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in coastal areas could provide an acceptable alternative to nearshore wind farm developments in
locations where sufficient space is available.

Figure 15. Empirical equations of the ratio of onshore and offshore wind speeds as functions of the
fetch length and height, derived from the LiDAR observations for more than a 1000 m fetch length.

Figure 16. (a) Absolute mean wind speed profiles and (b) mean wind speed profiles normalized by the
lowest level values for land sectors (215◦ to 325◦) at the HORS research platform. Only observations
that were taken when all heights were available were used for this analysis.

4. Conclusions and Recommendations

In this paper, the authors reported results from an onshore and offshore wind measurement
campaign for the period of March to September 2016 using two vertical profiling LiDAR devices at the
coastal research platform HORS to investigate increases in wind speed with increasing fetch length
from the coast. They began by describing the experimental setup and wind conditions at HORS during
the six-month measurement period used in this study, after which the increases in wind speed were
examined from comparisons of observations recorded from the two vertical LiDAR devices.

From the wind speed ratios between the two LiDARs, they found that the 50 m wind speed
increased by a factor of about 1.15 to 1.2 times when travelling over a long marine fetch length.
In addition, observations taken at the top of the pier were found to be significantly influenced by
onshore wind turbines located more than several hundred meters away, which is more than 10 times
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the wind turbine rotor diameter. In addition, the increase in wind speed as a function of fetch length for
400 m to 5 km was demonstrated by applying the characteristics of rectilinear coastline in this region.
Furthermore, empirical equations based on the power law to describe the fetch effect dependence,
which are useful for comparisons with other sites or numerical models, were introduced.

According to the results obtained, the authors found that the 50 m wind speed on the coast
increased monotonically over a 2 km fetch length and approached a ratio of 1.2 at a 1900 m fetch
length. The ratio was found to increase slightly after a fetch length of 1900 m. Moreover, the same
relationships for the turbulence intensity also showed that it decreased rapidly in the offshore direction,
especially up to a 2 km fetch length. These results suggested that the transition from onshore winds
to offshore winds that have a higher wind speed and lower turbulence than onshore winds occurred
within a few kilometers of the shore. These results also suggested that locating wind turbines a few
kilometers away from the coast would be reasonable from a meteorological perspective for efficient
near-shore wind energy usage when the coast was not surrounded by complex terrain and vegetation.

The wind speed ratios obtained from the two LiDAR observations had a steep gradient within
2 km of the coast and then gradually flattened further offshore. This strong gradient within a few
kilometers was found in previous studies using simple numerical models. These analyses were
based on internal boundary layer theory, and a wind analysis application program was run for areas
surrounded by flat terrain, similar to the HORS research platform. Although the effect of atmospheric
stability was not taken into account in this study due to the measurement period, the relationship
between wind speed and fetch length seemed to be applicable for areas with similar geographical
conditions, such as flat terrain and little vegetation.

In addition, the dependency of the fetch effect on the height was clearly visualized by means
of the LiDAR observations. As a result, the fetch length effect was shown to gradually become less
pronounced as the height increased, and it was also found that the fetch length and wake effects from
nearby wind turbines were negligible at heights above 130 m. Finally, the impact of the fetch length
effect was compared with the impact of increasing height on the wind speed. The result suggested
that using taller wind turbines with hub heights more than 100 m on land would be an alternative
option to locating turbines offshore when sufficient space was available. The authors finally emphasize
that it would be inconceivable to obtain such informative observations without using remote sensing
technologies for this study.

In this measurement campaign, the authors obtained informative and valuable offshore wind
observations that they believe will provide good benchmark data for the validation of numerical
models. In their continuing research, they intend to install a scanning LiDAR system to collect more
detailed measurements, strengthen the reproducibility of numerical models, and thus facilitate a more
comprehensive understanding of coastal winds.
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Abstract: This article presents the Ferry Lidar Experiment, which is one of the NEWA Experiments,
a set of unique flow experiments conducted as part of the New European Wind Atlas (NEWA) project.
These experiments have been prepared and conducted to create adequate datasets for mesoscale
and microscale model validation. For the Ferry Lidar Experiment a Doppler lidar instrument was
placed on a ferry connecting Kiel and Klaipeda in the Southern Baltic Sea from February to June
2017. A comprehensive set of all relevant motions was recorded together with the lidar data and
processed in order to obtain and provide corrected wind time series. Due to the existence of the
motion effects, the obtained data are essentially different from typical on-site data used for wind
resource assessments in the wind industry. First comparisons show that they can be well related
to mapped wind trajectories from the output of a numerical weather prediction model showing a
reasonable correlation. More detailed validation studies are planned for the future.

Keywords: Doppler lidar; NWP model; mesoscale; Floating Lidar System (FLS), wind resource
assessment; wind atlas

1. Introduction

The consortium of the New European Wind Atlas (NEWA [1]) project is currently creating a later
publicly available and freely accessible wind atlas covering essentially the countries of the European
Union and Turkey. The coverage further includes offshore areas up to 100 km from shore and the
complete North and Baltic Sea. The basis of the atlas is a model chain, also developed within the
project, comprising mesoscale and microscale flow models that are run to generate the wind time
series and statistics making up the atlas. Mesoscale time series data, which represent the largest
part of the atlas, will be available with a spatial resolution of 3 km × 3 km and for a length of 30
years. The microscale resolution will be finer than 100 m × 100 m, but here only limited statistics
will be provided. The third outcome of the project, besides the wind atlas and model chain, is an
experimental database comprising the data from a number of quite unique flow experiments that have
been conducted within the project.

The NEWA experiments vary not only in their locations but also in the assessed types of terrains
and associated flow phenomena, their durations, and the level and complexity of involved equipment
and resulting data volume [2]. Common to all experiments within NEWA is the application of Doppler
lidar technology to supplement, and in some cases also completely replace, meteorological towers.
This is not by chance, but indicates the breakthrough of a technology that has been continuously
developed further for the wind industry within the last 10–15 years [3].
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The sites of the NEWA experiments are distributed over the coverage of the later wind atlas
(see Figure 1). It is important to emphasize that the experimental data are not integrated in the wind
atlas. Instead of supplementing the model data, they are used to test and validate the involved models
in dedicated benchmark studies. Each experiment has been defined with a specific focus [2], including
a double ridge as in the Perdigao experiment (Portugal) [4], a complex steep terrain with a complex
mesoscale flow in Alaiz (Spain), a flow over forested rolling hills in Hornamossen (Sweden), a single
forested hill near Kassel (Germany), or a near-shore wind flow in RUNE (Denmark) [5].

 

Figure 1. Minimum coverage of the New European Wind Atlas and sites of experiments. The minimum
onshore coverage is shown in light green, the NEWA partner countries in a darker lime-green, offshore
coverage in light blue, and experimental sites in red. The red line marks the route in the Ferry Lidar
Experiment. (Graphic reproduced from Reference [2]).

