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Preface to ”Image Processing Using FPGAs”

Over the last 20 years, FPGAs have moved from glue logic through to computing platforms.

They effectively provide a reconfigurable hardware platform for implementing logic and algorithms.

Being fine-grained hardware, FPGAs are able to exploit the parallelism inherent within a hardware

design while at the same time maintaining the reconfigurability and programmability of software.

This has led to FPGAs being used as a platform for accelerating computationally intensive tasks. This

is particularly seen in the field of image processing, where the FPGA-based acceleration of imaging

algorithms has become mainstream. This is even more so within an embedded environment, where

the power and computational resources of conventional processors are not up to the task of managing

the data throughput and computational requirements of real-time imaging applications.

Unfortunately, the fine-grained nature of FPGAs also makes them difficult to programme

effectively. Conventional processors have a fixed computational architecture, which is able to provide

a high level of abstraction. By contrast, on an FPGA, it is necessary to design not only the algorithm

but also the computational architecture, which leads to an explosion in the design space complexity.

This, coupled with the complexities of managing the concurrency of a highly parallel design and the

bandwidth issues associated with the high volume of data associated with images and video, has

led to a wide range of approaches and architectures used for realising FPGA-based image processing

systems. This Special Issue provides an opportunity for researchers in this area to present some of

their latest results and designs. The diversity of presented techniques and applications reflects the

nature and current state of FPGA-based design for image processing.

Donald G. Bailey

Special Issue Editor

ix





Journal of

Imaging

Editorial

Image Processing Using FPGAs

Donald G. Bailey

Department of Mechanical and Electrical Engineering, School of Food and Advanced Technology,
Massey University, Palmerston North 4442, New Zealand; D.G.Bailey@massey.ac.nz

Received: 6 May 2019; Accepted: 7 May 2019; Published: 10 May 2019

Abstract: Nine articles have been published in this Special Issue on image processing using
field programmable gate arrays (FPGAs). The papers address a diverse range of topics relating
to the application of FPGA technology to accelerate image processing tasks. The range includes:
Custom processor design to reduce the programming burden; memory management for full frames,
line buffers, and image border management; image segmentation through background modelling,
online K-means clustering, and generalised Laplacian of Gaussian filtering; connected components
analysis; and visually lossless image compression.

Keywords: field programmable gate arrays (FPGA); image processing; hardware/software co-design;
memory management; segmentation; image analysis; compression

1. Introduction to This Special Issue

Field programmable gate arrays (FPGAs) are increasingly being used for the implementation
of image processing applications. This is especially the case for real-time embedded applications,
where latency and power are important considerations. An FPGA embedded in a smart camera is able
to perform much of the image processing directly as the image is streamed from the sensor, with the
camera providing a processed output data stream, rather than a sequence of images. The parallelism of
hardware is able to exploit the spatial (data level) and temporal (task level) parallelism implicit within
many image processing tasks. Unfortunately, simply porting a software algorithm onto an FPGA often
gives disappointing results, because many image processing algorithms have been optimised for a
serial processor. It is usually necessary to transform the algorithm to efficiently exploit the parallelism
and resources available on an FPGA. This can lead to novel algorithms and hardware computational
architectures, both at the image processing operation level and also at the application level.

The aim of this Special Issue is to present and highlight novel algorithms, architectures, techniques,
and applications of FPGAs for image processing. A total of 20 submissions were received for the
Special Issue, with nine papers being selected for final publication.

2. Contributions

Programming an FPGA to accelerate complex algorithms is difficult, with one of four approaches
commonly used [1]:

• Custom hardware design of the algorithm using a hardware description language, optimised for
performance and resources;

• implementing the algorithm by instantiating a set of application-specific intellectual property
cores (from a library);

• using high-level synthesis to convert a C-based representation of the algorithm to
synthesisable hardware; or

• mapping the algorithm onto a parallel set of programmable soft-core processors.

J. Imaging 2019, 5, 53; doi:10.3390/jimaging5050053 www.mdpi.com/journal/jimaging1
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The article by Siddiqui et al. [1] took this last approach, and describes the design of an efficient
16-bit integer soft-core processor, IPPro, capable of operating at 337 MHz, specifically targetting the
dataflow seen in complex image processing algorithms. The presented architecture uses dedicated
stream access instructions on the input and output, with a 32-element local memory for storing pixels
and intermediate results, and a separate 32-element kernel memory for storing filter coefficients
and other parameters and constants. The exploitation of both data-level parallelism and task-level
parallelism is demonstrated through the mapping of a K-means clustering algorithm onto the
architecture, showing good scalability of processing speed with multiple cores. A second case study of
traffic sign recognition is partitioned between the IPPro cores and an ARM processor, with the colour
conversion and morphological filtering stages mapped to the IPPro. Again, the use of parallel IPPro
cores can significantly accelerate these tasks, compared to conventional software, without having to
resort to the tedious effort of custom hardware design.

Garcia et al. [2] worked on the thesis that the image processing operations which require random
access to the whole frame (including iterative algorithms) are particularly difficult to realise in FPGAs.
They investigate the mapping of a frame buffer onto the memory resources of an FPGA, and explore
the optimal mapping onto combinations of configurable on-chip memory blocks. They demonstrate
that, for many image sizes, the default mapping by the synthesis tools results in poor utilisation, and is
also inefficient in terms of power requirements. A procedure is described that determines the best
memory configuration, based on balancing resource utilisation and power requirements. The mapping
scheme is demonstrated with optical flow and mean shift tracking algorithms.

On the other hand, local operations (such as filters) only need part of the image to produce an
output, and operate efficiently in stream processing mode, using line buffers to cache data for scanning
a local window through the image. This works well when the image size is fixed, and is known in
advance. Two situations where this approach is less effective [3] are in the region of interest processing,
where only a small region of the image is processed (usually determined from the image contents at
run-time), and cloud processing of user-uploaded images (which may be of arbitrary size). This is
complicated further in high-speed systems, where the real-time requirements demand processing
multiple pixels in every clock cycle, because, if the line width is not a multiple of the number of pixels
processed each cycle, then it is necessary to assemble the output window pixels from more than one
memory block. Shi et al. [3], in their paper, extend their earlier work on assembling the output window
to allow arbitrary image widths. The resulting line buffer must be configurable at run-time, which is
achieved through a series of “instructions”, which control the assembly of the output processing
window when the required data spans two memory blocks. Re-configuration only takes a few clock
cycles (to load the instructions), rather than conventional approach of reconfiguring the FPGA each
time the image width changes. The results demonstrate better resource utilisation, higher throughput,
and lower power than their earlier approach.

When applying window operations to an image, the size of the output image is smaller than
the input because data is not valid when the window extends beyond the image border. If necessary,
this may be mitigated by extending the input image to provide data to allow such border pixels to be
calculated. Prior work only considered border management using direct form filter structures, because
the window formation and filter function can be kept independent. However, in some applications,
transpose-form filter structures are desirable because the corresponding filter function is automatically
pipelined, leading to fewer resources and faster clock frequencies. Bailey and Ambikumar [4] provide
a design methodology for border management using transpose filter structures, and show that the
resource requirements are similar to those for direct-form border management.

An important task in computer vision is segmenting objects from a complex background. While
there are many background modelling algorithms, the complexity of robust algorithms make them
difficult to realise on an FPGA, especially for larger image sizes. Chen et al. [5] address scalability issues
with increasing image size by using super-pixels—small blocks of adjacent pixels that are treated as a
single unit. As each super-pixel is considered to be either object or background, this means that fewer
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models need to be maintained (less memory) and fewer elements need to be classified (reduced
computation time). Using hardware/software co-design, they accelerated the computationally
expensive steps of Gaussian filtering and calculating the mean and variance within each super-pixel
with hardware, with the rest of the algorithm being realised on the on-chip CPU. The resulting system
gave close to state-of-the-art classification accuracy.

A related paper, by Badawi and Bilal [6], used K-means clustering to segment objects within video
sequences. Rather than taking the conventional iterative approach to K-means clustering, they rely
on the temporal coherence of video streams and use the cluster centres from the previous frame as
initialisation for the current frame. Additionally, rather than waiting until the complete frame has
been accumulated before updating the cluster centres, an online algorithm is used, with the clusters
updated for each pixel. To reduce the computational requirements, the centres are updated using a
weighted average. They demonstrate that, for typical video streams, this gives similar performance to
conventional K-means algorithms, but with far less computation and power.

In another segmentation paper, Zhou et al. [7] describe the use of a generalised Laplacian of
Gaussian (LoG) filter for detecting cell nuclei for a histopathology application. The LoG filters detect
elliptical blobs at a range of scales and orientations. Local maxima of the responses are used as
candidate seeds for cell centres, and mean-shift clustering is used to combine multiple detections
from different scales and orientations. Their FPGA design gave modest acceleration over a software
implementation on a high-end computer.

Given a segmented image, a common task is to measure feature vectors of each connected
component for analysis. Bailey and Klaiber [8] present a new single-pass connected components
analysis algorithm, which does this with minimum latency and relatively few resources. The key novelty
of this paper is the use of a zig-zag based scan, rather than a conventional raster scan. This eliminates the
end-of-row processing for label resolution by integrating it directly within the reverse scan. The result is
true single-pixel-per-clock-cycle processing, with no overheads at the end of each row or frame.

An important real-time application of image processing is embedded online image compression
for reducing the data bandwidth for image transmission. In the final paper within this Special Issue,
Wang et al. [9] defined a new image compression codec which works efficiently with a streamed image,
and minimises the perceptual distortion within the reconstructed images. Through small local filters,
each pixel is classified as either an edge, a smooth region, or a textured region. These relate to a
perceptual model of contrast masking, allowing just noticeable distortion (JND) thresholds to be
defined. The image is compressed by downsampling; however, if the error in any of the contributing
pixels exceeds the visibility thresholds, the 2 × 2 block is considered a region of interest, with the
4 pixels coded separately. In both cases, the pixel values are predicted using a 2-dimensional predictor,
and the prediction residuals are quantised and entropy-encoded. Results typically give a visually
lossless 4:1 compression, which is significantly better than other visually lossless codecs.

3. Conclusions

Overall, this collection of papers reflects the diversity of approaches taken to applying FPGAs to
image processing applications. From one end, using the programmable logic to design lightweight
custom processors to enable parallelism, through overcoming some of the limitations of current
high-level synthesis tools, to the other end with the design of custom hardware designs at the
register-transfer level.

The range of image processing techniques include filtering, segmentation, clustering, and
compression. Applications include traffic sign recognition for autonomous driving, histopathology,
and video compression.
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Abstract: FPGA-based embedded image processing systems offer considerable computing resources
but present programming challenges when compared to software systems. The paper describes an
approach based on an FPGA-based soft processor called Image Processing Processor (IPPro) which can
operate up to 337 MHz on a high-end Xilinx FPGA family and gives details of the dataflow-based
programming environment. The approach is demonstrated for a k-means clustering operation and
a traffic sign recognition application, both of which have been prototyped on an Avnet Zedboard
that has Xilinx Zynq-7000 system-on-chip (SoC). A number of parallel dataflow mapping options
were explored giving a speed-up of 8 times for the k-means clustering using 16 IPPro cores, and a
speed-up of 9.6 times for the morphology filter operation of the traffic sign recognition using
16 IPPro cores compared to their equivalent ARM-based software implementations. We show that for
k-means clustering, the 16 IPPro cores implementation is 57, 28 and 1.7 times more power efficient
(fps/W) than ARM Cortex-A7 CPU, nVIDIA GeForce GTX980 GPU and ARM Mali-T628 embedded
GPU respectively.

Keywords: FPGA; hardware acceleration; processor architectures; image processing;
heterogeneous computing

1. Introduction

With improved sensor technology, there has been a considerable growth in the amount of data
being generated by security cameras. In many remote environments with limited communication
bandwidth, there is a clear need to overcome this by employing remote functionality in the system such
as employing motion estimation in smart cameras [1]. As security requirements grow, the processing
needs will only need to increase.

New forms of computing architectures are needed. In late 70’s, Lamport [2] laid the foundation
of parallel architectures exploiting data-level parallelism (DLP) using work load vectorisation and
shared memory parallelisation, used extensively in Graphical Processing Units (GPUs). Current energy
requirements and limitations of Dennard scaling have acted to limit clock scaling and thus reduce
future processing capabilities of GPUs or multi-core architectures [3]. Recent field programmable gate
array (FPGA) architectures represent an attractive alternative for acceleration as they comprise ARM
processors and programmable logic for accelerating computing intensive operations.

FPGAs are proven computing platforms that offer reconfigurability, concurrency and pipelining,
but have not been accepted as a mainstream computing platform. The primary inhibitor is the need to

J. Imaging 2019, 5, 16; doi:10.3390/jimaging5010016 www.mdpi.com/journal/jimaging5
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use specialist programming tools, describing algorithms in hardware description language (HDL), altough
this has been alleviated by the introduction of high-level programming tools such as Xilinx’s Vivado
High-level Synthesis (HLS) and Intel’s (Altera’s) compiler for OpenCL. While the level of abstraction
has been raised, a gap still exists between adaptability, performance and efficient utilisation of FPGA
resources. Nevertheless, the FPGA design flow still requires design synthesis and place-and-route that
can be time-consuming depending on the complexity and size of the design [4,5]. This FPGA design
flow is alien to software/algorithm developers and inhibits wider use of the technology.

One way to approach this research problem is to develop adaptable FPGA hardware architecture
that enables edit-compile-run flow familiar to software and algorithm developers instead of hardware
synthesis and place-and-route. This can be achieved by populating FPGA logic with a number of efficient
soft core processors used for programmable hardware acceleration. This underlying architecture will
be adaptable and can be programmed using conventional software development approaches. However,
the challenge is to build an FPGA solution that is more easily programmed whilst still providing high
performance. Whilst FPGA-based processor architectures exist such as Xilinx’s MicroBlaze, Altera’s
NIOS and others [6–9], we propose an Image Processing Processor (IPPro) processor [10] tailored to
accelerate image processing operations, thereby providing an excellent mapping between FPGA
resources, speed and programming efficiency. The main purpose of the paper is to give insights into
the multi-core processor architecture built using the IPPro architecture, its programming environment
and outline its applications to two image processing applications. Our main contributions are:

• Creation of an efficient, FPGA-based multicore processor which advances previous work [10],
[11] and an associated dataflow-based compiler environment for programming a heterogeneous
FPGA resource comprising it and ARM processors.

• Exploration of mapping the functionality for a k-means clustering function, resulting in a possible
speedup of up to 8 times that is 57, 28 and 1.7 times more power efficient (fps/W) than ARM
Cortex-A7 CPU, nVIDIA GeForce GTX980 GPU and ARM Mali-T628 embedded GPU.

• Acceleration of colour and morphology operations of traffic sign recognition application, resulting
in a speedup of 4.5 and 9.6 times respectively on a Zedboard.

The rest of paper is organized as follows: Section 2 outlines the various image processing
requirements and outlines how these can be matched to FPGA; relevant research is also reviewed.
System requirements are outlined in Section 3 and the soft core processor architecture is also briefly
reviewed in Section 4. The system architecture is outlined in Section 5. Experiments to accelerate a
k-means clustering algorithm and a traffic sign recognition example, are presented in Sections 6 and 7
respectively. Conclusions and future work are described in Section 8.

2. Background

Traditionally, vision systems have been created in a centralized manner where video from
multiple cameras is sent to a central back-end computing unit to extract significant features. However,
with increasing number of nodes and wireless communications, this approach becomes increasingly
limited, particularly with higher resolution cameras [12]. A distributed processing approach can be
employed where data-intensive, front-end preprocessing such as sharpening, object detection etc. can
be deployed remotely, thus avoiding the need to transmit high data, video streams back to the server.

2.1. Accelerating Image Processing Algorithms

Nugteren et al. has characterized image processing operations based on the computation and
communication patterns [13] as highlighted in Table 1. The vision processing architecture can be
composed of general and special purpose processors, FPGAs or combinations thereof. FPGAs offer
opportunities to exploit the fine/coarse grained parallelism that most of the image processing
applications exhibit at front-end processing. Heterogeneous architectures comprising CPUs and FPGA
fabrics thus offer a good balance in terms of performance, cost and energy efficiency.

6
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Brodtkorb et al. has compared architectural and programming language properties of
heterogeneous architectures comprising CPU, GPU and FPGA [14] showing that FPGAs deliver
a better performance/W ratio for fixed-point operations; however, they are difficult to program.
Different design approaches have been adopted by the research community to build FPGA-based
hardware accelerators. These include:

• Customised hardware accelerator designs in HDLs which require long development times but
can be optimised in terms of performance and area.

• Application specific hardware accelerators which are generally optimized for a single function,
non-programmable and created using IP cores.

• Designs created using high-level synthesis tools such as Xilinx’s Vivado HLS tool and
Altera’s OpenCL compiler which convert a C-based specification into an RTL implementation
synthesizable code [15] allowing pipelining and parallelization to be explored.

• Programmable hardware accelerator in the form of vendor specific soft processors such as
Xilinx’s Microblaze and Altera’s NIOS II processors and customized hard/soft processors.

Table 1. Categorisation of image processing operations based on their memory and execution
patterns [13] allow features of compute and memory patterns to be highlighted and therefore identifying
what can be mapped into FPGA.

Operation
Type

Domain Output
Depends on

Memory
Pattern

Execution
Pattern

Examples

Point and
Line

Spatial Single input
pixel

Pipelined One-to-one Intensity change by factor,
Negative image-inversion.

Area/Local Spatial Neighbouring
pixels

Coalesced Tree Convolution functions: Sobel,
Sharpen, Emboss.

Geometric Spatial Whole frame Recursive
non-coalesced

Large reduction
tree

Rotate, Scale, Translate, Reflect,
Perspective and Affine.

2.2. Soft Processor Architectures

Numerous FPGA multiprocessor architectures have been created to accelerate applications.
Strik et al. used a heterogeneous multiprocessor system with a reconfigurable network-on-chip to
process multiple video streams concurrently in real-time [16]. VectorBlox MXP [7] is the latest of a
series of vector-based soft core processor architectures designed to exploit DLP by processing vectors.
Optimizations employed include replacing a vector register file with a scratchpad memory to allow for
arbitrary data packing and access, removing vector length limits, enabling sub-word single-instruction,
multiple-data (SIMD) within each lane and a DMA-based memory interface.

Zhang et al. has created composable vector units [17] and allows a vector program of a dataflow
graph (DFG) to be statically compiled and clusters of operations to be composed together to create a
new streaming instruction that uses multiple operators and operands. This is similar to traditional
vector chaining but is not easily extended to support wide SIMD-style parallelism. The reported
speed-ups were less than a factor of two. Further optimizations have been employed in a custom
SVP Bluespec [18] where they compared a custom pipeline to the SVP implementation and found that
performance was within a factor of two given similar resource usage. Kapre et al. has proposed a
GraphSoC custom soft processor for accelerating graph algorithms [19]. It is a three-stage pipelined
processor that supports graph semantics (node, edge operations). The processor was designed with
Vivado HLS. Each core uses nine BRAMs and runs at 200 MHz.

Octavo [20] is a multi-threaded, ten-cycle processor that runs at 550 MHz on a Stratix IV, equivalent
to the maximum frequency supported by memory blocks. A deep pipeline is necessary to support this
high operating frequency, but suffers from the need to pad dependent instructions to overcome data
hazards. The authors sidestep this issue by designing Octavo as a multi-processor, thus dependent
instructions are always sufficiently far apart and NOP padding is not needed. Andryc et al. presented
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a GPGPU architecture called FlexGrip [8] which like vector processors, supports wide data parallel,
SIMD-style computation using multiple parallel compute lanes, provides support for conditional
operations, and requires optimized interfaces to on- and off-chip memory. FlexGrip maps pre-compiled
CUDA kernels on soft core processors which are programmable and operate at 100 MHz.

3. System Implementation

Whilst earlier versions of FPGAs just comprised multiple Lookup Tables (LUT) connected to
registers and accelerated by fast adders, FPGAs now comprise more coarse-grained functions such as
dedicated, full-custom, low-power DSP slices. For example, the Xilinx DSP48E1 block comprises a
25-bit pre-adder, a 25 × 18-bit multiplier and a 48-bit adder/subtracter/logic unit, multiple distributed
RAM blocks which offer high bandwidth capability (Figure 1), and a plethora of registers which
supports high levels of pipelining.

Figure 1. Bandwidth/memory distribution in Xilinx Virtex-7 FPGA which highlight how bandwidth
and computation improves as we near the datapath parts of the FPGA.

Whilst FPGAs have been successfully applied in embedded systems and communications,
they have struggled as a mainstream computational platform. Addressing the following considerations
would make FPGAs a major platform rival for “data-intensive” applications:

• Programmability: there is a need for a design methodology which includes a flexible data
communication interface to exchange data. Intellectual Property (IP) cores and HLS tools [15]/
OpenCL design routes increase programming abstraction but do not provide the flexible system
infrastructure for image processing systems.

• Dataflow support: the dataflow model of computation is a recognized model for data-intensive
applications. Algorithms are represented as a directed graph composed of nodes (actors) as
computational units and edges as communication channels [21]. While the actors run explicitly in
parallel decided by the user, actor functionality can either be sequential or concurrent. Current
FPGA realizations use the concurrency of the whole design at a higher level but eliminate
reprogrammability. A better approach is to keep reprogrammability while still maximizing
parallelism by running actors on simple “pipelined” processors; the actors still run their code
explicitly in parallel (user-specified).

• Heterogeneity: the processing features of FPGAs should be integrated with CPUs. Since dataflow
supports both sequential and concurrent platforms, the challenge is then to allow effective
mapping onto CPUs with parallelizable code onto FPGA.

• Toolset availability: design tools created to specifically compile user-defined dataflow programs at
higher levels to fully reprogrammable heterogeneous platform should be available.

High-Level Programming Environment

The proposed methodology employs a reprogrammable model comprising multi-core processors
supporting SIMD operation and an associated inter-processor communication methodology.
A dataflow design methodology has chosen as the high-level programming approach as it offers
concurrency, scalability, modularity and provides data driven properties, all of which match the design
requirements associated with image processing systems. A dataflow model allows algorithms to be
realized as actors with specific firing rules that are mapped into directed graphs where the nodes
represent computations and arcs represent the movement of data. The term data-driven is used to
express the execution control of dataflow with the availability of the data itself. In this context, an actor
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is a standalone entity, which defines an execution procedure and can be implemented in the IPPro
processor. Actors communicate with other actors by passing data tokens, and the execution is done
through the token passing through First-In-First-Out (FIFO) units. The combination of a set of actors
with a set of connections between actors constructs a network, which maps well to the system level
architecture of the IPPro processors. An earlier version of the programming environment has been
is detailed in [11] allowing the user to explore parallel implementation and providing the necessary
back-end compilation support.

In our flow, every processor can be thought of as an actor and data is fired through the FIFO
structures but the approach needs to be sensitive to FPGA-based limitations such as restricted memory.
Cal Actor Language (CAL) [22] is a dataflow programming language that has been focussed at image
processing and FPGAs and it offers the necessary constructs for expressing parallel or sequential
coding, bitwise types, a consistent memory model, and a communication between parallel tasks
through queues. RVC-CAL is supported by an open source dataflow development environment and
compiler framework, Orcc, that allows the trans-compilation of actors and generates equivalent code
depending on the chosen back-ends [23]. An RVC-CAL based design is composed of a dataflow
network file (.xdf file) that supports task and data-level parallelism.

Figure 2 illustrates the possible pipelined decomposition of dataflow actors. These dataflow
actors need to be balanced as the worst-case execution time of the actor determines the overall
achievable performance. Data-level parallelism is achieved by making multiple instances of an actor
and requires SIMD operations that shall be supported by the underlying processor architecture.
In addition, it requires software configurable system-level infrastructure that manages control and data
distribution/collection tasks. It involves the initialisation of the soft core processors (programming the
decomposed dataflow actor description), receiving data from the host processor, distributing them to
first-level actors, gathering processed data from the final-level actors and send it back to host processor.

Data-level parallelism directly impacts the system performance; the major limiting factor is the
number of resources available on FPGA. An example pipeline structure with an algorithm composed
of four actors each having different execution times, and multiple instances of the algorithm realised
in SIMD fashion is shown in Figure 2. The performance metric, frames-per-second (fps) can be
approximated using N(total_pixels) the number of pixels in a frame, N(pixel_consumption) the number of
pixels consumed by an actor in each iteration and f(processor) is operating frequency of processor.

fps ≈ f(processor) ∗ N(pixel_consumption)

N(total_pixels)
(1)

To improve the f ps, the following options are possible:

• Efficient FPGA-based processor design that operates at higher operating frequency f(processor).
• Reducing the actor’s execution time by decomposing it into multiple pipelined stages, thus reducing

t(actor) to improve the f ps. Shorter actors can be merged sequentially to minimise the data transfer
overhead by localising data into FIFOs between processing stages.

• Vertical scaling to exploit data parallelism by mapping an actor on multiple processor cores, thus

reducing (n ∗ N(total_pixels)
N(pixel_consumption)

) at the cost of additional system-level data distribution, control, and

collection mechanisms.

Actor 1 Actor 2 Actor 3 Actor 4

...

Actor 1 Actor 2 Actor 3 Actor 4

Actor 1 Actor 2 Actor 3 Actor 4

Pipeline stage delay

SI
M

D 
de

gr
ee

Figure 2. Illustration of possible data and task parallel decomposition of a dataflow algorithm found in
image processing designs where the numerous of rows indicate the level of parallelism.
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The developed tool flow (Figure 3) starts with a user-defined RVC-CAL description composed
of actors selected to execute in FPGA-based soft cores with the rest to be run in the host CPUs.
By analyzing behaviour, software/hardware partitioning is decided by two main factors, the actors
with the worse execution time (determined exactly by number of instructions and the average waiting
time to receive the input tokens and send the produced tokens), and the overheads incurred in
transferring the image data to/from the accelerator. The behavioural description of an algorithm could
be coded in different formats:

• No explicit balanced actors or actions are provided by the user.
• The actors include actions which are balanced without depending on each other, e.g., no global

variables in an actor is updated by one action and then used by the other ones; otherwise,
these would need to be decomposed into separate actors.

• The actors are explicitly balanced and only require hardware/software partitioning.

Software/Hardware
Partitioning

Interface Settings

System Implementation

Behavioural Description in
RVC CAL

Compiler Infrastructure

XDF Analysis

Actor Code Generation

Control Register Value/
Parameter Generation

Redesign of FPGA Targeted
Actors in RVC CAL

Redesign of CPU Targeted
Actors in RVC CAL

RVC CAL – C Compilation

SIMD Application

Figure 3. A brief description of the design flow of a hardware and software heterogeneous system
highlighting key features. More detail of the flow is contained in reference [11].

There are two types of decomposition, “row-” and “column-wise”. The newly generated data-
independent actors can be placed row-wise at the same pipeline stage; otherwise they can be placed
column-wise as consecutive pipeline stages. Row-wise is preferred as the overhead incurred in token
transmission can be a limiting factor but typically a combination is employed.

If the actors or actions are not balanced, then they need to be decomposed. This is done by
detecting a sequence of instructions without branches (unless this occurs at the end) and then breaking
the program into basic blocks. The “balance points” whereby the actor needs to be divided into
multiple sets of basic blocks such that if each set is placed in a new actor, then need to be found;
this will ensure that the overhead of transferring tokens among the sets will not create a bottleneck
and infer the selection and use of one with the lowest overhead (See Ref. [11]). Once the graph is
partitioned, the original xdf file no longer represents the network topology, so each set of actors must
be redesigned separately and their input/output ports fixed and a new set of xdf dataflow network
description files, generated. The actors to run on the host CPU are compiled from RVC-CAL to C
using the C backend of Orcc development environment, whereas the FPGA-based functionality is then
created using the proposed compiler framework.

The degree of SIMD applied will affect the controller interface settings. For a target board,
the design will have a fixed number of IPPro cores realized and interconnected with each other and
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controllers, determined by the FPGA resources and fan-out delay; for the Zedboard considered here,
32 cores are selected. The compilation infrastructure is composed of three distinctive steps:

• Examination of the xdf dataflow network file and assignment and recording of the actor mapping
to the processors on the network.

• Compilation of each actor’s RVC-CAL code to IPPro assembly code.
• Generation of control register values, mainly for AXI Lite Registers, and parameters required by

the developed C-APIs. running on the host CPU

While FPGA-targeted actor interaction is handled by the compiler, the processes for receiving
the image data and storing the output in the edge actors need to be developed. Multiple controllers
(programmable by the host CPU) are designed to provide the interface to transfer the data to the
accelerators, gather the results and transfer them back to the host. With the host CPU running part
of the design and setting control registers, and the IPPro binary codes of the other actors loaded to
the proper cores on the accelerator, and the interface between the software/hardware sections set
accordingly, the system implementation is in place and ready to run.

4. Exploration of Efficient FPGA-Based Processor Design

Image processing applications extensively use multiply and accumulate operations for image
segmentation and filtering which can be efficiently mapped to FPGA. On the FPGA, the dedicated
memory blocks are located next to the DSP blocks to minimise any timing delays and it is this that
determines the maximum operating frequency ( fmax) of the processor. It is one of the reasons that
many-core and multi-core architectures use simple, light-weight processing datapaths over complex
and large out-of-order processors. However, to maintain the balance among soft processor functionality,
scalability, performance and efficient utilisation of FPGA resources remain an open challenge.

Figure 4 presents the impact of different configurations of DSP48E1 and BRAM on fmax and
the parameters required by the developed C-APIs running on the host CPU using different FPGAs.
The DSP48E1 has five configurations that offer different functionalities (multiplier, accumulator,
pre-adder and pattern detector) based on different internal pipeline configurations that directly
impacts fmax. It varies 15–52% for the same speed grade and reduces by 12–20% when the same design
is ported from −3 to −1 speed grade. Configuring the BRAM as a single and true-dual port RAM,
Figure 4b has been created to show that a true-dual port RAM configuration gives a reduction of 25%
in fmax. However an improvement of 16% is possible by migrating the design from Artix-7 to Kintex-7
FPGA technology.

Table 2 shows the distribution of compute (DSP48E1) and memory (BRAM) resources, and
highlights the raw performance in GMAC/s (giga multiply-accumulates per second) across the largest
FPGA devices covering both standalone and Zynq SoC chips. A BRAM/DSP ratio metric is reported
to quantify the balance between compute and memory resources. In Zynq SoC devices, it is higher
than standalone devices because more memory is required to implement substantial data buffers to
exchange data between FPGA fabric and the host processor, while it is close to unity for standalone
devices. This suggests that BRAM/DSP ratio can be used to quantify area efficiency of FPGA designs.
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Figure 4. (a) Impact of DSP48E1 configurations on maximum achievable clock frequency using
different speed grades using Kintex-7 FPGAs for fully pipelined with no (NOPATDET) and with
(PATDET) PATtern DETector, then multiply with no MREG (MULT_NOMREG) and pattern detector
(MULT_NOMREG_PATDET) and a Multiply, pre-adder, no ADREG (PREADD_MULT_NOADREG)
(b) Impact of BRAM configurations on the maximum achievable clock frequency of Artix-7, Kintex-7
and Virtex-7 FPGAs for single and true-dual port RAM configurations.

Table 2. Computing resources (DSP48E1) and BRAM memory resources for a range of Xilinx Artix-7,
Kintex-7, Virtex-7 FPGA families implemented using 28nm CMOS technology.

Product Family
Part BRAM

DSP48E1 GMAC/s
BRAM/

Number (18 Kb Each) DSP

Standalone Artix-7 XC7A200T 730 740 929 0.99
Standalone Kintex-7 XC7K480T 1910 1920 2845 0.99
Standalone Virtex-7 XC7VX980T 3000 3600 5335 0.83
Zynq SoC Artix-7 XC7Z020 280 220 276 1.27
Zynq SoC Kintex-7 XC7Z045 1090 900 1334 1.21

4.1. Exploration of FPGA Fabric for Soft Core Processor Architecture

A system composed of light-weight and high-performance soft core processors that supports
modular computation with fine and coarse-grained functional granularity is more attractive than fixed
dedicated hardware accelerators. A lightweight, soft core processor allows more programmable
hardware accelerators to be accommodated onto a single SoC chip which would lead to better
acceleration possibilities by exploiting data and task-level parallelism.

Gupta et al. [24,25] have reported different dataflow graph models where the functionality
corresponds to soft core datapath models 1©, 2© and 3© as shown in Figure 5. These dataflow models
are used to find a trade-off between the functionality of soft core processor and fmax and laid the
foundation to find the suitable soft core datapath to map and execute the dataflow specification.
The input/output interfaces are marked in red while the grey box represents the mapped functionality
onto the soft core datapath models as shown in Figure 6.

The first model 1© exhibits the datapath of a programmable ALU as shown in Figure 6a. It has an
instruction register (IR) that defines a DFG node (OP1) programmed at system initialisation. On each
clock cycle, the datapath explicitly reads a token from the input FIFO, processes it based on the
programmed operation and stores the result into the output FIFO that is then consumed by the
following dataflow node (OP3). This model only allows the mapping of data independent, fine-grained
dataflow nodes as shown in Figure 5a which limits its applicability due to lack of control and data
dependent execution, commonly found in image processing applications where the output pixel
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depends on the input or neighbouring pixels. This model is only suitable for mapping a single
dataflow node.

The second model 2© increases the datapath functionality to a fine-grained processor by including
BRAM-based instruction memory (IM), program counter PC and kernel memory (KM) to store constants as
shown in Figure 6b. Conversely, 2© can support mapping of multiple data independent dataflow nodes
as shown in Figure 5b. The node (OP2) requires a memory storage to store a variable (t1) to compute
the output token (C) which feeds back from the output of the ALU needed for the next instruction in
the following clock cycle. This model supports improved dataflow mapping functionality over 1© by
introducing an IM which comes at the cost of variable execution time and throughput proportional
to the number of instructions required to implement the dataflow actor. This model is suitable for
accelerating combinational logic computations.

The third model 3© increases the datapath functionality to map and execute a data dependent
dataflow actor as shown in Figure 5c. The datapath has memory in the form of a register file (RF) which
represents a coarse-grained processor shown in Figure 6c. The RF stores intermediate results to execute
data dependent operations, implements (feed-forward, split, merge and feedback) dataflow execution
patterns and facilitates dataflow transformations (actor fusion/fission, pipelining etc.) constraints
by the size of the RF. It can implement modular computations which are not possible in 1© and 2©.
In contrast to 1© and 2©, the token production/consumption (P/C) rate of 3© can be controlled through
program code that allows software-controlled scheduling and load balancing possibilities.

(a) (b) (c)
Figure 5. A range of dataflow models taken from [24,25]. (a) DFG node without internal storage
called configuration 1©; (b) DFG actor without internal storage t1 and constant i called configuration
2©; (c) Programmable DFG actor with internal storage t1, t2 and t3 and constants i and j called

configuration 3©.

(a) (b) (c)
Figure 6. FPGA datapath models resulting from Figure 5. (a) Programmable ALU corresponding to
configuration 1©; (b) Fine-grained processor corresponding to configuration 2©; (c) Coarse-grained
processor corresponding to configuration 3©.

4.2. Functionality vs. Performance Trade-Off Analysis

The presented models show that the processor datapath functionality significantly impacts the
dataflow decomposition, mapping and optimisation possibilities, but also increases the processor
critical path length and affects fmax by incorporating more memory elements and control logic.

Figure 6 shows the datapath models and their memory elements, where the memory resources
(IM, KM, RF) have been incrementally allocated to each model. Each presented model has been coded

13



J. Imaging 2019, 5, 16

in Verilog HDL, synthesised and placed and routed using the Xilinx Vivado Design Suite v2015.2 on
Xilinx chips installed on widely available development kits which are Artix-7 (Zedboard), Kintex-7
(ZC706) and Virtex-7 (VC707). The obtained fmax results are reported in Figure 7.

In this analysis, fmax is considered as the performance metric for each processor datapath model
and has a reduction of 8% and 23% for 2© and 3© compared to 1© using the same FPGA technology.
For 2©, the addition of memory elements specifically IM realised using dedicated BRAM affects fmax

by ≈ 8% compared to 1©. Nevertheless, the instruction decoder (ID) which is a combinational part of a
datapath significantly increases the critical path length of the design. A further 15% fmax degradation
from 2© to 3© has resulted by adding memory elements KM and RF to support control and data
dependent execution, which requires additional control logic and data multiplexers. Comparing
different FPGA fabrics, a fmax reduction of 14% and 23% is observed for Kintex-7 and Artix-7. When 3©
is ported from Virtex-7 to Kintex-7 and Artix-7, a maximum fmax reduction of 5% and 33% is observed.

This analysis has laid firm foundations by comparing different processor datapath and dataflow
models and how they impact the fmax of the resultant soft-core processor. The trade-off analysis
shows that an area-efficient, high-performance soft core processor architecture can be realised that
supports requirements to accelerate image pre-processing applications. Among the presented models,
3© provides the best balance among functionality, flexibility, dataflow mapping and optimisation

possibilities, and performance. This model is used to develop a novel FPGA-based soft core IPPro
architecture in Section 4.3.

Figure 7. Impact of the various datapath models 1©, 2©, 3© on fmax across Xilinx Artix-7, Kintex-7 and
Virtex-7 FPGA families.

4.3. Image Processing Processor (IPPro)

The IPPro is a 16-bit signed fixed-point, five-stage balanced pipelined RISC architecture that
exploits the DSP48E1 features and provides balance among performance, latency and efficient resource
utilization [10]. The architecture here is modified to support mapping of dataflow graphs by replacing
the previously memory mapped, data memory by stream driven blocking input/output FIFOs as
shown in Figure 8. The IPPro is designed as in-order pipeline because: (1) it consumes fewer area
resources and can achieve better timing closure leading to the higher processor operating frequency
fmax; (2) the in-order pipeline execution is predictable and simplifies scheduling and compiler
development. The datapath supports the identified execution and memory access patterns (Table 1),
and can be used as a coarse-grained processing core. IPPro has an IM of size 512 × 32, a RF of size 32 ×
16 to store pixels and intermediate results, a KM of size 32 × 16 to store kernel coefficients and constant
values, blocking input/output FIFOs to buffer data tokens between a producer, and a consumer to
realise pipelined processing stages.
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Figure 8. Block diagram of FPGA-based soft core Image Processing Processor (IPPro) datapath
highlighting where relevant the fixed Xilinx FPGA resources utilised by the approach.

Table 3 outlines the relationship between data abstraction and the addressing modes, along with
some supported instructions for the IPPro architecture, facilitating programmable implementation of
point and area image processing algorithms. The stream access reads a stream of tokens/pixels from
the input FIFO using GET instruction and allows processing either with constant values (Kernel
Memory-FIFO) or neighbouring pixel values (Register File-FIFO or Register File-Register File).
The processed stream is then written to the output FIFO using PUSH instruction. The IPPro supports
arithmetic, logical, branch and data handling instructions. The presented instruction set is optimized
after profiling use cases presented in [10,26].

Table 3. IPPro supported addressing modes highlighting the relation to the data processing
requirements and the instruction set.

Addressing Mode Data Abstraction Supported Instructions

FIFO handling Stream access get, push
Register File–FIFO Stream and randomly accessed data addrf, subrf, mulrf, orrf, minrf, maxrf etc
Register File–Register File Randomly accessed data str, add, mul, mulacc, and, min, max etc.
Kernel Memory–FIFO Stream and fixed values addkm, mulkm, minkm, maxkm etc.

The IPPro supports branch instructions to handle control flow graphs to implement commonly
known constructs such as if-else and case statements. The DSP48E1 block has a pattern detector that
compares the input operands or the generated output results depending on the configuration and
sets/resets the PATTERNDETECT (PD) bit. The IPPro datapath uses the PD bit along with some
additional control logic to generate four flags zero (ZF), equal (EQF), greater than (GTF) and sign (SF)
bits. When the IPPro encounters a branch instruction, the branch controller (BC) compares the flag
status and branch handler (BH) updates the PC as shown in Figure 8.

The IPPro architecture has been coded in Verilog HDL and synthesized using Xilinx Vivado
v2015.4 design suite on Kintex-7 FPGA fabric giving a fmax of 337 MHz. Table 4 shows that the
IPPro architecture has achieved 1.6–3.3× times higher operating frequency ( fmax ) than the relevant
processors highlighted in Section 2.2 by adopting the approach presented in Section 4. Comparing
the FPGA resource usage of Table 4, the flip-flop utilisation (FF) is relatively similar except for the
FlexGrip which uses 30× more flip-flops. Considering LUTs, the IPPro uses 50% less LUT resources
compared to MicroBlaze and GraphSoC. To analyse design efficiency, a significant difference (0.76–9.00)
in BRAM/DSP ratio can be observed among processors. Analysing design area efficiency, a significant
difference 0.76–9.00 in BRAM/DSP ratio is observed which makes IPPro an area-efficient design based
on the proposed metric.
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Table 4. Comparison of IPPro against other FPGA-based processor architectures in terms of FPGA
resources used and timing results achieved.

Resource IPPro Graph-SoC [19] FlexGrip 8 SP * [8] MicroBlaze

FFs 422 551 (103,776/8 =) 12,972 518
LUTs 478 974 (71,323/8 =) 8916 897
BRAMs 1 9 (120/8 =) 15 4
DSP48E1 1 1 (156/8 =) 19.5 3
Stages 5 3 5 5
Freq. (MHz) 337 200 100 211

* Scaled to a single streaming processor.

4.4. Processor Micro-Benchmarks

A commonly used performance metric for a processor is the time required to accomplish a defined
task. Therefore, a set of commonly used micro-benchmarks [9,27] has been chosen and implemented
on the IPPro and compared against a well-established MicroBlaze soft core processor as shown in
Table 5a. Each of the chosen micro-benchmarks are fundamental kernels of larger algorithms and
often the core computation of more extensive practical applications. The micro-benchmarks were
written in standard C and implemented using Xilinx Vivado SDK v2015.1 Xilinx, San Jose, CA, USA.
MicroBlaze has been configured for performance with no debug module, instruction/data cache and
single AXI-Stream link enabled to stream data into the MicroBlaze using getfsl and putfsl instructions
in C, equivalent to (GET and PUT) in assembly.

Table 5a reports the performance results of the micro-benchmarks and Table 5b shows the area
utilisation comparison of the IPPro and the MicroBlaze both implemented on the same Xilinx Kintex-7
FPGA. It shows that the IPPro consumes 1.7 and 2.3 times fewer FFs and LUTs respectively than
the MicroBlaze. It can be observed that for streaming functions (3 × 3 filter, 5-tap FIR and Degree-2
Polynomial), the IPPro achieved 1.80, 4.41 and 8.94 times better performance compared to MicroBlaze
due to support of single cycle multiply-accumulate with data forwarding and get/push instructions
in the IPPro processor. However, as the IPPro datapath does not support branch prediction that
impacts its performance implementing data dependent or conditional functions (Fibonacci and Sum of
absolute differences); thus, the SAD implementation using the IPPro resulted in a 5% performance
degradation compared to Microblaze. On the other hand, for memory-bounded functions such as
Matrix Multiplication, IPPro performed 6.7 times better than MicroBlaze due to higher frequency.

Table 5. Performance comparison of IPPro and MicroBlaze implementations (a) Comparison of
micro-benchmarks. (b) Area comparison.

a

Processor MicroBlaze IPPro

FPGA Fabric Kintex-7
Freq (MHz) 287 337
Micro-benchmarks Exec. Time (us) Speed-up
Convolution 0.60 0.14 4.41
Degree-2 Polynomial 5.92 3.29 1.80
5-tap FIR 47.73 5.34 8.94
Matrix Multiplication 0.67 0.10 6.7
Sum of Abs. Diff. 0.73 0.77 0.95
Fibonacci 4.70 3.56 1.32

b

Processor MicroBlaze IPPro Ratio

FFs 746 422 1.77
LUTs 1114 478 2.33
BRAMs 4 2 2.67
DSP48E1 0 1 0.00
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5. System Architecture

The k-means clustering and Traffic Sign Recognition algorithms has been used to explore and
analyse the impact of both data and task parallelism using a multi-core IPPro implemented on a
ZedBoard. The platform has a Xilinx Zynq XC7Z020 SoC device interfaced to a 256 MB flash memory
and 512 MB DDR3 memory. The SoC is composed of a host processor known as programmable system
(PS) which configures and controls the system architecture, and the FPGA programmable logic (PL)
on which the IPPro hardware accelerator is implemented, as illustrated in Figure 9. The SoC data
communication bus (ARM AMBA-AXI) transfers the data between PS and PL using the AXI-DMA
protocol and the Xillybus IP core is deployed as a bridge between PS and PL to feed data into the
image processing pipeline. The IPPro hardware accelerator is interfaced with the Xillybus IP core
via FIFOs. The Linux application running on PS streams data between the FIFO and the file handler
opened by the host application. The Xillybus-Lite interface allows control registers from the user space
program running on Linux to manage the underlying hardware architecture.

Figure 9 shows the implemented system architecture which consists of the necessary control
and data infrastructure. The data interfaces involve stream (Xillybus-Send and Xillybus-Read);
uni-directional memory mapped (Xillybus-Write) to program the IPPro cores; and Xillybus-Lite
to manage Line buffer, scatter, gather, IPPro cores and the FSM. Xillybus Linux device drivers are used
to access each of these data and control interfaces. An additional layer of C functions is developed
using Xillybus device drivers to configure and manage the system architecture, program IPPro cores
and exchange pixels between PS and PL.

Figure 9. System architecture of IPPro-based hardware acceleration highlighting data distribution and
control infrastructure, FIFO configuration and Finite-State-Machine control.

Control Infrastructure

To exploit parallelism, a configurable control infrastructure has been implemented using the PL
resources of the Zynq SoC. It decomposes statically the data into many equal-sized parts, where each
part can be processed by a separate processing core. A row-cyclic data distribution [28] has been used
because it allows buffering of data/pixels in a pattern suitable for point and area image processing
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operations after storing them into the line buffers. The system-level architecture (Figure 9) is composed
of line buffers, a scatter module to distribute the buffered pixels, a gather module to collect the
processed pixels and a finite-state-machine (FSM) to manage and synchronise these modules.

6. Case Study 1: k-Means Clustering Algorithm

k-means clustering classifies a data set into k centroids based on the measure e.g., a distance
between each data item and the k centroid values. It involves: Distance Calculation from each data
point to the centroids which gives k distances and the associated pixels, and a minimum distance is
computed from the k distance values; Averaging where data pixels in the dimension are added up
and divided by the number in their dimensions for each cluster, giving an updated centroid value for
the following frame. Here we accelerate a functional core of the k-means clustering algorithm with
4 centroids to be applied to a 512 × 512 image.

6.1. High-Level System Description

The behavioural description is captured in RVC-CAL using Orcc and includes mainly the actor
CAL files and the xdf network, derived from .xml format. A dataflow network is constructed with
FIFO channels between actors to allow high-throughput passage of tokens from one actor’s output
port to another’s input port. The size of FIFO channels can be set. Whilst the length of execution times
are the key factor for FPGA acceleration, overheads incurred in transferring the data to/from the PL
and accelerators are also important. The SIMD degree was explored by redesigning the FPGA-targeted
actors in RVC-CAL and using the compiler to generate the IPPro assembly code. This is done by
analysing the xdf file to decide the allocation of actors to the processors and then compiling the function
and interconnections.

Every IPPro core sets the hardware units around input/output port connections for the proper
flow of tokens, and the compiler is designed to provide the proper signals required by each core.
The compiler also generates the setup registers settings and C-APIs parameters, in order to help the
controllers distribute the tokens among the cores and gather the produced results. Figure 10 shows the
two stages of k-means clustering algorithm to be accelerated, and also cores port connections, sample
distance calculation code in RVC-CAL and its compiled IPPro assembly code. As Xillybus IP has
been used in the system architecture (Section 5), it restricts the clock rate to 100 MHz on Zedboard.
To evaluate the IPPro architecture and different dataflow mapping possibilities by exploiting data and
task-level parallelism, the k-means clustering is accelerated using four acceleration designs listed in
Table 6 and illustrated in Figure 11.

Table 6. Dataflow actor mapping and supported parallelism of IPPro hardware accelerator design
presented in Figure 11.

Design Acceleration Paradigm Mapping
Parallelism

Data Task

1© Single core IPPro Single actor No No
2© 8-way SIMD IPPro Single actor Yes No
3© Dual core IPPro Dual actor No Yes
4© Dual core 8-way SIMD IPPro Dual actor Yes Yes
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<?xml version="1.0" encoding="UTF-8"?>
<XDF name="TopKMeansOrcc">
    ...
    <Instance id="Distance">
        ...
    </Instance>
    <Instance id="Averaging">
        ...
    </Instance>
    <Connection dst="Averaging" dst-port="AvInput" 

src="Distance" src-port="DisOutput"/>
    <Connection dst="Distance" dst-port="DisInput" 

src="" src-port="InputPort"/>
    <Connection dst="" dst-port="OutputPort" 

src="Averaging" src-port="AvOutput"/>
</XDF>

TopKMeansOrcc.xdf

package org.proj.kmeansorcc;
actor Distance () int(size=8) DisInput ==> int(size=8) DisOutput:

//Get 2 8 bit pixels and push each with its associated centroid
DistCal: action DisInput:[Pix1, Pix2] ==> DisOutput:[Pix1,

Cent1, Pix2, Cent2]
var

uint Cent1,
uint Cent2,
uint Cent [4] = [31, 40, 50, 76], //4 initial centroids
uint Temp1 [4],
uint Temp2 [4],
uint Temp3 [4],
uint Temp4 [4]

do
//Manhattan distance estimation
foreach int (size=8) count in 1 .. 4 do

//Pixel 1's distance from every centroid
Temp1 [count] := Pix1 Cent [count];
//Pixel 1's absolute value estimation by squaring
Temp3 [count] := Temp1 [count] * Temp1 [count];
//Pixel 2's distance from every centroid
Temp2 [count] := Pix2 Cent [count];
//Pixel 2's absolute value estimation by squaring
Temp4 [count] := Temp2 [count] * Temp2 [count];

end
...

end
...

end

Distance.cal

DISTCAL:
GET R1, 1
GET R2, 1
STR R3, 31
STR R4, 40
STR R5, 50
STR R6, 76
SUB R7, R1, R3
SUB R8, R1, R4
SUB R9, R1, R5
SUB R10, R1, R6
SUB R11, R2, R3
SUB R12, R2, R4
SUB R13, R2, R5
SUB R14, R2, R6
MUL R15, R7, R7
MUL R16, R8, R8
MUL R17, R9, R9
MUL R18, R10, R10
MUL R19, R11, R11
MUL R20, R12, R12
MUL R21, R13, R13
MUL R22, R14, R14
...

Distance.ippro

(a)

(b) (c)

(d)

Figure 10. High-level implementation of k-means clustering algorithm: (a) Graphical view of Orcc
dataflow network; (b) Part of dataflow network including the connections; (c) Part of Distance.cal file
showing distance calculation in RVC-CAL where two pixels are received through an input FIFO channel,
processed and sent to an output FIFO channel; (d) Compiled IPPro assembly code of Distance.cal.

Figure 11. IPPro-based hardware accelerator designs to explore and analyse the impact of parallelism
on area and performance based on Single core IPPro 1©, eight-way parallel SIMD IPPro 2©, parallel
Dual core IPPro 3© and combined Dual core 8-way SIMD IPPro called 4©.

6.2. IPPro-Based Hardware Acceleration Designs

Table 6 shows the dataflow actor mapping and the exploited parallelism for each design. The block
diagram of each IPPro hardware acceleration design is illustrated in Figure 11. Design 1© and 2© are
used to accelerate Distance Calculation and Averaging stages, where each stage is mapped separately
onto individual IPPro cores. To investigate the impact of data and task parallelism, design 3© and 4© are
used to accelerate both Distance Calculation and Averaging stages as shown in Figure 11. The detailed
area and performance results are reported in Tables 7 and 8. The execution time depends on the
number of IPPro instructions required to compute the operation and the time require to execute a
instruction which corresponds to the operating frequency ( fmax ) of IPPro.

Table 7 reports the results obtained by individually accelerating the stages of k-means clustering
using 1© and 2©. In each iteration, the distance calculation takes two pixels and classifies them into
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one of the four clusters which take an average of 45 cycles/pixel. To classify the whole image, it takes
118.2 ms which corresponds to 8.45 fps. On the other hand, the averaging takes four tokens and
produces four new cluster values, which takes an average of 55 clock cycles/pixel results in 145 ms or
6.88 fps. Both the stages involve point-based pixel processing. Therefore design 2© was developed
and used to exploit data-level parallelism. As a result, the execution time is reduced to 23.32 ms
and 27.02 ms for distance calculation and averaging respectively. This is an improvement of 5.1 and
5.4 times over 1© (and not the expected 8 times) of the 8-way SIMD implementation ( 2© over 1©) as
the overhead of data transfer time from/to the accelerator restricts the performance improvement.
This came at the cost of 4.1, 2.3 and 8.0 times more BRAMs, LUTs and DSP blocks respectively
as reported in Table 8. The major contributor to increased area utilisation is data distribution and
control infrastructure.

Table 8 reports the execution time and performance (fps) numbers of both stages together to
exploit task and data parallelism using designs 3© and 4©. The reported results of 1© and 2© were
obtained by combining the execution time of both stages previously reported in Table 7. Using design
3©, the effect of task parallelism implemented via intermediate FIFO results in an average of 63 clock
cycles/pixel which is 163 ms (6 fps). By pipelining both actors, 3© has achieved 1.6 times better
performance compared to 1© at the cost of 1.6 and 2.0 times more BRAM and DSP blocks using the
same Xillybus IP infrastructure as 1©. The reason for the improvement is the localisation of intermediate
data within FPGA fabric using an intermediate FIFO, which hides the data transfer overhead to and
from host processor as shown in Figure 11. Investigating the reported area utilisation numbers in
Table 8 shows that the area utilisation for design 3© and 4© is not twice as big as 1© and 2© respectively
due to the FPGA resources utilised by the input and output data ports of Xillybus IP. Design 1© and
3© requires a single input and output data port, while 2© and 4© requires eight input and output data

ports. Therefore, a part of FPGA logic used by the Xillybus IP is constant/fixed for 1©, 3© and 2©, 4©.
Analysing the impact of exploiting both task and data-level parallelism using 4© results on average

14 clock cycles/pixel and an execution time of 35.9 ms (2 fps). It is 1.4, 4.5 and 7.3 times better than
2©, 3© and 1© respectively. For comparison, both stages were coded in C language and executed on
an embedded ARM Cortex-A7 processor that achieved execution time of 286 ms (354 fps) which is
8 times slower than the performance achieved by 4©.

Table 7. Performance measurements for designs 1© and 2© highlighted in Figure 11.

