of about 2 km, the last question then becomes,
“How attractive or effective is this 20% speedup from a wind resource usage perspective?” Normally,
wind speeds can clearly increase independently of fetch length effects as altitude increases due to
increased distance from surface roughness. Thus, the authors finally compared the increasing wind
speeds resulting from height increases to quantify the advantage of the fetch length effect.

Figure 16 shows mean wind speed profiles and the profiles normalized at the lowest level values
for the onshore winds (215◦ to 325◦). Only observations that were taken when all heights were
available were used for this analysis. The shear exponents for the LiDAR #1 and LiDAR #2 profiles
were 0.267 and 0.277, which corresponded to the values between shrub and forest [24], respectively.
The normalized profile for LiDAR #2 shows that the 50 m wind speed increased up to 20% at a 90 m
height. This indicates that the fetch length effect over a 2 km distance can be considered equivalent to
increasing the height from 50 to 90 m over land. Furthermore, if the height is increased to up to 130 m,
the value at 130 m increases to 40%. This is of particular importance because, as the development of
taller wind turbines nears completion and they become available, positioning such turbines onshore
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in coastal areas could provide an acceptable alternative to nearshore wind farm developments in
locations where sufficient space is available.

Figure 15. Empirical equations of the ratio of onshore and offshore wind speeds as functions of the
fetch length and height, derived from the LiDAR observations for more than a 1000 m fetch length.

Figure 16. (a) Absolute mean wind speed profiles and (b) mean wind speed profiles normalized by the
lowest level values for land sectors (215◦ to 325◦) at the HORS research platform. Only observations
that were taken when all heights were available were used for this analysis.

4. Conclusions and Recommendations

In this paper, the authors reported results from an onshore and offshore wind measurement
campaign for the period of March to September 2016 using two vertical profiling LiDAR devices at the
coastal research platform HORS to investigate increases in wind speed with increasing fetch length
from the coast. They began by describing the experimental setup and wind conditions at HORS during
the six-month measurement period used in this study, after which the increases in wind speed were
examined from comparisons of observations recorded from the two vertical LiDAR devices.

From the wind speed ratios between the two LiDARs, they found that the 50 m wind speed
increased by a factor of about 1.15 to 1.2 times when travelling over a long marine fetch length.
In addition, observations taken at the top of the pier were found to be significantly influenced by
onshore wind turbines located more than several hundred meters away, which is more than 10 times
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the wind turbine rotor diameter. In addition, the increase in wind speed as a function of fetch length for
400 m to 5 km was demonstrated by applying the characteristics of rectilinear coastline in this region.
Furthermore, empirical equations based on the power law to describe the fetch effect dependence,
which are useful for comparisons with other sites or numerical models, were introduced.

According to the results obtained, the authors found that the 50 m wind speed on the coast
increased monotonically over a 2 km fetch length and approached a ratio of 1.2 at a 1900 m fetch
length. The ratio was found to increase slightly after a fetch length of 1900 m. Moreover, the same
relationships for the turbulence intensity also showed that it decreased rapidly in the offshore direction,
especially up to a 2 km fetch length. These results suggested that the transition from onshore winds
to offshore winds that have a higher wind speed and lower turbulence than onshore winds occurred
within a few kilometers of the shore. These results also suggested that locating wind turbines a few
kilometers away from the coast would be reasonable from a meteorological perspective for efficient
near-shore wind energy usage when the coast was not surrounded by complex terrain and vegetation.

The wind speed ratios obtained from the two LiDAR observations had a steep gradient within
2 km of the coast and then gradually flattened further offshore. This strong gradient within a few
kilometers was found in previous studies using simple numerical models. These analyses were
based on internal boundary layer theory, and a wind analysis application program was run for areas
surrounded by flat terrain, similar to the HORS research platform. Although the effect of atmospheric
stability was not taken into account in this study due to the measurement period, the relationship
between wind speed and fetch length seemed to be applicable for areas with similar geographical
conditions, such as flat terrain and little vegetation.

In addition, the dependency of the fetch effect on the height was clearly visualized by means
of the LiDAR observations. As a result, the fetch length effect was shown to gradually become less
pronounced as the height increased, and it was also found that the fetch length and wake effects from
nearby wind turbines were negligible at heights above 130 m. Finally, the impact of the fetch length
effect was compared with the impact of increasing height on the wind speed. The result suggested
that using taller wind turbines with hub heights more than 100 m on land would be an alternative
option to locating turbines offshore when sufficient space was available. The authors finally emphasize
that it would be inconceivable to obtain such informative observations without using remote sensing
technologies for this study.

In this measurement campaign, the authors obtained informative and valuable offshore wind
observations that they believe will provide good benchmark data for the validation of numerical
models. In their continuing research, they intend to install a scanning LiDAR system to collect more
detailed measurements, strengthen the reproducibility of numerical models, and thus facilitate a more
comprehensive understanding of coastal winds.
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Abstract: This article presents the Ferry Lidar Experiment, which is one of the NEWA Experiments,
a set of unique flow experiments conducted as part of the New European Wind Atlas (NEWA) project.
These experiments have been prepared and conducted to create adequate datasets for mesoscale
and microscale model validation. For the Ferry Lidar Experiment a Doppler lidar instrument was
placed on a ferry connecting Kiel and Klaipeda in the Southern Baltic Sea from February to June
2017. A comprehensive set of all relevant motions was recorded together with the lidar data and
processed in order to obtain and provide corrected wind time series. Due to the existence of the
motion effects, the obtained data are essentially different from typical on-site data used for wind
resource assessments in the wind industry. First comparisons show that they can be well related
to mapped wind trajectories from the output of a numerical weather prediction model showing a
reasonable correlation. More detailed validation studies are planned for the future.

Keywords: Doppler lidar; NWP model; mesoscale; Floating Lidar System (FLS), wind resource
assessment; wind atlas

1. Introduction

The consortium of the New European Wind Atlas (NEWA [1]) project is currently creating a later
publicly available and freely accessible wind atlas covering essentially the countries of the European
Union and Turkey. The coverage further includes offshore areas up to 100 km from shore and the
complete North and Baltic Sea. The basis of the atlas is a model chain, also developed within the
project, comprising mesoscale and microscale flow models that are run to generate the wind time
series and statistics making up the atlas. Mesoscale time series data, which represent the largest
part of the atlas, will be available with a spatial resolution of 3 km × 3 km and for a length of 30
years. The microscale resolution will be finer than 100 m × 100 m, but here only limited statistics
will be provided. The third outcome of the project, besides the wind atlas and model chain, is an
experimental database comprising the data from a number of quite unique flow experiments that have
been conducted within the project.

The NEWA experiments vary not only in their locations but also in the assessed types of terrains
and associated flow phenomena, their durations, and the level and complexity of involved equipment
and resulting data volume [2]. Common to all experiments within NEWA is the application of Doppler
lidar technology to supplement, and in some cases also completely replace, meteorological towers.
This is not by chance, but indicates the breakthrough of a technology that has been continuously
developed further for the wind industry within the last 10–15 years [3].
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The sites of the NEWA experiments are distributed over the coverage of the later wind atlas
(see Figure 1). It is important to emphasize that the experimental data are not integrated in the wind
atlas. Instead of supplementing the model data, they are used to test and validate the involved models
in dedicated benchmark studies. Each experiment has been defined with a specific focus [2], including
a double ridge as in the Perdigao experiment (Portugal) [4], a complex steep terrain with a complex
mesoscale flow in Alaiz (Spain), a flow over forested rolling hills in Hornamossen (Sweden), a single
forested hill near Kassel (Germany), or a near-shore wind flow in RUNE (Denmark) [5].

 

Figure 1. Minimum coverage of the New European Wind Atlas and sites of experiments. The minimum
onshore coverage is shown in light green, the NEWA partner countries in a darker lime-green, offshore
coverage in light blue, and experimental sites in red. The red line marks the route in the Ferry Lidar
Experiment. (Graphic reproduced from Reference [2]).

The Ferry Lidar Experiment is the only offshore experiment within NEWA. Its name originates
from its setup: a vertically scanning Doppler lidar is placed on a ferry boat to measure the wind along
the ferry route, covering several hundreds of kilometers within one day and travelling back and forth
for a period of several months. This rather simple setup is designed for studying mesoscale effects
that are, in particular, far-offshore pre-dominant. For distances greater than 30 km from shore and at
heights relevant for wind energy exploitation (i.e., greater than about 50 m) microscale effects due to
e.g., breaking sea waves do not play an important role [6]. Comparisons with data of meteorological
(met) masts show that mesoscale models are capable of resolving the most important features of the
marine atmospheric boundary layer and compare well with the in-situ measurements of a mast [7,8].
In this sense, it is common practice to validate and verify the data simulated with a mesoscale model
(as, e.g., the known Numerical Weather Prediction (NWP) models) against data from offshore met
masts [9]. In most cases, this is a fair comparison, just because of the absence of relevant microscale
terrain effects impacting the mast measurements for the height ranges of interest. It has to be kept
in mind, however, that an NWP data point is representative for an area of several square kilometers
and not just a single spot; this may lead to some smoothing in the simulated data in comparison to
spot-like mast measurements. As a second discrepancy, NWP models typically do not give averaged
data representative of a certain time interval but instead instantaneous values, e.g., every 10 or 30 min.

In a similar context as in the NEWA project, mesoscale model data were correlated with the
measurement data, not just from one offshore met mast but several of those and a number of
vertically profiling lidar devices installed on offshore platforms within the NORSEWInD project [10].
The activities within this project proved the usefulness of Doppler lidar technology for assessing
offshore wind profiles provided a sufficient data availability is obtained. Like NWP models,
the nowadays fully commercially available lidar devices can provide wind velocity data at a number of
height levels more or less at the same point in time. This allows a direct assessment of the wind profile
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for up to several hundreds of meters, with the range depending on the explicit device specifications.
With the Ferry Lidar Experiment, the concept of spatially distributed wind profile measurements
is further developed. The profiling instrument moves with the ship and covers a distance that is
comparable to a typical mesoscale dimension.

The article pursues the following three objectives:

- the ship lidar technology applied in the NEWA Ferry Lidar Experiment is to be introduced;
- the data produced by applying this technology is to be described in detail, such that the generated

dataset can be used in future studies;
- and finally, a first comparison of the Ferry Lidar data to mesoscale model data is to be presented

and discussed.

Approaching these objectives in the suggested order, the article is structured as follows. Following
this introductory section, the ship lidar technology is presented in Section 2. The Ferry Lidar campaign
within the NEWA project and the processed dataset from this campaign are described in Sections 3
and 4, respectively. In Section 5, we show an initial comparison between the recorded measurements
and simulated data using an NWP model. An outlook in Section 6 and the conclusions in Section 7
complete the article.

2. Ship Lidar Technology

The Ship Lidar System applied for the NEWA Ferry Lidar Experiment has been developed by
Fraunhofer IWES since 2009, and is an integrated system comprising the following components:

- a vertically profiling Doppler lidar device of the type Windcube v2 by the manufacturer Leosphere,
(Orsay, France) which is the primary measurement sensor, capturing the wind velocity at up to
12 height levels above the instrument;

- a combination of an xSens MTi-G (Enschede, Netherlands) attitude and heading reference
sensor (AHRS) and a Trimble SPS361 satellite compass (Sunnyvale, CA, USA), used to record
high-resolution motion information that is required to correct the lidar wind data;

- a weather station collecting atmospheric data including air temperature, air pressure, and relative
humidity and precipitation, complementing the dataset.

All data are collected and synchronized on a measurement computer. The Windcube v2 lidar
device has a sampling resolution of about 0.7 s per line-of-sight (LoS) measurement and measures
successively at four azimuthal positions along a cone with a half-opening angle of 28◦ followed by a
vertical beam. From these five measurements the wind velocity vector is reconstructed and updated
after each new LoS measurement, resulting in a measurement frequency of about 1.4 Hz. Further
information on the ship lidar technology and its components can be found in Reference [11]. Figure 2
shows a typical installation of the system on deck of a medium-size vessel.

 
Figure 2. Installation of ship lidar System on deck of a medium-size vessel—© Fraunhofer IWES.
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An indispensable element of the ship lidar technology is the motion correction algorithm
combining recorded lidar and motion data in order to provide motion-corrected wind data.
The algorithm applies the basic principles outlined in Reference [12] and referred to in, e.g.,
Reference [13]; the recorded wind velocity vector is corrected for the translational velocity of the
vessel and the involved platform rotations (including the heading of the ship as well as roll and pitch),
respectively, according to

Vtrue = TVobs + Ω × TM + VCM (1)

where Vtrue is the desired wind velocity vector in the reference coordinate system, Vobs is the measured
wind velocity vector in the platform frame of reference, T is the coordinate transformation matrix for a
rotation of the platform frame coordinate system to the reference coordinates, Ω is the angular velocity
vector of the platform coordinate system, M is the position vector of the platform coordinate system,
and finally VCM is the translational velocity vector at the center of motion of the platform with respect
to a fixed coordinate system.