The Ferry Lidar Experiment is the only offshore experiment within NEWA. Its name originates
from its setup: a vertically scanning Doppler lidar is placed on a ferry boat to measure the wind along
the ferry route, covering several hundreds of kilometers within one day and travelling back and forth
for a period of several months. This rather simple setup is designed for studying mesoscale effects
that are, in particular, far-offshore pre-dominant. For distances greater than 30 km from shore and at
heights relevant for wind energy exploitation (i.e., greater than about 50 m) microscale effects due to
e.g., breaking sea waves do not play an important role [6]. Comparisons with data of meteorological
(met) masts show that mesoscale models are capable of resolving the most important features of the
marine atmospheric boundary layer and compare well with the in-situ measurements of a mast [7,8].
In this sense, it is common practice to validate and verify the data simulated with a mesoscale model
(as, e.g., the known Numerical Weather Prediction (NWP) models) against data from offshore met
masts [9]. In most cases, this is a fair comparison, just because of the absence of relevant microscale
terrain effects impacting the mast measurements for the height ranges of interest. It has to be kept
in mind, however, that an NWP data point is representative for an area of several square kilometers
and not just a single spot; this may lead to some smoothing in the simulated data in comparison to
spot-like mast measurements. As a second discrepancy, NWP models typically do not give averaged
data representative of a certain time interval but instead instantaneous values, e.g., every 10 or 30 min.

In a similar context as in the NEWA project, mesoscale model data were correlated with the
measurement data, not just from one offshore met mast but several of those and a number of
vertically profiling lidar devices installed on offshore platforms within the NORSEWInD project [10].
The activities within this project proved the usefulness of Doppler lidar technology for assessing
offshore wind profiles provided a sufficient data availability is obtained. Like NWP models,
the nowadays fully commercially available lidar devices can provide wind velocity data at a number of
height levels more or less at the same point in time. This allows a direct assessment of the wind profile
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for up to several hundreds of meters, with the range depending on the explicit device specifications.
With the Ferry Lidar Experiment, the concept of spatially distributed wind profile measurements
is further developed. The profiling instrument moves with the ship and covers a distance that is
comparable to a typical mesoscale dimension.

The article pursues the following three objectives:

- the ship lidar technology applied in the NEWA Ferry Lidar Experiment is to be introduced;
- the data produced by applying this technology is to be described in detail, such that the generated

dataset can be used in future studies;
- and finally, a first comparison of the Ferry Lidar data to mesoscale model data is to be presented

and discussed.

Approaching these objectives in the suggested order, the article is structured as follows. Following
this introductory section, the ship lidar technology is presented in Section 2. The Ferry Lidar campaign
within the NEWA project and the processed dataset from this campaign are described in Sections 3
and 4, respectively. In Section 5, we show an initial comparison between the recorded measurements
and simulated data using an NWP model. An outlook in Section 6 and the conclusions in Section 7
complete the article.

2. Ship Lidar Technology

The Ship Lidar System applied for the NEWA Ferry Lidar Experiment has been developed by
Fraunhofer IWES since 2009, and is an integrated system comprising the following components:

- a vertically profiling Doppler lidar device of the type Windcube v2 by the manufacturer Leosphere,
(Orsay, France) which is the primary measurement sensor, capturing the wind velocity at up to
12 height levels above the instrument;

- a combination of an xSens MTi-G (Enschede, Netherlands) attitude and heading reference
sensor (AHRS) and a Trimble SPS361 satellite compass (Sunnyvale, CA, USA), used to record
high-resolution motion information that is required to correct the lidar wind data;

- a weather station collecting atmospheric data including air temperature, air pressure, and relative
humidity and precipitation, complementing the dataset.

All data are collected and synchronized on a measurement computer. The Windcube v2 lidar
device has a sampling resolution of about 0.7 s per line-of-sight (LoS) measurement and measures
successively at four azimuthal positions along a cone with a half-opening angle of 28◦ followed by a
vertical beam. From these five measurements the wind velocity vector is reconstructed and updated
after each new LoS measurement, resulting in a measurement frequency of about 1.4 Hz. Further
information on the ship lidar technology and its components can be found in Reference [11]. Figure 2
shows a typical installation of the system on deck of a medium-size vessel.

 
Figure 2. Installation of ship lidar System on deck of a medium-size vessel—© Fraunhofer IWES.
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An indispensable element of the ship lidar technology is the motion correction algorithm
combining recorded lidar and motion data in order to provide motion-corrected wind data.
The algorithm applies the basic principles outlined in Reference [12] and referred to in, e.g.,
Reference [13]; the recorded wind velocity vector is corrected for the translational velocity of the
vessel and the involved platform rotations (including the heading of the ship as well as roll and pitch),
respectively, according to

Vtrue = TVobs + Ω × TM + VCM (1)

where Vtrue is the desired wind velocity vector in the reference coordinate system, Vobs is the measured
wind velocity vector in the platform frame of reference, T is the coordinate transformation matrix for a
rotation of the platform frame coordinate system to the reference coordinates, Ω is the angular velocity
vector of the platform coordinate system, M is the position vector of the platform coordinate system,
and finally VCM is the translational velocity vector at the center of motion of the platform with respect
to a fixed coordinate system.

For the present configuration of the Fraunhofer IWES Ship Lidar System, a simplified motion
correction was applied, where the vessel tilting was essentially ignored due to a negligible impact on
the results. This modification was justified in a dedicated verification campaign, in which the system
was tested under representative conditions against the fixed reference measurements of the FINO1
met mast in the German North Sea (for further details, see Reference [11]). The results confirm that
the ship motions indeed affect the high-frequency data of the lidar but that these effects are averaged
out when deriving the 10-min mean values; 10-min averaged lidar and reference data agree within
±0.5 m/s in a distance of up to about 1.5 km and show a reasonable correlation with a coefficient of
determination (R2) for a linear fit of 0.99. How the motion correction acts on the data of the NEWA
Ferry Lidar Experiment is shown in detail in Section 5.

The ship lidar technology should be further seen in the context of the floating lidar technology,
a technology that has gained some attention within the offshore wind industry in the past decade
(cf. Reference [14]). Floating Lidar Systems (FLSs), referring to a more or less stationary floating
platform or buoy equipped with a commercial wind lidar device, particularly show economic benefits
in an offshore wind resource assessment when compared to the state-of-the-art met masts, which as a
standard, are used for the same application. An FLS can provide wind data of comparable quality as
met masts but at considerably lower costs. A ship lidar cannot have the same purpose as a buoy-based
measurement system since the movement of the ship has an essential impact on the obtained data,
implying a non-stationarity, even if the local motions are compensated quite efficiently. Nonetheless,
the development of the one technology can and has benefitted from the other. Also the motion effects
on the measurements of an FLS can be described by Equation (1), though with another order of the
most relevant motion impacts; while both for FLS and ship lidar heading information is most relevant
to correct the wind direction data, the ship lidar wind speed data are essentially affected by the ship’s
translatory motions, the data of the FLS on the contrary by the tilting at a stationary position.

3. Ferry Lidar Campaign within NEWA

The NEWA Ferry Lidar Experiment started on 7 February 2017, and ended after four months
of measurements on 8 June 2017. During this period, the Fraunhofer IWES Ship Lidar System was
installed on the vessel Victoria Seaways, which belongs to the DFDS Seaways Group and operates on
the route from Kiel, Germany, to Klaipeda, Lithuania, in the Southern Baltic Sea. One trip takes about
20 h, and the vessel spends about 4 h in the harbor each time. Figure 3 shows the average route of the
ferry; only small deviations from this route were observed during the period of the campaign.
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Figure 3. Route of Victoria Seaways, on which the ship lidar system was installed, from Kiel to Klaipeda
in the Southern Baltic Sea (reproduced from Reference [15]).