Single Actor
1© Single Core IPPro 2© 8-Way SIMD IPPro

Exec. (ms) fps Exec. (ms) fps

Distance Calculation 118.21 8.45 23.37 42.78
Averaging 145.17 6.88 27.02 37.00

Table 8. Area utilisation and performance results of IPPro-based hardware accelerator designs in
Figure 11 exploiting data and task parallelism namely 1©, 2©, 3© and 4©.

k-Means Acceleration
Area Performance

LUT FF BRAM DSP Exec. (ms) fps

1© Combined stages using Single-core IPPro 4736 5197 4.5 1 263.38 3.8
2© Combined stages using 8-way SIMD IPPro 10,941 12,279 18.5 8 50.39 19.8
3© Dual-core IPPro 4987 5519 4.5 2 163.2 6
4© Dual 8-way SIMD IPPro 13,864 16,106 18.5 16 35.9 28

Software implementation on ARM Cortex-A7 - - - - 286 3.5

6.3. Power Measurement

This section presents the details of adopted power measurement methods and compares the
IPPro-based implementation to the equivalent k-means implementation on GPU and CPU. The IPPro
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power measurements obtained by running post-implementation timing simulation. A Switch activity
interchange format (SAIF) file is used to record the switching activity of designs data and control signals
of each presented IPPro designs. The Xilinx Power Estimator (XPE) takes the SAIF file and reports
the power consumption. An equivalent version of k-means in CUDA and OpenCL was implemented
and profiled on nVIDIA GeForce GTX980 (desktop GPU), ODRIOD-XU3 (Embedded GPU) and ARM
Cortex-A7 (CPU) due to in-house availability of both GPU platforms. The nVIDIA desktop GPU card
supports 2048 CUDA cores running at a base frequency of 1126 MHz. OpenCL and CUDA were
used for programming the GPU, and both stages merged into the single kernel. For performance
measurement, OpenCL’s profiling function clGetEventProfilingInfo is used which returns the execution
time of kernel in nanoseconds. The power consumption during kernel execution was logged using
nVIDIA System Management Interface (nvidia-smi) which allows to measure the power consumed by
the GPU and the host processor separately. It is a command line utility, based on top of the nVIDIA
Management Library (NVML), intended to aid the management and monitoring of nVIDIA GPUs.

To set the base line figures and for fair comparison of the FPGA against the GPU technology,
an embedded CPU (ARM Cortex-A7) and an embedded GPU (ARM Mali-T628) implementation were
carried out on a ODROID-XU3 platform. This is a heterogeneous multi-processing platform that hosts
28 nm Samsung Exynos 5422 application processor which has on-chip ARM Cortex-A7 CPUs and an
ARM Mali-T628 embedded GPU. The platform is suitable for power constraint application use cases
where the ARM Cortex-A7 CPU and mid-range ARM Mali-T628 GPU runs at 1.2 GHz and 600 MHz
respectively. The platform have separate current sensors to measure the power consumption of ARM
Cortex-A7 and ARM Mali-T628, thus allowing component-level power measurement capability.

Table 9 shows the results of IPPro-based accelerator designs running on Zedboard where both data
and task parallel implementation achieved 4.6 times better performance over task only implementation
at the cost of 1.57 times higher power consumption. Table 10 shows the performance results of the
k-means implementation on Kintex-7 FPGA and compares them against equivalent embedded CPU
(ARM Cortex-A7), embedded GPU (ARM Mali-T628) and desktop GPU (nVIDIA GeForce GTX680)
implementations in terms of speed (MHz), Power (W) and transistors utilised (TU). The presented
embedded CPU results has been considered as a baseline for the comparison.

Table 9. Power, resource and combined efficiency comparisons of IPPro-based k-means clustering
implementations on Zedboard (Xilinx Zynq XC7Z020 Artix-7).

Power (mW) Freq. Exec. Power TU Efficiency
Impl. Static Dyn. Tot. (MHz) (ms) fps Efficiency (×106) (fps/TU) (fps/W/TU)

(fps/W) (×10−8) (×10−9)

3© 118 18 136 100 163.2 6 44.1 591 (9%) 1.0 74.6
4© 122 92 214 100 35.9 28 130.8 1564 (23%) 1.8 83.6

Table 10. Power, resource and combined efficiency comparisons for k-means clustering for Xilinx Zynq
XC7Z045 Kintex-7 FPGA, nVIDIA GPU GTX980, embedded ARM Mali-T628 GPU and embedded ARM
Cortex-A7 CPU.

Power (W) Freq. Exec. Power TU Efficiency
Plat. Impl. Static Dyn. Tot. (MHz) (ms) fps Effic. (×109) (fps/TU) (fps/W/TU)

(fps/W) (×10−8) (×10−9)

FPGA
3© 0.15 0.03 0.19 337 48.43 21 114.1 0.6 (9%) 3.6 193.1
4© 0.16 0.15 0.31 337 10.65 94 300.3 1.0 (6%) 6.0 192.0

GPU
OpenCL 37 27 64 1127 1.19 840 13.1 1.3 (26%) 63.1 9.8
CUDA 37 22 59 1127 1.58 632 10.7 1.2 (24%) 51.5 8.7

eGPU Mali 0.12 - 1.56 600 3.69 271 173 - - -
eCPU Cortex 0.25 - 0.67 1200 286 3.49 5.2 - - -
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Both FPGA implementations achieved 6 and 27 times better fps performance than the embedded
CPU, whilst the embedded GPU delivered 6.7 times better performance over the FPGA by exploiting
parallelism and higher operating frequency. Focusing on the power consumption results, the FPGA
consumed 2.1 and 4.9 times less power than both the embedded CPU and embedded GPU respectively.
It shows that the FPGA technology delivers a power-optimised solution while the GPU approach
provides a performance-optimised solution. Considering the performance and power together,
the power efficiency (fps/W) numbers shows that FPGA and embedded GPU implementations
are 57 and 33 times more power efficient than embedded CPU and that the FPGA implementation is
24 times more power efficient than embedded GPU. Nevertheless, this power efficiency edge can be
further improved by applying dataflow transformations and increasing the number of IPPro cores.

Table 10 compares the FPGA results against desktop GPU and reports resource efficiency as a
metric due to significant difference in the power consumption numbers. The resource efficiency has
been presented in terms of frames-per-second-per-Transistor-Utilisation (fps/TU) which is 6 and 63 for
the 28 nm FPGA and GPU technologies. For embedded CPU and GPU, these results are not reported
due to unavailability of transistor count numbers for the ARM. The reported resource efficiency
results shows that GPU utilises area resources more efficiently than the FPGA when power is kept
out of the equation. Combining all three metrics (fps/W/TU) shows that the advantage gained from
FPGA designs is significant i.e., 22 times more efficient than GPU. This advantage becomes more
valuable when it is acknowledged that the FPGA-based SoC design is adaptable and allows exploration,
profiling and implementation of different dataflow transformation possibilities over dedicated FPGA
approaches to accelerate image processing applications for low energy applications.

7. Case Study 2: Traffic Sign Recognition

Traffic sign recognition is applied in driver assistance systems [29]. In the detection stage, sign
candidate areas are extracted from the original image and matched against a list of known templates
in the recognition stage. The processing stages along with their execution time and percentage
contribution to the overall execution time for 600 × 400 image sign recognition implemented on
ARM Cortex-A9 are shown in Figure 12. It involves a colour filter to convert RGB to HSV, morphology
filters (erosion and dilation) using 3 × 3 and 5 × 5 circular kernels, edge detection, circles detection to
guide the matching process and reduce the number of shapes, bounding box detection to transform
the remaining objects into their convex hulls, classification by shape and then template matching.
The colour and morphology filters have been chosen for hardware acceleration as they are dominant
processing components as shown in Figure 12.

Pixel
Stream Colour Filter Morphology

Edge
Detection/

Contour Filling

Circles
Detection

Bounding
Boxes

Detection

Classification
by Shape

Template
Matching

Exe. Time (ms) /
Percentage of total

88.865 / 9.28 % 399.793 / 41.75 % 151.768 / 15.85 % 126.823 / 13.24 % 90.421 / 9.44 % 5.620 / 0.59 % 94.270 / 9.85 %

PS / PL
Implementation

PL PL PS PS PS PS PS

Detection Stage Recognition Stage

Figure 12. Section execution times and ratios for each stage of the traffic sign recognition algorithm.

7.1. Acceleration of Colour and Morphology Filter

The IPPro-based hardware accelerators for colour and morphology filter were implemented on
Zedboard using the system architecture presented in Section 5 that allows to distribute pixels for point
and window image processing operations. The high-level system description of colour filter actor
from RVC-CAL produced program code consists of 160 IPPro assembly instructions. A 3 × 3 circular
mask has been used for morphology filter as shown in Figure 13a, to find the maximum (dilation) or
minimum (erosion) value in a set of pixels contained within a masked region around the input pixel.
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The simplified generated code of RVC CAL-IPPro compilation is shown in Figure 13a. GET and
PUSH instructions set the input or output port numbers through which the tokens are received or sent.
GET instructions read 9 pixels values and stores them into the register file from R1 to R9. Then, the
corner pixels are ignored to impose 3 × 3 circular mask, a maximum value among the remaining pixels
max(R1, R4, R5, R6, R8) is computed and stored in R7 to apply dilation operation. This value is
then pushed to the output using PUSH instruction. The output result of the implemented design are
shown in Figure 13b.

DILATION3X3:
GET R1, 1
GET R2, 1
GET R3, 1
GET R4, 1
GET R5, 1
GET R6, 1
GET R7, 1
GET R8, 1
GET R9, 1
MAX R30, R2, R5
MAX R29, R4, R6
MAX R28, R30, R8
MAX R27, R28, R29
PUSH R27, 1
JMP DILATION3X3

(a)
(b)

Figure 13. (a) The simplified IPPro assembly code of 3 × 3 dilation operation. (b) The output result of
implemented design.

Table 11 presents the results from the Zedboard implementation that has been tested with a set
of real images. The hardware accelerated implementation of colour filter stage using 32 IPPro cores
reduces the execution time from 88.87 ms down to 19.71 ms compared to software implementation
on-chip ARM Cortex-A9. Similarly, the morphology filter stage using 16 IPPro cores has reduced the
execution time from 399 ms down to 41.3 ms. The presented IPPro-based hardware acceleration design
has achieved a speed-up of 4.5 and 9.6 times over ARM for colour and morphology filters respectively.
The achieved speed up for colour filter stage using 32 cores is lower than that of morphology stage
using 16 cores, because of the higher number of clock cycles spent on every pixel for colour filter stage;
this is due to larger execution time of division coprocessor used for colour filtering.

Table 11. IPPro-based acceleration of colour and morphology operations implemented on Zedboard.

Description Colour Morphology

No. of cores 32 16
FF 41,624 (39%) 43,588 (41%)
LUT 29,945 (56%) 33,545 (63%)
DSP48E1 32 (15%) 48 (22%)
BRAM 60 (42%) 112 (80%)

Cycles/Pixel 160 26
Exec. (ms) 19.7 (8.7 *) 41.3 (18.3 *)
Speed-up 4.5× (10.3× *) 9.6× (21.75× *)

* The achievable performance using Zynq XC7Z045 Kintex-7.

Figure 14 shows the stage-wise acceleration of traffic sign recognition by accelerating colour and
morphology filters. Edge/contours detection and bounding boxes stages were improved partially by
accelerating the morphology operations. The edge detection is based on the morphology operations
by taking the difference between erosion and dilation. Therefore the morphology results obtained by
acceleration are further exploited in the host to factor out some operations when doing edge detection.
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Figure 14. Stage-wise comparison of traffic sign recognition acceleration using ARM and IPPro
based approach.

8. Conclusions and Future Work

The paper has presented an FPGA-based hardware acceleration approach for image processing
applications using soft core processors which maps efficiently to FPGA resources thereby maintaining
performance. By using the DFG model of computations, a design flow has been created which allows
the user to partition the design based on processing needs and allows programming of each function.
The work has been demonstrated for a k-means clustering function and a traffic sign recognition
example where maximum speed up of 8 and 9.6 times, respectively, were achieved when compared to
software implementation on ARM CPU. For k-means clustering, the 16 IPPro cores implementation is
57, 28 and 1.7 times more power efficient (fps/W) than ARM Cortex-A7 CPU, nVIDIA GeForce GTX980
GPU and ARM Mali-T628 embedded GPU. The future work to improve this work is to investigate
further dataflow decomposition/mapping optimisations and software-controlled power optimisation
techniques such as on-demand enable/disable the IPPro cores.
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Abstract: Memory is the biggest limiting factor to the widespread use of FPGAs for high-level
image processing, which require complete frame(s) to be stored in situ. Since FPGAs have limited
on-chip memory capabilities, efficient use of such resources is essential to meet performance, size and
power constraints. In this paper, we investigate allocation of on-chip memory resources in order to
minimize resource usage and power consumption, contributing to the realization of power-efficient
high-level image processing fully contained on FPGAs. We propose methods for generating memory
architectures, from both Hardware Description Languages and High Level Synthesis designs, which
minimize memory usage and power consumption. Based on a formalization of on-chip memory
configuration options and a power model, we demonstrate how our partitioning algorithms can
outperform traditional strategies. Compared to commercial FPGA synthesis and High Level Synthesis
tools, our results show that the proposed algorithms can result in up to 60% higher utilization
efficiency, increasing the sizes and/or number of frames that can be accommodated, and reduce
frame buffers’ dynamic power consumption by up to approximately 70%. In our experiments
using Optical Flow and MeanShift Tracking, representative high-level algorithms, data show that
partitioning algorithms can reduce total power by up to 25% and 30%, respectively, without impacting
performance.

Keywords: field programmable gate array (FPGA); memory; power; image processing; design

1. Introduction

Advances in Field Programmable Gate Array (FPGA) technology [1] have made them the de facto
implementation platform for a variety of computer vision applications [2]. Several algorithms, e.g.,
stereo-matching [3], are not feasibly processed in real-time on conventional general purpose processors
and are best suited to hardware implementation [4,5]. The absence of a sufficiently comprehensive,
one size fits all hardware pipeline for the computer vision domain [6] motivates the use of FPGAs
in a myriad of computer vision scenarios, especially in applications where processing should be
performed in situ, such as in smart cameras [7], where FPGAs embed data acquisition, processing and
communication subsystems. Adoption of FPGA technology by the computer vision community has
accelerated during recent years thanks to the availability of High Level Synthesis (HLS) tools which
enable FPGA design within established software design contexts.
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However, since FPGAs have limited on-chip memory capabilities (e.g., approx. 6MB of on-chip
memory on high end Virtex 7 FPGAs), external memory (i.e., DDR-RAM chips connected to the FPGA)
is often used to accommodate frames [8,9]. This causes penalties on performance (latency is much higher
for off-chip memory access) and perhaps more importantly, on size (two chips, FPGA and DDR, rather
than just FPGA), power (DDR memories are power hungry [10]) and have associated monetary costs,
hindering the adoption of FPGAs.

In this paper, we research allocation of on-chip memory resources in order to minimize resource
usage and power consumption, contributing to the realization of power-efficient high-level image
processing systems fully contained on FPGAs. We propose methods for generating on-chip memory
architectures, applicable from both HLS and Hardware Description Languages (HDL) designs, which
minimize FPGA memory resource usage and power consumption for image processing applications.
Our approach does not exclude external memory access: rather, it is orthogonal to any memory
hierarchy, and applicable to any instances of on-chip memory. Specifically, this paper offers the
following contributions:

• A formal analysis of on-chip memory allocation schemes and associated memory usage for given
frame sizes and possible on-chip memory configurations.

• Methods for selecting a memory configuration for optimized on-chip memory resource usage and
balanced usage/power for a given frame size.

• A theoretical analysis of the effects on resource usage and power consumption of our partitioning
methods.

• Empirical validation of resource usage, power and performance of the proposed methods,
compared to a commercial HLS tool.

Our experiments show that on-chip memory dynamic power consumption can be reduced by up
to approximately 70%; using representative high-level algorithms, this corresponds to a reduction of
total power by up to 25% and 30%, respectively, without impacting performance. The remainder of
this paper is organized as follows: Section 2 describes related work within FPGA memory systems
architecture and design for image processing. In Section 3, we formally describe the research problem
of power-size optimization, present a motivational example that highlights the limitations of standard
HLS approaches, and present alternative partitioning methods. Section 4 describes our experimental
methodology and experimental results, and Section 5 presents a thorough discussion of said results.
Finally, Section 6 presents our concluding remarks.

Throughout this paper, we use the term BRAM (Block Random Access Memory), a Xilinx
nomenclature for on-chip memories, to refer to on-chip FPGA memories in general.

2. Background and Related Work

Within FPGA processing sub-systems, algorithms evolve from typical software-suitable
representations into more hardware-friendly ones [6,11] which can fully exploit data parallelism [11]
through application-specific hardware architectures [3], often substantially different from the
traditional Von Neumann model, such as dataflow [12,13] or biologically inspired processing [14].
These heterogeneous architectures are customized for FPGA implementation not just for performance
(e.g., by exploiting binary logarithmic arithmetic for efficient multiplication/division [15]), but also
for power efficiency (e.g., by static/dynamic frequency scaling across parallel datapaths for reduced
power consumption [16]).

More often than not, computer vision applications deployed on FPGAs are constrained
by performance, power and real-time requirements [3]. Real time streaming applications (i.e.,
performing image processing on real-time video feeds [6]) require bounded acquisition, processing and
communication times [16] which can only be achieved, while maintaining the required computational
power, through exploitation of data parallelism [11] by dedicated functional blocks [7].

However, the greatest limiting factor to the widespread use of FPGAs for complex image
processing applications is memory [9]. Algorithms that perform only point or local region operators
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(e.g., sliding window filters) [15] are relatively simple to implement using hardware structures such as
line buffers [3]. However, complex algorithms based on global operations require complete frame(s) to
be stored in situ [11]; examples of contemporary applications that require global operations are object
detection, identification and tracking, critical to security. Notice we use the term “global operations” to
simultaneously refer to two characteristics: the use of global operators (atomic operations which require
the whole image, such as transposition or rotation) and undetermined (unpredictable) access patterns
(e.g., a person identification system might only need a subset of a frame, but which subset cannot be
decided at design time, as it depends on person location at runtime).

A possible approach is to refine image processing algorithms so they can perform on smaller frame
sizes that can be contained on an FPGA [2]. Several algorithms maintain robustness for downscaled
images [17], e.g., the Face Certainty Map [18]) or employ intelligent on-chip memory allocation
schemes [8] to accommodate complete frames that take into account power profiles. The latter requires
methods to optimize on-chip memory configurations in order to maximize valuable usage; often at
odds with performance-oriented allocation schemes standard in HLS code generators. Other possible
approaches include stream-processing algorithm refactoring to minimize memory requirements [19]
or programming-language abstractions for efficient hardware pipeline generation [20]; these are
orthogonal to our approach, and outside the scope of this work.

In our context, the most significant related work on the use of FPGA on-chip memory for image
processing applications has focused on four aspects: processing-specific memory architectures, caching
systems for off-chip memory access, partitioning algorithms for performance and on chip memory
power reduction.

2.1. Processing-Specific Memory Architectures

Memory architectures specialized for specific processing pipelines typically exhibit poor BRAM
utilization. Torres-Huitzil and Nuno-Maganda [9] presented a mirrored memory system: in order to
cope with dual access required by computational datapaths; data is replicated in two parallel memories
and a third one is used for intermediate computations. The need for data replication to support
paralellism inhibits scaling for higher frame sizes. Mori et al. [21] described the use of neighbourhood
loader: input pixels are fed to shift registers which de-serialize the input stream into a neighbourhood
region. Their approach supports only one output port, and sequential region read (no random access).
This approach does not exploit datapath parallelism, nor does it support classes of algorithms which
require disparate region access. Chen et al. [22] use distributed data buffers for expediting Fast Fourier
computations; they partially exploit spatial parallelism, focusing on time-multiplexing as a means
for reducing resource-usage and power consumption. Although time-multiplexing is a convenient
technique for certain classes of applications, it cannot be used in real-time streaming where input pixels
arrive at steady rates (without discarding frames). Klaiber et al. [23] have developed a distributed
memory that divides input frames into vertical regions stored in separate memories. Their approach
allows fine grained parallelism, but is only capable of handling single-pass algorithms, i.e., which do
not require storage of intermediate values. While this suffices for simple computations, it does not
satisfy the requirements of sophisticated computer vision algorithms which process data iteratively
(e.g., MeanShift Tracking [24]).

2.2. Caching Systems

Delegating frame storage to off-chip memory solves the capacity problem, at the cost of
performance and monetary expense. Caching techniques are used to minimize the performance
implications: e.g., Sahlbach et al. [25] use parallel matching arrays for accelerating computation;
however, each array is only capable of holding one row of interest (the complete frame is stored in
off-chip memory) and their results do not discriminate resource usage across modules, making it
hard to estimate the precise array costs. This approach can only support a limited class of algorithms:
column-wise operations, for instance, require off-chip memory re-ordering for data to be loaded
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on-chip as rows, consuming precious processing time. Similarly, Chou et al. [26] have shown the
use of vector scratchpad memories for accelerating vector processing on FPGAs, but still rely on
random-access external memories; a similar approach is followed by Naylor et al. [27] in the context of
FPGAs as accelerators. The use of external memories solves the storage limitation: however, it greatly
limits parallelism (only one access per external memory chip can be performed at once) or greatly
exacerbates financial and power costs, if several external memories are used.

2.3. Partitioning Algorithms

For HLS-based designs, computer vision algorithms are naturally expressed by assuming frames
are stored in unbounded address spaces [28]. This software approach to FPGA design not only easily
exceeds FPGA memory capabilities but is also not easily integrated in streaming designs without
significant refactoring. This has led to the development of custom hardware blocks and APIs for
software integration [29]: “naive” C-based HLS results in several on-chip memory structures, whose
sizes and interfaces are dependent on variables’ types, often sub-utilizing available on-chip memory.
Most HLS tools offer compiler directives—pragmas—which guide the synthesis tool according to
the designer’s intention: optimizing for performance through loop unrolling, or selecting different
implementations (on-chip memories or LUTs). We advocate that more directives, invoking different
synthesis strategies, are required in order to tackle design constraints such as space and power.

The majority of research into partitioning algorithms has mainly focused on performance: namely,
throughput. Gallo et al. [30] have shown how to construct efficient parallel memory architectures
through High-Level Synthesis: however, their approach is predicated on re-organizing memory
placement at algorithm level, by examining computational behavior and placing data accordingly
through lattice-based partitioning, which is not feasible on streaming applications where pixels
are inputted sequentially. Although possible, it would require a complex memory addressing
mechanism between pixel input and memory structure. The authors then expanded their work
to incorporate information about loop unrolling [31], providing new partitioning algorithms for
maximizing parallelism; however, they did not tackle the utilization problem. Similarly, Wang et al. [32]
have demonstrated an extremely efficient algorithm for improving throughput, by creating memory
structures that facilitate loop pipelining in high level synthesis. Their approach saves up to 21%
of BRAMs compared to previous work [33]; still, since their objective is maximizing throughput,
supporting loop pipelining, their approach does not achieve optimized memory allocation in terms of
utilization efficiency.

2.4. Memory Power Reduction

The impact of memory partitioning on power consumption has been researched by
Kadric et al. [34]. Their approach investigates the impact of parallelism, i.e., how data placement
can be leveraged for parallel access, minimizing communication power. A similar approach is taken
in [35]. Tessier et al. [36] show on chip memory power reduction through partitioning, similar to our
approach and previous work by the same authors [37], and more recently in [38]. However, none of
these investigations assume constraints on memory availability. In contrast, we investigate tradeoffs
between power and scarce availability, inherent to the image processing domain, future work need
clearly identified by Tessier et al: “an investigation to determine the optimal size and availability of
different-sized embedded memory blocks is needed".

3. Memory Partitioning on FPGA

In this paper we describe how to partition image frames into BRAMs in order to maximize
utilization (i.e., minimize the number of required on-chip memories), subject to minimization of
power consumption. We begin by by formulating the utilization efficiency problem, without paying
any consideration to power aspects; the following section integrates power consumption in our
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problem formulation. We assume that only one possible BRAM configuration is used for each image
frame buffer.

3.1. Problem Formulation: Utilization Efficiency

Definition 1. Given a BRAM storage capacity C, and a number of possible configurations i, the configurations
set Cfg is a vector of i elements:

Cfg =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(M1, N1)

(M2, N2)

.

.

.
(Mi, Ni)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Cfg1
Cfg2

.

.

.
Cfgi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(1)

where the first component of each element depicts BRAM width M and the second component depicts BRAM
height N, such that:

Mx × Nx ≤ C, ∀x ∈ [0, i − 1] (2)

For any given frame size, several possible BRAM topologies are possible (Different BRAM
configurations do not always equal the same logical bit capacity. Whilst the total physical capacity is the
same, in some configurations parity bits can be used as additional data bits. E.g., configuration (1,16384)
can store 16384 bits, whilst configuration (9,2048) can store 18432 bits). A frame is a 3-dimensional array,
of dimensions width W, height H, and pixel bit width Bw (typically defined as a 2-dimensional array
where the type defines the bit width dimension). BRAM topologies are defined based on a mapping of
3-D to 2-D arrays and a partitioning of a 2-D array to a particular memory structure (Figure 1).

Figure 1. Mapping a 3-D array into row-major and colum-major order 2-D arrays.
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Throughout the remainder of this paper, we assume the use of a mapping scheme which assigns
Bw to the x dimension and H and W to the y dimension, in both row-major and column-major
order (where x and y are 2-D array width and height, respectively). This is the default approach in
software implementations, where the type/bit width dimension is considered implicit, and a sensible
approach for hardware implementations. Mapping bit width Bw across the y dimension would result
in implementations where different bits of the same array element (pixel) would be scattered among
different memory positions of the same BRAM. This would require sequential logic to read/write a
pixel, accessing several memory positions, creating performance, power and size overheads. It should
be noted that this approach might offer performance advantages for certain classes of algorithms
which might want to compare individual bits of different elements; however, we delegate this aspect
to future work. Hence, we define only the default mapping scheme:

Definition 2. A mapping scheme m transforms a 3-D array A3 into a 2-D array A2 of dimensions x and y by
assigning Bw to the x dimension and ordered combinations of W and H to the y dimension, for a total of two
possible configurations, as depicted in Figure 1. Mapping schemes are defined as:

(x, y) = m(W, H, Bw) (3)

A2x,y = A3y\W,y%W,x, x = Bw, y = W × H (4)

A2x,y = A3y%H,y\H,x, x = Bw, y = W × H (5)

where \ and % represent integer division and modulo, respectively.

Definition 3. Given a 2-D mapped image frame of dimensions x and y, a partitioning scheme p which assigns
pixels across a × b BRAMs, depicted in Figure 2, is defined as the linear combination:

p(x, y) = Cfg ∗
(
(a1, b1), (a2, b2), ..., (ai, bi)

)
(6)

where ∗ stands for linear combination, such that only one (ax, bx), ∀x ∈ [0, i − 1] pair has non-zero components
(such a pair is generated as a function of x and y), selecting Mp and Np subject to:

((a × Mp) ≥ x) ∩ ((b × Np) ≥ y) (7)

Figure 2. Mapping 2-D array of dimensions x = Bw and y = W × H to a × b BRAMs configured for
width M and height N.

Different partitioning schemes p, implementing different functions of x and y, result in different
addressing, input and output logic requirements, each with a particular impact on performance
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and resource usage. As this is the greatest bottleneck in implementing high-level image processing
pipelines on an FPGA, it is paramount to define BRAM usage efficiency, i.e., the ratio between the total
data capacity of the assigned BRAMs and the amount of data which is actually used.

Definition 4. Given a partitioning scheme p and maximum BRAM capacity C, the utilization efficiency E is
defined as the ratio:

E =
x × y

ap × bp × C
(8)

The default mapping and partitioning schemes in state of the art HLS tools are geared towards
minimizing addressing logic (abundant in contemporary FPGAs), resulting in sub-par efficiency in
BRAMs usage (still scarce for the requirements of high-level image processing systems). Alternative
schemes must be used in order to ensure memory availability within HLS design flows. We define the
problem as:

Problem 1 (Utilization Efficiency). Given an image frame of width W, height H and pixel width Bw, select a
partitioning scheme, in order to:

Maximize E = x×y
ap×bp×C

Subject to ((a × Mp) ≥ x) ∩ ((b × Np) ≥ y)

3.2. Utilization Example

Consider an image frame of width W = 320 and height H = 240, where each pixel is 8 bits
(monochrome), and BRAMs which can be configured according to:

Cfg =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(1, 16384)
(2, 8192)
(4, 4096)
(9, 2048)
(18, 1024)
(36, 512)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(9)

which is representative of state of the art FPGAs (Xilinx Virtex 7 family 18Kbits BRAM.), where total
BRAM capacity C is given by C = 36 × 512. Using a partitioning scheme

p(m(320, 240, 8)) = Cfg ∗

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(8, 8)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

T

(10)

where m(320, 240, 8) = (8, 76800) (Equation (3)), yields a BRAM usage count of 64 (8 × 8 BRAMs
configured for width 1 and height 16384), with storage efficiency:

E =
8 × (320 × 240)

8 × 8 × (36 × 512)
= 0.520833333 (11)

We have observed that this is the default behaviour for Xilinx Vivado HLS synthesis tools:
empirical results show that configuration (M1, N1) = (1, 16384) is selected through a partitioning
scheme where a1 = Bw and

b1 =
W × H

N1
(12)
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rounded up to the nearest power of 2. Our experiments show that for any frame size, the synthesis
tools’ default partitioning scheme can be given by:

p(m(W, H, Bw)) = Cfg ∗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Bw, 2
log2(
W×H

N1
)�
)

(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

(13)

where 2
log2(
W×H

N1
)� should be read as 2 to the rounded up (ceiled) result of the logarithm operation (i.e.,

2 to an integer power).
Now consider the same mapping (x = Bw, y = W × H), but with a partitioning scheme:

p(m(320, 240, 8)) = Cfg ∗

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(8, 5)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

T

(14)

which partitions data unevenly across BRAMs, rather than evenly. This scheme yields a BRAM usage
count of 40, with storage efficiency:

E =
320 × 240 × 8

8 × 5 × (36 × 512)
= 0.833333333 (15)

Yet a better partitioning scheme for the same mapping would be:

p(m(320, 240, 8)) = Cfg ∗

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(0, 0)
(0, 0)
(2, 19)
(0, 0)
(0, 0)
(0, 0)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

T

(16)

yielding a BRAM count of 38 and efficiency:

E =
320 × 240 × 8

2 × 19 × (36 × 512)
= 0.877192982 (17)

Clearly, partitioning schemes depend on the frame dimensions, width, height, and bit width, to
enable efficient use of on-chip memory blocks.

3.3. Power Considerations

Having formalized the utilization problem, we may proceed to analyse the power implications
of each configuration. We model BRAM dynamic power consumption using the model described by
Tessier et al. [37]: a power quantum is consumed per read and/or write. BRAM static power is directly
proportional to utilization, hence addressed in the utilization problem.

For any given BRAM cell, the read power is consumed by a sequence of operations: the clock
signal is strobed; the read address is decoded; the read data is strobed into a column multiplexer; the
read data passes to BRAM external port. Write power is consumed by the following sequence: the
clock signal is strobed; the write enable signal transfers write data to the write buffers; a line is selected
by address decoding; data is stored in the RAM cell.
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Now consider the partitioning presented in Equation (10) where each datum is distributed across
eight BRAMs, and the partitioning presented in Equation (16), where each datum is distributed across
two BRAMs. Each read/write operation in the former must consume power across four times the
number of BRAMs in the latter. Figures 3 and 4 depict examples of power consumption for two
partitioning schemes.

Figure 3. Partitioning across two BRAMs horizontally. Each access consumes two power consumption quantums.

Figure 4. Partitioning across one BRAM horizontally. Each access consumes 1 power consumption quantum.

A partitioning scheme which minimizes horizontal usage of BRAMs (i.e., across x) is more suitable
for clock gating. Since fewer BRAMs must be accessed per operation, the proportian of unused ones,
which can be effectively gated, increases. It is straightforward to implement clock gating through chip
enable selection [39] which is enabled/disabled based on address decoding. colorred In other words,
BRAM power consumption is proportional to the number of BRAMs required to access each pixel: and
this number depends on which configuration is selected.

An intuitive approach to balance power consumption and utilization is to always use the widest
BRAM configuration that suffices for Bw, or multiples of the widest available.

This, however, is not an optimized strategy. While it is true that dynamic power is reduced, static
power might increase when moving from one configuration to a wider one since the total number of
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BRAMs might increase: utilization efficiency is modified. Additionally, the logic required for address
(and chip enable) signals increases when moving to a wider configuration. This aspect makes the
utilization and power problems indivisible. In the following section, we describe our approach to
balance these two aspects.

3.4. Partitioning for Power and Utilization

We begin by presenting a brute force optimized partitioning procedure for maximizing utilization
efficiency, described in Algorithm 1 in pseudo code notation.

Algorithm 1 Optimized Utilization Efficiency can be achieved by:

1: procedure OPTIMIZED PARTITION

2: efficiency ← 0
3: best ← 0
4: for x=0 : i-1 do

5: (Mx,Nx) ← Cfgx
6: a ← Bw/Mx
7: b ← W × H/Nx
8: efficiency ← (W × H × Bw)/(a × b × C)
9: if efficiency greater than best then

10: best ← e f f iciency
11: configuration ← (Mx, Nx)
12: end if
13: end for

For each element in the configurations set Cfg (possessing a total of i elements), the procedure
calculates the required number of BRAMs to store a frame of width W, height H and bit width Bw, the
efficiency of such a configuration and compares it with the highest efficiency found so far. The focus
here is solely on utilization. Effectively, this is an exhaustive search as the number of possible memory
configurations is finite and this is an off-line process.

Table 1 depicts the configurations selected by procedure 1 for a representative number of frame
sizes and pixel bit widths. Several of the configurations are not power-optimised: notice that for pixels
of widths 10, 14 and 22, BRAM configuration 2 × 8192 is chosen most often (consuming power on 5, 7
and 11 BRAMs per access, respectively). This is intuitive from a utilization efficiency perspective: it is
the only configuration that divides the width, and is in accordance with the selection of configuration
4 × 4096 for pixels of width 8, 12, 20 and 24 and configuration 18 × 1024 for pixels of width 18.

Table 1. BRAM configurations based on optimized utilization procedure.

Pixel Width

Frame 8 10 12 14 16 18 20 22 24

160 × 120 4 × 4096 4 × 4096 4 × 4096 18 × 1024 18 × 1024 18 × 1024 4 × 4096 9 × 2048 4 × 4096
320 × 240 4 × 4096 2 × 8192 4 × 4096 2 × 8192 18 × 1024 18 × 1024 4 × 4096 2 × 8192 4 × 4096
512 × 512 4 × 4096 2 × 8192 4 × 4096 2 × 8192 4 × 4096 18 × 1024 4 × 4096 2 × 8192 1 × 16384
640 × 480 4 × 4096 2 × 8192 4 × 4096 2 × 8192 18 × 1024 18 × 1024 4 × 4096 2 × 8192 4 × 4096

1280 × 720 4 × 4096 2 × 8192 4 × 4096 2 × 8192 18 × 1024 18 × 1024 4 × 4096 2 × 8192 4 × 4096

This non-linearity complicates the derivation of an optimized procedure for partitioning for both
utilization and power efficiencies. Hence, we take a more relaxed approach and define a procedure
through user defined tradeoffs (i.e., an estimation of how much BRAM utilization can be traded
for power reduction) and power and space heuristics, based on empirical properties. Our brute
force balanced method is described in Algorithm 2. It is assumed that the tradeoff is expressed in
percentage points.
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Algorithm 2 Balanced Power-Utilization can be achieved by:

1: procedure BALANCED PARTITION

2: efficiency ← 0
3: configuration ← get_MxNx(OptimizedPartition())
4: best ← get_efficiency(OptimizedPartition())
5: j ← get_index(OptimizedPartition())
6: for x=j+1 : i-1 do efficiency
7: (Mx,Nx) ← Cfgx
8: a ← Bw/Mx
9: b ← W × H/Nx

10: efficiency ← (W × H × Bw)/(a × b × C)
11: if efficiency less than best - tradeoff then

12: break
13: end if

14: configuration ← (Mx, Nx)
15: end for

Procedure 2 begins by selecting the optimized utilization solution and iterating over wider BRAM
configurations (in the x dimension), calculating utilization efficiency. As long as the utilization is
above the threshold limit, given by the difference between best utilization and tradeoff, in percentage
points, the procedure continues. When it finds the first solution below the threshold, it exits, returning
the last solution above the threshold limit. This approach follows the power model heuristics [37]
described in the previous section: power consumption decreases as BRAM horizontal width increases
(Figures 3 and 4).

Table 2 depicts the BRAM configurations selected by the balanced procedure, with the tradeoff
set to 12 percentage points. Compared to the optimized configurations, the majority of widths are
increased, resulting in a more power efficient solution based on the aforementioned heuristics.

Table 2. BRAM configurations based on balanced procedure with tradeoff equal to twelve percentage
points.

Pixel Width

Frame 8 10 12 14 16 18 20 22 24

160 × 120 9 × 2048 4 × 4096 4 × 4096 18 × 1024 18 × 1024 18 × 1024 4 × 4096 9 × 2048 9 × 2048
320 × 240 9 × 2048 4 × 4096 4 × 4096 18 × 1024 18 × 1024 18 × 1024 4 × 4096 9 × 2048 9 × 2048
512 × 512 9 × 2048 2 × 8192 4 × 4096 18 × 1024 18 × 1024 18 × 1024 4 × 4096 9 × 2048 9 × 2048
640 × 480 9 × 2048 2 × 8192 4 × 4096 18 × 1024 18 × 1024 18 × 1024 4 × 4096 9 × 2048 9 × 2048
1280 × 720 9 × 2048 2 × 8192 4 × 4096 18 × 1024 18 × 1024 18 × 1024 4 × 4096 9 × 2048 9 × 2048

3.5. Applying Memory Partitioning: Methodology

Our procedures can be utilized in both HDL and HLS design flows: in an HDL design flow,
by guiding the designer’s implementation and/or refactoring; in an HLS design flow, through
integration in the synthesis tools code generation subsystem. Figure 5 depicts the proposed design
flows. The additional steps can be performed manually, either starting from HDL designs or by
modifying HLS outputs pre-synthesis; through automated refactoring tools which compute the
proposed procedures; or by the HLS tool prior to code generation. We describe the manual process
used in our experiments.
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Figure 5. Proposed design flow from HDL and HLS, highlighting the additional steps required for
minimizing utilization and power.

After a memory structure has been derived from the procedure specification, according to
Equations (3)–(5), procedures 1 and/or 2 are computed to determine BRAM partitioning. BRAMs of
the computed configuration are instantiated and contained in modules (i.e., hardware entities). A top
module instantiates all sub-modules, providing interfaces identical to the base HDL design or to the
specification of the HLS tool. Addressing logic within the top module controls chip enable signals to
each sub-module, ensuring that non-addressed BRAMs are not enabled. This careful partitioning of
HDL logic in hierarchical modules, where addressing logic is determined by the top-level interconnect
and BRAM configuration is determined by module configuration parameters ensures that the desired
configurations are used (this is based on our experiments using Vivado: different synthesis tools might
require additional compiler pragmas).

4. Experimental Results

Our experiments target state of the art FPGA devices (Xilinx Virtex 7 device xc7vx690tffg1761-1C
and Zynq xc7z020clg484-1). We use Vivado v2016.1 for HDL design, Vivado HLS v2016.1 for High
Level Synthesis, and Xilinx Power Estimator for power characterization of implemented designs.
We begin by generating frame buffers in several configurations, in order to characterise utilization
efficiency and power consumption. We then compare utilization and power against equivalent frame
buffers generated by a HLS tool. We conclude by implementing two high level image processing
algorithms through HLS, and modifying frame buffers according to the proposed strategies, in order
to quantify our algorithms’ impact on resource usage and power consumption within complete image
processing systems.

4.1. Frame Buffers: BRAM Configuration Impact

Our first set of experiments characterises utilization and power consumption for two frame
sizes as a function of several possible configurations. The goal of this set of experiments was to
validate the utilization efficiency of the partitioning algorithms and the power heuristics used in the
previous section.
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We implemented frame buffers in Verilog HDL in Vivado v2016.1, explicitly instantiating BRAMs
according to the desired configurations. Logic in our design hierarchy routes data, addresses and
control signals accordingly. Analysis of post-implementation reports was performed in order to
ensure that BRAMs were instantiated according to the desired configuration (depending on the design
hierarchy, synthesis tool optimizations could feasibly re-organize BRAM allocation). We performed
a sequential read/write experiment, where a complete frame is written to memory (sequential pixel
input, in row-major order) and then read in the same order. This allows us to validate the power
model heuristics assumed in the previous section. Table 3 depicts power and utilization results for
monochrome frames of sizes 320 × 240 and 512 × 512.

Table 3. FPGA power usage and utilization efficiency (Eff.) for monochromatic (8 bits) frames of sizes
320 × 240 and 512 × 512 for different BRAM configurations.

320 × 240 512 × 512

Configuration
Power (W)

Eff. (%) Configuration
Power (W)

Eff. (%)
Static Dynamic BRAM Static Dynamic BRAM

8 × 5–1 × 16384 0.328 0.054 0.036 83.33 8 × 16–1 × 16384 0.332 0.07 0.036 88.88
4 × 10–2 × 8192 0.327 0.036 0.018 83.33 4 × 32–2 × 8192 0.331 0.053 0.018 88.88
2 × 19–4 × 4096 0.327 0.026 0.009 87.72 2 × 64–4 × 4096 0.331 0.043 0.009 88.88
1 × 38–9 × 2048 0.327 0.027 0.005 87.72 1 × 128–9 × 2048 0.331 0.046 0.005 88.88

4.2. Frame Buffers: HLS Comparison

Our second set of experiments compares the proposed partitioning algorithms with default
strategies employed by commercial HLS tools. The goal of this set of experiments was to confirm
that the proposed methodology outperforms commercial HLS tools in both utilization and power
consumption.

We performed C-based high level synthesis using Xilinx Vivado HLS, describing frames in the
standard format (array type determines bit width, indices determine frame width and height). For each
frame size, we report BRAM usage and additional resources (slice registers and LUTs). We utilized
standard pixel widths (8 bits for monochrome images, 24 bits for RGB). We estimated optimized
BRAM usage using the optimized utilization algorithm and according to the balanced partitioning
algorithm in order to compare the power and utilization impact—algorithms were run offline; we
have not integrated them in any HLS tool at this point. We implemented the frame buffers in Verilog
HDL according to each algorithm, ensuring external interfaces (i.e., read/write data, address and
control singals ports) are identical to the ones generated by Vivado HLS from C. We then replaced
the frame buffers generated from HLS with our hand-coded Verilog HDL versions. For each frame
size, we report BRAM usage and additional resources (slice registers and LUTs) required to implement
addressing logic.

Table 4 depicts results obtained from the three configurations, for monochromatic and RGB
frames respectively, and Figure 6 compares BRAM utilization efficiency. We characterised the power
consumption implications of each generated system using Xilinx Power Estimator for access patterns
representative of image processing applications. In our sequential read/write experiment, a complete
frame is written to memory (sequential pixel input, in row-major order) and then read in the same
order. In our sliding window experiment, a complete frame is read through 3 × 3 sliding window.
Figure 7 depicts static power consumption; Figures 8 and 9 depict total dynamic power consumption
by the three architectures, for sequential read/write and sliding window test cases, respectively; and
Figures 10 and 11 depict BRAM power consumption for sequential read/write and sliding window test
cases, respectively.
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Table 4. FPGA resource usage for monochromatic frames: generated from Vivado HLS versus
hand-coded modifications according to the proposed algorithms.

8 bits HLS Optimized Utilization Balanced

Frame BRAMs LUTs
BRAMs

LUTs
BRAMs

LUTs
Usage Mode Reduction Usage Mode Reduction

160 × 120 16 0 10 4 × 4096 −37.5% 22 10 9 × 2048 −37.5% 48
320 × 240 64 9 38 4 × 4096 −40.6% 79 38 9 × 2048 −40.6% 186
512 × 512 128 17 128 4 × 4096 0% 285 128 9 × 2048 0% 596
640 × 480 256 34 150 4 × 4096 −41.4% 337 150 9 × 2048 −41.4% 742

1280 × 720 512 64 450 4 × 4096 −12.1% 1039 450 9 × 2048 −12.1% 2284

24 bits HLS Optimized Utilization Balanced

Frame BRAMs LUTs
BRAMs

LUTs
BRAMs

LUTs
Usage Mode Reduction Usage Mode Reduction

160 × 120 48 0 30 4 × 4096 −37.5% 41 30 9 × 2048 −37.5% 91
320 × 240 192 25 114 4 × 4096 −40.6% 140 114 9 × 2048 −40.6% 308
512 × 512 384 49 384 1 × 16384 0% 504 384 9 × 2048 0% 1109
640 × 480 768 98 450 4 × 4096 −41.4% 584 450 9 × 2048 −41.4% 1285

1280 × 720 1536 192 1350 4 × 4096 −12.1% 1760 1350 9 × 2048 −12.1% 3877

Figure 6. BRAM utilization efficiency for RGB frames: Vivado HLS versus proposed methods.

Figure 7. Static power consumption: Vivado HLS versus proposed methods.
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Figure 8. Total dynamic power consumption for sequential read/write: Vivado HLS versus proposed methods.

Figure 9. Total dynamic power consumption for 3 × 3 sliding window read: Vivado HLS versus
proposed methods.

Figure 10. BRAM power consumption for sequential read/write: Vivado HLS versus proposed methods.
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Figure 11. BRAM power consumption for 3 × 3 sliding window read: Vivado HLS versus proposed methods.

4.3. High-Level Image Processing

Out third set of experiments contextualises the impact of memory allocation on high-level image
processing systems. The goal of this set of experiments was to quantify how much frame buffers
impact resource usage and power consumption within complete image processing systems, based on
default and proposed partitioning strategies.

We use Optical Flow and MeanShift Tracking as case studies. Optical Flow estimates the apparent
motion of objects caused by the relative motion of an observer; i.e., for two sequential frames, Optical
Flow estimates the movement of each pixel (or larger regions) from one frame to the other. It belongs
to the temporal class of image processing algorithms, i.e., it performs computations across time
(different frames). Our Optical Flow implementation is based on the code available from [40] using the
TV-L1 method, refactored so it complies with Vivado HLS C synthesis requirements (e.g., dynamic
memory allocation was replaced by static memory allocation); we performed no other optimizations.
We compute a single scale, rather than multiple scales, for images of size 160 × 120: an example is
depicted in Figure 12. We used the publicly available dataset from [41]. We developed three versions:
with default memory allocation and following the optimized utilization and balanced algorithms.
FPGA utilization results for Xilinx Virtex 7 are depicted in Table 5 (optimized and balanced strategies
yield the same BRAM utilization, although different configurations, for our implementation). For the
default strategy, BRAMs were insufficient to accommodate all memory requirements, causing the
synthesis tool to infer Memory LUTs for parts of the design. Using our approach, BRAMs suffice to
implement the complete system. Power consumption per version is depicted in Figure 13.

Table 5. Optical Flow FPGA resource usage and performance on Virtex 7 xc7vx690tffg1761-1: generated
from Vivado HLS versus hand-coded modifications according to the proposed algorithm.

Vivado HLS Default Optimized

FF 24101 (3%) 24101 (3%)
LUTs 200205 (47%) 208724 (49%)

Memory LUT 126114 (73%) -
IOs 568 (67%) 568 (67%)

BRAM 1008 (35%) 2157 (74%)
DSPs 232 (7%) 232 (7%)
fps 24 24
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(a) First frame (b) Second frame

(c) 1 scale optical flow (d) 5 scales optical flow
Figure 12. Optical Flow results using the implementation from [40]. (a,b): source frames. (c): output
from 1 scale optical flow (used in our FPGA implementation). (d): output from 5 scales optical flow.

Figure 13. TV-L1 Optical Flow power consumption on Virtex 7.

MeanShift Tracking [24] calculates a confidence map for object position on an image, based on
a colour histogram of such object on a previous image: i.e., for an object whose position is known
and colour histogram is calculated in frame k, MeanShift Tracking determines the most likely object
position in frame k + 1, based on colour histogram comparison. It is a temporal and dynamic algorithm:
it performs computations across more than one frame, requiring an unpredictable number of iterations
(up to a predefined maximum) on unpredictable frame positions (depending on runtime object
position). It was described in C and implemented through Vivado HLS; our implementation was
highly optimized for hardware implementation. MeanShift Tracking stores the first input frame
(writing the full frame to memory in sequential, row-major order) and calculates a color histogram
of a region of width M and height N, centered on an initial object position (reading M × N pixels).
Every subsequent frame is stored, and color histograms for possible new positions are calculated in a
region around the previous known position. The new position is decided when the difference between
previous and current position is below a pre-defined error bound or a maximum number of iterations
is reached. The MeanShift tracking access patterns are not regular or predictable as they depend on
the input images; it is representative of memory-intensive image processing algorithms as the output
depends on complete (or unpredictable subsets of) scenes, rather than well-defined pixels or regions.

Our tracking system was implemented on a Zynq 7020 chip on a Zedboard, connected to an
external camera OV7670 (Figure 14). The processed data (image plus tracked object position) are
sent to the on-board ARM processor which re-transmits to a remote desktop computer over Ethernet.
However, it is important to stress that this for communication and display only, the complete algorithm
is implemented on the FPGA. Figure 15 shows real-time operation of our setup.
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Figure 14. Zedboard connected to PC through Ethernet.

Figure 15. MeanShift Tracking: real-time face tracking displayed on PC. Image sent from Zedboard
over Ethernet connection.

We developed three system versions: with default memory allocation, optimized utilization
memory allocation and balanced allocation for image sizes of 320 × 240 where each pixel is 24 bits
(RGB), with a region of interest of size M = 16 and N = 21. Identical to the previous experiment,
our baseline is the MeanShift Tracking implementation generated by Vivado HLS. The versions used
for comparison replace the HLS frame buffer with hand-coded implementations: all other MeanShift
Tracking modules are unmodified (generated from C through Vivado HLS). Resource usage for each
version is depicted in Table 6. Power consumption per version is depicted in Figure 16.

Table 6. MeanShift Tracking FPGA resource usage and performance on Zynq 7020: generated from
Vivado HLS versus hand-coded modifications according to the proposed algorithms.

Vivado HLS Default Optimized Balanced

FF 6264 (5%) 6264 (5%) 6264 (5%)
LUTs 9197 (17%) 9310 (17.5%) 9475 (17.8%)
IOs 64 (32%) 64 (32%) 64 (32%)

BRAM 228 (81%) 150 (54%) 150 (54%)
DSPs 8 (3%) 8 (3%) 8 (3%)
fps 134 134 134
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Figure 16. MeanShift Tracking power consumption on Zedboard.

5. Discussion of Results

Regarding the experiments in Section 4.1, we purposely chose these configurations in order to
highlight the non-linear relationship between efficiency and power; while for frames of size 320 × 240,
different configurations yield different efficiency and different power consumption, efficiency is
identical across configurations for frames of size 512 × 512, while power consumption still varies. It is
worthwhile noticing that for both sizes, BRAM configuration 9 × 2048 is less power efficient than
configuration 4 × 4096, despite achieving the same efficiency; although BRAM power is decreased
(from 0.009 W to 0.005 W in both cases), total dynamic power (comprised of BRAM, clocks, signals,
logic and I/O) increases due to more complex logic, as previously described.

Experiments show that our partitioning algorithms achieve higher efficiency than default synthesis
strategies, except for frames of size 512 × 512 where the efficiency is unchanged. This is the case
where default strategies perform equally well in terms of utilization since the image height and width
are powers of 2 (refer back to Equation (13)). This confirms that modified partitioning strategies are
required, according to requirements, in order to improve memory usage.

Static power consumption depicted in Figure 7 decreases across frame sizes, except for frames
of sizes 512 × 512 and 1280 × 720, where the utilization efficiency difference between default and
proposed strategies is smallest (Figure 6) and additional addressing logic becomes too (static) power
hungry. This confirms the utilization and power problems are indivisible, and must be treated
in synergy.

Total dynamic power, on experiments performed on frame buffers, is reduced on average by
74.708% (σ = 7.819%) for read/write experiments (Figure 8), and on average by 72.206% (σ = 12.546%)
for read-only experiments (Figure 9). This confirms our hypothesis that memory partitioning offers
opportunities for power reduction, despite the need for logic overhead. Considering BRAM dynamic
power only, our partitioning methods result in 95.945% average power reduction (σ = 1.351%) for
read/write experiments (Figure 10) and 95.691% average power reduction (σ = 1.331%) for read-only
experiments (Figure 11).

On our experiments using Optical Flow, where BRAM and Memory LUT power accounts for
25.9% of total power consumption, and 30% of dynamic power, we show that the proposed partitioning
algorithms can reduce total power by approximately 25% (Figure 13). For MeanShift Tracking, where
BRAM power accounts for 34.55% of total power consumption, and 53.94% of dynamic power, we show
that the proposed partitioning algorithms can reduce total power by approximately 30% (Figure 16).
Algorithm performance (i.e., frames per second) was unaffected by our partitioning methodologies,
both in Optical Flow and MeanShift Tracking, since our strategies do not affect memory access latencies
and maximum clock frequencies remained unchanged (frame buffers were not responsible for clock
critical path). Our results compare favorably to the results presented in [36], which achieved up to
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26% BRAM power reduction, at the expense of 1.6% clock frequency reduction; our methodology
achieves up to 74% BRAM power reduction, without sacrificing clock frequency. This is due to the fact
that their approach does not consider the power consumption differences caused by different BRAM
configurations, a key aspect of our methodology.

5.1. Power Consumption

In Section 3.3, we illustrated how different BRAM configurations affect power consumption:
depending on how many BRAMs must be strobed in order to access a pixel (in other words, depending
on which configuration is used for memory allocation), different power consumption quanta are
expended (assuming the remaining ones are clock gated, as per our methodology). The interested
reader may refer to [37] for a detailed explanation of this power model. Figures 3 and 4 visually
display this phenomenon. Table 4 showed how, for the same frame size, different configurations can
reduce power consumption expended on BRAMs by up to 82%; this corresponded to total dynamic
power reduction of up to 50%. These results showed how severely BRAM configuration affects power
consumption. Note that it is possible that a very small reduction in BRAM utilization (i.e., the number
of BRAMs required to implement frame storage) can yield substantial power reductions.

In our experiments using complex high level algorithms, we showed that BRAM power constitutes
a substantial portion of total power consumption: namely, using the default Vivado HLS strategy,
BRAMs account for 8% of Optical Flow power consumption and 34% of Meanshift Tracking power
consumption (Figures 13 and 16). Additionally, significant power is spent on logic due to BRAM
output change (prevented in our approach due to clock gating strategies).