For the present configuration of the Fraunhofer IWES Ship Lidar System, a simplified motion
correction was applied, where the vessel tilting was essentially ignored due to a negligible impact on
the results. This modification was justified in a dedicated verification campaign, in which the system
was tested under representative conditions against the fixed reference measurements of the FINO1
met mast in the German North Sea (for further details, see Reference [11]). The results confirm that
the ship motions indeed affect the high-frequency data of the lidar but that these effects are averaged
out when deriving the 10-min mean values; 10-min averaged lidar and reference data agree within
±0.5 m/s in a distance of up to about 1.5 km and show a reasonable correlation with a coefficient of
determination (R2) for a linear fit of 0.99. How the motion correction acts on the data of the NEWA
Ferry Lidar Experiment is shown in detail in Section 5.

The ship lidar technology should be further seen in the context of the floating lidar technology,
a technology that has gained some attention within the offshore wind industry in the past decade
(cf. Reference [14]). Floating Lidar Systems (FLSs), referring to a more or less stationary floating
platform or buoy equipped with a commercial wind lidar device, particularly show economic benefits
in an offshore wind resource assessment when compared to the state-of-the-art met masts, which as a
standard, are used for the same application. An FLS can provide wind data of comparable quality as
met masts but at considerably lower costs. A ship lidar cannot have the same purpose as a buoy-based
measurement system since the movement of the ship has an essential impact on the obtained data,
implying a non-stationarity, even if the local motions are compensated quite efficiently. Nonetheless,
the development of the one technology can and has benefitted from the other. Also the motion effects
on the measurements of an FLS can be described by Equation (1), though with another order of the
most relevant motion impacts; while both for FLS and ship lidar heading information is most relevant
to correct the wind direction data, the ship lidar wind speed data are essentially affected by the ship’s
translatory motions, the data of the FLS on the contrary by the tilting at a stationary position.

3. Ferry Lidar Campaign within NEWA

The NEWA Ferry Lidar Experiment started on 7 February 2017, and ended after four months
of measurements on 8 June 2017. During this period, the Fraunhofer IWES Ship Lidar System was
installed on the vessel Victoria Seaways, which belongs to the DFDS Seaways Group and operates on
the route from Kiel, Germany, to Klaipeda, Lithuania, in the Southern Baltic Sea. One trip takes about
20 h, and the vessel spends about 4 h in the harbor each time. Figure 3 shows the average route of the
ferry; only small deviations from this route were observed during the period of the campaign.
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Figure 3. Route of Victoria Seaways, on which the ship lidar system was installed, from Kiel to Klaipeda
in the Southern Baltic Sea (reproduced from Reference [15]).

The Victoria Seaways is a so-called ro-ro (for roll-on/roll-off) ship, designed to carry wheeled
cargo, and has a passenger capacity of 600 persons. The vessel has an overall length of 199.14 m and a
maximum velocity of 23.5 knots. The ship lidar system was installed on Deck 8, which is about 25 m
above sea level (asl). Taking this offset into account, the resulting measurement heights of the lidar
have been 65 m, 75 m, 90 m, 100 m, 110 m, 130 m, 150 m, 175 m, 200 m, 225 m, 250 m, and 275 m asl.
Figure 4 shows a photograph of the vessel while it is in the harbor and of the installation of the ship
lidar system.

 

Figure 4. Ship lidar installation on Victoria Seaways—© Fraunhofer IWES.

Figure 5 shows exemplary trajectories of the recorded and processed wind data (10-min averages)
from the ship lidar system in the NEWA Ferry Lidar Experiment. This example covers four days—25–28
February 2017—of the (in total) four months of data. The plot on the left side shows the path of the
system within these four days. The ferry was in the harbor four times (twice in Kiel and twice in
Klaipeda) during this period, which is clearly visible when comparing uncorrected and corrected wind
data (see the right plots in Figure 5), and the periods where the time series of corrected and uncorrected
wind speed overlap. For the uncorrected (raw) wind data, the effects of the ship’s motions influencing
the lidar measurements essentially appeared as offsets in wind speed (negative or positive, depending
on the heading of the ship relative to the prevailing wind direction) and direction (depending on the
heading of the ship with respect to true North).
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Figure 5. Four days of wind measurements from the ship lidar system: (left) path of Victoria Seaways
in geo-coordinates, symbols show the position after 1, 2, 3, and 4 days; (right) corrected [blue/black]
and uncorrected [red/pink] time series of horizontal wind speed [top] and direction [bottom] for 100 m
measurement height. Periods where the ferry was in the harbor and therefore not moving are shown
with the gray arrows.

4. Processed Dataset

The processed dataset comprises the corrected time series of horizontal wind speed and direction
for the 12 measurement heights together with an availability measure for each data value. This measure
represents the percentage of valid data in a 10-min interval where validity was defined on the basis of
the respective carrier-to-noise ratio (CNR) value output by the lidar device and the availability of the
motion data required to correct the lidar measurements. As a CNR threshold, we have used the value
of −23 dB, which was pre-set and recommended by the manufacturer. High-frequency data, defined
by one LoS measurement, that have a CNR value below this threshold were ignored for the derivation
of the 10-min average.

Additionally, the position data of the ship—in terms of mean, minimum and maximum longitude
(lon)/latitude (lat) coordinates, plus the distance between the minimum and maximum—were saved,
along with the timestamp of the data vector. Figure 6 gives an impression of the processed data; the
plot covers the same time span as in Figure 5 but this time shows the whole (corrected) wind speed and
direction profiles instead of only a single time series. Note that the purpose of the plots was not to show
and identify the single trajectories at the individual height levels, but rather to underline the profile
information provided by the data. The occurrence of different atmospheric stability cases, represented
by different wind shear and veer that is defined as wind speed and direction deviations with height,
is clearly visible in this presentation. The magnitude of the vertical wind shear is correlated to the
atmospheric stratification (e.g., References [16,17]). Periods with little or no wind shear (e.g., during
most of February 25) indicate neutral or unstable stratification, while periods with a strong wind
shear of up to 7 m/s between 65 and 275 m height (e.g., during most of February 26) indicate stable
stratification. Thus, the vertical change of the wind speed with height is an indicator of the presence of
different atmospheric stabilities that are mainly caused by air–sea temperature differences.
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Figure 6. Processed horizontal wind speed and direction for the 12 measurement heights from 65 m to
275 m (darker colors for lower measurement heights). Periods where the ferry was in the harbor are
again marked with the gray arrows.

Based on the derived availability measures for the individual 10-min averages, overall and
monthly averages for the 12 measurement heights were evaluated (see Table 1). For this, it was
additionally assumed that the 10-min availability must be equal to 80% or greater for a measured data
point to be valid. This value is a typical threshold for a wind resource assessment. The so assessed
availability of the corrected lidar time series was well above 90% for the seven lower measurement
heights up to 150 m and only decreased for the upper heights.

Table 1. Data availability of processed wind time series per measurement height and month.

Month
Availability per Measurement Height [%]

65 m 75 m 90 m 100 m 110 m 130 m 150 m 175 m 200 m 225 m 250 m 275 m

February 2017 98 98 97 96 95 94 92 88 82 70 59 50

March 2017 97 97 98 97 97 95 93 90 83 75 64 51

April 2017 95 96 96 95 95 94 92 87 71 59 48 39

May 2017 95 95 96 96 96 95 93 88 75 60 44 30

June 2017 92 94 96 96 96 95 93 85 75 60 46 35

Total 96 96 96 96 96 94 92 88 77 66 53 42

4.1. Low-Level Jet Information as Part of the NEWA Ferry Lidar Dataset

The processing of the data from the NEWA Ferry Lidar Experiment was complemented with
the derivation of essential low-level jet (LLJ) information. Following the definition of Baas et al. [18],
an LLJ is defined at the lowest (local) maximum of the wind speed profile that is at least 2 m/s and
25% faster than the next minimum above. Note that this definition includes the upper and lower edge
of the profile defined by the measurement range of the lidar instrument. The LLJ information in the
dataset includes the horizontal wind speed and height of the identified profile maximum, the position
of the measurement (longitude/latitude coordinates), and the timestamp.

Figure 7 (left plot) shows the wind profiles with LLJs found for the 4-day period already presented
in Figure 6. The wind speed maxima appear for measurement heights between 100 m and 175 m,
and all on 27 February 2017. The right plots of Figure 7 show all LLJ events found for the month of
February (in total 20) with their geo-coordinates in comparison with those found for the month of May
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(in total 392). This initial comparison indicates that considerably more LLJ events were observed in
the spring month than in a comparable period in winter, including a relevant number of wind-speed
maxima at the lower limit of the profile range (cf. the color differentiation in Figure 7). This simple
observation can be explained by the positive air–sea temperature difference that is typically largest
in spring when the water body with its significantly higher heat capacity is still cold while the land
at the coastlines typically already heats up. Offshore-oriented winds and the associated step change
in the surface roughness can then lead to the development of LLJs. This process is well known
(e.g., Reference [19]) and due to the cold waters in late spring very common for the Baltic Sea (e.g.,
Reference [20]).

 

Figure 7. LLJ events observed in the NEWA Ferry Lidar Experiment: (left) vertical wind profiles for
the period 25–27 February 2017; (right) events as markers on the ferry’s route with latitude/longitude
coordinates, where the top plot is for the month of February and the bottom plot for June in comparison.

4.2. Uncertainty Estimation for Ship Lidar Data

Generally, there are different ways to assess the uncertainty of (wind speed) measurements.
In terms of metrology, and to trace back the uncertainty to available standards, a verification or
calibration with respect to a suitable reference measurement is required. This principle is also followed
in Reference [21] outlining the procedure of how to verify a ground-based vertically profiling Doppler
lidar (or more general remote-sensing) instrument for applications in the wind industry. For a ship
lidar system, such a verification test can only be realized under high effort, if at all. An attempt was
undertaken in Reference [11] with the outcome referred to in Section 2. This result could be used
to estimate a verification uncertainty component as one of the most relevant parts of the ship lidar
measurement uncertainty. However, in the present case, we believe that, first, the dataset of the
verification test was not big enough to derive robust results, and second, the ship lidar configuration
in the verification may not have been similar enough to that in the final application; in particular,
different types of vessels were used with different motion patterns.

Furthermore, the spatial aspect of the ship lidar measurements needs to be taken into account;
the ship lidar measurements are not representative for a single spot in space as, e.g., the measurements
of a met mast. The spatial variability of the measurements within the spanned 10-min interval are
to be considered just as the temporal variations. This aspect becomes relevant when comparing the
ship lidar data with other more “spatial” data (see Section 5). In this sense, we do not think that we
could have assigned a single uncertainty figure to the ship lidar data, but rather include uncertainty
considerations in the discussion of the data quality and precision in relation to reference datasets.

In this respect, it should also be paid attention to that since the ferry takes one trip per day with
recurring departure and arrival times, there was a strong correlation between the location of the ferry,
and therefore also the measurements, and time-of-day.
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Uncertainty components that could be well estimated are the uncertainties of the input data to
the motion correction (i.e., heading and velocity of the ship) and their direct impact on the corrected
wind estimates. But since the applied motion measurements were very precise, this contribution was
assumed to be negligible in the presented context.

5. Comparison with Mesoscale Model Data

For the measurements in the Ferry Lidar Experiment, the ship lidar system had traversed distances
of up to 6 km in one 10-min interval. This distance corresponds to the mesoscale in meteorological
observations [22], which suggests relating the ship lidar measurements to the output data of an NWP
model having a similar scale. A corresponding initial comparison of the ship lidar measurements with
mesoscale model data is presented in this section.

We have used the same model which is used to generate the wind atlas within the NEWA project,
namely the Weather Research and Forecasting Model (WRF) [23]. In detail, we used an offshore
optimized setup (similar to the setup used in Reference [24]) that was intensively tested in a case study
phase for the Wind Atlas generation. Figure 8 shows the model domains centered around the Southern
Baltic Sea. WRF time series were generated with a temporal resolution of 30 min and on a 3 km × 3 km
grid; further details of the simulations are given in Table 2. Note that the temporal resolution here does
not refer to an average but an instantaneous value every 30 min.

Figure 8. Model domains of WRF runs used for comparison.

Table 2. Details of WRF simulations.