The Victoria Seaways is a so-called ro-ro (for roll-on/roll-off) ship, designed to carry wheeled
cargo, and has a passenger capacity of 600 persons. The vessel has an overall length of 199.14 m and a
maximum velocity of 23.5 knots. The ship lidar system was installed on Deck 8, which is about 25 m
above sea level (asl). Taking this offset into account, the resulting measurement heights of the lidar
have been 65 m, 75 m, 90 m, 100 m, 110 m, 130 m, 150 m, 175 m, 200 m, 225 m, 250 m, and 275 m asl.
Figure 4 shows a photograph of the vessel while it is in the harbor and of the installation of the ship
lidar system.

 

Figure 4. Ship lidar installation on Victoria Seaways—© Fraunhofer IWES.

Figure 5 shows exemplary trajectories of the recorded and processed wind data (10-min averages)
from the ship lidar system in the NEWA Ferry Lidar Experiment. This example covers four days—25–28
February 2017—of the (in total) four months of data. The plot on the left side shows the path of the
system within these four days. The ferry was in the harbor four times (twice in Kiel and twice in
Klaipeda) during this period, which is clearly visible when comparing uncorrected and corrected wind
data (see the right plots in Figure 5), and the periods where the time series of corrected and uncorrected
wind speed overlap. For the uncorrected (raw) wind data, the effects of the ship’s motions influencing
the lidar measurements essentially appeared as offsets in wind speed (negative or positive, depending
on the heading of the ship relative to the prevailing wind direction) and direction (depending on the
heading of the ship with respect to true North).
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Figure 5. Four days of wind measurements from the ship lidar system: (left) path of Victoria Seaways
in geo-coordinates, symbols show the position after 1, 2, 3, and 4 days; (right) corrected [blue/black]
and uncorrected [red/pink] time series of horizontal wind speed [top] and direction [bottom] for 100 m
measurement height. Periods where the ferry was in the harbor and therefore not moving are shown
with the gray arrows.

4. Processed Dataset

The processed dataset comprises the corrected time series of horizontal wind speed and direction
for the 12 measurement heights together with an availability measure for each data value. This measure
represents the percentage of valid data in a 10-min interval where validity was defined on the basis of
the respective carrier-to-noise ratio (CNR) value output by the lidar device and the availability of the
motion data required to correct the lidar measurements. As a CNR threshold, we have used the value
of −23 dB, which was pre-set and recommended by the manufacturer. High-frequency data, defined
by one LoS measurement, that have a CNR value below this threshold were ignored for the derivation
of the 10-min average.

Additionally, the position data of the ship—in terms of mean, minimum and maximum longitude
(lon)/latitude (lat) coordinates, plus the distance between the minimum and maximum—were saved,
along with the timestamp of the data vector. Figure 6 gives an impression of the processed data; the
plot covers the same time span as in Figure 5 but this time shows the whole (corrected) wind speed and
direction profiles instead of only a single time series. Note that the purpose of the plots was not to show
and identify the single trajectories at the individual height levels, but rather to underline the profile
information provided by the data. The occurrence of different atmospheric stability cases, represented
by different wind shear and veer that is defined as wind speed and direction deviations with height,
is clearly visible in this presentation. The magnitude of the vertical wind shear is correlated to the
atmospheric stratification (e.g., References [16,17]). Periods with little or no wind shear (e.g., during
most of February 25) indicate neutral or unstable stratification, while periods with a strong wind
shear of up to 7 m/s between 65 and 275 m height (e.g., during most of February 26) indicate stable
stratification. Thus, the vertical change of the wind speed with height is an indicator of the presence of
different atmospheric stabilities that are mainly caused by air–sea temperature differences.
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Figure 6. Processed horizontal wind speed and direction for the 12 measurement heights from 65 m to
275 m (darker colors for lower measurement heights). Periods where the ferry was in the harbor are
again marked with the gray arrows.

Based on the derived availability measures for the individual 10-min averages, overall and
monthly averages for the 12 measurement heights were evaluated (see Table 1). For this, it was
additionally assumed that the 10-min availability must be equal to 80% or greater for a measured data
point to be valid. This value is a typical threshold for a wind resource assessment. The so assessed
availability of the corrected lidar time series was well above 90% for the seven lower measurement
heights up to 150 m and only decreased for the upper heights.

Table 1. Data availability of processed wind time series per measurement height and month.

Month
Availability per Measurement Height [%]

65 m 75 m 90 m 100 m 110 m 130 m 150 m 175 m 200 m 225 m 250 m 275 m

February 2017 98 98 97 96 95 94 92 88 82 70 59 50

March 2017 97 97 98 97 97 95 93 90 83 75 64 51

April 2017 95 96 96 95 95 94 92 87 71 59 48 39

May 2017 95 95 96 96 96 95 93 88 75 60 44 30

June 2017 92 94 96 96 96 95 93 85 75 60 46 35

Total 96 96 96 96 96 94 92 88 77 66 53 42

4.1. Low-Level Jet Information as Part of the NEWA Ferry Lidar Dataset

The processing of the data from the NEWA Ferry Lidar Experiment was complemented with
the derivation of essential low-level jet (LLJ) information. Following the definition of Baas et al. [18],
an LLJ is defined at the lowest (local) maximum of the wind speed profile that is at least 2 m/s and
25% faster than the next minimum above. Note that this definition includes the upper and lower edge
of the profile defined by the measurement range of the lidar instrument. The LLJ information in the
dataset includes the horizontal wind speed and height of the identified profile maximum, the position
of the measurement (longitude/latitude coordinates), and the timestamp.

Figure 7 (left plot) shows the wind profiles with LLJs found for the 4-day period already presented
in Figure 6. The wind speed maxima appear for measurement heights between 100 m and 175 m,
and all on 27 February 2017. The right plots of Figure 7 show all LLJ events found for the month of
February (in total 20) with their geo-coordinates in comparison with those found for the month of May
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(in total 392). This initial comparison indicates that considerably more LLJ events were observed in
the spring month than in a comparable period in winter, including a relevant number of wind-speed
maxima at the lower limit of the profile range (cf. the color differentiation in Figure 7). This simple
observation can be explained by the positive air–sea temperature difference that is typically largest
in spring when the water body with its significantly higher heat capacity is still cold while the land
at the coastlines typically already heats up. Offshore-oriented winds and the associated step change
in the surface roughness can then lead to the development of LLJs. This process is well known
(e.g., Reference [19]) and due to the cold waters in late spring very common for the Baltic Sea (e.g.,
Reference [20]).

 

Figure 7. LLJ events observed in the NEWA Ferry Lidar Experiment: (left) vertical wind profiles for
the period 25–27 February 2017; (right) events as markers on the ferry’s route with latitude/longitude
coordinates, where the top plot is for the month of February and the bottom plot for June in comparison.