5.2. Hardware Overhead

The default memory allocation strategy employed by HLS tools appears to be focused on
minimizing addressing logic (implemented through LUTs), at the expense of memory usage. In contrast,
our approach minimizes memory usage (a scarcer resource than LUTs) at the expense of more complex
addressing. i.e., due to the use of different BRAM configurations, memory control logic (write-enable
signals, address decoding, etc.) becomes slightly more complex, consuming more LUTs to implement.
In our experiments using high level algorithms (Meanshift tracking and Optical Flow), this LUT
overhead was of 0.8 and 2.0 percentage points, respectively (see Tables 5 and 6).

6. Conclusions

Efficient mapping of high-level descriptions of image frames to low-level memory systems is an
essential enabler for the widespread adoption of FPGAs as deployment platforms for high-level image
processing applications. Partitioning algorithms are one of the design techniques which provide routes
towards power-and-space efficient designs which can tackle contemporary application requirements.

Based on a formalization of BRAM configuration options and a memory power model, we have
demonstrated how partitioning algorithms can outperform traditional strategies in the context of High
Level Synthesis. Our data show that the proposed algorithms can result in up to 60% higher utilization
efficiency, increasing the sizes and/or number of frames that can be accommodated on-chip, and reduce
frame buffers dynamic power consumption by up to approximately 70%. In our experiments using
Optical Flow and MeanShift Tracking, representative high-level image processing algorithms, data
show that partitioning algorithms can reduce total power by up to 25% and 30%, respectively, without
any performance degradation. Our strategies can be applied to any FPGA family and can easily scale
as required for future FPGA platforms with novel on-chip memory capabilities and configurations.

The majority of HLS design techniques have focused on programmability and performance.
However, our results show that further research is required in order to improve design strategies
towards accommodating other constraints; namely, size and power. Models which describe low-level
non-functional properties such as power consumption can support high-level constructs in order
to display early cost estimation, guiding the design flow. This requires not only fine-grained
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characterization of technologies’ properties, but also sufficiently powerful modeling abstractions which
can lift these properties to high-level descriptions. It will also be interesting to profile and refactor
image processing algorithms to determine if alternative mappings (refer back to Equations (4) and (5))
could provide higher performance and utilization; this could be pursued in future work involving
multi-objective optimizations.

Research in FPGA dynamic reconfiguration has focused on overcoming space limitations; whether
this capability can be exploited for image processing power reduction, based on heuristics and runtime
decisions, essentially transforming approximate computing design from a static to a dynamic paradigm,
remains an open question.
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Abstract: Parallel hardware designed for image processing promotes vision-guided intelligent
applications. With the advantages of high-throughput and low-latency, streaming architecture on
FPGA is especially attractive to real-time image processing. Notably, many real-world applications,
such as region of interest (ROI) detection, demand the ability to process images continuously at
different sizes and resolutions in hardware without interruptions. FPGA is especially suitable for
implementation of such flexible streaming architecture, but most existing solutions require run-time
reconfiguration, and hence cannot achieve seamless image size-switching. In this paper, we propose
a dynamically-programmable buffer architecture (D-SWIM) based on the Stream-Windowing
Interleaved Memory (SWIM) architecture to realize image processing on FPGA for image streams at
arbitrary sizes defined at run time. D-SWIM redefines the way that on-chip memory is organized
and controlled, and the hardware adapts to arbitrary image size with sub-100 ns delay that ensures
minimum interruptions to the image processing at a high frame rate. Compared to the prior
SWIM buffer for high-throughput scenarios, D-SWIM achieved dynamic programmability with
only a slight overhead on logic resource usage, but saved up to 56% of the BRAM resource.
The D-SWIM buffer achieves a max operating frequency of 329.5 MHz and reduction in power
consumption by 45.7% comparing with the SWIM scheme. Real-world image processing applications,
such as 2D-Convolution and the Harris Corner Detector, have also been used to evaluate D-SWIM’s
performance, where a pixel throughput of 4.5 Giga Pixel/s and 4.2 Giga Pixel/s were achieved
respectively in each case. Compared to the implementation with prior streaming frameworks,
the D-SWIM-based design not only realizes seamless image size-switching, but also improves
hardware efficiency up to 30×.

Keywords: streaming architecture; low-latency; high-throughput; FPGA; D-SWIM; line buffer

1. Introduction

Real-time image processing applications, such as for high-speed image-guided vehicle control [1],
requires the underlying image-processing hardware to be both high-throughput and low-latency.
Furthermore, for many real-world scenarios, such as in detecting and processing the region of interest
(ROI) of arbitrary sizes, the underlying hardware must also be flexible to adapt to the varying
input-sized images as needed [2]. With ample high-bandwidth I/O and on-chip programmable
logic resources, researchers have demonstrated the benefits of using Field Programmable Gate Arrays
(FPGAs) to address the throughput and latency challenges in a wide range of image processing
applications. For instance, Wang et al. [3] demonstrated that by using an FPGA to directly process
output from a high-speed time-stretch imaging camera, they can successfully classify cell images in
real-time with data throughput exceeding 4 Giga Pixels Per Second (GPPS). Similarly, Ma et al. [4]
demonstrated an automatic tool for porting general Deep Neural Networks (DNN) to FPGA,
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which achieves a maximum processing throughput of 710 Giga Operations Per Second (GOPS) and a
latency of 31.85 ms for each image frame.

As illustrated by the above examples, one key to achieving high-throughput low-latency image
processing on FPGAs is by leveraging carefully pipelined hardware that can operate on the input image
as pixel streams without excessive buffering. These hardware architectures are able to commence
processing of the image as soon as the necessary pixels are received and continue processing
the rest of the arriving image as a pipeline, giving rise to both low-latency and high-throughput
operations. Indeed, to facilitate the design of complex streaming image-processing hardware, some
FPGA-hardware generators have already been proposed, often relying on the use of domain-specific
languages (DSLs) as a bridge between the algorithm designer and the lower-level hardware [5–8].
In our previous work, SWIM [9], a streaming line buffer generator, was also proposed to address the
complexities of rearranging misaligned multi-pixel blocks for ultra high-input throughput applications.
It demonstrated that by carefully arranging on-chip memory resources to align with the input image
size, a fully pipelined image processing system on FPGA could be realized that operates close to the
FPGA maximum clock frequency.

However, while these hardware generation frameworks can efficiently produce designs for a
particular target application, they must be pre-configured to a fixed input image size before the FPGA
synthesis. The FPGA has to be reconfigured when the input image size changes, limiting their use in
real-time applications that operate on input images with varying sizes.

Building on top of the work of SWIM, we present in this paper an improved high-throughput
hardware architecture that can adapt to the size of the input image dynamically during runtime
without hardware reconfiguration. The improved scheme, called Dynamic-SWIM (D-SWIM), utilizes
an improved on-chip memory organization that can adapt to changing the image size dynamically.
Different to SWIM, the D-SWIM framework generates light-weighted control instructions for different
image sizes. The hardware architecture can be rapidly programmed in sub-100 nanoseconds instead of
seconds to half a minute of FPGA reconfiguration, making it suitable to process images of different sizes
seamlessly. Such dynamic programmability with D-SWIM is achieved with only a slight overhead
on logic resource usage. Furthermore, D-SWIM lowers overall power consumption by 45.7% due to
reduced BRAM usage. This paper also provides a D-SWIM based hardware design method with two
real-world applications as a case study.

The rest of the paper is organized as follows: Section 2 presents the basis of streaming architecture
and the motivative scenarios of high-throughput and arbitrary sized image processing. Section 3
describes the D-SWIM framework, including the hardware structure and instruction compilation for
any image size. Section 4.2 gives the logic implementation of the fully pipelined hardware. We deeply
evaluated the D-SWIM with practical image applications. Section 5 shows the experiments and the
results compared to SWIM and other streaming architectures. Section 6 is the conclusion.

2. Background

2.1. Streaming Architecture for Image Processing on FPGA

Similarly to the traditional computer system, memory hierarchy exists in FPGA-centric systems.
On-chip memory inside the FPGA has low access latency, but relatively small capacity. In contrast,
off-chip memory (DRAM) has a larger capacity, but longer latency and lower bandwidth. Furthermore,
DRAM access consumes significantly more energy than on-chip memory. Therefore, in the field of
FPGA architecture for image processing, it is a hot topic to trade off the on-chip buffer cost and
system performance. For streaming architecture, it is widely adopted that the FPGA receives the pixels
line-by-line as they are captured by the image sensor. The on-chip buffer is employed to store multiple
lines for the 2D pixel access in the computation. Note that the buffer is optimized to the minimum size,
and only the stores the pixels if they will be reused in subsequent computations.

51



J. Imaging 2019, 5, 34

Previous works presented general methods for designing a streaming architecture for image
processing with a 2D access pattern [5,7,10]. Figure 1 shows an example. There are three components
within this streaming architecture: Buffer (BUF), operator, and interconnections. The BUF stores multiple
image lines that arrive sequentially in a line-by-line manner from the input stream, and the operators
can simultaneously access pixels across multiple lines within a local area defined by a 2D window or
stencil pattern. For instance, in Figure 1, the operator 1 (OP1) performs 2D filtering with a 3 × 3 sliding
window, and the step size of sliding window is one pixel in both vertical and horizontal directions.
Assuming the FPGA receives one new pixel from the input stream per cycle to sequentially fill the
input Buffer 1 (BUF1). Concurrently, BUF1 outputs 3 × 3 pixels in a window that is needed by OP1 to
produce one resultant pixel. In each clock cycle, the window advances to the right by one step, and the
output pixel is stored in BUF2. Note that while the window is moving to the boundary of each line,
the output window of BUF1 concatenates the pixel columns from both the end and start in the buffer,
as Figure 1a shows. The windows across the boundary are invalid, and the corresponding resultant
pixels are dropped, such that the line width of BUF2 is less than the width of BUF1.

As illustrated, BUF1 dynamically maintains three image lines that will be reused. Note that the
on-chip BUF can be optimized to a minimum size where the new pixels are consumed as soon as they
become available in the BUF and the old pixels are discarded. The BUF design for the other 2-D stencil
patterns follows a similar principle. Operator is composed of arithmetic units (adder, multiplier, etc.)
tailored for the image application. The results from the operators can be either output as the final result,
or stored in another BUF which provides the input of the subsequent operator. The interconnections
are the dedicated data paths that follows the data flow graph (DFG) of the application. For instance,
in Figure 1d, Operator 2 (OP2) uses both the pixels in the initial BUF1 and the output of OP1 stored in
BUF2 for further processing. In addition to the direct wires, first-in, first-out (FIFO) was inserted on
the data flow path to guarantee all pixels of the required pattern arrived at the operator in the correct
clock cycle.
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w
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w

Operator1

FIFO

Buffer2 Operator2

Load

output

(a) Buffer 1
(b) Operator 1 (c) Buffer 2
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B
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Figure 1. A streaming architecture example for image processing with a 2D pattern. The architecture
has three components: buffer, operator, and interconnections.

2.2. Demand on Arbitrary Sized Image Processing

In many real-world image processing scenarios, the size of the image is unpredictable before the
system run-time. To demonstrate, Figure 2 presents two example cases.

The first case is the Region of Interest (ROI) processing. As Figure 2a shows, the ROI is selected
from the entire view of the image for analysis. This mechanism exists in most image applications that
effectively reduce the computation workload. However, the ROI is defined by the end-user—hence,
the size of ROI is unpredictable during the hardware design time. Furthermore, multiple ROIs may
exist on the same view, such that the hardware is required to accommodate images of different sizes in
processing one frame.

The second case presents how the arbitrary size image processing is also demanded in cloud
computing. As Figure 2b shows, the users at the edge side upload images to the cloud for the
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computation-intensive applications (such as inference of deep learning, etc.). The cloud server sends
the workload to the FPGA accelerator to reduce CPU processing time.

In both cases, the streaming architecture on FPGA is required to process arbitrary sized images.
Furthermore, the working mode of hardware should be quickly switched for seamlessly processing the
images. The conventional FPGA reconfiguration costs seconds to half a minute, which greatly reduces
the system efficiency. Thus, we investigate a streaming architecture that can be rapidly programmed
to process images in an arbitrary size.

(a)  Case1: Arbitrary sized ROI in image processing

D-SWIM 
Architecture

on FPGA

Stream

User images 
in different sizesCloud

Stream
…

Images downstream 
to FPGA-accelerator

(b)  Case2: Arbitrary sized image processing in cloud computing

ROI

Figure 2. Motivation for arbitrary sized image processing: (a) user-defined Region of Interest (ROI)
processing; (b) arbitrary sized image processing in cloud computing.

2.3. Demand on Ultra-Fast Stream Processing

In previous works, the FPGA streaming architectures accept pixel streams with a throughput of
one or two pixels per clock cycle (pix/cycle) [5,7]. Due to the fast-growing bandwidth of peripherals,
demand comes that FPGA should process multi-pixel blocks instead of independent pixels in each
cycle. For instance,

• Near-storage processing: High-bandwidth memory (HBM) stacks multiple DRAM dies to achieve
a bandwidth of 250 GByte/s [11]. Assuming the operating frequency of FPGA is 250 MHz,
the max data rate of a FPGA input stream is 1000 Byte/cycle. For images with 1 byte per pixel,
this translates into a pixel throughput of 1000 pix/cycle.

• Near-sensor processing: The high-resolution image sensor represents a high pixel throughput.
For instance, the up-to-date CMOS sensor Sony IMX253 is capable of capturing 68 frames per
second, with a resolution of 4096 × 3000 [12]. Thus, the minimum processing throughput on
FPGA is 4 pix/cycle (
4096 × 3000 × 68/250 MHz�).

2.4. BRAM-Misalignment Challenge and SWIM Framework

An increase in processing throughput demands a more complex buffer that relies on the parallel
pixel access using multi-pixel blocks. This, however, introduces potential memory alignment issues
when utilizing BRAMs in the buffer design. An example in Figure 3a illustrates this problem, where the
original image lines are sequenced into a high-throughput 1D pixel stream, and then clipped to pixel
blocks by the serial-to-parallel hardware (deserializer) inside the FPGA. The image-processing logic
accepts one pixel block in each cycle. Complication due to memory block misalignment arises when
the pixel number of one image line (denoted as Nline) is not an integer multiple of the pixel number in
an input block (Nblk). In this case, some of the blocks ended up encapsulating pixels from two image
lines. As an example, in Figure 3a, we have Nline = 36 and Nblk = 16. Thus, blk2, blk4, blk6, at the
end of line0, line1, line2, contains 12, 8, and 4 pixels, respectively, that belong to the start of the
next line. These pixels are labeled as remainder pixels in the example. As Figure 3b shows, the general
pixel buffer is composed of multiple line buffers (LBs) and each LB stores an entire image line. The LB
is implemented with one BRAM with a size of Nblk to fulfill the parallel pixel access. We annotated
the BRAM index (n) and the address (addr) in the diagram as Bn(addr) to present the storage pattern.
Note that the remainder of the pixels within the last block of each line will be stored in the following
LB. Therefore, the storage of subsequent blocks may inherit an alignment offset relative to the BRAM
boundary. For example, in Figure 3b, the last block of line0(blk2) contains 12 remainder pixels that are
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written to LB1. To store the blk3 continuously in LB, two addresses of LB1 (B1(0),B1(1)) are accessed.
However, this behavior overwrites the pixels of blk2 stored in B1(0).

To address the misalignment issue, Wong et al. [9] proposed SWIM, a BRAM partition method
for the pixel buffer design. With the same case, Figure 3c shows the SWIM buffer architecture and
the pixel storage pattern. Each LB is composed of two BRAMs, and the width of the first BRAM is
equal to the number of remainder pixels. For example, LB0 is composed of only one BRAM because
there is no remainder pixel at the end of the previous line; LB1 is partitioned into BRAM1 and BRAM2

with widths of 12 and 4, respectively. Thus, the 12 remainder pixels in blk2 are stored at B1(0),
and blk3 are stored separately at B2(0) and B1(1). With this method, SWIM guarantees that the
block storage is aligned to the BRAM boundary. Although the SWIM framework generates BRAM
partition configurations that avoid the BRAM-misaligned access, the hardware configuration needs to
be re-generated through FPGA synthesis flow for a different image width (Nline). Even if the FPGA
configuration files for different Nline can be pre-generated before the run-time, the long disruption
caused by FPGA reconfiguration for differently sized images significantly decreases the throughput.
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Figure 3. (a) Shows that the image lines are sequenced into a stream and then clipped to multi-pixel
blocks; FPGA accepts one block in each cycle. (b) Shows the general pixel buffer in which the BRAM-
misalignment issue occurs. (c) Shows the SWIM buffer avoids the BRAM-misalignment using specific
BRAM partition.

3. Method

This section describes the Dynamic-SWIM (D-SWIM), a flexible buffer architecture that can
be rapidly reconfigured to accommodate arbitrary sized images via instruction updates. First,
an overview of the D-SWIM framework (hardware-, software-tools, and design parameters) is given;
then, the hardware of D-SWIM is described. Subsequently, the control method of D-SWIM and the
custom instruction-set are described, followed by the system working-flow illustration.

3.1. Framework Overview

As shown in Figure 4, the D-SWIM framework is composed of two parts: the software compilation
tool, (SW tool), and hardware generation tool (HW tool). The HW tool generates hardware components
following the D-SWIM method. Note that D-SWIM mainly optimizes the buffer hardware which is
a general component of the streaming architecture, where specific arithmetic units (operators) are
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generated by FPGA synthesis tools without further optimization. According to the principle of stream
processing in Figure 1, the Buffer of D-SWIM is composed of multiple line buffers (LBs), and the
number of LB (NLB) is equal to the height of a 2D stencil (denoted as H). Details on the construction of
LBs will be elaborated in Section 3.2. Inside the buffer hardware, the Controller module provides the
control signals to the underlying BRAMs to realize certain buffer behavior. Note that we employed
an Instruction Memory to provide the control words which can be pre-generated and loaded into
the memory during run-time. By doing so, the D-SWIM hardware can accommodate the arbitrary
image size by quickly switching the control words in the Instruction Memory in a few cycles instead
of performing FPGA reconfiguration. The SW tool generates the specific instruction words for the
Controller based on the pixel block size and image size, that will be described in Section 3.3.

SW-tool

Nblk

BRAM0

BRAM1

BRAMP

…

LB0

…

Instruction 
Memory

Controller
stencil
output

Arithmetic 
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Data path
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Figure 4. Overview of D-SWIM framework.

The design parameters used in D-SWIM are listed in Table 1. Nblk is the number of pixels in one
block; Nline is the number of pixels in one image line (image width), and Nheight is the image height;
Nline-max is the largest possible value of Nline that decides the volume of the Buffer; and H is the height
of the 2D stencil pattern that determines the number of image lines stored in the buffer (number of LB).
Table 1 also highlighted the use scope of each parameter. Note that the HW tool only invokes Nblk,
Nline-max, and H, which are independent to the image size.

Table 1. Design parameters in D-SWIM framework.

Design Parameters Description Use Scope

Nblk Number of pixels in one stream block HW & SW
Nline Number of pixels in the image line (image width) SW

Nheight Image height SW
Nline-max Largest possible value of Nline HW

H Height in the vertical axis of the 2D stencil pattern HW

3.2. Buffer Architecture in D-SWIM

3.2.1. BRAM Organization of Line Buffer

Similarly to SWIM, the D-SWIM buffer is composed of BRAM that saves the FPGA hardware
resource and avoids the complex routing requirement. This section describes the BRAM-centric
technique for the D-SWIM buffer construction.

BRAM Configuration: D-SWIM directly employs the BRAM primitive for the buffer. The port
width of BRAM can be configured. To accommodate the parallel pixels access of the input block and
fully utilize the BRAM bandwidth, we configured all the BRAMs to a port width of 64 bits in the simple

55



J. Imaging 2019, 5, 34

dual-port (SDP) mode. Note that the real maximum port width is 72 bits, whereas only 64 bits are
under the control of the byte-wise write-enabling signal. The conventional usage of BRAM considers
all bits in one address as an element in memory access. As Figure 5a shows, the store of the input block
should align to the BRAM boundary—otherwise, the misaligned store will overwrite the other bits in
the same address. To avoid interference between two consecutive blocks which is misaligned with
the BRAM, we used the BRAM primitive instantiation within Xilinx Vivado that provides a byte-wise
write-enable signal [13]. For instance, in Figure 5b, the input block (8 pixels, 8 bits/pixel) is misaligned
to the BRAM boundary because the 4 pixels in the head of BRAM0 are stored along with the previous
block. With the byte-wise write enable, the specific control bits in BRAM0 and BRAM1 are set to indicate
the store positions of the incoming 8 pixels and the 4 remainder pixels ahead will not be overwritten.
In summary, with the BRAM primitive instantiation, the controlling of the pixel-block store becomes
more fine-grained. Furthermore, the write enable signal can be changed in the FPGA run-time such
that the LB accommodates arbitrary writing offset introduced by the remainder pixels.

ADDR 1
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…

BRAM 0

ADDR 0

ADDR 1

ADDR n

…

BRAM 1

ADDR 1

ADDR n

…

BRAM 0

ADDR 1

ADDR n

…

BRAM 1
LB LB

Input Block Input Block Positions marked by 
Byte-wise write enable signal

(a) (b)
Remainder pixels

Figure 5. (a) shows LB write behavior with conventional BRAM usage. (b) shows LB write behavior
with the byte-wise write enable signal using BRAM primitive instantiation.

Number of BRAM in LB: The number of BRAM invoked by one LB (denoted as Nbram) is
determined by the system parameters in Table 1. D-SWIM targets minimizing the BRAM consumption
under the constraints in Equation (1). Firstly, the capacity of the LB should be larger than Nline-max.
Secondly, the overall port width of the LB should be large enough to tackle the pixel block and ensure
that only one address in each BRAM will be accessed in one cycle, such as the minimum Nbram is 2 in
the Figure 5b case. Otherwise, two addresses of BRAM0 will be accessed in the same cycle that violates
the port limitation of BRAM in the SDP mode.

minimize Nbram

subject to Nbram × Dbram × Wbram ≥ Nline-max × 8(bits/pix)

Nbram × Wbram ≥ (Nremain-max%(Wbram/8) + Nblk)× 8

Nbram ∈ Z>0.

(1)

In Equation (1), Dbram and Wbram is the depth and width of a BRAM that is equal to 512 and
64, respectively, in Xilinx FPGA. Nremain-max is the largest possible number of the remainder pixel
which is equal to Nblk − 1. % is the modulo operation. Therefore, we obtained the value of Nbram as
Equation (2).

Nbram = max(Nline-max/4096, 
((Nblk − 1)%8 + Nblk)/8�) (2)

3.2.2. Line-Rolling Behavior of Line Buffers

The buffer in D-SWIM stores and loads the successive image lines with the line-rolling mechanism.
To demonstrate the line-rolling clearly, we show an example with H = 3, Nblk = 4 in Figure 6. At the
beginning, the LB0-LB2 are stored in the Line0-Line2, respectively. When the buffer receives the
incoming Line3, the input block is stored in LB0 and replaces the old pixels of Line0 which is no
longer needed. With this line-rolling mechanism, the successive image lines are stored in all LBs in a
cyclic manner.
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Meanwhile, the buffer outputs a 2D window including pixels from H image lines, and the blocks
in the window are spatially aligned to the input block. As Figure 6 shows, the first two blocks of the
output window are loaded from the LBs, while the last one is directly sourced from the input block.
Because the output blocks are aligned in the vertical direction, the 2D windows are continuous in the
horizontal direction. Thus, the output 2D windows cover all the pixels required by an arbitrary 2D
pattern with a height of H.

… …

… …

… …

Line 0 Line 1 Line 2 Line 3

LB0

LB1

LB2

Input Block

Output 2-D Window

Figure 6. Example of buffer load and store with the line-rolling behavior.

3.3. Line Buffer Access Pattern and Control Instruction

3.3.1. Access Pattern of Line Buffer

Since the image lines are vertically aligned in the LBs, the load addresses are synchronized to the
store address of the LB which accepts the input block. We use an example in Figure 7 to demonstrate
the pixel access pattern in the underlying BRAMs. The parameters, Nline, Nblk and H are set to
44, 16, and3, respectively in the example. With the D-SWIM method, we set 3 LBs (H = 3) in the
streaming architecture, and each LB is composed of 3 BRAMs (Nbram = 3). The store position of input
blocks (blk0-blk15) are highlighted in the LBs. In each cycle, one BRAM address is accessed at most to
ensure that the previous constraint of BRAM port is not violated. For the blocks that are not aligned to
the BRAM boundary, such as blk3-blk5, a byte-wise write enable signal was used to make sure only
the positions marked by the enable signal were updated and the other pixels in the same address are
not overwritten. Note that the remainder pixels in the last block of each line are duplicated and stored
at the beginning of the successive LB. For example, blk2 contains 4 pixels of Line1 (Nremain = 4). Thus,
these pixels are written to both BRAM2 of LB0 and BRAM0 of LB1, concurrently.

Note that from the Blk11, the storage pattern in LBs will be the same as that from Blk0. This is
because the values of Nremain in continuous lines show a periodic pattern, and the period is determined
by Nline and Nblk. The period measured in clock cycle (Pclk) or in image line (Pline) is given by
Equation (3).

Pclk = LCM(Nline, Nblk)/Nblk

Pline = LCM(Nline, Nblk)/Nline
(3)

where LCM is the least common multiple. In addition, Nremain of line l (denoted as Nremain,l) is
calculated as Equation (4).

Nremain,l =

{
Nblk − Nline%Nblk, l = 0

Nblk − (Nline − Nremain,l−1)%Nblk, l ∈ [1, Pline)
(4)

where l is the index of the line. With the equations above, the buffer access pattern is deterministic.
Thus, in the Figure 7 example, every 4 lines have the same LB storage pattern, and the value of Nremain,l
shows a periodic pattern of {4, 8, 12, 0}.
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Figure 7. (a) shows an example of the block storage pattern with parameters Nline = 44, Nblk = 16, and
H = 3. (b) shows the buffer instruction list for achieving the access pattern in (a).

3.3.2. Control Code Generation

To perform the buffer store and load with the proposed access pattern, D-SWIM adopts customized
instructions along with hardware logic to control the LBs. The BRAM control signals inside each LB are
given by the instruction codes and decode logic, and the line-rolling behavior (store block/load block)
is controlled by the hardware logic. The instruction codes for a specific image size were generated and
loaded into the Instruction Memory before run-time. The instruction-based control method has two
key benefits: firstly, it saves hardware logic for control signal generation; and secondly, the content in
the Instruction Memory can be rapidly switched for processing differently sized images. Note that
each instruction manages the buffer behavior over multiple cycles corresponding to one image line.

As Table 2 listed, the customized instruction is composed of five sections, and each of them is
translated into specific BRAM control signals by the control logic. Because an arbitrary number of
remainder pixels (Nremain) may exist ahead of the first block of a line (line-initial block), we set section
MEMstart to give the BRAM index from which to store the line-initial block. Furthermore, since the
block access may not be aligned to the BRAM boundary, the offset position inside a BRAM is given by
section MEMoffset. In the D-SWIM design, we constrained Nblk to be an integer multiple of the BRAM
width (Nblk/(Wbram/8) ∈ Z). Thus, all pixel blocks in one image line have the same offset inside a
BRAM, which is given by MEMoffset. This constraint leads to a regular storage pattern and reduces
the hardware logic usage for control signal generation. Section REMAIN gives the value of Nremain,
which represents the number of pixels in the last block of a line that overflows into the successive line,
and they are duplicated and stored in the next LB. Section CYCLE gives the number of blocks in the line,
which indicates the cycle number of the control period for the current instruction code. In addition,
CYCLE determines the interval period of fetching a new instruction.

The periodic access pattern of continuous image lines presented in Equation (3) enables instruction
reuse. For instance, Pline is 4 in Figure 7a; thus, only four instructions are needed. To reuse the
instruction periodically, section RETURN gives the flag to reset the instruction-fetch address and restart
a new period of the access pattern. The periodic reuse of control code saves the instruction memory
and reduces time delay caused by instruction reloading while switching the image size. Theoretically,
the maximum possible number of instruction is Nblk.
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Table 2. Sections of the customized instruction for D-SWIM architecture.

Section Bit-Length Description

MEMstart 
log2 Nbram� Start BRAM index of line-initial block
MEMoffset 
log2 Wbram� Start position (inside BRAM) of line-initial block
REMAIN 
log2 Nblk� Nremain of the current image line
CYCLE 
log2
Nline-max/Nblk�� Number of blocks in the current image line
RETURN 1 Flag to reset the instruction-fetch address

Algorithm 1 gives the instruction generation flow in D-SWIM’s SW-tool. Each iteration of the
program calculates five sections and then assembles the instruction to binary codes. The iteration
continues till Nremain(value of REMAIN section) gets to zero. In the last instruction of the list, RETURN
is set to 1, that leads to re-execution of the entire instruction list. For instance, Figure 7b gives the
instruction code for each image line in Figure 7a, which is generated by Algorithm 1. For Line0,
the line-initial block starts from BRAM0 without pixel offset. Thus, MEMstart and MEMoffset are 0. It takes
3 blocks to fulfill the Line0, and the last block contains 4 pixels belonging to the following Line1.
Thus REMAIN and CYCLE is equal to 4 and 3, respectively. Algorithm 1 starts with an initial state that all
variables are set to 0, and input parameters Nline, Nblk, and Wbram are set to 44, 16, and 64, respectively.
In the loop iteration, the variables are calculated sequentially, and they are corresponding to the
value of each instruction section for Line0. Then, the values of five sections are assembled into the
Instruction0 and appended to the instruction list. Following the Line0, the line-initial block of Line1
starts from BRAM0 of LB1 with a inner-BRAM offset of 4 pixels, which can be translated to MEMstart= 0 and
MEMoffset= 4 in Instruction1, respectively. The other sections are conducted using the same manner
as Instruction0. In particular, only 2 blocks are required to fulfill Line3 (CYCLE in Instruction3= 2),
because there are 12 remainder pixels contained in the last block of Line2. The Line3 does not contain
remainder pixels, that results in pixel blocks from Blk11 which perform the same storage pattern with
that of blocks from Blk0. Therefore, in the algorithm loop iteration for Instruction3, variable RETURN

is set to 1, and the loop stops. Then, the algorithm outputs the instruction list (Instruction0-3) that
can be periodically executed in processing continuous image lines.

Algorithm 1: Instruction Generation Algorithm in D-SWIM Streaming Architecture
Input: Application parameters: Nline, Nblk, Hardware information: Wbram
Output: Instruction code: Inst
Inst= ∅;
MEMstart = 0; MEMoffset = 0; REMAIN = 0; RETURN = 0;
while RETURN== 0 do

MEMstart= 
REMAIN/(Wbram/8)�;
MEMoffset=REMAIN%(Wbram/8);
CYCLE=
(Nline − REMAIN)/Nblk�;
REMAIN=Nblk − (Nline − REMAIN)%Nblk;
if REMAIN=0 then

RETURN=1;
end

Inst.append(Assemble(MEMstart, MEMoffset, REMAIN, CYCLE, RETURN));
end

return Inst
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3.4. Run-Time Dynamic Programming for Arbitrary-Sized Image

With the specific instruction set, the D-SWIM buffer can be rapidly re-programmed for processing
arbitrary sized images. Figure 8 demonstrates the system workflow on both the FPGA and the server.
The server obtains the images from users and prepares the D-SWIM instruction list for the image
size. Due to the low complexity of the instruction generator in Algorithm 1, the server generates
the instruction list online and then writes it to the Instruction Memory of D-SWIM at the FPGA side.
Besides the instruction, the server also sends the value of image height (Nheight) to the control register
in D-SWIM that determines the life-cycle of the instruction list. Subsequently, the server sends the
corresponding image to the FPGA and obtains the computational results in a continuous data stream.
Note that the communication latency is hidden in the fully pipelined workflow. Thus, the image
computation logic on FPGA only stalls for a brief period of time during instruction loading.

Load Instruction Image/Result I/O

Server

FPGA Board

0001010

…
1010001

Instructions

FPGA Workflow

Images Results
…

1001011

…
0110101

Instructions Images Results

…
Time

Figure 8. D-SWIM workflow with dynamic programming for arbitrary sized image processing.

4. Logic Implementation of D-SWIM

This section explains the detailed implementation of the underlying logic hardware of D-SWIM.
Note that the main focus here is a universal buffer design for image-processing-based streaming
architectures on modern FPGA architectures. Further optimizations may apply to specific applications
on FPGA architectures, but it is outside the scope of this section.

4.1. Logic of Line Buffer

Figure 9 shows the hardware composition of the Line Buffer (LB) and the related control signals
from the Controller module. Each LB is composed of Nbram BRAMs and the associated control
logic. According to the LB access pattern described in Section 3.3, the BRAM addressing pattern is
sequential. Thus, we employed an AddrCounter module to each BRAM to manage the write address.
The AddrCounter accepts the AddrInc and AddrRst signals from the Controller that determines
whether to increase the address register by one or reset it to zero, respectively. The other signals related
to the block store process, including WrMask, WrData, and WrEn, were generated by the Controller

and directly connected to the BRAM primitives. Note that we annotate the width of each signal bus in
the brace following the signal name in Figure 9.

According to the line-rolling buffer access behavior, the read addresses of multiple LBs were
synchronized to the write address of the LB which stores the input block. In the logic design, the WrAddr
from AddrCounters were sent to a MUX, and the MUX selected the proper value as the RdAddr signal of
all LBs under the control of the AddrSel signal.
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Figure 9. The D-SWIM buffer is composed of LBs and Controller. Each BRAM in the LB is equipped
with an Address Counter to manage the write address. It performs address incrementation or reset
according to the signal on the controller bus. The Addr MUX allows the write addresses to be broadcasted
during a block write operation of a specific LB as the read addresses of the other LBs for block loading.

4.2. Logic of Controller

The Controller performs three functions in D-SWIM: (1) decode the instruction word to the
control signals of each LB; (2) transform the input pixel block (InBlk) to the proper storage pattern as
the WrData signal of the BRAMs; (3) transform the pixels loaded from LBs to the certain 2D window
required by the operators (Out2DWin). Thus, the buffer-write and buffer-read logic are implemented
independently as follows.

4.2.1. Buffer-Write Logic

In the D-SWIM design, the length of input block (InBlk) is larger than the width of LB. Thus,
the buffer-write logic extends the InBlk signal to the same width of LB in a certain pattern, and the
BRAM byte-wise write enable signal (WrMask) is generated concurrently. As Figure 10 shows, two
stages exist in the signal generation. In the first stage, place-holding bytes (cross marked in Figure 10)
are padded at the beginning and the end of the input block. By doing so, the padded block has the
same width as the LB. The number of place-holders at the start of the block is equal to MEMoffset in the
instruction word. Thus, the PHPad hardware in this stage is controlled by the corresponding register
decoded from the instruction. In the second stage, the pixels from the first stage are rearranged by
a circular right-shift (CRS) operator. The shift distance is an integer multiple of the BRAM width,
and it is given by MEMstart in the instruction that ensures the pixel-block storage starts from the proper
BRAM in the LB. Note that the pattern of place-holder padding is fixed for blocks in the entire image
line, but the shift distance in the second stage changes for every block. Thus, the CRS hardware in the
second stage is controlled by the MEMstart and a run-time Counter which provides the input block index
of one image line. Along with the WrData signal, the WrMask signal is generated in a similar manner.
After the two-stage processing, a set of binary flags are generated, where 0 corresponds to the positions
of the place-holders in WrData and 1 indicates that the BRAM byte position will be overwritten by the
value in WrData.

In particular, when the input block exceeds the end of the image line, the logic stores the remainder
pixels belonging to the next image line to the beginning of the next LB concurrently, where specific
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logics are set to process these remainder pixels. Because the number of remainder pixels is provided
by the REMAIN section in the instruction, the MUX in the logic separates remain pixels (red pixels in
Figure 10) and pads place-holders in the tail as the WrData signal of the next LB, while the WrMask signal
with Nremain ones at the beginning of the binary set is generated. Subsequently, the WrData and WrMask

signals from the circuits for general pixels and remainder pixels are concatenated as the output bus
of the Controller. Other buffer-write related signals, WrEn, AddrInc, and AddrRst, were generated
concurrently by the Counter and specific logics.
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Figure 10. Buffer-write logic.

4.2.2. Buffer-Read Logic

As introduced previously, the BRAM read address was synchronized to the write address of
the LB being written. Thus, the Controller generates the AddrSel signal to indicate the LB index
that stores the input block. The RdData loaded from multiple LBs are processed by the buffer-read
logic to form the output 2D pixel window (Out2DWin) from multiple image lines. The buffer-read
logic reverses transformation performed during the buffer-write process, and the circuit is shown
in Figure 11. The logic contains three stages to transform the RdData into Out2DWin. The first stage
performs line-wise reordering that changes the line-order of the LBs’ output blocks to the spatial order
of the image. As per the line-rolling behavior in Figure 6, (H-1) blocks of Out2DWin are read from the
LBs, and the last block is directly sourced from InBlk with delay logic. The second stage performs
a circular left-shift (CLS) which reorders the pixels from different BRAMs. The third stage removes
several pixels at the beginning and the end of results from the previous stage, which ensures the
output blocks are spatially aligned to the InBlk. Subsequently, the pixel blocks after the three-stage
processing are concatenated with the delayed InBlk to construct the Out2DWin.
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5. Evaluation

This section describes the experimental setup for evaluating the D-SWIM implementation. In the
evaluation, we compare this work with SWIM in terms of hardware resource usage, timing, and power
consumption on FPGA. Subsequently, we evaluate the D-SWIM workflow with dynamic programming
for continuously processing images in different sizes. Furthermore, we present D-SWIM based
hardware architectures for two real-world image applications (2D-Convolution and Harris Corner
Detector). The implementations are compared to streaming architectures in prior works.

5.1. Experiment Setup and Evaluation Metric

The hardware generator of D-SWIM was realized using Verilog RTL and implemented with
Xilinx Vivado. Our selected target FPGA device was Xilinx-XC7VX690, where the tool synthesizes the
Verilog into logic circuits and generates FPGA-specific mapping. Meanwhile, it also gives the resource
utilization and timing performance, which are generally employed as the evaluation metrics of FPGA
implementation. The resource utilization can be broken down into four FPGA building-blocks: the
look-up table (LUT), Flip-Flop Register (REG), BRAM, and DSP. On the timing performance, the worst
negative slack (WNS) of the critical path is given by Vivado and can be translated to the maximum
operating frequency ( fmax). The vendor tool gives the power consumption of the D-SWIM module as
well. Besides the hardware tools, we implemented the D-SWIM instruction generator on the server to
provide the control codes for any given image width (Nline) and block size (Nblk).

5.2. Evaluation of Buffer Hardware

We evaluated the buffer design in D-SWIM and compared it with the previous work of SWIM,
which tackles the similar BRAM-misalignment issue for the multi-pixel block but only supports
static image sizes that are pre-defined before FPGA synthesis. In the experiment, we configure the
SWIM and D-SWIM with different parameter sets for a complete evaluation. As Table 3 shows,
the parameters (Nline, H, and Nblk) are set to different values, and the implementation results are listed.
In Configurations 1–6, we set the image width (Nline) to arbitrary values. The window height (H) was
set to 3 or 5, which are frequently used in image applications. The pixel number of one input block
(Nblk) was set to 8, 16, 32. Note that in the SWIM method, the number of LB (NLB) was deduced by Nblk
and Nline; thus, it may exceed H, whereas NLB is equal to H in D-SWIM. The optimization technique
of multi-pass BRAM partitioning in SWIM was also invoked to reduced NLB, and the corresponding
results are shown in the SWIM-2pass column of Table 3.
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Table 3. Buffer resource consumption in SWIM and D-SWIM.

Config.
Parameters D-SWIM SWIM SWIM-2pass

Nline H Nblk NLB LUT REG BRAM NLB LUT REG BRAM NLB LUT REG BRAM

1 630 3 8 3 1950 (1.45) 2140 (1.35) 6 (0.75) 4 1346 1589 8 4 1346 1589 8
2 630 3 16 3 3427 (1.33) 3553 (1.29) 9 (0.56) 8 3895 5127 32 4 2650 2653 16
3 1020 3 16 3 3427 (1.30) 3553 (1.16) 9 (0.56) 4 2643 3051 16 4 2643 3051 16
4 1020 3 32 3 7656 (1.18) 6338 (0.94) 15 (0.47) 8 8745 12662 60.5 4 6491 6743 32
5 1020 5 16 5 5608 (1.04) 4931 (0.80) 15 (0.47) 8 5367 6142 32 8 5367 6142 32
6 1375 5 16 5 5608 (0.87) 4931 (0.69) 15 (0.44) 16 10,833 13,305 64 8 6452 7182 34

5.2.1. Resource Evaluation

Table 3 lists the resource consumption of LUT, REG, and BRAM for different buffer schemes.
Note that the results of D-SWIM and SWIM-2pass schemes are compared, and the ratio values of
D-SWIM to SWIM-2pass are listed in the parenthesis of the D-SWIM column. In Configuration 1,
D-SWIM consumes 44.9% and 34.7% more LUT and REG than that in SWIM. However, the BRAM
consumption in D-SWIM is less—this is because NLB is 4 in SWIM as 4 lines compose a BRAM-partition
period, but this issue does not exist in D-SWIM. When Nblk is set to 16, as per Configuration 2, NLB
of SWIM increases to 8, which consumes more logic and BRAMs than D-SWIM. Although the 2-pass
optimization halves the NLB, the BRAM cost in SWIM is 16, which is 1.8 times that of 9 in D-SWIM.
SWIM costs more BRAMs of specific widths to compose the LB, whereas D-SWIM sets all BRAM ports
to the maximum width, which fully utilizes the bandwidth and reduces the resource. Note that the
D-SWIM buffer accommodates arbitrary image width, and configurations use different Nline values
but identical H and Nblk (e.g., Configuration 2 and Configuration 3) share the same hardware via
dynamic programming. In Configurations 5–6 where H is 5, D-SWIM’s consumptions of both logic
and BRAM are less than SWIM. D-SWIM saves 13.1% LUT, 31.4% REG, and 55.9% BRAM compared
with SWIM-2pass in Configuration 6. With Configuration 6, the NLB of SWIM is 8, which costs more
logic on the line-selection multiplexer.

We also investigate the impact of parameters on the resource consumption in the D-SWIM
scheme. Comparing the results in Configurations 1–4, we note that Nblk greatly affects the logic and
BRAM resources. This is because a larger Nblk requires more complex multiplexers for pixel-block
manipulation. Note that H also affects the hardware (comparing Configuration 3 to Configuration 5)
because a larger H costs more LUTs for the line-selecting multiplexer and more REGs on the temporary
pixel-storage.

5.2.2. Timing and Power Evaluation

In addition to the hardware resource usage, timing performance and power consumption were
also evaluated. The results of the post place-and-route design were obtained from the vendor tools
(Xilinx Vivado) and presented in Figure 12, where (a) is the fmax with different configurations in
Table 3 and (b) is the power consumption. Compared with SWIM, the D-SWIM design slightly
decreases the fmax. This is because the multi-stage logics for dynamic controlling lengthen the critical
path. We selected the proper pipeline stage as described in Section 4.2, while trading the fmax and
resource overhead in further pipelining. We observed that Nblk is a significant factor to the fmax.
In Configurations 1–6, the worst fmax is 329.5 MHz with Configuration 4 in which Nblk is 32.

Figure 12b presents the power consumption of buffer modules with SWIM and D-SWIM design
methods. Each power bar is composed of two portions that represent static power (lighter part)
and dynamic power (darker part). Apparently, SWIM and D-SWIM have identical static power
with all configurations, but D-SWIM performs better in the dynamic power aspect. This is mainly
due to fewer LBs (NLB) used in the D-SWIM case, which leads to less BRAM usage. For example,
with Configuration 5, SWIM consumes 2.1× BRAMs of that in D-SWIM; thus, the dynamic power
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is increased proportionally. Compared with SWIM, the D-SWIM buffer saves up to 45.7% power
consumption in the case of Configuration 6.
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Figure 12. (a) shows the fmax of D-SWIM and SWIM designs with the configurations in Table 3.
(b) shows the power consumption of D-SWIM and SWIM, with the breakdown of static and
dynamic power.

5.3. Evaluation of Dynamic Programming in D-SWIM

The dynamic programming described in Section 3.4 contributes to the ability of rapid
context-switching for arbitrary sized images. We evaluated the D-SWIM system with the workload
containing images in different sizes. Table 4 lists the period of computation and dynamic programming
for one image. The independent variables are image size and Nblk (input throughput), which affects
the measured periods. The values were measured in clock cycles. However, for direct comparison,
they were converted to the numbers in micro-seconds with an operating frequency of 350 MHz.
The proportion column gives the ratio of the programming period to the entire working period
(programming period + computation period). The overhead of dynamic programming in D-SWIM is
significantly less than 1% in most cases, and the context-switching can be regarded as seamless.

In contrast, while employing the SWIM buffer for the same workload, a FPGA reconfiguration is
required to switch the specific hardware corresponding to the size of the input image. The average
period for reconfiguring the entire FPGA device (Xilinx-XC7VX690) is 20 s. For a fair comparison,
we listed the time period for the partial reconfiguration technique [14], which reduces the
reconfiguration time to the order of milliseconds via programming only a portion of the FPGA.
Similarly, we obtained the proportion of FPGA reconfiguration time based on the image-processing
period. Assuming the SWIM hardware is reconfigured for each image, the results show that the FPGA
performs reconfiguration in over 80% of the entire working period. This means that the FPGA spends
the most time on reconfiguration rather than actual image processing, causing a huge reduction in
processing throughput.

Table 4. Time period of dynamic programming of D-SWIM and partial reconfiguration of SWIM.

Image Size Nblk Computation Time D-SWIM Programming Time SWIM Reconfiguration Time

H×W (pixel) (pixel) (cycle) (μs) (cycle) (μs) Proportion (cycle) (μs) Proportion

431 × 392 8 21,227 60.649 8 0.023 0.04% 465,500 1330 95.64%
431 × 392 16 10,614 30.326 16 0.046 0.15% 465,500 1330 97.77%
431 × 392 32 5307 15.163 32 0.091 0.60% 465,500 1330 98.87%

1342 × 638 8 107,360 306.743 4 0.011 0.00% 465,500 1330 81.26%
1342 × 638 16 53,680 153.371 8 0.023 0.01% 465,500 1330 89.66%
1342 × 638 32 26,840 76.686 16 0.046 0.06% 465,500 1330 94.55%
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5.4. Case Study of Image Processing with D-SWIM

With the D-SWIM buffer, an architecture for a specific image application can be easily constructed.
This section presents D-SWIM-based architectures for two real-world image applications and their
performance study.

To evaluate the practicability of D-SWIM in real applications, we compare the D-SWIM designs
with similar streaming architectures for image processing [7,10]. In prior studies, Reiche et al. [7]
improved the HIPACC image-processing framework to generate effective High-level Synthesis (HLS)
codes for FPGA with a specific memory architecture, and Özkan et al. [10] optimized the OpenCL
framework of Intel (Altera) FPGA to a domain-specific language (DSL) for image processing.
These works are widely accepted by the community, and were developed based on the latest tools from
the industry and academia. Thus, we consider these two as the state-of-the-art works for comparison.

5.4.1. Conv2D

2D convolution (Conv2D) is a popular operation for image feature extraction. Figure 1 shows
a typical Conv2D operation with 3 × 3 convolutional kernels. Pixels in a kernel-sized window
were fetched and multiplied to the kernel weights and then accumulated to the Conv2D result.
The subsequent operation moves the window 1 pixel to the right, and performs the same arithmetic.
In the high-throughput scenario of D-SWIM, multiple overlapped windows are processed in the same
clock cycle. Thus, the logic components are connected as Figure 13. In every clock cycle, the buffer
output pixel block has a height of H, and width of Nblk. The pixels were directly delivered to the
parallel operators (OP) which performed the MACC operation. The results of OPs were concatenated to
the output block. Note that there are windows, such as Win0 and Win1, in Figure 13, containing pixels
from two consecutive output blocks of the buffer. Thus, we set registers to store the last pixel-columns
of the previous cycle to construct these windows.

D-SWIM
buffer

Cycle nCycle n-1

Nblk=16
…

…

Win0 Win1 Win15

OP

Input

REG

OP OP

Output

…

16

…

Figure 13. D-SWIM-based architecture for Conv2D (3 × 3 window).

Following the architecture above, we implemented the Conv2D with Nblk = 16 and H = 3. For a
fair comparison, the hardware of OP was simply implemented with naïve RTL with a pre-defined
pipeline stage. The implementation results are listed in Table 5. We name the works in [7,10] Design2
and Design1, respectively, in the following content. The devices adopted in each work have been
listed as a reference. Note that the size of BRAM in Intel FPGA is 20 Kbits, whereas it is 36 Kbits in
Xilinx FPGA. Nblk represents the hardware throughput (pixel/cycle). Meanwhile, the fmax of each
design has been given, and we obtained the system pixel throughput (giga pixel per second (GPPS))
by Nblk × fmax.

Because D-SWIM and Design1–2 have different throughputs, it was unfair to compare the resource
number in Table 5 directly. Thus, we obtained the hardware efficiency of FPGA logic (LUT and REG)
with Equation (5). Comparing with the highest-throughput design (Design1), the hardware efficiency
of D-SWIM is 4.8× and 8.2× in LUT and REG, respectively. Comparing with the smallest design
(Design2), D-SWIM also achieves competitive hardware efficiency. Note that Design2 achieves higher
hardware efficiency on LUT, as it has traded off throughput severely for simpler logic. Moreover, it does

66



J. Imaging 2019, 5, 34

not consider the issues in the multi-pixel input scenario (such as BRAM-misalignment), which allows
further reduction in overall hardware usage.

E f f iciency = Throughput/Hardware Consumption × 105 (5)

Table 5. Hardware resource consumption and throughput in a Conv2D implementation.

Work Device
Nblk Precision Hardware Consumption fmax Throughput Efficiency

(pixel) (bit/pixel) LUT REG BRAM DSP (MHz) (GPPS) LUT REG

Design1 [10] Intel-5SGXEA7 32 8 47,045 73,584 363 0 303.6 9.71 20.7 1.3
Design2 [7] Xilinx-XC7Z045 1 8 288 521 2 0 349.9 0.35 121.5 6.7

D-SWIM Xilinx-XC7VX690 16 8 4514 4232 9 76 283 4.5 100.3 10.7

5.4.2. Harris Corner (HC) Detector

The Harris Corner (HC) detector [15] is commonly used in computer vision applications that detects
the corner position for feature matching. The HC operator swaps the window (e.g., 3 × 3 pixels in the
benchmark) on the image and determines if the window contains a corner pattern. The HC algorithm
on each window is listed in Equation (6). Firstly, HC obtains the gradient matrix M, where I(i, j) is
the intensity value of the pixel inside the window; ∂I(i,j)

∂x and ∂I(i,j)
∂y are the intensity derivative in the

horizontal and vertical axes, respectively. Secondly, R was calculated to estimate the eigenvalue of
M, where k is a constant of 0.04–0.06, and det and trace calculates the determinant and trace of the
matrix, respectively. If the value of R is larger than the threshold, the current window contains the
corner pattern.

M =

⎡⎣ ∑W
i,j (

∂I(i,j)
∂x )2 ∑W

i,j (
∂I(i,j)

∂x )( ∂I(i,j)
∂y )

∑W
i,j (

∂I(i,j)
∂x )( ∂I(i,j)

∂y ) ∑W
i,j (

∂I(i,j)
∂y )2

⎤⎦
R =det(M)− k × trace(M)2

(6)

Figure 14 demonstrates the D-SWIM-based architecture for HC. This streaming architecture is
composed of a buffer (rectangular shape), operator (circular shape), and interconnections. Note that the
derivative calculation in different axes can be realized by a Conv2D operation with the Sobel kernels.
We used a 3 × 3 Sobel kernel in the example, and the operators are denoted as dx and dy for the two
axes. The derivative results ( ∂I(i,j)

∂x , ∂I(i,j)
∂y ) were stored in Buf2 and Buf3 because they were accessed

with a 2D window pattern in the subsequent operations. The sx, sy, and sxy operators perform the
element-wise multiplication and accumulate the values in the window. After M is obtained, operator
rc calculates the R in Equation (6) and compares it with the threshold to determine whether the
window contains a corner or not.

Buf1

dx

dy

Buf2

Buf3

sx

sxy

sy

rc
Input Output

D-SWIM buffer

Operator

Figure 14. D-SWIM-based architecture for HC detector (3 × 3 window).

The evaluation method of HC is the same as the Conv2D case. Table 6 shows the implementation
results of D-SWIM and Design1–2. In the HC case, the D-SWIM-based design achieves both the highest
throughput and the best hardware efficiency. Comparing with the superior design (Design1), D-SWIM
increases the throughput to 3.5×. Furthermore, with D-SWIM, the efficiency of LUT and REG is 25×
and 30× that in prior studies.
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Table 6. Hardware resource consumption and throughput in HC detector implementation.

Work Device
Nblk Precision Hardware Consumption fmax Throughput Efficiency

(pixel) (bit/pixel) LUT REG BRAM DSP (MHz) (GPPS) LUT REG

Design1 [10] Intel-5SGXEA7 4 8 135,808 192,397 493 36 303.4 1.2 0.9 0.1
Design2 [7] Xilinx-XC7Z045 1 8 23,331 31,102 8 254 239.4 0.24 1.0 0.1

D-SWIM Xilinx-XC7VX690 16 8 16769 14439 27 444 267 4.2 25.5 3.0

6. Conclusions

This work has presented D-SWIM, a dynamic programmable line buffer microarchitecture
for arbitrary sized streaming image processing on FPGAs. The D-SWIM architecture facilitates
high-throughput realignment of multi-pixel blocks into line buffers suitable for further streaming
image processing. In addition, through a rapid instruction code update, D-SWIM allows for the size of
line buffers to adjust dynamically to accommodate varying size requirements of the application during
run time. Compared to prior studies where SWIM can only work on a predetermined image size,
D-SWIM achieves dynamic programmability for varying image sizes with a slight logic resource
overhead. In our experiment, the D-SWIM buffer reached a maximum operating frequency of
329.5 MHz and saved BRAM resources up to 56% that contributed to a power consumption reduction
of 45.7%. When compared to other state-of-the-art FPGA-based streaming architectures using two
real-world image applications as benchmarks, D-SWIM contributes to a significant hardware efficiency
improvement of 25× in LUT and 30× in REG. For the benchmark cases, the D-SWIM based design
reaches a pixel throughput of 4.2 GPPS when 16 pixels are input every cycle.