WRF Model Version 3.8.1

Atmospheric Boundary Condition ERA Interim [25]

Sea Surface Temperatures OSTIA [26]

Land Use Data USGS

Horizontal Resolution D01 (27 km), D02 (9 km), D03 (3 km)

Nesting 1-way

Vertical Resolution 62 levels—with 20 below 1000 m

Microphysics WSM 5-class scheme

Planetary Boundary Layer Scheme (PBL) Scheme MYNN (Level 2.5)

In order to compare the ship lidar measurements with the WRF simulations, the measurement
data are mapped onto the WRF grid, and for each 10-min interval, the “closest” WRF output value
was selected. For a further description of this mapping procedure see Reference [27].

Figure 9 shows the results of the comparison for the period already referred to in the preceding
data plots. The mesoscale data were interpolated from the terrain following the hybrid pressure
coordinates to 100 m at every time step. Both for the horizontal wind speed and direction, the two
time series showed a very similar course. Deviations seem to be in the order of, and not larger than,
the scatter, i.e., the deviations between individual data points, in typical WRF-to-met-mast comparisons
offshore [9].
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Larger deviations are observed for the periods where the ship lies in the harbor (cf. also Figure 5)
and could easily be explained by the existence of relevant microscale effects that are not included in
the mesoscale model. Further offshore these effects are obviously negligible.

Figure 9. Comparison of the measured and simulated (Ferry Lidar vs. WRF) time series of horizontal
wind speed and direction, here for 100 m measurement height only.

To further quantify the observed deviations, we have derived bias and root-mean-square-error
(RMSE) values for the deviations in horizontal wind speed and wind direction between the Ferry Lidar
and WRF data (see Table 3). For this evaluation, the “harbor effects” were excluded by considering
only the data with a longitude coordinate larger than 10.4◦ and below 20.0◦.

The comparison indicates that the 4-day period selected for demonstration indeed shows a better
performance than the overall dataset. A deeper analysis may reveal that the agreement varies with the
location of the measurement in combination with the wind direction due to the prevailing site effects
that were existent at some locations over the track. A corresponding filtering should be applied when
further working with the dataset and, in particular, when setting up a benchmark study.

Table 3. Bias and RMSE values for the deviations in horizontal wind speed and wind direction between
the Ferry Lidar and WRF data.

Horizontal Wind Speed [m/s] Wind Direction [◦]

4-Day Period (25–28 February 2017) All Data 4-Day Period (25–28 February 2017) All Data

Bias 0.09 0.35 −5.2 −6.3

RMSE 1.31 1.90 8.3 29.2

6. Outlook

First comparisons show a good correlation of the measurement data from the NEWA Ferry Lidar
Experiment recorded using a ship-mounted lidar device with mesoscale model data simulated using
the WRF model and mapped onto the ship’s route in time and space. This opens up promising
possibilities, overcoming the difficulty of verifying mesoscale model output data against in-situ data
of, e.g., met masts that represent a very small and fixed volume only. Data of a ship lidar system
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could instead be representative of a line covering a certain space that is similar to the resolution of a
mesoscale model simulation for a respective time scale. Comparing the time series of an NWP model
with the data trajectories of the measurement system moving in space, and finding good correlations,
may increase the trust in the model data and further promote their use as primary data for a wind
resource assessment where on-site measurements are otherwise challenging. Studying the correlations
between the two data sources along well-defined tracks may help to assess and understand where
NWP models show larger and possibly systematic discrepancies.

The comparisons presented in this contribution represent only a first step. Within the NEWA
project, the data of the Ferry Lidar Experiment are provided as a basis for more detailed benchmark
studies that are planned and currently prepared for the near future. Furthermore, apart from that,
the measurement data are part of the open accessibly NEWA Experimental Database, which will be
available to the broader public for manifold investigations after the end of project, i.e., from May 2019.

7. Conclusions

The article presents the Ferry Lidar Experiment conducted within the NEWA project from
February to June 2017. It introduces the ship lidar technology, which was applied on a ferry route
from Kiel to Klaipeda in the Southern Baltic Sea. The obtained dataset of measurements is described in
detail and made comprehensible. It is discussed how the data differ from met mast measurements as
typical on-site data used for wind resource assessments in the wind industry. Ship lidar data stand out
due to their covering of the detailed wind profile with a good data availability of more than 80% for
measurement heights up to 175 m and still a reasonable availability (above 50%) for heights up to 250
m. From this data basis, e.g., low level jet information can be derived.

Measured wind time series are further compared to output data of an NWP model. The results of
this initial comparison demonstrate that mesoscale simulations with their domain sizes in the order of
the ship track, i.e., the distance the ship covers in the applied averaging period of 10 min, compare
well to the ship lidar measurements.

To our knowledge, the NEWA Ferry Lidar Experiment provides the first dataset of wind profile
measurements using lidar technology covering wind-energy relevant scales along a track of that length
and distance (i.e., several hundreds of kilometers).
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Abstract: This work presents a new methodology to estimate the motion-induced standard
deviation and related turbulence intensity on the retrieved horizontal wind speed by means of the
velocity-azimuth-display algorithm applied to the conical scanning pattern of a floating Doppler lidar.
The method considers a ZephIR™300 continuous-wave focusable Doppler lidar and does not require
access to individual line-of-sight radial-wind information along the scanning pattern. The method
combines a software-based velocity-azimuth-display and motion simulator and a statistical recursive
procedure to estimate the horizontal wind speed standard deviation—as a well as the turbulence
intensity—due to floating lidar buoy motion. The motion-induced error is estimated from the
simulator’s side by using basic motional parameters, namely, roll/pitch angular amplitude and
period of the floating lidar buoy, as well as reference wind speed and direction measurements at
the study height. The impact of buoy motion on the retrieved wind speed and related standard
deviation is compared against a reference sonic anemometer and a reference fixed lidar over a 60-day
period at the IJmuiden test site (the Netherlands). Individual case examples and an analysis of the
overall campaign are presented. After the correction, the mean deviation in the horizontal wind
speed standard deviation between the reference and the floating lidar was improved by about 70%,
from 0.14 m/s (uncorrected) to −0.04 m/s (corrected), which makes evident the goodness of the
method. Equivalently, the error on the estimated turbulence intensity (3–20 m/s range) reduced from
38% (uncorrected) to 4% (corrected).

Keywords: wind energy; remote sensing; Doppler wind lidar; velocity-azimuth-display algorithm;
resource assessment; offshore; turbulence intensity

1. Introduction

In recent years, offshore wind energy has become a trustable and mature technology for electricity
generation [1]. At the end of 2016, 14 GW cumulative offshore wind capacity proved the importance of
this technology in the energy mix, with Europe being the main area of development but also with a
significant contribution from China [2]. Although most of the commercial developments of floating
lidars are being carried out in shallow waters (0–30 m), their benefits are not limited to these depths
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and there is a tendency to go further off-coast to higher depths [3], where the advantages of floating
lidar technology versus conventional anemometry are more significant.

Different remote sensing technologies have been used in wind energy, including satellite
measurements in offshore environments [4,5], radar [6], sodar [7–9], and combined techniques [10,11].
Nevertheless, due to the high requirements of the industry regarding resolution and accuracy, lidar has
been the most used technology for different applications in the wind energy sector since the appearance
of the first commercial units. These applications include turbine control [12], resource assessment [13–15],
wakes [16–18], and power curve measurements in flat terrain [19], among others.

In the resource assessment phase of offshore wind farms, floating lidars have become an
alternative to conventional fixed metmasts because lidar allows more flexibility in the deployment in
a cost-effective way [13,20–23]. In 2015, the Carbon Trust published a roadmap for the commercial
acceptance of this technology in the wind industry [24]. A state-of-the-art report and recommended
practices developed by the IEA Wind Task 32 [25] can be found in [26], and several validation tests
and commercial developments in [27–33].

The increasing use of floating lidar systems in the offshore wind energy sector motivates the need
to assess and compensate the effect of motion on floating lidar measurements [34,35]. It has been
shown that both the static [36] and dynamic tilt [37–40] of the lidar instrument induce errors in the
retrieved horizontal wind speed (HWS). Different approaches can be considered to reduce the impact
of sea-waves-induced motion on the wind speed measured by floating lidar devices: mechanical [41,42]
and numerical compensation methods [43,44].

Turbulence intensity (TI), which is defined as the ratio between the standard deviation of the HWS
to the mean HWS, has a critical impact on wind turbine production, loads and design. The IEC61400-1
Normal Turbulence Model describes the TI threshold a wind turbine is designed for, and defines the
wind turbine class of the machine that describes the external conditions that must be considered [45–47].
The lidar-observed TI is not identical to the “true” TI that can be measured by point-like measurements
from cup anemometers. The lidar-observed TI is affected by the spatial (i.e., probe length) and
temporal averaging (i.e., scanning time) of the Doppler lidar instrument and by the motion effects
of sea waves on the lidar buoy. While spatial/temporal averaging effects on the measured TI can be
found elsewhere [48–51], here we aim at studying the effects of lidar motion on the measured TI and their
statistical correction. To simplify the mathematical framework to be presented next, we numerically
assessed the motion-corrected HWS standard deviation under simple harmonic motion conditions of
the lidar buoy for a given HWS and wind direction (WD). Towards this end, we considered a software
motion simulator to emulate the motion of sea waves under these simplified motion conditions and the
velocity-azimuth-display (VAD) algorithm [52] to retrieve the motion-corrupted HWS. Furthermore,
simulation results were validated against experimental results as part of the IJmuiden test campaign.

This paper is organized as follows: Section 2 begins with a short description of the measurement
instrumentation at IJmuiden and follows with a description of the methods used: it revisits the
velocity-azimuth-display simulator, presents simulation examples of dynamic tilting of the lidar buoy
under different initial conditions, and describes the proposed methodology to compute the standard
deviation of the HWS error induced by lidar motion. Section 3 discusses the simulator’s results
from the IJmuiden data. Three study cases for different sea and atmospheric conditions are analysed.
The overall performance of the proposed methodology for the whole 60-day measurement campaign
is also presented. Finally, Section 4 gives concluding remarks.

2. Materials and Methods

2.1. Materials

The ZephIR™300 lidar used in this work is a continuous-wave focusable Doppler lidar
adapted for offshore measurements that uses a conical scanning pattern combined with the
velocity-azimuth-display algorithm to retrieve the wind velocity. The scan period is 1 s and each scan
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is composed of 50 lines of sight. The lidar can retrieve the wind vector between 10 and 200 m in height
in user-defined steps of 1 m, although not simultaneously. The latter is a consequence of the focusing
principle of the instrument, which also yields a height-dependent spatial resolution (e.g., 15 m at 100 m
in height).

As described in [53], a validation campaign of the floating lidar was performed at the IJmuiden
test site [54,55]. The aim of this campaign was to assess the accuracy of the EOLOS lidar buoy against
metmast IJmuiden [24]. The main instruments used were: (i) a moving ZephIR™300 lidar in a buoy,
measuring at 27, 58, and 85 m above the Lowest Astronomical Tide (LAT); (ii) a reference ZephIR™300
lidar placed on the metmast platform and measuring at 90, 115, 140, 165, 190, 215, 240, 265, 290, and
315 m above LAT, both measuring sequentially at each height; and (iii) sonic anemometers at 27, 58,
and 85 m above LAT. The ZephIR™300 lidar has shown to be a reliable device for on- and offshore
wind-energy applications. More detailed information about these sensors and additional sensors
in the metmast can be found in [54]. Additionally, data from inertial measurement units were used
to characterise the motion of the lidar buoy. In the present work, data from 1 April to 1 June 2015
were used.

2.2. The Velocity–Azimuth-Display Motion Simulator

The velocity-azimuth-display (VAD) algorithm enables the retrieval of the three components of
the wind-speed vector from a vertically-pointing, conically-scanning Doppler lidar, as is the case of
the ZephIR™300. Under the assumption of a constant wind vector, it can be shown that the radial
wind speed component along the lidar line of sight as a function of the scan time follows a sinusoidal
pattern (the so-called VAD pattern). The wind speed components can be retrieved from the amplitude
and offset and this sinusoidal pattern by using geometrical considerations and a simple least-squares
fitting procedure [52,56].

In previous works [40], we have presented the formulation of the VAD motion simulator under
the assumption of a time-invariant and horizontally-homogeneous wind field. The simulator uses
Euler’s angles to compute the rotated line-of-sight vector at a given time in response to simultaneous
pitch, roll, and yaw tilting angles (three degrees of freedom). Because the rotation matrix of the buoy
can numerically be computed as a function of discrete time in response to harmonic excitations in these
three angles, it is possible to compute the rotated set of lines of sight of the lidar for each conical scan
in response to buoy motion. When the VAD retrieval algorithm is applied to the radial wind speed
onto the rotated set of lines of sight, the motion-induced HWS is retrieved with a temporal resolution
of 1 s (scan period of the ZephIR™300). In principle, the simulation process is complicated by the
existence of three degrees of freedom, each one being described by three variables (i.e., amplitude,
phase, and frequency) representing the sinusoidal excitation. In practice, dependence on the yaw is
not considered because yaw motion can be considered static as compared to the lidar scan period.
Therefore, wind direction errors caused by yaw motion are corrected by means of the buoy compass.
The fact that the scan phase of the lidar scanning pattern (i.e., the starting line of sight of the scanning
pattern at time zero) is completely uncorrelated with buoy roll/pitch movement forced us to carry out
the study by defining different constraints on these variables (this is further discussed in Sections 2.3
and 2.4). Thus, two simple cases were considered in the publication above: static and dynamic buoy
tilting. The latter was limited to specific constraints: (i) only one degree-of-freedom (either roll or pitch);
(ii) zero initial phase of the angular movement; and (iii) zero scan phase of the VAD scanning pattern.