4.2. Uncertainty Estimation for Ship Lidar Data

Generally, there are different ways to assess the uncertainty of (wind speed) measurements.
In terms of metrology, and to trace back the uncertainty to available standards, a verification or
calibration with respect to a suitable reference measurement is required. This principle is also followed
in Reference [21] outlining the procedure of how to verify a ground-based vertically profiling Doppler
lidar (or more general remote-sensing) instrument for applications in the wind industry. For a ship
lidar system, such a verification test can only be realized under high effort, if at all. An attempt was
undertaken in Reference [11] with the outcome referred to in Section 2. This result could be used
to estimate a verification uncertainty component as one of the most relevant parts of the ship lidar
measurement uncertainty. However, in the present case, we believe that, first, the dataset of the
verification test was not big enough to derive robust results, and second, the ship lidar configuration
in the verification may not have been similar enough to that in the final application; in particular,
different types of vessels were used with different motion patterns.

Furthermore, the spatial aspect of the ship lidar measurements needs to be taken into account;
the ship lidar measurements are not representative for a single spot in space as, e.g., the measurements
of a met mast. The spatial variability of the measurements within the spanned 10-min interval are
to be considered just as the temporal variations. This aspect becomes relevant when comparing the
ship lidar data with other more “spatial” data (see Section 5). In this sense, we do not think that we
could have assigned a single uncertainty figure to the ship lidar data, but rather include uncertainty
considerations in the discussion of the data quality and precision in relation to reference datasets.

In this respect, it should also be paid attention to that since the ferry takes one trip per day with
recurring departure and arrival times, there was a strong correlation between the location of the ferry,
and therefore also the measurements, and time-of-day.
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Uncertainty components that could be well estimated are the uncertainties of the input data to
the motion correction (i.e., heading and velocity of the ship) and their direct impact on the corrected
wind estimates. But since the applied motion measurements were very precise, this contribution was
assumed to be negligible in the presented context.

5. Comparison with Mesoscale Model Data

For the measurements in the Ferry Lidar Experiment, the ship lidar system had traversed distances
of up to 6 km in one 10-min interval. This distance corresponds to the mesoscale in meteorological
observations [22], which suggests relating the ship lidar measurements to the output data of an NWP
model having a similar scale. A corresponding initial comparison of the ship lidar measurements with
mesoscale model data is presented in this section.

We have used the same model which is used to generate the wind atlas within the NEWA project,
namely the Weather Research and Forecasting Model (WRF) [23]. In detail, we used an offshore
optimized setup (similar to the setup used in Reference [24]) that was intensively tested in a case study
phase for the Wind Atlas generation. Figure 8 shows the model domains centered around the Southern
Baltic Sea. WRF time series were generated with a temporal resolution of 30 min and on a 3 km × 3 km
grid; further details of the simulations are given in Table 2. Note that the temporal resolution here does
not refer to an average but an instantaneous value every 30 min.

Figure 8. Model domains of WRF runs used for comparison.

Table 2. Details of WRF simulations.

WRF Model Version 3.8.1

Atmospheric Boundary Condition ERA Interim [25]

Sea Surface Temperatures OSTIA [26]

Land Use Data USGS

Horizontal Resolution D01 (27 km), D02 (9 km), D03 (3 km)

Nesting 1-way

Vertical Resolution 62 levels—with 20 below 1000 m

Microphysics WSM 5-class scheme

Planetary Boundary Layer Scheme (PBL) Scheme MYNN (Level 2.5)

In order to compare the ship lidar measurements with the WRF simulations, the measurement
data are mapped onto the WRF grid, and for each 10-min interval, the “closest” WRF output value
was selected. For a further description of this mapping procedure see Reference [27].

Figure 9 shows the results of the comparison for the period already referred to in the preceding
data plots. The mesoscale data were interpolated from the terrain following the hybrid pressure
coordinates to 100 m at every time step. Both for the horizontal wind speed and direction, the two
time series showed a very similar course. Deviations seem to be in the order of, and not larger than,
the scatter, i.e., the deviations between individual data points, in typical WRF-to-met-mast comparisons
offshore [9].
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Larger deviations are observed for the periods where the ship lies in the harbor (cf. also Figure 5)
and could easily be explained by the existence of relevant microscale effects that are not included in
the mesoscale model. Further offshore these effects are obviously negligible.

Figure 9. Comparison of the measured and simulated (Ferry Lidar vs. WRF) time series of horizontal
wind speed and direction, here for 100 m measurement height only.

To further quantify the observed deviations, we have derived bias and root-mean-square-error
(RMSE) values for the deviations in horizontal wind speed and wind direction between the Ferry Lidar
and WRF data (see Table 3). For this evaluation, the “harbor effects” were excluded by considering
only the data with a longitude coordinate larger than 10.4◦ and below 20.0◦.

The comparison indicates that the 4-day period selected for demonstration indeed shows a better
performance than the overall dataset. A deeper analysis may reveal that the agreement varies with the
location of the measurement in combination with the wind direction due to the prevailing site effects
that were existent at some locations over the track. A corresponding filtering should be applied when
further working with the dataset and, in particular, when setting up a benchmark study.

Table 3. Bias and RMSE values for the deviations in horizontal wind speed and wind direction between
the Ferry Lidar and WRF data.

Horizontal Wind Speed [m/s] Wind Direction [◦]

4-Day Period (25–28 February 2017) All Data 4-Day Period (25–28 February 2017) All Data

Bias 0.09 0.35 −5.2 −6.3

RMSE 1.31 1.90 8.3 29.2

6. Outlook

First comparisons show a good correlation of the measurement data from the NEWA Ferry Lidar
Experiment recorded using a ship-mounted lidar device with mesoscale model data simulated using
the WRF model and mapped onto the ship’s route in time and space. This opens up promising
possibilities, overcoming the difficulty of verifying mesoscale model output data against in-situ data
of, e.g., met masts that represent a very small and fixed volume only. Data of a ship lidar system
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could instead be representative of a line covering a certain space that is similar to the resolution of a
mesoscale model simulation for a respective time scale. Comparing the time series of an NWP model
with the data trajectories of the measurement system moving in space, and finding good correlations,
may increase the trust in the model data and further promote their use as primary data for a wind
resource assessment where on-site measurements are otherwise challenging. Studying the correlations
between the two data sources along well-defined tracks may help to assess and understand where
NWP models show larger and possibly systematic discrepancies.

The comparisons presented in this contribution represent only a first step. Within the NEWA
project, the data of the Ferry Lidar Experiment are provided as a basis for more detailed benchmark
studies that are planned and currently prepared for the near future. Furthermore, apart from that,
the measurement data are part of the open accessibly NEWA Experimental Database, which will be
available to the broader public for manifold investigations after the end of project, i.e., from May 2019.

7. Conclusions

The article presents the Ferry Lidar Experiment conducted within the NEWA project from
February to June 2017. It introduces the ship lidar technology, which was applied on a ferry route
from Kiel to Klaipeda in the Southern Baltic Sea. The obtained dataset of measurements is described in
detail and made comprehensible. It is discussed how the data differ from met mast measurements as
typical on-site data used for wind resource assessments in the wind industry. Ship lidar data stand out
due to their covering of the detailed wind profile with a good data availability of more than 80% for
measurement heights up to 175 m and still a reasonable availability (above 50%) for heights up to 250
m. From this data basis, e.g., low level jet information can be derived.

Measured wind time series are further compared to output data of an NWP model. The results of
this initial comparison demonstrate that mesoscale simulations with their domain sizes in the order of
the ship track, i.e., the distance the ship covers in the applied averaging period of 10 min, compare
well to the ship lidar measurements.