As more applications domain begin to take advantage of vision-based intelligence, the number of
systems that demand high-performance image processing is going to increase. D-SWIM represents our
first step in systematically generating flexible high-throughput low-latency streaming image processing
hardware. In the future, we expect to further the capability of D-SWIM to facilitate generation of the
complete intelligent image processing system automatically for FPGAs.
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Abbreviations

The following abbreviations are used in this manuscript:

BRAM Block Random Access Memory
CLS Circular Left Shift
CRS Circular Right Shift
DFG Data Flow Graph
DNN Deep Neural Networks
DRAM Dynamic Random Access Memory
DSL Domain Specific Languages
DSP Digital Signal Processing
FIFO First-In, First-Out
FPGA Field Programmable Gate Array
GPPS Giga Pixels Per Second
GOPS Giga Operations Per Second
LB Line Buffer
LUT Look-up Table
REG Register
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ROI Region of Interest
RTL Register Transfer Level
SDP Simple Dual Port
SWIM Stream-Windowing Interleaved Memory
TDP True Dual Port
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Abstract: It is sometimes desirable to implement filters using a transpose-form filter structure.
However, managing image borders is generally considered more complex than it is with the more
commonly used direct-form structure. This paper explores border handling for transpose-form filters,
and proposes two novel mechanisms: transformation coalescing, and combination chain modification.
For linear filters, coefficient coalescing can effectively exploit the digital signal processing blocks,
resulting in the smallest resources requirements. Combination chain modification requires similar
resources to direct-form border handling. It is demonstrated that the combination chain multiplexing
can be split into two stages, consisting of a combination network followed by the transpose-form
combination chain. The resulting transpose-form border handling networks are of similar complexity
to the direct-form networks, enabling the transpose-form filter structure to be used where required.
The transpose form is also significantly faster, being automatically pipelined by the filter structure.
Of the border extension methods, zero-extension requires the least resources.

Keywords: stream processing; image borders; window filters; pipeline

1. Introduction

Image filtering is a common preprocessing operation in many image analysis applications. A local
filter calculates the output for each pixel in an image as some function of the pixels within a local
window in the input image. However, to produce an output for pixels on (or near) the image border,
the input window extends past the edge of the input image. If such window pixels are not managed
appropriately, the output pixels around the borders are invalid, and the effective image size shrinks.
After a sequence of filters (especially if some of the filters are large), the effective image size can be
substantially reduced, which is undesirable. Therefore, it is necessary to extend the input image
through some form of extrapolation to provide suitable pixel values for the window pixels which
extend past the borders of the input.

When processed using a field programmable gate array (FPGA), pipelined stream processing is the
most common processing mode for implementing image filters [1]. Commonly, one pixel is processed per
clock cycle (although this can be relatively easily generalized to two or more pixels per clock cycle [1]).
To avoid memory bandwidth issues associated with reading all the input pixels for each window
position, row buffers are typically used to cache pixels from previous image rows. Feeding the pixel
stream through the window is equivalent to scanning the window through the image. Two commonly
used window filter structures (ignoring image borders) are shown in Figure 1. The parallel structure
shifts the window pixels in parallel with the row buffers, whereas the series structure uses the window
pixels to extend the row buffers. When considering border handling, the parallel structure has the
advantage that it decouples the vertical scanning (handled by the row buffers) from the horizontal
scanning. These filter structures are direct form, where the window is formed directly, followed by the
filter function.

J. Imaging 2018, 4, 138; doi:10.3390/jimaging4120138 www.mdpi.com/journal/jimaging70
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Window
Output pixel

Input pixel
stream

Row buffer Row buffer

Row buffer Row buffer

Filter function Filter function

Input stream Input stream

Output stream Output stream

Window pixels Window pixels

(a)

(b) (c)

Figure 1. Window filters (without border handling). (a): window scanning; (b): parallel window
structure; (c): series window structure; with the series and parallel connections highlighted in red.

The contribution of this paper is a systematic methodology for constructing border handling
networks for 2D transpose-form filters. The remainder of this section reviews the transpose-form
filter architecture, and commonly used border handling methods. Section 2 summarizes previously
reported work on FPGA architectures for handling image borders. Two novel transpose-form border
handling architectures are developed for 1D filters in Section 3, which are then extended to 2D filters in
Section 4. Implementation of the architectures are discussed in Section 5 and compared experimentally
in Section 6.

1.1. Transpose-Form Filter Structures

Although the filter function could be any function of the pixel values within the window,
many useful filter functions can be represented as a transformation of each individual window
pixel value, followed by a combination function which combines the transformed window pixels to
produce a single output pixel value, as represented in Figure 2. Any filter which has an associative
combination function can be restructured from direct form into a transpose form by [2]:

1. interchanging input and output nodes,
2. reversing all the paths through the filter,
3. replacing branch nodes (pick-off points) with combination functions, and
4. replacing combination functions with branch nodes.

Pixel transformation

Pixel transformation

Pixel transformation

Pixel transformation

Pixel transformation C
o
m

b
in

at
io

n
 f

u
n
ct

io
n

Window

Output
stream

Figure 2. Filter function that can be arranged into transpose form.

Arguably, the most common filter function is the 2D finite impulse response (FIR) filter, where the
output value is a weighted sum of the window pixels:

QFIR[x, y] =

W−1
2

∑
i=−W−1

2

W−1
2

∑
j=−W−1

2

hi,j I[x − i, y − j] (1)

where I[x, y] and Q[x, y] are the input and output images respectively, with a W × W convolution
kernel, hi,j. The pixel transformation is multiplication of each window pixel by the corresponding filter
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coefficient, hi,j, and the combination function is addition. Figure 3 shows the direct form 3 × 3 FIR
filter restructured into its transpose form. Please note that reversing the computation order flips the
filter coefficients relative to the direct form.

Row buffer

Row buffer

Row buffer

Row buffer

Input stream Input stream

Output stream Output stream

h-1,-1

h-1,0

h-1,1

h0,-1

h0,0

h0,1

h1,-1

h1,0

h1,1h-1,-1

h-1,0

h-1,1

h0,-1

h0,0

h0,1

h1,-1

h1,0

h1,1

(a) (b)

Figure 3. 3 × 3 FIR filter structure. (a): direct form; (b): transpose form.

Morphological erosion and dilation filters can also be arranged into transpose form. For example,
greyscale dilation by a non-flat structuring element [3], S[i, j], can be represented as:

Qdilation[x, y] = max
i,j∈S

{I[x − i, y − j] + S[i, j]} . (2)

The pixel transformation is an offset of each window pixel value by the corresponding value of
the structuring element, and the combination function is maximum. Similarly, for greyscale erosion [3]:

Qerosion[x, y] = min
i,j∈S

{I[x − i, y − j]− S[−i,−j]} . (3)

The transpose form has the advantage that the combination function is automatically pipelined,
by distributing the combination function over the window, as is clearly seen in Figure 3 for an FIR
filter. Rather than calculating the output as the weighted sum of window pixels, the input pixels are
weighted immediately, and are accumulated into the window position of the corresponding output
pixel. Where there are common filter coefficients, for example with symmetric filters, the associated
multiplications are in parallel, enabling the set of common multiplications to be replaced by a single
multiplier [4]. In the direct form, this is equivalent to using the distributive property to factor out the
common multiplications. When realized on an FPGA, the transpose form enables the multiplication,
addition and register to be combined within a single digital signal processing (DSP) block, reducing
the logic required for the implementation [5].

Similarly, with morphological filters (see Figure 4), the structuring element offsets
(pixel transformations) are in parallel so any common offsets only need to be calculated once in
transpose form. Again, the combination function is also pipelined automatically by the filter structure.
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Figure 4. 3 × 3 greyscale dilation in transpose form.

When multiple filters are required in parallel (examples: Sobel filter, difference of Gaussians
filter, sub-band filters, wavelet analysis), resources can be reduced by sharing the window structure
(see left panel of Figure 5). However, when combining multiple filtered images together (examples:
image fusion, high dynamic range imaging, wavelet synthesis), each filter must have its own window
structure unless the transpose form is used (right panel of Figure 5). Of key importance is the ability to
share the relatively expensive row buffers between all the parallel filters.

Row buffer

Row bufferRow buffer

Row bufferFilter function Filter function

Filter function Filter function

Filter function Filter function

(a) (b)

Figure 5. Shared windows for parallel filters (shown here for FIR filters). (a): direct form for distribution
to multiple filters; (b): transpose form for collection from multiple filters.

One example where both direct form and transpose-form structures are used is in the parallel
decomposition of morphological filters [6]. The flat structuring element is decomposed into parallel
rectangular windows, which are each separable into row and column filters. Direct form is used to
share resources (including row buffers) for the column filters, and transpose form is used to combine
the results of the row filters, while sharing resources.

1.2. Border Handling

So far in this discussion, border handling issues have not been considered. The problem with
simply processing the image is that pixels around the image border become corrupted because part of
the window lies outside the image. In some machine vision applications, it may be possible to capture
a larger image than required from the camera to allow for the reduction in image size as a result of
subsequent filtering. Alternatively, it is important to ensure that the objects being imaged are kept
sufficiently far from the image borders that important features of the objects are not corrupted by the
processing. In such cases, no special processing is required around the image borders.

However, when filtering a video for enhancement, it is usually desirable for the output video
to be the same size and format as the input. Some computer vision applications become less reliable
when image borders are not processed appropriately. For example, Tan and Triggs [7] found that face
detection (using difference of Gaussian filters) at the edges of the image was more reliable when the
image was extended. Similarly, Jiang et al. [8] obtained improved saliency detection when the image
was extended by reflecting edge super-pixels in the image border. For motion compensation with video
coding, it is necessary to restrict the search for matching patches at the edges of the image. Sullivan
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and Baker [9] made the observation that appropriate image extrapolation gave major improvement in
coding performance.

Please note that any form of extrapolation of the image beyond the borders is estimating data
that is not actually available. Consequently, if care is not taken, artefacts can be introduced into the
image depending on image contents and filter being applied. Generally, better results are obtained
by extrapolating the image before filtering rather than replacing the lost pixels by extrapolation after
filtering [10].

In software, image borders are commonly managed by additional code to provide appropriate
processing of border pixels. However, in hardware this can result in considerable extra logic solely for
processing border pixels [10]. There are several different commonly used border handling methods,
with the particular method selected based on the type of filter, and the expected image contents.
These are enumerated here, with key methods illustrated in Figure 6.
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Figure 6. Image border extrapolation schemes (shaded pixels are extrapolated). (a): constant
extension; (b): duplication; (c): two-phase duplication. (d): mirroring; (e): mirroring with duplication;
(f): periodic extension.

1. Do nothing [5,10,11]: This does not handle borders, and the effective size of the output
image shrinks.

2. Constant extension [5,10–12]: Pixels outside the image are assumed to be constant. Common
constants are 0 (particularly with morphological processing) or the average value within the image.

3. Duplication or clamping [5,10–12]: The nearest valid pixel within the image is used
(zero order extrapolation).

4. Two-phase duplication: Like duplication, but alternating the two outermost rows of the image.
This is required, for example, when processing raw color images with a Bayer pattern or similar
phased structure [13].

5. Mirroring [5,10,12,14]: Pixels are mirrored about the outside row and column of pixels.
6. Mirroring with duplication [5,10–12]: Pixels are mirrored about the image border such that the

outside row and column are duplicated.
7. Periodic extension (tiling) [10,11]: Extends the image by periodically tiling the image horizontally

and vertically. This scheme is impractical for stream processing [10] because the whole image must
be buffered to obtain the bottom row before processing the top row of the image. Opposite borders
of an image usually have little correlation, resulting in artefacts around the borders of the
output image.

8. Modify the filter function [5,10–12]: An alternative to extending the input image is to explicitly
modify the filter function to handle each scenario. When done naively, this can result in a large
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amount of additional logic, making it less practical. It is generally more efficient to implicitly
modify the filter function by modifying the formation of the window (using one of the other
methods) and leaving the filter function unchanged [10].

With direct-form filters, window formation and the filter function are independent; managing
borders simply involves selecting the required pixels to form the window that provides the pixel
values to the filter function. The transpose form, however, is made more complicated because the
window formation and filter function are more tightly integrated. The selection of pixels to form the
windows generally requires multiplexing (depending on the position of the window relative to the
border), and transforming structures containing multiplexers into transpose form is not trivial.

2. Prior Border Handling Architectures

The earliest work considering border handling architectures (other than zero-extension) was that
of Chakrabarti [15], which proposed a routing network for mirroring (with duplication) the borders of
1D filters in the context of performing a discrete wavelet transform. The routing network was placed
between the filter delay chain, and the filter function as shown in Figure 7. Although the original paper
only considered a 4-pixel window and mirroring with duplication, it is easily generalized to wider
windows and other border handling schemes.

Router Network

Filter Function Accumulator

SRL SRL SRL SRL SRL

(a) (b)

Figure 7. 1D border management techniques. (a): Chakrabarti [15]; (b): Benkrid et al. [14,16].

Benkrid et al. [16] used the FPGA logic elements as programmable shift register logic (SRL) to give
variable delays for 1D FIR filters (see Figure 7). The accumulator was either an adder tree (direct form
filter) or a pipelined adder chain (transpose form). Implementation details within [16] are sketchy;
however more details are provided in a later paper [14]. The basic principle is that the shift register
lengths are dynamically selected to route the required pixels to the accumulator to appropriately
handle border conditions. Scheduling considerations increase the filter latency to the width of the
window, a small but usually insignificant increase. However, this approach is only suitable for 1D
filters, and cannot easily be generalized to 2D filter structures.

Bailey [10] considered direct-form 2D filters, using a parallel window structure to make the row
and column processing independent. Two schemes were presented for row processing which exploited
stream processing (where each pixel is only loaded once). Cached priming managed borders by routing
pixels from where they were within the delay chain to where they were needed. The disadvantage of
this method is that additional clock cycles are required between rows to flush the data from one row
and load sufficient data to begin processing for the next row. The second method, overlapped priming
and flushing, loaded the initial pixels from the next row into parallel registers while processing for
the previous row was completed. At the end of the row, these were then transferred to appropriate
locations within the window for the next row, avoiding the flushing and priming delays. These two
methods are illustrated in Figure 8. For column processing, the row buffers were connected as a single
chain, with multiplexing used to select the appropriate input for each window row. Column processing
is therefore effectively the same as the routing network of [15].
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Figure 8. Row processing by Bailey [10] for mirroring without duplication. (a): cached priming;
(b): overlapped priming and flushing.

Rafi and Din [11] also considered direct-form 2D filters, and replaced the parallel priming registers
of [10] with multiplexers, effectively implementing the routing network of [15]. While this reduces the
number of registers, the routing multiplexers are on the output of the window registers, potentially
adding them to the critical path and reducing the clock frequency. Although this issue may be overcome
by adding pipeline registers, this would negate the savings made.

Al-Dujaili and Fahmy’s [5] focus was on optimizing speed by using DSP blocks for FIR filters.
Although both direct and transpose filter forms were considered, for border management only the
direct-form methods of [10] were implemented because of the complexities of border management
with transpose filters.

3. Design for Transpose Filters

It is observed in Figure 6 that the border handling patterns are separable in the sense that
extensions for the horizontal and vertical borders can be applied independently. This separability is
independent of whether the underlying filter function is separable or not and enables the design of a
1-dimensional border handling mechanism and applying it to both the rows and columns within the
window. This is made easier with the parallel window structure, where the row and column processing
are separated. Referring to Figures 3 and 4, each row filter can be considered a pixel transformation for
the vertical combination function performed via the row buffers. This section will therefore focus on
structures for 1D transpose filtering, with the extension to 2D presented in Section 4.

For high speed processing, it is desirable to not introduce any additional clocking overheads
between rows (and between frames). Therefore, when streaming one pixel per clock cycle, the last
pixel in a row is immediately followed by the first pixel in the next row, and the last pixel in a frame is
followed by the first pixel of the next frame. A complete M × N image is processed every M × N clock
cycles, with the latency determined by the filter itself.

Consider the 1D linear FIR filter of width W with filter coefficients hi given by

QFIR[x] =

W−1
2

∑
i=−W−1

2

hi I[x − i], 0 ≤ x < M (4)

where I and Q are the input and output images, respectively. Input pixels outside the range 0 ≤ x < M
are managed by the chosen border handling scheme. Figure 9 shows successive 5-pixel-wide
row windows during the transition from one row to the next. Samples shaded grey represent
invalid window pixels that must be replaced in the calculation through image border extension.
The replacement is shown in bold, illustrating mirroring without duplication in Figure 9. These are
linked to the corresponding source pixels with an arrow. The direction of the arrow is to the source
pixel, because in the transpose form, the timing is governed by when a pixel is input. Additional
processing is required therefore when the circled pixels are input.
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Figure 9. Border management for mirroring without duplication.

Two approaches to applying this additional processing are proposed. The first is to modify the
filter function by coalescing the pixel transformations. The second applies the modification to the
pipelined combination chain.

3.1. Transformation Coalescing

With border handling, some of the input pixel values appear at more than one position within the
window and are therefore subjected to more than one-pixel transformation. For example, in an FIR
filter, the input pixel is multiplied by more than one filter coefficient. Consider the window at x = 0 in
Figure 9:

QFIR[0] = h−2 I[2] + h−1 I[1] + h0 I[0] + h1 I[1] + h2 I[2]

= h0 I[0] + (h−1 + h1)I[1] + (h−2 + h2)I[2]

= h0 I[0] + h′−1 I[1] + h′−2 I[2].

(5)

The samples can be factored out, giving modified filter weights as combinations of the original
filter weights, i.e.,

h′−1[1] = h−1 + h1

h′−2[2] = h−2 + h2
(6)

These are labelled with positions 1 and 2 respectively, because these modified weights need to be
applied to those corresponding input samples.

This pairing is applied for each arrow within Figure 9, with the label being given by the head of
the arrow. The corresponding set of coalesced coefficients then become:

h′2 [M − 3] = h2 + h−2

h′1 [M − 2] = h1 + h−1

h′0 [M − 2] = h0 + h−2

h′0 [1] = h0 + h2

h′−1 [1] = h−1 + h1

h′−2 [2] = h−2 + h2

(7)
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It is also necessary to set the coefficients for the invalid samples (shaded grey in Figure 9) to 0 to
prevent the invalid samples from being accumulated:

h′2 [M − 2] = 0
h′2 [M − 1] = 0
h′1 [M − 1] = 0

h′−1 [0] = 0
h′−2 [0] = 0
h′−2 [1] = 0

(8)

The resulting coalesced coefficients can be formed using a multiplexer indexed by the sample
number as demonstrated in Figure 10. Obviously, this can be simplified if the coefficients are constants
because the sum of constants is also a constant.

h'0h'1h'2 h'-1 h'-2

0 0 0 0

Input

h2 h1 h0 h-1 h-2

20,10 11M−2 M−2M−1M−3M−1
M−2

Figure 10. Coefficient coalescing for mirroring without duplication.

Please note that coefficient coalescing is only applicable to FIR filters. This technique may or may
not be able to be adapted to other filter types depending on the filter function. For example, with a
greyscale dilation filter, with structuring element offsets Si

Qdilation[x] = max
i∈S

{I[x − i] + Si} , 0 ≤ x < M (9)

From Figure 9, the window position at x = 0 gives:

Qdilation[0] = max {I[2] + S−2, I[1] + S−1, I[0] + S0, I[1] + S1, I[2] + S2}
= max {I[2] + max(S−2, S2), I[1] + max(S−1, S1), I[0] + S0}

(10)

with the corresponding set of coalesced offsets, S′, as:

S′
2 [M − 3] = max(S2, S−2), S′−2 [1] = −∞

S′
1 [M − 2] = max(S1, S−1), S′

−1 [0] = −∞
S′

0 [M − 2] = max(S0, S−2), S′−2 [0] = −∞
S′

0 [1] = max(S0, S2), S′
2 [M − 1] = −∞

S′
−1 [1] = max(S−1, S1), S′

1 [M − 1] = −∞
S′−2 [2] = max(S−2, S2), S′

2 [M − 2] = −∞

(11)

where the offsets of −∞ correspond to the entries removed from the window (shaded grey in Figure 9).
The resulting architecture, in Figure 11, has obvious parallels with coefficient coalescing for FIR filters
in Figure 10.
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max max max

Figure 11. Transform coalescing for greyscale dilation using mirroring without duplication.

3.2. Combination Chain Modification

This next technique is applicable to all filters which are transposable. The pixel transformation is
left unchanged, and the border handling is applied to the pipelined combination chain. This method
works by combining the terms resulting from pixels outside the image into the appropriate place
within the combination chain based on the source of the duplicated or mirrored pixel.

A 5 × 5 FIR filter using mirroring without duplication will be used to illustrate the method.
Again, the parallel filter structure is used for separability, and the construction in Figure 9 is used to
develop the modifications. Each arrow indicates where a transformed pixel needs to be combined
into a different place within the output chain. Consider the window centered at M − 2. The window
extension is I[M − 2] (shown in grey) which is multiplied by h−2. To arrive at the output at the
correct time, the product h−2 I[M − 2] must be added with the regular contribution from pixel M − 2
(shown by the circle), which is the center of the window. Since this combination is added only during
clock cycle M − 2, a multiplexer is required. All 6 window extensions are shown in green in Figure 12.

M−2M−2M−3

M−1M−1

h−2h2 h1 h0 h−1

00

0,10

11 2

Input

Row
output

Figure 12. Row combination chain for mirroring without duplication.

It is also necessary to prevent the invalid pixels (grey circles in Figure 9) from being accumulated.
On the right-hand part of the window, this may be achieved by bypassing the adder on those clock
cycles. On the left-hand part of the window, it is easier to just clear the registers on the last pixel of a
row. This may be accomplished either through multiplexing, or directly using a synchronous clear of
the associated flip-flops. These modifications are shown in red in Figure 12.

Please note that the number of additional combination functions (additions in the case of FIR
filters) and associated multiplexers is given by the number of shaded entries in Figure 9 and grows
quadratically with the window size W (W is assumed odd here):

C1D =

(
W − 1

2

)(
W + 1

2

)
. (12)

However, several of the combination terms are common, and this can be exploited by moving
the multiplexers to the input of the combination chain. Where there are multiple combinations for a
given stage, these will usually occur on different clock cycles. Moving the multiplexer to before the
combination operation enables a single combination operation to be reused, as shown in Figure 13.
This reduces the number of adders required to
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C1D ≤ W, (13)

which can result in a significant savings for larger windows. However, the complexity of the
multiplexers increases with the size of the window as more terms must be multiplexed together
before the combination for larger windows.

h−2h2 h1 h0 h−1

0 0 0 0

Input

Row
output

2 0,101

1 M−2

M−2M−1 1
M−2

M−3M−1
M−2

Figure 13. Optimization of row combination chain for mirroring without duplication.

3.3. Constant Extension

The above proposals manage the image border using a nearby window pixel. However, they do
not work directly with constant extension.

The simplest is zero-extension. For FIR filters, when using coefficient coalescing, this can simply
be achieved by setting the coefficients for invalid pixels to 0. For the modified combination chain,
the extended combinations do not need to be added in (they are 0). It is only necessary to ensure
that the invalid combinations are not added in, by bypassing the adders for the right-hand registers
and clearing the left-hand registers. These approaches are shown in Figure 14. Note: they do not
necessarily work directly with other filter types.

M−1M−1
−2M

0,10

h'1
h'2 h'−1 h'−2

0000

Input

h−2h−1h2 h1 h0

M−1
M−1

h−2h2 h1 h0 h−1

0
0

0,10

Input

(a)

(b)

Figure 14. Zero-extension. (a): coefficient coalescing; (b): modified combination chain.

For constant extension, perhaps the simplest approach is to simply multiplex the input for those
samples outside the image (shaded in grey in Figure 9). This is shown for row processing within an
FIR filter in Figure 15.

M−1M−1
−2M

0,10

Input Constant
c

h−2h−1h2 h1 h0

Figure 15. Constant extension.
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4. 2D Filters

So far, all the examples that have been given apply to the 1D row filter components. Since border
handling is separable (regardless of the separability of the underlying filter function) the same
techniques can be applied for column handling. This is illustrated in Figure 16, where each row
filter consists of a pixel transformation (multiplication by the FIR filter coefficient), combination
network (for managing image borders, such as shown in Figure 13), followed by the combination
chain. In 2D, pixel transformation consists of the set of row filters, the border managing combination
network routes each row filter output into the appropriate tap of the combination chain, which now
consists of row buffers rather than registers to combine data from different rows.
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Figure 16. Extending 1D to 2D. (a): a 1D row FIR filter; (b): column combination processing for a 2D
FIR filter.

If a 2D filter is not separable, then each row filter would be different. In transpose form,
these row filters are in parallel, enabling reuse to be exploited (for example in the case of symmetry).
The combination network manages the top and bottom image borders following the same principles as
row border management. A specific example of the combination network for mirroring without
duplication is illustrated in Figure 17. The combination network is identical to that shown in
Figure 13 with the exception that the multiplexers are controlled by the row number rather than
the column number.
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Figure 17. Column combination chain for mirroring without duplication.

Transform coalescing can also be extended to 2D. In the previous section, FIR filter coefficients
were coalesced horizontally across the row. Since the border extension is separable, the same technique
can be used to coalesce the resulting coefficients vertically. This is illustrated in Figure 18 where the
coefficients h′i,j are formed from coalescing across row j. The same network is then applied vertically
(down each column i), indexed by row number, with a second level of multiplexers selecting h′′i,j from
combinations of h′i,j. Please note that 2D transform coalescing requires applying the coalescing to each
column of the filter, rather than a single combination chain modification to the outputs of the row
filters. The number of multiplexers is proportional to the number of pixels within the window, and the
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complexity of the multiplexers (number of terms that must be multiplexed) will also grow with the
window width.
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Figure 18. Coefficient coalescing by columns for 2D FIR filters (5 × 5 for mirroring without duplication).

The constant extension scheme shown in Figure 15 can similarly be adapted for 2D filtering by
adding a second set of input multiplexers controlled by the row numbers.

Control Circuitry

In the proposed architectures, the multiplexers are controlled by the timing associated with
the incoming pixel stream. This timing can easily be provided by a horizontal column (x) counter
(modulo M) and a vertical row (y) counter (modulo N), which are reset by the corresponding stream
synchronization signals. Rather than explicitly decode each of the required states, it is more efficient to
decode the earliest state during a transition at an image border, and use a shift register to decode the
subsequent states, as demonstrated in Figure 19. For the row counter and state shift register, providing
a clock enable signal from the last column (M − 1) minimizes the additional circuitry required. (If the
rows and columns are extended separately, then the clock enable can be shifted to a later tap to account
for the latency of the row filters).
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Figure 19. Control signal decoder.

5. Linear Filter Implementation Issues

One practical issue with implementing FIR filters is that the coefficients are usually scaled to enable
integer arithmetic to be used. Where possible, the scale factor is a power of 2 (effectively representing
the coefficients as binary fixed point), so the output of the filter can be obtained simply by bit-shifting
(free in hardware). Rescaling is usually the last operation within the filter to minimize the precision
loss through the adder chain. One implication of this is that the word length is larger on the output
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of the multipliers. In particular, this affects the word length (hence memory size) of the row buffers,
which for transpose filters must be sized according to the adder chain rather than the filter input.
The buffer word length may be reduced by distributing the rescaling (as illustrated in Figure 20), with a
partial rescaling of the outputs of the row filters, and the balance applied at the final filter output.
The output can be rounded by adding in the scaled equivalent of 0.5 at the start of the chain.

Row buffer

Row buffer

Row buffer

Row buffer

Row filter

Row filter

Row filter

Row filter

Row filter

÷

÷

÷

÷
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Input

Adder chain

Partial rescaling Final rescaling

Output

Figure 20. Distributed rescaling for transpose-form FIR filters.

If necessary for speed, coefficient coalescing can be pipelined, with a register placed between
the multiplexer and multiplier. This would require adjusting the multiplexers to select the required
coefficients 1 clock cycle earlier, which can easily be achieved. On an FPGA, this would generally use
the flip-flop on the output of the multiplexer logic cell, which would otherwise be unused.

On modern FPGAs, the multiplication is realized within hard DSP blocks. Speed can be optimized,
and additional resources minimized if the multiplication, addition, and following register can be
implemented within a single DSP block [5]. Indeed, this is the case with the coefficient coalescing
scheme, as seen in Figure 10. In fact, for Intel FPGAs, if the filter coefficients are constant and there
are 8 or fewer combinations for each coalesced coefficient, then the coefficient multiplexing can also
be implemented directly within the DSP block [17], although this requires direct instantiation of DSP
primitives and cannot be inferred from the register transfer level (RTL) source code.

The disadvantage of coefficient coalescing is that it is no longer possible to reuse common
multipliers within the filter. However, since the combination chain modification scheme moves the
multiplexers to after the multipliers, such multiplier reuse is possible.

Modifying the combination chain prevents the implementation of both the multiplication and
following addition within a single DSP block because the output of the multiplier is used in more than
one place. However, for typical word sizes used for images, 2 or even 3 multipliers may be able to be
realized by a single DSP block [17].

6. Experimental Comparison

To compare the different border management approaches, three experiments were performed.
The first compares the cost of border management over doing nothing. For this, the transformation
coalescing and combination chain modification techniques are compared for both FIR and
morphological filters. For comparison, the transpose form is also compared against the more traditional
direct-form filter structures. The second experiment compares the cost of different border extension
methods for transpose-form filters. The third experiment investigates the scalability of border extension
with window size.

All experiments were performed with symmetrical but non-separable square windows. Obviously,
separable windows would significantly reduce resource requirements by implementing the 2D window
as a cascade of two 1D windows. Non-separable filters require implementation of the full 2D window.
Many filters are symmetrical, and resources can be reduced by exploiting symmetry where possible.
However, border management will damage symmetry if care is not taken, for example with the
transformation coalescing methods, and a symmetrical filter would enable this aspect to be explored.
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The first two experiments used 5 × 5 filters, with the FIR filter coefficients and morphological
filter structuring element offsets as shown in Figure 21. The FIR filter is a Gaussian filter, a frequently
used filter, and although the Gaussian is technically separable, as a result of rounding, this filter is not
separable, requiring implementation of a full two-dimensional window. The symmetry of both filters
enables the number of computations to be reduced by a factor of approximately 2 when symmetry can
be exploited. The test designs processed a 1024 × 768 × 8-bit image. For all FIR filter implementations,
fixed-point arithmetic was used throughout, with the output pixel values obtained by rounding.
Rounding was achieved by adding 0.5 at an appropriate point (usually at the start of the adder chains)
and truncating the fraction bits of the final addition.
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Figure 21. Coefficients for the sample filters used for testing in experiments 1 and 2. (a): FIR filter;
(b): morphological filter structuring element offsets.

Designs were represented using VHDL, and synthesized using Quartus Prime Lite Edition 17.1.0
(Intel, Santa Clara, CA, USA), using “Balanced optimization (Normal flow)” targeting a Cyclone V
FPGA (5CSEMA5F31C6) (Intel, Santa Clara, CA, USA) to give the resource requirements and the
design speed. Modelsim-Intel FPGA Starter Edition 10.5b (Intel, Santa Clara, CA, USA) was used for
design verification.

6.1. Experiment 1: Comparison of Approaches

The aim of this experiment was to compare the performance of the different architectural
alternatives described in Sections 3 and 4 with both the FIR filter and the morphological filter.
The synthesis results are summarized in Table 1.

Table 1. Resource requirements for the different approaches (adaptive lookup tables (ALUT), flip-flops
(FF), 10 kbit memory blocks (M10K), DSP blocks (DSP), maximum clock frequency (Fmax) in MHz).
Other than the cases with no border management (indicated by *), mirroring without duplication
is used.

Method
5 × 5 FIR Filter 5 × 5 Morphological Filter

ALUT FF M10K DSP Fmax ALUT FF M10K Fmax

Transpose form, no borders
– DSP-based (*) 164 100 7 9 175
– Coefficient sharing (*) 312 237 7 2 176 285 167 4 179

Transformation coalescing 296 131 7 15 120 688 251 4 184
– Pipelined 296 135 7 15 173 710 300 4 186

Combination chain 410 251 7 2 180 439 171 4 172
– Partial rescaling 4/4 389 247 5 2 194
– Partial rescaling 6/2 378 245 4 2 180

Direct-form filter structures
– No border handling (*) 331 265 4 5 55 731 265 4 56
– Multiplex network 503 267 4 5 57 745 266 4 56

– Adder/max tree 380 267 4 2 93 580 267 4 64
– Overlap prime and flush 404 346 4 5 56 807 346 4 56

– Adder/max tree 317 346 4 2 105 500 346 4 68
– Pipelined 343 398 4 2 152 473 395 4 117
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As a baseline, the transpose form with no border management was implemented in two ways
for the FIR filter. The first, exploited the use of DSP blocks on the FPGA, since these are specifically
targeted for multiply and accumulate operations. The second exploited the fact that many of the filter
coefficients were used multiple times, with only 6 multipliers (one for each unique coefficient) shared
for the complete window.

As expected, the DSP-based design used the fewest resources. Only 3 rows of the filter were
required, because of symmetry, and each row used 3 DSP blocks because two multiply-add and
associated output registers were able to be packed per DSP block. Coefficient sharing reduced the
number of hardware multipliers to 2, since multiplication by 1, 3, 6, and 15 were optimized to additions.
The adder chains were no longer implemented using DSP blocks, giving an increase in both logic and
flip-flops. The four 16-bit wide row buffers (64 bits total) were packed into 7 M10K memory blocks.

For the morphological filter, coefficient sharing reduced the number of offsets required to 5.
Any offset pixel values that went below 0 were clipped at 0. The four 8-bit wide row buffers (32 bits
total) required 4 M10K memory blocks.

Transformation coalescing has two layers of multiplexers, one for coalescing the coefficients
vertically, and a second for coalescing horizontally as illustrated in Figure 18. Coalescing destroys
the symmetry, so all 5 rows of the filter are required, requiring more flip-flops. For the FIR filter,
this also requires more DSP blocks. The clock speed for the FIR filter is lowered significantly by the
coalescing multiplexers; this is recovered with minimal additional resources by inserting pipeline
registers between the multiplexers and multipliers (these registers were absorbed into the inputs of
the DSP blocks). The clock speed for the morphological filter is barely affected, although the critical
path does change from the row buffer operation to the coefficient coalescing. However, the additional
delay is negligible, so pipelining the coefficient coalescing only serves to increase resources and has
negligible effect on the maximum clock frequency.

Modifying the combination chain can share the common multiplier terms for the FIR filter and
requires additional logic for the adders and multiplexers. Since the filter function is naturally pipelined
in transpose form, there is no loss of speed. Rather than perform the division by 256 at the output
(rescaling by 0 bits for the rows then 8 bits at the output (0/8)), two partial rescaling options were
considered: rescaling by 4 bits from the row filters (4/4) or 6 bits (6/2). The 4/4 option reduces the row
buffer word width to 12 bits (48 bits for the 4 buffers) which can be packed into 5 M10Ks. Dropping a
further 2 bits (the 6/2 option) reduces the row buffers to 10 bits wide (40 bits total), requiring only
4 M10Ks. The small reduction in logic results from partial rescaling requiring smaller adders within
the column adder chain; however, the associated reduction in memory is significant. The effect of
distributed partial rescaling on the output image is insignificant (at most 1-pixel value).

For the morphological filter, the combination chain modification allows the offsets to be reused,
giving a significant drop in logic resources required. Again, since the maximum combinations are
pipelined, there is no effect on the operating frequency.

It is instructive to compare these designs with the same filters realized using the traditional direct
form. The row buffers are on the input, requiring only 8 bits per buffer (32 bits total). This is the same
as the transpose-form morphological filter but is less than the transpose-form FIR filter.

The 5 DSPs for the FIR filter come from the multiplication by coefficients 25 and 41; the others are
optimized to additions. The multiplex network [11,15] adds significantly to the logic requirements
of the FIR filter, but not so much on the morphological filter. This latter effect may be the synthesis
optimizing the logic by combining the multiplexer and the offset operation. The overlapped prime
and flush approach [10] has significantly fewer multiplexers, but this comes at the cost of additional
priming registers. For the morphological filter, the increase in resources is from the multiplexer
and offset operations no longer being combined. The operating speed is the same for these designs,
and results from the combination chains; row adder chains (in parallel) feed into a column adder chain
for the FIR filter, and similarly maximum combination chains for the morphological filter. Replacing
these chains by a tree structure reduces the propagation delay by a factor of approximately 2 for the

85



J. Imaging 2018, 4, 138

FIR filter, and to a lesser extent for the morphological filter. The tree structure also enables the common
multipliers and offsets to be factored out, reducing the number of DSP blocks and logic. This provides
a more realistic comparison with the coefficient sharing used by the combination chain modification
scheme. The trade-off between using the multiplexer network or the overlapped prime and flush
comes down to the number of logic cells and registers required, so would only depend on resource
availability. The direct-form implementation though is still significantly slower than the transpose
form (running at 60% speed for the FIR filter and at 36% speed for the morphological filter), with both
direct and transpose forms having similar resource requirements. The difference in speed can be
addressed by pipelining the combination tree, although this comes at the expense of increasing the
number of registers required (results for a 2-stage pipeline are shown in Table 1, if necessary further
pipelining could be used).

6.2. Experiment 2: Comparison of Border Management Schemes

The second experiment was to compare the resources required for the different border
management schemes. The results are presented in Table 2.

Table 2. Transpose-form resource requirements for different border management schemes (adaptive
lookup tables (ALUT), flip-flops (FF), 10 kbit memory blocks (M10K), DSP blocks (DSP), maximum
clock frequency (Fmax) in MHz).

Method
5 × 5 FIR Filter 5 × 5 Morphological Filter

ALUT FF M10K DSP Fmax ALUT FF M10K Fmax

Zero-extension
– Coalescing 215 130 7 15 174 660 250 4 185
– Combination chain 323 239 7 2 185 366 168 4 184

Constant extension 387 130 7 15 173 636 250 4 175
Duplication 448 247 7 2 159 576 170 4 138
Two-phase duplication 389 248 7 2 188 436 170 4 171
Mirroring 410 251 7 2 180 439 171 4 172
Mirroring with duplication 445 247 7 2 178 540 170 4 172

The two forms of zero-extension were transformation coalescing or to modify the combination
chain. For the FIR filter, coalescing consisted of setting the filter coefficients to 0 for pixels outside the
image and using DSP units for the multiply and accumulate. For the morphological filter, the offsets
for pixels outside the image were set to −∞ (in practice −255 for 8-bit images). Combination chain
modification enabled the transformations to be shared (reuse of multipliers for FIR, or offsets for the
morphological filter). The increase in resources for the FIR filter reflect the movement of adders and
registers from the DSP blocks into logic. However, for the morphological filter, sharing the offsets
significantly reduces resources.

Constant extension was managed by multiplexing between the input pixel and the constant.
Consequently, the pixel transformations could not be shared. For the FIR filter the multiplexers are
the source of the 80% increase in logic resources. For the morphological filter, the multiplexers were
combined with the offset calculation so that resources were similar to those for zero-extension.

The remaining extension methods were achieved by modifying the combination chain. The small
differences in the number of flip-flops result from differences in the control chain. The logic
resources reflect the complexity in terms of the number of adder/maximum units that could be
reused, and complexity of the multiplexing by the difference schemes. Two-phase duplication has
the lowest resource requirements because there are several combination terms that can be reused.
Extension by duplication is slightly slower than the other methods because it requires multiple
combination operations in two of the window positions, and this increases the propagation delay.
For the morphological filter, two-phase duplication and mirroring without duplication require fewer
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logic resources. It appears that for these two filters, the synthesis was able to combine the offsets with
the combination chain giving better optimization. Otherwise there is little to distinguish between the
different methods in terms of resources or speed.

In this experiment, for the FIR filters rescaling was performed at the end. With partial rescaling,
it is expected that all these results would decrease by similar amounts to that shown in Table 1.

6.3. Experiment 3: Scalability with Window Size

For this experiment, a range of different morphological filters from 3 × 3 up to 15 × 15 using
mirroring without duplication were synthesized to explore trends in resource requirements as a
function of filter size. Combination chain modification was used because this is more efficient for
implementing morphological filters. The results are listed in Table 3, with the resources normalized
per pixel plotted in Figure 22.

Table 3. Resource requirements for the symmetrical morphological dilation filter as a function of filter
size (adaptive lookup tables (ALUT), flip-flops (FF), 10 kbit memory blocks (M10K), maximum clock
frequency (Fmax) in MHz). Normalized values are per window pixel. The last row shows the effect
of pipelining.

Filter Size
Raw Resource Count Normalized

ALUT FF M10K Fmax ALUT FF

3 × 3 163 93 2 196 18.1 10.3
5 × 5 439 171 4 172 17.6 6.8
7 × 7 924 279 5 174 18.9 5.7
9 × 9 1621 419 7 155 20.0 5.2

11 × 11 2539 591 8 140 21.0 4.9
13 × 13 3695 795 10 135 21.9 4.7
15 × 15 5090 1031 12 123 22.6 4.6

15 × 15 (pipelined) 5054 2112 12 165 22.5 9.4

As expected, the resource requirements grow approximately in proportion to the number of
pixels within the window. Part of this results from the filter function, which will be proportional
to the window size, and part of this is for the combination network used to manage image borders.
The number of ALUTs and FFs normalized by the number of window pixels makes this particularly
clear. The number of ALUTs per window pixel increases because as the window grows larger,
the width of the multiplexers in the combination network also grows. This growth is relatively slow,
which shows that the combination network scales well with filter size. The higher numbers for the
3 × 3 window reflect the overhead of the control logic, which is a greater proportion for the small
window. The number of FFs per window pixel decreases, reflecting the decreasing proportion used by
the control logic and row buffer output (which are proportional to the window width rather than area).
The asymptote here will be 4 FFs per window pixel reflecting the fact that only half of the row filters
are required because of symmetry.
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Figure 22. (a): resources required per window pixel; (b): maximum clock frequency. Pipelined results
for the 15 × 15 window are shown with ◦.

The maximum clock frequency decreases with increasing window size. This results purely from
the increase in the complexity of the multiplexers within the combination network, as these form the
critical path for windows larger than about 7 × 7. If clock speed is critical, this can be mitigated by
pipelining the output of the combination networks, as shown by the last row in Table 3. Although this
more than doubles the number of flip-flops required, in an FPGA implementation, these flip-flops
are associated with the logic cells used to realize the combination network and would be otherwise
unused. The critical path in this case is still the combination network, so the speed would still be
expected to decrease for larger filters unless additional pipelining was used.

Overall, these results indicate that the transpose-form filters scale well with increasing
window size.

7. Conclusions

This paper has demonstrated that border management using transpose filter structures in not
only feasible, but can have significant advantages over direct-form filter structures.

For FIR filters, coefficient coalescing enables DSP blocks to be used for realizing the multiply, add,
and associated register resulting in the fewest required resources. However, this comes at the cost of
not being able to exploit multiplier reuse and symmetry. Modifying the combination chain separates
the multiplication and addition, approximately doubling the resources by forcing the additions and
registers into the FPGA fabric. Reflecting this trade-off, coefficient coalescing would therefore be
recommended for implementing FIR filters on FPGAs with plentiful DSP blocks.

For FIR filters, using the transpose filter structures requires wider memories for the row buffers
because these come between the multiplications and the distributed additions. Since scaling of the
output occurs at the end, more bits must be carried through the row buffers. It is demonstrated that
this increase in RAM resources by the transpose structure for FIR filters can be effectively managed
through distributing the rescaling between the row filters (before the row buffers) and the output.

For morphological filters, transform coalescing means that symmetry cannot effectively be
exploited, making this a less viable option than modifying the combination chain.

Overall, the resources required by the transpose form with combination chain modification are
similar for both linear and morphological filters to that for direct-form filters using the multiplexer
network, especially if distributed partial rescaling is used with FIR filters to reduce the width of the
row buffers. The transpose-form filter structures scale well with increasing filter size, with resources
only growing slightly faster than the number of pixels within the window. The key advantage of the
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transpose form is that the filters are significantly faster than direct-form filters, primarily as a result of
the pipelining inherent within their structure. Although direct-form filters can be pipelined to improve
the speed, this comes at the cost of additional resources.

The disadvantage of using the transpose form for filter realization is that the filter function is
no longer independent of the window formation. However, this paper has demonstrated that the
complexities of border handling can be confined to an additional processing layer which implements
the combination network. (For 2D filters, two such layers are required: one for the row filters, and one
for the column combination.)

In conclusion, this paper has demonstrated that image border processing can effectively and
efficiently be integrated within transpose-form filters, and that the complexity of the combination
network is similar to that of the more conventional direct-form processing.
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Abbreviations

The following abbreviations are used in this manuscript:

ALUT Adaptive Lookup Table
DSP Digital Signal Processing
FF Flip-Flop
FIR Finite Impulse Response filter
FPGA Field Programmable Gate Array
LUT Lookup Table
M10K 10 kbit memory block
RTL Register Transfer Level
SRL Shift Register Logic
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Abstract: Background Estimation is a common computer vision task, used for segmenting moving
objects in video streams. This can be useful as a pre-processing step, isolating regions of interest for
more complicated algorithms performing detection, recognition, and identification tasks, in order to
reduce overall computation time. This is especially important in the context of embedded systems like
smart cameras, which may need to process images with constrained computational resources. This work
focuses on accelerating SuperBE, a superpixel-based background estimation algorithm that was
designed for simplicity and reducing computational complexity while maintaining state-of-the-art levels
of accuracy. We explore both software and hardware acceleration opportunities, converting the original
algorithm into a greyscale, integer-only version, and using Hardware/Software Co-design to develop
hardware acceleration components on FPGA fabric that assist a software processor. We achieved a 4.4×
speed improvement with the software optimisations alone, and a 2× speed improvement with the
hardware optimisations alone. When combined, these led to a 9× speed improvement on a Cyclone V
System-on-Chip, delivering almost 38 fps on 320 × 240 resolution images.

Keywords: background estimation; image segmentation; System-on-Chip; embedded systems;
real-time systems; hardware accelerators

1. Introduction

Many computer vision applications rely on scanning an image by applying a sliding window
across the image, whether it is a simple filter operation or a more complex object detection and
recognition task. The use of multi-scale image pyramids may mean that the entire image is effectively
scanned multiple times. In many scenarios, this is wasteful because the regions or objects of interest
only occupy some of the image space, while the majority of the camera view yields negative results.
Background estimation (also known as background subtraction, background modelling, or foreground
detection) is a popular method of segmenting images in order to isolate foreground regions of interest.
This allows for further analysis with subsequent algorithms, saving computation time by processing a
smaller image and therefore iterating over fewer window positions.

However, using background estimation has two limitations. Firstly, sequential frames in a
video are usually required in order to compare frames to each other and classify similar parts of
the images as background, and there is a general assumption that objects of interest are moving
between frames. This eliminates the applicability of background estimation in some offline image
processing applications where the images contain no notion of time or may be entirely independent,
but for most real-world applications there is some continuous monitoring where multiple frames of the
same view are captured. Secondly, background estimation is not free; it still requires some computation
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time, and that computation time must be sufficiently low to justify introducing background estimation
before running more complex algorithms.

While computation time is a critical factor for justifying background estimation, most of the literature
focuses on incrementally improving accuracy with new algorithms at any cost. Popular pixel-level
models such as the Gaussian Mixture Model (GMM) [1] have been around for decades, but recent
approaches have included applying adaptive weights and parameters [2,3], deep convolutional neural
networks [4–6], and ensemble models with stochastic model optimisation [7], all of which significantly
increase computation time while only marginally improving accuracy, failing to address the challenges
of real-world implementation.

Instead of blindly pursuing gains in accuracy, once a sufficient level of accuracy has been reached
we should focus on accelerating those approaches, in order to minimise the impact of background
estimation in more complex image processing pipelines with multiple stages. In our previous work,
we applied superpixels to ViBE [8], a popular background estimation algorithm, and incorporated
further optimisations of computation time to develop an algorithm called SuperBE [9]. We were able
to achieve real-time processing with speeds of approximately 135 fps on 320 × 240 resolution images
on a standard desktop PC while maintaining comparable accuracy to other state-of-the-art algorithms.
In this work, we make two contributions by exploring further acceleration in two directions. Firstly,
since the original SuperBE algorithm used RGB images with floating-point mathematics, we target
software acceleration by investigating the effect of reducing the amount of information being processed
by using greyscale and integer-only versions of SuperBE. Secondly, we developed an embedded system
implementation of the algorithm with constrained computational resources for a real-world use case,
targeting hardware acceleration by using Hardware/Software Co-design techniques [10] to partition
the algorithm on a System-on-Chip (SoC) with an ARM processor and connected Field Programmable
Gate Array (FPGA) fabric. In both cases, we present quantitative results justifying our acceleration
strategies, while also detailing the effects on accuracy. The primary intention of the paper is to show
how an algorithm like SuperBE can be accelerated in a variety of ways, in detail, without requiring
software developers to spend excessive amounts of time on learning how to develop hardware.

In Section 2, we present some related works in the area of real-time background estimation and
acceleration of background estimation algorithms, including a summary of the SuperBE algorithm to
provide full context for this paper. In Sections 3 and 4, we provide a detailed description of the software
and hardware acceleration procedures explored in this work, as well as full experimental results
demonstrating the effectiveness of these acceleration strategies in Sections 3.1 and 4.1. We present our
conclusions and ideas for future work in Section 5.

2. Literature Review and Background

2.1. Fast Background Estimation

While basic background estimation algorithms such as frame differences, running averages,
and median filters are very fast, they tend to suffer from an inability to deal with high-frequency
salt and pepper noise as well as low-frequency environmental changes such as lighting variations
over time [11]. First popularised by Stauffer and Grimson [1] in 1999 and improved upon by others
including [12–14], the Gaussian Mixture Model (GMM) remains one of the most popular background
estimation algorithms today, primarily because of its simplicity and wide availability as one of the
default algorithms available in most image processing libraries. In many applications, a GMM approach
is “good enough” for background estimation, even though it still produces a substantial amount of
noise from false positives and negatives. For applications where false positives or negatives are costly,
such as safety-critical systems, acceptable error rates will depend on the requirements of the specific
application and may need to be further reduced. This can somewhat be alleviated through the use
of post-processing filters, but this adds further computation time. On the challenging CDW2014 [15]
dataset, the Zivkovic GMM [12] misclassifies just under 4% of all pixels across the 11 categories and
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53 video sequences. The error rate is also known as the Percentage of Wrong Classifications (PWC).
However, it is important to note that this is an average. Figure 1 shows the difference in segmentation
quality between different levels of PWC on different video sequences. The figure shows that even a 4%
PWC can appear to be poorly segmented, while a 1.3% PWC is perhaps sufficiently accurate, but this
will strongly depend on the end application.

Figure 1. Examples of background estimation with different levels of PWC. In each row, the leftmost
image is the raw image, the middle image is the ground truth, and the right image is the output of
the Zivkovic GMM algorithm [12], with the approximate PWC and name of the sequence from the
CDW2014 [15] dataset on the right.

Current state-of-the-art methods are able to reduce that error rate to less than 2%, but this has
come with a heavy computation cost. Whereas the Zivkovic GMM can achieve around 49 fps on
this dataset on a standard desktop computer, Ref. [6] requires a high-end Graphics Processing Unit
(GPU) to achieve 18 fps, Ref. [16] achieves 8–9 fps on a desktop computer, and Ref. [3] only achieves
2 fps for 320 × 240 video on a high-end i5 CPU. While improving accuracy is important, the trade-off
between accuracy and speed needs to be more carefully considered, as more accurate algorithms are
unlikely to be adopted in the real world if they cannot justify slow computation times. Comprehensive
background estimation survey papers are available in [17–19].

In most background estimation methods, the algorithm works at the pixel level. This means that
for every pixel in the image, a background model is maintained and compared against pixels from
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newer frames to determine whether that pixel should be classified as background or foreground
for the current frame. Colour is generally the feature that is used to describe the pixels and
ascertain differences, although depth/range can also sometimes be used [20]. We also generally
include a model update step to allow the model to adapt over time to changes in environmental
conditions. The computation time is therefore strongly dependent on the number of pixels in
the image, which presents an issue in terms of scalability as imaging technology continues to
improve and image resolutions increase. SuperBE [9] addressed this by incorporating the use of
superpixels (groups of pixels clustered together for colour and spatial coherency) into the popular
background estimation algorithm ViBe [8]. Superpixels have been used in background estimation in
the literature before [21–24], but most works in the literature still have very high computation times,
particularly because superpixel segmentation is relatively expensive.

2.2. SuperBE

Using the SLICO [25] algorithm to generate superpixels, SuperBE essentially reduces the number
of elements that need to be classified in background estimation, based on the assumption that all
of the pixels within a superpixel cluster are very likely to have the same foreground or background
classification. Reducing the number of elements means that fewer background models need to be
maintained, compared against, and updated, decreasing both memory requirements and computation
time. SuperBE is shown in Figure 2, and it can be seen how the superpixels form the main shape of the
output background mask that can then be post-processed to form a contiguous region of interest.

Figure 2. SuperBE on the CDW2014 backdoor sequence, showing the superpixel segmentation (top-left),
the output mask without (top-right) and with (bottom-left) post-processing, and then with the mask
applied to the original image (bottom-right).
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As shown in Figure 3, SuperBE is comprised of two main processes. The first process is model
initialisation, where a single frame is provided to the algorithm so that the background model can be
created for the first time. After pre-processing, we apply superpixel clustering to group the pixels in the
image, identifying the bounds of background objects and grouping similarly coloured areas together.
It is important to note that superpixel clustering is only performed once in the entire algorithm,
during initialisation, and not performed again for each subsequent frame, leading to significant speed
increases in comparison to other superpixel-based algorithms as clustering can be computationally
expensive. This is generally suitable in static surveillance cases, although in scenarios with panning
cameras or dynamically changing backgrounds it may be necessary to re-initialise the algorithm more
regularly. Then, we use the clusters to initialise the background model based on the colour means and
colour covariance matrices of each superpixel. For each superpixel, we store multiple background
samples to maintain robustness over time, although initially they are set to be identical. This helps
compensate for only performing superpixel clustering once at initialisation by allowing for some
variation in the background model when matching.

Figure 3. Flowcharts showing the background model initialisation (left) and frame masking (right)
processes of SuperBE [9].

The second process is frame masking, where subsequent frames in the video sequence
are presented to the algorithm and an output background mask is produced. For each frame,
SuperBE applies the same superpixel segmentation obtained in the initialisation process, and then
classifies each superpixel as background or foreground based on its similarity to the background model
samples in terms of colour means and covariance. For each superpixel, the algorithm iterates through
the background model samples, and checks if the similarity is below a parameterised threshold.
Once enough background model samples have been found to be similar enough to the current
superpixel (based on another parameter), then the algorithm exits that superpixel and classifies it
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as background. This is done to reduce time spent unnecessarily checking excess background model
samples when only a few are required to accurately classify the superpixel as background.