In the present paper, we overcome these constraints by considering: (i) the combined contributions
from both roll and pitch degrees of freedom; (ii) all possible phases in roll and pitch motion; and (iii) all
possible phases in the VAD scan. To illustrate the importance of these parameters, Figure 1 plots the
simulated error on the VAD-retrieved HWS (Equation (1) next) under roll-only lidar motion (one degree
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of freedom) as a function of the scan phase (x-axis), motional angular period (y-axis), and motional
phase (Figure 1a–d). The error on the retrieved HWS is defined as

Z = HWS − HWS, (1)

where HWS is the real wind speed and HWS is the VAD-retrieved HWS.

Figure 1. Simulated horizontal wind speed (HWS) error, Z (Equation (1)), under roll-only motion
as a function of velocity-azimuth-display (VAD) scan phase (x-axis) and motional period, T, (y-axis).
Roll phase (φr) is equal to 0 deg (a), 90 deg (b), 180 deg (c), and 270 deg (d). Roll amplitude is 3.5 deg,
wind vector is (0, 10, 0) m/s, and measurement height is 100 m in all panels [40].

This plot shows that, for 10 m/s HWS and 3.5 deg tilt, the HWS error increases to ±10% depending
on the lidar scan phase. When comparing top and bottom panels in Figure 1, which account for
180-degree difference in roll phase, positive HWS errors in the top panels translate into negative ones
in the bottom panels and vice-versa. Therefore, both the initial phase of movement and that of the
VAD scan should be taken into account to evaluate the impact of lidar motion on the HWS error.

2.3. Motion-Induced HWS Error Variance

In this section, we introduce the methodology used to estimate the HWS error variance induced
by lidar motion. This assumes no “a priori” information about the radial wind component measured
by each line of sight of the scanning pattern.

As mentioned in Section 2.2, the VAD simulator retrieves the motion-corrupted HWS (1 s
resolution) in response to roll and pitch harmonic motion, lidar scan phase, and HWS and WD
at a given measurement height. In turn, each degree of freedom (roll/pitch) is characterised by three
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variables—namely, amplitude, period, and phase. Therefore, the HWS retrieved by the VAD motion
simulator can be expressed as

HWS = h(HWS, WD, H, Ar, φr, Tr, Ap, φp, Tp, φs), (2)

where h is the nonlinear function modelling the VAD-fitting algorithm, H is the measurement
height, and A, φ, and T are the amplitude, phase, and period associated to sinusoidal roll/pitch
motional excitation, A · sin(2π f t + φ), with f = 1

T (subscripts r and p stand for roll and pitch angles,
respectively), and φs is the conical scan phase of the lidar.

Horizontal wind speed (HWS), wind direction (WD), and roll/pitch amplitudes and periods
(Ar/p, Tr/p, respectively) are deterministic variables because they can be measured experimentally
(e.g., HWS and WD from metmast anemometers or a reference fixed lidar, and roll/pitch amplitudes
and periods from inertial measurement units on the buoy). In contrast, roll/pitch motional phases,
φr/p, and VAD scan phase, φs, become random variables because buoy initial motion conditions (φr/p)
cannot be recovered from inertial measurement unit measurements, nor is the scan phase (φs) available
from the lidar.

For convenience, we define HWS-error function g as Equation (2) above, constrained to the set
of deterministic conditions �S = (HWS, WD, Ap, Tp, Ar, Tr) (i.e., given HWS, WD, and buoy attitude)
minus the true HWS,

Z = g(φr, φp, φs) = h|�S − HWS. (3)

The motion-induced HWS error variance can be estimated for the first and second raw moments
of Z as

Var(Z) = E(Z2)− E(Z)2. (4)

By using the expectation theorem [57], the first two raw moments of Z can be computed as

E(Zn) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(φr, φp, φs)

n fΦrΦpΦs(φr, φp, φs)dφrdφpdφs, (5)

where fΦrΦpΦs(φr, φp, φs) is the joint probability distribution function for the random-variable set of
phases, Φr, Φp, and Φs; and n = 1, 2. At this point, and following standard notation in probability
theory [58], we use uppercase Greek letters to denote random variables and lowercase letters to denote
the values for these variables.

Formulation of the multivariate distribution function fΦrΦpΦs(φr, φp, φs) can largely be simplified
by introducing different properties describing the statistics of random variables Φr, Φp and Φs.
We hypothesise that information about any one of these three variables gives no information about the
other two, which is equivalent to saying that phases Φr, Φp and Φs are independent random variables.
This will be further discussed in Section 2.4. As a result, joint density function fΦrΦpΦs factors out
as the product of univariate functions fΦr , fΦp and fΦs , as fΦrΦpΦs = fΦr fΦp fΦs . This enables us to
rewrite Equation (5) as

E(Zn) =
∫ 2π

0

∫ 2π

0
fΦr (φr) fΦp(φp)

[ ∫ 2π

0
g(φr, φp, φs)

n fΦs(φs)dφs

]
dφrdφp, (6)

where it has been used that random variables Φr, Φp, and Φs are uniformly distributed in [0, 2π) so that

fν(ν) =
1

2π
, ν ∈ [0, 2π) with ν = φr, φp, φs. (7)

The hypothesis of uniform distribution in [0, 2π) for scan phase Φs is well-justified on account of
the fact that, despite the 1 s temporal resolution of the lidar, measurements are not exactly delivered
every second due to lidar refocusing and internal checkings.
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We define

g′n(φr, φp) =
∫ 2π

0
g(φs)

n
∣∣∣∣
Φr=φr ,Φp=φp

fΦs(φs)dφs, (8)

which can physically be understood as the n-th raw moment of the HWS error due to random variable
scan phase, Φs, for a given pair of roll and pitch phases, Φr = φr and Φp = φp. Equivalently,
Equation (8) can be written as

g′n(φr, φp) = E(g(φs)
n
∣∣∣∣
Φr=φr ,Φp=φp

, (9)

which is the expected value of g(φs)n for a particular pair of motional phases Φr = φr and Φp = φp.
Because fΦs is a uniform probability density function, the expected value is just the arithmetic mean of
g(φs)n along the Φs dimension.

By substituting Equation (8) into Equation (6), Equation (6) takes the form

E(Zn) =
∫ 2π

0
fΦr (φr)

[ ∫ 2π

0
g′n(φr, φp) fΦp(φp)dφp

]
dφr. (10)

By comparing Equation (10) to Equation (6) above, it emerges that we reduced the calculus from
the tri-dimensional domain [Φr, Φp, Φs] in Equation (6) to the bi-dimensional domain [Φr, Φp] in
Equation (10). The same procedure above can be repeated recursively to reduce Equation (10) from
the bi-dimensional domain [Φr, Φp] to the one-dimensional domain, [Φr]. Thus, in similar fashion to
Equation (8), we define

g′′n(φr) =
∫ 2π

0
g′n(φp)

∣∣∣∣
Φr=φr

fΦp(φp)dφp, (11)

which can also be written as (counterpart of Equation (9))

g′′n(φr) = E(g′n(φp)

∣∣∣∣
Φr=φr

. (12)

Substitution of Equation (11) into Equation (6) yields

E(Zn) =
∫ 2π

0
g′′n(φr) fΦr (φr)dφr, (13)

or, equivalently,
E(Zn) = E(g′′n(φr)), (14)

which is to say that the raw moments of the HWS error function Z can be calculated by using a
three-step procedure given by Equations (9), (12) and (14), where the contribution from each random
variable (i.e., roll phase, Φr, pitch phase, Φp, and scan phase, Φs) are successively averaged out.

The practical computational procedure of Equations (9), (12) and (14) is as follows: for a given set
of simulation parameters �S = (HWS, WD, H, Ap, Tp, Ar, Tr), the HWS error (Equation (1)) is calculated
by the motion simulator of Section 2.2 in the [0 − 2π)× [0 − 2π)× [0 − 2π) domain of random phases
Φr, Φp, and Φs by using a grid of 24 × 24 × 24 evenly spaced points between 0 and 2π. This gives a 3D
matrix of HWS error values similar to the 2D matrix represented in Figure 1, but in three dimensions.
Then, the HWS error is averaged along the Φs (scan phase) dimension of the matrix for every pair
of roll/pitch phase values (φr, φp) to obtain g′1 (1st raw moment, Equation (9)). Next, this procedure
is repeated recursively over the Φp dimension of g′1 (now a 2D instead of a 3D matrix) to yield g′′1 (a
1D matrix or vector, Equation (12)), and finally, over the Φr dimension of g′′1 , which yields the scalar
E(Z) (Equation (6)). This three-step procedure is repeated twice to compute E(Z) and E(Z2). Finally,
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the sought-after HWS error variance, Var(Z), is obtained from Equation (4). The standard deviation of
the motion-induced HWS error, σZ, is computed as the square root of the variance.

2.4. Roll/Pitch Correlation Hypothesis

As described by vector �S (Equation (3)), besides the input parameters directly related to the wind
(i.e., HWS and WD), the simulator requires roll and pitch angular amplitude and period information
to describe buoy attitude. This information is derived from 5 Hz inertial measurement unit data on the
buoy [53]. We hypothesise that, if significant correlation between roll and pitch periods and between
roll and pitch amplitudes is found, these two angular variables can be considered equivalent and,
therefore, a single amplitude and period can meaningfully be used to describe motion in both axes.
Thus, for each 10 min timestamp, we computed the motional amplitude as the average roll and pitch
angular amplitude, and the motional period as the average roll and pitch period. This is to say that buoy
attitude can be given by significant wave height and wave period, which is a state-of-the-art practice
in oceanography and wind energy to model the sea state. To evaluate this hypothesis, Figure 2 shows
roll–pitch scatter plots for both amplitude and period variables as measured by inertial measurement
units during the study period. The pitch-to-roll correlation coefficients in angular amplitude and
period were 0.88 and 0.54, respectively, demonstrating the validity of the correlation hypothesis for
the amplitude and a comparatively weaker correlation for the period. The correlation coefficient is
equivalent to the cross-covariance at zero time lag (see inset). Further experimental analysis showed
that this comparatively lower correlation is due to the bi-modality behaviour of the angular period,
which means that two dominant motional periods (or frequencies) coexist in many measurement
records. In this case, the single-frequency harmonic motion model becomes an oversimplification of
reality, this being the main limitation of the method.

Figure 2. Scatter plots for 10-min-averaged roll and pitch angles. (a) angular amplitude; (b) angular
period. Dashed lines correspond to the 1:1 reference line. Insets show the roll–pitch cross-covariance
for different time lags.

2.5. Wind Direction Exclusion

In previous works [40] limited to one degree of freedom in angular motion (i.e., roll or pitch
only), the authors have shown that wind direction has a relevant impact on the HWS error. In
addition, under one-degree-of-freedom harmonic motion, it has been shown that the HWS error
exhibits sinusoidal dependence with wind direction.

Under the two-degrees-of-freedom model and the approximation of nearly correlated roll and
pitch motion (Section 2.4), the HWS error was simulated for different wind directions (0, 30, 60, . . . ,
330 deg) and periods (1, 1.5, 2, 2.5, . . . , 10 s) for a particular pair of values, HWS (10 m/s) and angular
amplitude (3.5 deg). Figure 3 shows the increase of the motion-induced HWS error standard deviation
for low angular periods and that the error standard deviation does not depend on wind direction.
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Figure 3. Simulator results of motion-induced HWS error standard deviation, σZ as a function of
motional period, T (x-axis) and wind direction (y-axis). HWS is 10 m/s HWS, roll-and-pitch amplitude
is 3.5 deg.

A plausible explanation is as follows: the fact that roll and pitch are approximately linearly
correlated in amplitude and period enables an equivalent one-degree-of-freedom treatment of buoy
motion (buoy tilt “amplitude” and buoy tilt “period” ). Because the HWS error standard deviation
follows a sinusoidal variation with wind direction [40] and roll and pitch axes are orthogonal (π/2
phase shift between roll and pitch sinusoidal variation with wind direction), the error standard
deviation, which is the quadratic sum of roll and pitch error standard deviations, remains constant
with wind direction. Similar simulations were carried out for other HWSs and angular amplitude
conditions, showing analogous behaviour with wind direction. Therefore, under the approximation of
correlated roll and pitch motion, wind direction was excluded from the analysis.