To our knowledge, the NEWA Ferry Lidar Experiment provides the first dataset of wind profile
measurements using lidar technology covering wind-energy relevant scales along a track of that length
and distance (i.e., several hundreds of kilometers).
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Abstract: This work presents a new methodology to estimate the motion-induced standard
deviation and related turbulence intensity on the retrieved horizontal wind speed by means of the
velocity-azimuth-display algorithm applied to the conical scanning pattern of a floating Doppler lidar.
The method considers a ZephIR™300 continuous-wave focusable Doppler lidar and does not require
access to individual line-of-sight radial-wind information along the scanning pattern. The method
combines a software-based velocity-azimuth-display and motion simulator and a statistical recursive
procedure to estimate the horizontal wind speed standard deviation—as a well as the turbulence
intensity—due to floating lidar buoy motion. The motion-induced error is estimated from the
simulator’s side by using basic motional parameters, namely, roll/pitch angular amplitude and
period of the floating lidar buoy, as well as reference wind speed and direction measurements at
the study height. The impact of buoy motion on the retrieved wind speed and related standard
deviation is compared against a reference sonic anemometer and a reference fixed lidar over a 60-day
period at the IJmuiden test site (the Netherlands). Individual case examples and an analysis of the
overall campaign are presented. After the correction, the mean deviation in the horizontal wind
speed standard deviation between the reference and the floating lidar was improved by about 70%,
from 0.14 m/s (uncorrected) to −0.04 m/s (corrected), which makes evident the goodness of the
method. Equivalently, the error on the estimated turbulence intensity (3–20 m/s range) reduced from
38% (uncorrected) to 4% (corrected).

Keywords: wind energy; remote sensing; Doppler wind lidar; velocity-azimuth-display algorithm;
resource assessment; offshore; turbulence intensity

1. Introduction

In recent years, offshore wind energy has become a trustable and mature technology for electricity
generation [1]. At the end of 2016, 14 GW cumulative offshore wind capacity proved the importance of
this technology in the energy mix, with Europe being the main area of development but also with a
significant contribution from China [2]. Although most of the commercial developments of floating
lidars are being carried out in shallow waters (0–30 m), their benefits are not limited to these depths

Remote Sens. 2018, 10, 2037; doi:10.3390/rs10122037 www.mdpi.com/journal/remotesensing249



Remote Sens. 2018, 10, 2037

and there is a tendency to go further off-coast to higher depths [3], where the advantages of floating
lidar technology versus conventional anemometry are more significant.

Different remote sensing technologies have been used in wind energy, including satellite
measurements in offshore environments [4,5], radar [6], sodar [7–9], and combined techniques [10,11].
Nevertheless, due to the high requirements of the industry regarding resolution and accuracy, lidar has
been the most used technology for different applications in the wind energy sector since the appearance
of the first commercial units. These applications include turbine control [12], resource assessment [13–15],
wakes [16–18], and power curve measurements in flat terrain [19], among others.

In the resource assessment phase of offshore wind farms, floating lidars have become an
alternative to conventional fixed metmasts because lidar allows more flexibility in the deployment in
a cost-effective way [13,20–23]. In 2015, the Carbon Trust published a roadmap for the commercial
acceptance of this technology in the wind industry [24]. A state-of-the-art report and recommended
practices developed by the IEA Wind Task 32 [25] can be found in [26], and several validation tests
and commercial developments in [27–33].

The increasing use of floating lidar systems in the offshore wind energy sector motivates the need
to assess and compensate the effect of motion on floating lidar measurements [34,35]. It has been
shown that both the static [36] and dynamic tilt [37–40] of the lidar instrument induce errors in the
retrieved horizontal wind speed (HWS). Different approaches can be considered to reduce the impact
of sea-waves-induced motion on the wind speed measured by floating lidar devices: mechanical [41,42]
and numerical compensation methods [43,44].

Turbulence intensity (TI), which is defined as the ratio between the standard deviation of the HWS
to the mean HWS, has a critical impact on wind turbine production, loads and design. The IEC61400-1
Normal Turbulence Model describes the TI threshold a wind turbine is designed for, and defines the
wind turbine class of the machine that describes the external conditions that must be considered [45–47].
The lidar-observed TI is not identical to the “true” TI that can be measured by point-like measurements
from cup anemometers. The lidar-observed TI is affected by the spatial (i.e., probe length) and
temporal averaging (i.e., scanning time) of the Doppler lidar instrument and by the motion effects
of sea waves on the lidar buoy. While spatial/temporal averaging effects on the measured TI can be
found elsewhere [48–51], here we aim at studying the effects of lidar motion on the measured TI and their
statistical correction. To simplify the mathematical framework to be presented next, we numerically
assessed the motion-corrected HWS standard deviation under simple harmonic motion conditions of
the lidar buoy for a given HWS and wind direction (WD). Towards this end, we considered a software
motion simulator to emulate the motion of sea waves under these simplified motion conditions and the
velocity-azimuth-display (VAD) algorithm [52] to retrieve the motion-corrupted HWS. Furthermore,
simulation results were validated against experimental results as part of the IJmuiden test campaign.

This paper is organized as follows: Section 2 begins with a short description of the measurement
instrumentation at IJmuiden and follows with a description of the methods used: it revisits the
velocity-azimuth-display simulator, presents simulation examples of dynamic tilting of the lidar buoy
under different initial conditions, and describes the proposed methodology to compute the standard
deviation of the HWS error induced by lidar motion. Section 3 discusses the simulator’s results
from the IJmuiden data. Three study cases for different sea and atmospheric conditions are analysed.
The overall performance of the proposed methodology for the whole 60-day measurement campaign
is also presented. Finally, Section 4 gives concluding remarks.

2. Materials and Methods

2.1. Materials

The ZephIR™300 lidar used in this work is a continuous-wave focusable Doppler lidar
adapted for offshore measurements that uses a conical scanning pattern combined with the
velocity-azimuth-display algorithm to retrieve the wind velocity. The scan period is 1 s and each scan
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is composed of 50 lines of sight. The lidar can retrieve the wind vector between 10 and 200 m in height
in user-defined steps of 1 m, although not simultaneously. The latter is a consequence of the focusing
principle of the instrument, which also yields a height-dependent spatial resolution (e.g., 15 m at 100 m
in height).

As described in [53], a validation campaign of the floating lidar was performed at the IJmuiden
test site [54,55]. The aim of this campaign was to assess the accuracy of the EOLOS lidar buoy against
metmast IJmuiden [24]. The main instruments used were: (i) a moving ZephIR™300 lidar in a buoy,
measuring at 27, 58, and 85 m above the Lowest Astronomical Tide (LAT); (ii) a reference ZephIR™300
lidar placed on the metmast platform and measuring at 90, 115, 140, 165, 190, 215, 240, 265, 290, and
315 m above LAT, both measuring sequentially at each height; and (iii) sonic anemometers at 27, 58,
and 85 m above LAT. The ZephIR™300 lidar has shown to be a reliable device for on- and offshore
wind-energy applications. More detailed information about these sensors and additional sensors
in the metmast can be found in [54]. Additionally, data from inertial measurement units were used
to characterise the motion of the lidar buoy. In the present work, data from 1 April to 1 June 2015
were used.