While computing the mean and colour covariance matrix is relatively fast, computing the
similarity of two colour covariance matrices is challenging. In SuperBE, the Jensen-Bregman LogDet
Divergence was used for its computational efficiency, but that computational efficiency only holds
true for complex processors that can compute logarithm operations quickly, making it less suitable for
simpler processors or pure hardware implementation.

If the current superpixel values are sufficiently similar to those in the background model, then the
content of the superpixel has not changed substantially and is probably also background. In this case,
we also conduct a model update step by randomly replacing one of the background model samples with
the values from the current superpixel, so that over time the background model incorporates minor
variation in the background pixels in order to remain robust against low-frequency environmental
changes. The algorithm also updates the background model for a random neighbouring superpixel
with the values from the current superpixel. This helps improve robustness against small spatial
shifts and allows neighbouring superpixels to “invade” each others models in order to erode false
positives over time. These update procedures are relatively computationally light, as they are mostly
comprised of control flow operations and memory reads/writes. The random selection of samples to
be replaced is challenging to emulate in hardware, but it appears that the algorithm does not need
true randomness, and some pseudorandom approach with a relatively uniform distribution should
be sufficient. An optional post-processing step using morphological closing and opening can help
reduce the amount of false positive noise patches and false negative holes in the resultant output mask.
However, these morphological operations are very computationally expensive, as they tend to require
multiple passes across the entire image and need to store multiple copies of the image in order to
perform accurately.

The resulting algorithm is both fast and sufficiently accurate for most applications, reaching 135 fps
on 320 × 240 images on an i7 CPU using only one core, while achieving an error rate of between 0.4–3%
depending on the type of video. However, it is important to investigate how to make the algorithm even
less computationally expensive so that it can still achieve good speeds on resource constrained systems
with less powerful processing capabilities. This is especially important for enabling the development
of useful smart cameras: imaging devices with embedded processing hardware, that either partially or
fully process video streams at the point of image capture. In the subsequent acceleration, we mostly
focus on the frame masking process (on the right of Figure 3), since the model initialisation process is
only executed once and is therefore not an important factor in the long-run execution time. The key
reason to focus on SuperBE is that it is more accurate that algorithms like GMM without introducing
the significant computation costs of more modern background estimation approaches.

2.3. Hardware Implementations

Some literature does exist for describing systems that implement various background estimation
algorithms on hardware platforms with the goal of achieving real-time speeds. Ref. [26] implements
a GMM algorithm on a high-end GPU device, achieving speeds of over 50 fps for high-definition
video. A separate work, Ref. [27], reports that a GPU implementation of GMM has a 5× speed-up
over CPU implementations, reaching 58.1 fps for 352 × 288 resolution images. A competing FPGA
implementation of GMM reported 20 fps at a 1920 × 1080 resolution [28], while a FPGA implemenation
of ViBe achieved 60fps on 640 × 480 resolution images [29]. Alternatively, instead of taking an existing
background estimation algorithm and merely porting it to a hardware device, algorithm designers
could take the hardware architecture into account to leverage memory structures and parallelism.
A method that is highly optimised for hardware using a codebook implementation on an FPGA
achieved 50 fps on 768 × 576 resolution images [30]. Using a simple convolutional filter as the main
processing step in their algorithm, Ref. [31] reports 60 fps on 800 × 480 images, although the simplicity
of their approach is likely to lead to low accuracy on large images.
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Unfortunately, the largest challenge with hardware design has generally been the high level of
skill needed, and the associated high development time and cost required for well-optimised designs.
While pure hardware designs can be very fast, this continuing challenge impedes adoption of faster
hardware systems. This can partly be addressed through the use of Hardware/Software Co-Design.
In these systems, the algorithm is still predominantly software-based and controlled on a standard
CPU, but parts of the processing are offloaded to specialised hardware accelerator components that
can decrease the computation time significantly. Ref. [32] leverages shared memory resources to
compute multi-modal background masks based on a GMM approach on a FPGA, achieving 38 fps
on 1024 × 1024 resolution images. In [33], a kernel based tracking system is implemented on an
FPGA with a soft processor, reporting hundreds of frames per second based on a window size of
64 × 64 pixels with pipelining to process multiple frames at the same time. Ref. [34] implemented
the Mixture of Gaussians (MoG) algorithm using many pipeline stages in hardware with an ARM
processor to achieve real-time background estimation on Full-HD images. Nevertheless, there are
relatively few HW/SW Co-design systems for background estimation published in the literature,
and even fewer using modern background estimation techniques. In a bid to balance higher levels of
accuracy with acceptably fast computation times, we propose to implement SuperBE on an embedded
platform. While SuperBE as an algorithm is more complex and therefore slower than GMM or similar
methods previously accelerated, it has an average PWC of 1.75%, much better than the 4% error rate
expected from GMM (both scores measured on the CDW2014 dataset). In our work, we target a
hard CPU with attached FPGA fabric, using a similar strategy from [10] to partition SuperBE into
software and hardware components with the intention of accelerating computation on an embedded
system. This improves upon the existing literature by accelerating a new algorithm that achieves better
accuracy than most of the existing hardware implementations of background estimation algorithms,
with real-time speeds on an embedded system.

3. Software Acceleration

Our main strategy for reducing computation time is to reduce the amount of information that
needs to be processed while maintaining a sufficiently high accuracy. We produced three new versions
of the algorithm: greyscale-only, integer-only, and a combined greyscale + integer version. In [8], it is
reported that a greyscale variant of their background estimation algorithm is approximately 15% faster
than the RGB version, with a less than one percentage point increase in the error rate. In the context of
SuperBE, each superpixel is described by its colour means and colour covariance matrices. Since there
are three colour channels, this results in three mean values and a 3 × 3 matrix for each superpixel.
In a greyscale version, we still need to describe the superpixel in terms of its mean and variance,
but this becomes much simpler as there is only one channel. While reducing the colour means from
three to one would not have a large impact, replacing the colour covariance matrix calculation and
the covariance matrix similarity calculation with a simple single-variable variance leads to a much
lower computational complexity. By removing the covariance matrix similarity calculation, we also
remove a number of logarithm operators that produce odd results at extreme values, which could lead
to a positive effect on the accuracy. In addition to this, histogram equalisation tends to have less of an
impact on greyscale images than colour images, so we removed this step from greyscale versions of
SuperBE to further reduce computation time.

Since we will eventually target a hardware device, it is also worth considering the effect of
casting/rounding all numbers in an integer-only version of the algorithm. For a standard desktop
CPU, floating-point mathematics is well optimised, so there may not be a large speed improvement.
On many smaller processors used in embedded devices, simpler processor architectures may not
include specialised hardware for floating-point operations, causing these operations to be extremely
costly. Implementing floating-point mathematics on hardware is also much more resource-intensive
than fixed-point mathematics, restricting most designs to fixed-point or integer-based arithmetic [35].
We should expect there to be some increase in error as a result of losing precision, but it is likely to
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be small since background estimation is generally looking for relatively large changes in features.
However, casting or rounding of the numbers is not the only effect of moving towards an integer-only
version of the algorithm; operators such as log and square root also need to be approximated with
integers, which could potentially lead to larger errors in output.

3.1. Software Evaluation

To test the effect of these optimisations, we used the Change Detection Workshop CDW2014
dataset [15], excluding the three categories PTZ, intermittent object motion, and thermal, which were
also omitted in the original SuperBE paper as it is unsuitable for these video types. The tested
video sequences included low framerates, shaky cameras, poor image quality, and a variety of image
resolutions ranging from 320 × 240 to 720 × 576. As shown in Table 1, experiments were conducted
both with and without post-processing, where the reference algorithm was the one provided in the
original SuperBE paper [9]. The main metric that we used for accuracy was the Percentage of Wrong
Classifications (PWC), which is equivalent to the error rate, calculated by dividing the number of
incorrectly classified pixels by the total number of pixels and converting to a percentage. The speeds
given in FPS are normalised for a 320 × 240 resolution image, meaning that we take all of the speeds
from the different image resolutions, and then scale them based on the number of pixels to a 320 × 240
resolution image in order to make a fair comparison between methods. The relative speed for each
version is given relative to the reference version. All experiments were conducted on the same
laptop computer, with a 2.4 GHz i7-4700HQ CPU, 16GB of RAM, running Linux Kubuntu 17.04.
The algorithms are implemented in C++, compiled with -O3.

Table 1. Software Acceleration Results.

Version PWC (%) Speed (FPS) Relative Speed

Without Post-processing
Reference 1.75 53.00 1.00
Integer-only 1.23 81.25 1.53
Grayscale 1.88 184.65 3.48
Grayscale + Integer 2.33 232.39 4.38

With Post-processing
Reference 1.66 28.99 1.00
Integer-only 1.08 37.35 1.08
Grayscale 2.42 53.12 1.83
Grayscale + Integer 2.51 52.12 1.80

As expected, the software optimisations significantly increased the speed of the algorithm. In the
integer-only case, there is an unexpected improvement to the accuracy as well—this was identified
to be due to the approximated log function in the integer version, which was clamped to not return
negative values, whereas the reference version included a log function that would sometimes give
very negative values that could cause misclassification of superpixels. The grayscale version does
increase the error rate, but this is still low enough to be suitable for many applications. It appears that
the grayscale optimisation has a much larger impact on speed than the integer optimisation, which
makes sense since there is substantially less data being processed in the grayscale version, while the
integer version relies on the differences between integer processing units and floating-point processing
units being significant.

It should be noted that with post-processing, the grayscale and grayscale + integer cases have
very similar error rates and speeds, performing far worse than without post-processing. This would
suggest that the current post-processing scheme of morphologically closing and then opening the
background mask may not be as suitable when applied to an output derived from grayscale data.
This is further supported by the fact that the grayscale and grayscale + integer versions have worse
accuracy with post-processing than without. It appears that this post-processing method also does not
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justify itself in terms of computation time, as in the reference and integer-only cases it only reduces the
error rate by about 0.1–0.2% but slows down the algorithm by 45–55%.

For a standard case where SuperBE is being used on a desktop PC or in the cloud, the grayscale
version without post-processing is likely to be sufficient in terms of accuracy while delivering very
fast speeds. If it is desirable to add the integer optimisation on top for hardware implementation,
then the effect on accuracy is relatively limited and likely to be acceptable in exchange for the further
improvement in speed. Based on these results, we targeted the grayscale + integer version without
post-processing for embedded implementation and hardware acceleration. A flowchart of the resultant
simplified algorithm is shown in Figure 4.

Figure 4. Flowchart of the simplified Greyscale + Integer algorithm for embedded implementation.

4. Hardware Acceleration

It is theoretically possible that SuperBE could be entirely implemented in hardware, for example
by describing the algorithm through components in a Hardware Description Language (HDL) and
then synthesising onto a FPGA. However, this is a very time consuming and high-skill task, and some
of the components might not deliver any better performance than if the same functionality was
implemented in software on a CPU. In our approach, we use HW/SW Co-design to achieve the
maximum improvement in speed for the least amount of development time, while maintaining
sufficient accuracy. This involves combining a Hard Processor System (HPS) which executes the
software, with hardware circuits on FPGA fabric. The most important step in partitioning an algorithm
between hardware and software is therefore determining which parts of the algorithm are the most
computationally expensive, so that if accelerated, would have the largest effect on the computation
time. In our case, we used Valgrind with Callgrind to perform execution profiling on the algorithm
across a few thousand frames. The results are shown in Table 2. Note that the values in this table do
not sum to 100% because we have not included steps that cannot be easily accelerated in our system,
such as reading the image in from memory or initialising matrices and vectors.

99



J. Imaging 2018, 4, 122

Table 2. Runtime Analysis of SuperBE.

Task Percentage Runtime (%)

Gaussian Blurring 4.17
Superpixel Classification

- Mean/Variance Calculation 50.58
- Similarity Calculation 8.35
- Superpixel Classification 0.12

Model Updating 0.17

In addition to a timing analysis, the communication requirements need to be taken into
consideration. In a HW/SW Co-design system, some data communication has to occur between
the Hardware (HW) component and the Software (SW) component, which requires a non-zero amount
of time. In [10], we identified that the communication channels can become the bottleneck that
prevents faster speeds from being achieved. If multiple non-sequential tasks are partitioned onto the
hardware, then data needs to be passed between the HW and SW units multiple times. Therefore,
it is desirable, where possible, to complete a contiguous block of the algorithm together on the HW
accelerator, and then pass the data to the SW processor for completion. Taking the computation and
communication times into account, we decided to accelerate the two earliest stages of the algorithm,
Gaussian blurring and the mean/variance calculation. It makes sense that these are the stages that
may require the most computation time because they process the largest amount of data—after the
mean/variance calculation, the algorithm represents each superpixels with two numbers, rather than
all of the pixel values within the superpixel, essentially reducing the amount of data that needs to
be processed in subsequent steps. We did not accelerate the similarity calculation step because there
would be significant communication and memory overheads, as the background model values would
need to be either transferred between the HPS and FPGA regularly or duplicated and updated on the
FPGA side as well as the HPS side. A high-level block diagram of the hardware partition is shown
in Figure 5, showing the data flow between the HPS and FPGA as well as the different hardware
components. The buffers shown are modular Scatter Gather DMA (mSGDMA) IP blocks from Intel
(Altera) that provide interfacing between the HPS and FPGA, allowing the memory-mapped interface
of the HPS to feed into a streaming First-In-First-Out (FIFO) buffer on the FPGA. Control signals are
omitted, since the only control signal comes from the HPS to the FPGA to tell the components to reset
and start again when a new image is being transferred across.

Figure 5. Top-level architectural diagram of the hardware partition, with arrows representing data flow.

Our target execution platform is the DE1-SoC development board, which has an Altera Cyclone V
5CSEMA5F31C6 System-on-Chip (SOC) device. This device includes a dual-core ARM Cortex A9
(which we refer to as the hard processor system or HPS) and FPGA logic cells, Digital Signal Processing
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(DSP) blocks, and memory resources. A conceptual diagram of the HPS-FPGA system is shown
in Figure 6, where the AMBA AXI bridges between the HPS and FPGA are shown in bold arrows.
These bridges allow two-way communication, so that the master side can send an instruction to request
data and have the result returned on the same bridge. Therefore, communication between the HPS and
FPGA is not single-cycle, creating an overhead for each transaction. We do save some transfer time by
interfacing the FPGA with the external memory (RAM) module so that image data can be read directly,
rather than transferring the data from the RAM to the HPS and then through the HPS-to-FPGA bridge.
We described our hardware components in VHDL, and then synthesised onto the FPGA fabric.

Figure 6. Block diagram showing the software (HPS) and hardware (FPGA) partitions of the Cyclone V
SOC device.

The Gaussian blur was implemented using a sliding window approach based on [10,36], shown in
Figure 7. Essentially, the filter operation is parallelised so that the convolution operator can be applied
to N × N pixels simultaneously, with a Gaussian kernel to create a blurring effect. To further reduce
hardware resource consumption, instead of implementing floating-point multipliers (since a standard
Gaussian kernel has floating-point values), the kernel was approximated with powers of two so that
the appropriate right shifts could be applied to the binary values instead using combinational logic.
While this is not a perfect Gaussian blur, it should sufficiently filter out high frequency noise, while
remaining a single-cycle operation with a small hardware footprint.

The mean and variance calculation was more challenging to implement in hardware, as it needs
to iterate through all of the pixel values within each superpixel. Traditionally, a two-pass method is
used, where the first pass calculates the mean, and then the second pass uses the previously computed
mean to determine the variance. This has a critical drawback in that either we have to transfer the
pixels between the SW and HW subsystems twice (once for each pass) to stream the data through,
or we need a substantial amount of memory on the HW side to store an entire image’s worth of pixels.
Instead, we used the modified Welford algorithm [37,38], shown in Algorithm 1, which can compute
mean and variance in a single pass but may introduce some small error.

This method does require the use of division, which normally requires multiple cycles and
is relatively computationally expensive in comparison to addition or multiplication operations.
To simplify the division operator, we used a multiply-shift approach and a Look Up Table (LUT)
for all possible division values, since we know that the operation is limited to integer values between
1 and 255. Empirically we found that for the image resolutions we were working with, the largest
superpixel contained 165 pixels, so we set a safe upper bound of 255 for the denominator, allowing us
to store a finite number of multiply-shift parameters. Using the LUT, we can approximate any division
operation by multiplying the numbers together and then shifting right, which is the same as dividing by
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a power of two. While this method does introduce some error since it is an integer approximation, it can
be completed in a single pass of all the pixels and is much faster than a standard division operation.

Algorithm 1 Modified Welford algorithm for calculating mean and variance in a single pass

1: n = 0, mean = 0, var = 0, delta1 = 0, delta2 = 0
2: for pixel in superpixel do

3: n += 1
4: delta1 += pixel - mean
5: mean += delta1 / n
6: delta2 = pixel - mean
7: var += delta1 * delta2
8: end for
9: var /= n-1

Figure 7. A block diagram showing a 5 × 5 Gaussian blur operator in hardware, where >> indicates a
right shift and G is a matrix representing the Gaussian kernel.

To summarise the communication requirements between the FPGA and HPS shown in Figure 5,
for each image being processed, the image data input stream receives one value per pixel (the greyscale
intensity of that pixel), the superpixel labels register receives one value per pixel (representing the
superpixel number for that pixel), and the mean and variance outputs register returns two numbers
per superpixel (a mean and a variance). In order to make full use of the communication buses between
the FPGA fabric and HPS, we use the full-size 128-bit bridge, with data packing to concatenate as
much data together before transmission in order to minimise the number of transactions and therefore
the communication overheads. The FPGA was clocked at 50 MHz during testing, with interconnect
logic clocked at 150 MHz, although it could potentially be run at a higher clock frequency depending
on the device.
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4.1. Hardware Evaluation

As shown in Table 3, running SuperBE in software alone (using the HPS only) is much slower than
on a Desktop PC. This is predominantly caused by the fact that the embedded processor is much slower,
running at 800 MHz with a Reduced Instruction Set Computer (RISC) architecture in comparison to
the 2.4 GHz+ CPU on a laptop or desktop. We use the HPS-only version as the reference embedded
benchmark against which hardware accelerated versions should be compared. Firstly, parallelising the
Gaussian blur operator has a negligible effect on speed, as the speed gain through parallelisation in
hardware barely covers the added communication overheads. It is theoretically possible to increase the
throughput of the Gaussian blur component further by instantiating multiple copies of the component
and dividing the image into blocks for processing in parallel [39], but this further increases the
hardware cost and is likely to still be constrained by the communication bandwidth between the HPS
and FPGA.

Table 3. Hardware Acceleration Results.

Version PWC (%) Speed (FPS)

Original Reference, HPS only 1.49 4.18
Grayscale + Integer, HPS only 1.74 18.31
Gaussian Blurring on FPGA 1.55 18.56
Mean/Variance on FPGA 3.22 29.16
Gaussian Blurring + Mean/Variance on FPGA 2.88 37.91

The hardware versions of the mean and variance operations add speed to the system, although this
is at the cost of also introducing significant error, which should be expected since we are using multiple
approximations in that calculation. This is an approximate computing trade-off, where we could have
a higher level of accuracy, but this would require more hardware resources and likely reduce the speed.
The final HW/SW Co-design version with both Gaussian blurring and the mean/variance calculation
accelerated on FPGA in one contiguous block yields a speed of 37.91 fps (normalised for 320 × 240
resolution images), a 2× increase from the HPS-only Grayscale + Integer version. This comes at the
cost of approximately 1% extra error introduced into the system, which is likely to be acceptable for
most purposes. More importantly, we can compare the final version to the original colour SuperBE
algorithm being run on the HPS to find the overall improvement from both the software and hardware
optimisations on the same test platform. The overall 9x speed improvement more than justifies the
1.4% higher error.

In all previous results in this paper, the computation times have been normalised for a 320 × 240
image size. In the first part of Table 4, we show how that time varies as the image resolution becomes
larger, reaching 720p. As the image becomes larger, the computation time will increase, which is
due to the fact that there are more pixels to process when calculating the mean and variance of each
superpixel. As the modified Welford algorithm allows this to be done in one pass, the increase in
computation time is linear, or in other words, this part of the algorithm is O(n) complex. Since this
algorithm is superpixel-based, the classification and model update steps do not increase based on the
image resolution, since the number of superpixels remains relatively similar. However, the resolution
is not the only factor that influences the computation time; the more dominating factor is how much
of the image is foreground, since SuperBE has to spend more time comparing superpixel values to
past model values to confirm that the superpixel is foreground. This is reflected in the second part
of Table 4, where the sequences with a grey background are from the lowFramerate and nightVideos
categories, where the processing time per frame is considerably slower for the same image resolutions
as the first part of the table. This is the primary reason that the normalised 320 × 240 speed is so much
lower than the computation time for the backdoor sequence even though it is also 320 × 240—the more
computationally expensive sequences pull the average computation time up (and therefore push the
fps down).
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Table 4. Average Computation Times on Selected Sequences from CDW2014.

Image Resolution and Sequence ms fps

320 × 240 on backdoor 15.3 65.2
352 × 240 on peopleInShade 16.9 59.3
360 × 240 on bungalows 17.3 58.0
380 × 244 on copyMachine 18.5 54.0
432 × 288 on fountain02 30.8 32.5
540 × 360 on skating 74.6 13.4
645 × 315 on turbulence2 75.7 13.2
720 × 480 on cubicle 69.0 14.5
720 × 576 on PETS2006 89.9 11.1
720 × 480 on blizzard 132.5 7.5
720 × 540 on wetsnow 149.1 6.7
320 × 240 on turnpike 57.0 17.6
480 × 295 on tramStation 97.7 10.2
595 × 245 on streetCornerAtNight 100.6 9.9
640 × 350 on tramCrossroad 166.2 6.0
700 × 450 on fluidHighway 217.4 4.6

5. Conclusions and Future Work

This work presents the acceleration of a background estimation algorithm, SuperBE, in both
the software and hardware worlds, through a systematic approach towards improving speed while
maintaining acceptable levels of accuracy. In software, the main optimisations focused on reducing
the amount of data to be processed by converting the algorithm into greyscale and integer-only
versions, yielding a 4.38× speed improvement over the original algorithm (without post-processing)
at the cost of a 0.6% higher error rate. In hardware, the main optimisations focused on accelerating
the Gaussian blur and mean/variance calculation steps, parallelising these steps and adding more
specialised computation units. This resulted in a further 2× speed improvement within the embedded
implementation. When combined, there is a 9× speed improvement over the original SuperBE
algorithm when executed on an embedded processor. This work shows that Hardware/Software
Co-design is a valid approach for improving the performance of algorithms, without needing to
invest significant resources to develop a pure hardware design. This work also provides evidence
that SuperBE can be accelerated sufficiently to be used in embedded real-time processing contexts,
especially where background estimation is used as a first step in an image processing pipeline to
reduce the workload of subsequent algorithms.

In future work, there is opportunity for improvements to be made to both speed and accuracy if
needed. One of the major challenges with Hardware/Software Co-design is always the introduction of
increase communication time between the hardware and software platforms, which is often assumed
by developed to be free but is actually non-zero and can contribute to a significant portion of the
overall computation time. Further reducing the usage of the HPS-FPGA bridges would decrease the
communication time, which could be done by directly loading images onto the FPGA and completing
preliminary processing there, and then only sending the mean and variance values for each superpixel
back across to the CPU for model comparison and updating. This may be challenging, as the first
frame still needs to be provided to the CPU for model initialisation, as it would be very difficult
to implement superpixel segmentation in hardware. Additionally, the value of doing so would be
limited since it is only executed once, during initialisation. Alternatively, a device with wider or faster
communication buses between the HPS and FPGA systems would reduce the communication and
co-ordination costs. There is also potential for further parallelisation—the SOC CPU has more than one
core, and multiple copies of the hardware components could be made to allow independent superpixels
to be processed simultaneously if more hardware resourcing was available on a larger device. It is
important to consider that most modern cameras provide HD 1080p image resolutions, so some further
acceleration may be necessary to achieve real-time processing of high resolution imagery and video.
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Lastly, accuracy could be improved by further investigating the effect of different data widths in the
hardware components; increasing the bit widths of the mean/variance component would likely make
the results more accurate, but would also consume more hardware resources. Investigating more
suitable post-processing schemes that clean up the output background masks, particularly in hardware,
would also improve accuracy but introduce additional computational complexity.
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Abstract: The growing need for smart surveillance solutions requires that modern video capturing
devices to be equipped with advance features, such as object detection, scene characterization,
and event detection, etc. Image segmentation into various connected regions is a vital pre-processing
step in these and other advanced computer vision algorithms. Thus, the inclusion of a hardware
accelerator for this task in the conventional image processing pipeline inevitably reduces the workload
for more advanced operations downstream. Moreover, design entry by using high-level synthesis
tools is gaining popularity for the facilitation of system development under a rapid prototyping
paradigm. To address these design requirements, we have developed a hardware accelerator for
image segmentation, based on an online K-Means algorithm using a Simulink high-level synthesis
tool. The developed hardware uses a standard pixel streaming protocol, and it can be readily inserted
into any image processing pipeline as an Intellectual Property (IP) core on a Field Programmable
Gate Array (FPGA). Furthermore, the proposed design reduces the hardware complexity of the
conventional architectures by employing a weighted instead of a moving average to update the
clusters. Experimental evidence has also been provided to demonstrate that the proposed weighted
average-based approach yields better results than the conventional moving average on test video
sequences. The synthesized hardware has been tested in real-time environment to process Full HD
video at 26.5 fps, while the estimated dynamic power consumption is less than 90 mW on the Xilinx
Zynq-7000 SOC.

Keywords: image segmentation; K-Means; image processing pipeline; FPGA; high-level synthesis

1. Introduction

The inclusion of advanced frame analysis techniques in live video streams has now become
mandatory in modern smart surveillance systems. Thus, the conventional image processing pipeline
of video cameras has transformed in the recent years to include some form of object, scene, and/or
event analysis mechanism as well [1]. Strict real-time and minimal power consumption constraints,
however, limit the number and the complexity of operations that can be included within the camera
modules [2]. Thus, some pre-processing tasks, such as motion estimation, image segmentation,
and trivial object detection tasks have attracted the attention of contemporary researchers [3].
Furthermore, the increasing complexity of computer vision systems has led designers to resort to
higher-level programming and synthesis tools, to shorten the design time. In this regard, Xilinx
High-Level Synthesis (HLS) [4] and Simulink Hardware Description Language (HDL) Coder [5] are
two widely cited tools. The latter is particularly suitable for the design of large computer vision
systems, since it incorporates extensive functional verification and the ability to compare with built-in
standard algorithms. Thus, the HDL coder supports quick synthesis and the functional verification
of a large number of image processing algorithms, such as custom filtering, colorspace conversion
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and image statistics collection, etc. However, the current toolbox version lacks the explicit support
for image segmentation tasks. To this end, we have developed a Simulink model to extend the
capability of this toolbox to support this vital function. Although, various advance algorithms for
scene segmentation have been put forward by researchers in recent years [6,7], we have chosen “Online
K-Means” [8,9] to be incorporated in our proposed hardware, to keep logic resource utilization at
minimum. Furthermore, it has been demonstrated that the use of weighted averaging in the place
of moving averaging leads to a reduction in logic resource requirements, without compromising the
result precision. Thus, the contributions of the conducted work can be summarized as follows:

• Development of a synthesizable Simulink model for the K-Means clustering operation, which is
currently not available as an intrinsic block in the Simulink HDL Coder/Vision HDL Coder
toolbox (Matlab R2018b)

• Logic resource conservation through the use of the weighted average in the place of the moving
average, which requires costly division operation

• Provision of experimental evidence to demonstrate the utility of the weighted average in
preserving the result fidelity of the on-line K-Means algorithm for image segmentation

The proposed design can be downloaded (https://sites.google.com/view/4mbilal/home/rnd/
image-segmentation, see Supplementary Materials) as an open-source HDL IP core for its direct
incorporation into the image processing pipeline hardware on Xilinx FPGAs. The associated Simulink
model and the testing environment are also available for practitioners and researchers, to facilitate
further development.

The rest of the paper is organized as follows. Section 2 contains the necessary background,
and it discusses the relevant works reported in the literature. Section 3 describes the details of the
hardware implementation of the online K-Means algorithm for scene segmentation, using the Simulink
HDL Coder toolbox. Section 4 presents the FPGA synthesis and implementation results, as well as a
comparison with contemporary works. The discussion is concluded with the identification of possible
future directions.

2. Background and Literature Review

Image or scene segmentation refers to the classification/grouping of pixels, such that each
class/group represents a differently perceived object. For this purpose, different features are employed
to discriminate one object from another. Texture, boundary, edges, and color are some of the
most widely employed features to distinguish distinct objects [6,7,10]. The corresponding numeric
representation of these features themselves are obtained through various arithmetic operations,
such as gradient filtering, colorspace conversion, and local histogram population [7,11–13] etc.
The extracted features are then “clustered” to form groups of pixels that are perceived to belong
to the same objects. Various clustering algorithms, such as Gaussian Mixture Modelling (GMM) [12,14],
Expectation-Maximization (EM) [11,13], K-Means [15,16], and their derivative algorithms [17] have
been used by different studies reported in the literature. Some form of post-processing operations,
such as ‘region growing’, are also required to assign unclassified pixels or outliers to form a neat and
closed boundary around the finally perceived objects. Figure 1 depicts an example of color-based
segmentation using a K-Means clustering algorithm without any post-processing.
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(a) (b) 

Figure 1. Image segmentation examples: (a) Input image [18]; (b) Segmented image with each
pixel classified as one of the four best matching dominant color clusters (prominent objects) in the
input image.

As mentioned earlier, the inclusion of the image segmentation option as a hardware module inside
the image processing pipeline of a camera is constrained by its low-power and complexity requirements.
Benetti et al. [19] have recently described the design of an ultra-low-power vision chip for video
surveillance, which can detect motion as well as segment the significant portions of the input frames
in real-time. This design is limited to specific scenarios with rigid hardware requirements. Moreover,
the camera sensor is severely limited in spatial resolution, and is hence, unsuitable for general-purpose
applications. Lie et al. [20] have described another neural network-based design for medical imaging
applications. Another hardware architecture proposed by Genovese and Napoli [21] uses GMM-based
segmentation to extract the foreground (moving objects) from the background. Liu et al. [22] have
proposed support vector machine-based image segmentation hardware. These designs target specific
applications (e.g., medical imaging and surveillance, etc.), and they are not tailored for inclusion
in general-purpose cameras. For general-purpose applications, simpler pixel-based operations are
generally preferred over a window-based operation, to reduce the memory and associated power
consumption requirements. Color-based segmentation satisfies this requirement, and thus, it naturally
stands out favorably over other options, which inevitably require line memory buffers for their
operation. Despite being algorithmically simple, color-based segmentation yields promising results,
and it has been the subject of various research efforts reported in the literature. Furthermore, since
pixel data are presented to the processing hardware in the raster scan order (stream), ‘online’ cluster
update algorithms are required. Liang and Klein [23] have demonstrated that ‘online EM’-based
clustering in fact performs better than batch processing. Liberty et al. [24] have demonstrated similar
results for ‘online K-Means’ algorithm. The latter is more suitable for hardware implementation, since
it involves fewer computations, involving fixed-point arithmetic.

Hussain et al. [25] have described an FPGA architecture of a K-Means clustering algorithm for a
bioinformatics application to process large genome datasets. Similarly, Kutty et al. [26] have described
a fully pipelined hardware for the K-Means algorithm that is capable of running at 400 MHz on a Xilinx
target FPGA. These designs, however, lack the ability to classify the incoming data (pixels) online. Thus,
these designs necessarily require full-frame storage in the external memory for classification at a later
stage. Moreover, the latter work fails to describe how the problem of the inherent feedback loop in the
K-Means algorithm has been handled while aggressively pipelining the hardware. Thus, although the
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attainment of higher speed has been mentioned as a result of the simple insertion of pipeline registers
in the distance calculation module, the cluster update feedback loop has been ignored in the overall
speed calculation. Recently, Raghavan and Perera [27] have proposed another FPGA-based design for
big-data applications. This design also involves frequent memory accesses, and is hence, not suitable
for insertion into image processing pipeline. Cahnilho et al. [28] have described a hardware-software
co-design approach to implement the clustering algorithm. The involvement of the processor in
the operation necessarily complicates the data flow while processing the pixel stream, and is hence,
not desirable in real-time systems. Li et al. [29] have used the Xilinx HLS tool to implement AXI4
bus compliant K-Means hardware accelerator. However, this design also uses main memory for the
cluster update feedback loop, and it is not suitable for its incorporation in a camera module as a
low-complexity add-on. Khawaja et al. [30] have described a multiprocessor architecture to accelerate
the K-Means algorithm. This design is meant for parallel processing at several nodes, and it is hence,
not suitable for insertion in a real-time image processing pipeline.

It can be noticed from the description of these hardware designs reported earlier in the literature
that the color-based online K-Means clustering is a popular choice among researchers, due to its
simpler architecture and performance. However, all of these designs allocate a large amount of logic
resources for the centroid update mechanism, due to the presence of a divider inside this module. In
this work, we propose to circumvent this huge cost by employing a weighted average instead of a
moving average for the cluster update. Weighted averaging replaces an explicit division operation
with multiplication by constants, and hence, it reduces circuit complexity. This mechanism relies
on the temporal redundancy in pixel values of adjacent video frames, and has been shown to work
without noticeable loss in accuracy. Moreover, the proposed design is implemented by using high-level
synthesis tools (Simulink) for quick insertion into larger systems, and it has been made publicly
available as a downloadable FPGA IP core.

3. Online K-Means Clustering Hardware Design Using Simulink

The proposed image segmentation hardware accelerator uses an online K-Means clustering
algorithm, and it has been designed with a standard Xilinx AXI4 streaming interface, so that it
can be inserted as an FPGA IP core within any image processing pipeline flexibly. This section
gives a brief overview of the underlying algorithm with some desired modifications, to minimize
the hardware resource requirements. This is followed by a detailed description of the proposed
hardware architecture.

3.1. The Online K-Means Algorithm for Color-Based Image Segmentation

The Online K-Means clustering algorithm is listed as follows.

Algorithm 1: Online K-Means clustering algorithm for color-based image segmentation

1: Initialize the ‘k’ number of centroids, C1, C2, C3 . . . . Ck with random values.
2: Initialize the counts n1, n2, n3 .... nk to zero.
3: while ‘pixel stream continues’ do

4: p ← RGB2YCbCr(p)
5: Match the input pixel, ‘p’, to a single centroid Ci by minimizing the distance ‖p − Ci‖2

6: Increment ni
7: Update the matching centroid, Ci, using moving average
8: Ĉi ← Ci + (1/ ni)(p − Ci)
9: Classify the input pixel, ‘p’, as ‘i’.
10: end

In our work, we have fixed the number of clusters, ‘k’, to be eight. The RGB format for pixel
representation is quite commonly used by frame capture and display devices. This representation has
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been, however, found to be less favorable for color matching in various studies [31–33]. The reason for
this is that RGB does not yield a perceptually uniform result when different colors are characterized,
based on a numeric distance. For this purpose, various researchers have suggested that RGB be
converted to LUV or LAB colorspaces [34,35], which yield a much better response (perceptually
uniform) to Euclidean distance when differentiating colors. These colorspaces achieve this by
decoupling the luminance (illumination) from the color (hue) information, using complex floating-point
operations. In our experiments, we have used the YCbCr format, which works similar to LUV and
LAB in decoupling the illumination from color information, but it is not as perceptually uniform. The
advantage of this, however, is that it is commonly employed by many commercial cameras and almost
all compression schemes. Moreover, it can be computed from the intrinsic RGB space by using simpler
arithmetic operations as follows:⎡⎢⎣ Y

Cb
Cr

⎤⎥⎦ =

⎡⎢⎣ 0.299 0.587 0.114
−0.169 −0.331 0.500
0.500 −0.419 −0.081

⎤⎥⎦
⎡⎢⎣ R

G
B

⎤⎥⎦ (1)

Thus, complex colorspace conversion operations can be entirely skipped if the incoming video
stream is already in this format. Figure 2 compares the results of using LAB, YCbCr, and RGB
colorspaces for segmentation with the Matlab intrinsic k-means function (L2-norm) on test images.
Eight clusters are considered in each case, and they have been depicted by using eight corresponding
pseudo-colors. It can be noticed that both LAB and YCbCr colorspaces give visually comparable
results. The difference is perceptively discernable only in ‘Akiyo’ and ‘Container’. In fact, in these
two cases, YCbCr gives better clustering of the blue screen (Akiyo) and the ocean (Container) than
LAB. Prasetyo et al. [36] and Shaik et al. [37] have also noted the utility of the YCbCr colorspace in
segmentation operation. Sajid et al. [38] have similarly employed YCbCr for background–foreground
clustering. Figure 2 shows that the RGB colorspace works well in the case of pixel groups with markedly
different shades of hue and illumination values. However, it fails to account for subtle changes in
the illumination values of the pixels belonging to the same object (i.e., similar hue information) and
clusters these separately. Thus, the thin outline of the screen in the background of ‘Akiyo’ is wrongly
identified as a different object. Similarly, the field is not clustered properly in ‘Soccer’. Both YCbCr
and LAB yield a better clustering solution in these cases.

After colorspace conversion, the luminance (intensity) is depicted by the “Y” channel, while
chrominance (color information) is described by the other two components, i.e., “Cb” and “Cr”. All
three channels can be used to compute the vector distance of the current pixels from the centroids of the
respective clusters. However, omitting the luminance channel (Y/L) while computing the distance has
favorable results in some cases, as shown in Figure 3. It can be observed that including the luminance
information leads to an incorrect segmentation of the sky into two segments, due to the brightness
variation (Y/L channel). Removing this channel from the distance calculation rectifies the situation
for both the YCbCr and LAB colorspaces. Moreover, using L1-norm in place of L2-norm for distance
calculation gives almost identical results. This finding is in line with the extensive experimental
results reported by Estlick et al. [39]. They found L1-norm to not only reduce the computational
complexity, but also to improve the segmentation results in some cases. In our hardware, the use of L1
or L2-norm and the inclusion/exclusion of the “Y” channel can be selected via independent switches
under software control, to facilitate catering to different environments.
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 (a) (b) (c) (d) 

Figure 2. Color-based segmentation using the Matlab intrinsic k-means function: (a) Input image;
(b) Output using the “LAB” colorspace; (c) Output using the “YCbCr” colorspace; (d) Output using the
“RGB” colorspace.

 
 (a) (b) (c) (d) 

Figure 3. The Effect of using the luminance channel and the distance measure on clustering
performance: (a) Original image; (b) Including the Y/L channel with L2 norm; (c) Excluding the
Y/L channel with L2 norm; (d) Excluding the Y/L channel with L1 norm.
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In offline applications, the centroids are determined after processing all of the pixels in the
given image/frame. The output classification is calculated during the second pass, once all of the
centroids are available. In real-time applications, on the other hand, the centroids of the matched
cluster (minimum distance) are updated by using the moving average formula. This involves a division
operation, and it is the source of major complexity in hardware implementations, as discussed in the
previous section. The pixel classification, the matching cluster’s index, ‘I’, is simultaneously output.

In order to remove the division operation from the algorithm, we have incorporated the “weighted
average” instead of the moving average in step 8 of Algorithm 1. This can be rewritten as:

Ĉi = Ci

(
ni − 1

ni

)
+ p

(
1
ni

)
(2)

The weighted average formula, on the other hand, yields the following formulation:

Ĉi = Ci(∝) + p(1− ∝) (3)

where ‘∝’ is a predetermined constant that is close to 1, e.g., ≈ 0.999. It can be noticed that although
the weighted averaging does not involve division, it approximates the moving average in the limit:

lim
n→∞

(
ni − 1

ni

)
≈ 1 (4)

Practically, this limit is reached before processing even 10 lines of pixels in a moderate-resolution
video frame, such as VGA (640 × 480). Thus, the revised formulation of the averaging operation
in Equation (3) removes the need for expensive division operation. This alteration, however, does
not affect the clustering performance of the overall algorithm noticeably, since the cluster centroids
invariably depict similar variations during the processing of the whole frame, for both the moving and
weighted average operations in the online clustering methodology. This behavior has been depicted
for a representative centroid during the first 15 frames of the test video sequence “Hall” in Figure 4.
It can be observed that both the moving and the weighted averages fluctuate during the processing of
the frame, as new pixels are processed in the raster scan order. For reference, centroid values from
an offline implementation of K-Means (Matlab intrinsic function) have also been plotted alongside.
These have been labelled “True Average”, since offline methods access whole frames at a time to
determine the centroid values. These a-priori values remain constant during the second pass of the
offline algorithm when pixels are classified. We have plotted these values as references to judge the
performance of the moving and weighted average-based on-line methods, respectively. Both the
moving and weighted average-based methods initialize the cluster centroids with identical values
(seeds) at the start of the first frame. It was noticed that for ∝ = 0.999, the moving average tracks
the static true value very well. However, at the start, it takes roughly six frames for all three values
(YCbCr) to settle. This “settling” time will be needed whenever rapid scene changes occur in the video
frames, and the centroids shift positions. At 15 frames per seconds (fps), this translates to less than
half a second. A higher value will further increase this delay. Decreasing ∝ to 0.99, decreases the
settling time to just one frame but also leads to more fluctuation. It is worth noting that even at this
rate, it causes lower fluctuations than the moving average. Thus, the weighted average is a better
choice in either case.
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Figure 4. Effect of choice of ‘α’ on a representative centroid’s values for the first 15 frames of ‘Hall’ test
video sequence.

To further investigate the performance of weightage average-based on-line algorithm, the
combined error in the calculation of all of the centroid centers with reference to standard offline
implementation has been gathered on test video sequences. The root means squared error (RMSE)
has been used as the metric to evaluate different settings, and it has been reported on per-frame
basis. Eight clusters have been considered in all of the experiments. “Y” information is included and
L2-norm is used for distance calculation. The centroids are randomly initialized around the middle
value, 127, of the dynamic range [0 255] of the pixels. Figure 5 plots the RMSE per frame for three video
sequences, with high motion content. These plots further confirm the observations made in Figure 4.
Weighted average with ∝ = 0.999, yields the lowest RMSE for most of the frames. At the start and
during rapid scene changes, however, it rises to higher values, as discussed previously. The moving
average performs poorly in all if the cases considered, except during a few frames in ‘Foreman’ and ‘Ice’
sequences. Thus, even for high-motion video sequences, the error in the centroid’s values, calculated
through the weighted average (∝ = 0.999) is upper-bounded by the error for the moving average, with
reference to the corresponding offline implementation.
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Figure 5. Error deviation in the centroid of the online K-Means algorithms with respect to reference
offline algorithm on test video sequences with high motion content.

RMSE values for the full test video sequences have been reproduced in Table 1. It can be observed
from these values that the weighted average performs better than moving average on all the sequences
on average. The former only occasionally performs poorly in sudden scene changes, and at the very
start of the algorithm as observed in Figures 4 and 5.
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Table 1. A comparison of online K-Means algorithms in terms of the average error in centroid values
from the offline approach.

Video Sequence Resolution Number of Frames

RMSE

Moving Average
Weighted Average

∝ = 0.999

Akiyo 352 × 288 300 11.82 7.14
Container 352 × 288 300 7.51 7.13
Foreman 352 × 288 300 9.04 6.44
Carphone 352 × 288 382 6.62 5.77

Claire 176 × 144 494 9.56 6.75
Hall 352 × 288 300 5.96 4.21

Highway 352 × 288 2000 7.26 4.61
Soccer 352 × 288 150 8.06 4.71

Ice 352 × 288 240 3.75 3.01
Tennis 352 × 288 150 8.63 6.83

In conclusion, weighted average is a better choice than the moving average, not only due to its
lower computational complexity, but also its better performance. Experimental evidence dictates that
∝ = 0.999 yields better results than the other choices. Decreasing this value leads to poorer overall
performance. On the other hand, further increasing this value leads to poorer response on startup
and high-motion-content frames. Moreover, increasing this value requires further precision in its
representation which leads to subsequently more complex hardware.

3.2. Simulink Design Entry and High-Level Synthesis

The online K-Means algorithm has been implemented as a Simulink model to generate the
corresponding Xilinx AXI4 streaming protocol-compatible IP core. The top-level module has been
depicted in Figure 6.

 
Figure 6. The Simulink model developed for the online K-Means clustering algorithm with Xilinx
AXI-4 compliant standard pixel streaming interfaces.

As discussed earlier, the first operation performed on the pixel stream is the conversion from RGB
to the YCbCr colorspace, in order to use only color components for segmentation. On the output side,
the reverse transformation is necessary if the pixel values are replaced with their associated cluster
values. The other option is to simply output the fixed colors that correspond to each identified cluster
(pseudo-coloring), as shown in Figure 7. The former option gives a more pleasing output, but the
latter may be more suitable for certain downstream tasks. For demonstration purposes, our hardware
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uses the former option, and this leads to slightly more resources being utilized by the YCbCr2RGB
conversion. Both of these conversion modules are available in the Simulink Vision HDL toolbox.

(a) (b) (c) 

Figure 7. Image segmentation output options: (a) Input image [18]; (b) Output image with each
pixel replaced by its corresponding cluster’s centroid value; (c) Output image with pseudo-colors to
denote clustering.

After the colorspace conversion, the color components, i.e., the Cb and Cr values of each pixel,
are compared against the current centroids of each cluster (eight in our model) in the ‘Comparisons’
module. These centroids are initialized at random to ensure the proper operation of the K-Means
clustering, as discussed in the literature. The “Comparisons” module outputs the classification value
of the current pixel (Figure 8), as well as the address of the matched cluster for updating its centroid in
the “Clusters Update” module. The updated module uses Equation (3) to output the new centroids for
the next cycle. These two modules are elaborated below.

Figure 8. Comparison module to find the matching cluster’s centroid.

3.2.1. Comparisons Module

The comparisons module takes in pixel data in the YCbCr format, and compares it with the
corresponding centroids of eight clusters in the first stage. For this purpose, eight “Distance Calculation
Modules” (DCM) are employed. These DCMs have the option to use either the L1 or L2-norm as
the heuristic for a match, using “SAD_SSE_SW” switch. They can also include or exclude the ‘Y’
(luminance) component, while finding the best match between current pixel and the corresponding
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centroid through “Y_Disable” switch. The second stage is a binary tree of the comparators and
multiplexers which successively propagates the centroid with minimum distance forward. Finally,
the centroid of the best matching cluster and its 3-bit encoded address is output based on the logical
outcome of each comparator.

3.2.2. Clusters Update Module

The centroids of eight clusters are updated using the output from ‘Comparisons Module’ and the
current pixel. The centroid values are stored in registers as fixed-point values using a word size of 18
bits with eight fractional bits. The precision for fractional bits has been decided, based on the accuracy
loss behavior that is depicted in Figure 9. RMSE for test video sequences were gathered for different
bit precisions. It was observed that the RMSE error metric shows a sharp rise when the fractional bits
are reduced below 6. On the other hand, the allocation of up to 14 bits yields a performance that is
at par with the double-precision floating point software implementation. Thus, eight fractional bits
seems to be a reasonable choice. Ten further bits were allocated for the sign and magnitude, with a
1-bit margin for overflows. The centroids are initialized to random values around 127 at the start, as
used in the experimental setup described in Section 3.1.

Figure 9. Effect of the fixed-point arithmetic on result accuracy.

The update method (Equation (3)) has been implemented as a user-defined function module
with the option to initialize the centroids at startup, using the ‘vStart’ signal that is available from
AXI4 streaming bus. All other components have been implemented by using Simulink intrinsic
modules that support direct synthesis. Hence, the entire design framework is highly flexible, with
support for functionality testing by using Simulink media interfaces. Moreover, fixed-point hardware
implementation can be compared against the corresponding full-precision software model.

Finally, the Simulink HDL Coder is invoked to convert the hardware model into AXI4 streaming
bus compliant IP core in the form of HDL sources. To test the functionality of this IP core in a practical
environment, a Hardware–Software co-design (HW-SW) has been setup on a Xilinx Zedboard, which
houses Xilinx Zynq-7000 AP SoC XC7Z020-CLG484 FPGA running at 100 MHz. The hardware portion
has been implemented in the Xilinx Vivado tool, with all the peripherals, as well as the segmentation
IP core connected across a single bus, as shown in Figure 10. The software environment is based
on Xillinux, an operating system based on Ubuntu for ARM. The application to test the IP core
functionality makes use of OpenCV computer vision library as well. This setup ensures that three
different sources of video streams can be used to feed the developed IP core, i.e., the High Definition
Multimedia Interface (HDMI) on the Zedboard, USB webcam or the stored files on the flash memory
card decoded through software library. For the former two sources, the AXI Video DMA core accesses
a dedicated section of Random Access Memory (RAM) to read/write input/output frames.
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Figure 10. Hardware-software co-design architecture.

Figure 11 shows an operating scenario where an image that is stored on the flash memory card
is written to RAM in software. The segmentation IP core reads (via DMA) this image, processes it
and then writes the output image (via DMA) to a different RAM segment. The software subsequently
displays the output via OpenCV library functions. The continuous video stream from a USB webcam
can be used as input in the similar fashion. For HDMI/FMC input/output, however, video capture
and display devices need to be connected to the respective peripheral channel. For experimentation,
the input/output frame size has been fixed at VGA resolution (640 × 480). The entire framework,
including the Simulink models, the Vivado project files for the HW-SW co-design, and software
routines are available for download as open-source code, to facilitate researchers and practitioners.

 
Figure 11. Hardware–software co-design implemented on the Zedboard FPGA platform.
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4. Results

The proposed IP core for image segmentation, using the online K-Means algorithm, has been
synthesized, along with the entire HW-SW co-design, using Vivado 2016. The synthesis results have
been reproduced in Table 2, and compared with those for similar structures reported in the literature.

Table 2. FPGA synthesis results.

Design FPGA Slice LUT
Slice

Registers
BRAM DSP

Dynamic
Power

Hussain [25] Xilinx Virtex-IV 2208 3022 90 Kb - -
Kutty [26] Xilinx Virtex-VI 2110 8011 288 Kb 112 -
Raghavan [27] Xilinx Virtex-6 6916 14,132 - 88 -
Cahnilho [28] Xilinx Zynq-7000 1583 1016 36 Kb 7 -
Li [29] Xilinx Zynq-7000 178,185 208,152 5742 Kb 412 -

Proposed

Full IP Xilinx Zynq-7000 3402 2443 0 62 86 mW
AXI 458 538 0 0 4 mW
CSC 719 1014 0 14 7 mW

Clusters
Update 1643 876 0 48 72 mW

Comparisons 582 15 0 0 3 mW

Hussain’s hardware [25] for bioinformatics applications also uses fixed eight clusters, but it does
not include the logic resources that are utilized by the interfaces in their final report. This design
also does not include the colorspace conversion modules. Thus, in comparison, our design delivers
more functionality for similar Look Up Table (LUT) resource consumption without utilizing any
Block Random Access Memory (BRAM) parts. Their design is heavily parallelized, and it runs at 126
MHz. As a result, many more slice registers are consumed by the circuit. Furthermore, it requires
on-chip BRAM, as well as the external main memory, for complete operation. Similarly, Kutty’s
architecture [26] consumes a comparable number of logic resources, but even more registers and
BRAM resources. This design also achieves a high operating frequency of 400 MHz by heavily
pipelining the circuit. However, both of these designs require the external RAM for the cluster update
feedback loop, as discussed in Section 2. Thus, achieving higher clock rates for the hardware through
pipelining without the loop is meaningless, since the overall operation is much slower, due to the
required accesses to the main memory. This fact has been recognized by Raghavan et al. [27] as well,
who have described another hardware architecture for big-data applications. Cahnilho et al. [28] have
only reported the hardware resource utilization for the comparisons module, and not for the full
operation. Moreover, their design requires software intervention which prohibits its inclusion in an
image processing pipeline. Li’s design [29] is based on a map-reduce technique, which may be suitable
for big-data applications, but not for real-time image segmentation, since it requires an exorbitant
amount of logic and Digital Signal Processing (DSP) resources for its implementation.

Table 2 also gives the breakup of the logic resource utilization and the estimated dynamic power
consumption for the different constituent components in the proposed design. These values have been
noted from the Vivado power estimation tool after a place-and-route task for the FPGA bit-stream
generation. As expected, the clusters update module consumes the most resources, due to the presence
of the fixed-point arithmetic implementation using Equation (3), and the associated registers. It also
consumes the most dynamic power, i.e., 72 mW, due to these clocked registers. It should be noted,
however, that these estimated power numbers have limited accuracy, and their absolute values are
likely to be very different in practical scenarios. It should be noted that the colorspace conversion
modules take up to 21% of the share of the slice LUTs, and almost 40% of the registers. These modules
are synthesized via the built-in Simulink Vision HDL toolbox blocks.

In conclusion, the proposed hardware design is very well suited for real-time image segmentation,
since it requires minimal logic resources, and it does not depend on the external memory for complete
operation. As described earlier, and as is evident from Figure 10, the proposed design can be readily
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inserted into any generic image processing pipeline as a stand-alone IP core. Despite using high-level
synthesis tool for its development, the developed core is efficient both in terms of resource utilization,
speed and power consumption. The final synthesized core is able to run at 55 MHz, which translates
to 59.7 fps and 26.5 fps for HD (1280 × 720) and Full HD (1920 × 1080) video resolutions respectively
while consuming only little power (≈86 mW). To accommodate this lower clock, the AXI interface
runs off a slower clock instead of the default 100 MHz system-wide clock. It may be reiterated that the
designs reported earlier in the literature do not use the immediate feedback loop in their calculation,
and hence, their mentioned speeds are not representative of the full-operation conditions. The low
values of estimated power consumption further affirm the suitability of the developed IP core for
low-power image processing pipelines.

In this paper, a fixed number of clusters, i.e., eight, was used to illustrate the design principle
with weighted average in place of moving average. The extension to a larger number of clusters
in powers of two is straightforward, given the modular nature of the design shown in Figure 8
(the comparisons module). The developed Simulink framework for the online K-Means clustering
algorithm can be extended to include the EM and GMM algorithms, with minimal effort in the future.
For this purpose, the online calculation of variance needs to be added, along with modifications to the
distance calculation modules.

Supplementary Materials: The described hardware accelerator IP core and the relevant Simulink models, as
well as the Vivado project for HW-SW co-design, are available for download at (https://sites.google.com/view/
4mbilal/home/rnd/image-segmentation).

Author Contributions: Conceptualization, M.B.; Methodology, M.B.; Software/Hardware, A.B.; Validation,
A.B. and M.B.; Formal Analysis, A.B.; Investigation, A.B. and M.B.; Resources, M.B.; Writing—Original Draft
Preparation, A.B.; Writing—Review & Editing, A.B. and M.B.; Supervision, M.B.; Project Administration, M.B.

Funding: This research received no external funding.