3. Results and Discussion

To validate the simulator’s performance in Section 2.2 when estimating the motion-induced
HWS error standard deviation on the floating lidar (in the buoy), data from metmast IJmuiden
(Section 2.1) was used. Two sensors were chosen as reference: (i) the ZephIR™300 lidar and (ii) the
sonic anemometers in the metmast. The intercomparison was carried out at 10 min temporal resolution.

On one hand, the advantage of using the fixed lidar as reference is that we were comparing
two identical lidars although configured to sequentially measure at a different number of heights
(the lidar in the metmast measured at 10 heights while the lidar in the buoy at only 3). On the other
hand, the advantage of using sonic anemometers is that this technology is more accepted by the wind
industry and more similar to the cup anemometer, the official sensor reference in the state-of-the-art.
This is because both sonic and cup anemometers perform point-like measurements as opposed to the
volume scanning technique of the lidar.

There is only one measurement height in common for the three collocated devices: 85 m. Therefore,
this height was the one used in for the comparison.

3.1. Binning

As discussed in Section 2.3, an underlying requirement of the proposed methodology is the
assumption of uncorrelated- and uniformly-distributed phases φr, φp, and φs in the floating lidar for
each HWS and buoy motional condition under study. To better fulfill this requirement, a binning
procedure was applied to the whole campaign dataset (6985 10-min records). As a result, each bin
contained measurement records with similar HWSs and motional conditions but not necessarily
(and usually not) having correlative timestamps. As a result of this timestamp “mixing” into a bin
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(also called time “scrambling”), the requirement of uncorrelated and uniformly distributed phases
(Section 2.3) into a bin was reinforced. The chosen binning variables were: HWS, angular amplitude,
and period in equally spaced bins of width 1 unit ((m/s), (deg), and (s), respectively) centred on integer
values (bin edges at [0.5 1.5), [1.5 2.5) units, etc.).

Table 1 shows the 25 most frequent cases in the IJmuiden campaign. The most common HWSs were
between 3 and 12 m/s, amplitudes were between 2 and 4 degrees, and motional periods were between
3 and 4 s. The total set of measurement cases is considered in Figure 6 and Section 3.4. The conditions
of the site during the study period included HWS between 2 and 21 m/s, angular amplitudes between
1 and 5 deg, and periods between 2 and 5 s.

Table 1. The 25 most frequent HWS and motional cases in the IJmuiden campaign. “Case no.” is the
bin number sorted by decreasing frequency of event occurrence (“1” indicating the most frequent
case); HWS (m/s) stands for 10-min mean horizontal wind speed; AA (deg) stands for motion
angular amplitude; T (s) stands for period; Count no. is the bin count number; and σZ (m/s) is
the motion-induced HWS error standard deviation estimated by the simulator after Equation (4).

Case No. HWS (m/s) AA (deg) T (s) Count No. σZ (m/s)

1 8 3 4 288 0.18
2 5 2 4 247 0.07
3 9 3 4 237 0.20
4 7 2 4 208 0.10
5 6 2 4 198 0.09
6 7 3 4 196 0.16
7 6 3 4 182 0.13
8 6 2 3 180 0.12
9 3 2 4 175 0.04
10 7 2 3 174 0.14
11 10 3 4 169 0.22
12 5 2 3 166 0.10
13 4 2 4 164 0.06
14 8 2 4 157 0.12
15 8 2 3 133 0.16
16 11 3 4 130 0.25
17 5 3 4 130 0.11
18 9 3 3 112 0.27
19 8 3 3 108 0.24
20 7 3 3 106 0.21
21 12 3 4 100 0.27
22 11 4 4 95 0.33
23 2 1 3 91 0.02
24 4 2 3 86 0.08
25 3 1 3 80 0.03

3.2. Variance of the Sum of Partially Correlated Variables

Next, we discuss how to combine the motion-induced HWS error standard deviation, σZ,
estimated by the simulator (Section 2.3), with the reference HWS standard deviation, σre f , which is
measured from either the lidar on the metmast, σre f (lidar), or the sonic anemometer, σre f (sonic), in order
to estimate the motion-corrected HWS standard deviation, σcorr. The latter is the key output of our study
to be compared with the HWS standard deviation measured by the floating lidar, σmoving.

According to the law of propagation of errors, the corrected variance, σ2
corr, of the sum of two

variables (the real wind speed (or reference), HWS, and the motion-induced HWS error, Z; Equation (1))
is written as [57]

σ2
corr = σ2

re f + σ2
Z + 2 cov(re f , Z), (15)

257



Remote Sens. 2018, 10, 2037

where σ2 stands for variance (i.e., the square of the standard deviation) and cov(re f , Z) is the covariance
between the reference HWS and the motion-induced HWS error.

Equation (15) above states that the standard deviation of the HWS measured by the moving lidar
not only depends on the variance from both the wind (intrinsic turbulence) and the motion-induced
error, but also on the covariance between these two variables. In the limit cases of: (i) uncorrelated
variables (U), cov(re f , Z) = 0, and (ii) linearly correlated variables (C), cov(re f , Z) = σre f · σZ,
Equation (15) reduces to

σU
corr =

√
σ2

re f + σ2
Z, (16)

σC
corr = σre f + σZ. (17)

In what follows, and unless otherwise stated, the motion-corrected HWS standard deviation σcorr is
calculated assuming partial correlation between these variables (i.e., by using Equation (15)). The term
cov(re f , Z) is computed from the correlation coefficient between the reference HWS, re f , and the
expected value of the motion-induced HWS error, E(Z). Here, we use the mathematical definition
cov(re f , Z) = ρre f ,Z · σre f · σZ, where ρre f ,Z is the correlation coefficient, and σre f and σZ are the
standard deviations of the 10-min reference HWS and 10-min motion-induced HWS error, respectively.
In practice, and considering that the binning process ensures similar motional characteristics in each
bin (Section 3.1), we computed a single ordered pair (reference HWS, E(Z)) per bin (109 simulations)
and a single correlation coefficient given these 109 bins (ρ = 0.78), which is representative of the
motional conditions of the overall sample under study.

3.3. Analysis of Particular Cases

In order to discuss the goodness of the proposed methodology to estimate the motion-induced
HWS standard deviation, this section tackles three representative cases (or bins) from Table 1: cases
no. 2, 18, and 25. The first case gave good estimation of the motion-induced HWS standard deviation;
the second one, overestimation; and the third one, underestimation.

Figure 4 plots the standard deviation of the HWS with and without correction (Equation (15)),
using the lidar on the metmast as reference. The sample size associated with each of these three cases
is listed in the “Count no.” column of Table 1.

Figure 4. Selected discussion case examples from Table 1. (a) case no. 2, HWS = 5 m/s; angular
amplitude (AA) = 2 deg; period (T) = 4 s; (b) case no. 18, HWS = 9 m/s; AA = 3 deg; T = 3 s;
(c) case no. 25, HWS = 3 m/s; AA = 1 deg; T = 3 s). All panels: the x-axis represents the 10-min HWS
standard deviation of the floating lidar, denoted σmoving. The y-axis represents (in blue crosses) the
standard deviation of the reference-lidar HWS (denoted σre f ) and (in red circles) the standard deviation
of the motion-corrected HWS (denoted σcorr). The dashed black line represents the 1:1 reference line.

Figure 4a (case no. 2) shows 247 10-min measurements for which the proposed methodology
accurately estimated the standard deviation of the motion-induced HWS error. Before applying
Equation (15) correction, uncorrected values fell below the 1:1 line, which indicates that the moving

258



Remote Sens. 2018, 10, 2037

lidar “saw” a higher standard deviation. After Equation (15) correction, most of the measurements
laid on the 1:1 reference line.

Figure 4b,c, which are representative of case nos. 18 and 25, respectively, show two opposite
situations: on one hand, for case no. 18 (Figure 4b), the simulator overestimated the influence of motion
and the corrected values laid above the 1:1 line. Further investigation showed that this can be caused by
the lack of consistency of the roll/pitch correlation hypothesis (Section 2.4) due to most measurements
undergoing bi-modal motion behaviour. On the other hand, case no. 25 (Figure 4c) showed corrected
values falling nearly always below the 1:1 line, which means that the estimated correction given
by the motion simulator was too low. Further inspection indicated that this underestimation was
caused by untrustworthy retrieval of the HWS by the VAD algorithm, as made evident by too-high
spatial variation (SV) values from the ZephIR™300 lidar (Figure 5, to be discussed in Section 3.4). The
spatial variation is a lidar internal parameter related to the goodness of fit that reveals whether the
measurement data is consistent or not with the sinusoidal model assumed by the VAD algorithm.
Thus, high SV values are related to a poor VAD fitting, and they are usually found in low HWS, where
Taylor’s frozen-eddies hypothesis is no longer true and the lidar does not measure a homogeneous
wind along the VAD scanning area.

Figure 5. Analysis of the whole campaign (109 cases, 6985 10-min measurement records) by using
as reference the sonic anemometer (a) and the lidar on metmast (b), without motion correction (c);
σre f (sonic/lidar) in the y-axis) and with motion correction (d); σcorr(sonic/lidar in the y-axis). The x-axis
represents the HWS standard deviation of the floating lidar, denoted σmoving. Each point is a 10-min
record. Dashed lines represent the 1:1 line. Solid lines plot the regression lines. Colour bar indicates
spatial variation.

Table 2 gives mean difference (MD) and root mean square error (RMSE) indicators for case nos. 2,
18, and 25 in Figure 4 without and with motion correction:
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Table 2. Statistical indicators with and without motion correction for the selected discussion case
examples from Table 1. MD stands for mean deviation and RMSE stands for root mean square error
(see text and Equations (18) and (19)). MD and RMSE units are (m/s).

Case No. Count No.

Reference Sonic Reference Lidar

Corrected Uncorrected Corrected Uncorrected

MD RMSE MD RMSE MD RMSE MD RMSE

2 247 0.08 0.15 0.14 0.19 0.02 0.08 0.08 0.11
18 112 −0.10 0.18 0.14 0.21 −0.12 0.15 0.12 0.15
25 80 0.20 0.26 0.22 0.28 0.20 0.31 0.22 0.33

The motion-corrected mean deviation is defined as

MDcorr =

∑
i
(σmoving,i − σcorr(x),i)

N
, (18)

where N is the case “count no.” (Table 1), σmoving is the HWS standard deviation measured by the
floating lidar (already introduced in Section 3.2), and σcorr(x) is the motion-corrected HWS standard
deviation (Equation (15)) of the reference instrument, where x = lidar denotes the reference fixed lidar
and x = sonic denotes the sonic anemometer. Subscript i is the count-number index, that is, i went
from i = 1 to i = 247 for case no. 2.

The motion-corrected root mean-square error is defined as

RMSEcorr =

√√√√∑
i
(σmoving,i − σcorr(x),i)

2

N
. (19)

Similarly, uncorrected MD and RMSE indicators are computed by substituting σcorr(x),i with
σre f (x),i, the reference HWS standard deviation, in Equations (18) and (19) above. These indicators are
denoted MDre f and RMSEre f , respectively.

The mean deviation gives an estimation of the systematic error, equivalently, the amount of bias,
while the RMSE is the quadratic mean of differences, with an ideal value of 0 indicating a perfect fit.

As shown in Table 2, the mean deviation for case no. 2 improved from 0.08 (uncorrected) to
0.02 m/s after motion correction. The RMSE also improved from 0.11 to 0.08 m/s. For overestimation
case no. 18, the mean deviation changed sign from 0.12 to −0.12 m/s and, for underestimation case
no. 25, the mean deviation virtually did not change (from 0.22 to 0.20 m/s). In over/underestimated
case nos. 18 and 25, the RMSE did not improve after motion correction by Equation (15). All things
considered, these indicators were consistent with the discussion carried out for Figure 4a–c, and they
were therefore used to quantitatively analyse the overall campaign in the following.

3.4. Analysis of the Whole Campaign

In this section, we discuss overall performance of the motion-corrected HWS standard deviation,
σcorr, calculated via Equation (15) and, for comparison, via Equations (16) and (17), for the whole
measurement campaign at IJmuiden (6985 10-min records clustered into 109 cases).