2.2. The Velocity–Azimuth-Display Motion Simulator

The velocity-azimuth-display (VAD) algorithm enables the retrieval of the three components of
the wind-speed vector from a vertically-pointing, conically-scanning Doppler lidar, as is the case of
the ZephIR™300. Under the assumption of a constant wind vector, it can be shown that the radial
wind speed component along the lidar line of sight as a function of the scan time follows a sinusoidal
pattern (the so-called VAD pattern). The wind speed components can be retrieved from the amplitude
and offset and this sinusoidal pattern by using geometrical considerations and a simple least-squares
fitting procedure [52,56].

In previous works [40], we have presented the formulation of the VAD motion simulator under
the assumption of a time-invariant and horizontally-homogeneous wind field. The simulator uses
Euler’s angles to compute the rotated line-of-sight vector at a given time in response to simultaneous
pitch, roll, and yaw tilting angles (three degrees of freedom). Because the rotation matrix of the buoy
can numerically be computed as a function of discrete time in response to harmonic excitations in these
three angles, it is possible to compute the rotated set of lines of sight of the lidar for each conical scan
in response to buoy motion. When the VAD retrieval algorithm is applied to the radial wind speed
onto the rotated set of lines of sight, the motion-induced HWS is retrieved with a temporal resolution
of 1 s (scan period of the ZephIR™300). In principle, the simulation process is complicated by the
existence of three degrees of freedom, each one being described by three variables (i.e., amplitude,
phase, and frequency) representing the sinusoidal excitation. In practice, dependence on the yaw is
not considered because yaw motion can be considered static as compared to the lidar scan period.
Therefore, wind direction errors caused by yaw motion are corrected by means of the buoy compass.
The fact that the scan phase of the lidar scanning pattern (i.e., the starting line of sight of the scanning
pattern at time zero) is completely uncorrelated with buoy roll/pitch movement forced us to carry out
the study by defining different constraints on these variables (this is further discussed in Sections 2.3
and 2.4). Thus, two simple cases were considered in the publication above: static and dynamic buoy
tilting. The latter was limited to specific constraints: (i) only one degree-of-freedom (either roll or pitch);
(ii) zero initial phase of the angular movement; and (iii) zero scan phase of the VAD scanning pattern.

In the present paper, we overcome these constraints by considering: (i) the combined contributions
from both roll and pitch degrees of freedom; (ii) all possible phases in roll and pitch motion; and (iii) all
possible phases in the VAD scan. To illustrate the importance of these parameters, Figure 1 plots the
simulated error on the VAD-retrieved HWS (Equation (1) next) under roll-only lidar motion (one degree
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of freedom) as a function of the scan phase (x-axis), motional angular period (y-axis), and motional
phase (Figure 1a–d). The error on the retrieved HWS is defined as

Z = HWS − HWS, (1)

where HWS is the real wind speed and HWS is the VAD-retrieved HWS.

Figure 1. Simulated horizontal wind speed (HWS) error, Z (Equation (1)), under roll-only motion
as a function of velocity-azimuth-display (VAD) scan phase (x-axis) and motional period, T, (y-axis).
Roll phase (φr) is equal to 0 deg (a), 90 deg (b), 180 deg (c), and 270 deg (d). Roll amplitude is 3.5 deg,
wind vector is (0, 10, 0) m/s, and measurement height is 100 m in all panels [40].

This plot shows that, for 10 m/s HWS and 3.5 deg tilt, the HWS error increases to ±10% depending
on the lidar scan phase. When comparing top and bottom panels in Figure 1, which account for
180-degree difference in roll phase, positive HWS errors in the top panels translate into negative ones
in the bottom panels and vice-versa. Therefore, both the initial phase of movement and that of the
VAD scan should be taken into account to evaluate the impact of lidar motion on the HWS error.

2.3. Motion-Induced HWS Error Variance

In this section, we introduce the methodology used to estimate the HWS error variance induced
by lidar motion. This assumes no “a priori” information about the radial wind component measured
by each line of sight of the scanning pattern.

As mentioned in Section 2.2, the VAD simulator retrieves the motion-corrupted HWS (1 s
resolution) in response to roll and pitch harmonic motion, lidar scan phase, and HWS and WD
at a given measurement height. In turn, each degree of freedom (roll/pitch) is characterised by three
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variables—namely, amplitude, period, and phase. Therefore, the HWS retrieved by the VAD motion
simulator can be expressed as

HWS = h(HWS, WD, H, Ar, φr, Tr, Ap, φp, Tp, φs), (2)

where h is the nonlinear function modelling the VAD-fitting algorithm, H is the measurement
height, and A, φ, and T are the amplitude, phase, and period associated to sinusoidal roll/pitch
motional excitation, A · sin(2π f t + φ), with f = 1

T (subscripts r and p stand for roll and pitch angles,
respectively), and φs is the conical scan phase of the lidar.

Horizontal wind speed (HWS), wind direction (WD), and roll/pitch amplitudes and periods
(Ar/p, Tr/p, respectively) are deterministic variables because they can be measured experimentally
(e.g., HWS and WD from metmast anemometers or a reference fixed lidar, and roll/pitch amplitudes
and periods from inertial measurement units on the buoy). In contrast, roll/pitch motional phases,
φr/p, and VAD scan phase, φs, become random variables because buoy initial motion conditions (φr/p)
cannot be recovered from inertial measurement unit measurements, nor is the scan phase (φs) available
from the lidar.

For convenience, we define HWS-error function g as Equation (2) above, constrained to the set
of deterministic conditions �S = (HWS, WD, Ap, Tp, Ar, Tr) (i.e., given HWS, WD, and buoy attitude)
minus the true HWS,

Z = g(φr, φp, φs) = h|�S − HWS. (3)

The motion-induced HWS error variance can be estimated for the first and second raw moments
of Z as

Var(Z) = E(Z2)− E(Z)2. (4)

By using the expectation theorem [57], the first two raw moments of Z can be computed as

E(Zn) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(φr, φp, φs)

n fΦrΦpΦs(φr, φp, φs)dφrdφpdφs, (5)

where fΦrΦpΦs(φr, φp, φs) is the joint probability distribution function for the random-variable set of
phases, Φr, Φp, and Φs; and n = 1, 2. At this point, and following standard notation in probability
theory [58], we use uppercase Greek letters to denote random variables and lowercase letters to denote
the values for these variables.

Formulation of the multivariate distribution function fΦrΦpΦs(φr, φp, φs) can largely be simplified
by introducing different properties describing the statistics of random variables Φr, Φp and Φs.
We hypothesise that information about any one of these three variables gives no information about the
other two, which is equivalent to saying that phases Φr, Φp and Φs are independent random variables.
This will be further discussed in Section 2.4. As a result, joint density function fΦrΦpΦs factors out
as the product of univariate functions fΦr , fΦp and fΦs , as fΦrΦpΦs = fΦr fΦp fΦs . This enables us to
rewrite Equation (5) as

E(Zn) =
∫ 2π

0

∫ 2π

0
fΦr (φr) fΦp(φp)

[ ∫ 2π

0
g(φr, φp, φs)

n fΦs(φs)dφs

]
dφrdφp, (6)

where it has been used that random variables Φr, Φp, and Φs are uniformly distributed in [0, 2π) so that

fν(ν) =
1

2π
, ν ∈ [0, 2π) with ν = φr, φp, φs. (7)

The hypothesis of uniform distribution in [0, 2π) for scan phase Φs is well-justified on account of
the fact that, despite the 1 s temporal resolution of the lidar, measurements are not exactly delivered
every second due to lidar refocusing and internal checkings.
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We define

g′n(φr, φp) =
∫ 2π

0
g(φs)

n
∣∣∣∣
Φr=φr ,Φp=φp

fΦs(φs)dφs, (8)

which can physically be understood as the n-th raw moment of the HWS error due to random variable
scan phase, Φs, for a given pair of roll and pitch phases, Φr = φr and Φp = φp. Equivalently,
Equation (8) can be written as

g′n(φr, φp) = E(g(φs)
n
∣∣∣∣
Φr=φr ,Φp=φp

, (9)

which is the expected value of g(φs)n for a particular pair of motional phases Φr = φr and Φp = φp.
Because fΦs is a uniform probability density function, the expected value is just the arithmetic mean of
g(φs)n along the Φs dimension.