Acknowledgments: The authors would like to acknowledge the logistical support provided by Ubaid Muhsen
Al-Saggaf, the director of Center of Excellence in Intelligent Engineering System at King Abdulaziz University,
Jeddah, KSA.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. New Eyes for the IoT—[Opinion]. IEEE Spectr. 2018, 55, 24. [CrossRef]
2. Lubana, E.S.; Dick, R.P. Digital Foveation: An Energy-Aware Machine Vision Framework. IEEE Trans.

Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 2371–2380. [CrossRef]
3. Seib, V.; Christ-Friedmann, S.; Thierfelder, S.; Paulus, D. Object class and instance recognition on RGB-D

data. In Proceedings of the Sixth International Conference on Machine Vision (ICMV 13), London, UK,
16–17 November 2013; p. 7.

4. Muslim, F.B.; Ma, L.; Roozmeh, M.; Lavagno, L. Efficient FPGA Implementation of OpenCL
High-Performance Computing Applications via High-Level Synthesis. IEEE Access 2017, 5, 2747–2762.
[CrossRef]

5. Hai, J.C.T.; Pun, O.C.; Haw, T.W. Accelerating video and image processing design for FPGA using HDL coder
and simulink. In Proceedings of the 2015 IEEE Conference on Sustainable Utilization and Development in
Engineering and Technology (CSUDET), Selangor, Malaysia, 15–17 October 2015; pp. 1–5.

6. Yuheng, S.; Hao, Y. Image Segmentation Algorithms Overview. arXiv, 2017; arXiv:1707.02051.
7. Cardoso, J.S.; Corte-Real, L. Toward a generic evaluation of image segmentation. IEEE Trans. Image Process.

2005, 14, 1773–1782. [CrossRef]
8. Pereyra, M.; McLaughlin, S. Fast Unsupervised Bayesian Image Segmentation with Adaptive Spatial

Regularisation. IEEE Trans. Image Process. 2017, 26, 2577–2587. [CrossRef]
9. Isa, N.A.M.; Salamah, S.A.; Ngah, U.K. Adaptive fuzzy moving K-means clustering algorithm for image

segmentation. IEEE Trans. Consum. Electron. 2009, 55, 2145–2153. [CrossRef]

122



J. Imaging 2019, 5, 38

10. Ghosh, N.; Agrawal, S.; Motwani, M. A Survey of Feature Extraction for Content-Based Image Retrieval
System. In Proceedings of the International Conference on Recent Advancement on Computer and
Communication, Bhopal, India, 26–27 May 2017; pp. 305–313.

11. Belongie, S.; Carson, C.; Greenspan, H.; Malik, J. Color- and texture-based image segmentation using EM
and its application to content-based image retrieval. In Proceedings of the Sixth International Conference on
Computer Vision (IEEE Cat. No. 98CH36271), Bombay, India, 7 January 1998; pp. 675–682.

12. Farid, M.S.; Lucenteforte, M.; Grangetto, M. DOST: A distributed object segmentation tool. Multimed. Tools
Appl. 2018, 77, 20839–20862. [CrossRef]

13. Carson, C.; Belongie, S.; Greenspan, H.; Malik, J. Blobworld: Image segmentation using
expectation-maximization and its application to image querying. IEEE Trans. Pattern Anal. Mach. Intell. 2002,
24, 1026–1038. [CrossRef]

14. Liang, J.; Guo, J.; Liu, X.; Lao, S. Fine-Grained Image Classification with Gaussian Mixture Layer. IEEE Access
2018, 6, 53356–53367. [CrossRef]

15. Dhanachandra, N.; Manglem, K.; Chanu, Y.J. Image Segmentation Using K-means Clustering Algorithm and
Subtractive Clustering Algorithm. Procedia Comput. Sci. 2015, 54, 764–771. [CrossRef]

16. Qureshi, M.N.; Ahamad, M.V. An Improved Method for Image Segmentation Using K-Means Clustering
with Neutrosophic Logic. Procedia Comput. Sci. 2018, 132, 534–540. [CrossRef]

17. Bahadure, N.B.; Ray, A.K.; Thethi, H.P. Performance analysis of image segmentation using watershed
algorithm, fuzzy C-means of clustering algorithm and Simulink design. In Proceedings of the 2016 3rd
International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi,
India, 16–18 March 2016; pp. 1160–1164.

18. Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application
to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the Eighth
IEEE International Conference on Computer Vision (ICCV 2001), Vancouver, BC, Canada, 7–14 July 2001;
Volume 412, pp. 416–423.

19. Benetti, M.; Gottardi, M.; Mayr, T.; Passerone, R. A Low-Power Vision System With Adaptive Background
Subtraction and Image Segmentation for Unusual Event Detection. IEEE Trans. Circuits Syst. I Regul. Pap.
2018, 65, 3842–3853. [CrossRef]

20. Liu, Z.; Zhuo, C.; Xu, X. Efficient segmentation method using quantised and non-linear CeNN for breast
tumour classification. Electron. Lett. 2018, 54, 737–738. [CrossRef]

21. Genovese, M.; Napoli, E. ASIC and FPGA Implementation of the Gaussian Mixture Model Algorithm for
Real-Time Segmentation of High Definition Video. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2014, 22,
537–547. [CrossRef]

22. Liu, H.; Zhao, Y.; Xie, G. Image segmentation implementation based on FPGA and SVM. In Proceedings
of the 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan,
24–26 April 2017; pp. 405–409.

23. Liang, P.; Klein, D. Online EM for unsupervised models. In Proceedings of the Human Language
Technologies: The 2009 Annual Conference of the North American Chapter of the Association for
Computational Linguistics, Boulder, CO, USA, 1–3 June 2009; pp. 611–619.

24. Liberty, E.; Sriharsha, R.; Sviridenko, M. An Algorithm for Online K-Means Clustering. arXiv, 2014;
arXiv:1412.5721.

25. Hussain, H.M.; Benkrid, K.; Seker, H.; Erdogan, A.T. FPGA implementation of K-means algorithm for
bioinformatics application: An accelerated approach to clustering Microarray data. In Proceedings of the
2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), San Diego, CA, USA, 6–9 June
2011; pp. 248–255.

26. Kutty, J.S.S.; Boussaid, F.; Amira, A. A high speed configurable FPGA architecture for K-mean clustering.
In Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing,
China, 19–23 May 2013; pp. 1801–1804.

27. Raghavan, R.; Perera, D.G. A fast and scalable FPGA-based parallel processing architecture for K-means
clustering for big data analysis. In Proceedings of the 2017 IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing (PACRIM), Victoria, BC, Canada, 21–23 August 2017; pp. 1–8.

123



J. Imaging 2019, 5, 38

28. Canilho, J.; Véstias, M.; Neto, H. Multi-core for K-means clustering on FPGA. In Proceedings of the 2016
26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne, Switzerland,
29 August–2 September 2016; pp. 1–4.

29. Li, Z.; Jin, J.; Wang, L. High-performance K-means Implementation based on a Coarse-grained Map-Reduce
Architecture. CoRR 2016.

30. Khawaja, S.G.; Akram, M.U.; Khan, S.A.; Ajmal, A. A novel multiprocessor architecture for K-means
clustering algorithm based on network-on-chip. In Proceedings of the 2016 19th International Multi-Topic
Conference (INMIC), Islamabad, Pakistan, 5–6 December 2016; pp. 1–5.

31. Kumar, P.; Miklavcic, J.S. Analytical Study of Colour Spaces for Plant Pixel Detection. J. Imaging 2018, 4, 42.
[CrossRef]

32. Guo, D.; Ming, X. Color clustering and learning for image segmentation based on neural networks.
IEEE Trans. Neural Netw. 2005, 16, 925–936. [CrossRef]

33. Sawicki, D.J.; Miziolek, W. Human colour skin detection in CMYK colour space. IET Image Process. 2015, 9,
751–757. [CrossRef]

34. Wang, X.; Tang, Y.; Masnou, S.; Chen, L. A Global/Local Affinity Graph for Image Segmentation. IEEE Trans.
Image Process. 2015, 24, 1399–1411. [CrossRef]

35. Scharr, H.; Minervini, M.; French, A.P.; Klukas, C.; Kramer, D.M.; Liu, X.; Luengo, I.; Pape, J.-M.; Polder, G.;
Vukadinovic, D.; et al. Leaf segmentation in plant phenotyping: A collation study. Mach. Vis. Appl. 2016, 27,
585–606. [CrossRef]

36. Prasetyo, E.; Adityo, R.D.; Suciati, N.; Fatichah, C. Mango leaf image segmentation on HSV and YCbCr color
spaces using Otsu thresholding. In Proceedings of the 2017 3rd International Conference on Science and
Technology—Computer (ICST), Yogyakarta, Indonesia, 11–12 July 2017; pp. 99–103.

37. Shaik, K.B.; Ganesan, P.; Kalist, V.; Sathish, B.S.; Jenitha, J.M.M. Comparative Study of Skin Color Detection
and Segmentation in HSV and YCbCr Color Space. Procedia Comput. Sci. 2015, 57, 41–48. [CrossRef]

38. Sajid, H.; Cheung, S.S. Universal Multimode Background Subtraction. IEEE Trans. Image Process. 2017, 26,
3249–3260. [CrossRef]

39. Estlick, M.; Leeser, M.; Theiler, J.; Szymanski, J.J. Algorithmic transformations in the implementation of K-
means clustering on reconfigurable hardware. In Proceedings of the 2001 ACM/SIGDA Ninth International
Symposium on Field Programmable Gate Arrays, Monterey, CA, USA, 11–13 February 2001; pp. 103–110.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

124



Journal of

Imaging

Article

Efficient FPGA Implementation of Automatic Nuclei
Detection in Histopathology Images

Haonan Zhou, Raju Machupalli and Mrinal Mandal *

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada;
haonan8@ualberta.ca (H.Z.); machupal@ualberta.ca (R.M.)
* Correspondence: mmandal@ualberta.ca

Received: 30 November 2018; Accepted: 11 January 2019; Published: 17 January 2019

Abstract: Accurate and efficient detection of cell nuclei is an important step towards the development
of a pathology-based Computer Aided Diagnosis. Generally, high-resolution histopathology images
are very large, in the order of billion pixels, therefore nuclei detection is a highly compute intensive
task, and software implementation requires a significant amount of processing time. To assist the
doctors in real time, special hardware accelerators, which can reduce the processing time, are required.
In this paper, we propose a Field Programmable Gate Array (FPGA) implementation of automated
nuclei detection algorithm using generalized Laplacian of Gaussian filters. The experimental results
show that the implemented architecture has the potential to provide a significant improvement in
processing time without losing detection accuracy.

Keywords: FPGA implementation; hardware architecture; image processing; histopathology;
generalized Laplacian of Gaussian filter; nuclei detection; mean Shift clustering

1. Introduction

Many diseases are diagnosed based on the cellular structures in their respective tissue specimens
as the cellular structures can provide quantitative information about the diseases and help in the
study of disease progression. For example, the density of cell nuclei in histological images is an
important feature for automatic breast or skin tumor grading [1]. The difference between normal skin
cells and abnormal skin cells can be seen in Figure 1. In human intervened diagnosis procedure,
histopathologists typically examine the tissue under a microscope, and the diagnostic accuracy
depends on the pathologists’ personal experience, which sometimes leads to intra and inter observer
variability [2]. To overcome these limitations, several computer-aided diagnosis (CAD) techniques
have been proposed in the literature for the diagnosis. Due to a wide variety of nuclei appearances
in different organs, and staining procedures, accurate and efficient segmentation of cell nuclei is an
important step in most histopathology-based CAD techniques. The detection of cells in a histology
image may also be the first step towards cell segmentation.

Since cell nuclei typically have circular shapes, they can be considered as blob-like structures
which can be detected efficiently using scale-space theory. Xu et al. [1] proposed an efficient technique
for nuclei detection using directional gLOG (generalized Laplacian of Gaussian) kernels on red channel
image of H&E (Hematoxylin and Eosin) strained color histopathology images. The technique generates
intermediate response maps using directional gLOG kernels. It is possible to obtain more than one point
from different response maps, corresponding to the same nuclei in the input image. Therefore, seeds
from these response maps are merged using mean-shift clustering. It gives a promising performance
in nuclei seeds detection.
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Figure 1. Example of a skin Whole Slide image (WSI), (a) normal skin image, (b) melanoma affected
skin image.

The histological images typically have a large size. For example, a 20 mm2 glass slide
tissue scanned with a resolution of 0.11625 μm/pixel (at 40× magnification) will consist of about
2.96 × 1010 pixels, and will approximately require 80 GB of storage space in an uncompressed color
format (24bits/pixel) [2]. In addition, gLoG kernels generally require significant computation. As a
result, the nuclei detection techniques typically have high computational complexity, and software
implementation on general purpose processors (GPP) requires a significant amount of processing
time. For real-time diagnosis, it would be helpful to develop a hardware accelerator for faster nuclei
detection. With advances in CMOS and fabrication technology, Field Programmable Gate Array (FPGA)
and Graphical Processing Unit (GPU) are being widely used as a High-Performance Computing (HPC)
solution to overcome the GPP limitations. GPUs are efficient for data parallel applications with high
memory bandwidth requirement and are typically programmed using high-level languages, such as
CUDA. On the other hand, FPGAs have more flexibility than GPUs and are efficient for both data and
task parallel applications.

In this paper, we propose an FPGA-based hardware architecture for cell nuclei detection in a
histology image obtained using H&E stain. The proposed architecture uses data parallelism. To reduce
the computation burden and power consumption, floating point arithmetic is implemented in a
fixed-point form without losing much accuracy. The architecture has low latency. The organization
of the rest of the paper is as follows. Section 2 gives details on nuclei detection algorithm and its
implementation. Section 3 presents experimental results and performance evaluation. Discussion on
results is presented in Section 4, followed by conclusion in Section 5.

2. Materials and Methods

The schematic of the proposed accelerator architecture for nuclei detection is shown in Figure 2.
It has been found that [1] the nuclei can be detected efficiently using the red channel of the H&E
stained RGB image. Therefore, the red channel of the histology image is used as the input gray
scale image. The architecture mainly contains six modules: Gaussian filter, gLoG filter, Regional
Maxima, Thresholding, Masking and Mean-shift clustering. The Gaussian filter smooths an input
image. The gLoG filter is then applied to generate response maps corresponding to different scales
and orientation of the gLoG kernels. The Regional Maxima module generates nuclei seed candidates
from the response maps. In order to reduce the number of false positive seeds, a mask is generated by
applying the Thresholding module on the Gaussian filter output and Masking is done on the nuclei
seed candidates generated from Regional Maxima module. Finally, the Mean-shift clustering module
clusters the remaining seed candidates to obtain coordinates of different nuclei centers. The anticipated
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results of different modules are also shown in Figure 2. Implementation details of each module is
given in the following sections.

Figure 2. Schematic of the proposed nuclei detection technique.

2.1. Gaussian Filter

The architecture for the Gaussian filter is shown in Figure 3, which mainly consists of a coefficient
table, an image register unit, an image window and a convolution module [3]. The coefficients of the
M × M Gaussian filter are generated offline. The normalized filter coefficients (in floating-point data
type) are converted into fixed-point data type. In this implementation, 16-bit fixed-point representation
(with fraction length of 14) has been used (without any significant loss of accuracy). The filter
coefficients are stored in ROM IP core on the FPGA board.

 
Figure 3. Architecture of 2-D Gaussian Filter.
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To enable the process of shifting the window of 2-D filter coefficients for a raster scan of the
entire image, M shift register IP cores of length equal to the image width (see Figure 3) are used for
generating a Serial-In-Parallel-Output (SIPO) image register unit [3]. Each shift register stores one row
of image data. Input to this register unit is an 8-bit image pixel data comes at a rate of one pixel per
clock. The M pixels from each shift register are transferred to the image window to access randomly
in convolution.

The architecture of the convolution module is shown in Figure 4. The module uses the image
data r (stored in the image window) and filter coefficients f (stored in the coefficient table) to calculate
the output h. The entire convolution process with M × M size filter is divided into M cycles. In each
cycle, one column (e.g., ith column) of the image window data r and coefficient table data f pass
through the multiplier array and first stage adder tree, and is then stored in the register queue. In each
subsequent cycle, the register data shifts right by one unit, and the next columns of image data and
filter coefficients go through the module and the output is stored in the register queue. This process
continues for M times. After M cycles, the outputs of every column (stored in register queue) are
added by the second stage adder to calculate the convolution output h (pixel value in the Gaussian
filter output image H). In this work, h is truncated into 8-bit precision and the output image H is stored
in the FPGA block RAM.

 
Figure 4. Convolution module. Multiplication of data and coefficients are shown for Mth column.

2.2. 2-D gLoG Filter

Because the cell nuclei in digital histopathological images typically have circular or elliptical
shapes, the 2-D gLoG filters are used for nuclei detection [1]. The nuclei are detected by convolving the
image H with a 2-D gLoG filter. The gLoG filters are generated from a bank of gLoG kernels ∇2G(x, y)
as defined below [1]:

∇2G(x, y) =
∂2G(x, y)

∂x2 +
∂2G(x, y)

∂y2 ,

where G(x, y) is a 2-D Gaussian function defined as follows.

G(x, y) = λ·e−(ax2+2bxy+cy2)

Note that a, b and c are functions of scale (σx, σy) and orientation θ of the Gaussian kernels [1,4].
By changing the scales and the orientation, a set of gLoG kernels can be obtained. In this paper, we
generate gLoG kernels (σx, σy) with σx > σy ranging from 6 to 12 insteps of 0.5 and nine orientations
θ, {θ = nπ/9, n = 0, 1, ..., 8}. The nine gLoG filters corresponding to nine orientations are generated
by adding up gLoG kernels of the same orientation, but with different scales. Special kernels, whose
σx = σy are rotational symmetric and their structures are independent of the orientation, are summed
separately to form a rotationally symmetric gLoG filter. In this paper, 10 gLoG filters are used (see
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Figure 5), with nine filters of different orientations and one rotationally symmetric (RS) filter. A total of
10 response maps, with one response map from each gLoG filter, are generated.

0  /9  2 /9  3 /9  4 /9  5 /9  6 /9  7 /9  8 /9  RS 

 
Figure 5. Ten 2-D gLoG filters with different orientations.

For hardware implementation, the architecture of the gLoG filter module is similar to that of the
Gaussian filter described in the previous section, except the filter size and coefficients. In this work,
the size of the gLoG filter is set to 25 × 25 in order to match the size of typical nuclei in the input
data. As the gLoG filter coefficients are independent of the image data, they are calculated offline,
converted into 16-bit precision (with 14-bit fractional value), and stored in ROM IP cores on the FPGA.
The output response map (denoted by I) from each gLoG filter is stored with 8-bit precision in the
block RAM on the FPGA.

2.3. Regional Maxima Calculation

Regional maxima are connected components of pixels with a constant grayscale value, t, whose
external boundary pixels all have a value less than t [5,6]. As the regional maxima in a gLoG filter
response map I are usually around the nuclei centers, they are detected in this module and considered
as candidate pixels to calculate the nuclei centers.

The principle of regional maxima calculation used in this paper is shown in Figure 6. In Figure 6a,
the response map I (denoted by dotted lines) is used as the mask image. A marker image J = I − 1
(shown by full lines) is generated and stored in an FPGA block RAM (if J < 0, it is set to 0). A hybrid
grayscale reconstruction algorithm [6], described below, is then performed on the marker image J, and
let the output be denoted by J′. After that, I − J′ is calculated, and where the outcome value is 1, the
corresponding pixel is considered as the regional maxima. This is illustrated in Figure 6b.

 
Figure 6. Principle of regional maxima calculation. (a) dotted lines, I, shows Mask, shaded portion
shows Marker J, (b) J’ indicates the reconstruction of J.

Figure 7 shows the block schematic of the Regional Maxima module, which has 3 parts: Marker
generation, Grayscale Reconstruction and Subtraction. Function of Marker Generation (J = I − 1) and
Subtraction (I − J′) parts are mentioned in the previous paragraph. The Grayscale Reconstruction of the
marker image J is done in 3 steps, Raster scan, Anti-raster scan and Propagation, which are explained in
the following.
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Figure 7. Block diagram of regional maxima calculation.

After generating the mask I and the marker J, a raster scan of these two images is performed.
Let p denote pointer of the current pixel in the scanning, and q denote its neighbor’s pixel positions.

The eight neighbors of p are denoted as N(p) (see Figure 8a). The 4 neighbors reached before p in
a scan order are denoted as N+(p) (see Figure 8b). The maximum value of {J(p), J(q), q ∈ N+(p)}
is then calculated and denoted as s. Finally, the J(p) is updated with min{s, I(p)}. After the raster
scan, an anti-raster scan (scanning from the bottom pixel) of I (i.e., the original image) and updated J is
performed in a similar way. This time, it checks if for a pixel p, there exists a pixel q (q ∈ N+(p) such
that J(q) < J(p) and J(q) < I(q), the q value is stored in the FIFO (First In First Out) queue.

 
Figure 8. Illustration of neighbors of pixel p. (a) N(p). (b) N+(p), (c) N−(p).

After the anti-raster scan, the propagation step is performed on the FIFO structure. In the
beginning, the FIFO is checked, if it is empty, the process of grayscale reconstruction is completed; if it
is not, the point which is at the beginning of the FIFO is popped out and denoted as p. The values of
I(p), J(p), J(q) and I(q), q ∈ N(p) are read from images I and J. If there exist any q ∈ N(p), such that
J(q) < J(p) and J(q) �= I(q), the minimum value between J(p) and I(q) is given to J(q) and the q is
put into the queue. Then another round of the loop begins. This process continues until there are no
data in the queue. The updated J is the grayscale reconstructed marker image and is denoted as J′.

Finally, a binary response map R = I − J′ is calculated for each gLoG output, and stored in the
FPGA RAM, where a binary value of 1 indicates the regional maxima.

2.4. Thresholding

The thresholding module converts the Gaussian lowpass filtered image into a binaryimage of
foreground (i.e., nuclei) and background pixels. The threshold value for an input image can be
calculated using any adaptive threshold methods for more effectiveness in eliminating false regional
maxima in binary response map R. However, in this implementation, a global threshold value is used
for simplicity. The thresholded image T is generated from the lowpass filtered image H as follows:

T(m, n) =

{
1 (nuclei) i f H(m, n) < τ

0 (backg) otherwise
,

where (m,n) is a pixel coordinate. The threshold value τ is calculated offline using Otsu’s method.
Implementation of above the Equation is done using a comparator, and T is stored in FPGA RAM.
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2.5. Masking

A response map Ri, 1 ≤ i ≤ 10 corresponding to 10 response maps may have false regional
maxima, due to noise in the input image. The masking module eliminates the false maxima that are
located outside nuclei masks T generated by the thresholding module. The output M of the module is
calculated as follows:

Mi(m, n) = Ri(m, n)& T(m, n),

where & is a logical AND operation. The pixel locations with Mi(m, n) = 1 correspond to nuclei seed
candidates. The seed candidate locations from all M matrices are combined and stored in the FPGA
RAM. Let the set of candidate nuclei coordinates be denoted by S.

2.6. Mean-Shift Clustering

For one nuclear region, there can be more than one candidate nuclei in S [1]. As the candidates
corresponding to a nucleus are geometrically close, they can be clustered to obtain one center for
each nucleus. In this paper, the nuclei candidates are clustered using a mean-shift (MS) clustering
algorithm [7], and center for each nucleus is obtained by calculating the mean coordinate of members
of the corresponding cluster.

The MS clustering is like a hill climbing algorithm which involves shifting a certain type of kernel
iteratively to a higher density region until convergence. This is illustrated in Figure 9, where the nuclei
candidates are shown with red dots. To start the algorithm, pick any unvisited candidate, let it be
A and place the kernel center at A. Check if any other candidates are within the kernel (of radius r).
In this example, candidate B is within the kernel (see Figure 9b). Calculate the mean of A, B and shift
the kernel center to mean position (see Figure 9c). Now re-check if any new candidate is included
within the kernel. Figure 9c shows that candidate C is within the kernel. The mean of {A, B, C} is
calculated, and the kernel is shifted to the new mean position. The iteration continues until the kernel
is settled and no new candidate is included. After convergence, all candidates within the kernel are
clustered and the center of the kernel is considered as the nucleus for that cluster. The MS clustering
then picks up another unvisited candidate and generates a cluster in a similar manner. The process is
continued until all the candidates are clustered. The overall flowchart of the MS clustering is shown in
Figure 10.

 
Figure 9. Mean shift clustering principles, (a) candidates in a binary image, (b) Kernel centered at A,
(c) Kernel centered at mean of A and B, (d) kernel centered at mean of A, B and C, (e) kernel centered
at mean of A, B, C and D. Finally, A, B, C and D clustered into one nucleus.

131



J. Imaging 2019, 5, 21

Figure 10. Flowchart of implemented mean-shift (MS) clustering.

In this paper, the MS kernel is defined as a circle with radius r = 8 pixels. The implemented
architecture of the MS clustering is shown in Figure 11. The architecture has four modules: Flag operator,
Iterator, Merger and Data table. The Data table structure is shown in Table 1, which stores the seed
candidates, four intermediate parameters for each candidate (visit-flag, current-round votes, maximum
votes and cluster number) and identified Nuclei. Visit-Flag identifies candidates that are visited in the
clustering process (flag is set to 1 for visited candidates and 0 for unvisited candidates). Current-round
votes Vc indicate the number of iterations done in current clustering when a candidate is within the
kernel geometry. Vc is set to zero at the beginning of each cluster generation. Maximum votes VM store
the maximum value of current-round votes a candidate has achieved in all previous cluster generation
and the cluster number (L) denotes the cluster that has obtained maximum votes for a seed candidate.
The table entries are updated at the end of each cluster generation. Identified nuclei (N) stores the center
of each converged cluster.

In the beginning, the flag operator checks the visit-flags table. If there are any unvisited candidates
(whose visit-flag is 0), it picks one of those unvisited candidates randomly (Si) and gives it to the
iterator. The iterator places the kernel center at candidate Si and finds all the candidates within the
kernel geometry (i.e., distance < r). For those candidates (within the kernel), visit flag is set to 1 and
current-round vote value is increased by 1. The iteration is repeated with the center of kernel shifted to
mean position of candidates within the kernel. The process repeats until kernel center is converged
(i.e., no change in mean position). The final converged point Ck is then sent to the Merger module.
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Figure 11. Architecture of MS clustering.

Table 1. Illustration of data table format. Table entry numbers are randomly filled.

Seed
Candidates

Visit-Flag
Current Round

Votes (VC)
Maximum
Votes (VM)

Cluster
Number (L)

Identified
Nuclei (C)

(x1, y1) 1 2 2 1 (a1, b1)
(x2, y2) 1 2 3 2 (a2, b2)
(x3, y3) 0 0 0 . (a3, b3)

The Merger module scans through the Identified nuclei column. If there exists a previously generated
Nuclei Cl(l �= k) whose distance to the current convergent point Ck is smaller than a threshold (e.g.,
16 pixels), then Ck should merge with Cl . The value for the merged nuclei Cl is changed to the
mean coordinate of Cl and Ck. In cluster number column, if L(si) = l, the maximum votes value for
corresponding candidates are changed to VM(Si) = VM(Si) + VC(Si). If there are no Identified nuclei
within the threshold distance to Ck, then Ck becomes a new Nuclei and added to Identified nuclei column.
Finally, the comparison between current round votes and maximum votes are done. For a candidate
Si ∈ Ck if VM(Si) < VC(Si) then VM(Si) is changed to VC(Si) and L(Si) to k (indicating that candidate
Si belongs to the new cluster Ck). Example data format can be seen in Table 1.

After the operations in the Merger module finished, the Flag operator module scans through the
Visited-flags table to check whether there are any unvisited candidates. If there are unvisited candidates,
the Iterator is enabled again to generate a new cluster, otherwise, the Clustering module is disabled,
and the MS clustering is done. The mean coordinate of the candidates belonging to one cluster
(corresponding to a nucleus) is considered as the seed coordinate of the detected nuclei.

3. Results

The proposed architecture is implemented on DE2i-150 FPGA development board, developed by
Terasic [8]. A simplified schematic of the DE2i-150 development board is shown in Figure 12 (refer to
the Terasic site [8] for complete details). The board is an embedded platform with Intel N2600 Atom
Dual core processor (Intel Corporation, Santa Clara, CA, USA) [9] coupled with Altera’s Cyclone IV
GX FPGA (Altera (Acquire by Intel), Santa Clara, CA, USA). The Atom processor has 64-bit Instruction
set, 1M cache running at 1.6 GHz clock speed, and is connected to external DDR3 memory. The Atom
pairs with Intel®NM10 Express Chipset through Direct Media Interface (DMI) to provide rich I/O
capabilities and flexibility via high-bandwidth interfaces, such as PCI Express, Serial ATA (SATA),
mSATA, and Ethernet. Cyclone IV FPGA is connected to Atom through PCI Express (PCIe) bus and
NM10. The FPGA is connected to 128MB SDRAM (32 bits width), 4MB SSRAM and 64MB Flash
memory with 16-bit mode. Both Atom and FPGA has a VGA connector to interface with monitor.
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In this paper, the proposed architecture is implemented using only the FPGA (Atom processor is
not used).

 
Figure 12. Simplified schematic of DE2i-150 FPGA development board Architecture (refer to [8] for
more detailed schematic).

In the implementation, the block RAMs on FPGA are used to store intermediate results instead of
available 128 MB SDRAM. Because, this SDRAM has a latency of four clock cycles, with a maximum
allowed clock frequency of 100 MHz, which can degrade the proposed architectures performance.
Because there is a lot of intermediate date generated and it should be accessible randomly. But
implementing the same architectures (with block RAM replaced by available memory) on high-end
FPGA boards having lower latency and higher clock frequency for memory can give a similar
performance with fewer resources.

Parameter Configuration

A few parameters for the proposed architecture must be defined before generating bit file for the
hardware [1]. The parameters are application dataset dependent. The Gaussian filter size M depends
on the amount of noise in the input image and minimum nuclei size to detect. Filter size cannot be
more than the size of smaller nuclei expect to detect, otherwise it blurs the nucleus. The rest of the
parameters, like gLoG filter size, threshold value, MS clustering bandwidth are to be set according to
possible nuclei size range in application dataset. In this experiment, the parameters are not fine-tuned to
a dataset, but for the same parameter configuration the proposed hardware should give similar results
with software (MATLAB) implementation. To check the proposed hardware flexibility with parameters
across a different dataset, experiments are done on two sets of parameters. Parameter configuration of
two sets are shown in Table 2. The hardware provided similar results as MATLAB [10] with respect to
each set of parameters.

Table 2. Configured parameters table.

Parameter Set 1 Set 2

Gaussian filter size 7 × 7 8 × 8
gLoG size 25 × 25 49 × 49
Threshold 155 150

MS bandwidth 8 6

The architecture performance is evaluated by comparing its execution time and accuracy with
MATLAB for 256 × 256 size images. Before generating the bit-file for the hardware, the parameters
have to be configured according to application and input image data should be initialized into ROM
IP block using .hex/.mif file format. As the input is red channel data (complemented) of H&E stained
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images, MATLAB is used to generate the .hex/.mif file with red channel data. The resources utilized by
the architecture for 256 × 256 size image on the FPGA (for set-1 parameters configuration) is presented
in Table 3. MATLAB is running on AMD Athlon II CPU (Advanced Micro Devices, Inc., Austin, TX,
USA) at 2.90 GHz with 4GB RAM. To compare the results, the detected nuclei coordinates in the FPGA
are read out and marked on the MATLAB results. Figure 13 shows the nuclei detection results using
both hardware and MATLAB.

Table 3. Resource utilization table.

Resources Utilized

Total Logical elements 34,475
Memory Bits 4,711,338

PLLs 1
Embedded Multipliers 70

Figure 13. Results of Nuclei detection with set 1 parameters configuration on both MATLAB and
hardware, (a) input color image, (b) output detected nuclei indicating on complement red channel
input image, blue color ‘+’ indicates the nuclei detected using hardware, red circle ‘o’ indicates the
nuclei detected using MATLAB.

The execution time on FPGA measured using counter register, it increments for every millisecond
(i.e., the execution time is in millisecond precision) and final execution time is displayed through
available 15 LEDs on the board. The average execution time over 10 different input images on both
hardware and MATLAB are presented in Table 4.

Table 4. Performance comparison.

Platform Clock Frequency Execution Time (in sec)

MATLAB (on CPU) 2.90 GHz 1.694
Proposed implementation 100 MHz 1.108

The accurate detection of nuclei in the input image depends on the parameters mentioned above.
Therefore, in this paper the accuracy of proposed hardware evaluated with respect to the results from
the MATLAB (software) version (2017b, MathWorks, Natick, MA, USA) [10]. It is observed in Figure 13
that both versions give similar results for the same parameters configuration. Finding the optimized
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parameters to compare the accuracy of detection is beyond the scope of this paper as this paper is
focused more on FPGA implementation.

4. Discussion

The proposed architecture has been implemented and tested for a small image patch of size
256 × 256. But the architecture can easily be extended to larger image size, as histopathology
images are typically very large in size. The total processing time for a full resolution image, with
a size 20,000 × 20,000, is expected to be in the order of hours in a regular CPU. With optimized
implementation and FPGA boards with higher clock frequency, the overall processing time is expected
to be in the order of minutes.

The proposed architecture shows a modest 34.5% performance improvement compared to a
regular CPU, which is mainly because of the lower clock frequency (100 MHz) of the FPGA board.
The speed-up factor can be improved further by exploiting the data and task parallelism in each sub
module. Empirically, it can be said that smaller modules implemented on FPGA give low performance
(speed up) improvement over the software (on general purpose processor) implementation as the
data parallelism achieved with FPGA can be overshadowed by operating clock frequency. For larger
modules, having possible data parallelism can give significant performance improvement worth of
going for special hardware accelerator. Our larger goal is to design a CAD system for histopathology
for which the nuclei detection is one module. It is expected that the other modules in the CAD system
will have larger speed up resulting in a high overall system performance.

5. Conclusions

A software implementation of the CAD technique requires a significant amount of processing
time. To assist the pathologists in real time, this processing time should be reduced. In this paper,
an FPGA based hardware accelerator for the Nuclei detection has been proposed, and its performance
is evaluated by implementing it on DE2i-150 FPGA development board. The hardware accelerator
shows a significant performance improvement over a MATLAB, even though it is running at a lower
clock frequency. Further performance improvement can be achieved by exploring the data and task
parallelism exists in the algorithm. Once the nuclei are detected on the histopathology images, next
step in the CAD process is to segment the nuclei and perform the diagnosis in real-time. It is the
base model to develop a complete CAD accelerator for many diagnosis processes (processing of large
histopathology images).
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Abstract: Single-pass connected components analysis (CCA) algorithms suffer from a time overhead
to resolve labels at the end of each image row. This work demonstrates how this overhead can be
eliminated by replacing the conventional raster scan by a zig-zag scan. This enables chains of labels to
be correctly resolved while processing the next image row. The effect is faster processing in the worst
case with no end of row overheads. CCA hardware architectures using the novel algorithm proposed
in this paper are, therefore, able to process images at higher throughput than other state-of-the-art
methods while reducing the hardware requirements. The latency introduced by the conversion
from raster scan to zig-zag scan is compensated for by a new method of detecting object completion,
which enables the feature vector for completed connected components to be output at the earliest
possible opportunity.

Keywords: connected components analysis; stream processing; feature extraction; zig-zag scan;
hardware architecture; FPGA; pipeline

1. Introduction

Connected components labelling is an important step in many image analysis and image
processing algorithms. It processes a binary input image, for example after segmentation, and provides
as output a labelled image where each distinct group of connected pixels has a single unique label.
There are many different labelling algorithms (see for example the recent review [1]). Three main
classes of algorithms are:

• Contour tracing [2,3], where the image is scanned until an object pixel is encountered. The boundary is
then traced and marked, enabling all pixels to be labelled with the same label when scanning resumes.

• Label propagation algorithms [4] where labels are propagated through multiple passes through
the image.

• Two pass algorithms, generally based on Rosenfeld and Pfaltz’s algorithm [5]. The first pass
propagates provisional labels to object pixels from adjacent pixels that have already been processed.
Sets of equivalent labels are processed to derive a representative label for the connected component,
usually using some form of union-find algorithm [1,6]. Finally, the image is relabelled in a second
pass, changing the provisional label for each pixel to the representative label.

The different two-pass algorithms fall into three broad classes: those that process single pixels
at a time (e.g., [7,8]), those that process a run of pixels at a time (e.g., [9,10]), and those that process
a block of pixels at a time (1 × 2 block in [11,12], 1 × 3 block in [13], and 2 × 2 block in [14,15]).
There have been several FPGA implementations of connected components labelling (e.g., [16,17]),
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but the key disadvantage of these two-pass algorithms is the requirement to buffer the complete image
between passes.

Connected component labelling is often followed by an analysis step, where a feature vector (usually
based on the shape, but can also be based on statistics of the original image pixel values) is derived for
each label. These feature vectors can then be used for subsequent classification, or even directly provide
output data for some image analysis applications. When the labelling and feature vector measurement
are combined as a single operation, it is termed connected components analysis (CCA).

Single pass CCA algorithms, introduced by Bailey and Johnston [18,19], extract feature data for
each component during the initial provisional labelling pass. The labelled image, as an intermediate
data structure, is no longer required, so the second relabelling pass can be skipped, enabling the
complete algorithm to operate in a single pass. This has led to efficient low-latency hardware
architectures that are able to operate directly on a video stream. The basic architecture of Figure 1
works as follows: For each pixel in the input stream, provisional labels are propagated from already
processed pixels (represented by the neighbourhood window). Labels assigned in the current row are
cached in a row buffer to provide the neighbourhood when processing the next row. When components
merge, the associated labels are equivalent. One label is selected as the representative label (usually the
label that was assigned the earliest), with the equivalence between the labels recorded in the merger
table. Provisional labels saved in the row buffer may have been updated as a result of subsequent
mergers and may no longer be current, so the output from the row buffer is looked up in the merger
table to obtain the current representative label for the neighbourhood. For a single-pass operation,
feature data is accumulated for each component on-the-fly within the data table. When components
merge, the associated feature data is also merged. The component data is available after the component
is completed, that is after no pixels extend from that component onto the current row.

Neighbourhood

Label selection Merger control

Merger
table

Data table

Row buffer
A B C

D

Input
stream

Component
data

Figure 1. Basic architecture of single-pass connected components analysis.

The main limitation of the first single-pass algorithm [18] was that the data was only available
at the end of the frame. In the worst case, this required resources proportional to the area of the
image, preventing the use of on-chip memory for all but small images, or a restricted subset of images
with a limited number of components. This was solved by Ma et al. [20], by recycling labels which
requires identifying completed components, and freeing up the resources. Ma’s approach aggressively
relabelled each component starting from the left of each row. It, therefore, required two lookups, one to
resolve mergers, and one to translate labels from the previous row to the current row.

The next improvement in this class of CCA algorithms was developed by Klaiber et al. [21].
This solved the problem of two lookups by introducing augmented labels. Labels are allocated from
a pool of recycled labels, and are augmented with row number to enable correct precedence to be
determined when merging.

Trein et al. [22] took an alternative approach to single-pass CCA on FPGA, and run-length encoded
the binary image first. Then, each run was processed in a single clock cycle, enabling acceleration when
processing typical objects. In the worst case, however, the performance of run-based processing is the
same as for pixel-based processing. Trein et al.’s method also suffers from the problem of chaining,
although this was not identified in their paper.
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The main issue with managing mergers on-the-fly is sequences of mergers requiring multiple
look-ups to identify the representative label of their connected component. Those labels that require
more than one lookup to lead to their representative label are referred to as stale labels [6]. This can
occur after two or more mergers, where a single lookup in the merger table is insufficient to determine
the representative label. Bailey and Johnston [18] identified chains of mergers that occur when
the rightmost branch of a sequence of mergers is selected as the representative label (as illustrated
in Figure 2). Before processing the next row, it is necessary to unlink such chains so that each
old label directly points to the representative label. This unlinking is called path compression in
union-find parlance.
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Figure 2. A chain of successive mergers: 4⇒3; 3⇒2; 2⇒1.

The labels within such chains cannot occur later in the row because the label that was allocated
the earliest was selected as the representative label. therefore, chain unlinking can be deferred until the
end of each row [18]. Since the representative label within such a chain is rightmost, potential chain
links can be saved on a stack enabling them to be unlinked from right to left. A disadvantage of such
unlinking is that it incurs overhead at the end of each row. Typically, this overhead is about 1% [18],
although in the worst case is 50% for a single row, or 20% for a whole image. A further complicating
factor is that the overhead is image-dependent, and cannot be predicted in advance.

To overcome the chaining problem, Jeong et al. [23] proposed to directly replace all old entries
within the row buffer with the new representative label whenever a merger occurs. This removes
the unlinking overhead, and also the need for the merger table. To accomplish this, the row buffer
must instead be implemented as a shift register, with each stage having a comparator to detect the old
label, and a multiplexer to replace it with the representative label. Since such a content addressable
memory cannot easily be implemented using a block memory, the resulting logic requires considerable
FPGA resources.

Zhao et al. [24] also used aggressive relabelling, similar to Ma et al. [20], but instead used pixels
as the processing unit, and runs as the labelling unit. The goal of this approach is to eliminate
unnecessary mergers, and avoid the overhead at the end of each row. While labelling a run at a time
does significantly reduce the number of mergers required, it does not eliminate chains of mergers
(the pattern is more complex than Figure 2 of course). So although Zhao et al. claim to eliminate
the end-of-row processing, without correctly resolving such chains, the results for some images
will be incorrect.

Finally, Tang et al. [25] optimise this approach of using runs as a labelling unit to actually eliminate
the end of row processing. They assign a unique label to each run, and rather than relabel runs when
they connect, the connectivity is maintained within a linked list structure for each image row. The head
of the list maintains the feature vector, and whenever a run is added to the list, both the list and
data are updated. Clever use of the pointers enables the pointers to be kept in order, and enable the
data to be accessed with two lookups, completely avoiding the problems with chains. It also means
that labels are automatically recycled, and completed components are detected with a latency of one
image row. There are two limitations of this algorithm: (1) It only handles 4-connectivity, rather than
8-connectivity which is usually used; Tang et al. also propose a pre-filter to convert an 8-connected
image into the required 4-connected image prior to CCA. However, the pre-filter also means that
incorrect values are derived for some features (e.g., area) without additional processing, although that
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processing is straight forward. (2) The outermost border of the image must be set to the background
before processing; Tang et al. suggest extending the image with background pixels prior to processing
to guarantee this condition. However, this would reintroduce 2 clock cycles per row overhead.

The primary contributions of this paper are: a novel approach to eliminate the end-of-row
overhead associated with unchaining; and a novel method to detect completed components as soon as
they are completed, giving a reduction in latency. These are based on a zig-zag based scan pattern
through the image, with the algorithm outlined in Section 2. An FPGA architecture for realising zig-zag
based CCA is described in detail in Section 3. The algorithm and architecture are analysed in Section 4
to show correct behaviour. Finally, Section 5 compares the new algorithm with existing single-pass
pixel-based approaches.

2. Proposed Approach

Unchaining within the traditional algorithms [6,18,20,21] is effectively accomplished by
performing a reverse scan back through the labels merged in the current row at the end of each
row. This approach comes at the cost of having to introduce additional overhead to store the sequences
of mergers in a stack data structure and unchain them sequentially at the end of each image row.

This paper proposes replacing the raster scan with a zig-zag scan, with every second row processed
in the reverse direction. This enables chains of mergers to be resolved on-the-fly, as part of the merger
table lookup and update process. The basic architecture of Figure 1 needs to be modified for the zig-zag
scan, giving the system architecture of Figure 3. Although many of the blocks have the same name and
function as those in Figure 1, the detailed implementation of many of these is changed.

Neighbourhood

Label selection Merger control

Merger
table

Data table

Zig-zag row buffer

Zig-zag reordering

A B C

D

Input
stream

Zig-zag
stream Component

data

Figure 3. Basic architecture of zig-zag based single-pass connected components analysis.

First, a zig-zag reordering buffer is required in the input, to present the pixel stream in zig-zag
order to the CCA unit. The row buffer also has to be modified to buffer data in zig-zag form. (Note that
if the image is streamed from memory, this is unnecessary, as the pixels can directly be read from
memory in zig-zag order.) Label selection is unchanged, as is the data table processing (apart from a
novel extension to enable completed components to be detected earlier). The key changes are in the
merger table processing for forming the neighbourhood, and merger control blocks. Zig-zag CCA is
represented algorithmically in Algorithm 1. The nested for loops perform a zig-zag scan through the
binary input image, with key steps as sub-algorithms described in the following sections.

2.1. Definitions

We first offer some definitions. The already processed pixels in the neighbourhood of the
current pixel, X, are denoted A, B, C, and D as indicated in Figure 4. The labels associated with
the neighbourhood pixels are designated LA through LD. Background pixels are assigned label 0.
A logic test of Lp evaluates to true if pixel p is an object pixel and false if it is part of the background.
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A AB BC C

D DX XScan Scan

Even rows Odd rows

Figure 4. The neighbourhood of the current pixel, X, shaded dark. Shaded pixels have already been
processed. Labelling is dependent on the scan direction.

Algorithm 1 Zig-zag CCA algorithm

Input: Binary image I of width W and height H
Output: A feature vector for each connected component in I

1: StartO f Line := False

2: for y := 0 to H − 1 do

3: for x := 0 to W − 1 when y is even else x := W − 1 downto 0 do � Zig-zag scan
4: if StartO f Line then

5: REVERSENEIGHBOURHOOD � Algorithm 3
6: StartO f Line := False

7: else

8: UPDATENEIGHBOURHOOD � Algorithm 2
9: end if

10: UPDATEDATASTRUCTURES � Algorithm 4
11: end for

12: StartO f Line := True

13: end for

For the new scan order, it is convenient to define a precedence operator, ≺, based on the order in
which pixels are encountered during processing. Given two pixels, P1 and P2, then

P1 ≺ P2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
true when P1.y < P2.y

true when (P1.y = P2.y) ∧ (P1.y mod 2 = 0) ∧ (P1.x < P2.x)

true when (P1.y = P2.y) ∧ (P1.y mod 2 = 1) ∧ (P1.x > P2.x)

f alse otherwise.

(1)

Precedence is used to select which label is the representative label during merger operations,
and to determine when a connected component is completed.

Three auxiliary data structures are required for connected components analysis:

1. The row buffer, RB[ ], saves the provisional labels assigned in the current row for providing the
neighbourhood when processing the next row. Although the row buffer needs to manage pixels
processed in a zig-zag scanned order, it is indexed within the following algorithms by logical
pixel position.

2. The merger table, MT[ ], indexed by label. This is to provide the current representative label for a
component, given a provisional label. However, as a result of chains, more than one lookup in
MT may be required.

3. The data table, DT[ ], also indexed by label. This is to accumulate the feature vector extracted
from each component. IFV(X) is the initial feature vector to be accumulated from the current
pixel, and ◦ is the binary operator which combines two feature vectors.

Additional variables and arrays will be defined as required in the following algorithms.
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2.2. Update Neighbourhood

Since the input pixels are streamed, moving from one pixel position to the next involves shifting
pixels along within the neighbourhood window. Algorithm 2 indicates how the neighbourhood is
updated during normal processing. A merger can only occur between pixels A and C, or D and C [26],
and if both A and D are object pixels then they will already have the same label (from processing the
previous window position). Therefore, the neighbourhood can be optimised with LAorD being the label
LA or LD as required. The use of a superscript −, as in L−

p , indicates the label Lp at the end of the
previous iteration.

Algorithm 2 UPDATENEIGHBOURHOOD

1: if L−
B then � Select LAorD based on whether A (previous B) is an object pixel

2: LAorD := L−
B � Next value of LA

3: else

4: LAorD := L−
X � Next value of LD

5: end if

6: LB := L−
C

7: LRB := RB[C] � Look up position C in the row buffer
8: if LRB then � An object pixel is coming into neighbourhood
9: if ¬L−

C then � It is the first object pixel after a background pixel
10: LMT := MT[LRB] � First lookup in merger table
11: if LMT = LRB then � Label was representative label
12: LC := LMT
13: else

14: LC := MT[LMT ] � Second lookup in merger table to get representative label
15: if LC �= LMT then � Label change on second lookup indicates a chain
16: MT[LRB] := LC � Update merger table to unlink the chain
17: end if

18: end if

19: else � Part of a run of consecutive pixels
20: LC := L−

C � Repeat latest label
21: if LRB �= L−

RB then � Label has changed, indicating a chain of mergers
22: MT[LRB] := LC � Update merger table to unlink the chain
23: end if

24: end if

25: else

26: LC := 0 � Lookup of background is unnecessary
27: end if

As the neighbourhood window pixels are shifted along, the new value for position C is obtained
from the row buffer (line 7). If this is a background pixel, it is simply assigned label 0 (line 26). Note that
if C is outside the image, for example when processing row 0 or when X is the last pixel in processing
a row, then the background label (0) is used.

The row buffer provides the provisional labels assigned when processing the previous row.
Although this label was the representative label for the component when it was written into the row
buffer, subsequent mergers may mean that the label read from the row buffer is no longer the current
representative label. It is necessary to look up the label in the merger table to obtain the current label
(line 10). In a run of consecutive object pixels, all will belong to the same object, and will have the same
label. The last label assigned to the run in the previous row will be the first read from the row buffer
(as a result of the zig-zag scan), so only this label (see line 9) needs to be looked up in MT.

As a result of chains of mergers, a single lookup is not sufficient in the general case. Provided that
the merger table is updated appropriately, two lookups may be required to give the current
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representative label. If the first lookup returns the same label (line 11), then that label has been
unchanged (and is the representative label). However, if the first lookup returns a different label, then
the provisional label may be stale and a second lookup is necessary (line 14). If the second lookup does
not change the label, then this indicates that the single lookup was sufficient. If the second lookup
returns a label that is different again, then this is part of a chain, and the value returned will be the
current representative label.

To avoid having to lookup more than twice, it is necessary to update the merger table so that
subsequent lookups of the original label produce the correct representative (line 16). This merger table
update compresses the path, and performs the unchaining on-the-fly.

Within a run of consecutive object pixels, the representative label does not change. The latest label
(after any merger at the previous window location, see line 20) is simply reused for C. If the row buffer
output changes within a run of consecutive object pixels, this indicates that a merger occurred when
processing the previous row and the provisional label from RB is out-of-date. This chain is unlinked,
compressing the path by updating MT for the new label (line 22).

At the end of each row, it is necessary to reinitialise the window for the next row. As the window
moves down, the pixels in the current row become pixels in the previous row. It is also necessary
to flip the window to reflect the reversal of the scan direction. Algorithm 3 gives the steps required.
Note that this is in place of Algorithm 2 for the first pixel of the next row.

Algorithm 3 REVERSENEIGHBOURHOOD

1: LAorD := 0 � This is now off the edge of the image
2: LB := L−

X � Moving down makes current row into previous row
3: LC := L−

D

2.3. Update Data Structures

Updating the data structures involves the following: assigning a provisional label to the incoming
pixel based on the neighbourhood context; updating the merger table when a new label is assigned,
or when a merger occurs; updating the feature vectors within the data table, and detecting when a
connected component is completed. These are detailed in Algorithm 4.

A merger can only occur when B is a background pixel and LAorD is different from LC [26].
This condition corresponds to the block beginning line 3. The earliest assigned of LAorD or LC is selected
as the representative label, and the other label is no longer used. The feature vectors associated with
the two labels are merged, with the feature vector of the current pixel merged with the combination.

A new label is assigned to Lx when LAorD, LB and LC are background (line 15). New labels are
assigned from the labelling recycling first-in-first-out (FIFO) buffer. Consequently, the label numbers
are not in numerical sequence, so to determine precedence under merger conditions it is necessary
to augment the labels with the row number (line 17). The feature vector for the new component is
initialised with the feature vector of the current pixel, IFV(X).

If there is exactly one label in LAorD, LB or LC, it is assigned to LX and its feature vector in the
data table at DT[LX ] is merged with the feature vector of the current pixel IFV(X), as shown in
lines 26 and 30.

A connected component is finished when it is not extended into the current image row. To detect
this, an active tag, AT, field is introduced within the data table, DT. For each label, AT stores the
2D coordinates on the following image row beyond which no further pixels could be added to the
component. When the scan passes this point on the following row (line 34), it is determined that the
component is completed, enabling the feature vector to be output and the label recycled. The initial
feature vector for the active tag is

IFV(X).AT =

{
(y + 1, x − 1) when y is even,

(y + 1, x + 1) when y is odd.
(2)
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Algorithm 4 UPDATEDATASTRUCTURES

1: if I[X] then � Object pixel
2: if ¬LB then

3: if LAorD ∧ LC ∧ LAorD �= LC then � Merger operation
4: if LAorD.rw ≤ LC.rw then � Propagating merger
5: LX := LAorD � Assign representative label
6: Lold := LC
7: LC := LX � Update neighbourhood label
8: else

9: LX := LC � Assign representative label
10: Lold := LAorD
11: end if

12: MT[Lold] := LX � Record merger in table
13: DT[LX ] := DT[LX ] ◦ DT[Lold] ◦ IFV(X) � Merge data (and active tags)
14: Lold → LabelFIFO � Recycle the old label
15: else if ¬LAorD ∧ ¬LC then � New label operation
16: LX := newLabel (← LabelFIFO) � From a recycle queue
17: LX .rw := y � Augment label with row number
18: MT[LX ] := LX � Initialise merger table
19: DT[LX ] := IFV(X) � Start feature vector
20: else

21: if LAorD then � Copy LAorD
22: LX := LAorD
23: else � Copy LC
24: LX := LC
25: end if

26: DT[LX ] := DT[LX ] ◦ IFV(X) � Add current pixel to data table
27: end if

28: else � Copy LB
29: LX := LB
30: DT[LX ] := DT[LX ] ◦ IFV(X) � Add current pixel to data table
31: end if

32: else

33: LX := 0 � Background pixel
34: if DT[LA].AT = X then � Check completed object
35: Output: DT[LA]
36: LA → LabelFIFO � Recycle the label
37: end if

38: end if

39: RB[X] := LX � Save label in row buffer for next row

For a label copy operation and a label merger operation, the active tag is updated along with
the rest of the feature vector. The combination operator ◦ for two active tags is realised by applying
precedence as defined in Equation (1) to select the later of the two active tags.