In similar fashion to Figure 4 but for the whole campaign, Figure 5 compares the HWS standard
deviation of the moving lidar, σmoving, to the motion-corrected standard deviation (Equation (15)) of
the sonic and fixed-lidar reference devices (σcorr(sonic) and σcorr(lidar), respectively; right panels) and
to the uncorrected ones (left panels; labelled σre f (sonic) and σre f (lidar)), respectively). Linear regression
parameters and correlation coefficients, superimposed on Figure 5, clearly improved after applying the
correction methodology for both the sonic and the fixed-lidar references. Therefore, better agreement
between the floating lidar and the instrumental references was obtained. Despite the improvement,
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there was a tendency to slightly overestimate the motion-corrected standard deviation, σcorr,(x), x =

sonic, lidar, for both the sonic and lidar references.
To further investigate this issue, each point in the scatter plots was colour-coded according to the

spatial variation given by the floating lidar. Blue dots, which are associated to low spatial variation,
exhibited good correlation while poorly correlated points were associated to spatial-variation figures
above 0.06. These high figures were usually due to errors in the VAD-retrieved HWS caused by
inhomogeneity of the wind. This means that regression-line results could better approach the ideal
1:1 line by filtering out these outliers on a spatial variation criterion, which is out of the scope of the
present work.

To quantitatively discuss the whole campaign via mean difference and root mean square error
indicators (Equations (18) and (19), Table 3 presents the results for all 109 cases in the campaign,
for both the fixed lidar and sonic references. Results are graphically depicted in the histogram of
Figure 6 for the lidar reference only. Figure 6 shows that the motion-uncorrected mean difference,
MDre f , had a positive bias of 0.13 m/s when using the fixed lidar as reference. This bias accounts
for the systematic error in the measured HWS standard deviation caused by floating lidar motion
as previously reported in [27,59]. After motion correction, the mean difference MDcorr reduced to
the virtually unbiased figure of −0.03 m/s when using the fixed lidar as reference. The negative
sign indicates the tendency to overestimate, as mentioned previously. This accounts for an 80%
reduction in absolute value. Using the sonic anemometer as reference, the MD reduced from 0.12
to −0.03 m/s (histogram not shown). The RMSE reduced from RMSEre f = 0.17 (uncorrected) to
RMSEcorr = 0.12 m/s (motion corrected) when using the lidar reference (this accounts for a 29%
reduction) and from 0.18 to 0.16 m/s when using the sonic reference. This is considered evidence of
the accuracy of the proposed methodology in estimating the motion-induced standard deviation.

Table 3. Performance of the variance-combination laws of Section 3.2. (C) stands for linearly correlated
variables, (PC) for partially correlated, and (U) for uncorrelated.

Variance-Combination Law for σcorr
Uncorrected, σre f

(C) Equation (17) (PC) Equation (15) (U) Equation (16)

Sonic Lidar Sonic Lidar Sonic Lidar Sonic Lidar

MD −0.06 −0.05 −0.03 −0.03 0.08 0.08 0.12 0.13
RMSE 0.17 0.13 0.16 0.12 0.15 0.13 0.18 0.17

Figure 6. Histogram of the main statistical parameters. (a) mean difference; (b) root mean square error
using the fixed lidar as reference; for all panels: blue = motion corrected, red = uncorrected.
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As a remark, Figure 7 shows similar HWS motion-corrected results to Figure 5d, but under the
limit hypotheses of uncorrelation (Equation (16)) and linear correlation (Equation (17)) between the
reference horizontal wind speed, HWS, and the motion-induced HWS error, Z. Figure 7 shows that the
uncorrelated case and the linear-correlated case can respectively be understood—in a statistical sense
over the whole population—as lower (Equation (16)) and upper (Equation (17)) bounds of the proposed
motion correction. According to the definition of correlation coefficient, 0 <= |ρ| <= 1, Equation (15)
lies in between these two limit cases (ρ = 0, ρ = 1). This is corroborated in Table 3, which shows
MD and RMSE indicators when the lidar and the sonic anemometer are used as references, for the
three combination hypotheses discussed in Section 3.2: partially correlated (PC), uncorrelated (U)
and correlated (C) variables. It emerges that the approximation of partial correlation yielded the best
results, as shown by the lowest MD and RMSE figures in Table 3.

Figure 7. Comparison between 10-min floating-lidar HWS standard deviation measurements and
motion-corrected ones by using Equation (16) versus Equation (17). (a) uncorrelation hypothesis
(Equation (16)); (b) linear-correlation hypothesis (Equation (17)). The dashed line indicates the 1:1 line
and the solid line shows the linear regression.

3.5. Turbulence Intensity

Analogously to Figure 5d, Figure 8a compares the TI of the floating lidar, TImoving, to the
motion-corrected TI of the fixed-lidar reference, TIcorr(lidar). Dots are colour-coded according to
their spatial variation parameter. HWSs below 3 m/s, which are usually out of the production regime
of commercial wind turbines and tend to numerically distort the TI, were filtered out to enhance the
readability of the graph. Although some scattering is present in the pattern of dots, the regression
line (slope = 0.86, intercept = 0.01) shows a similar tendency to that of Figure 5d of approaching the
1:1 line after motion correction. Quantitatively, by defining similar MD and RMSE indicators for the
TI (counterpart of Equations (18) and (19) by changing standard deviation, σ, into TI), the MD for
the moving lidar reduced from 0.016 (uncorrected) to 0.003 (motion corrected). In terms of RMSE,
the reduction was from 0.018 to 0.012, which despite being not very important implies an approximate
30% reduction in the dispersion of data. In addition, most of the points falling far from the 1:1 line had
high spatial variation figures, typically SV > 0.06, which is characteristic of low HWS.

Figure 8b illustrates the successful application of the motion-correction algorithm by
superimposing: (i) the TI measured by the uncorrected fixed-lidar reference (TIre f (lidar), red); (ii) the
TI derived from the motion-corrected lidar reference (TIcorr(lidar), grey); and (iii) the TI measured
by the moving floating lidar (TImoving, black) as a function of the 10-min HWS. To aid visual
interpretation, average TIs using a 1.0 m/s binwidth were also plotted in red, white, and black
traces, respectively. As expected, the apparent TI measured by the floating lidar (black trace) was higher
than the true one measured by the reference lidar (red trace). After application of motion correction to
the reference TI, TIre f (lidar) (red dots/red trace), the motion-corrected TI, TIcorr(lidar) (grey dots/white
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trace), approximately followed the floating lidar TI, TImoving (black dots/black trace). At this point, it
must be said that, in practice, the correction is to be applied to the TI measured by the floating lidar
so as to shift it down. However, this does not change the line of reasoning. Quantitatively, the mean
value of the TI measured by the fixed lidar in the 3–20 m/s HWS range was TIre f (lidar) = 0.047 and
the TI measured by the floating lidar was TImoving = 0.065. After motion correction, the mean value
of the reference-corrected TI was TIcorr(lidar) = 0.067, which was only −0.002 apart from TImoving and
drastically reduced the initial difference between floating lidar and the reference lidar TI from 0.018 to
−0.002. These differences account for an error reduction from 38.3% to 4.3%.

Figure 8. Turbulence intensity (TI) results for the whole campaign. (a) comparison between the
motion-corrected TI of the fixed-lidar reference, TIcorr(lidar) and the floating-lidar TI, TImoving. The
colour bar indicates spatial variation. The dashed line indicates the 1:1 line; (b) plots of TI versus HWS
(see text): Red dots = uncorrected fixed-lidar reference, TIre f (lidar). Grey dots = motion-corrected lidar
reference, TIcorr(lidar). Black dots = floating lidar, TImoving. Traces with the same colours plot average
TIs using a 1.0-m/s binwidth.

As discussed in Section 1, in order to improve the design layout of offshore wind farms and
selection of the appropriate wind turbine model, turbulence intensity measurements of a floating
lidar are needed. Performance results from Sections 3.4 and 3.5 showed that, in the environmental
conditions considered, the proposed methodology has the potential to estimate the influence of motion
on TI measurements with the ZephIR™300 lidar.

4. Conclusions

We presented a methodology to estimate the 10-min motion-induced standard deviation and
turbulence intensity on the retrieved HWS for a ZephIR™300 lidar at a given measurement height
without accessing individual line-of-sight information of the lidar scanning pattern or individual
1-s data.

The proposed methodology includes a software-based motion simulator that reproduces the
VAD algorithm used to retrieve the HWS under simple-harmonic motional conditions and a
moment-computation recursive procedure to estimate the motion-induced HWS error standard
deviation, σZ, as well as the motion-induced TI.

The motion simulator input parameters are the 10-min average HWS and 10-min motional
amplitude and period of the floating lidar buoy as well as initial roll/pitch motional phases and lidar
scan phase (φr, φp, and φs, respectively). A binning procedure is used to group measurement records
into bins with similar HWS and motional conditions. The procedure is aimed at computing the 10-min
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HWS error standard deviation in each bin by internally sweeping these phases in the [0, 2π) range,
which therefore become blind inputs to the user.

The method relies on the approximation that roll/pitch amplitudes and periods are linearly
correlated on a 10-min basis and that, consequently, only one motional amplitude and period is needed.
This one-degree-of-freedom approximation combined with that of simple harmonic motion are the
main limitations of the method. Under these hypotheses, the motion-induced HWS standard deviation
was proven to be independent of wind direction, which allows this variable to be neglected in the
computations (wind direction errors caused by yaw motion are always corrected by means of the
buoy compass).

According to error-propagation laws, the motion-corrected HWS standard deviation (Equation (15)),
which combines the motion-induced HWS error and the reference HWS, was shown to depend on
the correlation between these two variables and the degree of approximation by which it is estimated.
Uncorrelated (ρ = 0) and linearly-correlated (|ρ| = 1) sub-cases were interpreted as upper and lower
bounds of the motion-corrected HWS standard deviation, respectively.

The performance of the proposed methodology was tested as part of a 60-day study period at
offshore metmast IJmuiden by using a sonic anemometer and a fixed lidar as reference instruments.
The motion-corrected HWS standard deviation and that of the reference HWS (from either the fixed
lidar or the sonic anemometer) were compared to the measured floating-lidar HWS standard deviation
for the 109 most frequent cases of the campaign. This indicated an overall improvement in the average
MD from 0.13 (uncorrected) to −0.03 m/s (motion corrected) and an average RMSE reduction from 0.17
to 0.12 m/s, which essentially means that the floating-lidar and the motion-corrected HWS standard
deviation laid on the ideal 1:1 line with a dispersion equal to the RMSE.

When analysing the whole campaign as a function of the spatial variation, the most poorly
correlated points were associated with mid-to-high spatial variations (SV > 0.06). Wider dispersion
arose when using the sonic anemometer as reference, which was caused by the inherently different
wind measurement principle of the sonic as compared to the lidar. Analysis in terms of TI showed
similar improvement, made evident by a reduction in the difference between the reference-lidar and
the floating-lidar TI from 0.018 (uncorrected) to −0.002 (motion corrected).

Despite these good results, they must be interpreted with caution because performance is based on
MD and RMSE criteria over the whole statistical sample and not on an individual measurement basis.
Overall, in the environmental conditions considered, the proposed methodology holds promise for use
in the estimation of the influence of motion on TI measurements with the ZephIR™300 lidar. These
results should be extended to other conditions and set-ups, which, if proven effective, could eventually
be used to correct TI measurements of floating lidars as standalone devices.
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Abbreviations

The following abbreviations are used in this manuscript:

HWS Horizontal Wind Speed
LAT Lowest Astronomical Tide
MD Mean Difference
SV Spatial Variation
RMSE Root Mean Square Error
TI Turbulence Intensity
VAD Velocity–Azimuth Display
WD Wind Direction
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Abstract: Wind energy, as a vital renewable energy source, also plays a significant role in reducing
carbon emissions and mitigating climate change. It is therefore of utmost necessity to evaluate
ocean wind energy resources for electricity generation and environmental management. Ocean
wind distribution around the globe can be obtained from satellite observations to compensate for
limited in situ measurements. However, previous studies have largely ignored uncertainties in ocean
wind energy resources assessment with multiple satellite data. It is against this background that the
current study compares mean wind speeds (MWS) and wind power densities (WPD) retrieved from
scatterometers (QuikSCAT, ASCAT) and radiometers (WindSAT) and their different combinations
with National Data Buoy Center (NDBC) buoy measurements at heights of 10 m and 100 m (wind
turbine hub height) above sea level. Our results show an improvement in the accuracy of wind
resources estimation with the use of multiple satellite observations. This has implications for the
acquisition of reliable data on ocean wind energy in support of management policies.