By substituting Equation (8) into Equation (6), Equation (6) takes the form

E(Zn) =
∫ 2π

0
fΦr (φr)

[ ∫ 2π

0
g′n(φr, φp) fΦp(φp)dφp

]
dφr. (10)

By comparing Equation (10) to Equation (6) above, it emerges that we reduced the calculus from
the tri-dimensional domain [Φr, Φp, Φs] in Equation (6) to the bi-dimensional domain [Φr, Φp] in
Equation (10). The same procedure above can be repeated recursively to reduce Equation (10) from
the bi-dimensional domain [Φr, Φp] to the one-dimensional domain, [Φr]. Thus, in similar fashion to
Equation (8), we define

g′′n(φr) =
∫ 2π

0
g′n(φp)

∣∣∣∣
Φr=φr

fΦp(φp)dφp, (11)

which can also be written as (counterpart of Equation (9))

g′′n(φr) = E(g′n(φp)

∣∣∣∣
Φr=φr

. (12)

Substitution of Equation (11) into Equation (6) yields

E(Zn) =
∫ 2π

0
g′′n(φr) fΦr (φr)dφr, (13)

or, equivalently,
E(Zn) = E(g′′n(φr)), (14)

which is to say that the raw moments of the HWS error function Z can be calculated by using a
three-step procedure given by Equations (9), (12) and (14), where the contribution from each random
variable (i.e., roll phase, Φr, pitch phase, Φp, and scan phase, Φs) are successively averaged out.

The practical computational procedure of Equations (9), (12) and (14) is as follows: for a given set
of simulation parameters �S = (HWS, WD, H, Ap, Tp, Ar, Tr), the HWS error (Equation (1)) is calculated
by the motion simulator of Section 2.2 in the [0 − 2π)× [0 − 2π)× [0 − 2π) domain of random phases
Φr, Φp, and Φs by using a grid of 24 × 24 × 24 evenly spaced points between 0 and 2π. This gives a 3D
matrix of HWS error values similar to the 2D matrix represented in Figure 1, but in three dimensions.
Then, the HWS error is averaged along the Φs (scan phase) dimension of the matrix for every pair
of roll/pitch phase values (φr, φp) to obtain g′1 (1st raw moment, Equation (9)). Next, this procedure
is repeated recursively over the Φp dimension of g′1 (now a 2D instead of a 3D matrix) to yield g′′1 (a
1D matrix or vector, Equation (12)), and finally, over the Φr dimension of g′′1 , which yields the scalar
E(Z) (Equation (6)). This three-step procedure is repeated twice to compute E(Z) and E(Z2). Finally,
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the sought-after HWS error variance, Var(Z), is obtained from Equation (4). The standard deviation of
the motion-induced HWS error, σZ, is computed as the square root of the variance.

2.4. Roll/Pitch Correlation Hypothesis

As described by vector �S (Equation (3)), besides the input parameters directly related to the wind
(i.e., HWS and WD), the simulator requires roll and pitch angular amplitude and period information
to describe buoy attitude. This information is derived from 5 Hz inertial measurement unit data on the
buoy [53]. We hypothesise that, if significant correlation between roll and pitch periods and between
roll and pitch amplitudes is found, these two angular variables can be considered equivalent and,
therefore, a single amplitude and period can meaningfully be used to describe motion in both axes.
Thus, for each 10 min timestamp, we computed the motional amplitude as the average roll and pitch
angular amplitude, and the motional period as the average roll and pitch period. This is to say that buoy
attitude can be given by significant wave height and wave period, which is a state-of-the-art practice
in oceanography and wind energy to model the sea state. To evaluate this hypothesis, Figure 2 shows
roll–pitch scatter plots for both amplitude and period variables as measured by inertial measurement
units during the study period. The pitch-to-roll correlation coefficients in angular amplitude and
period were 0.88 and 0.54, respectively, demonstrating the validity of the correlation hypothesis for
the amplitude and a comparatively weaker correlation for the period. The correlation coefficient is
equivalent to the cross-covariance at zero time lag (see inset). Further experimental analysis showed
that this comparatively lower correlation is due to the bi-modality behaviour of the angular period,
which means that two dominant motional periods (or frequencies) coexist in many measurement
records. In this case, the single-frequency harmonic motion model becomes an oversimplification of
reality, this being the main limitation of the method.

Figure 2. Scatter plots for 10-min-averaged roll and pitch angles. (a) angular amplitude; (b) angular
period. Dashed lines correspond to the 1:1 reference line. Insets show the roll–pitch cross-covariance
for different time lags.

2.5. Wind Direction Exclusion

In previous works [40] limited to one degree of freedom in angular motion (i.e., roll or pitch
only), the authors have shown that wind direction has a relevant impact on the HWS error. In
addition, under one-degree-of-freedom harmonic motion, it has been shown that the HWS error
exhibits sinusoidal dependence with wind direction.

Under the two-degrees-of-freedom model and the approximation of nearly correlated roll and
pitch motion (Section 2.4), the HWS error was simulated for different wind directions (0, 30, 60, . . . ,
330 deg) and periods (1, 1.5, 2, 2.5, . . . , 10 s) for a particular pair of values, HWS (10 m/s) and angular
amplitude (3.5 deg). Figure 3 shows the increase of the motion-induced HWS error standard deviation
for low angular periods and that the error standard deviation does not depend on wind direction.
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Figure 3. Simulator results of motion-induced HWS error standard deviation, σZ as a function of
motional period, T (x-axis) and wind direction (y-axis). HWS is 10 m/s HWS, roll-and-pitch amplitude
is 3.5 deg.

A plausible explanation is as follows: the fact that roll and pitch are approximately linearly
correlated in amplitude and period enables an equivalent one-degree-of-freedom treatment of buoy
motion (buoy tilt “amplitude” and buoy tilt “period” ). Because the HWS error standard deviation
follows a sinusoidal variation with wind direction [40] and roll and pitch axes are orthogonal (π/2
phase shift between roll and pitch sinusoidal variation with wind direction), the error standard
deviation, which is the quadratic sum of roll and pitch error standard deviations, remains constant
with wind direction. Similar simulations were carried out for other HWSs and angular amplitude
conditions, showing analogous behaviour with wind direction. Therefore, under the approximation of
correlated roll and pitch motion, wind direction was excluded from the analysis.