AT1 ◦ AT2 =

{
AT2 when AT1 ≺ AT2,

AT1 otherwise.
(3)

For an efficient hardware implementation, it is sufficient to store only the least-significant bit of y
for each active tag entry.
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Figure 5 illustrates the update of active tags and detection of completed connected components.
At the start of processing row 4, there 3 components with active tags as listed. Since row 4 is even
(scanning left to right), the active tags are on the right hand end of the respective components. At (4, 1),
component 3 is extended and the active tag updated to (5, 0)—the last possible scan position that could
extend the current component 3. Similarly, at (4, 5) component 2 is extended. At (4, 6), components 1
and 2 merge with label 1 being retained as the representative label. Label 2 is recycled, and the active
tags of labels 1 and 2 are combined. Further extensions of label 1 do not affect the active tag because
the corresponding pixel active tags occur earlier in the scan sequence. When scanning back on row 5,
label 1 is not extended, so when pixel (5, 4) is a background pixel, the component labelled 1 is detected
as completed, the feature vector output, and the label recycled. Similarly, at (5, 0) component labelled
3 is detected as completed.

1

2 1
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3

3

0

0

2

2

1

1

3

3
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5

5

6 7 8 9 Position
Active Tag for Label

Comments
1 2 3

→ (4,0) (4,9) (4,6) (4,4)
→ (4,1) (5,0) Component 3 is extended
→ (4,5) (5,4) Component 2 is extended
→ (4,6) (5,4) � Components 1 and 2 merge
← (5,4) � Component 1 is completed
← (5,0) � Component 3 is completed

Figure 5. Example for detection of finished connected component at position X. � indicates when the
label is recycled.

3. Architecture

Within this section, the hardware architecture to realise this algorithm is described. The input pixel
stream is continuous, with one 1-bit binary pixel per clock cycle. Since there are no blanking periods,
a streaming protocol based on AXI4-Stream [27] (advanced extensible interface) is used throughout
the design. The modified protocol shown in Figure 6 has two control bits, one indicating the last pixel
in every row, and one indicating the last pixel in every frame.

0

0 0 0 0 0 0

00 01 1

1 1 1 1 1 2 2 2

1W-1 W-1 W-1 W-1

H-1 H-1 H-1

Clock

Data

RowEnd

FrameEnd

Row

Figure 6. Continuous pixel stream protocol, with one image frame highlighted.

3.1. Zig-Zag Scan

The raster scanned input stream must be converted to a zig-zag ordered stream, where the odd
numbered rows are presented in reverse order. Although this could easily be achieved with double
buffering (reading the previous row from one buffer while writing the current row into a separate
buffer) it can also be accomplished with a single row buffer with the access pattern shown in Figure 7.

After row 0 is initially written into the buffer, reading and writing are performed at the same
address, with the raster based input stream being written into the same location that the zig-zag stream
is read from. This requires switching the address sequence direction every second row. Converting the
raster scan to a zig-zag scan introduces a latency of one row and one pixel.

The row buffer must also be modified to operate with a zig-zag scan pattern. Since successive
rows are processed in the opposite order, the labels for each row must be read out in the reverse order
that they were written. Data coming in for the new row overwrites the old data (already read out) in
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the buffer. As demonstrated in Figure 8, this can be accomplished by reversing the scan direction each
row, effectively storing each label at the row buffer memory address corresponding to its x position.
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Figure 7. Operation of the zig-zag reordering buffer. Positions in the figure are shown in the format
y, x, where y refers to the row and x to the column the pixel was assigned.
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Figure 8. Operation of the row buffer with zig-zag ordered data.

3.2. Merger Table Processing

The label read from the row buffer may no longer be the current representative label as a result of
mergers. For the look up operations performed in lines 7, 10, and 14 of Algorithm 2 it is necessary to
look up the label in the merger table up to two times to obtain the current label. This is similar to the
double lookup algorithm proposed in [6].

Although some labels may require two lookups, a single read port of a dual-port on-chip memory
is sufficient for the merger table because it is unnecessary to look up every label from the row buffer.
Labels of background pixels do not need to be looked up—all background pixels are simply labelled 0.
In a sequence of consecutive object pixels, it is only necessary to look up the label of the first pixel in
the sequence. An object pixel will either be followed by another object pixel or by a background pixel,
neither of which need to be looked up, giving sufficient bandwidth for the two lookups.

Since each memory access requires 1 clock cycle (for synchronous memories such as the random
access memory (RAM) blocks on most current FPGAs), it is necessary to pipeline the processing over
5 clock cycles as shown in Figure 9. The memory accesses are scheduled in advance so that the labels
are available in the neighbourhood for assigning a label to the current pixel in stage 4.
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Figure 9. The 5 pipeline stages for processing each input pixel.

As a result of pipelining, the write to the row buffer is delayed from the read by four clock cycles.
This necessitates using a dual-port memory for the row buffer. The merger table is also dual-port, with
the read port used for determining the representative label in stages 2 and 3 of the pipeline. The write
port for the merger table is used for initialising the merger table when a new label is assigned (line 15),
and for updating the merger table during merger operations (line 3). Both new label and merger
operations occur in stage 5 of the pipeline. Unchaining of stale labels is also performed as the stale
labels are encountered during the neighbourhood update (Algorithm 2) in stage 4 of the pipeline.
The detailed architecture for implementing this is shown in Figure 10.
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Figure 10. The detailed pipeline architecture for zig-zag connected components. Blue represents control
signal generation, green indicates processing for end of row reversal, and red are the merger table
updates for new label assignment and merger processing.

With synchronous memory, each read from an on-chip memory block is stored into a register;
these are LRB and LMT for the row buffer and merger table respectively. The address for the merger
table read comes either from LRB for the first read, or LMT for the second. Register LMT2 is a pipeline
register to hold the data if only a single read is required, with a multiplexer selecting the output of
LMT2 or LMT as the representative label. The conditional statements in Algorithm 2 are shown in blue
in Figure 10, and are used to provide control signals for selecting appropriate multiplexer inputs.

In terms of forming the neighbourhood, LC is not directly registered, but is the output of
multiplexers selecting the appropriate source register for LC. LB and LAorD are registers. The current
label output, LX is not registered, but is the output of the combinatorial logic which assigns a label
to the current input pixel. This output is registered as LD, available in the following clock cycle
for window reversal at the end of each row, and for updating the merger table in pipeline stage 5
(if required). For row reversal, LC is assigned LD (Algorithm 3); however, since LC is not a register, it is
necessary to insert a pipeline register, LCrev.
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Unchaining updates the merger table in pipeline stage 4. The data from line 16 is naturally
available in that stage, but line 22 is detected at stage 2. It is necessary to delay both the address and
data until stage 4. The address is delayed by pipeline registers LRB1 and LRB2, with the data coming
from LC, which at that stage in a run of consecutive pixels, is the feedback path from LB (line 20).
For updating the merger table as a result of label assignment, for a new label, both the address and
data come from LD (line 18). In the case of a merger, Lold registers the old label, and is used for the
address for the merger table update.

The dataflow for label assignment is shown in Figure 11. The binary input pixel is used to directly
provide a control signal. The first multiplexer selects the label to propagate from the neighbourhood,
with the second multiplexer selecting the background label (0), or a new label from the LabelFIFO
(lines 16, 22, 29, 24 and 33). To reduce the logic requirements, the test for a background pixel on the
row buffer output is simply pipelined through a series of registers to indicate whether LC, LB or LAorD
are object or background pixels.

.rw
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Figure 11. Architecture for label assignment. Blue represents control signal generation.

3.3. Data Table

The final key section of the architecture is that which manipulates the data table. Figure 12 shows
the data flow for the update and completed object detection. The inputs come from neighbourhood
processing, after registering to pipeline the processing. The current pixel label, LX therefore, comes
from the LD register, and Lold in the case of mergers comes from the corresponding register in Figure 10.
Data table processing is pipelined over three clock cycles, with the first cycle reading existing data
from the data table when required, the second clock cycle is used to calculate the new feature vector,
with the result being written to the data table (where necessary) in the third cycle. The neighbourhood
position must also be registered twice before deriving the initial feature value (IFV) to maintain
synchronisation. Control signals come from label assignment, whether it is a propagating label, a new
label, a merger, or background pixel. Each of these cases will be described in turn.
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Figure 12. Architecture for data table update. Blue signals relate to detecting completed components.

For a propagating label, the neighbourhood had only a single label, which is copied to the current
object pixel. If the previous pixel was a background pixel, then it is necessary to read the existing
feature vector from the data table first. Otherwise, the feature vector will be available in the data
table cache (DTc) from processing the previous pixel. The initial feature vector, IFV, derived from the
neighbourhood position is combined with the existing data, and the result stored in the data table
cache, DTc. The resulting feature vector is written back to the data table only when a background pixel
is reached.
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A new label operation has no existing data to load; the data table cache, DTc, is simply initialised
with the initial feature vector, IFV, in the second clock cycle.

A merger is a little more complex, because it may require two entries to be read from the data
table. If the previous pixel was an object pixel, then the feature vector associated with LAorD will be
available in DTc. However, if the previous pixel was a background pixel, then data will not be cached
for LAorD. To overcome this problem, when the current pixel is a background pixel, LB is looked up
in the data table. If LB is the label of an object pixel, then on the next clock cycle, it becomes LAorD
and will be available in the cache. A merger will trigger the loading of LC, so that it can be combined
with LAorD and IFV. During the second clock cycle, DT[Lold] is invalidated, enabling the label to be
recycled. On the third clock cycle, the merged feature vector is written back to the data table.

Preloading the data table cache also facilitates detection of completed objects. From Algorithm 4
line 34, when the active tag (AT) of a completed object is the current pixel position, the last pixel will be
in neighbourhood position A. At least the last three pixels (including the current pixel) will also have
been background pixels otherwise they would have extended the object. Therefore, looking up LB
when the current pixel is a background pixel gives the feature vector (containing AT) in the following
clock cycle, enabling completed object detection (shown in blue in Figure 12). When the completed
object is output, the data table entry is available for reuse by recycling the label.

4. Analysis

As a result of pipelining the computations, there are potentially data hazards, particularly in the
use of memory for tables (the row buffer, merger table and data table), resulting from when data is
expected to be in the table, but has not yet been written.

4.1. Row Buffer

For the row buffer, this can only occur at the end of the row, when the readout direction changes.
The data hazards are demonstrated in Figure 13.
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Figure 13. End of row timing, showing data hazards in red. Subscripts 1 and 2 refer to the first and
second reads from the merger table (if required).

The last pixel of the previous row, S, is read from the row buffer when the neighbourhood window
is at position X (as a result of pipelining). In the following clock cycles, reads from the row buffer begin
their backward scan of the next row. However, pixel positions T, U, and V have not yet been written
to the row buffer (or even assigned labels in the case of T and U). At the end of the row, lookup of
positions T and U in the row buffer is actually unnecessary, because their values come directly from
the neighbourhood when the window moves to the next row (Algorithm 3). Rather than read position
T, it can simply be treated as a background pixel (label 0). This ensures that when the neighbourhood
is at location T, neighbourhood position C (which is off the edge of the image) is correctly assigned a 0
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(shaded pink in Figure 13). Similarly, position U is copied directly from the previous neighbourhood
when the neighbourhood reverses direction. The row buffer output for U, too, can simply be treated as
a background pixel. Finally, position V is read in the same clock cycle as it is written. This requires that
the row buffer support a write-before-read semantic, or bypass logic be added to forward the value
being written to the output.

4.2. Path Compression

Since both path compression and label assignment have write access to the merger table, it is
necessary to check that these will not clash by attempting to write simultaneously. The possible
scenarios are illustrated in Figure 14.

1

1

2

2

2

2

1

1

2

2

3

3

3 3

3

4

4

5

0

0

0

0

2

2

2

2

1

1

1

1

3

3

3

3

4

4

4

4

5

5

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

12

78

3

6

45 6

5

(a)

(b)

Figure 14. Accesses to update the merger table: (a) Scenarios with no conflicts; (b) Scenarios with conflicts.

A new label and merger both update the merger table in pipeline stage 5. This is the clock
cycle immediately following the label assignments, as illustrated in scenarios 1© and 2© respectively.
Unchaining is performed in pipeline stage 4, corresponding to the clock cycle when the pixel appears
in the neighbourhood window. This is illustrated in scenario 3© after two lookups, and scenarios 4©
and 5© for a changed label within a consecutive run of pixels.

There cannot be a conflict between a change within a run, and a new label, because the change
would require at least one pixel within the neighbourhood, preventing a new label assignment.
Similarly, there can also be no conflict between a merger and a two lookup stale label because the merger
would require LC to be non-zero, so the following pixel cannot be the first in a run. However, there
can be conflicts between a new label and a two lookup stale label (scenario 6© in Figure 14b), and also
between a merger and changed label in a run (scenario 7©).

Where there is a conflict, the update resulting from the new label or merger should be deferred,
with the stale label update taking priority. If the new label is followed by a merger (as in Figure 14b)
then only the merger needs to be saved. This requires adding an additional storage register and
multiplexer to the data path, and appropriate control logic. The maximum delay is two clock cycles,
corresponding to 8©, because changed labels in a run can occur at most every second pixel.

4.3. Merger Table

Potential data hazards can occur with the merger table, when data is read from the table before it
is updated either as a result of merger or during the path compression.

A merger hazard is shown in Figure 15 for label 3. When scanning row 4, label 2 is read from
RB[4], and is determined to be a representative label after a single lookup, MT[2]. Two clock cycles
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later, when the neighbourhood window is centred on pixel (4, 3), component segments associated
with labels 1 and 2 merge, with MT[2] ← 1 in the following cycle. Meanwhile, label 3 is read from
RB[6], and requires two lookups in MT. The second lookup occurs in the same clock cycle that the
merger is being written to MT, so the second lookup would actually return the old label (2), shown in
red in Figure 15, and is not recognised as a stale label. A consequence of this is that pixel (4, 6) would
incorrectly be assigned label 2 rather than 1. To avoid this problem, the memory used for the merger
table must also support the write-before-read semantic, or data forwarding be used to correctly return
label (1) from the second lookup. Label 3 is then recognised as stale, and the merger table updated
with MT[3] ← 1 as shown in green.
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Figure 15. Timing of hazards associated with the merger table.

Delaying the merger table update after a merger (as described in the previous section) does not
introduce any additional hazards because the run of pixels which induces the delay would also delay
the start of the following run.

In a chain of successive mergers, such as in Figure 2, the previous merger is unlinked or compressed
during the first merger table lookup, enabling the second lookup to provide the representative label.
There are no data hazards associated with this process.

4.4. Data Table

Hazards within the data table can occur because the updated feature vector is written two clocks
after the feature vector is read from the table. Alternating background and object pixels, with the
object pixels belonging to the same connected component, can, therefore, cause a problem since the
same label is being read from and written to in the same clock cycle. This can be solved if the memory
supports read-before-write, or by adding bypass detection logic (the feedback data path from DTc to
DTi is already present).

The other issue with the data table is detecting components which complete on the last pixel of a
row, and on the row of the image. Equation (2) can be extended to include

IFV(X).AT.y =

{
H − 1 when y = H − 1,

y + 1 otherwise;
(4)

IFV(X).AT.x =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 when x = 0 and AT.y is even,

x − 1 when x �= 0 and AT.y is even,

W − 1 when x = W − 1 and AT.y is odd,

x + 1 when x �= W − 1 and AT.y is odd.

(5)
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Thus, an object on the last line will be detected as complete in the clock cycle following the last
pixel for that object.

5. Comparison and Discussion

In this section the proposed CCA algorithm is analysed with regards to throughput, latency
and required hardware resources, and compared to other state-of-the-art CCA algorithms. For the
comparison we chose the most recent CCA algorithms that are targeted for a realisation as hardware
architectures [6,18–21,23,25].

5.1. Memory Requirements

The on-chip memory size and scalability with increasing image size was identified to be one
of the most important criteria for a CCA hardware architecture to achieve a high-throughput for
high-resolution image streams [6,18]. Therefore, the scalability of the on-chip memory is further
examined in the following. As the algorithm by Jeong et al. [23] uses registers to realise the row buffer,
both registers used as memory and on-chip memory (RAM blocks) are considered in the comparison
of memory resources.

Table 1 compares the on-chip memory and register requirements for the algorithms presented
in [6,20,21,23,25] for an image of size W × H. The number of labels required, NL, defines the number
of connected components that are stored at any one time inside an architecture before their feature
vectors are ultimately output. NL is, therefore, the key factor for all architectures, as it defines the
lower bound of the depth and the width for the memories of the examined CCA architectures. In their
original publications the architectures extract different feature vectors. To enable a fair comparison,
in Table 1 the width of a feature vector WFV containing the bounding box and the area is used for
comparing the required memory. Table 2 shows the number of memory bits required for each data
structure of the compared CCA architectures. The total numbers of on-chip memory and register bits
are shown in Figure 16.

Table 1. Comparison of on-chip memory and register requirements. For all compared architectures the
feature vectors are composed of bounding box and area for each connected component, i.e., the width of
the feature vector, WFV , is equivalent for all architectures, WFV = 2
log2 W�+ 2
log2 H�+ 
log2 WH�.

Ma et al. Klaiber et al. Jeong et al. Tang et al.
This Work[20] [6,21] [23] [25]

Number of labels, NL 
W
2 � 
W+5

2 � 
W
2 � to 
W×H

4 � 
W
2 � 
W

2 �
Chain stack size, NCS 
W−1

2 � 
W−1
2 � − − −

Label width, WL 
log2 NL� 
log2 NL� 
log2 NL� 
log2 NL� 
log2 NL�
Augmented label, WAL − WL+
log2 H� − − WL + 
log2 H�
Hardware Data Structure RAM RAM Registers RAM RAM RAM

Zig-zag buffer, ZZ − − − − − W×1
Recyle FIFO, R − NL×WL − NL×WL − NL×WL
Row buffer, RB W×WL W×WL W×WL − W×2 W×WL
Merger table, MT 2NL×WL NL×WAL − − − NL×WAL
Chain stack, CS NCS×2WL NCS×2WL − − − −
Translation table, TT NL×WL − − − − −
isRoot flag, F − NL×1 − − − −
Active tag, AT − NL×2 − − − NL×(
log2 W�+1)
Stale label stack, SLS − 
W

10 �×WL − − − −
Linked lists, LL − − − − 3NL×WL −
Data table, DT 2NL×WFV NL×WFV − NL×WFV NL×WFV NL×WFV
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Table 2. Comparison of memory requirements of all data structures of the examined CCA architectures
for different image sizes from VGA to UHD8k.

VGA DVD HD720 HD1080 UHD4k UHD8k
640 × 480 720 × 576 1280 × 720 1920 × 1080 3840 × 2160 7680 × 4320

Ma et al. [20]

RB 5760 6480 12,800 19,200 42,240 92,160
MT 5760 6480 12,800 19,200 42,240 92,160
CS 5742 6462 12,780 19,180 42,218 92,136
TT 2880 3240 6400 9600 21,120 46,080
DT 36,480 42,480 79,360 124,800 272,640 591,360

Total 56,622 65,142 124,140 191,980 420,458 913,896

Klaiber et al. [6,21]

R 2907 3267 6430 9630 21,153 46,116
RB 5760 6480 12,800 19,200 42,240 92,160
MT 5814 6897 12,860 20,223 44,229 96,075
CS 5742 6462 12,780 19,180 42,218 92,136
F 323 363 643 963 1923 3843

AT 646 726 1286 1926 3846 7686
SLS 576 648 1280 1920 4224 9216
DT 18,411 21,417 39,866 62,595 136,533 295,911

Total 40,179 46,260 87,945 135,637 296,366 643,143

Jeong et al. [23]

R 2880 3240 6400 9600 21,120 46,080
RB 5760 6480 12,800 19,200 42,240 92,160
AT 640 720 1280 1920 3840 7680
DT 18,240 21,240 39,680 62,400 136,320 295,680

Total 27,520 31680 60,160 93,120 203,520 441,600

Tang et al. [25]

RB 1280 1440 2560 3840 7680 15,360
LL 8640 9720 19,200 28,800 63,360 138,240
DT 18,240 21,240 39,680 62,400 136,320 295,680

Total 28,160 32,400 61,440 95,040 207,360 449,280

This work

ZZ 640 720 1280 1920 3840 7680
R 2880 3240 6400 9600 21,120 46,080

RB 5760 6480 12,800 19,200 42,240 92,160
MT 5760 6840 12,800 20,160 44,160 96,000
AT 3520 3960 7680 11,520 24,960 53,760
DT 18,240 21,240 39,680 62,400 136,320 295,680

Total 36,800 42,480 80,640 124,800 272,640 591,360

The architecture by Ma et al. [20] was the first to introduce relabelling to reduce the number of
labels that are required, NL, from W×H

4 (in [18]) to W
2 . The aggressive relabelling, however, requires two

merger tables and two data tables to manage the labels changing from one row to the next. As shown in
Figure 16 the architecture from [20], therefore, has the largest memory footprint among the compared
CCA architectures.
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Figure 16. The bar diagram shows the number of on-memory and register bits that are required to
process images of different sizes. The bars indicate on-chip memory. The cyan coloured part of [23]
indicates the registers required for the row buffer.

The architectures of Klaiber et al. [6,21] use label recycling to improve memory-efficiency and,
therefore, also require a maximum of NL ≈ W

2 labels. Label recycling only requires a single data table
and merger table, halving their size in comparison to [20] (although the augmented labels make the
merger table wider). Since the on-chip memory requirements are dominated by the data table, this
results in significant savings.

The architecture described in Jeong et al. [23] would scale with the image area, i.e., a maximum of
NL = W×H

4 would be required for a worst case image. However, if feature vectors are output before
the end of the image is reached, then those labels could be reused. Such label recycling is possible for
the architecture in [23], even though it is not described (only merged labels are recycled). For a fair
comparison, it is, therefore, assumed that the architecture scales with the image width, i.e., NL = W

2
and the usage of an active tag (from [21]) for label recycling is assumed, even though it is not explicitly
mentioned in the original publication. Directly replacing all instances of the old label within the
row buffer enables many of the auxiliary data structures to be removed. Consequently, the modified
architecture from [23] requires 30% less memory than [21]. This reduction, however, is only achieved
because the row buffer is designed as context-addressable memory, which has to be realised with
registers on FPGAs. The cyan-coloured bar in Figure 16 shows that almost one third of the required
memory is realised directly by registers. For processing large image sizes, such as UHD8k, more than
90 kbits of registers are required to realise the row buffer and around 350 kbits of on-chip memory
for the other data structures. Since modern FPGAs have a register to on-chip memory ratio between
1/20 and 1/60, a significant fraction of register resources are required. Furthermore, the routing effort
on an FPGA, as well as the logic for addressing a content-addressable memory as large as 90 kbits
consisting of registers is significant. An analysis of the scalability of such a context-addressable memory
with increasing image size is not given in [23]. It seems unlikely that a context-addressable memory
scales well on FPGAs, both, with maximum frequency and area. The number of registers required
by the architecture of [23] is therefore a clear disadvantage when optimising for throughput or when
minimising the FPGA resources.
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The architecture of Tang et al. [25] represents a significant improvement, eliminating the need for
the content addressable memory of [23] with only approximately 2% additional resources. The main
reductions relative to [21] (approximately 30%) come from not needing to save the labels in the row
buffer, and replacing the merger table with a linked list structure. Uniquely labelling each run also
automatically recycles labels, eliminating the need for the recycle FIFO and active tag. For correct
operation, however, it does require the first and last row and column of the image to be background.
The results in Table 2 and Figure 16 do not include the logic required to extend the image with
background pixels.

The proposed CCA architecture is an advancement of [6]. Due to zig-zag scanning, an additional
memory structure to reorder incoming pixels from raster-scan order to zig-zag order is required.
Since zig-zag processing resolves chains on the fly, the stale label stack and chain stack are no longer
required. This reduces the amount of memory required by 9% compared to the architecture presented
in [21]. Compared to [23,25] approximately 20% more memory bits are required, primarily from the
merger table and other auxiliary data structures. The active tag is larger than that of [6] to detect
object completion at the earliest possible time; this matches the timing of [25]. The advantage over [23]
is merger handling using on-chip memories, rather than a large multiplexed shift register, which
is a more efficient use of resources. The advantage over [25] is the removal of the requirement for
the outside row and column of pixels to be background. The proposed architecture is also able to
immediately detect completed objects in the final row as they complete.

5.2. Implementation Results

Table 3 shows the results of the CCA architecture implemented using VHDL on an Intel
Cyclone V 5SEMA5F31C6 (using Quartus 17.1) and a Xilinx Kintex 7 xc7k325-2L (using Vivado 2016.4).
These tables show the number of lookup tables (LUTs/ALUTs), registers (FF) and on-chip memory
bits (and memory blocks) each component of the CCA architecture requires for processing UHD8k
images. The slightly higher memory requirements for the Cyclone V for the merger table and data
table are a result of the synthesis tools rounding the memory depth up to the next power of 2.

Table 3. Synthesis results targeting a UHD8k image (7680 × 4320). ALUTs are Intel’s adaptive lookup
tables; FFs are the number of flip-flops or registers; M10K are the number of Intel’s 10 kbit RAM blocks;
BRAMs are the number of Xilinx’s 36 kbit block RAMs.

Module
Intel Cyclone V 5SEMA5F31C6 Xilinx Kintex 7 xc7k325-2L

ALUTs FFs RAM (bits) M10K LUTs FFs RAM (bits) 36k BRAMs

Zig-zag buffer 28 19 7680 1 46 19 7680 0.5
Label generator 51 31 46,080 6 14 26 46,080 1.5
Row buffer 49 21 92,160 12 163 30 92,160 3
Merger table 99 103 102,400 13 219 101 96,000 3
Neighbourhood 226 252 0 0 95 217 0 0
Data table 635 275 372,736 46 470 244 322,560 10.5

Total 1088 701 621,056 78 867 a 637 564,480 18.5
a LUTs shared between multiple components are counted in both.

The scalability of the proposed CCA architecture with increasing image size is explored in
Figure 17. The number of required number of LUTs/ALUTs is shown in Figure 17a. On the Intel
Cyclone V the number of ALUTs increases logarithmically with the image width. On the Xilinx Kintex 7
the number of LUTs increases from VGA to HD1080 image size to almost 1400 and then drops to
around 800 LUTs for UHD4k and UHD8k image size. This is a direct result of the usage of LUTs
as distributed RAM to realise small memories. On Kintex 7 FPGAs this is done to prevent using
valuable on-chip memory resources from being used inefficiently for small memories that only utilise
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a small fraction of the 18 kBit minimum size. From UHD4k all the memories are realised with RAMs.
The number of LUTs from UHD4k to UHD8k image size, therefore, increases only marginally.

Figure 17b shows a small logarithmic increase in the number of registers required with image
width for both FPGAs. The Cyclone V uses slightly more registers than the Kintex 7 as a result of
register duplication during the place and route stage. The required on-chip memory bits scale linearly
with the image width, as shown in Figure 17c. The only exception that can be observed is that for
the Kintex 7 the same amount of block memory is required for the HD720 and HD1080 image sizes.
This remains constant as a result of the usage of distributed RAM as indicated in Figure 17a. The small
increase for the Cyclone V for the HD720 image size is simply a result of the discrete nature of the
RAM blocks.

The throughput of the architecture is proportional to the maximum clock frequency. Therefore,
it determines how well the throughput of the architecture scales with increasing image width.
As shown in Figure 17d the maximum frequency remains almost constant for both FPGAs. A maximum
frequency around 180 MHz can be reach on the Kintex 7 for all examined image sizes. For the Intel
Cyclone V, the maximum frequency is around 105 MHz for all image sizes.

(a) (b)

(c) (d)

Figure 17. These diagrams that show the number of (a) look up tables (LUTs / ALUTs), (b) registers
and and (c) on-chip memory bits for different image sizes for the implementation of the proposed CCA
architecture on an Intel Cyclone V 5SEMA5F31C6 and a Xilinx Kintex 7 xc7k325-2L FPGA. In (d) the
maximum clock frequency is shown.

5.3. Comparison of CCA Hardware Architecture

Table 4 compares the results reported by Johnston et al. [19], Ma et al. [20], Klaiber et al. [21],
Jeong et al. [23], and Tang et al. [25], with the implementation results of the proposed architecture.
The reported results differ in image size, extracted feature vectors, the FPGA technology used and
the maximum number of labels that can be stored in the architecture. A direct comparison of the
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architectures from Table 4 is, therefore, not meaningful. The differences of the results of the proposed
architecture are discussed for each examined architecture in the following.

Table 4. Comparison of several CCA hardware architectures. Abbreviations for the extracted feature
vector are: (A) area, (C) component count, (FOM) first-order moment, (BB) bounding box.

Implementation
Technology

Image Size
Extracted FV LUTs Registers

RAM fmax
of Architecture (pixels) (bits) (MHz)

Johnston and Bailey Spartan II 670 × 480 C 620 271 12 k N/A
[19] a A 758 299 20 k N/A

Ma et al. [20] Virtex II 640 × 480 A, C 1757 600 72 k 40.64

Klaiber et al [21] Kintex 7 256 × 256 BB 493 296 108 k 185.59
7680 × 4320 818 444 548 k 170.53

Jeong et al. [23] b Cyclone IV 640 × 480 BB, FOM 36,478 N/A 18k 60.58
1920 × 1080 57,036 N/A 29 k 58.44

Tang et al. [25] Virtex II 256 × 256 BB 543 187 72k 104.26
Cyclone IV 489 303 7287 122.94

This work
Cyclone V 256 × 256 BB, A 682 479 22 k 122.56

7680 × 4320 1088 701 621 k 106.52

Kintex 7 256 × 256 BB, A 882 503 18 k 220.02
7680 × 4320 867 637 564 k 180.47

a Hardware resources are for a maximum of 255 labels [19]. b Hardware resources are for a maximum of
127 labels [23].

Comparison to [19,20]: The proposed architecture is an advancement of these architectures.
The number of memory bits was significantly reduced by the introduction of label recycling and
omission of the chain stack. The required LUTs and registers are mostly used for control logic and are,
therefore, similar for the proposed architecture when comparing to [19,20].

Comparison to [21]: In the proposed approach the chain stack and stale label stack are no longer
required, however, the memory for storing active tag has increased compared to [21]. The required
on-chip memory could, therefore, be reduced up to 10%, as shown in Table 2. There was a small
increase in maximum frequency (35 MHz for 256 × 256 images and by 10 MHz for UHD8k images).
This was achieved due to the simplified label assignment. The critical path was in [21] in the label
assignment. For the proposed architecture it is now in the calculation of the active tag in the data
table. For the 256 × 256 image size, the required on-chip memory has decreased significantly from
108 kbits to 18 kbits. In [21] most data structures on the Kintex 7 occupy full 18 kbit RAM blocks even if
a significant part is unused. The proposed architecture makes use of distributed RAM for small data
structures; these are realised with LUTs. This also explains why the number of required LUTs has
almost doubled from [21] to the proposed architecture for small image sizes. For the UHD8k image
size, the LUT and register requirements are slightly higher than in [21] reflecting the more complex
control, and the improved object completion detection. It should be noted that the results in Table 4
for [21] are for extracting the bounding box only, whereas the results for the proposed architecture are
for extracting bounding box and area (which requires a wider data table).

Comparison to [23]: The relatively low RAM requirement of [23] is directly a result of restricting
the design to 127 labels; this would grow significantly if the design increased NL to handle any image
(the data table size is proportional to NL). The number of registers is not directly reported in [23].
However, as the number of registers required for the row buffer is proportional to the image width
(here 1920 for an HD image) and the label width (here 7 bits for 127 labels) it cannot be lower than
13,440 registers. As discussed in the analytical comparison from Table 1 and Figure 16, implementation
of [23] requires significantly more registers than the other architectures while being limited to only
127 labels. The use of multiplexed registers for the row buffer would impact on the routability of the
design, and this is the likely cause of the significantly lower clock frequency. The major advantage of
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the proposed architecture over [23] is that all of the data structures are realised as on-chip memories.
This allows the proposed design to use a smaller FPGA device, as the number of registers required is
much smaller and the proportion of on-chip memory and registers is closer to modern FPGAs.

Comparison to [25]: The small resource requirement comes from the simplified logic for
maintaining the linked list data structures. Although the RAM requirements for the Virtex II seem
anomalously large, the minimum RAM block size is 18 kbits, with the tools reporting the total size
rather than just the number of bits used (the remainder of the RAM blocks are unusable). The RAM
for the Cyclone IV is close to that indicated by Table 1. Again it should be noted that the results
reported for Tang et al. are for extracting the bounding box only. Extracting the area as well requires a
50% wider data table, and would also require a small increase in the resources required. That said,
the proposed architecture requires more resources and operates at a similar speed to [25]. It should
be remembered, however, that Tang et al. requires the borders of the image to be background pixels.
The logic reported does not include that required to either ensure this, or to pad the image if required.

5.4. Throughput

To compare the throughput of the architectures from Johnston and Bailey [19], Klaiber et al. [6,21],
Ma et al. [20], Jeong et al. [23], Tang et al. [25] and the proposed architecture, the maximum number of
clock cycles to process an image of size W × H is examined. All of the designs are capable of processing
one pixel per clock cycle of the input image. The difference is the end of row processing for resolving
chains, which are data-dependent.

For [6,19,21], the pattern which creates the maximum number of chain stack entries in an image is
the stair pattern shown in Figure 18a. It adds an overhead of W

5 cycles to each image row to process
the content stored in the chain stack and to update the merger table.

The architecture of [20] has a translation table directly connected to the output of the merger table,
with many mergers managed by the translation of labels from one row to the next. This makes the
pattern that creates the maximum number of chains more complicated, i.e., it repeats with a lower
frequency than the pattern from [19,21]. In Figure 18b it is called the feather pattern. It adds an
overhead of W

8 cycles to every second image row (giving an average of W
16 cycles per row).

(a) (b)

Figure 18. Image patterns that create the worst case average overhead for (a) [6,19,21] and for (b) [20].

The proposed architecture and the architectures of [23,25] are data-independent and do not have
a chain stack. Therefore, they only require one clock cycle to process a pixel, with no end of row
overhead for resolving chains. However, to process the complete image, [25] requires extending the
image by 1 row and column on each side (i.e., to process the full image, the end of row overheads have
not been completely eliminated). These results are summarised in Table 5.

Throughput also depends on the clock frequency. For each architecture and platform, the lowest
clock frequency from Table 4 is selected, and scaled according to the overhead. From this, it is clearly
seen in Table 5 that the proposed approach is 2 or 3 times faster than [23], primarily as a result of using
memory for the row buffer rather than distributed registers. The reduction in overhead amplifies the
small improvement in clock frequency over [6,21], giving a 26% improvement in throughput.
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Table 5. Comparison of processing cycles for a W × H image.

Architecture Number of Cycles fmax (MHz) Throughput (Mpix/s)

Johnston and Bailey [19] 6/5 × W × H N/A N/A
Klaiber et al. [6,21] 6/5 × W × H 170.53 142.11
Ma et al. [20] 17/16 × W × H 40.64 38.25
Jeong et al. [23] W × H 58.44 58.44
Tang et al. [25] (W+2)× (H+2) 104.26 102.65

This approach W × H 106.52 106.52 (Cyclone V)
180.47 180.47 (Kintex 7)

5.5. Latency

In terms of CCA, latency can be defined as the number of clock cycles from the time when the last
pixel of a connected component is received until its feature vector is output by the CCA architecture.
There is a small latency (of a few clock cycles) resulting from pipelining, but the majority comes from
detecting component completion, which is dependent on the image width, W. Since the width term
dominates, the small pipeline latency (which is constant) will be ignored in this discussion.

The architecture of Ma et al. [20] has two data tables, one for feature vectors of connected
components of the previous row and one for the current row. If a connected component is extended
from the previous row to the current row, its feature vector is moved from one data table to the other.
A connected component that is finished is not extended to the current row, i.e., when the end of the
current row is reached the associated feature vector is still in the data table for the previous row.
While processing the next row this data table scanned to detect completed components and output
the feature vector. Due to aggressive relabelling, connected components are stored in the order that
they appear in the current image row. Therefore, an object at the start of the row will have a latency
of 2 W cycles, while those at the end of the row will have a latency of W plus a scan time within the
data table of up to W

2 (depending on the number of separate components on the row) to detect the
completed object.

In the architecture of Klaiber et al. [6,21], the data table is scanned for completed objects at the
start of the second row after the last pixel of the object. The latency before this scan, therefore, ranges
from W to 2 W, depending on the position along the row. As a result of label recycling, the label could
be anywhere within the data table, with the latency of detecting the completed component during the
scan varying up to W

2 . These combine to give an average latency of 1.75 W up to a maximum of 2.5 W.
The mechanism of Tang et al. [25] detects completed objects when it encounters a hanging label,

i.e., the end of a list of runs on the previous row with no connection to the current row. This is the
earliest time that a component can be detected as completed, and has a latency of W clock cycles.
Note that the preprocessing to convert from 4-connectivity to 8-connectivity does not introduce any
significant latency. However, padding the image to ensure that the image borders are background
pixels will introduce an additional row of latency (W clock cycles—not reported here).

In the proposed design, converting from a raster scan to a zig-zag scan introduces an additional
latency relative to the other methods. Therefore, to minimise latency, it is essential to detect completed
components at the earliest possible opportunity (on the following row), which is achieved by the new
completion detection mechanism. The latency of the zig-zag conversion is W clock cycles on even
numbered rows, and between 0 and 2 W clock cycles on odd numbered rows (during the reverse scan).
The latency of detection is between 2 W at the start of a scan of a row (to scan all of the row, and back
again on the next row), through to 0 at the end of a scan. These combine to give a latency of between
W and 3 W, with an average latency of 2 W clock cycles. If the zig-zag conversion is unnecessary
(for example if streaming from memory in zig-zag order), then objects are detected as completed with
a latency of between 0 and 2 W, with an average of W clock cycles.

The algorithm of Johnston and Bailey [18,19] does not allow completed objects to be detected
before the end of the image. Similarly, Jeong et al. [23] gives no criterion for detecting a finished
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connected component before the end of the image. The latency is, therefore, the number of cycles from
the last pixel of a connected component until the end of the image. These architectures were, therefore,
not compared in terms of latency. In principle, however, although not part of the architecture of [23],
there is no limitation (apart from a few more resources) against detecting and outputting the feature
vector in a manner similar to that used in [21], or indeed that proposed in this paper.

Table 6 summarises the latency of the architectures considered. Although the proposed
architecture introduces significant latency in the conversion of the input to a zig-zag scan, this has been
mitigated by the proposed new approach to completed object detection. The slight increase in latency
is the price to pay for the increase in throughput from the elimination of end of row overheads. Note
that the feature vectors of any objects touching the last row of the image will be output with almost no
latency (only the pipeline delay), which is significantly shorter than any of the other architectures.

Table 6. Latency (in clock cycles) for an image of width W.

Architecture Average Latency Maximum Latency

Ma et al. [20] 1.75 W 2 W
Klaiber et al. [6,21] 1.75 W 2.5 W
Tang et al. [25] (without padding) W W
This approach (with zig-zag conversion) 2 W 3 W
This approach (without zig-zag conversion) W 2 W

6. Summary and Conclusions

Pixel based hardware CCA architectures are designed to process streamed images at one pixel
per clock cycle. However, with synchronous memories within modern FPGAs, this limits the designs
to one memory access per clock cycle, which can create issues with stale labels resulting from chains
of mergers. Current approaches manage this by resolving stale labels at the end of each image row,
although this introduces a variable, image dependent, delay.

Jeong et al. [23] solved this by replacing the memory with a multiplexed shift register, enabling
all instances of old labels to be replaced immediately. However, the movement away from a memory
structure comes at a cost of considerably increased logic resources and registers and a lower maximum
clock frequency.

Tang et al. [25] took a different approach, and rather than relabel the pixels which have already
been seen, manages merger resolution through manipulation of pointers within a linked list structure.
This eliminates the overheads associated with chains, and provides an efficient mechanism for detecting
completed components and recycling labels. Although it claims to have no overheads, it does require
the border pixels within the image to be background. This would require padding the image before
processing, and results in two clock cycles overhead for each row.

In this paper, we have demonstrated an alternative approach to resolve stale labels on-the-fly by
using a zig-zag scan. This allows continuous streamed images to be processed with no data dependent
overheads, while retaining the use of memory for buffering the previous row.

The cost of this approach is slightly increased control logic over prior memory based approaches.
This is to handle the zig-zag scan, and to manage multiple lookups within the merger table.
The memory requirements are reduced because fewer auxiliary data structures are required.
The presented design also allows a slightly higher clock frequency than prior state-of-the-art designs,
in addition to the improved throughput. The use of memory rather than a multiplexed shift register
makes it significantly faster than the architecture of [23].

Conversion from a raster scan to a zig-zag scan does increase the latency (in terms of the number
of clock cycles). This has been mitigated to some extent by a new algorithm that detects when objects
are completed at the earliest possible time. Overall, the proposed changes give an improvement over
current state-of-the-art methods.
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Abbreviations

The following abbreviations are used in this manuscript:

AXI Advanced extensible interface [27]
AT Active tag—indicates whether a component is still active
CCA Connected components analysis
DT Data table—accumulates the component feature vector
FIFO First in first out buffer
FPGA Field programmable gate array
IFV Initial feature vector—the feature vector of a single pixel
LUT Look up table—the logic element on an FPGA
MT Merger table—indicates equivalent labels, for obtaining the representative label
RAM Random access memory
RB Row buffer—caches labels assigned for use in the following row
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Abstract: This paper presents a hardware efficient pixel-domain just-noticeable difference (JND)
model and its hardware architecture implemented on an FPGA. This JND model architecture is
further proposed to be part of a low complexity pixel-domain perceptual image coding architecture,
which is based on downsampling and predictive coding. The downsampling is performed adaptively
on the input image based on regions-of-interest (ROIs) identified by measuring the downsampling
distortions against the visibility thresholds given by the JND model. The coding error at any pixel
location can be guaranteed to be within the corresponding JND threshold in order to obtain excellent
visual quality. Experimental results show the improved accuracy of the proposed JND model in
estimating visual redundancies compared with classic JND models published earlier. Compression
experiments demonstrate improved rate-distortion performance and visual quality over JPEG-LS as
well as reduced compressed bit rates compared with other standard codecs such as JPEG 2000 at the
same peak signal-to-perceptible-noise ratio (PSPNR). FPGA synthesis results targeting a mid-range
device show very moderate hardware resource requirements and over 100 Megapixel/s throughput
of both the JND model and the perceptual encoder.

Keywords: just-noticeable difference (JND); luminance masking; contrast masking; texture detection;
perceptual coding; JPEG-LS; downsampling; FPGA

1. Introduction

Advances in sensor and display technologies have led to rapid growth in data bandwidth in
high-performance imaging systems. Compression is becoming imperative for such systems to address
the bandwidth issue in a cost-efficient way. Moreover, in many real-time applications, there is a growing
need for a compression algorithm to meet several competing requirements such as decent coding
efficiency, low complexity, low latency and high visual quality [1]. It has been realized that algorithms
specifically designed to meet such requirements could be desirable [2–4]. Compared with off-line
processing systems, the computational power and memory resources in real-time high-bandwidth
systems are much more limited due to the relatively tight constraints on latency, power dissipation
and cost, especially in embedded systems such as display panels for ultra high definition contents and
remote monitoring cameras with high temporal and spatial resolutions.

The use of existing transform-domain codecs such as JPEG 2000 and HEVC has been limited
in real-time high-bandwidth systems, since such codecs typically require storing multiple image
lines or frames. Especially when the spatial resolution of the image is high, the line or frame buffers
result in both expensive on-chip memories and non-negligible latency, which are disadvantages for a
cost-efficient hardware implementation of the codec, e.g., on FPGAs. While JPEG-LS is considered
to have created a reasonable balance between complexity and compression ratio for lossless coding,
its use in lossy coding is much less widespread due to the inferior coding efficiency compared with
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transform-domain codecs and stripe-like artifacts in smooth image regions. It is desirable to investigate
the feasibility of a lightweight and hardware-friendly pixel-domain codec with improved compression
performance as well as significantly improved visual quality over that of the lossy JPEG-LS.

One possibility is to exploit the visual redundancy associated with properties of the human visual
system (HVS) in the pixel domain. Features and effects of the HVS can be modeled either in the pixel
domain or in the transform domain. While effects such as the Contrast Sensitivity Function (CSF) are
best described in the Fourier, DCT or Wavelet domain and hence can be exploited by compression
algorithms operating in these domains [5–7], other effects such as visual masking can be well modeled
in the pixel domain [8,9]. The term visual masking is used to describe the phenomenon that a stimulus
(such as an intensity difference in the pixel domain) is rendered invisible to the HVS by local image
activities nearby, hence allowing a coarser quantization for the input image without impacting the
visual quality. The masking effects of the HVS can be estimated by a visibility threshold measurement
model, which ideally provides a threshold level under which the difference between the original signal
and the target signal is invisible. Such a difference threshold is referred to as just-noticeable difference
(JND) [10]. Compression algorithms like JPEG-LS operating in the pixel domain can be adapted to
exploit the pixel-domain JND models, e.g., by setting the quantization step size adaptively based on
the JND thresholds. One problem with such a straightforward approach, however, is that the JND
thresholds must be made available to the decoder, incurring a relatively large overhead.

A classic pixel-domain JND model was proposed by Chou and Li [9]. This model serves as a basis
for various further JND models proposed in research work on perceptual image/video compression,
such as Yang et al.’s model [11] and Liu et al.’s model [12], which achieve improved accuracy in
estimating visual redundancies at the cost of higher complexity. A good review of JND models as well
as approaches to exploit JND models in perceptual image coding was given by Wu et al. [13].

In this work, a new region-adaptive pixel-domain JND model based on efficient local operations
is proposed for a more accurate detection of visibility thresholds compared with the classic JND
model [9] and for a reduced complexity compared with more recent ones [11,12]. A low complexity
pixel-domain perceptual image coder [14] is then used to exploit the visibility thresholds given by
the proposed JND model. The coding algorithm addresses both coding efficiency and visual quality
issues in conventional pixel-domain coders in a framework of adaptive downsampling guided by
perceptual regions-of-interest (ROIs) based on JND thresholds. In addition, hardware architecture for
both the proposed JND model and the perceptual encoder is presented. Experimental results including
hardware resource utilization of FPGA-based implementations show reasonable performance and
moderate hardware complexity for both the proposed JND model and the perceptual encoder. The
remainder of the paper is organized as follows. Section 2 reviews background and existing work
on pixel-domain JND modeling. The proposed JND model and its FPGA hardware architecture are
presented in Sections 3 and 4, respectively. Section 5 discusses the hardware architecture for the
JND-based perceptual image coding algorithm [14]. Experimental results based on standard test
images as well as FPGA synthesis results are presented in Section 6, which show the effectiveness of
both the proposed JND model and the perceptual encoder. Section 7 summarizes this work.

2. Background in Pixel-Domain JND Modeling

In 1995, Chou and Li proposed a pixel-domain JND model [9] based on experimental results
of psychophysical studies. Figure 1 illustrates Chou and Li’s model. For each pixel location, two
visual masking effects are considered, namely luminance masking and contrast masking, and visibility
thresholds due to such effects are estimated based on functions of local pixel intensity levels. The
two resulting quantities, luminance masking threshold LM and contrast masking threshold CM, are
then combined by an integration function into the final JND threshold. In Chou and Li’s model,
the integration takes the form of the MAX(·) function, i.e., the JND threshold is modeled as the
dominating effect between luminance masking and contrast masking. Basic algorithmic parts of JND
modeling described in the rest of this section are mainly based on Chou and Li’s model.
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Figure 1. Chou and Li’s pixel-domain just-noticeable difference (JND) model (1995).

2.1. Luminance Masking Estimation

The luminance masking effect is modeled in [9] based on the average grey level within a 5 × 5
window centered at the current pixel location, as depicted in Figure 2a. Let BL(i, j) denote the
background luminance at pixel location (i, j), with 0 ≤ i < H and 0 ≤ j < W for an image of size
W × H. Let B(m, n) be a 5 × 5 matrix of weighing factors (m, n = 0, 1, 2, 3, 4). As shown in Figure 2b,
a relatively larger weight (2) is given to the eight inner pixels surrounding the current pixel, since such
pixels have stronger influences on the average luminance at the current pixel location. The sum of all
weighting factors in matrix B is 32. While other weighting factors can be considered for evaluating the
average background luminance, the matrix B used in Chou and Li’s JND model [9] results in highly
efficient computation and has been used in many subsequent models (see, e.g., [11,12]). Further, let
p(i, j) denote the pixel grey level at (i, j). The average background luminance BL is then given by

BL(i, j) =
1
32

4

∑
m=0

4

∑
n=0

p (i − 2 + m, j − 2 + n) · B(m, n) (1)

Obviously, Equation (1) can be implemented in hardware by additions and shifts only. It can
be readily verified that 23 additions are required. Chou and Li examined the relationship between
the background luminance and distortion visibility due to luminance masking based on results
of subjective experiments [9,15], and concluded that the distortion visibility threshold decreases
in a nonlinear manner as the background luminance changes from completely dark to middle grey
(around 127 on an intensity scale from 0 to 255) and increases approximately linearly as the background
luminance changes from grey to completely bright. Specifically, a square root function is used in [9]
to approximate the visibility thresholds due to luminance masking for low background luminance
(below 127), whereas and a linear function was used for high background luminance (above 127):

LM(i, j) =

⎧⎪⎨⎪⎩T0 ·
(

1 −
√

BL(i, j)
127

)
+ 3, if BL(i, j) ≤ 127

γ · (BL(i, j)− 127) + 3, otherwise,
(2)

where T0 denotes the visibility threshold when the background luminance is 0 in the nonlinear region
when BL(i, j) ≤ 127, while γ is the slope of the growth of the visibility threshold in the linear region
when the background luminance is greater than 127. The values of parameters T0 and γ depend on the
specific application scenario, such as viewing conditions and properties of the display. Both T0 and γ

increase as the viewing distance increases, leading to higher visibility thresholds. Default values of
T0 = 17 and γ = 3

128 are used in [9], and these are also used for the JND model in this paper.
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Figure 2. Pixel window for JND estimation and weighing factors for the background luminance:
(a) JND estimation window of 5 × 5; and (b) weighing factor matrix B.
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2.2. Contrast Masking Estimation

The contrast masking effect is modeled in [9] based on: (1) the background luminance at the
current pixel; and (2) luminance variations across the current pixel in the 5× 5 JND estimation window.
Luminance variations, e.g., due to edges are measured by four spatial operators, G1–G4, as depicted
in Figure 3. The result from an operator Gk is the weighted luminance intensity difference across the
current pixel in the direction corresponding to k, with k = 1, 2, 3, 4 for vertical, diagonal 135°, diagonal
45° and horizontal difference, respectively. The kth weighted luminance intensity difference IDk is
calculated by 2D correlation, and the maximum weighted luminance difference MG is obtained as:

IDk(i, j) =
1

16

4

∑
m=0

4

∑
n=0

p (i − 2 + m, j − 2 + n) · Gk(m, n) (3)

MG(i, j) = MAX
k=1,2,3,4

{|IDk(i, j)|} (4)

In Chou and Li’s model, for a fixed average background luminance, the visibility threshold due
to contrast masking is a linear function of MG (also called luminance edge height in [9]) by

CM(i, j) = α(i, j) · MG(i, j) + β(i, j) (5)

Both the slope α and intercept β of such a linear function depend on the background luminance
BL. The relationship between α, β and BL was modeled by Chou and Li as

α(i, j) = BL(i, j) · 0.0001 + 0.115 (6)

β(i, j) = λ − BL(i, j) · 0.01 (7)

Parameter λ in Equation (7) depends on the viewing condition. The value of λ increases as the
viewing distance becomes larger, leading to higher visibility thresholds. A default value of λ = 0.5 is
used in [9].
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Figure 3. Directional intensity difference measurement operators G1–G4.

2.3. Formulation of JND Threshold

In Chou and Li’s model, the final JND threshold is considered to be the dominating effect between
luminance masking and contrast masking:

JND(i, j) = MAX {LM(i, j), CM(i, j)} (8)

Since in real-world visual signals there often exist multiple masking effects simultaneously, such
as luminance masking and contrast masking, the integration of multiple masking effects into a final
visibility threshold for the HVS is a fundamental part of a JND model [11]. Contrary to Chou and
Li, who considered only the dominating effect among different masking effects, Yang et al. [11,16]
proposed that: (1) in terms of the visibility threshold, the combined effect T in the presence of multiple
masking effects T1, T2, ..., TN is greater than that of a single masking source Ti (i = 1, 2, ..., N); and
(2) the combined effect T can be modeled by a certain form of addition of individual masking effects,
whereas T is smaller than a simple linear summation of the individual effects Ti, i = 1, 2, ..., N, i.e.,

MAX{T1, T2, ..., TN} < T <
N

∑
i=1

Ti (9)

Yang et al. [11] further proposed that the right-hand side of the above inequality is due to the
overlapping of individual effects. A pair-wise overlap Oi, j is hence modeled for the combination of two
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individual masking factors Ti, Tj (i < j) by a nonlinear function γ(Ti, Tj), weighted by an empirically
determined gain reduction coefficient Ci, j (0 < C < 1), i.e.,

Oi, j = Ci, j · γ(Ti, Tj) (10)

The total overlap is modeled as the sum of overlaps between any pair of masking factors. The
combined visibility threshold is given by the difference between the sum of all thresholds due to
individual masking effects and the total overlap, called the nonlinear-additivity model for masking
(NAMM) [11]:

T =
N

∑
i=1

Ti −
N

∑
i=1

N

∑
j=i+1

Oi, j =
N

∑
i=1

Ti −
N

∑
i=1

N

∑
j=i+1

Ci, j · γ
(

Ti, Tj
)

(11)

For simplicity and the compatibility with existing models including Chou and Li’s, in Yang et al.’s
model [11] the nonlinear function γ is approximated as the minimum function MIN(·), and only
luminance masking and contrast masking effects are considered. The result is therefore an
approximation of the general model given by Equation (11). In Yang et al.’s model, the final visibility
threshold at pixel location (i, j) in component θ (θ = Y, Cb, Cr) of the input image is a nonlinear
combination of the luminance masking threshold TL and an edge-weighted contrast masking threshold
TC

θ given by

JNDθ(i, j) = TL(i, j) + TC
θ (i, j)− CL,C

θ · MIN{TL(i, j), TC
θ (i, j)} (12)

Yang et al. selected default values of gain reduction coefficients as CL,C
Y = 0.3, CL,C

Cb = 0.25 and
CL,C

Cr = 0.2 based on subjective tests in [16]. The compatibility with Chou and Li’s model can be seen by
letting θ = Y and CL,C

Y = 1 in Equation (12), i.e., considering the luminance image only and assuming
maximum overlapping between the luminance and contrast masking effects.