Keywords: wind energy resources; QuikSCAT; WindSAT; ASCAT; global ocean

1. Introduction

Climate change is a global issue that impacts on all human beings: an associated rising of sea level,
extreme hydrologic events (such as floods and droughts) and urban heat island effects are projected to
occur with climate change. Such changes have already affected human health due to extreme heat,
cold, drought, storms and crop failures [1]. Scientists have demonstrated that global warming over
millennial time scales is due to greenhouse gas emissions produced by human activities [2,3]. Energy
use efficiency and renewable energy generation can benefit public health and the global climate system
by displacing emissions from fossil-fuelled electricity generation units [4]. Expanding renewable
energy, especially wind power, is a central strategy for reducing carbon emissions and mitigating
climate change [5,6]. Therefore, the evaluation of wind resources plays a significant role in the selection
of appropriate sites for the establishment of wind farms, wind energy development, and national
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energy policy formulation. In most countries, coastal areas have become heavily urbanized and
industrialized as a consequence of agglomeration. In effect, more energy will be required in these
areas. As environmental sustainability continues to occupy the center stage of the global development
agenda, offshore wind has been regarded as a potential renewable energy source that can be generated
through a network of wind turbines. Currently, more than 91% of all the offshore wind installations
worldwide are in European waters, particularly in the North Sea [7].

Although offshore wind energy has huge potential in powering the global economy, there are
spatial and temporal variabilities in the distribution of wind power, dynamics which are worth
investigating for the development of efficient and sustainable offshore wind energy resources.
Offshore wind energy resources are mainly estimated from in situ wind measurements [8], satellite
data, numerical simulation results [9], and reanalysis data [10–12]. With progress in microwave
remote sensing, a great deal of satellite-derived data have been obtained and applied in the
study of wind energy resources, including sea surface wind distribution data derived from
Synthetic Aperture Radars (SAR) and scatterometers, such as the Earth Resources Satellite ERS-2
SAR (1995–2011) [13,14], Environment Satellite (ENVISAT) Advanced Synthetic Aperture Radar
(ASAR) (2002–2012) [14–19], RADARSAT-1 SAR (1995–2013) [20], SeaWinds onboard QuikSCAT
(1999–2009) [17,19–27], ASCAT onboard METOP-A (2007–present) [17,18,27,28] and OceanSat-2
scatterometer (OSCAT, 2009–present) [28,29]. Wind fields retrieved from SAR imagery have a high
spatial resolution (<100 m). However, from previous research, there are less than 1500 overlapping
SAR samples [14,15,17], and SAR cannot obtain observations of the whole ocean. Scatterometers
and passive microwave radiometers can provide global sea surface wind fields at a relatively coarse
resolution of approximately 12.5–50 km with two observations per day from single satellite data.

A number of studies have been conducted on ocean wind energy assessment at a variety of spatial
scales (from local through regional to global). Early studies evaluated offshore or global ocean wind
power resources mainly derived from single satellite data. It should be emphasized however that,
generally, only a maximum of two observations per day (at descending and ascending passes) are
obtainable from a single satellite. As diurnal ocean wind variations are apparent, statistics derived
from a single satellite are limited both synoptically and spatially and therefore using multiple sources
of satellite data are imperative to gain a more comprehensive recording and analysis of ocean wind
energy in space and time [14,17]. A growing number of studies are now focusing on wind resources
assessment based on multiple satellite data [17–20,27,28], albeit with the reduction of uncertainties
largely ignored.

The purpose of the current study is to estimate the uncertainty associated with the number of
satellite observations and its impact on the accuracy of ocean wind resources assessment derived from
multiple satellite data. The spatial variability of global ocean wind energy resources is assessed at
heights of 10 m and 100 m to provide relevant data on the selection of wind energy sites.

2. Data

2.1. QuikSCAT, WindSAT and ASCAT Data

In this study, two types of time series satellite data—which can provide sea surface wind fields at a
spatial resolution of 0.25◦ × 0.25◦ and at a height of 10 m above sea level—have been utilized, including
scatterometer (QuikSCAT and ASCAT) and radiometer (WindSAT) wind data. The scatterometer
operates by transmitting microwave pulses to the ocean surface and then measuring the microwave
pulses returned to the satellite sensor. This backscattered signal is physically related to surface
roughness. For water surfaces, the surface roughness is highly correlated with the near-surface wind
speed and direction at a height of 10 m above sea level. The GMF is the Geophysical Model Function
which relates the observed backscatter ratio to surface wind speed and direction at a height of 10 m
above sea level. However, the passive microwave radiometer wind vector data are retrieved from the
microwave brightness temperatures measurements using Radiative Transfer Model (RTM).
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SeaWinds scatterometer is the main instrument on the QuikSCAT satellite and operates at Ku band
(13.4 GHz) which is sensitive to rain. Ku-2011 GMF was used. However, the advanced scatterometer
(ASCAT) onboard Metop-A satellite is working at C band (5.3 GHz), and C band GMF (C-2015) had
been used. The impact of rain on wind retrieval is less severe for ASCAT C-band data than for
QuikSCAT Ku-band data. The wind products contain rain flags and researchers can remove rain effects
from the datasets by discarding these data. This has been done in the current analysis. The WindSAT
fully polarimetric radiometer, as a passive microwave sensor, operates in five discrete channels: 6.8,
10.7, 18.7, 23.8, and 37.0 GHz. All are fully polarimetric except the 6.8 and 23.8 GHz channels that have
only dual polarization.

Wind products used herein are the daily gridded maps from Remote Sensing Systems [30]. Table 1
summarizes the information from multiple satellite data including the maximum numbers of different
satellite data in the two over pass times and per month. There are two observations based on a single
satellite sensor per day. The total number of satellite data is about 9000–12,000 from 20◦S to 18◦N, and
is about 12,000–14,000 among all satellite data at 20–35◦S and 18–35◦N. The total number of satellite
data is about 14,000–16,000 at 35–45◦S and 35–42◦N, and is about 16,000–21,609 among all satellite
data at 45–60◦S and 42–80◦N. However there are 2000–10,000 at latitude 60–90◦S and some areas of the
North Pole (the north of Asia and North America). Furthermore, rain flags may be more prevalent in
the equatorial East Pacific and the eastern part of the Indian Ocean because these regions have fewer
numbers than adjacent areas (9000–10,000).

Table 1. Total numbers of QuikSCAT, WindSAT and ASCAT wind data in descending/ascending
(des./asc.) mode and per month in local solar time.

Satellite Platform QuikSCAT Coriolis MetOp-A

Instrument SeaWinds WindSAT ASCAT

Band of operation Ku (13.4 GHz)
5 discrete channels: 6.8,
10.7, 18.7, 23.8, and 37.0

GHz
C (5.3 GHz)

Total 6944 8372 6379
Ascending 3514 4197 3194
Descending 3430 4175 3185

January 549 665 486
February 512 609 445

March 567 701 549
April 560 683 521
May 562 690 555
June 580 618 537
July 610 696 554

August 656 736 557
September 620 739 532

October 612 751 552
November 539 735 535
December 577 749 556

Time period 1999–2009 2003-current 2007-current
Time of datasets 1999.07–2009.11 2003.02–2015.12 2007.03–2015.12

Descending node time 06:00 06:00 9:30
Ascending node time 18:00 18:00 21:30

Spatial resolution 0.25◦ × 0.25◦ 0.25◦ × 0.25◦ 0.25◦ × 0.25◦
Produce version V4 V7.0.1 V2.1

2.2. NDBC Buoys Data

The National Data Buoy Center (NDBC) [31] provides average hourly wind vector measurements
recorded at 39 buoys around North America (shown in Figure 1). These NDBC buoys are commonly
operated and maintained by American government organizations to report on winds, waves and
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other ocean conditions at strategic locations for the purposes of ocean navigation, search and rescue
operations, and scientific research. The 39 buoy measurements were selected as validation data and
they provide a longer time series of meteorological observations relative to QuikSCAT, WindSAT and
ASCAT data from 1999 to 2015. These NDBC buoys provided hourly wind vector measurements at
a height of 4 or 5 m above sea level. The wind profile method (in Section 3.1) has been used in this
study to extrapolate wind speed to heights of 10 m and 100 m above sea level in order to compare with
satellite data at the same height. The distances from buoys to coastline are greater than 30 km, and the
water depths of the buoys’ positions range from 16 m to 5230 m. There are 32 buoys at water depths
greater than 50 m so a large amount of the buoys may not be influenced by coastal effects.

Figure 1. Location of National Data Buoy Center (NDBC) buoys providing hourly wind vector
measurements used for comparison with satellite data.

3. Methodology

3.1. Wind Profile Method

In order to compare the wind energy resources derived from buoys with those from satellite data
at the same height, the extrapolated wind speed V at heights of 10 m or 100 m (z) is calculated from
Equation(1) [32]:

V(z) =
u∗
κ

[
ln
(

z
z0

)
− ψm

]
(1)

where V is the wind speed at height z. κ is the von Karman constant (~0.4). The parameter ψm is a
correction for atmospheric stability effects (here ψm is set to zero to estimate neutral winds, following
Badger et al. [32]). In this paper, the effect of atmospheric stability is ignored due to the lack of relevant
data. The long-term stability correction (ψm) is usually positive under stable conditions and negative
under unstable conditions, and this may lead to an underestimation of mean wind speeds when
assuming neutral atmospheric conditions. Knowing the spatial distribution of ψm is beneficial to
improving the accuracy of wind speed extrapolation. The parameter ψm ranges from −2.5 to 0 at a
height of 100 m in the south Baltic Sea based on SAR and WRF model data, and there is a wind speed
difference of 0.5 m/s with and without the long-term atmospheric stability correction at a height of
100 m based on meteorological mast observations (Fino-2) [32]. Takeyama et al. [33] pointed out that
atmospheric stability can cause an error of about −1 to +1 m/s without stability correction at a height
of 10 m based on SAR images over the Japanese coastal waters. The sea surface roughness length z0

can be estimated from Equation (2):

z0 = αc
u2∗
g

(2)
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where αc is the Charnock’s parameter (here set to 0.0144, following Badger et al. [32]), and g is
the gravitational acceleration of the Earth. The sea surface friction velocity u∗ can be estimated by
combining and solving iteratively from Equations (1) and (2) when the wind speed at a single level
is known.

3.2. Wind Resource Assessment Method

The mean wind speed (MWS) is the wind speed averaged over a given time period and is given as:

V =
1
N

N

∑
i=1

Vi (3)

where V is the mean wind speed (m/s), Vi is the wind speed (m/s) at measurement i at a given height,
N is the total number of measurements.

The wind power density (WPD) may be estimated by statistical method (Equation (4)) [34,35] and
the Weibull probability distribution function of two parameters (Equation (5)) [17,19,21,27,32,34,35].

Estatistic =
1
2

ρV3
i (4)

Eweibull =
1
2

ρC3Γ(1 +
3
k
) (5)

where E is the wind power density (W/m2), and ρ is the standard sea-level air density
(1.225 kg/m3) [11,12,19,27,28]. C is the scale parameter (m/s), and k is the dimensionless shape
parameter. Several methods have been applied to calculate Weibull parameters C and k, such as the
method using mean and standard deviation of wind speed samples. In this study, we have used the
formulae [21,27,34,35] given as follows:

k =
(
σ/V

)−1.086 (6)

C = V/Γ(1 +
1
k
) (7)

where σ is the standard deviation of wind speed. Γ is the gamma function.
In this study, we assume the probability density function of the wind speeds to follow the Weibull

distribution, and based on a comparison of the WPD derived by the statistical method and that by the
Weibull distribution function from 39 buoys (in Section 2.2), the RMSE is 4.8 W/m2 at a height of 10 m
and 9.9 W/m2 at a height of 100 m.

4. Results

4.1. Evaluation of MWS and WPD Derived from Multiple Satellite Data Compared with Buoy
Measurement Data

The mean wind speeds (MWS) and wind power densities (WPD) calculated from 39 NDBC
buoys during 1999–2015 have been compared with those derived from QuikSCAT, WindSAT and
ASCAT, and their different combinations at heights of 10 m and 100 m above sea level as presented
in Tables 2–5. In this section, the RMSE, Bias, correlation coefficient (Corr.), R2 and Slope are used
to compare satellite-derived MWS/WPD with 39 buoy-derived MWS/WPD at heights of 10 m and
100 m. Tables 2–5 reveal that MWS/WPD derived from ASCAT have better accuracies than those
from WindSAT and QuikSCAT in terms of RMSE. QuikSCAT and ASCAT overestimated the MWS
and WPD derived from buoys (positive biases and slopes greater than 1.00), while WindSAT shows
a tendency to underestimate the MWS and WPD in terms of negative biases and slopes. From the
Remote Sensing Systems, QuikSCAT shows similar wind speeds to those from ASCAT, and wind
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speeds from QuikSCAT/ASCAT are slightly higher than those from WindSAT (the differences between
wind speeds are within 0.1 m/s), wind speeds from QuikSCAT have lower errors than those from
WindSAT in terms of bias compared with aircraft measurements. This may be due to the different
sensor configurations and wind retrieval algorithms.