3. Results and Discussion

To validate the simulator’s performance in Section 2.2 when estimating the motion-induced
HWS error standard deviation on the floating lidar (in the buoy), data from metmast IJmuiden
(Section 2.1) was used. Two sensors were chosen as reference: (i) the ZephIR™300 lidar and (ii) the
sonic anemometers in the metmast. The intercomparison was carried out at 10 min temporal resolution.

On one hand, the advantage of using the fixed lidar as reference is that we were comparing
two identical lidars although configured to sequentially measure at a different number of heights
(the lidar in the metmast measured at 10 heights while the lidar in the buoy at only 3). On the other
hand, the advantage of using sonic anemometers is that this technology is more accepted by the wind
industry and more similar to the cup anemometer, the official sensor reference in the state-of-the-art.
This is because both sonic and cup anemometers perform point-like measurements as opposed to the
volume scanning technique of the lidar.

There is only one measurement height in common for the three collocated devices: 85 m. Therefore,
this height was the one used in for the comparison.

3.1. Binning

As discussed in Section 2.3, an underlying requirement of the proposed methodology is the
assumption of uncorrelated- and uniformly-distributed phases φr, φp, and φs in the floating lidar for
each HWS and buoy motional condition under study. To better fulfill this requirement, a binning
procedure was applied to the whole campaign dataset (6985 10-min records). As a result, each bin
contained measurement records with similar HWSs and motional conditions but not necessarily
(and usually not) having correlative timestamps. As a result of this timestamp “mixing” into a bin
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(also called time “scrambling”), the requirement of uncorrelated and uniformly distributed phases
(Section 2.3) into a bin was reinforced. The chosen binning variables were: HWS, angular amplitude,
and period in equally spaced bins of width 1 unit ((m/s), (deg), and (s), respectively) centred on integer
values (bin edges at [0.5 1.5), [1.5 2.5) units, etc.).

Table 1 shows the 25 most frequent cases in the IJmuiden campaign. The most common HWSs were
between 3 and 12 m/s, amplitudes were between 2 and 4 degrees, and motional periods were between
3 and 4 s. The total set of measurement cases is considered in Figure 6 and Section 3.4. The conditions
of the site during the study period included HWS between 2 and 21 m/s, angular amplitudes between
1 and 5 deg, and periods between 2 and 5 s.

Table 1. The 25 most frequent HWS and motional cases in the IJmuiden campaign. “Case no.” is the
bin number sorted by decreasing frequency of event occurrence (“1” indicating the most frequent
case); HWS (m/s) stands for 10-min mean horizontal wind speed; AA (deg) stands for motion
angular amplitude; T (s) stands for period; Count no. is the bin count number; and σZ (m/s) is
the motion-induced HWS error standard deviation estimated by the simulator after Equation (4).

Case No. HWS (m/s) AA (deg) T (s) Count No. σZ (m/s)

1 8 3 4 288 0.18
2 5 2 4 247 0.07
3 9 3 4 237 0.20
4 7 2 4 208 0.10
5 6 2 4 198 0.09
6 7 3 4 196 0.16
7 6 3 4 182 0.13
8 6 2 3 180 0.12
9 3 2 4 175 0.04
10 7 2 3 174 0.14
11 10 3 4 169 0.22
12 5 2 3 166 0.10
13 4 2 4 164 0.06
14 8 2 4 157 0.12
15 8 2 3 133 0.16
16 11 3 4 130 0.25
17 5 3 4 130 0.11
18 9 3 3 112 0.27
19 8 3 3 108 0.24
20 7 3 3 106 0.21
21 12 3 4 100 0.27
22 11 4 4 95 0.33
23 2 1 3 91 0.02
24 4 2 3 86 0.08
25 3 1 3 80 0.03

3.2. Variance of the Sum of Partially Correlated Variables

Next, we discuss how to combine the motion-induced HWS error standard deviation, σZ,
estimated by the simulator (Section 2.3), with the reference HWS standard deviation, σre f , which is
measured from either the lidar on the metmast, σre f (lidar), or the sonic anemometer, σre f (sonic), in order
to estimate the motion-corrected HWS standard deviation, σcorr. The latter is the key output of our study
to be compared with the HWS standard deviation measured by the floating lidar, σmoving.

According to the law of propagation of errors, the corrected variance, σ2
corr, of the sum of two

variables (the real wind speed (or reference), HWS, and the motion-induced HWS error, Z; Equation (1))
is written as [57]

σ2
corr = σ2

re f + σ2
Z + 2 cov(re f , Z), (15)
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where σ2 stands for variance (i.e., the square of the standard deviation) and cov(re f , Z) is the covariance
between the reference HWS and the motion-induced HWS error.

Equation (15) above states that the standard deviation of the HWS measured by the moving lidar
not only depends on the variance from both the wind (intrinsic turbulence) and the motion-induced
error, but also on the covariance between these two variables. In the limit cases of: (i) uncorrelated
variables (U), cov(re f , Z) = 0, and (ii) linearly correlated variables (C), cov(re f , Z) = σre f · σZ,
Equation (15) reduces to

σU
corr =

√
σ2

re f + σ2
Z, (16)

σC
corr = σre f + σZ. (17)

In what follows, and unless otherwise stated, the motion-corrected HWS standard deviation σcorr is
calculated assuming partial correlation between these variables (i.e., by using Equation (15)). The term
cov(re f , Z) is computed from the correlation coefficient between the reference HWS, re f , and the
expected value of the motion-induced HWS error, E(Z). Here, we use the mathematical definition
cov(re f , Z) = ρre f ,Z · σre f · σZ, where ρre f ,Z is the correlation coefficient, and σre f and σZ are the
standard deviations of the 10-min reference HWS and 10-min motion-induced HWS error, respectively.
In practice, and considering that the binning process ensures similar motional characteristics in each
bin (Section 3.1), we computed a single ordered pair (reference HWS, E(Z)) per bin (109 simulations)
and a single correlation coefficient given these 109 bins (ρ = 0.78), which is representative of the
motional conditions of the overall sample under study.

3.3. Analysis of Particular Cases

In order to discuss the goodness of the proposed methodology to estimate the motion-induced
HWS standard deviation, this section tackles three representative cases (or bins) from Table 1: cases
no. 2, 18, and 25. The first case gave good estimation of the motion-induced HWS standard deviation;
the second one, overestimation; and the third one, underestimation.

Figure 4 plots the standard deviation of the HWS with and without correction (Equation (15)),
using the lidar on the metmast as reference. The sample size associated with each of these three cases
is listed in the “Count no.” column of Table 1.

Figure 4. Selected discussion case examples from Table 1. (a) case no. 2, HWS = 5 m/s; angular
amplitude (AA) = 2 deg; period (T) = 4 s; (b) case no. 18, HWS = 9 m/s; AA = 3 deg; T = 3 s;
(c) case no. 25, HWS = 3 m/s; AA = 1 deg; T = 3 s). All panels: the x-axis represents the 10-min HWS
standard deviation of the floating lidar, denoted σmoving. The y-axis represents (in blue crosses) the
standard deviation of the reference-lidar HWS (denoted σre f ) and (in red circles) the standard deviation
of the motion-corrected HWS (denoted σcorr). The dashed black line represents the 1:1 reference line.

Figure 4a (case no. 2) shows 247 10-min measurements for which the proposed methodology
accurately estimated the standard deviation of the motion-induced HWS error. Before applying
Equation (15) correction, uncorrected values fell below the 1:1 line, which indicates that the moving
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