3. Proposed JND Model

In the proposed JND model, each input pixel is assumed to belong to one of three basic types
of image regions: edge (e), texture (t) and smoothness (s). The weighting of the contrast masking
effect, as well as the combination of the basic luminance masking threshold (LM) and contrast masking
threshold (CM) into the final JND threshold, is dependent on the region type of the current pixel.
Figure 4 illustrates the proposed JND model, where We, Wt and Ws are factors used for weighting
the contrast masking effect in edge, texture and smooth regions, respectively. As shown in Figure 4,
to combine LM and weighted CM values, the MAX() function is used for edge and NAMM is used for
texture and smooth regions. Depending on the region type of a current pixel, the final output, i.e., JND
threshold for the current pixel, is selected from three candidates JNDe, JNDt and JNDs, corresponding
to the visibility threshold evaluated for the edge, texture and smooth region, respectively.
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Region type for current pixel

We e

Luminance masking 

estimation

Contrast masking 
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MAX( )
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t
s
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Edge/Texture/Smooth 

region detection
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Figure 4. Block diagram of the proposed JND model.

The individual treatment of edge regions in a JND model was first proposed by Yang et al. [16].
Clear edges such as object boundaries are familiar to the human brain, since they typically have simple
structures and draw immediate attention from an observer. Hence, even a non-expert observer can be
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considered as relatively “experienced” in viewing edge regions of an image. As a result, distortions,
e.g., due to lossy compression, are more easily identified at edges than in other regions with luminance
non-uniformity [11,17,18]. In Yang et al.’s work [11], visibility thresholds due to contrast masking
are reduced for edge regions (detected by the Canny operator) compared with non-edge regions.
Weighting factors of 0.1 and 1.0 are used for edge and non-edge pixels, respectively, such that edges
are preserved in a subsequent compression encoder exploiting the JND thresholds.

Textures, on the other hand, are intensity level variations usually occurring on surfaces, e.g., due
to non-smoothness of objects such as wood and bricks. Since textures have a rich variety and
generally exhibit a mixture of both regularity (e.g., repeated patterns) and randomness (e.g., noise-like
scatterings) [19], the structure of a texture is much more difficult to predict than that of an edge for
the human brain. Eckert and Bradley [18] indicated that about three times the quantization noise can
be hidden in a texture image compared with an image of simple edges with similar spectral contents.
To adequately estimate the contrast masking effects in texture regions, Liu et al. [12] proposed to
decompose the image into a textural component and a structural one. Both components are processed
independently for contrast masking in Liu et al’s model [12], with the masking effects computed for
the textural and structural components weighted by factors of 3 and 1, respectively. The masking
effects of both components are added up to obtain the final contrast making in Liu et al.’s JND model.

The main differences of our JND model to the works by Chou and Li [9], Yang et al. [11] and
Liu et al. [12] are: (1) marking pixels in an input image as edge, texture or smooth regions, instead
of decomposing the image into multiple components processed separately; (2) combination of LM
and CM into the final JND threshold using the maximum operator for edge regions and NAMM [11]
for non-edge regions; (3) alternative weighting of the contrast masking effect compared with [11,12];
and (4) less complex edge and texture detection schemes more suitable for FPGA implementation
compared with [11,12]. The following subsections provide details on our JND model.

3.1. Edge and Texture Detection

Each input pixel is assigned one out of three possible regions in the input image, i.e., edge, texture
and smoothness. Different regions are detected by lightweight local operations such as 2D filtering,
which can be implemented efficiently on FPGAs (see Section 4). Figure 5 illustrates the detection
scheme, where the input is the original image while the outputs are three binary maps corresponding
to edge, texture and smooth regions, respectively. Edges are detected by the Sobel operator [20]
which uses two 3 × 3 kernels. It is well known that the Sobel operator requires less computation
and memory compared with the Canny operator [21], which is used in the JND models in [11,12].
To reduce the impact of noise in the input image, Gaussian low-pass filtering is performed prior to
edge detection. A two-dimensional 3 × 5 Gaussian kernel with standard deviation σ = 0.83 is used
by default in the proposed JND model. The vertical size of the Gaussian kernel is chosen as 3 for a
low memory requirement as well as a low latency of an FPGA implementation. For computational
efficiency, an integer approximation of the Gaussian kernel discussed in Section 6.1 is used, which can
be implemented efficiently by shifts and additions. Figure 6 presents edges detected in different JND
models for the BARB test image. Edges obtained by the proposed lightweight scheme (i.e., Gaussian
smoothing followed by Sobel) are depicted in Figure 6b. The four panels in the middle and right
columns of Figure 6 show outputs of the Canny edge detector in Yang et al.’s model [11] with sensitivity
thresholds of 0.5 (default [11], middle panels) and 0.25 (right panels). Morphological operations have
been used in Yang et al.’s software implementation [22] of their JND model to expand the edges given
by the original Canny operator (see Figure 6d,f). Such operations result in bigger regions around the
edges having reduced visibility thresholds to protect edge structures.
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Figure 5. Edge, texture and smooth region detection scheme.
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Figure 6. Edges (black) obtained in the proposed and Yang et al.’s JND model: (a) original BARB
image; (b) edges detected by the proposed scheme with default edge-magnitude threshold 11;
(c) output of original Canny with edge sensitivity threshold 0.5 (default in [11]); (d) actual edge regions
from Yang et al.’s implementation [22] with threshold 0.5; (e) original Canny with edge sensitivity
threshold 0.25; and (f) actual edge regions from Yang et al.’s implementation [22] with edge sensitivity
threshold 0.25.

Many of the well-known texture analysis techniques (e.g., [23]) focus on distinguishing between
different types of textures. While such techniques achieve promising results for image segmentation,
they typically require larger blocks and computationally-intensive statistical analysis such as
multi-dimensional histograms, and their complexity/performance trade-offs are not well-suited for
JND modeling especially in resource-constrained scenarios. As discussed earlier, a desirable property
of a JND model is to distinguish textures as opposed to structural edges and smooth regions, and a
reasonable complexity/quality trade-off is an advantage especially for FPGA applications. Even if
some texture regions were not picked up by a lightweight texture detection scheme compared with a
sophisticated one, the visibility thresholds in such regions computed by the JND model would still be
valid, e.g., for a visually lossless compression of the input image, since weighting factors for contrast
masking are generally smaller in non-texture regions than in texture ones. For the reasons above, a low
complexity local operator is used for texture detection in our JND model.

The proposed texture detection scheme works as follows. Firstly, a local contrast value is calculated
for every pixel location. Figure 7a shows a 3 × 3 neighborhood for evaluating the local contrast, where
p0 is the intensity value at the current pixel location and p1–p8 are intensity values of the eight
immediate neighbors of p0. Let μ be the average of all intensity values in the 3 × 3 neighborhood.
Then, the local contrast C can be measured for the current pixel location in terms of mean absolute
deviation (MAD):
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CMAD =
1
9

8

∑
i=0

|pi − μ| , where μ =
1
9

8

∑
j=0

pj (13)

Obviously, CMAD is invariant to image rotation and intensity-level shifts. In an implementation,
e.g., based on FPGA, the divisions in Equation (13) can be avoided since such divisions can be canceled
by multiplications on both sides of the equation. A division-free implementation of the local contrast
calculation equivalent to that in Equation (13) is used in the proposed hardware architecture for the
JND model, as discussed in Section 4.4.2.

Next, the total contrast activity in the neighborhood is estimated based on local contrasts. Figure 7b
presents an example of computed local contrasts, the thresholding of such local contrasts into a contrast
significance map, the computation of a contrast activity value and finally the derivation of a binary
high-contrast-activity decision. Let Ci be the local contrast at pixel location i in the 3 × 3 neighborhood
centered about the current pixel. Then, contrast significance si is given by

si =

{
1, if Ci ≥ TC

0, otherwise,
(14)

where TC is a threshold for local contrast. A higher value of TC corresponds to a smaller number of
local contrasts detected as significant. In this paper, TC = 8 is used. Contrast activity CA at the current
pixel location is estimated as the total number of significant local contrasts in the 3 × 3 neighborhood:

CA =
8

∑
i=0

si (15)

The presence of a texture is typically characterized by a high contrast activity (HA):

HA =

{
1, if CA ≥ TA

0, otherwise,
(16)

where TA is a threshold for contrast activity. A lower value of TA corresponds to a higher sensitivity to
local contrast activities. In this paper, TA = 5 is used. Figure 8a plots the contrast activities computed
for the BARB image (cf. Figure 6a). The HA map after thresholding is shown in Figure 8b.

p1 p2 p3
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local contrasts

TC = 8

contrast significance contrast activity

CA = 6
TA = 5

HA = 1

high contrast activity

(a) (b)
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s6 s7 s8

s4 s0 s5
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1 1 0

1 1 1
sΣ

current pixel

3 4 15

12 8 7
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C1 C2 C3

C6 C7 C8

C4 C0 C5

Figure 7. Illustration of contrast activity detection: (a) neighborhood for local contrast estimation; and
(b) example of local contrasts, contrast significance and derivation of the high-contrast-activity decision.

Finally, denoting the binary output of the edge detector by E, a pixel is considered to be in a
texture region (T) if it has a high contrast activity and is not an edge, as indicated in Figure 5:

T = HA ∧ E (17)

and a pixel is considered to be in a smooth region (S) if it is neither an edge nor a texture:

S = E ∧ T (18)

The final edge, texture and smooth regions obtained for the BARB image are depicted in
Figure 8c. While it is possible to achieve a better separation of the image into different regions using
more sophisticated texture analysis and segmentation algorithms such as in Liu et al.’s model [12],
the proposed lightweight edge and texture detection scheme has achieved quite reasonable results,
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as shown in Figure 8c, which provides a firm basis for a region-based weighting of contrast masking
discussed in the next subsection. Comparisons of different JND models are given in Sections 6.2 and 6.3.

(a) (b) (c)

Edge

Texture

Smooth

Figure 8. Texture information of the BARB image in the proposed scheme; (a) visualization of contrast
activity (treated as grey values and multiplied by 20 for visibility); (b) high contrast activity (black)
regions after thresholding with TA = 5; and (c) final edge, texture and smooth regions.

3.2. Region-Based Weighting of Visibility Thresholds due to Contrast Masking

In the proposed JND model, each basic contrast masking threshold estimated using Equation (5)
is multiplied by a weighting factor based on the region in which the current pixel is located. Let We,
Wt and Ws be the weighting factors for edge (e), texture (t) and smooth (s) regions, respectively. Then,
the adaptively weighted contrast masking effect CMκ is given by

CMκ(i, j) = Wκ · CM(i, j), κ = {e, t, s} (19)

where κ denotes the region type of the current pixel. In Yang et al.’s JND model [11], a weighting
factor equivalent to We = 0.1 is used to preserve visual quality in edge regions, while in Liu et al.’s
JND model [12] a weighting factor equivalent to Wt = 3 is used to avoid underestimating visibility
thresholds in texture regions. From Equation (19), it is obvious that larger values of We, Wt and Ws

correspond to larger results for the contrast masking effects (and hence the final JND thresholds) in
edge, texture and smooth regions, respectively. Values for weighting factors We, Wt and Ws may vary,
for example depending on different viewing conditions and applications. Based on our experiments as
well as for reasons discussed in the following subsection, values for the weighting factors are selected
as We = 1, Wt = 1.75 and Ws = 1 in this work as default for the proposed JND model for normal
viewing conditions and general purpose test images. More details about the test images and viewing
conditions in our experiments are provided in Section 6.2.

3.3. Final JND Threshold

In the proposed JND model, the luminance masking and weighted contrast masking effects are
combined using the NAMM model in texture (t) and smooth (s) regions, whereas, in edge (e) regions,
the masking effects are combined using the maximum operator MAX(·), as shown in Equation (20).

JND(i, j) =

{
LM(i, j) + CMκ(i, j)− CL,C

Y · MIN{LM(i, j), CMκ(i, j)}, if κ = {t, s}
MAX{LM(i, j), CMe(i, j)}, otherwise.

(20)

The individual treatment of edge regions is based on the similarity between simple edge regions
and scenarios in classical psychophysical experiments to determine distortion visibility thresholds
in the presence of luminance edges, where simple edges are studied under different background
luminance conditions [8]. Hence, for well-defined edges, the visibility thresholds modeled by Chou
and Li based on such experiments should be considered as suitable. For the same reason, we selected
We = 1.
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4. Hardware Architecture for the Proposed JND Model

4.1. Overview of Proposed JND Hardware Architecture

Figure 9 depicts the overall hardware architecture of proposed JND estimation core implemented
on FPGA. The core includes four main parts (names of functional modules of the architecture are
indicated in italics): Luminance Masking Function, Contrast Masking Function, Edge-texture-smooth
Function, and JND Calculation Function. The streaming input pixel (p(i, j)) is first buffered in row
buffers which are needed for the filtering operations applied in our JND model. From the row
buffers, pixels are grouped as a column of 3 pixels ({p(i, j)}1) or a column of 5 pixels ({p(i, j)}2).
The 3-pixel column is sent to the Edge-texture-smooth Function, while the 5-pixel column is sent to
both Luminance Masking Function and Contrast Masking Function. From these three functions, region
mask Mec(i, j), luminance masking threshold LM(i, j) and contrast masking threshold CM(i, j) are
calculated, respectively. The JND Calculation Function combines these masks together and generates
the final JND value (JND(i, j)) for each pixel in the input image.
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Figure 9. Overall architecture of the proposed JND model.

4.1.1. Row Buffer

The proposed JND architecture employs a common row buffer design [24], which includes
registers for the current row pixel and several FIFOs for previous row pixels. Suppose r is the vertical
window radius of a filter kernel, the number of required FIFOs for this design is 2 · r − 1. The row
buffers are needed before every filtering operation. In our implementation, there are three places
where row buffers are deployed: after the input, before the calculation of high contrast activity and
after low-pass filtering. The latter two row buffers are for r = 1 and the first row buffer is for r = 1 and
r = 2.

As shown in Figure 9, the rightmost row buffers contain four FIFOs to support a filter kernel
with a maximum size of 5 (r = 2). The output of the row buffer forms a pixel-array denoted as
{p(i, j)}2 (see Equation (21)) which is fed to Background Luminance module and Max Gradient module
where 5 × 5 filter kernels are applied. A subset of this row buffer output, {p(i, j)}1, is sent to
Low-Pass Filter module and Contrast Significance module which consist of 3× 5 and 3× 3 kernel filtering
operations, respectively.

{p(i, j)}r = {p(i − r, j), p(i − r + 1, j), ..., p(i + r − 1, j), p(i + r, j)} (21)

4.1.2. Pipelined Weighted-Sum Module

For filtering operations, which are employed in several parts of proposed JND model, a common
design to perform weighted-sum is introduced, as illustrated in Figure 10. The block representation of
a Pipelined Weighted-Sum (PWS) module is depicted in Figure 10a. The input to this module is an array
of column pixel denoted as {p(i, j)}rm

, and the output is a weighted-sum value calculated as
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p̂(i, j) = ws ·
(

2·rm−1

∑
m=0

2·rn−1

∑
n=0

(
wmn · p(i + m − rm, j + n − rn)

))
. (22)

(a)

+

++

+

(b)

Figure 10. Pipelined Weighted-Sum (PWS) module. (a) Block representation. (b) PWS for 3 × 3 kernel.
Dotted lines indicate possible pipeline cuts. The ��� operator indicates customized shift-based multiplier.

The PWS module is parameterized as a function F(K, ws, rm, rn), where K is a 2D array of
coefficients, ws is an output scaling factor, and rm, rn are vertical and horizontal kernel window
radius, respectively. Figure 10b presents a zoom-in sample design for F(K, ws, 1, 1) with K defined as

K =

⎡⎢⎣w00 w01 w02

w10 w11 w12

w20 w21 w22

⎤⎥⎦ (23)

The operator denoted as ��� is a Customized Shift-based Multiplier (CSM), which generally consists
of sum and shift operators. The actual content of this operator will be defined according to the
value of a given coefficient. For example, considering the coefficient −3 in kernel G1 (see Figure 3),
the multiplication of this coefficient with a pixel value p can be rewritten as: −3 · p = −(p << 1 + p),
which now consists of one left shift operator, one adder and one sign-change operator. Since all the
coefficients are known, this customized multiplier strategy allows us to optimize for both timing and
hardware resource.

4.2. Luminance Masking Function

As discussed in Section 2.1, the calculation of the luminance masking threshold (LM) includes two
steps. The first step is finding the background luminance (BL), which can be realized by a PWS module
F(B, 1

32 , 2, 2). The second step is calculating LM based on the value of BL. Since the value of BL
belongs to the same range as of input pixel value, which is an 8-bit integer in our implementation, the
latter step can be simply realized as a look-up operation (see Figure 11). The LM ROM is implemented
by Block RAM and has 256 entries, each with 5 + σ bits where 5 and σ are implicitly the number of
bits for integer part and fractional part of LM, respectively. The output of this function is indeed 2σ

larger than the actual value of LM (L̂M(i, j) = 2σ · LM(i, j)). The scaling factor 2σ is discussed further
in Section 4.3.

LM 
ROM

Background Luminance

Luminance Mask

Figure 11. Luminance masking function.
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4.3. Contrast Masking Function

Contrast masking function consists of two modules: the first module (Max Gradient) calculates
MG based on input pixels from the row buffer. The second module (Contrast Mask) computes CM
from MG and BL, which is the output of Background Luminance module (see Figure 12). For each of the
directional gradient operations (Gi, i = 1, 2, 3, 4), PWS module is deployed with output scaling factor
ws =

1
16 and the two radii are set to 2. Absolute values of these modules’ outputs are then calculated,

by Abs functions, and compared to each other to find the maximum value (MG). The absolute function
can be simply realized by a multiplexer with select signal being the most significant bit of the input.

Abs

MAX
Abs

Abs

Abs
Max Gradient Contrast Mask

x
+

+
+

Figure 12. Contrast masking function.

The contrast masking threshold (CM) is calculated for each pixel location based on the value
of MG and BL. This calculation requires multiplications by several real numbers which cannot
be accurately converted to shift-based operators. To keep the implementation resource-efficient,
without using floating point operations, a fixed-point based approximation strategy is proposed as in
Equation (24). A scaling factor 2σ is applied to the overall approximation of the given real numbers for
providing more accuracy adjustment.

ω0 = 2σ · (2−14 + 2−15 + 2−17) ≈ 2σ · 0.0001

ω1 = 2σ · (2−3 − 2−7 − 2−9) ≈ 2σ · 0.115

ω2 = 2σ · (2−7 + 2−9) ≈ 2σ · 0.01

λ̂ = 2σ · 2−1 (24)

With the above approximations, Equations (5)–(7) are then rewritten as Equation (25) and
implemented as Contrast Mask module shown in Figure 12. In this implementation, σ is empirically set
to 5, since it provides a reasonable trade-off between accuracy and resource consumption.

ĈM(i, j) = BL(i, j) · MG(i, j) · ω0 + MG(i, j) · ω1 + λ̂ − BL(i, j) · ω2 (25)

4.4. Edge-Texture-Smooth Function

This function consists of two separate modules: Edge Detection and High Contrast Activity which,
respectively, mark pixel location belonging to edge region and high contrast activity region. These
modules receive the same 3-pixel column as an input and output a binary value for each pixel
location. The output of Edge Detection module (Me(i, j)) and High Contrast Activity module (Mc(i, j))
are combined into a two-bit signal (Mec(i, j)), which has Me(i, j) as the most significant bit (MSb) and
Mc(i, j) as the least significant bit (LSb). Mec(i, j) is then used as the select signal for multiplexers in
JND Calculation Function. The following subsections discuss each of these modules in detail.

4.4.1. Edge Detection

The edge detection algorithm applied in the proposed JND model requires three filtering
operations: one for Gaussian filtering and the other two for finding the Sobel gradients in horizontal
and vertical directions. These filters are realized by PWS modules, as depicted in Figure 13a,b.
The coefficient array G can be found in Section 6.1, and the kernels Sx, Sy are as follows:

Sx =

⎡⎢⎣−1 0 1
−2 0 2
−1 0 1

⎤⎥⎦ Sy =

⎡⎢⎣−1 −2 −1
0 0 0
1 2 1

⎤⎥⎦ (26)
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Figure 13. Edge detection module: (a) low-pass filter; and (b) Sobel edge thresholding module.

4.4.2. High Contrast Activity

To detect high contrast activity regions, the contrast significance CS needs to be calculated for
each pixel location. The proposed architecture for this task is illustrated in Figure 14. Considering
Equation (13), two divisions by 9 are required for finding CMAD. This can actually introduce some
errors to the implementation using fixed-point dividers. Therefore, the following modification is done
to find CS:

ĈMAD =
8

∑
j=0

∣∣9 · pj + μ̂
∣∣ , where μ̂ = −

8

∑
j=0

pj (27)

It is obvious that the value of ĈMAD is 81 times as large as CMAD. Therefore, instead of comparing
CMAD to the threshold TC as in Equation (14), the modified ĈMAD is now compared to the new threshold
Thc = 81 · TC. This strategy indeed requires extra hardware resources if TC is not implemented as a
constant but can guarantee the accuracy of CS without using floating-point operation.
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High Contrast Activity

+

+
+

+
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+

f f f
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+f f f

Contrast Significance 

Figure 14. High-contrast activity module: (Left) contrast significance estimation module; (Top-right)
function f ; and (Bottom-right) high contrast activity thresholding module.

Considering the implementation of Contrast Significance module depicted in Figure 14, the input
3-pixel column is registered four times: the first three register columns are for calculating μ̂ and the
last three register columns are for calculating ĈMAD. There is one clock cycle delay between these two
calculations, which is resolved by inserting a register, as shown in the bottom-left side of the module.

4.5. JND Calculation Function

Figure 15 presents the implementation of Equations (19) and (20), which calculate the final value
of JND based on the contrast masking threshold (ĈM), the luminance masking threshold (L̂M) and
the region mask (Mec). The Region-based Weighting module (RW) applies a weighting factor to the
incoming contrast mask. The weighting factors, which depend on the region type for the current pixel,
are We = 1, Wt = 1.75 and Ws = 1 for edge, texture and smooth regions, respectively. The texture
weight can be rewritten as Wt = 21 − 2−2, which results in two shift operations and one adder in our
customized shift-based multiplier. The other two weights can be simply realized as wires connecting
the input and the output. The region mask is used as the select signal of a multiplexer in order to
choose correct weighted value for the next calculation phase.
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Figure 15. JND calculation function.

In the next calculation phase, the weighted contrast masking threshold (ĈMκ) is fed to the
MAX module and NAMM module, which compute the JND value for the edge region and non-edge
regions, respectively. For the CSM module in NAMM, an approximation is done for CL,C

Y , as shown in
Equation (28). The final value of JND is then computed by removing the scaling factor 2σ applied to
the input contrast masking and luminance masking thresholds.

ĈL,C
Y = 2−2 + 2−5 + 2−6 + 2−8 ≈ 0.3 (28)

5. JND-Based Pixel-Domain Perceptual Image Coding Hardware Architecture

A low complexity pixel-domain perceptual image coding algorithm based on JND modeling
has been proposed in our earlier work [14]. Its principle is briefly described in what follows,
before addressing architectural aspects. The perceptual coding algorithm is based on predictive
coding of either the downsampled pixel value or the original pixels according to the encoder’s decision
about whether the downsampled pixel is sufficient to represent the corresponding original pixels at
visually lossless (or at least visually optimized in the case of suprathreshold coding) quality. Figure 16
illustrates the algorithm of the perceptual encoder. The Visual ROI determination block compares
local distortions due to downsampling against the distortion visibility thresholds at corresponding
pixel locations given by the pixel-domain JND model. If any downsampling distortion crosses the
JND threshold, the current downsampling proximity (a 2 × 2 block in [14]) is considered to be a
region-of-interest, and all pixels therein are encoded. In non-ROI blocks, only the downsampled mean
value is encoded. In both cases, the encoder ensures that the difference from a decoded pixel to the
original pixel does not exceed the corresponding JND threshold, fulfilling a necessary condition on
visually lossless coding from the perspective of the JND model. The predictive coder exploits existing
low complexity algorithmic tools from JPEG-LS [25] such as pixel prediction, context modeling and
limited-length Golomb coding but uses a novel scan order so that coherent context modeling for
ROI and non-ROI pixels is possible. The ROI information and the predictive coder’s outputs are
combined to form the output bitstream. More detailed information on the coding algorithm can be
found in [14]. The remainder of this section provides information on the hardware architecture for
such a perceptual encoder.
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Figure 16. JND-based pixel-domain perceptual image coding algorithm proposed in [14].
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5.1. Top-Level Architecture of the JND-Based Pixel-Domain Perceptual Encoder

The overall proposed architecture for the perceptual encoder is depicted in Figure 17. On the top
level, apart from the JND module discussed in Section 4, the proposed encoder architecture can be
divided into two main parts: an Encoder front end module and a Predictive coding module. As shown in
Figure 17, pixels encoded by the predictive coding path are provided by the Encoder front end, which
performs the following tasks:

• Generate the skewed pixel processing order described in [14].
• Downsample the current 2 × 2 input block.
• Determine whether the current input 2 × 2 block is an ROI based on the JND thresholds.
• Select the pixel to be encoded by the predictive coding path based on the ROI status.

For clarity, the JND module, as well as the delay element for synchronizing the JND module
outputs with the input pixel stream for the encoder, is omitted from the discussions on the encoder
architecture in the rest of the paper. In addition, since existing works (e.g., [26]) have well covered
architectural aspects of fundamental pixel-domain predictive coding algorithms such as JPEG-LS,
the following discussion focuses mainly on the aspects of the proposed encoder architecture that
enable the skewed pixel processing, the JND-based adaptive downsampling and the ROI-based pixel
selection [14].
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Pixel processing 

order conversion

Input 
pixel

JND threshold 

estimation
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Symbol mapping
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Coding parameter 

estimation

ROI-based pixel 
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coding

ROI

Codeword 
stream

MUX

Output
bitstream

pixel-to-encode

ENCODER FRONT END

PREDICTIVE CODING

Figure 17. Overview of the proposed JND-based perceptual encoder architecture.

5.2. Input Scan Order vs. Pixel Processing Order

The raster scan order represents a common sequence in which pixels in an image are produced
or visited, for example at the output interface of a sensor or at the input interface of an encoder.
The encoder architecture in this paper assumes that pixels of an input image are streamed sequentially
into the encoder in a raster scan order, with the source of the input image being arbitrary, such as a
camera sensor, e.g., when the encoder is directly connected to the sensor to compress raw pixels, or an
external memory, e.g., when the whole image needs to be temporarily buffered for denoising before
compression. Inside the encoder, pixels do not have to be processed in the same order as they have
been received. Figure 18 shows an example in which the input pixels are received in a raster scan order
whereas the actual encoding of the pixels follows a skewed scan order [14]. Obviously, internal pixel
buffers such as block RAMs on FPGAs are required, if an encoder’s internal pixel processing order
differs from its input pixel scan order. An architecture for implementing the skewed pixel processing
order is presented in Section 5.4.
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Figure 18. Input pixel scan order (raster scan) vs. internal pixel processing order (skewed scan [14]).

5.3. Encoder Front End

A high-level architecture for the Encoder front end is presented in Figure 19. Input pixel buffering
and skewed pixel output are performed in the Pixel processing order conversion module, which is
composed mainly of shift registers and FIFOs as row buffers. When enough pixels are buffered so that
the skewed processing can be started, pixels from the same columns in a pair of rows (called an upper
row and a lower row in this paper) are outputted by the row buffers. After a full 2 × 2 pixel block is
stored in the Downsampling window, the mean value of the block is computed by the Downsampling
module. A Lower row delay block is used to delay the output of pixels on the lower row, as required
by the skewed scan order. Figure 19 shows that all four original pixels in the Downsampling window
and the output of the Downsampling module are sent to the ROI decision module, as well as the JND
thresholds. Depending on whether the current 2 × 2 block is an ROI, either an original pixel or the
downsampled mean value is adaptively selected by the ROI-based pixel selection module and forwarded
to the predictive coding path. Different components of the encoder front end are connected by pipeline
registers and their operation is controlled by a state machine. More details and architectural aspects of
this module are examined in the following subsections.
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Downsampling
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pixel 

selection
pixel-to-
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Input 
pixel
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PIXEL PROCESSING ORDER CONVERSION

Figure 19. Encoder front end module.

5.4. Pixel Processing Order Conversion

The architecture of the Pixel processing order conversion module is shown in Figure 20. At the
input side, pixels of the input image arrive sequentially (i.e., streaming scenario), as indicated in the
waveform in the top-left side of Figure 20. According to the skewed scan order (cf. Figure 18), pixels
in a pair of rows shall be interleaved with a delay in the lower row. As depicted in Figure 20, two
different row buffers (dual-port RAMs) are used to store input pixels depending on the current row
index. The modulo-2 operation on the row_index signal is implemented by taking the least significant
bit (LSb) of row_index. The conversion process is as follows. Firstly, all pixels in an upper row (e.g.,
first row of the input image) are stored in the Upper row buffer. Next, pixels in a lower row (e.g., second
row of the image) begin to be received and stored in the Lower row buffer. As long as neither row buffer
is empty, both buffers are read simultaneously every two clock cycles, as illustrated in the waveform in
the top-right side of Figure 20. Outputs of both row buffers are then fed into the Downsampling window
consisting of two two-stage shift registers. Downsampling as well as ROI detection is performed once
all 4 pixels of a 2 × 2 block are in the Downsampling window. Finally, by inserting an offset into the data
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path for the lower row pixels using the Lower row delay block, the skewed scan order [14] is obtained at
the output of the Pixel processing order conversion module. The two output pixel values from the upper
and lower rows are denoted as pU and pL, respectively. Both pU and pL are candidates for the final
pixel to be encoded, which is determined later by the ROI-based pixel selection module.
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input pixel
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0

1
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Upper row buffer
CE

CE

DO

DO

DI

DI pL

pU

PIXEL PROCESSING ORDER CONVERSION

clk

input pixel/DI

CE

DO (upper row)

clk

DO (lower row)

Downsampling 
window Lower row delay

Figure 20. Pixel processing order conversion module.

5.5. Downsampling and ROI Decision

The architecture of the Downsampling and ROI decision modules is presented in Figure 21.
Let p1, p2, p3, p4 be the four pixels of a 2 × 2 block in the downsampling window and pm be the
downsampled mean value. The Downsampling module implements the following operation:

pm = ROUND

(
p1 + p2 + p3 + p4

4

)
(29)

As shown in Figure 21, downsampling is performed by first adding up all 4 pixel values in an
adder tree and then shifting right by 2 bits. The extra addition by 2 before the right shift is used to
implement the rounding function in Equation (29). Such a downsampling scheme is straightforward
and computationally efficient. When higher compression ratio is desired, the downsampling module
and the corresponding register window and can be extended to deal with larger block sizes, and a
low-pass filtering can be optionally employed before the downsampling to reduce aliasing.

 

 

 

 

roi

JND 
thresholds
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Figure 21. Downsampling and ROI decision modules.

The exploitation of the JND thresholds in the ROI decision module is illustrated in the upper part
of Figure 21. The downsampled value pm is first subtracted from each of the original pixels p1–p4.
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The magnitude of a resulting difference value |pi − pm|, i = {1, 2, 3, 4} is the downsampling error at
the ith pixel location in the current 2 × 2 block. Such a downsampling error is then compared with the
corresponding difference visibility threshold JNDi. The current block is considered as an ROI (roi = 1)
if any downsampling error is greater than the corresponding JND threshold. Conversely, a non-ROI
block (roi = 0) is identified if all four downsampling errors are within the corresponding four JND
thresholds. Downsampling can be applied to all non-ROI blocks without causing visual artifacts, since
all pixels in a non-ROI block have visually “no difference” to the downsampled value of that block
from a JND perspective.

5.6. ROI-Based Pixel Selection

The final pixels to be encoded are chosen by the ROI-based pixel selection module. Architecture of
this module is depicted in Figure 22. The new_block signal is a binary control flag which is asserted
when the upper row pixel register pU contains the first pixel of a new 2 × 2 block (see p1 in Figure 16).
Figures 19–21 indicate that pm, pU and roi signals are based on the same 2 × 2 block, i.e., these
signals are synchronized with each other, whereas pL is delayed by one column compared with pU.
The ROI delay block generates an ROI status signal synchronized with pL. The selection criteria are
as follows.

(1) If the current 2 × 2 block is a non-ROI block (roi=0) and pU contains the first pixel of the block
(new_block=1), then the downsampled pixel value pm is selected to replace pU.

(2) If the current block is a non-ROI block (roi= 0) and pU contains the second pixel of the block
(see p2 in Figure 16, new_block=0), then pU is skipped (i.e., pixel-to-encode is marked as invalid).

(3) A lower row pixel contained in pL is skipped if it is in a non-ROI block as indicated by the
corresponding delayed ROI status signal.

(4) For any pixel, if the 2 × 2 block containing that pixel is an ROI block, then that pixel is selected
for encoding, as shown in Figure 22.

Finally, the selected pixels, as well as the corresponding ROI flags, are transferred to the
subsequent Predictive coding module, as indicated in Figure 17.
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Figure 22. ROI-based pixel selection module.

5.7. Predictive Coding and Output Bitstream

Pixels from the Encoder front end are compressed along the predictive coding path which comprises
four main modules: Prediction and context modeling, Symbol mapping, Coding parameter estimation and
Golomb-Rice coding, as depicted in the lower part of Figure 17. These blocks are implemented in a high
throughput and resource efficient architecture for the classic context-based pixel-domain predictive
coding, which is fully pipelined without stall. The throughput is 1 pixel/clock cycle. Architectural
details here are similar to those in existing publications, e.g., on the hardware architecture for the
regular mode of JPEG-LS [26]. The variable-length codeword streams from the predictive coding path
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are combined with the ROI (in raw binary representation) at the output multiplexing (MUX) module,
where a barrel shifter is used to formulate fixed-length final output bitstreams. Detailed architecture
for the predictive coding path and bitstream multiplexing is omitted due to space limitations.

6. Experimental Results

6.1. Analysis of Integer Approximation of the Gaussian Kernel

As discussed in Section 3.1, a 3 × 5 Gaussian kernel with standard deviation σ = 0.83 is
employed in the proposed JND model. Figure 23a shows the original kernel coefficients with a
precision of four digits after the decimal point, whereas an integer approximation of the same kernel is
presented in Figure 23b. In total, 15 multiplications and 14 additions are required in a straightforward
implementation of the filtering with the original kernel, whereas the integer kernel can be implemented
with 25 integer additions plus several shift operations (for instance, multiplying x by 15 can be
implemented by a shift-add operation as (x << 4)− x, where << is the left shift operator). The impact
of using the integer kernel on the accuracy of results is analyzed in Table 1. The results using the integer
kernel after both Gaussian smoothing and Sobel edge detection (cf. Figure 5) have been compared
with those using the original kernel for various test images (see Section 6.2). Table 1 indicates that on
average 97% of the results based on the integer version of the kernel matches those of the floating-point
version after the smoothing step, whereas over 99% of the results based on the integer version of the
kernel are the same as those based on the floating-point version after the edge detection step. Since the
performance of the integer Gaussian kernel is closely comparable to that of the floating-point one, it is
reasonable to use the integer kernel for the improved resource efficiency.

2 15 30 15 2

2 15 30 15 2

3 30 62 30 3
256

1
× 

0.0066 0.0576 0.1183 0.0576 0.0066

0.0066 0.0576 0.1183 0.0576 0.0066

0.0136 0.1183 0.2429 0.1183 0.0136

(a) (b)

Figure 23. Coefficients of 3× 5 Gaussian kernel in Section 3.1: (a) original; and (b) integer approximation.

Table 1. Influence of the integer Gaussian kernel on the accuracy of smoothing and edge detection
results in comparison with the original kernel in floating-point double precision.

Average Ratio of Pixel Locations with Same Results Using the Integer Kernel and the Original One

After Gaussian Smoothing After Sobel Edge Detection

97.00% 99.89%

6.2. Performance of the Proposed JND Model

The proposed JND model was implemented in software and experimented with widely used
standard test images. The performance of the proposed JND model was tested in terms of both
the distortion visibility of JND-contaminated images and the amount of imperceptible noise that
can be shaped into the images, i.e., visual redundancies in the images. To reveal or compare visual
redundancies given by the JND models, the well-known PSNR metric is often used with a particular
interpretation in the literature on JND models. For example, it is pointed out in [9] that, if the JND
profile is accurate, the perceptual quality of the corresponding JND-contaminated image should be “as
good as the original” while the PSNR of the JND-contaminated image should be “as low as possible”.
Chou and Li believed that PSNR can be used to quantify the amount of imperceptible distortion
allowed for transparent coding of images [9]. With this interpretation, a lower PSNR value corresponds
to a larger potential coding gain. Other examples of work in which the PSNR metric is used in a similar
way to analyze the performance of JND models include [11,12,27,28].
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Multiple greyscale 8 bit/pixel test images [29,30] of different sizes and contents were used
in our experiments. For each test image, four sets of JND profiles were computed using Chou
and Li’s original model [9], Yang et al.’s model [11,22], Liu et al.’s model [12,31] and the proposed
one. A JND-contaminated image was then obtained by injecting the JND profile as a noise signal
to the original image. As described in [9], noise injection works by adding each original pixel
with the corresponding visibility threshold multiplied by a random sign {−1, 1}. The resulting
JND-contaminated image can be used in both objective tests such as PSNR measurement to reveal
the JND model’s capability for estimating the visual redundancy and subjective tests to validate the
model by comparing the original image with the JND-contaminated one. Since each sign is generated
independently, the above random-sign noise injection scheme may occasionally cause most injected
noise samples in a small neighborhood to have the same sign, which often shows a correlation to
distortion visibility even when the noise injection is guided by a high quality JND profile (see [13] for
an example). An alternative is to ensure additionally a zero-mean of the randomly-generated signs of
noise samples in every M × N block, which is referred to as zero-mean random-sign noise injection
in this work. A neighborhood size of 2 × 2 in the zero-mean random-sign scheme was used in our
experiments. The distortion visibility experiment on the proposed JND model was conducted on
a 31.1′ ′ EIZO CG318-4K monitor with 100 cd/m2 luminance and with viewing conditions specified
in [32]. The original test image is temporal-interleaved with the JND-contaminated image at a frequency
of 5 Hz, and a noise signal is invisible if no flickering can be seen. In our experiments, hardly any
flickering could be noticed at a normal viewing distance corresponding to 60 pixels/degree. Figure 24
presents a test image and various noise-contaminated images. An original section of the BALLOON
image is in Figure 24a, and a white-Gaussian-noise-contaminated image (PSNR = 31.98) is shown
in Figure 24b. A JND-contaminated image (PSNR = 31.97) based on Chou and Li’s JND model is in
Figure 24c, whereas the JND-contaminated image based on the proposed model is in Figure 24d. While
the noise in Figure 24b is quite obvious, the same amount of noise injected based on Chou and Li’s
JND model is much less visible (see Figure 24c), and an even higher amount (0.23 dB more) of noise
based on the proposed model and the zero-mean random-sign injection scheme is almost completely
invisible, as shown in Figure 24d.

(a) (b) (c) (d)

Figure 24. Visualization of JND-contaminated images: (a) original section of the BALLOON image;
(b) contaminated with white noise, PSNR = 31.98; (c) contaminated with JND profile given by Chou
and Li’s model [9] with random-sign injection, PSNR = 31.97; and (d) contaminated with JND profile
given by the proposed JND model with zero-mean random-sign injection, PSNR = 31.74.

Table 2 shows a comparison of PSNR values of JND-contaminated images based on different
JND models. As discussed above, the PSNR metric was used as an indication of visual redundancy
measured by a JND model, which can be removed without impairing the visual quality. A lower PSNR
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value is preferable since it corresponds to a more accurate estimation of the visual redundancy, which
can be used to guide a visually lossless image coding or watermarking. Table 2 indicates that the
proposed JND model on average improved the accuracy of visual redundancy estimation by 0.69 dB
and 0.47 dB compared to Chou and Li’s model and Yang et al.’s model, respectively. Compared with
Liu et al.’s model, which applies on top of Yang et al.’s model an additional total-variation-based
textural image decomposition [12], the average accuracy of the proposed model was lower by 0.6 dB.
Such a gap could be justified by the relatively low computational complexity of the proposed model,
especially for resource-constrained embedded systems.

Table 2. Performance comparison of different JND models for measuring the visual redundancy in test
images based on PSNR values of JND-contaminated images.

Image
PSNR [dB]

Chou & Li [9] Yang et al. [11] Proposed Liu et al. [12]

AERIAL2 33.11 32.23 32.01 31.52
BALLOON 31.97 31.89 31.74 31.57
CHART 30.91 31.92 30.65 30.35
FINGER 32.69 33.49 31.50 29.24
GOLD 30.93 30.32 30.18 29.81
HOTEL 29.92 29.96 29.44 28.85
MAT 32.22 32.40 31.87 31.46
SEISMIC 37.84 36.35 36.83 36.46
TXTUR2 32.06 31.05 30.60 30.04
WATER 34.18 34.44 34.06 34.01
WOMAN 30.94 30.22 30.22 29.25

Average 32.43 32.21 31.74 31.14

Improvement vs. Chou & Li – 0.22 0.69 1.29

6.3. Complexity Comparison of Proposed JND Model and Existing JND Models

Table 3 lists the number of operations required by Chou and Li’s JND model, which is the basis
for the other pixel-domain JND models discussed in this paper. The complexity of two JND models
extending Chou and Li’s model, including Yang et al.’s model and the proposed one, are compared in
Table 4 in terms of the number additional operations required in the main algorithmic parts of these
JND models. Compared with Chou and Li’s JND model, Yang et al.’s model additionally performs
edge-based weighting of the contrast masking effect using a Canny edge detector followed by a 7 × 7
Gaussian filter [9]. From the upper part of Table 4, it can be seen that Yang et al.’s model required
approximately 162 additions, one multiplications, one division and a look-up table (LUT) in addition
to the basic operations required in Chou and Li’s model (Table 3). It can be seen from the lower part of
Table 4 that compared to Yang et al.’s model, the proposed model required about half the number of
extra additions and required neither additional LUTs nor division operations.
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Table 3. Basic operations required for computing a visibility threshold by Chou and Li’s JND model.

Algorithmic Step Addition Multiplication LUT Remark

BL 24 – – Equation (1)
ID 44 – – Equation (3)
MG 3 – – Equation (4)
α 1 1 – Equation (6)
β 1 1 – Equation (7)
final CM 1 1 – Equation (5)
LM (BL ≤ 127) – – 1 Equation (2)
LM (BL > 127) 3 – – Equation (2)
Final JND 1 – – Equation (8)

Total 78 3 1

Table 4. Approximate number of additional operations per pixel required for computing a visibility
threshold by Yang et al.’s JND model and the proposed model.

Model Algorithmic Step Addition Multiply LUT Division Remark

Yang’s

C: smoothing 37 – – 1 σ=1.4 [33]
C: gradients 10 – – – Sobel
C: gradient-magnitude 1 – – – [24]
C: gradient-direction 3 – 1 – [24]

C: Canny

C: non-max suppression 2 – – – [24]
C: gradient-histogram 2 – – – [34]
C: 2-thresholding & hysteresis 2 – – – [35]

7 × 7 Gaussian 102 – – – σ=0.8 [11]

Edge-weighting – 1 – – [11]

NAMM 3 1 – – Equation (12)

Total 162 2 1 1

Proposed

E: 3 × 5 smoothing 25 – – – Figure 23b
E: Sobel gradients 10 – – – Equation (26)
E: magnitude 1 – – – Figure 13b
E: thresholding 1 – – – Figure 13b

E: edge

T: local contrast 26 – – – Equation (27)
T: contrast significance 1 – – – Equation (14)

T: texture

T: contrast activity 8 – – – Equation (15)
T: high activity 1 – – – Equation (16)
CMt weighting 1 – – – Wt =1.75
Final JND 6 2 – – Equation (20)

Total 80 2 – –

A comparison of software complexity in terms of CPU time was made for different JND models.
The comparison was based on the original authors’ implementation of Yang et al.’s model [22] and
Liu et al.’s model [31], as well as our own implementation of Chou and Li’s model and the proposed
one. All models were implemented in MATLAB. The software models were run on a desktop computer
with Intel Core i7-4820K (3.70 GHz) CPU and 32 GB of RAM. The operating system was Windows 7
64-bit. The test image used was BARB with a resolution of 720 × 576. The time need by each model
to evaluate the JND profile was obtained as the least CPU time measured from running each JND
model 30 times on the test image. The results are presented in Table 5. It can be seen that the CPU
time required by the proposed model to evaluate the JND profile was 68 ms, which was less than twice
of that (37 ms) required by Chou and Li’s model. By contrast, the CPU time required by Yang et al.’s
model was 88 ms, which was more than twice of that required by Chou and Li’s model. In the case of
Liu et al.’s model, the CPU time was 474 ms, which was over an order of magnitude more than that of
Chou and Li’s model.
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Table 5. CPU time used by MATLAB implementations of different JND models for evaluating the JND
profile of the BARB test image.

Chou & Li Yang et al. Liu et al. Proposed

CPU time (ms): 37 88 474 68
Increase vs. Chou & Li: – 138% 1181% 84%

To compare the JND models in terms of hardware resource requirement and speed, we
implemented hardware models of three JND models in VHDL, including Chou and Li’s original model,
Yang et al.’s model and the proposed one. The hardware models were simulated and synthesized
using Xilinx Vivado Design Suite 2018.2. The target device was selected as Xilinx Kintex-7 XC7K160T
with a speed grade of −2. For the FPGA implementation of the proposed JND model, the input
image was assumed to be greyscale with 8 bits/pixel and with a horizontal size of up to 1024 pixels.
Table 6 presents the FPGA resource utilization of the synthesized models and their maximum clock
frequency. The pixel throughput was one pixel per clock cycle. Table 6 shows that, compared with
Chou and Li’s JND model, the amount of required FPGA hardware resource was increased by over
200% for Yang et al.’s JND model, while for the proposed model the resource increase was less than
100%. In terms of the maximum clock frequency, the proposed model achieved the same performance
as Chou and Li’s model, i.e., 190 MHz, which was about 35% faster than the 140 MHz achieved by
Yang et al.’s model.

Table 6. FPGA resource utilization and clock frequency comparison of three JND models: Chou and
Li’s model, Yang et al.’s model and the proposed one.

Resource Type Available Chou & Li Yang et al. Proposed

Slice LUTs 101,400 1414 (1.39%) 4128 (4.07%) 2621 (2.58%)
Slice Registers 202,800 839 (0.41%) 2482 (1.22%) 1543 (0.76%)
Block RAM 36Kbits 325 2.5 (0.77%) 10.5 (3.23%) 4.5 (1.38%)

Clock frequency (MHz) 190 140 190

6.4. Compression Performance of the Perceptual Codec Based on the Proposed JND Model

The proposed JND model was implemented in combination with the perceptual encoder described
in Section 5. Parameter values for the JND model are as discussed in Section 3. Compressed image
quality of the perceptual codec was compared with that of JPEG-LS for a range of rates corresponding
to approximately 2:1 to 6:1 compression. Objective metrics used to evaluate the compressed image
quality included PSNR, MS-SSIM [36,37] and HDR-VDP score [38,39]. Compressed data rates of
the perceptual codec based on the proposed JND model were additionally compared with those of
JPEG, JPEG 2000 and JPEG XR at the same perceptual quality given by PSPNR [9]. The compression
experiments were based on widely used standard test images, as described in Section 6.2.

Figure 25 presents comparisons of rate-distortion performance between the perceptual codec
based on the proposed JND model and JPEG-LS for test image GOLD, TXTUR2 and WOMAN. It can
be seen from the MS-SSIM and HDR-VDP curves that the perceptual codec exhibited a clear gain
in perceptual quality over JPEG-LS in a rate range between 1 and 3.5 bits-per-pixel (bpp). In terms
of PSNR, which is not a perceptual quality metric, the perceptual codec delivered an improved
coding performance of about 10–15% over JPEG-LS at rates below approximately 1.5–2 bpp. Figure 26
provides visual comparisons of images compressed to approximately the same rate by JPEG-LS and
the perceptual codec combined with the proposed JND model. Selected parts of two different types of
images are shown. From this figure, it is evident that the proposed scheme achieved improved visual
quality by avoiding the stripe-like artifacts of JPEG-LS.

Towards the goal of visually transparent coding, a codec’s performance can be related to its ability
to keep coding distortions within the visibility thresholds provided by the JND model. As discussed
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in [9], the peak signal-to-perceptible-noise ratio (PSPNR) is a metric taking visual redundancy into
account based on the JND model.
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Figure 25. Objective rate-distortion plots of the proposed codec and JPEG-LS: top to bottom, MS-SSIM,
PSNR and HDR-VDP values; and left to right, results for test images GOLD, TXTUR2 and WOMAN.
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JPEG-LS@1.07bpp Proposed@1.06bpp
Original@8bpp

Original@8bpp JPEG-LS@1.07bpp Proposed@1.04bpp

Figure 26. Visual quality of images compressed by JPEG-LS and the proposed JND-based perceptual
codec at closely comparable bit rates: top and bottom, WOMAN and GOLD image; and left to
right, original image, selected section compressed by JPEG-LS, and same section compressed by the
perceptual codec.

While transform-domain codecs such as JPEG, JPEG 2000 and JPEG XR have higher complexity
and latency than a pixel-domain codec such as the proposed JND-based one or JPEG-LS, it is possible
to find out experimentally the bit rates at which any coding distortion in the compressed image is
kept below the corresponding visibility threshold given by the proposed JND model. Table 7 shows
the minimum compressed bit rates for JPEG, JPEG 2000, JPEG XR and the proposed JND-based
perceptual codec at which the PSPNR reaches the upper bound, i.e., none of the coding errors exceed
the JND thresholds, which can be considered as a necessary condition given by the JND model on
perceptually lossless coding. For this experiment, the proposed JND model, the baseline JPEG, Kakadu
implementation [40] of JPEG 2000 (with visual weights) and the ITU-T reference implementation [41] of
JPEG XR were used. Table 7 indicates that, at the same visual quality given by PSPNR, the perceptual
codec required on average about 58%, 48% and 41% fewer bits compared with JPEG, JPEG 2000 and
JPEG XR, respectively.
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Table 7. Compressed data rates of JPEG, JPEG 2000, JPEG XR and the proposed JND-based perceptual
encoder at the same quality in terms of peak signal-to-perceptible-noise ratio (PSPNR).

Image
Bit Rate (bpp)

JPEG JPEG 2000 JPEG XR Proposed

AERIAL2 6.04 5.10 4.44 2.68
BABOON 7.03 5.50 4.91 3.37
BALLOON 2.60 2.19 1.58 0.97
BARB 4.37 3.89 3.31 2.14
BOATS 4.11 3.70 3.19 1.75
CAFE 6.29 4.81 4.51 2.54
CATS 2.88 2.20 2.06 1.45
CHART 3.58 2.80 2.53 1.37
EDUC 4.50 3.96 3.53 2.21
FINGER 5.91 4.70 4.40 3.01
GOLD 5.00 4.00 3.42 1.93
HOTEL 4.98 3.90 3.46 1.74
LENNAGREY 4.64 3.70 3.34 1.69
MAT 3.61 2.50 2.44 1.23
PEPPERS 4.93 4.10 3.54 1.85
SEISMIC 2.11 1.88 1.46 1.30
TOOLS 6.26 5.09 4.58 2.68
TXTUR2 6.31 5.20 4.47 2.68
WATER 3.55 2.89 2.55 1.03
WOMAN 5.01 4.19 3.56 1.96

Average 4.69 3.82 3.36 1.98

Saving by perceptual encoder 57.8% 48.1% 41.2% –

6.5. FPGA Resource Utilization and Throughput of the Proposed Perceptual Encoder Architecture

The architecture for the proposed JND model and perceptual encoder was implemented in
hardware using VHDL hardware description language. The hardware model for the perceptual
encoder was simulated and synthesized using Xilinx Vivado Design Suite 2016.4. The target device
was selected as Xilinx Kintex-7 XC7K160T, a popular mid-range FPGA, with a speed grade of −2.
Since the proposed perceptual encoder is compatible with different JND models (and vice-versa for
the proposed JND model), the proposed JND model and perceptual encoder were implemented as
separate modules, and their synthesis results are reported separately for clarity. An integration of
these two modules is straightforward, as is obvious from Section 5. Synthesis results for the proposed
JND model as well as two other JND models are presented in Section 6.3.

Table 8 shows the FPGA resource utilization of the proposed perceptual encoder architecture for
8–16 bits/pixel input greyscale images with a horizontal size of up to 2048 pixels. It can be seen that the
proposed encoder architecture required 5.85% of logic resource and 2% of the BRAM resource on the
target FPGA, and a pixel throughput of about 140 Megapixel/s (1 pixel/clock cycle) was achieved. For
both the proposed JND model and the perceptual encoder architecture, the logic and BRAM resources
used were well below 10% of all the available resources of each type on the target FPGA, which, on the
one hand, provides abundant hardware resources for the other image processing tasks running on
the FPGA such as noise cancellation, and, on the other hand, leaves ample room for using multiple
parallel encoding instances on a single FPGA when higher pixel throughput is demanded.
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Table 8. FPGA resource utilization of the proposed perceptual encoder architecture.

Resource Type Used Available Percentage

Slice LUTs 5934 101,400 5.85%
Slice Registers 2300 202,800 1.13%
Block RAM 36Kbits 6.5 325 2%

Clock frequency (MHz) 140

7. Conclusions

A new pixel-domain JND model and a perceptual image coding architecture exploiting the JND
model are presented. In the proposed JND model, lightweight and hardware-efficient operators are
used to identify edge, texture and smooth regions in the input image. Different weighting factors
for the contrast masking effects are applied to pixels in different regions. The contrast masking and
luminance masking effects are combined into the final JND value in the new approach, i.e., using
the nonlinear additivity model for masking (NAMM) operator for texture/smooth regions and the
maximum operator for edge regions. The proposed JND model and architecture are suitable for
implementation on FPGAs for real-time and low complexity embedded systems. In the proposed
architecture for a low complexity pixel-domain perceptual codec, the input image is adaptively
downsampled based on the visual ROI map identified by measuring the downsampling distortion
against the JND thresholds. The proposed JND model provides a more accurate estimation of visual
redundancies compared with Chou and Li’s model and Yang et al.’s model. Since the computational
complexity of the proposed model is significantly less than that of Liu et al.’s model based on image
decomposition with total variation, the proposed JND mode achieves a new balance between the
accuracy of JND profile and the computational complexity. Experimental results further show that the
proposed JND-based pixel-domain perceptual coder achieved improved rate-distortion performance
as well as visual quality compared with JPEG-LS. At the same perceptual quality in terms of PSPNR,
the proposed coder generated fewer bits compared with JPEG, JPEG 2000 and JPEG XR. Finally, FPGA
synthesis results indicate that both the proposed JND model and the perceptual coder required a
very moderate amount of hardware resources to implement in terms of both logic and block memory
resources. On a mid-range FPGA, the hardware architecture of the proposed JND model required about
2.6% of logic and 1.4% of block memory resources and achieved a throughput of 190 Megapixel/s,
while the hardware architecture of the perceptual encoder required about 6% of logic and 2% of block
memory resources and achieved a throughput of 140 Megapixel/s.
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