QuikSCAT + WindSAT-derived MWS/WPD at heights of 10 m and 100 m show lower errors in
terms of RMSE and higher correlations than QuikSCAT-derived MWS/WPD and WindSAT-derived
MWS/WPD. WindSAT + ASCAT-derived MWS at heights of 10 m and 100 m show lower errors
(lower RMSE, biases and slopes are equal to 0.00 and 1.00 respectively) and higher correlations than
WindSAT-derived MWS and ASCAT-derived MWS. WindSAT + ASCAT-derived WPD at heights of
10 m and 100 m show lower errors in terms of RMSE and higher correlations than WindSAT-derived
WPD and ASCAT-derived WPD. QuikSCAT + WindSAT + ASCAT-derived WPD at heights of 10 m and
100 m show the lowest errors in terms of RMSE and highest correlations. The result of this comparison
shows that a better accuracy of MWS/WPD may be derived from multiple satellite data than from
single satellite data.

Table 2. Statistics of the comparison between buoy-derived mean wind speeds (MWS) and
satellite-derived MWS (m/s) at a height of 10 m above sea level.

Different Combinations of Satellite Data RMSE Bias Corr. R2 Slope N

QuikSCAT 0.39 0.23 0.91 0.78 1.03 4134–7063
WindSAT 0.36 −0.07 0.90 0.81 0.99 3474–7643
ASCAT 0.33 0.09 0.90 0.77 1.01 2717–4017

QuikSCAT + WindSAT 0.27 0.10 0.94 0.87 1.01 8307–14,586
QuikSCAT + ASCAT 0.35 0.18 0.91 0.78 1.02 7209–11,080
WindSAT + ASCAT 0.28 0.00 0.93 0.86 1.00 6272–11,086

QuikSCAT + WindSAT + ASCAT 0.27 0.10 0.94 0.86 1.01 11,229–18,029

Here, the intercept of linear regression is set to zero, and the number of satellite observations at different buoy
positions is indicated by N (min-max).

Table 3. Statistics of the comparison between buoy-derived wind power densities (WPD) and
satellite-derived WPD (W/m2) at a height of 10 m above sea level.

Different Combinations of Satellite Data RMSE Bias Corr. R2 Slope N

QuikSCAT 55.4 34.6 0.91 0.82 1.09 4134–7063
WindSAT 53.5 −19.7 0.88 0.78 0.95 3474–7643
ASCAT 42.2 4.7 0.91 0.81 1.01 2717–4017

QuikSCAT + WindSAT 37.0 9.9 0.93 0.87 1.02 8307–14,586
QuikSCAT + ASCAT 47.5 23.3 0.91 0.83 1.06 7209–11,080
WindSAT + ASCAT 40.5 −9.2 0.92 0.84 0.97 6272–11,086

QuikSCAT + WindSAT + ASCAT 36.9 8.7 0.93 0.87 1.02 11,229–18,029

Table 4. Statistics of the comparison between buoy-derived MWS and satellite-derived MWS (m/s) at
a height of 100 m above sea level.

Different Combinations of Satellite Data RMSE Bias Corr. R2 Slope N

QuikSCAT 0.48 0.29 0.91 0.78 1.03 4134–7063
WindSAT 0.45 −0.09 0.90 0.81 0.99 3474–7643
ASCAT 0.40 0.11 0.90 0.77 1.01 2717–4017

QuikSCAT + WindSAT 0.33 0.12 0.94 0.87 1.01 8307–14,586
QuikSCAT + ASCAT 0.43 0.22 0.91 0.79 1.03 7209–11,080
WindSAT + ASCAT 0.34 0.00 0.93 0.86 1.00 6272–11,086

QuikSCAT + WindSAT + ASCAT 0.34 0.12 0.94 0.86 1.01 11,229–18,029
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Table 5. Statistics of the comparison between buoy-derived WPD and satellite-derived WPD (W/m2)
at a height of 100 m above sea level.

Different Combinations of Satellite Data RMSE Bias Corr. R2 Slope N

QuikSCAT 105.0 65.6 0.91 0.82 1.09 4134–7063
WindSAT 101.1 −37.0 0.88 0.77 0.95 3474–7643
ASCAT 79.2 8.3 0.91 0.81 1.01 2717–4017

QuikSCAT + WindSAT 70.2 18.8 0.93 0.87 1.03 8307–14,586
QuikSCAT + ASCAT 89.6 44.0 0.91 0.83 1.06 7209–11,080
WindSAT + ASCAT 76.8 −17.5 0.92 0.84 0.97 6272–11,086

QuikSCAT + WindSAT + ASCAT 69.8 16.4 0.93 0.87 1.02 11,229–18,029

In order to verify the impact of data sampling density (random sampling numbers of satellite
observations) on the accuracy of satellite-derived MWS and WPD at 10 m and 100 m above sea level, we
acquired 100 MWS/WPD random samples (500, 1000, 1500, . . . , 11,000) from all satellite observations
(QuikSCAT + WindSAT + ASCAT) by sampling 100 times repeatedly. The 100 satellite-derived MWS/WPD
samples were compared with the buoy-derived MWS/WPD at each buoy position (39 NDBC buoy in total)
and at different sampling densities using RMSE. Figures 2 and 3 illustrate the variation of mean RMSE as
a function of sampling density at 10 m and 100 m above sea level. The result shows that more satellite
observations may reduce the uncertainty in MWS and WPD estimation at 10 m and 100 m above sea level.
This result is consistent with the research results of Barthelmie, Pryor and Hasager [17,36].
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Figure 2. The mean RMSE of MWS and WPD from random sampling of all satellite observations
(QuikSCAT + WindSAT + ASCAT) with different numbers of samples compared to the buoy-derived
MWS and WPD at a height of 10 m above sea level. (a) MWS, and (b) WPD.
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Figure 3. The mean RMSE of MWS and WPD from random sampling of all satellite observations
(QuikSCAT + WindSAT + ASCAT) with different numbers of samples compared to the buoy-derived
MWS and WPD at a height of 100 m above sea level. (a) MWS, and (b) WPD.

4.2. Spatial Variability of Global Ocean Wind Energy Resources Using Multiple Satellite Data

The geographic distribution of global MWS and WPD at 10 m above sea level using multiple
satellite data (QuikSCAT + WindSAT + ASCAT) is shown in Figure 4. It can be observed that the
distribution of wind energy exhibits significant regional differences across the global ocean. The MWS
at most global ocean regions are higher than 3 m/s, with the areas of highest MWS being primarily
distributed around the Southern Hemisphere westerlies (8–13 m/s). The Northern Hemisphere
westerlies are also areas of relatively high MWS (8–11 m/s), whereas MWS in the low latitudes are in
the range of 3–10 m/s. The MWS at the Northern European Seas is 6.5–10 m/s, a result similar to that
of Hasager et al. [17] who used ASAR, ASCAT and QuikSCAT and Badger et al. [37] based on ASAR.
High wind areas in the middle of the Indian Ocean (7–10 m/s) and the East China Sea (7–10 m/s)
may mainly be influenced by the winter monsoon, and the strong wind in the Arabian Sea (6–9 m/s)
and the South China Sea (6.5–9 m/s) may mainly be caused by the summer monsoon as discussed by
Liu et al. [21] based on QuikSCAT. The highest wind speeds in China are found in the southeastern
region, especially along the coastline of Fujian Province and the Strait of Taiwan. This finding is also
consistent with Jiang et al. [26] who used QuikSCAT. The MWS of Southeastern Brazil at a height of
10 m above sea level is 6–9 m/s which is similar to the result of Pimenta et al. [22] based on QuikSCAT.
The global oceanic MWS values at a height of 10 m above sea level reported by our study are slightly
higher than those by Atlas et al. [38], which were based on SSM/I (Special Sensor Microwave Imager)
data acquired from 1987 to 1994.
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The WPD at most global ocean regions are higher than 200 W/m2. The areas of higher WPD
at 10 m above sea level are mainly distributed around the Southern (400–1600 W/m2) and Northern
(400–1300 W/m2) Hemisphere westerlies. This observed phenomenon may be influenced by the
westerly winds. However, WPD in the low latitudes are about 50–600 W/m2. The coast of Somalia and
Southeast China show relatively higher WPD (>400 W/m2) which is largely attributable to tropical
monsoon weather conditions typical in these areas. On the other hand, WPD in the equatorial regions
are generally less than 200 W/m2. Equatorial regions are generally characterized by low atmospheric
pressure conditions with a muted seasonal cycle. The high WPD at the North Atlantic Ocean may be
due to the ocean–atmosphere interaction around the warm current of the Mexico Gulf and the cold
eddy of the Labrador Sea in winter [21]. The distribution of global oceanic WPD at 10 m above sea
level presented in this paper is largely consistent with the results of Zheng and Pan [11].

The geographic distribution of global MWS and WPD at 100 m above sea level using multiple satellite
data (QuikSCAT + WindSAT + ASCAT) is shown in Figure 5. The MWS at most global ocean regions
are higher than 4 m/s, with the areas of highest MWS being primarily distributed around the Southern
Hemisphere westerlies (9–16 m/s). The areas of Northern Hemisphere westerlies also have relatively
high MWS (9–14 m/s), whereas MWS in the low latitudes are in the range of 4–12 m/s. The MWS at
the North Sea and South China Sea are 8–12 m/s and 6.5–10 m/s respectively, a result similar to that of
Hasager et al. [39] who used SSM/I data from 1988 to 2013 at a height of 100 m above sea level.

The areas of higher WPD at 100 m above sea level are mainly distributed around the Southern
(800–3200 W/m2) and Northern (800–2800 W/m2) Hemisphere westerlies. This observed phenomenon
may be influenced by the westerly winds. However, WPD in the low latitudes are about 150–1200 W/m2.

 

 

Figure 4. The distribution of global MWS and WPD at 10 m above sea level derived from QuikSCAT+
WindSAT + ASCAT during the period 1999–2015. (a) MWS, and (b) WPD.
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Figure 5. The distribution of global MWS and WPD at 100 m above sea level derived from QuikSCAT +
WindSAT + ASCAT during the period 1999–2015. (a) MWS, and (b) WPD.

5. Discussion

Despite the results provided by this study, we do acknowledge that the uncertainties in ocean
wind resources estimation can also be generated from other factors, such as the accuracy of wind
vector retrieval algorithms, sensor configurations and the impact of diurnal variability on satellite
wind observations. Removal of hard targets at sea (including ships, wind turbines, oil platforms etc.)
is also significant for increasing the accuracy of wind retrieval from satellite images [17].

In this study, the number of satellite observations is still limited based on QuikSCAT, WindSAT
and ASCAT. In future operational scenarios, there could be more satellite datasets with much improved
resolution and thus a higher precision of wind vector retrievals. Based on our results, we hereby
recommend the use of more satellite observations (including those from OSCAT, RapidSCAT etc.)
which may be evaluated by further analysis.

The distribution of global ocean wind resources at heights of 10 m and 100 m (wind turbine
hub height) above sea level has been mapped in this study. However, wind farm wake effects were
ignored. A quantification and prediction of the wake effect losses is challenging because of the
complex aerodynamic nature of the interdependencies of turbines [40] and therefore deserves greater
attention in future studies. Atmospheric stability also plays a significant role in the accuracy of wind
speed extrapolation. Therefore, in future research or operational scenarios, the use of information on
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atmospheric stability is highly recommended to ensure more accurate wind resources assessment at
regional and global scales.

6. Conclusions

To develop an understanding of the spatial variability of global ocean wind resources using
multiple satellite data, the spatial distribution of mean wind speeds (MWS) and wind power densities
(WPD) at 10 m and 100 m above sea level have been mapped in this study using QuikSCAT + WindSAT
+ ASCAT data.

In this study, MWS and WPD calculated from 39 NDBC buoys during 1999–2015 are first compared
with those derived from QuikSCAT, WindSAT and ASCAT, and their different combinations at
heights of 10 m and 100 m (wind turbine hub height) above sea level. The results show that for
single satellite data, MWS and WPD derived from ASCAT have the lowest RMSE. QuikSCAT and
ASCAT overestimated the MWS and WPD derived from buoys, while WindSAT shows a tendency to
underestimate MWS and WPD given their respective biases and slopes. This phenomenon may be
due to the different sensor configurations and wind retrieval algorithms. Meanwhile, QuikSCAT +
WindSAT + ASCAT-derived WPD at heights of 10 m and 100 m show the lowest RMSE and highest
correlations, and hence a better accuracy of MWS/WPD may be derived from multiple satellite data
than from single satellite data.

Furthermore, we quantified the impacts of data sampling density (number of satellite
observations) on the accuracy of satellite-derived MWS and WPD at 10 m and 100 m above sea level.
The results show an increase in the accuracy of MWS/WPD estimation with satellite observations, at
10 m and 100 m above sea level.
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